
IBM DB2 10.1
for Linux, UNIX, and Windows

DB2 Workload Management Guide and
Reference

SC27-3891-00

���

IBM DB2 10.1
for Linux, UNIX, and Windows

DB2 Workload Management Guide and
Reference

SC27-3891-00

���

Note
Before using this information and the product it supports, read the general information under Appendix E, “Notices,” on
page 509.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.
v To order publications online, go to the IBM Publications Center at http://www.ibm.com/shop/publications/

order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at http://www.ibm.com/
planetwide/

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU
(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2007, 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/

Contents

About this book ix

Chapter 1. Introduction to DB2 workload
management concepts 1
Domains of workload management 1
Workload management administrator authority
(WLMADM) 3
Frequently asked questions about DB2 workload
management 4

Chapter 2. Work identification 15
Activities 15
Workload management DDL statements 18
Work identification by origin with workloads . . . 19

Workload assignment 23
Default workloads 25
Creating a workload 30
Altering a workload 31
Enabling a workload 33
Disabling a workload 34
Dropping a workload 34
Permitting occurrences of a workload to access
the database 35
Preventing occurrences of a workload from
accessing the database 36
Granting the USAGE privilege on a workload . . 36
Revoking the USAGE privilege on a workload . 38
Example: Workload assignment. 38
Example: Workload assignment when workload
attributes have single values. 42
Example: Workload assignment for a unit of
work when multiple workloads exist 44
Example: Workload assignment when workload
attributes have multiple values 47

Work identification by type, cost, or data accessed
with work classes 48

Work classes and work class sets 51
Evaluation order of work classes in a work class
set 58
Assignment of activities to work classes 59
Work classifications supported by thresholds . . 60
Example: Analyzing workloads by activity type 61
Example: Using a work class set to manage
specific types of activities. 62
Example: Working with a work class defined
with the ALL keyword 63

Chapter 3. Activities management . . . 67
Resource assignment with service classes 67

Default service superclasses and subclasses . . . 70
Activity-to-service class mapping 72
Agent priority of service classes 76
Prefetch priority of service classes 77
Buffer pool priority of service classes 78

States of connections and activities in a service
class 79
System-level entities not managed by service
classes 80
Creating a service class 80
Altering a service class 82
Dropping a service class 85
Example: Using service classes 86
Example: Analyzing a service class–related
system slowdown 91
Example: Investigating agent usage by service
class 92

Apply controls to types of activities with work
action sets 93

How work classes, work class sets, work actions,
and work action sets work together and are
associated with other DB2 objects 94
Work actions and work action sets. 96
Work actions and the work action set domain 106
Thresholds that can be used in work actions . . 110
Application of work actions to database
activities 110
Concurrency control at the workload level using
work action sets 112
Workload and work action set comparison . . 114
Example: Using a database work action set and
database threshold. 116
Example: Using work action sets to determine
the types of work being run 118

Control of work with thresholds 119
Threshold domain and enforcement scope . . . 122
Threshold evaluation order 123
Creating a threshold 125
Altering a threshold 126
Dropping a threshold. 127
Example: Using thresholds 128
Connection thresholds 130
Activity thresholds 130
Aggregate thresholds 139
Unit of work thresholds 146

Priority aging of ongoing work 147
Sample priority aging scripts 151
Remapping activities between service subclasses 157

Workload management dispatcher overview . . . 160
Workload management dispatcher 161
Hard CPU shares 181
Soft CPU shares 190
CPU limit 194
Minimum CPU resource utilization for service
class to be considered active 210
Dispatch concurrency level 213
Monitoring and tuning workload management
dispatcher performance 215

Canceling activities 219

© Copyright IBM Corp. 2007, 2012 iii

Chapter 4. Monitoring and
intervention 221
Real-time monitoring with table functions 221

Example: Using DB2 workload management
table functions 226
Example: Monitoring current system behavior at
different levels using DB2 workload
management table functions 227
Example: Obtaining point-in-time statistics from
service classes 230
Example: Aggregating data using DB2 workload
management table functions 231
Example: Determining which activities are
queued by a WLM threshold and their queue
order 231

Historical monitoring with WLM event monitors 233
Available monitoring data 239
DB2 workload management stored procedures . . 241
Statistics for DB2 workload management objects 242

Statistics collection and monitoring with
remapped activities 251
Histograms in workload management 253
Historical analysis tool 261
Collecting workload management statistics
using a statistics event monitor 262
Resetting statistics on DB2 workload
management objects 264

Monitoring metrics for DB2 workload management 265
Workload management table functions and
snapshot monitor integration 266
Monitoring threshold violations 267

How to generate email notifications for
threshold violations 269

Collecting data for individual activities 272
Importing activity information into the Design
Advisor 274
Canceling activities 274
Guidelines for capturing information about and
investigating a rogue activity 275
Workload management performance modelling . . 276
Example: Capturing information about an activity
for later analysis 276

Chapter 5. Integration with operating
system workload managers 279
Integration of AIX Workload Manager with DB2
workload management 279
Integration of Linux workload management with
DB2 workload management 284

Chapter 6. Tutorial for DB2 workload
management. 291
Exercise 1: Getting started with basic monitoring
using default DB2 workload management objects . 291
Exercise 2: Isolating activities using service classes
and workloads 296
Exercise 3: Using thresholds to control rogue
activities and using the threshold violation monitor 303
Exercise 4: Differentiating activities by activity type 306
Exercise 5: Using histograms for service classes . . 313

Exercise 6: Investigating delays with WLM table
functions 322
Exercise 7: Cancelling an ongoing activity 325
Exercise 8: Discovering what types of activities are
running on your system 326
Exercise 9: Capturing detailed information about
an executing activity 329
Exercise 10: Generating historical data and reports 331
Exercise 11: Using extended aggregates for service
classes. 334

Chapter 7. Workload management
scenarios 341
Workload management sample application . . . 341
Scenario: Investigating a workload-related system
slowdown 342
Scenario: Aggregation of activity metrics across
child activities 343
Scenario: Identifying activities that are taking too
long to complete 346
Scenario: How to cancel activities queued for more
than an hour 348
Scenario: Identifying activities with low estimated
cost and high runtime 351
Scenario: Cancelling all activities being executed in
a service subclass 352
Scenario: Disconnecting all applications either
mapped to or executing activities in a service class . 353
Scenario: Tuning a DB2 workload management
configuration when capacity planning data is
available 354
Scenario: Tuning a DB2 workload management
configuration when capacity planning information
is unavailable 356

Chapter 8. Reference 361
Procedures and table functions 361

WLM_CANCEL_ACTIVITY - Cancel an activity 361
WLM_CAPTURE_ACTIVITY_IN_PROGRESS -
Collect activity information for activities event
monitor 362
WLM_COLLECT_STATS - Collect and reset
workload management statistics 364
WLM_GET_ACTIVITY_DETAILS - Return
detailed information about a specific activity . . 366
WLM_GET_QUEUE_STATS table function -
Return threshold queue statistics 371
WLM_GET_SERVICE_CLASS_AGENTS table
function - list agents running in a service class . 374
WLM_GET_SERVICE_CLASS
_WORKLOAD_OCCURRENCES - list workload
occurrences 381
WLM_GET_SERVICE_SUBCLASS_STATS table
function - Return statistics of service subclasses . 384
WLM_GET_SERVICE_SUPERCLASS_STATS -
Return statistics of service superclasses 390
WLM_GET_WORK_ACTION_SET_STATS -
Return work action set statistics 392

iv DB2 Workload Management Guide and Reference

WLM_GET_WORKLOAD
_OCCURRENCE _ACTIVITIES - Return a list of
activities 393
WLM_GET_WORKLOAD_STATS table function
- Return workload statistics 397
WLM_SET_CLIENT_INFO procedure - Set client
information 400

Workload management monitor elements 403
act_cpu_time_top – Activity CPU time top
monitor element 403
act_exec_time - Activity execution time monitor
element 403
act_remapped_in – Activities remapped in
monitor element 404
act_remapped_out – Activities remapped out
monitor element 404
act_rows_read_top – Activity rows read top
monitor element 404
act_throughput - Activity throughput monitor
element 405
act_total - Activities total monitor element. . . 405
activate_timestamp - Activate timestamp
monitor element 406
activity_collected - Activity collected monitor
element 406
activity_id - Activity ID monitor element . . . 406
activity_secondary_id - Activity secondary ID
monitor element 407
activity_type - Activity type monitor element 408
agg_temp_tablespace_top - Aggregate
temporary table space top monitor element . . 408
arm_correlator - Application response
measurement correlator monitor element . . . 409
bin_id - Histogram bin identifier monitor
element 409
bottom - Histogram bin bottom monitor element 409
concurrent_act_top - Concurrent activity top
monitor element 410
concurrent_connection_top - Concurrent
connection top monitor element 410
concurrent_wlo_act_top - Concurrent WLO
activity top monitor element 411
concurrent_wlo_top - Concurrent workload
occurrences top monitor element 411
concurrentdbcoordactivities_db_ threshold_id -
Concurrent database coordinator activities
database threshold ID monitor element 411
concurrentdbcoordactivities_db_threshold
_queued - Concurrent database coordinator
activities database threshold queued monitor
element 412
concurrentdbcoordactivities_db_
threshold_value - Concurrent database
coordinator activities database threshold value
monitor element 412
concurrentdbcoordactivities_db_
threshold_violated - Concurrent database
coordinator activities database threshold
violated monitor element 413

concurrentdbcoordactivities_subclass_
threshold_id - Concurrent database coordinator
activities service subclass threshold ID monitor
element 413
concurrentdbcoordactivities_subclass_
threshold_queued - Concurrent database
coordinator activities service subclass threshold
queued monitor element 413
concurrentdbcoordactivities_subclass_
threshold_value - Concurrent database
coordinator activities service subclass threshold
value monitor element 414
concurrentdbcoordactivities_subclass_
threshold_violated - Concurrent database
coordinator activities service subclass threshold
violated monitor element 414
concurrentdbcoordactivities_superclass_
threshold_id - Concurrent database coordinator
activities service superclass threshold ID
monitor element 415
concurrentdbcoordactivities_superclass_
threshold_queued - Concurrent database
coordinator activities service superclass
threshold queued monitor element 415
concurrentdbcoordactivities_superclass_
threshold_value - Concurrent database
coordinator activities service superclass
threshold value monitor element 415
concurrentdbcoordactivities_superclass_
threshold_violated - Concurrent database
coordinator activities service superclass
threshold violated monitor element 416
concurrentdbcoordactivities_wl_was_threshold
_id - Concurrent database coordinator activities
workload work action set threshold ID monitor
element 416
concurrentdbcoordactivities_wl_was_threshold
_queued - Concurrent database coordinator
activities workload work action set threshold
queued monitor element 416
concurrentdbcoordactivities_wl_was_threshold
_value - Concurrent database coordinator
activities workload work action set threshold
value monitor element 417
concurrentdbcoordactivities_wl_was_threshold
_violated - Concurrent database coordinator
activities workload work action set threshold
violated monitor element 417
coord_act_aborted_total - Coordinator activities
aborted total monitor element 418
coord_act_completed_total - Coordinator
activities completed total monitor element. . . 418
coord_act_est_cost_avg - Coordinator activity
estimated cost average monitor element . . . 419
coord_act_exec_time_avg - Coordinator
activities execution time average monitor
element 420
coord_act_interarrival_time_avg - Coordinator
activity arrival time average monitor element . 421
coord_act_lifetime_avg - Coordinator activity
lifetime average monitor element 421

Contents v

coord_act_lifetime_top - Coordinator activity
lifetime top monitor element 422
coord_act_queue_time_avg - Coordinator
activity queue time average monitor element . . 423
coord_act_rejected_total - Coordinator activities
rejected total monitor element 424
coord_partition_num - Coordinator partition
number monitor element 425
cost_estimate_top - Cost estimate top monitor
element 425
cpu_limit - WLM dispatcher CPU limit monitor
element 426
cpu_share_type - WLM dispatcher CPU share
type monitor element. 426
cpu_shares - WLM dispatcher CPU shares
monitor element 426
cpu_utilization - CPU utilization monitor
element 426
cpu_velocity - CPU velocity monitor element 427
db_work_action_set_id - Database work action
set ID monitor element 428
db_work_class_id - Database work class ID
monitor element 428
destination_service_class_id – Destination
service class ID monitor element 429
estimated_cpu_entitlement - Estimated CPU
entitlement monitor element 429
histogram_type - Histogram type monitor
element 429
last_wlm_reset - Time of last reset monitor
element 430
num_remaps - Number of remaps monitor
element 431
num_threshold_violations - Number of
threshold violations monitor element 431
number_in_bin - Number in bin monitor
element 431
parent_activity_id - Parent activity ID monitor
element 432
parent_uow_id - Parent unit of work ID monitor
element 432
prep_time - Preparation time monitor element 433
queue_assignments_total - Queue assignments
total monitor element. 433
queue_size_top - Queue size top monitor
element 434
queue_time_total - Queue time total monitor
element 434
request_exec_time_avg - Request execution time
average monitor element 435
routine_id - Routine ID monitor element . . . 435
rows_fetched - Rows fetched monitor element 436
rows_modified - Rows modified monitor
element 436
rows_returned - Rows returned monitor element 438
rows_returned_top - Actual rows returned top
monitor element 439
sc_work_action_set_id - Service class work
action set ID monitor element 440
sc_work_class_id - Service class work class ID
monitor element 440

section_env - Section environment monitor
element 441
service_class_id - Service class ID monitor
element 441
service_subclass_name - Service subclass name
monitor element 442
service_superclass_name - Service superclass
name monitor element 443
source_service_class_id - Source service class ID
monitor element 444
statistics_timestamp - Statistics timestamp
monitor element 444
stmt_invocation_id - Statement invocation
identifier monitor element 445
temp_tablespace_top - Temporary table space
top monitor element 445
thresh_violations - Number of threshold
violations monitor element 446
threshold_action - Threshold action monitor
element 447
threshold_domain - Threshold domain monitor
element 448
threshold_maxvalue - Threshold maximum
value monitor element 448
threshold_name - Threshold name monitor
element 449
threshold_predicate - Threshold predicate
monitor element 449
threshold_queuesize - Threshold queue size
monitor element 450
thresholdid - Threshold ID monitor element . . 450
time_completed - Time completed monitor
element 451
time_created - Time created monitor element 451
time_of_violation - Time of violation monitor
element 451
time_started - Time started monitor element . . 452
top - Histogram bin top monitor element . . . 452
total_disp_run_queue_time - Total dispatcher
run queue time monitor element 452
uow_completed_total - Total completed units of
work monitor element 454
uow_comp_status - Unit of Work Completion
Status 455
uow_elapsed_time - Most Recent Unit of Work
Elapsed Time 455
uow_id - Unit of work ID monitor element . . 456
uow_lifetime_avg - Unit of work lifetime
average monitor element 457
uow_lock_wait_time - Total time unit of work
waited on locks monitor element 457
uow_log_space_used - Unit of work log space
used monitor element 458
uow_start_time - Unit of work start timestamp
monitor element 458
uow_status - Unit of Work Status. 459
uow_stop_time - Unit of work stop timestamp
monitor element 459
uow_throughput - Unit of work throughput
monitor element 460

vi DB2 Workload Management Guide and Reference

uow_total_time_top - UOW total time top
monitor element 461
wl_work_action_set_id - Workload work action
set identifier monitor element 461
wl_work_class_id - Workload work class
identifier monitor element 462
wlm_queue_assignments_total - Workload
manager total queue assignments monitor
element 462
wlm_queue_time_total - Workload manager
total queue time monitor element 463
wlo_completed_total - Workload occurrences
completed total monitor element 465
work_action_set_id - Work action set ID monitor
element 465
work_action_set_name - Work action set name
monitor element 466
work_class_id - Work class ID monitor element 466
work_class_name - Work class name monitor
element 466
workload_id - Workload ID monitor element 467
workload_name - Workload name monitor
element 468
workload_occurrence_id - Workload occurrence
identifier monitor element 469
workload_occurrence_state - Workload
occurrence state monitor element 470

Commands 470
SET WORKLOAD 470

Configuration parameters 471
wlm_collect_int - Workload management
collection interval configuration parameter . . 471
wlm_dispatcher - Workload management
dispatcher 472
wlm_disp_concur - Workload manager
dispatcher thread concurrency. 473
wlm_disp_cpu_shares - Workload manager
dispatcher CPU shares 474
wlm_disp_min_util - Workload manager
dispatcher minimum CPU utilization 475

Catalog views 476

SYSCAT.HISTOGRAMTEMPLATEBINS . . . 476
SYSCAT.HISTOGRAMTEMPLATES 476
SYSCAT.HISTOGRAMTEMPLATEUSE 476
SYSCAT.SERVICECLASSES. 477
SYSCAT.THRESHOLDS 479
SYSCAT.WORKACTIONS 482
SYSCAT.WORKACTIONSETS 484
SYSCAT.WORKCLASSES 485
SYSCAT.WORKCLASSSETS 485
SYSCAT.WORKLOADAUTH 486
SYSCAT.WORKLOADCONNATTR 486
SYSCAT.WORKLOADS 487

Appendix A. General naming rules 491

Appendix B. Roles 493

Appendix C. Trusted contexts and
trusted connections 495

Appendix D. Overview of the DB2
technical information 499
DB2 technical library in hardcopy or PDF format 499
Displaying SQL state help from the command line
processor 502
Accessing different versions of the DB2
Information Center 502
Updating the DB2 Information Center installed on
your computer or intranet server 502
Manually updating the DB2 Information Center
installed on your computer or intranet server . . 504
DB2 tutorials 505
DB2 troubleshooting information 506
Terms and conditions. 506

Appendix E. Notices 509

Index 513

Contents vii

viii DB2 Workload Management Guide and Reference

About this book

This book provides information on the DB2® workload management features and
functionality that can help you obtain a stable, predictable execution environment
that meets your business objectives. Using DB2 workload management, both
requests and resources are managed. This book also provides information on
monitoring and performing troubleshooting for the workload on your data server.

© Copyright IBM Corp. 2007, 2012 ix

x DB2 Workload Management Guide and Reference

Chapter 1. Introduction to DB2 workload management
concepts

A good workload management system helps to efficiently meet goals in the
environment where work occurs. You can see examples of the need for a good
workload management system all around you.

For example, look at a grocery store. Different activities must be considered:
serving customers, stocking shelves, maintaining inventories, and so on. And some
simple goals must be set. Store owners want to maximize both the number of
customers who move through the store, and the amount that customers purchase,
achieving both goals in a way that customers leave both satisfied and wanting to
come back. Store owners must also ensure that they have sufficient stock for their
customers to buy (but not too much stock, because waste becomes an issue). Store
owners also track what their customers purchase, and use this information to
create advertisements that are designed to induce their customers to return.
Monitoring mechanisms track inventory and send notifications when stocks run
low. Security devices are in place to detect shoplifting. Special fast checkout lanes
are created so that shoppers who only want to purchase a few items can do so
without having to wait behind other customers who are purchasing many items. If
all of these goals are met and all of these operational procedures work well,
customers are satisfied, and are likely to return rather than to go to another store.
These goals and operational procedures are all aspects of workload management.

In a data server environment, you can see even more of a need for effective
management of work, especially now that data servers are being stressed like
never before. Cash registers generate thousands of data inserts, reports are
constantly being generated to determine whether sales targets are being met, batch
applications run to load collected data, and administration tasks such as backups
and reorganizations run to protect the data and make the server run optimally. All
these operations are using the same database system and competing for the same
resources.

To ensure the best chance of meeting goals for running a data server, an efficient
workload management system is critical.

Domains of workload management
Workload management has three clearly defined domains: identification of the
work entering the data server, management of the work when it is running, and
monitoring to ensure that the data server is being used efficiently.

A number of aspects must be considered for successful workload management
with DB2 workload manager, starting with understanding your goals. In the
grocery store example described in Chapter 1, “Introduction to DB2 workload
management concepts,” goals might include maximizing customer spending,
minimizing shoplifting, and ensuring that customers leave the store satisfied so
that they will return again.

In a data server environment, you must also define goals. Sometimes the goals are
clear, especially when they originate from service level agreement (SLA) objectives.
For example, queries from a particular application can consume no more than 10%

© Copyright IBM Corp. 2007, 2012 1

of the total processor resource. Goals can also be tied to a particular time of day.
For example, an overnight batch utility might have to complete loading data by 8
a.m. so that the daily sales reports are on time. In other situations, the goals can be
difficult to quantify. A goal might be to keep the database users satisfied and to
prevent aberrant database activity from hampering their day-to-day work. Whether
the goals are quantifiable or not, understanding them is critical when considering
the following stages of workload management:

Identification
If you want to achieve a goal for some kind of work, you first must be
able to identify details about the work. In the grocery store, you can
identify shopper information through credit cards and debit cards, or an
unpaid-for item through an active security tag on the item. For the data
server, you need to decide how you want to identify the work that enters
the system. You can use the name of the application that submits the work,
the authorization ID that submits the work, or a combination of elements
that provide some form of identification.

Management
The management phase includes mechanisms for making steady progress
towards your goal, and actions to take if a goal is not being met. An
example of a mechanism is managing price checks in fast checkout lanes.
Fast checkout lanes should result in faster throughput and satisfied
customers, but if a carton of milk has the wrong price and a price check is
required, the fast checkout lane could slow down. The problem is managed
by performing a fast price check, possibly opening up another checkout
lane, and trying to fix the pricing problem so that it does not occur again.
On the data server, you might find that overall performance is suffering
when a few poorly written SQL statements are running, a surge in volume
occurs during peak times, or there is too much competition between
different applications for the same resources. The management phase
includes mechanisms for assigning resources to achieve your goals and
actions to take if a goal is not being met. These workload management
mechanisms, which indirectly and directly control CPU resources, include
the following:
1. Concurrency thresholds, applied with a work action set defined on the

workload, to control the concurrency of incoming work
2. The ability to move work form one service class to another, currently

only effective when workload management dispatcher is being used on
those service classes

3. Workload management dispatcher to specifically allocate CPU resources
for workloads assigned to service classes for more granular control of
CPU resources when the first two workload management mechanisms
are not adequate

Monitoring
Monitoring is important for a couple of reasons. First, to determine
whether you are achieving a goal, you must have a mechanism to track
progress toward that goal. Also, monitoring helps to identify the problems
that might be preventing you from achieving your goal. In a store, the
store manager can watch the flow of customers, automatically be alerted to
problems such as shoplifting or dangerously low inventory of a particular
sale item, or perform analysis on historical purchase patterns to determine
optimal product placement in the store. For a data server, there are often
explicit goals for response times of database activities and it is important to
have a way to measure this metric, and watch for trends.

2 DB2 Workload Management Guide and Reference

The following figure represents the workload management phases:

Workload management administrator authority (WLMADM)
You need workload management administrator (WLMADM) authority to manage
workload objects for a specific database. This authority enables you to create, alter,
drop, comment on, grant access to, and revoke access from DB2 workload
management objects.

Workload management objects are system objects similar to buffer pools and table
spaces. As such, they do not have owners associated with them.

The security administrator, who is someone holding SECADM authority, or a user
with ACCESSCTRL authority can grant WLMADM authority to a user, group, or
role.

WLMADM authority provides the ability to perform the following tasks:
v Issue CREATE, ALTER, COMMENT ON, and DROP statements for the following

DB2 workload management objects:
– Histogram templates
– Service classes
– Thresholds
– Work action sets
– Work class sets
– Workloads

v Issue GRANT and REVOKE statements for workload privileges

If you hold database administrator (DBADM) authority, you hold WLMADM
authority implicitly.

Definition of goals

Identification
of activities

Management

Monitoring

Figure 1. Phases of workload management

Chapter 1. Introduction to DB2 workload management concepts 3

Frequently asked questions about DB2 workload management
This FAQ provides you with answers to common questions about DB2 workload
management.

General

v On which DB2 platforms can I use DB2 workload management?
v I am not on AIX®. Does this mean I do not have any control over

processor resource or I/O activity?
v Now that Query Patroller is discontinued and DB2 Governor are

deprecated, how do I migrate to DB2 workload manager?
v Is there a way for WebSphere® Application Server to pass the client

information fields used by the DB2 workload?
v Why is my work not assigned to the correct workload?
v Why does DB2 workload manager affect REORGCHK, IMPORT,

EXPORT and other CLP commands?
v Is there a way to change the service class to which an activity is

assigned while it is executing?
v Much of my batch work is done using CLP scripts under the same ID,

how can I go about uniquely identifying these so I can manage them
differently from each other?

v When should I use the COLLECT AGGREGATE ACTIVITY DATA clause
versus the COLLECT ACTIVITY DATA clause?

v How does DB2 workload management work with the new AIX WPAR
feature?

v What is the relationship between the DB2_OPT_MAX_TEMP_SIZE
registry variable and a DB2 threshold based on SQLTEMPSPACE?

Licensing

v What are the licensing requirements for DB2 workload manager?

Monitoring

v What information do you get from the different event monitors that are
associated with workload management?

OS workload management (AIX WLM and Linux WLM)

v Why would I ever want to use AIX WLM or Linux WLM?
v I am not on AIX. Does this mean I do not have any control over

processor resources or I/O activity?
v Can I use AIX WLM to manage I/O activity?
v Can I use AIX WLM to manage memory use?
v How does DB2 WLM work with the new AIX WPAR feature?

Platforms

v On which DB2 platforms can I use DB2 workload manager?
v I am not on AIX. Does this mean I do not have any control over

processor resource or I/O activity?
v How does DB2 workload management work with the new AIX WPAR

feature?
v Why would I ever want to use AIX WLM or Linux WLM?

Query Patroller and Governor

4 DB2 Workload Management Guide and Reference

v How does this new functionality affect Query Patroller and DB2
Governor?

v Now that Query Patroller and DB2 Governor are deprecated, how do I
migrate to DB2 workload manager?

Thresholds

v Can I create multiple CONCURRENTDBCOORDACTIVITIES
concurrency thresholds for the same set of work?

v How do I determine which activities are queued by a workload
management threshold and the order of the activities in the queue?

Workload management dispatcher

v Do I need to use workload management dispatcher?
v What changes in behavior might I see when I turn ON the workload

management dispatcher?
v With the introduction of the workload management dispatcher, are

concurrency thresholds such as CONCURRENTDBCOORDACTIVITIES
no longer needed or useful?

On which DB2 platforms can I use DB2 workload management?

DB2 workload management is available on all platforms supported by DB2 9.5 for
Linux, UNIX, and Windows or later. The optional tight integration—offered
between DB2 workload management at the service class level and operating
system workload management capabilities—is available on AIX platforms and any
Linux platform based on the 2.6.26 kernel or higher.

Do I need to use workload management dispatcher?

Most workload management configurations begin with concurrency thresholds,
which affect the consumption of all resources by controlling how much work can
begin executing at any one time. In some situations, however, a concurrency
threshold is not able to effectively limit the total amount of processing resource
that is consumed, and high priority work is affected; for example, a scenario in
which complex work is restricted to one running query that nevertheless consumes
enough resource to disrupt higher priority work. In such cases, the workload
management dispatcher is used to explicitly control CPU consumption and protect
the higher priority work.

You can use the workload management dispatcher for any or all of the following
situations:
v You want to manage the share of CPU resources among multiple users or

applications and you are using an operating system that does not have an
operating system (OS) workload manager that integrates with DB2 workload
management through the outbound_correlator field on each service class.

v You want to manage the share of CPU resources among multiple users or
applications and you do not have root privilege on the operating system.

v You want to manage the share of CPU resources among multiple users or
applications in a multiple member environment across multiple systems and
managing this through the OS WLM on each system requires too much
administration.

Chapter 1. Introduction to DB2 workload management concepts 5

v You want to manage the share of CPU resources among multiple users or
applications using hard shares to limit certain service classes, even when the
CPU is under-utilized, and this is not available in your OS WLM or does not
produce the desired result.

How does this new functionality affect Query Patroller and DB2
Governor?

The DB2 workload manager introduces an independent approach to workload
management and does not rely on or interact with Query Patroller or DB2
Governor in any way. Query Patroller has been discontinued starting with the
Version 10.1 release. DB2 Governor was deprecated in the DB2 Version 9.7 release
and, although still functional, it is no longer central to the DB2 workload
management strategy. No further investment is planned for DB2 Governor in
future releases.

When DB2 9.5 or later is first installed, the default user service class is
automatically defined and all incoming work is sent to it for execution. Although
DB2 Governor can watch agents in any service class, it is permitted to adjust the
agent priority only for agents in the default user service class.

I am not on AIX. Does this mean I do not have any control over
processor resources or I/O activity?

Users on all platforms have the same ability to control processor resources and I/O
activity between service classes using SQL, such as the CREATE and ALTER
SERVICE CLASS statements, for example.

To control CPU usage when the workload management dispatcher is enabled, use
the CPU limit attribute of the DB2 service class to limit the amount of CPU
resources a service class can consume. If the workload management dispatcher
CPU shares (wlm_disp_cpu_shares) database manager configuration parameter is
also enabled, you can use the CPU shares attribute of the DB2 service class to
specify the share of CPU resources that a service class can consume relative to the
CPU consumption of other service classes. On AIX and some Linux platforms, you
can supplement (or replace) these approaches by taking advantage of the workload
management capabilities that are offered by those operating systems to control
CPU consumption.

For I/O activity, users on all platforms can set the buffer pool or prefetcher priority
attribute of a DB2 service class to a value of high, medium, or low. All service
classes run with a medium priority by default.

Can I use AIX or Linux WLM or the DB2 workload management
dispatcher to manage I/O activity?

Currently, neither AIX WLM nor Linux WLM support direct I/O activity controls
at the thread level. However, it is possible to indirectly control I/O activity by
means of concurrency thresholds, or to use the DB2 workload management
dispatcher, AIX WLM, or Linux WLM to manipulate CPU resources. The more
CPU resource that is available to an executing thread, the less frequently that
thread will request I/O resources.

You can influence buffer pool behavior by using the BUFFERPOOL PRIORITY
attribute of any DB2 service class. You can also control DB2 prefetcher I/O activity
by using the PREFETCH PRIORITY attribute of any DB2 service class.

6 DB2 Workload Management Guide and Reference

Can I use AIX or Linux WLM to manage memory use?

DB2 data server uses primarily shared memory, which is accessed by more than
one agent from different service classes. For this reason, it is not possible to divide
memory allocation between different service classes using either AIX or Linux
WLM.

Memory (such as sortheap) that is consumed during the execution of an SQL
statement can be indirectly influenced through the use of concurrency thresholds,
because consumption does not begin until the statement is allowed to execute.
However, unlike I/O activity, restricting CPU consumption does not affect the
amount of memory that is consumed. In fact, restricting CPU consumption can
exacerbate the memory situation, because queries will be running more slowly and
holding onto their allocated memory longer.

Is there a way for WebSphere Application Server to pass the
client information fields used by the DB2 workload?

WebSphere Application Server Version 6.0 and Version 6.1 can set or pass in the
CLIENT INFO fields to DB2 data server, either explicitly by your applications (see:
Passing client information to a database) or implicitly by having WebSphere
Application Server do it for you (see: Implicitly set client information).

Can I create multiple CONCURRENTDBCOORDACTIVITIES
concurrency thresholds for the same set of work?

You can create one or more CONCURRENTDBCOORDACTIVITIES concurrency
thresholds that apply to the same set of activities by defining them at the level of
the database, the service class in which the work executes, or within a work action
set applied at the database or workload level. Be aware that each new concurrency
threshold that applies to an activity implies additional overhead to enforce that
concurrency threshold. Verify that you really need more than one concurrency
threshold level.

Why is my work not assigned to the correct workload?

There are a number of reasons why a connection may not be mapped to the
desired workload. The most common ones are the failure to grant USAGE
privilege on the workload, incorrect spelling of the case sensitive connection
attributes, or the existence of a matching workload definition that is positioned
earlier in the evaluation order.

Before a connection can be assigned to a workload, the connection attributes must
match those of the workload definition, and the session authorization ID must
have USAGE privilege on the workload. A common omission is to create the
workload but not to grant USAGE privilege on the workload to users (See
“GRANT (Workload Privileges) statement” in SQL Reference). Only users with
ACCESSCTRL, SECADM, or WLMADM authority can grant workload usage
privilege to other users. Users with ACCESSCTRL, DATAACCESS, DBADM,
SECADM, or WLMADM authority have implicit usage privilege on all workloads.

Connection attributes for workloads are case sensitive. For example: If the system
user ID is uppercased, then the SYSTEM_USER connection attribute you specify
must be in uppercase as well.

Chapter 1. Introduction to DB2 workload management concepts 7

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.base.doc/info/aes/ae/tdat_clientinfotask.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.base.doc/info/aes/ae/rdat_impclientinfo.html

To establish why a connection is not being mapped to the expected workload, you
should gather some information. Which workload is the work being mapped to? Is
that workload before or after the one that you thought would be used when you
look at the workload definitions in the order of evaluation? (Hint: try selecting the
workload definitions ordered in ascending order by the value of the
EVALUATIONORDER column in SYSCAT.WORKLOADS).

If you do not know what the connection attributes are for the target connection,
you can find out the values for the connection in a number of different ways:
v Issue a query against the system using the

WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES table function
while the connection is active

v Open a cursor on a connection and use the
WLM_CAPTURE_ACTIVITY_IN_PROGRESS stored procedure against that
cursor to have the activity information captured to the activities event monitor
(Hint: do not forget to create and activate the activities information event
monitor)

v Turn on the collection of detailed activity information for the workload being
used by the connection, issue one statement in order to capture the activity
information, and then turn off the collection.

Why does DB2 workload manager affect REORGCHK, IMPORT,
EXPORT and other CLP commands?

These CLP commands are affected by DB2 workload management thresholds,
because the database engine cannot distinguish system requests originating with
these utilities from other requests directly initiated by users within the CLP
interactive front-end.

Is there a way to change the service class to which an activity is
assigned while it is executing?

Yes, you can change the service subclass an activity is executing in to another
service subclass within the same parent service superclass by defining a
CPUTIMEINSC, DATATAGINSC, or SQLROWSINSC threshold with the REMAP
ACTIVITY action on the original service subclass. Initially, DB2 workload
management maps an activity to a service class based on the relevant workload
definition for the connection, modifies it as required if a work action set exists on
that service class, and then sets up the DB2 agent to execute in the assigned service
class. When an activity violates a threshold that has a REMAP ACTIVITY action
defined, the agent remaps itself to the specified target service subclass (under the
same superclass) once the threshold violation has been detected and the activity
continues executing in the new service subclass.

Much of my batch work is done using CLP scripts under the
same ID, how can I go about uniquely identifying these so I can
manage them differently?

You have a couple of options:

An enhancement has been added to CLP so that the client application name is
automatically set to the CLP script filename, with a CLP prefix preceding it (the
value of this field at the server can be seen in the CURRENT
CLIENT_APPLNAME special register). For example, if the CLP script filename is
batch.db2, the CURRENT CLIENT_APPLNAME special register value is set to CLP

8 DB2 Workload Management Guide and Reference

batch.db2 by CLP when that script is run. With this feature, it is possible for
different CLP scripts to be associated with different workloads based on the client
application name.

For example, to create a workload for CLP file batch1.db2, you can issue the
following DDL statement:
CREATE WORKLOAD batch1 CURRENT CLIENT_APPLNAME (’CLP batch1.db2’)
SERVICE CLASS class1

To create a workload for CLP file batch2.db2, you can issue the following DDL
statement:
CREATE WORKLOAD batch2 CURRENT CLIENT_APPLNAME (’CLP batch2.db2’)
SERVICE CLASS class2

Since these two batch files are associated with different workloads, they can be
assigned to different service classes and managed differently.

Another option is the new stored procedure WLM_SET_CLIENT_INFO, which
permits you to set the values of any of the client information fields at the server
using a simple CALL SQL statement. By inserting a CALL statement into any of
your existing CLP scripts, you can uniquely identify them using these fields and
map them to different workload definitions.

For more information, see “WLM_SET_CLIENT_INFO procedure” in Administrative
Routines and Views.

When should I use the COLLECT AGGREGATE ACTIVITY DATA
clause versus the COLLECT ACTIVITY DATA clause?

The answer depends on why the monitoring is desired and what is to be done
with the information.

Aggregate activity information spans the entire set of work that has executed
within the scope covered by the clause, and it captures summary characteristics of
this set; it does not capture specific details about individual activities. The
COLLECT AGGREGATE ACTIVITY DATA clause can be specified on DB2
workloads, DB2 service classes, and DB2 work action sets. For normal operational
monitoring, use the COLLECT AGGREGATE ACTIVITY DATA clause, because it is
very lightweight, it can be gathered automatically by the statistics event monitor
for a historical record, and it provides important information on overall response
time patterns. If further insight is required on a specific type of work, use the
COUNT ACTIVITY or COLLECT AGGREGATE ACTIVITY DATA actions within a
DB2 work action set to gather more granular information (with minimal overhead)
about different types of work executing in a workload, service class, or database.

In contrast, activity information contains detailed information about each and
every activity that executes within the scope covered by the COLLECT ACTIVITY
DATA clause. This clause can be specified on DB2 workloads, DB2 service classes,
DB2 work action sets, and DB2 thresholds. It permits further in-depth analysis of
the individual activities that are captured, in order to understand the flow and
type of SQL statements submitted by a new application, for example, or to look
into performance tuning opportunities with tools such as the Explain facility or the
Design Advisor. Because it captures much more information for each activity
affected by it, the impact of using this clause is higher on affected activities than
other monitoring methods and it should be carefully controlled.

Chapter 1. Introduction to DB2 workload management concepts 9

How does DB2 workload management work with the new AIX
WPAR feature?

All aspects of DB2 workload management will work within an AIX WPAR but
because AIX WPARs do not support the use of AIX WLM features, the option to
tightly integrate DB2 service classes with AIX WLM service classes is of no benefit
in this environment.

What is the relationship between the DB2_OPT_MAX_TEMP_SIZE
registry variable and DB2 thresholds based on
SQLTEMPSPACE?

There is no direct relationship between these two things. The
DB2_OPT_MAX_TEMP_SIZE registry variable is a directive to the query compiler to
limit the amount of temporary table space that a query can use. This can cause the
optimizer to choose a plan that is more expensive (potentially less efficient) but
which uses less space in the system temporary table spaces. A DB2 threshold
based on SQLTEMPSPACE does not affect the type of plan chosen by the
optimizer. It simply causes DB2 data server to monitor the usage of system
temporary table space by that query at each member and generates a threshold
violation if the stated limit is exceeded during normal processing.

Now that Query Patroller is discontinued and DB2 Governor is
deprecated, how do I migrate to DB2 workload manager?

Following the introduction of DB2 workload manager as the strategic workload
management solution in DB2 Version 9.5, Query Patroller has been discontinued in
the Version 10.1 release and the DB2 Governor has been deprecated since the DB2
Version 9.7 release and might be removed in a future release.

Although DB2 Governor is still supported in this release, you should begin
adopting the new features and capabilities of DB2 workload manager, including
those introduced in this release. Note that with DB2 workload manager, you have
many more options, and you should explore them, which might require you to
rethink your approach to controlling work on your DB2 data server in current
workload management terms. The DB2 best practices article Implementing DB2
workload management in a data warehouse contains a supplement that is
specifically designed for those who are migrating from Query Patroller. Pertinent
task topics are also available in the Related tasks section.

To facilitate migration from DB2 Query Patroller to DB2 workload manager, a
sample script (qpwlmmig.pl) has been included starting with DB2 V9.7 Fix Pack 1.
For additional information, see one of the following tasks for details on how to
migrate from Query Patroller to DB2 workload manager:
v Migrating from Query Patroller to DB2 workload manager using the sample

script
v Migrating from Query Patroller to DB2 workload manager

What are the licensing requirements for DB2 workload manager?

A subset of the workload management capabilities in DB2 data server has its use
restricted through licensing. This licensed subset is referred to as DB2 workload
manager, and it controls the creation of any service class, workload, threshold, or
work action set. Access to this subset of workload management capabilities
requires one of the following licensed products:

10 DB2 Workload Management Guide and Reference

http://www.ibm.com/developerworks/data/bestpractices/workloadmanagement/
http://www.ibm.com/developerworks/data/bestpractices/workloadmanagement/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.wlm.doc/doc/t0056572.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.wlm.doc/doc/t0056572.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.qb.upgrade.doc/doc/t0053461.html

v DB2 Enterprise Server Edition for Linux, UNIX, and Windows
v DB2 Advanced Enterprise Server Edition for Linux, UNIX, and Windows
v Database Enterprise Developer Edition for Linux, UNIX, and Windows
v IBM® InfoSphere® Warehouse, all editions
v IBM Smart Analytics System

The following workload management functions are not restricted by license:
v Using or altering the default service classes and workloads; this includes all

monitoring capabilities
v Creating, altering, or dropping histogram templates
v Using the DB2 workload management table functions or stored procedures
v Creating, activating, stopping, or dropping workload management event

monitors
v Granting, altering, or revoking workload privileges

What information do you get from the different event monitors
that are associated with workload management?

The threshold violations, statistics, and activities event monitors capture
information about threshold violations, operational statistics and aggregate activity
data, and individual activity data (see: “Historical monitoring with WLM event
monitors” on page 233).

Each event monitor collects one or more logical data groups (see: “Event type
mappings to logical data groups” in Database Monitoring Guide and Reference) and
there are one or more monitoring elements in each logical data group (see: “Event
monitor logical data groups and monitor elements” in Database Monitoring Guide
and Reference).

For example, to discover what information is collected by the threshold violations
event monitor, start by looking in Table 3 in “Event type mappings to logical data
groups” topic. This table shows that the threshold violations event monitor collects
information into a single logical data group called event_thresholdviolations
(note that some event monitors, like the activity event monitor, collect information
into multiple logical data groups). Next, find the event_thresholdviolations
logical data group in “Event monitor logical data groups and monitor elements”
topic. This topic shows which monitor elements are reported in the
event_thresholdviolations logical data group, which includes the following:
v activate_timestamp - Activate timestamp
v activity_collected - Activity collected
v activity_id - Activity ID
v agent_id - Application Handle (agent ID)
v appl_id - Application ID
v coord_partition_num - Coordinator partition number
v destination_service_class_id – Destination service class ID
v source_service_class_id - Source service class ID
v threshold_action - Threshold action
v threshold_maxvalue - Threshold maximum value
v threshold_predicate - Threshold predicate
v threshold_queuesize - Threshold queue size

Chapter 1. Introduction to DB2 workload management concepts 11

v thresholdid - Threshold ID
v time_of_violation - Time of violation
v uow_id - Unit of work ID

The approach outlined in this example can be used to discover what data is
collected by each event monitor.

How do I determine which activities are queued by a workload
management threshold and the order of the activities in the
queue?

You can do this by first creating a view using the
WLM_GET_SERVICE_CLASS_AGENTS table function and then running statements
to list the queued activities in the order of the queue entry time. For examples
describing how to do this, see: “Example: Determining which activities are queued
by a WLM threshold and their queue order” on page 231.

What changes in behavior might I see when I turn ON the
workload management dispatcher?

When you turn ON the workload management dispatcher via the wlm_dispatcher
database manager configuration parameter and if you had been relying on agent
priority to prioritize the work of one service class over another, then this agent
priority cannot be used while the workload management dispatcher is enabled. As
a result, all service classes are treated as if they have the default agent priority.

If you enable CPU shares via the wlm_disp_cpu_shares database manager
configuration parameter and do not specify CPU shares or CPU limits for your
service classes, all service classes receive an equal soft share of the CPU resources
on your system. The effect of all service classes receiving an equal soft share of the
CPU resources might result in a different allocation of CPU resources to services
classes than in previous DB2 releases. As a result, you should consider setting CPU
shares or CPU limit values appropriate for your workload. For more information
about how to determine values for CPU shares and CPU limits, see: “Workload
management dispatcher” on page 161.

With the introduction of the workload management dispatcher,
are concurrency thresholds such as
CONCURRENTDBCOORDACTIVITIES no longer needed or
useful?

The DB2 workload management dispatcher and concurrency thresholds can be
used together. Concurrency thresholds are still very useful for controlling how
much work is running. For each activity that starts running, the DB2 database
manager provides other resources to that activity, in addition to CPU resources,
which the activity usually retains for as long as it is running. Such non-CPU
resources include (among others) the DB2 agent, sort memory, temporary table
space, locks, and I/O. By preventing an activity from starting to run, those
additional non-CPU resources are not consumed and are available for other
activities.

In addition, concurrency thresholds can be applied at different points within the
DB2 database manager to determine the origin of the work that is running. For
example, putting a concurrency threshold on large queries coming from a specific

12 DB2 Workload Management Guide and Reference

workload limits the consumption or share of the resources available to that
particular workload in a service class, as compared to other workloads
contributing to the same service class.

In summary, concurrency thresholds can be used to control when activities start to
run and consume the CPU and non-CPU resources on the system. The workload
management dispatcher can be used to control how much of the CPU resources
such activities get to consume once they start running.

Why would I ever want to use AIX WLM or Linux WLM?

Even if you use the DB2 workload management dispatcher for controlling the CPU
consumption of your DB2 workloads, the following are reasons to use AIX WLM
or Linux WLM as well:
v Operating system (OS) workload managers provide monitoring of resource

consumption at the level of the operating system.
v OS workload managers can provide control for all processes or threads on the

entire host or LPAR, not just DB2 database manager threads. This can help when
there is a need to control processes that compete for resources with DB2
database manager.

Chapter 1. Introduction to DB2 workload management concepts 13

14 DB2 Workload Management Guide and Reference

Chapter 2. Work identification

A key part of successfully implementing a DB2 workload management solution is
identifying the work.

There are three approaches to work identification: workloads, work classes, and
data tags.
v Workloads can be used to identify the source of work. You can identify the

source at the connection or transaction level by using key session attributes, such
as the application name or the system authorization ID that submitted the work,
for example.

v A work class enables you to identify work by pinpointing certain characteristics
of the work. You can define a work class to identify the work of interest, such as
statements that only modify data on the data server, for example (INSERT,
UPDATE, or DELETE statements, for example).

v Data tags are available as table space and storage group data tags. They enable
you to identify work indirectly by the type of data it accesses during execution.
By tagging data of interest, you can identify the work that is accessing that data.

Activities
One way that you can monitor and control workloads is on the basis of individual
activities. Each time your DB2 data server executes the access plan for an SQL or
XQuery statement or executes the load utility a corresponding activity is created.

For workload monitoring, commonly used monitor elements provide information
in terms of activity units. For example, you can obtain information about the
workload volume and response time from monitor elements such as the activity
execution time monitor element (coord_act_exec_time) and the high watermark for
the concurrent activities (concurrent_act_top).

For workload control, most workload controls and thresholds apply to each
activity. For example, the ACTIVITYTOTALTIME threshold controls the maximum
time that your data server can spend processing an activity.

Statements or commands that trigger activities on your data
server

The following statements or commands trigger activities on your data server:
v All DML statements
v All DDL statements
v The CALL statement
v The load utility

The life cycle of activities

The life cycle of an activity for a DML statement does not include processing that
occurs before or outside of access plan execution. This implies that activity-based
monitoring does not cover operations such as connecting to the database or
compiling SQL into an access plan.

© Copyright IBM Corp. 2007, 2012 15

During its life cycle, an activity can spend time in various states, which are
reported by the activity_state event monitor element. Some of the states an activity
can be in are:
v EXECUTING - This state indicates that the coordinator agent is working on the

activity. An activity that encounters a lock wait situation is reported as
executing.

v IDLE - This state indicates that the coordinator agent is waiting for the next
request from a client.

v QUEUED - Some thresholds include a built-in queue. This state indicates that
the activity is waiting in the queue for its turn to begin executing.

Monitoring data for the activity is aggregated at the end of the lifetime of an
activity.

The following figure shows how the lifetime of a long running query breaks down
into queue time and execution time:

3 sec 3 sec 3 sec 3 sec4 sec 4 sec 4 sec

Open Fetch Fetch CloseQueuing

20 sec

Queue time

Execution time

Lifetime

Types of SQL statements and application development

This section describes what activities are created for various SQL statements and
identifies the start and end points in the lifetime of these activities. You can use
this information to understand how SQL statements are monitored and controlled
through activities.

SELECT statements: A SELECT statement is represented by one activity. This
includes any cursor requests such as FETCH operations and subselects or
subqueries. The activity starts when your DB2 data server starts processing an
OPEN cursor statement or request, and ends when your data server has completed
processing for a CLOSE cursor statement or request.

SELECT statements using WITH HOLD cursors: When a WITH HOLD cursor is
used, an application can open a cursor within one unit of work and close the
cursor in a subsequent unit of work. The cursor remains open for multiple units of
work. The corresponding activity exists for as long as the cursor is open, because
the life cycle of the activity ends only after the cursor is closed.

CALL statement and stored procedures: A CALL statement itself is represented by
one activity, but the payload of the stored procedure can spawn nested activities as
follows:

Table 1. Contents of stored procedures and activities they create

Contents of stored procedure Additional activities created

A single SQL statement One

No SQL statements in the stored procedure 0

SQL procedures, multiple SQL statements,
and looping logic

Multiple activities, one corresponding to
each invocation of each statement

16 DB2 Workload Management Guide and Reference

Table 1. Contents of stored procedures and activities they create (continued)

Contents of stored procedure Additional activities created

A call to another stored procedure Activities for that stored procedure

The activity associated with the CALL statement starts when your DB2 data server
starts processing the statement or request and ends after the stored procedure
processing is complete.

Triggers and UDFs: When a SQL statement calls a trigger or UDF, no additional
activity is created. The work done by that trigger or UDF is accrued to the activity
for the SQL statement that called it. Cases where the trigger or UDF executes
additional SQL statements are handled like any statement execution, that is, an
activity is created for each statement.

PREPARE statement: No activity is created, because activities are not created until
an access plan is executed.

Nested activities

Nested activities do not significantly affect activity-based monitoring and control of
workloads, but some additional information applies.

Activities that can have nested activities within them are:
v A stored procedure
v An anonymous block
v An autonomous routine
v A DML activity that executes a UDF
v A load from cursor (a load activity that has the cursor activity nested within it)
v A DML activity that is subject to a trigger that contains any of the activities

listed previously as part of the trigger definition

Nested activities are reported in monitoring information as follows:
v A nested activity is indicated by a nonzero parent UOW ID and a nonzero

parent activity ID.
v A nested activity is not counted towards histograms or any statistics derived

from histograms.
v Data for a nested activity is not also reported as part of the metrics for the

parent activity. For example, if a procedure executed by a CALL statement
performs an insert which consumes 10 seconds of processor time, that processor
time is counted only towards the processor time metric for the insert activity
and does not count towards the processor time metric for the parent CALL
activity.

Workload control considers nested activities as follows:
v An activity nested inside a UDF or trigger does not contribute to the

CONCURRENTDBCOORDACTIVITIES threshold.
v A cursor activity nested within a load activity does not contribute to the

CONCURRENTDBCOORDACTIVITIES threshold.

Chapter 2. Work identification 17

Activities and the load utility

Running the load utility will generate several activities, one of which is a load
activity and several others that are of type READ, WRITE, or OTHER. In the case
of a load from cursor, an additional activity for the cursor the load activity is
loading from is created. This cursor activity is a nested activity of the load activity.

Activities event monitoring

When monitoring activities with an activities event monitor in a multimember
database environment, you must be aware of how activity event information is
captured. If you are capturing activity events on all members, you might see more
than one event for a given activity on members other than the coordinator.
Multiple records per activity might be recorded because the activity might come
and go on the remote members, depending on the sequencing of events in a
section (the executable form of an SQL statement). As a result, multiple records
might be captured for the activity on a non-coordinating member. To understand
the processing performed by the activity on the remote member, you must consider
all the records for the activity. For example, you might want to aggregate metrics
from all records for the activity on the remote member.

By contrast, the activity would be recorded only once in the event data collected
on the coordinating member.

Workload management DDL statements
Workload management DDL statements consist of the CREATE, ALTER, and DROP
statements that you use to work with service classes, workloads, work class sets,
work action sets, thresholds, and histograms.

The DB2 workload management DDL statements are as follows:
v CREATE SERVICE CLASS, ALTER SERVICE CLASS, and DROP SERVICE

CLASS
v CREATE WORKLOAD, ALTER WORKLOAD, and DROP WORKLOAD
v GRANT USAGE ON WORKLOAD and REVOKE USAGE ON WORKLOAD
v CREATE THRESHOLD, ALTER THRESHOLD, and DROP THRESHOLD
v CREATE WORK CLASS SET, ALTER WORK CLASS SET, and DROP WORK

CLASS SET
v CREATE WORK ACTION SET, ALTER WORK ACTION SET, and DROP WORK

ACTION SET
v CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, and

DROP HISTOGRAM TEMPLATE

Workload management DDL statements differ from other DB2 DDL statements:
v Only one uncommitted workload management DDL statement is permitted at a

time across all database members. If an uncommitted workload management
DDL statement exists, subsequent workload management DDL statements wait
until the uncommitted workload management DDL statement is either
committed or rolled back. Workload management DDL statements are processed
in the order in which they are issued.

v Every workload management DDL statement must be followed by a COMMIT
or ROLLBACK statement.

18 DB2 Workload Management Guide and Reference

v A workload management DDL statement cannot be issued in an XA transaction.
After a connection issues a workload management DDL statement, the same
connection must issue a COMMIT or ROLLBACK statement immediately after
the workload management DDL statement. With XA transactions, it is possible
for multiple connections to join a transaction, and any of the connections can
commit or roll back the transaction. In this situation, it is impossible to ensure
that the workload management environment would be correctly implemented.

v DB2 for z/OS® does not recognize DB2 Database for Linux, UNIX, and Windows
workload management DDL statements.

Work identification by origin with workloads
Workloads identify incoming work based on its source so that it can later be
monitored or managed by DB2 workload management independently of all other
work. The source is determined using the attributes of the database connection
under which the work is submitted.

The attributes of a connection are first evaluated when the connection is
established and the connection is matched to a workload definition. This
relationship between a connection and a specific workload definition is called a
workload occurrence. If any of the attributes change during the life of that
connection, the workload assignment is reevaluated at the start of the next unit of
work following the change. If a new workload definition is found to be a better
match for the connection at this time, the old workload occurrence (for the
previously assigned workload) ends and a new occurrence starts for the newly
assigned workload definition. Although each connection is assigned to one and
only one workload at a time, there can be multiple connections (workload
occurrences) assigned to the same workload definition simultaneously. For more
information, see “Workload assignment” on page 23.

For example, to assign all connections created by the application Accounts to a
workload REPORTING, which maps the activities under those connections to run
in the Marketing service class, issue a CREATE WORKLOAD statement such as the
following:
CREATE WORKLOAD REPORTING APPLNAME(’Accounts’) SERVICE CLASS Marketing

This creates the following workload:

Then grant the USAGE privilege on the REPORTING workload to PUBLIC:
GRANT USAGE ON WORKLOAD REPORTING TO PUBLIC

To assign all activities created by the application Accounts under the connections
that belong to the session user group Deptmgr to the SUMMARY workload, which
maps the activities to the HumanResources service class, issue a statement such as
the following:
CREATE WORKLOAD SUMMARY SESSION_USER_GROUP(’Deptmgr’) APPLNAME(’Accounts’)
SERVICE CLASS HumanResources

User
requests MarketingWorkload

REPORTING

Figure 2. The REPORTING workload

Chapter 2. Work identification 19

This creates the following workload:

Then grant the USAGE privilege on the SUMMARY workload to PUBLIC:
GRANT USAGE ON WORKLOAD SUMMARY TO PUBLIC

You can view your workload definitions by querying the SYSCAT.WORKLOADS
view, and you can view the connection attributes that you specified for each
workload by querying the SYSCAT.WORKLOADCONNATTR view. You can view
who is authorized to use a workload by querying the SYSCAT.WORKLOADAUTH
view. To see what workload occurrences exist on the system at any point in time,
use the WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES or
MON_GET_WORKLOAD table function.

SYSDEFAULTUSERWORKLOAD is the default workload. Any connection that is
not assigned to a custom-defined workload during workload evaluation is
assigned to this default workload, which ensures that all database connections are
associated with a workload. Work assigned to the default workload
SYSDEFAULTUSERWORKLOAD is executed in the SYSDEFAULTUSERCLASS
service class by default.

Supported database connection attributes

You must specify at least one database connection attribute in the workload
definition, and each connection attribute can have one or more values. If you do
not specify a value for a specific connection attribute in the workload definition,
the data server does not examine that attribute during workload evaluation.

Table 2. Connection attributes in a workload definition

Connection attribute Description

Address The actual communication address used by
the client to communicate with the database
server. The only protocol supported is
TCP/IP. The address must be an IPv4
address, an IPv6 address, or a secure
domain name.

Application name The name of the application running at the
client, as known to the data server. The
application name is equivalent to the value
shown in the Application name field in the
system monitor output. See the appl_name
monitor element for more information.

System authorization ID The authorization ID of the user who
connected to the database, as set in the
SYSTEM_USER special register. You can
change the value of SYSTEM_USER by
connecting as a user with a different
authorization ID.

User
requests HumanResourcesWorkload

SUMMARY

Figure 3. The SUMMARY workload

20 DB2 Workload Management Guide and Reference

Table 2. Connection attributes in a workload definition (continued)

Connection attribute Description

Session authorization ID The authorization ID that is used for the
current session of the application, as set in
the SESSION_USER special register. You can
change the value of SESSION_USER by
using a trusted context or the SET SESSION
AUTHORIZATION statement.

Group of session authorization ID The groups to which the current session user
belongs.

Role of session authorization ID The roles granted to the current session user.

Client user ID The client user ID from the client
information as set in the CURRENT
CLIENT_USERID (or CLIENT USERID)
special register. You can change the value of
the client user ID by using one of the
defined mechanisms provided by specific
DB2 clients, the sqleseti (set client
information) API, or the
WLM_SET_CLIENT_INFO procedure.

Client application name The application name from the client
information as set in the CURRENT
CLIENT_APPLNAME (or CLIENT
APPLNAME) special register. You can
change the value of the client application
name by using one of the defined
mechanisms provided by specific DB2
clients, the sqleseti API, or the
WLM_SET_CLIENT_INFO procedure.

Client workstation name The workstation name from the client
information as set in the CURRENT
CLIENT_WRKSTNNAME (or CLIENT
WRKSTNNAME) special register. You can
change the value of the client workstation
name by using one of the defined
mechanisms provided by specific DB2
clients, the sqleseti API, or the
WLM_SET_CLIENT_INFO procedure.

Client accounting string The accounting string from the client
information as set in the CURRENT
CLIENT_ACCTNG (or CLIENT ACCTNG)
special register. You can change the value of
the client accounting string by using the
sqleseti API or the
WLM_SET_CLIENT_INFO procedure.

Use of wild cards in connection attributes

Some connection attributes support the specification of an asterisk (*) as a wild
card in the CREATE WORKLOAD and ALTER WORKLOAD statements. You can
use wild cards in situations where a connection attribute can take on several
similar values, which can be matched by a regular expression using wild cards,
without defining connection attributes for each of the possible values.

Chapter 2. Work identification 21

The wild card asterisk (*) matches zero or more characters. If you need to match an
asterisk, use a double asterisk (**) to specify the asterisk as a literal character.

For example: If you have several accounts receivable applications (accrec01, accrec02
... accrec15) that you all want to belong to the same workload for equal treatment
by DB2 workload manager, define the CURRENT CLIENT_APPLNAME('accrec*')
connection attribute to match all of these applications when you create or alter
your workload. Similarly, an acc*rec accounts receivable application (a name that
includes an asterisk character) is matched by the CURRENT
CLIENT_APPLNAME('acc**rec') connection attribute.

The following workload connection attributes support the use of wild cards:
v APPLNAME
v CURRENT CLIENT_ACCTNG
v CURRENT CLIENT_APPLNAME
v CURRENT CLIENT_USERID
v CURRENT CLIENT_WRKSTNNAME

Set client information to identify requests

By default, many application servers set up connections with the same information
and pass the same client information, if any, for all client requests that they handle.
Some products, such as WebSphere and Cognos®, provide a facility to push down
unique information about each request through the client information fields. This
information uniquely identifies the end-user request within DB2. Most other
products provide a way for the application server to be customized so that unique
client information can be sent to DB2 prior to the start of processing an end-user
request.

Specifying unique client attributes from the application server enables the
specialized treatment of requests within DB2 and the assignment of requests from
different clients to different workloads (and to different service classes).

Connection attribute evaluation order

As you analyze the usage characteristics of your environment, you can use the
CREATE WORKLOAD statement to create your own workloads and map them to
specific service classes. When you create the workload, you define both the values
that are used to evaluate the connection attributes during workload assignment
and the order in which the workload is evaluated relative to other workloads.
Because more than one workload can match incoming connection attributes, being
able to change the evaluation order enables you to determine which matching
workload is chosen. Whether or not the session user has the USAGE privilege on
the workload also determines which matching workload is chosen. For more
information, see “Workload assignment” on page 23.

The following figure shows multiple requests being evaluated against workloads in
the order A, B, C, and D, then assigned to specific workloads and executed in the
applicable service class. Requests that cannot be matched to an existing workload
are matched to the SYSDEFAULTUSERWORKLOAD workload. For information
about the types of activities that run in the default maintenance class and default
system class, see “Default service superclasses and subclasses” on page 70.

22 DB2 Workload Management Guide and Reference

Workload assignment
At the beginning of the first unit of work after a database connection is
established, the data server assigns the connection to a workload by evaluating the
connection attributes of each workload that is enabled.

The order in which the workloads are evaluated is determined by the
EVALUATIONORDER column value of each workload in the
SYSCAT.WORKLOADS table. If a workload with matching connection attributes is
found, the data server checks whether the current session user has the USAGE
privilege on the workload. If the user has the USAGE privilege on the matching

Workload D

User
database requests

System
maintenance requests

Service
superclass 1

Default user class

Requests

Workload C

Workload B

Application

Service
subclass 1.1

Service
subclass 1.2

Service
subclass 1.3

Workload A
Default service
subclass

Default maintenance class

System
database requests

Requests Default system class

Application

Application

Application

Application Default user workload

Figure 4. Service classes and workloads

Chapter 2. Work identification 23

workload, the workload assignment is complete, and the connection is assigned to
that workload. If the user does not have the USAGE privilege on the matching
workload, the data server continues to evaluate workloads until it finds a matching
workload on which the session user has the USAGE privilege. If no matching
workload is found, the data server attempts to use the
SYSDEFAULTUSERWORKLOAD workload. If the current session user does not
have the USAGE privilege on that workload, SQL4707N is returned, and the unit
of work is rejected. Otherwise, the connection is assigned to the
SYSDEFAULTUSERWORKLOAD workload.

You can set the evaluation order by using the POSITION keyword of the CREATE
WORKLOAD or ALTER WORKLOAD statement, as follows:
v By specifying the absolute position of the workload in the evaluation order, as

shown in the following example:
CREATE WORKLOAD...POSITION AT 2

POSITION AT 2 means that the workload is to be positioned second in the
evaluation order. A matching workload that is positioned higher in the
evaluation order is evaluated first. That is, if the workloads at both position 2
and position 3 match, the workload at position 2 is evaluated before the
workload at position 3.
If the position that you specify on the CREATE WORKLOAD or ALTER
WORKLOAD statement is greater than the total number of existing workloads,
the workload is positioned next to last in the evaluation order, before the
SYSDEFAULTUSERWORKLOAD workload. The effect is the same as specifying
POSITION LAST on the CREATE WORKLOAD or ALTER WORKLOAD
statement.

v By using the POSITION BEFORE workload-name or POSITION AFTER
workload-name keyword, where workload-name is an existing workload. This
keyword specifies the position of a new or altered workload relative to another
workload in the evaluation order, as shown in the following example:
ALTER WORKLOAD...POSITION BEFORE workload2

If you do not specify the POSITION keyword, by default, the new workload is
positioned after the other defined workloads in the evaluation order but before the
SYSDEFAULTUSERWORKLOAD workload, which is always considered last.

Workload reassignment

A connection can potentially change its assigned workload at each unit of work
boundary if one of its connection attributes or the set of workload definitions
changes. A unit of work boundary is the point when a connection disassociates
with its current transaction. The following events cause a unit of work boundary:
Commit, rollback, XA end (success), XA commit, and XA rollback.

The workload assignment is reevaluated at the beginning of a new unit of work if
the data server detects that one of the following events occurred:
v A relevant connection attribute changed. See the table in “Work identification by

origin with workloads” on page 19 for a list of connection attributes that you
can specify in a workload definition. Workload reevaluation also occurs if the
current session authorization ID changes because the database connection
switches because of a trusted context. For more information, see Trusted contexts
and trusted connections.

v You created or altered a workload.

24 DB2 Workload Management Guide and Reference

v You granted the USAGE privilege on a workload to a user, a group, or a role or
revoked the USAGE privilege on a workload from a user, group, or role.

A connection cannot be reassigned to a different workload while an activity that
spans a unit of work boundary is still active. An activity can be an operation that
maintains resources across multiple UOWs, such as a load operation, a stored
procedure or table function, or a WITH HOLD cursor. The current workload
occurrence runs until all activities complete. The workload reassignment then
occurs at the beginning of the next unit of work.

An attempted workload assignment or reassignment results in an SQL4707N error
if either of the following cases exists:
v The data server attempts to assign the connection to a workload that is

dispermitted access to the database. For more information, see “Preventing
occurrences of a workload from accessing the database” on page 36.

v The data server attempts to assign the connection to the
SYSDEFAULTUSERWORKLOAD workload, but the current session user does
not have the USAGE privilege on this workload.

If you have ACCESSCTRL, DATAACCESS, DBADM, SECADM, or WLMADM
authority, you can assign your database connection to the
SYSDEFAULTADMWORKLOAD workload, the default administrator workload.
See “Taking corrective action using the default administration workload” on page
28 for more information.

XA transactions and workload reassignment

XA calls such as XA_END (success), XA commit, and XA rollback issue a DB2
COMMIT or ROLLBACK, which indicates the end of a unit of work. Because
workload reevaluation can occur at the beginning of a unit of work, these XA calls
can initiate workload reevaluation, although the reason for workload reevaluation
is not directly related to the XA transaction itself.

Default workloads
The default user workload SYSDEFAULTUSERWORKLOAD provides a workload
for your data server to which all connections are assigned initially. The default
administration workload SYSDEFAULTADMWORKLOAD permits you to take
corrective administrative action that cannot otherwise be performed. Both
workloads are created at database creation time and you cannot drop them.

The default user workload (SYSDEFAULTUSERWORKLOAD)

Connections that are assigned to the default user workload are mapped to the
default user service superclass SYSDEFAULTUSERCLASS, which provides the
default execution environment. You can map connections to user-defined service
classes by creating user defined workloads. In addition, you can alter
SYSDEFAULTUSERWORKLOAD so that it maps connections to a different service
class than SYSDEFAULTUSERCLASS.

You can view the SYSDEFAULTUSERWORKLOAD workload by querying the
SYSCAT.WORKLOADS table.

The following table shows shows the columns returned for the
SYSDEFAULTUSERWORKLOAD workload in the SYSCAT.WORKLOADS view,
along with values and whether you can modify these values. See “Workload

Chapter 2. Work identification 25

assignment” on page 23 for information on how to assign a connection to the
SYSDEFAULTUSERWORKLOAD workload.

Table 3. SYSDEFAULTUSERWORKLOAD entry in SYSCAT.WORKLOADS

Column Value

Modifiable using the ALTER
WORKLOAD statement if you have
DBADM or WLMADM authority
(and SQLADM for COLLECT
clauses)

WORKLOADID 1 No

WORKLOADNAME SYSDEFAULTUSERWORKLOAD No

EVALUATIONORDER Second last one No

CREATE_TIME Timestamp of database creation No

ALTER_TIME Timestamp of the last update of the
workload definition

No (but the data server modifies this
column when you update the
workload definition)

ENABLED Y No

ALLOWACCESS Y Yes

SERVICECLASSNAME SYSDEFAULTSUBCLASS Yes

PARENTSERVICECLASSNAME SYSDEFAULTUSERCLASS Yes

COLLECTAGGACTDATA N Yes

COLLECTACTDATA N Yes

COLLECTACTPARTITION C Yes

COLLECTDEADLOCK W Yes

COLLECTLOCKTIMEOUT W Yes

COLLECTLOCKWAIT N Yes

LOCKWAITVALUE 0 Yes

COLLECTACTMETRICS N Yes

COLLECTUOWDATA N Yes

EXTERNALNAME NULL No

REMARKS BLANK Yes

For more information, see SYSCAT.WORKLOADS.

The default administration workload
(SYSDEFAULTADMWORKLOAD)

This workload permits ACCESSCTRL, DATAACCESS, DBADM, SECADM, or
WLMADM users to query the database and perform administrative or monitoring
tasks at any time, but is typically used in cases when:
v The workload to which the administrator is assigned is not permitted to access

the database (that is, the DISALLOW DB ACCESS keyword of the CREATE
WORKLOAD or ALTER WORKLOAD statement was specified for the
workload).

v A threshold was violated, preventing the administrator from performing work
on the database.

26 DB2 Workload Management Guide and Reference

The SYSDEFAULTADMWORKLOAD workload differs from other workloads in the
following ways:
v You cannot drop or disable it.
v You cannot specify DISALLOW DB ACCESS for it.
v None of the thresholds apply to occurrences of this workload and the activities

in it.
v You can run this workload only in the SYSDEFAULTUSERCLASS service

superclass. See “Default service superclasses and subclasses” on page 70 for
more information.

v You can assign a connection to this workload by using the SET WORKLOAD
command from the CLP interface, or by invoking the WLM_SET_CLIENT_INFO
stored procedure (and specifying SYSDEFAULTADMWORKLOAD for the
client_workload parameter). For more information, see “Taking corrective action
using the default administration workload” on page 28.

You can view the SYSDEFAULTADMWORKLOAD workload by querying the
SYSCAT.WORKLOADS table. The following table shows the columns returned for
the SYSDEFAULTADMWORKLOAD workload in the SYSCAT.WORKLOADS
catalog view, along with values and whether you can modify these values:

Table 4. SYSDEFAULTADMWORKLOAD entry in SYSCAT.WORKLOADS

Column Value

Modifiable using the ALTER
WORKLOAD statement if you have
DBADM or WLMADM authority
(and SQLADM for COLLECT
clauses)

WORKLOADID 2 No

WORKLOADNAME SYSDEFAULTADMWORKLOAD No

EVALUATIONORDER Last one No

CREATE_TIME Timestamp of database creation No

ALTER_TIME Timestamp of the last update of the
workload definition

No (but the data server modifies this
column when you update the
workload definition)

ENABLED Y No

ALLOWACCESS Y No

SERVICECLASSNAME SYSDEFAULTSUBCLASS No

PARENTSERVICECLASSNAME SYSDEFAULTUSERCLASS No

COLLECTAGGACTDATA N Yes

COLLECTACTDATA N Yes

COLLECTACTPARTITION C Yes

COLLECTDEADLOCK W Yes

COLLECTLOCKTIMEOUT W Yes

COLLECTLOCKWAIT N Yes

LOCKWAITVALUE 0 Yes

COLLECTACTMETRICS N Yes

COLLECTUOWDATA N Yes

EXTERNALNAME NULL No

REMARKS BLANK Yes

Chapter 2. Work identification 27

For more information, see SYSCAT.WORKLOADS.

Taking corrective action using the default administration
workload
The default administration workload SYSDEFAULTADMWORKLOAD is a special
DB2-supplied workload definition that is not subject to any DB2 thresholds. Use
this workload to take corrective action that cannot otherwise be performed, such as
altering prohibitive threshold definitions that prevent all activities from running in
a workload.

Before you begin

Use the SET WORKLOAD command (or the WLM_SET_CLIENT_INFO procedure)
to assign a connection to the default administration workload
SYSDEFAULTADMWORKLOAD.

Although you require no special authority to use the SET WORKLOAD command, you
require ACCESSCTRL, DATAACCESS, DBADM, SECADM, or WLMADM
authority to assign a connection to the default administration workload. Otherwise,
SQL0552N is returned during workload assignment.

About this task

Because this workload is not affected by thresholds, it has limited workload
management control and is not recommended for use in submitting regular
day-to-day work.

Procedure

To assign a connection to the default administration workload, issue the SET
WORKLOAD command as follows:
SET WORKLOAD TO SYSDEFAULTADMWORKLOAD

When the command takes effect depends on when you issue it:
v If you issue the SET WORKLOAD TO SYSDEFAULTADMWORKLOAD

command before the connection to the database, after the connection is
established, it is assigned to SYSDEFAULTADMWORKLOAD at the beginning of
the first unit of work.

v If you issue the SET WORKLOAD TO SYSDEFAULTADMWORKLOAD
command at the beginning of a unit of work, after a connection to the database
is established, the connection is assigned to SYSDEFAULTADMWORKLOAD
when the first request that is not an sqleseti (Set Client Information) request is
submitted.

v If you issue the SET WORKLOAD TO SYSDEFAULTADMWORKLOAD
command at the middle of a unit of work, after a connection is established, the
connection is assigned to SYSDEFAULTADMWORKLOAD at the beginning of
the next unit of work.

When a connection is assigned to SYSDEFAULTADMWORKLOAD, workload
reassignment is performed at the beginning of the next unit of work if either of the
following situations occurs:
v You revoke SYSADM or DBADM authority from the session user. In this

situation, SQL0552N is returned.
v You issue a SET WORKLOAD TO AUTOMATIC command. This command

indicates that the next unit of work should not be assigned to the

28 DB2 Workload Management Guide and Reference

SYSDEFAULTADMWORKLOAD workload and that a normal workload
evaluation is to be performed at the beginning of the next unit of work. For
more information, see “Workload assignment” on page 23.

Example

The following example shows how you can use the
SYSDEFAULTADMWORKLOAD workload to take corrective action when no other
corrective action is possible.

If you create a severely prohibitive concurrency threshold so that no activities can
execute, because the threshold is always being exceeded, the same threshold can
prevent you from correcting the problem. To be able to alter the prohibitive
threshold, you must first set the workload so that the work runs in the default
administration workload. Because activities running in this workload are not
subject to thresholds, you can correct the problem and set the workload (for your
ID) back to the default behavior.

The threshold that is the cause of the problem is created accidentally with the
following statement. Concurrency should have been set to 100 but was set to 0.
This threshold effectively prevents any activity from executing:
CREATE THRESHOLD PROHIBITIVE FOR DATABASE ACTIVITIES

ENFORCEMENT DATABASE WHEN CONCURRENTDBCOORDACTIVITIES > 0
STOP EXECUTION

Note: This statement is intended only to show you how a severely prohibitive
threshold might be created. You should not issue this statement.

If you attempt to execute even just a simple SELECT statement, an error is
returned, because concurrency is set to 0:
SELECT * FROM SYSCAT.TABLES

SQL4712N The threshold "PROHIBITIVE" has been exceeded. Reason code = "6".
SQLSTATE=5U026

Before you can take corrective action, you must set the workload to the default
administration workload:
SET WORKLOAD TO SYSDEFAULTADMWORKLOAD

This statement can be issued only by someone with ACCESSCTRL, DATAACCESS,
DBADM, SECADM, or WLMADM authority and causes any connection to be
assigned to the SYSDEFAULTADMWORKLOAD workload, where activities are not
subject to the prohibitive threshold.

The problem can now be corrected by altering the threshold so that activities can
run:
ALTER THRESHOLD PROHIBITIVE WHEN CONCURRENTDBCOORDACTIVITIES > 100 STOP EXECUTION

Once corrected, change the workload back so that the connection will no longer be
assigned to SYSDEFAULTADMWORKLOAD but to whatever workload it was
assigned to before:
SET WORKLOAD TO AUTOMATIC

The same SELECT statement used before should now complete successfully:

Chapter 2. Work identification 29

SELECT * FROM SYSCAT.TABLES

...

DB20000I The SQL command completed successfully.

Creating a workload
Use a CREATE WORKLOAD statement to add a workload to the catalogs.

Before you begin

To create a workload, you require WLMADM or DBADM authority.

See the following topics for more information about prerequisites:
v “Workload management DDL statements” on page 18
v Appendix A, “General naming rules,” on page 491

Procedure

To create a workload:
1. Specify one or more of the following properties for the workload using the

CREATE WORKLOAD statement:
v The name of the workload.
v The connection attributes. The incoming connection must supply matching

connection attributes to those that you specified for the workload for a match
to occur. For more information, see “Work identification by origin with
workloads” on page 19. When specifying the connection attributes, note that
values are ORed and attributes are ANDed: for example, UserID (bob OR sue
OR frank) AND Application (SAS).

v A value that indicates whether occurrences of this workload are permitted to
access the database. By default, occurrences of this workload are permitted to
access the database.

v A value that indicates whether the workload is enabled or disabled. By
default, the workload is enabled.

v The service class where work submitted by occurrences of this workload is to
be executed. The SYSDEFAULTUSERCLASS service superclass is the default.
If you specify a user-defined service superclass, the work submitted by the
workload occurrences runs in the SYSDEFAULTSUBCLASS service subclass
of the service superclass.

Note: You cannot specify the SYSDEFAULTSUBCLASS service subclass
under any service superclass, including the SYSDEFAULTUSERCLASS
service superclass.
If you have defined a workload to point to a service superclass but do not
want work submitted by it to run in the default SYSDEFAULTSUBCLASS
service subclass, you can either change the workload definition to point
directly to a user-defined service subclass or you can use a work action set
defined on the service superclass to map individual pieces of work to a
different service subclass. For more information, see “Work actions and work
action sets” on page 96.

v The position of the workload relative to other workloads when cached in the
memory. The position of the new workload determines the order in which it
is evaluated during workload assignment. By default, the new workload is

30 DB2 Workload Management Guide and Reference

positioned last, which means that it is evaluated last, immediately before the
default user workload is considered. For more information, see “Workload
assignment” on page 23.

v The monitoring activity metrics collection level for activities submitted by
connections associated with this workload. The default activity metrics
collection setting for a workload is NONE. Note that the effective activity
collection setting for activities is the combination of both the workload
activity metrics collection level and the mon_act_metrics database
configuration parameter.

v The type of activity information to collect. By default, no information for
activities associated with the workload is sent to an activities event monitor.

v The aggregate activity information to collect. The aggregate activity
information used for the workload only changes after the CREATE
WORKLOAD operation is committed.

v The lock timeout events information to collect. By default, data about a lock
event is sent to the locking event monitor, if one is active, when the lock
event occurs, but previous lock timeout events are not sent (WITHOUT
HISTORY).

v The deadlock information to collect. By default, data about a deadlock event
is sent to the locking event monitor, if one is active, when the deadlock event
occurs, but previous deadlock events are not sent (WITHOUT HISTORY).

v The lock wait information to collect. By default, no lock wait information is
collected if a lock is not acquired within the set wait time.

v The unit of work information for each transaction associated with this
workload to send to the unit of work event monitor, if one is active, when a
unit of work ends. By default, no unit of work information is sent.

v The histogram templates that the workload should use as templates for its
histograms. The histogram templates specified are reflected in the
SYSCAT.HISTOGRAMTEMPLATEUSE view. For more information about
histograms and histogram templates, see “Histograms in workload
management” on page 253.

2. Commit your changes. When you commit your changes the workload is added
to the SYSCAT.WORKLOADS view. Committing the change causes a workload
re-evaluation to take place at the beginning of the next unit of work of each
application. Depending on which workload is chosen, the application might be
reassigned to a different workload.

What to do next

After you create a workload, you might need to grant the USAGE privilege on it to
one or more session users. (Session users with WLMADM or DBADM authority
have an implicit privilege to use any workload.) Even if a connection provides an
exact match to the connection attributes of the workload, if the session user does
not have the USAGE privilege on the workload, the data server does not consider
the workload when performing workload evaluation. For more information, see
“Granting the USAGE privilege on a workload” on page 36.

Altering a workload
An ALTER WORKLOAD statement changes a workload in the catalogs.

Chapter 2. Work identification 31

Before you begin

To alter a workload, you require SQLADM, WLMADM, or DBADM authority. To
specify any clause other than a COLLECT clause, the authorization id must include
WLMADM or DBADM authority.

See “Workload management DDL statements” on page 18 for more information
about prerequisites.

Procedure

To alter a workload:
1. Specify one or more of the following properties for the workload using the

ALTER WORKLOAD statement:
v The connection attributes. You can add connection attributes to and drop

connection attributes from the workload definition unless it is the
SYSDEFAULTUSERWORKLOAD or SYSDEFAULTADMWORKLOAD
workload. The incoming connection must supply matching connection
attributes to those that you specified for the workload for a match to occur.
For more information, see “Work identification by origin with workloads” on
page 19. To see the connection attributes for a workload, query the
SYSCAT.WORKLOADCONNATTR view.

v A value that indicates whether an occurrence of this workload is permitted
to access the database. By default, an occurrence of this workload is
permitted to access the database. You cannot remove database access from
the SYSDEFAULTADMWORKLOAD workload.

v A value that indicates whether the workload is enabled or disabled. By
default, the workload is enabled. You cannot disable the
SYSDEFAULTUSERWORKLOAD or the SYSDEFAULTADMWORKLOAD
workload.

v The service class under which occurrences of this workload are to be
executed. The SYSDEFAULTUSERCLASS service superclass is the default. If
you specify a user-defined service superclass, you can specify a service
subclass under the service superclass. You cannot specify the
SYSDEFAULTSUBCLASS subclass under any service superclass, including
the SYSDEFAULTUSERCLASS service superclass. In addition, you cannot
specify the SYSDEFAULTSYSTEMCLASS or
SYSDEFAULTMAINTENANCECLASS service superclass.

v The position of the workload relative to other workloads, which determines
the order in which the workload is evaluated during workload assignment.
You cannot specify the position of the SYSDEFAULTUSERWORKLOAD or
the SYSDEFAULTADMWORKLOAD workload. For more information, see
“Workload assignment” on page 23.

v The type of activity information to collect. By default, no information for
activities associated with the workload is sent to an activities event monitor.

v The monitoring activity metrics collection level for activities submitted by
connections associated with this workload. Note that the effective activity
collection setting for activities is the combination of both the workload
activity metrics collection level and the mon_act_metrics database
configuration parameter.

v The aggregate activity information to collect. The aggregate activity
information used for the workload only changes after the ALTER
WORKLOAD operation is committed.

32 DB2 Workload Management Guide and Reference

v The lock timeout event information to send to the locking event monitor, if
one is active, when a lock event occurs.

v The deadlock information to send to the locking event monitor, if one is
active, when a deadlock event occurs.

v The lock wait information to collect.
v The unit of work information for each transaction associated with this

workload to send to the unit of work event monitor, if one is active, when a
unit of work ends.

v The histogram templates that the workload should use as templates for its
histograms. The histogram templates specified are reflected in the
SYSCAT.HISTOGRAMTEMPLATEUSE view. For more information about
histograms and histogram templates, see “Histograms in workload
management” on page 253.

2. Commit your changes. When you commit your changes the workload is
updated in the SYSCAT.WORKLOADS view. The committed change causes a
workload re-evaluation to take place at the beginning of the next unit of work
of each application. Depending on which workload is chosen, the application
might be reassigned to a different workload.

What to do next

You might need to grant the USAGE privilege on it to one or more session users.
(Session users with DBADM authority have an implicit privilege to use any
workload.) Even if a connection provides an exact match to the connection
attributes of the workload, if the session user does not have the USAGE privilege
on the workload, the data server does not associate the connection with the
workload to create an occurrence of the workload. For more information, see
“Granting the USAGE privilege on a workload” on page 36.

Enabling a workload
The DB2 data server checks the connection attributes specified for a workload
against the connection attributes of the current session. The data server does not
consider a disabled workload when it looks for a matching workload.

Before you begin

To alter a workload, you require WLMADM or DBADM authority.

See “Workload management DDL statements” on page 18 for more information
about prerequisites.

About this task

By default, a workload is enabled when you create it. If you create a workload as
disabled, you must enable it for the data server to consider the workload when it
performs workload evaluation.

Procedure

To enable a workload:
1. Identify the workload that you want to enable. You can display the set of

disabled workloads by querying the SYSCAT.WORKLOADS view, as shown in
the following example:
SELECT * FROM SYSCAT.WORKLOADS WHERE ENABLED=’N’

Chapter 2. Work identification 33

2. Use the ALTER WORKLOAD statement to enable the disabled workload:
ALTER WORKLOAD...ENABLE

If the ALTER WORKLOAD statement is successful, the definition for the
workload is written to the database catalog.

3. Commit your changes. When you commit your changes the workload is
updated in the SYSCAT.WORKLOADS view.

Results

Enabling a workload takes effect at the beginning of the next unit of work. At that
point, a workload reevaluation occurs, and the data server considers the newly
enabled workload when it performs workload reevaluation.

Disabling a workload
Use this task to prevent specific workloads from being considered during
workload assignment. If you disable a workload, the data server does not consider
it when it looks for a matching workload. Instead, the data server assigns the unit
of work to the next matching workload. If no custom-defined workload matches,
the work is assigned to the default workload.

Before you begin

To create or alter a workload, you require WLMADM or DBADM authority.

See “Workload management DDL statements” on page 18 for more information
about prerequisites.

Procedure

To disable a workload:
1. Use the DISABLE option of the ALTER WORKLOAD statement to disable the

workload:
ALTER WORKLOAD...DISABLE

2. Commit your changes. When you commit your changes, the workload is
updated in the SYSCAT.WORKLOADS view.

Results

Disabling a workload takes effect at the beginning of the next unit of work. At that
point, a workload reevaluation occurs, and the connection is assigned to the next
enabled workload that matches the connection attributes and for which there is
authorization.

Dropping a workload
Dropping a workload removes it from the database catalog.

Before you begin

To drop a workload, you require WLMADM or DBADM authority.

See “Workload management DDL statements” on page 18 for more information
about prerequisites.

34 DB2 Workload Management Guide and Reference

Procedure

To drop a workload:
1. Disable the workload by specifying the ALTER WORKLOAD statement. See

“Disabling a workload” on page 34 for more information. Disabling the
workload prevents new occurrences of the workload from being able to run
against the database.

2. Ensure that no occurrences of this workload are running by using the
WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES table function.
For more information, see
WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES table function.
The WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES table
function returns the application handles corresponding to the active workload
occurrences. You can use the FORCE APPLICATION command to terminate the
applications using the application handles.

3. Drop the workload by specifying the DROP WORKLOAD statement. For
example, to drop the ACCTNG workload, specify the following statement:
DROP WORKLOAD ACCTNG

4. Commit your changes. When you commit your changes, the workload is
removed from the SYSCAT.WORKLOADS view. In addition, authorization
information for the workload is removed from the SYSCAT.WORKLOADAUTH
view.

Permitting occurrences of a workload to access the database
If you have a workload that is not permitted to access the database but now want
to permit occurrences of that workload to run, alter the workload so that it is
permitted to access the database. By default, when a workload is created, it is
permitted to access the database.

Before you begin

To alter a workload so that it can access a database, you require WLMADM or
DBADM authority.

See “Workload management DDL statements” on page 18 for more information
about prerequisites.

About this task

When you prevent a workload from accessing the database, the data server still
examines that workload when performing workload assignment. However, all
occurrences of that workload are rejected with an error.

Procedure

To permit a workload to access the database:
1. Use the ALLOW DB ACCESS option of the ALTER WORKLOAD statement to

permit the workload to access the database. For example, to permit a workload
called WL1 to access the database, specify the following statement:
ALTER WORKLOAD WL1 ALLOW DB ACCESS

2. Commit your changes. When you commit your changes workload is updated in
the SYSCAT.WORKLOADS view.

Chapter 2. Work identification 35

Results

Altering a workload to permit its occurrences to access the database takes effect
when the data server analyzes the next unit of work for that workload. For
example, if you specified DISALLOW DB ACCESS for workload A and alter the
workload by specifying ALLOW DB ACCESS, new occurrences of workload A are
permitted to execute. Previously, any occurrence of workload A would have been
rejected with an error.

Preventing occurrences of a workload from accessing the
database

Use this task to control which workloads can access the database. Before a
workload occurrence begins to run, the data server checks whether the workload is
permitted to access the database. If you dispermit the workload occurrence from
accessing the database, an error is returned indicating that the workload
occurrence is rejected.

Before you begin

To prevent a workload from accessing the database, you require WLMADM or
DBADM authority.

See “Workload management DDL statements” on page 18 for more information
about prerequisites.

About this task

Preventing a workload occurrence differs from disabling a workload. When you
disable a workload, the workload definition is not cached in memory and is
therefore not considered for workload assignment.

Procedure

To prevent a workload from accessing a database:
1. Use the DISALLOW DB ACCESS option of the ALTER WORKLOAD statement,

as shown in the following example:
ALTER WORKLOAD workload-name DISALLOW DB ACCESS ...

2. Commit your changes. When you commit your changes, the workload is
updated in the SYSCAT.WORKLOADS view.

Results

Altering a workload to prevent its occurrences from accessing a database takes
effect at the beginning of the next unit of work for workload occurrences that are
already running. For example, if you specify ALLOW DB ACCESS for workload A
and alter the workload by specifying DISALLOW DB ACCESS, occurrences of
workload A that are already running receive an SQL error at the beginning of the
next unit of work. New occurrences of workload A are rejected.

Granting the USAGE privilege on a workload
For a workload to be associated with a connection, the session user must have the
USAGE privilege on that workload. Users with the ACCESSCTRL, DATAACCESS,
DBADM, SECADM, or WLMADM authority implicitly have the USAGE privilege
on all workloads.

36 DB2 Workload Management Guide and Reference

Before you begin

To use the GRANT USAGE ON WORKLOAD statement, you require
ACCESSCTRL, SECADM, or WLMADM authority

See “Workload management DDL statements” on page 18 for more information
about prerequisites.

About this task

When the data server finds a workload that matches the attributes of an incoming
connection, the data server checks whether the session user has the USAGE
privilege on that workload. If the session user does not have the USAGE privilege
on that workload, the data server looks for the next matching workload. (In other
words, the workloads for which the session user does not have the USAGE
privilege are treated as if they do not exist.) Therefore, the workload USAGE
privilege gives you the ability to further control which workload among the
matching workloads a user, group, or role should be assigned to. For example, you
can define more than one workload with the same connection attributes and grant
the USAGE privilege on each of these workloads to only certain users, groups, or
roles. For more information, see “Workload assignment” on page 23.

The client can set the client user ID, client application name, client workstation
name, and client accounting string (which are some of the connection attributes
that are used to assign a connection to a workload) without authorization.
Therefore, the workload USAGE privilege also permits you to control which
session user has the authority to use a workload.

You can view the USAGE privilege information by querying the
SYSCAT.WORKLOADAUTH view.

If you create a database with the RESTRICTIVE option, the USAGE privilege on
the SYSDEFAULTUSERWORKLOAD workload is not granted to PUBLIC at
database creation time. You must explicitly grant the USAGE privilege on this
workload to non-WLMADM and non-DBADM users. If the session user does not
have the USAGE privilege on any of the workloads, including
SYSDEFAULTUSERWORKLOAD, SQL4707N is returned when the data server
attempts to associate a workload with the database connection.

Procedure

To grant the USAGE privilege on a workload:
1. Use the GRANT USAGE ON WORKLOAD statement. You can grant the

USAGE privilege to specific users, groups, roles, or PUBLIC. For example, to
grant the USAGE privilege on the ACCOUNTS workload to the CPA group,
you would issue the following statement:
GRANT USAGE ON WORKLOAD ACCOUNTS TO GROUP CPA

You cannot grant the USAGE privilege on the SYSDEFAULTADMWORKLOAD
workload. The SYSDEFAULTADMWORKLOAD workload can only be used by
ACCESSCTRL, DATAACCESS, DBADM, SECADM, or WLMADM users who
issue the SET WORKLOAD TO SYSDEFAULTADMWORKLOAD command.

2. Commit your changes. When you commit your changes, the
SYSCAT.WORKLOADAUTH view is updated. Until the GRANT statement is
committed, the data server cannot consider the workload when performing
workload assignment for the newly authorized users, groups, or roles.

Chapter 2. Work identification 37

Revoking the USAGE privilege on a workload
Use the REVOKE USAGE ON WORKLOAD statement to revoke the USAGE
privilege on a workload.

Before you begin

To use the REVOKE USAGE ON WORKLOAD statement, you require
ACCESSCTRL, SECADM, or WLMADM authority.

See “Workload management DDL statements” on page 18 for more information
about prerequisites.

About this task

You cannot explicitly revoke the USAGE privilege on the
SYSDEFAULTADMWORKLOAD workload. Only ACCESSCTRL, DATAACCESS,
DBADM, SECADM, or WLMADM users who issue the SET WORKLOAD TO
SYSDEFAULTADMWORKLOAD command can use this workload. Therefore,
REVOKE USAGE ON WORKLOAD statements do not work for
SYSDEFAULTADMWORKLOAD.

Procedure

To revoke the USAGE privilege on a workload:
1. Use the REVOKE USAGE ON WORKLOAD statement. You can revoke the

USAGE privilege from specific users, groups, roles, or PUBLIC. For example, to
revoke the USAGE privilege on the ACCOUNTS workload from PUBLIC, you
would specify the following statement:
REVOKE USAGE ON WORKLOAD ACCOUNTS FROM PUBLIC

2. Commit your changes. When you commit your changes, the
SYSCAT.WORKLOADAUTH view is updated. Until the REVOKE statement is
committed, the data server considers the workload when performing workload
assignment.

Example: Workload assignment
At the beginning of the first unit of work after a database connection is
established, the data server assigns the connection to a workload by evaluating the
connection attributes of each workload that is enabled.

Workload reevaluation occurs at the beginning of each unit of work if the value of
a connection attribute or the workload definition itself changes during the unit of
work.

The following figure shows a workload assignment. Users in the Marketing group
who submit queries through AppA are assigned to the APPAQUERIES workload.
They are not assigned to the PAYROLL workload, even though PAYROLL is
positioned before APPAQUERIES, because the definition of workload PAYROLL
specifies the SESSION_USER GROUP keyword as Finance. Users in the Finance
group who submit queries through AppA are assigned to the FINANCE workload.
They are not assigned to the PAYROLL workload, even though it is more specific
and specifies both AppA and Finance in its definition, because the FINANCE
workload is positioned before the PAYROLL workload. Users in the Marketing
group who submit queries through AppB are assigned to the
SYSDEFAULTUSERWORKLOAD workload, because none of the connection

38 DB2 Workload Management Guide and Reference

attributes specified in the FINANCE, PAYROLL, or APPAQUERIES workload
definitions match the AppB application or Marketing group.

�1�In the preceding figure, the CREATE WORKLOAD statements are as follows:
CREATE WORKLOAD PAYROLL APPLNAME (’AppA’) SESSION_USER GROUP (’FINANCE’)
SERVICE CLASS SC1

CREATE WORKLOAD APPAQUERIES APPLNAME(’AppA’) POSITION LAST
SERVICE CLASS SC2

CREATE WORKLOAD FINANCE SESSION_USER GROUP (’FINANCE’) SERVICE CLASS SC1
POSITION BEFORE PAYROLL

By default, many application servers set up connections with the same information
and pass the same client information, if any, for all client requests that they handle.
Some products, such as WebSphere and Cognos, provide a facility to push down
unique information about each request through the client information fields. This
information uniquely identifies the end-user request within DB2. Most other
products provide a way for the application server to be customized so that unique
client information can be sent to DB2 prior to the start of processing an end-user
request.

Specifying unique client attributes from the application server enables the
specialized treatment of requests within DB2 and the assignment of requests from
different clients to different workloads (and to different service classes).

Finance
group

Database

AppA AppA AppB

SYSCAT.WORKLOADS

Workload occurrence
of FINANCE

Workload occurrence of
SYSDEFAULTUSERWORKLOAD

Workload occurrence
of APPAQUERIES

FINANCE
PAYROLL
APPAQUERIES
SYSDEFAULTUSERWORKLOAD
SYSDEFAULTADMWORKLOAD

1

Marketing
group

Figure 5. Example of workload assignment

Chapter 2. Work identification 39

The following figure shows an example of a three-tier environment where queries
are submitted by different user applications, (marketing.exe, auditing.exe, and
reporting.exe), through an application server that establishes a connection to the
database using the session user APPUSER. Three workloads are defined: one for
queries submitted by marketing.exe, one for queries submitted by reporting.exe,
and one for the rest of the queries. As shown in the figure, to assign queries
submitted by marketing.exe to the MARKETING workload, the application server
calls the sqleseti API to set the value of the CURRENT CLIENT_APPLNAME
special register to marketing.exe. Similarly, to assign queries submitted by
reporting.exe to the REPORTING workload, the server calls sqleseti to set the
value of the CURRENT CLIENT_APPLNAME special register to reporting.exe.
Note that in the figure, when the server calls sqleseti to set the CURRENT
CLIENT_USERID special register to Lidia (with nothing else changing; that is, the
client application name is still set to reporting.exe), no workload reassignment
occurs because there is no workload defined specifically with the CURRENT
CLIENT_USERID set to Lidia.

40 DB2 Workload Management Guide and Reference

The following statements are used to define the workloads specified in box �1� in
the previous figure:
CREATE WORKLOAD MARKETING SESSION_USER (’APPUSER’)
CURRENT CLIENT_APPLNAME (’marketing.exe’) SERVICE CLASS SC2
POSITION AT 1

CREATE WORKLOAD REPORTING SESSION USER (’APPUSER’)
CURRENT CLIENT_APPLNAME (’reporting.exe’) SERVICE CLASS SC4

1

Application
server

Database

SYSCAT.WORKLOADS

MARKETING
REPORTING
APPSERVER
SYSDEFAULTUSERWORKLOAD
SYSDEFAULTADMWORKLOAD

Connect

marketing.exe audit.exereporting.exe

CONNECT TO SAMPLE
USER APPUSER USING …

Set client application name to marketing.exe
Query 1
Query 2
Set client application name to reporting.exe
COMMIT

Query 3
Query 4
COMMIT

Query 5
Set client user ID to Lidia
Query 6
COMMIT

Query 7
Query 8
Query 9
…

Occurrence of
MARKETING

Occurrence of
REPORTING

Figure 6. Example of workload assignment in a three-tier environment

Chapter 2. Work identification 41

POSITION AFTER MARKETING

CREATE WORKLOAD APPSERV SESSION_USER (’APPUSER’)
SERVICE CLASS SC1

Example: Workload assignment when workload attributes
have single values

The example in this topic shows how the data server performs workload
assignment. In this example, only one value is specified for each workload
connection attribute.

Assume that the following workloads exist in the catalog:

Table 5. Workloads in the catalog

Evaluation
order

Workload
name ADDRESS APPLNAME

SYSTEM
_USER

SESSION
_USER

SESSION
_USER
GROUP

SESSION
_USER
ROLE

CURRENT
CLIENT

_USERID

CURRENT
CLIENT
_APPLNAME

CURRENT
CLIENT
_WRKSTNNAME

CURRENT
CLIENT
_ACCTNG

1 REPORTS AppA

2 INVENTORY
REPORT

AppB LYNN ACCOUNTING TELEMKTR

3 SALES
REPORT

AppC KATE KATE SALESREP

4 AUDIT
REPORT

AppB ACCOUNTING FINANALYST

5 EXPENSE
REPORT

AppA TIM EXPENSE
APPROVER

6 AUDIT
RESULT

LYNN LYNN Audit Group

Assume that a database connection with the following attributes is established:

Table 6. Database connection attributes

ADDRESS APPLNAME
SYSTEM
_USER

SESSION
_USER

SESSION
_USER
GROUP

SESSION
_USER
ROLE

CURRENT
CLIENT

_USERID

CURRENT
CLIENT
_APPLNAME

CURRENT
CLIENT
_WRKSTNNAME

CURRENT
CLIENT
_ACCTNG

9.26.53.111 AppA TIM TIM FINANCE FINANALYST,
EXPENSE
APPROVER

NULL NULL NULL Business account

When the first unit of work is submitted, the data server checks each workload in
the catalog, starting with the first workload in the list, and processes the
workloads in ascending order until it finds a workload with matching attributes.
When a matching workload is found, the unit of work runs under an occurrence of
that workload. When determining which workload to assign the connection to, the
data server compares the connection attributes in deterministic order.

The data server first checks the REPORTS workload for a match. The REPORTS
workload is first in the list.

Table 7. REPORTS workload in the catalog

Evaluation
order

Workload
name ADDRESS APPLNAME

SYSTEM
_USER

SESSION
_USER

SESSION
_USER
GROUP

SESSION
_USER
ROLE

CURRENT
CLIENT

_USERID

CURRENT
CLIENT
_APPLNAME

CURRENT
CLIENT
_WRKSTNNAME

CURRENT
CLIENT
_ACCTNG

1 REPORTS AppA

The data server checks the connection attributes in the following deterministic
order:
1. APPLNAME. The value of APPLNAME, AppA, for the database connection

matches the value of APPLNAME for the REPORTS workload.
2. SYSTEM_USER, which is not set in the workload definition. Any value

(including a null value) is considered a match.
3. SESSION_USER, which is not set in the workload definition. Any value is

considered a match.

42 DB2 Workload Management Guide and Reference

4. SESSION_USER GROUP, which is not set in the workload definition. Any value
is considered a match.

5. SESSION_USER ROLE, which is not set in the workload definition. Any value
is considered a match.

6. CURRENT CLIENT_USERID, which is not set in the workload definition. Any
value is considered a match.

7. CURRENT CLIENT_APPLNAME, which is not set in the workload definition.
Any value is considered a match.

8. CURRENT CLIENT_WRKSTNNAME, which is not set in the workload
definition. Any value is considered a match.

9. CURRENT CLIENT_ACCTNG, which is not set in the workload definition. Any
value is considered a match.

In this situation, because of the explicit and implicit matches between the
connection attributes of the REPORTS workload and the information passed on the
connection, the data server selects the REPORTS workload as a potential match.
After selecting a workload, the data server then checks whether the session user
has the USAGE privilege on the workload. Assuming that the session user TIM has
the USAGE privilege on the REPORTS workload, that workload is used for the
connection. If, however, TIM does not possess the USAGE privilege on the
REPORTS workload, the data server continues by checking the
INVENTORYREPORT workload for a match.

Assume that you want TIM to be assigned to the EXPENSEREPORT workload
because that workload has additional connection attributes specified. In this
situation, you would alter the evaluation order of the workloads to position
EXPENSEREPORT before REPORTS in the workload list:
ALTER WORKLOAD EXPENSEREPORT POSITION AT 1

You could also use the following SQL statement to achieve the same result:
ALTER WORKLOAD EXPENSEREPORT BEFORE REPORTS

To ensure that the ALTER WORKLOAD statement takes effect, you must
immediately issue a COMMIT statement after the ALTER WORKLOAD statement.
The effect of the ALTER WORKLOAD statement on the catalog is as follows:

Table 8. Workloads in the catalog after repositioning the EXPENSEREPORT workload

Evaluation
order Workload name APPLNAME

SYSTEM
_USER

SESSION
_USER

SESSION
_USER
GROUP

SESSION
_USER
ROLE

CURRENT
CLIENT

_USERID

CURRENT
CLIENT
_APPLNAME

CURRENT
CLIENT
_WRKSTNNAME

CURRENT
CLIENT
_ACCTNG

1 EXPENSE
REPORT

AppA TIM EXPENSE
APPROVER

2 REPORTS AppA

3 INVENTORY
REPORT

AppB LYNN ACCOUNTING TELEMKTR

4 SALES REPORT AppC KATE KATE SALESREP

5 AUDIT REPORT AppB ACCOUNTING FINANALYST

6 AUDIT RESULT LYNN LYNN Audit Group

If TIM does not already have the USAGE privilege on the EXPENSEREPORT
workload, you must issue the following statements (the COMMIT statement
ensures that the GRANT statement takes effect):
GRANT USAGE ON WORKLOAD EXPENSEREPORT TO USER TIM
COMMIT

At the beginning of the next unit of work, workload reassignment occurs, and the
data server assigns the connection from TIM to the EXPENSEREPORT workload.

Chapter 2. Work identification 43

In addition, new units of work submitted by other connections that have the same
attributes are also associated with the EXPENSEREPORT workload.

Example: Workload assignment for a unit of work when
multiple workloads exist

The example in this topic shows how the data server performs workload
evaluation to assign the connection to an existing workload.

Assume that the following workloads are defined in the catalog:

Table 9. Workloads in the catalog

Evaluation
order Workload name APPLNAME

SYSTEM
_USER

SESSION
_USER

SESSION
_USER
GROUP

SESSION
_USER
ROLE

CURRENT
CLIENT
_USERID

CURRENT
CLIENT
_APPLNAME

CURRENT
CLIENT
_WRKSTNNAME

CURRENT
CLIENT
_ACCTNG

1 EXPENSE REPORT AppB TIM EXPENSE
APPROVER

2 REPORTS AppB

3 INVENTORYREPORT AppA LYNN ACCOUNTING TELEMKTR

4 SALES REPORT AppC KATE KATE SALESREP

5 AUDIT REPORT AppA ACCOUNTING FINANALYST

6 AUDIT RESULT LYNN LYNN Audit Group

Suppose that a database connection with the following attributes is established:

Table 10. Database connection attributes

APPLNAME
SYSTEM
_USER

SESSION
_USER

SESSION
_USER
GROUP

SESSION
_USER
ROLE

CURRENT
CLIENT
_USERID

CURRENT
CLIENT
_APPLNAME

CURRENT
CLIENT
_WRKSTNNAME

CURRENT
CLIENT
_ACCTNG

AppA LYNN LYNN ACCOUNTING FINANALYST,
SALESREP

LYNN NULL wrkstn2 Audit group

When the first unit of work is submitted, the data server checks each workload in
the catalog in ascending evaluation order and stops when it finds a workload
whose connection attributes match those supplied by the connection. When it
checks the workloads, the data server compares the connection attributes in
deterministic order.

First, the data server checks the EXPENSEREPORT workload:

Table 11. EXPENSEREPORT workload in the catalog

Evaluation
order Workload name APPLNAME

SYSTEM
_USER

SESSION
_USER

SESSION
_USER
GROUP

SESSION
_USER
ROLE

CURRENT
CLIENT
_USERID

CURRENT
CLIENT
_APPLNAME

CURRENT
CLIENT
_WRKSTNNAME

CURRENT
CLIENT
_ACCTNG

1 EXPENSEREPORT AppB TIM EXPENSE
APPROVER

Because the APPLNAME attribute in the workload definition is AppB but the
APPLNAME attribute passed by the connection is AppA, no match is possible. The
data server proceeds to the REPORTS workload, which is second in the list:

Table 12. REPORTS workload in the catalog

Evaluation
order Workload name APPLNAME

SYSTEM
_USER

SESSION
_USER

SESSION
_USER
GROUP

SESSION
_USER
ROLE

CURRENT
CLIENT
_USERID

CURRENT
CLIENT
_APPLNAME

CURRENT
CLIENT
_WRKSTNNAME

CURRENT
CLIENT
_ACCTNG

2 REPORTS AppB

Again, the APPLNAME attribute in the workload definition is AppB, which does
not match AppA. The data server proceeds to the third workload in the list,
INVENTORYREPORT:

44 DB2 Workload Management Guide and Reference

Table 13. INVENTORYREPORT workload in the catalog

Evaluation
order Workload name APPLNAME

SYSTEM
_USER

SESSION
_USER

SESSION
_USER
GROUP

SESSION
_USER
ROLE

CURRENT
CLIENT
_USERID

CURRENT
CLIENT
_APPLNAME

CURRENT
CLIENT
_WRKSTNNAME

CURRENT
CLIENT
_ACCTNG

3 INVENTORYREPORT AppA LYNN ACCOUNTING TELEMKTR

The data server checks for a match between the submitted connection attributes
and the INVENTORYREPORT workload. The attributes are checked in the
following order:
1. APPLNAME. Both the workload definition and the connection have a value of

AppA, so a match occurs.
2. SYSTEM_USER. Both the workload definition and the connection have a value

of LYNN, so a match occurs.
3. SESSION_USER. The connection passed a value of LYNN. Because the

SESSION_USER attribute is not set for the workload, any value, including a
null value, that is passed by the connection matches.

4. SESSION_USER GROUP. Both the workload definition and the connection have
a value of ACCOUNTING, so a match occurs.

5. SESSION_USER ROLE. The workload definition specifies the value TELEMKTR,
but the connection supplied the values of FINANALYST and SALESREP. No match
occurs for this attribute.

The data server stops trying to match the INVENTORYREPORT workload and the
connection attributes and proceeds to the fourth workload in the list,
SALESREPORT:

Table 14. SALESREPORT workload in the catalog

Evaluation
order Workload name APPLNAME

SYSTEM
_USER

SESSION
_USER

SESSION
_USER
GROUP

SESSION
_USER
ROLE

CURRENT
CLIENT
_USERID

CURRENT
CLIENT
_APPLNAME

CURRENT
CLIENT
_WRKSTNNAME

CURRENT
CLIENT
_ACCTNG

4 SALESREPORT AppC KATE KATE SALESREP

Because the APPLNAME of the SALESREPORT workload definition is AppC, no
match occurs with the connection (which passed a value of AppA for APPLNAME).
The data server then proceeds to the fifth workload in the list, AUDITREPORT:

Table 15. AUDITREPORT workload in the catalog

Evaluation
order Workload name APPLNAME

SYSTEM
_USER

SESSION
_USER

SESSION
_USER
GROUP

SESSION
_USER
ROLE

CURRENT
CLIENT
_USERID

CURRENT
CLIENT
_APPLNAME

CURRENT
CLIENT
_WRKSTNNAME

CURRENT
CLIENT
_ACCTNG

5 AUDITREPORT AppA ACCOUNTING FINANALYST

The data server compares the attributes of the AUDITREPORT workload and the
connection in the deterministic order:
1. APPLNAME. Both the workload definition and the connection have a value of

AppA, so a match occurs.
2. SYSTEM_USER. The connection passed a value of LYNN. Because the

SYSTEM_USER attribute is not set for the workload, any value passed by the
connection matches.

3. SESSION_USER. The connection passed a value of LYNN. Because the
SESSION_USER attribute is not set for the workload, any value passed by the
connection matches.

4. SESSION_USER GROUP. Both the workload and the connection have a value of
ACCOUNTING for this attribute, so a match occurs.

5. SESSION_USER ROLE. Both the workload and the connection have a value of
FINANALYST for this attribute, so a match occurs.

Chapter 2. Work identification 45

6. CURRENT CLIENT_USERID. Because the CURRENT CLIENT_USERID
attribute is not set for the workload, any value passed by the connection
matches.

7. CURRENT CLIENT_APPLNAME. Because the CURRENT
CLIENT_APPLNAME attribute is not set for the workload, any value passed
by the connection matches.

8. CURRENT CLIENT_WRKSTNNAME. Because the CURRENT
CLIENT_WRKSTNNAME attribute is not set for the workload, any value
passed by the connection matches.

9. CURRENT CLIENT_ACCTNG. Because the CURRENT CLIENT_ACCTNG
attribute is not set for the workload, any value passed by the connection
matches.

After processing all the connection attributes and finding a matching workload, the
data server checks whether the session user has the USAGE privilege on the
workload. Assume that LYNN does not have the USAGE privilege on the
AUDITREPORT workload. In this situation, although all of the connection
attributes match, this workload is not associated with the connection. The data
server proceeds to the sixth workload in the evaluation list, AUDITRESULT:

Table 16. AUDITRESULT workload in the catalog

Evaluation
order

Workload
name APPLNAME

SYSTEM
_USER

SESSION
_USER

SESSION
_USER
GROUP

SESSION
_USER
ROLE

CURRENT
CLIENT
_USERID

CURRENT
CLIENT
_APPLNAME

CURRENT
CLIENT
_WRKSTNNAME

CURRENT
CLIENT
_ACCTNG

6 AUDITRESULT LYNN LYNN Audit Group

The data server compares the attributes of the AUDITRESULT workload and the
connection in the deterministic order:
1. APPLNAME. Because the APPLNAME attribute is not set for the workload,

any value passed by the connection matches.
2. SYSTEM_USER. Because the SYSTEM_USER attribute is not set for the

workload, any value passed by the connection matches.
3. SESSION_USER. Both the workload and the connection have a value of LYNN

for this attribute, so a match occurs.
4. SESSION_USER GROUP. Because the SESSION_USER GROUP attribute is not

set for the workload, any value passed by the connection matches.
5. SESSION_USER ROLE. Because the SESSION_USER ROLE attribute is not set

for the workload, any value passed by the connection matches.
6. CURRENT CLIENT_USERID. Both the workload and the connection have a

value of LYNN for this attribute, so a match occurs.
7. CURRENT CLIENT_APPLNAME. Because the CURRENT

CLIENT_APPLNAME attribute is not set for the workload, any value passed
by the connection matches.

8. CURRENT CLIENT_WRKSTNNAME. Because the CURRENT
CLIENT_WRKSTNNAME attribute is not set for the workload, any value
passed by the connection matches.

9. CURRENT CLIENT_ACCTNG. Both the workload and the connection have a
value of Audit Group for this attribute, so a match occurs.

After processing all of the connection attributes and finding a matching workload,
the data server checks whether the session user has the USAGE privilege on the
workload. In this situation, assume that the session user LYNN has the USAGE

46 DB2 Workload Management Guide and Reference

privilege on the AUDITRESULT workload. Because all of the connection attributes
match and the session user has the USAGE privilege, the connection is assigned to
the AUDITRESULT workload.

Example: Workload assignment when workload attributes
have multiple values

The example in this topic shows how the data server performs workload
assignment. In this example, some of the workload definitions permit more than
one value for a connection attribute.

Assume that the following workloads are defined in the catalog:

Table 17. Workloads in the catalog

Evaluation
order Workload name APPLNAME

SYSTEM
_USER

SESSION
_USER

SESSION
_USER
GROUP

SESSION
_USER
ROLE

CURRENT
CLIENT
_USERID

CURRENT
CLIENT
_APPLNAME

CURREN
CLIENT
_WRKSTNNAME

CURRENT
CLIENT
_ACCTNG

1 ITEMINQ KYLE,
GEORGE

RETAIL, SALES

2 DAILY TRANS
REPORT

AppC KYLE, CAROL SALES,
ACCOUNTING

3 SALES
SUMMARY

AppA, AppB ACCOUNTANT,
FINANALYST

Assume that a database connection with the following attributes is established:

Table 18. Database connection attributes

APPLNAME
SYSTEM
_USER

SESSION
_USER

SESSION
_USER
GROUP

SESSION
_USER
ROLE

CURRENT
CLIENT
_USERID

CURRENT
CLIENT
_APPLNAME

CURREN
CLIENT
_WRKSTNNAME

CURRENT
CLIENT
_ACCTNG

AppC LINDA KYLE SALES ACCOUNTANT LINDA NULL NULL Business Account

When the first unit of work is submitted, the data server checks each workload in
the catalog in ascending evaluation order and stops when it finds a workload
whose connection attributes match those supplied by the connection. When it
checks the workloads, the data server compares the connection attributes in
deterministic order.

First, the data server checks the ITEMINQ workload:

Table 19. ITEMINQ workload in the catalog

Evaluation
order Workload name APPLNAME

SYSTEM
_USER

SESSION
_USER

SESSION
_USER
GROUP

SESSION
_USER
ROLE

CURRENT
CLIENT
_USERID

CURRENT
CLIENT
_APPLNAME

CURREN
CLIENT
_WRKSTNNAME

CURRENT
CLIENT
_ACCTNG

1 ITEMINQ KYLE, GEORGE RETAIL, SALES

The data server checks for a match between the submitted connection attributes
and the ITEMINQ workload. The attributes are checked in the following order:
1. APPLNAME. Because the APPLNAME attribute is not set for the workload,

any value, including a null value, that is passed by the connection matches.
2. SYSTEM_USER. The connection passed a value of LINDA. However, the

ITEMNO workload values are KYLE and GEORGE. No match occurs for this
attribute.

The data server stops trying to match the ITEMNO workload and the connection
and proceeds to the second workload in the list, DAILYTRANSREPORT:

Table 20. DAILYTRANSREPORT workload in the catalog

Evaluation
order Workload name APPLNAME

SYSTEM
_USER

SESSION
_USER

SESSION
_USER
GROUP

SESSION
_USER
ROLE

CURRENT
CLIENT
_USERID

CURRENT
CLIENT
_APPLNAME

CURREN
CLIENT
_WRKSTNNAME

CURRENT
CLIENT
_ACCTNG

2 DAILYTRANSREPORT AppC KYLE,
CAROL

SALES,
ACCOUNTING

Chapter 2. Work identification 47

The data server compares the attributes of the DAILYTRANSREPORT workload
and the connection in deterministic order:
1. APPLNAME. Both the workload definition and the connection have a value of

AppC, so a match occurs.
2. SYSTEM_USER. Because the SYSTEM_USER attribute is not set for the

workload, any value, including a null value, that is passed by the connection
matches.

3. SESSION_USER. The SESSION_USER value passed on the connection is KYLE,
which is a match with one of the workload SESSION_USER values. If the
connection had passed CAROL, this would also be a match because both KYLE
and CAROL are specified as part of the DAILYTRANSREPORT workload
definition.

4. SESSION_USER GROUP. The SESSION_USER GROUP value passed on the
connection is SALES, which matches the SALES value specified for the workload
SESSION_USER GROUP attribute. If the connection had passed ACCOUNTING,
this would also be a match because both SALES and ACCOUNTING are specified in
the workload definition.

5. SESSION_USER ROLE. Because the SESSION_USER ROLE attribute is not set
for the workload, any value passed by the connection matches.

6. CURRENT CLIENT_USERID. Because the CURRENT CLIENT_USERID
attribute is not set for the workload, any value passed by the connection
matches.

7. CURRENT CLIENT_APPLNAME. Because the CURRENT
CLIENT_APPLNAME attribute is not set for the workload, any value passed
by the connection matches.

8. CURRENT CLIENT_WRKSTNNAME. Because the CURRENT
CLIENT_WRKSTNNAME attribute is not set for the workload, any value
passed by the connection matches.

9. CURRENT CLIENT_ACCTNG. Because the CURRENT
CLIENT_WRKSTNNAME attribute is not set for the workload, any value
passed by the connection matches.

After processing all of the connection attributes and finding a matching workload
for the connection, the data server checks whether the session user has the USAGE
privilege on the workload. In this situation, assume that the session user KYLE has
the USAGE privilege on the DAILYTRANSREPORT workload. Because all
connection attributes match and the session user has the USAGE privilege, the
connection is assigned to the DAILYTRANSREPORT workload.

Work identification by type, cost, or data accessed with work classes
In addition to using connection attributes that focus on the origin of activities with
workloads, you can identify activities based on the type, cost or data that may be
accessed through the creation of a work class set containing a work class.

A work class is a method of categorizing individual database activities based on
attributes of the activities. If a work class has a work action defined for it, the
work action will be applied to the work class and determines how the activities in
the work class are managed. For more information, see “Apply controls to types of
activities with work action sets” on page 93.

The following table shows the type keywords available for work classes and the
SQL statements that correspond to the different keywords. Except for the load
utility, all the statements in the following table are intercepted immediately before

48 DB2 Workload Management Guide and Reference

execution in the processing of an EXECUTE, EXECUTE IMMEDIATE, or OPEN
request. The load utility, when issued from a client, might issue requests before
starting the actual load operation on the data server.

Table 21. Work types

Work type keyword Applicable SQL statements

READ, including SET statements with
embedded READ SQL

v All SELECT statements (select into, values
into, full select)
Exception: SELECT statements
containing a DELETE, INSERT, or
UPDATE are not included.

v All XQuery statements

WRITE, including SET statements with
embedded WRITE SQL

v All UPDATE statements (searched,
positioned)

v All DELETE statements (searched,
positioned)

v All INSERT statements (values, subselect)

v All MERGE statements

v All SELECT statements containing a
DELETE, INSERT, or UPDATE statement

CALL CALL statement

The CALL statement is only classified under
the CALL and ALL work class types.
Note: Both anonymous blocks and
autonomous routines are classified as CALL
statements.

DML, including SET statements with
embedded READ or WRITE SQL

All statements that are classified under the
READ and WRITE work class types.

DDL v All ALTER statements

v All CREATE statements

v COMMENT statement

v DECLARE GLOBAL TEMPORARY
TABLE statement

v DROP statement

v FLUSH PACKAGE CACHE statement

v All GRANT statements

v REFRESH TABLE

v All RENAME statements

v All REVOKE statements

v SET INTEGRITY statement

LOAD Load utility

The load utility is only classified under the
LOAD and ALL work class types.

Chapter 2. Work identification 49

Table 21. Work types (continued)

Work type keyword Applicable SQL statements

ALL Work types that are represented by all of the
preceding keywords.
Note: If the action is a threshold, the
database activity that the threshold is
applied to depends on the type of threshold.
For example, if the threshold type is
ESTIMATEDSQLCOST, only DML activity
with an estimated cost (in timerons) is
affected by the threshold.

For more information, see “Example:
Working with a work class defined with the
ALL keyword” on page 63.

The following figure shows a hierarchical view of the work type keywords:

SQL statements that do not fall under any of the available keywords are not
classified, and behave as though no work class and work class set exists. For
example, if the statement is SET SCHEMA and the only work class in the work
class set has a work type of DML, that statement is not classified and no work
action can be applied to it. So, if the action is MAP, the SET SCHEMA activity runs
in the default service subclass (SYSDEFAULTSUBCLASS). If the action is a
threshold, no threshold is applied to the activity.

Additional identification

Work classes also permit you to use predictive elements in the identification for
DML work (or READ and WRITE statements). Predictive elements are useful
because they provide information about database activities that can be used to take
action before these activities start consuming resources on the data server. The
following table provides information about predictive elements supported by work
classes:

ALL

DDL LOAD CALLDML

WRITEREAD

Figure 7. Work type keywords

50 DB2 Workload Management Guide and Reference

Table 22. Characteristics for predictive identification

Predictive element Description

Estimated cost Uses the estimated cost available from the DB2
compiler to include DML within a given timeron range
(for example, create a work class for all large queries
with an estimated cost over 1 000 000 timerons)

Estimated cardinality Uses the estimated rows returned (cardinality) from the
DB2 compiler to include DML within a given range of
rows returned (for example, create a work class for
large queries that are estimated to return more than
500 000 rows)

Estimated data accessed Uses the estimated data accessed from the DB2
compiler to include DML that accesses data assigned a
specific data tag (for example, create a work class for
queries that are estimated to access data in table spaces
tagged with a data tag value of 3)
Note: The set of table spaces that the DB2 compiler
predicts will be accessed is based on the optimized SQL
statement, which might differ from the user-specified
SQL statement. In some cases, for example, when
inserting into range partitioned tables, the number of
table spaces that are predicted to be accessed is more
than the expected table spaces.

You can also identify activities by using the schema name of the procedure that a
CALL statement calls.

Based on workload attributes and work class types, you can identify work and
prepare it for the next stage, the management of the work.

For more information on working with work classes and work class sets, refer the
following topics:

Work classes and work class sets
A work class is a method of categorizing individual database activities based on
attributes of the activities. Work classes are grouped into work class sets, which
can be shared by different work action sets.

Examples of database activity attributes which can determine which work class an
activity is associated with includes: activity type (DDL, DML, LOAD), the
estimated cost (where available), the estimated cardinality (where available), the
estimated data tag, and the schema (where available).

Work classes

A work class has the following attributes:
v The work class name, which must be unique in the work class set.
v The database activity attributes, which consist of the following information:

– The type of database activity that falls into this work class. Using predefined
keywords (for example, CALL, READ, WRITE, DML, DDL, LOAD, or ALL),
you can classify database requests into different categories. Different types of
database activities can be associated with a work class depending on its work
type. For example, the WRITE keyword includes updates, deletes, inserts,

Chapter 2. Work identification 51

merges, and selects that contain a delete, insert, or update. For more
information, see “Work identification by type, cost, or data accessed with
work classes” on page 48.

– The range information that further categorizes DML or XQuery types of
database activity:
- The type of range to specify (either timeron cost or cardinality). Specifying

a range of values is optional. For example, when you specify a range for a
work class, you can specify that all queries with an estimated cost of less
than 100 timerons be processed differently than other queries.

- The bottom of the range.
- The top of the range.

– The schema of the routine to be called. Specifying the schema is optional.
When defining a work class, you can use the schema attribute to further
classify CALL statements according to the schema of the procedure being
called. For example, if you specify SCHEMA1 for the schema of a work class
and the work type is CALL, all CALL statements calling a SCHEMA1
procedure are classified in that work class. If you specify the schema for a
work class type other than CALL or ALL, the error SQL0628N is returned.

– The identification tag given to the data the activity might touch. For example,
when you specify a data tag of 3 for a work class, activities that touch data in
a table space or storage group with a data tag of 3 can be isolated and treated
differently.

v The evaluation order of the work class (or position of the work class in the work
class set). For more information, see “Evaluation order of work classes in a work
class set” on page 58.

v An automatically generated class identifier that uniquely identifies the work
class.

You can create work classes in two ways:
v Create a new work class set to contain the new work class using the WORK

CLASS keyword of the CREATE WORK CLASS SET statement.
v Add the new work class to an existing work class set using the ADD keyword of

the ALTER WORK CLASS SET statement

You can alter work classes by using the ALTER WORK CLASS keyword of the
ALTER WORK CLASS SET statement.

You can drop work classes from a work class set using the DROP WORK CLASS
keyword of the ALTER WORK CLASS SET statement, or by using the DROP
WORK CLASS SET statement to drop the work class set.

You can view your work classes by querying the SYSCAT.WORKCLASSES view.

Work class sets

You use work class sets to group one or more work classes. A work class set
consists of the following attributes:
v A unique descriptive name for the work class set
v Any comments that you want to supply for the work class set
v Zero or more work classes (although a work class can only exist in a work class

set, a work class set does not have to contain any work classes)
v An automatically generated ID that uniquely identifies the work class set

52 DB2 Workload Management Guide and Reference

You create a new work class set using the CREATE WORK CLASS SET statement.
You can create an empty work class set and add work classes later, or you can
create a work class set that contains one or more work classes.

You change an existing work class set in the following ways using the ALTER
WORK CLASS SET statement:
v Add work classes to the work class set.
v Change work class attributes for work classes in the work class set.
v Drop work classes from the work class set.

You cannot change any work class set attributes.

Drop a work class set using the DROP WORK CLASS SET statement.

You can view your work class sets by querying the SYSCAT.WORKCLASSSETS
catalog view.

The following figure shows an example of work classes in a work class set.

For a work class set to be effective on the system, you must define a work action
set and associate it with the work class set. By using a work action set, you can
associate a work class set to a service superclass, a workload, or a database, to
indicate what action should be applied to the database activities that fall within the
classification. If you do not create a work action set for the work class set, the data
server ignores the work class set.

Creating a work class
To create a work class, use the CREATE WORK CLASS SET statement or the
ALTER WORK CLASS SET statement.

Before you begin

To create a work class, you require WLMADM or DBADM authority.

For additional prerequisites, see the following topics:
v “Workload management DDL statements” on page 18

Work class set: Large activities

Work class: Large reads
SELECT statements > 1000000 (cardinality)

Work class: Large writes
UPDATE/INSERT/DELETE > 20000 (timerons)

Work class: Load

Figure 8. Example of work classes and a work class set

Chapter 2. Work identification 53

v Naming rules

Procedure

To create a work class:
1. Create a work class at the same time you create a new work class set or add

the new work class to an existing work class set:
v To create a new work class that is added to a new work class set, use the

WORK CLASS keyword of the CREATE WORK CLASS SET statement.
v To create a new work class that is added to an existing work class set, use

the ADD WORK CLASS keyword of the ALTER WORK CLASS SET
statement.

Specify one or more of the following properties for the new work class:
v A name for the work class. This name must be unique in the work class set.
v Attributes for the work class. These attributes are used to associate an

activity with the work class:
– The type of work that the work class is to be used for. Use the WORK

TYPE parameter to specify this characteristic.
- READ, which represents non-updating SELECT activities, and all

XQuery activities. When you specify the READ keyword, you can also
specify an optional for-from-to-clause or data-tag-clause argument.
v Use the optional for-from-to-clause argument to specify a range for

either the cost of the statement in timerons, or its cardinality (that is,
the number of rows returned). You must specify a numeric value for
the first value. For the second value, you can specify either a numeric
value, or the value UNBOUNDED to indicate that you do not want
to impose an upper limit on either the cost or cardinality of the
activity. You can also specify this argument for the WRITE keyword,
the DML keyword, and the ALL keyword.
For example, to associate SELECT activities that have a cost of 5000
timerons or more with this work class, you would specify:
WORK TYPE READ FOR TIMERONCOST FROM 5000 TO UNBOUNDED

v Use the optional data-tag-clause argument to specify a data tag
identifying data that the activity is estimated to access. You can
specify a value between 1 and 9. If the data-tag-clause is not specified
no restriction is imposed on the type of data that a query accesses.
You can also specify this argument for the WRITE keyword, the DML
keyword, and the ALL keyword.
For example, to associate SELECT activities with this work class, that
are estimated to access data in table spaces that have been assigned a
data tag value of 1, you would specify:
WORK TYPE READ DATA TAG LIST CONTAINS 1

- WRITE, which represents SQL activities that update data in the
database. When you specify the WRITE keyword, you can also specify
an optional for-from-to-clause or data-tag-clause argument.
For example, to associate all data writing activities with this work class
that, at compile time, are estimated to touch data tagged with a value of
5, you would specify:
WORK TYPE WRITE FOR CARDINALITY FROM 50 TO 100

- CALL, which represents CALL activities.

54 DB2 Workload Management Guide and Reference

When you specify the CALL keyword, you can also specify the
ROUTINES IN SCHEMA keyword to indicate that only CALL activities
to routines in a specific schema should be associated with this work
class. For example, if you only want to associate calls to routines in the
ACCOUNTS schema to this work class, you would specify:
WORK TYPE CALL ROUTINES IN SCHEMA ACCOUNTS

- DML, which represents SQL activities covered by both the READ and
WRITE keywords.
For example, to associate all DML activities that have an estimated cost
in timerons from 500 to 1000 and, at compile time, are estimated to
touch data tagged with a value of 8, you would specify:
WORK TYPE DML FOR TIMERONCOST FROM 500 TO 1000 DATA TAG LIST CONTAINS 8

- DDL, which represents the following activities:
v ALTER
v CREATE
v COMMENT
v DECLARE GLOBAL TEMPORARY TABLE
v DROP
v FLUSH PACKAGE CACHE
v GRANT
v REFRESH TABLE
v RENAME
v REVOKE
v SET INTEGRITY
For example, to associate all DDL activities with this work class, you
would specify:
WORK TYPE DDL

- LOAD, which represents a LOAD activity.
For example, to associate LOAD activities to this work class, you would
specify:
WORK TYPE LOAD

- ALL, which represents all the work types indicated by all the preceding
keywords.
When you specify ALL for a work class type, you can also specify the
ROUTINES IN SCHEMA keyword to indicate that only CALL activities
to routines in a specific schema should be associated with this work
class. You can also specify the for-from-to-clause argument to indicate
that all DML activities that have an estimated timeron cost or
cardinality specified fall into this class. For example, to associate both
DML activities that have a cardinality of 300 to 1500 rows and routines
that are called from the NEWHIRES schema to this work class, you
would specify the following statement.You can also specify the
data-tag-clause argument to indicate all DML activities that access data
in table spaces that are tagged with a data tag value. Because this work
class has a type of ALL, it would also apply to other activities that do
not have a schema or cardinality, such as LOAD activities and DDL
activities.
WORK TYPE ALL FOR CARDINALITY FROM 300 TO 1500 ROUTINES
IN SCHEMA NEWHIRES

Chapter 2. Work identification 55

– Optional. The position of the work class in the work class set. The
position of the work class in the work class set determines the order in
which the work class is evaluated when classifying an activity to a work
class. When work class assignment occurs, the data server first determines
the work class set associated with the object (either a service superclass or
the database), then selects the first matching work class in the work class
set that has a work action associated with it. Use the POSITION keyword
to specify one of the following:
- LAST. The work class is placed at the end of the list of work classes in

the work class set. For example:
WORK TYPE ... POSITION LAST

- BEFORE work-class-name. The work class is to be created in the work
class set and positioned before the specified work class. For example:
WORK TYPE ... POSITION BEFORE LARGEDDL

- AFTER work-class-name. The work class is to be created in the work class
set and positioned after the specified work class. For example:
WORK TYPE ... POSITION AFTER LARGEDDL

- AT integer. The work class is to be created in the work class set in the
position specified by the integer value. For example:
WORK TYPE ... POSITION AT 3

2. Commit your changes. When you commit your changes, the work class is
added to the SYSCAT.WORKCLASSES view.

Altering a work class
If you need to alter a work class, use the ALTER WORK CLASS SET statement.

Before you begin

To alter a work class, you require WLMADM or DBADM authority.

See “Workload management DDL statements” on page 18 for additional
prerequisites.

Procedure

To alter a work class:
1. Use the ALTER keyword of the ALTER WORK CLASS SET statement to change

one or more of the following properties. See “Creating a work class” on page
53 for an explanation of the supported values for these properties.
v The FOR keyword. For example, you can change the value specified for the

FOR keyword from CARDINALITY to TIMERONCOST.
v The FROM from-value TO to-value argument. For example, you can change the

argument from FROM 50 TO 100 to FROM 500 TO 1500.
v The ROUTINES IN SCHEMA or the ROUTINES IN ALL keywords, for

CALL activities. For example, if the work class currently does not specify a
schema, you can add one. You can also specify the keyword ALL, so that the
work class applies to all CALL statements, regardless of the schema of the
routine. ALL is the default.

v The DATA TAG LIST CONTAINS keyword. For example, you can change the
value specified for this keyword from ANY to 8.

v The POSITION keyword, followed by the keywords LAST, BEFORE, AFTER,
or AT. If you specify POSITION BEFORE or POSITION AFTER, you must
also specify the work class that you want to use to position your altered

56 DB2 Workload Management Guide and Reference

work class. If you specify POSITION AT, you must include the position
number. For example, you can move a work class from the last position to
any position by using the AT keyword, or from any position to the last
position by using the LAST keyword.

2. Commit your changes. When you commit your changes, the work class is
updated in the SYSCAT.WORKCLASSES view.

Dropping a work class
If you no longer require a work class, you can drop it from the work class set.

Before you begin

To drop a work class, you require WLMADM or DBADM authority.

See “Workload management DDL statements” on page 18 for additional
prerequisites.

Procedure

To drop a work class:
1. Use the DROP keyword of the ALTER WORK CLASS SET statement. You

cannot drop a work class if any work action in any work action set associated
with this work class set has a dependency on the work class you want to drop.
In this situation, you must first drop all dependent work actions before
dropping the work class.

2. Commit your changes. When you commit your changes, the work class is
removed from the SYSCAT.WORKCLASSES view.

Creating a work class set
To create a work class set, use the CREATE WORK CLASS SET statement.

Before you begin

To create a work class set, you require WLMADM or DBADM authority.

For additional prerequisites, see the following topics:
v “Workload management DDL statements” on page 18

Procedure

To create a work class set:
1. Specify the following properties for the work class set using the CREATE

WORK CLASS SET statement:
v A name for the work class set. The name you specify must be unique in the

database.
v Optional: One or more work classes for the work class set. For more

information, see “Creating a work class” on page 53.
2. Commit your changes. When you commit your changes, the work class set is

added to the SYSCAT.WORKCLASSSETS view.

Altering a work class set
You cannot change the work class set attributes after you create a work class set.
However, you can add, alter, and drop work classes in the work class set using the
ALTER WORK CLASS SET statement.

Chapter 2. Work identification 57

Before you begin

To alter a work class set, you require WLMADM or DBADM authority.

For additional prerequisites, see the following topics:
v “Workload management DDL statements” on page 18
v Naming rules

Procedure
1. If you want to add work class to the work class set, use the ADD keyword. For

information about the keywords that you can specify when adding a work
class, see “Creating a work class” on page 53.

2. If you want to alter a work class, use the ALTER keyword. For information
about altering a work class, see “Altering a work class” on page 56.

3. If you want to drop a work class, use the DROP keyword. For information
about dropping a work class from a work class set, see “Dropping a work
class” on page 57. If you want to drop all the work classes from the work class
set, you can drop the work class set itself. For more information, see “Dropping
a work class set.”

4. Commit your changes. When you commit your changes, the
SYSCAT.WORKCLASSES view is updated to show any added, altered, or
dropped work class.

Dropping a work class set
Use the DROP WORK CLASS SET statement to drop a work class set.

Before you begin

To drop a work class set, you require WLMADM or DBADM authority.

About this task

You can drop a work class set only if no work action sets are associated with it. If
you want to drop the work class set, you must first drop its dependent work
action sets.

Procedure

To drop a work class set:
1. Use the DROP WORK CLASS SET statement.
2. Commit your changes. When you commit your changes the work class set is

removed from the SYSCAT.WORKCLASSSETS view. In addition, all work
classes that were part of the work class set are removed from the
SYSCAT.WORKCLASSES view.

Evaluation order of work classes in a work class set
A work class set can have multiple work classes that match with a database
activity. To select which work class from a work class set an activity should fall
under, the data server goes through the work classes according to the evaluation
order, stopping at the first work class that matches the activity.

If no matching work class exists, the database activity does not belong to any work
class, and no work action is applied to that activity.

58 DB2 Workload Management Guide and Reference

You can affect the evaluation order of work classes in a work class set when you
create or alter a work class set. When you create or alter a work class set, you
determine the position at which a work class is placed in the work class set using
one of the following three methods:
v Specify the absolute position of the work class in the list.

For example, POSITION AT 2. In this situation, the work class is placed in the
second position in the work class set, and the work class that was at the second
position is now the third, the third work class is now the fourth, and so on. If
the position specified for the work class by the CREATE WORK CLASS SET or
ALTER WORK CLASS SET statement is greater than the total number of work
classes in the work class set, the work class is positioned last in the list.

v Use the POSITION BEFORE or POSITION AFTER keyword to specify the
position of the work class relative to work classes already in the work class set.

v Omit the position when creating a work class.
In this situation, the new work class is positioned at the end of the list. The
position you specify for the work class in the work class set list is not
necessarily the actual value of the EVALUATIONORDER column in the
SYSCAT.WORKCLASSES view. The data server automatically assigns the order
value to prevent gaps.

Work classes are processed in the order they are received, which can affect the
evaluation order. For example, assume that you issue the following statement:
ALTER WORK CLASS SET WCS ALTER WORK CLASS C1 POSITION AT 1

ALTER WORK CLASS C2 POSITION AT 1

As a result, the C1 work class has a evaluation order of 2 and the C2 work class
has an evaluation order of 1 because C2 was the last work class processed.

Assignment of activities to work classes
If a work class set, through a work action set, is associated with a database, a
workload, or a service superclass, then, just prior to execution in processing of an
execute, execute immediate, or open request, or just before the execution of the
load utility, the database activity is checked to determine if it matches any of the
criteria specified in the work classes within the work class set.

The work classes are sorted within the work class set, by their evaluation order.
Based on this evaluation order, the database activity is checked against each work
class based on the attributes of the database activity (such as the activity type and
cardinality) until there is a match or the list of work classes in the work class set
has been exhausted.

Assume that the following work classes are in a work class set:
v Evaluation order: 1; work class name: MyLoad; work class type: LOAD
v Evaluation order: 2; work class name: SmallRead; work class type: READ; other

attributes: estimated cost < 300 timerons
v Evaluation order: 3; work class name: AllDML; work class type: DML
v Evaluation order: 4; work class name: LargeRead; work class type: READ; other

attributes: estimated cost > 301 timerons
v Evaluation order: 5; work class name: MyDDL; work class type: DDL

If a SELECT statement with an estimated cost of 200 timerons is received, it is
assigned to the SmallRead work class. If a DDL activity (such as CREATE TABLE)
arrives, it is assigned the MyDDL work class. If a SELECT statement with an

Chapter 2. Work identification 59

estimated cost of 500 timerons arrives, it is assigned to the AllDML work class
because AllDML is positioned before the LargeRead work class. For more
information, see “Example: Working with a work class defined with the ALL
keyword” on page 63.

Work classifications supported by thresholds
Although any of the threshold types that can be used in work actions can be
associated with any work class, not all types of database activities are supported
for all of those threshold types.

For example, if you create a work class for DDL, then associate that work class
with an ESTIMATEDSQLCOST threshold work action, that threshold will not
apply to any of the requests that are classified under DDL because DDL statements
do not have an estimated cost. If you create a work class for ALL, then associate
that work class with an ESTIMATEDSQLCOST threshold work action, although all
database activities belong to the ALL work class, the threshold will only apply to
the database activities that have an estimated cost.

The following tables show which work class categories are supported by which
threshold types:

Table 23. Work classification supported by thresholds
“ACTIVITYTOTALTIME threshold”
on page 131 “ESTIMATEDSQLCOST threshold” on page 135

“CONCURRENTDBCOORDACTIVITIES threshold” on
page 141 “CPUTIME threshold” on page 132

READ,
including
SET
statements
with
embedded
READ SQL

Yes Yes Yes1 Yes

WRITE,
including
SET
statements
with
embedded
WRITE
SQL

Yes Yes Yes1 Yes

CALL Yes No No Yes

DML,
including
SET
statements
with
embedded
READ or
WRITE
SQL

Yes Yes Yes1 Yes

DDL Yes No Yes1 No

LOAD Yes No Yes1 No

ALL Yes Some Yes1 Some

Note:

1. Activities that run within user-defined functions (UDFs) and that contain these
work classifications are not affected by the
CONCURRENTDBCOORDACTIVITIES threshold.

Table 24. Work classification supported by thresholds (continued)
“SQLROWSREAD threshold” on page 136 “SQLROWSRETURNED threshold” on page 138 “SQLTEMPSPACE threshold” on page 139

READ,
including SET
statements
with
embedded
READ SQL

Yes Yes Yes

WRITE,
including SET
statements
with
embedded
WRITE SQL

Yes Yes Yes

CALL No No (see note) No

60 DB2 Workload Management Guide and Reference

Table 24. Work classification supported by thresholds (continued) (continued)
“SQLROWSREAD threshold” on page 136 “SQLROWSRETURNED threshold” on page 138 “SQLTEMPSPACE threshold” on page 139

DML,
including SET
statements
with
embedded
READ or
WRITE SQL

Yes Yes Yes

DDL No No No

LOAD No No No

ALL Some Some Some

Note:

v Although the statements in the procedure called may return rows, because the
rows are not returned as a result of the CALL statement they are not controlled
by the SQLROWSRETURNED threshold.

Example: Analyzing workloads by activity type
You can use DB2 workload management table functions to examine the workloads
in your environment according to the types of activities being run.

In some situations, you might be interested in the behavior of a certain type of
activities, such as LOAD activities. For example, you can observe how many
LOAD activities are currently in the system as follows:
SELECT COUNT(*)
FROM TABLE(WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES(CAST(NULL AS BIGINT), -2))
AS ACTS
WHERE ACTIVITY_TYPE = ’LOAD’

You can obtain a count of how many activities of a specific type have been
submitted since the last reset of the DB2 workload management statistics by using
the WLM_GET_WORK_ACTION_SET_STATS table function, as shown in the
following example. Assume that the READCLASS and LOADCLASS work classes
exist for activities of type READ and activities of type LOAD. The * represents all
activities that do not fall into the READCLASS or LOADCLASS work class.
SELECT SUBSTR(WORK_ACTION_SET_NAME,1,18) AS WORK_ACTION_SET_NAME,

SUBSTR(CHAR(DBPARTITIONNUM),1,4) AS PART,
SUBSTR(WORK_CLASS_NAME,1,15) AS WORK_CLASS_NAME,
LAST_RESET,
SUBSTR(CHAR(ACT_TOTAL),1,14) AS TOTAL_ACTS

FROM TABLE(WLM_GET_WORK_ACTION_SET_STATS(’’, -2)) AS WASSTATS
ORDER BY WORK_ACTION_SET_NAME, WORK_CLASS_NAME, PART

WORK_ACTION_SET_NAME PART WORK_CLASS_NAME LAST_RESET TOTAL_ACTS
-------------------- ---- --------------- -------------------------- ----------
AdminActionSet 0 ReadClass 2005-11-25-18.52.49.343000 8
AdminActionSet 1 ReadClass 2005-11-25-18.52.50.478000 0
AdminActionSet 0 LoadClass 2005-11-25-18.52.49.343000 2
AdminActionSet 1 LoadClass 2005-11-25-18.52.50.478000 0
AdminActionSet 0 * 2005-11-25-18.52.50.478000 0
AdminActionSet 1 * 2005-11-25-18.52.50.478000 0

You can view the average lifetime of LOAD activities by creating a work action set
to map LOAD activities to a specific service subclass. For example, suppose you
map LOAD activities to the service subclass LOADSERVICECLASS under the
service superclass MYSUPERCLASS. Then, you can query the
WLM_GET_SERVICE_SUBCLASS_STATS table function:
SELECT SUBSTR(SERVICE_SUPERCLASS_NAME,1,19) AS SUPERCLASS_NAME,

SUBSTR(SERVICE_SUBCLASS_NAME,1,18) AS SUBCLASS_NAME,
SUBSTR(CHAR(DBPARTITIONNUM),1,4) AS PART,
CAST(COORD_ACT_LIFETIME_AVG / 1000 AS DECIMAL(9,3)) AS AVGLIFETIME

Chapter 2. Work identification 61

FROM TABLE
(WLM_GET_SERVICE_SUBCLASS_STATS(’MYSUPERCLASS’, ’LOADSERVICECLASS’, -2))

AS SCSTATS
ORDER BY SUPERCLASS_NAME, SUBCLASS_NAME, PART

SUPERCLASS_NAME SUBCLASS_NAME PART AVGLIFETIME
------------------- ------------------ ---- ----------------------
SYSDEFAULTUSERCLASS LOADSERVICECLASS 0 4691.242
SYSDEFAULTUSERCLASS LOADSERVICECLASS 1 4644.740
SYSDEFAULTUSERCLASS LOADSERVICECLASS 2 4612.431
SYSDEFAULTUSERCLASS LOADSERVICECLASS 3 4593.451

Example: Using a work class set to manage specific types of
activities

The following example shows how to use a work class set to manage DML
activities.

Assume that you have a large number of applications running on your NONAME
database each day and lately a few performance issues have been occurring. To
deal with some of these issues, you decide that you need to be able to control the
number of large queries (that is, any query that has an estimated cost of greater
than 9999 timerons or an estimated cardinality of greater than 9999 rows) that can
run simultaneously on the database.

To control the number of large queries that can run on the database, you would do
the following:
1. Create a MYWORKCLASSSET work class set that contains two work classes:

one for queries with a large estimated cost and one for queries with a large
estimated cardinality. For example:
CREATE WORK CLASS SET MYWORKCLASSSET
(WORK CLASS LARGEESTIMATEDCOST WORK TYPE DML
FOR TIMERONCOST FROM 10000 TO UNBOUNDED,
WORK CLASS LARGECARDINALITY WORK TYPE DML
FOR CARDINALITY FROM 10000 TO UNBOUNDED)

2. Create a DATABASEACTIONS work action set that contains two work actions
that are to be applied to the work classes in the MYWORKCLASSSET work
class set at the database level
CREATE WORK ACTION SET DATABASEACTIONS FOR DATABASE
USING WORK CLASS SET LARGEQUERIES
(WORK ACTION ONECONCURRENTQUERY ON WORK CLASS LARGEESTIMATEDCOST
WHEN CONCURRENTDBCOORDACTIVITIES > 1 AND QUEUEDACTIVITIES > 1 STOP EXECUTION,
WORK ACTION TWOCONCURRENTQUERIES ON WORK CLASS LARGECARDINALITY
WHEN CONCURRENTDBCOORDACTIVITIES > 2 AND QUEUEDACTIVITIES > 3 STOP EXECUTION)

In addition, several large administrative applications run daily against the
database, and you want these applications to run in one resource pool. To
accomplish this goal, you would create a service superclass called ADMINAPPS for
these applications. For each application, you would create a workload to map it to
the ADMINAPPS service superclass.

Because it is important that the queries (SELECT statements) run quickly, you
decide to create a service subclass called SELECTS in the ADMINAPPS service
superclass for these queries.

To map the SELECT statements to the SELECTS service subclass:
1. Create a SELECTDML work class set that contains a work class for all SELECT

statements that do not update the database:

62 DB2 Workload Management Guide and Reference

CREATE WORK CLASS SET SELECTDML (WORK CLASS SELECTCLASS WORK TYPE READ)

2. Create an ADMINAPPSACTIONS work action set. This work action set
contains a work action that is to be applied to the work class in work class set
SELECTDML at the service superclass level
CREATE WORK ACTION SET ADMINAPPSACTIONS FOR SERVICE CLASS ADMINAPPS
USING WORK CLASS SET SELECTDML
(WORK ACTION MAPSELECTS ON WORK CLASS SELECTCLASS MAP ACTIVITY TO SELECTS)

Example: Working with a work class defined with the ALL
keyword

This example shows how to work with a work class defined as ALL, which
potentially covers all recognized activities in the database.

The DB2 workload management infrastructure recognizes the following specific
subset from the domain of all possible database activities: load operations, the
CALL statement, all DDL statements, and all DML statements. Full support for
monitoring and controlling these recognized activities is provided by DB2 workload
management.

When a work class with the type of ALL is used with a mapping work action, all
recognized database activity is mapped to the service subclass specified in the
work action. If a work class with the work type of ALL is used with a threshold
work action, the threshold type determines which database activities the threshold
applies to. Consider the following example.

Assume that you create a work class set called Example with the following work
classes. The evaluation order of the work class is as follows:
1. SMALLDML, which is for all DML-type SQL that has an estimated cost of less

than 1000 timerons.
2. LOADUTIL, which is for the load utility.
3. ALLACTIVITY, which is for all database activity

ALLACTIVITY is the last work class evaluated, and covers database activities that
do not correspond to the first three work classes.

The DDL for creating this work class set is:
CREATE WORK CLASS SET EXAMPLE
(WORK CLASS SMALLDML WORK TYPE DML FOR TIMERONCOST FROM 0 TO 999,
WORK CLASS LOADUTIL WORK TYPE LOAD,
WORK CLASS ALLACTIVITY WORK TYPE ALL)

Assume that you have a service superclass called EXAMPLESERVICECLASS, and
it has two service subclasses called SMALLACTIVITY and OTHERACTIVITY. You
want to set up the system so that all small database activities run in the
SMALLACTIVITY service subclass, and all other recognized database activities,
except for the load utility, run in the OTHERACTIVITY service subclass. You do
not want to remap the load utility to any other service subclass, but instead want it
to run in the default service subclass.

To accomplish these goals, you would set up a work action set,
SERVICECLASSACTIONS for the EXAMPLESERVICECLASS service superclass.
The SERVICECLASSACTIONS work action set would contain the following work
actions.

Chapter 2. Work identification 63

Table 25. SERVICECLASSACTIONS work action set

Work action Work class applied to Action

MAPDML SMALLDML Maps to the
SMALLACTIVITY service
subclass

COUNTLOAD LOADUTIL Counts the number of LOAD
activities

MAPOTHER ALLACTIVITY Maps to the
OTHERACTIVITY service
subclass

The DDL to create this work action set is:
CREATE WORK ACTION SET SERVICECLASSACTIONS FOR SERVICE CLASS EXAMPLESERVICECLASS
USING WORK CLASS SET EXAMPLE
(WORK ACTION MAPDML ON WORK CLASS SMALLDML MAP ACTIVITY TO SMALLACTIVITY,
WORK ACTION COUNTLOAD ON WORK CLASS LOADUTIL COUNT ACTIVITY,
WORK ACTION MAPOTHER ON WORK CLASS ALLACTIVITY MAP ACTIVITY TO OTHERACTIVITY)

Using this configuration, all small DML runs under the SMALLACTIVITY service
subclass. The COUNTLOAD work action is applied to the LOADUTIL work class,
which runs under the default service subclass. All other recognized database
activities run under the OTHERACTIVITY service subclass.

Note: If the ALLACTIVITY work class were at the top of the evaluation order, all
recognized activities would be mapped to the OTHERACTIVITY service subclass.

Now assume that you want to define a work action set for the database and apply
thresholds that control what is permitted to run concurrently on the system. You
could create a work action set called DATABASEACTIONS that contains the
following work actions. The DML for creating this work action set is:
CREATE WORK ACTION SET DATABASEACTIONS FOR DATABASE USING WORK CLASS SET EXAMPLE
(WORK ACTION CONCURRENTSMALLDML ON WORK CLASS SMALLDML
WHEN CONCURRENTDBCOORDACTIVITIES > 1000 AND QUEUEDACTIVITIES > 10000
COLLECT ACTIVITY DATA STOP EXECUTION,
WORK ACTION CONCURRENTLOAD ON WORK CLASS LOADUTIL
WHEN CONCURRENTDBCOORDACTIVITIES > 2 AND QUEUEDACTIVITIES > 10
COLLECT ACTIVITY DATA STOP EXECUTION,
WORK ACTION CONCURRENTOTHER ON WORK CLASS ALLACTIVITY
WHEN CONCURRENTDBCOORDACTIVITIES > 100 AND QUEUEDACTIVITIES > 100
COLLECT ACTIVITY DATA STOP EXECUTION,
WORK ACTION MAXCOSTALLOWED ON WORK CLASS ALLACTIVITY
WHEN ESTIMATEDSQLCOST > 1000000 COLLECT ACTIVITY DATA STOP EXECUTION)

Table 26. DATABASEACTIONS work action set

Work action Work class applied to Threshold type and value Action

CONCURRENTSMALLDML SMALLDML Concurrency up to 1000
statements; queue up to
10 000 statements

v Stop execution

v Collect activity data

CONCURRENTLOAD LOADUTIL Concurrency up to 2
occurrences; queue up to
10 occurrences

v Stop execution

v Collect activity data

CONCURRENTOTHER ALLACTIVITY Concurrency up to 100
activities; queue up to 100
activities

v Stop execution

v Collect activity data

64 DB2 Workload Management Guide and Reference

Table 26. DATABASEACTIONS work action set (continued)

Work action Work class applied to Threshold type and value Action

MAXCOSTALLOWED ALLACTIVITY Estimated SQL cost up to
1 000 000 timerons

v Stop execution

v Collect activity data

When these work actions are applied, up to 1000 small DML-type SQL statements
(because of the SMALLDML work class) can run at a time, and up to 10 000 of
these statements can be queued. Only two occurrences of the load utility can run at
a time, and up to 10 occurrences can be queued. Only 100 activities that are not
LOAD and are not small DML are permitted to run at a time, and only 100 of
these activities can be queued at a time. In all situations, if the queued threshold is
violated, the database activity is not permitted to run and an error message is
returned.

In addition, the MAXCOSTALLOWED work action is applied to the
ALLACTIVITY work class. This means that a database activity with an estimated
cost (that is, DML and XQueries statements) of more than 1 000 000 timerons is
not permitted to run. Although the MAXCOSTALLOWED work action is applied
to the ALLACTIVITY work class, this work action only affects database activities
that have an estimated cost greater than 1 000 000 timerons. This work action does
not affect activities that do not have an estimated cost, such as DDL.

Chapter 2. Work identification 65

66 DB2 Workload Management Guide and Reference

Chapter 3. Activities management

Once you have identified the work running on your data server, you are ready to
actively manage this work by assigning resources and imposing controls.

Resource assignment with service classes
A service class defines an execution environment in which work can run. This
execution environment allocates available resources and can include thresholds that
determine how work is permitted to run.

All work runs in a service class and you use workloads to assign work to service
superclasses, or you assign work to service subclasses in a service superclass by
using workloads, the REMAP ACTIVITY threshold action, or the MAP ACTIVITY
work action. When you define a workload, you indicate the service class where
work associated with that workload runs. By default, a default user workload also
exists (SYSDEFAULTUSERWORKLOAD) that maps work to the default user
service class (SYSDEFAULTUSERCLASS), so that any work not explicitly mapped
to a user defined service class using a user defined workload will run in the
default user service class.

Without service classes, requests cannot be organized into recognizable, logical
groupings, as is shown in the following figure.

You can create different service superclasses to provide the execution environment
for different types of work, then assign the applicable requests to the service
superclasses. Assume that you have applications from two separate lines of
business, finance and inventory. Each line of business would have its own
applications to fulfill its responsibilities to the organization. You can organize the
requests into categories that make sense for your workload management objectives.
In the following figure, different service superclasses are assigned to different lines
of business.

Figure 9. Unorganized work

© Copyright IBM Corp. 2007, 2012 67

In the previous figure, the activities in both service superclasses are further
subdivided. The service class provides a two-tier hierarchy: a service superclass
and service subclasses underneath. This hierarchy permits for a more complex
division of execution environment and better emulates a real-world model. Unless
specified otherwise, service subclasses inherit characteristics from the service
superclass. Use the service subclasses to further subdivide work in the service
superclass.

Prioritization and resource control

When you create or alter a service class object, you can define a number of
resource controls:

Table 27. Resource control afforded by service classes

Control Description

Agent priority This control sets a processor priority level for the agent threads
running in a service class. This priority flows through to the
operating system as a relative (delta) priority to other threads and
processes running in the data server.
Note: This control cannot be set when outbound correlator is in use.

Prefetch priority This control assigns a priority to the prefetch requests, which affects
the order in which they are addressed by the data server.

Buffer pool priority This control assigns a buffer pool priority to service classes which
affects how likely pages fetched by activities in a service class are to
be swapped out.

Finance 1

Finance 2

Finance 3

Finance
service class

Inventory 1

Inventory 2

Inventory 3

Inventory
service class

Figure 10. Work organized by service classes

68 DB2 Workload Management Guide and Reference

Table 27. Resource control afforded by service classes (continued)

Control Description

Outbound correlator This control permits a workload to have some of its resources
controlled by a operating system workload manager like AIX
Workload Manager or Linux workload management. The tag flows
through the agent to the external workload manager and maps to a
resource group defined with the manager.

When DB2 workload management is used in conjunction with an
operating system workload manager, additional controls are
available. With AIX Workload Manager, you can control the amount
of processor resource allocated to each service class by setting a
minimum, maximum, or relative share of processor resource for
each service class. With Linux workload management, you can
control the amount of CPU resource by setting shares for each
service class relative to the Linux default class.
Note: This control cannot be set when agent priority is in use.

Service subclasses

Although the service superclass is the highest tier for work, activities run only in
service subclasses. Each service superclass has a default service subclass defined to
run activities that you do not assign to an explicitly defined subclass. This default
subclass is created when the service superclass is created. You can create additional
subclasses in a service class as you require them to further isolate work. Except for
histograms and the COLLECT ACTIVITY DATA, COLLECT AGGREGATE
ACTIVITY DATA and COLLECT AGGREGATE REQUEST DATA options, a service
subclass inherits the attributes of its service superclass, unless otherwise specified.
The resources of the superclass are shared by all subclasses in it.

You can define only a single level of subclasses (that is, you cannot define a
subclass under another subclass, only under a service superclass).

The following figure is an example of a custom DB2 workload management
configuration using workloads and service classes:

Chapter 3. Activities management 69

As user requests enter the data server, they are identified as belonging to a given
workload and assigned to a service superclass or subclass. There are also system
requests (for example, prefetches) that run under a special default system service
class (SYSDEFAULTSYSTEMCLASS) and DB2-driven maintenance requests (such
as an automatic RUNSTATS from the health monitor) that run under a default
maintenance service class (SYSDEFAULTMAINTENANCECLASS).

You can view your service classes by querying the SYSCAT.SERVICECLASSES
catalog view.

Default service superclasses and subclasses
Each new database or upgraded database has three predefined default service
superclasses: the default user class, the default maintenance class, and the default
system class.

You cannot disable or drop any of the default service superclasses.

Service superclass 1

System
requests

User
requests

User
requests

User
requests

User
requests

User
requests

Default system
class

Service
subclass A

Default user
class

Workload D

Workload C

Workload A

Data server

Service
subclass B

Default user workload

Maintenance
requests

Default
maintenance
class

Default service
subclass

Workload B

Figure 11. A custom DB2 workload management configuration using workloads and service
classes

70 DB2 Workload Management Guide and Reference

All of the default service superclasses are created with one default service subclass.
You cannot create additional service subclasses for the default service superclasses.
The default service subclass is always created with the name
SYSDEFAULTSUBCLASS, as follows:

All work issued by connections to a default service superclass are processed in the
default service subclass of that service superclass.

Default service superclasses and their default service subclasses are dropped only
when the database is dropped. They cannot be dropped using the DROP SERVICE
CLASS statement.

Default user service superclass (SYSDEFAULTUSERCLASS)
By default, all user activities run in the SYSDEFAULTUSERCLASS.

Default maintenance service superclass (SYSDEFAULTMAINTENANCECLASS)
The default maintenance service superclass tracks the internal DB2
connections that perform database maintenance and administration tasks.
Connections from the DB2 asynchronous background processing (ABP)
agents are mapped to this service superclass. ABP agents are internal
agents that perform database maintenance tasks. Asynchronous index
cleanup (AIC) is an example of an ABP-driven task. ABP agents
automatically reduce their resource consumption and number of subagents
when the number of user connections increases on the data server. Utilities
that are issued by user connections are mapped using regular service
classes. You cannot implement service class thresholds on
SYSDEFAULTMAINTENANCECLASS.

The internal connections tracked by the default maintenance service
superclass include:
v ABP connections (including AIC)
v Health monitor initiated backup
v Health monitor initiated RUNSTATS
v Health monitor initiated REORG

Default system service superclass (SYSDEFAULTSYSTEMCLASS)
The default system service superclass tracks internal DB2 connections and
threads that perform system-level tasks. You cannot define service
subclasses for this service superclass, nor can you associate any workloads
or work actions with it. In addition, you cannot implement service class

SYSDEFAULTSUBCLASS

SYSDEFAULTUSERCLASS

SYSDEFAULTSUBCLASS

SYSDEFAULTSYSTEMCLASS

SYSDEFAULTSUBCLASS

SYSDEFAULTMAINTENANCECLASS

Figure 12. Two-tier service class hierarchy

Chapter 3. Activities management 71

thresholds on SYSDEFAULTSYSTEMCLASS. The DB2 threads and
connections tracked by the default system service superclass include:
v ABP daemon
v Self Tuning Memory Manager (STMM)
v Prefetcher engine dispatchable units (EDUs) (db2pfchr)
v Page cleaner EDUs (db2pclnr)
v Log reader EDUs (db2loggr)
v Log writer EDUs (db2loggw)
v Log file reader EDUs (db2lfr)
v Deadlock detector EDUs (db2dlock)
v Event monitors (db2evm)
v Event monitor fast writers (db2fw)
v Connections performing system level tasks

Activity-to-service class mapping
All database connections are assigned to a workload at the beginning of the first
unit of work. When a workload occurrence is started, all activities running under
that workload occurrence are mapped to service classes based on the service class
name specified in the workload definition.

The data server assigns a connection to a workload definition if the connection
meets the criteria defined for that workload definition. For example, you can set
up a workload management configuration so that all connections from application
A belong to the workload definition Alpha, while all connections from application
B belong to the workload definition Beta.

If the workload occurrence is assigned to a service superclass, activities submitted
for that workload occurrence can be reassigned to a user-defined service subclass
in that service superclass using a work action set.

You can use the workload to map activities from a connection to a service
superclass by specifying the SERVICE CLASS keyword of the CREATE
WORKLOAD statement. Assuming that no work class or work action applies to
the activity, the activity is run in the default service subclass of the service
superclass. You can also use a workload to map activities from a connection to a
service subclass in the service superclass by specifying the UNDER keyword for
the SERVICE CLASS keyword of the CREATE WORKLOAD statement. In this
situation, the connection still belongs to the service superclass, but all activities
issued from that connection are automatically mapped to the service subclass
specified in the workload definition.

After an activity has been mapped to a service subclass and has begun executing,
it stays in that service subclass, unless you remap it to another service subclass
(with a threshold). Remapping is the process by which you can change the
resource assignments for an activity through a different activity-to-service subclass
mapping. Both the source and the target service subclasses must exist under the
same superclass. After the activity is remapped, it continues to execute in the new
service subclass.

The following figure shows the relationship between connections, workloads, and
service superclasses. Connections that meet the definition of workload A are
mapped to service superclass 1; connections that meet the definition of workloads
B or C are mapped to service superclass 2; connections that meet the definition of

72 DB2 Workload Management Guide and Reference

workload D are mapped to the SYSDEFAULTUSERCLASS service superclass.

Further differentiating between activities

If you have a more complex DB2 workload manager configuration, you might
want to handle activities differently based on either the activity type or some other
activity attribute. For example, you might want to do one of the following actions:
v Put DML in a different service subclass than DDL.
v Put all read-type queries with an estimated cost of less than 100 timerons in a

different service subclass than all the other read-type queries.

In a more complex configuration you can set up the workload to map activities
from the connection to the service superclass. Then, using work actions (contained
in a work action set that is applied to the service superclass), you can remap
activities, based on their type or attribute, to specific service subclasses in a service
superclass.

User connections

DB2 internal
maintenance connections

SYSDEFAULTUSERCLASS

Service superclass 1

Service superclass 2

DB2 internal system
entities and connections

SYSDEFAULTSYSTEMCLASS

Connections

Connections

Connections

Connections

Connections

Connections

SYSDEFAULTMAINTENANCECLASS

Workload C

Workload B

Workload A

Workload D

Default workload

Entities and
connections

Figure 13. Mapping of database connections to a service superclass

Chapter 3. Activities management 73

Specifically, you could apply a work action set that contains a MAP ACTIVITY
work action to the service superclass. All activities that are both mapped to the
service superclass and match a work class to which a MAP ACTIVITY work action
is associated are mapped to the service subclass specified by the work action.

If a workload definition associates itself with a service subclass, any activities that
are submitted through that workload are not affected by a work action set that is
assigned to the parent service superclass.
v An activity can be mapped to one service subclass in a service superclass by a

workload.
v A work action that maps the activity to a different service subclass in the same

service superclass also applies to the activity.

If an activity is not mapped to a service subclass through a workload or a work
action, the activity is mapped to the default subclass (SYSDEFAULTSUBCLASS) of
the service superclass for that activity.

When database activities have been mapped to their respective service superclasses
and service subclasses, you can implement controls on all the activities in a
particular service class. Statistics are available at the service-class level that you can
use to monitor database activities in that service class.

The following figure shows requests to the database being mapped to a service
superclass or service subclass through workloads. For information on how work
actions are used to map activities to a service subclass, see “Work actions and
work action sets” on page 96

74 DB2 Workload Management Guide and Reference

Connections that do not map to a user-defined workload definition are mapped to
the default user workload definition, SYSDEFAULTUSERWORKLOAD. By default,
connections from the default workload definition
(SYSDEFAULTUSERWORKLOAD) are mapped to the SYSDEFAULTUSERCLASS
service superclass, which is the default service superclass for user requests. You
can alter the SYSDEFAULTUSERWORKLOAD workload so that it maps to a
different service class. Internal DB2 maintenance connections are mapped to the
SYSDEFAULTMAINTENANCECLASS, which is the default service superclass for
maintenance requests. Internal system entities and connections are mapped to
SYSDEFAULTSYSTEMCLASS, which is the default service superclass for internal
DB2 connections and threads that perform system-level tasks.

Workload D

User
database requests

Maintenance
database requests

Service
superclass 1

SYSDEFAULTUSERCLASS

Workload C

Workload B

SYSDEFAULTUSERWORKLOAD

Requests

Requests

Requests

Requests

Requests

Service
subclass 1.1

Service
subclass 1.2

Service
subclass 1.3

Workload A
Default service
subclass

SYSDEFAULTMAINTENANCECLASSRequests

M:1 N:1

System
database requests

SYSDEFAULTSYSTEMCLASSRequests

Figure 14. Database connections being mapped to a service superclass

Chapter 3. Activities management 75

Agent priority of service classes
You can associate each DB2 service class with a relative agent priority, which
controls processor priority on your data server. This priority is set for all agents
that work in a service class and is relative to the agent priority of all other DB2
agents.

If you do not specify the agent priority value for a service class, all agents in that
service class have the same priority as all other DB2 agents.

Setting the agent priority for a DB2 service class adjusts the priority of agents only
for new work that enters the service class. Non-agent threads running in the
service class do not use the agent priority value that you specify. DB2 workload
management does not assign service class agent priority to work being done
within a fenced mode process (FMP). Fenced procedures do not run their logic
within a service class. These fenced procedures run within the DB2 FMP and this
work is not done by DB2 agents. As a reminder, DB2 WLM controls DB2 agents.

If you are integrating DB2 service classes with an operating system workload
manager such as AIX Workload Manager or Linux workload management, you can
use the operating system workload manager to specify the processor priority to be
used for the operating system class (as processor shares), then have the DB2
service class inherit this value through the OUTBOUND CORRELATOR value of
the DB2 service class. The processor priority that you specify using the operating
system workload manager controls the priority for agents that run in the DB2
service class, and any service class agent priority setting is ignored.

Note: You cannot use agent priority to cap the amount of CPU used by a subset of
work on the system. Agent priority does bias CPU processing between competing
workloads when they need CPU resources, but, agent priority does not explicitly
allocate or manage CPU resources between competing workloads. Therefore, under
circumstances in which competing workloads are not equally demanding CPU
resources, agent priority appears to be ineffective in those cases where the lower
priority work makes more requests to consume CPU resources than the higher
priority work. However, agent priority is effective if you have competing
workloads that are equally demanding CPU resources and you just want to bias
CPU consumption rather than explicitly throttle or control CPU consumption. To
apply more explicit control on CPU consumption, then Linux WLM integration or
concurrency controls are more effective options.

Important: Do not use the deprecated agentpri database manager configuration
parameter with DB2 workload management. You can use this configuration
parameter to set the absolute processor priority of all agents in a DB2 instance to a
fixed value. However, if you set the absolute priority for an agent by using
agentpri, you cannot alter the relative priority of the agent by setting the DB2
service class agent priority or by using an operating system workload manager. If
you set agentpri, the service class agent priority and operating system workload
manager have no effect on the priority of agents.

On UNIX operating systems and Linux, valid values are DEFAULT and -20 to 20
(SQLSTATE 42615). Negative values denote a higher relative priority. Positive
values denote a lower relative priority.

On Windows operating systems, valid values are DEFAULT and -6 to 6
(SQLSTATE 42615). Negative values denote a lower relative priority. Positive
values denote a higher relative priority.

76 DB2 Workload Management Guide and Reference

On AIX operating systems, the instance owner must have CAP_NUMA_ATTACH
and CAP_PROPAGATE capabilities to set a higher relative priority for agents in a
service class using AGENT PRIORITY. To grant these capabilities, logon as root
and run the following command:
chuser capabilities=CAP_NUMA_ATTACH,CAP_PROPAGATE

On Solaris 10 or higher, the instance owner must have the proc_priocntl privilege
to set a higher relative priority for agents in a service class using AGENT
PRIORITY. To grant this privilege, logon as root and run the following command:
usermod -K defaultpriv=basic,proc_priocntl db2user

In this example, proc_priocntl is added to the default privilege set of user db2user.

Moreover, when DB2 is running in a non-global zone of Solaris, the proc_priocntl
privilege must be added to the limit privilege set of the zone. To grant this
privilege to the zone, logon as root and run the following command:
global# zonecfg -z db2zone
zonecfg:db2zone> set limitpriv="default,proc_priocntl"

In this example, proc_priocntl is added to the limit privilege set of zone db2zone.

On Solaris 9, there is no facility for DB2 to raise the relative priority of agents.
Upgrade to Solaris 10 or higher to use the service class agent priority.

Prefetch priority of service classes
Prefetchers retrieve data from disk and store this data in buffer pools so that it can
be quickly accessed by agents. Each service superclass and subclass can be
assigned to have a different prefetch priority.

Agents send read-ahead requests to the database prefetch queue. The prefetchers
take these read-ahead requests from the queue, then retrieve the data into the
buffer pools. When an agent requires specific data, it first checks the buffer pools
to see if the data is available. If not, the agent retrieves the data from disk.
Prefetchers perform expensive disk I/O operations, which frees agents to perform
computational work in parallel.

Any connection routed to a service class has its prefetch requests processed
according to the prefetch priority assigned for the service class. Each service class
can be associated with one of the three prefetch priorities: high, medium, or low.
You specify the prefetch priority of a service class with the PREFETCH PRIORITY
keyword on either the CREATE or ALTER SERVICE CLASS statement.

Specifying DEFAULT for a service superclass sets a medium prefetch priority for
the service superclass. You can specify a different prefetch priority for any service
subclass in the service superclass, but if you use the default prefetch priority for
the service subclass, the service subclass inherits its prefetch priority setting from
its service superclass.

High-priority prefetch requests are processed before medium-priority prefetch
requests, which, in turn, are processed before low-priority prefetch requests.
Prefetch priority affects the order in which prefetch requests are processed, but it
does not affect the speed at which they are processed.

Chapter 3. Activities management 77

Buffer pool priority of service classes
Setting the buffer pool priority of service classes allows you to influence the
proportion of pages in the buffer pool that may be occupied by activities in a given
service class, which can improve the throughput and performance of activities in
that service class.

You can associate each DB2 service class with a relative buffer pool priority, which
controls how likely pages fetched into the buffer pool by activities in the service
class are to be swapped out. Increasing the buffer pool priority potentially
increases the proportion of pages in use by agents of a particular service class.

If you do not specify a buffer pool priority, or if you specify BUFFERPOOL
PRIORITY DEFAULT, the buffer pool priority assigned to the service class is
DEFAULT. For service superclasses, DEFAULT maps to a value of LOW; for service
subclasses, DEFAULT maps to the value of the buffer pool priority of the parent
service superclass. All default subclasses have a buffer pool priority of DEFAULT,
which cannot be changed.

When upgrading from an earlier DB2 version, the buffer pool priority of existing
service classes is set to DEFAULT.

Realizing the benefits of setting buffer pool priority

You are more likely to realize a performance advantage with setting the buffer pool
priority for a service class if there is a reasonable amount of contention on the
buffer pool. Buffer pool contention demonstrated by an overall hit ratio of 85% or
less is likely to see the most benefit. If the overall hit ratio exceeds 90%, there is
likely not substantial buffer pool contention to begin with, and setting buffer pool
priority will yield less or little benefit in most cases. What benefits you realize are
dependent on the type of workload your data server runs.

For some workloads, setting buffer pool priority is more effective if you also turn
on proactive page cleaning. This is because buffer pool priority settings are
effective only for non-dirty pages and proactive page cleaning is more aggressive
about writing out dirty pages to disk. Note that you should turn on proactive page
cleaning only if it yields a performance benefit.

If you use asynchronous page cleaning (also known as classic page cleaning),
setting the chngpgs_thresh database configuration parameter to a lower value will
likely yield the same effect of making your buffer pool priority settings more
effective, because a low value for this parameter also ensures that there are enough
clean pages in the buffer pool.

It is possible that the positive effects of setting buffer pool priority can be
surpassed by the effects of prefetching, with or without setting prefetch priority, if
there is a reasonable amount of prefetching taking place. For example, if you
define a service class with high buffer pool priority where there is only little
prefetching, the effective advantage of this buffer pool priority setting might be
small when compared to a service class with low buffer pool priority but where
activities perform a significant amount of prefetching. Due to the benefits of
prefetching, the activities in the service class with low buffer pool priority might
even outperform the activities in the high buffer pool priority service class.
However, setting buffer pool priority can still supplement your workload
management strategy under these circumstances, and you should use it.

78 DB2 Workload Management Guide and Reference

States of connections and activities in a service class
Service classes collect connection statistics for each service class. You can see which
connections and activities are in a service class, and the state of either the
connection or activity.

States of a connection

Following are the possible states of a connection in a service class:

CONNECTED
The connection successfully connected to the database but is not yet
associated with its workload and service superclass.

DECOUPLED
The connection does not have a coordinator agent assigned (concentrator
case).

DISCONNECTPEND
The connection is disconnecting from the database.

FORCED
The connection has been forced.

INTERRUPTED
The connection has been interrupted.

MAPPED
The connection is mapped to a workload and has joined a service
superclass. The connection can now submit activities for execution.

QUEUED
The connection coordinator agent is queued by a DB2 connection or
activity threshold that offers queuing, such as the
CONCURRENTDBCOORDACTIVITIES threshold. In a multimember
database environment, this state might indicate that the coordinator agent
has made an RPC to another member to obtain threshold tickets and has
not yet received a response.

TRANSIENT
The connection is attempting to join a service class that has reached its
connections threshold. The connection is queued to join the service class.
When the service class is not violating its connections threshold, the
connection will join the service class. A connection in the transient state
cannot submit activities for execution.

TERMINATING
The connection received a connect reset from the client or is being
terminated because of a force or an error condition.

UOWEXEC
The connection is processing a request.

UOWWAIT
The connection is waiting for a request from the client.

States of an activity

Following are the possible states of an activity in a service class:

CANCEL_PENDING
If you cancel an activity that has no agent actively working on a request

Chapter 3. Activities management 79

for the activity, the activity is placed in the CANCEL_PENDING state and
is cancelled on the next request that is received.

EXECUTING
The activity is executing.

IDLE There is no agent actively processing a request for the activity.

INITIALIZING
The activity was created and is being prepared for execution.

QUEUED
The activity cannot be executed because of a concurrency threshold at the
database or service class level. The activity is queued until it is permitted
to execute.

TERMINATING
The activity is being terminated.

UNKNOWN
The state of the activity is unknown.

System-level entities not managed by service classes
Service classes are used for monitoring and controlling objects at the database
level. However, not all DB2 entities work directly in a database.

Because service classes work in a database and are stored in the catalog tables of
the database, entities that do not work in a database cannot be managed by service
classes. Instance-level entities, such as the system controller and the health monitor
daemons, work at the instance level and are not directly associated with any
database. Agents that perform instance attachments and gateway connections are
not managed by service classes either. Because instance attachment agents and
gateway agents do not work in a database, they are not managed by service
classes.

The following list is a partial list of entities that do not work within a database and
are not managed by service classes:
v DB2 system controllers (db2sysc)
v IPC listeners (db2ipccm)
v TCP listeners (db2tcpcm)
v FCM daemons (db2fcms, db2fcmr)
v DB2 resynchronization agents (db2resync)
v Idle agents (agents with no database association)
v Instance attachment agents
v Gateway agents
v All other instance-level EDUs

Creating a service class
You create service superclasses and service subclasses under them using the DDL
statement CREATE SERVICE CLASS.

Before you begin

To create a service class, you require WLMADM or DBADM authority.

Also see the following topics for other prerequisites:

80 DB2 Workload Management Guide and Reference

v “Workload management DDL statements” on page 18
v Appendix A, “General naming rules,” on page 491

Procedure

To create a service class:
1. Specify one or more of the following properties for the service class on the

CREATE SERVICE CLASS statement:
v Specify the name of the service class:

Note: Once set, the name of a service class cannot be changed.
– If you are creating a service superclass, the name must be unique among

all service superclasses in the database.
When a service superclass is created, its associated default service subclass
is automatically created. Only after you have created a service superclass
can you create other service subclasses under it.

– If you are creating a service subclass, the name must be unique among all
service subclasses in the service superclass. A service subclass cannot have
the same name as its service superclass.

v If you are creating a service subclass, specify the name of the parent service
superclass. After a service subclass is created under a service superclass, it
cannot be associated with a different service superclass.

v Specify the buffer pool priority for the service class which affects how likely
pages fetched by activities in the service class are to be swapped out. For
service superclasses, the DEFAULT value internally maps to LOW. Service
subclasses set to DEFAULT inherit the buffer pool priority from their parent
superclasses.

v Specify the prefetch priority. You can specify the priority with which agents
in the service class can submit their prefetch requests. Depending on the
value specified, the prefetch requests are routed to the high, medium, or low
priority prefetch queues. The default prefetch priority is medium.

v Specify the outbound correlator string if you want to associate the DB2
service class with an AIX class or a Linux class. A null value indicates no
operating system workload manager association.
If the outbound correlator is set, all threads in the DB2 service class are
associated with the operating system workload manager by using the
outbound correlator when the next activity begins.
If the outbound correlator is set to NONE for a service subclass and the
outbound correlator is specified for the associated service superclass, the
service subclass inherits the outbound correlator specified for its service
superclass.

v Specify the activity data to collect. When activity data collection is enabled,
information about an activity is sent from the coordinator member to the
applicable event monitor at the end of the activity. You can write data to the
event monitor that includes information about the statement that was run, its
compilation environment, and any applicable input data values. You can also
specify that no activity data is collected. By default, no activity data is
collected.

v Collected aggregate activity information. The aggregate activity information
used for the service class only changes after the CREATE SERVICE CLASS
operation is committed.

Chapter 3. Activities management 81

v The type of request metrics to collect for requests submitted by a connection
that is associated with the service superclass you specify. By default, basic
metrics are always collected for activities associated with the workload.

v The histogram templates that the service subclass should use as templates for
its histograms. The histogram templates specified are reflected in the
SYSCAT.HISTOGRAMTEMPLATEUSE view. For more information about
histograms and histogram templates, see “Histograms in workload
management” on page 253.

v Specify whether the service class is enabled or disabled.
– If a service class is created as enabled (the default), connections and

activities can be mapped to the service class. If a service class is created as
disabled, new connections and activities mapped to it are rejected.

– If you create a service superclass as disabled, all service subclasses that
you associate with this service superclass behave as though they are
disabled, even though they might be displayed as being enabled when
you query the SYSCAT.SERVICECLASSES view.

2. Commit your changes. When you commit your changes the service class is
added to the SYSCAT.SERVICECLASSES view.

Altering a service class
If you want to change a service class definition, use the ALTER SERVICE CLASS
statement.

Before you begin

To alter a service class, you require SQLADM, WLMADM, or DBADM authority.
To specify any clause other than a COLLECT clause, the authorization ID must
include WLMADM or DBADM authority.

See “Workload management DDL statements” on page 18 for more information
about prerequisites.

About this task

Activities that have already acquired resources and are running are usually not
affected by the ALTER statement. These activities will hold their resources and run
until completion. (Note that changes to the CPU shares or CPU limits of a service
class that are made through the ALTER SERVICE CLASS statement take effect
immediately, even in the case of activities that are already running.) However, if a
subagent request is sent to a remote member during the ALTER SERVICE CLASS
operation, the service class definition seen by the coordinator agent and the
subagent can differ. Consider the following example in which the prefetch priority
for the service class is initially set to MEDIUM:

Table 28. Differences between the views of a coordinator agent and subagent of an altered
service class

Event order Connection 1 Connection 2

1 Coordinating agent sends a
request to remote member
(prefetch priority of service
class was previously set to
MEDIUM)

82 DB2 Workload Management Guide and Reference

Table 28. Differences between the views of a coordinator agent and subagent of an altered
service class (continued)

Event order Connection 1 Connection 2

2 ALTER SERVICE CLASS
issued; set prefetch priority
to HIGH

3 COMMIT is issued (the
altered service class property
is committed at the catalog
member and loaded to
memory at all database
members)

4 Remote subagent receives the
request. At this time, the
subagent sets the new
prefetch priority of HIGH for
the service class definition

This situation described in the previous table is temporary, and only affects
connections that issue subagent requests during the ALTER SERVICE CLASS
operation. All new connections will see the updated service class definition with
the prefetch priority of HIGH.

Procedure

To alter a service class:
1. Specify one or more of the following properties for the service class on the

ALTER SERVICE CLASS statement:
v Specify whether the service class is enabled or disabled. If you change a

service class from enabled to disabled, existing connections or activities
remain with the service class and continue to use previously allocated
resources until complete. You can disable a service class if the work coming
to the service class is overwhelming the system, or you want to reject all
work coming to the service class.
When a service superclass is disabled the following happens:
a. The service superclass is disabled.
b. Its service subclasses are disabled.

The service subclasses are only disabled while their service superclass is
disabled. When the service superclass is enabled, the service subclasses
return to their previous states as defined in the catalog table.
When a service subclass is disabled, its service superclass is not affected, nor
other service subclasses associated with the service superclass.
You cannot explicitly disable a default service subclass. To prevent new
requests from running under a default service subclass, you must disable the
associated service superclass.

v Specify the agent priority for the service class. When the agent priority is set
to DEFAULT, agents in the service class are assigned the same priority that
the operating system assigns all DB2 threads. If you set the AGENT
PRIORITY parameter to a value other than DEFAULT, the agent threads are
set to a priority equal to the default priority, plus the value set when the next
activity begins. For example, if the default priority is 20 and you set agent
priority to -10, the resulting agent priority is set to 20 + (-10) = 10.

Chapter 3. Activities management 83

In the SYSCAT.SERVICECLASSES catalog view, an agent priority of
DEFAULT is represented as -32768.
On Linux and UNIX, the valid values are -20 to 20 (a negative value
indicates a higher relative priority). On Windows operating systems, the
valid values are -6 to 6 (a negative value indicates a lower relative priority)

v Specify the prefetch priority. You can specify the priority with which agents
in the service class can submit their prefetch requests. Depending on the
value specified, the prefetch requests are routed to the high, medium, or low
priority prefetch queues. The default prefetch priority is medium. If the
prefetch priority is altered after a prefetch request is submitted, the request
will not change its priority.

v Specify the buffer pool priority for the service class which affects how likely
pages fetched by activities in the service class are to be swapped out. For
service superclasses, the DEFAULT value internally maps to LOW. Service
subclasses set to DEFAULT inherit the buffer pool priority from their parent
superclasses.

v Specify the outbound correlator string if you want to associate the DB2
service class with an AIX class or a Linux class. A null value indicates no
operating system workload manager association.
If the outbound correlator is changed from a non-null value to a null value,
all threads in the DB2 service class will disassociate with the operating
system workload manager when the next activity begins.
If the outbound correlator is set to NONE for a service subclass and the
outbound correlator is specified for the associated service superclass, the
service subclass inherits the outbound correlator specified for its service
superclass.
If a service superclass uses an outbound correlator, the agent priority of the
service superclass must be set to default.
If a service subclass uses an outbound correlator (either explicitly as part of
the service subclass definition or implicitly through inheritance from the
service superclass), the agent priority of the service subclass must be set to
default.

v Specify the adding or dropping of a system temporary table space to or from
the list of preferred temporary table spaces for the specified service subclass.

v Specify the activity data to collect. When activity data collection is enabled,
information about an activity is sent from the coordinator member to the
applicable event monitor at the end of the activity. You can write data to the
event monitor that includes information about the statement that was run, its
compilation environment, and any applicable input data values. You can also
specify that no activity data is collected. By default, no activity data is
collected.

v Collected aggregate activity information. The aggregate activity information
used for the service class only changes after the ALTER SERVICE CLASS
operation is committed.

v The monitoring request metrics collection level for requests submitted by
connections mapped to a subclass under the specified service superclass.
Note that the effective collection setting for requests running under a service
superclass is the combination of both the service class collection level and the
mon_req_metrics database configuration parameter.

v Whether to alter the histogram templates used by a service subclass that has
enabled aggregate activity data collection using COLLECT AGGREGATE
ACTIVITY DATA or aggregate request data collection using COLLECT
AGGREGATE REQUEST DATA. Updating the histogram templates used by a

84 DB2 Workload Management Guide and Reference

service subclass will update the corresponding rows in the
SYSCAT.HISTOGRAMTEMPLATEUSE view which displays the histogram
templates referenced by a service class or work action. For more information
about histograms and histogram templates, see “Histograms in workload
management” on page 253.

2. Commit your changes. When you commit your changes the service class is
updated in the SYSCAT.SERVICECLASSES view.

Dropping a service class
You drop service classes using the DDL statement DROP SERVICE CLASS.

Before you begin

To drop a service class, you require WLMADM or DBADM authority.

See “Workload management DDL statements” on page 18 for more information
about prerequisites.

You cannot drop the default service superclasses (SYSDEFAULTUSERCLASS,
SYSDEFAULTMAINTENANCECLASS, and SYSDEFAULTSYSTEMCLASS) or their
associated service subclasses. The only way to drop the default service superclasses
and their associated service subclasses is to drop the database.

A service class you defined cannot be dropped if any of the following conditions
apply:
v It is enabled
v It contains user-defined service subclasses
v It is referenced by any workload, work action, or threshold
v It is still referenced by a workload occurrence
v Any connection or activity is currently mapped to the service class
v If the service class is set as the target of a REMAP ACTIVITY action.

Procedure

To drop a service class:
1. Change workloads to not point to the service class, or disable the workload

definitions. Alternatively, use the DROP WORKLOAD statement to drop all
workloads that are associated with the service class. Issue a COMMIT
statement after dropping each workload.
Activities already running under the service class will continue to run. You can
list agents that are currently mapped to a service class by using the
WLM_GET_SERVICE_CLASS_AGENTS table function. If you do not want
these activities to complete, you can use the application identifier returned by
the table function and use the FORCE APPLICATION command to force these
applications off the database.

2. Drop all applicable work actions that are associated with the service class you
want to drop:
v If you are dropping a service superclass and a work action set is associated

with it, disable and drop that work action set. Use the ALTER WORK
ACTION SET statement to disable a work action set, and the DROP WORK
ACTION SET statement to drop the work action set. Issue a commit
statement after dropping the work action set.

Chapter 3. Activities management 85

v If you are dropping a service subclass and a work action maps to that service
subclass, drop the work action using the DROP WORK ACTION clause of
the ALTER WORK ACTION SET statement. Alternatively, drop the work
action set that contains the work action that maps to the service subclass by
using the DROP WORK ACTION SET statement. Issue a COMMIT statement
after dropping each work action, or after dropping the work action set.

3. Disable and drop all thresholds associated with the service class that you want
to drop. Issue a COMMIT statement after dropping each threshold. Use the
ALTER THRESHOLD statement to disable a threshold, and the DROP
THRESHOLD statement to drop the threshold.

4. Depending on the object you are dropping, do the following:
v If you are dropping a service subclass, use the DROP SERVICE CLASS

statement to drop the service subclass.
v If you are dropping a service superclass, use the DROP SERVICE CLASS

statement to drop all service subclasses associated with the service
superclass, and issue a COMMIT statement after dropping each service
subclass. Then issue the DROP SERVICE CLASS statement to drop the
service superclass.

Note: You cannot manually drop the default service subclass for the service
superclass. The default service subclass for a service superclass is dropped
when the service superclass is dropped.

5. Disable the service class by using the ALTER SERVICE CLASS statement. If you
are dropping a service superclass, this action disables all service subclasses
associated with the service superclass. Disabling a service class prevents any
additional activities from being associated with it. After disabling the service
class, issue a COMMIT statement.

6. Commit your changes. When you commit your changes, the service class is
removed from the SYSCAT.SERVICECLASSES view.

Example: Using service classes
The following example shows how to use service classes to control database
workload.

This example occurs in the fictitious International Beer Emporium. International
Beer Emporium is a medium-sized business made up of five major departments:
Sales, Accounting, Engineering, Testing and Production. All five departments share
the same product catalog database.

Initial implementation of a DB2 workload management solution

The product catalog database runs well most of the time. However, sometimes
users complain that their applications cannot connect to the database because the
maximum number of connections has been exceeded. After upgrading to DB2
Version 9.7, Bob, the database administrator, decides to try service classes. Bob
wants to know the usage patterns of the product catalog database by each of the
five departments and figure out why his database runs out of connections
occasionally. Following are the steps Bob follows to set up the service classes:
1. First, Bob creates service superclasses for each of the departments (the default

service subclass is also automatically created for each service superclass):
v SALES is created for the Sales department:

CREATE SERVICE CLASS SALES

v ACCOUNTING is created for the Accounting department:

86 DB2 Workload Management Guide and Reference

CREATE SERVICE CLASS ACCOUNTING

v ENGINEERING is created for the Engineering department:
CREATE SERVICE CLASS ENGINEERING

v TESTING is created for the Testing department:
CREATE SERVICE CLASS TESTING

v PRODUCTION is created for the Production department:
CREATE SERVICE CLASS PRODUCTION

2. Bob creates session user groups with appropriate authorization IDs for each of
the departments:
v A session user group is created with the authorization ID SALESGRP. This

group includes the authorization IDs of all users in the Sales department.
v A session user group is created with the authorization ID ACCTNGRP. This

group includes the authorization IDs of all users in the Accounting
department.

v A session user group is created with the authorization ID ENGINGRP. This
group includes the authorization IDs of all users in the Engineering
department.

v A session user group is created with the authorization ID TESTGRP. This
group includes the authorization IDs of all users in the Testing department.

v A session user group is created with the authorization ID PRODGRP. This
group includes the authorization IDs of all users in the Production
department.

3. Bob creates workloads to map connections from each group to the associated
service class:
v Workload WL_SALES is created with its session user group set to

SALESGRP. WL_SALES maps its connections to the service superclass
SALES:
CREATE WORKLOAD WL_SALES SESSION_USER GROUP (’SALESGRP’)
SERVICE CLASS SALES

v Workload WL_ACCOUNTING is created with its session user group set to
ACCTNGRP. WL_ACCOUNTING maps its connections to the service
superclass ACCOUNTING:
CREATE WORKLOAD WL_ACCOUNTING SESSION_USER GROUP (’ACCTNGRP’)
SERVICE CLASS ACCOUNTING

v Workload WL_ENGINEERING is created with its session user group set to
ENGINGRP. WL_ENGINEERING maps its connections to service class
ENGINEERING:
CREATE WORKLOAD WL_ENGINEERING SESSION_USER GROUP (’ENGINGRP’)
SERVICE CLASS ENGINEERING

v Workload WL_TEST is created with its session user group set to TESTGRP.
WL_TEST maps its connections to service class TESTING:
CREATE WORKLOAD WL_TEST SESSION_USER GROUP (’TESTGRP’)
SERVICE CLASS TESTING

v Workload WL_PRODUCTION is created with its session user group set to
PRODGRP. WL_PRODUCTION maps its connections to service class
PRODUCTION:
CREATE WORKLOAD WL_PRODUCTION SESSION_USER GROUP (’PRODGRP’)
SERVICE CLASS PRODUCTION

Bob uses the default service class and workload settings. He wants to observe the
database usage patterns before placing any controls on the service classes. The
resulting service superclass definitions are as follows:

Chapter 3. Activities management 87

Table 29. Service class definitions

Service class

SALES

ACCOUNTING

ENGINEERING

TESTING

PRODUCTION

SYSDEFAULTUSERCLASS

SYSDEFAULTMAINTENANCECLASS

SYSDEFAULTSYSTEMCLASS

With a DB2 workload management solution implemented as described previously,
work from each department is routed to its own service superclass. Work from
departments not specifically accounted for is mapped to the
SYSDEFAULTUSERCLASS default service superclass. Using this configuration, Bob
can monitor the work in each of the service classes to determine the database
usage pattern of the departments.

First refinement of the DB2 workload management
implementation

Following the most recent connection spike, Bob queries service superclass
statistics using the WLM_GET_SERVICE_SUPERCLASS_STATS table function and
examines the connection high-water mark value for each service superclass. Bob
discovers that the connection high-water mark for all departments except Testing is
close to 100. However, the statistic for the Testing department shows that at one
time, the test team established over 800 connections

Once a month, the Testing department performs its monthly intensive product
testing. At this time, the department establishes up to 1000 concurrent connections.
Because the database manager configuration parameter max_connections is set to
1000, the Testing department uses most of the available connections to the
database. When the system has 1000 connections, all subsequent connections are
rejected.

Because of memory constraints on the system, the max_connections and maxagents
configuration values cannot be increased on the data server to permit more
connections.

To prevent the Testing department from using all the connections, Bob decides to
limit the number of connections from the Testing department and ensure that each
of the other four departments can obtain sufficient connections to the database to
meet their business objectives.

The other four departments ordinarily do not require more than 150 concurrent
connections each. In addition, Bob also notices that the default user, default
maintenance, and default system service superclasses rarely contain any
connections, so he decides that 100 connections should be sufficient for these
default service superclasses. After 700 connections (600 for the four departments
and 100 for the default classes) are allocated from the max_connections pool of
1 000 available connections, 300 connections are available for the Testing

88 DB2 Workload Management Guide and Reference

department. By limiting the Testing department to a maximum of 300 connections,
users from other departments should not have their connection requests rejected.

To limit the Testing group to a maximum of 300 concurrent connections, Bob
creates a MAXSERVICECLASSCONNECTIONS threshold of 300 for the TESTING
service class.
CREATE THRESHOLD MAXSERVICECLASSCONNECTIONS FOR SERVICE CLASS TESTING ACTIVITIES
ENFORCEMENT DATABASE PARTITION
WHEN TOTALSCMEMBERCONNECTIONS > 300 STOP EXECUTION

After implementing this change, the DB2 workload management configuration is
as follows:

Table 30. Configuration after adding threshold for the TESTING service superclass

Service class
MAXSERVICECLASSCONNECTIONS
threshold

SALES N/A

ACCOUNTING N/A

ENGINEERING N/A

TESTING 300

PRODUCTION N/A

SYSDEFAULTUSERCLASS N/A

SYSDEFAULTMAINTENANCECLASS N/A

Because the TESTING service class can contain a maximum of only 300 concurrent
connections, all connection requests above this threshold are rejected. A
MAXSERVICECLASSCONNECTIONS threshold is not applied on the other service
classes, so these service classes share the remaining 700 available connections to
the data server. Because there is no contention for connections among these service
classes, Bob does not place connection thresholds on them.

Second refinement of the DB2 workload management
implementation

Although connections from the Sales, Accounting, Engineering, and Production
departments are no longer being rejected, users from these departments still
complain about poor performance when the Testing department performs intensive
product testing. Bob examines the queries that the Testing department runs during
its product test cycle and discovers that the queries contain complicated joins that
involve large amounts of data. These queries generate considerable prefetch
activity, which prevents connections from other departments having their prefetch
requests processed. Bob decides to lower the prefetch priority of the connections
from the Testing department and alters the TESTING service class to set its
prefetch priority to LOW:
ALTER SERVICE CLASS TESTING PREFETCH PRIORITY LOW

The DB2 workload management configuration is as follows:

Table 31. Configuration after changing prefetch priority for the TESTING service superclass

Service class
MAXSERVICECLASSCONNECTIONS
threshold Prefetch priority

SALES N/A DEFAULT

Chapter 3. Activities management 89

Table 31. Configuration after changing prefetch priority for the TESTING service superclass (continued)

Service class
MAXSERVICECLASSCONNECTIONS
threshold Prefetch priority

ACCOUNTING N/A DEFAULT

ENGINEERING N/A DEFAULT

TESTING 300 LOW

PRODUCTION N/A DEFAULT

SYSDEFAULTUSERCLASS N/A DEFAULT

SYSDEFAULTMAINTENANCECLASS N/A DEFAULT

Setting the prefetch priority of the TESTING service class to LOW causes prefetch
requests from connections issued from the Testing department to be serviced only
after all prefetch requests from the other departments are processed. This change
increases the query throughput of the other departments and decreases the
throughput of the Testing department during its product testing phase.

Third refinement of the DB2 workload management
implementation

After the prefetch problem is resolved, the Engineering department tells Bob that it
needs a few connections for an experimental application called Brewmeister.
Because the application is experimental, Bob wants to ensure that it does not
consume too many database connections and that queries from the application will
not compete for prefetchers when the system is busy. To accomplish these
objectives, he creates a new service subclass under the ENGINEERING service
superclass for the experimental application and a workload to map connections
from the application to the new service subclass. Bob updates the service class and
workloads as follows:
v Service subclass EXPERIMENT is created under the service superclass

ENGINEERING:
CREATE SERVICE CLASS EXPERIMENT UNDER ENGINEERING

v Threshold MAXSERVICECLASSCONNECTIONS of 50 is created for the service
subclass EXPERIMENT:
CREATE THRESHOLD MAXSERVICECLASSCONNECTIONS FOR SERVICE CLASS EXPERIMENT
UNDER ENGINEERING ACTIVITIES
ENFORCEMENT DATABASE WHEN TOTALMEMBERCONNECTIONS > 50 STOP EXECUTION

v Workload WL_EXPERIMENT is created to map connections from the application
BREWMEISTER to the service subclass EXPERIMENT:
CREATE WORKLOAD WL_EXPERIMENT APPLNAME (’BREWMEISTER’) SERVICE CLASS EXPERIMENT
UNDER ENGINEERING

v The prefetch priority for the EXPERIMENT service subclass is set to LOW:
ALTER SERVICE CLASS EXPERIMENT UNDER ENGINEERING PREFETCH PRIORITY LOW

The DB2 workload management configuration is as follows:

Table 32. Configuration with EXPERIMENT service subclass

Service class
MAXSERVICECLASSCONNECTIONS
threshold Prefetch priority

SALES N/A DEFAULT

ACCOUNTING N/A DEFAULT

90 DB2 Workload Management Guide and Reference

Table 32. Configuration with EXPERIMENT service subclass (continued)

Service class
MAXSERVICECLASSCONNECTIONS
threshold Prefetch priority

ENGINEERING N/A DEFAULT

EXPERIMENT 50 LOW

TESTING 300 LOW

PRODUCTION N/A DEFAULT

SYSDEFAULTUSERCLASS N/A DEFAULT

SYSDEFAULTMAINTENANCECLASS N/A DEFAULT

With this configuration, the BREWMEISTER application can only maintain 50
concurrent connections to the database. In addition, prefetch requests from this
application are sent to the low priority prefetch queue. The Engineering
department can now safely experiment with the application, knowing that it
cannot accidentally overwhelm the database system.

Example: Analyzing a service class–related system slowdown
If you notice a system slowdown (for example, some applications take much
longer than expected to complete) and are unsure whether the problem is related
to the configuration of the service classes, you can use table function data to
investigate and, if necessary, correct the problem.

First, obtain a high-level overview of what is occurring in the service classes. This
high-level overview should include the average activity lifetime, the number of
activities that completed normally rather than abnormally,and the high watermark
for concurrent coordinator activities in the system. To obtain this information, you
can create a general query with aggregation across service classes and database
members by using the data obtained from the table function
WLM_GET_SERVICE_SUBCLASS_STATS. Set the first and second arguments to
empty strings and the third argument to -2 (a wildcard character) to indicate that
data is to be gathered for all service classes on all database members. Your query
might resemble the following one:
SELECT SUBSTR(SERVICE_SUPERCLASS_NAME,1,19) AS SUPERCLASS_NAME,

SUBSTR(SERVICE_SUBCLASS_NAME,1,18) AS SUBCLASS_NAME,
SUBSTR(CHAR(SUM(COORD_ACT_COMPLETED_TOTAL)),1,13) AS ACTSCOMPLETED,
SUBSTR(CHAR(SUM(COORD_ACT_ABORTED_TOTAL)),1,11) AS ACTSABORTED,
SUBSTR(CHAR(MAX(CONCURRENT_ACT_TOP)),1,6) AS ACTSHW,
CAST(CASE WHEN SUM(COORD_ACT_COMPLETED_TOTAL) = 0 THEN 0

ELSE SUM(COORD_ACT_COMPLETED_TOTAL * COORD_ACT_LIFETIME_AVG)
/ SUM(COORD_ACT_COMPLETED_TOTAL) END / 1000 AS DECIMAL(9,3))

AS ACTAVGLIFETIME
FROM TABLE(WLM_GET_SERVICE_SUBCLASS_STATS (’’, ’’, -2)) AS SCSTATS
GROUP BY SERVICE_SUPERCLASS_NAME, SERVICE_SUBCLASS_NAME
ORDER BY SERVICE_SUPERCLASS_NAME, SERVICE_SUBCLASS_NAME

Assume that on previous occasions, the query reported the following results:
SUPERCLASS_NAME SUBCLASS_NAME ACTSCOMPLETED ACTSABORTED ACTSHW ACTAVGLIFETIME
------------------- ------------------ ------------- ----------- ------ --------------
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 8 0 1 3.750
BI_APPS SYSDEFAULTSUBCLASS 4 0 1 5.230
BATCH SYSDEFAULTSUBCLASS 1 0 1 25.600

The data returned by this query might be sufficient to show that the slowdown is
occurring in the BI_APPS service class because its average activity lifetime is

Chapter 3. Activities management 91

significantly higher than usual. This situation could indicate that the available
resources for that particular service class are becoming exhausted.

If the averages for the service classes for all database members do not isolate the
problem, consider analyzing average values for each member. Aggregating the
average for each member into a global average can hide large discrepancies
between database members. In this situation, the assumption is that every member
is being used as a coordinator member. If this assumption is incorrect, the average
lifetime computed at non-coordinator members is zero.
SELECT SUBSTR(SERVICE_SUPERCLASS_NAME,1,19) AS SUPERCLASS_NAME,

SUBSTR(SERVICE_SUBCLASS_NAME,1,18) AS SUBCLASS_NAME,
SUBSTR(CHAR(MEMBER),1,4) AS MEM,
CAST(COORD_ACT_LIFETIME_AVG / 1000 AS DECIMAL(9,3)) AS AVGLIFETIME

FROM TABLE(WLM_GET_SERVICE_SUBCLASS_STATS(’’, ’’, -2)) AS SCSTATS
ORDER BY SUPERCLASS_NAME, SUBCLASS_NAME

SUPERCLASS_NAME SUBCLASS_NAME MEMB AVGLIFETIME
------------------- ------------------ ---- -----------
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 0 3.425
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 1 2.752
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 2 8.230
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 3 0.593

In this example, member 2 might be receiving more work than usual because its
average activity lifetimes are much higher than those of the other database
members.

Many different situations can cause a system slowdown. Use the following
principles to make the best use of the information provided by the DB2 workload
management table functions:
v Address large numbers of locking conflicts at the level of the application logic

and environment (isolation level and so on).
v If the service class is running close to its threshold levels (the number of

concurrent requests and so on), you might need to increase the thresholds.
v If the resources allotted to a service class are becoming exhausted and

OUTBOUT CORRELATOR is set, the mapping to the operating system service
classes might be the cause of the problem (that is, the operating system service
class corresponding to the service class is not getting enough processor
resources).

v Higher numbers of activities than expected might be running in the service class,
which might be consuming more resources than normal. Check the number of
completed activities to determine whether the amount of work being done in the
service class is reasonable.

v Activities might be spending more time in queues if more activities are being
submitted than expected and concurrency thresholds are defined. Check whether
the average queue time for activities has increased by the same amount as the
average lifetime. If they have increased by the same amount, the queues are
behaving as expected; however, if the lifetime is unacceptable, consider
allocating more resources to the service class and reducing the concurrency
threshold.

Example: Investigating agent usage by service class
DB2 workload management provides the WLM_GET_SERVICE_CLASS_AGENTS
table function, which you can use to determine the relative distribution of agents
among service classes.

92 DB2 Workload Management Guide and Reference

Situations can arise in which a data server resource, such as an agent, is
overutilized by a group of users or an application. For example, assume that a
group of users is using almost all of the available agents and that a user from
outside this group voices a concern about that to you.

The first step to take is to determine how many agents are working for each
service class. You might use a query such as the following one:
SELECT SUBSTR(AGENTS.SERVICE_SUPERCLASS_NAME,1,19) AS SUPERCLASS_NAME,

SUBSTR(AGENTS.SERVICE_SUBCLASS_NAME,1,19) AS SUBCLASS_NAME,
COUNT(*) AS AGENT_COUNT

FROM TABLE(WLM_GET_SERVICE_CLASS_AGENTS(’’, ’’, CAST(NULL AS BIGINT), -2))
AS AGENTS
WHERE AGENT_STATE = ’ACTIVE’
GROUP BY SERVICE_SUPERCLASS_NAME, SERVICE_SUBCLASS_NAME
ORDER BY SERVICE_SUPERCLASS_NAME, SERVICE_SUBCLASS_NAME

SUPERCLASS_NAME SUBCLASS_NAME AGENT_COUNT
------------------- ------------------- -----------
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 7
TEST SYSDEFAULTSUBCLASS 20

If you conclude that a particular service class is using more than its fair share of
agents, you can take actions to restrict the number of activities permitted for a
workload or a service class. Alternatively, you can restrict the number of
connections for a service class.

Apply controls to types of activities with work action sets
Work action sets contain work actions that apply controls to activities of a certain
type in a specific service superclass, in a specific workload, or to the database as a
whole.

A work action provides an action that can be applied to a work class, which
represent activities of a certain type like LOAD or READ activities. Work actions
are applied to the activities that fall within the work class to which the work action
was applied before the activity begins to execute. If, however, the work action is
PREVENT EXECUTION, the activity will be prevented from running and no other
work action will be applied to it.

If you apply a work action set to a database, there are several types of actions that
you can apply to activities that fall within a work class, such as threshold
definitions, prevent execution, collect activity data, and count activity. Defining a
threshold for a work action is the most powerful database work action. For
example, perhaps you want to prevent SQL from reading and returning more than
100 000 rows. You can define a single work class for a work action set that
identifies SQL READ statements and a work action with a threshold that would
stop execution if the number of rows returned is more than 100 000. For
information about the possible actions, see “Work actions and the work action set
domain” on page 106.

If you apply a work action set to a workload, the different types of actions that
you can apply to activities include defining thresholds, preventing execution,
collecting activity data and aggregate activity data, and counting the activities.

If you define the work action set for a service superclass, the different types of
actions that you can apply to activities include mapping activities to a service
subclass, preventing execution, collecting activity or aggregate activity data, and
counting the activities. Typically, the work action maps an activity to a service

Chapter 3. Activities management 93

subclass and has thresholds defined on the subclass to help manage the activity.

How work classes, work class sets, work actions, and work
action sets work together and are associated with other DB2
objects

Work classes and work actions work together to apply specific actions to specific
activity types. The best way to describe how this works is through an example.

The following diagram shows a high-level view of how work classes, work class
sets, work actions, and work action sets work together and are associated with
other DB2 objects.

Workload D

User
database requests Service superclass 1

Default user class

Workload C

Workload BRequests

Requests

Requests

Requests

Requests

Service
subclass 1.1

Service
subclass 1.2

Subclass 1.3

Workload A

Default user workload

Work action set

Figure 15. Work action set mapping for a service superclass

94 DB2 Workload Management Guide and Reference

In the diagram, some database activities are mapped, through workload WL1,
workload WL3, and the default user workload, SYSDEFAULTUSERWORKLOAD,
to the service superclass SS1. Because work action set WASDB is applied to the
database, all activities that enter the database (regardless of the workload) and that
are classified as either the WC_DML or WC_LOAD work class will have the work
actions in the WASDB work action set applied to them. That is, activities with the
DML work type are counted, and activities with the LOAD work type have
activity data collected for them and written to an active event monitor (if one is
available).

The work action set WASSSC1 is applied to the service superclass SS1. Any
activities that are assigned to the default user workload, the WL1 workload, or the
WL3 workload, and that fall under the WC_DML work class and the WC_LOAD
work class will also have the WA_MAP_DML and WA_MAP_LOAD work actions
applied to them, because those workloads direct work to the SS1 service
superclass. That is, activities with a work type of LOAD will be mapped to the
SSC1 service subclass by the WA_MAP_LOAD work action, and activities with a
work type of DML will be mapped to the SSC2 service subclass by the
WA_MAP_DML work action.

Database

Service
superclass SS1

Legend

Associated with

Map to

Work action set WASDB

WA_COUNT

WA_COLLECT

Work action set
WASSSC1

Workload
WL1

Default service subclass

Service subclass SSC3

Service subclass SSC2

Service subclass SSC1

WC_LOAD (LOAD)

WC_DML (DML)

WA_MAP_LOAD

WA_MAP_DML

Work action set WASWL2

WA_PREVENT_EXECUTION

Database
requests

Work class set WCS1

Default
workload

Workload
WL3

Workload
WL2

Figure 16. Overview of work action sets and work class sets

Chapter 3. Activities management 95

Activities that are assigned to the WL2 workload are mapped directly to a service
subclass (SSC3). When a workload maps activities directly to a service subclass, no
work actions from the work action set WASSSC1 are applied to those activities.
However, because WASWL2 is applied to WL2, any activities assigned to WL2 and
fall under WL_LOAD will have work actions in the WASWL2 work action set
applied to the. That is, LOAD activities will not be allowed to be run, due to the
PREVENT EXECUTION work action.

Work actions and work action sets
A work action, when used in conjunction with a work class, can be used to help
control specific types of activities. For example, you can apply different work
actions to LOAD activities so that they are processed differently than DML. Work
actions are grouped into work action sets.

Work actions

A work action consists of the following attributes:
v A user-supplied work action name, which must be unique in the work action

set.
v The work class identifier the work action is to be applied to. You can define

more than one work action for a work class, but each work action must perform
a different action on that work class.

v The action that is to be applied to the database activity that matches the work
class. The valid action type for a work action depends on whether the work
action set that the work action belongs to is applied to a database, a workload,
or a service superclass. When a work action set is applied to a database, all
work entering the database is evaluated by the work action set. When a work
action set is applied to a workload, all work submitted through workload
occurrences associated with that workload are evaluated by that work action set.
When a work action set is applied to a service superclass, all work submitted for
execution directly to the service superclass is evaluated by that work action set;
that is, workload definitions that specifically name the service superclass as their
target service class will have their submitted work evaluated by the work action
set defined on the service superclass. For example:
– A work action set that is applied to a database or a workload can contain

threshold work actions. If an activity gets assigned to a work class that has a
threshold work action defined for it, the threshold is applied to that activity.

– A work action set that is applied to a service superclass can contain a work
action that maps the activity to a service subclass in the service superclass. If
an activity corresponds to a specific work class in a work class set, and the
work action set has a mapping work action that is defined for that work class,
that activity is mapped to the service subclass specified by the work action.

For a list of the supported actions, see “Work actions and the work action set
domain” on page 106.

v An object that is the target of the specified action. Depending on the action, the
object can be a service subclass that the activity is mapped to, a threshold that
specifies which threshold to apply to the activity, or null if the action is to
prevent execution, one of the collect actions, or count activity.

v The template describing the histogram that collects statistical information about
the number of microseconds that activities associated with the work class to
which this work action is assigned required to run during a specific interval.
This information is only collected when the work action type is COLLECT

96 DB2 Workload Management Guide and Reference

AGGREGATE ACTIVITY DATA (either BASE or EXTENDED). For more
information on histograms and histogram templates, see “Histograms in
workload management” on page 253.

v Whether or not the work action is enabled.
v An automatically generated identifier that identifies the work action.

You can create a work action by using either the WORK ACTION keyword in the
CREATE WORK ACTION SET statement or the ADD keyword in the ALTER
WORK ACTION SET statement. You can alter a work action by using the ALTER
keyword in the ALTER WORK ACTION SET statement. You can remove a work
action from a work action set by using the DROP keyword in the ALTER WORK
ACTION SET statement, or by dropping the entire work action set.

You can view your work actions by querying the SYSCAT.WORKACTIONS view.

Work action sets

A work action set consists of the following attributes:
v A work action set name that is unique in a database.
v The name of the work class set containing one or more work classes that the

group of actions is to apply to.
Because the definitions of the work class sets are separate from the work action
sets defined for them, you can define more than one work action set for a work
class set.

v The type of object that the work action set is associated with (database, service
superclass, or workload).

v The name of the service superclass that the actions and work class set apply to
(for work action sets associated with a service superclass).

v Whether or not the work action set is enabled.
v User comments.
v One or more work actions (a work action set does not have to contain any work

actions).
v An automatically generated ID that uniquely identifies the work action set.

You can create a work action set using the CREATE WORK ACTION SET
statement, alter a work action set using the ALTER WORK ACTION SET
statement, and drop a work action set using the DROP WORK ACTION SET
statement.

You can view your work action sets by querying the SYSCAT.WORKACTIONSETS
view.

When you create a work action set, you must specify the object that the work
action set is to be applied to. The valid object types are the database, a workload,
or a service superclass. You must also specify which work class set the work action
set is to work with. This permits you to use the work classes in the work class set
to identify the types of activities that you want to apply the work actions to.

If you create a work action set on a service superclass, these are important aspects
to remember:
1. If you set up a workload to map its database activities directly to a service

subclass, the work action set associated with that service superclass is never
used for the activities issued by that workload. In other words, if a workload

Chapter 3. Activities management 97

maps activities directly to a service subclass, the work action set is bypassed.
None of the work actions in the work action set will be applied to the activities
that are mapped directly to the service subclass.

2. Any activity, not mapped to a service subclass by a work action within the
work action set on the superclass, executes in the SYSDEFAULTSUBCLASS of
the service superclass.

3. All work submitted by a workload associated with the superclass that is not
recognized as an activity, such as a PREPARE request or RUNSTATS, executes in
the SYSDEFAULTSUBCLASS of the service superclass since the work action set
does not affect them.

Creating a work action
Use the CREATE WORK ACTION SET statement or the ALTER WORK ACTION
SET statement to create a work action.

Before you begin

To create a work action, you require WLMADM or DBADM authority.

For additional prerequisites, see the following topics:
v “Workload management DDL statements” on page 18
v Appendix A, “General naming rules,” on page 491

When you create a work action:
v You associate a work action with a work class. The work class must already exist

in the work class set that the work action set is applied to.
v If the work action is a threshold, the work action set must be defined for a

workload or for the database. For the list of supported thresholds for work
actions, see “Thresholds that can be used in work actions” on page 110.

v If you are creating a mapping work action, the work action set must be defined
for a service superclass. The service subclass being mapped to must already exist
in the service superclass this work action set is being defined for. In addition,
you cannot specify the default service subclass.

v More than one work action can be applied to a single work class, but they must
be different work action types. For example, you can apply a mapping work
action and a collect work action to the same work class. You can, however, only
apply one work action of the same type to the same work class. For example,
you cannot apply more than one mapping work action to the same work class.
The one exception to this is if the work action represents a threshold. You can
apply more than one threshold work action to a single work class but each
threshold must be of a different type.

v If you are creating a collect aggregate activity data work action, the work action
set must be defined for a service superclass or a workload.

Procedure

To create a work action:
1. Use the work-action-definition keyword of the CREATE WORK ACTION SET

statement, or the ADD work-action-definition keyword of the ALTER WORK
ACTION SET statement. Specify one or more of the following for the work
action:
v A name for the work action. The name of the work action must be unique

within the work action set.

98 DB2 Workload Management Guide and Reference

v The name of the work class to which this work action applies. The work
class must be one of the work classes in the work class set that the work
action set is associated with. For example, to apply this work action to the
work class LARGEDML, you would specify:
ON WORK CLASS LARGEDML

v The action that is to apply to activities that match the work class for this
work action:
– If the work action set is associated with a service superclass, you can

specify the MAP ACTIVITY keyword so that the work action maps
activities to a service subclass in the service superclass. By default,
mapping work actions cause activities that are nested to be mapped to the
same service subclass as its parent. A cursor that has been opened inside a
routine is an example of a nested activity.
For example, if you want the work action to map to the service subclass
SMALLREAD, and you want all nested activities to be mapped to the same
service subclass, you would specify:
MAP ACTIVITY TO SMALLREAD

You could also specify:
MAP ACTIVITY WITH NESTED TO SMALLREAD

If you want the work action to map to the service subclass and to not map
nested activities to this service subclass, you would specify:
MAP ACTIVITY WITHOUT NESTED TO SMALLREAD

If you define the work action as WITHOUT NESTED, nested activities are
handled according to their activity type instead of automatically being
mapped to the same service subclass as the parent activity. For example, if
a CALL activity is mapped to service subclass subsc1, and the routine has
an open cursor inside it, the open cursor might be mapped to a different
service subclass if it falls under another work class that has another
mapping work action applied to it.

v If the work action set is associated with a database or a workload, you can
specify a WHEN keyword to indicate a threshold to apply to the activity, and
the action to take if the activity causes the threshold to be violated. You can
specify the following thresholds for a work action:
– ACTIVITYTOTALTIME
– ESTIMATEDSQLCOST
– CONCURRENTDBCOORDACTIVITIES
– CPUTIME
– SQLROWSREAD
– SQLTEMPSPACE
– SQLROWSRETURNED
If the threshold is violated, you can specify the following actions to be taken:
– Whether activity data is to be collected about the activity that caused the

threshold to be violated. If collected, when the activity completes
execution, the activity data is written to an active activities event monitor.
By default, no data about the activity is collected. If you want to collect
data about this activity, you can collect it from the coordinator member, a
specific member, or from all database members. You have the option of
collecting this data with or without details about the statement and its
compilation environment. If you want to collect details about the
statement and compilation environment, you can also specify that the
input data values used in the activity.

Chapter 3. Activities management 99

– Whether the activity that caused the threshold to be violated is to be
permitted to continue running or not. By default, the activity is stopped.

For example, if you want the work action to check for DML statements that
have a cost over 2 000 timerons, collect the basic data about this activity
when the threshold is violated and continue to run, you would specify:
WHEN ESTIMATEDSQLCOST > 2000 COLLECT ACTIVITY DATA CONTINUE

v To prevent any activities that correspond to the work class defined for this
work action from executing, you can use the PREVENT EXECUTION
keyword.

v To count the number of database activities associated with the work class
without incurring the additional overhead of another action (such as
collecting data or mapping an activity), you can specify the COUNT
ACTIVITY keyword.

v To collect activity data for activities that fall under the work class, specify the
COLLECT ACTIVITY DATA keyword. If collected, when the activity
completes execution, the activity data is written to an active activities event
monitor. By default, no data about the activity is collected. If you want to
collect data about this activity, you can collect it from the coordinator
member or from all members. If you want to collect activity details such as
the statement and the compilation environment information, you can do so
by specifying the WITH DETAILS keyword. You can also use the AND
VALUES keyword to have input data values (for those activities that have
them) sent to the activities event monitor.
For example, assume that you have a work action set that is applied to a
service superclass. You want to have activity data for all activities that are
assigned to this work action written to the applicable event monitor,
including all aggregate activity information, information about the
compilation environment, and any input data values. You would specify:
COLLECT ACTIVITY DATA ON ALL WITH DETAILS AND VALUES

v If the work action set is associated with a service superclass or a workload,
you can specify the COLLECT AGGREGATE ACTIVITY DATA keyword to
collect aggregate activity data for activities that fall under the work class. If
collected, aggregate activity data is captured and sent to the applicable event
monitor. This information is collected periodically on an interval that is
specified by the wlm_collect_int database configuration parameter.
For example, assume that you have a work action set that is applied to a
service superclass. You want to have aggregate activity data for all activities
that are assigned to this work action written to the applicable event monitor,
including the base data, the activity data manipulation language (DML)
estimated cost histogram, and the activity DML inter-arrival time histogram.
You would specify
COLLECT AGGREGATE ACTIVITY DATA EXTENDED

v The histogram templates used by a COLLECT AGGREGATE ACTIVITY
DATA work action to describe the histograms created for the corresponding
work class. Specifying the histogram templates used by a work action adds
the corresponding rows in the SYSCAT.HISTOGRAMTEMPLATEUSE, view
which displays the histogram templates referenced by the service class or
work action. For example, if you want to collect interarrival statistics for the
default interarrival histogram template, you would specify:
INTERARRIVALTIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

For more information about histograms and histogram templates, see
“Histograms in workload management” on page 253.

100 DB2 Workload Management Guide and Reference

v Whether the work action is enabled or disabled. By default a work action is
created as enabled, but you can specify whether it is enabled or disabled by
using the ENABLE or DISABLE keyword. If the work action is disabled, the
data server does not consider this work action when activities enter the
database or service superclass (depending on the object you created the work
action set for).

2. Commit your changes. When you commit your changes, the work action is
added to the SYSCAT.WORKACTIONS view. If the work action is a threshold,
the threshold is added to the SYSCAT.THRESHOLDS view.
A new work action takes effect in the database only after it is committed, and
does not affect any database activities currently running.

Altering a work action
If you need to alter a work action, use the ALTER WORK ACTION SET statement.

Before you begin

To alter a work action, you require SQLADM, WLMADM or DBADM authority. To
specify any clause other than a COLLECT clause, the authorization ID must
include WLMADM or DBADM authority.

See “Workload management DDL statements” on page 18 for additional
prerequisites.

Procedure

To alter a work action:
1. Use the ALTER keyword of the ALTER WORK ACTION SET statement to

change one or more of the following characteristics of the work action.
v You can alter the work class to which the work action is applied. The work

class must already exist in the work class set to which the work action set is
applied.

v If the work action maps to a service subclass, you can alter which service
subclass the database activity is to be mapped. You can only change the
mapping to a service subclass in the same service superclass. You cannot
map to the default service subclass. You can also change whether nested
activities in the activity are mapped to the same service subclass or not. For
example, if the work action is currently defined as WITH NESTED, you can
change this to WITHOUT NESTED. This change would cause the nested
activities to be handled according to their activity type instead of
automatically being mapped to the same service subclass as the parent
activity. For example, if a CALL statement is mapped to service subclass
SUBSC1, and the routine has an open cursor inside it, the open cursor might
be mapped to a different service subclass if it falls under another work class
that has another mapping work action applied to it.

v You can alter the action type specified for the work action (that is, mapping,
threshold, prevent execution, count activity, collect actions), but you must
alter it to a valid work type. For example, if the work action is to map the
activity to a service subclass, you cannot change the work action to a
threshold, or the reverse. The reason is because, in this example, the work
action set must have been applied to a service superclass in order to have a
mapping action and threshold actions are not valid for work action sets
applied to service superclasses. If you alter the type of a work action that is a
threshold work action or alter the type of work action to a threshold, the
following occurs:

Chapter 3. Activities management 101

– If the work action was a threshold and has been changed to a
non-threshold, the threshold is removed from the SYSCAT.THRESHOLDS
view.

– If the work action was not a threshold and has been changed to a
threshold, a new threshold will be created in the SYSCAT.THRESHOLDS
view.

Note: If the action is a threshold, you cannot alter the type of threshold to a
different threshold. So, for example, if the work action was an
SQLROWSRETURNED threshold, you cannot change it to a
SQLTEMPSPACE threshold. In addition, you cannot change the work action
type of an enabled CONCURRENTDBCOORDACTIVITIES work action
threshold.

v You can alter the histogram templates used by a COLLECT AGGREGATE
ACTIVITY DATA work action to describe the histograms created for the
corresponding work class. Updating the histogram templates used by a work
action updates the corresponding rows in the
SYSCAT.HISTOGRAMTEMPLATEUSE view, which displays the histogram
templates referenced by the service class or work action. For more
information about histograms and histogram templates, see “Histograms in
workload management” on page 253.

v You can alter whether you want to enable or disable the work action. By
default, work actions are enabled. When enabled, the data server considers
the work action for application against the activity that falls under the work
class for the work action. If the work action is disabled, the data server
ignores it.

2. Commit your changes. When you commit your changes, the work action is
updated in the SYSCAT.WORKACTIONS view.

Disabling a work action
You can disable a work action that you do not want applied to a work class. At
runtime, the disabled work action is treated as if it does not exist.

Before you begin

To disable a work action, you require WLMADM or DBADM authority.

Procedure

To disable a work action:
1. Use one of the following statements, depending on whether you are creating or

altering a work action set:
v Use the DISABLE keyword and the ADD keyword of the CREATE WORK

ACTION SET statement. For example:
ADD WORK ACTION work-action-name ON WORK CLASS work-class-name ... DISABLE

v Use the DISABLE keyword and the ALTER keyword of the ALTER WORK
ACTION SET statement. For example:
ALTER WORK ACTION work-action-name ... DISABLE

2. Commit your changes. When you commit your changes, the work action is
updated in the SYSCAT.WORKACTIONS view.

Dropping a work action
If you no longer require a work action, you can drop it from the work action set.

102 DB2 Workload Management Guide and Reference

Before you begin
v To drop a work action, you require WLMADM or DBADM authority.
v See “Workload management DDL statements” on page 18 for additional

prerequisites.

Procedure

To drop a work action:
1. Use the DROP keyword of the ALTER WORK ACTION SET statement. If you

want to drop a CONCURRENTDBCOORDACTIVITIES threshold work action,
you must disable the work action in one ALTER WORK ACTION SET
operation, commit the change, verify that there are no queued activities, and
then drop the threshold in a second ALTER WORK ACTION SET operation.

2. Commit your changes. When you commit your changes, the work action is
removed from the SYSCAT.WORKACTIONS view. If the work action is a
threshold work action, the threshold is also removed from the
SYSCAT.THRESHOLDS view.
An altered work action set and work action only takes effect in the database
after it is committed, and does not affect any database activities currently
running.

Creating a work action set
To create a work action and a work action set, use the CREATE WORK ACTION
SET statement.

Before you begin

To create a work action set, you require WLMADM or DBADM authority.

For additional prerequisites, see the following topics:
v “Workload management DDL statements” on page 18

When you create a work action set:
v You associate it with a work class set. The work class set must already exist.
v You also associate it with a database, a workload, or a service superclass. If you

are associating the work action set with a service superclass, the service class
must already exist. You cannot define the work action set for the default system
service class (SYSDEFAULTSYSTEMCLASS), the default user class
(SYSDEFAULTUSERCLASS) or the default maintenance service class
(SYSDEFAULTMAINTENANCECLASS). If you are associating the work action
set with a workload, the workload must exist in the current server. You cannot
associate the work action set with the default administration workload
(SYSDEFAULTADMWORKLOAD).

Procedure

To create a work action set:
1. Use the CREATE WORK ACTION SET statement with the following options:

v Specify a name for the work action set. The name of the work action set
must be unique in the database.

v Specify the object with which the work action set is associated. You can
specify a database, a workload, or a service superclass. If you specify that the
work action set is associated with a database, none of the work actions in the

Chapter 3. Activities management 103

work action set can be mapping work actions or collect aggregate actions. If
you specify that the work action set is associated with a service superclass,
none of the work actions in the work action set can be thresholds. If you
specify that the work action set is associated with a workload, then none of
the work actions in the work action set can be mapping work actions. For
example, to apply the work action set to the REPORTS service superclass,
you would specify:
FOR SERVICE CLASS REPORTS

To apply the work action set to the database, you would specify:
FOR DATABASE

To apply the work action set to a workload named WL1, you would specify:
FOR WORKLOAD WL1

v Specify the work class set with which the work action set is associated. The
work classes in the work class set classify the database activities that the
work actions in the work action set will apply to. For example, to associate
the work action set with the LARGEREADS work class set, you would
specify:
USING WORK CLASS SET LARGEREADS

v Optional: Create one or more work actions for the work action set. For
instructions, see “Creating a work action” on page 98.

v Optional: Specify whether the work action set is enabled or disabled. By
default, the work action set is enabled. If the work action set is disabled, the
data server does not consider this work action set (or any work actions in it)
when activities are run.

2. Commit your changes. When you commit your changes the work action set is
added to the SYSCAT.WORKACTIONSETS view.
A new work action set only takes effect in the database after it is committed,
and does not affect any database activities currently running.

Altering a work action set
To add, alter, or drop a work action from a work action set, or to enable or disable
the work action set, use the ALTER WORK ACTION SET statement.

Before you begin

To alter a work action set, you require SQLADM, WLMADM, or DBADM
authority. To specify any clause other than a COLLECT clause, the authorization id
must include WLMADM or DBADM authority.

For additional prerequisites, see the following topics:
v “Workload management DDL statements” on page 18
v Appendix A, “General naming rules,” on page 491

When you create a work action set to work with a specific work class set, you
cannot change it to work with a different work class set because the work actions
in the work action set have a dependency on the work classes in the work class
set. If you want to change the work class set this work action set is to be applied
to, you must drop and recreate the work action set.

You cannot change which object the work action set applies to because the type of
work actions in the work action set depends on which object (database, workload,
or service superclass) the work action set is defined for. If you want to change

104 DB2 Workload Management Guide and Reference

which object the work action set is associated with, you must drop and recreate the
work action set.

Procedure

To alter a work action set:
1. If you want to add a new work action to the work action set, use the ADD

keyword. For information about the parameters that you can specify when
adding a work action to a work action set, see “Creating a work action” on
page 98

2. If you want to alter an existing work action, use the ALTER keyword. For
information about altering a work action, see “Altering a work action” on page
101.

3. If you want to drop a work action, use the DROP keyword. For information
about dropping a work action from a work action set, see “Dropping a work
action” on page 102.

4. You can enable a work action set that is not currently enabled, and the reverse.
If you disable an enabled work action set, the data server ignores it after you
commit your changes. For more information, see “Disabling a work action set.”
If you enable the work action set, after you commit your changes, the work
action set is applied to the next applicable activity that enters the database.

Note: Disabling a work action set does not disable the work actions within the
work action set, but the work action set will no longer affect any work. If you
want to drop a work action set that contains a concurrency work action
threshold, you must first disable the concurrency work action before the work
action set can be dropped, because concurrency thresholds must be disabled
before they can be dropped.

5. Commit your changes. When you commit your changes, the work action set is
updated in the SYSCAT.WORKACTIONSETS view. The
SYSCAT.WORKACTIONS view is updated for any added, altered, or dropped
work actions.

Disabling a work action set
To disable a work action set, use the DISABLE keyword of the CREATE WORK
ACTION SET statement or the ALTER WORK ACTION SET statement.

Before you begin

To disable a work action set, you require WLMADM or DBADM authority.

About this task

Disabling a work action set does not disable the work actions within the work
action set, but the work action set will no longer affect any work. At runtime, a
disabled work action set is treated as if it does not exist.

Note: If you want to drop a work action set that contains a concurrency work
action threshold, you must first disable the concurrency work action before the
work action set can be dropped, because concurrency thresholds must be disabled
before they can be dropped.
For example, assume that you have a work action set called READACTIVITIES
that is associated with a work class set called READCLASSES, and that work
action set is defined for a service superclass called READSERVICECLASS. The
SMALLREAD work action set has a work action in it that remaps all SELECT

Chapter 3. Activities management 105

statements to the service subclass SMALLREADSERVICECLASS. If the
READACTIVITIES work action set is disabled, all SELECT statements are treated
as though the READACTIVITIES work action set does not exist, and are mapped
to the default service subclass.

Procedure

To disable a work action set:
1. Use one of the following statements, depending on whether you are creating or

altering a work action set:
v To create a work action set that is disabled:

CREATE WORK ACTION SET work-action-set-name ... DISABLE

v To disable an already existing work action set:
ALTER WORK ACTION SET work-action-set-name ... DISABLE

2. Commit your changes. When you commit your changes, the work action set is
updated in the SYSCAT.WORKACTIONSETS view.

Dropping a work action set
Use the DROP WORK ACTION SET statement to drop a work action set.

Before you begin

To drop a work action set, you require WLMADM or DBADM authority.

About this task

Dropping a work action set drops the work action set and all work actions in it.

If the work action set contains a CONCURRENTDBCOORDACTIVITIES threshold
work action, that work action must first be disabled before the work action set can
be dropped.

Procedure

To drop a work action set:
1. Use the DROP WORK ACTION SET statement.
2. Commit your changes. When you commit your changes the work action set is

removed from the SYSCAT.WORKACTIONSETS view. In addition, all work
actions that were part of the work action set are removed from the
SYSCAT.WORKACTIONS view. If the work action set contains threshold work
actions, the thresholds are removed from the SYSCAT.THRESHOLDS view.

Work actions and the work action set domain
You can define a work action set for a database, a service superclass, or workload.
The type of work actions that can be defined for a work action set depends on the
type of object the work action set is defined for.

If the work action set is defined for a database, the work actions in the work action
set must be any of the following actions:
v A threshold

The following thresholds apply to each individual activity in the matching work
class:
– ACTIVITYTOTALTIME

106 DB2 Workload Management Guide and Reference

– CPUTIME
– ESTIMATEDSQLCOST
– SQLROWSREAD
– SQLROWSRETURNED
– SQLTEMPSPACE
The following threshold applies to all activities in the matching work class as a
group:
– CONCURRENTDBCOORDACTIVITIES
The actual threshold is specified by the WHEN threshold-type clause. Multiple
threshold work actions can be applied to a single work class if all the thresholds
are of different types. If this action is specified, the threshold is applied to all
database activities associated with the work class.

v PREVENT EXECUTION
If this action is specified, all database activities that match the associated work
class are not permitted to run.

v COLLECT ACTIVITY DATA
If this action is specified, information about the database activities corresponding
to the work class for which this work action is defined are written to the active
ACTIVITIES event monitor when the activities complete execution. For more
information, see “Collecting data for individual activities”.

v COUNT ACTIVITY
If this action is specified, all database activity that maps to the associated work
class causes the turnstile counter for that work class type to be incremented.
(The turnstile counter for the work class is incremented by 1 each time an
activity is associated with that work class). The COUNT ACTIVITY work action
provides an efficient way to ensure this counter is updated. If no work action is
applied to an activity corresponding to a work class, the work class activity
counter is not incremented. Sometimes the only action you care about is
obtaining a count of activities of a given type. For more information, see
“Collecting data for individual activities”.

If the work actions in the work action set defined for a database are not any of
these actions, SQL4720N is returned.

If you are defining a work action set for a service superclass, the work actions in
the work action set must be any of the following actions:
v A mapping action

You can map an activity to any service subclass in the service superclass except
for the default service subclass. You specify the service subclass to map the
activity to using the MAP ACTIVITY TO SERVICE CLASS keyword. Only one
map work action in the work action set can be applied to the same work class.

v PREVENT EXECUTION
Behavior is the same as for the database work action.

v COLLECT ACTIVITY DATA
Behavior is the same as for the database work action.

v COLLECT AGGREGATE ACTIVITY DATA
If this action is specified, aggregate database activity data that corresponds to
the work class for which this work action is defined is collected.

v COUNT ACTIVITY
Behavior is the same as for the database work action.

Chapter 3. Activities management 107

If the work actions in the work action set defined for a service superclass are not
any of these actions, SQL4720N is returned.

If the work action set is defined for a workload, the work actions in the work
action set must be any of the following actions:
v A threshold

The following thresholds apply to each individual activity in the matching work
class:
– ACTIVITYTOTALTIME
– CPUTIME
– ESTIMATEDSQLCOST
– SQLROWSREAD
– SQLROWSRETURNED
– SQLTEMPSPACE
The following threshold applies to all activities in the matching work class as a
group:
– CONCURRENTDBCOORDACTIVITIES
The actual threshold is specified by the WHEN threshold-type clause. Multiple
threshold work actions can be applied to a single work class if all the thresholds
are of different types. If this action is specified, the threshold is applied to all
database activities associated with the work class.

v PREVENT EXECUTION
Behavior is the same as for the database work action.

v COLLECT ACTIVITY DATA
Behavior is the same as for the database work action.

v COLLECT AGGREGATE ACTIVITY DATA
Behavior is the same as for the service superclass work action.

v COUNT ACTIVITY
Behavior is the same as for the database work action.

If the work actions in the work action set defined for a workload are not any of
these actions, SQL4720N is returned.

Example: Applying work class activities

The following figure shows an example of how the work classes in a work class set
called LARGE ACTIVITIES are to be applied to both the database and a service
superclass. To meet this objective, two work action sets, "Database large activities"
and "Service class large activities" are created.

Although this example does not show it, you can also apply the classes in the
LARGE ACTIVITIES work class set to a workload, by creating a work action set
associated with the workload and then associating the work action set with the
LARGE ACTIVITIES work class set.

108 DB2 Workload Management Guide and Reference

The work action sets are as follows:
v Database large activities contains:

Service
subclass SSC1

Service
subclass SSC2

Work class set: Large activities

Work action set: Database large activities

Work action set: Service class large activities

Database

Service
superclass

Work action: Count activity

Work action: Concurrency threshold for large read
concurrency = 2, queued = 5

Work action: Rows returned threshold for large read
Rows returned > 1000

Work class: Large writes
UPDATE/INSERT/DELETE > 20000

Work class: Large reads
SELECT statements > 1000000

Work class: LOAD

Work action: Prevent execution for large writes

Work action: Map for large reads
Map large reads to SSC1

Work action: Map for LOAD
Map LOAD to SSC2

Legend

Associated with

Map to

Figure 17. Example of work actions, work actions sets, work classes, and work class set

Chapter 3. Activities management 109

– Concurrency threshold for large reads, which permits two large reads to
run concurrently, and five large reads to be queued

– Rows returned threshold for large reads, which prevents large reads from
returning more than 1000 rows

– Count activity for load, which counts the number of times the load utility
runs on the database.

v Service class large activities contains:
– Map for large reads, which maps large reads to service subclass 1

– Map for large writes, which prevents large writes from executing.
– Map for LOAD, which maps loads to service subclass 2

A work action set does not have to contain an action for every work class in the
work class set to which the work action set is applied. In addition, a work class
can have more than one work action applied to it as long as the action types are
different. A work class can have more than one threshold work action applied to it
as long as the threshold types are different.

Thresholds that can be used in work actions
Work action sets that you define for databases can contain work actions that
specify thresholds.

The following thresholds are supported:
v Aggregate threshold:

– CONCURRENTDBCOORDACTIVITIES
– CONCURRENTWORKLOADACTIVITIES

v Activity thresholds:
– SQLTEMPSPACE
– SQLROWSRETURNED
– ACTIVITYTOTALTIME
– ESTIMATEDSQLCOST
– CPUTIME
– SQLROWSREAD

Application of work actions to database activities
One, and only one work action set can be applied to a database, a service
superclass, or a workload.

When work is submitted to the data server, it is associated with a workload, either
a user-defined workload or the default workload, then mapped to a service class.

The following figure shows the process of how a work action is applied to an
activity.

110 DB2 Workload Management Guide and Reference

A work action is assigned to an activity as follows:
1. When an activity is mapped to a service superclass or a service subclass, the

data server checks whether an enabled database-level work action set exists.
2. If an enabled database-level work action set exists, the data server then checks

whether the activity falls under any of the work classes in the work class set
that the database-level work action set is associated with.

3. If the activity falls under a work class and that work class has any work actions
applied to it, those work actions are applied to the activity.

4. The data server checks whether an enabled workload-level work action set
exists. If it does, the data server then checks whether the activity falls under
any of the work classes in the work class set that the workload-level work
action set is associated with.

5. If the activity falls under a work class and that work class has any work actions
applied to it, those work actions are applied to the activity.

6. Next, if the activity is mapped by the workload to a service superclass, the data
server checks whether a work action set is applied to the service superclass.

7. If a work action set is applied to the service superclass, the data server then
checks whether the activity falls under any of the work classes in the work
class set that the service superclass-level work action set is associated with.

No

No

Processing continues

Is there
a database

work action set?

Find a work class
that the request falls
under and that has at
least one work action
associated with it.

Find all work actions
associated with the
work class and apply
the actions to the activity.

No

Yes

Yes

Is there a workload
work action set?

Activity

Exit

Apply work actions.

Apply work actions.

Yes

Is there
a service superclass

work action set?

Yes

Apply work actions

Apply work actions.

Is this work
class found? No

Figure 18. Application of a work action to an activity

Chapter 3. Activities management 111

8. If the activity falls under a work class and that work class has any work actions
applied to it, those work actions are applied to the activity.

Note that, if a mapping work action is applied to a stored procedure, then
depending on whether the WITH NESTED or WITHOUT NESTED clause is
specified in the work action definition, child activities of a stored procedure can
run in the same service subclass or in different service subclasses than the parent
activity.

In the following situations an activity is not affected by a work action set:
v Activities fall in the default system (SYSDEFAULTSYSTEMCLASS) and default

maintenance (SYSDEFAULTMAINTENANCECLASS) service classes.
v Activities are assigned to the default administration workload,

SYSDEFAULTADMWORKLOAD.
v Activities are inside a load operation. The load operation itself does go through

work action set evaluation.
v Child activities of system stored procedures. The only exception is the

SYSPROC.ADMIN_CMD stored procedure. Child activities of
SYSPROC.ADMIN_CMD go through work action set evaluation.

v The work action set is disabled.
v The workload maps the activity directly to a service subclass.

Concurrency control at the workload level using work action
sets

At the workload level, you control the concurrency of incoming work using
concurrency thresholds applied with a work action set defined on the workload.
You can combine workload-level concurrency control with priority aging at the
service class level.

Figure 1 illustrates an example scenario using work action sets to control the
concurrency of incoming work based on the source of the connection while all
work in the database is controlled using priority aging.

112 DB2 Workload Management Guide and Reference

In the example scenario, two workloads are created to identify and differentiate the
work coming from different sources. Connections to the database from the sales,
accounting, and IT departments are mapped to the Regular workload. Connections
to the database from management and critical applications are mapped to the
Important workload. Work from the Important workload has higher priority and
needs to be able to complete within the shortest amount of time. To ensure the
database has sufficient capacity for work in the Important workload, concurrency
thresholds are placed on the work in the Regular workload. A workload level work
action set, called Regular workload level work action set, is created on the Regular
workload and is applied to a work class set that has two work classes. Load
activities are mapped to one work class, while all other activities are mapped to
the other work class. A CONCURRENTDBCOORDACTIVITIES threshold is created
as a work action in the Regular workload level work action set to allow only one
load activity in the system at a time while queuing the other load activities. In
addition, another CONCURRENTDBCOORDACTIVITIES threshold is created as a
work action in the Regular workload level work action set to allow a maximum of
500 concurrent activities, while activities exceeding the maximum are queued.

max conc 1

max conc 500Regular workload
work action set

Priority Aging
service class
work action set

load

all

load

all Short service
subclass

Medium service
subclass

Long service
subclass

Priority Aging service superclass

Regular
workload

Important
workload

- Management
- Critical applications

- Sales department
- Accounting department
- IT department

remap when
processor time > 1s

remap when
processor time > 5s

Figure 19. Concurrency control at the workload level using work action sets

Chapter 3. Activities management 113

Note: If a threshold action of CONTINUE is specified for a queuing threshold, it
effectively makes the size of the queue unbounded, regardless of any hard value
specified for the queue size.

Connections to the database from both the Regular and Important workloads are
mapped to the Priority Aging service superclass. This service superclass is created
to implement priority aging that favors short activities. The Priority Aging service
class work action set is created for the Priority Aging service superclass to separate
the long-running load activities from all the short-running activities. All activities,
other than load, are mapped to the Short service subclass. The Short service
subclass is configured to have the highest agent, prefetch, and buffer pool
priorities. A CPUTIMEINSC threshold is created on the Short service subclass to
remap an activity to the Medium service subclass after it consumes more than 1
second of processor time in the Short service subclass. The Medium service
subclass has medium agent, prefetch, and buffer pool priorities. A CPUTIMEINSC
threshold is created on the Medium service subclass to remap an activity to the
Long service subclass after it consumes more than 5 seconds of processor time in
the Medium service subclass. The Long service subclass has the lowest agent,
prefetch, and buffer pool priorities. Load activities are mapped directly to the Long
service subclass by the Priority Aging service class work action set because load
activities can be long running, resource intensive, and less time critical for
completion.

Workload and work action set comparison
Depending on the type of control that you want to maintain over your database
activities, you can use workloads by themselves or both workloads and work
classes (when used with work actions) to map activities to service classes.

With workloads, requests are identified and assigned to a service class based on
connection attributes. Workloads are the primary method for routing work to a
specific DB2 service class for execution. If you want to further refine how requests
are identified, you can use work classes to classify the activities based on their type
and other activity attributes. For example, you can classify READ activities, WRITE
activities, and LOAD activities into different work classes and have each activity
type treated differently.

If you use work classes (which are grouped into work class sets), you can use
work actions to exercise control over the different types of activities. For example,
you can use a work action in a work action set defined on a service superclass to
map a specific type of activity to a service subclass. In a work action set defined on
the database or workload, you can define a work action to apply a control known
as a threshold to ensure that the same type of activity does not exceed certain
conditions.

Work actions are grouped into work action sets. A single work action set can apply
to activities in the database, to activities in a service superclass, or to activities in a
workload. However, the same work action set cannot apply to more than one
object. Work class sets and work action sets work together. That is, a work class
must exist for categorizing an activity as a specific type of work before a work
action can be applied to it. A work class set can be associated with more than one
work action set, but a work action set can be associated with only one work class
set.

Figure 1 shows an example of a DB2 workload manager implementation that uses
workloads and work action sets. In this figure, assume that a request is assigned to

114 DB2 Workload Management Guide and Reference

workload WL_A based on the connection attributes of the connection that
submitted the request. Workload WL_A specifies that the request is to be executed
in service superclass SC_A. Assume that a work class in work class set WCS_1
matches the type of work that the request that is associated with workload WL_A
is going to perform.

Now assume that an activity that does not update the catalogs (a READ activity)
enters the system. The database-level work action set WAS_1 (that is associated
with work class set WCS_1) contains a work action that is applied to the READ
work class. The request is then mapped to service superclass SC_A (by workload
WL_A). Here, the request encounters the service superclass-level work action set
WAS_2, which is also associated with work class set WCS_1, and applies to
activities in service superclass SC_A. This work action set contains a mapping
work action, which is also applied to the READ work class so that all READ
activities will be mapped to service subclass SSC_1a in service superclass SC_A.

A somewhat similar situation occurs with the request that is associated (again,
based on its connection attributes) with workload WL_B. Workload WL_B maps
activities to service superclass SC_B. Assume that the request is for a LOAD
activity and that work class set WCS_2 contains a work class that applies to LOAD
activities. Work class set WCS_2 is associated with the service superclass-level
work action set WAS_3, which applies to activities in service superclass SC_B.
Assume that work action set WAS_3 contains a mapping work action that is
applied to the LOAD work class, so that when the LOAD activity is mapped to
service superclass SC_B by workload WL_B, it will then be mapped by the work
action to service subclass SSC_1b for execution.

The purpose of workload WL_C in this is example is to map incoming requests
directly to service subclass SSC_1b, independent of the service superclass-level
work action set WAS_3 and its mapping work action. If an incoming request is
associated with workload WL_C that is a LOAD activity, then this request is also
mapped directly to service subclass SSC_1b for execution, and is unaffected by the
mapping work action that applies to the LOAD work class.

Chapter 3. Activities management 115

Example: Using a database work action set and database
threshold

This example shows different approaches to using work action sets and thresholds
to control the resources consumed by DB2 activities. Before creating DB2 workload
management objects, you need to understand how they are used.

Assume that you have a work class set called ALLSQL, and it contains the
following work classes in this order:
1. SMALLDML, which is for all DML-type SQL statement that have an estimated

cost of less than 1 000 timerons

Service superclass-level
work action set WAS_3

Map work action

Service
superclass SC_B

Threshold work action

Database-level
work action set WAS_1

Service
superclass SC_A

Default service subclass

Service subclass SSC_1a

Legend

Associated with

Database

Map to

Service superclass-level
work action set WAS_2

Map work action

Work class set WCS_1

Work class (READ)

Work class (WRITE)

Work class set WCS_2

Work class (LOAD)

Database
requests

Workload WL_A

Workload WL_B

Default service subclass

Service subclass SSC_1b

Workload WL_C

Figure 20. Workloads and work action sets

116 DB2 Workload Management Guide and Reference

2. MEDDML, which is for all DML-type SQL statements that have an estimated
cost between 1 000 and 20 000 timerons

3. LARGEDML, which is for all DML-type SQL statements that have an estimated
cost greater than 20 000 timerons

4. ALLDDL, which is for all DDL-type SQL statements
5. ALLACTIVITY, which is for all database activity

The following SQL statements create the work class set and the work classes:
CREATE WORK CLASS SET ALLSQL

(WORK CLASS SMALLDML WORK TYPE DML FOR TIMERONCOST FROM 0 TO 1000,
WORK CLASS MEDDML WORK TYPE DML FOR TIMERONCOST FROM 1001 TO 20000,
WORK CLASS LARGEDML WORK TYPE DML FOR TIMERONCOST FROM 20001 TO UNBOUNDED,
WORK CLASS ALLDDL WORK TYPE DDL,
WORK CLASS ALLACTIVITY WORK TYPE ALL)

These work classes already have work actions, such as COUNT ACTIVITY,
COLLECT, and thresholds (that are not ACTIVITYTOTALTIME thresholds) applied
to them.

Assume that you want to permit large DML activities to run for no longer than 5
hours. All other SQL can take no longer than 30 minutes to run. The following two
examples show possible methods for accomplishing this objective.

Method 1

One method is to set up a work action set at the database level containing work
actions that specify an ACTIVITYTOTALTIME threshold for each work class, as
follows:

Table 33. ACTIVITYTOTALTIME threshold specified for each work class

Work action Work class applied to Threshold type and value Actions

SMALLDMLTIMEALLOWED SMALLDML ACTIVITYTOTALTIME >
30 MINUTES

v Stop execution

v Collect activity data

MEDDMLTIMEALLOWED MEDDML ACTIVITYTOTALTIME >
30 MINUTES

v Stop execution

v Collect activity data

LARGEDMLTIMEALLOWED LARGEDML ACTIVITYTOTALTIME > 5
HOURS

v Stop execution

v Collect activity data

ALLDDLTIMEALLOWED ALLDDL ACTIVITYTOTALTIME >
30 minutes

v Stop execution

v Collect activity data

ALLACTIVITYTIMEALLOWED ALLACTIVITY ACTIVITYTOTALTIME >
30 minutes

v Stop execution

v Collect activity data

The SQL statements for this method are:
CREATE WORK ACTION SET WASNICK FOR DATABASE USING WORK CLASS SET WCSNICK

(WORK ACTION SMALLDMLTIMEALLOWED ON WORK CLASS SMALLDML
WHEN ACTIVITYTOTALTIME > 30 MINUTES COLLECT ACTIVITY DATA STOP EXECUTION,

WORK ACTION MEDDMLTIMEALLOWED ON WORK CLASS MEDDML
WHEN ACTIVITYTOTALTIME > 30 MINUTES COLLECT ACTIVITY DATA STOP EXECUTION,

WORK ACTION LARGEDMLTIMEALLOWED ON WORK CLASS LARGEDML
WHEN ACTIVITYTOTALTIME > 5 HOURS COLLECT ACTIVITY DATA STOP EXECUTION,

WORK ACTION ALLDDLTIMETIMEALLOWED ON WORK CLASS ALLDDL

Chapter 3. Activities management 117

WHEN ACTIVITYTOTALTIME > 30 MINUTES COLLECT ACTIVITY DATA STOP EXECUTION,
WORK ACTION ALLACTIVITYTIMEALLOWED ON WORK CLASS ALLACTIVITY

WHEN ACTIVITYTOTALTIME > 30 MINUTES COLLECT ACTIVITY DATA STOP EXECUTION)

Method 2

Another method might be to use only one work class, LARGEDML, then create a
work action set for the database that has one work action,
LARGEDMLTIMEALLOWED, applied to the work class.

Table 34. LARGEDMLTIMEALLOWED work action applied to the LARGEDML work class

Work action Work class applied to Threshold type and value Action

LARGEDMLTIMEALLOWED LARGEDML ACTIVITYTOTALTIME < 5
HOURS

v Stop execution

v Collect activity data

You would then apply an ACTIVITYTOTALTIME threshold of less than 31
MINUTES to the database. Using this method, only those activities that correspond
to the LARGEDML work class have the 5 hour threshold applied to them. Other
activities will have the ACTIVITYTOTALTIME database time threshold of less than
31 minutes applied to them.

The SQL statements for this method are:
CREATE WORK ACTION SET WASNICK FOR DATABASE USING WORK CLASS SET WCSNICK

(WORK ACTION LARGEDMLTIMEALLOWED ON WORK CLASS LARGEDML
WHEN ACTIVITYTOTALTIME > 5 HOURS COLLECT ACTIVITY DATA STOP EXECUTION)

CREATE THRESHOLD THTEST FOR DATABASE ACTIVITIES ENFORCEMENT DATABASE
WHEN ACTIVITYTOTAL TIME > 30 MINUTES COLLECT ACTIVITY DATA STOP EXECUTION

Example: Using work action sets to determine the types of
work being run

Using work class sets, work classes, work action sets, work actions, and some of
the DB2 workload manager monitoring features, you can determine the different
types of work running on your system, and the distribution of the work.

One way of accomplishing this task is described here. First create a work class set
that contains work classes for the different types of work you are interested in. For
example, if you want to know how many READ activities, WRITE activities, DDL
activities, and LOAD activities are running on your system, you would create a
work class set, ACTIVITYTYPES, as in the following example:
CREATE WORK CLASS SET ACTIVITYTYPES
(WORK CLASS READWC WORK TYPE READ,
WORK CLASS WRITEWC WORK TYPE WRITE,
WORK CLASS DDLWC WORK TYPE DDL,
WORK CLASS LOADWC WORK TYPE LOAD)

Next, you would create a database-level work action set, COUNTACTIONS, to
apply to the ACTIVITYTYPES work class set. The work action set would contain a
COUNT ACTIVITY work action for each work class in the ACTIVITYTYPES work
class set, as in the following example:
CREATE WORK ACTION SET COUNTACTIONS FOR DATABASE USING WORK CLASS SET ACTIVITYTYPES
(WORK ACTION COUNTREAD ON WORK CLASSREADWC COUNT ACTIVITY,
WORK ACTION COUNTWRITE ON WORK CLASS WRITEWC COUNT ACTIVITY,
WORK ACTION COUNTDDL ON WORK CLASS DDLWC COUNT ACTIVITY,
WORK ACTION COUNTLOAD ON WORK CLASS LOADWC COUNT ACTIVITY)

118 DB2 Workload Management Guide and Reference

After a sufficient amount of time has passed, you can determine the number of
each type of activity that has run by using the
WLM_GET_WORK_ACTION_SET_STATS table function:
SELECT SUBSTR(CHAR(MEMBER),1,4) AS MEMB,
LAST_RESET,
SUBSTR(WORK_CLASS_NAME,1,15) AS WORK_CLASS_NAME,
SUBSTR(CHAR(ACT_TOTAL),1,14) AS TOTAL_ACTS
FROM TABLE(WLM_GET_WORK_ACTION_SET_STATS(CAST(NULL AS VARCHAR(128)), -2))
AS WASSTATS WHERE WORK_ACTION_SET_NAME = ’COUNTACTIONS’
ORDER BY WORK_CLASS_NAME, MEMB

Control of work with thresholds
You can use thresholds to maintain stability in the system by identifying work that
behaves abnormally. You can identify abnormal behavior predictively, before the
work begins running, based on the projected impact. You can also identify
abnormal behavior reactively, as the work is running and consuming resources.

An example of work that can be controlled with thresholds is a query that
consumes large amounts of processor time at the expense of all other work
running on the system. Such a query can be controlled either before it even begins
executing, based on estimated cost, or after it has begun executing and is
consuming more than the permitted amount of resources.

Types of thresholds

Connection thresholds
If you want to limit how long a connection can sit idle, use a connection
threshold. These thresholds can be used to detect connections that sit idle
for too long.

Table 35. Connection thresholds

Threshold Description

CONNECTIONIDLETIME Controls the amount of time that a connection sits idle and is not working on behalf
of user requests. Use this threshold to detect inefficient use of data server resources
and application wait conditions.

Unit of work thresholds
If you want to limit how long a unit of work executes, use a unit of work
threshold. These thresholds limit the maximum amount of time that a unit
of work may spend in the DB2 engine, and can be used to detect units of
work that take too long to complete.

Table 36. Unit of work thresholds

Threshold Description

UOWTOTALTIME Controls the amount of time that a unit of work takes to execute.

Activity thresholds
If you want to limit the impact that specific activities can have on how the
data server is running, activity thresholds provide you with one of the
means you can use. Excess execution time, abnormally high volumes of
data returned, or abnormally high amounts of resources consumed are all
examples of warning flags that potentially troublesome activities could be
consuming excessive resources, which you can control with activity
thresholds.

Chapter 3. Activities management 119

Table 37. Activity thresholds

Threshold Description

ACTIVITYTOTALTIME Controls the amount of time that any given activity can spend from submission to
completion, for both execution and queue time. Use this threshold to detect jobs
that are taking an abnormally long time to complete.

CPUTIME Controls the maximum amount of combined user and system processor time that an
activity may consume on a particular member during the execution of the activity.
Use this threshold to detect and control activities which are consuming excessive
processor resources.

CPUTIMEINSC Controls the maximum amount of combined user and system processor time that an
activity may consume on a particular member while executing in a specific service
subclass. Use this threshold to detect and control activities which are consuming
excessive processor resources within the current service class.

DATATAGINSC Controls the data that can be touched or not touched by an activity while running a
particular service subclass.

ESTIMATEDSQLCOST Controls DML activities that the query optimizer determines to have a large
estimated cost. Use this threshold to predict potentially resource-heavy SQL before it
starts executing on the system and identifying poorly written SQL.

SQLROWSREAD Controls the maximum number of rows which can be read on any member by an
activity. Use this threshold to detect and control activities which are reading an
excessive number of rows.

SQLROWSREADINSC Controls the maximum number of rows which can be read by an activity on a
particular member while executing in a specific service subclass. Use this threshold
to detect and control activities which are reading an excessive number of rows
within the current service class.

SQLROWSRETURNED Controls the number of rows returned when executing SQL. Use this threshold to
identify when the amount of data exceeds a reasonable volume.

SQLTEMPSPACE Controls the amount of temporary table space a given activity can consume on a
member. Use this threshold to prevent certain SQL statements from using up a
disproportionate amount of temporary space, impeding the progress of other work.

The data server considers requests from utilities such as REORGCHK,
IMPORT, and EXPORT to be user logic, and thus these requests are subject
to any defined thresholds.

Aggregate thresholds
If you want to control the collective impact that certain activities,
workloads, or connections can have on your data server, you can define
aggregate thresholds. Aggregate thresholds often, but not always, enforce
concurrency control in cases where you need to limit the number of certain
activities running at the same time. Some aggregate thresholds have a
built-in queue and are known as queuing thresholds.

Table 38. Aggregate thresholds

Threshold Description

AGGSQLTEMPSPACE Controls the maximum amount of system temporary table space
that can be consumed in total across all activities in the service
subclass. Use this threshold to detect and control activities that
belong to a service subclass whose activities are consuming too
much system temporary table space in aggregate across all of the
activities in the service subclass.

CONCURRENTWORKLOADOCCURRENCES Controls the number of active occurrences of a workload that can
run on a coordinator member at the same time. Use to control the
spread of connections from a specific source.

120 DB2 Workload Management Guide and Reference

Table 38. Aggregate thresholds (continued)

Threshold Description

CONCURRENTWORKLOADACTIVITIES Controls the number of individual activities that can run within a
workload occurrence. Use to limit work within an individual
workload occurrence.

CONCURRENTDBCOORDACTIVITIES Controls the number of concurrent activities in the domain that the
threshold is associated with (database, work action, service
superclass, or service subclass).

TOTALMEMBERCONNECTIONS Controls the number of database connections to a given member
that can be established at the same time. Use to prevent a given
member from becoming overloaded.

TOTALSCMEMBERCONNECTIONS Controls the number of database connections to a given member
for work executing within a given service class at the same time.
Similar to the total member connections but more granular because
the connection is linked to a service class.

For those aggregate thresholds that support it, concurrency control is
provided through a system of execution 'tickets.' Each incoming activity
must claim a ticket from the applicable concurrency threshold before it can
begin executing. Once all tickets are consumed, additional activities are
queued until a ticket becomes available or an error is returned, depending
on how you defined the threshold. If the concurrency threshold has
queuing enabled, then a ticket passes from an activity that has finished
execution to another activity that is in the queue. This activity can then
leave the queue and begin execution. How many tickets are available per
concurrency threshold depends on how you defined the threshold. For
example, if you defined a CONCURRENTDBCOORDACTIVITIES
threshold to limit the number of concurrently running database activities to
10, then there are 10 execution tickets available.

For stored procedures, activity thresholds are applied to the stored
procedure and to its child activities. Concurrency thresholds are only
applied to the child activities of the stored procedure and not to the CALL
statement itself.

Taking action when thresholds are violated

The action that is taken dynamically when a threshold is violated depends on how
you define the threshold.

Stop execution (STOP EXECUTION)
A common action when a threshold is violated is to stop the activity from
executing. In this case, an error code is returned to the submitting
application indicating that the threshold was violated. Note that for
TOTALMEMBERCONNECTIONS and TOTALSCMEMBERCONNECTIONS
thresholds, a STOP EXECUTION action prevents a connection from being
established. For CONNECTIONIDLETIME thresholds, the connection is
closed. For CONCURRENTWORKLOADOCCURRENCES, a new workload
occurrence is prevented from being created. For all activity-related
thresholds, the activity is stopped from continuing to execute. If a
THRESHOLDVIOLATIONS event monitor is active, a record is written to
the event monitor indicating that the threshold was violated.

Continue execution (CONTINUE)
In some situations, stopping the execution of an activity is too harsh a
response. A preferable response is to permit the activity to continue to run

Chapter 3. Activities management 121

and to collect the relevant data for an administrator to perform future
analysis to determine how to prevent this condition from happening again.
In this situation, no error code is returned to the submitting application. If
the action is to continue, the user receives no indication that the threshold
was violated. If a THRESHOLDVIOLATIONS event monitor is active, a
record is written to the event monitor. If a CONTINUE threshold action is
specified for a queuing threshold, this effectively renders the size of the
queue unbounded, regardless of any hard value you include.

Force the application (FORCE APPLICATION)
When the UOWTOTALTIME threshold is violated, you can specify that the
local or remote users or applications are forced off the system. This
benefits other applications competing for server resources.

Remap the activity (REMAP ACTIVITY TO)
When an activity violates a certain limit, you may simply wish to assign
different resource controls to it but to let the activity continue executing
otherwise. Such a response permits you to dynamically raise or lower the
amount of resources an activity can consume throughout its lifetime. In
this case, an already executing activity is permitted to continue with no
indication to the user or application that the threshold was violated,
although the activity now runs with different resources available to it.
Remapping is available with any of the in-service-class thresholds like
CPUTIMEINSC, SQLROWSREADINSC, and DATATAGINSC.

Collect data (COLLECT ACTIVITY DATA)
When some thresholds are violated, data is collected. By default the fact
that an activity threshold was violated is recorded in an activated
threshold violations event monitor. If you want more detailed information
about the activity that violated the threshold, you can request that
information for the activity be written to the active event monitor for
activities when the activity completes execution using the COLLECT
ACTIVITY DATA clause

Threshold domain and enforcement scope
Each threshold operates on a domain. Only activities taking place in the domain of
a threshold can be affected by that threshold.

The following threshold domains exist:
v Database
v Service superclass
v Service subclass
v Work action
v Workload
v Statement

Within each of these threshold domains, a threshold has a scope over which it is
enforceable, such as a single workload occurrence, a member, the execution of a
specific statement, or all members. This is known as the enforcement scope of the
threshold. For example: Service class aggregate thresholds can have one of two
enforcement scopes: database and member. An example of an aggregate threshold
that applies only at the member level is the maximum number of concurrent
connections for a service superclass on a member
(TOTALSCMEMBERCONNECTIONS). Similarly, the following table shows that
you can specify the processor time threshold (CPUTIME) at the database,

122 DB2 Workload Management Guide and Reference

superclass, subclass, work action or workload domain and that it is enforced per
member. That is, the upper boundary specifies the maximum amount of user and
system processor time per member that an activity may use.

Table 39. Threshold domains and enforcement scopes

Threshold domain Thresholds with database enforcement scope Thresholds with member enforcement scope
Thresholds with workload occurrence enforcement
scope

Database
v “ACTIVITYTOTALTIME threshold” on page 131

v “CONCURRENTDBCOORDACTIVITIES threshold”
on page 1411

v “CONNECTIONIDLETIME threshold” on page 130

v “ESTIMATEDSQLCOST threshold” on page 135

v “SQLROWSRETURNED threshold” on page 138

v “UOWTOTALTIME threshold” on page 147

v “CONCURRENTDBCOORDACTIVITIES threshold”
on page 141(Database enforcement scope is only
allowed in environments other than DB2 pureScale®

environments. In a DB2 pureScale environment, only
member enforcement scope is allowed.)

v “CPUTIME threshold” on page 132

v “SQLROWSREAD threshold” on page 136

v “SQLTEMPSPACE threshold” on page 139

v “TOTALMEMBERCONNECTIONS threshold” on
page 145

Not applicable

Work action
v “ACTIVITYTOTALTIME threshold” on page 131

v “CONCURRENTDBCOORDACTIVITIES threshold”
on page 1411

v “ESTIMATEDSQLCOST threshold” on page 135

v “SQLROWSRETURNED threshold” on page 138

v “CONCURRENTDBCOORDACTIVITIES threshold”
on page 1411

v “CPUTIME threshold” on page 132

v “SQLROWSREAD threshold” on page 136

v “SQLTEMPSPACE threshold” on page 139

Not applicable

Service superclass
v “ACTIVITYTOTALTIME threshold” on page 131

v “CONCURRENTDBCOORDACTIVITIES threshold”
on page 1411

v “CONNECTIONIDLETIME threshold” on page 130

v “ESTIMATEDSQLCOST threshold” on page 135

v “SQLROWSRETURNED threshold” on page 138

v “UOWTOTALTIME threshold” on page 147

v “CONCURRENTDBCOORDACTIVITIES threshold”
on page 1411

v “CPUTIME threshold” on page 132

v “SQLROWSREAD threshold” on page 136

v “SQLTEMPSPACE threshold” on page 139

v “TOTALSCMEMBERCONNECTIONS threshold” on
page 145

Not applicable

Service subclass
v “ACTIVITYTOTALTIME threshold” on page 131

v “CONCURRENTDBCOORDACTIVITIES threshold”
on page 1411

v “ESTIMATEDSQLCOST threshold” on page 135

v “SQLROWSRETURNED threshold” on page 138

v “AGGSQLTEMPSPACE threshold” on page 140

v “CONCURRENTDBCOORDACTIVITIES threshold”
on page 1411

v “CPUTIME threshold” on page 132

v “CPUTIMEINSC threshold” on page 133

v “DATATAGINSC threshold” on page 134

v “SQLROWSREAD threshold” on page 136

v “SQLROWSREADINSC threshold” on page 137

v “SQLTEMPSPACE threshold” on page 139

Not applicable

Workload
v “ACTIVITYTOTALTIME threshold” on page 131

v “ESTIMATEDSQLCOST threshold” on page 135

v “SQLROWSRETURNED threshold” on page 138

v “UOWTOTALTIME threshold” on page 147

v “CONCURRENTWORKLOADOCCURRENCES
threshold” on page 144

v “CPUTIME threshold” on page 132

v “SQLROWSREAD threshold” on page 136

v “SQLTEMPSPACE threshold” on page 139

v “CONCURRENTWORKLOADACTIVITIES threshold”
on page 142

Statement
v “ACTIVITYTOTALTIME threshold” on page 131

v “ESTIMATEDSQLCOST threshold” on page 135

v “SQLROWSRETURNED threshold” on page 138

v “CPUTIME threshold” on page 132

v “SQLROWSREAD threshold” on page 136

v “SQLTEMPSPACE threshold” on page 139

Not applicable

Threshold evaluation order
Thresholds are evaluated in a specific order when you define them on a database.

The following thresholds are evaluated before all others:
v TOTALMEMBERCONNECTIONS. This threshold is evaluated when a new

connection is made to a database.
v CONCURRENTWORKLOADOCCURRENCES. This threshold is evaluated when

a new workload occurrence is started for a workload definition that has this
threshold applied to it.

v TOTALSCMEMBERCONNECTIONS. This threshold is evaluated when a
connection joins a service class (either a new connection or a transfer between
service classes as a result of workload reassignment).

All other thresholds are based on recognized activities resulting from an SQL
statement or the execution of a utility as the load utility and are evaluated in the
following order:

Chapter 3. Activities management 123

1. “Predictive thresholds”
2. “Reactive thresholds” on page 125

Predictive thresholds

Predictive thresholds are checked before reactive thresholds, because they affect
whether a database activity can start to run.

The sequence in which predictive thresholds are evaluated is as follows. If you do
not define a particular threshold, its step is skipped. Also, the steps described
might be combined at run time for performance reasons.
1. Check if a CONCURRENTWORKLOADACTIVITIES threshold exists and if so,

whether it has been violated. If the threshold is violated, the corresponding
action is taken. If applicable, move to the next step.

2. Check if an ESTIMATEDSQLCOST threshold exists and if so, whether it has
been violated. If you define this threshold in more than one domain, the
threshold is resolved according to the scope resolution rules (see “Domain
precedence for activity thresholds” on page 131 for more information). The
result of this operation is one value of ESTIMATEDSQLCOST applicable to the
activity. If the threshold is violated, the corresponding action is taken.

3. Check if a CONCURRENTDBCOORDACTIVITIES threshold exists for the
workload work action set threshold domain and if so, whether it has been
violated. If the threshold is violated, the corresponding action is taken.

4. Check if a CONCURRENTDBCOORDACTIVITIES threshold exists for the
database work action set threshold domain and if so, whether it has been
violated. If the threshold is violated, the corresponding action is taken.

5. Check if a CONCURRENTDBCOORDACTIVITIES threshold exists for the
service subclass threshold domain and if so, whether it has been violated. If the
threshold is violated, the corresponding action is taken.

6. Check if a CONCURRENTDBCOORDACTIVITIES threshold exists for the
service superclass threshold domain and if so, whether it has been violated. If
the threshold is violated, the corresponding action is taken.

7. Check if a CONCURRENTDBCOORDACTIVITIES threshold exists for the
database threshold domain and if so, whether it has been violated. If the
threshold is violated, the corresponding action is taken.

Concurrency threshold considerations: The evaluation order for concurrency
thresholds does not follow the hierarchy used for resolving activity thresholds. An
activity must pass through each defined concurrency threshold before it is
permitted to execute.

For concurrency thresholds, thresholds for workload-level work action sets are
checked first and database-level work action sets are checked second. Thresholds
for work action sets are checked first, in order to avoid work action set thresholds
on particular types of work blocking work of other types, which would affect
concurrency. For example, by checking database-level work action set concurrency
thresholds first, the following situation is avoided.

Assume that the following thresholds are defined:
v A database work action set containing a work action concurrency threshold for

LOAD activities is defined with a value of 1.
v The service superclass S1 concurrency limit is set to 10.

124 DB2 Workload Management Guide and Reference

Also, assume that one LOAD activity is already running in the database (under
any service superclass) and nine activities are already running in service superclass
S1. A second new LOAD activity enters as the 10th activity. If the activity threshold
scope resolution hierarchy were used during threshold evaluation, the incoming
LOAD activity would not violate the service class threshold, increasing the
concurrency to 10. The LOAD activity is then evaluated against the database-level
work action threshold concurrency limit, which is violated because a LOAD
activity is already running in the database and the work action threshold
concurrency value is only 1. The second LOAD activity is then queued.

Any new activity arriving into service superclass S1 is now queued (because the
service class concurrency limit is already reached). The work action threshold
queue is affecting the service class, which is undesirable because activities trying to
run in the service class do not necessarily have a relationship with the work action
threshold condition (for example, an insert operation trying to run in service
superclass S1 should not have to wait on a LOAD activity that is queued because
of a database-level work action threshold condition). Therefore, to avoid this type
of situation, the database-level work action concurrency threshold is checked
before service subclass, service superclass, and database concurrency thresholds.
Because the database-level work action set concurrency threshold is checked first,
the 10th activity in the service class (which happens to be a LOAD activity) is
blocked at the database work action threshold level before it can attempt to
consume one spot in the service superclass S1.

Reactive thresholds

Reactive thresholds are evaluated in a discrete fashion when an activity is
executing and no specific order is used to evaluate reactive thresholds. The
following reactive thresholds are available to you:
v ACTIVITYTOTALTIME
v AGGSQLTEMPSPACE
v CONNECTIONIDLETIME
v CPUTIME
v CPUTIMEINSC
v DATATAGINSC
v SQLTEMPSPACE
v SQLROWSREAD
v SQLROWSREADINSC
v SQLROWSRETURNED
v UOWTOTALTIME

Creating a threshold
Create thresholds using the DDL statement CREATE THRESHOLD (or the
CREATE WORK ACTION SET statement). You create a threshold to impose a limit
on resource consumption.

Before you begin

To create a threshold, you require WLMADM or DBADM authority.

See the following topics for more information about prerequisites:
v “Workload management DDL statements” on page 18

Chapter 3. Activities management 125

v Naming rules

To create a threshold for a work action set, use the CREATE WORK ACTION SET
statement or the ALTER WORK ACTION SET statement with the ADD WORK
ACTION keywords. For more information, see CREATE WORK ACTION SET
statement or ALTER WORK ACTION SET statement.

Procedure

To create a threshold:
1. Issue the CREATE THRESHOLD statement, specifying one or more of the

following properties for the threshold:
v The name of the threshold.
v The threshold domain. The threshold domain is the database object that the

threshold is both attached to and operates on. The domain that applies
depends on the type of threshold, see “Threshold domain and enforcement
scope” on page 122 for more information.

v The enforcement scope for the threshold. The threshold scope is the
enforcement range of the threshold in its domain. The enforcement scope
that applies depends on the type of threshold, see “Threshold domain and
enforcement scope” on page 122 for more information.

v Optional: Disable the threshold when it is created. By default a threshold is
created as enabled. If you create the threshold as disabled and want to
enable it later, use the ALTER THRESHOLD statement.

v The threshold predicate to specify the type of threshold and the maximum
value permitted. When the maximum value is violated, the action specified
for the threshold is enforced. For more information on which thresholds are
available to you, see “Connection thresholds” on page 130, “Activity
thresholds” on page 130, “Aggregate thresholds” on page 139, and “Unit of
work thresholds” on page 146.

v The actions to be taken if the maximum value for the threshold is exceeded.
The actions consist of a mandatory action that affects the execution of the
activity (STOP EXECUTION, CONTINUE, FORCE APPLICATION, or
REMAP ACTIVITY TO) and an optional collect activity action (COLLECT
ACTIVITY DATA). The options you specify for the collect activity action
determine what information is collected for the activity that caused the
threshold boundary to be violated.

2. Commit your changes. When you commit your changes, the threshold is added
to the SYSCAT.THRESHOLDS view.

Altering a threshold
Alter thresholds using the ALTER THRESHOLD statement. You might alter a
threshold to modify the limit imposed on a specific resource.

Before you begin

To alter a threshold, you require SQLADM, WLMADM, or DBADM authority. To
specify any clause other than a COLLECT clause, the authorization ID must
include WLMADM or DBADM authority.

See “Workload management DDL statements” on page 18 for more information
about prerequisites.

126 DB2 Workload Management Guide and Reference

To alter a threshold for a work action set, use the ALTER WORK ACTION SET
statement with the ADD WORK ACTION keywords.

Restrictions

You cannot alter the threshold type with the ALTER THRESHOLD statement. For
example: You cannot change a TOTAL MEMBERCONNECTIONS threshold into a
TOTALSCMEMBERCONNECTIONS threshold, for example. If you require a
different threshold type, drop the existing thresholds and then create a new
threshold.

Procedure

To alter a threshold:
1. Specify one or more of the following properties for the threshold on the ALTER

THRESHOLD statement. You can change the following properties:
v The boundary for the threshold predicate.
v The actions to be taken, if the threshold boundary is violated.
v Whether the threshold is enabled or disabled.

2. Commit your changes. When you commit your changes, the threshold is
updated in the SYSCAT.THRESHOLDS view.

Dropping a threshold
Drop a threshold that you no longer require using the DDL statement DROP
THRESHOLD.

Before you begin

To drop a threshold, you require WLMADM or DBADM authority.

See “Workload management DDL statements” on page 18 for more information
about prerequisites.

If you want to drop a threshold in a work action set, use the ALTER WORK
ACTION SET statement. You can also drop a threshold by dropping the entire
WORK ACTION SET with the DROP statement.

Procedure

To drop a threshold:
1. Do one of the following steps:

v If the threshold is a queuing threshold, use the ALTER THRESHOLD
statement to disable it.

v If you disabled a queuing threshold by using an ALTER THRESHOLD
statement, issue a COMMIT statement to commit the change.

2. Use the DROP THRESHOLD statement to drop the threshold.
3. Commit your changes. When you commit your changes the threshold is

removed from the SYSCAT.THRESHOLDS view.

Chapter 3. Activities management 127

Example: Using thresholds
You can use thresholds for a variety of purposes. In this scenario, thresholds are
used to control the number of large jobs running in order to permit different
execution times for different applications, and to control the behavior of an
application that is in development.

You could use a DB2 workload management solution to divide and manage the
database resources for the various departments in a company. For example, assume
that the sales department runs two main reports, which consist of the monthly and
yearly sales. Assume also that the human resources department runs a payroll
application every other week and that the development team is working on a new
type of report at the request of the management team. To define different execution
environments for these departments, create service classes:
CREATE SERVICE CLASS SALES
CREATE SERVICE CLASS HUMANRESOURCES
CREATE SERVICE CLASS DEVELOPMENT

In this situation, you create a workload definition for each one of these
applications to map the application to its applicable service superclass:
CREATE WORKLOAD MONTHLYSALES APPLNAME(’monthlyrpt.exe’) SERVICE CLASS SALES
CREATE WORKLOAD YEARLYSALES APPLNAME(’yearlyrpt.exe’) SERVICE CLASS SALES
CREATE WORKLOAD PAYROLL APPLNAME(’payroll.exe’) SERVICE CLASS HUMANRESOURCES
CREATE WORKLOAD NEWREPORT APPLNAME(’dev.exe’) SERVICE CLASS DEVELOPMENT

The database catalog therefore contains the following workload definitions:
v MonthlySales, mapping to the service superclass Sales
v YearlySales, mapping to the service superclass Sales
v Payroll, mapping to the service superclass Human Resources
v NewReport, mapping to the service superclass Development

Threshold on the number of large jobs

Because the YearlySales report is very large, you do not want to have more than
one occurrence of this application running in the database at any time. You
therefore create a threshold to set the maximum number of concurrent occurrences
of this workload to 1:
CREATE THRESHOLD SINGLEYEARLYSALESRPT FOR WORKLOAD YEARLYSALES ACTIVITIES

ENFORCEMENT MEMBER
WHEN CONCURRENTWORKLOADOCCURRENCES > 1
STOP EXECUTION

You can achieve a similar solution by associating the YearlySales application with a
service subclass YearlySalesReports (under the Sales service superclass) and setting
the maximum concurrency threshold to a value of 1 for the service subclass:
CREATE SERVICE CLASS YEARLYSALESREPORTS UNDER SALES

ALTER WORKLOAD YEARLYSALES SERVICE CLASS YEARLYSALESREPORTS UNDER SALES

CREATE THRESHOLD SINGLEYEARLYSALESREPORT FOR SERVICE CLASS YEARLYSALESREPORTS
UNDER SALES ACTIVITIES ENFORCEMENT DATABASE
WHEN CONCURRENTDBCOORDACTIVITIES > 1
STOP EXECUTION

In either situation, you can set the threshold action to STOP EXECUTION to
prevent more than one occurrence of the workload from executing. You can also

128 DB2 Workload Management Guide and Reference

collect activity information if you want additional information about the conditions
when the threshold is violated.

Threshold on activity lifetimes

Because all applications are expected to complete in an hour or less, you create a
threshold with a database domain, preventing any activity from running longer
than 1 hour. The only exception to this rule is the yearly report, which can take up
to 5 hours to complete. Therefore, you can associate an activity total time threshold
of 5 hours with the YearlySales workload. This will override the activity total time
threshold applied to the yearly sales report, relaxing the time constraints. The new
value of 5 hours now applies to the YearlySales workload although the global
value of 1 hour applies elsewhere in the database:
CREATE THRESHOLD MAXDBACTIVITYTIME FOR DATABASE ACTIVITIES

ENFORCEMENT DATABASE
WHEN ACTIVITYTOTALTIME > 1 HOUR
STOP EXECUTION

CREATE THRESHOLD MAXYRPTACTIVITYTIME FOR WORKLOAD YEARLYSALES
ACTIVITIES ENFORCEMENT DATABASE
WHEN ACTIVITYTOTALTIME > 5 HOURS
STOP EXECUTION

Threshold on the number of coordinator and nested activities

The NewReport application makes heavy use of stored procedures and
user-defined functions and is not fully debugged yet, so it tends to generate large
numbers of activities that impact the rest of the system. After consulting with the
developer, you learn that this new report is not supposed to generate more than 20
activities in total, so you define a threshold of type workload activities on the
NewReport workload and set it to 20. Initially, you set the threshold action to
STOP EXECUTION and COLLECT ALL to stop any unwanted side effect of the
application starting large numbers of activities and to help the developer identify
any problems:
CREATE THRESHOLD MAXDEVACTIVITIES FOR SERVICE CLASS DEVELOPMENT ACTIVITIES

ENFORCEMENT DATABASE
WHEN CONCURRENTDBCOORDACTIVITIES > 20
COLLECT ACTIVITY DATA WITH DETAILS AND VALUES
STOP EXECUTION

When the application becomes more stable, it enters its optimization phase. During
the phase, the developer tries to reduce the number of activities generated by the
application from between 15 and 20 to 15. At this time, you alter the threshold by
changing its upper boundary value to 15 and the threshold action to CONTINUE.
This threshold definition helps identify and address situations in which the
number of generated activities exceeds 15 but the increased stability of the
application does not require that its execution be stopped.
ALTER THRESHOLD MAXDEVACTIVITIES

WHEN CONCURRENTDBCOORDACTIVITIES > 15
COLLECT ACTIVITY DATA ON COORDINATOR WITH DETAILS AND VALUES
CONTINUE

Threshold to limit how long a unit of work runs

The application LongUOW issues transactions that can occasionally run longer
than the desired ten minutes. This results in locks being held for too long and
prevents more important applications from proceeding. In this case, you want to
force the application, rather than let it hold up other work. You can restrict the

Chapter 3. Activities management 129

runtime for this application's transactions to an administrator-defined period of
time using the UOWTOTALTIME threshold.

First, create a workload for the LongUOW application:
CREATE WORKLOAD LONG_UOW APPLNAME(’LONGUOW’) SERVICE CLASS SYSDEFAULTUSERCLASS

Then, create a threshold for this workload that forces the LongUOW application
when any of the application's transactions take more than 10 minutes to finish:
CREATE THRESHOLD FORCELONGUOW FOR WORKLOAD LONG_UOW ACTIVITIES ENFORCEMENT DATABASE
WHEN UOWTOTALTIME > 10 MINUTES FORCE APPLICATION

You can also apply this threshold at the service subclass level or database level.

Connection thresholds
A connection threshold applies controls to individual database connections. You
can use connection thresholds to limit the total number of concurrent connections
to the database and how long a connection can sit idle.

CONNECTIONIDLETIME threshold
The CONNECTIONIDLETIME threshold specifies a maximum amount of time that
a connection can be idle (that is, not working on a user request).

Type Connection

Definition domain
Database or service superclass

Enforcement scope
Database

Tracked work
User connections

Queuing
No

Unit Time duration expressed in minutes, hours, or days

Predictive or reactive
Reactive

If a connection remains idle for longer than the duration specified by the threshold
and the threshold action is STOP EXECUTION, the connection is closed.

Activity thresholds
An activity threshold applies to an individual activity. When the resource usage of
an individual activity violates the upper bound of the threshold that is tracking it,
the corresponding action is triggered and applied once to the activity.

After being applied once, the threshold is deactivated for the activity and not
applied again.

For example: Assume that you defined a time based threshold that triggers a
CONTINUE action after an elapsed time of 5 minutes. If an activity violates this
threshold, the action is applied once but not reapplied every 5 minutes.

130 DB2 Workload Management Guide and Reference

Domain precedence for activity thresholds
Activity thresholds apply to individual activities. If multiple thresholds apply to
the same executing activity, a decision about which threshold to enforce must be
made.

Aggregate thresholds are not affected because the same activity can contribute to
multiple activity aggregates simultaneously, as occurs with concurrency thresholds,
for example.

The resolution about which activity threshold to apply to an executing activity
follows the rule that a value defined in a local domain overrides any value from a
wider or more global domain. The hierarchy of domains is as follows, from the
most local to the most global:
1. Statement
2. Work action (at workload level)
3. Workload
4. Service subclass
5. Service superclass
6. Work action (at database level)
7. Database

The following example shows how thresholds are overridden:

Examples

The following example shows how thresholds are overridden:
v A threshold that defines a maximum execution time of 1 hour for all database

queries defined in the database domain is overridden by a threshold that defines
a maximum execution time of 5 hours for a service superclass set up to handle
large queries.

v That same service superclass threshold is overridden by a threshold for very
large queries that defines the maximum execution time for a service subclass to
be 10 hours.

v The maximum execution time of 1 hour defined in the database domain can be
overridden by a value of 10 minutes in a second service superclass geared
towards ensuring that shorter, important queries can complete quickly.

v The execution of a statement with text that matches the text that is specified for
a threshold in the statement domain results in a threshold violation that
overrides all other thresholds.

ACTIVITYTOTALTIME threshold
The ACTIVITYTOTALTIME threshold specifies the maximum amount of time that
the data server can spend processing an activity. If the activity is queued by a
queuing threshold, the total activity time includes the time spent in the queue
awaiting execution.

Type Activity

Definition domain
Database, service superclass, service subclass, work action, workload and
statement

Enforcement scope
Database

Chapter 3. Activities management 131

Tracked work
Recognized coordinator and nested activities (see “Activities” on page 15)

Queuing
No

Unit Time duration expressed in seconds, minutes, hours, or days. If the time
unit specified is seconds, this value must be a multiple of 10.

Predictive or reactive
Reactive

When a cursor is opened, the activity associated with the cursor lasts until the
cursor is closed.

When a time threshold is applied to a stored procedure, it also applies to work
happening inside the stored procedure. Consequently, when a stored procedure
time threshold expires, any work happening inside the stored procedure is
stopped. Hierarchies of stored procedure invocations can lead to hierarchies of
time thresholds being applied to activities executing in the innermost levels of
nesting. The most restrictive time threshold in the hierarchy (that is, the time
threshold with the closest deadline) is always the one that applies.

The data server considers IMPORT, EXPORT, and other CLP commands to be user
logic. Activities that are invoked from within IMPORT, EXPORT, and other CLP
commands are subject to thresholds.

CPUTIME threshold
The CPUTIME threshold specifies the maximum amount of combined user and
system processor time that an activity can use on a particular member while the
activity is running. Use this threshold to detect and control activities that are using
excessive processor resources.

Type Activity

Definition domain
Database, service superclass, service subclass, work action, workload and
statement

Enforcement scope
Member

Tracked work
See the information later in this topic

Queuing
No

Unit Time

Predictive or reactive
Reactive

The amount of processor time that an activity spends running is measured from
the time that the activity begins running at the member, after any queuing by
thresholds, until the time that the activity finishes running.

Activities tracked by this threshold are as follows:
v All DML activities.

132 DB2 Workload Management Guide and Reference

v CALL activities. The processor time for a CALL activity does not include the
processor time of any child activity. The processor time spent in fenced processes
is also not counted toward the total processor time for the CALL activity.

Activities that are initiated by the database manager through a utility or procedure,
with the exception of the ADMIN_CMD procedure, are not counted for this
condition. The data server considers IMPORT, EXPORT, and other CLP commands
to be user logic. Activities that are invoked from within IMPORT, EXPORT, and
other CLP commands are subject to thresholds. Child activities of the LOAD
command are not tracked by this threshold.

Example

The following example creates a CPUTIME threshold TH1 for the database domain
with a member enforcement scope. This threshold stops any activity that takes
longer than 30 seconds to run, which it checks for at 5-second intervals. You can
use this threshold to ensure that no queries on the system use an unreasonable
amount of processor time, which can negatively impact other work running on the
system.
CREATE THRESHOLD TH1 FOR DATABASE ACTIVITIES

ENFORCEMENT MEMBER
WHEN CPUTIME > 30 SECONDS CHECKING EVERY 5 SECONDS
STOP EXECUTION;

CPUTIMEINSC threshold
The in-service-class CPUTIMEINSC threshold specifies the maximum amount of
combined user and system processor time that an activity may use on a particular
member while running in a specific service subclass. Use this threshold to detect
and control activities that are using excessive processor resources.

Class Activity

Definition domain
Service subclass

Enforcement scope
Member

Tracked work
See the information later in this topic

Queuing
No

Unit Time

Predictive or reactive
Reactive

The processor time that an activity spends running is measured from the time that
the activity enters the current service subclass until the time that the activity leaves
the service subclass or finishes running.

This threshold differs from the CPUTIME threshold in that it controls only the
amount of processor time that may be used in a specific service subclass, not the
total amount of processor time used during the lifetime of the activity.

Activities tracked by this threshold are as follows:
v All DML activities.

Chapter 3. Activities management 133

v CALL activities. Note that the processor time for a CALL activity does not
include the processor time of any child activity. The processor time spent in
fenced processes is also not counted towards the total processor time for the
CALL activity.

Activities that are initiated by the database manager through a utility or procedure,
with the exception of the ADMIN_CMD procedure, are not counted for this
condition. The data server considers IMPORT, EXPORT, and other CLP commands
to be user logic. Activities that are invoked from within IMPORT, EXPORT, and
other CLP commands are subject to thresholds. Child activities of the LOAD
command are not tracked by this threshold.

You can use the REMAP ACTIVITY action to control activities by remapping them
to a service subclass with different resource assignments.

Example

The following example creates two service subclasses, A1 and A2, under a
superclass A, with a single in-service-class CPUTIMEINSC threshold that remaps
activities between subclasses after 1 minute of processor time has been used during
query evaluation in service subclass A1. An event monitor record is logged.
CREATE SERVICE CLASS A;
CREATE SERVICE CLASS A1 UNDER A;
CREATE SERVICE CLASS A2 UNDER A;

CREATE THRESHOLD T1 FOR SERVICE CLASS A1 UNDER A
ACTIVITIES ENFORCEMENT MEMBER
WHEN CPUTIMEINSC > 1 MINUTE CHECKING EVERY 30 SECONDS
REMAP ACTIVITY TO A2 LOG EVENT MONITOR RECORD;

DATATAGINSC threshold
The in-service-class DATATAGINSC threshold checks the data tag value of a table
space or storage group accessed by an activity. Use this threshold to dynamically
map an activity to a different DB2 service subclass based on which data is being
accessed.

Type Activity

Definition domain
Service subclass

Enforcement scope
Member

Tracked work
Recognized coordinator

Queuing
No

Unit Data tag

Predictive or reactive
Reactive

Data can be tagged with a numeric value by specifying the DATA TAG attribute
when creating or altering a table space or a storage group. Data tag thresholds are
evaluated when a scan is first opened on a table and when an insert is performed
into a table. Any new data tag thresholds picked up by the activity after a scan has
been opened as a result of a remap operation is not applied to that scan.

134 DB2 Workload Management Guide and Reference

Only the data tags for the data table spaces being accessed in a query are
considered by the threshold. The data tags values for index or long table spaces are
not considered during a threshold evaluation. For example, if the query SELECT
COUNT(*) FROM T1 is index-only access with the index placed in a table space with
data tag 3 and the table data placed in a table space with data tag 1, when the
query is executed the threshold evaluation will use data tag 1 (the data tag for the
data table space). The data tag threshold behavior is independent of the access
method (index or direct scan) chosen in the query access plan.

Activities tracked by this threshold are:
v Coordinator activities of type DML and corresponding subagent work

(subsection execution).
v Nested DML activities that are derived from user applications. Consequently,

DML activities that are issued by the database manager, such as utilities,
SYSPROC procedures (with the exception of SYSPROC.ADMIN_CMD) or
internal SQL statements are unaffected by this threshold.

In the following usage scenario, the user creates 3 table spaces; TBHIGH contains
high priority data and has a data tag of 1, TBMED contains medium priority data
and has a data tag of 4, and TBLOW contains low priority data and has a data tag
of 9. The activities are initially mapped to a high priority service subclass. If any
activities touch data on a table space other than that on the TBHIGH table space,
the user wants the priority of those activities to drop. In the following example, a
service superclass MAINSC containing three service subclasses, SCHIGH, SCMED,
and SCLOW (for executing high, medium, and low priority work) have already
been created.

Create a DATATAGINSC threshold on the high priority service subclass, and if any
activity touches any data with a data tag of anything other than 1, map it to the
medium priority service subclass.

CREATE THRESHOLD MAPTOMED FOR SERVICE CLASS SCHIGH UNDER MAINSC ACTIVITIES
ENFORCEMENT MEMBER WHEN DATATAGINSC NOT IN (1) REMAP ACTIVITY TO SCMED

Create a SQLDATATAGINSC threshold on the medium priority service subclass,
and if any activity touches any data with a data tag of 9 map it to the low priority
service subclass.

CREATE THRESHOLD MAPTOLOW FOR SERVICE CLASS SCMED UNDER MAINSC ACTIVITIES
ENFORCEMENT MEMBER WHEN DATATAGINSC IN (9) REMAP ACTIVITY TO SCLOW

If an activity touches a table space with a data tag of 9, that activity will be
remapped to SCMED, and then immediately remapped again to SCLOW (due to
the threshold on the SCMED service subclass). The user in this case, will see two
threshold violations.

ESTIMATEDSQLCOST threshold
The ESTIMATEDSQLCOST threshold specifies the maximum estimated cost that is
permitted for DML activities.

Type Activity

Definition domain
Database, service superclass, service subclass, work action, workload, and
statement

Enforcement scope
Database

Chapter 3. Activities management 135

Tracked work
See the information later in this topic

Queuing
No

Unit Estimated SQL cost expressed in timerons

Predictive or reactive
Predictive

This threshold tracks the following activities:
v DML activities that are issued at the coordinator member.
v Nested DML activities that are invoked from a user application. Consequently,

DML activities that are issued by the data server internally, such as DML
activities issued from within the DB2 utilities, SYSPROC stored procedures, and
internal SQL, are unaffected by this threshold unless their cost is included in the
parent activity estimate. In this situation, these activities are indirectly tracked. A
trigger is an example of an indirectly tracked activity. IMPORT, EXPORT, and
other CLP commands are considered to be user logic. Activities that are invoked
from within IMPORT, EXPORT, and other CLP commands are subject to
thresholds. For information about the activities that fall under a work class with
the DML work type, see “Work identification by type, cost, or data accessed
with work classes” on page 48.

SQLROWSREAD threshold
The SQLROWSREAD threshold specifies the maximum number of rows that a
DML activity may read on any member. Use this threshold to detect and control
activities that are reading an excessive number of rows.

Class Activity

Definition domain
Database, service superclass, service subclass, work action, workload and
statement

Enforcement scope
Member

Tracked work
See the information later in this topic

Queuing
No

Unit Number of rows

Predictive or reactive
Reactive

This threshold differs from the SQLROWSRETURNED threshold in that it controls
the maximum number of rows read during query evaluation, not the number of
rows returned to a client application from the data server.

Index accesses are not counted toward the total number of rows read. If an access
plan uses only indexes during query evaluation, the SQLROWSREAD threshold
will not be violated.

This threshold is evaluated at user-configurable time intervals; if the interval is
greater than the amount of time it takes to exceed the number of rows read, it is

136 DB2 Workload Management Guide and Reference

possible for the number of rows read for an activity on a member to exceed the
threshold boundary, before the violation is detected.

Activities tracked by this threshold are as follows:
v Coordinator activities of type DML and corresponding subagent work such as

subsection execution.
v Nested DML activities that are derived from user applications. Consequently,

DML activities that are issued by DB2 logic, such as utilities, SYSPROC
procedures, or internal SQL statements, are unaffected by this threshold.
IMPORT, EXPORT, and other CLP commands are considered to be user logic;
therefore, activities that are invoked from within IMPORT, EXPORT, and other
CLP commands are subject to thresholds.

Example

The following example creates an SQLROWSREAD threshold TH1 for the database
domain with a member enforcement scope. This threshold stops the execution of
any activity that reads more than 5 000 000 rows during query evaluation, which
the threshold checks for at 10-second intervals. You can use this threshold to
ensure that no queries on the system read an unreasonable number of rows, which
can negatively impact other work running on the system.
CREATE THRESHOLD TH1 FOR DATABASE ACTIVITIES

ENFORCEMENT MEMBER
WHEN SQLROWSREAD > 5000000 CHECKING EVERY 10 SECONDS
STOP EXECUTION;

SQLROWSREADINSC threshold
The in-service-class SQLROWSREADINSC threshold specifies the maximum
number of rows that a DML activity can read on a particular member while
running in a specific service subclass. Use this threshold to detect and control
activities that are reading an excessive number of rows.

Class Activity

Definition domain
Service subclass

Enforcement scope
Member

Tracked work
See the information later in this topic

Queuing
No

Unit Number of rows

Predictive or reactive
Reactive

This threshold differs from the SQLROWSREAD threshold in that it controls the
number of rows read only from the time that an activity enters a specific service
subclass, not the total number of rows read during the lifetime of the activity. This
threshold also differs from the SQLROWSRETURNED threshold in that it controls
the maximum number of rows read during query evaluation in the current service
subclass, not the number of rows returned to a client application from the data
server.

Chapter 3. Activities management 137

Index accesses are not counted toward the total number of rows read. If an access
plan uses only indexes during query evaluation, the SQLROWSREADINSC
threshold will not be violated.

This threshold is evaluated at user-configurable time intervals; if the interval is
greater than the amount of time it takes to exceed the number of rows read, it is
possible for the number of rows read for an activity on a member to exceed the
threshold boundary, before the violation is detected.

Activities tracked by this threshold are as follows:
v Coordinator activities of type DML and corresponding subagent work such as

subsection execution.
v Nested DML activities that are derived from user applications. Consequently,

DML activities that are issued by DB2 logic, such as utilities, SYSPROC
procedures, or internal SQL statements, are unaffected by this threshold.
IMPORT, EXPORT, and other CLP commands are considered to be user logic;
therefore, activities that are invoked from within IMPORT, EXPORT, and other
CLP commands are subject to thresholds.

You can use the REMAP ACTIVITY action to control activities by remapping them
to a service subclass with different resource assignments.

Example

The following example creates two service subclasses, A1 and A2, under a
superclass A, with a single in-service-class SQLROWSREADINSC threshold that
remaps activities between subclasses after 10 000 rows have been read in service
subclass A1 during query evaluation. An event monitor record is logged.
CREATE SERVICE CLASS A;
CREATE SERVICE CLASS A1 UNDER A;
CREATE SERVICE CLASS A2 UNDER A;

CREATE THRESHOLD T1 FOR SERVICE CLASS A1 UNDER A
ACTIVITIES ENFORCEMENT MEMBER
WHEN SQLROWSREADINSC > 10000 REMAP ACTIVITY TO A2
LOG EVENT MONITOR RECORD;

SQLROWSRETURNED threshold
The SQLROWSRETURNED threshold specifies the maximum number of rows that
can be returned by the data server to the client.

Type Activity

Definition domain
Database, service superclass, service subclass, work action, workload and
statement

Enforcement scope
Database

Tracked work
See the information later in this topic

Queuing
No

Unit Number of rows

Predictive or reactive
Reactive

138 DB2 Workload Management Guide and Reference

When multiple result sets are returned by a CALL statement, the threshold applies
to each result set separately and not as an aggregate to the total number of rows
returned across all result sets. For example, if you define the threshold for 20 rows
and the CALL statement returns two result sets returning 15 rows and 19 rows
respectively, the threshold is not triggered.

Activities tracked by this threshold are as follows:
v DML activities that are issued at the coordinator member.
v Nested DML activities that are invoked from a user application. Consequently,

DML activities that are issued by the data server internally, such as DML
activities issued from within the DB2 utilities, SYSPROC stored procedures, and
internal SQL, are unaffected by this threshold.

SQLTEMPSPACE threshold
The SQLTEMPSPACE threshold specifies the maximum amount of system
temporary table space that can be consumed by a DML activity at any member.
DML activities often use temporary table space for operations such as sorting and
the manipulation of intermediate result sets.

Type Activity

Definition domain
Database, service superclass, service subclass, work action, workload and
statement

Enforcement scope
Member

Tracked work
See the information later in this topic

Queuing
No

Unit Amount of temporary table space expressed in kilobytes (KB), megabytes
(MB), or gigabytes (GB)

Predictive or reactive
Reactive

Activities tracked by this threshold are as follows:
v DML activities that are issued at the coordinator member.
v Nested DML activities that are derived from user applications. Consequently,

DML activities that are issued by DB2 logic (such as utilities, SYSPROC
procedures, or internal SQL) are unaffected by this threshold.

The data server considers IMPORT, EXPORT, and other CLP commands to be user
logic. Activities that are invoked from within IMPORT, EXPORT, and other CLP
commands are subject to thresholds.

Aggregate thresholds
An aggregate threshold places collective control over elements of work in a
database. The boundary that you define using an aggregate threshold operates as a
running total, to which any work tracked by the threshold contributes.

When newly instantiated work causes the upper boundary to be violated, the
corresponding action is triggered. The work that caused the upper boundary to be
violated is the only one affected by the triggered action.

Chapter 3. Activities management 139

Activity queuing
Some thresholds have a built-in queue and permit you to enforce how many
activities can execute concurrently by queuing all additional activities once the
concurrency limit is reached, up until the set limit for the queue is exceeded.

When the number of activities exceeds the concurrency limit for a queuing
threshold, new requests are queued automatically in a first-in, first-out fashion,
until the queue reaches the size specified by the queuing boundary of the
threshold definition. When the queue is full, the upper boundary is reached. The
next request is considered to have violated the threshold, and the action specified
for the threshold is applied to it. For example, an action of STOP EXECUTION
causes the newly arrived work to be rejected.

You can also define the upper queuing boundary as unbounded, in which case
there is no upper limit to the size of the queue. In this situation, when newly
arriving work is added to the queue, the threshold is not considered to have been
violated, regardless of how large the queue has become. If you define a hard limit
for the upper boundary of the queue and define CONTINUE as the threshold
violation action, all newly arriving work that exceeds the hard limit is considered
to have violated the threshold; a threshold violation is created but the new work is
still added to the queue.

AGGSQLTEMPSPACE threshold
The AGGSQLTEMPSPACE threshold specifies the maximum amount of system
temporary table space that can be used in total across all concurrently running
DML activities in a service subclass. DML activities often use temporary table
space for operations such as sorting and the manipulation of intermediate result
sets.

Class Aggregate

Definition domain
Service subclass

Enforcement scope
Member

Tracked work
See the information later in this topic

Queuing
No

Unit Kilobytes, megabytes, or gigabytes

Predictive or reactive
Reactive

Activities tracked by this threshold are as follows:
v DML activities that are issued at the coordinator member.
v Nested DML activities that are derived from user applications. Consequently,

DML activities that are issued by DB2 logic, such as utilities, SYSPROC
procedures, or internal SQL statements, are unaffected by this threshold.
IMPORT, EXPORT, and other CLP commands are considered to be user logic;
therefore, activities that are invoked from within IMPORT, EXPORT, and other
CLP commands are subject to thresholds.

140 DB2 Workload Management Guide and Reference

CONCURRENTDBCOORDACTIVITIES threshold
The CONCURRENTDBCOORDACTIVITIES threshold specifies the maximum
number of recognized coordinator activities that can run concurrently in the
specified definition domain and enforcement scope.

The use of this type of threshold is best suited for applications that do not execute
more than one activity at a time. If an application starts more than one activity
concurrently, such as issuing an UPDATE SQL statement while a cursor is open,
then certain queue contention scenarios can sometimes occur depending on the
concurrency level allowed by the threshold and the behaviors of the other
applications involved. If this threshold exists in scenarios where applications can
execute more than one activity concurrently or the application behavior is
unknown, then it is recommended to have an ACTIVITYTOTALTIME threshold
defined for those activities to help automatically resolve any potential queue
contention scenarios.

Type Aggregate

Definition domain
Database, work action, service superclass, service subclass

Enforcement scope
Database in environments other than DB2 pureScale environments

Member in a DB2 pureScale environment

Tracked work
Recognized coordinator and nested activities (see “Work identification by
type, cost, or data accessed with work classes” on page 48)

Queuing
Yes

Unit Number of concurrent database activities

Predictive or reactive
Predictive

This threshold is a generalization of the CONCURRENTWORKLOADACTIVITIES
threshold. The CONCURRENTWORKLOADACTIVITIES applies only to activities
that are running in a workload domain, but you can apply the
CONCURRENTDBCOORDACTIVITIES threshold to a variety of domains, ranging
from the entire database to a single work action. The
CONCURRENTDBCOORDACTIVITIES threshold tracks coordinator activities for
non-CALL statements and any nested activities generated by CALL statements.
Unlike the CONCURRENTWORKLOADACTIVITIES threshold, the
CONCURRENTDBCOORDACTIVITIES threshold is a queuing threshold.

Note: If a threshold action of CONTINUE is specified for a queuing threshold, it
effectively makes the size of the queue unbounded, regardless of any hard value
specified for the queue size.

When creating queuing thresholds of the CONCURRENTDBCOORDACTIVITIES
type, be aware of configurations that might lead to irreconcilable queue-based
contention. For example:
1. A concurrency threshold of type CONCURRENTDBCOORDACTIVITIES is

created with a maximum concurrency value of 1 and a queue size greater than
1.

Chapter 3. Activities management 141

2. An application opens a cursor that the DB2 data server recognizes as activity
A1, which consumes the unique ticket that is available for the threshold.

3. While the cursor is still open, the application issues an UPDATE statement,
which the data server recognizes as activity A2, and which is also subject to the
concurrency threshold. Because the A1 activity is already running, the new
activity A2 is queued.
The application is now in a queue contention state that cannot be resolved. It is
waiting for A2 to execute but A2 is waiting for A1 to finish executing. This
situation will not resolve itself without external intervention unless an
ACTIVITYTOTALTIME threshold is also defined over these activities. If
ACTIVITYTOTALTIME threshold is defined, then the situation will be resolved
when A1 violates that threshold by spending more than the maximum amount
of time that the data server should spend processing that activity.

This example can be generalized to multiple applications and queues. You can
resolve this situation by increasing the concurrency values, or cancelling certain
activities if the concurrency values are correctly set.

To reduce the chance of creating irreconcilable queue contention scenarios, the
CONCURRENTDBCOORDACTIVITIES threshold affects different types of
activities as follows:
v CALL statements are not controlled by the threshold, but all nested child

activities are under threshold control. Note that both anonymous blocks and
autonomous routines are classified as CALL statements.

v User defined functions (UDFs) are under threshold control, but child activities
nested within UDFs are not controlled. If an autonomous routine is called from
within a user defined function, neither the autonomous routine and nor any
child activities of the autonomous routine are under threshold control.

v Trigger actions that invoke CALL statements and the child activities of these
CALL statements are not under threshold control. Note that the INSERT,
UPDATE, and DELETE statements themselves that can cause a trigger to activate
are under threshold control.

CONCURRENTWORKLOADACTIVITIES threshold
The CONCURRENTWORKLOADACTIVITIES threshold specifies the maximum
number of coordinator and nested activities that can concurrently run in a
workload occurrence.

Type Aggregate

Definition domain
Workload

Enforcement scope
Workload occurrence

Tracked work
Recognized coordinator and nested activities (see “Activities” on page 15)

Queuing
No

Unit Number of concurrent workload activities

Predictive or reactive
Predictive

142 DB2 Workload Management Guide and Reference

This threshold applies to a single workload occurrence. If you have multiple
occurrences of a workload running concurrently, the threshold applies separately to
each workload occurrence. The tracked activities include all recognized coordinator
activities and any nested activities that are generated as a result of the execution of
the coordinator activity. For example, unlike the
CONCURRENTDBCOORDACTIVITIES threshold, if a stored procedure is called
and that stored procedure executes some SQL, both the CALL statement (which is
the coordinator activity) and the SQL statements executed by the stored procedure
(which are the nested activities) count towards the threshold total.

COMMIT, ROLLBACK, and ROLLBACK to SAVEPOINT statements are unaffected
by this threshold.

Nested activity considerations

The nested activities that are tracked by this threshold must satisfy the following
criteria:
v They must be a recognized coordinator activity. Nested coordinator activities

that are not recognized types as described in “Work identification by type, cost,
or data accessed with work classes” on page 48 are not counted.

v They must be directly invoked from user logic, such as a user-written stored
procedure issuing SQL or from the SYSPROC.ADMIN_CMD stored procedure.
Nested coordinator activities that are started by the invocation of a DB2 utility
or any other code in the SYSIBM, SYSFUN. or SYSPROC schemas are not
counted towards the upper boundary specified by this threshold.

Example

In this example, the CONCURRENTWORKLOADACTIVITIES threshold maximum
value is set to 5. The user logic causes the following sequence of operations to
occur in a workload occurrence:
1. Issue a load command: the current number of workload activities is 1.

v The load command internally issues some SQL. The current number of
workload activities is 1. (SQL generated by a utility does not count against
the CONCURRENTWORKLOADACTIVITIES threshold.)

v The load command ends. The current number of workload activities is 0.
2. CALL the SYSPROC.SP1 stored procedure. The current number of workload

activities is 1.
v The SYSPROC.SP1 stored procedure generates some SQL. The current

number of workload activities is 1. (SQL generated by a utility does not
count against the CONCURRENTWORKLOADACTIVITIES threshold.)

v The SYSPROC.SP1 stored procedure ends. The current number of workload
activities is 0.

3. Open a cursor C1. The current number of workload activities is 1.
4. Issue a runstats command. The current number of workload activities is 1.

v The runstats command generates some SQL. The current number of
workload activities is 1.

v The runstats command ends. The current number of workload activities is 1.
5. Close the cursor C1. The current number of workload activities is 0.
6. CALL the BOB.SP1 stored procedure. The current number of workload

activities is 1.

Chapter 3. Activities management 143

v The BOB.SP1 stored procedure opens three cursors. The current number of
workload activities is 4.

v The BOB.SP1 stored procedure calls the SYSPROC.SP2 stored procedure. The
current number of workload activities is 5.
– The SYSPROC.SP2 stored procedure issues some SQL. The current number

of workload activities is 5.
– The SYSPROC.SP2 stored procedure ends. The current number of

workload activities is 4.
v The BOB.SP1 stored procedure calls the BOB.SP2 stored procedure. The

current number of workload activities is 5.
– The BOB.SP2 stored procedure issues some SQL. At this point, the

threshold is triggered.
– The BOB.SP2 stored procedure ends. The current number of workload

activities is 4.
v The BOB.SP1 stored procedure ends. The current number of workload

activities is 0.
7. Open a cursor C2. The current number of workload activities is 1.
8. CALL the BOB.SP2 stored procedure. The current number of workload

activities is 2.

CONCURRENTWORKLOADOCCURRENCES threshold
The CONCURRENTWORKLOADOCCURRENCES threshold is an aggregate
threshold that specifies the maximum number of workload occurrences that can
run concurrently on the coordinator member.

Type Aggregate

Definition domain
Workload

Enforcement scope
Member

Tracked work
Workload occurrences

Queuing
No

Unit Number of concurrent workload occurrences

Predictive or reactive
Predictive

When a workload occurrence is started, if the work that it generates is sent to
non-coordinator members, the work on these members does not count towards the
concurrent threshold total on the coordinator member. For example, assume that a
CONCURRENTWORKLOADOCCURRENCES threshold is defined to permit only
one occurrence of workload A on a member. Then assume that an application
connects to member 1, resulting in an occurrence of workload A being started, and
that this workload causes work to be sent to database members 1, 2, and 3. In this
situation, the total number of occurrences of workload A is one on member 1 and
zero on database members 2 and 3. Therefore, if another application connects to
member 1 and another occurrence of workload A is started on member 1, that
workload is rejected. However, new occurrences of workload A can still be started
on database members 2 and 3.

144 DB2 Workload Management Guide and Reference

TOTALMEMBERCONNECTIONS threshold
The TOTALMEMBERCONNECTIONS threshold specifies the maximum number of
concurrent database connections on a coordinator member for a database, that is,
this threshold controls the maximum number of clients that can connect to the
database on each of its database members.

This threshold is not enforced for users with DBADM and WLMADM authority.

Type Aggregate

Definition domain
Database

Enforcement scope
Member

Tracked work
Connections

Queuing
Yes (enforced at 0)

Unit Number of concurrent connections

Predictive or reactive
Predictive

For example, if you set the TOTALMEMBERCONNECTIONS threshold to 10 and
the database has five members, each member can have up to 10 clients connected
concurrently, for a total of 50 client connections across the entire database.

The TOTALMEMBERCONNECTIONS threshold controls only coordinator
connections. Connections made by subagents are not counted towards the
threshold.

This threshold is useful for situations in which you want to have multiple
databases in the same instance. Setting a TOTALMEMBERCONNECTIONS
threshold on a member ensures that client connections from one database cannot
use all of the available connections on a member.

Ensure that you set the max_connections database manager configuration
parameter high enough to support the maximum number of connections that you
expect across the database. If you set a TOTALMEMBERCONNECTIONS threshold
for a database, you must set max_connections to at least the threshold value. If you
want to run multiple databases on the same instance, ensure that you set
max_connections high enough to support the maximum number of connections for
all databases. The data server does not check for this condition because it is
impossible to know beforehand how many of the databases will be active
concurrently.

Note: Although the queue size is typically enforced at 0 for the
TOTALMEMBERCONNECTIONS threshold, if a threshold action of CONTINUE is
specified for this queuing threshold, it effectively makes the size of the queue
unbounded, regardless of any hard value specified for the queue size.

TOTALSCMEMBERCONNECTIONS threshold
The TOTALSCMEMBERCONNECTIONS threshold specifies the maximum number
of concurrent database connections on a coordinator member for a service
superclass.

Chapter 3. Activities management 145

Type Aggregate

Definition domain
Service superclass

Enforcement scope
Member

Tracked work
Connections

Queuing
Yes

Unit Number of concurrent connections in service class

Predictive or reactive
Predictive

When the TOTALSCMEMBERCONNECTIONS threshold in the service class is
reached, subsequent coordinator connections that join the service superclass are
queued until the specified queue size is reached. By default, the queue size is zero,
which means that no connections can be queued. If a connection joins the queue of
a TOTALSCMEMBERCONNECTIONS threshold, the connection is considered to
be in a transient state.

Note: If a threshold action of CONTINUE is specified for a queuing threshold, it
effectively makes the size of the queue unbounded, regardless of any hard value
specified for the queue size.

Tracked connections include both new client connections and existing client
connections that switch to the service class from another service class. Connections
switch service classes by associating with a different workload definition that is
mapped to a different service class. Workload reevaluation occurs only at
transaction boundaries, so connections can switch service classes only at
transaction boundaries; however, because resources that are associated with WITH
HOLD cursors are maintained across transaction boundaries, connections with
open WITH HOLD cursors cannot switch service superclasses. When the
connection concentrator is on, any application that is switched leaves the service
class. When the application is switched in at the subsequent statement, it must
rejoin the service class and consequently pass the threshold.

When the queue size threshold is reached, the threshold action is triggered. The
TOTALSCMEMBERCONNECTIONS threshold controls only coordinator
connections. Connections made by subagents are not counted towards the
threshold.

If you set a threshold value for TOTALMEMBERCONNECTIONS, set it large
enough to accommodate the threshold that you specify for
TOTALSCMEMBERCONNECTIONS. For example, if you define five service
superclasses for a database and each of them has a
TOTALSCMEMBERCONNECTIONS threshold value of 10, the
TOTALMEMBERCONNECTIONS threshold value should be at least 50.

Unit of work thresholds
A unit of work threshold applies controls to individual units of work. When the
resource usage of an individual unit of work violates the upper bound of the

146 DB2 Workload Management Guide and Reference

threshold that is tracking it, the corresponding action is triggered and applied once
to either the application (in the case of force application) or the unit of work (in
the case of rollback).

UOWTOTALTIME threshold
The UOWTOTALTIME threshold specifies the maximum amount of time that a
unit of work may spend in the DB2 engine.

Type Unit of work

Definition domain
Database, workload, service superclass

Enforcement scope
Database

Tracked work
See the information later in this topic.

Queuing
No

Unit Labeled duration

Predictive or reactive
Reactive

The STOP EXECUTION action for a UOWTOTALTIME threshold rolls back the
unit of work. The FORCE APPLICATION action forces the application to which the
unit of work belongs. The COLLECT ACTIVITY DATA option can be specified for
this threshold, but it is ignored.

A UOWTOTALTIME threshold defined on the workload domain overrides any
UOWTOTALTIME threshold defined on the service superclass domain. A
UOWTOTALTIME threshold defined on the service superclass domain overrides
any UOWTOTALTIME threshold defined on the database domain.

Example

The following example creates a threshold FORCE10MINUTEUOW that issues a
FORCE APPLICATION command when a unit of work has been executing for
more than 10 minutes.
CREATE THRESHOLD FORCE10MINUTEUOW FOR DATABASE ACTIVITIES

ENFORCEMENT DATABASE
WHEN UOWTOTALTIME > 10 MINUTES
FORCE APPLICATION;

Priority aging of ongoing work
Priority aging is an approach to workload management in which the priority of
in-progress activities automatically changes over time.

The longer an activity runs, the lower its priority, and the fewer resources it will
receive. You can use priority aging to control longer-running activities, so that
throughput for shorter-running activities can be improved. The priority aging
approach works when resource control responds to the movement of work
between service classes. That is, when work that is already being processed
changes service classes, the movement is actually reflected in the resources that are
received by that work (as well as other work in the new service class). This

Chapter 3. Activities management 147

approach is best implemented when using the explicit CPU controls that are
provided by the CPU dispatcher or by integration with operating system workload
management products.

Changing the priority of activities by remapping

System resources are allocated and controlled by using service classes. With
priority aging, the priority of an activity can be changed by moving the activity
from one service class to another service class. The priority increases if the new
service class has more resources, and the priority decreases if the new service class
has fewer resources. Activities are moved when a threshold with a REMAP
ACTIVITY action is violated, based upon predetermined maximum usage of a
specific resource such as processor time or rows read. After an activity is mapped
to a new service class, it continues to run with the new resource constraints
applied.

A simple approach that you can use to help short queries to run faster is to define
a series of service classes with successively lower levels of resource priority and
threshold actions that move activities between the service subclasses. Using this
setup, you can decrease, or age, the priority of longer-running work over time and
perhaps improve response times for shorter-running work without having detailed
knowledge of the activities running on your data server.

You can create this setup by assigning a high priority for all applicable resources to
one service class, medium priority to a second service class, and low priority to a
third service class. As work enters the system, it is automatically placed into the
first service class and begins running using the high-priority settings of this service
class. If you also define thresholds for each of the service classes that limit the time
or resources used during execution, work is dynamically reassigned to the
next-lower service class if the threshold of the next-higher class is violated. This
dynamic resource control is repeatedly applied until the work is completed or is in
the lowest-priority class, where it remains until it is completed or you force it to
stop running.

Service superclass

High priority
service subclass

User
database requests

Requests Workload

Medium priority
service subclass

Low priority
service subclass

Threshold

Threshold

Figure 21. A simple tiered setup that shows three service classes with successively lower
priority

148 DB2 Workload Management Guide and Reference

In-service-class thresholds

Remapping of activities is available with any of the in-service-class thresholds,
which control the amount of a resource that may be used while an activity is
running in a particular service subclass. Examples of resources are the amount of
processor time used (CPUTIMEINSC threshold), and the number of rows read by
an application (SQLROWSREADINSC threshold), per activity per member. These
thresholds differ from other activity thresholds, which control resources used
throughout the entire lifetime of an activity.

Because of the control that in-service-class thresholds provide over service
subclasses, you can define in-service-class thresholds only on a service subclass
domain. The in-service-class thresholds provide controls similar to DB2 Governor
rules, which act on processor time and rows read monitor elements.

When an in-service-class threshold is associated with a REMAP ACTIVITY action,
agents working for the activity periodically check whether the threshold has been
violated on each member. If an agent detects a threshold violation on a member,
the agent triggers the REMAP ACTIVITY action for the activity on the member and
then remaps itself to the target service subclass. All other agents working for the
activity on the same member remap themselves to the target service subclass when
they detect that the activity has been remapped. Only one agent detects the
threshold violation and remaps the activity, and the activity is considered
remapped after that agent has detected the threshold violation and performed the
remapping.

Two monitor elements provide information about activity remapping within
service subclasses. The act_remapped_in monitor element provides a counter that
records how many activities were remapped into a service subclass and is
incremented each time for the target service subclass that an activity is remapped
to. Similarly, the act_remapped_out monitor element counter is incremented each
time for the source service subclass that an activity is remapped out of. An
additional monitor element, num_remaps, counts the number of times in total that
an activity has been remapped between service subclasses.

An activity can be remapped multiple times to different service subclasses, and an
activity can return to its original service subclass after being remapped to another
service subclass.

The in-service class thresholds are evaluated separately for an activity on each
member, without coordination. Because there is no coordination between members,
when an activity is remapped on one member, it is possible for the same activity to
be in different service subclasses on different members simultaneously.

When subagent work for an activity is completed on a remote member and further
work for the same activity is sent to the same member later, the activity restarts in
the same service subclass as the agent that sent the request to the member. If you
defined an in-service-class threshold for this service subclass, the timer or counter
for the activity on the remote member restarts at zero.

Where activities are nested, parent and child activities are tracked separately.
Therefore, if a child activity is using an excessive amount of resources, only this
activity, not its parent or sibling activities, violates a threshold.

Chapter 3. Activities management 149

Using the in-service-class thresholds

On data servers where the primary resource activities have to compete for is
processor time, use the CPUTIMEINSC threshold as your first measure of control.
On data servers where queries reading many table rows result primarily in I/O
contention, use SQLROWSREADINSC. On systems that see a combination of heavy
processor and IO activity, use a combination of the CPUTIMEINSC and
SQLROWSREADINSC thresholds.

You should set the agent priority of the service subclasses relative to each other, so
that your data server can treat activities of different business priority differently.
Note that the agent priority of the default system class should always be higher
than any user defined service classes you create to avoid a negative impact on
performance. The agent priority of the default maintenance class can be set lower
than your user defined service classes.

How much of a given resource you permit activities to consume in a service
subclass before remapping them to a different service subclass depends largely on
your particular environment. To find the best value for each threshold condition,
you need to monitor how activities are being processed on your data server. If the
maximum amount of processor time that can be used or the maximum number of
rows that can be read in a service class is set too high, activities will
inappropriately start and finish in the same service subclass regardless of how
much resource each activity requires. If the maximum processor time or rows read
is set too low, no activity will finish in the service class it is originally mapped to
and every activity will end up being remapped to the another service class
regardless of business priority. In either case, your tiered configuration will not
benefit the overall throughput on your data server and activities are not treated
according to their business priority effectively.

In addition to determining how much of a given resource an activity can consume,
some thresholds allow you to define a check interval for how often the data server
checks for threshold violations. This capability is provided for thresholds where it
is too expensive to check the threshold each time a unit of the resource being
controlled is consumed and determines the latency with which violations of these
thresholds are detected. The CPUTIME and SQLROWSREAD thresholds and their
in-service class counterparts CPUTIMEINSC and SQLROWSREADINSC support
check intervals. On serial database instances, the check interval equals the amount
of real time that you want to elapse between checks for a threshold violation. In
multimember database environments or on SMP instances, the check interval
should be set to a value that is less than the amount of real time elapsed to take
into account that there can be more than one agent accumulating processor time
simultaneously for the activity. To calculate the approximate check interval in
multimember database environments or on SMP instances, divide the amount of
real time you want to elapse between checks by the degree of parallelism for the
activity and use the resulting value for the CHECKING EVERY clause.

For example: In a single member database, if you want a CPUTIMEINSC threshold
to trigger a REMAP ACTIVITY action after 30 seconds of processor time have been
consumed, you can set the check interval to 30 seconds and be certain that the
threshold action will be triggered after no more than 30 seconds of processor time
have been consumed (processor time used cannot outstrip real time elapsed). In a
multimember database environment, if you define a CPUTIMEINSC threshold that
is set at 5 seconds with a check interval of 5 seconds, and an activity has 1
coordinator member agent and 4 subagents working on its behalf, it is possible for
the activity to consume 5 seconds of CPU time in just 1 second of real time,

150 DB2 Workload Management Guide and Reference

because 5 agents simultaneously accumulate 1 second of processor time each. To
prevent the activity from consuming a multiple of 5 seconds of processor time, the
check interval should in this case be set to 1 second.

For additional information on how to use the thresholds, see the sample tiering
scripts and priority aging scenarios.

Effect of remapping on thresholds

Which thresholds continue to apply after remapping through a REMAP ACTIVITY
action depends on whether the thresholds apply only to a specific service subclass
or throughout the lifetime of an activity.

When you remap an activity to a new service subclass, only the in-service-class
thresholds, such as CPUTIMEINSC and SQLROWSREADINSC, change. These
in-service-class thresholds no longer affect an activity after it leaves the source
service subclass, and they are replaced with the corresponding thresholds for the
target subclass, if you defined those thresholds. All other activity thresholds from
the service subclass to which the activity was originally mapped remain
unchanged, and applicable threshold timers and counters are not reset. The activity
is not re-evaluated against any other thresholds that you defined for the target
service subclass.

For example, assume that two service subclasses with thresholds are defined as
follows:
v Service subclass A with the following thresholds:

– An ACTIVITYTOTALTIME lifetime threshold TH1 with a STOP EXECUTION
action after 30 minutes have elapsed

– An SQLROWSREADINSC in-service-class threshold TH2 with a REMAP
ACTIVITY action to service subclass B after more than 2000 rows have been
read

v Service subclass B with the following thresholds:
– An ACTIVITYTOTALTIME lifetime threshold TH3 with a STOP EXECUTION

action after 5 minutes have elapsed
– An SQLROWSREADINSC threshold TH4 with a STOP EXECUTION action

after more than 1000 rows have been read

When an activity enters the system in service subclass A, both thresholds TH1 and
TH2 apply to the activity. If the activity reads more than 2000 rows during query
evaluation, it is dynamically remapped to service subclass B. Because of the
remapping of the activity to subclass B, the applicable in-service-class thresholds
change, and TH4 rather than TH2 now applies to the activity. Counters for both
thresholds are reset to zero, and even though the activity has read more than 2000
rows in the original service subclass, the counter for TH4 is restarted at zero; the
activity must read more than 1000 rows while running in service subclass B before
threshold TH4 is violated. Threshold TH1, which applies throughout the lifetime of
the activity, continues to apply, even though the activity is now running in a
different subclass. Threshold TH3 does not exercise any control over the remapped
activity at all, because it did not apply to the first service subclass that the activity
entered when it began running.

Sample priority aging scripts
Use the provided sample scripts to quickly create a tiered service class
configuration on your data server. With a tiered configuration, you can address

Chapter 3. Activities management 151

specific performance goals by decreasing the priority of longer-running queries
over time, known as priority aging. You can also modify the scripts according to
your own business priorities when adapting them to your environment.

The two sample scripts wlmtiersdefault.db2 and wlmtierstimerons.db2 are
intended to demonstrate how you might use priority aging on your data server to
improve overall throughput. DB2 workload manager provides you with the
controls that can help with overall throughput on your data server, but to gain the
full benefit of the scripts, and of priority aging in general, you will need to run
your data server for an extended period of time and monitor how this work is
performed, then adjust the service class and threshold settings accordingly.

The scripts are provided in the samples/admin_scripts directory under your
installation directory.

The wlmtiersdefault.db2 and wlmtierstimerons.db2 scripts create three service
subclasses under a common superclass with successively lower resource settings
from high to low along with CPUTIMEINSC thresholds that move or remap
activities in response to the consumption of processor time. The scripts differ in
how activities are mapped to a service class when they first enter your data server.
A third script, wlmtiersdrop.db2, drops the WLM objects created by the other two
sample tiering scripts.

wlmtiersdefault.db2
All activities entering the data server are mapped to a high priority service
subclass WLM_SHORT without differentiation between types of work.
Activities will complete in the high priority service subclass whilst the
highest priority is assigned to them, unless they exceed the maximum
amount of processor time they are allowed to consume. Activities that
consume too much processor time are first remapped by a threshold
REMAP ACTIVITY action to a medium priority service subclass
WLM_MEDIUM and then, if they still do not complete without exceeding
the allotted processor time in that subclass, remapped to a low priority
service subclass WLM_LONG, where they continue to be processed until
they complete. Activities that cannot be remapped by a CPUTIMEINSC
threshold are mapped directly to service subclass WLM_MEDIUM where
they will remain.

wlmtierstimerons.db2
DML activities entering the data server are evaluated according to their
estimated cost and mapped to one of the three service subclass. DML
activities estimated to be short are mapped to a high priority service
subclass WLM_SHORT, DML activities estimated to be of medium length
are mapped to a WLM_MEDIUM service subclass that receives medium
priority, and long DML activities are mapped to a WLM_LONG service
subclass that receives the lowest priority. Non-DML activities enter the
highest priority service subclass. As they are processed, activities that
consume more processor time than assigned to a service subclass are
successively remapped by a threshold REMAP ACTIVITY action to the
next lowest priority service subclass, until they are remapped to the lowest
priority service subclass where they continue to be processed until they
complete. Activities that cannot be remapped by a CPUTIMEINSC
threshold are mapped directly to service subclass WLM_MEDIUM where
they will remain.

wlmtiersdrop.db2
This script drops all DB2 workload manager service classes, thresholds,

152 DB2 Workload Management Guide and Reference

workloads, work class sets and work action sets that are created by the
scripts wlmtiersdefault.db2 and wlmtierstimerons.db2.

By default, the wlmtiersdefault.db2 and wlmtierstimerons.db2 scripts use the
following service class and threshold definitions:

Table 40. Service classes with CPU shares and prefetch priority settings created by the
scripts

Service class CPU shares Prefetch priority

WLM_SHORT (high priority) 6000 High

WLM_MEDIUM (medium
priority)

3000 Medium

WLM_LONG (low priority) 1000 Low

Default system class Default High

Default maintenance class Default Low

Table 41. Thresholds created by the scripts

Threshold
Maximum amount of processor time that can be used
in the service class before remapping

WLM_TIERS_REMAP_SHORT_TO_MEDIUM 30 seconds

WLM_TIERS_REMAP_MEDIUM_TO_LONG 30 seconds

The wlmtiersdefault.db2 sample script creates the following work action set and
work class set, which is used to map activities that cannot be remapped by the
CPUTIMEINSC threshold directly to the WLM_MEDIUM service subclass. These
activities will remain in the WLM_MEDIUM service subclass for the duration of
their execution.

Table 42. Work class set created by the wlmtiersdefault.db2 sample script

Work class Work action

WLM_DML_WC For DML activities, mapped to service class
WLM_SHORT initially. These activities can
be remapped by a CPUTIMEINSC threshold.

WLM_CALL_WC For CALL activities, mapped to service class
WLM_SHORT initially. These activities can
be remapped by a CPUTIMEINSC threshold.

WLM_OTHER_WC For activities that cannot be remapped by a
CPUTIMEINSC threshold, mapped to
service class WLM_MEDIUM. These
activities will remain in the WLM_MEDIUM
service subclass.

The wlmtierstimerons.db2 sample script also creates the following work action set
and work class set, which is used to map activities according to their estimated
cost:

Chapter 3. Activities management 153

Table 43. Work class set created by the wlmtierstimerons.db2 sample script

Work class
Estimated cost range in timerons and work
action

WLM_SHORT_DML_WC For DML activities with an estimated cost of
0 to 999 timerons, mapped to service class
WLM_SHORT initially. These activities may
get remapped by a CPUTIMEINSC
threshold.

WLM_MEDIUM_DML_WC For DML activities with an estimated cost of
1000 to 99 999 timerons, mapped to service
class WLM_MEDIUM initially. These
activities may get remapped by a
CPUTIMEINSC threshold.

WLM_LONG_DML_WC For DML activities with an estimated cost of
100 000 to infinity timerons, mapped to
service class WLM_LONG.

WLM_CALL_WC For CALL activities, mapped to service class
WLM_SHORT initially. These activities can
be remapped by a CPUTIMEINSC threshold.

WLM_OTHER_WC For activities that cannot be remapped,
mapped to service class WLM_MEDIUM

Modifying the scripts for your environment

When you modify the sample scripts to adapt them to your environment, the most
important setting to consider is the maximum amount of processor time that can
be used in each service class. How much processor time you permit activities to
consume in each service subclass depends largely on your particular environment.
To find the best values, you need to monitor how activities are being processed on
your data server. By default, both the wlmtiersdefault.db2 and
wlmtierstimerons.db2 scripts will log event monitor records to the threshold
violations event monitor, if one is active, with the option to turn on and enable the
activity event monitor and to collect activity data (at the cost of incurring
additional overhead). For wlmtiersdefault.db2, if the maximum amount of
processor time that can be used in each service class is set too high, most activities
will always start and finish in the high priority class regardless of how much
actual processor time each requires. If the maximum amount of processor time is
set too low, no activity will finish in the high priority service class and every
activity will end up being remapped to the medium or low priority service class
regardless of business priority. In either case, the script will not benefit overall
throughput on your data server and activities are not treated according to their
business priority effectively. The same issue is true to a lesser extent for
wlmtierstimerons.db2 where activities are differentiated initially by being mapped
to service subclasses according to estimated cost. If the maximum amount of
processor time that can be used in each service class is set incorrectly, activities will
fail to be remapped to a more appropriate service subclass if they consume too
much processor time, or are remapped too quickly despite having higher business
priority.

For more information about the specific DB2 workload manager objects created by
the scripts and about how to run them, refer to the scripts.

154 DB2 Workload Management Guide and Reference

Sample scenarios

Two examples have been included in the documentation that show you how you
can adapt the sample tiering scripts on your data server to make use of priority
aging.

Scenario: Controlling resource intensive business intelligence
reports with priority aging
The following scenario shows how you can configure your data server to
dynamically lower the priority of expensive business intelligence reports that
cannot be identified before execution starts in order to maintain system
performance for other queries.

The problem: There is a business intelligence report which any end user can run
and which is very expensive. Anytime the report runs, it compromises the
performance of the system. The front end tool used to generate the report does not
set any client information that could be used to identify the report in advance
which would permit you to map it to a low priority service class using a
workload.

The solution: You can use the wlmtiersdefault.db2 sample tiering scripts to
configure your data server with a tiered configuration that dynamically lowers, or
ages, the priority of processor intensive activities during their lifetime in order to
prevent compromising data server performance for all other users. After a
workload initially maps all work to a high priority service subclass, the expensive
reports are detected by the CPUTIMEINSC in-service-class threshold based on the
amount of processor time consumed. If an activity violates the CPUTIMEINSC
threshold by using the maximum amount of allowed processor time, a REMAP
ACTIVITY moves the activity to a lower priority service subclass. The activity can
be remapped in response to processor time consumption again until it executes in
the lowest priority service subclass where it will continue until it completes or you
intervene manually. Other activities which do not exceed the thresholds continue to
run in the high priority service subclass, where they receive higher agent priority.

An event monitor record is logged every time an activity is remapped, if you
created a threshold violations event monitor. If you want to collect additional
information about remapped activities to investigate further, you can add the
COLLECT ACTIVITY DATA clause to the ALTER THRESHOLD statement in the
wlmtiersdefault.db2 script. Simply rerun the script for the change to take effect.

After running the workload for a period of time, you can use the
WLM_GET_SERVICE_SUBCLASS_STATS table function to see how many activities
were remapped between the service subclasses:
SELECT substr(service_superclass_name,1,21) AS superclass,

substr(service_subclass_name,1,21) AS subclass,
substr(char(coord_act_completed_total),1,10) AS completed,
substr(char(act_remapped_in),1,10) AS remapped_in,
substr(char(act_remapped_out),1,10) AS remapped_out,
substr(char(last_reset),1,19) AS last_reset

FROM table(WLM_GET_SERVICE_SUBCLASS_STATS(
CAST(NULL AS VARCHAR(128)),
CAST(NULL AS VARCHAR(128)),
-2)

) AS TF_subcls_stats@

SELECT SUBSTR(WORKLOAD_NAME,1,19) AS WL_NAME,
COORD_ACT_LIFETIME_AVG,
COORD_ACT_LIFETIME_STDDEV

FROM TABLE(WLM_GET_WORKLOAD_STATS
(CAST(NULL AS VARCHAR(128)), -2))
AS WLSTATS

ORDER BY WL_NAME@

SUPERCLASS SUBCLASS COMPLETED REMAPPED_IN REMAPPED_OUT LAST_RESET

Chapter 3. Activities management 155

--------------------- --------------------- ---------- ----------- ------------ -------------------
SYSDEFAULTSYSTEMCLASS SYSDEFAULTSUBCLASS 0 0 0 2008-10-06-20.53.47
SYSDEFAULTMAINTENANCE SYSDEFAULTSUBCLASS 3 0 0 2008-10-06-20.53.47
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 0 0 0 2008-10-06-20.53.47
WLM_TIERS SYSDEFAULTSUBCLASS 0 0 0 2008-10-06-20.53.47
WLM_TIERS WLM_SHORT 999 0 35 2008-10-06-20.53.47
WLM_TIERS WLM_MEDIUM 19 35 16 2008-10-06-20.53.47
WLM_TIERS WLM_LONG 16 16 0 2008-10-06-20.53.47

7 record(s) selected.

If you notice that no or only very few activities are being remapped to the lower
priority service subclasses, decrease the CPUTIMEINSC threshold value and the
check interval used by the ALTER THRESHOLD statements in the script to
improve the mapping of activities across service class tiers according to business
priority. If most or almost all activities are being remapped to the lower priority
service subclasses, increase the CPUTIMEINSC threshold value and the check
interval for the ALTER THRESHOLD statements to permit more activities to
complete with higher priority. After your changes are complete, rerun the
wlmtiersdefault.db2 script to make them effective.

Scenario: Remapping incorrectly mapped queries through
priority aging
The following scenario shows how you can configure your data server to
dynamically remap, or age the priority of, activities that are consuming more
processor time than originally estimated in order to maintain system performance
for other queries.

The problem: You may have mapped expensive activities based on estimated SQL
cost to a lower priority service subclass so that these activities do not impact the
performance of less expensive, shorter activities. Such a mapping can be
accomplished by defining a work action set at the service superclass level.
However, if the estimated SQL cost is incorrect because of statistics that are out of
date, for example, an expensive activity might be mapped incorrectly to a high
priority service subclass where it begins to consume an excessive amount of
resources, at the cost of all other high priority activities.

The solution: You can use the wlmtierstimerons.db2 sample tiering script to
configure your data server with a tiered configuration that evaluates incoming
activities according to their estimated cost and maps them to one of three service
subclasses, each with different agent priorities. If an activity consumes too much
processor time, your data server dynamically lowers the priority of the activity
during its lifetime by remapping it between performance tiers. This dynamic
process of remapping activities to lower their priority is also referred to as priority
aging.

After an activity has been mapped to its initial service class and begins executing,
the CPUTIMEINSC in-service-class threshold is used by the script to control the
amount of processor time an activity can consume. If the activity violates the
threshold by using the maximum amount of allowed processor time, a REMAP
ACTIVITY action is triggered which moves the activity to a service subclass with
lower agent priority. The activity can be remapped in response to processor time
consumption until it executes the lowest priority service subclass where it will
continue until it completes or you intervene manually.

An event monitor record is logged every time an activity is remapped. If you want
to collect additional information about remapped activities to investigate further,
you can add the COLLECT ACTIVITY DATA clause to the ALTER THRESHOLD
statement in the wlmtiersdefault.db2 script. Simply rerun the script for the change
to take effect.

156 DB2 Workload Management Guide and Reference

After running the workload for a period of time, you can use the
WLM_GET_SERVICE_SUBCLASS_STATS table function to see how many activities
were remapped between the service subclasses:
SELECT substr(service_superclass_name,1,21) AS superclass,

substr(service_subclass_name,1,21) AS subclass,
substr(char(coord_act_completed_total),1,10) AS completed,
substr(char(act_remapped_in),1,10) AS remapped_in,
substr(char(act_remapped_out),1,10) AS remapped_out,
substr(char(last_reset),1,19) AS last_reset

FROM table(WLM_GET_SERVICE_SUBCLASS_STATS(
CAST(NULL AS VARCHAR(128)),
CAST(NULL AS VARCHAR(128)),
-2)

) AS TF_subcls_stats@

SELECT SUBSTR(WORKLOAD_NAME,1,19) AS WL_NAME,
COORD_ACT_LIFETIME_AVG,
COORD_ACT_LIFETIME_STDDEV

FROM TABLE(WLM_GET_WORKLOAD_STATS
(CAST(NULL AS VARCHAR(128)), -2))
AS WLSTATS

ORDER BY WL_NAME@
SUPERCLASS SUBCLASS COMPLETED REMAPPED_IN REMAPPED_OUT LAST_RESET
--------------------- --------------------- ---------- ----------- ------------ -------------------
SYSDEFAULTSYSTEMCLASS SYSDEFAULTSUBCLASS 0 0 0 2008-10-06-20.59.27
SYSDEFAULTMAINTENANCE SYSDEFAULTSUBCLASS 3 0 0 2008-10-06-20.59.27
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 0 0 0 2008-10-06-20.59.27
WLM_TIERS SYSDEFAULTSUBCLASS 0 0 0 2008-10-06-20.59.27
WLM_TIERS WLM_SHORT 651 0 5 2008-10-06-20.59.27
WLM_TIERS WLM_MEDIUM 36 5 7 2008-10-06-20.59.27
WLM_TIERS WLM_LONG 16 7 0 2008-10-06-20.59.27

7 record(s) selected.

For this scenario, you should see relatively few activities being remapped between
service subclasses, because activities should almost always be mapped to the
appropriate service subclass initially, based on estimated cost. If you notice that
activities typically are being completed only in the WLM_SHORT or the
WLM_LONG service class, you can adjust the estimated cost values used by the
ALTER WORK CLASS SET statement in the script to improve the mapping of
activities across service class tiers, so that shorter activities are mapped to the
WLM_SHORT_DML_WC work class and longer activities are mapped to the
WLM_MEDIUM_DML_WC or the WLM_LONG_DML_WC work class. If you
notice that most of the activities are being remapped, you can increase the
threshold values used in the ALTER THRESHOLD statements to improve the
initial mapping of activities to service subclasses. After your changes are complete,
rerun the wlmtierstimerons.db2 script to make them effective.

Remapping activities between service subclasses
You enable remapping by specifying a REMAP ACTIVITY action with CREATE
and ALTER THRESHOLD statements. The remap action, when it is triggered by a
threshold violation, moves an activity from one service subclass to another service
subclass under the same superclass.

Before you begin

In order to be able to remap to another service subclass, the target service subclass
must exist under the same service superclass as the original service subclass of the
activity. Either the target or original service subclass can be the default subclass of
the superclass. The REMAP ACTIVITY action cannot be applied to service
subclasses under the default system class, default maintenance class or default user
class.

Chapter 3. Activities management 157

About this task

The REMAP ACTIVITY action will move an activity to a different service subclass
within the same service superclass. Remapping is available with any of the
in-service-class thresholds such as CPUTIMEINSC and SQLROWSREADINSC. You
use this dynamic process of remapping activities to lower their priority over time,
which is also known as priority aging. Lowering the priority of some activities
over time can free up system resources, which can then be applied to other
activities of higher business importance.

You can use the REMAP ACTIVITY action with the DATATAGINSC in-service-class
threshold which maps an activity to a different DB2 service subclass based on the
data that is estimated to be accessed.

Agents working for the activity will periodically check if a threshold has been
violated on each member, without coordination between members. When any one
agent detects an in-service-class threshold violation on a member, this agent
triggers the REMAP ACTIVITY action for the activity on the member and then
remaps itself to the target service subclass, after which the activity is considered
remapped. All other agents working for the activity on the same member will
remap to the target service subclass when they detect that the activity has been
remapped.

Restrictions

The target service subclass cannot be the same as the original service subclass; you
must remap to a different service subclass first before remapping to the original
one.

If an activity is remapped to a disabled service subclass, the activity is treated as if
it has been rejected by the disabled subclass and an error message -4714 is
returned to the client.

Procedure
1. Identify those activities which you want to control through priority aging. A

tiered setup consists of service subclasses under the same service superclass
that have in-service-class thresholds with REMAP ACTIVITY threshold actions
defined on them. You can refer to the basic priority aging example and to the
sample scenarios as a starting point:
a. “Priority aging of ongoing work” on page 147
b. “Scenario: Controlling resource intensive business intelligence reports with

priority aging” on page 155
c. “Scenario: Remapping incorrectly mapped queries through priority aging”

on page 156
2. Select the different service subclasses that activities will be mapped to. This

includes both the the service subclass an activity is originally mapped to when
activity execution starts, and any other service subclass or classes the activity
will be remapped to during its lifetime. For more information on service
classes, including on how to create them, see “Resource assignment with
service classes” on page 67.

3. Create or alter your thresholds for controlling activities. For more information
on thresholds, see “Priority aging of ongoing work” on page 147.
a. Define your in-service-class thresholds so that they include a REMAP

ACTIVITY action, which is triggered when the threshold is violated. Note

158 DB2 Workload Management Guide and Reference

that an in-service-class threshold applies to and is affected by an activity
only while the activity is mapped to the associated service subclass; affected
counters and timers are reset after remapping. Consider if a threshold
violation record should be logged each time an activity remaps. These
records provide information about which service classes an activity spent
time executing in, which you can use for performance analysis. Note that
logging threshold violation records can begin consuming substantial
amounts of disk space, if remapping of activities between service subclasses
is a common occurrence.

b. You can also define any thresholds that you want to apply to the lifetime of
the activity, but note that only thresholds from the first service subclass that
the activity is originally mapped to continue to apply throughout the
lifetime of the activity. If you also define any thresholds on any of the
service subclasses that an activity is later remapped to, they do not apply.

4. Commit your changes. When you commit your changes, your thresholds are
added to the SYSCAT.THRESHOLDS view.

5. Allow your data server to execute the activities you are targeting with your
in-service-class thresholds and monitor their progress during their lifetime.
Activities will stay in the their original service subclass during execution as
long as they do not violate an in-service-class threshold. As in-service-class
thresholds are violated during activity execution, activities will trigger a
REMAP ACTIVITY action that dynamically remaps them to different service
subclasses. Once remapped, the activities continue execution and are now
controlled by the resource constraints you have placed on the target service
subclass.

6. If necessary, refine your approach to priority aging to reach your stated
performance goals.

Example

The following example creates a simple three-tiered setup that lowers, or ages, the
priority of ongoing activity over time. Three service subclasses under a single
superclass A provide the execution environment in which all queries must run.
Assume that the default user workload maps incoming queries to service subclass
A1, which is a high-priority subclass intended to permit shorter running queries to
execute quickly. A medium-priority service subclass A2 is intended to permit
longer running queries to execute, although with more stringent resource controls.
Service subclass A3 provides containment for any very large queries that take an
excessive amount of processor time to complete.

Three thresholds provide control over the ongoing resource consumption of
queries. A query is permitted to execute in the high-priority service subclass A1
only as long as it requires less than one minute of processor time to complete.
After a minute of processor time has been consumed, threshold T1 automatically
remaps the activity to subclass A2, where it can continue executing as long as it
consumes less than 10 minutes of processor time. If the query still has not
completed after 10 minutes of consuming processor time, threshold T2 remaps the
activity to the lowest priority service subclass, A3. Queries in subclass A3 are
permitted to continue indefinitely, although an event monitor record is logged and
activity data with details is collected when the processor time used exceeds 1 hour.
CREATE SERVICE CLASS A
CREATE SERVICE CLASS A1 UNDER A
CREATE SERVICE CLASS A2 UNDER A
CREATE SERVICE CLASS A3 UNDER A

CREATE THRESHOLD T1 FOR SERVICE CLASS A1 UNDER A

Chapter 3. Activities management 159

ACTIVITIES ENFORCEMENT MEMBER
WHEN CPUTIMEINSC > 1 MINUTE REMAP ACTIVITY TO A2

CREATE THRESHOLD T2 FOR SERVICE CLASS A2 UNDER A
ACTIVITIES ENFORCEMENT MEMBER
WHEN CPUTIMEINSC > 10 MINUTES REMAP ACTIVITY TO A3

CREATE THRESHOLD T3 FOR SERVICE CLASS A3 UNDER A
ACTIVITIES ENFORCEMENT MEMBER
WHEN CPUTIMEINSC > 1 HOUR LOG EVENT MONITOR RECORD
COLLECT ACTIVITY DATA WITH DETAILS
CONTINUE

Workload management dispatcher overview
The DB2 workload management dispatcher is a built-in DB2 technology by which
you can specifically allocate CPU resources to work that is being executed on a
database server. CPU resource entitlements can be controlled by using CPU shares
and CPU limit attributes on DB2 service classes.

Overview

Particularly useful under workload conditions that strain the system CPU
resources, the dispatcher can effectively manage service class CPU resource
entitlements with attributes such as the uncapped (almost unrestricted) soft CPU
shares, and the two capped (limited) attributes: hard CPU shares and CPU limits.
You can use the uncapped soft CPU shares to give high-priority-work service
classes any unused CPU resources. In addition, you can enforce controls on the
CPU resource entitlements by using capped hard CPU shares or CPU limits
assigned to low-priority-work service classes, thereby limiting their impact on
high-priority work. Under conditions where the system CPU resources are less
strained, you can use one or both of the capped attributes, without the need to
assign uncapped attributes, to effectively control the CPU resource entitlements
between service classes running in a typical, underrun-CPU environment.

The workload management dispatcher infrastructure operates at the instance level
in the DB2 database manager. The dispatcher operates by limiting the number of
executing agents to be dispatched to the operating system (OS) and how long each
agent is allowed to execute, at any given time. The number of executing agents
that can be dispatched at the same time is referred to as the dispatch concurrency
level.

The DB2 workload management dispatcher has the following benefits:
v Easy to implement, requiring less time and effort than implementing an OS

WLM such as AIX WLM or Linux WLM.
v Supports flexible CPU allocation throughout the normal daily ebb and flow of

system use. This flexibility is accomplished through the provisioning of both
permanent allocations that are enforced all the time (hard CPU shares and CPU
limits), or dynamic allocations that are enforced only when demand exceeds
capacity (soft CPU shares).

v Self-contained within the DB2 database manager such that setting CPU resource
entitlements provides you with workload control that is effective across all
platforms due to its independence from an OS WLM such as AIX WLM or Linux
WLM.

v You can continue to use the OS WLM products as a workload control
mechanism, but it is not necessary if the extra implementation complexity (for
example, setting up AIX WLM on each member) or if the organizational strife

160 DB2 Workload Management Guide and Reference

(for example, system administrator reluctance to implement or permit use of OS
WLM) is a barrier. Alternatively, you can use the OS WLM products for
monitoring purposes while relying on the DB2 workload management
dispatcher for workload control.

More information

This section provides information about essential administration concepts, tasks,
and usage scenarios for the following areas:
v DB2 workload management dispatcher
v Hard CPU shares
v Soft CPU shares
v CPU limit
v Minimum CPU utilization level to have service class considered as active
v Dispatch concurrency level
v Monitoring and tuning workload management dispatcher performance

Workload management dispatcher
The workload management dispatcher manages CPU resource entitlements for
workloads running within the DB2 database manager. Details about its features
and functionality are provided here.

Introduction

You can use the built-in DB2 workload management dispatcher to manage DB2
workloads by configuring CPU resource entitlements without the need for
third-party workload management software. The dispatcher can control
DB2-specific CPU resource consumption by means of CPU shares-based settings
and CPU limit settings. Soft CPU shares represent an uncapped resource allocation
and can be used to allow high-priority work to consume more than its allocated
share when there are unused CPU resources. Hard CPU shares and CPU limits
represent a capped CPU allocation that can be used to prevent low-priority work
from impacting the execution of high-priority work. CPU limits can be used to
strictly control the CPU that is consumed by a particular workload in order to
provide isolation for other work running on the system, whereas hard CPU shares
provide the additional flexibility of allowing low-priority work to consume unused
CPU resources in the absence of a high-priority workload. This scenario might
occur during off-peak business hours.

The sections that follow describe the features and functionality of the workload
management dispatcher in more detail. A scenarios section helps to illustrate the
workload management dispatcher features and functionality with usage examples.

Features and functionality

The workload management dispatcher infrastructure operates at the instance level
in the DB2 database manager. However, at the database level, you specify the CPU
resource entitlements using the CPU shares and CPU limit attributes that can be
placed on a service class through the CREATE SERVICE CLASS and ALTER
SERVICE CLASS statements.

As mentioned, the hard and soft CPU shares attributes have different conditions
under which unused CPU resources, relinquished by a service class or a number of
service classes, can be claimed by the remaining competing service classes.

Chapter 3. Activities management 161

However, both hard and soft CPU shares attributes have the same behavior when
it comes to giving back those claimed CPU resources. For example, when a service
class relinquishes some or all of its full share of CPU resources, those service
classes that claimed the unused CPU resources must give back the CPU resources
to the service class trying to retrieve its full share when it begins to increase its
demand for CPU resources. This will lead to the full restoration of the
user-specified CPU resource entitlement to the retrieving service class if the
demand is present. Every second, a DB2 database manager scheduler thread
evaluates the CPU resource utilization by work in progress and make adjustments
to ensure, over time, that the dispatcher is providing the configured CPU shares
and CPU limit allocations.

The workload management dispatcher operates by limiting both the number of
executing agents simultaneously dispatched to the operating system (OS) and how
long each agent is allowed to execute. The number of executing agents that can be
dispatched at the same time is referred to as the dispatch concurrency level which
you can set using the wlm_disp_concur database manager configuration parameter.

By default, the workload management dispatcher is not enabled. To control DB2
database manager-specific CPU resource entitlements, you must first enable the
workload management dispatcher. To enable the workload management dispatcher,
you must set the wlm_dispatcher database manager configuration parameter to YES
(by default, this configuration parameter is set to NO). For complete details about
how to enable the workload management dispatcher, see: “Enabling workload
management dispatcher” on page 180.

When the workload management dispatcher is enabled, all work running in the
user and maintenance service classes within the DB2 database manager is under
the control of the dispatcher. Work running in the system service class cannot be
configured for CPU resource control because critical DB2 subsystems that run in
this service class are given maximum priority and are not subject to workload
management dispatcher control. By default, once turned on, the dispatcher can
manage CPU resources only by way of CPU limit settings. To allow the dispatcher
to manage CPU resources using both CPU shares and CPU limits, you must set the
wlm_disp_cpu_shares database manager configuration parameter to YES.

Before or after enabling the workload management dispatcher for the first time,
you will want to monitor your workloads to determine the relative CPU resources
that they consume. Based on the relative priority of the workloads, this
information can help in formulating your decisions concerning the creation of
service classes to which the work can be assigned, the type of CPU shares (hard or
soft) to assign to particular service classes, the relative quantity of CPU shares to
assign to each service class, and whether to use CPU limits.

Another consideration that gives you maximum flexibility to control the behavior
of the DB2 database manager is the option to set the minimum percentage of CPU
resource utilization for service classes to be considered active. After setting the
wlm_disp_min_util database manager configuration parameter, service classes
utilizing CPU resources equal to or greater than that minimum percentage are
considered to be active on the host or logical partition (LPAR) and the CPU shares
of the active service classes are factored into CPU resource entitlement calculations.

Through the workload management dispatcher, you can control the allocation of
CPU resources between service classes on your system via the service class CPU
shares attribute. The shares attribute represents the relative entitlement of CPU
time that each service class receives compared to other service classes on the

162 DB2 Workload Management Guide and Reference

system. By allocating more CPU shares to one service class and less to another, you
can control the amount of CPU resources allocated to each service class and
provide better quality of service to one service class over another.

After having made the decision that the earlier enabled workload management
dispatcher can best manage your strained CPU resources by using CPU shares
along with CPU limits, you must enable CPU shares by setting the
wlm_disp_cpu_shares database manager configuration parameter to YES. The
default setting for this parameter is NO. You can set and adjust CPU shares and
CPU limits by using the CREATE SERVICE CLASS and ALTER SERVICE CLASS
statements.

Based on the number of CPU shares assigned to a service class, the workload
management dispatcher calculates the proportion of the CPU resources that each
service class is entitled to use. To determine the proportion of the CPU resources to
which each service superclass is entitled, you can use the following formula to
convert the number of CPU shares of a particular service superclass into a
percentage of CPU resources allocated by the workload management dispatcher:
% CPU(superclass) = (Number of superclass shares /
Total number of shares of all active superclasses) x 100

To determine the proportion of the CPU resources to which each service subclass is
entitled, you can use the following formula to convert the number of CPU shares
of a particular service subclass into a percentage of CPU resources allocated by the
workload management dispatcher:
% CPU(subclass) = % CPU(superclass) x (Number of subclass shares /
Total number of shares of all active subclasses in the superclass)

Note: The total number of CPU shares (both hard and soft) of all active
superclasses are counted across all databases and all members on the host or
LPAR.
For illustrative examples of CPU proportion calculations, see the “Usage scenarios”
section.

Summary of CPU resource scheduling capabilities

The following table summarizes the features of the different CPU resource control
attributes available for DB2 service classes managed by the workload management
dispatcher.

Chapter 3. Activities management 163

Table 44. Summary of workload management dispatcher CPU resource scheduling capabilities

CPU resource
control
attribute

Usage of idle
CPU resources
in the same
context

CPU resource
entitlement
limits are
relative to
other active
service classes
in the same
context

CPU resource
entitlement
limits are
fixed based on
overall system
CPU capacity

Control of
CPU
consumption
at high CPU
resource
utilization

Control of
CPU
consumption
at low CPU
resource
utilization Usage notes

Soft shares Y Y N Y N Ideal for
high-priority
work to exploit
any spare CPU
resources
available on
the host or
LPAR to
maximize
workload
progress

Hard shares N Y N Y Y Ideal for
ensuring work
does not
interfere with
higher priority
work which
might be
running on the
host or LPAR
in various
amounts and
intensity

CPU limits N N Y Y Y Ideal for
sandboxing
and enforcing
consistent
fixed CPU
resource
allocations
between
service classes,
or limiting
service class
CPU resource
consumption
regardless of
other work on
the host or
LPAR

Effects of work outside of workload management dispatcher
control

A workload management dispatcher exists for each DB2 instance. It can only
directly detect and manage DB2 work within its own instance. Any other work
running on the same host or LPAR is not under the direct control of the dispatcher.
The random nature of the CPU resource demands of work running outside of the

164 DB2 Workload Management Guide and Reference

DB2 database manager means that while the CPU limits and the relative shares of
CPU resources among work executing within DB2 can be enforced, at any given
instant of time, the work managed by the dispatcher still needs to compete with
work running outside its own DB2 instance and outside the dispatcher's direct
control. Work that is neither detected nor managed by the workload management
dispatcher includes the following:
v Work performed by applications or middleware products that perform a portion

of their work outside of the DB2 database manager
v Work performed by entities executing in the DB2 system service class
v Work performed by other DB2 instances
v Non-DB2 work performed in fenced mode processes such as fenced stored

procedures
v Non-DB2 work performed in trusted routines. Trusted procedures and

user-defined functions (UDFs) are accounted for in dispatcher CPU resource
scheduling, but the dispatcher is not able to limit CPU utilization when a trusted
routine executes in user code for long periods of time.

Let's consider that you have a host or LPAR that runs only the DB2 database
manager. You have created a database with service classes A and B and assigned a
50% share of the CPU resources to each service class. Assuming the overall host or
LPAR makes full use of the CPU resources at all times, your measurements of total
CPU utilization (%) over time looks similar to that shown in Figure 23 on page 166
panel A.

System

Trusted
Routines

DB2
Instances

Fenced Mode
Processes

Application/
Middleware

Figure 22. Example system diagram

Chapter 3. Activities management 165

Now, let's consider what happens when fenced mode processes (FMPs) are
executed on your host or LPAR. These processes are not under the control of the
workload management dispatcher, so the amount of CPU resources they use varies
randomly. However, out of the remaining CPU resources that the dispatcher can
manage, service classes A and B each continue to get an equal 50% split of the
leftover CPU resources, as shown in panel B.

Interactions between dispatcher and other service class settings

The following table summarizes how the workload management dispatcher
settings on a service class (hard and soft CPU shares, and CPU limit) interact with
other settings on the same service class.

0

10

20

30

40

50

60

70

80

90

100
FMPs - % varies over time

Service class A - 50% of CPU resources

Service class B - 50% of CPU resources

Total CPU %

Time

B

0

10

20

30

40

50

60

70

80

90

100

Service class A - 50%

Service class B - 50%

Total CPU %

Time

A

Figure 23. Total CPU utilization percentage

166 DB2 Workload Management Guide and Reference

Table 45. Interactions between dispatcher and other service class settings

Dispatcher service class
setting Other service class setting Interaction

Hard and soft CPU shares,
and CPU limit

Agent priority
Note: Associating each DB2
service class with an agent
priority, which controls the
relative operating system
priority of agents in the
service class, has been
deprecated and might be
removed in a future release.
Use the workload
management dispatcher in
place of the agent priority to
control CPU consumption.

When the wlm_dispatcher
database manager
configuration parameter is
set to YES, agent priority is
ignored and CPU limits are
activated. When the
wlm_dispatcher parameter is
set to NO, CPU limits are
ignored and no longer
override agent priority.

Hard and soft CPU shares,
and CPU limit

Outbound correlator (OS
WLM integration)

Hard and soft CPU shares,
CPU limit, and OS WLM can
all be active at the same
time.

Hard and soft CPU shares,
and CPU limit

Buffer pool priority Hard and soft CPU shares,
CPU limit, and buffer pool
priority can all be active at
the same time.

Hard and soft CPU shares,
and CPU limit

Prefetch priority Hard and soft CPU shares,
CPU limit, and prefetch
priority can all be active at
the same time.

Interaction between dispatcher settings and thresholds with a
REMAP action

Some workload management thresholds support a REMAP ACTIVITY action to
move executing work from one service subclass to another within the same service
superclass. When work moves to a service subclass with a different CPU share or
CPU limit than the service subclass it moved from, the CPU share and CPU limit
settings of the service subclass to which the work moves are applied.

Comparison between workload management dispatcher and
workload management concurrency thresholds

Although you can control workload scheduling and resource consumption using
both the workload management dispatcher and concurrency thresholds, knowing
the differences in their degree of workload control and benefits will help you to
decide when to apply one or both in your environment. The following table
compares their abilities to control CPU resources.

Chapter 3. Activities management 167

Table 46. Comparison of CPU resource control abilities between workload management
dispatcher and workload management concurrency thresholds

Workload management dispatcher
DB2 workload management concurrency
thresholds

You can directly control CPU allocations
within the DB2 database manager after an
activity begins consuming CPU resources.

You can indirectly control both the
consumption of CPU and other resources,
such as memory, by limiting the number of
connections or activities that are allowed to
execute at the same time.

You can configure relative allocations of soft
and hard shares of CPU resources to service
classes, in addition to absolute limits of CPU
consumption by a single service class.

You can impose an absolute limit on the
concurrency of executing activities or open
connections for a service class, but you
cannot specify any kind of relative CPU
allocations.

Comparison between workload management dispatcher and OS
WLMs (AIX WLM and Linux WLM)

The workload management dispatcher can be used together with an OS WLM
(AIX WLM or Linux WLM) in certain situations to provide even greater control.
The following are some examples of circumstances in which both the workload
management dispatcher and an OS WLM can work together:
v OS WLMs often have OS-level monitoring that complements the workload

management dispatcher monitoring capabilities.
v OS WLMs can manage all applications on the system, including the DBMS. The

workload management dispatcher can provide DB2-specific dispatching, while
the OS WLM manages all the other applications on the system.

v Do not attempt to control CPU resource allocations to individual service classes
with both the OS WLM and the workload management dispatcher at the same
time. You can integrate an OS WLM at the service class level for monitoring
purposes when the workload management dispatcher is enabled. You can also
integrate an OS WLM to control external applications, or the overall CPU
resources allocated to a DB2 instance, or both.

Table 47. Comparison of abilities between workload management dispatcher and OS WLM

Workload management dispatcher OS WLM

A single solution that works across all
platforms.

An OS WLM is specific to each OS. Each has
its own user interface and its own
limitations.

You can control CPU allocations within the
DB2 database manager without the need for
any OS-specific integration and/or set up –
a DBA can manage these settings without
requiring root access to the system.

An OS WLM often requires root privilege
for configuration.

You can leverage database-specific
knowledge when making CPU resource
scheduling decisions that would otherwise
not be possible with OS-level facilities.

An OS WLM treats the DB2 database
manager as just another application and,
therefore, cannot use database-specific
knowledge to make CPU resource
scheduling decisions.

In multiple member environments, all
members can be configured with one
command. However, the result is that you
cannot have a different configuration at each
member.

In multiple member environments, an OS
WLM must be configured at every member.
You can have a different configuration at
each member.

168 DB2 Workload Management Guide and Reference

Table 47. Comparison of abilities between workload management dispatcher and OS
WLM (continued)

Workload management dispatcher OS WLM

Controls the use of CPU resources by only
DB2 work running in the user and
maintenance service classes within the scope
of a single DB2 instance. The dispatcher
cannot control the use of CPU resources by
applications executing external to the DB2
instance.

An OS WLM can fully control CPU
resources on the entire system.

CPU resource control is accomplished
through both soft and hard CPU shares.

OS WLM solutions on AIX and Linux do not
currently provide an equivalent of the DB2
hard CPU shares.

Comparison between workload management dispatcher and
agent priority

Workload control using agent priority can be used. The ability of agent priority to
control CPU resources is compared with that of the workload management
dispatcher in the following table.

Table 48. Comparison of CPU resource control abilities between workload management
dispatcher and agent priority

Workload management dispatcher Agent priority

A method for consistently and accurately
allocating or imposing limits on the use of
CPU resources between service classes.

Agent priority cannot impose limits on the
use of CPU resources by a service class.
Agent priority can only give a service class
priority over another without any granular
control over CPU resource entitlements.

Note: Associating each DB2 service class with an agent priority, which controls the
relative operating system priority of agents in the service class, has been
deprecated and might be removed in a future release. Use the workload
management dispatcher in place of the agent priority to control CPU consumption.

Usage scenarios

Scenario 1: CPU entitlement calculations

Figure 24 on page 170 shows the data server configured as illustrated. For
illustration purposes to help describe the basic concepts, assume that there is
negligible work running in the default user, maintenance, and system service
classes. At the start of the scenario, consider that there is enough work executing in
the user service superclasses A, B, and C to use the full CPU resource entitlements
for those service classes. For the following scenario, there is only one DB2 instance
with one database and only one logical member on this host or LPAR.

Chapter 3. Activities management 169

As shown in Figure 24, the CPU entitlement percentage for each of the service
superclasses is calculated as follows:
v Service superclass A has 60%

(6000 / (6000 + 3000 + 1000)) x 100

v Service superclass B has 30%
(3000 / (6000 + 3000 + 1000)) x 100

v Service superclass C has 10%
(1000 / (6000 + 3000 + 1000)) x 100

CPU shares can be assigned at both the service superclass and service subclass
levels. If you do not specify CPU shares when creating a service superclass or
service subclass, the DB2 database manager assigns a default of 1000 hard CPU
shares to such service classes. At the superclass level, the CPU shares value
represents how the system CPU resources are divided among DB2 service
superclasses. At the subclass level, the CPU shares value represents the division of
the CPU resources available to a particular superclass among its active subclasses.

Scenario 2: Workload management dispatcher operates at instance level; service
classes operate at database level

Data server

Default user
service class

Default system
service class

User requests

User requests

User requests

System
requests

Maintenance
requests

Default user
workload

Default
maintenance
service class

Service
superclass A

Default service
subclass

Workload A

Workload B

Workload CUser requests

Service
superclass B

Default service
subclass

Service
superclass C

Default service
subclass

CPU entitlements

A
60%

B
30%

C
10%

Service class A
(6000 shares)

Service class B
(3000 shares)

Service class C
(1000 shares)

Legend

Figure 24. Data server configuration

170 DB2 Workload Management Guide and Reference

The workload management dispatcher operates at the instance level, but the
configurations (CPU shares and CPU limits) that the dispatcher uses to allocate
CPU resources are placed on individual service superclasses and service subclasses
within individual databases. When multiple databases exist within the same
instance, the sum of the CPU share values within service superclasses on each
database determines the relative allocation of the CPU resources that each database
receives. For example, there are two databases in the same instance, database A
and database B, each database has two service superclasses (SC1 and SC2), as
shown in Figure 25 on page 172 panel A.

Chapter 3. Activities management 171

In this example scenario, we want a 70/30 percentage split of CPU resources in
database A which is configured using soft CPU shares of 7000 and 3000 for SC1

B-SC2
16000 shares
A-SC1
7000 shares

A-SC2
3000 shares

B-SC1
24000 shares

A

B

C

D

E

A

A

A

A

A

B

B

B

B

B

SC1

SC2

SC1

SC2

SC1
% Share: 70
Shares: 7000

SC2
% Share: 30
Shares: 3000

SC1

SC2

SC1
% Share: 70
Shares: 7000

SC2
% Share: 30
Shares: 3000

SC1
% Share: 60

SC2
% Share: 40

SC1
% Share: 70
Shares: 7000

SC2
% Share: 30
Shares: 3000

SC1
% Share: 60

SC2
% Share: 40

SC1
% Share: 70
Shares: 7000

SC2
% Share: 30
Shares: 3000

SC1
% Share: 60
Shares: 24000

SC2
% Share: 40
Shares: 16000

% Share: 20 % Share: 80

% Share: 20 % Share: 80

Figure 25. CPU shares allocations to service classes for two databases in one instance

172 DB2 Workload Management Guide and Reference

and SC2, respectively, as shown in panel B. In database B, we want a 60/40
percentage split of CPU resources for SC1 and SC2, respectively, as shown in panel
C.

Before deciding on how this 60/40 percentage split translates into CPU shares in
the two service superclasses for database B, we must decide what are the required
relative CPU resource entitlements between databases A and B. The work running
in database B is much more important than that running in database A. Therefore,
we want database B to have a CPU entitlement of 80% and database A to have
20%.

The sum of the CPU shares on database A is 10,000. These 10,000 CPU shares
represent 20% of the total CPU shares across the two databases, we require 50,000
CPU shares in total to represent 100% of the total CPU resources. Therefore,
database B must be assigned 80% of those 50,000 CPU shares, resulting in 40,000
CPU shares. To obtain the 60/40 percentage split between the two superclasses of
database B, service superclass SC1 receives 60% of the 40,000 total CPU shares
assigned in database B, resulting in 24,000 CPU shares. Service superclass SC2
receives 40% of the 40,000 total CPU shares assigned in database B, resulting in
16,000 CPU shares.

The pie chart shows the CPU shares assignments that achieved the percentage
CPU resource allocations that we wanted.

Scenario 3: Favor one workload over another at high CPU utilization and protect
favored workload at low CPU utilization

In this example usage scenario, the aim is to manage the quality of service for
multiple workloads while simultaneously maximizing the CPU utilization on the
system. However, in addition to experiencing contention for the CPU resources, the
workloads in this scenario experience contention for other resources. Allocating
unused CPU resources to some workloads when competing workloads, not
consuming their full CPU entitlement, are still present, can cause a degradation in
performance due to CPU cache contention, I/O contention, or other secondary
effects.

In this scenario, there is a need to protect the favored workload from unfavored
workloads, despite the possibility that the CPU resources are not fully utilized. The
under-utilized CPU resources can result when unfavored workloads are limited
and the favored workload is active, but not using its full CPU entitlement. We can
accomplish protecting the favored workload by assigning hard CPU shares on the
unfavored workloads and assigning soft CPU shares on the favored workload.

Again, let's use two workloads: 'Favored' and 'Other'. The 'Favored' workload is to
have 70% of the CPU resources when running at the same time as the 'Other'
workload and 100% when the 'Other' workload is not present. The 'Other'
workload is to have 30% of the CPU resources when running at the same time as
the 'Favored' workload and 100% when the 'Favored' workload is not present. This
is similar to Scenario 3, except that the overall CPU utilization drops below 100%
on occasion.

The following steps show how to configure DB2 workload management to achieve
the goals listed previously:
1. Create the 'Favored' and 'Other' service superclasses and assign CPU shares so

that the 70/30 CPU entitlement proportion is met. CPU shares can be specified
as 7 and 3, 14 and 6, or any other combination that achieves the 70%/30% CPU

Chapter 3. Activities management 173

entitlement ratio. In the following example, 7000 soft CPU shares are assigned
to the 'Favored' service class and 3000 hard CPU shares are assigned to the
'Other' service class:
create service class favored soft cpu shares 7000
create service class other hard cpu shares 3000

2. Create the 'Favored' and 'Other' workloads as shown in the following example:
create workload favored appl_name(’favoredapp’) service class favored
create workload other appl_name(’otherapp’) service class other

As a result, the system looks like the following:

For simplicity, assume only a negligible amount of work is running in the
service classes other than 'Favored' and 'Other'.

3. Measure whether the desired CPU share goals are being achieved. The system
can be in one of several states in terms of its workload:
a. 100% CPU utilization

1) Work is executing in both the 'Favored' workload and the 'Other'
workload

Data server

Default service
subclass

Service
superclass
'Other'

Default user
service class

Default system
service class

User requests

User requests

User requests

Maintenance
requests

System
requests

Default user
workload

Default
maintenance
service class

Workload
'Favored'

Default service
subclass

Workload
'Other'

Service
superclass
'Favored'

Figure 26. Data server configuration

174 DB2 Workload Management Guide and Reference

The measured CPU utilization is 70% for the 'Favored' service class and
30% for the 'Other' service class.

2) Work is executing in only the 'Favored' workload
The measured CPU utilization is 100% for the 'Favored' service class and
0% for the 'Other' service class.

3) Work is executing in only the 'Other' workload
The measured CPU utilization is 0% for the 'Favored' service class and
100% for the 'Other' service class.

b. A service class uses less than its CPU entitlement
1) Work is executing in both the 'Favored' workload and the 'Other'

workload. The 'Favored' workload is using 50% instead of the full 70%
that comes from its CPU entitlement.
The measured CPU utilization of the 'Favored' workload is 50%. The
'Other' workload continues to use 30% because its CPU shares are hard.
The total CPU utilization is 80%.

2) Work is executing in both the 'Favored' workload and the 'Other'
workload. The 'Other' workload is using 10% instead of the full 30%
that comes from its CPU entitlement.
Due to its CPU shares being soft, the measured CPU utilization of the
'Favored' service class increases from 70% to 90%, claiming the unused
20% relinquished by the 'Other' service class. The CPU utilization of the
'Other' service class is 10%. The total CPU utilization is 100%.

3) Work is executing in only the 'Favored' workload and it uses all of its
CPU entitlement
Due to the absence of work running in the 'Other' service class, the
'Favored' service class can use both its own CPU entitlement of 70% and
the unused 30% of CPU resources relinquished by the 'Other' service
class. The total CPU utilization is 100%.

4) Work is executing in only the 'Other' workload and it uses all of its CPU
entitlement
Due to the absence of work running in the 'Favored' service class, the
'Other' service class can use both its own CPU entitlement of 30% and
the unused 70% of CPU resources relinquished by the 'Favored' service
class. The total CPU utilization is 100%.

Scenario 4: Create a sandbox to achieve consistency, even at the expense of some
CPU resources becoming idle

In this example usage scenario, a favored workload never consumes more than its
fixed proportion of CPU resources, regardless of the availability of unused CPU
resources.

Let's use two workloads: 'Favored' and 'Other'. The 'Favored' workload is to have a
maximum of 70% of the CPU resources at any time, regardless of the availability of
unused CPU resources. The 'Other' workload is to have a maximum of 30% of the
CPU resources at any time, regardless of the availability of unused CPU resources.

The following steps show how to configure DB2 workload management to achieve
the goals listed previously:
1. Create the 'Favored' and 'Other' service classes and assign each with a CPU

limit so that the maximum 70% and 30% of CPU resources is enforced for the
'Favored' and the 'Other' workloads, respectively. In the following example,

Chapter 3. Activities management 175

CPU limits must be specified as a number between 1 and 100, which represents
the maximum percentage of CPU utilization for that service class:
create service class favored cpu limit 7000
create service class other cpu limit 3000

2. Create the 'Favored' and 'Other' workloads as shown in the following example:
create workload favored appl_name(’favoredapp’) service class favored
create workload other appl_name(’otherapp’) service class other

As a result, the system looks like that in Figure 26 on page 174.
For simplicity, assume only a negligible amount of work is running in the
service classes other than 'Favored' and 'Other'.

3. Measure whether the desired CPU limits are successfully being enforced. The
system can be in one of several states in terms of its workload:
a. 100% CPU utilization

1) Work is executing in both the 'Favored' workload and the 'Other'
workload
The measured CPU utilization is 70% for the 'Favored' service class and
30% for the 'Other' service class.

b. One or more service classes uses less than its CPU limit
1) Work is executing in both the 'Favored' workload and the 'Other'

workload. The 'Favored' workload is using 50% instead of the full 70%
that comes from its CPU limit entitlement.
The measured CPU utilization of the 'Favored' workload is 50%. The
'Other' workload continues to use 30% because that is the maximum
CPU limit entitlement. The total CPU utilization is 80%.

2) Work is executing in both the 'Favored' workload and the 'Other'
workload. The 'Other' workload is using 10% instead of the full 30%
that comes from its CPU limit entitlement.
Due to its CPU limit that stipulates a maximum of 70% CPU utilization,
the measured CPU utilization of the 'Favored' service class remains at
70%. The unused 20% of CPU resources relinquished by the 'Other'
service class remains unclaimed. The CPU utilization of the 'Other'
service class is 10%. The total CPU utilization is 80%.

3) Work is executing in only the 'Favored' workload and it is using the
maximum amount of CPU resources as stipulated by its CPU limit
Due to its CPU limit that stipulates a maximum of 70% CPU utilization,
the measured CPU utilization of the 'Favored' service class remains at
70%. The unused 30% of CPU resources relinquished by the 'Other'
service class remains unclaimed. The CPU utilization of the 'Other'
service class is 0%. The total CPU utilization is 70%.

4) Work is executing in only the 'Other' workload and it is using the
maximum amount of CPU resources as stipulated by its CPU limit
Due to its CPU limit that stipulates a maximum of 30% CPU utilization,
the measured CPU utilization of the 'Other' service class remains at 30%.
The unused 70% of CPU resources relinquished by the 'Favored' service
class remains unclaimed. The CPU utilization of the 'Favored' service
class is 0%. The total CPU utilization is 30%.

Scenario 5: Needing to divide workloads by user and still favor one type of
work over another for a given user

176 DB2 Workload Management Guide and Reference

In the preceding scenarios, service classes were used to control the allocation of
CPU resources between different workloads based on business priorities. In some
cases, it might be desirable to both control the share of resources among workloads
based on business priorities, and prioritize short-running work over long-running
work to improve overall throughput or response times.

In this example usage scenario, a CEO and all of the one thousand other
employees access a database through one application named mybizapp. Our aim is
to give the CEO alone a full 10% share of the CPU resources and the remaining
90% of the CPU resources is used by the one thousand other users that access the
database. To accomplish this goal, create a service superclass for the CEO (ceo_sc).
Then, define a workload to map the CEO to her service superclass, as shown in the
following examples:
create service class ceo_sc soft cpu shares 1000
create workload ceo_wl

applname(’mybizapp’)
session_user(’ceo’)
service class ceo_sc

Create a service superclass for all of the other users (mybizapp_sc). Then, define a
workload (mybizapp_wl) to map all of the other users of the mybizapp application to
the newly created service superclass mybizapp_sc, as shown in the following
example:
create service class mybizapp_sc hard cpu shares 9000
create workload mybizapp_wl

applname(’mybizapp’)
service class mybizapp_sc

Within the workload of the mybizapp application, there are both high-cost and
low-cost queries. The business organization has determined that low-cost queries,
costing less than 10,000 timerons, are generally higher in priority than high-cost
queries, costing more than 10,000 timerons. Therefore, low-cost queries are to be
given a greater share of the CPU resources than high-cost queries, specifically by a
2:1 ratio. To accomplish this goal, create two service subclasses (lowcost_ssc and
highcost_ssc) within the mybizapp_sc service superclass and assign soft CPU
shares in a ratio of 2:1, as shown in the following example:
create service class lowcost_ssc under mybizapp_sc soft cpu shares 2000
create service class highcost_ssc under mybizapp_sc soft cpu shares 1000

The 2:1 ratio of soft CPU shares determines how much of the 90% of the CPU
resources assigned to the mybizapp_sc service superclass is allocated to low-cost
queries and how much is allocated to high-cost queries.

Create a work class set (splitbycost_wcs) and work action set (mybizapp_was) to
route low-cost queries to the lowcost_ssc service subclass and high-cost queries to
the highcost_ssc service subclass, as shown in the following examples:
create work class set splitbycost_wcs
(work class lowcost_wc work type dml for timeroncost from 0 to 10000,
work class highcost_wc work type dml for timeroncost from 10001)

create work action set mybizapp_was for service class mybizapp_sc
using work class set splitbycost_wcs
(work action maplowcost_wa on work class lowcost_wc map activity
to lowcost_ssc, work action maphighcost_wa on work class highcost_wc
map activity to highcost_ssc)

When work is executing in each of the service classes and consuming its full CPU
resource entitlement, the previous configurations result in a division of the CPU

Chapter 3. Activities management 177

resources, as shown in the following figure:

The ceo_sc service superclass has 1000 CPU shares out of 10,000, resulting in a
CPU resource entitlement of 10%. The mybizapp_sc service superclass has 9000
CPU shares out of 10,000, resulting in a CPU resource entitlement of 90%. Within
the 90% of the mybizapp_sc service superclass CPU resource entitlement, its
lowcost_ssc service subclass has 2 shares out of 3, resulting in a CPU resource
entitlement of 66.7% of the CPU resources of its service superclass, or 60% of the
total CPU resources. The highcost_ssc service subclass has 1 share out of 3,
resulting in a CPU resource entitlement of 33.3% of the CPU resources of its
superclass, or 30% of the total CPU resources.

More information

Complete details are provided about the following subjects:
v Hard CPU shares, see: “Hard CPU shares” on page 181.
v Soft CPU shares, see: “Soft CPU shares” on page 190.
v CPU limit, see: “CPU limit” on page 194.
v Minimum CPU utilization level for a service class to be considered active, see:

“Minimum CPU resource utilization for service class to be considered active” on
page 210.

v Dispatch concurrency level, see: “Dispatch concurrency level” on page 213.
v Monitoring and tuning workload management dispatcher performance, see:

“Monitoring and tuning workload management dispatcher performance” on
page 215.

Workload management dispatcher behavior in multimember
environments
When the workload management dispatcher is enabled on multimember DB2
instances, CPU resource scheduling operates across all of the members on a given
host. Note that the workload management dispatcher also supports shared LPAR
(micropartition) environments on AIX.

Multimember database environments

On multimember DB2 instances, the dispatcher behaves in the following ways:
v The relative quantity of CPU shares are evaluated and CPU resources are

allocated across all members in the instance based on the work that is active in
that instance on that host or LPAR as a whole. For example, let's consider a two
member database with work being executed in two service classes, A and B.
Service class A is assigned 3500 soft CPU shares and service class B is assigned
6500 soft CPU shares. The CPU utilization for the entire host or LPAR is 35% for
service class A and 65% for service class B despite the possibility that relatively

highcost_ssc

lowcost_ssc

ceo_sc

mybizapp_sc

60%

30%

10%

90%

Figure 27. CPU resource entitlements

178 DB2 Workload Management Guide and Reference

more work is being executed on one member than the other. The workload
management dispatcher looks across both members when making its decisions
regarding which service class should be getting more CPU resources at any
given moment.

v The value of the wlm_disp_concur database manager configuration parameter
applies to each host or LPAR. In multimember databases, the dispatch
concurrency level specified by the wlm_disp_concur configuration parameter is
applied across all of the members.

v For multimember databases, CPU limits are enforced on a per host or LPAR
basis – when multiple members are used, each partition is allowed to use all of a
specified CPU limit as long as the sum across all members is less than or equal
to the CPU limit. If the CPU limit on the single service class A is 35% and there
are 2 members, then member 1 can use up to 35% if the sum of the CPU
utilization across member 1 and 2 does not exceed 35%.

Micropartition (shared LPAR) environments

The workload management dispatcher supports micropartition environments in
AIX. In micropartition environments, the percentage CPU utilization for both
controls and monitoring in the workload management dispatcher is computed
relative to the CPU resources allocated to the LPAR by the operating system or
hypervisor over the most recent dispatcher CPU resource scheduling cycle, using
the entitled (guaranteed) CPU resources for the LPAR as a baseline level. In cases
when the CPU resource allocated to the LPAR is greater than the entitled CPU

A 35%

Partition 2

B 65%

Partition 1

Figure 28. Multimember database environments: Soft CPU shares allocations pie chart
across 2 database members

Partition 1 Partition 2

A 35%

Figure 29. Multimember database environments: CPU limit pie chart across two database
members

Chapter 3. Activities management 179

resources, the dispatcher computes the CPU utilization relative to the greater
amount, and when the CPU resource allocation is less than the entitled CPU
resources, the dispatcher computes the CPU utilization relative to the entitled CPU
resources.

Note: The workload management dispatcher behavior is consistent with the way
AIX WLM performs its calculations. For dedicated LPARs on AIX, and for all
non-AIX environments, the CPU utilization is calculated relative to the full CPU
capacity of the physical cores available to the DB2 database manager.

Enabling workload management dispatcher
To enable the DB2 workload management dispatcher, set the value of the
wlm_dispatcher database manager configuration parameter to YES. The workload
management dispatcher manages CPU resources allocated to DB2 user and
maintenance service classes.

Procedure

To enable workload management dispatcher by using the command line processor
(CLP):
1. Attach to your DB2 instance.

ATTACH TO instance-name

2. Issue the UPDATE DATABASE MANAGER CONFIGURATION (or UPDATE DBM CFG)
command. Set the value of the wlm_dispatcher database manager configuration
parameter to YES.
UPDATE DBM CFG USING wlm_dispatcher yes

3. Optional: Detach from your DB2 instance.
DETACH

Results

The workload management dispatcher is enabled. You can now specify CPU limit
allocations of CPU resources to DB2 service classes.

What to do next

After having enabled the workload management dispatcher to manage CPU
resources, you must consider completing the following tasks:
v Create or alter a service class and configure the CPU limit by using the CREATE

SERVICE CLASS or ALTER SERVICE CLASS statement. See: “Setting a CPU
limit” on page 209.

v Enable hard and soft CPU shares by configuring the wlm_disp_cpu_shares
database manager configuration parameter. See step 1 in: “Enabling and setting
soft CPU shares” on page 193.

v Create or alter a service class and configure a hard CPU share by using the
CREATE SERVICE CLASS or ALTER SERVICE CLASS statement. See: “Enabling
and setting hard CPU shares” on page 188.

v Create or alter a service class and configure a soft CPU share by using the
CREATE SERVICE CLASS or ALTER SERVICE CLASS statement. See: “Enabling
and setting soft CPU shares” on page 193.

v Set the minimum CPU utilization percentage for workload management
dispatcher to consider service classes to be active by configuring the

180 DB2 Workload Management Guide and Reference

wlm_disp_min_util database manager configuration parameter. See: “Setting
minimum CPU resource utilization for service class to be considered active” on
page 212.

v Set the dispatch concurrency level by configuring the wlm_disp_concur database
manager configuration parameter. See: “Setting dispatch concurrency level” on
page 214.

Ensuring maximum DB2 workload management dispatcher
scheduling accuracy
To ensure maximum scheduling accuracy for the workload management
dispatcher, the DB2 database manager attempts to assign realtime priorities to the
db2wlmt timer thread and the db2wlmtm scheduling threads. For assignment of such
priorities to succeed, certain permissions need to be granted to the DB2 database
manager, depending on the operating system.

Procedure

Without the ability to assign realtime priorities to the timer and scheduling
threads, the DB2 workload management dispatcher is still able to prioritize work,
but not as accurately or optimally as it would otherwise. The following tasks, to
ensure maximum scheduling accuracy for the workload management dispatcher,
are listed according to operating system. Select the operating system that pertains
to you and then follow the given instructions.
v On AIX operating systems, the instance owner must have

CAP_NUMA_ATTACH and CAP_PROPAGATE capabilities to set a higher
relative priority for agents in a service class using AGENT PRIORITY. To grant
these capabilities, logon as root and run the following command:
chuser capabilities=CAP_NUMA_ATTACH,CAP_PROPAGATE

v On Solaris 10 or higher, the instance owner must have the proc_priocntl
privilege to set a higher relative priority for agents in a service class using
AGENT PRIORITY. To grant this privilege, logon as root and run the following
command:
usermod -K defaultpriv=basic,proc_priocntl db2user

In this example, proc_priocntl is added to the default privilege set of user
db2user.
Moreover, when the DB2 database manager is running in a non-global zone of
Solaris, the proc_priocntl privilege must be added to the limit privilege set of
the zone. To grant this privilege to the zone, logon as root and run the following
command:
global# zonecfg -z db2zone
zonecfg:db2zone> set limitpriv="default,proc_priocntl"

In this example, proc_priocntl is added to the limit privilege set of the zone
db2zone.

v On Solaris 9, there is no facility for the DB2 database manager to raise the
relative priority of threads. Upgrade to Solaris 10 or higher to take advantage of
this feature.

Hard CPU shares
The DB2 workload management dispatcher can manage CPU resources using
shares-based entitlements that are assigned to service classes. Hard CPU shares,
when assigned to a service class containing work viewed by the administrator as

Chapter 3. Activities management 181

high impact or lower priority, prevents that service class from consuming more
than its share of CPU resources whenever there is work in other service classes
running on the system.

Introduction

Hard CPU shares can be assigned to any user and maintenance service class, but
not to the system service class. After enabling the workload management
dispatcher, monitoring your existing workloads to determine the extent of CPU
resource consumption, and enabling the CPU shares attribute for service classes,
you can assign hard CPU shares to the service classes that you consider to be
running lower-priority or high-impact work. Using hard CPU shares ensures that
these service classes will have their CPU consumption limited in the presence of
other workloads, both limiting their impacts on the system, and ensuring that the
remaining CPU is reserved for other higher priority work.

The sections that follow describe the features and functionality of the hard CPU
shares in more detail. A usage scenarios section helps to illustrate the hard CPU
shares features and functionality with usage examples.

Features and functionality

When the host or logical partition (LPAR) is running at 100% CPU utilization, the
allocation of CPU resources between service classes simply reflects their relative
share percentages. On the other hand, when the host or LPAR begins to run below
full CPU utilization, the reallocation of CPU resources is complex and dependent
on whether the CPU shares attribute on each active service class is set to soft or
hard CPU shares.

A service class with hard CPU shares assigned cannot exceed its CPU resource
entitlement, indicated by its CPU shares configuration, to consume any unused
CPU resources that become available on the host or LPAR. The workload
management dispatcher always respects the CPU resource entitlement, determined
by the relative amount of hard CPU shares that were assigned, when work is still
running in competing service superclasses or running in competing service
subclasses within the same service superclass. If competing workloads are not
present or a competing workload temporarily becomes totally idle, service classes
with hard CPU shares are able to claim unused CPU resources.

The hard CPU shares setting is most effective when used in cases where you want
to strictly enforce the CPU resource entitlement on a service class to prevent work
running in this service class from interrupting more important work running on
the host or LPAR. Assign hard CPU shares to service classes that run complex or
intensive queries that might otherwise degrade the performance of higher priority
work due to contention on resources such as I/O, bufferpool, or CPU caches.

To enable the CPU shares attribute, you must set the value of the
wlm_disp_cpu_shares database manager configuration parameter to YES. The
default setting for this parameter is NO. After this parameter has been enabled, all
existing and newly created service classes are assigned 1000 hard CPU shares by
default to initially ensure an equal distribution of CPU resources. You can assign
and adjust hard CPU shares by using the CREATE SERVICE CLASS and ALTER
SERVICE CLASS statements. For complete details about how to enable and set
hard CPU shares, see: “Enabling and setting hard CPU shares” on page 188.

182 DB2 Workload Management Guide and Reference

Based on the number of CPU shares assigned to a service class, the workload
management dispatcher calculates the proportion of the CPU resources that each
service class is entitled to use. To determine the proportion of the CPU resources to
which each service superclass is entitled, you can use the following formula to
convert the number of CPU shares of a particular service superclass into a
percentage of CPU resources allocated by the workload management dispatcher:
% CPU(superclass) = (Number of superclass shares /

Total number of shares of all active superclasses) x 100

To determine the proportion of the CPU resources to which each service subclass is
entitled, you can use the following formula to convert the number of CPU shares
of a particular service subclass into a percentage of CPU resources allocated by the
workload management dispatcher:
% CPU(subclass) = % CPU(superclass) x (Number of subclass shares /

Total number of shares of all active subclasses in the superclass)

Note: The total number of CPU shares (both hard and soft) of all active
superclasses are counted across all databases and all members on the host or
LPAR.

Usage scenarios

Scenario 1

In Figure 30 on page 184 panel A, service class B has been assigned hard CPU
shares and service classes A and C have been assigned soft CPU shares, the
amounts of which are described in the figure legend. The pie chart represents the
proportion of allocated CPU resources to which each of these active service classes
are entitled and each service class is using their complete share of the CPU
resources, therefore summing to 100% CPU utilization in this example. In panel B,
service class A does not have enough work to fully use its CPU entitlement,
dropping from 60% to 50% CPU utilization. The unused 10% of the CPU resources,
temporarily relinquished by service class A, can be claimed by only the competing
service class C based on its soft CPU shares assignment. Service class B cannot
exceed its CPU resource allocation of 30% in this example because it has hard CPU
shares assigned and there is enough work running in service classes A and C for
those service classes to be considered active by the dispatcher. Panel C shows the
total reallocation of CPU resources to service class C, increasing from 10% to 20%
of the total available CPU resources.

Chapter 3. Activities management 183

If service class A experiences an increase in its workload, it effectively increases its
demand on CPU resources. In this circumstance, service class C immediately
relinquishes to service class A all of the claimed CPU resources, thereby restoring
the state of CPU resource allocations to that which is depicted by the pie chart in
panel A.

Note: When service classes compete to consume CPU resources, individual service
class requests for CPU resources is handled by the workload management
dispatcher in a first-come-first-served fashion. Due to typically frequent and
short-lived requests for CPU resources on a busy host or LPAR, the reallocation of
unused CPU resources over time results in a smooth redistribution of CPU
resources which is in proportion to the relative CPU shares assignments.

Scenario 2

The use of hard shares can result in some portion of the CPU resources to remain
under-utilized on the database server. Under-used CPU resources can occur in
cases where the other service classes were not running a large enough workload to
fully use their CPU resource allocations. Under-used CPU resources are desirable

A

B

C

A
60%

A
50%

B
30%

B
30%

C
10%

C
10%

Service class A
(6000 soft CPU shares)

Service class A
(6000 soft CPU shares)

Service class A
(6000 soft CPU shares)

Service class B
(3000 hard CPU shares)

Service class B
(3000 hard CPU shares)

Service class B
(3000 hard CPU shares)

Service class C
(1000 soft CPU shares)

Service class C
(1000 soft CPU shares)

Service class C
(1000 soft CPU shares)

Legend

Legend

Legend

A
50%

B
30%

C
20%

Figure 30. Hard and soft CPU shares pie charts: Scenario 1

184 DB2 Workload Management Guide and Reference

in cases where the hard shares are being used to limit an intensive workload that
might otherwise interfere with the progress of other service classes, even when the
CPU resources are below full utilization. This circumstance generally occurs due to
contention on resources such as I/O or the CPU cache.

In Figure 31 on page 186 panel A, service classes B and C have been assigned hard
CPU shares and service class A has been assigned soft CPU shares, the amounts of
which are described in the figure legend. The pie chart represents the proportion of
allocated CPU resources to which each of these active service classes are entitled
and each service class is using their complete share of the CPU resources, therefore
summing to 100% CPU utilization in this example. In panel B, service class A does
not have enough work to fully use its CPU entitlement, dropping from 60% to 50%
CPU utilization. The unused 10% of the CPU resources, temporarily relinquished
by service class A, cannot be claimed by the competing service classes B and C
based on their hard CPU shares assignment. Service classes B and C cannot exceed
their CPU resource allocations of 30% and 10%, respectively, in this example
because they both have hard CPU shares assigned and there is enough work
running in service class A for it to be considered active by the dispatcher (CPU
utilization falls below the level configured for the wlm_disp_min_util database
manager configuration parameter; default is 5%). Panel C shows that the unused
CPU resources are not reallocated and the CPU resources remain under-utilized in
this scenario.

Chapter 3. Activities management 185

This scenario shows that you can protect the progress of work running in a
high-priority service class from interruptions by work running in low-priority
service classes.

Scenario 3

Hard CPU shares offer benefits over traditional fixed percentage CPU limits. In the
absence of other workloads, the service class with hard CPU shares has the
flexibility to claim unused CPU resources. Therefore, a service class with a hard
CPU shares assignment is not artificially limited when other work is not present on
the host or LPAR as that which occurs for a service class with fixed CPU limits.

In Figure 32 on page 187 panel A, service classes B and C have been assigned hard
CPU shares and service class A has been assigned soft CPU shares, the amounts of
which are described in the figure legend. The pie chart represents the proportion of
allocated CPU resources to which each of these active service classes are entitled
and each service class is using their complete share of the CPU resources, therefore
summing to 100% CPU utilization in this example. In panel B, service class A does
not have any work to fully use its CPU entitlement, dropping from 60% to 0%

A

B

C

A
60%

A
50%

B
30%

B
30%

C
10%

C
10%

Service class A
(6000 soft CPU shares)

Service class A
(6000 soft CPU shares)

Service class A
(6000 soft CPU shares)

Service class B
(3000 hard CPU shares)

Service class B
(3000 hard CPU shares)

Service class B
(3000 hard CPU shares)

Service class C
(1000 hard CPU shares)

Service class C
(1000 hard CPU shares)

Service class C
(1000 hard CPU shares)

Legend

Legend

Legend

A
50%

B
30%

C
10%

Figure 31. Hard and soft CPU shares pie charts: Scenario 2

186 DB2 Workload Management Guide and Reference

CPU utilization. The dispatcher considers service class A as being inactive. The
unused 60% of the CPU resources, temporarily relinquished by service class A, can
now be claimed by the competing service classes B and C based on their hard CPU
shares assignment and an inactive service class. Service classes B and C, in this
circumstance, can exceed their CPU resource allocations of 30% and 10%,
respectively, because they both have hard CPU shares assigned and there is not
enough work running in service class A for it to be considered active by the
dispatcher (CPU utilization falls below the level configured for the
wlm_disp_min_util database manager configuration parameter; default is 1%).
Panel C shows that service class B is allocated 75% ((3000 / (3000 + 1000)) x 100) of
the CPU resources and service class C is allocated 25% ((1000 / (3000 + 1000)) x
100).

If service class A experiences an increase in its workload, it effectively increases its
demand on CPU resources. In this circumstance, service classes B and C
immediately relinquish to service class A all of the claimed CPU resources, thereby
restoring the state of CPU resource allocations to that which is depicted by the pie
chart in panel A.

A

B

C

A
60%

B
30%

B
30%

C
10%

C
10%

Service class A
(6000 soft CPU shares)

Service class A
(6000 soft CPU shares)

Service class A
(6000 soft CPU shares)

Service class B
(3000 hard CPU shares)

Service class B
(3000 hard CPU shares)

Service class B
(3000 hard CPU shares)

Service class C
(1000 hard CPU shares)

Service class C
(1000 hard CPU shares)

Service class C
(1000 hard CPU shares)

Legend

Legend

Legend

B
75%

C
25%

Figure 32. Hard and soft CPU shares pie charts: Scenario 3

Chapter 3. Activities management 187

This scenario shows that although you can protect the progress of work running in
high-priority service classes from interruptions by work running in low-priority
service classes, when high-priority work is no longer present (such as during
off-peak business hours), low-priority service classes with hard CPU shares still
have the flexibility to claim the unused CPU resources.

Note: If either service class B or C does not use its full CPU resource allocation
and is still considered by the dispatcher to be actively running work, the other
service class with hard CPU shares cannot take advantage of it and use more than
its allocation.

More information

Complete details are provided about the following workload management
dispatcher subjects:
v Workload management dispatcher, see: “Workload management dispatcher” on

page 161.
v Soft CPU shares, see: “Soft CPU shares” on page 190.
v CPU limit, see: “CPU limit” on page 194.
v Minimum CPU utilization level for a service class to be considered active, see:

“Minimum CPU resource utilization for service class to be considered active” on
page 210.

v Dispatch concurrency level, see: “Dispatch concurrency level” on page 213.
v Monitoring and tuning workload management dispatcher performance, see:

“Monitoring and tuning workload management dispatcher performance” on
page 215

Enabling and setting hard CPU shares
Enable the CPU shares attributes by setting the value of the wlm_disp_cpu_shares
database manager configuration parameter to YES. Set the hard CPU shares
attribute using the CREATE SERVICE CLASS or ALTER SERVICE CLASS
statements. You will generally want to set hard CPU shares on service classes
running low-priority or high-impact work.

Before you begin

Note: For the hard CPU shares setting to be effective, you must enable the
workload management dispatcher by configuring the wlm_dispatcher database
manager configuration parameter. This can be done either before or after you have
enabled and set the hard CPU shares. See: “Enabling workload management
dispatcher” on page 180.

About this task

The CPU shares attributes are enabled in this task using the command line
processor method.

The hard CPU shares attribute is set for a service class in this task using the
CREATE SERVICE CLASS or ALTER SERVICE CLASS statement using the
command line processor.

Restrictions

You can assign soft CPU shares only to service classes that the workload
management dispatcher can control, which are user and maintenance service

188 DB2 Workload Management Guide and Reference

classes. The CPU resource allocations for system service classes cannot be
controlled by the workload management dispatcher.

Procedure

Skip to step 2 if the CPU shares attributes have already been enabled
To enable the CPU shares attributes:
1. Using the command line processor (CLP), issue the UPDATE DATABASE MANAGER

CONFIGURATION (or UPDATE DBM CFG) command and set the value of the
wlm_disp_cpu_shares database manager configuration parameter to YES; the
parameter value is updated immediately by first attaching to your DB2
instance:
attach to instance-name
update dbm cfg using wlm_disp_cpu_shares yes
detach

Skip to step 3 if an existing service class hard CPU shares setting is to be altered

To create a new service class and set the hard CPU shares attribute:
2. Issue the CREATE SERVICE CLASS statement to create a new service class and

set the hard CPU shares value to 5000 in this example:
create service class service-class-name hard cpu shares 5000

To alter the hard CPU shares setting for an existing service class:
3. Issue the ALTER SERVICE CLASS statement to alter the hard CPU shares value

to 15000 in this example:
alter service class service-class-name hard cpu shares 15000

Results

The CPU shares attributes have been enabled and you have set or altered the hard
CPU shares setting for the specified service class. Service classes assigned hard
CPU shares can, under restricted conditions, claim CPU resources that other
service classes have relinquished due to their lessened workload demand.

What to do next

After having enabled the workload management dispatcher to manage CPU
resources, and having enabled CPU shares attributes and set the hard CPU shares
attribute, consider completing the following tasks:
v For the hard CPU shares setting to be effective, you must enable the workload

management dispatcher by configuring the wlm_dispatcher database manager
configuration parameter. See: “Enabling workload management dispatcher” on
page 180.

v Set the dispatch concurrency level by configuring the wlm_disp_concur database
manager configuration parameter. See: “Setting dispatch concurrency level” on
page 214.

v Create or alter a service class and configure a soft CPU share by using the
CREATE SERVICE CLASS or ALTER SERVICE CLASS statement. See: “Enabling
and setting soft CPU shares” on page 193.

v Create or alter a service class and configure the CPU limit by using the CREATE
SERVICE CLASS or ALTER SERVICE CLASS statement. See: “Setting a CPU
limit” on page 209.

Chapter 3. Activities management 189

v Set the minimum CPU utilization percentage for the workload management
dispatcher to consider service classes to be active by configuring the
wlm_disp_min_util database manager configuration parameter. See: “Setting
minimum CPU resource utilization for service class to be considered active” on
page 212.

Soft CPU shares
The DB2 workload management dispatcher can manage CPU resources using
shares-based entitlements that are assigned to service classes. Soft CPU shares,
when assigned to a service class by the administrator, give that service class the
ability to consume more than its share of CPU resources if they are unused. When
used in conjunction with other service classes bounded by hard CPU shares, this
provides preferential treatment for that service class with regards to CPU
resources.

Introduction

Soft CPU shares can be assigned to any user and maintenance service class, but not
to the system service class. After enabling the workload management dispatcher
and monitoring your existing workloads to determine the extent of CPU resource
consumption, you can assign soft CPU shares to the service classes that are
deemed high priority. Soft CPU shares are most effective when used on high
priority workloads, because they allow a workload to consume more than its
specified entitlement if there are any idle CPU resources on the system. Use of soft
CPU shares is not recommended when you want to constrain the CPU
consumption of lower priority or high-impact work; in this case, use hard CPU
shares instead.

The sections that follow describe the features and functionality of the soft CPU
shares in more detail. A usage scenario section helps to illustrate the soft CPU
shares features and functionality with a usage example.

Features and functionality

When the host or logical partition (LPAR) is running at 100% CPU utilization, the
allocation of CPU resources between service classes simply reflects their relative
share percentages. On the other hand, when the host or LPAR begins to run below
full CPU utilization, the reallocation of CPU resources is complex and dependent
on whether the CPU shares attribute on each active service class is set to soft or
hard CPU shares.

A service class with soft CPU shares assigned can exceed its CPU resource
entitlement, indicated by its CPU shares configuration, to consume any unused
CPU resources that become available on the host or LPAR. When two or more
service classes have soft shares and unused CPU resources become available with
enough CPU resource demand from each service class to consume the spare
capacity, allocation of the CPU resources to the competing service classes is done
proportionally according to the relative share of each active service class. The soft
CPU shares setting is most effective for high-priority work that you want to be
able to temporarily claim any spare CPU resources that become available. In
addition, the soft CPU shares setting is most effective for workloads consisting of
short queries that are expected to have a relatively modest impact on database
resources, outside of their immediate CPU consumption.

190 DB2 Workload Management Guide and Reference

To enable the CPU shares attribute, you must set the value of the
wlm_disp_cpu_shares database manager configuration parameter to YES. The
default setting for this parameter is NO. You can assign and adjust soft CPU shares
by using the CREATE SERVICE CLASS and ALTER SERVICE CLASS statements.
For complete details about how to enable and set soft CPU shares, see: “Enabling
and setting soft CPU shares” on page 193.

Based on the number of CPU shares assigned to a service class, the workload
management dispatcher calculates the proportion of the CPU resources that each
service class is entitled to use. To determine the proportion of the CPU resources to
which each service superclass is entitled, you can use the following formula to
convert the number of CPU shares of a particular service superclass into a
percentage of CPU resources allocated by the workload management dispatcher:
% CPU(superclass) = (Number of superclass shares /

Total number of shares of all active superclasses) x 100

To determine the proportion of the CPU resources to which each service subclass is
entitled, you can use the following formula to convert the number of CPU shares
of a particular service subclass into a percentage of CPU resources allocated by the
workload management dispatcher:
% CPU(subclass) = % CPU(superclass) x (Number of subclass shares /

Total number of shares of all active subclasses in the superclass)

Note: The total number of CPU shares (both hard and soft) of all active
superclasses are counted across all databases and all members on the host or
LPAR.

Usage scenario

In Figure 33 on page 192 panel A, service classes A, B, and C have been assigned
soft CPU shares, the amounts of which are described in the figure legend. The pie
chart represents the proportion of allocated CPU resources to which each of these
active service classes are entitled and each service class is using their complete
share of the CPU resources, therefore summing to 100% CPU utilization in this
example. In panel B, service class A does not have enough work to fully use its
CPU entitlement, dropping from 60% to 50% CPU utilization. The unused 10% of
the CPU resources, temporarily relinquished by service class A, can be
proportionally claimed by the competing service classes B and C based on their
relative soft CPU shares assignments. Panel C depicts the proportional reallocation
of CPU resources between service classes B and C, with service class B getting
7.5% (10% x (3000/4000)) and service class C getting 2.5% (10% x (1000/4000)) of
the unused 10% relinquished by service class A.

Chapter 3. Activities management 191

If service class A experiences an increase in its workload, it effectively increases its
demand on CPU resources. In this circumstance, service classes B and C
immediately relinquish to service class A all of the claimed CPU resources, thereby
restoring the state of CPU resource allocations to that which is depicted by the pie
chart in panel A.

Note: When service classes compete to consume CPU resources, individual service
class requests for CPU resources is handled by the workload management
dispatcher in a first-come-first-served fashion. Due to typically frequent and
short-lived requests for CPU resources on a busy host or LPAR, the reallocation of
unused CPU resources over time results in a smooth redistribution of CPU
resources which is in proportion to the relative CPU shares assignments.

More information

Complete details are provided about the following workload management
dispatcher subjects:
v Workload management dispatcher, see: “Workload management dispatcher” on

page 161.

A

B

C

A
60%

A
50%

B
30%

B
30%

C
10%

C
10%

Service class A
(6000 soft CPU shares)

Service class A
(6000 soft CPU shares)

Service class A
(6000 soft CPU shares)

Service class B
(CPU shares)3000 soft

Service class B
(CPU shares)3000 soft

Service class B
(CPU shares)3000 soft

Service class C
(1000 soft CPU shares)

Service class C
(1000 soft CPU shares)

Service class C
(1000 soft CPU shares)

Legend

Legend

Legend

A
50%

B
37.5%

C
12.5%

Figure 33. Soft CPU shares pie charts

192 DB2 Workload Management Guide and Reference

v Hard CPU shares, see: “Hard CPU shares” on page 181.
v CPU limit, see: “CPU limit” on page 194.
v Minimum CPU utilization level for a service class to be considered active, see:

“Minimum CPU resource utilization for service class to be considered active” on
page 210.

v Dispatch concurrency level, see: “Dispatch concurrency level” on page 213.
v Monitoring and tuning workload management dispatcher performance, see:

“Monitoring and tuning workload management dispatcher performance” on
page 215

Enabling and setting soft CPU shares
Enable the CPU shares attributes by setting the value of the wlm_disp_cpu_shares
database manager configuration parameter to YES. Set the soft CPU shares attribute
using the CREATE SERVICE CLASS or ALTER SERVICE CLASS statements. You
set the soft CPU shares on high-priority service classes when CPU resources are
strained.

Before you begin

Note: For the soft CPU shares setting to be effective, you must enable the
workload management dispatcher by configuring the wlm_dispatcher database
manager configuration parameter. This can be done either before or after you have
enabled and set the soft CPU shares. See: “Enabling workload management
dispatcher” on page 180.

About this task

The CPU shares attributes are enabled in this task using the command line
processor method.

The soft CPU shares attribute is set for a service class in this task using the
CREATE SERVICE CLASS or ALTER SERVICE CLASS statement using the
command line processor.

Restrictions

You can assign soft CPU shares only to service classes that the workload
management dispatcher can control, which are user and maintenance service
classes. The CPU resource allocations for system service classes cannot be
controlled by the workload management dispatcher.

Procedure

Skip to step 2 if the CPU shares attributes have already been enabled
To enable the CPU shares attributes:
1. Using the command line processor (CLP), issue the UPDATE DATABASE MANAGER

CONFIGURATION (or UPDATE DBM CFG) command and set the value of the
wlm_disp_cpu_shares database manager configuration parameter to YES; the
parameter value is updated immediately by first attaching to your DB2
instance:
attach to instance-name
update dbm cfg using wlm_disp_cpu_shares yes
detach

Skip to step 3 if an existing service class soft CPU shares setting is to be altered

Chapter 3. Activities management 193

To create a new service class and set the soft CPU shares attribute:
2. Issue the CREATE SERVICE CLASS statement to create a new service class and

set the soft CPU shares value to 5000 in this example:
create service class service-class-name soft cpu shares 5000

To alter the soft CPU shares setting for an existing service class:
3. Issue the ALTER SERVICE CLASS statement to alter the soft CPU shares value

to 15000 in this example:
alter service class service-class-name soft cpu shares 15000

Results

The CPU shares attributes have been enabled and you have set or altered the soft
CPU shares setting for the specified service class. Service classes assigned soft CPU
shares can claim CPU resources that other service classes have relinquished due to
their lessened workload demand.

Note: Soft CPU shares are most effective when assigned to high-priority service
classes, and the high-priority service classes are protected from interruption by
low-priority service classes that have hard CPU shares assigned.

What to do next

After having enabled the CPU shares attributes and set the soft CPU shares
attribute, consider completing the following tasks:
v For the soft CPU shares setting to be effective, you must enable the workload

management dispatcher by configuring the wlm_dispatcher database manager
configuration parameter. See: “Enabling workload management dispatcher” on
page 180.

v Set the dispatch concurrency level by configuring the wlm_disp_concur database
manager configuration parameter. See: “Setting dispatch concurrency level” on
page 214.

v Create or alter a service class and configure a hard CPU share by using the
CREATE SERVICE CLASS or ALTER SERVICE CLASS statement. See: “Enabling
and setting hard CPU shares” on page 188.

v Create or alter a service class and configure the CPU limit by using the CREATE
SERVICE CLASS or ALTER SERVICE CLASS statement. See: “Setting a CPU
limit” on page 209.

v Set the minimum CPU utilization percentage for workload management
dispatcher to consider service classes to be active by configuring the
wlm_disp_min_util database manager configuration parameter. See: “Setting
minimum CPU resource utilization for service class to be considered active” on
page 212.

CPU limit
The DB2 workload management dispatcher can enforce fixed CPU limit
entitlements that can be assigned to service superclasses and subclasses. By
applying a CPU limit, you can limit the CPU that is consumed by a service class to
a fixed amount on the system, regardless of any other work running in the DB2
database manager. This leaves the remaining portion of CPU resources available
for other consumers to use. When CPU limits are used in conjunction with CPU
shares, the most limiting or restrictive condition is always honored.

194 DB2 Workload Management Guide and Reference

Introduction

A CPU limit can be assigned to any user and maintenance service class, but not to
the system service class. After having enabled the workload management
dispatcher and having monitored your existing workloads to determine the extent
of CPU resource consumption, you can then assign CPU limits to the service
classes that you want to be strictly limited in their CPU consumption.

CPU shares provide you with the ability to control the CPU resource entitlement of
individual workloads when the overall workload of the host or LPAR is heavy and
yet not waste CPU resources when the overall workload is light. However, there
are workloads for which you always want to limit their CPU resource entitlement
despite the light overall workload of the host or LPAR. For example, if multiple
departments share the cost of purchasing a database server, each department might
want to ensure that the other departments are not taking more than their allocated
CPU resource entitlements, despite the possibility that the selected configuration
can result in under-utilizing the CPU resources of the host or LPAR. CPU shares
do not give you this level of control, whereas a CPU limit does.

The sections that follow describe the features and functionality of the CPU limit in
more detail. A usage scenario section helps to illustrate the CPU limit features and
functionality with usage examples.

Features and functionality

The CPU limit gives you the ability to place a fixed limit on the CPU resource
entitlement by work in a service class. If a CPU limit is set on all service classes,
you can reserve a portion of the CPU resources to perform work regardless of any
other work running in the DB2 database manager. Configuring a CPU limit on a
service class effectively provides a strictly-enforced sandbox for your workloads in
which you can achieve fairness in CPU resource consumption between workloads,
but at the expense of occasionally not achieving full utilization of the CPU
resources.

The CPU limit is also useful when you have multiple DB2 instances on your host
or LPAR. With the workload management dispatcher operating at the instance
level, the CPU resource allocation of any service class is computed from the shares
of that service class relative to the shares of all other service classes within the
instance. A CPU limit, however, is expressed as a percentage of the CPU resources
of the host or LPAR, regardless of how many DB2 instances exist on such a host or
LPAR. By applying CPU limits to your superclasses and shares to your subclasses,
you can use the CPU limit to control the absolute CPU resource entitlement of each
superclass, and by extension the instance, and then use shares to control the
relative CPU resource entitlements of service subclasses running within those
superclasses.

A CPU limit can be configured both at the service superclass level, where it
represents a percentage limit of CPU resource entitlement on the host or LPAR by
all subclasses in that superclass, or at the subclass level, where it represents a
percentage limit of CPU resource entitlement on the host or LPAR by that
particular subclass.

To enable the CPU limit attribute, you must enable the workload management
dispatcher by setting the value of the wlm_dispatcher database manager
configuration parameter to ON. The default setting for this parameter is OFF. By
enabling the workload management dispatcher, CPU resource control using the

Chapter 3. Activities management 195

CPU limit attribute becomes available by default. You can assign and adjust CPU
limits by using the CREATE SERVICE CLASS and ALTER SERVICE CLASS
statements. For complete details about how to set CPU limits, see: “Setting a CPU
limit” on page 209.

The workload management dispatcher always respects the most restrictive CPU
limit or CPU shares assignments when allocating CPU resources to service classes.
For example, when a CPU limit is set at both the superclass and subclass levels,
the more restrictive CPU limit is honored. Likewise, if a service class reaches its
CPU limit before it has fully utilized its shares-based CPU resource entitlement, the
dispatcher respects the CPU limit.

Usage scenarios

CPU limit and multiple superclasses

This set of usage examples addresses CPU limit behavior in a multiple superclass
environment.

Figure 34 on page 197 shows a host or LPAR configured with two superclasses, A
and B. For illustration purposes to help describe the basic concepts, assume that
there is negligible work running in the default user, maintenance, and system
service classes. For the following scenarios, there is only one DB2 instance with
one database and only one member on this host or LPAR.

196 DB2 Workload Management Guide and Reference

CPU limit and multiple superclasses: Scenario 1

In this example, Figure 35 on page 198 panel A shows that service class A has a
CPU limit of 30% and service class B has no CPU limit. At the start of this
scenario, service class A has at least enough work to drive its CPU resource
utilization to 30% and service class B has at least enough work to drive its CPU
resource utilization to 70%. Service classes A and B both have 1000 soft CPU
shares.

Data server

Instance A

Default user
service class

Database 1

Default system
service class

User requests

User requests

User requests

System
requests

Maintenance
requests

Default user
workload

Workload A

Workload B

Default
maintenance
service class

Service
superclass A

Service
superclass B

Figure 34. Data server configuration: Multiple superclasses

Chapter 3. Activities management 197

Panel B shows that service class A has a reduction in CPU resource demand from
30% to 20%. Service class B has more than enough CPU resource demand to claim
the CPU resources temporarily relinquished by service class A, as shown in panel
C.

CPU limit and multiple superclasses: Scenario 2

In this example, Figure 36 on page 199 panel A again shows that service class A
has a CPU limit of 30% and service class B has no CPU limit. At the start of this
scenario, service class A has at least enough work to drive its CPU resource
utilization to 30% and service class B has at least enough work to drive its CPU
resource utilization to 70%. Service classes A and B both have 1000 soft CPU
shares.

A

B

C

A
30% B

70%

B
70%

B
80%

A
20%

A
20%

Figure 35. CPU limit and multiple superclasses: Scenario 1

198 DB2 Workload Management Guide and Reference

Panel B shows that service class B has a reduction in CPU resource demand from
70% to 50%. Due to its CPU limit, service class A cannot consume the 20% of the
CPU resources that service class B temporarily relinquished. The total CPU
utilization for the host or LPAR remains at 80%.

CPU limit and multiple superclasses: Scenario 3

In this example, Figure 37 on page 200 panel A again shows that service class A
has a CPU limit of 30% and service class B has no CPU limit. At the start of this
scenario, service class A has at least enough work to drive its CPU resource
utilization to 30% and service class B has at least enough work to drive its CPU
resource utilization to 70%. Service classes A and B both have 1000 soft CPU
shares.

A

B

A
30% B

70%

A
30% B

50%

Figure 36. CPU limit and multiple superclasses: Scenario 2

Chapter 3. Activities management 199

Panel B shows that service class B has a reduction in CPU resource demand from
70% to 0%. Due to its CPU limit, service class A cannot consume the 70% of the
CPU resources that service class B temporarily relinquished. The total CPU
utilization for the host or LPAR remains at 30%.

CPU limit and multiple subclasses

This next set of usage examples addresses CPU limit behavior in a multiple
subclass environment.

Figure 38 on page 201 shows a host or LPAR configured with two superclasses, A
and B. Inside service superclass A are service subclasses A1 and A2. For illustration
purposes to help describe the basic concepts, assume that there is negligible work
running in the default user, maintenance, and system service classes. For the
following scenarios, there is only one DB2 instance with one database and only one
logical partition on this host or LPAR.

A

B

A
30% B

70%

A
30%

Figure 37. CPU limit and multiple superclasses: Scenario 3

200 DB2 Workload Management Guide and Reference

CPU limit and multiple subclasses: Scenario 1

In this example, Figure 39 on page 202 panel A shows that service superclass class
A has a CPU limit of 50% and service subclass A1 has a CPU limit of 20%. Service
superclass B has no CPU limit. At the start of this scenario, service subclass A1 has
at least enough work to drive its CPU resource utilization to 20% and service
subclass A2 has at least enough work to drive its CPU resource utilization to 30%,
giving service superclass A a total CPU resource utilization of 50%. Service
superclass B has at least enough work to drive its CPU resource utilization to 50%.
Service superclasses A and B both have 1000 soft CPU shares.

User requests

User requests

User requests

Maintenance
requests

System
requests

User requests

Default user
workload

Data server

Instance A

Database 1

Default user
service class

Default system
service class

Service
superclass A

Service
subclass A2

Service
subclass A1

Workload A1

Workload A2

Default
maintenance
service class

Workload B Service
superclass B

Figure 38. Data server configuration: Multiple subclasses

Chapter 3. Activities management 201

Panel B shows that service subclass A1 has a reduction in CPU resource demand
from 20% to 10%. Service subclass A2 and service superclass B each have more
than enough CPU demand to claim the entire amount of unused CPU resources
that service class A1 has temporarily relinquished. However, service subclass A2 is
allocated all of the relinquished CPU resource and increases its CPU utilization
from 30% to 40%, as depicted in panel C. This CPU resource allocation result is
due to the service superclasses A and B already sharing the total CPU resources
with a 50%/50% equal split resulting from the 1000 soft CPU shares assigned to
each of the superclasses.

CPU limit and multiple subclasses: Scenario 2

In this example, Figure 40 on page 203 panel A again shows that service superclass
class A has a CPU limit of 50% and service subclass A1 has a CPU limit of 20%.
Service superclass B has no CPU limit. At the start of this scenario, service subclass
A1 has at least enough work to drive its CPU resource utilization to 20% and
service subclass A2 has at least enough work to drive its CPU resource utilization
to 30%, giving service superclass A a total CPU resource utilization of 50%. Service
superclass B has at least enough work to drive its CPU resource utilization to 50%.
Service superclasses A and B both have 1000 soft CPU shares.

A2
30%

A2
30%

A2
40%

B
50%

B
50%

B
50%

A1
20%

A1
10%

A1
10%

A

B

C

Figure 39. CPU limit and multiple subclasses: Scenario 1

202 DB2 Workload Management Guide and Reference

Panel B shows that service subclass A2 has a reduction in CPU resource demand
from 30% to 20%. Due to service subclass A1 having a CPU limit of 20%, service
subclass A1 cannot exceed its current 20% CPU utilization. Service superclass A
drops its CPU utilization to a total of 40%. Service superclass B has enough CPU
resource demand to claim the CPU resource that was temporarily relinquished by
service subclass A2, increasing the CPU utilization of service superclass B from
50% to 60%, as shown in panel C.

CPU limit and multiple DB2 instances

This next set of usage examples addresses CPU limit behavior in a multiple DB2
instance environment.

Figure 41 on page 204 shows a host or LPAR configured with two DB2 instances,
instance A and instance B. Each instance contains one database, database 1 and
database 2. Each database contains one service superclass, service superclass A and
B. Inside service superclass A are service subclasses A1 and A2. Inside service
superclass B are service subclasses B1 and B2. To keep the scenario simple, user
requests for each database are routed to only the two service subclasses and no
work is routed to the default service subclass. In addition, to help describe the
basic concepts, assume that there is negligible work running in the default user,

A

B

C

A2
30% B

50%

B
50%

A1
20%

A2
20%

A1
20%

B
60%

A2
20%

A1
20%

Figure 40. CPU limit and multiple subclasses: Scenario 2

Chapter 3. Activities management 203

maintenance, and system service classes. For the following scenarios, there are two
DB2 instances with one database in each instance and only one member on this
host or LPAR.

CPU limit and multiple DB2 instances: Scenario 1

In this example, instance A is to receive no more than 50% of the total CPU
resources of the host or LPAR and instance B is to receive no more than 50% of the
total CPU resources of the host or LPAR. Within instance A, 80% of the instance
CPU resources are to be allocated to service subclass A1 and 20% to service
subclass A2 by assigning 8000 soft CPU shares to A1 and 2000 soft CPU shares to
A2. When service subclass A1 does not consume its full 80%, we want service
subclass A2 to claim any unused CPU resources, and vice versa, to maximize CPU
utilization within instance A. Within instance B, 60% of the instance CPU resources
are to be allocated to service subclass B1 and 40% to service subclass B2 by
assigning 6000 soft CPU shares to B1 and 4000 soft CPU shares to B2. As with
service subclasses A1 and A2, we want to maximize CPU utilization within
instance B by having service subclass B1 claim any unused CPU resources when
service subclass B2 does not use its full CPU resource entitlement, and vice versa.

To configure the appropriate conditions for this scenario as described in the
preceding paragraph, limit the CPU resources for each instance by creating a CPU
limit of 50% on service superclass A, in database 1, in instance A, and creating a
CPU limit of 50% on service superclass B, in database 2, in instance B. When both
instances are using all of their CPU resource entitlements, the host or LPAR as a
whole is considered to have 100% CPU utilization. If either instance does not use
its full CPU entitlement, the other instance cannot claim the unused CPU
resources.

Maintenance
requests

Data server

Instance A Instance B

Database 1 Database 2

User requests

Maintenance
requests

Default
maintenance
service class

User requests

User requests

System
requests

Default user
service class

Default system
service class

Default user
workload

Default user
workload

Workload A2

Workload A1

Workload B2

System
requests

Workload B1User requests

User requests

User requests

Default service
subclass

Service
subclass A2

Service
subclass B2

Service
subclass B1

Default service
subclass

Service
subclass A1

Default
maintenance
service class

Service
superclass A

Service
superclass B

Default system
service class

Default user
service class

Figure 41. Data server configuration: Multiple DB2 instances

204 DB2 Workload Management Guide and Reference

For each service superclass on each instance, the workload management dispatcher
divides the available CPU resources among the subclasses using their relative soft
CPU shares assignments. By using soft CPU shares assigned to the service
subclasses, the only circumstance in which an instance does not make full use of
their CPU resource entitlement occurs when every subclass in the instance does not
have enough work running within it to achieve full CPU utilization of its
entitlement.

Figure 42 on page 206 panel A shows that service superclass class A has a CPU
limit of 50% and service superclass B has a CPU limit of 50%. Service subclass A1
has 80% of the instance A CPU resources (40% of the host or LPAR CPU
resources); service subclass A2 has the remaining 20% (10% of the host or LPAR
CPU resources). Service subclass B1 has 60% of the instance B CPU resources (30%
of the host or LPAR CPU resources); service subclass B2 has the remaining 40%
(20% of the host or LPAR CPU resources). At the start of this scenario, service
subclass A1 has at least enough work to drive its host or LPAR CPU resource
utilization to 40% and service subclass A2 has at least enough work to drive its
host or LPAR CPU resource utilization to 10%, giving service superclass A a total
CPU resource utilization of 50%. Service subclass B1 has at least enough work to
drive its host or LPAR CPU resource utilization to 30% and service subclass B2 has
at least enough work to drive its host or LPAR CPU resource utilization to 20%,
giving service superclass B a total CPU resource utilization of 50%.

Chapter 3. Activities management 205

Panel B shows that service subclass A1 has a reduction in CPU resource demand
from 40% to 30% and service subclass B1 has a reduction in CPU resource demand
from 30% to 20%. Assuming service subclass A2 has enough work executing within
it to claim any unused CPU resources that become available, A2 increases its CPU
utilization from 10% to 20% because A2 has soft CPU shares assigned to it, as
shown in panel C. The same applies to service subclass B2 which increases its CPU
utilization from 20% to 30%, as shown in panel C.

Let's now consider the original start condition as described in panel A for a
different example. If service subclass B1 reduces its CPU demand from 30% to 20%
and service subclass B2 does not have enough work running within it to exceed a
CPU demand of 20%, then service superclass B in instance B does not use its full
CPU entitlement of 50% and remains at a CPU utilization of 40%, as shown in
panel D. The result is that the host or LPAR has a CPU utilization of only 90% of
the total CPU resources.

CPU limit and multiple DB2 instances: Scenario 2

This scenario example illustrates what happens when the sum of the CPU limits of
the service subclasses does not exceed the CPU limit of the parent service
superclass.

A

B

C

D

A2
10%

A2
10%

A2
10%

B1
30%

B1
20%

B1
20%

B1
20%

A1
40%

A1
30%

A1
40%

A1
30%

B2
20%

B2
30%

B2
20%

B2
20%

A2
20%

Figure 42. CPU limit and multiple DB2 instances: Scenario 1

206 DB2 Workload Management Guide and Reference

Using similar initial conditions as in “CPU limit and multiple DB2 instances:
Scenario 1”, let's just change the soft CPU shares assigned to service subclasses A1
and A2 into CPU limits of 40% and 10%, respectively, of the total CPU resources
for the host or LPAR, as shown in Figure 43 panel A. When both service subclasses
use the CPU resources up to their assigned CPU limits, the total CPU utilization is
50% for service superclass A, making redundant the additional constraint of a 50%
CPU limit on service superclass A.

Panel B shows that service subclass A1 has a reduction in CPU resource demand
from 40% to 30% due to a decrease in the amount of work running in the service
subclass. In this circumstance, the dispatcher cannot allocate the unused CPU
resource, temporarily relinquished by service subclass A1, to service subclass A2.
Service subclass A2 continues running workloads on its CPU limit of 10% of the
CPU resources of the host or LPAR. This situation makes instance A unable to use
its full CPU resource entitlement of 50%.

CPU limit and multiple DB2 instances: Scenario 3

This scenario example illustrates what happens when the sum of the CPU limits of
the service subclasses exceed the CPU limit of the parent service superclass.

Using similar initial conditions as in “CPU limit and multiple DB2 instances:
Scenario 1”, let's just change the soft CPU shares assigned to service subclasses A1
and A2 into CPU limits of 40% and 40%, respectively, of the total CPU resources
for the host or LPAR. In this example, the total of the assigned CPU limits for
service subclasses A1 and A2 is 80% which exceeds the 50% CPU limit assigned to
service superclass A. The workload management dispatcher prevents service
superclass A from exceeding its 50% CPU limit. The amount of CPU resources that
is allocated to each service subclass in superclass A is determined by the CPU
shares that have been assigned to the subclasses. CPU shares were not explicitly
assigned for service subclasses A1 and A2, but each of these subclasses has the
1000 soft CPU shares that were assigned when the subclasses were created, giving

A

B

A1
30%

A1
40%

B1
30%

B1
30%

B2
20%

B2
20%

A2
10%

A2
10%

Figure 43. CPU limit and multiple DB2 instances: Scenario 2

Chapter 3. Activities management 207

each subclass an equal CPU entitlement. The dispatcher allocates an equal division
of the 50% of the total host or LPAR CPU resources entitled to service superclass
A. The result is that 25% is allocated to service subclass A1 and 25% is allocated to
service subclass A2, as shown in Figure 44 panel A.

Panel B shows that service subclass A1 has a reduction in CPU resource demand
from 25% to 5% due to a decrease in the amount of work running in the service
subclass. Due to the soft CPU shares assignment, the dispatcher can allocate the
unused CPU resource, temporarily relinquished by service subclass A1, to the
point of 40% claimed by service subclass A2. Service subclass A2 is unable to
exceed its CPU limit of 40% of the CPU resources of the host or LPAR. This
situation makes instance A unable to use its full CPU resource entitlement of 50%.

Note: The limitations of this approach to managing work in multiple instances on
the same host or LPAR is that it limits you to one service superclass in each
instance. For operating systems that have a workload manager into which DB2
workload management can be integrated, an alternative is to map the DB2 service
classes of each instance to a service class in an operating system (OS) WLM (such
as AIX WLM and Linux WLM) and assign the hard limits of the OS WLM on each
OS service class to put upper bounds on the CPU resource utilization of each
instance.

More information

Complete details are provided about the following workload management
dispatcher subjects:
v Workload management dispatcher, see: “Workload management dispatcher” on

page 161.
v Dispatch concurrency level, see: “Dispatch concurrency level” on page 213.

A

B

A1
5%

A1
25%

B1
30%

B1
30%

B2
20%

B2
20%

A2
25%

A2
40%

Figure 44. CPU limit and multiple DB2 instances: Scenario 3

208 DB2 Workload Management Guide and Reference

v Minimum CPU utilization level for a service class to be considered active, see:
“Minimum CPU resource utilization for service class to be considered active” on
page 210.

v Hard CPU shares, see: “Hard CPU shares” on page 181.
v Soft CPU shares, see: “Soft CPU shares” on page 190.
v Monitoring and tuning workload management dispatcher performance, see:

“Monitoring and tuning workload management dispatcher performance” on
page 215

Setting a CPU limit
Set the CPU limit attribute using the CREATE SERVICE CLASS statement to create
a new service class and CPU limit, and use the ALTER SERVICE CLASS statement
to alter the CPU limit setting for an existing service class. You set the CPU limit to
cap CPU utilization by a service class under all circumstances during workload
management dispatcher control.

Before you begin

You must enable the workload management dispatcher by configuring the
wlm_dispatcher database manager configuration parameter, if not already done. By
enabling the workload management dispatcher, CPU resource control using the
CPU limit attribute becomes available by default. See: “Enabling workload
management dispatcher” on page 180.

About this task

The CPU limit is set for a service class in this task using the CREATE SERVICE
CLASS or ALTER SERVICE CLASS statement using the command line processor.

Restrictions

You can assign CPU limits only to service classes that the workload management
dispatcher can control, which are user and maintenance service classes. The CPU
resource allocations for system service classes cannot be controlled by the
workload management dispatcher.

Procedure

To create a new service class and set the CPU limit (skip to step 2 if an existing
service class CPU limit setting is to be altered):
1. Issue the CREATE SERVICE CLASS statement to create a new service class and

set the CPU limit to 25% in this example:
create service class service-class-name cpu limit 25

To alter the CPU limit setting for an existing service class:
2. Issue the ALTER SERVICE CLASS statement to alter the CPU limit to 50% in

this example:
alter service class service-class-name cpu limit 50

Results

You have set or altered the CPU limit setting for the specified service class. The
workload management dispatcher cannot allocate CPU resources to this service
class beyond the set limit.

Chapter 3. Activities management 209

What to do next

After having enabled the workload management dispatcher to manage CPU
resources and having set the CPU limit, consider completing the following tasks:
v Set the dispatch concurrency level by configuring the wlm_disp_concur database

manager configuration parameter. See: “Setting dispatch concurrency level” on
page 214.

v Enable hard and soft CPU shares by configuring the wlm_disp_cpu_shares
database manager configuration parameter. See step 1 in: “Enabling and setting
soft CPU shares” on page 193.

v Create or alter a service class and configure a hard CPU share by using the
CREATE SERVICE CLASS or ALTER SERVICE CLASS statement. See: “Enabling
and setting hard CPU shares” on page 188.

v Create or alter a service class and configure a soft CPU share by using the
CREATE SERVICE CLASS or ALTER SERVICE CLASS statement. See: “Enabling
and setting soft CPU shares” on page 193.

v Set the minimum CPU utilization percentage for the workload management
dispatcher to consider service classes to be active by configuring the
wlm_disp_min_util database manager configuration parameter. See: “Setting
minimum CPU resource utilization for service class to be considered active” on
page 212.

Minimum CPU resource utilization for service class to be
considered active

By setting the wlm_disp_min_util database manager configuration parameter, you
are able to control the minimum level of CPU resource utilization at which the
workload management dispatcher considers the service class actively engaged in
executing work. The CPU shares of only the active service classes are factored into
CPU resource allocation scheduling that is performed by the dispatcher.

When managing shares-based CPU resource allocations, the workload management
dispatcher considers a service class to be active and factors its entire CPU shares
assignment in the overall CPU resource scheduling allocation if any amount of the
CPU resource is being used by database requests executing in that service class. In
certain instances, it is desirable to have some control over how much
service-class-generated CPU activity is needed for the workload management
dispatcher to include the CPU shares of the service class during CPU resource
scheduling.

In the example scenario depicted in Figure 45 on page 211 panel A, service class A
contains a high-priority transactional workload that runs only during the business
day, while service class B and C contain ongoing day and night, low-priority batch
jobs. Service class A is protected from interruption by assigning hard CPU shares
to service classes B and C. At night when the transactional workload on service
class A is not present (as shown in panel B), service classes B and C are able to
make full use of the CPU resources and make much faster progress (as shown in
panel C).

210 DB2 Workload Management Guide and Reference

Let's now consider what happens if a small trickle of transactional work continues
to occur at night on service class A. In this case, service class A is considered to be
active by the workload management dispatcher, and the unused CPU resources
temporarily relinquished by service class A are not available to service classes B
and C. The CPU resource entitlements for service classes B and C are as shown in
panel B with a small sliver of the CPU utilization pie representing the activity of
service class A (not shown in the panel B pie chart). Much slower overnight
progress is the result for service classes B and C than that made in the original
scenario as shown in panel C.

Maximum user flexibility to manage their DB2 workloads is provided by the
option to set a percentage of CPU utilization at or above which a service class is
considered to be active on the host or LPAR. When a service class is considered to
be inactive, its CPU shares assignment is not factored into CPU resource
entitlement calculations, thereby allowing service classes, particularly those with
assigned hard CPU shares, to claim the unused CPU resources. This minimum
percentage of CPU utilization is specified by configuring the percentage value of
the wlm_disp_min_util database manager configuration parameter. This
configuration parameter can be set to a percentage value between 0 and 100, with

A

B

C

A
60%

B
30%

B
30%

C
10%

C
10%

Service class A
(6000 soft CPU shares)

Service class A
(6000 soft CPU shares)

Service class A
(6000 soft CPU shares)

Service class B
(3000 hard CPU shares)

Service class B
(3000 hard CPU shares)

Service class B
(3000 hard CPU shares)

Service class C
(1000 hard CPU shares)

Service class C
(1000 hard CPU shares)

Service class C
(1000 hard CPU shares)

Legend

Legend

Legend

B
75%

C
25%

Figure 45. Minimum CPU utilization example: Hard and soft CPU shares

Chapter 3. Activities management 211

a default value of 5. For this configuration parameter setting to be effective, the
workload management dispatcher must be enabled by setting the value of the
wlm_dispatcher database manager configuration parameter to YES.

Let's reconsider the small trickle scenario described earlier. With the percentage
value of the wlm_disp_min_util database manager configuration parameter now set
to a value slightly higher than the small sliver of overnight CPU utilization for
service class A, we can be more confident that the progress of the overnight batch
jobs of service classes B and C is much improved, similar to that of the original
scenario in which the CPU utilization was as that shown in panel C.

More information

Complete details are provided about the following workload management
dispatcher subjects:
v Workload management dispatcher, see: “Workload management dispatcher” on

page 161.
v Dispatch concurrency level, see: “Dispatch concurrency level” on page 213.
v Hard CPU shares, see: “Hard CPU shares” on page 181.
v Soft CPU shares, see: “Soft CPU shares” on page 190.
v CPU limit, see: “CPU limit” on page 194.
v Monitoring and tuning workload management dispatcher performance, see:

“Monitoring and tuning workload management dispatcher performance” on
page 215

Setting minimum CPU resource utilization for service class to be
considered active
Set the minimum CPU utilization for a service class by setting the value of the
wlm_disp_min_util database manager configuration parameter to a percentage.
Service classes utilizing CPU resources equal to or greater than that percentage are
considered active on the host or logical partition (LPAR) and the CPU shares of the
active service classes are factored into CPU allocation calculations.

Procedure

To set the minimum CPU utilization percentage for service classes to be considered
active:

Using the command line processor (CLP), issue the UPDATE DATABASE MANAGER
CONFIGURATION (or UPDATE DBM CFG) command and set the value of the
wlm_disp_min_util database manager configuration parameter to 6%; the
parameter value is updated immediately by first attaching to your DB2 instance:
attach to instance-name
update dbm cfg using wlm_disp_min_util 6
detach

Results

The minimum CPU utilization percentage for service classes to be considered
active has been set. Service classes that have a CPU utilization percentage that is
less than this minimum are considered to be idle and their CPU allocations can
then be proportionally reallocated to service classes that can claim spare CPU
resources.

212 DB2 Workload Management Guide and Reference

What to do next

After having set the minimum CPU utilization percentage for service classes to be
considered active by the workload management dispatcher, consider completing
the following tasks:
v For the minimum CPU utilization setting to be effective, you must enable the

workload management dispatcher by configuring the wlm_dispatcher database
manager configuration parameter. See: “Enabling workload management
dispatcher” on page 180.

v Set the dispatch concurrency level by configuring the wlm_disp_concur database
manager configuration parameter. See: “Setting dispatch concurrency level” on
page 214.

v Create or alter a service class and configure the CPU limit by using the CREATE
SERVICE CLASS or ALTER SERVICE CLASS statement. See: “Setting a CPU
limit” on page 209.

v Enable hard and soft CPU shares by configuring the wlm_disp_cpu_shares
database manager configuration parameter. See step 1 in: “Enabling and setting
soft CPU shares” on page 193.

v Create or alter a service class and configure a hard CPU share by using the
CREATE SERVICE CLASS or ALTER SERVICE CLASS statement. See: “Enabling
and setting hard CPU shares” on page 188.

v Create or alter a service class and configure a soft CPU share by using the
CREATE SERVICE CLASS or ALTER SERVICE CLASS statement. See: “Enabling
and setting soft CPU shares” on page 193.

Dispatch concurrency level
The workload management dispatcher controls the number of threads that the
database manager will allow to be simultaneously dispatched to the operating
system (OS). This number is referred to as the dispatch concurrency level. You can
set the dispatch concurrency level using the wlm_disp_concur database manager
configuration parameter. Details are provided here.

Features and functionality

The number of simultaneously executing agents managed by the workload
management dispatcher should generally be a low multiple of the number of CPUs
on the system. The goal is to establish a concurrency level just large enough to
ensure that the CPU resources on the host or LPAR are fully utilized and no larger,
while accounting for OS scheduling latencies as threads switch from being active
to inactive and vice versa. This optimal value ensures maximum efficiency and
gives the workload management dispatcher maximum control over CPU resource
allocation. If the configured concurrency value is too small, there will not be
enough work to fully utilize the available CPU resources. If the configured
concurrency value is too large, the dispatcher will have less control over the work
running on the system, which might add to resource contention.

By setting the wlm_disp_concur database manager configuration parameter, you can
either specify how the DB2 database manager itself sets the concurrency level
(COMPUTED), or you can manually set the concurrency level to a fixed value.

As a general guideline, the optimal dispatch concurrency level is four times the
number of CPUs available on the server hardware. This guideline is typically
sufficient for most platforms and is the level you get as the default (COMPUTED is

Chapter 3. Activities management 213

the default setting for the configuration parameter). For complete details about
how to set the dispatch concurrency level, see: “Setting dispatch concurrency
level.”

The specified value of the wlm_disp_concur database configuration parameter
applies to each host or LPAR. In multimember database environments, the
specified concurrency level is shared between the members.

Tuning

After the workload management dispatcher has been enabled, monitor your
system for a drop in throughput and CPU utilization. If a drop does occur in either
metric, increase the value of the configuration parameter in increments of the
number of available processors.

More information

Complete details are provided about the following subjects:
v Workload management dispatcher, see: “Workload management dispatcher” on

page 161.
v Soft CPU shares, see: “Soft CPU shares” on page 190.
v Hard CPU shares, see: “Hard CPU shares” on page 181.
v CPU limit, see: “CPU limit” on page 194.
v Minimum CPU utilization level for a service class to be considered active, see:

“Minimum CPU resource utilization for service class to be considered active” on
page 210.

v Monitoring and tuning workload management dispatcher performance, see:
“Monitoring and tuning workload management dispatcher performance” on
page 215

Setting dispatch concurrency level
Set the dispatch concurrency level by setting the value of the wlm_disp_concur
database manager configuration parameter to COMPUTED or a manually-set
value. You set the dispatch concurrency level to an optimal value that ensures
maximum efficiency and that gives the workload management dispatcher
maximum control over CPU resource allocations.

Procedure

To set the dispatch concurrency level:

Using the command line processor (CLP), issue the UPDATE DATABASE MANAGER
CONFIGURATION (or UPDATE DBM CFG) command and set the value of the
wlm_disp_concur database manager configuration parameter to one of the
following possibilities:
v COMPUTED (default)
v manually_set_value

The following example manually sets the dispatch concurrency level to 16, which
is 4 times the 4 CPUs available on the system, and is updated immediately by first
attaching to your DB2 instance:
attach to instance-name
update dbm cfg using wlm_disp_concur 16
detach

214 DB2 Workload Management Guide and Reference

Results

The dispatch concurrency level has been set. If set to COMPUTED, the concurrency
level is determined by the DB2 database manager. If manually set, you might need
to tune the concurrency level to an optimal value that ensures maximum efficiency
and that gives the workload management dispatcher maximum control over CPU
resource allocations.

What to do next

After having set the dispatch concurrency level, consider completing the following
tasks:
v For the dispatch concurrency level setting to be effective, you must enable the

workload management dispatcher by configuring the wlm_dispatcher database
manager configuration parameter. See: “Enabling workload management
dispatcher” on page 180.

v Create or alter a service class and configure the CPU limit by using the CREATE
SERVICE CLASS or ALTER SERVICE CLASS statement. See: “Setting a CPU
limit” on page 209.

v Enable hard and soft CPU shares by configuring the wlm_disp_cpu_shares
database manager configuration parameter. See step 1 in: “Enabling and setting
soft CPU shares” on page 193.

v Create or alter a service class and configure a hard CPU share by using the
CREATE SERVICE CLASS or ALTER SERVICE CLASS statement. See: “Enabling
and setting hard CPU shares” on page 188.

v Create or alter a service class and configure a soft CPU share by using the
CREATE SERVICE CLASS or ALTER SERVICE CLASS statement. See: “Enabling
and setting soft CPU shares” on page 193.

v Set the minimum CPU utilization percentage for the workload management
dispatcher to consider service classes to be active by configuring the
wlm_disp_min_util database manager configuration parameter. See: “Setting
minimum CPU resource utilization for service class to be considered active” on
page 212.

After the workload management dispatcher has been enabled and the dispatch
concurrency level has been set, monitor your system for a drop in throughput and
CPU utilization. If a drop in either metric does occur, increase the value of the
wlm_disp_concur configuration parameter in increments of the number of available
processors. For more information about monitoring and tuning workload
management dispatcher performance, see: “Monitoring and tuning workload
management dispatcher performance”

Monitoring and tuning workload management dispatcher
performance

The monitoring and tuning of workload management dispatcher performance can
be achieved with the table functions and monitoring elements provided with the
DB2 database manager. Details are provided here.

Introduction

To monitor and tune the performance of the workload management dispatcher and
achieve the best results, you require the proper tools. Table functions and
monitoring elements are provided that can help you monitor the performance of
the dispatcher. After analyzing the collected monitoring data as described here,

Chapter 3. Activities management 215

you can adjust the dispatcher concurrency level or redistribute CPU entitlements
by adjusting service class CPU shares and CPU limits to tune the dispatcher
performance.

The following sections describe the types of workloads to consider, because they
differ in how they are best monitored to deliver the appropriate data for you to
analyze, and the performance measures which are the most suitable for the
particular type of workload under consideration.

Types of workloads

From the perspective of measuring performance for the purpose of tuning your
dispatcher configuration to obtain the best possible workload performance from
your system, there are two types of workloads to consider: batch and transactional.
Each type of workload has characteristic measures of performance that are best
suited to determining how well your system is performing under that type of
workload. Use the performance measures that best characterize the workload type
your system is experiencing.

Batch

A batch workload has one or more applications connecting to the database and
each application submits activity after activity or transaction after transaction
without any pause. The most important measure of the performance of this
workload is how quickly the entire set of activities or transactions is completed.
The processing speed of the database manager is the main determinant of how
quickly the entire set of activities or transactions is completed.

Transactional

A transactional workload has a user at a terminal that submits an activity or
transaction to the database, then waits for a response, analyzes the response, and
decides whether or not to submit a follow-up activity or transaction. For this type
of workload, the most important measure of its performance is how quickly the
user gets back an individual result. The processing speed of the database manager
to process a single activity or transaction for each individual user on the system is
the main determinant of how quickly the average user can get back an individual
result. How quickly the database manager can process all the activities or
transactions from a user over a given period of time is not the relevant metric
because it is more dependent on user behavior than on the performance of the
database manager.

Performance measures

You can use the following performance measures to ascertain how well your
system is performing under a particular type of workload.

Average throughput

Average throughput is the average number of service completions per unit time. If
the service is a transaction or unit of work (UOW), then the average UOW
throughput is the number of unit of work completions per unit time. It is usually
presented as transactions per second or transactions per minute. Average
throughput is a useful measure of system performance when the type of work
being measured is a batch workload.

216 DB2 Workload Management Guide and Reference

Average activity throughput is the average number of activity completions per unit
time. On a system with mostly long-running units of work containing many
individual activities, it is easier to measure the progress of the activities within the
workload by measuring activity throughput rather than measure the progress of
the workload by measuring UOW throughput.

Average response time

Average response time is the average amount of time it takes to get a single service
completion from the time the service was requested. If the service is a transaction
or unit of work (UOW), then the average UOW response time is the amount of
time it takes for a UOW to complete from the time it was requested. Average
response time is a useful measure of system performance when the type of work
being measured is a transactional workload. The closest approximation to average
UOW response time is the uow_lifetime_avg statistic available from the
MON_SAMPLE_SERVICE_CLASS_METRICS and
MON_SAMPLE_WORKLOAD_METRICS table functions, the
WLM_GET_SERVICE_SUBCLASS_STATS and WLM_GET_WORKLOAD_STATS
table functions, and the event_scstats and event_wlstats event monitor logical data
groups reported in the WLM statistics event monitor. A more sophisticated form of
UOW lifetime information is available in the UowLifetime histogram, also
available in the event monitor.

Average activity response time is the average amount of time it takes to get a
single activity to return its result from the time the activity was started. The closest
approximation to average activity response time is the coord_act_lifetime_avg
statistic available from the WLM_GET_SERVICE_SUBCLASS_STATS and
WLM_GET_WORKLOAD_STATS table functions, and the event_scstats and
event_wlstats event monitor logical data groups. This number is measured at each
member and is reset when a member is deactivated or the WLM_COLLECT_STATS
procedure is called. The reason it can be an approximation is that for one type of
activity, a cursor activity, the activity can return some results before it finishes and
relies on the user to finish reading the result set and close the cursor before the
activity is considered complete. A more sophisticated form of activity lifetime is
available in the CoordActLifetime histogram, also available in the event monitor.

CPU utilization

Another metric that is useful when tuning workload management dispatcher,
regardless of the type of workload, is the CPU utilization. CPU utilization is the
fraction of the time that the CPU resources are busy on the host or LPAR. CPU
utilization is the metric that the workload management dispatcher uses to allocate
the CPU resources to any one service class. CPU utilization is also the metric that
you can use to verify that your workload management dispatcher configuration is
working the way you intended. You can measure the CPU utilization over the
same intervals as the uow_throughput, uow_lifetime_avg, and act_throughput
monitor elements by using the MON_SAMPLE_SERVICE_CLASS_METRICS and
MON_SAMPLE_WORKLOAD_METRICS table functions, the
WLM_GET_SERVICE_SUBCLASS_STATS and WLM_GET_WORKLOAD_STATS
table functions, and the event_scstats and event_wlstats event monitor logical data
groups collected and reported by the WLM statistics event monitor.

Note: If CPU utilization measurements are not as expected for your created service
classes, check for the presence of workloads that are running under the default
user and maintenance service classes because these workloads were not explicitly
assigned to service classes that you created. Forgetting to include workloads

Chapter 3. Activities management 217

running under these default service classes, which each have 1000 hard CPU shares
assigned by default when CPU shares were first enabled, can account for CPU
utilization measurements that are not as you expected.

The CPU utilization reported through the table functions and event monitors is the
CPU resources that are consumed by work executing in only the user and
maintenance service classes. Work that is not handled by the dispatcher is not
counted towards CPU utilization.

Work that is not handled by the workload management dispatcher includes:
v Work performed by applications or middleware products, other than the DB2

database manager, that perform a portion of their work outside of the DB2
database manager

v Work performed by entities executing in the DB2 system service class
v Work performed by other DB2 instances
v Non-DB2 database manager work performed in fenced mode processes (FMPs)

such as fenced stored procedures
v Non-DB2 database manager work performed in trusted routines

To obtain the CPU utilization for these other consumers of CPU resources, one
must use operating-system-level (OS-level) monitoring such as that provided with
OS workload managers.

CPU velocity

CPU velocity is a statistic that determines whether there is contention for a
resource and the degree of such contention. When all access to a resource is
mutually exclusive and there are multiple requestors of that resource wanting to
access it at the same time, there must be some form of queuing for access, or
requestors must be turned away. When a queue is allowed to form, the time taken
for a requestor to obtain and then finish using a resource can exceed the time spent
simply using the resource. The velocity is the ratio of the time spent simply using
the resource to the total time spent both waiting for and using the resource. It is
measured on a scale of zero to 100%. When there is a high amount of contention
for a resource, velocity sinks towards zero. When there is no contention for a
resource, then there is no queue time; CPU velocity reaches its maximum value of
100%.

When the workload management dispatcher is enabled, you can measure CPU
velocity using the MON_SAMPLE_SERVICE_CLASS_METRICS and
MON_SAMPLE_WORKLOAD_METRICS table functions, the
WLM_GET_WORKLOAD_STATS and WLM_GET_SERVICE_SUBCLASS_STATS
table functions, and the event_scstats and event_wlstats event monitor logical data
groups collected and reported by the WLM statistics event monitor. A low CPU
velocity value indicates that contention exists for the CPU resources of the host or
LPAR and indicates that the workload management dispatcher can be effective in
shifting CPU resources towards high-priority service classes and away from
low-priority service classes. A high CPU velocity indicates that the workload
management dispatcher will have a limited effect on improving workload
performance, since every request for CPU resources is already being serviced
without any delay.

218 DB2 Workload Management Guide and Reference

Canceling activities
If an activity is consuming too many resources, or is running too long, you can
cancel it. Canceling an activity is gentler than forcing the application that
submitted the activity. A canceled activity returns SQL4725N to the user, but does
not end the connection or affect any other user activity. Forcing the application
ends both the connection and user activities.

About this task

You can only explicitly cancel an activity if a coordinator activity is currently
working on a request for the activity. If you cancel an activity in the IDLE state
(that is, no requests are being processed), the activity is placed in the
CANCEL_PENDING state and is canceled on the next request that is received. For
example, if you attempt to cancel a CURSOR activity between fetches, the
SQL4725N error is not returned to the user until the next fetch after the cancel.

All user activities are cancelable, including the load utility and stored procedures.

Procedure
1. Identify the activity that you want to cancel. You can use the

WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES table function to
identify the activities running in an application. You can also use the
MON_GET_ACTIVITY_DETAILS_COMPLETE table function to view additional
details about a particular activity if the information in
WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES is not sufficient to
identify the work that the activities are performing.

2. Cancel the activity using the WLM_CANCEL_ACTIVITY stored procedure. The
stored procedure takes the following arguments: application_handle, uow_id, and
activity_id. For an example of how to use this stored procedure, see “Scenario:
Identifying activities that are taking too long to complete” on page 346.

Chapter 3. Activities management 219

220 DB2 Workload Management Guide and Reference

Chapter 4. Monitoring and intervention

The third domain of workload management is monitoring, which must be
performed on an ongoing basis.

The primary purpose of monitoring is to validate the health and efficiency of your
system and the individual workloads running on it. Using table functions, you can
access real-time operational data such as a list of running workload occurrences
and the activities running in a service class or average response times. Using event
monitors you can capture detailed activity information and aggregate activity
statistics for historical analysis.

Looking at aggregate information should usually be the first step when you build
a monitoring strategy. Aggregates give a good picture of overall data server
activity and are also cheaper because you do not have to collect information on
every activity in which you might be interested. You can collect more detailed
information as you understand the scope of your monitoring needs.

Typical monitoring tasks you can perform are:
v Analyzing the workload on your system to help design your initial DB2

workload management configuration.
v Tracking and investigating the behavior of your system by obtaining types of

operational information that permit you to:
– Analyze system performance degradation
– Diagnose activities that are taking too long to complete
– Investigate agent contention
– Isolate poorly performing queries

Information is available for activities, service classes, workloads, work classes,
threshold queues, and threshold violations.

v Exercising control over the execution environment by canceling queued activities
that you expect will cause problems or cancel running activities that you have
diagnosed as negatively impacting the system.

Real-time monitoring with table functions
Real-time monitoring data includes information about work currently running on
the system, statistics, and metrics for work that has been performed on the system
that can help you to determine usage patterns and resource allocation and identify
problem areas. You use DB2 table functions to obtain this operational information.

Table functions with names that begin with WLM_ are DB2 workload management
table functions. These table functions provide access to a set of data relevant to
managing your workload, such as workload management statistics, as a virtual
DB2 table against which you can issue a SELECT statement. This enables you to
write applications to query data and analyze it as if it were in a physical table on
the data server. The DB2 workload management table functions are qualified with
the SYSPROC schema name.

Table functions with names that begin with MON_ are monitoring metrics
functions. Monitoring metrics provide monitoring data about the health of and
query performance on your DB2 data server, which can then be used as input to a

© Copyright IBM Corp. 2007, 2012 221

3rd party tool or in conjunction with additional scripting you provide to analyze
the metrics returned. Only those monitoring metrics functions that are relevant for
DB2 workload management are included here. The monitor metrics table functions
are similar to the workload management statistics table functions. Both return
elements describing work that has taken place on the system. The key differences
between these monitoring metrics table functions and the DB2 workload
management table functions are:
v The DB2 workload management table functions provide data that is more

statistical in nature, such as computed values like averages, high watermarks,
standard deviations, etc. In contrast, the monitoring metrics table functions
provide a much more complete set of raw monitoring data.

v The data reported by the DB2 statistics functions is reset when data is sent to a
statistics event monitor. This resetting of data is necessary to make values such
as high watermarks meaningful over a specific collection interval. Data reported
by the monitoring metrics functions is also captured by a statistics event
monitor, but is never reset. The data reported by monitoring interfaces
accumulates from the time a database is activated until the time it is deactivated.

Some table functions return sets of information about the work that is currently
running on a system:

Table 49. Table functions that show you the work currently running on the system

Objects for which
information is
collected Functions and information returned

Workload
occurrences

The WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES
table function returns a list of workload occurrences, across database
members, that are assigned to a service class. For each occurrence,
there is information about the current state and the connection
attributes used to assign the workload to the service class and
activity statistics indicating activity volume and success rates. For an
example of how to use this table function, see “Example:
Investigating agent usage by service class” on page 92.

The deprecated
WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES_V97
table function is also available.

Workload
occurrence activities

The WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES table
function returns a list of current activities associated with a workload
occurrence. For each activity, information is available about the
current state of the activity (for example, executing or queued), the
type of activity (for example, LOAD, READ, or DDL), and the time
at which the activity started. For examples of how to use this table
function, see “Example: Aggregating data using DB2 workload
management table functions” on page 231 and “Scenario: Identifying
activities that are taking too long to complete” on page 346.

The deprecated
WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES_V97 table
function is also available.

222 DB2 Workload Management Guide and Reference

Table 49. Table functions that show you the work currently running on the
system (continued)

Objects for which
information is
collected Functions and information returned

Service class agents The WLM_GET_SERVICE_CLASS_AGENTS table function returns a
list of database agents associated with a service class or an
application handle. Information returned also shows the current state
of the agent, the action that the agent is performing, and the status of
that action. For an example of how to use this table function, see
“Example: Investigating agent usage by service class” on page 92.

The deprecated WLM_GET_SERVICE_CLASS_AGENTS_V97 table
function is also available.

Activities The MON_GET_ACTIVITY_DETAILS table function returns metrics
and other detailed information as an XML document about a specific
activity identified by its application handle, unit of work ID, and
activity ID. One detail returned is the activity type; depending on
that type, a set of additional data is returned. For example, for SQL
activities, cost estimates and information about the statement text,
package data, and rows returned or modified are provided. Details
about the isolation level and processor resource are also available,
amongst others.

The deprecated WLM_GET_ACTIVITY_DETAILS table function is
also available. For an example that shows you how to use this table
function, see “Example: Monitoring current system behavior at
different levels using DB2 workload management table functions” on
page 227.

Some table functions return monitoring data for all requests executed on the
system aggregated by service subclass and workload objects:

Table 50. Table functions that show you monitoring data aggregated by DB2 workload
management objects

Objects for which
data is aggregated Functions and information returned

Workloads Both the MON_GET_WORKLOAD table function and the
MON_GET_WORKLOAD_DETAILS table function return metrics for
one or more workloads. The metrics returned by this function
represent the accumulation of all metrics of all workload occurrences
that use the same workload definition.

The MON_GET_WORKLOAD table function returns the most
commonly used metrics in a column-based format and is an efficient
method of retrieving base metrics.

The MON_GET_WORKLOAD_DETAILS table function returns the
entire set of available metrics in an XML document format, which
provides maximum flexibility for formatting output. The XML based
output can be parsed directly by an XML parser, or it can be
converted to relational format by the XMLTABLE function.

Chapter 4. Monitoring and intervention 223

Table 50. Table functions that show you monitoring data aggregated by DB2 workload
management objects (continued)

Objects for which
data is aggregated Functions and information returned

Service subclasses Both the MON_GET_SERVICE_SUBCLASS table function and the
MON_GET_SERVICE_SUBCLASS_DETAILS table function return
metrics for one or more service subclasses. The metrics returned by
the table functions represent the accumulation of all metrics for
requests that have executed under the indicated service subclass.

The MON_GET_SERVICE_SUBCLASS table function returns the most
commonly used metrics in a column based format and is an efficient
method of retrieving base metrics.

The MON_GET_SERVICE_SUBCLASS_DETAILS table function
returns the entire set of available metrics in an XML document
format, which provides maximum flexibility for formatting output.
The XML-based output can be parsed directly by an XML parser, or
it can be converted to relational format by the XMLTABLE function.

Connections The MON_GET_CONNECTION table function returns data that is
aggregated across user connections to the system.

Units of work The MON_GET_UNIT_OF_WORK table function returns data that is
aggregated for the current unit of work within a user connection.

Statistical information

General statistical information is also available for a number of different objects.
You can use this statistical information for a number of different purposes, such as
for verifying that changes to your DB2 workload management configuration have
had the expected effect. If you create a new work class to classify READ activities,
for example, you can verify that READ activities are being classified under the
new work class correctly. You can also use table functions to quickly recognize
certain problems with the system. For example, you can use table functions to
determine an acceptable value for the average activity lifetime and recognize when
this value exceeds its usual range, possibly indicating a problem that requires
further investigation.

The following table lists the statistics that you can obtain by using table functions.
All statistics table functions return the statistics that accumulated since the last
time that you reset the statistics.

Table 51. Table functions that show you statistical information

Objects for which
statistics are
returned Functions and statistics returned

Service superclasses The WLM_GET_SERVICE_SUPERCLASS_STATS table function
shows summary statistics across database members at the service
superclass level: namely, high-water marks for concurrent
connections, which are useful when determining peak workload
activity.

224 DB2 Workload Management Guide and Reference

Table 51. Table functions that show you statistical information (continued)

Objects for which
statistics are
returned Functions and statistics returned

Service subclasses The WLM_GET_SERVICE_SUBCLASS_STATS table function shows
summary statistics across database members at the service subclass
level (all activities run in service subclasses). Statistics include
numbers of completed activities and average execution times. This
information is useful when you are looking at general system health
and distribution of activities across service classes and database
members. For examples of how to use this table function, see
“Example: Obtaining point-in-time statistics from service classes” on
page 230, “Example: Aggregating data using DB2 workload
management table functions” on page 231, “Example: Analyzing a
service class–related system slowdown” on page 91, and “Scenario:
Investigating a workload-related system slowdown” on page 342.

The deprecated WLM_GET_SERVICE_SUBCLASS_STATS_V97 table
function is also available.

Workloads The WLM_GET_WORKLOAD_STATS table function shows
summary statistics across database members at the workload level.
These include high-water marks for concurrent workload
occurrences and numbers of completed activities. This information
is useful when you are monitoring general system health or drilling
down to identify problem areas. For an example of how to use this
table function, see “Scenario: Investigating a workload-related
system slowdown” on page 342.

The deprecated WLM_GET_WORKLOAD_STATS_V97 table function
is also available.

Work action sets The WLM_GET_WORK_ACTION_SET_STATS table function shows
summary statistics across database members at the work action set
level: namely, the number of activities in each work class that had
the corresponding work actions applied to them. This information is
useful for understanding the effectiveness of a work action set and
understanding the types of activities running on the system. For an
example of how to use this table function, see “Example: Analyzing
workloads by activity type” on page 61.

Threshold queues The WLM_GET_QUEUE_STATS table function shows summary
statistics across database members for the queues used for
thresholds. Statistics include the current and total numbers of
queued activities and total time spent in a queue. This informations
is useful when you are querying current queued activity or
validating that you defined a threshold correctly. Excessive queuing
might indicate that a threshold is too restrictive, and very little
queuing might indicate that a threshold is not restrictive enough or
not needed.

Statistics are useful only if the time period during which they are collected is
meaningful. Collecting statistics over a very long time, and for any length of time
using the WLM_COLLECT_STATS stored procedure, might be less useful if it
becomes difficult to identify changes to trends or problem areas because there is
too much old data. Thus, you can reset statistics at any time.

Because of the default workload and default user service classes, monitoring
capabilities exist from the moment that you install the DB2 data server. These can
help you to start identifying sources of activities that you can use to create

Chapter 4. Monitoring and intervention 225

workloads and the service classes to which you can assign them.

Example: Using DB2 workload management table functions
A large amount of data is available through DB2 workload management real-time
monitoring. The example in this topic shows how you might start using the
information.

In this situation, only the default workload and service class are in place. Use this
example to understand how you can use the table functions to understand what,
exactly, is running on the data server. Follow these steps:
1. Use the Service Superclass Statistics table function to show all of the service

superclasses. After you install or upgrade to DB2 9.5 or later, three default
superclasses are defined: one for maintenance activities, one for system
activities, and one for user activities. SYSDEFAULTUSERCLASS is the service
class of interest.
SELECT VARCHAR(SERVICE_SUPERCLASS_NAME,30) AS SUPERCLASS

FROM TABLE(WLM_GET_SERVICE_SUPERCLASS_STATS(’’,-1)) AS T

SUPERCLASS

SYSDEFAULTSYSTEMCLASS
SYSDEFAULTMAINTENANCECLASS
SYSDEFAULTUSERCLASS

3 record(s) selected.

2. Use the Service Subclass Statistics table function to show statistics for all the
service subclasses of the SYSDEFAULTUSERCLASS superclass. For each service
subclass you can see the current volume of requests that are being processed,
the number of activities that have completed execution, and the overall
distribution of activities across members (possibly indicating a problem if the
distribution is uneven). You can optionally obtain additional statistics including
the average lifetime for activities, the average amount of time activities spend
queued, and so on. You can obtain optional statistics for a service subclass by
specifying the COLLECT AGGREGATE ACTIVITY DATA keyword on the
ALTER SERVICE CLASS statement to enable aggregate activity statistics
collection.
SELECT VARCHAR(SERVICE_SUPERCLASS_NAME, 20) AS SUPERCLASS,

VARCHAR(SERVICE_SUBCLASS_NAME, 20) AS SUBCLASS,
COORD_ACT_COMPLETED_TOTAL,
COORD_ACT_ABORTED_TOTAL,
COORD_ACT_REJECTED_TOTAL,
CONCURRENT_ACT_TOP

FROM TABLE(WLM_GET_SERVICE_SUBCLASS_STATS(
’SYSDEFAULTUSERCLASS’, ’SYSDEFAULTSUBCLASS’, -1))
AS T

SUPERCLASS SUBCLASS COORD_ACT_COMPLETED_TOTAL COORD_ACT_ABORTED_TOTAL COORD_ACT_REJECTED_TOTAL CONCURRENT_ACT_TOP
-------------------- -------------------- ------------------------- ----------------------- ------------------------ ------------------
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 2 0 0 1

1 record(s) selected.

3. For a given service subclass, use the Workload Occurrence Information table
function to list the occurrences of a workload that are mapped to the service
subclass. The table function displays all of the connection attributes, which you
can use to identify the source of the activities. This information can be quite
useful in determining custom workload definitions in the future. For example,
perhaps a specific workload occurrence listed here has a large volume of work
from an application as shown by the activities completed counter.

226 DB2 Workload Management Guide and Reference

SELECT APPLICATION_HANDLE,
VARCHAR(WORKLOAD_NAME, 30) AS WORKLOAD,
VARCHAR(SESSION_AUTH_ID, 20) AS SESSION_AUTH_ID,
VARCHAR(APPLICATION_NAME, 20) AS APPL_NAME

FROM TABLE(WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES(
’SYSDEFAULTUSERCLASS’, ’SYSDEFAULTSUBCLASS’, -1))
AS T

APPLICATION_HANDLE WORKLOAD SESSION_AUTH_ID APPL_NAME
-------------------- ------------------------------ -------------------- --------------------

431 SYSDEFAULTUSERWORKLOAD SWALKTY db2bp

1 record(s) selected.

a. For that application, use the Workload Occurrence Activities Information
table function to show the current activities across database members that
were created from the application's connection. You can use this information
for a number of purposes, including identifying activities that might be
causing problems on the data server.
SELECT APPLICATION_HANDLE,

LOCAL_START_TIME,
UOW_ID,
ACTIVITY_ID,
ACTIVITY_TYPE

FROM TABLE(WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES(431,-1)) AS T
APPLICATION_HANDLE LOCAL_START_TIME UOW_ID ACTIVITY_ID ACTIVITY_TYPE
-------------------- -------------------------- ----------- ----------- --------------------------------

431 2008-06-17-12.49.46.854259 11 1 READ_DML

1 record(s) selected

b. For each activity, retrieve more detailed information by using the Activity
Details table function. The data might show that some SQL statements are
returning huge numbers of rows, that some activities have been idle for a
long time, or that some queries are running that have an extremely large
estimated cost. In situations such as these, it might make sense to define
some thresholds to identify and prevent potentially damaging behavior in
the future.
SELECT VARCHAR(NAME, 20) AS NAME,

VARCHAR(VALUE, 40) AS VALUE
FROM TABLE(WLM_GET_ACTIVITY_DETAILS(431,11,1,-1))

AS T WHERE NAME IN (’UOW_ID’, ’ACTIVITY_ID’, ’STMT_TEXT’)

NAME VALUE
-------------------- --
UOW_ID 1
ACTIVITY_ID 1
STMT_TEXT select * from syscat.tables

3 record(s) selected.

Example: Monitoring current system behavior at different
levels using DB2 workload management table functions

DB2 workload management provides a number of table functions that you can use
to obtain data about your workload management configuration.

Installing DB2 Version 9.5 or later creates a set of default workloads and service
classes. Before deciding how to implement your own DB2 workload management
solution, you can use the table functions to observe work being performed in the
system in terms of the default workload occurrences, service classes, and activities.

You can start by obtaining the list of workload occurrences in a service class. To do
this, use the WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES table

Chapter 4. Monitoring and intervention 227

function. In the following example, an empty string is passed for
service_superclass_name and service_subclass_name, and -2 (a wildcard character) is
passed for member:
SELECT SUBSTR(SERVICE_SUPERCLASS_NAME,1,19) AS SUPERCLASS_NAME,

SUBSTR(SERVICE_SUBCLASS_NAME,1,18) AS SUBCLASS_NAME,
SUBSTR(CHAR(MEMBER),1,4) AS MEMB,
SUBSTR(CHAR(COORD_MEMBER),1,4) AS COORDMEMB,
SUBSTR(CHAR(APPLICATION_HANDLE),1,7) AS APPHNDL,
SUBSTR(CHAR(WORKLOAD_NAME),1,22) AS WORKLOAD_NAME,
SUBSTR(CHAR(WORKLOAD_OCCURRENCE_ID),1,6) AS WLO_ID

FROM TABLE(WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES(’’, ’’, -2)) AS SCINFO
ORDER BY SUPERCLASS_NAME, SUBCLASS_NAME, MEMB, APPHNDL, WORKLOAD_NAME, WLO_ID

Assume that the system has four database members and that there are two
applications performing activities on the database when you issue the query. The
results would resemble the following ones:

SUPERCLASS_NAME SUBCLASS_NAME MEMB COORDMEMB APPHNDL WORKLOAD_NAME WLO_ID
------------------- ------------------ ---- --------- ------- -----------------------------
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 0 0 1 SYSDEFAULTUSERWORKLOAD 1
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 0 0 2 SYSDEFAULTUSERWORKLOAD 2

The results indicate that both workload occurrences were assigned to the
SYSDEFAULTUSERWORKLOAD workload. The results also show that both
workload occurrences were assigned to the SYSDEFAULTSUBCLASS service
subclass in the SYSDEFAULTUSERCLASS service superclass and that both
workload occurrences are from the same coordinator member (member 0).

Next, you can also use the
WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES table function again
to determine the connection attributes of the two workload occurrences:
SELECT SUBSTR(CHAR(APPLICATION_HANDLE),1,7) AS APPHNDL,

SUBSTR(CHAR(WORKLOAD_NAME),1,22) AS WORKLOAD_NAME,
SUBSTR(CHAR(WORKLOAD_OCCURRENCE_ID),1,6) AS WLO_ID,
SUBSTR(CHAR(SYSTEM_AUTH_ID),1,9) AS SYSAUTHID,
SUBSTR(CHAR(APPLICATION_NAME),1,15) AS APPLNAME

FROM TABLE(WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES(’’, ’’, 0)) AS SCINFO
ORDER BY APPHNDL, WORKLOAD_NAME, WLO_ID

APPHNDL WORKLOAD_NAME WLO_ID SYSAUTHID APPLNAME
------- ---------------------- ------ --------- ---------------
1 SYSDEFAULTUSERWORKLOAD 1 LYNN accountspay
2 SYSDEFAULTUSERWORKLOAD 2 KATE businessobjects

Then, you can use the WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES
table function to show the current activities of one of the workload occurrences:
SELECT SUBSTR(CHAR(COORD_MEMBER),1,5) AS COORD,

SUBSTR(CHAR(MEMBER),1,4) AS MEMB,
SUBSTR(CHAR(UOW_ID),1,5) AS UOWID,
SUBSTR(CHAR(ACTIVITY_ID),1,5) AS ACTID,
SUBSTR(CHAR(PARENT_UOW_ID),1,8) AS PARUOWID,
SUBSTR(CHAR(PARENT_ACTIVITY_ID),1,8) AS PARACTID,
SUBSTR(ACTIVITY_TYPE,1,9) AS ACTTYPE,
SUBSTR(CHAR(NESTING_LEVEL),1,7) AS NESTING

FROM TABLE(WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES(1, -2)) AS WLOACTS
ORDER BY MEMB, UOWID, ACTID

COORD MEMB UOWID ACTID PARUOWID PARACTID ACTTYPE NESTING
----- ---- ----- ----- -------- -------- -------- -------
0 0 1 3 - - CALL 0
0 0 1 5 1 3 READ_DML 1

228 DB2 Workload Management Guide and Reference

0 1 1 5 - - READ_DML 1
0 2 1 5 - - READ_DML 1
0 3 1 5 - - READ_DML 1

The query results show that workload occurrence 1 is running two activities. One
activity is a stored procedure (indicated by the activity type of CALL), and the
other activity is a DML activity that performs a read (for example, a SELECT
statement). The DML activity is nested in the stored procedure call. You can tell
that the DML activity is nested because the parent unit of work identifier and
parent activity identifier of the DML activity match the unit of work identifier and
the activity identifier of the CALL activity. You can also tell that the DML activity
is executing on database members 0, 1, 2, and 3. The parent identifier information
is available only on the coordinator member.

You can obtain more information about an individual activity that is currently
running by using the MON_GET_ACTIVITY_DETAILS table function. This table
function returns an XML document where the elements in the document describe
the activity. In this example, the XMLTABLE function is used to return a result
table from the XML output.
SELECT D.APP_HANDLE,

D.MEMBER,
D.COORD_MEMBER,
D.LOCAL_START_TIME,
D.UOW_ID,
D.ACTIVITY_ID,
D.PARENT_UOW_ID,
D.PARENT_ACTIVITY_ID,
D.ACTIVITY_TYPE,
D.NESTING_LEVEL,
D.INVOCATION_ID,
D.ROUTINE_ID

FROM TABLE(MON_GET_ACTIVITY_DETAILS(65592, 1, 1, -2)) AS ACTDETAILS,
XMLTABLE (XMLNAMESPACES(DEFAULT ’http://www.ibm.com/xmlns/prod/db2/mon’),

’$details/db2_activity_details’ PASSING XMLPARSE(DOCUMENT
ACTDETAILS.DETAILS) as "details"

COLUMNS "APP_HANDLE" BIGINT PATH ’application_handle’,
"MEMBER" BIGINT PATH ’member’,
"COORD_MEMBER" BIGINT PATH ’coord_member’,
"LOCAL_START_TIME" VARCHAR(26) PATH ’local_start_time’,
"UOW_ID" BIGINT PATH ’uow_id’,
"ACTIVITY_ID" BIGINT PATH ’activity_id’,
"PARENT_UOW_ID" BIGINT PATH ’parent_uow_id’,
"PARENT_ACTIVITY_ID" BIGINT PATH ’parent_activity_id’,
"ACTIVITY_TYPE" VARCHAR(10) PATH ’activity_type’,
"NESTING_LEVEL" BIGINT PATH ’nesting_level’,
"INVOCATION_ID" BIGINT PATH ’invocation_id’,
"ROUTINE_ID" BIGINT PATH ’routine_id’

) AS D;
APP_HANDLE MEMBER COORD_MEMBER LOCAL_START_TIME
UOW_ID ACTIVITY_ID PARENT_UOW_ID
PARENT_ACTIVITY_ID ACTIVITY_TYPE NESTING_LEVEL INVOCATION_ID
ROUTINE_ID
-------------------- -------------------- --------------------
-------------------------- -------------------- --------------------
-------------------- -------------------- ------------- --------------------
-------------------- --------------------

65592 1 1
2009-04-07-18.39.42.549197 1
1 - - READ_DML 0 0 0

65592 0 1
2009-04-07-18.39.42.552763 1
1 - - READ_DML 0 0 0

2 record(s) selected.

The table functions mentioned previously provide a high-level description of work
that is running in the system. The information that these table functions provide
regarding the status of the work is limited to an activity state such as

Chapter 4. Monitoring and intervention 229

EXECUTING. If you want to probe further to discover what exactly is occurring in
a service class at a point in time, you can run the
WLM_GET_SERVICE_CLASS_AGENTS table function.

In the following example, WLM_GET_SERVICE_CLASS_AGENTS is called by
passing 1 for application_handle and -2 (a wildcard character) for member:
SELECT SUBSTR(CHAR(APPLICATION_HANDLE),1,7) AS APPHANDLE,

SUBSTR(CHAR(MEMBER),1,4) AS MEMB,
SUBSTR(CHAR(AGENT_TID),1,9) AS AGENT_TID,
SUBSTR(AGENT_TYPE,1,11) AS AGENTTYPE,
SUBSTR(AGENT_STATE,1,10) AS AGENTSTATE,
SUBSTR(REQUEST_TYPE,1,14) AS REQTYPE,
SUBSTR(CHAR(UOW_ID),1,6) AS UOW_ID,
SUBSTR(CHAR(ACTIVITY_ID),1,6) AS ACT_ID

FROM TABLE(WLM_GET_SERVICE_CLASS_AGENTS(’’, ’’, 1, -2)) AS SCDETAILS
ORDER BY APPHANDLE, MEMB, AGENT_TID

APPHANDLE MEMB AGENT_TID AGENTTYPE AGENTSTATE REQTYPE UOW_ID ACT_ID
--------- ---- --------- ----------- ---------- --------------------------
1 0 3 COORDINATOR ACTIVE FETCH 1 5
1 0 4 PDBSUBAGENT ACTIVE SUBSECTION:1 1 5
1 1 2 PDBSUBAGENT ACTIVE SUBSECTION:2 1 5

The results show a coordinator agent and a subagent on member 0 and a subagent
on member 1 operating on behalf of an activity with a unit of work identifier of 1
and an activity identifier of 5. The coordinator agent information indicates that the
request is a fetch request.

Example: Obtaining point-in-time statistics from service
classes

Every activity is mapped to a service class before being executed. You can monitor
the system by using the service class statistics table functions and querying all of
the service classes on all of the database members to obtain point-in-time statistics.

You can use the following statement to obtain service class statistics, such as the
average activity lifetime. Passing an empty string for an argument for the
WLM_GET_SERVICE_SUBCLASS_STATS table function means that the result is
not to be restricted by that argument. The value of the last argument, member, is -2
(a wildcard character), which means that data from all database members is to be
returned.

Note: Lifetime information is only returned for those service classes that are
defined with COLLECT AGGREGATE ACTIVITY DATA.
SELECT SUBSTR(SERVICE_SUPERCLASS_NAME,1,19) AS SUPERCLASS_NAME,

SUBSTR(SERVICE_SUBCLASS_NAME,1,18) AS SUBCLASS_NAME,
SUBSTR(CHAR(MEMBER),1,4) AS MEMB,
CAST(COORD_ACT_LIFETIME_AVG / 1000 AS DECIMAL(9,3)) AS AVGLIFETIME,
CAST(COORD_ACT_LIFETIME_STDDEV / 1000 AS DECIMAL(9,3)) AS STDDEVLIFETIME,
SUBSTR(CAST(LAST_RESET AS VARCHAR(30)),1,16) AS LAST_RESET

FROM TABLE(WLM_GET_SERVICE_SUBCLASS_STATS(’’, ’’, -2)) AS SCSTATS
ORDER BY SUPERCLASS_NAME, SUBCLASS_NAME, MEMB

SUPERCLASS_NAME SUBCLASS_NAME MEMB AVGLIFETIME STDDEVLIFETIME LAST_RESET
------------------- ------------------ ---- ----------- -------------- ----------------
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 0 691.242 34.322 2006-07-24-11.44
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 1 644.740 22.124 2006-07-24-11.44
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 2 612.431 43.347 2006-07-24-11.44
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 3 593.451 28.329 2006-07-24-11.44

230 DB2 Workload Management Guide and Reference

You can also use the WLM_GET_SERVICE_SUBCLASS_STATS table function to
obtain the high watermark for the concurrency of coordinator activities that run in
the service class on each member:
SELECT SUBSTR(SERVICE_SUPERCLASS_NAME,1,19) AS SUPERCLASS_NAME,

SUBSTR(SERVICE_SUBCLASS_NAME,1,18) AS SUBCLASS_NAME,
SUBSTR(CHAR(MEMBER),1,4) AS MEMB,
CONCURRENT_ACT_TOP AS ACTHIGHWATERMARK

FROM TABLE(WLM_GET_SERVICE_SUBCLASS_STATS(’’, ’’, -2)) AS SCSTATS
ORDER BY SUPERCLASS_NAME, SUBCLASS_NAME, MEMB

SUPERCLASS_NAME SUBCLASS_NAME MEMB ACTHIGHWATERMARK
------------------- ------------------ ---- ----------------
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 0 10
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 1 0
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 2 0
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 3 0

By reviewing the average lifetime and number of completed activities, you can use
the output of the WLM_GET_SERVICE_SUBCLASS_STATS table function to obtain
a rolled-up view of the workload on each member in the database. Significant
variations in the high watermarks and averages returned by a table function might
indicate a change in the workload on the system.

Example: Aggregating data using DB2 workload management
table functions

You can perform various aggregations on table data in a DB2 workload
management configuration to monitor the system and identify potential problems.

The following is an example of data aggregation that you can perform to identify
problems.

Identifying sudden increases in the number of queries running in
a workload

Assume that you have a workload called WL1. You can identify a situation in
which a large number of queries are running in the workload by showing the total
number of executing non-nested coordinator activities for the workload across the
whole system:
SELECT SUBSTR(WORKLOAD_NAME,1,22) AS WLNAME,
COUNT(*) AS TOTAL_EXE_ACT
FROM TABLE(WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES(’’, ’’, -2)) AS APPS,
TABLE(WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES(APPS.APPLICATION_HANDLE, -2)) AS APPACTS
WHERE WORKLOAD_NAME = ’WL1’ AND
APPS.DBPARTITIONNUM = APPS.COORD_PARTITION_NUM AND
ACTIVITY_STATE = ’EXECUTING’ AND
NESTING_LEVEL = 0
GROUP BY WORKLOAD_NAME

WLNAME TOTAL_EXE_ACT
-------------------- -------------
WL1 5

Example: Determining which activities are queued by a WLM
threshold and their queue order

You can use a DB2 workload manager (WLM) table function,
WLM_GET_SERVICE_CLASS_AGENTS, to view which applications or activities
are queued by a WLM threshold and the order of the applications or activities in
the queue.

Chapter 4. Monitoring and intervention 231

Any agent queued by a WLM threshold will have the value WLM_QUEUE in the
EVENT_OBJECT column in the corresponding row returned for the agent. In
addition, the AGENT_STATE_LAST_UPDATE_TIME column will contain the time
that the agent entered the WLM_QUEUE state, which is the time that the agent was
queued. Using this information, a simple view can be constructed to list all
applications or activities that are queued by a WLM threshold, and to obtain their
queue entry time.

To create a view that uses the WLM_GET_SERVICE_CLASS_AGENTS table
function to obtain the WLM queue information for the examples provided here,
run the following statement:
CREATE VIEW WLM_QUEUE_INFO (APPLICATION_HANDLE, UOW_ID, ACTIVITY_ID,

THRESHOLD_NAME, QUEUE_ENTRY_TIME, MEMBER)
AS SELECT APPLICATION_HANDLE, UOW_ID, ACTIVITY_ID,
VARCHAR(EVENT_OBJECT_NAME, 128), AGENT_STATE_LAST_UPDATE_TIME,
MEMBER FROM TABLE(WLM_GET_SERVICE_CLASS_AGENTS(NULL,NULL,NULL,-2))
AS T WHERE EVENT_OBJECT = ’WLM_QUEUE’

Note: For TOTALSCPARTITIONCONNECTIONS thresholds, uow_id and
activity_id are not applicable (NA) and, therefore, show up as NULL.

This view can be used to easily answer questions such as the following:
v How many applications or activities are currently queued by a WLM threshold?
v What is the order of the applications or activities in the WLM threshold queue?

Example 1

To count the number of applications queued by each queuing threshold, run the
following statement:
SELECT VARCHAR(THRESHOLD_NAME, 30) AS THRESHOLD, COUNT(*)

AS QUEUED_ENTRIES FROM WLM_QUEUE_INFO GROUP BY THRESHOLD_NAME

The following is a sample of the output obtained after running the preceding
statement:
THRESHOLD QUEUED_ENTRIES
------------------------------ --------------
TH1 3

1 record(s) selected.

Example 2

To list all the activities that are queued in the TH1
CONCURRENTDBCOORDACTIVITIES threshold and show the order of the
activities in the queue determined by their queue entry time, run the following
statement:
SELECT QUEUE_ENTRY_TIME, APPLICATION_HANDLE, UOW_ID, ACTIVITY_ID FROM

WLM_QUEUE_INFO WHERE THRESHOLD_NAME = ’TH1’ ORDER BY QUEUE_ENTRY_TIME ASC

The following is a sample of the output obtained after running the preceding
statement:
QUEUE_ENTRY_TIME APPLICATION_HANDLE UOW_ID ACTIVITY_ID
-------------------------- -------------------- ----------- -----------
2009-11-09-18.08.32.583286 145 1 2

232 DB2 Workload Management Guide and Reference

2009-11-09-18.08.42.589623 146 1 1
2009-11-09-18.08.54.607083 147 1 1

3 record(s) selected.

Historical monitoring with WLM event monitors
DB2 workload management uses event monitors to capture information that might
be of use in the future or for historical analysis.

Three event monitors are available for you to use. Each event monitor serves a
different purpose:

Activity event monitor
This monitor captures information about individual activities in a service
class, workload, or work class or activities that violated a threshold. The
amount of data that is captured for each activity is configurable and
should be considered when you determine the amount of disk space and
the length of time required to keep the monitor data. A common use for
activity data is to use it as input to tools such as db2advis or to use access
plans (from the explain utility) to help determine table, column, and index
usage for a set of queries.

You can collect information about an activity by specifying COLLECT
ACTIVITY DATA for the service class, workload, or work action to which
such an activity belongs or a threshold that might be violated by such an
activity. The information is collected when the activity completes,
regardless of whether the activity completes successfully.

Note that if an activities event monitor is active when the database
deactivates, any backlogged activity records in the queue are discarded. To
ensure that you obtain all activities event monitor records and that none
are discarded, explicitly deactivate the activities event monitor first before
deactivating the database. When an activities event monitor is explicitly
deactivated, all backlogged activity records in the queue are processed
before the event monitor deactivates.

Threshold violations event monitor
This monitor captures information when a threshold is violated. It
indicates what threshold was violated, the activity that caused the
violation, and what action was taken when it occurred.

If you specify COLLECT ACTIVITY DATA for the threshold and an
activities event monitor is created and active, information is also collected
about activities that violate the threshold, but this information is collected
when the activity ends (either successfully or unsuccessfully).

You can obtain details about a threshold by querying the
SYSCAT.THRESHOLDS view.

Statistics event monitor
This monitor serves as a low-overhead alternative to capturing detailed
activity information by collecting aggregate data (for example, the number
of activities completed and average execution time). Aggregate data
includes histograms for a number of activity measurements including
lifetime, queue time, execution time and estimated cost. You can use
histograms to understand the distribution of values, identify outliers, and
compute additional statistics such as averages and standard deviations. For
example, histograms can help you understand the variation in lifetime that
users experience. The average life time alone does not reflect what a user

Chapter 4. Monitoring and intervention 233

experiences if there is a high degree of variability. See “Collecting
workload management statistics using a statistics event monitor” on page
262 for a description of how to send statistics to the event monitor.

The following figure shows the different monitoring options available to access
workload information: table functions to access real-time statistics, and activity
details and historical information captured as efficient aggregates or as details
about individual activities:

234 DB2 Workload Management Guide and Reference

Unlike statement, connection, and transaction event monitors, the activity, statistics,
and threshold violations event monitors do not have event conditions (that is,
conditions specified on the WHERE keyword of the CREATE EVENT MONITOR
statement). Instead, these event monitors rely on the attributes of service classes,
workloads, work classes, and thresholds to determine whether these objects send
their activity information or aggregate information to these monitors.

Service
superclass 1

System
requests

User
requests

User
requests

User
requests

User
requests

User
requests

Workload A

Default system
class

Activity
information

Aggregate activity
information

Service
subclass B

Default user
class

Workload D

Workload B

Workload C

Data server

SQL using table
functions

Service
subclass A

Default user
workload

Legend

Monitoring interface

Maintenance
requests

Default
maintenance
class

Figure 46. Workload management with monitoring

Chapter 4. Monitoring and intervention 235

Typically, event monitors write data to either tables or files. You need to prune
these tables or files periodically because they are not automatically pruned.

You can use the wlmevmon.ddl script in the sqllib/misc directory to create and
enable three event monitors called DB2ACTIVITIES, DB2STATISTICS, and
DB2THRESHOLDVIOLATIONS. If necessary, modify the script to change the table space
or other parameters.

Example

Example: Identify queries with a large estimated cost using the statistics event
monitor: You suspect that your database workload occasionally includes large,
expensive queries, possibly due to the poor optimization of the queries themselves.
You want to identify these queries so that you can prevent them from consuming
excessive resources on your system, with a long-term goal of perhaps rewriting
some of the queries to improve performance. The statistics event monitor provides
you with a low-overhead way to measure the estimated cost of your queries which
you can then use to determine what the maximum acceptable estimated cost for a
query on your data server should be. A query that is poorly optimized is typically
distinguished by a large estimated cost that is many times larger than the
estimated cost of most other queries.

To get started, you need to create and activate a statistics event monitor and to
start collecting extended aggregate activity data for the service class where the
queries run:
CREATE EVENT MONITOR DB2STATISTICS

FOR STATISTICS WRITE TO TABLE

SET EVENT MONITOR DB2STATISTICS STATE 1

In this example, all queries run in the SYSDEFAULTSUBCLASS subclass of the
SYSDEFAULTUSERCLASS service class, which you can alter to collect the required
data:
ALTER SERVICE CLASS SYSDEFAULTSUBCLASS UNDER SYSDEFAULTUSERCLASS

COLLECT AGGREGATE ACTIVITY DATA EXTENDED

A full day of work might provide a reasonable approximation of the range of
queries your data server typically processes. At the end of the day, you can copy
the statistics collected from memory to the statistics event monitor by running the
WLM_COLLECT_STATS stored procedure:
CALL WLM_COLLECT_STATS()

Included with the different statistics written to the event monitor tables are the
estimated cost statistics of queries. To see them, you can query the service class
statistics table SCSTATS_DB2STATISTICS:
SELECT STATISTICS_TIMESTAMP,

COORD_ACT_EST_COST_AVG,
COST_ESTIMATE_TOP

FROM SCSTATS_DB2STATISTICS
WHERE SERVICE_SUPERCLASS_NAME = ’SYSDEFAULTUSERCLASS’

AND SERVICE_SUBCLASS_NAME = ’SYSDEFAULTSUBCLASS’

STATISTICS_TIMESTAMP COORD_ACT_EST_COST_AVG COST_ESTIMATE_TOP
-------------------------- ---------------------- --------------------
2008-09-03-09.49.04.455979 169440 13246445

1 record(s) selected.

236 DB2 Workload Management Guide and Reference

The output shows that the average query has an estimated cost in the range of
hundreds of thousands of timerons, and that the largest queries have estimated
costs larger than ten million timerons. You can confirm that queries of ten million
or more timerons are outliers by looking at the estimated cost histogram, which
was generated at the same time that the average and high watermarks shown in
the output were written to the event monitor table. You can look at the histogram
by querying the HISTOGRAMBIN_DB2STATISTICS table as follows:
SELECT STATISTICS_TIMESTAMP,

TOP,
NUMBER_IN_BIN

FROM HISTOGRAMBIN_DB2STATISTICS HIST,
SYSCAT.SERVICECLASSES SC

WHERE HIST.SERVICE_CLASS_ID = SC.SERVICECLASSID
AND SC.PARENTSERVICECLASSNAME = ’SYSDEFAULTUSERCLASS’
AND SC.SERVICECLASSNAME = ’SYSDEFAULTSUBCLASS’
AND HISTOGRAM_TYPE = ’COORDACTESTCOST’"

STATISTICS_TIMESTAMP TOP NUMBER_IN_BIN
-------------------------- -------------------- --------------------
2008-09-03-09.49.04.455979 1 0
2008-09-03-09.49.04.455979 2 0
2008-09-03-09.49.04.455979 3 0
2008-09-03-09.49.04.455979 5 0
2008-09-03-09.49.04.455979 8 0
2008-09-03-09.49.04.455979 12 1
2008-09-03-09.49.04.455979 19 0
2008-09-03-09.49.04.455979 29 0
2008-09-03-09.49.04.455979 44 2
2008-09-03-09.49.04.455979 68 5
2008-09-03-09.49.04.455979 103 22
2008-09-03-09.49.04.455979 158 14
2008-09-03-09.49.04.455979 241 54
2008-09-03-09.49.04.455979 369 2
2008-09-03-09.49.04.455979 562 142
2008-09-03-09.49.04.455979 858 21
2008-09-03-09.49.04.455979 1309 123
2008-09-03-09.49.04.455979 1997 512
2008-09-03-09.49.04.455979 3046 643
2008-09-03-09.49.04.455979 4647 201
2008-09-03-09.49.04.455979 7089 875
2008-09-03-09.49.04.455979 10813 1445
2008-09-03-09.49.04.455979 16493 5386
2008-09-03-09.49.04.455979 25157 2409
2008-09-03-09.49.04.455979 38373 8940
2008-09-03-09.49.04.455979 58532 9820
2008-09-03-09.49.04.455979 89280 2149
2008-09-03-09.49.04.455979 136181 798
2008-09-03-09.49.04.455979 207720 2411
2008-09-03-09.49.04.455979 316840 14989
2008-09-03-09.49.04.455979 483283 9831
2008-09-03-09.49.04.455979 737162 1451
2008-09-03-09.49.04.455979 1124409 213
2008-09-03-09.49.04.455979 1715085 24
2008-09-03-09.49.04.455979 2616055 1
2008-09-03-09.49.04.455979 3990325 0
2008-09-03-09.49.04.455979 6086529 0
2008-09-03-09.49.04.455979 9283913 0
2008-09-03-09.49.04.455979 14160950 3
2008-09-03-09.49.04.455979 21600000 0
2008-09-03-09.49.04.455979 -1 0

In the histogram, the value in the number_in_bin column for queries whose top is
greater than 2616055 is zero until top reaches 14160950, where the number_in_bin
becomes 3. These three queries are outliers and can be controlled with an
ESTIMATEDSQLCOST threshold set to trigger if the estimated cost of a query

Chapter 4. Monitoring and intervention 237

exceeds 10 million timerons which you can use to prevent such activities from
executing and to monitor them more closely.

Example: Using the threshold violations event monitor: To control activities of a
certain estimated cost, you want to define an ESTIMATEDSQLCOST threshold on
your workload that applies only to that subset of your total workload exceeding a
certain estimated cost. Having looked at the estimated cost histogram, you
determined that activities with an estimated cost in the range of 0 to under 3
million timerons occur frequently and that activities with an estimated cost over 10
million timerons occur rarely (perhaps only a few times a day and perhaps always
due to some flaw in the query, such as the use of a Cartesian join).

To verify that a threshold of 10 million timerons is effective in stopping those few
activities a day that should not be allowed to run, you can create and activate a
threshold event monitor:
CREATE THRESHOLD TH1

FOR DATABASE ACTIVITIES
ENFORCEMENT DATABASE
WHEN ESTIMATEDSQLCOST > 10000000
STOP EXECUTION

CREATE EVENT MONITOR DB2THRESHOLDVIOLATIONS
FOR THRESHOLD VIOLATIONS
WRITE TO TABLE

SET EVENT MONITOR DB2THRESHOLDVIOLATIONS STATE 1

After the end of the day, you can see what threshold violations occurred by
querying the threshold violations table:
SELECT THRESHOLDID,

SUBSTR(THRESHOLD_PREDICATE, 1, 20) PREDICATE,
TIME_OF_VIOLATION,
THRESHOLD_MAXVALUE,
THRESHOLD_ACTION

FROM THRESHOLDVIOLATIONS_DB2THRESHOLDVIOLATIONS
ORDER BY TIME_OF_VIOLATION, THRESHOLDID

THRESHOLDID PREDICATE TIME_OF_VIOLATION THRESHOLD_MAXVALUE THRESHOLD_ACTION
----------- -------------------- -------------------------- -------------------- ----------------

1 EstimatedSQLCost 2008-09-02-22.39.10.000000 10000000 Stop

1 record(s) selected.

Example: Using the activity event monitor

The previous example showed how you can collect threshold information in an
event monitor table to confirm that activities with a large estimated cost are being
prevented from executing by a threshold. After seeing these threshold violations,
you want to determine what the SQL statement texts producing these large queries
are, so that you can use the explain facility to determine if an index is needed on
the tables being queried.

Collecting this additional information requires creating and activating an activity
event monitor and altering the threshold to turn on activity collection with details:
CREATE EVENT MONITOR DB2ACTIVITIES

FOR ACTIVITIES WRITE TO TABLE

SET EVENT MONITOR DB2ACTIVITIES STATE 1

238 DB2 Workload Management Guide and Reference

ALTER THRESHOLD TH1
WHEN EXCEEDED
COLLECT ACTIVITY DATA WITH DETAILS

When you query the threshold violations table again after another business day
has passed, you can perform a join with the ACTIVITYSTMT_DB2ACTIVITIES
table to see the SQL statement text of any activity that violated the threshold:
SELECT THRESHOLDID,

SUBSTR(THRESHOLD_PREDICATE, 1, 20) PREDICATE,
TIME_OF_VIOLATION,
SUBSTR(STMT_TEXT,1,70) STMT_TEXT

FROM THRESHOLDVIOLATIONS_DB2THRESHOLDVIOLATIONS TV,
ACTIVITYSTMT_DB2ACTIVITIES A

WHERE TV.APPL_ID = A.APPL_ID
AND TV.UOW_ID = A.UOW_ID
AND TV.ACTIVITY_ID = A.ACTIVITY_ID

THRESHOLDID PREDICATE TIME_OF_VIOLATION STMT_TEXT
----------- -------------------- -------------------------- --

1 EstimatedSQLCost 2008-09-02-23.04.49.000000 select count(*) from syscat.tables,syscat.tables,syscat.tables

1 record(s) selected.

Available monitoring data
Monitoring data is available from workloads, service subclasses and service
superclasses, work classes, and threshold queues. You can use this data to diagnose
and correct problems and for performance tuning.

Workload monitoring data

The following figure shows the monitoring information that is available for
workloads. You can collect workload statistics and information about activities that
run in the workloads using event monitors. For workloads, you can also obtain
aggregate activity statistics. You can access workload statistics and information
about workload occurrences in real time using table functions.

Service class monitoring data

The following figure shows the monitoring information that is available for service
classes. You can collect statistics for service subclasses and service superclasses. For

SQL using table
functions

Activity
information

Workload
statistics

Workload

Figure 47. Monitoring data that is available for workloads

Chapter 4. Monitoring and intervention 239

service subclasses, you can also obtain aggregate activity and request statistics, and
information about activities that run in the service subclass. You can access service
superclass and service subclass statistics and information about agents running in a
particular service class in real time using table functions.

Work class monitoring data

The following figure shows the monitoring information that is available for work
classes. You can collect work class statistics and information about activities that
are associated with a particular work class. You can access work class statistics in
real time using table functions.

Threshold monitoring data

The following figure shows the monitoring information that is available for
thresholds. You can obtain information about threshold violations, the activities
that caused the threshold violations, and queuing statistics (for queuing
thresholds). You can access queuing threshold statistics in real time using table

Service
superclass

SQL using table
functions

Activity
information

Service superclass
statistics

Service
subclass

Service subclass
statistics

Service
subclass

Figure 48. Monitoring data that is available for service classes

SQL using table
functions

Activity
information

Work class
statistics

Service
subclass

Work class

Figure 49. Monitoring data that is available for work classes

240 DB2 Workload Management Guide and Reference

functions.

DB2 workload management stored procedures
You can use stored procedures for canceling an activity, capturing details about an
activity, resetting the statistics on DB2 workload management objects, and setting
client information at the data server.

The following stored procedures are available for use with DB2 workload
management:

WLM_CANCEL_ACTIVITY(application_handle, uow_id, activity_id)
Use this stored procedure to cancel a running or queued activity. You
identify the activity by its application handle, unit of work identifier, and
activity identifier. You can cancel any type of activity. The application with
the cancelled activity receives the error SQL4725N.

WLM_CAPTURE_ACTIVITY_IN_PROGRESS(application_handle, uow_id,
activity_id)

Use this stored procedure to send information about an individual activity
that is currently executing to the activities event monitor. This stored
procedure sends the information immediately, rather than waiting until the
activity completes.

WLM_COLLECT_STATS()
Use this stored procedure to collect and reset statistics for DB2 workload
management objects. All statistics tracked for service classes, workloads,
threshold queues, and work action sets are sent to the active statistics
event monitor (if one exists) and reset. If there is no active statistics event
monitor, the statistics are only reset, but not collected.

WLM_SET_CLIENT_INFO(client_userid, client_wrkstnname,client_applname,
client_acctstr,client_workload)

Use this procedure to set the client information attributes used at the data
server to record the identity of the application or end-user currently using

Queue statistics

Threshold violation
information

Activity
information

SQL using table
functions

Threshold

Figure 50. Monitoring data that is available for thresholds

Chapter 4. Monitoring and intervention 241

the connection. In cases where middleware exists between applications or
users and your data server, use the WLM_SET_CLIENT_INFO procedure
to set distinguishing connection attributes explicitly.

Statistics for DB2 workload management objects
Statistics are maintained for DB2 workload management objects including service
classes, work classes, workloads, and threshold queues. These statistics reside in
memory and can be viewed in real-time using DB2 workload management
statistics table functions, or the statistics can be collected and sent to a statistics
event monitor where they can be viewed later for historical analysis.

Note that you can also obtain monitoring metrics through the statistics event
monitor. These are not discussed in this topic, which covers only those statistics
that are specific to DB2 workload management.

When statistics are sent to the event monitor, the values in memory are reset to
prevent duplicate data from being collected on subsequent collection intervals.
Because the DB2 workload management statistics table functions report the current
in-memory values, following a collection they report the reset values. The DB2
workload management table functions report only a subset of the statistics. To
view the full set of statistics, you must collect the statistics and send them to a
statistics event monitor.

Aggregate activity data statistics collection

The following statistics are maintained on the given objects on each member,
regardless of the value of the COLLECT AGGREGATE ACTIVITY DATA option
specified for those objects when they are created or altered.

242 DB2 Workload Management Guide and Reference

Table 52. Statistics collected for database objects regardless of COLLECT AGGREGATE ACTIVITY DATA setting

Database object Statistic Description

Service subclasses 1. Concurrent activity top
(concurrent_act_top)

2. Coordinator activities completed
total (coord_act_completed_total)

3. Coordinator activities aborted
total (coord_act_aborted_total)

4. Coordinator activities rejected
total (coord_act_rejected_total)

5. The number of active requests
(num_requests_active)

6. The number of activities mapped
in and the number of activities
mapped out (act_remapped_in
and act_remapped_out)

1. Use this activity concurrency high
watermark to determine the
highest concurrency of activities
(including nested activities)
reached on a member for a
service class in the time interval
for which the statistic is collected.

2. Use this statistic to determine
how much work is being
performed in a service class.

3. Use this statistic, which measures
the unsuccessful completion of
activities, to determine how
healthy the system is. Activities
can be aborted because of
cancellation, errors, or reactive
thresholds.

4. Use this rejected non-nested
coordinator activity count, which
measures the rejection of
activities, to obtain an indication
of the usefulness of the rejection
policy. Activities are counted as
rejected when they violate a
predictive threshold that has an
action of STOP EXECUTION or
when they are prevented from
executing by a work action.

5. Use this statistic to determine the
number of requests that are
currently executing in a service
class.

6. Use these statistics to determine
the number of activities that are
remapped into or out of a service
subclass as part of the priority
aging of ongoing activities.

Service superclasses Concurrent connection top
(concurrent_connection_top)

Use this coordinator connection
concurrency high watermark to tune
a connection concurrency threshold.

Chapter 4. Monitoring and intervention 243

Table 52. Statistics collected for database objects regardless of COLLECT AGGREGATE ACTIVITY DATA
setting (continued)

Database object Statistic Description

Workloads 1. Concurrent workload occurrences
top (concurrent_wlo_top)

2. Concurrent workload occurrences
activity top
(concurrent_wlo_act_top)

3. Coordinator activities completed
total (coord_act_completed_total)

4. Coordinator activities aborted
total (coord_act_aborted_total)

5. Coordinator activities rejected
total (coord_act_rejected_total)

6. Workload occurrences completed
total (wlo_completed_total)

7. Activities total (act_total)

1. Use this workload occurrence
high watermark to identify the
maximum number of concurrent
workload occurrences and to help
set or tune a workload occurrence
concurrency threshold if the
number of concurrently executing
workload occurrences is too high
(that is, too many applications
that are associated with the same
workload definition are running
on the system at the same time).

2. Use this element to know the
highest number of concurrent
activities reached on a member
for any occurrence of this
workload in the time interval
collected.

3. Use this statistic, which measures
the rate of successful completion
of activities, to obtain an
indication of the health of the
system.

4. Use this statistic, which measures
the unsuccessful completion of
activities, to determine how
healthy the system is. Activities
can be aborted due to
cancellation, errors, or reactive
thresholds.

5. Use this statistic, which measures
the rate of rejection of activities,
to determine the usefulness of a
rejection policy. Activities are
counted as rejected when they
violate a predictive threshold that
has an action of STOP
EXECUTION or when they are
prevented from executing by a
work action.

6. Use this statistic to determine
how many occurrences of a
workload complete in a specific
period of time.

7. Use this statistic to determine the
effectiveness of the work action
set and determine the relative
percentages of the types of
activities on the system.

244 DB2 Workload Management Guide and Reference

Table 52. Statistics collected for database objects regardless of COLLECT AGGREGATE ACTIVITY DATA
setting (continued)

Database object Statistic Description

Work class (through a work action) Queue assignments total
(queue_assignments_total)

Use this statistic to determine
whether excessive queuing is
occurring, or whether the right
number of activities are being queued
(that is, whether the concurrency
threshold is too restrictive or not
restrictive enough).

Threshold queues 1. Queue size top (queue_size_top)

2. Queue time total
(queue_time_total)

1. Use this statistic to help
determine the maximum queue
size and to identify whether the
queue size is sufficient.

2. Use this statistic to determine
how much time activities are
spending in the queue and
whether that time is excessive.

When you set the value of the COLLECT AGGREGATE ACTIVITY DATA option to
BASE for a service subclass, workload, or a work class (through a work action),
some of the following statistics are also collected, or the corresponding histograms
are generated for each member. Use the averages to quickly understand where
activities are spending most of their time (for example, queued or executing) and
the response time (lifetime). You can also use the averages to tune the histogram
templates. That is you can compare a true average with the average computed
from a histogram, and if the average from the histogram deviates from the true
average, consider altering the histogram template for the corresponding histogram,
using a set of bin values that are more appropriate for your data.

Table 53. Statistics or histograms collected when COLLECT AGGREGATE ACTIVITY DATA
is set to BASE

Statistic or histogram Description

Average request execution time
(request_exec_time_avg)

Use this statistic to determine the arithmetic
mean of the execution times for requests
associated with a service class.

Average coordinator activity lifetime
(coord_act_lifetime_avg)

Use this statistic to determine the arithmetic
mean of the lifetime for non-nested
coordinator activities associated with a
service class, workload or a work class.

Average coordinator activity execution time
(coord_act_exec_time_avg)

Use this statistic to determine the arithmetic
mean of execution time for non-nested
coordinator activities associated with a
service class, workload or a work class.

Average coordinator activity queue time
(coord_act_queue_time_avg)

Use this statistic to determine the arithmetic
mean of the queue time for non-nested
coordinator activities associated with a
service class, workload or a work class.

Cost estimate top (cost_estimate_top) Use this statistic to tune estimated cost
thresholds.

Actual rows returned top
(rows_returned_top)

Use the information to tune the actual rows
returned thresholds.

Chapter 4. Monitoring and intervention 245

Table 53. Statistics or histograms collected when COLLECT AGGREGATE ACTIVITY DATA
is set to BASE (continued)

Statistic or histogram Description

Aggregate temporary table space top
(agg_temp_tablespace_top)

Use this statistic to tune aggregate system
temporary table space usage.

This statistic is monitored only if you define
a threshold for aggregate temporary table
space usage. For any given service subclass,
this statistic is monitored whenever you
define a AGGSQLTEMPSPACE threshold on
the service subclass itself, or when you
define a similar threshold on any service
subclass within the same superclass.

Temporary table space top
(temp_tablespace_top)

Use this statistic to tune temporary table
space usage thresholds.

This statistic is monitored only if you define
a threshold for temporary table space usage.
For any given service subclass, this
threshold is also monitored whenever you
define a AGGSQLTEMPSPACE threshold on
the service subclass itself, or when you
define a similar threshold on any service
subclass within the same superclass.

Coordinator activity lifetime
(CoordActLifetime) histogram

Use this histogram to obtain a view of
overall system performance.

This histogram collects the time duration
between the activity arrival and end time for
non-nested coordinator activities.

If the activity is a routine that leaves a
cursor open after it ends, the lifetime
histogram does not count the lifetime of the
cursor toward the lifetime of the routine that
is the parent of the cursor.

246 DB2 Workload Management Guide and Reference

Table 53. Statistics or histograms collected when COLLECT AGGREGATE ACTIVITY DATA
is set to BASE (continued)

Statistic or histogram Description

Coordinator activity execution time
(CoordActExecTime) histogram

Use this histogram to measure the impact of
changes to the system that affect execution
time.

This histogram collects the execution time
for non-nested coordinator activities.

The execution time is calculated as follows:

v For cursors, the execution time is the
combined time for the open cursor
request, any fetches, and the close cursor
request. Time when the cursor is idle is
not counted towards the execution time.

v For routines, the execution time is from
the start to the end of the routine
invocation. If any cursors are left open by
the routine after it ends, the lifetimes of
these cursors are not counted towards the
routine execution time.

v For all other activities, the execution time
is the difference between the activity
lifetime and the time that the activity
spends queued.

Coordinator activity queue time
(CoordActQueueTime) histogram

Use this histogram to measure the impact of
queuing thresholds on activities.

This histogram collects the amount of time
that non-nested coordinator activities spend
queued.

When you set the value of the COLLECT AGGREGATE ACTIVITY DATA option to
EXTENDED for a service subclass, workload or a work class, the following system
statistics are collected or histograms are generated for each member for the
corresponding service class or work class (through a work action). Use the
averages to quickly understand the average rate of arrival of activities (arrival rate
is the inverse of inter-arrival time) and the expense of activities (estimated cost).
You can also use the averages to tune the histogram templates. That is you can
compare a true average with the average computed from a histogram, and if the
average from the histogram deviates from the true average, consider altering the
histogram template for the corresponding histogram, using a set of bin values that
are more appropriate for your data. EXTENDED statistics are useful for more
detailed performance modelling. Also see “Workload management performance
modelling” on page 276.

Table 54. Statistics or histograms collected when COLLECT AGGREGATE ACTIVITY DATA
is set to EXTENDED

Statistic or histogram Description

Coordinator activity estimated cost average
(coord_act_est_cost_avg)

Use this statistic to determine the arithmetic
mean of the estimated costs of coordinator
DML activities at nesting level 0 that are
associated with this service subclass,
workload or work class since the last
statistics reset.

Chapter 4. Monitoring and intervention 247

Table 54. Statistics or histograms collected when COLLECT AGGREGATE ACTIVITY DATA
is set to EXTENDED (continued)

Statistic or histogram Description

Non-nested coordinator activity inter-arrival
time average
(coord_act_interarrival_time_avg)

Use this statistic to determine the arithmetic
mean of the time between the arrival of one
coordinator activity at nesting level 0 that is
associated with this service class, workload
or work class and the next coordinator
activity to arrive. The average is computed
since the last statistics reset.

Coordinator activity estimated cost
(CoordActEstCost) histogram.

Use this histogram to obtain an approximate
service time distribution.

This histogram collects the estimated cost for
non-nested coordinator activities. This data
is useful for modelling your system or for
inputting into performance-modelling
applications.

Coordinator activity inter-arrival time
(CoordActInterArrivalTime) histogram.

Use this histogram to obtain the inter-arrival
time distribution for non-nested coordinator
activities.

This histogram collects the inter-arrival time
for non-nested coordinator activities. This
data is useful for modelling your system or
for inputting into performance-modeling
applications.

The following table provides a reference for which activity statistics are collected
for each DB2 workload management object and includes all aggregate statistics
available to you from both table functions and event monitors. Some statistics are
always collected for some objects. Other statistics are only collected when a
particular COLLECT AGGREGATE option is specified. For aggregate activity
statistics, if COLLECT AGGREGATE ACTIVITY DATA EXTENDED is specified, all
the BASE aggregate activity statistics are also collected.

Table 55. Aggregate activity statistics collection for DB2 workload management objects

Object type
Activity statistics always collected
by default

Activity statistics collected when
you specify COLLECT
AGGREGATE ACTIVITY DATA
BASE

Activity statistics collected when
you specify COLLECT
AGGREGATE ACTIVITY DATA
EXTENDED

Service subclass act_remapped_in

act_remapped_out

concurrent_act_top

coord_act_completed_total

coord_act_rejected_total

coord_act_aborted_total

agg_temp_tablespace_top

coord_act_exec_time_avg

coord_act_lifetime_avg

coord_act_lifetime_top

coord_act_queue_time_avg

coord_act_lifetime_stddev

coord_act_exec_time_stddev

coord_act_queue_time_stddev

CoordActLifetime histogram

CoordActExecTime histogram

CoordActQueueTime histogram

cost_estimate_top

rows_returned_top

temp_tablespace_top

coord_act_est_cost_avg

coord_act_interarrival_time_avg

CoordActEstCost histogram

CoordActInterArrivalTime
histogram

248 DB2 Workload Management Guide and Reference

Table 55. Aggregate activity statistics collection for DB2 workload management objects (continued)

Object type
Activity statistics always collected
by default

Activity statistics collected when
you specify COLLECT
AGGREGATE ACTIVITY DATA
BASE

Activity statistics collected when
you specify COLLECT
AGGREGATE ACTIVITY DATA
EXTENDED

Service superclass concurrent_connection_top N/A N/A

Workload concurrent_wlo_act_top

concurrent_wlo_top

coord_act_aborted_total

coord_act_completed_total

coord_act_rejected_total

wlo_completed_total

coord_act_exec_time_avg

coord_act_lifetime_top

coord_act_lifetime_avg

coord_act_queue_time_avg

coord_act_lifetime_stddev

coord_act_exec_time_stddev

coord_act_queue_time_stddev

CoordActLifetime histogram

CoordActExecTime histogram

CoordActQueueTime histogram

cost_estimate_top

rows_returned_top

temp_tablespace_top

coord_act_est_cost_avg

coord_act_interarrival_time_avg

CoordActEstCost histogram

CoordActInterArrivalTime
histogram

Work class
(through a work
action)

act_total agg_temp_tablespace_top

coord_act_lifetime_top

coord_act_lifetime_avg

coord_act_exec_time_avg

coord_act_queue_time_avg

CoordActLifetime histogram

CoordActExecTime histogram

CoordActQueueTime histogram

cost_estimate_top

rows_returned_top

temp_tablespace_top

coord_act_est_cost_avg

coord_act_interarrival_time_avg

CoordActEstCost histogram

CoordActInterArrivalTime
histogram

Threshold N/A N/A N/A

Threshold queue queue_assignments_total

queue_size_top

queue_time_total

N/A N/A

Aggregate request data statistics collection

When you set the value of the COLLECT AGGREGATE REQUEST DATA option
for a service subclass to BASE, the following statistics are maintained for the
service subclass.

Table 56. Statistics or histograms collected when COLLECT AGGREGATE REQUEST DATA
is set to BASE

Statistic or histogram Description

Request execution time average
(request_exec_time_avg)

Use this statistic to quickly understand the
average amount of time that is spent
processing each request on a member and to
help tune the histogram template for the
corresponding request execution time
histogram.

Chapter 4. Monitoring and intervention 249

Table 56. Statistics or histograms collected when COLLECT AGGREGATE REQUEST DATA
is set to BASE (continued)

Statistic or histogram Description

Request execution time (ReqExecTime)
histogram

Use this histogram to understand where
work is being performed and whether the
distribution of work across members is
uniform.

This histogram indicates the volume of work
executing in a service class and the
distribution of this work across database
members. The execution time for requests is
collected in a histogram for each member
and for all requests.

This histogram includes requests on the
coordinator member, and any subrequests on
both coordinator and non-coordinator
members (like RPC requests or SMP
subagent requests). Requests included may
or may not be associated with an activity:
Both PREPARE and OPEN requests are
included in this histogram, for example, but
while OPEN requests are always associated
with a cursor activity, PREPARE requests are
not part of any activity.

The request execution time approximates the
effort spent by agents working in a service
class. For example, coordinator activity
counts might show that most user activities
originate on one member, but as part of
processing the activities, the coordinator
agent might be sending subrequests to
another member that performs most of the
work.

The request execution time histogram can be
useful in determining the size of requests
sent to a member, that is, whether the work
that is sent to the member consists of mostly
small requests or mostly large requests or
whether there is no specific distribution.

Request execution time histograms should
not be used for activity response time
analysis, because activities may be
composed of a number of requests and
subrequests, because there is no one-to-one
mapping between request and activity
execution time, and because not all requests
are associated with activities.

The following table provides a reference for which request statistics are collected
for each DB2 workload management object and includes all aggregate statistics
available to you from both table functions and event monitors. Some statistics are
always collected for some objects. Other statistics are only collected when the
COLLECT AGGREGATE REQUEST DATA option is specified.

250 DB2 Workload Management Guide and Reference

Table 57. Aggregate request statistics collection for DB2 workload management objects

Object type
Request statistics always
collected by default

Request statistics collected
when you specify COLLECT
AGGREGATE REQUEST DATA
BASE

Service subclass num_requests_active request_exec_time_avg

request_exec_time_stddev

request_exec_time_total

ReqExecTime histogram

Service superclass N/A N/A

Workload N/A N/A

Work class (through a work
action)

N/A N/A

Threshold N/A N/A

Threshold queue N/A N/A

Statistics collection and monitoring with remapped activities
How you collect statistics and how you monitor are both affected by the dynamic
remapping of activities between service subclasses.

Remapping occurs when an activity that is executing in one service class is moved
to another service class to continue execution. This remapping can be done using
thresholds, such as CPUTIMEINSC, and can be an integral part of your workload
management configuration, as is the case with the priority aging approach.

Statistics affected by remapped activities

As one exception to the rule, the activity interarrival time, estimated cost, and
queue time are all associated with the subclass in which an activity starts running,
rather than with the subclass in which the activity finishes running. Because a
remapped activity affects the statistics collection of both subclasses, a different
number of activities can be counted in an interarrival time, an estimated cost, or a
queue-time histogram than in a lifetime or execution-time histogram.

For example, consider an activity that starts running in service subclass A and later
is remapped to service subclass B, in which it finishes running. The estimated cost
of this activity is associated with service subclass A, but its lifetime is associated
with service subclass B. As a result, for subclass A, the estimated cost histogram
has one more element counted in it than the lifetime histogram has counted in it,
and for service subclass B, the lifetime histogram has one more element counted in
it than the estimated cost histogram has counted in it.

As a second exception to the rule, the monitor element concurrent_act_top can be
updated in and attributed to any subclass that an activity passes through. In
addition to being incremented when an activity begins and decremented when an
activity ends, the monitor element is incremented when an activity is mapped to
the subclass and is decremented when an activity is mapped out of the subclass
(mapped to a different subclass).

Statistics about activity remapping

You can use two monitor elements to count the number of activities entering or
leaving a service subclass because of a remapping action: act_remapped_in and
act_remapped_out. The act_remapped_in and act_remapped_out monitor elements

Chapter 4. Monitoring and intervention 251

count the number of activities for any given subclass at any partition that were
mapped into or out of the subclass since the last reset. You can use these monitor
elements to validate that the remapping of activities between service subclasses is
occurring as expected.

To determine the source and destination service subclasses targeted by a
remapping action, you can refer to the threshold violation event monitor record,
which includes a destination service class ID (destination_service_class_id). You
can also determine the source service class by using the threshold violation record.

Monitoring with activity remapping

Remapping activities to different subclasses affects how you monitor these
activities. To ensure that all statistics are collected for an activity that starts in one
service class and finishes in another because of remapping, turn on aggregate
activity data collection for both the service subclass in which the activity starts
running and the service subclass in which the activity finishes running when you
create or alter the service classes. If you turn on aggregate activity data collection
for only the service subclass in which the activity started, the activity contributes
only to queue time statistics and, in the case of extended statistics, to the estimated
cost and interarrival time statistics. If you turn on aggregate activity data collection
for only the service subclass in which the activity finishes running, the activity
contributes only to lifetime and execution time statistics, regardless of whether the
option is COLLECT AGGREGATE DATA BASE or COLLECT AGGREGATE DATA
EXTENDED when you issue the CREATE SERVICE CLASS or ALTER SERVICE
CLASS statement.

The following tables summarize how statistics collection is affected by remapping
and collection settings.

Table 58. Effect of the COLLECT AGGREGATE DATA BASE option on aggregate statistics
collection for subclasses involved in remapping

Statistics
Starting subclass collection setting and ending subclass collection

setting

NONE and
NONE

BASE and
NONE

NONE and
BASE

BASE and BASE

Lifetime Not collected Not collected Collected Collected

Queue time Not collected Collected Not collected Collected

Execution time Not collected Not collected Collected Collected

Table 59. Effect of the COLLECT AGGREGATE DATA EXTENDED option on aggregate
statistics collection for subclasses involved in remapping

Statistics
Starting subclass collection setting and ending subclass collection

setting

NONE and
NONE

EXTENDED and
NONE

NONE and
EXTENDED

EXTENDED and
EXTENDED

Lifetime Not collected Not collected Collected Collected

Queue time Not collected Collected Not collected Collected

Execution time Not collected Not collected Collected Collected

Inter-arrival time Not collected Collected Not collected Collected

Estimated cost Not collected Collected Not collected Collected

252 DB2 Workload Management Guide and Reference

Table 60. Effect of mixing the COLLECT AGGREGATE DATA BASE and the COLLECT
AGGREGATE DATA EXTENDED options on aggregate statistics collection for subclasses
involved in remapping

Statistics
Starting subclass collection setting and ending subclass

collection setting

BASE and EXTENDED EXTENDED and BASE

Lifetime Collected Collected

Queue time Collected Collected

Execution time Collected Collected

Inter-arrival time Not collected Collected

Estimated cost Not collected Collected

Histograms in workload management
A histogram is a collection of bins, which are containers for collecting discrete
ranges of data. Histograms are useful for a variety of workload analysis and
performance-tuning tasks.

DB2 workload management histograms have a fixed number of 41 bins. The 40th
bin contains the highest defined value for the histogram, and the 41st bin is for
values that are beyond the highest defined value. Each bin represents a specific
range of values, and the bin ranges follow a logarithmic scale, with each bin
representing a progressively larger range as one progresses from the 1st to 40th
bin. The following figure shows a histogram of activity lifetimes that are plotted
using a bar chart.

The activity lifetime histogram corresponds to the following data. Each count
represents the number of activities whose lifetimes (in milliseconds) are within the
range of the low bin value to the high bin value. For example, 156 activities had a
lifetime in the range of 68 milliseconds to 103 milliseconds.

180

6

4

2

0

6

4

2

0

1 0

1 0

1 0

1 0

80

0

0

0

1 3 19 44 10
3

24
1

56
2

13
09

30
46

70
89

16
49

3

38
37

3

89
28

0

20
77

20

48
32

83

11
24

40
9

26
16

05
5

60
86

52
9

14
16

09
508

Figure 51. Histogram of activity lifetimes that are plotted using a bar chart

Chapter 4. Monitoring and intervention 253

Low Bin High Bin Count
0 1 0
1 2 0
2 3 0
3 5 0
5 8 0
8 12 0
12 19 0
19 29 10
29 44 15
44 68 45
68 103 156
103 158 65
158 241 23
241 369 0
369 562 0
562 858 0
858 1309 0
1309 1997 0
1997 3046 0
3046 4647 0
4647 7089 0
7089 10813 0
10813 16493 0
16493 25157 0
25157 38373 0
38373 58532 0
58532 89280 0
89280 136181 0
136181 207720 0
207720 316840 0
316840 483283 3
483283 737162 0
737162 1124409 0
1124409 1715085 0
1715085 2616055 0
2616055 3990325 0
3990325 6086529 0
6086529 9283913 0
9283913 14160950 0
14160950 21600000 0
21600000 Infinity 0

You can use histograms for a number of different purposes. For example, you can
use them to see the distribution of values, use them to identify outlying values, or
use them to compute averages and standard deviations. See “Scenario: Tuning a
DB2 workload management configuration when capacity planning information is
unavailable” on page 356 and “Example: Computing averages and a standard
deviation from histograms in a DB2 workload management configuration” on page
260 for examples of how to use histograms to better understand and characterize
your workload.

In a multimember database environment, histograms are collected on each
member. Histogram bins have the same range of values on all database members,
with specific counts per bin per member. You can use the bins to analyze
information on a per-member basis. You can also combine the histograms from all
database members by adding the counts in the corresponding bins and use this
single histogram to obtain a global view of the data, which you can then use for
tasks such as calculating the global average and standard deviation.

Histograms are available for service subclasses, workloads, and work classes,
through work actions. Histograms are collected for these objects when you specify
one of the COLLECT AGGREGATE ACTIVITY DATA, COLLECT AGGREGATE

254 DB2 Workload Management Guide and Reference

REQUEST DATA, or COLLECT AGGREGATE UNIT OF WORK DATA clauses
when creating or altering the objects. For work classes, histograms are also
collected if you apply a COLLECT AGGREGATE ACTIVITY DATA work action to
the work class. The following histograms are available:
v Non-nested coordinator activity lifetime, when you specify AGGREGATE

ACTIVITY DATA BASE or AGGREGATE ACTIVITY DATA EXTENDED for a
service subclass, for a workload, or for a work action applied to a work class

v Non-nested coordinator activity execution time, when you specify AGGREGATE
ACTIVITY DATA BASE or AGGREGATE ACTIVITY DATA EXTENDED for a
service subclass, for a workload, or for a work action applied to a work class

v Non-nested coordinator activity queue time, when you specify AGGREGATE
ACTIVITY DATA BASE or AGGREGATE ACTIVITY DATA EXTENDED for a
service subclass, for a workload, or for a work action applied to a work class

v Request execution time, when you specify AGGREGATE REQUEST DATA BASE
for a service subclass; this histogram does not apply to workloads or work
classes

v Non-nested activity interarrival time histogram, when you specify AGGREGATE
ACTIVITY DATA EXTENDED for a service subclass, for a workload, or for a
work action applied to a work class

v Non-nested DML activity estimated cost, when you specify AGGREGATE
ACTIVITY DATA EXTENDED for a service subclass, for a workload, or for a
work action applied to a work class

v Unit of work lifetime, when you specify AGGREGATE UNIT OF WORK DATA
BASE for a service class

All activity-related histograms contain information about activities that are
completed, are cancelled, or are rejected.

Histogram templates

You can optionally specify a histogram template that is used to determine what a
particular histogram looks like, including the high bin value. A histogram template
is a unitless object, meaning that there is no predefined measurement unit assigned
to it. A measurement unit, which depends on the context in which the histogram
template is used, is assigned to the histogram when a service class, workload, or
work action is created or altered. Time-based histograms, such as those specified
with the ACTIVITY LIFETIME HISTOGRAM clause as an example, use millisecond
units, while cost-based histograms, such as those specified with the ACTIVITY
ESTIMATED COST HISTOGRAM clause as an example, use timeron units.

You can create a histogram template by using the CREATE HISTOGRAM
TEMPLATE statement, specifying the maximum high bin value. All other bin
values are automatically defined as exponentially increasing values that approach
the high bin value. For example, to create a histogram template with a high bin
value of 3 000 000, issue a statement such as the following one:
CREATE HISTOGRAM TEMPLATE TEMPLATE1 HIGH BIN VALUE 3000000

This statement creates a histogram template with the following bin values:
Low Bin High Bin

0 1
1 2
2 3
3 4
4 6
6 9

Chapter 4. Monitoring and intervention 255

9 13
13 19
19 28
28 41
41 60
60 87
87 127
127 184
184 268
268 389
389 565
565 821
821 1192
1192 1732
1732 2514
2514 3651
3651 5300
5300 7696
7696 11173
11173 16222
16222 23553
23553 34196
34196 49649
49649 72084
72084 104657
104657 151948
151948 220609
220609 320297
320297 465030
465030 675163
675163 980250
980250 1423197
1423197 2066299
2066299 3000000
3000000 Infinity

You apply a histogram template by using the appropriate HISTOGRAM
TEMPLATE keyword when creating or altering service subclasses, workloads, or
work actions. If you do not specify a histogram template, the default template,
SYSDEFAULTHISTOGRAM, is used. If you do not enable AGGREGATE ACTIVITY
DATA collection for an object, the histogram template is ignored.

For example, to use the TEMPLATE1 histogram template for the existing activity
lifetime histogram of service subclass MYSUBCLASS under the service superclass
MYSUPERCLASS, issue the following statement:
ALTER SERVICE CLASS MYSUBCLASS UNDER MYSUPERCLASS
ACTIVITY LIFETIME HISTOGRAM TEMPLATE TEMPLATE1

After you commit the ALTER SERVICE CLASS statement, the activity lifetime
histogram that is collected for the MYSUBCLASS service subclass has high bin
values that are determined by the TEMPLATE1 histogram template instead of by
the SYSDEFAULTHISTOGRAM histogram template.

If you change a service class or a workload to use a different histogram template
or change a histogram template, the change does not take effect until a statistics
reset occurs.

You can drop a histogram template by using the DROP HISTOGRAM TEMPLATE
statement.

You can view the histogram templates by querying the
SYSCAT.HISTOGRAMTEMPLATES view and view the corresponding histogram

256 DB2 Workload Management Guide and Reference

template high bin values by querying the SYSCAT.HISTOGRAMTEMPLATEBINS
view. The low bin value is always 0 for the first bin; for any other bins, the low bin
value is the high bin value from the preceding bin.

Example

The following example creates a table function to compute the CoordActLifetime,
CoordActExecTime, CoordActQueueTime, or CoordActEstCost histogram for a
service superclass as a whole by summing across the subclasses. Summing across
subclasses is useful when activities are remapped to different service subclasses
under the same service superclass during execution, as can occur under a priority
aging scenario where service class tiers and specialized thresholds are used to
control resources for activities dynamically. This example does not apply to the
CoordActInterArrivalTime histogram because the weighted averages computed do
not account for the fact that the CoordActInterArrivalTime histogram of a subclass
measures the time between the arrival of a query in that subclass and the next
query but the CoordActInterArrivalTime histogram of a superclass measures the
time between the arrival of a query in any of its subclasses and the next query.
CONNECT TO SAMPLE

DROP FUNCTION histsuper

CREATE FUNCTION histsuper(superclass varchar(128),
histogram_type varchar(24))

RETURNS TABLE (statistics_timestamp timestamp,
bin_top integer,
number_in_bin integer,
graph varchar(60))

LANGUAGE SQL
READS SQL DATA
NO EXTERNAL ACTION
DETERMINISTIC
RETURN WITH HISTOGRAMS AS

(SELECT HISTOGRAM_TYPE,
substr(PARENTSERVICECLASSNAME,1,26) as SUPERCLASS,
STATISTICS_TIMESTAMP,
TOP as BIN_TOP,
sum(NUMBER_IN_BIN) as NUMBER_IN_BIN

FROM HISTOGRAMBIN_DB2STATISTICS H,
SYSCAT.SERVICECLASSES S

WHERE H.SERVICE_CLASS_ID = S.SERVICECLASSID
AND PARENTSERVICECLASSNAME = histsuper.superclass
AND HISTOGRAM_TYPE = histsuper.histogram_type
AND HISTOGRAM_TYPE IN (’CoordActLifetime’, ’CoordActExecTime’,

’CoordActQueueTime’, ’CoordActEstCost’)
GROUP BY HISTOGRAM_TYPE, PARENTSERVICECLASSNAME, STATISTICS_TIMESTAMP, TOP)
SELECT STATISTICS_TIMESTAMP,

BIN_TOP,
NUMBER_IN_BIN,
substr(repeat(’#’, cast(NUMBER_IN_BIN * 60 /
(SELECT CASE WHEN MAX(NUMBER_IN_BIN) = 0 THEN 1

ELSE MAX(NUMBER_IN_BIN) END FROM HISTOGRAMS) AS INTEGER)),1,60)
AS GRAPH FROM HISTOGRAMS

CONNECT RESET

The output looks as follows:
STATISTICS_TIMESTAMP BIN_TOP NUMBER_IN_BIN GRAPH
-------------------------- ----------- ------------- --
2008-11-06-14.47.08.833188 -1 0
2008-11-06-14.47.08.833188 1 1
2008-11-06-14.47.08.833188 2 1
2008-11-06-14.47.08.833188 3 2
2008-11-06-14.47.08.833188 5 4
2008-11-06-14.47.08.833188 8 7
2008-11-06-14.47.08.833188 12 15

Chapter 4. Monitoring and intervention 257

2008-11-06-14.47.08.833188 19 29 #
2008-11-06-14.47.08.833188 29 41 #
2008-11-06-14.47.08.833188 44 67 ##
2008-11-06-14.47.08.833188 68 112 ###
2008-11-06-14.47.08.833188 103 228 #####
2008-11-06-14.47.08.833188 158 335 ########
2008-11-06-14.47.08.833188 241 723 #################
2008-11-06-14.47.08.833188 369 1289 ###############################
2008-11-06-14.47.08.833188 562 1890 ###
2008-11-06-14.47.08.833188 858 2484 ##
2008-11-06-14.47.08.833188 1309 1943 ###
2008-11-06-14.47.08.833188 1997 478 ###########
2008-11-06-14.47.08.833188 3046 221 #####
2008-11-06-14.47.08.833188 4647 29 #
2008-11-06-14.47.08.833188 7089 7
2008-11-06-14.47.08.833188 10813 0
2008-11-06-14.47.08.833188 16493 2
2008-11-06-14.47.08.833188 25157 0
2008-11-06-14.47.08.833188 38373 1
2008-11-06-14.47.08.833188 58532 0
2008-11-06-14.47.08.833188 89280 0
2008-11-06-14.47.08.833188 136181 0
2008-11-06-14.47.08.833188 207720 0
2008-11-06-14.47.08.833188 316840 0
2008-11-06-14.47.08.833188 483283 0
2008-11-06-14.47.08.833188 737162 0
2008-11-06-14.47.08.833188 1124409 0
2008-11-06-14.47.08.833188 1715085 0
2008-11-06-14.47.08.833188 2616055 0
2008-11-06-14.47.08.833188 3990325 0
2008-11-06-14.47.08.833188 6086529 0
2008-11-06-14.47.08.833188 9283913 0
2008-11-06-14.47.08.833188 14160950 0
2008-11-06-14.47.08.833188 21600000 0

41 record(s) selected.

Creating a histogram template
Use the CREATE HISTOGRAM TEMPLATE statement to create a histogram
template. Histogram templates are used by service subclasses and work actions to
define the bin values for the statistics that are maintained using histograms.

Before you begin

To create a histogram template, you require WLMADM or DBADM authority.

See the following topics for more information about prerequisites:
v “Workload management DDL statements” on page 18
v Appendix A, “General naming rules,” on page 491

About this task

Some DB2 service subclass, work class activity, and request statistics are collected
using histograms. All histograms have a set number of bins, and each bin
represents a range in which activities or requests are counted. The type of units
used for the bins depends on the type of histogram that you create. The histogram
template describes the high value of the second-to-last bin in the histogram, which
affects the values of all of the bins in the histogram. For more information about
histograms, see “Histograms in workload management” on page 253.

Procedure

To create a histogram template:
1. Issue the CREATE HISTOGRAM TEMPLATE statement, specifying the name of

the histogram template that you want to create and a value for the HIGH BIN
VALUE keyword to set the top value for the second-to-last bin.

258 DB2 Workload Management Guide and Reference

2. Commit your changes. When you commit your changes, the histogram is
added to the SYSCAT.HISTOGRAMTEMPLATES view and the bins are added
to the SYSCAT.HISTOGRAMTEMPLATEBINS view.

Altering a histogram template
Use the ALTER HISTOGRAM TEMPLATE statement to alter an existing histogram
template. Histogram templates are used by service subclasses and work actions to
define the bin values for the statistics that are maintained using histograms.

Before you begin

You require WLMADM or DBADM authority to alter a histogram template.

See “Workload management DDL statements” on page 18 for more information
about prerequisites.

About this task

Some DB2 service subclass, work class activity, and request statistics are collected
using histograms. All histograms have a set number of bins, and each bin
represents a range in which activities or requests are counted. The type of units
used for the bins depends on the type of histogram that you create. The histogram
template describes the high value of the second-to-last bin in the histogram, which
affects the values of all of the bins in the histogram. For more information on
histograms, see “Histograms in workload management” on page 253.

Procedure

To alter a histogram template:
1. Issue the ALTER HISTOGRAM TEMPLATE statement, specifying the name of

the histogram template that you want to alter and a value for the HIGH BIN
VALUE parameter to alter the top value for the second-to-last bin.

2. Commit your changes. When you commit your changes the high bin value for
the histogram is updated in the SYSCAT.HISTOGRAMTEMPLATEBINS view.
The change does not take effect until the next time the workload management
statistics are reset. See “Resetting statistics on DB2 workload management
objects” on page 264 for more information.

3. Optional: Run the WLM_COLLECT_STATS stored procedure to collect and
reset the statistics so that the new histogram template is used immediately.

Dropping a histogram template
You can drop a histogram template if you no longer require it.

Before you begin

To drop a histogram template, you require WLMADM or DBADM authority.

See “Workload management DDL statements” on page 18 for more information
about prerequisites.

You cannot drop the SYSDEFAULTHISTOGRAM histogram template.

You cannot drop a histogram template if it is being referenced by a service
subclass, work action, or workload. You can view the service subclasses and work
actions that reference a histogram template by querying the

Chapter 4. Monitoring and intervention 259

SYSCAT.HISTOGRAMTEMPLATESUSE view.

Procedure

To drop a histogram template:
1. Use the DROP HISTOGRAM TEMPLATE statement.
2. Commit your changes. When you commit your changes the histogram is

removed from the SYSCAT.HISTOGRAMTEMPLATES view, and its bins are
removed from the SYSCAT.HISTOGRAMTEMPLATEBINS view.

Example: Computing averages and a standard deviation from
histograms in a DB2 workload management configuration
One use for histograms is for obtaining the standard deviation for activity
lifetimes. The example in this topic shows how bins are used for the calculation of
this statistic.

A calculation of the average lifetime for each activity is a useful piece of
information. However, the average alone does not accurately describe the user
experience. If the variability in activity lifetime is large, the users whom you are
supporting might see queries run fast at some times (which is fine) and slow at
others (which might not be acceptable). When you define a goal for activity
lifetimes, not only is the average lifetime of the activities important but also the
standard deviation of the activity lifetime. You need to both understand and
control variability to ensure that your users actually experience the observed
average.

In a DB2 workload management configuration, statistics are collected on each
member. The following example shows how to obtain the average activity lifetime
for a single member.

Suppose that you have a single-member environment and histogram with the
following bins. There are more bins in the real histograms, but this example is
limited to eight bins to make the example simpler.
Bin 1 - 0 to 2 seconds
Bin 2 - 2 to 4 seconds
Bin 3 - 4 to 8 seconds
Bin 4 - 8 to 16 seconds
Bin 5 - 16 to 32 seconds
Bin 6 - 32 to 64 seconds
Bin 7 - 64 to 128 seconds
Bin 8 - 128 seconds to infinity

You can compute an approximation of the average by assuming that the average
response time for a query that falls into a bin with the range x to y is (x + y)/2.
You can then multiply this number by the number of queries that fell into the bin,
sum across all bins, then divide the sum by the total count. For the preceding
example, assume that the average response time for each bin is:
Bin 1 average lifetime = (0+2)/2 = 1
Bin 2 average lifetime = (2+4)/2 = 3
Bin 3 average lifetime = (4+8)/2 = 6
Bin 4 average lifetime = (8+16)/2 = 12
Bin 5 average lifetime = (16+32)/2 = 24
Bin 6 average lifetime = (32+64)/2 = 48
Bin 7 average lifetime = (64+128)/2 = 96

Assume that the following histogram was collected during the measurement
period:

260 DB2 Workload Management Guide and Reference

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 Bin 7 Bin 8
count count count count count count count count

20 30 80 10 5 3 2 0

To calculate average lifetime, bin 8 must be empty. Bin 8 only exists to let you
know when you need to change the upper boundary of your range. For this
reason, you must specify the upper bound for the range.

You can approximate the average lifetime for member 1 as follows:
average lifetime = (20 x 1 + 30 x 3 + 80 x 6 + 10 x 12 + 5 x 24 + 3 x 48 + 2 x 96) / 150

= (20 + 90 + 480 + 120 + 120 + 144 + 192) / 150
= 1166 / 150
= 7.77 seconds

You can approximate the lifetime standard deviation as follows:
Standard deviation = [(20 x (1 - 7.77)2 + 30 x (3 - 7.77)2 + ...) / 150]1/2

For multimember database environments, averages and standard deviations can be
computed by first computing a combined histogram across all database members
by adding the counts of each bin across the database members.

For example, assume that the database has two members, the histogram bin sizes
are as described previously, and the histogram has the following data:

Database Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 Bin 7 Bin 8
member count count count count count count count count

1 20 30 80 10 5 3 2 0
2 1 5 20 20 4 0 0 0

Because the bin sizes are the same across all database members, the overall
histogram is easy to compute:
Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 Bin 7 Bin 8
count count count count count count count count

21 35 100 30 9 3 2 0

From the combined histogram, you can calculate the overall lifetime average and
standard deviation in a similar way to how they were computed for a
single-member environment:

Average lifetime = (21 x 1 + 35 x 3 + 100 x 6 + 30 x 12 + 9 x 24 + 3 x 48 + 2 x 96) / 200
= (21 + 105 + 600 + 360 + 216 + 144 + 192) / 200
= 1638 / 200
= 8.19 seconds

Standard deviation = [(21 x (1 – 8.19)2 + 35 x (3 - 7.77)2 + ...) / 200]1/2

Historical analysis tool
Your DB2 data server installation includes a pair of Perl scripts as a sample that
generate information about which tables, indexes, and columns have or have not
been accessed by performing historical analysis.

These scripts provide historical analysis functionality by using information
captured by the workload management activities event monitor. The workload
management historical analysis tool was written in Perl; you can use these scripts
as is or you can modify them to produce additional historical analysis reports to
suit your needs.

The workload management historical analysis tool consists of two scripts, which
can be found in the samples/perl path of your installation directory:

Chapter 4. Monitoring and intervention 261

v wlmhist.pl - generates historical data
v wlmhistrep.pl - produces reports from the historical data.

A DB2WlmHist.pm file, which contains common Perl routines used by the two
scripts, is included also.

Refer to the README_WLMHIST file found in the same file directory for more
information on how to set up and run the scripts.

Collecting workload management statistics using a statistics
event monitor

Statistics for DB2 workload management objects can be sent to a statistics event
monitor for historical analysis.

About this task

You can use statistics to understand the behavior of your system over time (for
example, what is the average lifetime of activities, how much time do activities
spend queued, what is the distribution of large compared to small activities, and
so on), set thresholds (for example, find the upper boundary for concurrent
activities), and detect problems (for example, detect whether the average lifetime
that users are experiencing is higher than normal). See “Statistics for DB2 workload
management objects” on page 242 for a description of which statistics are collected
for each DB2 workload management object.

You can automatically send workload management statistics to an event monitor
on a fixed interval of time, or you can manually send statistics to an event monitor
at any point in time.

Procedure

To automatically collect workload management statistics on a fixed time interval:
1. Use the CREATE EVENT MONITOR statement to create a STATISTICS event

monitor. For example, you could issue the following statement:
CREATE EVENT MONITOR STATS1 FOR STATISTICS WRITE TO TABLE

2. Use the COMMIT statement to commit your changes.
3. Use the SET EVENT MONITOR STATE statement to activate the event monitor.

Instead of using the SET EVENT MONITOR STATE statement, you can use the
AUTOSTART default for the STATISTICS event monitor to have it activated the
next time that the database is activated. If you want to define multiple
STATISTICS event monitors, you should not use the AUTOSTART option.

4. Use the COMMIT statement to commit your changes.
5. Optional: Enable the collection of additional statistics. By default, only a

minimal set of statistics is collected for each DB2 workload management object.
See “Statistics for DB2 workload management objects” on page 242 for details
on which statistics are collected by default for each object. Specify the collection
of aggregate activity data for service subclasses, workloads, and work classes
using the COLLECT AGGREGATE ACTIVITY DATA keyword on the ALTER
SERVICE CLASS and ALTER WORK ACTION SET statements. Specify the
collection of aggregate request data for service subclasses using the COLLECT
AGGREGATE REQUEST DATA keyword on the ALTER SERVICE CLASS
statement. COMMIT any changes.

262 DB2 Workload Management Guide and Reference

6. Specify a collection interval by updating the database configuration parameter
wlm_collect_int. The wlm_collect_int parameter specifies an interval of time
in minutes. Every interval, the copy of the workload management statistics for
all DB2 workload management objects is written to the active statistics event
monitor and the statistics are reset. In a multimember database environment,
the wlm_collect_int parameter must be updated on the catalog member. This
parameter can be updated dynamically. For example:
CONNECT TO database alias
UPDATE DATABASE CONFIGURATION USING WLM_COLLECT_INT 5 IMMEDIATE

Results

After you perform the preceding steps, workload management statistics are written
to the statistics event monitor every wlm_collect_int minutes. Each record written
to the statistics event monitor has a STATISTICS_TIMESTAMP value and a
LAST_WLM_RESET value. The interval of time from LAST_WLM_RESET to
STATISTICS_TIMESTAMP defines the collection interval (that is, interval of time
over which the statistics in that record were collected).

Collections occur at the specified interval times as measured relative to Sunday at
00:00:00. When the catalog member becomes active, the next collection will occur at
the start of the next scheduled interval relative to this fixed time. The scheduled
interval is not relative to the catalog member activation time. If a member is not
active at the time of collection, no statistics are gathered for that member. For
example, if the interval value was set to 60 and the catalog member was activated
on 9:24 AM on Sunday, then the collections would be scheduled to occur each hour
on the hour. Therefore, the next collection will occur at 10:00 AM. If the member is
not active at 10:00 AM, then no statistics will be gathered for that member

If the wlm_collect_int parameter is set to a nonzero value and there is no active
statistics event monitor, the workload management statistics are still reset every
wlm_collect_int minutes, but statistics are not collected. The data will be lost. For
this reason, it is not recommended that you specify a nonzero wlm_collect_int
value without activating a statistics event monitor.

If the wlm_collect_int parameter is set to 0 (the default) statistics are not sent to
the statistics event monitor automatically. You can manually send statistics to the
statistics event monitor for later historical analysis by using the
WLM_COLLECT_STATS stored procedure. When this procedure is invoked, it
performs the same actions that occur with an automatic statistics collection
interval. That is, the statistics are sent to the statistics event monitor and the
statistics are reset. If there is no active statistics event monitor, the values are reset,
but data is not collected. If you only want to reset statistics, you can invoke the
WLM_COLLECT_STATS procedure while there is no active statistics event monitor.

Manual collection of statistics does not interfere with the automatic collection of
statistics. For example, assume that you have wlm_collect_int set to 60. Statistics
are sent to the statistics event monitor every hour. Now assume that the last time
the statistics were collected was 5:00 AM. You can invoke the
WLM_COLLECT_STATS procedure at 5:55 AM, which sends the values of the
statistics to the event monitor and resets the statistics. The next automatic statistics
collection still occurs at 6:00 AM, one hour after the last automated collection. The
collection interval is not affected by any manual collection and resetting of
statistics that occurs during the interval.

Notes:

Chapter 4. Monitoring and intervention 263

v The DB2 workload management statistics table functions report the
current values of the statistics. If you have automatic workload
management statistics collection enabled, these values are reset
periodically on the interval defined by the wlm_collect_int database
configuration parameter. When looking at the statistics reported by the
table functions, you should always consider the LAST_RESET column.
This column indicates the last time the statistics were reset. If the time
interval between the last reset time to the current time is not sufficiently
large, there may not be enough data to draw any meaningful
conclusions.

v If you are using automatic collection of workload management statistics,
you need to prune your event monitor files or tables periodically. The
event monitor does not automatically prune the data that is collected,
and the automatic collection will fill your files or tables over time.

v When a database is deactivated, the statistics are reset. Deactivating the
database does not send statistics to the statistics event monitor. If you do
not want to lose the statistics accumulated since the last collection
because of a deactivation, you should manually invoke the
WLM_COLLECT_STATS procedure before deactivating the database.

v The WLM_COLLECT_STATS procedure resets statistics differently than
the RESET MONITOR command. The RESET MONITOR command resets the
values of snapshot monitor elements by storing their present values.
After the RESET MONITOR command has been issued, snapshot processing
reports the delta between these values and the current values. In
contrast, the reset caused by the WLM_COLLECT_STATS procedure
does not store any values, but instead resets all of the statistics counters
themselves for each applicable DB2 workload management object.
Also, with the RESET MONITOR command, each process (attachment) has
its own private view of the monitor data. If one user performs a reset,
other users are unaffected. By contrast, a reset of the workload
management statistics applies to all users.

Resetting statistics on DB2 workload management objects
This topic describes how to reset statistics for DB2 workload management objects.

Note that resetting statistics applies only to DB2 workload management statistics;
metrics reported by monitoring interfaces will be collected, but not reset.

Four events will reset the statistics stored for each DB2 workload management
object. (For a description of the statistics maintained for each object, see “Statistics
for DB2 workload management objects” on page 242.)
v The WLM_COLLECT_STATS stored procedure is invoked. See “Collecting

workload management statistics using a statistics event monitor” on page 262
for details.

v The automatic DB2 workload management statistics collection and reset process
controlled by the wlm_collect_int database configuration parameter causes a
collection and reset. See “Collecting workload management statistics using a
statistics event monitor” on page 262 for details.

v The database is reactivated. Every time the database is activated on a member,
the statistics for all DB2 workload management objects on that member are reset.

v The object for which the statistics are maintained is modified and the change is
committed. For example if a service subclass is altered, when the ALTER
statement is committed, the statistics for that service subclass are reset.

264 DB2 Workload Management Guide and Reference

You can determine the last time the statistics were reset for a given DB2 workload
management object using the statistics table functions and looking at timestamp in
the LAST_RESET column. For example, to see the last time the statistics were reset
for the service subclass SYSDEFAULTSUBCLASS under the
SYSDEFAULTUSERCLASS service superclass, you could issue a query such as:
SELECT LAST_RESET

FROM TABLE(WLM_GET_SERVICE_SUBCLASS_STATS(’SYSDEFAULTUSERCLASS’,
’SYSDEFAULTSUBCLASS’, -2)) AS T

All statistics table functions return the statistics that accumulated since the last
time that the statistics were reset. A statistics reset occurs when a database is
activated or reactivated, when you alter a DB2 workload management object (only
the statistics for that object are reset), and when you call the
WLM_COLLECT_STATS stored procedure. Statistics are also reset automatically
according to the time period defined by the wlm_collect_int database
configuration parameter, if you set this parameter to a nonzero value.

The period of time specified by wlm_collect_int is unaffected by a statistics reset
that occurs during the interval specified by the configuration parameter. For
example, if you run the WLM_COLLECT_STATS table function 5 minutes after the
start of a 20-minute interval specified by wlm_collect_int, the interval still expires
15 minutes later. The statistics collection and reset that occur do not delay the
occurrence of the next statistics collection and reset by 5 minutes.

If you change a service class or a workload to use a different histogram template
or change a histogram template, the change does not take effect until a statistics
reset occurs.

If you invoke the WLM_COLLECT_STATS table function to collect and reset
statistics at the same time that another collection and reset is in progress (for
example, if the invocation of the table function overlaps with the periodic
collection and reset interval caused by wlm_collect_int or if another user invokes
WLM_COLLECT_STATS at the same time), the collection and reset request from
WLM_COLLECT_STATS is ignored, and warning SQL1632W is returned.

Monitoring metrics for DB2 workload management
Monitoring metrics provide data about the health of and query performance on
your DB2 data server, which can then be used as input to a 3rd party tool or in
conjunction with additional scripting you provide to analyze the metrics returned.

Metrics are maintained for a number of DB2 database objects. These metrics reside
in memory and can be viewed in real-time using DB2 monitoring metrics table
functions, or the metrics can be collected and sent to an event monitor where they
can be viewed later for historical analysis.

Monitoring metrics for activities

You can obtain monitoring metrics for activities using:
v The activities event monitor (the ACTIVITYMETRICS table or the

DETAILS_XML column of the ACTIVITY table)
v The MON_GET_ACTIVITY_DETAILS table function

Monitoring metrics for activities are controlled by the mon_act_metrics database
configuration parameter and the COLLECT ACTIVITY METRICS clause on a
workload. Metrics will be collected for an activity, if the database configuration

Chapter 4. Monitoring and intervention 265

parameter is set to a value other than NONE or if the activity is submitted by a
connection that is associated with a workload which has a COLLECT ACTIVITY
METRICS setting other than NONE.

You can use workload-level controls to achieve better monitoring granularity, if
you do not want to collect metrics for all activities. If activity metrics collection is
enabled at the database level (enabled by default), then metrics are collected for all
activities, regardless of the setting at the workload level.

See the monitoring documentation for more details.

System-level monitoring metrics

You can obtain system-level monitoring metrics aggregated by service classes and
workloads using:
v The statistics event monitor (DETAILS_XML column in the wlstats and scstats

logical groups)
v The MON_GET_SERVICE_SUBCLASS,

MON_GET_SERVICE_SUBCLASS_DETAILS, MON_GET_WORKLOAD and
MON_GET_WORKLOAD_DETAILS table functions

Monitoring metrics for requests to the data server, including those requests that are
part of an activity, are controlled by the mon_req_metrics database configuration
parameter and the COLLECT REQUEST METRICS clause on a service superclass.
Metrics will be collected for a request, if the database configuration parameter is
set to a value other than NONE or if the request is submitted by a connection that
mapped to a subclass under a superclass which has a COLLECT COLLECT
REQUEST METRICS setting other than NONE.

You can use service superclass-level controls to achieve better monitoring
granularity, if you do not want to collect metrics for all requests. If request metrics
collection is enabled at the database level (enabled by default), then metrics are
collected for all requests, regardless of the setting at the service superclass level.

See the monitoring documentation for more details.

Workload management table functions and snapshot monitor
integration

You can use DB2 workload management table functions with the snapshot monitor
table functions when performing problem determination or performance tuning.

The DB2 workload management table functions and the snapshot monitor table
functions share the following fields. You can perform joins on these fields to derive
data that you need to perform diagnostic and performance-tuning activities. Note
that, unlike the snapshot table functions, the WLM table functions do not get their
information from the snapshot monitor, so that the information available in the
WLM table functions is not available from the snapshot monitor.

Table 61. Fields shared between the DB2 workload management and snapshot monitor
table functions

Workload management table function field Snapshot monitor table function field

agent_tid agent_pid

266 DB2 Workload Management Guide and Reference

Table 61. Fields shared between the DB2 workload management and snapshot monitor
table functions (continued)

Workload management table function field Snapshot monitor table function field

application_handle agent_id
agent_id_holding_lock

session_auth_id session_auth_id

member node_number

utility_id utility_id

workload_id workload_id

As an example of a reason to use a join between different table functions, assume
that you want to obtain basic information about all of the utilities running in the
BATCH service superclass. You might issue the following query:
SELECT SUBSTR(UTILITY_TYPE,1,4) TYPE,

UTILITY_PRIORITY PRIORITY,
SUBSTR(UTILITY_DESCRIPTION,1,12) AS UTILITY_DESCRIPTION,
SUBSTR(UTILITY_DBNAME,1,8) AS DBNAME,
UTILITY_STATE,
SUBSTR(UTILITY_INVOKER_TYPE,1,7) INVOKER,
SUBSTR(CHAR(WLM.MEMBER),1,4) MEMB,
SUBSTR(CLASSES.PARENTSERVICECLASSNAME,1,19) SUPERCLASS_NAME,
SUBSTR(CLASSES.SERVICECLASSNAME,1,18) SUBCLASS_NAME

FROM SYSIBMADM.SNAPUTIL SNAP,
TABLE(WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES(CAST(NULL AS BIGINT), -2)) WLM,
SYSCAT.SERVICECLASSES CLASSES

WHERE SNAP.UTILITY_ID = WLM.UTILITY_ID
AND WLM.SERVICE_CLASS_ID = CLASSES.SERVICECLASSID
AND CLASSES.SERVICECLASSNAME = ’SYSDEFAULTSUBCLASS’
AND CLASSES.PARENTSERVICECLASSNAME = ’BATCH’

ORDER BY WLM.MEMBER

The output might resemble the following output:
TYPE PRIORITY UTILITY_DESCRIPTION DBNAME UTILITY_STATE INVOKER MEMB SUPERCLASS_NAME SUBCLASS_NAME
---- ----------- ------------------- -------- ------------- ------- ---- ------------------- ------------------
LOAD - OFFLINE LOAD SAMPLE EXECUTE USER 1 BATCH SYSDEFAULTSUBCLASS
LOAD - OFFLINE LOAD SAMPLE EXECUTE USER 1 BATCH SYSDEFAULTSUBCLASS
LOAD - OFFLINE LOAD SAMPLE EXECUTE USER 1 BATCH SYSDEFAULTSUBCLASS
LOAD - OFFLINE LOAD SAMPLE EXECUTE USER 2 BATCH SYSDEFAULTSUBCLASS
LOAD - OFFLINE LOAD SAMPLE EXECUTE USER 2 BATCH SYSDEFAULTSUBCLASS
LOAD - OFFLINE LOAD SAMPLE EXECUTE USER 2 BATCH SYSDEFAULTSUBCLASS
LOAD - OFFLINE LOAD SAMPLE EXECUTE USER 3 BATCH SYSDEFAULTSUBCLASS
LOAD - OFFLINE LOAD SAMPLE EXECUTE USER 3 BATCH SYSDEFAULTSUBCLASS
LOAD - OFFLINE LOAD SAMPLE EXECUTE USER 3 BATCH SYSDEFAULTSUBCLASS

Monitoring threshold violations
When a DB2 workload manager threshold is violated, a threshold violation record
is written to the active THRESHOLD VIOLATIONS event monitor, if one exists.

About this task

The threshold violation record includes the following information:
v A description of the threshold that was violated (the identifier, maximum value,

and so on).
v An identification of the activity that violated the threshold, including the

identifier of the application that submitted the activity, the unique activity
identifier, and the unit of work identifier.

v The time that the threshold was violated.

Chapter 4. Monitoring and intervention 267

v The action that was taken. The action indicates whether the activity that violated
the threshold was permitted to continue or was stopped. If the activity was
stopped, the application that submitted the activity will have received an
SQL4712N error.

When a threshold violation occurs for a threshold that has a REMAP ACTIVITY
action defined for it, a threshold violation record is optional. Whether or not a
threshold violation record is recorded is determined by the NO EVENT MONITOR
RECORD or LOG EVENT MONITOR RECORD clause of your CREATE
THRESHOLD statement.

You can optionally have detailed activity information (including statement text)
written to an active activities event monitor if the threshold violation is caused by
an activity. The activity information is written when the activity completes, not
when the threshold is violated. Specify that activity information should be
collected when a threshold is violated by using the COLLECT ACTIVITY DATA
keyword on either the CREATE or ALTER threshold or work action set statements.

Procedure

To monitor threshold violations:
1. Use the CREATE EVENT MONITOR statement to create an event monitor of

type THRESHOLD VIOLATIONS. For example:
CREATE EVENT MONITOR VIOLATIONS FOR THRESHOLD VIOLATIONS WRITE TO TABLE

2. Use the COMMIT statement to commit your changes.
3. Use the SET EVENT MONITOR STATE statement to activate the event monitor.

Instead of using the SET EVENT MONITOR STATE statement, you can use the
AUTOSTART default for the THRESHOLD VIOLATIONS event monitor to
have it activated the next time that the database is activated. If you want to
define multiple THRESHOLD VIOLATIONS event monitors, you should not
use the AUTOSTART option.

4. Use the COMMIT statement to commit your changes.

Note: If you create any thresholds, you should create and activate a threshold
violations event monitor so you can monitor any threshold violations that
occur. A threshold violations event monitor does not have any impact unless
thresholds are violated.

Example

This example shows how you can determine what remappings of a particular
activity occurred as the result of a threshold violation that included a REMAP
ACTIVITY action. To find the activities that were remapped, use a statement like
the following:
SELECT VARCHAR(APPL_ID, 30) AS APPLID,

UOW_ID,
ACTIVITY_ID,
VARCHAR(T.PARENTSERVICECLASSNAME,20) AS SERVICE_SUPERCLASS,
VARCHAR(T.SERVICECLASSNAME,20) AS FROM_SERVICE_SUBCLASS,
VARCHAR(S.SERVICECLASSNAME,20) AS TO_SERVICE_SUBCLASS

FROM THRESHOLDVIOLATIONS_TH1,
SYSCAT.SERVICECLASSES AS T,
SYSCAT.SERVICECLASSES AS S

WHERE SOURCE_SERVICE_CLASS_ID = T.SERVICECLASSID AND
DESTINATION_SERVICE_CLASS_ID = S.SERVICECLASSID AND
THRESHOLD_ACTION = ’REMAP’

ORDER BY APPLID, ACTIVITY_ID, UOW_ID, TIME_OF_VIOLATION ASC;

268 DB2 Workload Management Guide and Reference

In this example, two remappings occurred for the activity submitted by the
application with the ID *N0.swalkty.080613140844 which is identified by activity ID
1 and unit of work (UOW) ID 1:

APPLID UOW_ID ACTIVITY_ID SERVICE_SUPERCLASS FROM_SERVICE_SUBCLASS TO_SERVICE_SUBCLASS
------------------------------ ----------- -------------------- -------------------- --------------------- --------------------
*N0.swalkty.080613140844 1 1 WORK HIGH MED
*N0.swalkty.080613140844 1 1 WORK MED LOW

2 record(s) selected.

The output is ordered by the time of threshold violation and shows that the
activity was remapped twice after it started executing. Although not shown in the
output, the initial service subclass the activity was mapped to is likely a high
priority service subclass, typical of a three-tiered configuration that permits shorter
running queries to complete more quickly. Because the activity did not complete
quickly enough in the high priority service subclass, it violated a threshold and
was remapped to a medium priority service subclass, and then remapped again to
a low priority service subclass after a second threshold violation later on.

How to generate email notifications for threshold violations
Using the method described here, you can generate email notifications when a DB2
workload manager (WLM) threshold is violated.

Before you begin

In order to implement this email notification approach, you must have DB2
Version 9.7 or higher installed. The SMTP support used here was provided since
DB2 V9.7.

About this task

Upon completion of this task, email notifications are sent if WLM threshold
violations occur during the 10 minutes since the threshold notification procedure
was last run. The DB2 Administrative Task Scheduler is used to schedule the
threshold notification procedure to run every 10 minutes in this example.

Procedure
1. Update the smtp_server database configuration parameter by issuing the

following command:
UPDATE DB CONFIG USING SMTP_SERVER smtp_server_name

2. Create a write-to-table event monitor for threshold violations and write
violations to the TEST.THRESHOLDVIOLATIONS_T table by issuing the following
statement:
CREATE EVENT MONITOR T FOR THRESHOLD VIOLATIONS WRITE TO TABLE
THRESHOLDVIOLATIONS(TABLE TEST.THRESHOLDVIOLATIONS_T)

3. Activate the write-to-table event monitor T for threshold violations by issuing
the following statement:
SET EVENT MONITOR T STATE 1

4. Create a control table to track the last threshold for which an alert was
generated by issuing the following statement:
CREATE TABLE TEST.THRESHOLD_NOTIFY_CONTROL(LAST_NOTIFICATION TIMESTAMP)

5. Create a stored threshold notification procedure to generate threshold violation
messages. The following example procedure iterates over the threshold
violations table and builds a report listing all threshold violations that have
occurred since the last time the procedure was invoked. The report is emailed
using the DB2 SMTP procedures.

Chapter 4. Monitoring and intervention 269

CREATE PROCEDURE TEST.NOTIFY_ON_THRESHOLD_VIOLATION()
LANGUAGE SQL
BEGIN

DECLARE NEWEST_VIOLATION TIMESTAMP;
DECLARE LAST_VIOLATION_SEEN TIMESTAMP;
DECLARE NOT_FOUND INTEGER DEFAULT 0;
DECLARE SENDER VARCHAR(128);
DECLARE RECIPIENTS VARCHAR(128);
DECLARE MESSAGE VARCHAR(8192);
DECLARE SUBJECT VARCHAR(128);
DECLARE THRESHOLDID BIGINT;
DECLARE APPL_ID VARCHAR(64);
DECLARE THRESHOLD_PREDICATE VARCHAR(64);
DECLARE TIME_OF_VIOLATION TIMESTAMP;

DECLARE C1 CURSOR FOR SELECT MAX(TIME_OF_VIOLATION)
FROM TEST.THRESHOLDVIOLATIONS_T;

DECLARE C2 CURSOR FOR SELECT LAST_NOTIFICATION
FROM TEST.THRESHOLD_NOTIFY_CONTROL;

DECLARE C3 CURSOR FOR SELECT THRESHOLD_PREDICATE, THRESHOLDID,
TIME_OF_VIOLATION, APPL_ID

FROM TEST.THRESHOLDVIOLATIONS_T
WHERE LAST_VIOLATION_SEEN IS NULL OR TIME_OF_VIOLATION

> LAST_VIOLATION_SEEN;

DECLARE CONTINUE HANDLER FOR NOT FOUND
SET NOT_FOUND = 1;

OPEN C1;
FETCH C1 INTO NEWEST_VIOLATION;
CLOSE C1;

IF (NOT_FOUND = 0) THEN

OPEN C2;
FETCH C2 INTO LAST_VIOLATION_SEEN;
CLOSE C2;

IF (NOT_FOUND = 1) THEN
SET LAST_VIOLATION_SEEN = NULL;

END IF;

IF (NOT_FOUND = 1 OR NEWEST_VIOLATION > LAST_VIOLATION_SEEN) THEN

DELETE FROM TEST.THRESHOLD_NOTIFY_CONTROL;
INSERT INTO TEST.THRESHOLD_NOTIFY_CONTROL VALUES

(NEWEST_VIOLATION);

SET SENDER = ’<sender email address>’;
SET RECIPIENTS = ’<receiver email address>’;
SET SUBJECT = ’New WLM Threshold Violations’ ;

SET NOT_FOUND = 0;
SET MESSAGE = ’’;

OPEN C3;

FETCH C3 INTO THRESHOLD_PREDICATE, THRESHOLDID, TIME_OF_VIOLATION,
APPL_ID;

WHILE (NOT_FOUND = 0) DO

SET MESSAGE = MESSAGE || ’Violation Timestamp = ’ ||
TIME_OF_VIOLATION || CHAR(X’0A’);

SET MESSAGE = MESSAGE || ’Threshold Predicate = ’ ||
THRESHOLD_PREDICATE || CHAR(X’0A’);

SET MESSAGE = MESSAGE || ’Threshold Id = ’ ||

270 DB2 Workload Management Guide and Reference

THRESHOLDID || CHAR(X’0A’);
SET MESSAGE = MESSAGE || ’Appl Id = ’ ||

APPL_ID || CHAR(X’0A’) || CHAR(X’0A’);

FETCH C3 INTO THRESHOLD_PREDICATE, THRESHOLDID,
TIME_OF_VIOLATION, APPL_ID;

END WHILE;

CLOSE C3;

CALL UTL_MAIL.SEND(SENDER, RECIPIENTS, NULL, NULL, SUBJECT,
MESSAGE);

COMMIT;

END IF;

END IF;

END@

6. Enable the DB2 Administrative Task Scheduler by running the following
command:
db2set DB2_ATS_ENABLE=YES

7. Schedule the threshold notification procedure to execute every 10 minutes. To
schedule the procedure, you must have execute privileges on the procedure.
The following is an example of how this can be done:
CALL SYSPROC.ADMIN_TASK_ADD(

’CHECK THRESHOLD VIOLATIONS EVERY 10 MINUTES’,
NULL,
NULL,
NULL,
’0-59/10 * * * *’,
’TEST’,
’NOTIFY_ON_THRESHOLD_VIOLATION’,
NULL,
NULL,
NULL)@

Results

An email is sent whenever a WLM threshold violation occurs (with a latency of at
most 10 minutes). The email describes all the WLM threshold violations since the
last run of the threshold violation procedure scheduled to run every 10 minutes.

Example

The following output is an example of the content of an email notification message
showing the accumulated new threshold violations since the last run of the
threshold violation procedure:
Subject: New WLM Threshold Violations

Violation Timestamp = 2010-01-11-10.57.21.000000
Threshold Predicate = CPUTime
Threshold Id = 1
Appl Id = *LOCAL.horton.100111154912

Violation Timestamp = 2010-01-11-10.57.28.000000
Threshold Predicate = CPUTime
Threshold Id = 1
Appl Id = *LOCAL.horton.100111154912

Violation Timestamp = 2010-01-11-10.57.35.000000

Chapter 4. Monitoring and intervention 271

Threshold Predicate = CPUTime
Threshold Id = 1
Appl Id = *LOCAL.horton.100111154912

Collecting data for individual activities
You can use an ACTIVITIES event monitor to collect data for individual activities
that run in your system. The data collected includes items such as statement text
and compilation environment, and can be used to investigate and diagnose
problems, and as input to other tools (for example, the Design Advisor).

About this task

You can collect information about individual activities for service subclasses,
workloads, work classes (through work actions), and threshold violations. You
enable activity collection using the COLLECT ACTIVITY DATA keyword of the
CREATE and ALTER statements for these DB2 workload management objects.
When an activity completes, information about the activity is sent to the active
ACTIVITIES event monitor if:
v The activity was submitted by an application that is mapped to a workload for

which COLLECT ACTIVITY DATA is specified, or
v The activity runs in a service subclass for which COLLECT ACTIVITY DATA is

specified, or
v The activity has a COLLECT ACTIVITY DATA work action applied to it, or
v The activity violates a threshold that was defined with the COLLECT ACTIVITY

DATA action

You can also use the WLM_SET_CONN_ENV procedure to turn on activity
collection for your own application's connection before executing the user's query,
then execute the user's query, then use WLM_SET_CONN_ENV to turn off activity
collection for your application's own connection. Assuming that you have created
and activated an activity event monitor, the application could look something like
the following:
call WLM_SET_CONN_ENV(cast (NULL as bigint),

’<collectactdata>WITHOUT DETAILS</collectactdata>’)

... execute user's query ...
call WLM_SET_CONN_ENV(cast(NULL as bigint), ’<collectactdata>NONE</collectactdata>’)

The COLLECT ACTIVITY DATA keyword also controls the amount of information
that is sent to the ACTIVITIES event monitor. If the keyword specifies WITH
DETAILS, statement information (such as statement text) is collected. If the
keyword specifies WITH DETAILS AND VALUES, data values are collected as
well.

An activity might have multiple COLLECT ACTIVITY DATA keywords applied to
it. For example, the activity might run in a service subclass for which COLLECT
ACTIVITY DATA is specified, and while executing it might violate a threshold that
has the COLLECT ACTIVITY DATA action. In this situation, the activity is only
collected once. The COLLECT keyword that specifies the largest amount of
information to be collected is applied to the activity. For example, if both
COLLECT ACTIVITY DATA WITHOUT DETAILS and COLLECT ACTIVITY DATA
WITH DETAILS are applied to an activity, the activity is collected with detailed
information.

272 DB2 Workload Management Guide and Reference

If the ON ALL DATABASE MEMBERS keywords are used with the COLLECT
ACTIVITY DATA clause, an activity record will be captured on each member
where the activity executes in a multimember database environment. Activity event
monitor records are written when the last agent working on the activity at that
member completes execution. Depending on the sequencing of events in a section,
it is possible for agents to start and stop working on an activity at a member
several times, causing multiple activity records to be captured at that member for
the same query. The total work done by the activity on that member is the
aggregate of the metrics for each record that is captured for the activity on the
member.

Procedure

To enable collection of activities for a given DB2 workload management object:
1. Use the CREATE EVENT MONITOR statement to create an ACTIVITIES event

monitor.
2. Use the COMMIT statement to commit your changes.
3. Use the SET EVENT MONITOR STATE statement to activate the event monitor.

Instead of using the SET EVENT MONITOR STATE statement, you can use the
AUTOSTART default for the ACTIVITIES event monitor to have it activated the
next time that the database is activated. If you want to define multiple
ACTIVITIES event monitors, you should not use the AUTOSTART option.

4. Use the COMMIT statement to commit your changes.
5. Identify the objects for which you want to collect activities by using the ALTER

SERVICE CLASS, ALTER WORK ACTION SET, ALTER THRESHOLD, or
ALTER WORKLOAD statement and specify the COLLECT ACTIVITY DATA
keywords.

6. Use the COMMIT statement to commit your changes.

Results

Note: Individual activity collection is more expensive than workload management
statistics collection. You should try to set up activity collection to collect as few
activities as possible. For example, if you need to investigate activities submitted
by a specific application, you could isolate that application by creating a workload
or service class specifically for that application, and only enable activity collection
for that workload or service class.

You might not always know in advance that you will want to capture an activity.
For example, you might have a query that is taking a long time to run and you
want to collect information about it for later analysis. In this situation, it is too late
to specify the COLLECT ACTIVITY DATA keyword on the DB2 workload
management objects, because the activity has already entered the system. In this
situation, you can use the WLM_CAPTURE_ACTIVITY_IN_PROGRESS stored
procedure. The WLM_CAPTURE_ACTIVITY_IN_PROGRESS stored procedure
sends information about an executing activity to the active ACTIVITIES event
monitor. You identify the activity to be collected using the application handle, unit
of work identifier, and activity identifier. Information about the activity is
immediately be sent to the ACTIVITIES event monitor when the procedure is
invoked: you do not need to wait for the activity to complete.

Chapter 4. Monitoring and intervention 273

Importing activity information into the Design Advisor
You can import activities collected by an activities event monitor into the Design
Advisor to help you make decisions about the database objects accessed by these
activities.

About this task

Activities imported into the design advisor must have been collected using the
COLLECT ACTIVITY DATA WITH DETAILS or COLLECT ACTIVITY DATA
WITH DETAILS AND VALUES options. The COLLECT ACTIVITY DATA
WITHOUT DETAILS option is not sufficient, it will not capture the statement text
which is required by the Design Advisor.

To import activity information from the activity event monitor tables into the
Design Advisor, run the db2advis command with the -wlm parameter, followed by
additional parameters:
1. The activities event monitor name
2. Optional: the workload or service class name
3. Optional: the start time and end time

For example, to import information about all the activities collected by the
DB2ACTIVITIES event monitor in the SAMPLE database, use the following
command:
db2advis -d SAMPLE -wlm DB2ACTIVITIES

Note: You can only import information from activities event monitor tables
through the Design Advisor command line interface.

Canceling activities
If an activity is consuming too many resources, or is running too long, you can
cancel it. Canceling an activity is gentler than forcing the application that
submitted the activity. A canceled activity returns SQL4725N to the user, but does
not end the connection or affect any other user activity. Forcing the application
ends both the connection and user activities.

About this task

You can only explicitly cancel an activity if a coordinator activity is currently
working on a request for the activity. If you cancel an activity in the IDLE state
(that is, no requests are being processed), the activity is placed in the
CANCEL_PENDING state and is canceled on the next request that is received. For
example, if you attempt to cancel a CURSOR activity between fetches, the
SQL4725N error is not returned to the user until the next fetch after the cancel.

All user activities are cancelable, including the load utility and stored procedures.

Procedure
1. Identify the activity that you want to cancel. You can use the

WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES table function to
identify the activities running in an application. You can also use the
MON_GET_ACTIVITY_DETAILS_COMPLETE table function to view additional
details about a particular activity if the information in

274 DB2 Workload Management Guide and Reference

WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES is not sufficient to
identify the work that the activities are performing.

2. Cancel the activity using the WLM_CANCEL_ACTIVITY stored procedure. The
stored procedure takes the following arguments: application_handle, uow_id, and
activity_id. For an example of how to use this stored procedure, see “Scenario:
Identifying activities that are taking too long to complete” on page 346.

Guidelines for capturing information about and investigating a rogue
activity

This topic provides guidelines for capturing information about, and investigating, a
rogue activity.

First establish a set of criteria for what you would consider a rogue activity. For
example:
v An activity in that runs in a service class for activities with a low estimated cost,

and runs for more that 1 hour
v An activity that returns an unusually large number of rows
v An activity that consumes an unusually high amount of temporary table space

Then create thresholds that describe these criteria and contain a COLLECT
ACTIVITY DATA WITH DETAILS action. When the threshold is violated,
information about the activity that violated the threshold is sent to the active
ACTIVITIES event monitor when the activity completes.

For example, to collect information about any database activity that runs for more
than 3 hours, create a threshold such as the following threshold:
CREATE THRESHOLD LONGRUNNINGACTIVITIES

FOR DATABASE ACTIVITIES ENFORCEMENT DATABASE
WHEN ACTIVITYTOTALTIME > 3 HOURS COLLECT ACTIVITY DATA WITH DETAILS
CONTINUE

Monitoring with DB2 workload manager is lightweight, if you are careful to apply
it only to a small subset of your queries, as shown in the example, where only
queries running for at least three hours are monitored. You can refine this example
further by creating a threshold not at the global database level, but at the level of a
user-defined superclass. If this more narrowly scoped monitoring suits your
purpose, it can further reduce the cost of monitoring and it will provide
information only at the level you need:
CREATE SERVICE CLASS LONGQUERIES

AGENT PRIORITY 20
PREFETCH PRIORITY LOW

CREATE THRESHOLD LONGRUNNINGACTIVITIES2
FOR SERVICE CLASS LONGQUERIES ACTIVITIES ENFORCEMENT DATABASE
WHEN ACTIVITYTOTALTIME > 3 HOURS COLLECT ACTIVITY DATA WITH DETAILS
CONTINUE

. The service class created for the threshold is assigned low agent and prefetch
priority, because it is intended to be used for long running queries (this SQL
statement works on UNIX operating systems and Linux; on Windows operating
systems, substitute an agent priority of -6).

After your data server has performed some work, you can analyze the information
that is written to the threshold violations and activities event monitors. DML
activities also have their statement text and compilation environment information

Chapter 4. Monitoring and intervention 275

written to the activities event monitor, so you can run DB2 explain on them to
further investigate the performance of the activity.

Workload management performance modelling
The workload on your system can be modelled as a set of activities that arrive at
the system at a rate governed by an arrival rate distribution for activities (often
measured as its inverse, the inter-arrival time distribution) and the amount of time
activities spend executing in the system following a service time distribution.

Inter-arrival time is the time between the arrival of one activity and the arrival of
the next activity. Service time is the time that an activity spends executing on the
system. For example, if you submit a query at time 0 seconds, it spends 2 seconds
in a queue, and it finishes at time 5 seconds, the service time is 5 - 2 = 3 seconds.
Service time assumes no other work executing on the system (that is, it is not the
observed execution time, but rather the time it would take to execute the activity
in isolation). The service time distribution can be approximated for DML activities
using the estimated cost in timerons, which considers both processor and I/O time
for an activity.

You can build a workload model for your system by measuring the inter-arrival
time distribution and the service time distribution of the activities on the system.
Inter-arrival time distributions and approximate service time distributions (using
estimated cost) can be obtained by using extended aggregate activity statistics for
service subclasses or work classes (using work actions) and a statistics event
monitor. These statistics are not collected by default. For more information, see:
v “Statistics for DB2 workload management objects” on page 242
v A gentle introduction to histograms
v Understanding the six histograms of DB2 workload management
v Visualizing and deriving statistics from DB2 histograms using SQL

Example: Capturing information about an activity for later analysis
You can use workload management features to capture information about an
activity for later analysis.

Assume that you have a stored procedure called MYSCHEMA.MYSLOWSTP and
that it is running more slowly than usual. You begin to receive complaints about
this situation and decide to investigate the cause of the slowdown. If investigating
while the stored procedure is running is impractical, you can capture information
about the stored procedure activity and any activities nested in it.

Assuming that you have an active activities event monitor called DB2ACTIVITIES,
you can create a work class for CALL statements that apply to the schema of the
MYSCHEMA.MYSLOWSTP stored procedure. Then you can create a work action
to map the CALL activity and all nested activities to a service class that has
activity collection enabled. The CALL activity, and any activities nested in it, are
sent to the event monitor. Following are examples of the DDL required to create
the DB2 workload management objects:
CREATE SERVICE CLASS SC1;
CREATE WORKLOAD WL1 APPLNAME (’DB2BP’) SERVICE CLASS SC1;
CREATE SERVICE CLASS PROBLEMQUERIESSC UNDER SC1 COLLECT ACTIVITY DATA ON COORDINATOR WITH DETAILS;

CREATE WORK CLASS SET PROBLEMQUERIES
(WORK CLASS CALLSTATEMENTS WORK TYPE CALL ROUTINES IN SCHEMA MYSCHEMA);

276 DB2 Workload Management Guide and Reference

http://download.boulder.ibm.com/ibmdl/pub/software/dw/dm/db2/dm-0810mcdonald/dm-0810mcdonald-pdf.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/dm/db2/dm-0810mcdonald2/dm-0810mcdonald2-pdf.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/dm/db2/dm-0810mcdonald3/dm-0810mcdonald3-pdf.pdf

CREATE WORK ACTION SET DATABASEACTIONS FOR SERVICE CLASS SC1 USING WORK CLASS SET PROBLEMQUERIES
(WORK ACTION CAPTURECALL ON WORK CLASS CALLSTATEMENTS MAP ACTIVITY WITH NESTED TO PROBLEMQUERIESSC);

After the MYSCHEMA.MYSLOWSTP stored procedure runs, you can issue the
following query to obtain the application handle, the unit of work identifier, and
the activity identifier for the activity:
SELECT AGENT_ID,

UOW_ID,
ACTIVITY_ID

FROM ACTIVITY_DB2ACTIVITIES
WHERE SC_WORK_ACTION_SET_ID = (SELECT ACTIONSETID

FROM SYSCAT.WORKACTIONSETS
WHERE ACTIONSETNAME = ’DATABASEACTIONS’)

AND SC_WORK_CLASS_ID = (SELECT WORKCLASSID
FROM SYSCAT.WORKCLASSES
WHERE WORKCLASSNAME = ’CALLSTATEMENTS’
AND WORKCLASSSETID =
(SELECT WORKCLASSSETID FROM SYSCAT.WORKACTIONSETS WHERE ACTIONSETNAME
= ’DATABASEACTIONS’));

Assuming that the captured activity has an application handle of 1, a unit of work
identifier of 2, and an activity identifier of 3, the following results are generated:
AGENT_ID UOW_ID ACTIVITY_ID
===================== =========== ===========

1 2 3

Using this information, you can issue the following query against the
ACTIVITY_DB2ACTIVITIES and the ACTIVITYSTMT_DB2ACTIVITIES tables to
determine where the activity spent its time:
WITH RAH (LEVEL, APPL_ID, PARENT_UOW_ID, PARENT_ACTIVITY_ID,

UOW_ID, ACTIVITY_ID, STMT_TEXT, TIME_CREATED, TIME_COMPLETED) AS
(SELECT 1, ROOT.APPL_ID, ROOT.PARENT_UOW_ID,

ROOT.PARENT_ACTIVITY_ID, ROOT.UOW_ID, ROOT.ACTIVITY_ID,
ROOTSTMT.STMT_TEXT, ROOT.TIME_CREATED, ROOT.TIME_COMPLETED

FROM ACTIVITY_DB2ACTIVITIES ROOT, ACTIVITYSTMT_DB2ACTIVITIES ROOTSTMT
WHERE ROOT.APPL_ID = ROOTSTMT.APPL_ID AND ROOT.AGENT_ID = 1

AND ROOT.UOW_ID = ROOTSTMT.UOW_ID AND ROOT.UOW_ID = 2
AND ROOT.ACTIVITY_ID = ROOTSTMT.ACTIVITY_ID AND ROOT.ACTIVITY_ID = 3

UNION ALL
SELECT PARENT.LEVEL +1, CHILD.APPL_ID, CHILD.PARENT_UOW_ID,

CHILD.PARENT_ACTIVITY_ID, CHILD.UOW_ID,
CHILD.ACTIVITY_ID, CHILDSTMT.STMT_TEXT, CHILD.TIME_CREATED,
CHILD.TIME_COMPLETED

FROM RAH PARENT, ACTIVITY_DB2ACTIVITIES CHILD,
ACTIVITYSTMT_DB2ACTIVITIES CHILDSTMT

WHERE PARENT.APPL_ID = CHILD.APPL_ID AND
CHILD.APPL_ID = CHILDSTMT.APPL_ID AND
PARENT.UOW_ID = CHILD.PARENT_UOW_ID AND
CHILD.UOW_ID = CHILDSTMT.UOW_ID AND
PARENT.ACTIVITY_ID = CHILD.PARENT_ACTIVITY_ID AND
CHILD.ACTIVITY_ID = CHILDSTMT.ACTIVITY_ID AND
PARENT.LEVEL < 64

)
SELECT UOW_ID, ACTIVITY_ID, SUBSTR(STMT_TEXT,1,40),

TIMESTAMPDIFF(2, CHAR(TIME_COMPLETED - TIME_CREATED)) AS
LIFE_TIME

FROM RAH
ORDER BY UOW_ID, ACTIVITY_ID;

The results would resemble the following ones:

Chapter 4. Monitoring and intervention 277

UOW_ID ACTIVITY_ID STMT_TEXT LIFE_TIME
====== =========== =================================== =============
2 3 CALL SLOWPROC 1000
2 4 SELECT COUNT(*) FROM ORG 1
2 5 SELECT * FROM MYHUGETABLE 999

The results indicate that the stored procedure is spending most of its time querying
the MYHUGETABLE table. Your next step is to investigate what changes to the
MYHUGETABLE table might cause queries running against it to slow down.

When many stored procedures run simultaneously, greater overhead is incurred
when performing the analysis. To solve this problem, you can create a workload
and service class for running a stored procedure that is issued by a specific
authorization identifier, a specific application, or both. You can then use the
preceding method to analyze the behavior of the stored procedure.

278 DB2 Workload Management Guide and Reference

Chapter 5. Integration with operating system workload
managers

If available, use DB2 workload management in conjunction with an operating
system workload manager, which provides you with additional capabilities.

The point of integration between DB2 workload management and operating
system workload managers is the DB2 service class. You create a mapping between
a DB2 service class and an operating system workload manager class when you
define a DB2 service class by using the OUTBOUND CORRELATOR option of the
CREATE SERVICE CLASS or the ALTER SERVICE CLASS statement.

If the outbound correlator is set, all threads in the DB2 service class are associated
with the operating system workload manager using the outbound correlator when
the next activity begins.

Integration of AIX Workload Manager with DB2 workload management
On the AIX operating system, the optional integration between DB2 service classes
and AIX WLM classes permits you to control the amount of processor resource
allocated to each service class.

Implementing AIX WLM controls may not be needed to meet your performance
objectives, but even if you do not need to exercise AIX WLM, the operating system
statistics provided by AIX WLM per AIX class are often useful for monitoring and
tuning efforts.

AIX WLM assigns relative or absolute amounts of processor resource as shares to
classes which benefit from controls that you can change dynamically and that
become effective immediately. If relative AIX CPU shares do not provide the level
of control you require, you also have the choice of assigning hard maximum
percentage of CPU resource. By doing so, you surrender some of the flexibility of
relative CPU allocation, which is useful during off-peak times, but you also gain
excellent and guaranteed control with a hard maximum limit on CPU time
resource allocation.

Recommended mappings between DB2 service classes and AIX
classes

Use a 1:1 mapping of DB2 service classes to AIX Workload Manager service classes
to take advantage of AIX WLM processor controls. By having a 1:1 mapping
between DB2 service classes and AIX Workload Manager service classes, you can
adjust the AIX processor resource for each DB2 service class individually to meet
your business priority goals.

The following figure shows the integration of DB2 workload management with the
AIX Workload Manager. Note the 1:1 mapping between each DB2 service class and
AIX Workload Manager service class at the service superclass and service subclass
levels.

© Copyright IBM Corp. 2007, 2012 279

When a DB2 environment consists of a single database in a single DB2 instance,
such as the example portrayed in the previous figure, it is possible to map directly
between DB2 service classes and AIX Workload Manager classes. Each DB2 service
superclass can have a corresponding AIX Workload Manager service superclass
and each DB2 service subclass can map to a corresponding AIX service subclass.

In situations where the DB2 environment consists of multiple databases and DB2
instances, several levels might be candidates for resource control. Because the AIX
Workload Manager supports a two-level hierarchy, that is, superclass and subclass,
only two levels of a DB2 environment can be mapped to AIX Workload Manager
classes at any time. The following figure shows one way to achieve a 1:1 mapping
with multiple databases, each with multiple superclasses. Here, each database has
its own AIX Workload Manager superclass and each DB2 service superclass is
mapped to an AIX Workload Manager subclass.

Data serverUser requests

System requests

Service superclass 1

Requests

Requests

Requests

Requests

Requests

Requests

Workload B

Workload C

Workload D

Default user
workload

Workload A

AIX WLM service classes

_DB2_SUPERCLASS1

_DB2_DEF_USER

_DB2_DEF _SYSTEM

_DB2_SUBCLASSA

_DB2_SUBCLASSB

Default user
class

Default system
class

Service
subclass B

Service
subclass A

Maintenance requests

Requests _DB2_DEF _MAINTDefault maintenance
class

Figure 52. Integration of DB2 workload management with the AIX Workload Manager

280 DB2 Workload Management Guide and Reference

An alternative configuration is to map each DB2 service superclass to its own AIX
Workload Manager superclass, which results in four superclasses in this example.
In this situation, the database level of resource control is represented explicitly in
the AIX Workload Manager service class definitions.

The following figure shows one way to achieve the 1:1 mapping in the situation
where you have multiple databases, each with service superclasses and service
subclasses. Here, each database corresponds to an AIX superclass and each DB2
service subclass is mapped to an AIX Workload Manager subclass. The DB2 service
superclass is not shown explicitly in the AIX Workload Manager service class

Service superclass A

Service superclass B

Database 1

Service superclass A

Service superclass B

Database 2

DB2 Instance

Database 1

DB2 instance

Database 2

AIX workload manager classes

Other application 1

Other application 2

Superclass A

Superclass A

Superclass B

Superclass B

Figure 53. DB2 service classes mapped to AIX classes (with DB2 service superclasses only)

Chapter 5. Integration with operating system workload managers 281

definitions.

Service subclass 1

Service subclass 2

Service superclass A

Service subclass 1

Service subclass 2

Service superclass B

Database 1

Service subclass 1

Service subclass 2

Service superclass A

Service subclass 1

Service subclass 2

Service superclass B

Database 2

DB2 Instance

Database 1

DB2 instance

Database 2

AIX workload manager classes

Other application 1

Other application 2

Subclass 1

Subclass 1

Subclass 1

Subclass 2

Subclass 2

Subclass 1

Subclass 2

Subclass 2

Figure 54. DB2 service classes mapped to AIX Workload Manager classes (with DB2 service
subclasses)

282 DB2 Workload Management Guide and Reference

Defining mappings between DB2 service classes and AIX classes

Mapping between DB2 service classes and AIX Workload Manager classes is
specified for the DB2 service class using the OUTBOUND CORRELATOR keyword
of the CREATE SERVICE CLASS or the ALTER SERVICE CLASS statements.

The steps for setting up the AIX Workload Manager classes with the DB2 data
server are:
1. Create the DB2 service superclasses and service subclasses, and specify the

OUTBOUND CORRELATOR tags.
2. Create the corresponding AIX classes.
3. Create the associated AIX Workload Manager rules files to contain the DB2

workload management to AIX Workload Manager mappings using the
OUTBOUND CORRELATOR tags under the tag columns.

4. Start the AIX Workload Manager.
5. If required, set this AIX Workload Manager configuration as active.

When a thread joins a DB2 service class, the DB2 data server calls the appropriate
AIX Workload Manager API to associate the thread to the corresponding AIX
service class. The DB2 data server sends the thread's target AIX service class to the
AIX Workload Manager by passing it the application tag set in the OUTBOUND
CORRELATOR parameter.

You must ensure that the AIX Workload Manager is properly installed, configured,
and active. If the DB2 data server cannot communicate with the AIX Workload
Manager, a message is logged to the db2diag log files and DB2 administrator log.
The database activity continues.

The DB2 data server cannot detect whether the OUTBOUND CORRELATOR value
that it passes to the AIX Workload Manager is recognized by the AIX Workload
Manager. You must verify that the value specified for the DB2 service class
matches the application tags that map DB2 threads to the AIX service classes. If the
OUTBOUND CORRELATOR value is not recognized by the AIX Workload
Manager, the database activity continues to execute.

Other points to note are:
v DB2 service classes cannot work with the AIX Workload Manager inheritance

feature. Inheritance is the default setting for an AIX service class; inheritance
must be explicitly disabled by setting the inheritance attribute to NO. AIX
Workload Manager inheritance forces all child threads and processes to map to
the same class as the parent thread or process. If inheritance is enabled, DB2
workload management cannot change the AIX Workload Manager class of a
thread by using tagging. This restriction makes any integration of DB2 workload
management and the AIX Workload Manager unusable. The DB2 data server
cannot detect whether AIX Workload Manager inheritance is enabled and does
not issue an error message if inheritance is enabled.

v DB2 service classes are not compatible with the AIX Workload Manager manual
assignment feature. With the manual assignment feature, users can manually
assign a process to a specific AIX Workload Manager class. By manually
assigning the DB2 process, all threads in the process are assigned to a target AIX
Workload Manager class, the DB2 service class mapping logic is defeated and
results are not predictable.

Chapter 5. Integration with operating system workload managers 283

For more information on the AIX Workload Manager, see the AIX Information
Center at http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp

Setting processor controls on AIX classes

The AIX Workload Manager can be used to control the amount of processor
resource allocated to each service class. Options include setting a minimum,
maximum, or relative proportion share of processor resource for each service class.

When integrating the AIX Workload Manager with DB2 Workload Management,
only processor resource allocation is supported. You should not set memory and
I/O settings for the AIX classes. DB2 database-level memory is shared among all
agents from different DB2 service classes, so you cannot divide memory allocation
between different service classes. AIX-level I/O control does not support the DB2
engine threaded model. To control I/O, you can use the prefetcher priority
attribute of a DB2 service class to differentiate I/O priorities between different DB2
service classes.

If you use AIX to control the amount of processor resource allocated to a service
class, do not also change the agent priority setting for that DB2 service class. Use
only one of these mechanisms to govern the access to processor resource. You
cannot set both the AGENT PRIORITY and the OUTBOUND CORRELATOR value
for a service class. See “Agent priority of service classes” on page 76 for more
information.

AIX Workload Manager settings should be consistent on all physical computers
that participate in an instance. For example, if the resource setting for an AIX
service class is set high on one computer, the same setting should be used for that
AIX service class on all other computers. If the resource usage settings are
inconsistent across computers, requests running in the same AIX service class will
exhibit different performance levels on different database members. This situation
can lead to poor overall throughput for connections in an AIX service class.

Integration of Linux workload management with DB2 workload
management

On the Linux operating system, the optional integration between DB2 service
classes and Linux classes (control groups) permits you to control the amount of
processor resource allocated to each service class. If enabled, all threads running in
a DB2 service class are mapped to a Linux class where they are subject to the
processor resource controls you define.

To make use of Linux workload management support, you require a Linux kernel
version 2.6.26 or later on a 64-bit system and the libcgroup library package.

Linux workload management supports a hierarchy of classes with superclasses and
subclasses, with processor shares for subclasses divided in proportion to the shares
of the parent class. These shares provide a method of control over processor
resource such that all threads in the system will always run, but the amount of
processor time each thread receives is dependent on the number of shares assigned
to the Linux class.

Processor resource on the Linux operating system is assigned in shares relative to
the Linux workload management default class, which by default has a processor
share at a value of 1024. If you define no other Linux classes, all threads run in

284 DB2 Workload Management Guide and Reference

this default class. If you define a class that has a share value equal to 1024, then
this class receives the same amount of processor resource as the Linux default class
with the default processor share. Similarly, a class with a share of 2048 receives a
target processor usage quota twice that of the default class. On more complex
systems, you should consider raising the processor share of the Linux default class,
which improves the granularity for shares across the system so that you can assign
processor resources more accurately.

Recommended mappings between DB2 service classes and
Linux classes

You should use a 1:1 mapping between DB2 service classes and Linux classes
which permits you to adjust the Linux processor shares assigned to activities in
each DB2 service class individually according to business priority. It is important
that you associate every DB2 service class with a Linux WLM class, either by
setting an outbound correlator for each service superclass and subclass, or through
inheritance from the parent service class for subclasses. This includes the default
SYSDEFAULTSYSTEMCLASS, SYSDEFAULTMAINTENANCECLASS and
SYSDEFAULTUSERCLASS service classes.

The following figure shows how two DB2 service subclasses under the same user
defined service superclass can get mapped 1:1 to Linux subclasses under a
common superclass. In this example, the work identified and assigned by two
workloads for each DB2 service subclass is subject to the processor resource
controls imposed by the corresponding Linux subclasses (_DB2_SUBCLASSA,
_DB2_SUBCLASSB). Also shown are three Linux classes that correspond to the
default DB2 workload management service classes (_DB2_DEF_USER,
_DB2_DEF_SYSTEM, _DB2_DEF_MAINT). If you integrate DB2 workload
management with Linux workload management, you should always create these
additional Linux classes to match the default DB2 service classes. To avoid any
bottleneck, the Linux class corresponding to the DB2 default system class should
receive more processor shares than any other Linux class that DB2 activities map
to, whilst the Linux class corresponding to the default maintenance class should
receive less processor shares.

Figure 55. Integration of DB2 workload management with Linux workload management

Chapter 5. Integration with operating system workload managers 285

Data serverUser requests

System requests

Service superclass 1

Requests

Requests

Requests

Requests

Requests

Requests

Workload B

Workload C

Workload D

Default user
workload

Workload A

Linux classes

_DB2_DEF_USER

_DB2_DEF _SYSTEM

Default user
class

Default system
class

Maintenance requests

Requests _DB2_DEF _MAINTDefault maintenance
class

Default class

_DB2_SUPERCLASS1

_DB2_SUBCLASSA

_DB2_SUBCLASSB

Service
subclass A

Service
subclass B

Defining mappings between DB2 service classes and Linux
workload management classes

The steps for integrating DB2 workload management with Linux workload
management, which runs as an operating system service, are as follows:
1. Define the Linux classes, class permissions, and processor shares by editing the

/etc/cgconfig.conf control groups configuration file. What Linux classes you
create depends on the conditions dictated by your business priorities for the
work your data server performs. If you want to apply processor resource based
on the source of certain work, for example, create a Linux class to match the
DB2 service class that work is going to be assigned to by the workload
identifying the work. Define an entry for each Linux class corresponding to the
DB2 service class to be created that you want to use for the mapping. The
following sections must be provided in the /etc/cgconfig.conf configuration
file:
v group: The Linux class name. For example, if you specify group _class1, you

create a superclass _class1. If you specify group _class1/_subclass1, you
create the subclass _subclass1 under the superclass _class1.
– perm: The permissions section that determines who can control what

threads are assigned to a Linux class and who can change the processor
shares of classes in the /etc/cgconfig.conf configuration file.

286 DB2 Workload Management Guide and Reference

- task: The user ID (uid) and group ID (gid) whose threads can run in
the Linux workload management class. To enable Linux workload
management to work with DB2 workload management, you should set
uid to the DB2 instance owner user ID.

- admin: The user ID (uid) and group ID (gid) that can change processor
shares for a Linux workload management class.

– cpu: The processor shares definition section
- cpu.shares: The share assigned to this Linux class relative to the default

class

The /etc/cgconfig.conf configuration file must contain these sections in the
following format:
Superclass name
group _name
{

perm
{

task
{

uid = db2inst1;
gid = db2iadm1;

}
admin
{

uid = db2inst1;
gid = db2iadm1;

}
}

cpu
{

cpu.shares = 1024;
}

}

2. Start the Linux workload management service daemon with the service
cgconfig start command, then start your DB2 data server with the db2start
command.

3. To map a DB2 service class to one of the Linux classes, include the Linux class
name in the OUTBOUND CORRELATOR clause when you create or alter the
service class, which associates threads from the DB2 service class with the
external Linux class.

4. If you want to find out what threads are assigned to a particular Linux class,
you can use the cat command on the /cgroup/class_name/tasks file, where
class_name represents the name of the Linux class you are interested in. All
threads that are not mapped to a user-defined Linux class are assigned to the
Linux default class, which you can find at MOUNTPOINT/sysdefault, where
MOUNTPOINT is defined in the cgconfig.conf configuration file.

5. To add or remove Linux classes, you must stop with the Linux workload
management service with the service cgconfig stop command, make your
changes, and then restart the service. Note that stopping the service affects the
entire system, because all tasks are moved to the default class. If you used the
/etc/init.d/cgred script to start the service daemon, issue /etc/init.d/cgred
stop to stop it.

For the integration with DB2 workload management to work, you must ensure that
the Linux workload management service is properly installed, configured, and
active. If the DB2 data server cannot communicate with the Linux workload

Chapter 5. Integration with operating system workload managers 287

management service, a message is logged to the db2diag log files and DB2
administrator log. Database activities will continue to execute.

The DB2 data server cannot detect whether the outbound correlator that it passes
to external workload managers is recognized by Linux workload management. You
must verify that the OUTBOUND CORRELATOR value specified for a DB2 service
class matches the Linux class name so that DB2 threads are mapped to the Linux
class. If an outbound correlator is not recognized, database activities will continue
to execute.

Example

The following example illustrates how you can make use of Linux workload
management processor controls by integrating with DB2 workload management. In
this example, we create two user-defined DB2 service classes, one for batch
applications (BATCHAPPS) and one for online applications (ONLINEAPPS). For
simplicity, this example does not show the default service classes, which should be
included in an implementation that creates the recommended 1:1 mapping between
DB2 service classes and Linux classes. Because response time is critical for the
online applications, we want the ONLINEAPPS service class to receive three times
the amount of processor shares relative to work that runs in the Linux default class
(3 x 1024 = 3072 shares). Batch applications have a lower business priority, and the
BATCHAPPS class should be assigned half the processor resource of work that
runs in the Linux default class (1024 / 2 = 512 shares). All other work on the
system will run in the Linux default class. Note that this example does not create
Linux classes corresponding to the three default DB2 workload management
service classes.

To create this setup, first create the two corresponding Linux classes _BATCHAPPS
and _ONLINEAPPS and set their relative processor shares by editing the
/etc/cgconfig.conf tasks file. After editing, the tasks file contains the following
two entries, one for each Linux class:
Superclass ONLINEAPPS
group _ONLINEAPPS
{

perm
{

task
{

uid = db2inst1;
gid = db2iadm1;

}
admin
{

uid = db2inst1;
gid = db2iadm1;

}
}

cpu
{

3 x 1024 = 3072 shares
cpu.shares = 3072;

}
}

Superclass BATCHAPPS
group _BATCHAPPS
{

perm

288 DB2 Workload Management Guide and Reference

{
task
{

uid = db2inst1;
gid = db2iadm1;

}
admin
{

uid = db2inst1;
gid = db2iadm1;

}
}

cpu
{

1024 / 2 = 512 shares
cpu.shares = 512;

}
}

The absolute processor time in percent assigned to each Linux class as processor
shares is as follows:

Table 62. Processor shares and absolute processor time assigned to Linux classes

Linux class Shares
Absolute processor time in
percent

Default class 1024 (default) 1024 / 4608 = 22%

_ONLINEAPPS 1024 x 3 = 3072 3072 / 4608 = 67%

_BATCHAPPS 1024 x ½ = 512 512 / 4608 = 11%

Total = 1024 + 3072 + 512 =
4608 shares

Once the Linux WLM classes are created, you can start the Linux workload
management service:
service cgconfig start

Next, create the associated DB2 service classes with the following statements:
DB2 CREATE SERVICE CLASS BATCHAPPS OUTBOUND CORRELATOR ’_BATCHAPPS’
DB2 CREATE SERVICE CLASS ONLINEAPPS OUTBOUND CORRELATOR ’_ONLINEAPPS’

To find out which threads are running in a Linux class, issue the cat command. For
the business critical _ONLINEAPPS Linux class, the command and output look as
follows. You can see that there are six thread running in this Linux class:
cat /cgroup/_ONLINEAPPS/tasks

1056
1087
1107
985
1036
1205

Chapter 5. Integration with operating system workload managers 289

290 DB2 Workload Management Guide and Reference

Chapter 6. Tutorial for DB2 workload management

The exercises in this tutorial were designed to provide you with a hands-on
introduction to DB2 workload management. Each exercise highlights one or more
of the workload management features available with DB2 workload management.

These exercises provide some guidance for using DB2 workload management
features which you can adapt for your own purposes, but you should note that the
initial configuration you chose for your own data server may differ and should be
based on your specific workload management objectives.

Before you begin

This tutorial is designed to be run against the SAMPLE database and, unless noted
otherwise, requires DBADM or WLMADM authority (or SQLADM authority if
only the COLLECT ACTIVITY DATA clause is specified). You should also start the
instance and activate the SAMPLE database before continuing:
db2start
db2 activate db sample

Some of the command and query statements shown in these exercises are quite
long. You can find most of these statements in the text file wlm-tutorial-
steps.txt, which you can copy from when working through the exercises. The
scripts representing the workloads that are required for the different exercises are
also included.

Both wlm-tutorial-steps.txt and the workload scripts can be found here.

Exercise 1: Getting started with basic monitoring using default DB2
workload management objects

This exercise demonstrates the basic types of monitoring information that can be
obtained from the default workload and service class objects.

Estimated time: 20-25 minutes

By default, the user workload (SYSDEFAULTUSERWORKLOAD) and a default
user service class (SYSDEFAULTUSERCLASS) are always created for each
database. These default objects can be used to take advantage of the new DB2
workload management monitoring features without having to create any user
defined workloads or service classes. If no user defined workloads and service
classes are created, all user activities will be associated with these default objects.

There are two separate features of monitoring that are demonstrated by this
exercise:
1. The ability to collect aggregate statistics for all activities that run in a service

class. Aggregate activity statistics provide an inexpensive way of looking at
work in a service class as a whole. They show information like the number of
activities that ran in the service class, and the average lifetime of those
activities.

2. The ability to capture information about individual activities. Activity
information can be useful when investigating the performance or behavior of a

© Copyright IBM Corp. 2007, 2012 291

wlmtutorial.zip

particular activity. Activity information includes things such as statement text,
compilation environment, etc. Activity information is more expensive to collect
than aggregate activity statistics and is usually targeted towards a specific
subset of activities.

Step 1: Create and enable event monitors

Connect to the database and create and enable event monitors for activities and
statistics.
CONNECT TO SAMPLE

CREATE EVENT MONITOR DB2ACTIVITIES FOR ACTIVITIES WRITE TO TABLE
CREATE EVENT MONITOR DB2STATISTICS FOR STATISTICS WRITE TO TABLE

SET EVENT MONITOR DB2ACTIVITIES STATE 1
SET EVENT MONITOR DB2STATISTICS STATE 1

Step 2: Collect individual activities

Enable collection of individual activities using the COLLECT ACTIVITY DATA
clause on the CREATE or ALTER WORKLOAD STATEMENT. When the COLLECT
ACTIVITY DATA clause is specified for a workload, information about any activity
submitted by an occurrence of that workload will be sent to the active ACTIVITIES
event monitor when the activity completes. The COLLECT ACTIVITY DATA clause
permits you to specify how much information should be collected by applying one
of the following options:
v WITHOUT DETAILS: Collect activity information without statement and

compilation environment.
v WITH DETAILS: Collect activity information including statement and

compilation environment.
v WITH DETAILS AND VALUES: Collect activity information including statement

and compilation environment, and input data values.

For this exercise, you will specify the WITH DETAILS clause so that the statement
text information is captured.
ALTER WORKLOAD SYSDEFAULTUSERWORKLOAD

COLLECT ACTIVITY DATA ON COORDINATOR WITH DETAILS

In this example activity data is collected for the default user workload. This results
in information about all user activities being collected since no other user defined
workloads are currently active. This would be too expensive in a production
environment. A better approach would be to isolate the activities of interest using a
specific user defined workload or service class and apply the COLLECT ACTIVITY
DATA clause to that workload or service class only.

Additional Information: The COLLECT ACTIVITY DATA clause can also be
specified on a service class, work class (using a work action) or a threshold. If the
clause is specified for a service class, information will be collected for any activity
that runs in the service class. If it is specified for a work class (using a work
action), any activity that has the work action applied to it will be collected. If the
clause is specified for a threshold, activity information will be collected if the
threshold is violated.

292 DB2 Workload Management Guide and Reference

Step 3: Collect aggregate activity statistics

Enable collection of aggregate activity statistics for the default subclass under the
default user service class using the COLLECT AGGREGATE ACTIVITY DATA
clause. When this clause is specified, aggregate statistics will be maintained in
memory for the corresponding service class (for example, statistics such as average
activity lifetime). The statistics can be viewed using the service subclass statistics
table function, or can be collected and sent to the active statistics event monitor for
later analysis.
ALTER SERVICE CLASS SYSDEFAULTSUBCLASS UNDER SYSDEFAULTUSERCLASS

COLLECT AGGREGATE ACTIVITY DATA BASE

Additional Information: There is a set of statistics collected by default for all DB2
workload management objects. The COLLECT AGGREGATE ACTIVITY DATA
clause enables collection of a number of additional optional statistics, such as the
activity lifetime histogram.

In this example all user activities will be run in the SYSDEFAULTSUBCLASS
service subclass under the SYSDEFAULTUSERCLASS service super class because
no user defined service classes have been created. Therefore, information will be
collected for all user activities.

Step 4: Run some activities

Run some activities, which will result in statistics being updated and the activities
being collected.
db2 –o –tvf work1.db2
db2 –o –tvf work2.db2

The scripts representing applications (such as work1.db2 and work2.db2) disconnect
you from the database, so that after running them you will need to reconnect.

Step 5: View statistics

You can view the service class statistics using the
WLM_GET_SERVICE_SUBCLASS_STATS table function. For example:
CONNECT TO SAMPLE

SELECT VARCHAR(SERVICE_SUPERCLASS_NAME, 30) AS SUPERCLASS,
VARCHAR(SERVICE_SUBCLASS_NAME, 30) AS SUBCLASS,
LAST_RESET,
COORD_ACT_COMPLETED_TOTAL,
COORD_ACT_REJECTED_TOTAL,
COORD_ACT_ABORTED_TOTAL,
COORD_ACT_LIFETIME_AVG

FROM TABLE(SYSPROC.WLM_GET_SERVICE_SUBCLASS_STATS(’SYSDEFAULTUSERCLASS’,
’SYSDEFAULTSUBCLASS’, -1)) AS T

The output from this query will look something such as the following:
SUPERCLASS SUBCLASS LAST_RESET
COORD_ACT_COMPLETED_TOTAL COORD_ACT_REJECTED_TOTAL COORD_ACT_ABORTED_TOTAL
COORD_ACT_LIFETIME_AVG
------------------------------ ------------------------------ -------------------------- --
----------------------- ------------------------ ----------------------- ------------------

SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 2007-07-18-16.03.51.752190
74 0 0 +1.40288000000000E+002

1 record(s) selected.

Chapter 6. Tutorial for DB2 workload management 293

The COORD_ACT_COMPLETED_TOTAL column indicates how many activities
have completed successfully in this service class. The last reset time indicates the
last time that statistics were reset for this service class.

Additional Information: If you do not enable aggregate activity statistics for a
service class using the COLLECT AGGREGATE ACTIVITY DATA clause, some
statistics reported by the WLM_GET_SERVICE_SUBCLASS_STATS table function
will be NULL.

Step 6: Send statistics to event monitor

Use the WLM_COLLECT_STATS stored procedure to send the statistics for all DB2
workload management objects to the active statistics event monitor. When statistics
are collected and sent to the statistics event monitor, the values are reset.
CALL SYSPROC.WLM_COLLECT_STATS()

Additional Information: If there is no active statistics event monitor, you can still
use the WLM_COLLECT_STATS procedure to reset the statistics, but the current
values will be lost. It is possible to automate workload management statistics
collection using the WLM_COLLECT_INT database configuration parameter. If you
set this parameter to a nonzero value, workload management statistics will be
collected automatically every wlm_collect_int minutes (as if you manually
invoked the WLM_COLLECT_STATS procedure every wlm_collect_int minutes).

Step 7: View statistics again

Invoke the WLM_GET_SERVICE_SUBCLASS_STATS table function again. Note
that the LAST_RESET timestamp has been updated and the statistics have been
reset.
SELECT VARCHAR(SERVICE_SUPERCLASS_NAME, 30) AS SUPERCLASS,

VARCHAR(SERVICE_SUBCLASS_NAME, 30) AS SUBCLASS,
LAST_RESET,
COORD_ACT_COMPLETED_TOTAL,
COORD_ACT_REJECTED_TOTAL,
COORD_ACT_ABORTED_TOTAL,
COORD_ACT_LIFETIME_AVG

FROM TABLE(SYSPROC.WLM_GET_SERVICE_SUBCLASS_STATS(’SYSDEFAULTUSERCLASS’,
’SYSDEFAULTSUBCLASS’, -1)) AS T

The output will look something like:
SUPERCLASS SUBCLASS LAST_RESET
COORD_ACT_COMPLETED_TOTAL COORD_ACT_REJECTED_TOTAL
COORD_ACT_ABORTED_TOTAL COORD_ACT_LIFETIME_AVG
------------------------------ ------------------------------ ----------
---------------- ------------------------- ------------------------ ----
------------------- ------------------------
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 2007-07-18-
16.04.03.505818 0 0
0 +0.00000000000000E+000

1 record(s) selected.

Step 8: View service class statistics collected by the statistics
event monitor

The WLM_COLLECT_STATS procedure sent the service class statistics to the
statistics event monitor. You can look at the statistics that were collected by the
event monitor using statement such as the following:

294 DB2 Workload Management Guide and Reference

SELECT VARCHAR(SERVICE_SUPERCLASS_NAME, 30) AS SUPERCLASS,
VARCHAR(SERVICE_SUBCLASS_NAME, 30) AS SUBCLASS,
LAST_WLM_RESET,
STATISTICS_TIMESTAMP,
COORD_ACT_COMPLETED_TOTAL,
COORD_ACT_REJECTED_TOTAL,
COORD_ACT_ABORTED_TOTAL,
COORD_ACT_LIFETIME_AVG

FROM SCSTATS_DB2STATISTICS

The output will look something like:
SUPERCLASS SUBCLASS
LAST_WLM_RESET STATISTICS_TIMESTAMP
COORD_ACT_COMPLETED_TOTAL COORD_ACT_REJECTED_TOTAL
COORD_ACT_ABORTED_TOTAL COORD_ACT_LIFETIME_AVG
------------------------------ ------------------------------ -----------
--------------- -------------------------- ------------------------- ----
-------------------- ----------------------- ----------------------
SYSDEFAULTSYSTEMCLASS SYSDEFAULTSUBCLASS 2007-07-18-
16.03.46.333724 2007-07-18-16.04.03.505818 0
0 0 -1
SYSDEFAULTMAINTENANCECLASS SYSDEFAULTSUBCLASS 2007-07-18-
16.03.46.334301 2007-07-18-16.04.03.505818 0
0 0 -1
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 2007-07-18-
16.03.51.752190 2007-07-18-16.04.03.505818 75
0 0 136

3 record(s) selected.

Every time statistics are sent to the event monitor, a statistics record will be created
for each DB2 workload management object. Note the two timestamps
LAST_WLM_RESET and STATISTICS_TIMESTAMP. The interval of time from
LAST_WLM_RESET to STATISTICS_TIMESTAMP indicates the period of time over
which the statistics in that record were collected. The STATISTICS_TIMESTAMP
indicates when the statistics were collected. Note that the average lifetime for
activities on the coordinator is -1 for the default system and maintenance service
classes. The average activity lifetime statistic is only maintained for a service class
if aggregate activity statistics are enabled using the COLLECT AGGREGATE
ACTIVITY DATA clause.

Step 9: View activity information

Information about every individual activity associated with the default user
workload was also collected by the activities event monitor, due to the
specification of the COLLECT ACTIVITY DATA clause on the default workload in
step 2. You can look at this activity information using a query such as the
following:
SELECT VARCHAR(A.APPL_NAME, 15) as APPL_NAME,

VARCHAR(A.TPMON_CLIENT_APP, 20) AS CLIENT_APP_NAME,
VARCHAR(A.APPL_ID, 30) as APPL_ID,
A.ACTIVITY_ID,
A.UOW_ID,
VARCHAR(S.STMT_TEXT, 300) AS STMT_TEXT

FROM ACTIVITY_DB2ACTIVITIES AS A,
ACTIVITYSTMT_DB2ACTIVITIES AS S

WHERE A.APPL_ID = S.APPL_ID AND
A.ACTIVITY_ID = S.ACTIVITY_ID AND
A.UOW_ID = S.UOW_ID

The output will look something like:

Chapter 6. Tutorial for DB2 workload management 295

APPL_NAME CLIENT_APP_NAME APPL_ID
ACTIVITY_ID UOW_ID STMT_TEXT
--------------- -------------------- ------------------------------ -----
--------------- ----------- ---

db2bp CLP wlmmonbasic.db2 *LOCAL.db2inst1.070718200344
1 8 ALTER SERVICE CLASS SYSDEFAULTSUBCLASS UNDER
SYSDEFAULTUSERCLASS COLLECT AGGREGATE ACTIVITY DATA BASE
db2bp CLP work1.db2 *LOCAL.db2inst1.070718200352
1 1 values(current client_applname)
db2bp CLP work1.db2 *LOCAL.db2inst1.070718200352
2 1 select * from org
db2bp CLP work1.db2 *LOCAL.db2inst1.070718200352
3 1 select * from employee
db2bp CLP work1.db2 *LOCAL.db2inst1.070718200352
4 1 select * from sales

...

Note that you may see some truncation warnings (SQL0445).

When CLP executes a script, it will set the CURRENT CLIENT_APPLNAME
special register to "CLP script name". So you can tell from the query shown
previously, which script submitted each activity.

Step 10: Reset for next exercise

Update the SYSDEFAULTUSERWORKLOAD workload and the
SYSDEFAULTSUBCLASS service subclass so that no activity data or aggregate
activity statistics is collected, disable event monitors and clear out the activity and
statistics tables, and call WLM_COLLECT_STATS() to reset the statistics.
ALTER WORKLOAD SYSDEFAULTUSERWORKLOAD COLLECT ACTIVITY DATA NONE

ALTER SERVICE CLASS SYSDEFAULTSUBCLASS UNDER SYSDEFAULTUSERCLASS
COLLECT AGGREGATE ACTIVITY DATA NONE

SET EVENT MONITOR DB2ACTIVITIES STATE 0
SET EVENT MONITOR DB2STATISTICS STATE 0

DELETE FROM ACTIVITY_DB2ACTIVITIES
DELETE FROM ACTIVITYSTMT_DB2ACTIVITIES
DELETE FROM SCSTATS_DB2STATISTICS
DELETE FROM WLSTATS_DB2STATISTICS

CALL WLM_COLLECT_STATS()

Exercise 2: Isolating activities using service classes and workloads
This exercise demonstrates how to create service classes and how to send activities
to a service class using a workload. It also demonstrates how to use some of the
WLM monitoring features to determine the workload that activities are being
mapped to and to get information about activities being run in a service class and
under a workload.

Estimated time: 20-25 minutes

Service classes are the primary point of resource control for database activities.
They are also useful for monitoring. For example, you can collect statistics for

296 DB2 Workload Management Guide and Reference

activities in a particular service class to determine whether the performance goals
for that service class are being met. By default, three default service classes
(SYSDEFAULTSYSTEMCLASS, SYSDEFAULTMAINTENANCECLASS, and
SYSDEFAULTUSERCLASS) are created for each database. If no user defined
service classes are created, user activities are run under the default user service
class (SYSDEFAULTUSERCLASS).

A workload is an entity that groups one or more units of work based on criteria
such as system user ID, session user ID, etc. Workloads provide a means of
assigning work to a service class so that the work can later be managed. A default
user workload (SYSDEFAULTUSERWORKLOAD) and a default administration
workload (SYSDEFAULTADMWORKLOAD) are created for each database. If no
user defined workloads are created, all user activities are associated with the
default user workload.

There are four separate features that are demonstrated in this exercise:
v How to create a service class.
v How to create a workload.
v How to examine basic workload statistics.
v How to collect activity information for activities run under an individual

workload.

Step 1: Examine where activities are run with no user-defined
service classes and workloads

First examine where activities are executed if there is no user defined service class
or workload. All DB2 activities are assigned to a workload and run in a service
class. If no user defined service classes are created, activities run in the default
subclass (SYSDEFAULTSUBCLASS) under the default user service class
(SYSDEFAULTUSERCLASS) and if no user defined workloads are created,
activities run under the default user workload (SYSDEFAULTUSERWORKLOAD).

Run the work1.db2 and work2.db2 scripts and then examine the statistics for the
SYSDEFAULTSUBCLASS of SYSDEFAULTUSERCLASS using the
WLM_GET_SERVICE_SUBCLASS_STATS .
db2 –o –tvf work1.db2
db2 –o –tvf work2.db2

CONNECT TO SAMPLE

SELECT VARCHAR(SERVICE_SUPERCLASS_NAME, 30) SUPERCLASS,
VARCHAR(SERVICE_SUBCLASS_NAME, 30) SUBCLASS,
COORD_ACT_COMPLETED_TOTAL

FROM TABLE(WLM_GET_SERVICE_SUBCLASS_STATS(’’,’’,-1)) AS T

You will see output such as the following:
SUPERCLASS SUBCLASS COORD_ACT_COMPLETE
D_TOTAL
------------------------------ ------------------------------ ------------------

SYSDEFAULTSYSTEMCLASS SYSDEFAULTSUBCLASS

0
SYSDEFAULTMAINTENANCECLASS SYSDEFAULTSUBCLASS

0
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS

75

3 record(s) selected.

Chapter 6. Tutorial for DB2 workload management 297

Note all the activities are run in the SYSDEFAULTUSERCLASS service super class.

Additional Information: There are 2 other service classes as well,
SYSDEFAULTSYSTEMCLASS and SYSDEFAULTMAINTENANCECLASS. These
service classes are used for internal maintenance and system level tasks. User
activities will not run in these service classes. You may notice nonzero activity
counts in these service classes as well if the DB2 data server has issued any
internal activities.

Use the WLM_GET_WORKLOAD_STATS table function to view workload statistics
to determine which workload the applications are being associated with.
SELECT SUBSTR(WORKLOAD_NAME, 1, 22) AS WL_DEF_NAME,

WLO_COMPLETED_TOTAL,
CONCURRENT_WLO_ACT_TOP FROM
TABLE(WLM_GET_WORKLOAD_STATS(CAST(NULL AS VARCHAR(128)), -2))

AS WLSTATS

The output will look something such as the following:
WL_DEF_NAME WLO_COMPLETED_TOTAL CONCURRENT_WLO_ACT_TOP
---------------------- -------------------- ----------------------
SYSDEFAULTUSERWORKLOAD 3 5
SYSDEFAULTADMWORKLOAD 0 0

2 record(s) selected.

Note there is one workload occurrence completed for both of the scripts (work1.db2
and work2.db2) as well as a workload occurrence for the connection used to
execute the previous command.

Step 2: Create a service class and workload

Create a service class and then create a workload such that all activities run from
the work1.db2 script get mapped to the newly created service class. When CLP
executes a script, the CURRENT CLIENT_APPLNAME special register value is set
to "CLP script name".
CREATE SERVICE CLASS work1_sc

CREATE WORKLOAD work1_wl CURRENT CLIENT_APPLNAME(’CLP work1.db2’)
SERVICE CLASS work1_sc

Additional Information: There are a number of attributes that can be specified
when creating a workload or a service class. For example, when creating a
workload, you can identify the connection based on application name, session user,
etc. For more information, refer the CREATE WORKLOAD and the CREATE
SERVICE CLASS documentation.

Step 3: Grant usage on workload

Grant usage on the workload (requires ACCESSCTRL or SECADM authority).
GRANT USAGE ON WORKLOAD work1_wl TO PUBLIC

Additional information: A connection can be associated with a workload only if the
session user has USAGE privilege on the workload. This is necessary to prevent
users from changing connection attributes of their application in an attempt to run
their work in a higher priority service class. Some connection attributes can be
changed programmatically (using the sqleseti API, for example). In this exercise,
we just grant USAGE privilege to PUBLIC. You would want to be more

298 DB2 Workload Management Guide and Reference

discriminating on a real system. Since the sample will be run as DBADM, this step
could be skipped altogether.

Step 4: Reset statistics

Reset the statistics using the WLM_COLLECT_STATS function, to clear the
statistics collected.
CALL SYSPROC.WLM_COLLECT_STATS()

Step 5: Run some activities

Run both the work1.db2 and the work2.db2 scripts.
db2 –o –tvf work1.db2
db2 –o –tvf work2.db2

Step 6: View workload and service class statistics

Use the WLM_GET_WORKLOAD_STATS table function to view workload statistics
to determine which workload the applications are being associated with.
CONNECT TO SAMPLE

SELECT SUBSTR(WORKLOAD_NAME, 1, 22) AS WL_DEF_NAME,
WLO_COMPLETED_TOTAL,
CONCURRENT_WLO_ACT_TOP
FROM TABLE(WLM_GET_WORKLOAD_STATS(CAST(NULL AS VARCHAR(128)), -2))

AS WLSTATS

The output will look something such as the following:
WL_DEF_NAME WLO_COMPLETED_TOTAL CONCURRENT_WLO_ACT_TOP
---------------------- -------------------- ----------------------
WORK1_WL 1 5
SYSDEFAULTUSERWORKLOAD 1 5
SYSDEFAULTADMWORKLOAD 0 0

Note that one workload occurrence completed under WORK1_WL which is the
work1.db2 script. One workload occurrence completed under
SYSDEFAULTUSERWORKLOAD which is the work2.db2 script.

You may see a 2nd workload occurrence completed for the SYSDEFAULTUSER
WORKLOAD which is the connection that was used to call the
WLM_COLLECT_STATS procedure. WLM_COLLECT_STATS is an asynchronous
procedure which might be completed before the statistics are actually collected and
therefore might be included.

You can also use the WLM_GET_SERVICE_SUBCLASS_STATS table function to
show which service class the activities are being run under as a result of creating
the new workload.
SELECT VARCHAR(SERVICE_SUPERCLASS_NAME, 30) SUPERCLASS,

VARCHAR(SERVICE_SUBCLASS_NAME, 23) SUBCLASS,
COORD_ACT_COMPLETED_TOTAL COORDACTCOMP
FROM TABLE(WLM_GET_SERVICE_SUBCLASS_STATS(’’,’’,-1)) AS T

The results looking something such as the following:
SUPERCLASS SUBCLASS COORDACTCOMP
------------------------------ ----------------------- --------------------
SYSDEFAULTSYSTEMCLASS SYSDEFAULTSUBCLASS 0

Chapter 6. Tutorial for DB2 workload management 299

SYSDEFAULTMAINTENANCECLASS SYSDEFAULTSUBCLASS 0
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 37
WORK1_SC SYSDEFAULTSUBCLASS 37

Note the activities that completed under the WORK1_SC due to the WORK1_WL
workload mapping.

Step 7: Create another service class and workload

Create a second service class and then create a workload such that all activities run
from the work2.db2 application get mapped to the newly created service class. In
addition, set up the workload so that it will collect some activity data. For this
example, we just collect activity data without any additional details or values.
CREATE SERVICE CLASS work2_sc

CREATE WORKLOAD work2_wl
CURRENT CLIENT_APPLNAME(’CLP work2.db2’)
SERVICE CLASS work2_sc
COLLECT ACTIVITY DATA

Additional information: When the COLLECT ACTIVITY DATA clause is specified
for a workload, information about any activity submitted by an occurrence of that
workload will be sent to the active ACTIVITIES event monitor when the activity
completes. The COLLECT ACTIVITY DATA clause permits you to specify how
much information should be collected by applying one of the following options:
v WITHOUT DETAILS: Collect activity information without statement and

compilation environment (the default)
v WITH DETAILS: Collect activity information including statement and

compilation environment.
v WITH DETAILS AND VALUES: Collect activity information including statement

and compilation environment, and input data values.

Step 8: Enable the activities event monitor

Enable the event monitors for activities.

The activity event monitor was created in Exercise 1.
SET EVENT MONITOR DB2ACTIVITIES STATE 1

Step 9: Reset statistics and run some activities

Use the WLM_COLLECT_STATS stored procedure to reset the statistics again and
run the work1.db2 and work2.db2 scripts again.
CALL SYSPROC.WLM_COLLECT_STATS()

db2 –o –tvf work1.db2
db2 –o –tvf work2.db2

Step 10: View workload and service class statistics

Use the WLM_GET_WORKLOAD_STATS table function again to determine which
workload the applications are being associated with
CONNECT TO SAMPLE

SELECT SUBSTR(WORKLOAD_NAME, 1, 22) AS WL_DEF_NAME,

300 DB2 Workload Management Guide and Reference

WLO_COMPLETED_TOTAL,
CONCURRENT_WLO_ACT_TOP

FROM TABLE(WLM_GET_WORKLOAD_STATS(CAST(NULL AS VARCHAR(128)), -2))
AS WLSTATS

The output will look something such as the following:
WL_DEF_NAME WLO_COMPLETED_TOTAL CONCURRENT_WLO_ACT_TOP
---------------------- -------------------- ----------------------
WORK1_WL 1 5
WORK2_WL 1 5
SYSDEFAULTUSERWORKLOAD 0 0
SYSDEFAULTADMWORKLOAD 0 0

Note this time both workload definitions have a workload occurrence run, once for
each script.

You may or may not see a workload occurrence completed for the
SYSDEFAULTUSERWORKLOAD depending on whether workload occurrence over
which the call to the WLM_COLLECT_STATS procedure was submitted is closed
before the statistics are collected.

Use WLM_GET_SERVICE_SUBCLASS_STATS again to show which service class
the activities are being run under as a result of creating the new workload.
SELECT VARCHAR(SERVICE_SUPERCLASS_NAME, 30) SUPERCLASS,

VARCHAR(SERVICE_SUBCLASS_NAME, 23) SUBCLASS,
COORD_ACT_COMPLETED_TOTAL COORDACTCOMP

FROM TABLE(WLM_GET_SERVICE_SUBCLASS_STATS(’’,’’,-1)) AS T

With the results looking something like:
SUPERCLASS SUBCLASS COORDACTCOMP
------------------------------ ----------------------- --------------------
SYSDEFAULTSYSTEMCLASS SYSDEFAULTSUBCLASS 0
SYSDEFAULTMAINTENANCECLASS SYSDEFAULTSUBCLASS 0
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 1
WORK1_SC SYSDEFAULTSUBCLASS 37
WORK2_SC SYSDEFAULTSUBCLASS 37

Note this time service super class work2_sc has some activities run under it due to
the WORK2_WL mapping. The one activity under SYSDEFAULTUSERCLASS is the
query previously run on WLM_GET_WORKLOAD_STATS.

Step 11: View the activity data collected

Query the activity table for information on the activities that have been run. Note
that only the activities from the work2.db2 script have been collected because only
the work2_wl workload definition has the COLLECT ACTIVITY DATA attribute
specified.
SELECT SUBSTR(WORKLOADNAME, 1, 20) WL_DEF_NAME,

SUBSTR(APPL_NAME, 1, 20) APPL_NAME,
SUBSTR(ACTIVITY_TYPE, 1, 10) ACT_TYPE

FROM SYSCAT.WORKLOADS, ACTIVITY_DB2ACTIVITIES
WHERE WORKLOADID = WORKLOAD_ID

The results look something like:
WL_DEF_NAME APPL_NAME ACT_TYPE
-------------------- -------------------- ----------
WORK2_WL db2bp READ_DML
WORK2_WL db2bp READ_DML
WORK2_WL db2bp READ_DML
WORK2_WL db2bp READ_DML

Chapter 6. Tutorial for DB2 workload management 301

WORK2_WL db2bp WRITE_DML
WORK2_WL db2bp WRITE_DML
WORK2_WL db2bp WRITE_DML
WORK2_WL db2bp WRITE_DML
WORK2_WL db2bp WRITE_DML
WORK2_WL db2bp WRITE_DML
WORK2_WL db2bp DDL
WORK2_WL db2bp DDL
WORK2_WL db2bp DDL
WORK2_WL db2bp OTHER
WORK2_WL db2bp READ_DML
WORK2_WL db2bp READ_DML
WORK2_WL db2bp READ_DML
WORK2_WL db2bp READ_DML
WORK2_WL db2bp READ_DML
WORK2_WL db2bp READ_DML
WORK2_WL db2bp OTHER
WORK2_WL db2bp DDL
WORK2_WL db2bp LOAD
WORK2_WL db2bp DDL
WORK2_WL db2bp DDL
WORK2_WL db2bp DDL
WORK2_WL db2bp DDL
WORK2_WL db2bp DDL
WORK2_WL db2bp READ_DML
WORK2_WL db2bp CALL
WORK2_WL db2bp READ_DML
WORK2_WL db2bp CALL
WORK2_WL db2bp CALL
WORK2_WL db2bp CALL
WORK2_WL db2bp DDL
WORK2_WL db2bp DDL
WORK2_WL db2bp DDL
WORK2_WL db2bp DDL
:
:

Step 12: Assign resources to service classes

Now that you have isolated the activities issued by these two scripts into separate
service classes, you can assign resources to the service classes or monitor the
activities that run in those service classes. A few examples: If the work performed
by the script work2.db2 is more important than the work performed by the script
work1.db2, you could increase the priority of agents running in the WORK2_SC
service class using a statement such as the following.

On UNIX operating environments (a negative value specifies a higher priority):
ALTER SERVICE CLASS WORK2_SC AGENT PRIORITY -6

On Windows operating environments (a positive value specifies a higher priority):
ALTER SERVICE CLASS WORK2_SC AGENT PRIORITY 6

If you wanted to capture details about every individual activity that executes in
the WORK2_SC service class, you could enable activity collection for that service
class using the following:
ALTER SERVICE CLASS SYSDEFAULTSUBCLASS UNDER WORK2_SC

COLLECT ACTIVITY DATA ON COORDINATOR WITH DETAILS

302 DB2 Workload Management Guide and Reference

Step 13: Reset for next exercise

Update workload work2_wl so that no activity data is collected, disable the event
monitor and clean up the event monitor table, and call WLM_COLLECT_STATS()
to reset the statistics.
ALTER WORKLOAD work2_wl

COLLECT ACTIVITY DATA NONE

SET EVENT MONITOR DB2ACTIVITIES STATE 0

DELETE from ACTIVITY_DB2ACTIVITIES

CALL WLM_COLLECT_STATS()

Exercise 3: Using thresholds to control rogue activities and using the
threshold violation monitor

This exercise demonstrates how you can use thresholds to detect resource misuse
or the beginning of system overload by establishing limits over the consumption of
a specific resource.

Estimated time: 15-20 minutes

If a threshold is violated, a specified action can be triggered. The supported actions
are:
v STOP EXECUTION: Stop processing the activity that caused the threshold to be

violated.
v CONTINUE: Continue processing
v Collect information about the activity that violated the threshold. This action can

be specified in conjunction with the CONTINUE or STOP EXECUTION action.

Regardless of whether an activity that violates a threshold is stopped or permitted
to continue running, a record of the violation is written to an active THRESHOLD
VIOLATIONS event monitor (assuming one is defined in advance) each time a
threshold is violated. The record contains information such as which threshold was
violated, the time of the violation, and the threshold action.

This exercise demonstrates how thresholds can be used to detect or prevent rogue
activities from running on your system and using up system resources. A rogue
activity is any activity that uses an unexpectedly high amount of resources. For
example, a query that runs for an abnormally long time, or returns an
unexpectedly large result set.

Step 1: Create a threshold violation event monitor

Create and enable a write-to-table event monitor that will be used to capture the
threshold violation information and enable the activity event monitor that was
created in Exercise 1.
CREATE EVENT MONITOR threvio FOR THRESHOLD VIOLATIONS WRITE TO TABLE

THRESHOLDVIOLATIONS(IN userspace1),
CONTROL(IN userspace1)

SET EVENT MONITOR threvio STATE 1

SET EVENT MONITOR db2activities STATE 1

Chapter 6. Tutorial for DB2 workload management 303

Step 2: Create a workload

Create a workload such that all activities run from the workth.db2 script will get
mapped to the work1_sc service class.

The work1_sc service class already exists since it was created in Exercise 2.
CREATE WORKLOAD workth_wl

CURRENT CLIENT_APPLNAME(’CLP workth.db2’)
SERVICE CLASS work1_sc

Step 3: Create thresholds

Create two thresholds, one of which (th_estcost) is an ESTIMATEDSQLCOST
threshold and another (th_sqlrows) is a SQLROWSRETURNED threshold and
apply them to the service class you wish to control the activities for (in this case,
work1_sc service class).

The th_estcost threshold specifies an upper bound (10000 timerons) for the
optimizer-estimated cost (in timerons) for an activity running in the work1_sc
service class. If any query with an estimated cost greater than 10000 timerons, tries
to execute in the work1_sc service class, this threshold is violated and the query is
not permitted to run.

The th_sqlrows threshold specifies that any activity running in the work1_sc
service class can return at most 30 rows from the data server. If any query tries to
return more than 30 rows, this threshold is violated, only 30 rows will be returned
to the client and the query will be stopped. In addition, data about the activity that
caused the threshold violation will be collected.

In either case, when an activity violates the threshold, a threshold violation record
is written to the THRESHOLD VIOLATIONS event monitor as defined in step 1
and the execution of the activity is stopped (because of the STOP EXECUTION
action). The application that submitted the activity will receive an SQL4712N error.
CREATE THRESHOLD th_estcost

FOR SERVICE CLASS work1_sc ACTIVITIES
ENFORCEMENT DATABASE
WHEN ESTIMATEDSQLCOST > 10000
STOP EXECUTION

CREATE THRESHOLD th_sqlrows
FOR SERVICE CLASS work1_sc ACTIVITIES
ENFORCEMENT DATABASE
WHEN SQLROWSRETURNED > 30
COLLECT ACTIVITY DATA WITH DETAILS AND VALUES
STOP EXECUTION

Additional information: A threshold can be either predictive or reactive:
v Predictive threshold: The boundaries of a predictive threshold are checked before

the activity starts running. To check whether a predictive threshold would be
violated, the data server obtains usage estimates from the query compiler. For
this example, the th_estcost threshold is a predictive threshold.

v Reactive threshold: The boundaries of a reactive threshold are checked while an
activity is executing. Approximate runtime usage estimates of the controlled
resource are used to evaluate the boundaries of reactive thresholds. The runtime
usage estimates are not obtained continuously but rather at selected predefined
checkpoints during the lifetime of the tracked work. For this example, the
th_sqlrows is a reactive threshold.

304 DB2 Workload Management Guide and Reference

Step 4: Run some activities

Run some activities, some of which violate the threshold upper bounds defined in
the previous step.
db2 –o –tvf workth.db2

Note that the statements which violate the thresholds defined previously, fail with
an error of SQL4712N/SQLSTATE 5U026.

Step 5: View the threshold violation event monitor

Information about every threshold violation is collected by the THRESHOLD
VIOLATIONS event monitor. You can query the threshold violation information by
issuing regular SQL statements against the threshold violation monitor table as
shown in the following example.
CONNECT TO SAMPLE

SELECT APPL_ID,
UOW_ID,
ACTIVITY_ID,
COORD_PARTITION_NUM AS COORDPART,
THRESHOLD_PREDICATE,
THRESHOLD_ACTION,
TIME_OF_VIOLATION

FROM THRESHOLDVIOLATIONS_THREVIO
ORDER BY THRESHOLD_ACTION, THRESHOLD_PREDICATE, TIME_OF_VIOLATION

The output will look something such as the following:
APPL_ID UOW_ID
ACTIVITY_ID COORDPART THRESHOLD_PREDICATE

THRESHOLD_ACTION TIME_OF_VIOLATION
--- ----
---------------- ----------- -------------------------
--- ------------------------
--
*LOCAL.DB2.070821150008 11
1 0 EstimatedSQLCost

Stop 2007-08-21-
11.00.11.000000
*LOCAL.DB2.070821150008 10
1 0 SQLRowsReturned

Stop 2007-08-21-
11.00.10.000000

2 record(s) selected.

Step 6: View information for the activity that violated the
threshold

Activity information is collected for any activity that violates a threshold that is
defined with a COLLECT clause. Show the detailed information about the
activities that violated a threshold using the following query:
SELECT VARCHAR(A.APPL_NAME, 15) as APPL_NAME,

VARCHAR(A.TPMON_CLIENT_APP, 20) AS CLIENT_APP_NAME,
A.ACTIVITY_ID,
A.ACTIVITY_TYPE,
A.WORKLOAD_ID,
T.THRESHOLD_PREDICATE,
A.QUERY_CARD_ESTIMATE,
T.THRESHOLD_MAXVALUE,
T.TIME_OF_VIOLATION,
VARCHAR(AS.STMT_TEXT, 100) AS STMT_TEXT

Chapter 6. Tutorial for DB2 workload management 305

FROM THRESHOLDVIOLATIONS_THREVIO AS T,
ACTIVITY_DB2ACTIVITIES AS A,
ACTIVITYSTMT_DB2ACTIVITIES AS AS

WHERE T.APPL_ID = A.APPL_ID AND
T.UOW_ID = A.UOW_ID AND

T.ACTIVITY_ID = A.ACTIVITY_ID AND
A.APPL_ID = AS.APPL_ID AND
A.ACTIVITY_ID = AS.ACTIVITY_ID AND
A.UOW_ID = AS.UOW_ID

The output will look something such as the following:
APPL_NAME CLIENT_APP_NAME ACTIVITY_ID ACTIVITY_TYPE

WORKLOAD_ID THRESHOLD_PREDICATE
QUERY_CARD_ESTIMATE THRESHOLD_MAXVALUE

TIME_OF_VIOLATION STMT_TEXT

--------------- -------------------- -------------------- ----------------------
-- ----------- -------------------------
--------------------------------------- -------------------- -------------------
- -------------------------- ---

db2bp CLP workth.db2 3 READ_DML

3 SQLRowsReturned
41 3

0 2007-08-31-09.01.16.000000 SELECT * FROM SALES

Note that the activity that violated the th_estcost (EstimatedSqlCost) threshold is
not shown. The reason is that the threshold did not specify the COLLECT
ACTIVITY DATA clause, so that no activity data was collected for that activity.

Step 7: Reset for next exercise

Disable the event monitors that were enabled. Also disable and drop the th_estcost
and th_sqlrows thresholds that were created.
SET EVENT MONITOR threvio STATE 0
SET EVENT MONITOR db2activities STATE 0

ALTER THRESHOLD th_estcost DISABLE
DROP THRESHOLD th_estcost

ALTER THRESHOLD th_sqlrows DISABLE
DROP THRESHOLD th_sqlrows

Also clean up the activities event monitor tables and the threshold violation table
DELETE from ACTIVITY_DB2ACTIVITIES
DELETE from ACTIVITYSTMT_DB2ACTIVITIES
DELETE from THRESHOLDVIOLATIONS_THREVIO

CALL WLM_COLLECT_STATS()

Exercise 4: Differentiating activities by activity type
This exercise demonstrates how a work action set can be used to: Collect
information about all activities of a certain type; apply a threshold to all activities
of a certain type; isolate activities of a certain type by mapping them to a specific
service subclass

Estimated time: 25-30 minutes

Work action sets are used to apply an action to an activity based on what the
activity is doing rather than who submitted it (as is done with workloads).

306 DB2 Workload Management Guide and Reference

Actions can be applied to either:
v All database activities of a certain type (using a database work action set).
v Only to activities of a certain type in a particular service class (using a service

class work action set).

This exercise shows both methods.

Additional Information: There are other actions that can be applied, such as
collecting statistics for activities of a certain type that are not covered in this
exercise.

Step 1: Create a work class set

First, create a work class set containing work classes that will represent the specific
types of activities you are interested in. This work class set will be used in
conjunction with work action sets to perform actions on the selected types of
activities. The following example creates a work class set containing work classes
of all possible types, but if you were interested only in one activity type, your
work class set could be created to only contain that one work class.
CREATE WORK CLASS SET all_class_types

(WORK CLASS read_wc WORK TYPE READ,
WORK CLASS write_wc WORK TYPE WRITE,
WORK CLASS ddl_wc WORK TYPE DDL,
WORK CLASS call_wc WORK TYPE CALL,
WORK CLASS load_wc WORK TYPE LOAD,
WORK CLASS all_wc WORK TYPE ALL POSITION LAST)

Step 2: Enable the activities event monitor

Enable the event monitor for activities that was created in Exercise 1.
SET EVENT MONITOR DB2ACTIVITIES STATE 1

Step 3: Create a database work action set

If you want to perform a particular action on all activities of a specific type (such
as applying a threshold or collecting activity information), use a database work
action set.

Create a work action set at the database level that contains work actions for the
specific work class representing the type of activities you want isolated. For this
example, we want to collect activity data for all DDL, READ and LOAD activities
that run on the system and we also want to stop any large read activity from
running. For this exercise, a large read activity is any select statement that has an
estimated cost (in timerons) of greater than 10000.
CREATE WORK ACTION SET db_was FOR DATABASE

USING WORK CLASS SET all_class_types
(WORK ACTION collect_load_wa ON WORK CLASS load_wc

COLLECT ACTIVITY DATA WITH DETAILS AND VALUES,
WORK ACTION collect_ddl_wa ON WORK CLASS ddl_wc

COLLECT ACTIVITY DATA WITH DETAILS AND VALUES,
WORK ACTION collect_read_wa ON WORK CLASS read_wc

COLLECT ACTIVITY DATA WITH DETAILS AND VALUES,
WORK ACTION stop_large_read_wa on WORK CLASS read_wc

WHEN ESTIMATEDSQLCOST > 10000 STOP EXECUTION)

Chapter 6. Tutorial for DB2 workload management 307

Step 4: Run activities and view work action set statistics

Run the work1.db2 and work3.db2 scripts.
db2 –o –tvf work1.db2
db2 –o –tvf work3.db2

You can use the WLM_GET_WORK_ACTION_SET_STATS table function to access
the work action set statistics in memory to get the number of times specific activity
types have been run. Note that running the following query shows only the
load_wc, read_wc and ddl_wc work classes since they are the only work classes
that have an applicable work action. All the other activities are counted under the
"*":
CONNECT TO SAMPLE

SELECT SUBSTR(WORK_ACTION_SET_NAME, 1, 12) AS WORK_ACTION_SET_NAME,
SUBSTR(WORK_CLASS_NAME, 1, 12) AS WORK_CLASS_NAME,
LAST_RESET,
SUBSTR(CHAR(ACT_TOTAL), 1, 10) AS TOTAL_ACTS

FROM TABLE(WLM_GET_WORK_ACTION_SET_STATS(’’, -2)) AS WASSTATS
ORDER BY WORK_ACTION_SET_NAME, WORK_CLASS_NAME

The output will look something like:
WORK_ACTION_SET_NAME WORK_CLASS_NAME LAST_RESET TOTAL_ACTS
-------------------- ---------------- ------------------------- ----------
DB_WAS * 2007-08-15-19.02.47.305556 12
DB_WAS DDL_WC 2007-08-15-19.02.47.305556 12
DB_WAS LOAD_WC 2007-08-15-19.02.47.305556 1
DB_WAS READ_WC 2007-08-15-19.02.47.305556 13

4 record(s) selected.

Step 5: View the activity data collected

Information about every individual DDL, READ and LOAD activities was collected
by the activities event monitor, due to the specification of the COLLECT ACTIVITY
DATA work action that was applied to the ddl_wc, read_wc, and the load_wc
work classes in step 3. The following are a couple of examples of how you might
want to look at this activity information.

To get some basic information about the activities, you can simply query the
activity event monitor table with a statement such as the following:
SELECT ACTIVITY_ID,

SUBSTR(ACTIVITY_TYPE, 1, 8) AS ACTIVITY_TYPE,
VARCHAR(APPL_ID, 30) AS APPL_ID,
VARCHAR(APPL_NAME, 10) AS APPL_NAME

FROM ACTIVITY_DB2ACTIVITIES

The output will look something like:
ACTIVITY_ID ACTIVITY_TYPE APPL_ID APPL_NAME
-------------------- ------------- ------------------------------ ----------

1 READ_DML *LOCAL.karenam.070815192410 db2bp
1 READ_DML *LOCAL.karenam.070815192418 db2bp
2 READ_DML *LOCAL.karenam.070815192418 db2bp
3 READ_DML *LOCAL.karenam.070815192418 db2bp
4 READ_DML *LOCAL.karenam.070815192418 db2bp
1 DDL *LOCAL.karenam.070815192418 db2bp
2 DDL *LOCAL.karenam.070815192418 db2bp
3 DDL *LOCAL.karenam.070815192418 db2bp
2 READ_DML *LOCAL.karenam.070815192418 db2bp
1 READ_DML *LOCAL.karenam.070815192418 db2bp

308 DB2 Workload Management Guide and Reference

2 READ_DML *LOCAL.karenam.070815192418 db2bp
3 READ_DML *LOCAL.karenam.070815192418 db2bp
4 READ_DML *LOCAL.karenam.070815192418 db2bp
6 LOAD *LOCAL.karenam.070815192418 db2bp
1 DDL *LOCAL.karenam.070815192418 db2bp
1 DDL *LOCAL.karenam.070815192418 db2bp
2 DDL *LOCAL.karenam.070815192418 db2bp
3 DDL *LOCAL.karenam.070815192418 db2bp
4 DDL *LOCAL.karenam.070815192418 db2bp
5 READ_DML *LOCAL.karenam.070815192418 db2bp
10 READ_DML *LOCAL.karenam.070815192418 db2bp
1 DDL *LOCAL.karenam.070815192418 db2bp
2 DDL *LOCAL.karenam.070815192418 db2bp
3 DDL *LOCAL.karenam.070815192418 db2bp
4 DDL *LOCAL.karenam.070815192418 db2bp
1 READ_DML *LOCAL.karenam.070815192426 db2bp

26 record(s) selected.

To obtain additional information about each activity, such as activity text and what
service class it ran under, you can perform a query similar to this one:
SELECT VARCHAR(A.APPL_NAME, 15) as APPL_NAME,

VARCHAR(A.TPMON_CLIENT_APP, 20) AS CLIENT_APP_NAME,
VARCHAR(A.APPL_ID, 30) as APPL_ID,
VARCHAR(A.SERVICE_SUPERCLASS_NAME, 20) as SUPER_CLASS,
VARCHAR(A.SERVICE_SUBCLASS_NAME, 20) as SUB_CLASS,
SQLCODE,
VARCHAR(S.STMT_TEXT, 300) AS STMT_TEXT

FROM ACTIVITY_DB2ACTIVITIES AS A, ACTIVITYSTMT_DB2ACTIVITIES AS S
WHERE A.APPL_ID = S.APPL_ID AND

A.ACTIVITY_ID = S.ACTIVITY_ID AND
A.UOW_ID = S.UOW_ID

The output will look something like:
APPL_NAME CLIENT_APP_NAME APPL_ID
SUPER_CLASS

SUB_CLASS SQLCODE STMT_TEXT
--------------- -------------------- ------------------------------ ---------

-------- -------------------- ----------- -----------------------------------

db2bp CLP wasdbsc.db2 *LOCAL.karenam.070815192410
SYSDEFAULTUS
ERCLASS SYSDEFAULTSUBCLASS 0 SELECT DISTINCT CURRENT SQLID FROM
SYS
IBM.SYSTABLES

db2bp CLP work1.db2 *LOCAL.karenam.070815192418
SYSDEFAULTUS
ERCLASS SYSDEFAULTSUBCLASS 0 values(current client_applname)

:
:

db2bp CLP work1.db2 *LOCAL.karenam.070815192418
SYSDEFAULTUS
ERCLASS SYSDEFAULTSUBCLASS 0 drop procedure stp2

Chapter 6. Tutorial for DB2 workload management 309

db2bp CLP work3.db2 *LOCAL.karenam.070815192426
SYSDEFAULTUS
ERCLASS SYSDEFAULTSUBCLASS -4712 select count(*) from syscat.tables,
sy
scat.tables, syscat.tables, syscat.tables, syscat.tables, syscat.tables

:
:

Note that one of the activities has an SQLCODE of -4712. This indicates execution
of the activity was stopped due to a threshold violation. The threshold defined for
the stop_large_read_wa work action will prevent any SELECT statement with an
estimated cost of greater than 10000 from executing.

Additional information: Load activities (not including load from a cursor) do not
have an entry in the activity statement event monitor table
(activitystmt_db2activities table) which explains why there is no record for the
single load activity that is run by the work1.db2 script in the output shown
previously in the last query. The reason for this is that load activities are not SQL
statements. For load from cursor activities, there is an entry for the cursor
statement in the activity statement event monitor table because the cursor itself is a
separate activity. There is an entry for all load activities in the activities event
monitor table (activity_db2activities).

Step 6: Disable work actions

Before moving on to the service class work action set, drop the database work
action set.
DROP WORK ACTION SET db_was

Additional information: Before dropping any concurrency threshold, that threshold
must first be disabled. In this case, there are no work actions that represent a
concurrency threshold but if there were, the only way to disable it would be by
disabling the work action. A work action threshold cannot be manipulated through
THRESHOLD SQL statements; they can be manipulated only through WORK
ACTION SET SQL statements. Only work actions that represent concurrency
thresholds need to be disabled before dropping the subsequent work action set. For
this exercise, because there are no work actions that represent a concurrency
threshold, there is no need to disable any of the work actions before dropping the
work action set.

If you want to apply a particular action, such as a threshold, to all the activities of
a certain type running in a service super class, you should consider using a service
class work action set. You can create a mapping work action to map specific types
of activities to a specific service subclass and then apply a threshold to that service
subclass. The following steps demonstrate how service class work action sets
might be used

Step 7: Create a service class to and create a workload

Create a service subclass under the work1_sc service super class that was created
in Exercise 2 Step 2.

The service super class work1_sc is the service class that the activities will be
mapped to through the workloads. The service subclass work1_sc_read is the
service class that the read activities will be mapped to through the work action.
CREATE SERVICE CLASS work1_sc_read UNDER work1_sc

310 DB2 Workload Management Guide and Reference

Create a workload so that all activities submitted by the work3.db2 script will be
mapped to work1_sc service super class. Note that activities from work1.db2 are
already being mapped to work1_sc from one of the previous exercises.
CREATE WORKLOAD work3_wl CURRENT CLIENT_APPLNAME(’CLP work3.db2’)

SERVICE CLASS work1_sc

Step 8: Create a service class work action set

Create a work action set at the service class level that contains work actions that
apply to the specific work classes representing the types of activities you want
isolated. For this example, we want to collect activity data for all DDL, read, and
load activities that run under the work1_sc service class and we also want to map
read activities to a separate service subclass so that we can treat them differently;
in this case, a threshold will be applied to the service subclass to stop any large
SELECT statements from running.
CREATE WORK ACTION SET sc_was FOR SERVICE CLASS work1_sc

USING WORK CLASS SET all_class_types (
WORK ACTION collect_load_wa ON WORK CLASS load_wc

COLLECT ACTIVITY DATA ON ALL MEMBERS WITH DETAILS AND VALUES,
WORK ACTION collect_ddl_wa ON WORK CLASS ddl_wc

COLLECT ACTIVITY DATA ON ALL MEMBERS WITH DETAILS AND VALUES,
WORK ACTION collect_read_wa ON WORK CLASS read_wc

COLLECT ACTIVITY DATA ON ALL MEMBERS WITH DETAILS AND VALUES,
WORK ACTION map_read_wa on WORK CLASS read_wc

MAP ACTIVITY TO work1_sc_read)

Step 9: Create a service class threshold

To get an effect similar to the stop_large_read_wa work action that prevented any
large SELECT statements from running, create an ESTIMATEDSQLCOST threshold
and apply it to the work1_sc_read service subclass.
CREATE THRESHOLD stop_large_activities FOR SERVICE CLASS work1_sc_read

UNDER work1_sc
ACTIVITIES ENFORCEMENT DATABASE
WHEN ESTIMATEDSQLCOST >10000 STOP EXECUTION

Step 10: Clear the activity tables, reset the statistics, and run
activities

Clear out all of the activity tables so that you can start afresh before running the
script again. Then call the wlm_collect_stats() stored procedure to reset the
statistics
DELETE FROM activity_db2activities
DELETE FROM activitystmt_db2activities
DELETE FROM activityvals_db2activities

CALL wlm_collect_stats()

Now, run work1.db2 and work3.db2 scripts once.
db2 –o –tvf work1.db2
db2 –o –tvf work3.db2

Note the SQL04712 error for activities that caused the threshold to be exceeded.

Step 11: View work action set statistics

Use the WLM_GET_WORK_ACTION_SET_STATS table function to access the
work action set statistics in memory to get the number of times specific activity

Chapter 6. Tutorial for DB2 workload management 311

types have been run. Note that running the following query shows only the
load_wc, ddl_wc, and the read_wc work classes since they are the only three work
classes that have a work action applied to them. All the other activities end up
being counted under "*":
CONNECT TO SAMPLE

SELECT SUBSTR(WORK_ACTION_SET_NAME, 1, 12) AS WORK_ACTION_SET_NAME,
SUBSTR(CHAR(MEMBER), 1, 4) AS MEMB,
SUBSTR(WORK_CLASS_NAME, 1, 12) AS WORK_CLASS_NAME, LAST_RESET,
SUBSTR(CHAR(ACT_TOTAL), 1, 10) AS TOTAL_ACTS

FROM TABLE(WLM_GET_WORK_ACTION_SET_STATS(’’, -2)) AS WASSTATS
ORDER BY WORK_ACTION_SET_NAME, WORK_CLASS_NAME, MEMB

This time, output will look something such as the following:
WORK_ACTION_SET_NAME MEMB WORK_CLASS_NAME LAST_RESET TOTAL_ACTS
-------------------- ---- --------------- -------------------------- ----------
SC_WAS 0 * 2007-08-15-19.02.54.597999 12
SC_WAS 0 DDL_WC 2007-08-15-19.02.54.597999 12
SC_WAS 0 LOAD_WC 2007-08-15-19.02.54.597999 1
SC_WAS 0 READ_WC 2007-08-15-19.02.54.597999 12

4 record(s) selected.

Step 12: View the activity data collected

Now query the activity tables again to get information about the individual
activities. Note the service subclass that the activities were run under.
SELECT VARCHAR(A.APPL_NAME, 15) as APPL_NAME,

VARCHAR(A.TPMON_CLIENT_APP, 20) AS CLIENT_APP_NAME,
VARCHAR(A.APPL_ID, 30) as APPL_ID,
VARCHAR(A.SERVICE_SUPERCLASS_NAME, 20) as SUPER_CLASS,
VARCHAR(A.SERVICE_SUBCLASS_NAME, 20) as SUB_CLASS,
SQLCODE,
VARCHAR(S.STMT_TEXT, 300) AS STMT_TEXT

FROM ACTIVITY_DB2ACTIVITIES AS A, ACTIVITYSTMT_DB2ACTIVITIES AS S
WHERE A.APPL_ID = S.APPL_ID AND

A.ACTIVITY_ID = S.ACTIVITY_ID AND
A.UOW_ID = S.UOW_ID

The output will look something like:
APPL_NAME CLIENT_APP_NAME APPL_ID SUPER_CLASS

SUB_CLASS SQLCODE STMT_TEXT
--------------- -------------------- ------------------------------ ------------
-------- -------------------- ----------- --------------------------------------
--
--
--

db2bp CLP work1.db2 *LOCAL.karenam.070815195555 WORK1_SC
WORK1_SC_READ 0 values(current client_applname)

db2bp CLP work1.db2 *LOCAL.karenam.070815195555 WORK1_SC
WORK1_SC_READ 0 select * from org

:
:
db2bp CLP work1.db2 *LOCAL.karenam.070815195555 WORK1_SC

SYSDEFAULTSUBCLASS 0 drop procedure stp2

db2bp CLP work3.db2 *LOCAL.karenam.070815195600 WORK1_SC
WORK1_SC_READ -4712 select count(*) from syscat.tables, sy

scat.tables, syscat.tables, syscat.tables, syscat.tables, syscat.tables

312 DB2 Workload Management Guide and Reference

Note again, that one of the activities has a SQLCODE of -4712, this time because of
the stop_large_activities service class threshold that was created in step 9 that was
violated because the estimated cost for that select statement was too large. Also
notice that all read activities are being run under the work1_sc_read service
subclass.

Step 13: Reset for next exercise

Disable the even monitor, drop the service class threshold and drop the service
class work action set.
SET EVENT MONITOR DB2ACTIVITIES STATE 0

DROP THRESHOLD STOP_LARGE_ACTIVITIES
ALTER WORK ACTION SET SC_WAS
ALTER WORK ACTION COLLECT_LOAD_WA DISABLE
ALTER WORK ACTION COLLECT_DDL_WA DISABLE
ALTER WORK ACTION COLLECT_READ_WA DISABLE
ALTER WORK ACTION MAP_READ_WA DISABLE;
DROP WORK ACTION SET SC_WAS

Clear out all of the activity tables so that you can start afresh, before running the
script again.
DELETE FROM activity_db2activities
DELETE FROM activitystmt_db2activities
DELETE from activityvals_db2activities

Disable all of the workloads that have been created so that all activities will run
under the default user workload and get mapped to the default service super class.
ALTER WORKLOAD work1_wl DISABLE
ALTER WORKLOAD work2_wl DISABLE
ALTER WORKLOAD work3_wl DISABLE
ALTER WORKLOAD workth_wl DISABLE

Call the wlm_collect_stats() stored procedure to reset the statistics.
CALL WLM_COLLECT_STATS()

Exercise 5: Using histograms for service classes
This exercise demonstrates how to use the COLLECT AGGREGATE ACTIVITY
DATA BASE option on a service class to produce histograms of coordinator activity
lifetimes, coordinator activity execution times, and coordinator activity queue
times.

Estimated time: 25-30 minutes

These three histograms are useful for knowing more than just the average lifetime,
execution time, or queue time of the activities run on the system, since they can be
used to calculate standard deviations and can reveal outliers. For more information
on histograms, see “Histograms in workload management” on page 253.

Histograms are accessed through the statistics event monitor. This exercise reuses
the statistics event monitor created in Exercise 1 Step 1.

Additional Information: The statistics event monitor is a write-to-table event
monitor and contains logical data groups. The first is the control logical data

Chapter 6. Tutorial for DB2 workload management 313

group, which every event monitor has, and then there are the logical data groups
that are specific to the statistics event monitor type. The specific logical data
groups are:
v histogrambin for histogram information
v qstats for threshold queue statistics
v scstats service class statistics
v wcstats for work class statistics
v wlstats for workload statistics

Step 1: Create views for viewing histogram statistics

Create several views to make querying the HISTOGRAMBIN_DB2STATISTICS
table easier. The first view lists all of the histogram types available. This exercise
reports just the three basic types:lifetime, execution time and queue time.
CREATE VIEW HISTOGRAMTYPES AS

SELECT DISTINCT SUBSTR(HISTOGRAM_TYPE,1,24) AS HISTOGRAM_TYPE
FROM HISTOGRAMBIN_DB2STATISTICS

A second view makes it easier to find out which service classes are having
histograms collected for them. The HISTOGRAMBIN_DB2STATISTICS table
identifies the service classes for which histograms are being collected using the
service class ID. Joining this table with the SERVICECLASSES catalog table permits
the service class information to be presented with the service super class name and
service subclass name instead of the service class ID.
CREATE VIEW HISTOGRAMSERVICECLASSES AS

SELECT DISTINCT SUBSTR(HISTOGRAM_TYPE,1,24) AS HISTOGRAM_TYPE,
SUBSTR(PARENTSERVICECLASSNAME,1,24) AS SERVICE_SUPERCLASS,
SUBSTR(SERVICECLASSNAME,1,24) AS SERVICE_SUBCLASS

FROM HISTOGRAMBIN_DB2STATISTICS AS H,
SYSCAT.SERVICECLASSES AS S

WHERE H.SERVICE_CLASS_ID = S.SERVICECLASSID

The third view lists all of the times that a histogram of a given type was collected
for a given service class. Such as the histogramserviceclasses view, it also joins the
HISTOGRAMBIN_DB2STATISTICS table with the SERVICECLASSES catalog table.
The difference is that it includes the STATISTICS_TIMESTAMP column as one of
the columns in the view.
CREATE VIEW HISTOGRAMTIMES AS

SELECT DISTINCT SUBSTR(HISTOGRAM_TYPE,1,24) AS HISTOGRAM_TYPE,
SUBSTR(PARENTSERVICECLASSNAME,1,24) AS SERVICE_SUPERCLASS,
SUBSTR(SERVICECLASSNAME,1,24) AS SERVICE_SUBCLASS,
STATISTICS_TIMESTAMP AS TIMESTAMP

FROM HISTOGRAMBIN_DB2STATISTICS AS H,
SYSCAT.SERVICECLASSES AS S

WHERE H.SERVICE_CLASS_ID = S.SERVICECLASSID

The fourth and final view will be used to show the histograms themselves. It also
demonstrates something that one often needs to do when dealing with histograms,
which is to aggregate them over time. This view shows the top of each bin and the
number of activities that were counted towards each bin. For the three histograms
in this exercise, the BIN_TOP field measures the number of milliseconds in the
activity lifetime, execution time or queue time. When BIN_TOP is, say 3000
milliseconds and the BIN_TOP of the previous bin is 2000 milliseconds and the
NUMBER_IN_BIN is ten for a lifetime histogram, you know that ten activities had
a lifetime that was between 2 and 3 seconds.

314 DB2 Workload Management Guide and Reference

CREATE VIEW HISTOGRAMS(HISTOGRAM_TYPE,
SERVICE_SUPERCLASS,
SERVICE_SUBCLASS,
BIN_TOP,
NUMBER_IN_BIN) AS

SELECT DISTINCT SUBSTR(HISTOGRAM_TYPE,1,24) AS HISTOGRAM_TYPE,
SUBSTR(PARENTSERVICECLASSNAME,1,24) AS SERVICE_SUPERCLASS,
SUBSTR(SERVICECLASSNAME,1,24) AS SERVICE_SUBCLASS,
TOP AS BIN_TOP,
SUM(NUMBER_IN_BIN) AS NUMBER_IN_BIN

FROM HISTOGRAMBIN_DB2STATISTICS AS H,
SYSCAT.SERVICECLASSES AS S

WHERE H.SERVICE_CLASS_ID = S.SERVICECLASSID
GROUP BY HISTOGRAM_TYPE, PARENTSERVICECLASSNAME, SERVICECLASSNAME, TOP

Step 2: Turn on the collection of histograms

The activity lifetime, queue time, and execution time histograms are collected for a
service subclass when the base collect aggregate activity data option is enabled for
the subclass. Enable the base aggregate activity data collection for the default
subclass under the default user super class using the COLLECT AGGREGATE
ACTIVITY DATA clause.

Note that all activities will be run in the default user service class since all the user
defined workloads were disabled at the end of the previous exercise.
ALTER SERVICE CLASS SYSDEFAULTSUBCLASS

UNDER SYSDEFAULTUSERCLASS
COLLECT AGGREGATE ACTIVITY DATA BASE

Step 3: Activate the statistics event monitor

Activate the statistics event monitor that was created earlier so that it may receive
the aggregate data whenever it is collected.
SET EVENT MONITOR DB2STATISTICS STATE 1

Step 4: Run activities and send statistics to the statistics event
monitor

Now some activities can be run. After the activities have finished, the
WLM_COLLECT_STATS stored procedure is called to send the statistics (including
the activity lifetime, execution time and queue time histograms for the default user
service class) to the active statistics event monitor. These histograms contain data
about all activities that executed in the default user service class since aggregate
activity statistics were enabled. Calling this stored procedure also resets the
statistics. To show changes in database activity over time, three collection intervals
are created. In the first interval, run two scripts, work1.db2 and work2.db2, and
then collect and reset the statistics.
db2 -o -tvf work1.db2
db2 -o -tvf work2.db2

CONNECT TO SAMPLE

CALL WLM_COLLECT_STATS()

In the second interval, only run the work1.db2 script once and then collect and
reset the statistics.

Chapter 6. Tutorial for DB2 workload management 315

db2 -o -tvf work1.db2

CONNECT TO SAMPLE

CALL WLM_COLLECT_STATS()

In the third interval, run work1.db2 twice and run work2.db2 script once and then
collect and reset the statistics.
db2 -o -tvf work1.db2
db2 -o -tvf work2.db2
db2 -o -tvf work1.db2

CONNECT TO SAMPLE

CALL WLM_COLLECT_STATS()

Collecting data periodically such as this permits you to watch how work on your
system changes over time.

Additional Information: Collecting data periodically does not need to be a manual
operation. Using the WLM_COLLECT_INT database configuration parameter, one
can set the interval in minutes after which statistics collection and reset
automatically occurs.

Step 5: Query views to view statistics

Now that statistics have been collected, the views created earlier can be used to
look at the statistics. The HISTOGRAMTYPES view just returns the types of
histograms available.
SELECT * FROM HISTOGRAMTYPES

HISTOGRAM_TYPE

CoordActExecTime
CoordActLifetime
CoordActQueueTime

3 record(s) selected.

Since the BASE option was used when altering the service class, there are three
histograms: lifetime, exectime and queuetime. The HISTOGRAMSERVICECLASSES
view permits you to see the service classes for which a histogram was collected.
The following example restricts the output to that of the CoordActLifetime
histogram only. Since aggregate activity collection was only turned on for the
default user service class's default subclass, only that class is shown when selecting
from the HISTOGRAMSERVICECLASSES view.
SELECT * FROM HISTOGRAMSERVICECLASSES

WHERE HISTOGRAM_TYPE = ’CoordActLifetime’
ORDER BY SERVICE_SUPERCLASS, SERVICE_SUBCLASS

HISTOGRAM_TYPE SERVICE_SUPERCLASS SERVICE_SUBCLASS
------------------------ ------------------------ -----------------------
-
CoordActLifetime SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS

1 record(s) selected.

The HISTOGRAMTIMES view shows the times when histograms were collected.
Since the WLM_COLLECT_STATS procedure was run three times, there are three
timestamps for the lifetime histogram shown.

316 DB2 Workload Management Guide and Reference

SELECT * FROM HISTOGRAMTIMES
WHERE HISTOGRAM_TYPE = ’CoordActLifetime’

AND SERVICE_SUPERCLASS = ’SYSDEFAULTUSERCLASS’
AND SERVICE_SUBCLASS = ’SYSDEFAULTSUBCLASS’

ORDER BY TIMESTAMP

HISTOGRAM_TYPE SERVICE_SUPERCLASS SERVICE_SUBCLASS TIMESTAMP
---------------- ------------------- ------------------ -----------------

CoordActLifetime SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 2007-08-05-
20.44.51.519380
CoordActLifetime SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 2007-08-05-
21.04.27.131281
CoordActLifetime SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 2007-08-05-
21.08.27.474168

3 record(s) selected.

The last view, HISTOGRAMS, is for looking at the histograms themselves. Unlike
the HISTOGRAMTIMES view that lists each collection interval as its own row, this
view aggregates histogram data across multiple intervals to produce a single
histogram of a given type for a given service class.
SELECT BIN_TOP, NUMBER_IN_BIN FROM HISTOGRAMS

WHERE HISTOGRAM_TYPE = ’CoordActLifetime’
AND SERVICE_SUPERCLASS = ’SYSDEFAULTUSERCLASS’
AND SERVICE_SUBCLASS = ’SYSDEFAULTSUBCLASS’

ORDER BY BIN_TOP

BIN_TOP NUMBER_IN_BIN
-------------------- --------------------

-1 0
1 88
2 0
3 0
5 2
8 6
12 7
19 8
29 12
44 13
68 23
103 11
158 2
241 5
369 0
562 0
858 0
1309 0
1997 0
3046 0
4647 0
7089 0
10813 0
16493 0
25157 0
38373 0
58532 0
89280 0
136181 0
207720 0
316840 0
483283 0
737162 0
1124409 0
1715085 0
2616055 0

Chapter 6. Tutorial for DB2 workload management 317

3990325 0
6086529 0
9283913 0
14160950 0
21600000 0

41 record(s) selected.

The output from the histograms can then be used as input into a graphing tool to
generate a graph. The following diagram shows a graph that was created using a
Ruby Graphing Library called Gruff Graphs.

Lifetime histogram for SYSDEFAULTUSERCLASS (CoordActLifetime):

0

10

20

30

40

50

60

70

80

90

100

1 3 8 19 44 10
3

24
1

56
2

13
09

30
46

70
89

16
49

3

38
37

3

89
28

0

20
77

20

48
32

83

11
24

40
9

26
16

05
5

60
86

52
9

14
16

09
50

N
U

M
B

E
R

_I
N

_B
IN

BIN_TOP

Running the query of this view, should produce output that will not be exactly the
same as what is shown in the preceding lifetime histogram graph since activity
lifetimes depend on the performance of the system. In the previous output, there
are 41 bins and all of the largest bins are empty. At the top, there is a bin whose
BIN_TOP is -1. This bin represents all of those activities whose lifetime was too
large to fit in the histogram. Seeing a NUMBER_OF_BIN greater than zero when
the BIN_TOP is -1 indicates that you should probably increase the high bin value
of your histogram. In the previous output, the NUMBER_IN_BIN is 0, so there is
no need to make such a change. A large number of activities, 88 in this case, were
counted in the bin with a BIN_TOP of 1. This is the lowest bin and it means that
88 activities had a lifetime between 0 and 1 milliseconds. Another piece of
information that can be extracted from the histogram is that, since the largest
BIN_TOP for which there is a corresponding non-zero NUMBER_IN_BIN is 241,
the largest lifetime of any activity in the workloads collected in this histogram was
between 158 milliseconds and 241 milliseconds. The COORD_ACT_LIFETIME_TOP
column in the SCSTATS_DB2STATISTICS table gives a more precise measurement
of the lifetime of the activity with the largest lifetime.

The same query can be repeated with a histogram_type of CoordActExecTime
instead of CoordActLifetime. The execution time histogram is expected to be
similar but not identical to the lifetime histogram. The reason they are different,
even when there is no queuing, is that execution time does not include
initialization time or cursor idle time, while lifetime does.

318 DB2 Workload Management Guide and Reference

SELECT BIN_TOP, NUMBER_IN_BIN FROM HISTOGRAMS
WHERE HISTOGRAM_TYPE = ’CoordActExecTime’

AND SERVICE_SUPERCLASS = ’SYSDEFAULTUSERCLASS’
AND SERVICE_SUBCLASS = ’SYSDEFAULTSUBCLASS’

ORDER BY BIN_TOP

BIN_TOP NUMBER_IN_BIN
-------------------- --------------------

-1 0
1 112
2 0
3 0
5 0
8 5
12 7
19 5
29 12
44 7
68 11
103 11
158 2
241 5
369 0
562 0
858 0
1309 0
1997 0
3046 0
4647 0
7089 0
10813 0
16493 0
25157 0
38373 0
58532 0
89280 0
136181 0
207720 0
316840 0
483283 0
737162 0
1124409 0
1715085 0
2616055 0
3990325 0
6086529 0
9283913 0
14160950 0
21600000 0

41 record(s) selected.

Execution time histogram for SYSDEFAULTUSERCLASS (CoordActExecTime):

Chapter 6. Tutorial for DB2 workload management 319

0

20

40

60

80

100

120

1 3 8 19 44 10
3

24
1

56
2

13
09

30
46

70
89

16
49

3

38
37

3

89
28

0

20
77

20

48
32

83

11
24

40
9

26
16

05
5

60
86

52
9

14
16

09
50

BIN_TOP

N
U

M
B

E
R

_
IN

_
B

IN

Once again, a large number of activities are counted in the first bin and the highest
execution time of any activity is at most 241 milliseconds.

Finally, the HISTOGRAMS view will be used to look at the CoordActQueueTime
histogram. This is the simplest histogram because there is no queuing, since no
queuing thresholds were created or enabled in this exercise.
SELECT BIN_TOP, NUMBER_IN_BIN FROM HISTOGRAMS

WHERE HISTOGRAM_TYPE = ’CoordActQueueTime’
AND SERVICE_SUPERCLASS = ’SYSDEFAULTUSERCLASS’
AND SERVICE_SUBCLASS = ’SYSDEFAULTSUBCLASS’

ORDER BY BIN_TOP

BIN_TOP NUMBER_IN_BIN
-------------------- --------------------

-1 0
1 177
2 0
3 0
5 0
8 0
12 0
19 0
29 0
44 0
68 0
103 0
158 0
241 0
369 0
562 0
858 0
1309 0
1997 0
3046 0
4647 0
7089 0
10813 0
16493 0
25157 0
38373 0
58532 0
89280 0
136181 0

320 DB2 Workload Management Guide and Reference

207720 0
316840 0
483283 0
737162 0
1124409 0
1715085 0
2616055 0
3990325 0
6086529 0
9283913 0
14160950 0
21600000 0

41 record(s) selected.

Queue time histogram for SYSDEFAULTUSERCLASS (CoordActQueueTime):

0

20

40

60

80

100

120

140

160

180

200

1 3 8 19 44 10
3

24
1

56
2

13
09

30
46

70
89

16
49

3

38
37

3

89
28

0

20
77

20

48
32

83

11
24

40
9

26
16

05
5

60
86

52
9

14
16

09
50

N
U

M
B

E
R

_I
N

_B
IN

BIN_TOP

Every activity was counted in the 0 to 1 millisecond bin because every activity
spent zero milliseconds queuing.

The last several queries looked at activity lifetimes, execution times and queue
times broken down into bins but aggregated across multiple intervals. The
following query presents the same information from a different perspective. It
shows averages instead of histograms and, rather than combining the intervals, it
shows each interval individually. It also reports a count of the number of
completed activities which shows how many activities completed in each interval.
It uses the SCSTATS_DB2STATISTICS table instead of the
HISTOGRAMBIN_DB2STATISTICS table.
SELECT STATISTICS_TIMESTAMP,

COORD_ACT_LIFETIME_AVG AS LIFETIMEAVG,
COORD_ACT_EXEC_TIME_AVG AS EXECTIMEAVG,
COORD_ACT_QUEUE_TIME_AVG AS QUEUETIMEAVG,
COORD_ACT_COMPLETED_TOTAL AS COMPLETED_TOTAL

FROM SCSTATS_DB2STATISTICS
WHERE SERVICE_SUPERCLASS_NAME = ’SYSDEFAULTUSERCLASS’

AND SERVICE_SUBCLASS_NAME = ’SYSDEFAULTSUBCLASS’
ORDER BY STATISTICS_TIMESTAMP

STATISTICS_TIMESTAMP LIFETIMEAVG EXECTIMEAVG QUEUETIMEAVG
COMPLETED_TOTAL
-------------------------- ----------- ----------- ------------ ---------

2007-08-07-14.07.44.511153 508 475 0

Chapter 6. Tutorial for DB2 workload management 321

77
2007-08-07-14.07.46.537777 513 508 0
39
2007-08-07-14.07.51.882173 314 253 0
113

3 record(s) selected.

The result shows that average lifetimes are slightly higher than average execution
times for each interval and all three are just over a half a second or less. The
average queue time, as expected, is zero. The counts of the number of completed
activities in each interval is as expected because workloads 1 and 2 were run in the
first interval which resulted in 77 activities collected, workload 1 ran alone in the
second interval which resulted in 39 activities, and workload 1 ran twice and
workload 2 ran once in the third interval, which resulted in 113 activities.

Step 6: Reset for the next exercise

The final step is to turn off collection of aggregate activities on the default user
service class and drop the views and delete the information in the statistics tables.
ALTER SERVICE CLASS SYSDEFAULTSUBCLASS

UNDER SYSDEFAULTUSERCLASS
COLLECT AGGREGATE ACTIVITY DATA NONE

DROP VIEW histograms
DROP VIEW histogramtimes
DROP VIEW histogramserviceclasses
DROP VIEW histogramtypes

SET EVENT MONITOR DB2STATISTICS STATE 0

DELETE FROM HISTOGRAMBIN_DB2STATISTICS
DELETE FROM SCSTATS_DB2STATISTICS

Exercise 6: Investigating delays with WLM table functions
This exercise demonstrates how you can determine the cause of an application
slow down with the DB2 WLM monitoring facilities.

Estimated time: 10-15 minutes

The DB2 WLM monitoring facilities provide information and statistics for work in
a database. Once the cause of a slow-down is identified, you can remedy the
situation.

Step 1: Run activities

Two applications are used in this exercise, app1.db2 and app2.db2. Both
applications perform DML operations on the SAMPLE database. Run the app1.db2
script in one window followed immediately by the app2.db2 script in a second
window.
db2 –tvf app1.db2
db2 –tvf app2.db2

Step 2: View currently active workload occurrences

The app2.db2 script should now be hanging. From a third window, issue table
function WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES to find the
states of all applications running on the database. For this example, you can think

322 DB2 Workload Management Guide and Reference

of a workload occurrence as the same as an application. This table function shows
information for all workload occurrences in a service class. Since we want to see all
workload occurrences in the database, we use wildcards represented by ' ' as
service_superclass_name and service_subclass_name input parameters.
CONNECT TO SAMPLE

SELECT INTEGER(APPLICATION_HANDLE) APPL_HANDLE,
VARCHAR(CLIENT_APPLNAME, 15) AS APPL_NAME,
VARCHAR(SYSTEM_AUTH_ID, 20) AS USER_ID
FROM TABLE
(WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES(’’, ’’, -2))

The output will look something such as the following:
APPL_HANDLE APPL_NAME USER_ID
----------- --------------- --------------------

12 CLP app1.db2 DB2USR1
17 CLP app2.db2 DB2USR1
18 - DB2USR1
19 - DB2USR1

4 record(s) selected.

From the output, we can tell that the application handle for app2.db2 is 17.

Step 3: Find the agent for the application

To find out what the agents for app2.db2 are doing use the
WLM_GET_SERVICE_CLASS_AGENTS table function. This table function shows

information on agents working in a service class. Since we want to see the agents
working for application handle 17, we specify this in the application_handle input
parameter. For this example, we are not interested in agents for a particular service
class, so we specify wildcards for the service_superclass_name and
service_subclass_name input parameters.
SELECT INTEGER(APPLICATION_HANDLE) AS APPL_HANDLE,

UOW_ID, ACTIVITY_ID,
VARCHAR(AGENT_TYPE, 15) AS AGENT_TYPE,
VARCHAR(AGENT_STATE, 10) AS AGENT_STATE,
VARCHAR(EVENT_TYPE, 10) AS EVENT_TYPE,
VARCHAR(EVENT_OBJECT, 10) AS EVENT_OBJ,
VARCHAR(EVENT_STATE, 10) AS EVENT_STATE

FROM TABLE
(WLM_GET_SERVICE_CLASS_AGENTS(’’, ’’, 17, -2))

The output will look something like
APPL_HANDLE UOW_ID ACTIVITY_ID AGENT_TYPE AGENT_STATE EVENT_TYPE
EVENT_OBJ EVENT_STATE
----------- ----------- ----------- --------------- ----------- ----------
---------- -----------

17 1 2 COORDINATOR ACTIVE ACQUIRE
LOCK IDLE

1 record(s) selected.

From the output, you can see that the coordinator agent for application 17 is idle
and waiting to acquire a lock. This is the reason why app2.db2 appears to be
hanging.

Chapter 6. Tutorial for DB2 workload management 323

Step 4: Find the problem application and resolve the problem

Now that we know why the application is hanging, we can remedy the situation.
We know the application is waiting on a lock. To find out which lock this
application is waiting on and which application is holding the lock, we can use the
db2pd tool. First, we need to find out the current transaction number for our
hanging application: Issue db2pd –transactions for application handle 17.
db2pd -db sample -transactions app=17

The output will look something such as the following:
Address AppHandl [nod-index] TranHdl Locks State
Tflag Tflag2 Firstlsn Lastlsn LogSpace
SpaceReserved TID AxRegCnt GXID

0x07000000302A7080 17 [000-00017] 7 5 READ
0x00000000 0x00000000 0x000000000000 0x000000000000 0
0 0x000000000AC3 1 0

From the output, we can tell that application 17 has transaction handle 7. We can
now find which locks this transaction is waiting on by issuing the db2pd –locks
command for transaction handle 7.
db2pd -db sample -locks 7 wait

The output will look something such as the following:
Address TranHdl Lockname Type Mode Sts
Owner Dur HoldCount Att ReleaseFlg
0x07000000304013F0 7 00020010000000000640002D52 Row .NS W
2 1 0 0x00 0x00000002

The output shows that the application is waiting on a row lock. The owner of the
lock has transaction handle 2. This transaction is holding the lock and causing our
hang. The final step is to determine the corresponding application handle for
transaction handle 2. Issue db2pd –transactions command for transaction handle 2.
db2pd -db sample -transactions 2

The output will look something such as the following:
Address AppHandl [nod-index] TranHdl Locks State
Tflag Tflag2 Firstlsn Lastlsn LogSpace
SpaceReserved TID AxRegCnt GXID
0x07000000302A2080 12 [000-00012] 2 6 WRITE
0x00000000 0x00000000 0x000002EE000C 0x000002EE005E 232
396 0x000000000ABB 1 0

From the output, we can see that transaction handle 2 corresponds to application
handle 12. Referring back to the results from table function
WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES, you can see that
application 12 refers to app1.db2. This application is holding a row lock that is
needed by app2.db2. To make app2.db2 proceed, you may commit, rollback or
terminate the unit of work or process from the window running app1.db2.
Alternatively, you may also force off app1.db2 by issuing FORCE APPLICATION
on application handle 12.
db2 force application (12)

Additional Information: Another way to diagnose hanging applications due to lock
contention is to use the SNAPSHOT_LOCKWAIT monitor table function. This table
function provides information on lock holders and waiters. To use this table
function, the DFT_MON_LOCK monitor switch configuration parameter must be

324 DB2 Workload Management Guide and Reference

turned on before the database is started. This switch affects all databases on an
instance.

Exercise 7: Cancelling an ongoing activity
This exercise demonstrates how to cancel an activity that is currently active using
the WLM_CANCEL_ACTIVITY procedure.

Estimated time: 5-10 minutes

Step 1: Issue a long running query

From a CLP window, run the following script that issues a long running query
db2 -tvf longquery.db2

Step 2: Get the application handle

From another CLP window, call the
WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES to get the application
handle, unit of work ID and activity ID of the cursor activity.
SELECT T.APPLICATION_HANDLE, T.UOW_ID, T.ACTIVITY_ID, T.ACTIVITY_TYPE
FROM SYSIBMADM.APPLICATIONS A,

TABLE(WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES
(CAST(NULL AS BIGINT), -2)) T

WHERE (A.AGENT_ID = T.APPLICATION_HANDLE) AND
(A.COORD_MEMBER = T.COORD_MEMBER) AND
(A.MEMBER = T.MEMBER) AND
(T.MEMBER = T.COORD_MEMBER) AND
(A.TPMON_CLIENT_APP = ’CLP longquery.db2’)

By joining the result of the table function with the APPLICATIONS administrative
view, we can find the cursor activity that is run from within longquery.db2. The
output would look something such as the following:
APPLICATION_HANDLE UOW_ID ACTIVITY_ID ACTIVITY_TYPE
-------------------- ----------- ----------- ----------------------------

267 1 1 READ_DML

1 record(s) selected.

Step 3: Cancel the activity

From the same CLP window, call the WLM_CANCEL_ACTIVITY stored procedure
to cancel the cursor activity obtained previously, using the application handle, unit
of work ID, and activity ID obtained from the previous step:
CONNECT TO SAMPLE

CALL WLM_CANCEL_ACTIVITY (267, 1, 1)

CONNECT RESET

Note that in your case, the application handle, unit of work ID, and activity ID
will be different.

In the first CLP window, you will see the following output returned by the long
running query issued by longquery.db2.
SQL4725N The activity has been cancelled. SQLSTATE=57014

Chapter 6. Tutorial for DB2 workload management 325

Exercise 8: Discovering what types of activities are running on your
system

This exercise demonstrates how you can use the DB2 workload management
monitoring table functions and work action sets to discover what types of activities
are running on your system.

Estimated time: 15-20 minutes

You might want to know the number of large activities or load utilities that are
being run concurrently on your system, for example. Understanding the types of
work being run on the system is important as different types of work will have
different resource requirements and impacts on system performance.

Step 1: Determining the number of activities of each type that
are running on your system

Before starting, you might want to show the number of activities of a certain type
that are currently running by using the
WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES table function:
CONNECT TO SAMPLE

SELECT ACTIVITY_TYPE,
COUNT(*) AS NUMBER_RUNNING
FROM TABLE (
WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES(CAST(NULL AS BIGINT), -2)) AS T

GROUP BY ACTIVITY_TYPE

The output from this query will look something like:
ACTIVITY_TYPE NUMBER_RUNNING
-------------------------------- ------------------------
READ_DML 1

To get information about the different types of activities that have run on your
system over a given period of time, you can use work class sets and work actions.

Step 2: Create a database work action set with count activity
work actions

To count the number of times an activity of a specific type has been run over a
period of time, a work action set needs to be created. In this example, because we
are interested in the activities that are run on the entire system, the work action set
will be created at the database level and is associated with the all_class_types work
class set that was created in Exercise 4 Step 1. This work class set contains work
classes for all types of recognized activities. If we were only interested in the
activities being run in a specific service class, we would create a work action set at
the service class level. For this example, we are also interested in the information
for all types of activities so that the work action set contains a COUNT ACTIVITY
work action for each work class in the all_class_types work class set.
CREATE WORK ACTION SET work1_was FOR DATABASE

USING WORK CLASS SET all_class_types
(WORK ACTION count_read_wa ON WORK CLASS read_wc COUNT ACTIVITY,
WORK ACTION count_write_wa ON WORK CLASS write_wc COUNT ACTIVITY,
WORK ACTION count_ddl_wa ON WORK CLASS ddl_wc COUNT ACTIVITY,

326 DB2 Workload Management Guide and Reference

WORK ACTION count_call_wa ON WORK CLASS call_wc COUNT ACTIVITY,
WORK ACTION count_load_wa ON WORK CLASS load_wc COUNT ACTIVITY,
WORK ACTION count_all_wa on WORK CLASS all_wc COUNT ACTIVITY)

Additional information: Each time an activity corresponding to a work class has
one or more work actions applied to it, a counter for the work class is incremented
by one. The COUNT ACTIVITY work action provides an efficient way to ensure
that the counter is updated. If you do not want to perform any other action on an
activity other than counting the number of activities of that type that have been
run, the COUNT ACTIVITY work action is the best approach.

Step 3: Run some activities

Run the work1.db2 script once.
db2 –tvf work1.db2

Step 4: View work action set statistics

You can use the WLM_GET_WORK_ACTION_SET_STATS table function to access
the work action set statistics in memory to get the number of times specific activity
types have been run. For example, the following query will tell you the number of
activities that were assigned to each of the work classes in the work class set that
has a work action associated with it:
CONNECT TO SAMPLE

SELECT SUBSTR(WORK_ACTION_SET_NAME, 1, 12) AS WORK_ACTION_SET_NAME,
SUBSTR(WORK_CLASS_NAME, 1, 12) AS WORK_CLASS_NAME,
LAST_RESET,
SUBSTR(CHAR(ACT_TOTAL), 1, 12) AS TOTAL_ACTS

FROM TABLE(WLM_GET_WORK_ACTION_SET_STATS(’’, -2)) AS WASSTATS
ORDER BY WORK_ACTION_SET_NAME, WORK_CLASS_NAME, PART

Additional Information: The blank included with the statement means that result is
not to be restricted by the argument (in this example, we want the information for
all of the work action sets). The value of the last argument, member, is the
wildcard character -2, which means that data from all database members is to be
returned.

The output from this query will look something like the following where "*"
represents all activities that do not fall into any of the defined work classes or that
fall into work classes with no work actions.
WORK_ACTION_SET_NAME WORK_CLASS_NAME LAST_RESET
TOTAL_ACTS
-------------------- --------------- -------------------------- ---------
-
WORK1_WAS * 2007-08-14-13.55.30.725886 0
WORK1_WAS ALL_WC 2007-08-14-13.55.30.725886 2
WORK1_WAS CALL_WC 2007-08-14-13.55.30.725886 4
WORK1_WAS DDL_WC 2007-08-14-13.55.30.725886 12
WORK1_WAS LOAD_WC 2007-08-14-13.55.30.725886 1
WORK1_WAS READ_WC 2007-08-14-13.55.30.725886 12
WORK1_WAS WRITE_WC 2007-08-14-13.55.30.725886 6

7 record(s) selected.

Chapter 6. Tutorial for DB2 workload management 327

Step 5: Differentiate activities by more than their type and other
attributes

You can separate out activities by more than just their types. For example, you
might want to know how many large queries are being run.

Alter the work class set to add a new read work class that will represent large
queries. For this example, a large query is any query that has a cardinality greater
than 40.
ALTER WORK CLASS SET all_class_types

ADD WORK CLASS large_wc WORK TYPE READ FOR CARDINALITY FROM 41 POSITION AT 1

Additional Information: Note that we positioned this work class at position 1. If
the POSITION AT clause is not specified, the work class is positioned at the
bottom of the work class set. When deciding which work class an activity belongs
to, the work classes are checked in the order they are positioned and the first work
class whose attributes match the activities attributes is the class that the activity
gets assigned to. In this case, if the large_wc were positioned at the end of the list,
the large activities would have been assigned to the read_wc since it was
positioned ahead of large_wc.

Alter the work action set to add a COUNT ACTIVITY work action and apply it to
the new work class.
ALTER WORK ACTION SET work1_was

ADD WORK ACTION count_large_reads ON WORK CLASS large_wc COUNT ACTIVITY

Step 6: Reset the statistics and run some activities

Call the WLM_COLLECT_STATS stored procedure to reset the statistics that are
stored in memory so that you are starting fresh and when you chose to query that
workload management statistical information that is stored in memory, it will
contain information for the activities that have been run from this point on.
CALL WLM_COLLECT_STATS()

Run the work1.db2 script once.
db2 –tvf work1.db2

Step 7: View work action set statistics

Use the WLM_GET_WORK_ACTION_SET_STATS table function again to access
the work action set statistics in memory to get the number of times specific activity
types have been run.
CONNECT TO SAMPLE

SELECT SUBSTR(WORK_ACTION_SET_NAME, 1, 12) AS WORK_ACTION_SET_NAME,
SUBSTR(CHAR(MEMBER), 1, 4) AS MEMB,
SUBSTR(WORK_CLASS_NAME, 1, 12) AS WORK_CLASS_NAME,
LAST_RESET,
SUBSTR(CHAR(ACT_TOTAL), 1, 12) AS TOTAL_ACTS

FROM TABLE(WLM_GET_WORK_ACTION_SET_STATS(’’, -2)) AS WASSTATS
ORDER BY WORK_ACTION_SET_NAME, WORK_CLASS_NAME, MEMB

The output will look something such as the following:
WORK_ACTION_SET_NAME MEMB WORK_CLASS_NAME LAST_RESET
TOTAL_ACTS
-------------------- ---- --------------- -------------------------- ----

328 DB2 Workload Management Guide and Reference

WORK1_WAS 0 * 2007-08-14-13.55.35.650685 0
WORK1_WAS 0 ALL_WC 2007-08-14-13.55.35.650685 2
WORK1_WAS 0 CALL_WC 2007-08-14-13.55.35.650685 4
WORK1_WAS 0 DDL_WC 2007-08-14-13.55.35.650685 12
WORK1_WAS 0 LARGE_WC 2007-08-14-13.55.35.650685 4
WORK1_WAS 0 LOAD_WC 2007-08-14-13.55.35.650685 1
WORK1_WAS 0 READ_WC 2007-08-14-13.55.35.650685 8
WORK1_WAS 0 WRITE_WC 2007-08-14-13.55.35.650685 6

8 record(s) selected.

Note that this time four of the activities from the script are considered large
activities.

Step 8: Reset for the next exercise

Drop the work action set:
ALTER WORK ACTION SET WORK1_WAS
ALTER WORK ACTION COUNT_READ_WA DISABLE
ALTER WORK ACTION COUNT_WRITE_WA DISABLE
ALTER WORK ACTION COUNT_DDL_WA DISABLE
ALTER WORK ACTION COUNT_CALL_WA DISABLE
ALTER WORK ACTION COUNT_LOAD_WA DISABLE
ALTER WORK ACTION COUNT_ALL_WA DISABLE
ALTER WORK ACTION COUNT_LARGE_READS DISABLE;
ALTER WORK ACTION SET WORK1_WAS DISABLE;
DROP WORK ACTION SET WORK1_WAS;

Exercise 9: Capturing detailed information about an executing activity
This exercise demonstrates how you can use the
WLM_CAPTURE_ACTIVITY_IN_PROGRESS procedure to capture detailed
information about a currently executing activity for later historical analysis.

Estimated time: 5-10 minutes

Activity information you capture is sent to the active event monitor for activities.
Previous tasks showed how the COLLECT ACTIVITY DATA clause is used for
workloads, service classes, work actions and thresholds to capture detailed activity
information. This clause needs to be specified in advance before an activity begins
executing and information is sent to the activities event monitor when the activity
completes. The WLM_CAPTURE_ACTIVITY_IN_PROGRESS procedure permits
you to capture information reactively when you notice a problem with an activity
already in progress. When this procedure is used, information about an activity is
sent to the activities event monitor immediately. Both basic and statement activity
information are collected, but not input data.

Step 1: Enable activities event monitor

Enable the existing event monitor for activities you created in Exercise 1.
CONNECT TO SAMPLE

SET EVENT MONITOR DB2ACTIVITIES STATE 1

Step 2: Issue a long running query

From the CLP, run the following script that issues a long running query with a
problematic cursor:
db2 -tvf longquery.db2

Chapter 6. Tutorial for DB2 workload management 329

Step 3: Get the application handle

From a second CLP window, call
WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES to obtain the application
handle, unit of work ID and activity ID for the activity. By joining the result of the
table function with the APPLICATIONS administrative view, you can find the
cursor activity that is run from within longquery.db2.
CONNECT TO SAMPLE

SELECT T.APPLICATION_HANDLE, T.UOW_ID, T.ACTIVITY_ID, T.ACTIVITY_TYPE
FROM SYSIBMADM.APPLICATIONS A,

TABLE(WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES
(CAST(NULL AS BIGINT), -2)) T

WHERE (A.AGENT_ID = T.APPLICATION_HANDLE) AND
(A.COORD_MEMBER = T.COORD_MEMBER) AND
(A.MEMBER = T.MEMBER) AND
(T.MEMBER = T.COORD_MEMBER) AND
(A.TPMON_CLIENT_APP = ’CLP longquery.db2’)

The output looks such as the following:
APPLICATION_HANDLE UOW_ID ACTIVITY_ID ACTIVITY_TYPE
-------------------- ----------- ----------- ----------------------------

267 1 1 READ_DML

1 record(s) selected.

Step 4: Capture information about the activity

From the same CLP window, call the WLM_CAPTURE_ACTIVITY_IN_PROGRESS
stored procedure using the application handle, unit of work ID, and activity ID
obtained from the previous step:
CONNECT TO SAMPLE

CALL WLM_CAPTURE_ACTIVITY_IN_PROGRESS (267, 1, 1)

CONNECT RESET

This step sends information about the activity to the active event monitor for
activities. Note that in your case, the application handle, unit of work ID, and
activity ID you specify may be different.

Step 5: View the activity information

Look at the information that was collected for the activity using a statement such
as the following:
SELECT VARCHAR(A.APPL_NAME, 15) as APPL_NAME,

VARCHAR(A.TPMON_CLIENT_APP, 20) AS CLIENT_APP_NAME,
VARCHAR(A.APPL_ID, 30) as APPL_ID,
A.ACTIVITY_ID,
A.UOW_ID,
A.PARTIAL_RECORD,
A.TIME_STARTED,
A.TIME_COMPLETED,
VARCHAR(S.STMT_TEXT, 300) AS STMT_TEXT

FROM ACTIVITY_DB2ACTIVITIES AS A,
ACTIVITYSTMT_DB2ACTIVITIES AS S

WHERE A.APPL_ID = S.APPL_ID AND
A.ACTIVITY_ID = S.ACTIVITY_ID AND
A.UOW_ID = S.UOW_ID

330 DB2 Workload Management Guide and Reference

The output looks something such as this:
APPL_NAME CLIENT_APP_NAME APPL_ID
ACTIVITY_ID UOW_ID PARTIAL_RECORD TIME_STARTED
TIME_COMPLETED STMT_TEXT
--------------- -------------------- ------------------------------ -----
--------------- ----------- -------------- -------------------------- ---
----------------------- ---

db2bp CLP longquery.db2 *LOCAL.swalkty.070928151408
1 1 1 2007-09-28-11.14.09.334636 0000-00-00-
00.00.00.000000 SELECT COUNT(*) FROM SYSCAT.TABLES, SYSCAT.TABLES,
SYSCAT.TABLES, SYSCAT.TABLES, SYSCAT.TABLES

Note: Activities that are captured using the
WLM_CAPTURE_ACTIVITY_IN_PROGRESS procedure contain somewhat less
information than if the COLLECT ACTIVITY DATA clause were used, because the
activity is captured before it has completed execution. In particular, fields such as
the completion timestamp (which shows only zeros) and the sqlcode do not apply.
You can determine if an activity was collected using the
WLM_CAPTURE_ACTIVITY_IN_PROGRESS procedure by looking at the
PARTIAL_RECORD column in the ACTIVITY table. If the PARTIAL_RECORD
column has a value of 1 (as shown in the previous output), activity information
was collected using WLM_CAPTURE_ACTIVITY_IN_PROGRESS. If the
PARTIAL_RECORD column has a value of 0, activity information was collected
after completion with the COLLECT ACTIVITY DATA clause.

Exercise 10: Generating historical data and reports
This exercise demonstrates how to use the WLM Historical Analysis Tool sample.

Estimated time: 20-25 minutes

DB2 database products include Perl sample scripts that provide information
captured by the WLM activities event monitor for historical analysis. You can
review or even modify these scripts to produce additional historical analysis
reports to suit your needs. The perl scripts are:
v wlmhist.pl: generates historical data
v wlmhistrep.pl: produces reports from the historical data.

Step 1: Create the explain tables

In order to generate some historical data, the explain tables must exist under the
schema of the user running the tool. To create the explain tables, go to the
/sqllib/misc directory and run the following:
db2 CONNECT TO SAMPLE

db2 –tvf EXPLAIN.DDL

Step 2: Alter the service class to collect activity data

Enable activity collection by specifying the COLLECT ACTIVITY DATA clause on
the WLM object of interest. For this exercise, we want to generate historical data
for activities run in the default service subclass of the default user service super
class:

Chapter 6. Tutorial for DB2 workload management 331

ALTER SERVICE CLASS SYSDEFAULTSUBCLASS UNDER SYSDEFAULTUSERCLASS
COLLECT ACTIVITY DATA ON COORDINATOR WITH DETAILS

Step 3: Enable the activities event monitor

Since the activities event monitor was created in Exercise 1 Step 1, enable it now if
it is not enabled already.
SET EVENT MONITOR DB2ACTIVITIES STATE 1

Step 4: Run some activities

Run some activities so that activity data is collected to generate historical data on.
db2 –tvf work1.db2
db2 –tvf work2.db2

Step 5: Disable the event monitor for activities

It is highly recommended that you turn off the event monitor for activities before
generating historical data. If you do not do this, any DML activities that are run as
a result of the historical data generator may also be captured and put into the DB2
event monitor activity tables, thereby dramatically increasing the number of actual
activities for which activity data is generated.
CONNECT TO SAMPLE

SET EVENT MONITOR DB2ACTIVITIES STATE 0

Step 6: Generate historical data

Run the historical data generator script, wlmhist.pl, to generate historical data for
activities that are captured in the activities event monitor tables. The format is as
follows:
wlmhist.pl dbname user password [fromTime toTime workloadid

serviceClassName serviceSubclassName activityTable activityStmtTable]

Use a dash (-) to bypass any optional parameters.

Additional Information: The historical data generator (wlmhist.pl) script will
generate only historical data for DML. If you have previously run the historical
data generator (wlmhist.pl) script once or more, it is recommended that, before
running it again, you clear the activityTable and activityStmtTable tables in order
to avoid duplicating data. If you choose not to clear these two tables, be sure to
use the fromTime and toTime input parameters to ensure you do not generate
historical data for activities that have already had data generated for them.

For this exercise, generate historical data for all activities that have been captured
in the activities event monitor.
Perl wlmhist.pl sample db2inst1 password

You may notice some errors similar to the following:
Error running explain [IBM][CLI Driver][DB2/LINUXX8664] SQL0418N A
statement contains a use of a parameter marker that is not valid. SQLSTATE=42610
for statement VALUES (TABLE_SCHEMA(:H00002 , :H00003)) INTO :H00007

DBD::DB2::db do failed: [IBM][CLI Driver][DB2/LINUXX8664] SQL0418N A
statement
contains a use of a parameter marker that is not valid. SQLSTATE=42610

332 DB2 Workload Management Guide and Reference

When generating historical data, explain is run on the actual statement. In some
cases, explain cannot be run on some statements with parameter markers and an
error is returned. Any activity that shows such an error will not have historical
data generated for it.

Once the tool has completed generating historical data, it will tell you how many
activities it has successfully generated historical data for.

Step 7: Generate historical data reports

Run the historical data report script wlmhistrep.pl to generate reports based on the
data that was generated in step 1. The format is as follows:

wlmhistrep.pl dbAlias userId passwd [outputFile report schemaName fromTime toTime submitter]

Use a dash (-) to bypass optional parameters.

The report parameter can be any combination from the following letters:
v A: Tables hit
v B: Tables not hit
v C: Indexes hit
v D: Indexes not hit
v E: Submitters

If the userId parameter you specify is not the same as what was used to run the
wlmhist.pl script when the wlmhist table was created, you must specify the
correct schemaName. The fromTime and toTime parameters must be specified in
timestamp format (for example 2007-06-06-17.00.00).

For this exercise, generate reports for tables hit and indexes not hit:
Perl wlmhistrep.pl sample db2inst1 password - AD

The output will look something such as the following:
TABLES HIT REPORT FOR DATABASE sample

TABLE NAME TABLE SCHEMA % HITS TOTAL HITS
______________________ __________________ _____________ ____________

EMPLOYEE KARENAM 7.14285714 2
INVENTORY KARENAM 14.28571429 4

ORG KARENAM 28.57142857 8
SALES KARENAM 14.28571429 4
SYSROUTINES SYSIBM 7.14285714 2
SYSTABLES SYSIBM 21.42857143 6
SYSTABLESPACES SYSIBM 7.14285714 2

INDEXES NOT HIT REPORT FOR DATABASE sample

TABLE NAME TABLE SCHEMA INDEX NAME INDEX SCHEMA INDEX TYPE
__________________ _______________ __________________ _______________ __________
EXPLAIN_ARGUMENT KARENAM ARG_I1 KARENAM REG
HMON_ATM_INFO SYSTOOLS ATM_UNIQ SYSTOOLS REG
CUSTOMER KARENAM CUST_CID_XMLIDX KARENAM XVIL
CUSTOMER KARENAM CUST_NAME_XMLIDX KARENAM XVIL

Chapter 6. Tutorial for DB2 workload management 333

CUSTOMER KARENAM CUST_PHONES_XMLIDX KARENAM XVIL
CUSTOMER KARENAM CUST_PHONET_XMLIDX KARENAM XVIL
EXPLAIN_DIAGNOSTIC KARENAM EXP_DIAG_DAT_I1 KARENAM REG
HMON_COLLECTION SYSTOOLS HI_OBJ_UNIQ SYSTOOLS REG
ADVISE_INDEX KARENAM IDX_I1 KARENAM REG
ADVISE_INDEX KARENAM IDX_I2 KARENAM REG
SYSATTRIBUTES SYSIBM INDATTRIBUTES01 SYSIBM REG
SYSATTRIBUTES SYSIBM INDATTRIBUTES02 SYSIBM REG
:
:

Step 8: Reset for the next exercise

Disable activity collection for the default service subclass of the default user service
super class, and clean up the activity tables.
ALTER SERVICE CLASS SYSDEFAULTSUBCLASS UNDER SYSDEFAULTUSERCLASS

COLLECT ACTIVITY DATA NONE

DELETE FROM ACTIVITY_DB2ACTIVITIES
DELETE FROM ACTIVITYSTMT_DB2ACTIVITIES

Exercise 11: Using extended aggregates for service classes
This exercise demonstrates how to use the COLLECT AGGREGATE ACTIVITY
DATA EXTENDED option on a service class to produce histograms of coordinator
activity inter-arrival times and estimated costs.

Estimated time: 25-30 minutes

The inter-arrival time is the time between the arrival of one activity into the system
and the arrival of the next activity. The estimated cost of an activity is the
estimated system resources that will be used in the execution of the activity and it
only applies to DML activities. An inter-arrival time histogram can be useful for
correlating with a lifetime histogram or other lifetime statistics for determining
whether a change in lifetime statistics was the result of a change in the arrival rate
of the workload versus being the result of a change in the complexity of the
workload (more complex queries) or a change in the system. The estimated cost
histogram can be useful for correlating with the inter-arrival time and lifetime
histograms to see whether a change in the lifetime histogram could be due to a
change in the complexity of the workload load (more complex queries with higher
estimated costs being submitted), due to a change in the arrival rate of activities
(determined from the inter-arrival time distribution) or due to a change in the
system itself, such as the introduction of a new threshold, a change in the priority
given to a service class, or a change in hardware.

For more information on histograms, see “Histograms in workload management”
on page 253.

Histograms are accessed through the statistics event monitor. This exercise reuses
the statistics event monitor created in Exercise 1 Step 1.

Step 1: Create views for viewing histogram statistics

Create several views to make querying the HISTOGRAMBIN_DB2STATISTICS
table easier. The first view lists all of the histogram types available. In this exercise,
it reports just the three basic types: lifetime, execution time and queue time.

334 DB2 Workload Management Guide and Reference

CREATE VIEW HISTOGRAMTYPES AS
SELECT DISTINCT SUBSTR(HISTOGRAM_TYPE,1,24) HISTOGRAM_TYPE
FROM HISTOGRAMBIN_DB2STATISTICS

A second view makes it easier to find out what service classes are having
histograms collected for them. The HISTOGRAMBIN_DB2STATISTICS table reports
the service class for which the histogram is being collected by giving the service
class ID. Joining this table with the SERVICECLASSES catalog table will permit the
service class information to be presented with the service super class name and
service subclass name instead of the service class ID.
CREATE VIEW HISTOGRAMSERVICECLASSES AS

SELECT DISTINCT SUBSTR(HISTOGRAM_TYPE,1,24) HISTOGRAM_TYPE,
SUBSTR(PARENTSERVICECLASSNAME,1,24) SERVICE_SUPERCLASS,
SUBSTR(SERVICECLASSNAME,1,24) SERVICE_SUBCLASS

FROM HISTOGRAMBIN_DB2STATISTICS H,
SYSCAT.SERVICECLASSES S

WHERE H.SERVICE_CLASS_ID = S.SERVICECLASSID

The third view lists all of the times that a histogram of a given type was collected
for a given service class. Such as the HISTOGRAMSERVICECLASSES view, it joins
the HISTOGRAMBIN_DB2STATISTICS table with the SERVICECLASSES catalog
table. The difference is in the STATISTICS_TIMESTAMP column which is included
as one of the columns in this view.
CREATE VIEW HISTOGRAMTIMES AS

SELECT DISTINCT SUBSTR(HISTOGRAM_TYPE,1,24) HISTOGRAM_TYPE,
SUBSTR(PARENTSERVICECLASSNAME,1,24) SERVICE_SUPERCLASS,
SUBSTR(SERVICECLASSNAME,1,24) SERVICE_SUBCLASS,
STATISTICS_TIMESTAMP TIMESTAMP

FROM HISTOGRAMBIN_DB2STATISTICS H,
SYSCAT.SERVICECLASSES S

WHERE H.SERVICE_CLASS_ID = S.SERVICECLASSID

The fourth and final view will be used to show the histograms themselves. It also
demonstrates a common task when dealing with histograms, which is to aggregate
them over time. This view shows the top of each bin and the number of activities
that were counted towards each bin. Of the two following histograms, the
BIN_TOP field measures the number of milliseconds in the activity inter-arrival
time and the number of timerons in the estimated cost. When BIN_TOP is, 3000
milliseconds and the BIN_TOP of the previous bin is 2000 milliseconds and the
NUMBER_IN_BIN is ten for an inter-arrival time histogram you know that there
were ten activities which each arrived into the system between 2 and 3 seconds
after the arrival of the previous activity, for example.
CREATE VIEW HISTOGRAMS(HISTOGRAM_TYPE, SERVICE_SUPERCLASS,

SERVICE_SUBCLASS, BIN_TOP, NUMBER_IN_BIN) AS
SELECT DISTINCT SUBSTR(HISTOGRAM_TYPE,1,24) HISTOGRAM_TYPE,

SUBSTR(PARENTSERVICECLASSNAME,1,24) SERVICE_SUPERCLASS,
SUBSTR(SERVICECLASSNAME,1,24) SERVICE_SUBCLASS,
TOP AS BIN_TOP,
SUM(NUMBER_IN_BIN) AS NUMBER_IN_BIN

FROM HISTOGRAMBIN_DB2STATISTICS H,
SYSCAT.SERVICECLASSES S

WHERE H.SERVICE_CLASS_ID = S.SERVICECLASSID
GROUP BY HISTOGRAM_TYPE, PARENTSERVICECLASSNAME, SERVICECLASSNAME, TOP

Step 2: Turn on collection of histograms

Turning on the collection of histograms is done for the default user service class by
altering its default subclass to collect aggregate activity data with the EXTENDED
option. This provides both the three histograms available in the BASE option

Chapter 6. Tutorial for DB2 workload management 335

(lifetime, execution time, and queue time) and the two histograms available only
when using the EXTENDED option (inter-arrival time and estimated cost).
ALTER SERVICE CLASS SYSDEFAULTSUBCLASS UNDER SYSDEFAULTUSERCLASS

COLLECT AGGREGATE ACTIVITY DATA EXTENDED

Step 3: Activate statistics event monitor

If not already active, activate the event monitor that was created earlier so that it
can receive aggregate data whenever it is collected.
SET EVENT MONITOR DB2STATISTICS STATE 1

Step 4: Run activities and send statistics to statistics event
monitor

First run some activities; after the activities have finished the
WLM_COLLECT_STATS stored procedure is called to send the service class
statistics to the active statistics event monitor (including the activity lifetime,
execution time, queue time, inter-arrival time and estimated cost histograms for the
default user service class). These histograms contain data about all activities that
executed in the default user service class since aggregate activity statistics were
enabled. Calling the stored procedure also resets the statistics. To show changes in
database activity over time, three collection intervals are created.

In the first interval, run two scripts, work1.db2 and work2.db2, then collect and
reset the statistics.
db2 -o- -tvf work1.db2
db2 -o- -tvf work2.db2

CONNECT TO SAMPLE

CALL WLM_COLLECT_STATS

In the second interval, run only the work1.db2 script once, then collect and reset
the statistics.
db2 -o- -tvf work1.db2

CONNECT TO SAMPLE

CALL WLM_COLLECT_STATS

In the third interval, run the work1.db2 script twice and the work2.db2 script once,
then collect and reset the statistics.
db2 -o- -tvf work1.db2
db2 -o- -tvf work2.db2
db2 -o- -tvf work1.db2

CONNECT TO SAMPLE

CALL WLM_COLLECT_STATS

Collecting data periodically such as this permits you to watch how work on your
system changes over time.

Additional Information: Collecting data periodically does not need to be a manual
operation. Using the WLM_COLLECT_INT database configuration parameter, you
can set the interval in minutes after which statistics collection and reset occurs.

336 DB2 Workload Management Guide and Reference

Step 5: Query views to view statistics

Now that statistics have been collected, the views created earlier can be used to
look at the statistics. The HISTOGRAMTYPES view just returns the types of
histograms available.
SELECT * FROM HISTOGRAMTYPES

HISTOGRAM_TYPE

CoordActEstCost
CoordActExecTime
CoordActInterArrivalTime
CoordActLifetime
CoordActQueueTime

3 record(s) selected.

Since the EXTENDED option was used when altering the service class, there are
five histograms.

The HISTOGRAMSERVICECLASSES view permits you to see the service classes
for which a histogram was collected. The following example restricts the output to
that of the CoordActInterArrivalTime histogram only. Since aggregate activity
collection was turned on only for the default user service class's default subclass,
only that class is shown when selecting from the HISTOGRAMSERVICECLASSES
view.
SELECT * FROM HISTOGRAMSERVICECLASSES

WHERE HISTOGRAM_TYPE = ’CoordActInterArrivalTime’
ORDER BY SERVICE_SUPERCLASS, SERVICE_SUBCLASS

HISTOGRAM_TYPE SERVICE_SUPERCLASS SERVICE_SUBCLASS
------------------------ ------------------------ -----------------------
-
CoordActInterArrivalTime SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS

1 record(s) selected.

The HISTOGRAMTIMES view shows the times when histograms were collected.
Since the WLM_COLLECT_STATS procedure was run three times, there are three
timestamps for the inter-arrival time histogram shown.
SELECT * FROM HISTOGRAMTIMES

WHERE HISTOGRAM_TYPE = ’CoordActInterArrivalTime’
AND SERVICE_SUPERCLASS = ’SYSDEFAULTUSERCLASS’
AND SERVICE_SUBCLASS = ’SYSDEFAULTSUBCLASS’

ORDER BY TIMESTAMP

HISTOGRAM_TYPE SERVICE_SUPERCLASS SERVICE_SUBCLASS
TIMESTAMP
------------------------ ------------------------ -----------------------
- --------------------------
CoordActInterArrivalTime SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS
2007-08-08-13.41.38.870298
CoordActInterArrivalTime SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS
2007-08-08-13.41.42.802855
CoordActInterArrivalTime SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS
2007-08-08-13.41.53.577835

The last view, HISTOGRAMS, is for looking at the histograms themselves. Unlike
the HISTOGRAMTIMES view that lists each collection interval as its own row, this
view aggregates histogram data across multiple intervals to produce a single
histogram of a given type for a given service class.

Chapter 6. Tutorial for DB2 workload management 337

SELECT BIN_TOP, NUMBER_IN_BIN FROM HISTOGRAMS
WHERE HISTOGRAM_TYPE = ’CoordActInterArrivalTime’

AND SERVICE_SUPERCLASS = ’SYSDEFAULTUSERCLASS’
AND SERVICE_SUBCLASS = ’SYSDEFAULTSUBCLASS’

ORDER BY BIN_TOP

BIN_TOP NUMBER_IN_BIN
-------------------- --------------------

-1 0
1 10
2 6
3 7
5 14
8 7
12 32
19 2
29 9
44 24
68 11
103 8
158 8
241 9
369 1
562 10
858 5
1309 5
1997 0
3046 0
4647 0
7089 0
10813 2
16493 2
25157 0
38373 0
58532 0
89280 0
136181 0
207720 0
316840 0
483283 0
737162 0
1124409 0
1715085 0
2616055 0
3990325 0
6086529 0
9283913 0
14160950 0
21600000 0

41 record(s) selected.

Running this query produces output than will not be exactly the same as what is
shown in the preceding example since activity inter-arrival times depend on the
performance of the system. In the previous output, there are 41 bins and all of the
largest bins are empty. At the top, there is a bin whose BIN_TOP is -1. This bin
represents all of those activities whose inter-arrival time was too large to fit in the
histogram. Seeing a NUMBER_OF_BIN greater than zero when the BIN_TOP is -1
indicates that you should probably increase the high bin value of your histogram.
In the previous output, the NUMBER_IN_BIN is 0, so there is no need to make
such a change. The majority of activities arrived less than 1309 milliseconds apart
from each other. Four activities arrived between 7089 milliseconds and 16493
milliseconds apart.

338 DB2 Workload Management Guide and Reference

The same query can be repeated with a histogram_type of CoordActEstCost
instead of CoordActInterArrivalTime.
SELECT BIN_TOP, NUMBER_IN_BIN FROM HISTOGRAMS

WHERE HISTOGRAM_TYPE = ’CoordActEstCost’
AND SERVICE_SUPERCLASS = ’SYSDEFAULTUSERCLASS’
AND SERVICE_SUBCLASS = ’SYSDEFAULTSUBCLASS’

ORDER BY BIN_TOP

BIN_TOP NUMBER_IN_BIN
-------------------- --------------------

-1 0
1 39
2 0
3 0
5 0
8 30
12 0
19 30
29 0
44 0
68 0
103 0
158 0
241 0
369 0
562 0
858 0
1309 0
1997 0
3046 0
4647 0
7089 0
10813 0
16493 0
25157 0
38373 0
58532 0
89280 0
136181 0
207720 0
316840 0
483283 0
737162 0
1124409 0
1715085 0
2616055 0
3990325 0
6086529 0
9283913 0
14160950 0
21600000 0

41 record(s) selected.

A histogram such as this is typical for a small workload. With a small workload,
there is not much variation in the size of activities, so there are only three different
bins that had activities counted towards them. Slightly more than 60% of the
activities had a cost estimate between 5 and 19 timerons, with the rest having cost
estimates of less than 1 timeron.

Chapter 6. Tutorial for DB2 workload management 339

Step 6: Reset for other exercises

The final step is to turn off collection of aggregate activities on the default user
service class, to drop the views and to delete the information in the statistics
tables.
ALTER SERVICE CLASS SYSDEFAULTSUBCLASS UNDER SYSDEFAULTUSERCLASS

COLLECT AGGREGATE ACTIVITY DATA NONE

DROP VIEW HISTOGRAMS
DROP VIEW HISTOGRAMTIMES
DROP VIEW HISTOGRAMSERVICECLASSES
DROP VIEW HISTOGRAMTYPES

SET EVENT MONITOR DB2STATISTICS STATE 0

DELETE FROM HISTOGRAMBIN_DB2STATISTICS
DELETE FROM SCSTATS_DB2STATISTICS

340 DB2 Workload Management Guide and Reference

Chapter 7. Workload management scenarios

Workload management sample application
Comprehensive workload management features have been integrated into your
DB2 data server with DB2 workload management, giving you finer control over
activities, resources and performance, and deeper insight into how your system is
running. A workload management sample application is now available on
developerWorks®.

The workload management sample application demonstrates how you can use DB2
workload management features to achieve the following objectives:

Protect the system from runaway queries
Runaway queries are costly and cause poor performance. The workload
management sample application identifies queries with the potential to
become runaway queries, and then stops these queries from running after
they have violated a specified threshold.

Limit concurrent resource consumption by individual applications
The sample application shows how to use DB2 workload management
features to prevent applications that submit large amounts of concurrent
work from negatively affecting the performance of other applications.

Achieve a specific response time
Workload management features permit you to achieve a specific response
time objective of the form: "transaction X from application Y shall complete
within 1 second in 90% of cases," regardless of what other activity is
running concurrently on the system. The sample application will
demonstrate how to achieve a response time objective.

Consistent response time for short queries
Queries that typically have a response time of less than 1 second should
have a relatively consistent response time regardless of what other
workloads are running on the system. The sample application uses the
query execution time histogram to monitor consistency.

Protect the system during periods of peak demand
Workload management policy features protect the system from capacity
overload during bursts of peak demand by queuing work once the system
is sufficiently loaded.

Enable concurrent batch extract, transform, and load (ETL) processing and user
queries

Workload management features permit you to run ETL jobs (like loading
data into tables) while controlling the performance impact for users
running queries concurrently.

To obtain the sample application, see Workload management sample on
developerWorks.

© Copyright IBM Corp. 2007, 2012 341

https://www.ibm.com/developerworks/mydeveloperworks/files/app?lang=en#/person/270002YHXT/file/fddaac5b-546c-4e8c-9847-d6ee43f4cc9c

Scenario: Investigating a workload-related system slowdown
If you notice a system slowdown (for example, some applications take much
longer to complete than expected) and are unsure whether the problem is related
to the configuration of the workloads, you can use table function data to
investigate and, if necessary, correct the problem.

First, create a query that aggregates data across service classes and database
members using data from the WLM_GET_SERVICE_SUBCLASS_STATS table
function. Set the first and second arguments to empty strings and the third
argument to -2 to indicate that data is to be gathered for all service classes on all
database members.

Your query might resemble the following one:
SELECT SUBSTR(SERVICE_SUPERCLASS_NAME,1,19) AS SUPERCLASS_NAME,

SUBSTR(SERVICE_SUBCLASS_NAME,1,18) AS SUBCLASS_NAME,
SUBSTR(CHAR(SUM(COORD_ACT_COMPLETED_TOTAL)),1,13) AS ACTSCOMPLETED,
SUBSTR(CHAR(SUM(COORD_ACT_ABORTED_TOTAL)),1,11) AS ACTSABORTED,
SUBSTR(CHAR(MAX(CONCURRENT_ACT_TOP)),1,6) AS ACTSHW,
CAST(CASE WHEN SUM(COORD_ACT_COMPLETED_TOTAL) = 0 THEN 0

ELSE SUM(COORD_ACT_COMPLETED_TOTAL * COORD_ACT_LIFETIME_AVG)
/ SUM(COORD_ACT_COMPLETED_TOTAL) END / 1000 AS DECIMAL(9,3))

AS ACTAVGLIFETIME
FROM TABLE(WLM_GET_SERVICE_SUBCLASS_STATS(’’, ’’, -2)) AS SCSTATS
GROUP BY SERVICE_SUPERCLASS_NAME, SERVICE_SUBCLASS_NAME
ORDER BY SUPERCLASS_NAME, SUBCLASS_NAME

SUPERCLASS_NAME SUBCLASS_NAME ACTSCOMPLETED ACTSABORTED ACTSHW ACTAVGLIFETIME
------------------- ------------------ ------------- ----------- ------ --------------
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 20 0 1 3.750
SUP1 SUB1 40 0 8 7.223

In the preceding example data, the SUB1 service subclass in the SUP1 service
superclass is running more simultaneous activities than usual. To investigate
further, you might want to examine the statistics for workloads that map to this
service class. Your query might resemble the following one:
SELECT SUBSTR(WLSTATS.WORKLOAD_NAME,1,22) AS WL_NAME,

SUBSTR(CHAR(WLSTATS.MEMBER),1,4) AS MEMB,
CONCURRENT_WLO_TOP AS WLO_HIGH_WTRMRK,
CONCURRENT_WLO_ACT_TOP AS WLO_ACT_HIGH_WTRMRK

FROM TABLE(WLM_GET_WORKLOAD_STATS(’’, -2)) AS WLSTATS,
TABLE(WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES(’’, ’’, -2)) AS SCWLOS

WHERE WLSTATS.WORKLOAD_NAME = SCWLOS.WORKLOAD_NAME
AND SCWLOS.SERVICE_SUPERCLASS_NAME = ’SUP1’
AND SCWLOS.SERVICE_SUBCLASS_NAME = ’SUB1’
ORDER BY WL_NAME, MEMB;

WL_NAME MEMB WLO_HIGH_WTRMRK WLO_ACT_HIGH_WTRMRK
---------------------- ---- --------------- -------------------
LYNNSALES 0 2 8
LYNNSALES 1 0 0
SYSDEFAULTUSERWORKLOAD 0 1 1
SYSDEFAULTUSERWORKLOAD 1 0 0

The output shows that an application in the LYNNSALES workload submitted 8
activities concurrently. Consider adding a threshold to restrict concurrency of
coordinator activities for each workload occurrence.

342 DB2 Workload Management Guide and Reference

Scenario: Aggregation of activity metrics across child activities
Each row in an activity event monitor contains information and monitor metrics
describing the execution of a specific activity. Included in the activity information
are the parent_uow_id and parent_activity_id monitor elements. These monitor
elements are nonzero if the activity is a child of some other activity (nested) and
the elements identify the parent activity.

Using recursive SQL, it is possible to aggregate the monitor metrics in the activity
event monitor across all child activities to their parent activity. Viewing the
aggregated metrics for the parent is useful in identifying which parts of a stored
procedure may benefit from tuning. For example, if a stored procedure P1 calls
stored procedures P2 and P3, the aggregated metrics might show that 90% of the
CPU usage during a call to P1 occurs during the processing of statements in the
nested procedure P3. As a result, you can focus your investigation accordingly.

You can use the following as an example of how to obtain aggregates of nested
metrics from an activity event monitor.

Note: The @ character is used as a statement termination character in this example.
The following statements can be copied to a file (for example, test.clp) and
executed using db2 -td@ -f filename, as shown in the following example
command:
db2 -td@ -f test.clp

For the purpose of this example, suppose the following tables and stored
procedures exist:
CREATE TABLE T1 (ONE INT)@

DROP PROCEDURE TEST.P1@
DROP PROCEDURE TEST.P2@
DROP PROCEDURE TEST.P3@
DROP PROCEDURE TEST.P4@

CREATE PROCEDURE TEST.P4()
LANGUAGE SQL
BEGIN

INSERT INTO T1 VALUES(5);
INSERT INTO T1 VALUES(6);
INSERT INTO T1 VALUES(7);

END@

CREATE PROCEDURE TEST.P3()
LANGUAGE SQL
BEGIN

DECLARE V INTEGER;

INSERT INTO T1 VALUES(1);
CALL TEST.P4();
SELECT COUNT(*) INTO V FROM T1;

END@

CREATE PROCEDURE TEST.P2()
LANGUAGE SQL
BEGIN

INSERT INTO T1 VALUES(2);
INSERT INTO T1 VALUES(3);

END@

CREATE PROCEDURE TEST.P1()
LANGUAGE SQL

Chapter 7. Workload management scenarios 343

BEGIN
CALL TEST.P3();
CALL TEST.P2();
INSERT INTO T1 VALUES(4);

END@

Procedure
1. Create an activity event monitor and enable activity capture. In this example,

activity capture is enabled for the current connection using the
WLM_SET_CONN_ENV procedure. Execute the TEST.P1 procedure using the
same connection and then disable the activity event monitor. Activity
information will be captured for the TEST.P1 procedure and all of its child
activities.
CREATE EVENT MONITOR A FOR ACTIVITIES WRITE TO TABLE@
SET EVENT MONITOR A STATE 1@

CALL WLM_SET_CONN_ENV(NULL, ’<collectactdata>WITH DETAILS</collectactdata>
<collectactpartition>ALL</collectactpartition>’)@

CALL TEST.P1()@

SET EVENT MONITOR A STATE 0@

CALL WLM_SET_CONN_ENV(NULL, ’<collectactdata>NONE</collectactdata>’)@

2. Execute the following query to display the captured statements, along with
their parent identification information, individual CPU consumption, and
aggregate CPU consumption. The aggregate CPU consumption is recursively
summed across all child activities. This query can be easily extended to support
any of the monitoring metrics captured by the activity event monitor.

Note: To improve readability, only CPU consumption is reported here.
WITH ACT(APPL_ID,

UOW_ID,
ACTIVITY_ID,
PARENT_UOW_ID,
PARENT_ACTIVITY_ID,
CPU)

AS (SELECT APPL_ID,
UOW_ID,
ACTIVITY_ID,
MAX(PARENT_UOW_ID),
MAX(PARENT_ACTIVITY_ID),
SUM(METRICS.TOTAL_CPU_TIME)

FROM ACTIVITY_A AS A,
XMLTABLE (XMLNAMESPACES(DEFAULT ’http://www.ibm.com/xmlns/prod/db2/mon’),

’$actmetrics/activity_metrics’ PASSING XMLPARSE(DOCUMENT A.DETAILS_XML) as "actmetrics"
COLUMNS

TOTAL_CPU_TIME BIGINT PATH ’total_cpu_time’) AS METRICS
WHERE A.PARTIAL_RECORD = 0
GROUP BY APPL_ID,

UOW_ID,
ACTIVITY_ID),

TMP(BASE_APPL_ID,
BASE_UOW_ID,
BASE_ACTIVITY_ID,
APPL_ID,
UOW_ID,
ACTIVITY_ID,
PARENT_UOW_ID,
PARENT_ACTIVITY_ID,
CPU,
LEVEL)

AS (SELECT APPL_ID,

344 DB2 Workload Management Guide and Reference

UOW_ID,
ACTIVITY_ID,
APPL_ID,
UOW_ID,
ACTIVITY_ID,
PARENT_UOW_ID,
PARENT_ACTIVITY_ID,
CPU,
1

FROM ACT
UNION ALL

SELECT T.BASE_APPL_ID,
T.BASE_UOW_ID,
T.BASE_ACTIVITY_ID,
A.APPL_ID,
A.UOW_ID,
A.ACTIVITY_ID,
A.PARENT_UOW_ID,
A.PARENT_ACTIVITY_ID,
A.CPU,
T.LEVEL + 1

FROM ACT AS A, TMP AS T
WHERE A.APPL_ID = T.APPL_ID AND

A.PARENT_UOW_ID = T.UOW_ID AND
A.PARENT_ACTIVITY_ID = T.ACTIVITY_ID AND
T.LEVEL < 128),

AGG(APPL_ID,
UOW_ID,
ACTIVITY_ID,
CPU)

AS (SELECT BASE_APPL_ID,
BASE_UOW_ID,
BASE_ACTIVITY_ID,
SUM(CPU)

FROM TMP
GROUP BY BASE_APPL_ID,

BASE_UOW_ID,
BASE_ACTIVITY_ID)

SELECT
A.UOW_ID,
A.ACTIVITY_ID,
A.PARENT_UOW_ID,
A.PARENT_ACTIVITY_ID,
A.CPU AS STMT_CPU,
B.CPU AS AGG_CPU,
SUBSTR(CONCAT(REPEAT(’ ’,C.STMT_NEST_LEVEL),

C.STMT_TEXT),
1, 30) AS STMT_TEXT

FROM ACT AS A,
AGG AS B,
ACTIVITYSTMT_A AS C,
ACTIVITY_A AS D

WHERE A.APPL_ID = B.APPL_ID AND
A.UOW_ID = B.UOW_ID AND
A.ACTIVITY_ID = B.ACTIVITY_ID AND
D.COORD_PARTITION_NUM = D.PARTITION_NUMBER AND
A.APPL_ID = C.APPL_ID AND
A.UOW_ID = C.UOW_ID AND
A.ACTIVITY_ID = C.ACTIVITY_ID AND
A.APPL_ID = D.APPL_ID AND
A.UOW_ID = D.UOW_ID AND
A.ACTIVITY_ID = D.ACTIVITY_ID AND
D.PARTIAL_RECORD = 0

ORDER BY D.TIME_CREATED ASC@

Chapter 7. Workload management scenarios 345

This query produces the following output. The STMT_CPU column reports the
CPU consumption for the statement without including CPU usage of any child
activities. The AGG_CPU column reports the aggregate CPU consumption for the
activity and all of its children.

Note: If queries execute too quickly to be measurable, STMT_CPU and AGG_CPU
might be zero.

UOW_ID ACTIVITY_ID PARENT_UOW_ID PARENT_ACTIVITY_ID STMT_CPU AGG_CPU STMT_TEXT
----------- -------------------- ------------- -------------------- -------------------- -------------------- ------------------------------

576 1 0 0 5353 84064 CALL TEST.P1()
576 2 576 1 7444 52043 CALL TEST.P3()
576 3 576 2 1869 1869 INSERT INTO T1 VALUES(1)
576 4 576 2 11727 26935 CALL TEST.P4()
576 5 576 4 2017 2017 INSERT INTO T1 VALUES(5)
576 6 576 4 6602 6602 INSERT INTO T1 VALUES(6)
576 7 576 4 6589 6589 INSERT INTO T1 VALUES(7)
576 8 576 2 15795 15795 SELECT COUNT(*) INTO :HV00
576 9 576 1 11727 20314 CALL TEST.P2()
576 10 576 9 1941 1941 INSERT INTO T1 VALUES(2)
576 11 576 9 6646 6646 INSERT INTO T1 VALUES(3)
576 12 576 1 6354 6354 INSERT INTO T1 VALUES(4)

12 record(s) selected.

Scenario: Identifying activities that are taking too long to complete
Workload management table functions simplify the task of identifying a specific
activity inside the data server and, if necessary, canceling it without having to end
the entire application.

Identifying an activity that is taking too long to complete

Following is an example of identifying a long-running query. Assume that a user
from the Sales department who is running the SalesReport application complains
that the application is taking too long to complete.

After identifying the application handle, use the
WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES table function to look up
all activities currently running in this application. For example, if the application
handle is 1, your query might resemble the following one:
SELECT SUBSTR(CHAR(COORD_MEMBER),1,5) AS COORD,

SUBSTR(CHAR(MEMBER),1,4) AS MEMB,
SUBSTR(CHAR(UOW_ID),1,5) AS UOWID,
SUBSTR(CHAR(ACTIVITY_ID),1,5) AS ACTID,
SUBSTR(CHAR(PARENT_UOW_ID),1,8) AS PARUOWID,
SUBSTR(CHAR(PARENT_ACTIVITY_ID),1,8) AS PARACTID,
SUBSTR(ACTIVITY_TYPE,1,8) AS ACTTYPE,
SUBSTR(CHAR(NESTING_LEVEL),1,7) AS NESTING

FROM TABLE(WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES(1, -2))
AS WLOACTS

ORDER BY MEMB, UOWID, ACTID

COORD MEMB UOWID ACTID PARUOWID PARACTID ACTTYPE NESTING
----- ---- ----- ----- -------- -------- -------- -------

0 0 2 3 - - CALL 0
0 0 2 5 2 3 READ_DML 1

The activity is identified as having a unit of work ID of 2 and an activity ID of 5.
You can then use the WLM_GET_SERVICE_CLASS_AGENTS table function to
discover what the agents that work on this activity are doing:
SELECT APPLICATION_HANDLE, UOW_ID, ACTIVITY_ID,

SUBSTR(REQUEST_TYPE,1,8) AS REQUEST_TYPE,
SUBSTR(EVENT_TYPE,1,8) AS EVENT_TYPE,
SUBSTR(EVENT_OBJECT,1,8) AS EVENT_OBJECT

346 DB2 Workload Management Guide and Reference

FROM TABLE(WLM_GET_SERVICE_CLASS_AGENTS(’’, ’’, CAST(NULL AS BIGINT),-2))
AS AGENTS

WHERE APPLICATION_HANDLE = 1
AND UOW_ID = 2
AND ACTIVITY_ID = 5

For example, the activity might be queued, executing, or waiting on a lock. If the
activity were queued, the result would be:
APPLICATION_HANDLE UOW_ID ACTIVITY_ID REQUEST_TYPE EVENT_TYPE EVENT_OBJECT
------------------ ------ ----------- ------------ ---------- ------------

1 2 5 OPEN WAIT WLM_QUEUE

If the activity were executing, the result would be:
APPLICATION_HANDLE UOW_ID ACTIVITY_ID REQUEST_TYPE EVENT_TYPE EVENT_OBJECT
------------------ ------ ----------- ------------ ---------- ------------

1 2 5 OPEN PROCESS REQUEST

If the activity were waiting on a lock, the result would be:
APPLICATION_HANDLE UOW_ID ACTIVITY_ID REQUEST_TYPE EVENT_TYPE EVENT_OBJECT
------------------ ------ ----------- ------------ ---------- ------------

1 2 5 OPEN ACQUIRE LOCK

When you know what the activity is doing, you can proceed appropriately:
v If the activity is queued, if the user indicates that the query is taking so long

that they no longer care about the results, or you think the query is consuming
too many resources, you can cancel it.

v If the activity is important and it is queued, consider cancelling some other less
important work that is currently running (reducing the concurrency so that
activities leave queue), or maybe the user will be satisfied to know that work is
not hanging and is just waiting for chance to run.

v If the activity is waiting for a lock, you can use the snapshot monitor to
investigate which locks the application is waiting for.

v If the activity is waiting for a lock held by lower priority activity, consider
cancelling that activity.

You might also find it useful to know the DML statement that activity 5 is running.
Assuming that you have an active activities event monitor, you can run the
WLM_CAPTURE_ACTIVITY_IN_PROGRESS procedure to capture information
about the DML statement and other information about activity 5 while it is
running. Unlike the statement event monitor, the
WLM_CAPTURE_ACTIVITY_IN_PROGRESS procedure permits you to capture
information about a specific query, as opposed to every statement running at the
time. You can also obtain the statement text by using
MON_GET_ACTIVITY_DETAILS.

If you decide that you must cancel the activity, you can use the
WLM_CANCEL_ACTIVITY routine to cancel the activity without having to end
the application that issued it:
CALL WLM_CANCEL_ACTIVITY (1, 2, 5)

The application that issued the activity receives an SQL4725N error. Any
application that handles negative SQL codes is able to handle this SQL code.

Chapter 7. Workload management scenarios 347

Identifying an activity hang caused by lock contention

Assume that you have a situation in which a user is complaining about an
application that is taking too long. Also assume that you have either the
application name or the authorization ID of the long-running application. With this
information, you can use the LIST APPLICATIONS command to obtain the
application handle. Assuming that application handle returned by the LIST
APPLICATIONS command is 2, you can use the
WLM_GET_SERVICE_CLASS_AGENTS table function to determine which agents
are working on this activity. Your query might resemble the following one:
SELECT SUBSTR(CHAR(APPLICATION_HANDLE),1,7) AS APPHANDLE,

SUBSTR(CHAR(MEMBER),1,4) AS MEMB,
SUBSTR(CHAR(AGENT_TID),1,9) AS AGENT_TID,
SUBSTR(AGENT_TYPE,1,11) AS AGENTTYPE,
SUBSTR(EVENT_OBJECT,1,11) AS EVENTOBJECT,
SUBSTR(REQUEST_TYPE,1,7) AS REQTYPE,
SUBSTR(CHAR(UOW_ID),1,6) AS UOW_ID,
SUBSTR(CHAR(ACTIVITY_ID),1,6) AS ACT_ID

FROM TABLE(WLM_GET_SERVICE_CLASS_AGENTS(’’, ’’, 2, -2)) AS SCDETAILS
ORDER BY APPHANDLE, MEMB, AGENT_TID

APPHANDLE MEMB AGENT_TID AGENTTYPE EVENTOBJECT REQTYPE UOW_ID ACT_ID
--------- ---- --------- ----------- ----------- ------- ------ ------
2 0 1 COORDINATOR REQUEST OPEN 2 1
2 1 3 SUBAGENT LOCK - 2 1

The results indicate that agent 1 is waiting on a remote response. Looking at the
agent on the remote member that is working on the same activity, the
EVENTOBJECT field indicates that the agent is waiting to obtain a lock.

The next step is to determine who owns the lock. You can obtain this information
by turning on the monitor switches and using the snapshot monitor table function,
as shown in the following example:
SELECT AGENT_ID AS WAITING_FOR_LOCK,

SUBSTR(APPL_ID_HOLDING_LK,1,40) AS HOLDING_LOCK,
CAST(LOCK_MODE_REQUESTED AS SMALLINT) AS WANTED,
CAST(LOCK_MODE AS SMALLINT) AS HELD

FROM TABLE(SNAPSHOT_LOCKWAIT(’SAMPLE’,-1)) AS SLW

WAITING_FOR_LOCK HOLDING_LOCK WANTED HELD
-------------------- -- ------ ------

2 *LOCAL.DB2.060131021547 9 5

You can also determine the lock owner by using the following sequence of
commands:
db2pd -db database alias -locks
db2pd –db database alias -transactions

If you want to cancel the long-running activity, you can use the
WLM_CANCEL_ACTIVITY procedure. If the successful completion of the
long-running application is more important than the successful completion of the
lock-owning application, you can force the lock-owning application.

Scenario: How to cancel activities queued for more than an hour
Using the example scripts described here, you can create a procedure to cancel
activities that have been queued for more than an hour. In addition, an example
script is provided that can be used to schedule the queued-activity-cancelling
procedure to run every 10 minutes using the DB2 Administrative Task Scheduler.

348 DB2 Workload Management Guide and Reference

The queued-activity-cancelling procedure also captures information about the
cancelled activities (if an activity event monitor is active), and maintains a small
history table of cancelled activities. Both of these informational components are
optional and comments in the example script indicate where to comment out the
components, if they are not required.

The statements contained in the example procedure are themselves activities and
subject to threshold control (depending on how thresholds are configured on your
system). Consider running the example queued-activity-cancelling procedure in a
service class that does not have any queuing thresholds applied.
1. Copy the following example script, that creates the procedure to cancel

activities queued for more than 1 hour, into a file you have created (for
example, a file named x.clp):
-- Simple history table to track cancelled
-- activities

CREATE TABLE SAMPLE.CANCELED_ACTIVITIES(
APPLICATION_HANDLE BIGINT,
UOW_ID BIGINT,
ACTIVITY_ID BIGINT)@

-- Cancel any activities that have been queued
-- for more than 1 hour

CREATE PROCEDURE SAMPLE.CANCEL_QUEUED_ACTIVITIES()
LANGUAGE SQL
BEGIN

DECLARE APPHANDLE BIGINT;
DECLARE UOWID BIGINT;
DECLARE ACTIVITYID BIGINT;
DECLARE QUEUETIME BIGINT;
DECLARE AT_END INT DEFAULT 0;

DECLARE QUEUEDAPPS CURSOR WITH HOLD FOR SELECT APPLICATION_HANDLE,
UOW_ID, ACTIVITY_ID
FROM TABLE(WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES(NULL,-2)) AS T
WHERE ACTIVITY_STATE = ’QUEUED’ AND LOCAL_START_TIME IS NULL;

DECLARE QTIMECUR CURSOR FOR SELECT TIMESTAMPDIFF(8, CHAR
(CURRENT TIMESTAMP - TIMESTAMP(VALUE)))
FROM TABLE(WLM_GET_ACTIVITY_DETAILS(APPHANDLE ,
UOWID , ACTIVITYID , -2)) AS T WHERE NAME = ’ENTRY_TIME’;

DECLARE CONTINUE HANDLER FOR NOT FOUND
SET AT_END = 1;

-- Ignore errors for activity not found and activity event
-- monitor does not exist.
DECLARE CONTINUE HANDLER FOR SQLSTATE ’5U035’, SQLSTATE ’01H53’

BEGIN
END;

-- Find all activities that are queued by WLM
-- thresholds where (ACTIVITY_STATE = ’QUEUED’)
OPEN QUEUEDAPPS;
FETCH QUEUEDAPPS INTO APPHANDLE, UOWID, ACTIVITYID;

WHILE AT_END = 0 DO

-- Now use activity entry time to estimate the time spend queued.
-- Queuing occurs before an activity begins execution, so queue
-- time is approximated using current time - entry time

OPEN QTIMECUR;
FETCH QTIMECUR INTO QUEUETIME;

Chapter 7. Workload management scenarios 349

CLOSE QTIMECUR;

IF (QUEUETIME >= 1) THEN

-- Optional: Insert a record into a table to record the
-- cancellation of the statement (for monitoring purposes, to
-- understand how many statements were cancelled). Modify this
-- insert as required to capture more info such as the name of
-- the application that submitted the cancelled query. Comment out
-- these 2 lines if the monitoring is not important to you.

INSERT INTO SAMPLE.CANCELED_ACTIVITIES VALUES (APPHANDLE,
UOWID, ACTIVITYID);

-- Optional: Send details about activity to any activity activities
-- event monitor before cancelling. Comment out
-- this line if you don’t care about the details of the
-- statements that were cancelled

CALL WLM_CAPTURE_ACTIVITY_IN_PROGRESS(APPHANDLE, UOWID,
ACTIVITYID);

-- Cancel the activity
CALL WLM_CANCEL_ACTIVITY(APPHANDLE, UOWID, ACTIVITYID);

-- Explicit commit, required for the insert statement above. The
-- admin task scheduler will not perform a commit. Comment out this
-- line if the insert statement is removed.

COMMIT;

END IF;

FETCH QUEUEDAPPS INTO APPHANDLE, UOWID, ACTIVITYID;

END WHILE;

CLOSE QUEUEDAPPS;

END@

2. Create the queued-activity-cancelling procedure by executing script x.clp using
the following command:
db2 -td@ -f x.clp

3. Execute the queued-activity-cancelling procedure by issuing the following
command:
db2 "call sample.cancel_queued_activities()"

Any activities that have been queued for more than 1 hour will be cancelled.
4. The following example script schedules the queued-activity-cancelling

procedure to run every 10 minutes using the DB2 Administrative Task
Scheduler. Copy the example script into a file you have created (for example, a
file named y.clp):

-- Enable DB2 Admin Task Scheduler if
-- not already enabled.

!db2set DB2_ATS_ENABLE=YES@

-- Create SYSTOOLSPACE tablespace.
-- Enable if SYSTOOLSPACE does not already
-- exist on your database.

-- CREATE TABLESPACE SYSTOOLSPACE IN IBMCATGROUP MANAGED BY AUTOMATIC STORAGE
-- EXTENTSIZE 4@

350 DB2 Workload Management Guide and Reference

-- Add a task to automatically cancel
-- activities that have been queued
-- for more than 1 hour. Task is scheduled
-- to run every 10 minutes. Adjust the
-- schedule as necessary using the
-- schedule input parameter (specified in
-- cron format).

CALL SYSPROC.ADMIN_TASK_ADD(
’CANCEL ACTIVITIES QUEUED FOR MORE 1 HOUR’,
NULL,
NULL,
NULL,
’*/10 * * * *’,
’SAMPLE’,
’CANCEL_QUEUED_ACTIVITIES’,
NULL,
NULL,
NULL)@

5. Schedule the queued-activity-cancelling procedure to run every 10 minutes by
executing script y.clp using the following command:
db2 -td@ -f y.clp

Scenario: Identifying activities with low estimated cost and high
runtime

The following example shows how you can use work classes, work action sets,
thresholds, and activity collection to identify activities that have a low estimated
cost but a high runtime. This situation could indicate that the estimated cost (in
timerons) is inaccurate because of out-of-date table and index statistics.

The first step is to create a work class set with a work class that will be used to
identify activities with a low estimated cost. For example:
CREATE WORK CLASS SET WCS1
(WORK CLASS SMALLDML WORK TYPE DML FOR TIMERONCOST FROM 0 TO 500)

Then, you would create a database work action set with a work action that applies
an activity-total-time threshold to the SMALLDML work class. The threshold
action is CONTINUE and the COLLECT ACTIVITY DATA option is specified so
that an activity that violates the threshold is sent to the activities event monitor on
completion:
CREATE WORK ACTION SET WAS1 FOR DATABASE USING WORK CLASS SET WCS1
(WORK ACTION WA1 ON WORK CLASS SMALLDML WHEN ACTIVITYTOTALTIME > 15 MINUTES
COLLECT ACTIVITY DATA WITH DETAILS CONTINUE)

Finally, you would create and activate a threshold violations event monitor and an
activities event monitor:
CREATE EVENT MONITOR THVIOLATIONS FOR THRESHOLD VIOLATIONS WRITE TO TABLE
SET EVENT MONITOR THVIOLATIONS STATE 1

CREATE EVENT MONITOR DB2ACTIVITIES FOR ACTIVITIES WRITE TO TABLE
SET EVENT MONITOR DB2ACTIVITIES STATE 1

Now when a DML activity with an estimated cost of less than 500 timerons runs
for greater than 15 minutes, a threshold violation record is written to the
THVIOLATIONS event monitor (indicating that the total time threshold was

Chapter 7. Workload management scenarios 351

violated), and details about the DML activity are collected when the activity
completes and sent to the DB2ACTIVITIES event monitor. You can use the
information collected about the activity in the DB2ACTIVITIES event monitor to
investigate further. For example, you can run the EXPLAIN statement on the query
and examine the access plan. You should also consider the system load and
queuing at the time the activity was collected, as a long lifetime can be a result of
insufficient system resources or the activity being queued. The long lifetime does
not necessarily indicate out-of-date statistics.

Scenario: Cancelling all activities being executed in a service subclass
The following is an example of a stored procedure that can be used to cancel all
currently executing activities in a particular service subclass.

To create the CANCELALL procedure, execute the following steps:
1. Copy the following CREATE PROCEDURE statement to a file (for example,

cancelall.ddl):
CREATE PROCEDURE CANCELALL (IN INSCID BIGINT)

SPECIFIC CANCELALL
LANGUAGE SQL

BEGIN
DECLARE SQLSTATE CHAR(5) DEFAULT ’00000’;
DECLARE APPHNDL BIGINT;
DECLARE UOWID INTEGER;
DECLARE ACTIVITYID INTEGER;

DECLARE C1 CURSOR FOR (SELECT APPLICATION_HANDLE,
UOW_ID, ACTIVITY_ID
FROM TABLE(SYSPROC.WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES

(NULL, -2))
AS T WHERE T.SERVICE_CLASS_ID = INSCID);

DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
BEGIN
END;

OPEN C1;

FETCH_LOOP:
LOOP

FETCH C1 INTO APPHNDL, UOWID, ACTIVITYID;

IF (SQLSTATE <> ’00000’)
THEN LEAVE FETCH_LOOP;
END IF;

CALL WLM_CANCEL_ACTIVITY(APPHNDL, UOWID, ACTIVITYID);

END LOOP FETCH_LOOP;

END@

2. Run the following CLP command:
db2 -td@ -f cancelall.ddl

After the procedure has been created, execute the procedure (for example,
cancelling all activities in the service subclass which has ID = 15) using the
following statement:
CALL CANCELALL(15)

352 DB2 Workload Management Guide and Reference

Note: The CANCELALL procedure must be run in a different service subclass
from the target that is passed as input, otherwise the procedure will cancel itself.

Scenario: Disconnecting all applications either mapped to or executing
activities in a service class

The following is an example of a stored procedure that can be used to disconnect
(force) all applications that are either mapped to a particular service class or
currently executing activities in a particular service class.

To create the FORCEALLINSC procedure, execute the following steps:
1. Copy the following CREATE PROCEDURE statement to a file (for example,

forceall.ddl):
CREATE PROCEDURE FORCEALLINSC (IN INSCID BIGINT)

SPECIFIC FORCEALLINSC
LANGUAGE SQL

BEGIN
DECLARE SQLSTATE CHAR(5) DEFAULT ’00000’;
DECLARE APPHNDL BIGINT;
DECLARE UOWID INTEGER;
DECLARE ACTIVITYID INTEGER;

DECLARE C1 CURSOR FOR (SELECT APPLICATION_HANDLE
FROM TABLE(SYSPROC.WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES

(NULL, -2))
AS T WHERE T.SERVICE_CLASS_ID = INSCID);

DECLARE C2 CURSOR FOR (SELECT APPLICATION_HANDLE
FROM TABLE(SYSPROC.WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES

(NULL,NULL, -2))
AS T, SYSCAT.SERVICECLASSES AS S
WHERE T.SERVICE_SUPERCLASS_NAME = S.PARENTSERVICECLASSNAME AND
T.SERVICE_SUBCLASS_NAME = S.SERVICECLASSNAME AND
S.SERVICECLASSID = INSCID);

DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
BEGIN
END;

-- First force any applications that have an activity running in
-- the specified service class

OPEN C1;

FETCH_LOOP:
LOOP

FETCH C1 INTO APPHNDL;

IF (SQLSTATE <> ’00000’)
THEN LEAVE FETCH_LOOP;
END IF;

CALL ADMIN_CMD(’FORCE APPLICATION (’ || CHAR(APPHNDL) || ’)’);

END LOOP FETCH_LOOP;

-- Now force any connections that are mapped to the service class, but which
-- don’t currently have any activities running

OPEN C2;

Chapter 7. Workload management scenarios 353

FETCH_LOOP2:
LOOP

FETCH C2 INTO APPHNDL;

IF (SQLSTATE <> ’00000’)
THEN LEAVE FETCH_LOOP2;
END IF;

CALL ADMIN_CMD(’FORCE APPLICATION (’ || CHAR(APPHNDL) || ’)’);

END LOOP FETCH_LOOP2;

END@

2. Run the following CLP command:
db2 -td@ -f forceall.ddl

After the procedure has been created, execute the procedure (for example,
disconnecting all applications that are either mapped to or currently executing
activities in a particular service class with ID = 15) using the following statement:
CALL FORCEALLINSC(15)

Note: The FORCEALLINSC procedure must be run in a different service class
from the target that is passed as input, otherwise the procedure will cancel itself.

Scenario: Tuning a DB2 workload management configuration when
capacity planning data is available

If you performed capacity planning, you should have information about the types
of users and their expected response times. You can use this information to
construct, determine the effectiveness of, and tune your DB2 workload
management configuration.

Assume that you performed capacity planning and that the data in the following
table represents the results of this exercise for work types and response time goals:

Table 63. Results of capacity planning

Type of work Application Goal Importance Expected throughput

Order entry orderentryapp.exe Obtain an average
response time < 1
second

High 10 000 (both inserts
and updates) per day

Business intelligence
queries

businessobjects.exe Obtain an average
response time < 10
seconds

High 100 queries per day

Batch processing batchapp.exe Maximize throughput Low 5000 updates per day

Other All other applications Best effort Low 100 activities per day

Based on the data in the preceding table, you might create three service classes
(ORDER_ENTRY_SC, BI_QUERIES_SC, and BATCH_SC) and three workloads
(ORDER_ENTRY_WL, BI_QUERIES_WL, and BATCH_WL) to assign work to the
service classes. After creating the service classes and workloads, you might create a
statistics event monitor to collect aggregate activity information, such as the
activity lifetime histogram for each service class. Assume that the data in the
following table compares the average daily count of activities in each service class

354 DB2 Workload Management Guide and Reference

(computed from the activity lifetime histogram) with the volumes that were
predicted in the capacity planning exercise:

Table 64. Activities each day

Service class Predicted activities per day Actual activities per day

ORDER_ENTRY_SC 10 000 9700

BI_QUERIES_SC 100 115

BATCH_SC 5000 5412

SYSDEFAULTUSERCLASS 100 85

The observed data indicates that the capacity planning estimates were accurate.
The data in the following table compares the average activity lifetimes (obtained
from the activity lifetime histogram) with the response time goals determined
during capacity planning and shows that activities in the BI_QUERIES_SC service
class are not meeting their response time objectives.

Table 65. Response times

Service class Response time goal Actual average lifetime

ORDER_ENTRY_SC < 1 second 0.8 seconds

BI_QUERIES_SC < 10 seconds 30 seconds

BATCH_SC 2 seconds

SYSDEFAULTUSERCLASS 10 minutes

With DB2 workload management, you can use different approaches when
addressing the problem of the business intelligence queries not meeting their
response time goals:
v Limiting the concurrency of lower-importance service classes
v Allowing the operating system workload manager to provide less processor

resource to less-important service classes
v Modifying the agent and I/O prefetcher priorities for the service classes
v Using any combination of the previous three approaches

Assume that processor time is the resource that is causing the business intelligence
queries to fail to meet their goals. Also assume that you use the operating system
workload manager to give the SYSDEFAULTUSERCLASS service class less
processor resources than other service classes. You can then capture aggregate
activity information over a period of days to observe whether the changes to the
CPU allocation provide the results that you expect. The data in the following table
shows another comparison between response time goals and actual average
lifetimes computed from the histograms after you made the operating system
workload manager changes. All service classes are now meeting their response
time objectives and, because of the processor time reallocation, activities in the
SYSDEFAULTUSERCLASS service class have had their response times doubled.

Table 66. Response times after reconfiguration

Service class Response time goal Actual average lifetime

ORDER_ENTRY_SC < 1 second 0.6 seconds

BI_QUERIES_SC < 10 seconds 9.5 seconds

BATCH_SC 1.5 seconds

Chapter 7. Workload management scenarios 355

Table 66. Response times after reconfiguration (continued)

Service class Response time goal Actual average lifetime

SYSDEFAULTUSERCLASS 20 minutes

Scenario: Tuning a DB2 workload management configuration when
capacity planning information is unavailable

You can use the DB2 workload management tools to help design, monitor, and
tune a workload management configuration even if you do not have capacity
analysis data to use for designing the configuration.

Assume that you do not initially know which workloads and service classes to
create because either you do not have full knowledge of the workload on the
system or you do not yet know which workloads are required for stable execution
results. Also assume that you know that some applications have response time
requirements but that you do not yet know how many other applications are
competing for resources with such time-critical applications. You can use the
workload management monitoring capabilities to determine this.

To set up a DB2 workload management configuration using monitoring data as the
foundation:
1. Classify those applications that you know are important. You must isolate these

applications and give them an appropriate portion of the system resources.
2. For the rest of the workload, collect statistics for the largest activities in the

workload because these activities have the greatest impact on a per-activity
basis on the system.

3. Analyze the activity information that you collected in step 2.
4. Repeat steps 1 through 3 on that portion of the workload that is still

unclassified. Repeat this step until you know that the remaining unclassified
work is not worth classification.

The sections that follow provide information about how to perform these steps.

Step 1. Isolate those applications that are known to be important
and give them an appropriate portion of resources

Assume that you have two important business intelligence applications, BI1 and
BI2 and that you need to minimize the response times for these applications. You
can create workloads for these two applications and map them to a service class
called MOSTIMPORTANT for which you can assign system resources.

On the AIX operating system, you use the AIX Workload Manager to create a
service class called MOSTIMPORTANT, and give this service class a guaranteed set
of resources.

On the DB2 data server, you create the required service classes and workloads:
CREATE SERVICE CLASS MOSTIMPORTANT OUTBOUND CORRELATOR ’MOSTIMPORTANT’
CREATE WORKLOAD BI1WORKLOAD APPLNAME (’BI1’) SERVICE CLASS MOSTIMPORTANT
CREATE WORKLOAD BI2WORKLOAD APPLNAME (’BI2’) SERVICE CLASS MOSTIMPORTANT

For the purposes of this example, assume that even after you account for the
known applications, a significant portion of the system workload is unaccounted
for. You therefore need to better understand and possibly control this workload.

356 DB2 Workload Management Guide and Reference

Step 2. For the remaining unclassified workload, collect statistics
for the largest activities in the workload

A long-running activity has a greater individual impact on the system than a
short-running activity has because the long-running activity occupies system
resources for a longer period of time. However, collecting information about a
long-running activity imposes no greater overhead than would be imposed by
collecting information on a short-running activity. As a result, the best way to
collect information on the largest proportion of the workload is to collect
information on the longest-running activities first.

Start collecting activity information by first deciding on an activity lifetime above
which you collect activity information. You can simplify this task by choosing a
portion of the unclassified activities to be collected, such as 30%, and then
observing the activity lifetime histogram for these activities. Allow the system to
run so that the statistics are updated, then run the WLM_COLLECT_STATS
procedure to send the statistics to an active statistics event monitor.

Use the following query to obtain the activity lifetime histogram for the
SYSDEFAULTUSERCLASS service class as a table that represents the proportion of
the total activities that fell into each lifetime range. This query is written assuming
that the database does not have multiple members.

WITH TOTAL AS (
SELECT PARENTSERVICECLASSNAME,

SERVICECLASSNAME,
HIST.HISTOGRAM_TYPE,
SUM(NUMBER_IN_BIN) AS NUMBER_IN_BIN

FROM HISTOGRAMBIN_DB2STATISTICS AS HIST,
SYSCAT.SERVICECLASSES SC

WHERE
HIST.SERVICE_CLASS_ID = SC.SERVICECLASSID
AND HIST.TOP >= 0
AND SC.PARENTSERVICECLASSNAME = ’SYSDEFAULTUSERCLASS’
AND SC.SERVICECLASSNAME = ’SYSDEFAULTSUBCLASS’
AND HIST.HISTOGRAM_TYPE = ’CoordActLifetime’

GROUP BY PARENTSERVICECLASSNAME, SERVICECLASSNAME, HISTOGRAM_TYPE)
SELECT CAST(CAST(TOP AS DOUBLE) / 60000 AS DECIMAL(14,3)) AS TOP_IN_MINUTES,

CAST(100 * CAST(SUM(HIST.NUMBER_IN_BIN) AS DOUBLE) / TOTAL.NUMBER_IN_BIN AS DECIMAL(4,2))
AS PERCENT_IN_BIN

FROM HISTOGRAMBIN_DB2STATISTICS AS HIST,
SYSCAT.SERVICECLASSES SC,
TOTAL

WHERE HIST.SERVICE_CLASS_ID = SC.SERVICECLASSID
AND HIST.TOP >= 0
AND TOTAL.NUMBER_IN_BIN > 0
AND SC.PARENTSERVICECLASSNAME = ’SYSDEFAULTUSERCLASS’
AND SC.SERVICECLASSNAME = ’SYSDEFAULTSUBCLASS’
AND HIST.HISTOGRAM_TYPE = ’CoordActLifetime’
AND TOTAL.PARENTSERVICECLASSNAME = SC.PARENTSERVICECLASSNAME
AND TOTAL.SERVICECLASSNAME = SC.SERVICECLASSNAME
AND TOTAL.HISTOGRAM_TYPE = HIST.HISTOGRAM_TYPE

GROUP BY TOP, SC.PARENTSERVICECLASSNAME, SC.SERVICECLASSNAME, HIST.HISTOGRAM_TYPE, TOTAL.NUMBER_IN_BIN;

TOP_IN_MINUTES PERCENT_IN_BIN
---------------- --------------

0.000 0.00
0.000 0.00
0.000 0.00
0.000 0.00
0.000 0.00
0.000 0.00

Chapter 7. Workload management scenarios 357

0.000 0.00
0.000 0.00
0.000 0.00
0.001 0.00
0.001 0.00
0.002 0.00
0.004 0.00
0.006 0.00
0.009 0.00
0.014 0.00
0.021 0.00
0.033 0.00
0.050 0.00
0.077 0.00
0.118 0.00
0.180 0.00
0.274 0.00
0.419 0.00
0.639 0.00
0.975 0.00
1.488 0.00
2.269 0.00
3.462 0.00
5.280 0.00
8.054 0.00
12.286 0.00
18.740 0.00
28.584 10.00
43.600 15.00
66.505 45.00
101.442 23.00
154.731 5.00
236.015 2.00
360.000 0.00

The following figure shows the results of the preceding query plotted as a graph:

0

Range of lifetimes (minutes)

P
er

ce
n

ta
g

e
o

f
to

ta
l a

ct
iv

it
ie

s

100 300200 400

50

45

40

35

30

25

20

15

10

5

0

Figure 56. Activity lifetime histogram of unclassified activities

358 DB2 Workload Management Guide and Reference

In this example, 30% of the activities fall into the 101 minutes or greater lifetime
range. To capture information about these activities, create an activity lifetime
threshold of 100 minutes with the CONTINUE and COLLECT ACTIVITY DATA
options as shown in the following example. If this threshold is violated, activity
information is sent to an active activities event monitor.
CREATE THRESHOLD COLLECTLONGESTRUNNING30PERCENT
FOR SERVICE CLASS SYSDEFAULTSUBCLASS UNDER SYSDEFAULTUSERCLASS
ACTIVITIES ENFORCEMENT DATABASE ENABLE
WHEN ACTIVITYTOTALTIME > 100 MINUTES COLLECT ACTIVITY DATA CONTINUE

Allow the system to run so that data is collected.

Assuming that the overhead of collecting information on 30% of the
longest-running activities is acceptable, you can let the data collection continue for
a few hours or a few days. You can use the collected data to determine which
users and applications produce the longest running of the 30% of the DML
activities that are still unclassified. These activities might include some that are
time critical. You might uncover some surprises, such as low-priority applications
that run significant numbers of large activities. When you finish collecting and
analyzing the data, you can drop the threshold.

Step 3. Analyze the information about activities collected in the
previous step

You can analyze the information you collected about activities in the previous step
according to the application that submitted them. You might specify the following
query:
SELECT SUBSTR (APPL_NAME, 1,16) APPLICATION_NAME,

AVG(TIMESTAMPDIFF(4, CHAR(TIME_COMPLETED – TIME_CREATED)))
AS AVG_LIFETIME_MINUTES
COUNT(*) AS ACTIVITY_COUNT

FROM ACTIVITY_DB2ACTIVITIES
GROUP BY APPL_NAME
ORDER BY APPL_NAME

APPLICATION_NAME AVG_LIFETIME_MINUTES ACTIVITY_COUNT
================ ==================== ==============
MOSTLYSMALL1 120 21
MOSTLYSMALL2 110 15
UNIMPORTANTAPP 150 10213

An analysis of the activities according to the submitting application shows that a
large number of the longest-running activities were submitted by the
UNIMPORTANTAPP application, which is a relatively unimportant application. You can
use a workload to isolate this application from the other unclassified applications
and map it to a service class called BESTEFFORT, which receives resources only
when all other activities have their resource needs met.

According to the preceding results, the remaining applications in the default
service class appear to submit few large activities. You might find it worthwhile to
repeat the process of collecting activities executing in the default service class
without restricting the collection to long-running activities.

Chapter 7. Workload management scenarios 359

Step 4. Repeat steps 1 to 3 on that portion of the workload that
is still unclassified until the remaining unclassified work is not
worth classification

Now that you have the two important applications running in the
MOSTIMPORTANT service class and the unimportant application running in the
BESTEFFORT service class, much less work is running in the default user service
class. In this situation, it might be inexpensive to collect information about every
activity in this service class. Alternatively, you might not need to further subdivide
the work and can stop here. Assume that you want to collect information about the
remaining activities, in case the remaining workload contains surprises. You can
accomplish this task by setting COLLECT ACTIVITY DATA for the default user
service class and creating an activities event monitor:
ALTER SERVICE CLASS SYSDEFAULTSUBCLASS UNDER SYSDEFAULTUSERCLASS
COLLECT ACTIVITY DATA ON COORDINATOR WITHOUT DETAILS

Allow the system to run so that data is collected. You can analyze the results as in
step 3.
SELECT SUBSTR (APPL_NAME,1,16) APPLICATION_NAME,

AVG(TIMESTAMPDIFF(4, CHAR(TIME_COMPLETED – TIME_CREATED)))
AS AVG_LIFETIME_MINUTES
COUNT(*) AS ACTIVITY_COUNT

FROM ACTIVITY_DB2ACTIVITIES
GROUP BY APPL_NAME
ORDER BY APPL_NAME

APPLICATION_NAME AVG_LIFETIME_MINUTES ACTIVITY_COUNT
================ ==================== ==============
MOSTLYSMALL1 5 1501
MOSTLYSMALL2 7 124
ONLYSMALL 2 10123

The results show that the ONLYSMALL application produces the majority of the
unclassified activities. Because this application was not included in the results
when you collected information about the largest activities, you can assume that
ONLYSMALL did not produce any large queries during the period of data
collection.

360 DB2 Workload Management Guide and Reference

Chapter 8. Reference

Procedures and table functions

WLM_CANCEL_ACTIVITY - Cancel an activity
This procedure cancels a given activity. If the cancel takes place, an error message
will be returned to the application that submitted the activity that was cancelled.

Syntax

�� WLM_CANCEL_ACTIVITY (application_handle , uow_id , activity_id) ��

The schema is SYSPROC.

Procedure parameters

application_handle
An input argument of type BIGINT that specifies the application handle whose
activity is to be cancelled. If the argument is null, no activity will be found and
an SQL4702N with SQLSTATE 5U035 is returned.

uow_id
An input argument of type INTEGER that specifies the unit of work ID of the
activity that is to be cancelled. If the argument is null, no activity will be found
and an SQL4702N with SQLSTATE 5U035 is returned.

activity_id
An input argument of type INTEGER that specifies the activity ID which
uniquely identifies the activity within the unit of work that is to be cancelled.
If the argument is null, no activity will be found and an SQL4702N with
SQLSTATE 5U035 is returned.

Authorization

One of the following authorities is required to execute the routine:
v EXECUTE privilege on the routine
v DATAACCESS authority
v DBADM authority
v SQLADM authority
v WLMADM authority

Default PUBLIC privilege

None

Example

An administrator can use the
WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES table function to find the
application handle, unit of work ID and activity ID of an activity. To cancel an
activity with application handle 1, unit of work ID 2 and activity ID 3:

© Copyright IBM Corp. 2007, 2012 361

CALL WLM_CANCEL_ACTIVITY(1, 2, 3)

Usage notes
v If no activity can be found, an SQL4702N with SQLSTATE 5U035 is returned.
v If the activity cannot be cancelled because it not in the correct state (not

initialized), an SQL4703N (reason code 1) with SQLSTATE 5U016 is returned.
v If the activity is successfully cancelled, an SQL4725N with SQLSTATE 57014 is

returned to the cancelled application.
v If, at the time of the cancel, the coordinator is processing a request for a different

activity or is idle, the activity is placed into CANCEL_PENDING state and will
be cancelled when the coordinator processes the next request.

WLM_CAPTURE_ACTIVITY_IN_PROGRESS - Collect activity
information for activities event monitor

The WLM_CAPTURE_ACTIVITY_IN_PROGRESS procedure gathers information
about a specified activity and writes the information to the active activities event
monitor.

When you apply this procedure to an activity with child activities, the procedure
recursively generates a record for each child activity. This information is collected
and sent when you call the procedure; the procedure does not wait until the parent
activity completes execution. The record of the activity in the event monitor is
marked as a partial record.

Syntax

�� WLM_CAPTURE_ACTIVITY_IN_PROGRESS (application_handle , �

� uow_id , activity_id) ��

The schema is SYSPROC.

Procedure parameters

If you do not specify all of the following parameters, no activity is found, and
SQL4702N with SQLSTATE 5U035 is returned.

application_handle
An input argument of type BIGINT that specifies the handle of the application
whose activity information is to be captured.

uow_id
An input argument of type INTEGER that specifies the unit of work ID of the
activity whose information is to be captured.

activity_id
An input argument of type INTEGER that specifies the activity ID that
uniquely identifies the activity within the unit of work whose information is to
be captured.

Authorization

One of the following authorities is required to execute the routine:
v EXECUTE privilege on the routine

362 DB2 Workload Management Guide and Reference

v DATAACCESS authority
v DBADM authority
v SQLADM authority
v WLMADM authority

Default PUBLIC privilege

None

Example

Assume that a user complains that stored procedure MYSCHEMA.MYSLOWSTP
seems to be running more slowly than usual. The administrator wants to
investigate the cause of the slowdown. Investigating while the stored procedure is
running is not practical, so the administrator decides to capture information about
the stored procedure activity and all of the activities nested within it.

An event monitor for DB2 activities named DB2ACTIVITIES has been activated.
The administrator uses the WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES
function to obtain the application handle, unit of work ID and activity ID for the
call of this stored procedure. Assuming that the activity is identified by an
application handle of 1, a unit of work ID of 2 and an activity ID of 3, the
administrator can now issue the call to
WLM_CAPTURE_ACTIVITY_IN_PROGRESS as follows:

CALL WLM_CAPTURE_ACTIVITY_IN_PROGRESS(1,2,3)

After the procedure is completed, the administrator can use the following table
function to find out where the activity spent its time. The function retrieves the
information from the DB2ACTIVITIES event monitor.
CREATE FUNCTION SHOWCAPTUREDACTIVITY(APPHNDL BIGINT,

UOWID INTEGER,
ACTIVITYID INTEGER)

RETURNS TABLE (UOW_ID INTEGER, ACTIVITY_ID INTEGER, STMT_TEXT VARCHAR(40),
LIFE_TIME DOUBLE)

LANGUAGE SQL
READS SQL DATA
NO EXTERNAL ACTION
DETERMINISTIC
RETURN WITH RAH (LEVEL, APPL_ID, PARENT_UOW_ID, PARENT_ACTIVITY_ID,

UOW_ID, ACTIVITY_ID, STMT_TEXT, ACT_EXEC_TIME) AS
(SELECT 1, ROOT.APPL_ID, ROOT.PARENT_UOW_ID,

ROOT.PARENT_ACTIVITY_ID, ROOT.UOW_ID, ROOT.ACTIVITY_ID,
ROOTSTMT.STMT_TEXT, ACT_EXEC_TIME

FROM ACTIVITY_DB2ACTIVITIES ROOT, ACTIVITYSTMT_DB2ACTIVITIES ROOTSTMT
WHERE ROOT.APPL_ID = ROOTSTMT.APPL_ID AND ROOT.AGENT_ID = APPHNDL

AND ROOT.UOW_ID = ROOTSTMT.UOW_ID AND ROOT.UOW_ID = UOWID
AND ROOT.ACTIVITY_ID = ROOTSTMT.ACTIVITY_ID AND ROOT.ACTIVITY_ID = ACTIVITYID

UNION ALL
SELECT PARENT.LEVEL +1, CHILD.APPL_ID, CHILD.PARENT_UOW_ID,

CHILD.PARENT_ACTIVITY_ID, CHILD.UOW_ID,
CHILD.ACTIVITY_ID, CHILDSTMT.STMT_TEXT, CHILD.ACT_EXEC_TIME

FROM RAH PARENT, ACTIVITY_DB2ACTIVITIES CHILD,
ACTIVITYSTMT_DB2ACTIVITIES CHILDSTMT

WHERE PARENT.APPL_ID = CHILD.APPL_ID AND
CHILD.APPL_ID = CHILDSTMT.APPL_ID AND
PARENT.UOW_ID = CHILD.PARENT_UOW_ID AND
CHILD.UOW_ID = CHILDSTMT.UOW_ID AND
PARENT.ACTIVITY_ID = CHILD.PARENT_ACTIVITY_ID AND
CHILD.ACTIVITY_ID = CHILDSTMT.ACTIVITY_ID AND
PARENT.LEVEL < 64

Chapter 8. Reference 363

)
SELECT UOW_ID, ACTIVITY_ID, SUBSTR(STMT_TEXT,1,40),

ACT_EXEC_TIME AS
LIFE_TIME

FROM RAH

The following sample query uses the table function:
SELECT * FROM TABLE(SHOWCAPTUREDACTIVITY(1, 2, 3))

AS ACTS ORDER BY UOW_ID, ACTIVITY_ID

Usage notes

If there is no active activities event monitor, an SQL1633W with SQLSTATE 01H53
is returned.

Activity information is collected only on the coordinator member for the activity.

WLM_COLLECT_STATS - Collect and reset workload
management statistics

The WLM_COLLECT_STATS procedure gathers statistics for service classes,
workloads, work classes, and threshold queues and writes them to the statistics
event monitor. The procedure also resets the statistics for service classes,
workloads, work classes, and threshold queues. If there is no active statistics event
monitor, the procedure only resets the statistics.

Syntax

�� WLM_COLLECT_STATS ()
wait , statistics_timestamp

��

The schema is SYSPROC.

Procedure parameters

wait
An optional input argument of type CHAR that specifies whether this
procedure returns immediately after initiating a statistics collection and reset. If
'Y' is specified, then the procedure will not return until all statistics have been
written and flushed to the statistics event monitor tables. Otherwise, the
procedure will return immediately after initiating a statistics collection and
reset.

statistics_timestamp
An optional output argument of type TIMESTAMP that returns the timestamp
value for the beginning of the statistics collection.

Authorization

One of the following authorities is required to execute the routine:
v EXECUTE privilege on the routine
v DATAACCESS authority
v DBADM authority
v SQLADM authority
v WLMADM authority

364 DB2 Workload Management Guide and Reference

Default PUBLIC privilege

None

Examples

Example 1: Call WLM_COLLECT_STATS to initiate statistics collection and reset.
CALL WLM_COLLECT_STATS()

The following is an example of output from this query.
Return Status = 0

Example 2: Call WLM_COLLECT_STATS to collect and reset statistics, but not
return until data has been written to statistics event monitor tables

CALL WLM_COLLECT_STATS(’Y’, ::collect_timestamp)

The following is an example of output from this query.
Return Status = 0

Example 3: Call WLM_COLLECT_STATS to collect and reset statistics while another
call is in progress.

CALL WLM_COLLECT_STATS()

The following is an example of output from this query.
SQL1632W The collect and reset statistics request was ignored because
another collect and reset statistics request is already in progress.

Usage notes

The WLM_COLLECT_STATS procedure performs the same collection operation
(send statistics to the active statistics event monitor) and reset operation that occur
automatically on the interval defined by the wlm_collect_int database
configuration parameter.

If you call the procedure while another collection and reset request is in progress
(for example, while another invocation of the procedure is running or automatic
collection is occurring), SQL1632W with SQLSTATE 01H53 is returned, and your
new request is ignored.

In asynchronous mode, the WLM_COLLECT_STATS procedure only starts the
collection and reset process. The procedure might return to the caller before all
statistics have been written to the active statistics event monitor. Depending on
how quickly the statistics collection and reset occur, the call to the
WLM_COLLECT_STATS procedure (which is itself an activity) is counted in the
statistics for either the prior collection interval or the new collection interval that
has just started.

In synchronous mode, the WLM_COLLECT_STATS procedure does not return until
the statistics collection is complete and all statistics are written to the tables of any
active statistics event monitors. The timestamp at which the statistics collection
began is returned via the statistics_timestamp output parameter.

Chapter 8. Reference 365

WLM_GET_ACTIVITY_DETAILS - Return detailed information
about a specific activity

This function returns detailed information about a specific activity identified by its
application handle, unit of work ID, and activity ID. This information includes
details about any thresholds that the activity has violated.

Note: This table function has been deprecated and replaced by the
MON_GET_ACTIVITY_DETAILS table function.

This function returns basic statistics of one or more service subclasses.

Syntax

�� WLM_GET_ACTIVITY_DETAILS (application_handle , uow_id , �

� activity_id , member) ��

The schema is SYSPROC.

Table function parameters

application_handle
An input argument of type BIGINT that specifies a valid application handle. If
the argument is null, no rows are returned from this function. If the argument
is null, an SQL171N error is returned.

uow_id
An input argument of type INTEGER that specifies a valid unit of work
identifier unique within the application. If the argument is null, no rows are
returned from this function. If the argument is null, an SQL171N error is
returned.

activity_id
An input argument of type INTEGER that specifies a valid activity ID unique
within the unit of work. If the argument is null, no rows are returned from this
function. If the argument is null, an SQL171N error is returned.

member
An input argument of type INTEGER that specifies a valid member number in
the same instance as the currently connected database when calling this
function. Specify -1 for the current database member, or -2 for all database
members. If a null value is specified, -1 is set implicitly.

Authorization

One of the following authorities is required to execute the routine:
v EXECUTE privilege on the routine
v DATAACCESS authority
v DBADM authority
v SQLADM authority
v WLMADM authority

Default PUBLIC privilege

None

366 DB2 Workload Management Guide and Reference

Example

Detailed information about an individual activity can be obtained by using the
WLM_GET_ACTIVITY_DETAILS table function. This table function returns activity
information as name-value pairs for each member. This example is restricted to
showing only an eleven member subset of the name-value pairs for each member
for an activity identified by an application handle of 1, a unit of work ID of 1 and
an activity ID of 5. For a complete list of name-value pairs, see Table 68 on page
368 and Table 69 on page 369.

SELECT SUBSTR(CHAR(DBPARTITIONNUM),1,4) AS PART,
SUBSTR(NAME, 1, 20) AS NAME,
SUBSTR(VALUE, 1, 30) AS VALUE

FROM TABLE(WLM_GET_ACTIVITY_DETAILS(1, 1, 5, -2)) AS ACTDETAIL
WHERE NAME IN (’APPLICATION_HANDLE’,

’COORD_PARTITION_NUM’,
’LOCAL_START_TIME’,
’UOW_ID’,
’ACTIVITY_ID’,
’PARENT_UOW_ID’,
’PARENT_ACTIVITY_ID’,
’ACTIVITY_TYPE’,
’NESTING_LEVEL’,
’INVOCATION_ID’,
’ROUTINE_ID’)

ORDER BY PART

The following is an example of output from this query.
PART NAME VALUE
---- -------------------- ------------------------------
0 APPLICATION_HANDLE 1
0 COORD_PARTITION_NUM 0
0 LOCAL_START_TIME 2005-11-25-18.52.49.343000
0 UOW_ID 1
0 ACTIVITY_ID 5
0 PARENT_UOW_ID 1
0 PARENT_ACTIVITY_ID 3
0 ACTIVITY_TYPE READ_DML
0 NESTING_LEVEL 0
0 INVOCATION_ID 1
0 ROUTINE_ID 0
1 APPLICATION_HANDLE 1
1 COORD_PARTITION_NUM 0
1 LOCAL_START_TIME 2005-11-25-18.52.49.598000
1 UOW_ID 1
1 ACTIVITY_ID 5
1 PARENT_UOW_ID
1 PARENT_ACTIVITY_ID
1 ACTIVITY_TYPE READ_DML
1 NESTING_LEVEL 0
1 INVOCATION_ID 1
1 ROUTINE_ID 0

Usage note

An ACTIVITY_STATE of QUEUED means that the coordinator activity has made a
RPC to the catalog member to obtain threshold tickets and has not yet received a
response. Seeing this state might indicate that the activity has been queued by
WLM or, over short periods of time, might just indicate that the activity is in the
process of obtaining its tickets. To obtain a more accurate picture of whether or not
the activity is really being queued, one can determine which agent is working on
the activity (using the WLM_GET_SERVICE_CLASS_AGENTS table function) and

Chapter 8. Reference 367

find out whether this agent's event_object at the catalog member has a value of
WLM_QUEUE.

Information returned

Table 67. Information returned for WLM_GET_ACTIVITY_DETAILS

Column Name Data Type Description

DBPARTITIONNUM SMALLINT dbpartitionnum - Database partition number monitor
element

NAME VARCHAR(256) Element name. See Table 68 and Table 69 on page 369
for possible values.

VALUE VARCHAR(1024) Element values. See Table 68 and Table 69 on page 369
for possible values.

Table 68. Elements returned

Element Name Description

ACTIVITY_ID activity_id - Activity ID monitor element

ACTIVITY_STATE activity_state - Activity state monitor element

ACTIVITY_TYPE activity_type - Activity type monitor element

APPLICATION_HANDLE application_handle - Application handle monitor element

COORD_PARTITION_NUM coord_partition_num - Coordinator partition number
monitor element

DATABASE_WORK_ACTION_SET_ID If this activity has been mapped to a work action set that
has been applied to the database, this column contains
the ID of the work action set. This column contains 0 if
the activity has not been mapped to a work action set
that has been applied to the database.

DATABASE_WORK_CLASS_ID If this activity has been mapped to a work action set that
has been applied to the database, this column contains
the ID of the work class of this activity. This column
contains 0 if the activity has not been mapped to a work
action set that has been applied to the database.

EFFECTIVE_ISOLATION effective_isolation - Effective isolation monitor element

EFFECTIVE_LOCK_TIMEOUT effective_lock_timeout - Effective lock timeout monitor
element

EFFECTIVE_QUERY_DEGREE effective_query_degree - Effective query degree monitor
element

ENTRY_TIME entry_time - Entry time monitor element

INVOCATION_ID invocation_id - Invocation ID monitor element

LAST_REFERENCE_TIME last_reference_time - Last reference time monitor element

LOCAL_START_TIME local_start_time - Local start time monitor element

NESTING_LEVEL nesting_level - Nesting level monitor element

PACKAGE_NAME package_name - Package name monitor element

PACKAGE_SCHEMA package_schema - Package schema monitor element

PACKAGE_VERSION_ID package_version_id - Package version monitor element

PARENT_ACTIVITY_ID parent_activity_id - Parent activity ID monitor element

368 DB2 Workload Management Guide and Reference

Table 68. Elements returned (continued)

Element Name Description

PARENT_UOW_ID Unique unit of work identifier within an application.
Refers to the original unit of work this activity's parent
activity started in. Returns an empty string if the activity
has no parent activity or when at a remote member.

QUERY_COST_ESTIMATE query_cost_estimate - Query cost estimate monitor
element

ROUTINE_ID routine_id - Routine ID monitor element

ROWS_FETCHED rows_fetched - Rows fetched monitor element

ROWS_MODIFIED rows_modified - Rows modified monitor element

SECTION_NUMBER section_number - Section number monitor element

SERVICE_CLASS_ID service_class_id - Service class ID monitor element

SERVICE_CLASS_WORK_ACTION_SET_ID If this activity has been mapped to a work action set that
has been applied to a service class, this column contains
the ID of the work action set. This column contains 0 if
the activity has not been mapped to a work action set
that has been applied to a service class.

SERVICE_CLASS_WORK_CLASS_ID If this activity has been mapped to a work action set that
has been applied to a service class, this column contains
the ID of the work class of this activity. This column
contains 0 if the activity has not been mapped to a work
action set that has been applied to a service class.

STMT_PKG_CACHE_ID stmt_pkgcache_id - Statement package cache identifier
monitor element

STMT_TEXT stmt_text - SQL statement text monitor element

SYSTEM_CPU_TIME system_cpu_time - System CPU time monitor element

UOW_ID uow_id - Unit of work ID monitor element

USER_CPU_TIME user_cpu_time - User CPU time monitor element

UTILITY_ID utility_id - Utility ID monitor element

Important: The WLM_GET_ACTIVITY_DETAILS table function shows only the
thresholds that are currently being applied to an activity.

The following elements are returned only if the corresponding thresholds apply to
the activity.

Table 69. Elements returned if applicable

Element Name Description

ACTIVITYTOTALTIME_THRESHOLD_ID activitytotaltime_threshold_id - Activity total time
threshold ID monitor element

ACTIVITYTOTALTIME_THRESHOLD_VALUE activitytotaltime_threshold_value - Activity total
time threshold value monitor element

ACTIVITYTOTALTIME_THRESHOLD_VIOLATED activitytotaltime_threshold_violated - Activity total
time threshold violated monitor element

CONCURRENTDBCOORDACTIVITIES_DB
_THRESHOLD_ID

concurrentdbcoordactivities_db_threshold_id -
Concurrent database coordinator activities database
threshold ID monitor element

Chapter 8. Reference 369

Table 69. Elements returned if applicable (continued)

Element Name Description

CONCURRENTDBCOORDACTIVITIES_DB
_THRESHOLD_QUEUED

concurrentdbcoordactivities_db_threshold_queued -
Concurrent database coordinator activities database
threshold queued monitor element

CONCURRENTDBCOORDACTIVITIES_DB
_THRESHOLD_VALUE

concurrentdbcoordactivities_db_threshold_value -
Concurrent database coordinator activities database
threshold value monitor element

CONCURRENTDBCOORDACTIVITIES_DB
_THRESHOLD_VIOLATED

concurrentdbcoordactivities_db_threshold_violated -
Concurrent database coordinator activities database
threshold violated monitor element

CONCURRENTDBCOORDACTIVITIES_SUBCLASS
_THRESHOLD_ID

concurrentdbcoordactivities_subclass_threshold_id -
Concurrent database coordinator activities service
subclass threshold ID monitor element

CONCURRENTDBCOORDACTIVITIES_SUBCLASS
_THRESHOLD_QUEUED

'Yes' indicates that the activity was queued by the
CONCURRENTDBCOORDACTIVITIES_SUBCLASS
threshold. 'No' indicates that the activity was not
queued.

CONCURRENTDBCOORDACTIVITIES_SUBCLASS
_THRESHOLD_VALUE

concurrentdbcoordactivities_subclass
_threshold_value - Concurrent database coordinator
activities service subclass threshold value monitor
element

CONCURRENTDBCOORDACTIVITIES_SUBCLASS
_THRESHOLD_VIOLATED

'Yes' indicates that the activity violated the
CONCURRENTDBCOORDACTIVITIES_SUBCLASS
threshold. 'No' indicates that the activity has not yet
violated the threshold.

CONCURRENTDBCOORDACTIVITIES_SUPERCLASS
_THRESHOLD_ID

The ID of the
CONCURRENTDBCOORDACTIVITIES
_SUPERCLASS threshold that was applied to the
activity.

CONCURRENTDBCOORDACTIVITIES_SUPERCLASS
_THRESHOLD_QUEUED

'Yes' indicates that the activity was queued by
the CONCURRENTDBCOORDACTIVITIES
_SUPERCLASS threshold. 'No' indicates that the
activity was not queued.

CONCURRENTDBCOORDACTIVITIES_SUPERCLASS
_THRESHOLD_VALUE

The upper bound of the
CONCURRENTDBCOORDACTIVITIES
_SUPERCLASS threshold that was applied to the
activity.

CONCURRENTDBCOORDACTIVITIES_SUPERCLASS
_THRESHOLD_VIOLATED

'Yes' indicates that the activity violated the
CONCURRENTDBCOORDACTIVITIES
_SUPERCLASS threshold. 'No' indicates that the
activity has not yet violated the threshold.

CONCURRENTDBCOORDACTIVITIES_WORK_ACTION_SET
_THRESHOLD_ID

The ID of the
CONCURRENTDBCOORDACTIVITIES_WORK
_ACTION_SET threshold that was applied to the
activity.

CONCURRENTDBCOORDACTIVITIES_WORK_ACTION_SET
_THRESHOLD_QUEUED

'Yes' indicates that the activity was queued by
the CONCURRENTDBCOORDACTIVITIES
_WORK_ACTION_SET threshold. 'No' indicates
that the activity was not queued.

CONCURRENTDBCOORDACTIVITIES_WORK_ACTION_SET
_THRESHOLD_VALUE

The upper bound of the
CONCURRENTDBCOORDACTIVITIES_WORK
_ACTION_SET threshold that was applied to the
activity.

370 DB2 Workload Management Guide and Reference

Table 69. Elements returned if applicable (continued)

Element Name Description

CONCURRENTDBCOORDACTIVITIES_WORK_ACTION_SET
_THRESHOLD_VIOLATED

'Yes' indicates that the activity violated the
CONCURRENTDBCOORDACTIVITIES_WORK
_ACTION_SET threshold. 'No' indicates that the
activity has not yet violated the threshold.

CONCURRENTWORKLOADACTIVITIES
_THRESHOLD_ID

The ID of the
CONCURRENTWORKLOADACTIVITIES threshold
that was applied to the activity.

CONCURRENTWORKLOADACTIVITIES
_THRESHOLD_VALUE

The upper bound of the
CONCURRENTWORKLOADACTIVITIES threshold
that was applied to the activity.

CONCURRENTWORKLOADACTIVITIES
_THRESHOLD_VIOLATED

'Yes' indicates that the activity violated the
CONCURRENTWORKLOADACTIVITIES
threshold. 'No' indicates that the activity has not yet
violated the threshold.

ESTIMATEDSQLCOST_THRESHOLD_ID estimatedsqlcost_threshold_id - Estimated SQL cost
threshold ID monitor element

ESTIMATEDSQLCOST_THRESHOLD_VALUE estimatedsqlcost_threshold_value - Estimated SQL
cost threshold value monitor element

ESTIMATEDSQLCOST_THRESHOLD_VIOLATED estimatedsqlcost_threshold_violated - Estimated
SQL cost threshold violated monitor element

SQLROWSRETURNED_THRESHOLD_ID sqlrowsreturned_threshold_id - SQL rows read
returned threshold ID monitor element

SQLROWSRETURNED_THRESHOLD_VALUE sqlrowsreturned_threshold_value - SQL rows read
returned threshold value monitor element

SQLROWSRETURNED_THRESHOLD_VIOLATED sqlrowsreturned_threshold_violated - SQL rows
read returned threshold violated monitor element

SQLTEMPSPACE_THRESHOLD_ID sqltempspace_threshold_id - SQL temporary space
threshold ID monitor element

SQLTEMPSPACE_THRESHOLD_VALUE sqltempspace_threshold_value - SQL temporary
space threshold value monitor element

SQLTEMPSPACE_THRESHOLD_VIOLATED sqltempspace_threshold_violated - SQL temporary
space threshold violated monitor element

WLM_GET_QUEUE_STATS table function - Return threshold
queue statistics

The WLM_GET_QUEUE_STATS function returns basic statistics for one or more
threshold queues on all active members. This function returns one row of statistics
for each threshold queue.

Syntax

�� WLM_GET_QUEUE_STATS (threshold_predicate , threshold_domain , �

� threshold_name , threshold_id) ��

The schema is SYSPROC.

Chapter 8. Reference 371

Table function parameters

threshold_predicate
An input argument of type VARCHAR(27) that specifies a threshold predicate.
The possible values are as follows:

CONCDBC
Concurrent database coordinator activities threshold

DBCONN
Total database member connections threshold

SCCONN
Total service class member connections threshold

If the argument is null or an empty string, data is returned for all thresholds
that meet the other criteria.

The threshold_predicate values match those of the THRESHOLDPREDICATE
column in the SYSCAT.THRESHOLDS view.

threshold_domain
An input argument of type VARCHAR(18) that specifies a threshold domain.
The possible values are as follows:

DB Database

SB Service subclass

SP Service superclass

WA Work action set

If the argument is null or an empty string, data is returned for all thresholds
that meet the other criteria.

The threshold_domain values match those of the DOMAIN column in the
SYSCAT.THRESHOLDS view.

threshold_name
An input argument of type VARCHAR(128) that specifies a threshold name. If
the argument is null or an empty string, data is returned for all thresholds that
meet the other criteria. The threshold_name values match those of the
THRESHOLDNAME column in the SYSCAT.THRESHOLDS view.

threshold_id
An input argument of type INTEGER that specifies a threshold ID. If the
argument is null or -1, data is returned for all thresholds that meet the other
criteria. The threshold_id values match those of the THRESHOLDID column in
the SYSCAT.THRESHOLDS view.

Authorization

One of the following authorities is required to execute the routine:
v EXECUTE privilege on the routine
v DATAACCESS authority
v DBADM authority
v SQLADM authority
v WLMADM authority

372 DB2 Workload Management Guide and Reference

Default PUBLIC privilege

None

Example

The following query displays the basic statistics for all the queues on a system,
across all members:

SELECT substr(THRESHOLD_NAME, 1, 6) THRESHNAME,
THRESHOLD_PREDICATE,
THRESHOLD_DOMAIN,
MEMBER MEMB,
QUEUE_SIZE_TOP,
QUEUE_TIME_TOTAL,
QUEUE_ASSIGNMENTS_TOTAL QUEUE_ASSIGN

FROM table(WLM_GET_QUEUE_STATS(’’, ’’, ’’, -1)) as QSTATS

Sample output is as follows:
THRESHNAME THRESHOLD_PREDICATE THRESHOLD_DOMAIN ...
---------- --------------------------- ------------------ ...
LIMIT1 CONCDBC DB ...
LIMIT2 SCCONN SP ...
LIMIT3 DBCONN DB ...

... MEMB QUEUE_SIZE_TOP QUEUE_TIME_TOTAL QUEUE_ASSIGN

... ---- -------------- ---------------- ------------

... 0 12 1238540 734

... 0 4 741249 24

... 0 7 412785 128

Usage note

The function does not aggregate data across queues (on a member) or across
members (for one or more queues). However, you can use SQL queries to
aggregate data, as shown in the previous example.

Information returned

Table 70. Information returned for WLM_GET_QUEUE_STATS

Column name Data type Description

THRESHOLD_PREDICATE VARCHAR(27) threshold_predicate - Threshold
predicate monitor element

THRESHOLD_DOMAIN VARCHAR(18) threshold_domain - Threshold domain
monitor element

THRESHOLD_NAME VARCHAR(128) threshold_name - Threshold name
monitor element

THRESHOLD_ID INTEGER thresholdid - Threshold ID monitor
element

DBPARTITIONNUM SMALLINT dbpartitionnum - Database partition
number monitor element

SERVICE_SUPERCLASS_NAME VARCHAR(128) service_superclass_name - Service
superclass name monitor element

SERVICE_SUBCLASS_NAME VARCHAR(128) service_subclass_name - Service
subclass name monitor element

WORK_ACTION_SET_NAME VARCHAR(128) work_action_set_name - Work action
set name monitor element

Chapter 8. Reference 373

Table 70. Information returned for WLM_GET_QUEUE_STATS (continued)

Column name Data type Description

WORK_CLASS_NAME VARCHAR(128) work_class_name - Work class name
monitor element

WORKLOAD_NAME VARCHAR(128) workload_name - Workload name
monitor element

LAST_RESET TIMESTAMP last_reset - Last Reset Timestamp
monitor element

QUEUE_SIZE_TOP INTEGER queue_size_top - Queue size top
monitor element

QUEUE_TIME_TOTAL BIGINT queue_time_total - Queue time total
monitor element

QUEUE_ASSIGNMENTS_TOTAL BIGINT queue_assignments_total - Queue
assignments total monitor element

QUEUE_SIZE_CURRENT INTEGER Number of connections or activities in
the queue.

QUEUE_TIME_LATEST BIGINT Time spent in the queue by the last
connection or activity to leave the
queue. Units are milliseconds.

QUEUE_EXIT_TIME_LATEST TIMESTAMP Time that the last connection or
activity left the queue.

THRESHOLD_CURRENT_CONCURRENCY INTEGER Number of connections or activities
that are currently running according to
the threshold.

THRESHOLD_MAX_CONCURRENCY INTEGER Maximum number of connections or
activities that the threshold allows to
be concurrently running.

MEMBER SMALLINT member - Database member monitor
element

WLM_GET_SERVICE_CLASS_AGENTS table function - list
agents running in a service class

The WLM_GET_SERVICE_CLASS_AGENTS function returns the list of agents,
fenced mode processes (db2fmp processes), and system entities on a specified
member that are running in a specified service class or on behalf of a specified
application. The system entities are non-agent threads and processes, such as page
cleaners and prefetchers.

Refer to Table 71 on page 377 for a complete list of information that can be
returned.

Syntax

�� WLM_GET_SERVICE_CLASS_AGENTS (service_superclass_name , �

� service_subclass_name , application_handle , member) ��

The schema is SYSPROC.

374 DB2 Workload Management Guide and Reference

Table function parameters

service_superclass_name
An input argument of type VARCHAR(128) that specifies the name of a service
superclass in the currently connected database. If the argument is null or an
empty string, data is retrieved for all the superclasses in the database.

service_subclass_name
An input argument of type VARCHAR(128) that refers to a specific subclass
within a superclass. If the argument is null or an empty string, data is
retrieved for all the subclasses in the database.

application_handle
An input argument of type BIGINT that specifies the application handle for
which agent information is to be returned. If the argument is null, data is
retrieved for all applications in the database. An application handle of 0
returns the system entities only.

member
An input argument of type INTEGER that specifies the member number in the
same instance as the currently connected database. Specify -1 for the current
database member, or -2 for all database members. If a null value is specified, -1
is set implicitly.

Authorization

One of the following authorities is required to execute the routine:
v EXECUTE privilege on the routine
v DATAACCESS authority
v DBADM authority
v SQLADM authority
v WLMADM authority

Default PUBLIC privilege

None

Example 1

The following query returns a list of agents that are associated with application
handle 1 for all database members. You can determine the application handle by
using the LIST APPLICATIONS command or the
WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES table function.

SELECT SUBSTR(CHAR(APPLICATION_HANDLE),1,7) AS APPHANDLE,
SUBSTR(CHAR(MEMBER),1,4) AS MEMB,
SUBSTR(CHAR(AGENT_TID),1,9) AS AGENT_TID,
SUBSTR(AGENT_TYPE,1,11) AS AGENTTYPE,
SUBSTR(AGENT_STATE,1,10) AS AGENTSTATE,
SUBSTR(REQUEST_TYPE,1,12) AS REQTYPE,
SUBSTR(CHAR(UOW_ID),1,6) AS UOW_ID,
SUBSTR(CHAR(ACTIVITY_ID),1,6) AS ACT_ID

FROM TABLE(WLM_GET_SERVICE_CLASS_AGENTS(CAST(NULL AS VARCHAR(128)),
CAST(NULL AS VARCHAR(128)), 1, -2)) AS SCDETAILS

ORDER BY APPHANDLE, MEMB, AGENT_TID

Sample output is as follows:

Chapter 8. Reference 375

APPHANDLE MEMB AGENT_TID AGENTTYPE AGENTSTATE REQTYPE UOW_ID ACT_ID
--------- ---- --------- ----------- ---------- -------------- ------ ------
1 0 3 COORDINATOR ACTIVE FETCH 1 5
1 0 4 SUBAGENT ACTIVE SUBSECTION:1 1 5
1 1 2 SUBAGENT ACTIVE SUBSECTION:2 1 5

The output shows a coordinator agent and a subagent on member 0 and a
subagent on member 1 operating on behalf of an activity with UOW ID 1 and
activity ID 5. The AGENTTYPE column with a value of COORDINATOR has a value of
FETCH for the REQTYPE column (which indicates the main or initial request type).
This means that the type of request is a fetch request for the coordinator agent.

Example 2

The following query determines which lock an agent is waiting on:
db2 select event_object, event_type, event_state, varchar(event_object_name, 30)

as event_object_name
from table(WLM_GET_SERVICE_CLASS_AGENTS(’’,’’,cast(NULL as bigint), -1)) as t

Sample output is as follows:
EVENT_OBJECT EVENT_TYPE EVENT_STATE EVENT_OBJECT_NAME
--------------- ----------------- ------------------- --------------------------
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST WAIT IDLE -
LOCK ACQUIRE IDLE 02000500000000000000000054
ROUTINE PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -

21 record(s) selected.

Using the same query at a later time shows that the WLM threshold has queued
an agent:
EVENT_OBJECT EVENT_TYPE EVENT_STATE EVENT_OBJECT_NAME
--------------- ----------------- ------------------- --------------------------
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
WLM_QUEUE WAIT IDLE MYCONCDBCOORDTH
ROUTINE PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -

376 DB2 Workload Management Guide and Reference

REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -

21 record(s) selected.

Usage note

The parameters are, in effect, ANDed together. That is, if you specify conflicting
input parameters, such as a service superclass SUP_A and a subclass SUB_B such
that SUB_B is not a subclass of SUP_A, no rows are returned.

Information returned

Table 71. Information returned by WLM_GET_SERVICE_CLASS_AGENTS

Column name Data type Description

SERVICE_SUPERCLASS_NAME VARCHAR
(128)

service_superclass_name - Service superclass name monitor
element

SERVICE_SUBCLASS_NAME VARCHAR
(128)

service_subclass_name - Service subclass name monitor
element

APPLICATION_HANDLE BIGINT application_handle - Application handle monitor element

DBPARTITIONNUM SMALLINT dbpartitionnum - Database partition number monitor
element

ENTITY VARCHAR (32) One of the following values:

v If the type of entity is an agent, the value is db2agent.

v If the type of entity is a fenced mode process, the value is
db2fmp (pid) where pid is the process ID of the fenced
mode process.

v Otherwise, the value is the name of the system entity.

WORKLOAD_NAME VARCHAR
(128)

workload_name - Workload name monitor element

WORKLOAD_OCCURRENCE_ID INTEGER workload_occurrence_id - Workload occurrence identifier
monitor element

UOW_ID INTEGER uow_id - Unit of work ID monitor element

ACTIVITY_ID INTEGER activity_id - Activity ID monitor element

PARENT_UOW_ID INTEGER parent_uow_id - Parent unit of work ID monitor element

PARENT_ACTIVITY_ID INTEGER parent_activity_id - Parent activity ID monitor element

AGENT_TID BIGINT agent_tid - Agent thread ID monitor element

AGENT_TYPE VARCHAR (32) Agent type. The agent types are as follows:

v COORDINATOR

v OTHER

v PDBSUBAGENT

v SMPSUBAGENT

If the value is COORDINATOR, the agent ID might change
in concentrator environments.

SMP_COORDINATOR INTEGER Indication of whether the agent is an SMP coordinator: 1 for
yes and 0 for no.

Chapter 8. Reference 377

Table 71. Information returned by WLM_GET_SERVICE_CLASS_AGENTS (continued)

Column name Data type Description

AGENT_SUBTYPE VARCHAR (32) Agent subtype. The possible subtypes are as follows:

v DSS

v OTHER

v RPC

v SMP

AGENT_STATE VARCHAR (32) Indication of whether an agent is associated or active. The
possible values are:

v ASSOCIATED

v ACTIVE

EVENT_TYPE VARCHAR (32) Type of event last processed by this agent. The possible
values are as follows:

v ACQUIRE

v PROCESS

v WAIT

See Table 72 on page 381 for more information about
possible values for this column.

EVENT_OBJECT VARCHAR (32) Object of the event last processed by this agent. The possible
values are as follows:

v COMPRESSION_DICTIONARY_BUILD

v IMPLICIT_REBIND

v INDEX_RECREATE

v LOCK

v LOCK_ESCALATION

v QP_QUEUE

v REMOTE_REQUEST

v REQUEST

v ROUTINE

v WLM_QUEUE

See Table 72 on page 381 for more information about
possible values for this column.

EVENT_STATE VARCHAR (32) State of the event last processed by this agent. The possible
values are as follows:

v EXECUTING

v IDLE

See Table 72 on page 381 for more information about
possible values for this column.

REQUEST_ID VARCHAR (64) Request ID. This value is unique only in combination with
the value of application_handle. You can use this combination
to distinguish between one request that is taking a long time
and multiple requests; for example, to distinguish between
one long fetch and multiple fetches.

378 DB2 Workload Management Guide and Reference

Table 71. Information returned by WLM_GET_SERVICE_CLASS_AGENTS (continued)

Column name Data type Description

REQUEST_TYPE VARCHAR (32) Type of request. The possible values are as follows:

v For coordinator agents:

– CLOSE

– COMMIT

– COMPILE

– DESCRIBE

– EXCSQLSET

– EXECIMMD

– EXECUTE

– FETCH

– INTERNAL number, where number is the value of the
internal constant

– OPEN

– PREPARE

– REBIND

– REDISTRIBUTE

– REORG

– ROLLBACK

– RUNSTATS

v For subagents with an AGENT_SUBTYPE of DSS or SMP:

– If the subsection number is nonzero, the subsection
number in the form SUBSECTION:subsection number;
otherwise, returns NULL.

Chapter 8. Reference 379

Table 71. Information returned by WLM_GET_SERVICE_CLASS_AGENTS (continued)

Column name Data type Description

REQUEST_TYPE (continued) VARCHAR (32) v For subagents with an AGENT_SUBTYPE of RPC:

– ABP

– CATALOG

– INTERNAL

– REORG

– RUNSTATS

– WLM

v For subagents with a SUBTYPE of OTHER:

– ABP

– APP_RBSVPT

– APP_RELSVPT

– BACKUP

– CLOSE

– EXTERNAL_RBSVPT

– EVMON

– FORCE

– FORCE_ALL

– INTERNAL number, where number is the value of the
internal constant

– INTERRUPT

– NOOP (if there is no request)

– QP

– REDISTRIBUTE

– STMT_RBSVPT

– STOP_USING

– UPDATE_DBM_CFG

– WLM

NESTING_LEVEL INTEGER nesting_level - Nesting level monitor element

INVOCATION_ID INTEGER invocation_id - Invocation ID monitor element

ROUTINE_ID INTEGER routine_id - Routine ID monitor element

EVENT_OBJECT_NAME VARCHAR
(1024)

Event object name. If the value of EVENT_OBJECT is LOCK,
the value of this column is the name of the lock that the
agent is waiting on. If the value of EVENT_OBJECT is
WLM_QUEUE, the value of the column is the name of the
WLM threshold that the agent is queued on. Otherwise, the
value is NULL.

APPLICATION_NAME VARCHAR
(128)

appl_name - Application name

APPLICATION_ID VARCHAR
(128)

appl_id - Application ID

CLIENT_PID BIGINT client_pid - Client process ID

SESSION_AUTH_ID VARCHAR
(128)

session_auth_id - Session authorization ID

REQUEST_START_TIME TIMESTAMP Time that the agent started processing the request on which
it is currently working

380 DB2 Workload Management Guide and Reference

Table 71. Information returned by WLM_GET_SERVICE_CLASS_AGENTS (continued)

Column name Data type Description

AGENT_STATE_LAST
_UPDATE_TIME

TIMESTAMP The last time that the event, being processed by the agent,
was changed. The event currently processed by the agent is
identified by the EVENT_TYPE, EVENT_OBJECT, and
EVENT_STATE columns.

EXECUTABLE_ID VARCHAR (32)
FOR BIT DATA

executable_id - Executable ID monitor element

MEMBER SMALLINT member - Database member monitor element

Note: The possible combinations of EVENT_STATE, EVENT_TYPE,
EVENT_OBJECT and EVENT_OBJECT_NAME column values are listed in the
following table.

Table 72. Possible combinations for EVENT_STATE, EVENT_TYPE, EVENT_OBJECT and EVENT_OBJECT_NAME
column values

Event description EVENT_STATE value EVENT_TYPE value
EVENT_OBJECT
value

EVENT_OBJECT_
NAME value

Acquire lock IDLE ACQUIRE LOCK Lock name

Escalate lock EXECUTING PROCESS LOCK_ESCALATION NULL

Process request EXECUTING PROCESS REQUEST NULL

Wait for a new
request

IDLE WAIT REQUEST NULL

Wait for a request to
be processed at a
remote member

IDLE WAIT REMOTE_REQUEST NULL

Wait on a WLM
threshold queue

IDLE WAIT WLM_QUEUE Threshold name

Process a routine EXECUTING PROCESS ROUTINE NULL

Re-create an index EXECUTING PROCESS INDEX_RECREATE NULL

Build compression
dictionary

EXECUTING PROCESS COMP_DICT_BLD NULL

Implicit rebind EXECUTING PROCESS IMPLICIT_REBIND NULL

WLM_GET_SERVICE_CLASS
_WORKLOAD_OCCURRENCES - list workload occurrences

The WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES function returns
the list of all workload occurrences running in a specified service class on a
particular member. A workload occurrence is a specific database connection whose
attributes match the definition of a workload and hence is associated with or
assigned to the workload.

Refer to Table 73 on page 383 for a complete list of information that can be
returned.

Syntax

�� WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES (service_superclass_name , �

Chapter 8. Reference 381

� service_subclass_name , member) ��

The schema is SYSPROC.

Table function parameters

service_superclass_name
An input argument of type VARCHAR(128) that specifies the name of a service
superclass in the currently connected database. If the argument is null or an
empty string, the data is retrieved for all the superclasses in the database that
match the values of the other parameters.

service_subclass_name
Target service subclass for the workload occurrence. Any work submitted by
this workload occurrence will run in this service subclass under the target
service superclass with the exception of activities that are mapped, or
remapped, to a different subclass.

member
An input argument of type INTEGER that specifies the number of a member in
the same instance as the currently connected database. Specify -1 for the
current database member, or -2 for all database members. If the null value is
specified, -1 is set implicitly.

Authorization

One of the following authorities is required to execute the routine:
v EXECUTE privilege on the routine
v DATAACCESS authority
v DBADM authority
v SQLADM authority
v WLMADM authority

Default PUBLIC privilege

None

Example

If an administrator wants to see what workload occurrences are running on the
system as a whole, the administrator can call the
WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES function by
specifying a null value or an empty string for service_superclass_name and
service_subclass_name and -2 for member:

SELECT SUBSTR(SERVICE_SUPERCLASS_NAME,1,19) AS SUPERCLASS_NAME,
SUBSTR(SERVICE_SUBCLASS_NAME,1,18) AS SUBCLASS_NAME,
SUBSTR(CHAR(MEMBER),1,4) AS MEMB,
SUBSTR(CHAR(COORD_MEMBER),1,4) AS COORDMEMB,
SUBSTR(CHAR(APPLICATION_HANDLE),1,7) AS APPHNDL,
SUBSTR(WORKLOAD_NAME,1,22) AS WORKLOAD_NAME,
SUBSTR(CHAR(WORKLOAD_OCCURRENCE_ID),1,6) AS WLO_ID

FROM TABLE(WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES
(CAST(NULL AS VARCHAR(128)), CAST(NULL AS VARCHAR(128)), -2))
AS SCINFO

ORDER BY SUPERCLASS_NAME, SUBCLASS_NAME, MEMB, APPHNDL,
WORKLOAD_NAME, WLO_ID

382 DB2 Workload Management Guide and Reference

If the system has four database members and is currently running two workloads,
the previous query produces results such as the following ones:
SUPERCLASS_NAME SUBCLASS_NAME MEMB COORDMEMB ...
------------------- ------------------ ---- --------- ...
SYSDEFAULTMAINTENAN SYSDEFAULTSUBCLASS 0 0 ...
SYSDEFAULTSYSTEMCLA SYSDEFAULTSUBCLASS 0 0 ...
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 0 0 ...
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 0 0 ...
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 1 0 ...
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 1 0 ...
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 2 0 ...
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 2 0 ...
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 3 0 ...
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 3 0 ...

... APPHNDL WORKLOAD_NAME WLO_ID

... ------- ---------------------- ------

... - - -

... - - -

... 1 SYSDEFAULTUSERWORKLOAD 1

... 2 SYSDEFAULTUSERWORKLOAD 2

... 1 SYSDEFAULTUSERWORKLOAD 1

... 2 SYSDEFAULTUSERWORKLOAD 2

... 1 SYSDEFAULTUSERWORKLOAD 1

... 2 SYSDEFAULTUSERWORKLOAD 2

... 1 SYSDEFAULTUSERWORKLOAD 1

... 2 SYSDEFAULTUSERWORKLOAD 2

Usage note

The parameters are, in effect, ANDed together. That is, if you specify conflicting
input parameters, such as a service superclass SUP_A and a subclass SUB_B such
that SUB_B is not a subclass of SUP_A, no rows are returned.

Note: Statistics reported for the workload occurrence (for example,
coord_act_completed_total) are reset at the beginning of each unit of work when
they are combined with the corresponding workload statistics.

Information returned

Table 73. Information returned for WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES

Column name Data type Description

SERVICE_SUPERCLASS_NAME VARCHAR(128) service_superclass_name - Service superclass
name monitor element

SERVICE_SUBCLASS_NAME VARCHAR(128) service_subclass_name - Service subclass name
monitor element

DBPARTITIONNUM SMALLINT dbpartitionnum - Database partition number
monitor element

COORD_PARTITION_NUM SMALLINT coord_partition_num - Coordinator partition
number monitor element

APPLICATION_HANDLE BIGINT application_handle - Application handle monitor
element

WORKLOAD_NAME VARCHAR(128) workload_name - Workload name monitor
element

WORKLOAD_OCCURRENCE_ID INTEGER workload_occurrence_id - Workload occurrence
identifier monitor element

UOW_ID INTEGER uow_id - Unit of work ID monitor element

Chapter 8. Reference 383

Table 73. Information returned for WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES (continued)

Column name Data type Description

WORKLOAD_OCCURRENCE_STATE VARCHAR(32) workload_occurrence_state - Workload
occurrence state monitor element

SYSTEM_AUTH_ID VARCHAR(128) system_auth_id - System authorization identifier
monitor element

SESSION_AUTH_ID VARCHAR(128) session_auth_id - Session authorization ID
monitor element

APPLICATION_NAME VARCHAR(128) appl_name - Application name monitor element

CLIENT_WRKSTNNAME VARCHAR(255) client_wrkstnname - Client workstation name
monitor element

CLIENT_ACCTNG VARCHAR(255) client_acctng - Client accounting string monitor
element

CLIENT_USER VARCHAR(255) Current value of the CLIENT_USERID special
register for this workload occurrence.

CLIENT_APPLNAME VARCHAR(255) client_applname - Client application name
monitor element

COORD_ACT_COMPLETED_TOTAL INTEGER coord_act_completed_total - Coordinator
activities completed total monitor element

COORD_ACT_ABORTED_TOTAL INTEGER coord_act_aborted_total - Coordinator activities
aborted total monitor element

COORD_ACT_REJECTED_TOTAL INTEGER coord_act_rejected_total - Coordinator activities
rejected total monitor element

CONCURRENT_ACT_TOP INTEGER concurrent_act_top - Concurrent activity top
monitor element

ADDRESS VARCHAR(255) address - IP address from which the connection
was initiated

APPL_ID VARCHAR(128) appl_id - Application ID

MEMBER SMALLINT member - Database member monitor element

COORD_MEMBER SMALLINT coord_member - Coordinator member monitor
element

WLM_GET_SERVICE_SUBCLASS_STATS table function -
Return statistics of service subclasses

The WLM_GET_SERVICE_SUBCLASS_STATS function returns basic statistics for
one or more service subclasses.

Refer to Table 74 on page 387 for a complete list of information that can be
returned.

Syntax

�� WLM_GET_SERVICE_SUBCLASS_STATS (service_superclass_name , �

� service_subclass_name , member) ��

The schema is SYSPROC.

384 DB2 Workload Management Guide and Reference

Table function parameters

service_superclass_name
An input argument of type VARCHAR(128) that specifies the name of a service
superclass in the currently connected database. If the argument is null or an
empty string, the data is retrieved for all of the superclasses in the database.

service_subclass_name
An input argument of type VARCHAR(128) that specifies the name of a service
subclass in the currently connected database. If the argument is null or an
empty string, the data is retrieved for all of the subclasses in the database.

member
An input argument of type INTEGER that specifies a valid member number in
the same instance as the currently connected database. Specify -1 for the
current member, or -2 for all database members. If the null value is specified,
-1 is set implicitly.

Authorization

One of the following authorities is required to execute the routine:
v EXECUTE privilege on the routine
v DATAACCESS authority
v DBADM authority
v SQLADM authority
v WLMADM authority

Default PUBLIC privilege

None

Examples

Example 1: Because every activity must be mapped to a DB2 service class before
being run, you can monitor the global state of the system by using the service class
statistics table functions and querying all of the service classes on all members. In
the following example, a null value is passed for service_superclass_name and
service_subclass_name to return statistics for all service classes, and the value -2 is
specified for member to return statistics for all members:
SELECT SUBSTR(SERVICE_SUPERCLASS_NAME,1,19) AS SUPERCLASS_NAME,

SUBSTR(SERVICE_SUBCLASS_NAME,1,18) AS SUBCLASS_NAME,
SUBSTR(CHAR(MEMBER),1,4) AS MEMB,
CAST(COORD_ACT_LIFETIME_AVG / 1000 AS DECIMAL(9,3))

AS AVGLIFETIME,
CAST(COORD_ACT_LIFETIME_STDDEV / 1000 AS DECIMAL(9,3))

AS STDDEVLIFETIME,
SUBSTR(CAST(LAST_RESET AS VARCHAR(30)),1,16) AS LAST_RESET

FROM TABLE(WLM_GET_SERVICE_SUBCLASS_STATS(CAST(NULL AS VARCHAR(128)),
CAST(NULL AS VARCHAR(128)), -2)) AS SCSTATS

ORDER BY SUPERCLASS_NAME, SUBCLASS_NAME, MEMB

The statement returns service class statistics such as average activity lifetime and
standard deviation in seconds, as shown in the following sample output:
SUPERCLASS_NAME SUBCLASS_NAME MEMB ...
------------------- ------------------ ---- ...
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 0 ...

Chapter 8. Reference 385

SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 1 ...
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 2 ...
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 3 ...

... AVGLIFETIME STDDEVLIFETIME LAST_RESET

... ----------- -------------- ----------------

... 691.242 34.322 2006-07-24-11.44

... 644.740 22.124 2006-07-24-11.44

... 612.431 43.347 2006-07-24-11.44

... 593.451 28.329 2006-07-24-11.44

Example 2: The same table function can also give the highest value for average
concurrency of coordinator activities running in the service class on each member:

SELECT SUBSTR(SERVICE_SUPERCLASS_NAME,1,19) AS SUPERCLASS_NAME,
SUBSTR(SERVICE_SUBCLASS_NAME,1,18) AS SUBCLASS_NAME,
SUBSTR(CHAR(MEMBER),1,4) AS MEMB,
CONCURRENT_ACT_TOP AS ACTTOP,
CONCURRENT_WLO_TOP AS CONNTOP

FROM TABLE(WLM_GET_SERVICE_SUBCLASS_STATS(CAST(NULL AS VARCHAR(128)),
CAST(NULL AS VARCHAR(128)), -2)) AS SCSTATS

ORDER BY SUPERCLASS_NAME, SUBCLASS_NAME, MEMB

Sample output is as follows:
SUPERCLASS_NAME SUBCLASS_NAME MEMB ACTTOP CONNTOP
------------------- ------------------ ---- --------- ---------
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 0 10 7
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 1 0 0
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 2 0 0
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 3 0 0

By checking the average execution times and numbers of activities in the output of
this table function, you can get a good high-level view of the load on each member
for a specific database. Any significant variations in the high-level gauges returned
by this table function might indicate a change in the load on the system.

Example 3: If an activity uses thresholds with REMAP ACTIVITY TO actions, the
activity might spend time in more than one service class during its lifetime. You
can determine how many activities have passed through a set of service classes by
looking at the ACTIVITIES_MAPPED_IN and ACTIVITIES_MAPPED_OUT
columns, as shown in the following example:
SELECT SUBSTR(SERVICE_SUPERCLASS_NAME,1,19) AS SUPERCLASS_NAME,

SUBSTR(SERVICE_SUBCLASS_NAME,1,18) AS SUBCLASS_NAME,
ACTIVITIES_MAPPED_IN AS MAPPED_IN,
ACTIVITIES_MAPPED_OUT AS MAPPED_OUT

FROM TABLE(WLM_GET_SERVICE_SUBCLASS_STATS(CAST(NULL AS VARCHAR(128)),
CAST(NULL AS VARCHAR(128)), -2)) AS SCSTATS

ORDER BY SUPERCLASS_NAME, SUBCLASS_NAME

Sample output is as follows:
SUPERCLASS_NAME SUBCLASS_NAME MAPPED_IN MAPPED_OUT
------------------- ------------------ --------- ----------
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 0 0
SUPERCLASS1 SYSDEFAULTSUBCLASS 0 0
SUPERCLASS1 SUBCLASS1 0 7
SUPERCLASS1 SUBCLASS2 7 0

Usage notes

Some statistics are returned only if you set the COLLECT AGGREGATE ACTIVITY
DATA and COLLECT AGGREGATE REQUEST DATA parameters for the
corresponding service subclass to a value other than NONE.

386 DB2 Workload Management Guide and Reference

The WLM_GET_SERVICE_SUBCLASS_STATS table function returns one row of
data per service subclass and per member. The function does not aggregate data
across service classes (on a partition) or across partitions (for one or more service
classes). However, you can use SQL queries to aggregate data.

The parameters are, in effect, ANDed together. That is, if you specify conflicting
input parameters, such as a superclass named SUPA and a subclass named SUBB
such that SUBB is not a subclass of SUPA, no rows are returned.

Information returned

Table 74. Information returned for WLM_GET_SERVICE_SUBCLASS_STATS

Column name Data type Description

SERVICE_SUPERCLASS_NAME VARCHAR(128) service_superclass_name - Service
superclass name monitor element

SERVICE_SUBCLASS_NAME VARCHAR(128) service_subclass_name - Service subclass
name monitor element

DBPARTITIONNUM SMALLINT dbpartitionnum - Database partition
number monitor element

LAST_RESET TIMESTAMP last_reset - Last Reset Timestamp monitor
element

COORD_ACT_COMPLETED_TOTAL BIGINT coord_act_completed_total - Coordinator
activities completed total monitor element

COORD_ACT_ABORTED_TOTAL BIGINT coord_act_aborted_total - Coordinator
activities aborted total monitor element

COORD_ACT_REJECTED_TOTAL BIGINT coord_act_rejected_total - Coordinator
activities rejected total monitor element

CONCURRENT_ACT_TOP INTEGER concurrent_act_top - Concurrent activity
top monitor element

COORD_ACT_LIFETIME_TOP BIGINT coord_act_lifetime_top - Coordinator
activity lifetime top monitor element

COORD_ACT_LIFETIME_AVG DOUBLE coord_act_lifetime_avg - Coordinator
activity lifetime average monitor element

COORD_ACT_LIFETIME_STDDEV DOUBLE Standard deviation of lifetime for
coordinator activities at nesting level 0 that
were associated with this service subclass
since the last reset. If the COLLECT
AGGREGATE ACTIVITY DATA parameter
of the service class is set to NONE, the
value of the column is null. Units are
milliseconds.

This standard deviation is computed from
the coordinator activity lifetime histogram
and may be inaccurate if the histogram is
not correctly sized to fit the data. The value
of -1 is returned if any values fall into the
last histogram bin.

The COORD_ACT_LIFETIME_STDDEV
value of a service subclass is unaffected by
activities that pass through the service
subclass but are remapped to a different
subclass before they are completed.

Chapter 8. Reference 387

Table 74. Information returned for WLM_GET_SERVICE_SUBCLASS_STATS (continued)

Column name Data type Description

COORD_ACT_EXEC_TIME_AVG DOUBLE coord_act_exec_time_avg - Coordinator
activities execution time average monitor
element

COORD_ACT_EXEC_TIME_STDDEV DOUBLE Standard deviation of the execution times
for coordinator activities at nesting level 0
that were associated with this service
subclass since the last reset. Units are
milliseconds.

This standard deviation is computed from
the coordinator activity executetime
histogram and may be inaccurate if the
histogram is not correctly sized to fit the
data. The value of -1 is returned if any
values fall into the last histogram bin.

The execution time standard deviation of a
service subclass is unaffected by activities
that pass through the subclass but are
remapped to a different subclass before
they are completed.

COORD_ACT_QUEUE_TIME_AVG DOUBLE coord_act_queue_time_avg - Coordinator
activity queue time average monitor
element

COORD_ACT_QUEUE_TIME_STDDEV DOUBLE Standard deviation of the queue time for
coordinator activities at nesting level 0 that
were associated with this service subclass
since the last reset. If the COLLECT
AGGREGATE ACTIVITY DATA parameter
of the service class is set to NONE, the
value of the column is null. Units are
milliseconds.

This standard deviation is computed from
the coordinator activity queuetime
histogram and may be inaccurate if the
histogram is not correctly sized to fit the
data. The value of -1 is returned if any
values fall into the last histogram bin.

The queue time standard deviation is
counted only toward the service subclass in
which the activity was queued.

NUM_REQUESTS_ACTIVE BIGINT Number of requests that are running in the
service subclass at the time that this table
function is running.

388 DB2 Workload Management Guide and Reference

Table 74. Information returned for WLM_GET_SERVICE_SUBCLASS_STATS (continued)

Column name Data type Description

NUM_REQUESTS_TOTAL BIGINT Number of requests that finished running
in this service subclass since the last reset.
This finished state applies to any request
regardless of its membership in an activity.
If the COLLECT AGGREGATE ACTIVITY
DATA parameter of the service class is set
to NONE, the value of the column is null.

The NUM_REQUESTS_TOTAL value of a
service subclass is unaffected by requests
that pass through the service subclass but
are not completed in it.

REQUEST_EXEC_TIME_AVG DOUBLE request_exec_time_avg - Request execution
time average monitor element

REQUEST_EXEC_TIME_STDDEV DOUBLE Standard deviation of the execution times
for requests that were associated with this
service subclass since the last reset. Units
are milliseconds. If the COLLECT
AGGREGATE REQUEST DATA parameter
of the service class is set to NONE, the
value of this column is NULL.

This standard deviation is computed from
the request executetime histogram and may
be inaccurate if the histogram is not
correctly sized to fit the data. The value of
-1 is returned if any values fall into the last
histogram bin.

The execution time standard deviation of a
service subclass is unaffected by requests
that pass through the subclass but were not
completed in it.

REQUEST_EXEC_TIME_TOTAL BIGINT Sum of the execution times for requests
that were associated with this service
subclass since the last reset. Units are
milliseconds. If the COLLECT
AGGREGATE REQUEST DATA parameter
of the service class is set to NONE, the
value of this column is NULL.

This total is computed from the request
execution time histogram and may be
inaccurate if the histogram is not correctly
sized to fit the data. The value of -1 is
returned if any values fall into the last
histogram bin.

The execution time total of a service
subclass is unaffected by requests that pass
through the subclass but are not completed
in it.

ACT_REMAPPED_IN BIGINT Number of activities remapped into this
service subclass by a threshold REMAP
ACTIVITY action since the last reset.

Chapter 8. Reference 389

Table 74. Information returned for WLM_GET_SERVICE_SUBCLASS_STATS (continued)

Column name Data type Description

ACT_REMAPPED_OUT BIGINT Number of activities remapped out of this
service subclass by a threshold REMAP
ACTIVITY action since the last reset.

CONCURRENT_WLO_TOP INTEGER concurrent_wlo_top - Concurrent workload
occurrences top monitor element

UOW_TOTAL_TIME_TOP BIGINT uow_total_time_top - UOW total time top
monitor element

UOW_THROUGHPUT DOUBLE uow_throughput - Unit of work
throughput monitor element

The unit of work throughput since the last
reset of the statistics.

UOW_LIFETIME_AVG DOUBLE uow_lifetime_avg - Unit of work lifetime
average monitor element

UOW_COMPLETED_TOTAL BIGINT uow_completed_total - Total completed
units of work monitor element

TOTAL_CPU_TIME BIGINT total_cpu_time - Total CPU time monitor
element

TOTAL_DISP_RUN_QUEUE_TIME BIGINT total_disp_run_queue_time - Total
dispatcher run queue time monitor element

ACT_THROUGHPUT DOUBLE act_throughput - Activity throughput
monitor element

CPU_UTILIZATION DOUBLE cpu_utilization - CPU utilization monitor
element

APP_ACT_COMPLETED_TOTAL BIGINT app_act_completed_total - Total successful
external coordinator activities monitor
element

APP_ACT_ABORTED_TOTAL BIGINT app_act_aborted_total - Total failed external
coordinator activities monitor element

APP_ACT_REJECTED_TOTAL BIGINT app_act_rejected_total - Total rejected
external coordinator activities monitor
element

MEMBER SMALLINT member - Database member monitor
element

WLM_GET_SERVICE_SUPERCLASS_STATS - Return statistics
of service superclasses

The WLM_GET_SERVICE_SUPERCLASS_STATS function returns basic statistics for
one or more service superclasses.

Syntax

�� WLM_GET_SERVICE_SUPERCLASS_STATS (service_superclass_name , member) ��

The schema is SYSPROC.

390 DB2 Workload Management Guide and Reference

Table function parameters

service_superclass_name
An input argument of type VARCHAR(128) that specifies the name of a service
superclass in the currently connected database. If the argument is null or an
empty string, data is retrieved for all the superclasses in the database.

member
An input argument of type INTEGER that specifies a valid member number in
the same instance as the currently connected database. Specify -1 for the
current database member, or -2 for all database members. If the null value is
specified, -1 is set implicitly.

Authorization

One of the following authorities is required to execute the routine:
v EXECUTE privilege on the routine
v DATAACCESS authority
v DBADM authority
v SQLADM authority
v WLMADM authority

Default PUBLIC privilege

None

Example

The following query displays the basic statistics for all the service superclasses on
the system, across all database members:
SELECT SUBSTR(SERVICE_SUPERCLASS_NAME, 1, 26) SERVICE_SUPERCLASS_NAME,

MEMBER,
LAST_RESET,
CONCURRENT_CONNECTION_TOP CONCURRENT_CONN_TOP

FROM TABLE(WLM_GET_SERVICE_SUPERCLASS_STATS(’’, -2)) as SCSTATS

Sample output is as follows:
SERVICE_SUPERCLASS_NAME MEMBER ...
-------------------------- -------------- ...
SYSDEFAULTSYSTEMCLASS 0 ...
SYSDEFAULTMAINTENANCECLASS 0 ...
SYSDEFAULTUSERCLASS 0 ...

... LAST_RESET CONCURRENT_CONN_TOP

... -------------------------- -------------------

... 2006-09-05-09.38.44.396788 0

... 2006-09-05-09.38.44.396795 0

... 2006-09-05-09.38.44.396796 1

Usage note

The WLM_GET_SERVICE_SUPERCLASS_STATS table function returns one row of
data per service superclass and per member. The function does not aggregate data
across service superclasses (on a member) or across members (for one or more
service superclasses). However, you can use SQL queries to aggregate data, as
shown in the previous example.

Chapter 8. Reference 391

Information returned

Table 75. Information returned for WLM_GET_SERVICE_SUPERCLASS_STATS

Column name Data type Description

SERVICE_SUPERCLASS_NAME VARCHAR(128) service_superclass_name - Service superclass name
monitor element

DBPARTITIONNUM SMALLINT dbpartitionnum - Database partition number
monitor element

LAST_RESET TIMESTAMP last_reset - Last Reset Timestamp monitor element

CONCURRENT_CONNECTION_TOP INTEGER concurrent_connection_top - Concurrent
connection top monitor element

MEMBER SMALLINT member - Database member monitor element

WLM_GET_WORK_ACTION_SET_STATS - Return work action
set statistics

The WLM_GET_WORK_ACTION_SET_STATS function returns the statistics for a
work action set.

Syntax

�� WLM_GET_WORK_ACTION_SET_STATS (work_action_set_name , member) ��

The schema is SYSPROC.

Table function parameters

work_action_set_name
An input argument of type VARCHAR(128) that specifies the work action set
to return statistics for. If the argument is null or an empty string, statistics are
returned for all work action sets.

member
An input argument of type INTEGER that specifies a valid member number in
the same instance as the currently connected database. Specify -1 for the
current database member, or -2 for all database members. If the null value is
specified, -1 is set implicitly.

Authorization

One of the following authorities is required to execute the routine:
v EXECUTE privilege on the routine
v DATAACCESS authority
v DBADM authority
v SQLADM authority
v WLMADM authority

Default PUBLIC privilege

None

392 DB2 Workload Management Guide and Reference

Example

Assume that there are three work classes: ReadClass, WriteClass, and LoadClass.
There is a work action associated with ReadClass and a work action associated
with LoadClass, but there is no work action associated with WriteClass. On
member 0, the number of activities currently running or queued are as follows:
v ReadClass class: eight
v WriteClass class: four
v LoadClass class: two
v Unassigned: three
SELECT SUBSTR(WORK_ACTION_SET_NAME,1,18) AS WORK_ACTION_SET_NAME,

SUBSTR(CHAR(MEMBER),1,4) AS MEMB,
SUBSTR(WORK_CLASS_NAME,1,15) AS WORK_CLASS_NAME,
LAST_RESET,
SUBSTR(CHAR(ACT_TOTAL),1,14) AS ACT_TOTAL

FROM TABLE(WLM_GET_WORK_ACTION_SET_STATS
(CAST(NULL AS VARCHAR(128)), -2)) AS WASSTATS

ORDER BY WORK_ACTION_SET_NAME, WORK_CLASS_NAME, MEMB

Sample output is as follows. Because there is no work action associated with the
WriteClass work class, the four activities to which it applies are counted in the
artificial class denoted by an asterisk (*) in the output. The three activities that
were not assigned to any work class are also included in the artificial class.
WORK_ACTION_SET_NAME MEMB WORK_CLASS_NAME LAST_RESET ACT_TOTAL
-------------------- ---- --------------- -------------------------- --------------
AdminActionSet 0 ReadClass 2005-11-25-18.52.49.343000 8
AdminActionSet 1 ReadClass 2005-11-25-18.52.50.478000 0
AdminActionSet 0 LoadClass 2005-11-25-18.52.49.343000 2
AdminActionSet 1 LoadClass 2005-11-25-18.52.50.478000 0
AdminActionSet 0 * 2005-11-25-18.52.49.343000 7
AdminActionSet 1 * 2005-11-25-18.52.50.478000 0

Information returned

Table 76. Information returned for WLM_GET_WORK_ACTION_SET_STATS

Column name Data type Description

WORK_ACTION_SET_NAME VARCHAR(128) work_action_set_name - Work action set name monitor
element

DBPARTITIONNUM SMALLINT dbpartitionnum - Database partition number monitor
element

LAST_RESET TIMESTAMP last_reset - Last Reset Timestamp monitor element

WORK_CLASS_NAME VARCHAR(128) work_class_name - Work class name monitor element

ACT_TOTAL BIGINT act_total - Activities total monitor element

MEMBER SMALLINT member - Database member monitor element

WLM_GET_WORKLOAD
_OCCURRENCE _ACTIVITIES - Return a list of activities

The WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES function returns the
list of all activities that were submitted by the specified application on the
specified member and have not yet been completed.

Refer to Table 77 on page 395 for a complete list of information that can be
returned.

Chapter 8. Reference 393

Syntax

�� WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES (application_handle , �

� member) ��

The schema is SYSPROC.

Table function parameters

application_handle
An input argument of type BIGINT that specifies an application handle for
which a list of activities is to be returned. If the argument is null, the data is
retrieved for all the applications in the database.

member
An input argument of type INTEGER that specifies a valid member number in
the same instance as the currently connected database. Specify -1 for the
current member, or -2 for all members. If the null value is specified, -1 is set
implicitly.

Authorization

One of the following authorities is required to execute the routine:
v EXECUTE privilege on the routine
v DATAACCESS authority
v DBADM authority
v SQLADM authority
v WLMADM authority

Default PUBLIC privilege

None

Examples

Activities currently running with a known application handle

After you identify the application handle, you can look up all the activities
currently running in this application. For example, suppose that an
administrator wants to list the activities of an application whose
application handle, determined by using the LIST APPLICATIONS command,
is 1. The administrator runs the following query:
SELECT SUBSTR(CHAR(COORD_MEMBER),1,5) AS COORD,

SUBSTR(CHAR(MEMBER),1,4) AS MEMB,
SUBSTR(CHAR(UOW_ID),1,5) AS UOWID,
SUBSTR(CHAR(ACTIVITY_ID),1,5) AS ACTID,
SUBSTR(CHAR(PARENT_UOW_ID),1,8) AS PARUOWID,
SUBSTR(CHAR(PARENT_ACTIVITY_ID),1,8) AS PARACTID,

ACTIVITY_TYPE AS ACTTYPE,
SUBSTR(CHAR(NESTING_LEVEL),1,7) AS NESTING

FROM TABLE(WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES(1, -2)) AS WLOACTS
ORDER BY MEMB, UOWID, ACTID

Sample output from the query is as follows:

394 DB2 Workload Management Guide and Reference

COORD MEMB UOWID ACTID PARUOWID PARACTID ACTTYPE NESTING
----- ---- ----- ----- -------- -------- -------- -------
0 0 2 3 - - CALL 0
0 0 2 5 2 3 READ_DML 1

Activities currently running on the system

The following query joins the
WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES output with the
MON_GET_PKG_CACHE_STMT output on EXECUTABLE_ID to provide
statement text for all the SQL activities currently running on the system:
SELECT t.application_handle,

t.uow_id,
t.activity_id,
varchar(p.stmt_text, 256) as stmt_text

FROM table(wlm_get_workload_occurrence_ACTIVITIES(NULL, -1)) as t,
table(mon_get_pkg_cache_stmt(NULL, NULL, NULL, -1)) as p

WHERE t.executable_id = p.executable_id

Sample output is as follows:
APPLICATION_HANDLE UOW_ID ACTIVITY_ID STMT_TEXT
------------------ ----------- -------------- ------------------------------
1 1 1 SELECT * FROM SYSCAT.TABLES
47 1 36 INSERT INTO T1 VALUES(123)

Information returned

Table 77. Information returned by WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES

Column name Data type Description

APPLICATION_HANDLE BIGINT application_handle - Application handle
monitor element

DBPARTITIONNUM SMALLINT dbpartitionnum - Database partition number
monitor element

COORD_PARTITION_NUM SMALLINT coord_partition_num - Coordinator partition
number monitor element

LOCAL_START_TIME TIMESTAMP local_start_time - Local start time monitor
element

UOW_ID INTEGER uow_id - Unit of work ID monitor element

ACTIVITY_ID INTEGER activity_id - Activity ID monitor element

PARENT_UOW_ID INTEGER parent_uow_id - Parent unit of work ID
monitor element

PARENT_ACTIVITY_ID INTEGER parent_activity_id - Parent activity ID
monitor element

ACTIVITY_STATE VARCHAR(32) activity_state - Activity state monitor
element

Chapter 8. Reference 395

Table 77. Information returned by WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES (continued)

Column name Data type Description

ACTIVITY_STATE (continued) VARCHAR(32) Activity state. Possible values are as follows:

QUEUED
The activity is queued by a
workload management queuing
threshold. In a partitioned database
environment, this state might mean
that the coordinator agent has made
an RPC to the catalog member to
obtain threshold tickets and has not
yet received a response. This state
might indicate that the activity has
been queued by a workload
management queuing threshold or,
if not much time has elapsed, can
indicate that the activity is in the
process of obtaining its tickets. To
obtain a more accurate picture of
whether the activity is being
queued, determine what agent is
working on the activity, and find
out whether the EVENT_OBJECT
value of the object at the catalog
member has a value of
WLM_QUEUE.

TERMINATING
The activity has finished running
and is being removed from the
system.

ACTIVITY_TYPE VARCHAR(32) Activity type. Possible values are as follows:

v CALL

v DDL

v LOAD

v OTHER

v READ_DML

v WRITE_DML

NESTING_LEVEL INTEGER nesting_level - Nesting level monitor
element

INVOCATION_ID INTEGER invocation_id - Invocation ID monitor
element

ROUTINE_ID INTEGER routine_id - Routine ID monitor element

UTILITY_ID INTEGER utility_id - Utility ID monitor element

SERVICE_CLASS_ID INTEGER service_class_id - Service class ID monitor
element

DATABASE_WORK_ACTION_SET_ID INTEGER One of the following values:

v If this activity has been categorized into a
work class of database scope, the value is
the ID of the work class set of which this
work class is a member.

v If this activity has not been categorized
into a work class of database scope, the
value is null.

396 DB2 Workload Management Guide and Reference

Table 77. Information returned by WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES (continued)

Column name Data type Description

DATABASE_WORK_CLASS_ID INTEGER One of the following values:

v If this activity has been categorized into a
work class of database scope, the value is
the ID of the work class.

v If this activity has not been categorized
into a work class of database scope, the
value is null.

SERVICE_CLASS_WORK_ACTION_SET_ID INTEGER One of the following values:

v If this activity has been categorized into a
work class of service class scope, the
value is the ID of the work action set
associated with the work class set to
which the work class belongs.

v If this activity has not been categorized
into a work class of service class scope,
the value is null.

SERVICE_CLASS_WORK_CLASS_ID INTEGER One of the following values:

v If this activity has been categorized into a
work class of service class scope, the
value is the ID of the work class assigned
to this activity.

v If this activity has not been categorized
into a work class of service class scope,
the value is null.

EXECUTABLE_ID VARCHAR(32) FOR
BIT DATA

executable_id - Executable ID monitor
element

TOTAL_CPU_TIME BIGINT total_cpu_time - Total CPU time

ROWS_READ BIGINT rows_read - Rows read

ROWS_RETURNED BIGINT rows_returned - Rows returned

QUERY_COST_ESTIMATE BIGINT query_cost_estimate - Query cost estimate

DIRECT_READS BIGINT direct_reads - Direct reads from database

DIRECT_WRITES BIGINT direct_writes - Direct writes to database

ENTRY_TIME TIMESTAMP entry_time - Entry time

MEMBER SMALLINT member - Database member monitor
element

COORD_MEMBER SMALLINT coord_member - Coordinator member
monitor element

WLM_GET_WORKLOAD_STATS table function - Return
workload statistics

The WLM_GET_WORKLOAD_STATS function returns one row of workload
statistics for every combination of workload name and database member number.

Refer to Table 78 on page 399 for a complete list of information that can be
returned.

Chapter 8. Reference 397

Syntax

�� WLM_GET_WORKLOAD_STATS (workload_name , member) ��

The schema is SYSPROC.

Table function parameters

workload_name
An input argument of type VARCHAR(128) that specifies a workload for
which the statistics are to be returned. If the argument is NULL or an empty
string, statistics are returned for all workloads.

member
An input argument of type INTEGER that specifies the number of a member in
the same instance as the currently connected database. Specify -1 for the
current member, or -2 for all members. If a null value is specified, -1 is set
implicitly.

Authorization

One of the following authorities is required to execute the routine:
v EXECUTE privilege on the routine
v DATAACCESS authority
v DBADM authority
v SQLADM authority
v WLMADM authority

Default PUBLIC privilege

None

Example

The following query displays statistics for workloads:
SELECT SUBSTR(WORKLOAD_NAME,1,18) AS WL_DEF_NAME,

SUBSTR(CHAR(MEMBER),1,4) AS MEMB,
COORD_ACT_LIFETIME_TOP,
COORD_ACT_LIFETIME_AVG,
COORD_ACT_LIFETIME_STDDEV

FROM TABLE(WLM_GET_WORKLOAD_STATS(CAST(NULL AS VARCHAR(128)), -2)) AS WLSTATS
ORDER BY WL_DEF_NAME, MEMB

Sample output from the query is as follows:
WL_DEF_NAME MEMB COORD_ACT_LIFETIME_TOP ...
------------------ ---- ---------------------- ...
SYSDEFAULTADMWORKL 0 -1 ...
SYSDEFAULTUSERWORK 0 -1 ...
WL1 0 2 ...

... COORD_ACT_LIFETIME_AVG COORD_ACT_LIFETIME_STDDEV

... ------------------------ -------------------------

... -1.00000000000000E+000 -1.00000000000000E+000

... -1.00000000000000E+000 -1.00000000000000E+000

... +2.56000000000000E+000 +6.00000000000001E-002

398 DB2 Workload Management Guide and Reference

Usage note

The function does not aggregate data across workloads, members, or service
classes. However, you can use SQL queries to aggregate data.

Information returned

Table 78. Information returned by WLM_GET_WORKLOAD_STATS

Column name Data type Description

WORKLOAD_NAME VARCHAR(128) workload_name - Workload name monitor element

DBPARTITIONNUM SMALLINT dbpartitionnum - Database partition number
monitor element

LAST_RESET TIMESTAMP last_reset - Last Reset Timestamp monitor element

CONCURRENT_WLO_TOP INTEGER concurrent_wlo_top - Concurrent workload
occurrences top monitor element

CONCURRENT_WLO_ACT_TOP INTEGER concurrent_wlo_act_top - Concurrent WLO activity
top monitor element

COORD_ACT_COMPLETED_TOTAL BIGINT coord_act_completed_total - Coordinator activities
completed total monitor element

COORD_ACT_ABORTED_TOTAL BIGINT coord_act_aborted_total - Coordinator activities
aborted total monitor element

COORD_ACT_REJECTED_TOTAL BIGINT coord_act_rejected_total - Coordinator activities
rejected total monitor element

WLO_COMPLETED_TOTAL BIGINT wlo_completed_total - Workload occurrences
completed total monitor element

COORD_ACT_LIFETIME_TOP BIGINT coord_act_lifetime_top - Coordinator activity
lifetime top monitor element

COORD_ACT_LIFETIME_AVG DOUBLE coord_act_lifetime_avg - Coordinator activity
lifetime average monitor element

COORD_ACT_LIFETIME_STDDEV DOUBLE Standard deviation of lifetime for completed or
aborted coordinator activities at nesting level 0 that
are associated with this workload. Units are
milliseconds. If the COLLECT AGGREGATE
ACTIVITY DATA parameter of the workload is set
to NONE, the value of the column is null. This
standard deviation is computed from the
coordinator activity lifetime histogram and may be
inaccurate if the histogram is not correctly sized to
fit the data. If any values fall into the last
histogram bin, the value -1 is returned.

COORD_ACT_EXEC_TIME_AVG DOUBLE coord_act_exec_time_avg - Coordinator activities
execution time average monitor element

COORD_ACT_EXEC_TIME_STDDEV DOUBLE Standard deviation of the execution times for
completed or aborted coordinator activities at
nesting level 0 that are associated with this
workload. Units are milliseconds. This standard
deviation is computed from the coordinator activity
executetime histogram and may be inaccurate if the
histogram is not correctly sized to fit the data. If
any values fall into the last histogram bin, the value
-1 is returned. If the COLLECT AGGREGATE
ACTIVITY DATA parameter of the workload is set
to NONE, the value of the column is null.

Chapter 8. Reference 399

Table 78. Information returned by WLM_GET_WORKLOAD_STATS (continued)

Column name Data type Description

COORD_ACT_QUEUE_TIME_AVG DOUBLE coord_act_queue_time_avg - Coordinator activity
queue time average monitor element

COORD_ACT_QUEUE_TIME_STDDEV DOUBLE Standard deviation of the queue time for completed
or aborted coordinator activities at nesting level 0
that are associated with this workload. Units are
milliseconds. If the COLLECT AGGREGATE
ACTIVITY DATA parameter of the workload is set
to NONE, the value of the column is null. This
standard deviation is computed from the
coordinator activity queuetime histogram and may
be inaccurate if the histogram is not correctly sized
to fit the data. If any values fall into the last
histogram bin, the value -1 is returned.

UOW_TOTAL_TIME_TOP BIGINT uow_total_time_top - UOW total time top monitor
element

UOW_THROUGHPUT DOUBLE uow_throughput - Unit of work throughput
monitor element

UOW_LIFETIME_AVG DOUBLE uow_lifetime_avg - Unit of work lifetime average
monitor element

UOW_COMPLETED_TOTAL BIGINT uow_completed_total - Total completed units of
work monitor element

TOTAL_CPU_TIME BIGINT total_cpu_time - Total CPU time monitor element

TOTAL_DISP_RUN_QUEUE_TIME BIGINT total_disp_run_queue_time - Total dispatcher run
queue time monitor element

ACT_THROUGHPUT DOUBLE act_throughput - Activity throughput monitor
element

CPU_UTILIZATION DOUBLE cpu_utilization - CPU utilization monitor element

APP_ACT_COMPLETED_TOTAL BIGINT app_act_completed_total - Total successful external
coordinator activities monitor element

APP_ACT_ABORTED_TOTAL BIGINT app_act_aborted_total - Total failed external
coordinator activities monitor element

APP_ACT_REJECTED_TOTAL BIGINT app_act_rejected_total - Total rejected external
coordinator activities monitor element

MEMBER SMALLINT member - Database member monitor element

WLM_SET_CLIENT_INFO procedure - Set client information
The WLM_SET_CLIENT_INFO procedure sets client information associated with
the current connection at the DB2 server.

By using this procedure, you can set the client's user ID, application name,
workstation name, accounting information, or workload information at the DB2
server. Calling this procedure changes the stored values of the relevant transaction
processor (TP) monitor client information fields and special register settings for
this connection.

The client information fields are used at the DB2 server for determining the
identity of the application or user currently using the connection. The client

400 DB2 Workload Management Guide and Reference

information fields for a connection are considered during DB2 workload evaluation
and also displayed in any DB2 audit records or application snapshots generated for
this connection.

Unlike the sqleseti API, this procedure does not set client information at the client
but instead sets the corresponding client attributes on the DB2 server. Therefore,
you cannot use the sqleqry API to query the client information that is set at the
DB2 server using this procedure. If an application uses the sqleseti API to change
the client information, the new values will change the setting at the DB2 server. If
the sqleseti API is used to change either the user ID or the application name
without changing the accounting information, the accounting information at the
DB2 server will also be reset to the value of the accounting information at the
client.

The data values provided with the procedure are converted to the appropriate
database code page before being stored in the related TP monitor fields or special
registers. Any data value which exceeds the maximum supported size after
conversion to the database code page is truncated before being stored at the server.
The truncated values are returned by both the TP monitor fields and the special
registers when those stored values are queried.

The WLM_SET_CLIENT_INFO procedure is not under transaction control, and
client information changes made by the procedure are independent of committing
or rolling back units of work. However, because workload reevaluation occurs at
the beginning of the next unit of work for each application, you must issue either a
COMMIT or a ROLLBACK statement to make client information changes effective.

Syntax

�� WLM_SET_CLIENT_INFO (client_userid , client_wrkstnname , �

� client_applname , client_acctstr , client_workload) ��

The schema is SYSPROC.

Procedure parameters

client_userid
An input argument of type VARCHAR(255) that specifies the user ID for the
client. If you specify NULL, the value remains unchanged. If you specify an
empty string, which is the default value, the user ID for the client is reset to
the default value, which is blank.

client_wrkstnname
An input argument of type VARCHAR(255) that specifies the workstation
name for the client. If you specify NULL, the value remains unchanged. If you
specify an empty string, which is the default value, the workstation name for
the client is reset to the default value, which is blank.

client_applname
An input argument of type VARCHAR(255) that specifies the application name
for the client. If you specify NULL, the value remains unchanged. If you
specify an empty string, which is the default value, the application name for
the client is reset to the default value, which is blank.

client_acctstr
An input argument of type VARCHAR(200) that specifies the accounting string

Chapter 8. Reference 401

for the client. If you specify NULL, the value remains unchanged. If you
specify an empty string, which is the default value, the accounting string for
the client is reset to the default value, which is blank.

client_workload
An input argument of type VARCHAR(255) that specifies the workload
assignment mode for the client. If you specify NULL, the value remains
unchanged. The values are as follows:

SYSDEFAULTADMWORKLOAD
Specifies that the database connection will be assigned to
SYSDEFAULTADMWORKLOAD, enabling users with ACCESSCTRL,
DATAACCESS, DBADM, SECADM, or WLMADM authority to bypass
the normal workload evaluation.

AUTOMATIC
Specifies that the database connection will be assigned to a workload
chosen by the workload evaluation that is performed automatically by
the server.

Note: The client_workload argument is case sensitive.

Authorization

One of the following authorities is required to execute the routine:
v EXECUTE privilege on the routine
v DATAACCESS authority
v DBADM authority
v SQLADM authority
v WLMADM authority

Default PUBLIC privilege

None

Examples

The following procedure call sets the user ID, workstation name, application name,
accounting string, and workload assignment mode for the client:

CALL SYSPROC.WLM_SET_CLIENT_INFO(’db2user’, ’machine.torolab.ibm.com’,
’auditor’, ’Accounting department’, ’AUTOMATIC’)

The following procedure call sets the user ID to db2user2 for the client without
setting the other client attributes:

CALL SYSPROC.WLM_SET_CLIENT_INFO(’db2user2’, NULL, NULL, NULL, NULL)

The following procedure call resets the user ID for the client to blank without
modifying the values of the other client attributes:

CALL SYSPROC.WLM_SET_CLIENT_INFO(’’, NULL, NULL, NULL, NULL)

Usage Notes

If the input that you specify for any procedure parameter exceeds its specified field
length, the input field is truncated and the procedure runs using the truncated
inputs.

402 DB2 Workload Management Guide and Reference

Input fields containing single quotations are not supported and result in an error.

Workload management monitor elements
The following monitor elements provide information about activities, threshold
violations, and workload management statistics.

act_cpu_time_top – Activity CPU time top monitor element
The high watermark for processor time used by activities at all nesting levels in a
service class, workload, or work class. This value is reported in microseconds.

The monitor element returns -1 when COLLECT AGGREGATE ACTIVITY DATA
for the service class or workload in which the activity runs is set to NONE.
Activities contribute toward this high watermark only when request metrics are
enabled. If the collection of activity metrics is not enabled, a value of 0 is returned.

For service classes, when you remap activities between service subclasses with a
REMAP ACTIVITY action, only the act_cpu_time_top high watermark of the
service subclass where an activity completes is updated, provided that a new high
watermark is reached. The act_cpu_time_top high watermarks of other service
subclasses an activity is mapped to but does not complete in are unaffected.

Table 79. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_scstats Always collected

Statistics event_wcstats Always collected

Statistics event_wlstats Always collected

Usage

Use this element to determine the highest amount of processor time used by an
activity on a member for a service class, workload, or work class during the time
interval collected.

act_exec_time - Activity execution time monitor element
Time spent executing at this member, in microseconds. For cursors, the execution
time is the combined time for the open, the fetches, and the close. The time when
the cursor is idle is not counted toward execution time. For routines, execution
time is the start to end of routine invocation. The lifetimes of any cursors left open
by routine (to return a result set) after the routine finishes are not counted toward
the routine execution time. For all other activities, execution time is the difference
between start time and stop time. In all cases, execution time does not include time
spent initializing or queued.

Table 80. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity Always collected

Usage

This element can be used alone to know the elapsed time spent executing the
activity by DB2 on each member. This element can also be used together with

Chapter 8. Reference 403

time_started and time_completed monitor elements on the coordinator member to
compute the idle time for cursor activities. You can use the following formula:
Cursor idle time = (time_completed - time_started) - act_exec_time

act_remapped_in – Activities remapped in monitor element
Count of the number of activities to be remapped into this service subclass since
the last reset.

Table 81. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_scstats -

Usage

Use this count to determine whether the remapping of activities into the service
subclass is occurring as desired.

act_remapped_out – Activities remapped out monitor element
Count of the number of activities to be remapped out of this service subclass since
the last reset.

Table 82. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_scstats -

Usage

Use this count to determine whether the remapping of activities out of the service
subclass is occurring as desired.

act_rows_read_top – Activity rows read top monitor element
The high watermark for the number of rows read by activities at all nesting levels
in a service class, workload, or work class.

The monitor element returns -1 when COLLECT AGGREGATE ACTIVITY DATA
for the service class or workload in which the activity runs is set to NONE.
Activities contribute toward this high watermark only when request metrics are
enabled. If the collection of activity metrics is not enabled, a value of 0 is returned.

For service classes, when you remap activities between service subclasses with a
REMAP ACTIVITY action only the act_rows_read_top high watermark of the
service subclass where an activity completes is updated, provided that a new high
watermark is reached. The act_rows_read_top high watermarks of service
subclasses an activity is mapped to but does not complete in are unaffected.

Table 83. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_scstats Always collected

Statistics event_wcstats Always collected

Statistics event_wlstats Always collected

404 DB2 Workload Management Guide and Reference

Usage

Use this element to determine the highest number of rows read by an activity on a
member for a service class, workload, or work class during the time interval
collected.

act_throughput - Activity throughput monitor element
The rate at which coordinator activities are completed at any nesting level.
Measured in coordinator activities per second.

Table 84. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_SAMPLE_SERVICE_CLASS_METRICS
- Get sample service class metrics

REQUEST METRICS BASE

MON_SAMPLE_WORKLOAD_METRICS -
Get sample workload metrics

REQUEST METRICS BASE

WLM_GET_SERVICE_SUBCLASS_STATS
table function - Return statistics of service
subclasses

ACTIVITY METRICS BASE

WLM_GET_WORKLOAD_STATS table
function - Return workload statistics

ACTIVITY METRICS BASE

Table 85. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_scstats (reported in the
details_xml document)

Always collected

Statistics event_wlstats (reported in the
details_xml document)

Always collected

Usage

When returned by the WLM_GET_SERVICE_SUBCLASS_STATS or the
WLM_GET_WORKLOAD_STATS function, this monitor element represents the
activity throughput since the last reset of the statistics.

When returned by the MON_SAMPLE_SERVICE_CLASS_METRICS or the
MON_SAMPLE_WORKLOAD_METRICS function, this monitor element represents
the activity throughput since the function was executed.

act_total - Activities total monitor element
Total number of activities at any nesting level that had work actions corresponding
to the specified work class applied to them since the last reset.

Table 86. Table Function Monitoring Information

Table Function Monitor Element Collection Level

WLM_GET_WORK_ACTION_SET_STATS
table function - Return work action set
statistics

ACTIVITY METRICS BASE

Chapter 8. Reference 405

Table 87. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_wcstats -

Usage

Every time an activity has one or more work actions associated with a work class
applied to it, a counter for the work class is updated. This counter is exposed
using the act_total monitor element. The counter can be used to judge the
effectiveness of the work action set (for example, how many activities have a
actions applied). It can also be used to understand the different types of activities
on the system.

activate_timestamp - Activate timestamp monitor element
The time when an event monitor was activated.

Table 88. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activity event_activity -

Activity event_activitystmt -

Activity event_activityvals -

Threshold Violations event_thresholdviolations -

Usage

Use this element to correlate information returned by the previously mentioned
event types.

activity_collected - Activity collected monitor element
This element indicates whether or not activity event monitor records are to be
collected for a violated threshold.

Table 89. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Threshold violations event_thresholdviolations -

Usage

Use this element to determine whether to expect an activity event for the activity
that violated the threshold to be written to the activity event monitor.

When an activity finishes or aborts and the activity event monitor is active at the
time, if the value of this monitor element is ‘Y', the activity that violated this
threshold will be collected. If the value of this monitor element is ‘N', it will not be
collected.

activity_id - Activity ID monitor element
Counter which uniquely identifies an activity for an application within a given
unit of work.

406 DB2 Workload Management Guide and Reference

Table 90. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_GET_ACTIVITY_DETAILS table
function - Get complete activity details
(reported in DETAILS XML document)

ACTIVITY METRICS BASE

WLM_GET_SERVICE_CLASS_AGENTS table
function - list agents running in a service
class

ACTIVITY METRICS BASE

WLM_GET_WORKLOAD_OCCURRENCE
_ACTIVITIES table function - Return a list of
activities

ACTIVITY METRICS BASE

Table 91. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Locking - Always collected

Activities event_activity Always collected

Activities event_activitystmt Always collected

Activities event_activityvals Always collected

Activities event_activitymetrics ACTIVITY METRICS BASE

Threshold violations event_thresholdviolations Always collected

Usage

Use this element in conjunction with other activity history elements for analysis of
the behavior of an activity.

To uniquely identify an activity outside its unit of work, use the combination of
activity_id and uow_id plus one of the following monitor elements: appl_id or
agent_id.

activity_secondary_id - Activity secondary ID monitor element
The value for this element is incremented each time an activity record is written
for the same activity. For example, if an activity record is written once as a result
of having called the WLM_CAPTURE_ACTIVITY_IN_PROGRESS procedure and a
second time when the activity ends, the element would have a value of 0 for the
first record and 1 for the second record.

Table 92. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity -

Activities event_activitystmt -

Activities event_activityvals -

Activities event_activitymetrics ACTIVITY METRICS BASE

Usage

Use this element with activity_id, uow_id, and appl_id monitor elements to
uniquely identify activity records when information about the same activity has
been written to the activities event monitor multiple times.

Chapter 8. Reference 407

For example, information about an activity would be sent to the activities event
monitor twice in the following case:
v the WLM_CAPTURE_ACTIVITY_IN_PROGRESS stored procedure was used to

capture information about the activity while it was running
v information about the activity was collected when the activity completed,

because the COLLECT ACTIVITY DATA clause was specified on the service
class with which the activity is associated

activity_type - Activity type monitor element
The type of the activity.

Table 93. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_GET_ACTIVITY_DETAILS table
function - Get complete activity details
(reported in DETAILS XML document)

ACTIVITY METRICS BASE

Table 94. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity Always collected

Usage

The possible values are:
v LOAD
v READ_DML
v WRITE_DML
v DDL
v CALL
v OTHER

The value OTHER is returned for SET statements that do not perform SQL (for
example, SET special register, or SET EVENT MONITOR STATE) and the LOCK
TABLE statement.

agg_temp_tablespace_top - Aggregate temporary table space
top monitor element

The high watermark in KB for the aggregate temporary table space usage of DML
activities at all nesting levels in a service class. The aggregate is computed by
summing the temporary table space usage across all activities in the service
subclass, and this high watermark represents the highest value reached by this
aggregate since the last reset. The monitor element returns -1 when COLLECT
AGGREGATE ACTIVITY DATA for the service class is set to NONE. An
AGGSQLTEMPSPACE threshold must be defined and enabled for at least one
service subclass in the same superclass as the subclass to which this record
belongs, otherwise a value of 0 is returned.

Table 95. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_scstats Always collected

408 DB2 Workload Management Guide and Reference

Usage

Use this element to determine the highest aggregate DML activity system
temporary table space usage reached on a member for a service subclass in the
time interval collected.

arm_correlator - Application response measurement correlator
monitor element

Identifier of a transaction in the Application Response Measurement (ARM)
standard.

Table 96. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity -

Usage

This element can be used to link an activity collected by the activities event
monitor to the applications associated with the activity, if such applications also
support the Application Response Measurement (ARM) standard.

bin_id - Histogram bin identifier monitor element
The identifier of a histogram bin. The bin_id is unique within a histogram.

Table 97. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_histogrambin -

Usage

Use this element to distinguish bins within the same histogram.

bottom - Histogram bin bottom monitor element
The exclusive bottom end of the range of a histogram bin. The value of this
monitor element is also the top inclusive end of the range of the previous
histogram bin, if there is one.

Table 98. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_histogrambin -

Usage

Use this element with the corresponding top element to determine the range of a
bin within a histogram.

Chapter 8. Reference 409

concurrent_act_top - Concurrent activity top monitor element
The high watermark for the concurrent activities (at any nesting level) in a service
subclass since the last reset.

Note: This element monitors the highest concurrent execution of all activities,
including those activities that do not participate in the
CONCURRENTDBCOORDACTIVITIES threshold. For example, although CALL
statements do not count toward the concurrency that is enforced by the
CONCURRENTDBCOORDACTIVITIES threshold, they are included in the
concurrent activity high watermark measurement.

Table 99. Table Function Monitoring Information

Table Function Monitor Element Collection Level

WLM_GET_SERVICE_CLASS_WORKLOAD
_OCCURRENCES table function - list
workload occurrences

ACTIVITY METRICS BASE

WLM_GET_SERVICE_SUBCLASS_STATS
table function - Return statistics of service
subclasses

ACTIVITY METRICS BASE

Table 100. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_scstats -

Usage

Use this element to know the highest concurrency of activities (including nested
activities) reached on a member for a service subclass in the time interval collected.

concurrent_connection_top - Concurrent connection top
monitor element

High watermark for concurrent coordinator connections in this service class since
the last reset. This field has the same value in every subclass of the same
superclass.

Table 101. Table Function Monitoring Information

Table Function Monitor Element Collection Level

WLM_GET_SERVICE_SUPERCLASS_STATS
table function - Return statistics of service
superclasses

ACTIVITY METRICS BASE

Table 102. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_scstats -

Usage

This element may be useful in determining where to place thresholds on
connection concurrency by showing where the current high watermark is. It is also
useful for verifying that such a threshold is configured correctly and doing its job.

410 DB2 Workload Management Guide and Reference

concurrent_wlo_act_top - Concurrent WLO activity top
monitor element

High watermark for concurrent activities (at any nesting level) of any occurrence of
this workload since the last reset.

Table 103. Table Function Monitoring Information

Table Function Monitor Element Collection Level

WLM_GET_WORKLOAD_STATS table
function - Return workload statistics

ACTIVITY METRICS BASE

Table 104. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_wlstats -

Usage

Use this element to know the highest number of concurrent activities reached on a
member for any occurrence of this workload in the time interval collected.

concurrent_wlo_top - Concurrent workload occurrences top
monitor element

The high watermark for the concurrent occurrences of a workload since the last
reset.

Table 105. Table Function Monitoring Information

Table Function Monitor Element Collection Level

WLM_GET_SERVICE_SUBCLASS_STATS
table function - Return statistics of service
subclasses

ACTIVITY METRICS BASE

WLM_GET_WORKLOAD_STATS table
function - Return workload statistics

ACTIVITY METRICS BASE

Table 106. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_wlstats -

Statistics event_scstats -

Usage

Use this element to know the highest concurrency of workload occurrences reached
on a member for a workload in the time interval collected.

concurrentdbcoordactivities_db_ threshold_id - Concurrent
database coordinator activities database threshold ID monitor
element

The ID of the CONCURRENTDBCOORDACTIVITIES database threshold that was
applied to the activity.

Chapter 8. Reference 411

Table 107. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_GET_ACTIVITY_DETAILS table
function - Get complete activity details
(reported in DETAILS XML document)

ACTIVITY METRICS BASE

Usage

Use this element to understand which CONCURRENTDBCOORDACTIVITIES
database threshold, if any, was applied to the activity.

concurrentdbcoordactivities_db_threshold _queued -
Concurrent database coordinator activities database threshold
queued monitor element

This monitor element returns 'Yes' to indicate that the activity was queued by the
CONCURRENTDBCOORDACTIVITIES database threshold. 'No' indicates that the
activity was not queued.

Table 108. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_GET_ACTIVITY_DETAILS table
function - Get complete activity details
(reported in DETAILS XML document)

ACTIVITY METRICS BASE

Usage

Use this element to understand if the activity was queued by the
CONCURRENTDBCOORDACTIVITIES database threshold applied to the activity.

concurrentdbcoordactivities_db_ threshold_value -
Concurrent database coordinator activities database threshold
value monitor element

This monitor element returns the upper bound of the
CONCURRENTDBCOORDACTIVITIES database threshold that was applied to the
activity.

Table 109. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_GET_ACTIVITY_DETAILS table
function - Get complete activity details
(reported in DETAILS XML document)

ACTIVITY METRICS BASE

Usage

Use this element to understand the value of the
CONCURRENTDBCOORDACTIVITIES database threshold applied to the activity,
if any.

412 DB2 Workload Management Guide and Reference

concurrentdbcoordactivities_db_ threshold_violated -
Concurrent database coordinator activities database threshold
violated monitor element

This monitor element returns 'Yes' to indicate that the activity violated the
CONCURRENTDBCOORDACTIVITIES database threshold. 'No' indicates that the
activity has not yet violated the threshold.

Table 110. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_GET_ACTIVITY_DETAILS table
function - Get complete activity details
(reported in DETAILS XML document)

ACTIVITY METRICS BASE

Usage

Use this element to determine if the activity violated the
CONCURRENTDBCOORDACTIVITIES database threshold that was applied to the
activity.

concurrentdbcoordactivities_subclass_ threshold_id -
Concurrent database coordinator activities service subclass
threshold ID monitor element

This monitor element returns the ID of the CONCURRENTDBCOORDACTIVITIES
service subclass threshold threshold that was applied to the activity.

Table 111. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_GET_ACTIVITY_DETAILS table
function - Get complete activity details
(reported in DETAILS XML document)

ACTIVITY METRICS BASE

Usage

Use this element to understand which CONCURRENTDBCOORDACTIVITIES
service subclass threshold, if any, was applied to the activity.

concurrentdbcoordactivities_subclass_ threshold_queued -
Concurrent database coordinator activities service subclass
threshold queued monitor element

This monitor element returns 'Yes' to indicate that the activity was queued by the
CONCURRENTDBCOORDACTIVITIES service subclass threshold. 'No' indicates
that the activity was not queued.

Table 112. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_GET_ACTIVITY_DETAILS table
function - Get complete activity details
(reported in DETAILS XML document)

ACTIVITY METRICS BASE

Chapter 8. Reference 413

Usage

Use this element to understand if the activity was queued by the
CONCURRENTDBCOORDACTIVITIES service subclass threshold applied to the
activity.

concurrentdbcoordactivities_subclass_ threshold_value -
Concurrent database coordinator activities service subclass
threshold value monitor element

This monitor element returns the upper bound of the
CONCURRENTDBCOORDACTIVITIES service subclass threshold that was applied
to the activity.

Table 113. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_GET_ACTIVITY_DETAILS table
function - Get complete activity details
(reported in DETAILS XML document)

ACTIVITY METRICS BASE

WLM_GET_ACTIVITY_DETAILS table
function - Return detailed information about
a specific activity

ACTIVITY METRICS BASE

Usage

Use this element to understand the value of the
CONCURRENTDBCOORDACTIVITIES service subclass threshold applied to the
activity, if any.

concurrentdbcoordactivities_subclass_ threshold_violated -
Concurrent database coordinator activities service subclass
threshold violated monitor element

This monitor element returns 'Yes' to indicate that the activity violated the
CONCURRENTDBCOORDACTIVITIES service subclass threshold. 'No' indicates
that the activity has not yet violated the threshold.

Table 114. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_GET_ACTIVITY_DETAILS table
function - Get complete activity details
(reported in DETAILS XML document)

ACTIVITY METRICS BASE

Usage

Use this element to determine if the activity violated the
CONCURRENTDBCOORDACTIVITIES service subclass threshold that was applied
to the activity.

414 DB2 Workload Management Guide and Reference

concurrentdbcoordactivities_superclass_ threshold_id -
Concurrent database coordinator activities service superclass
threshold ID monitor element

The ID of the CONCURRENTDBCOORDACTIVITIES_SUPERCLASS threshold that
was applied to the activity.

Table 115. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_GET_ACTIVITY_DETAILS table
function - Get complete activity details
(reported in DETAILS XML document)

ACTIVITY METRICS BASE

Usage

Use this element to understand which CONCURRENTDBCOORDACTIVITIES
service superclass threshold, if any, was applied to the activity.

concurrentdbcoordactivities_superclass_ threshold_queued -
Concurrent database coordinator activities service superclass
threshold queued monitor element

This monitor element returns 'Yes' to indicate that the activity was queued by the
CONCURRENTDBCOORDACTIVITIES service superclass threshold. 'No' indicates
that the activity was not queued.

Table 116. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_GET_ACTIVITY_DETAILS table
function - Get complete activity details
(reported in DETAILS XML document)

ACTIVITY METRICS BASE

Usage

Use this element to understand if the activity was queued by the
CONCURRENTDBCOORDACTIVITIES service superclass threshold applied to the
activity.

concurrentdbcoordactivities_superclass_ threshold_value -
Concurrent database coordinator activities service superclass
threshold value monitor element

The upper bound of the CONCURRENTDBCOORDACTIVITIES service superclass
threshold that was applied to the activity.

Table 117. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_GET_ACTIVITY_DETAILS table
function - Get complete activity details
(reported in DETAILS XML document)

ACTIVITY METRICS BASE

Chapter 8. Reference 415

Usage

Use this element to understand the value of the
CONCURRENTDBCOORDACTIVITIES service superclass threshold applied to the
activity, if any.

concurrentdbcoordactivities_superclass_ threshold_violated -
Concurrent database coordinator activities service superclass
threshold violated monitor element

This monitor element returns 'Yes' to indicate that the activity violated the
CONCURRENTDBCOORDACTIVITIES service superclass threshold. 'No' indicates
that the activity has not yet violated the threshold.

Table 118. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_GET_ACTIVITY_DETAILS table
function - Get complete activity details
(reported in DETAILS XML document)

ACTIVITY METRICS BASE

Usage

Use this element to determine if the activity violated the
CONCURRENTDBCOORDACTIVITIES service superclass threshold that was
applied to the activity.

concurrentdbcoordactivities_wl_was_threshold _id -
Concurrent database coordinator activities workload work
action set threshold ID monitor element

The identifier of the CONCURRENTDBCOORDACTIVITIES workload work action
set threshold that was applied to the activity.

Table 119. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_GET_ACTIVITY_DETAILS table
function - Get complete activity details
(reported in DETAILS XML document)

ACTIVITY METRICS BASE

Usage

Use this element to understand which CONCURRENTDBCOORDACTIVITIES
workload work action set threshold, if any, was applied to the activity.

concurrentdbcoordactivities_wl_was_threshold _queued -
Concurrent database coordinator activities workload work
action set threshold queued monitor element

This monitor element returns 'Yes' to indicate that the activity was queued by the
CONCURRENTDBCOORDACTIVITIES workload work action set threshold. 'No'
indicates that the activity was not queued.

416 DB2 Workload Management Guide and Reference

Table 120. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_GET_ACTIVITY_DETAILS table
function - Get complete activity details
(reported in DETAILS XML document)

ACTIVITY METRICS BASE

Usage

Use this element to understand if the activity was queued by the
CONCURRENTDBCOORDACTIVITIES workload work action set threshold
applied to the activity.

concurrentdbcoordactivities_wl_was_threshold _value -
Concurrent database coordinator activities workload work
action set threshold value monitor element

The upper bound of the CONCURRENTDBCOORDACTIVITIES workload work
action set threshold that was applied to the activity.

Table 121. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_GET_ACTIVITY_DETAILS table
function - Get complete activity details
(reported in DETAILS XML document)

ACTIVITY METRICS BASE

Usage

Use this element to understand the value of the
CONCURRENTDBCOORDACTIVITIES workload work action set threshold
applied to the activity.

concurrentdbcoordactivities_wl_was_threshold _violated -
Concurrent database coordinator activities workload work
action set threshold violated monitor element

This monitor element returns 'Yes' to indicate that the activity violated the
CONCURRENTDBCOORDACTIVITIES workload work action set threshold. 'No'
indicates that the activity has not yet violated the threshold.

Table 122. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_GET_ACTIVITY_DETAILS table
function - Get complete activity details
(reported in DETAILS XML document)

ACTIVITY METRICS BASE

Usage

Use this element to determine if the activity violated the
CONCURRENTDBCOORDACTIVITIES workload work action set threshold that
was applied to the activity.

Chapter 8. Reference 417

coord_act_aborted_total - Coordinator activities aborted total
monitor element

The total number of coordinator activities at any nesting level that completed with
errors since the last reset. For service classes, the value is updated when the
activity completes. For workloads, the value is updated by each workload
occurrence at the end of its unit of work.

For service classes, if you remap an activity to a different subclass with a REMAP
ACTIVITY action before it aborts, then this activity counts only toward the total of
the subclass it aborts in.

Table 123. Table Function Monitoring Information

Table Function Monitor Element Collection Level

WLM_GET_SERVICE_CLASS_WORKLOAD
_OCCURRENCES table function - list
workload occurrences

ACTIVITY METRICS BASE

WLM_GET_SERVICE_SUBCLASS_STATS
table function - Return statistics of service
subclasses

ACTIVITY METRICS BASE

WLM_GET_WORKLOAD_STATS table
function - Return workload statistics

ACTIVITY METRICS BASE

Table 124. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_scstats -

Statistics event_wlstats -

Usage

Use this element to understand if activities on the system are completing
successfully. Activities may be aborted due to cancellation, errors or reactive
thresholds.

coord_act_completed_total - Coordinator activities completed
total monitor element

The total number of coordinator activities at any nesting level that completed
successfully since the last reset. For service classes, the value is updated when the
activity completes. For workloads, the value is updated by each workload
occurrence at the end of its unit of work.

For service classes, if you remap an activity to a different subclass with a REMAP
ACTIVITY action before it completes, then this activity counts only toward the
total of the subclass it completes in.

Table 125. Table Function Monitoring Information

Table Function Monitor Element Collection Level

WLM_GET_SERVICE_CLASS_WORKLOAD
_OCCURRENCES table function - list
workload occurrences

ACTIVITY METRICS BASE

418 DB2 Workload Management Guide and Reference

Table 125. Table Function Monitoring Information (continued)

Table Function Monitor Element Collection Level

WLM_GET_SERVICE_SUBCLASS_STATS
table function - Return statistics of service
subclasses

ACTIVITY METRICS BASE

WLM_GET_WORKLOAD_STATS table
function - Return workload statistics

ACTIVITY METRICS BASE

Table 126. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_wlstats -

Statistics event_scstats -

Usage

This element can be used to determine the throughput of activities in the system or
to aid in calculating average activity lifetime across multiple members.

coord_act_est_cost_avg - Coordinator activity estimated cost
average monitor element

Arithmetic mean of the estimated costs for coordinator DML activities at nesting
level 0 associated with this service subclass or work class since the last reset. If the
internally tracked average has overflowed, the value -2 is returned. For service
subclasses, this monitor element returns -1 when COLLECT AGGREGATE
ACTIVITY DATA for the service subclass is set to NONE or BASE. For work
classes, this monitor elements returns -1 if no COLLECT AGGREGATE ACTIVITY
DATA EXTENDED work action is specified for the work class. For workloads, this
monitor element returns -1 when COLLECT AGGREGATE ACTIVITY DATA for
the workload is set to NONE or BASE. Units are timerons.

For service classes, the estimated cost of an activity is counted only toward the
service subclass in which the activity enters the system. When you remap activities
between service subclasses with a REMAP ACTIVITY action, the
coord_act_est_cost_avg mean of the service subclass you remap an activity to is
unaffected.

Table 127. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_scstats Always collected

Statistics event_wcstats Always collected

Statistics event_wlstats Always collected

Usage

Use this statistic to determine the arithmetic mean of the estimated costs of
coordinator DML activities at nesting level 0 that are associated this service
subclass, workload, or work class that completed or aborted since the last statistics
reset.

Chapter 8. Reference 419

This average can also be used to determine whether or not the histogram template
used for the activity estimated cost histogram is appropriate. Compute the average
activity estimated cost from the activity estimated cost histogram. Compare the
computed average with this monitor element. If the computed average deviates
from the true average reported by this monitor element, consider altering the
histogram template for the activity estimated cost histogram, using a set of bin
values that are more appropriate for your data.

coord_act_exec_time_avg - Coordinator activities execution
time average monitor element

Arithmetic mean of execution times for coordinator activities at nesting level 0
associated with this service subclass or work class since the last reset. If the
internally tracked average has overflowed, the value -2 is returned. For service
subclasses, this monitor element returns -1 when COLLECT AGGREGATE
ACTIVITY DATA for the service subclass is set to NONE. For work classes, this
monitor elements returns -1 if no COLLECT AGGREGATE ACTIVITY DATA work
action is specified for the work class. For workloads, this monitor element returns
-1 when COLLECT AGGREGATE ACTIVITY DATA for the workload is set to
NONE. Units are milliseconds.

For service classes, when you remap activities between service subclasses with a
REMAP ACTIVITY action, the coord_act_exec_time_avg mean of service subclasses
an activity is mapped to but does not complete in is unaffected.

Table 128. Table Function Monitoring Information

Table Function Monitor Element Collection Level

WLM_GET_SERVICE_SUBCLASS_STATS
table function - Return statistics of service
subclasses

COLLECT AGGREGATE ACTIVITY DATA

WLM_GET_WORKLOAD_STATS table
function - Return workload statistics

COLLECT AGGREGATE ACTIVITY DATA

Table 129. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_scstats -

Statistics event_wcstats -

Statistics event_wlstats -

Usage

Use this statistic to determine the arithmetic mean of execution time for
coordinator activities associated with a service subclass, workload, or work class
that completed or aborted.

This average can also be used to determine whether or not the histogram template
used for the activity execution time histogram is appropriate. Compute the average
activity execution time from the activity execution time histogram. Compare the
computed average with this monitor element. If the computed average deviates
from the true average reported by this monitor element, consider altering the
histogram template for the activity execution time histogram, using a set of bin
values that are more appropriate for your data.

420 DB2 Workload Management Guide and Reference

coord_act_interarrival_time_avg - Coordinator activity arrival
time average monitor element

Arithmetic mean of the time between arrivals of coordinator activities at nesting
level 0 associated with this service subclass or work class since the last reset. If the
internally tracked average has overflowed, the value -2 is returned. For service
subclasses, this monitor element returns -1 when COLLECT AGGREGATE
ACTIVITY DATA for the service subclass is set to NONE or BASE. For work
classes, this monitor elements returns -1 if no COLLECT AGGREGATE ACTIVITY
DATA EXTENDED work action is specified for the work class. For workloads, this
monitor element returns -1 when COLLECT AGGREGATE ACTIVITY DATA for
the workload is set to NONE or BASE. Units are milliseconds.

For service classes, the inter-arrival time mean is calculated for service subclasses
through which activities enter the system. When you remap activities between
service subclasses with a REMAP ACTIVITY action, the
coord_act_interarrival_time_avg of the service subclass you remap an activity to is
unaffected.

Table 130. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_scstats -

Statistics event_wcstats -

Statistics event_wlstats -

Usage

Use this statistic to determine the arithmetic mean between arrivals of coordinator
activities at nesting level 0 associated with this service subclass, workload, or work
class.

The inter-arrival time can be used to determine arrival rate, which is the inverse of
inter-arrival time. This average can also be used to determine whether or not the
histogram template used for the activity inter-arrival time histogram is appropriate.
Compute the average activity inter-arrival time from the activity inter-arrival time
histogram. Compare the computed average with this monitor element. If the
computed average deviates from the true average reported by this monitor
element, consider altering the histogram template for the activity inter-arrival time
histogram, using a set of bin values that are more appropriate for your data.

coord_act_lifetime_avg - Coordinator activity lifetime average
monitor element

Arithmetic mean of lifetime for coordinator activities at nesting level 0 associated
with this service subclass, workload, or work class since the last reset. If the
internally tracked average has overflowed, the value -2 is returned. For service
subclasses, this monitor element returns -1 when COLLECT AGGREGATE
ACTIVITY DATA for the service subclass is set to NONE. For work classes, this
monitor elements returns -1 if no COLLECT AGGREGATE ACTIVITY DATA work
action is specified for the work class. For workloads, this monitor element returns
-1 when COLLECT AGGREGATE ACTIVITY DATA for the workload is set to
NONE. Units are milliseconds.

Chapter 8. Reference 421

For service classes, when you remap activities between service subclasses with a
REMAP ACTIVITY action, only the the coord_act_lifetime_avg mean of the final
service class where the activity completes is affected.

Table 131. Table Function Monitoring Information

Table Function Monitor Element Collection Level

WLM_GET_SERVICE_SUBCLASS_STATS
table function - Return statistics of service
subclasses

COLLECT AGGREGATE ACTIVITY DATA

WLM_GET_WORKLOAD_STATS table
function - Return workload statistics

COLLECT AGGREGATE ACTIVITY DATA

Table 132. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_scstats -

Statistics event_wcstats -

Statistics event_wlstats -

Usage

Use this statistic to determine the arithmetic mean of the lifetime for coordinator
activities associated with a service subclass, workload, or work class that
completed or aborted.

This statistic can also be used to determine whether or not the histogram template
used for the activity lifetime histogram is appropriate. Compute the average
activity lifetime from the activity lifetime histogram. Compare the computed
average with this monitor element. If the computed average deviates from the true
average reported by this monitor element, consider altering the histogram template
for the activity lifetime histogram, using a set of bin values that are more
appropriate for your data.

coord_act_lifetime_top - Coordinator activity lifetime top
monitor element

High watermark for coordinator activity lifetime, counted at all nesting levels.
Units are milliseconds. For service classes, this monitor element returns -1 when
COLLECT AGGREGATE ACTIVITY DATA for the service class is set to NONE. For
work classes, this monitor element returns -1 if no COLLECT AGGREGATE
ACTIVITY DATA work action is specified for the work class. For workloads, this
monitor element returns -1 when COLLECT AGGREGATE ACTIVITY DATA for
the workload is set to NONE.

To effectively use this statistic with service classes when you also remap activities
between service subclasses with a REMAP ACTIVITY action, you must aggregate
the coord_act_lifetime_top high watermark of any given service subclass with that
of other subclasses affected by the same remapping threshold or thresholds. This is
because an activity will complete after it has been remapped to a different service
subclass by a remapping threshold, and the time the activity spends in other
service subclasses before being remapped is counted only toward the service class
in which it completes.

422 DB2 Workload Management Guide and Reference

Table 133. Table Function Monitoring Information

Table Function Monitor Element Collection Level

WLM_GET_SERVICE_SUBCLASS_STATS
table function - Return statistics of service
subclasses

COLLECT AGGREGATE ACTIVITY DATA

WLM_GET_WORKLOAD_STATS table
function - Return workload statistics

COLLECT AGGREGATE ACTIVITY DATA

Table 134. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_wcstats -

Statistics event_scstats -

Statistics event_wlstats -

Usage

This element can be used to help determine whether or not thresholds on activity
lifetime are being effective and can also help to determine how to configure such
thresholds.

coord_act_queue_time_avg - Coordinator activity queue time
average monitor element

Arithmetic mean of queue time for coordinator activities at nesting level 0
associated with this service subclass or work class since the last reset. If the
internally tracked average has overflowed, the value -2 is returned. For service
subclasses, this monitor element returns -1 when COLLECT AGGREGATE
ACTIVITY DATA for the service subclass is set to NONE. For work classes, this
monitor elements returns -1 if no COLLECT AGGREGATE ACTIVITY DATA work
action is specified for the work class. For workloads, this monitor element returns
-1 when COLLECT AGGREGATE ACTIVITY DATA for the workload is set to
NONE. Units are milliseconds.

For service classes, the queue time counts only toward the service subclass in
which the activity completes or is aborted. When you remap activities between
service subclasses with a REMAP ACTIVITY action, the coord_act_queue_time_avg
mean of service subclasses an activity is mapped to but does not complete in is
unaffected.

Table 135. Table Function Monitoring Information

Table Function Monitor Element Collection Level

WLM_GET_SERVICE_SUBCLASS_STATS
table function - Return statistics of service
subclasses

COLLECT AGGREGATE ACTIVITY DATA

WLM_GET_WORKLOAD_STATS table
function - Return workload statistics

COLLECT AGGREGATE ACTIVITY DATA

Table 136. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_scstats Always collected

Chapter 8. Reference 423

Table 136. Event Monitoring Information (continued)

Event Type Logical Data Grouping Monitor Switch

Statistics event_wcstats Always collected

Statistics event_wlstats Always collected

Usage

Use this statistic to determine the arithmetic mean of the queue time for
coordinator activities associated with a service subclass, workload, or work class
that completed or aborted.

This statistic can also be used to determine whether or not the histogram template
used for the activity queue time histogram is appropriate. Compute the average
activity queue time from the activity queue time histogram. Compare the
computed average with this monitor element. If the computed average deviates
from the true average reported by this monitor element, consider altering the
histogram template for the activity queue time histogram, using a set of bin values
that are more appropriate for your data.

coord_act_rejected_total - Coordinator activities rejected total
monitor element

The total number of coordinator activities at any nesting level that were rejected
instead of being allowed to execute since the last reset. This counter is updated
when an activity is prevented from executing by either a predictive threshold or a
prevent execution work action. For service classes, the value is updated when the
activity completes. For workloads, the value is updated by each workload
occurrence at the end of its unit of work.

Table 137. Table Function Monitoring Information

Table Function Monitor Element Collection Level

WLM_GET_SERVICE_CLASS_WORKLOAD
_OCCURRENCES table function - list
workload occurrences

ACTIVITY METRICS BASE

WLM_GET_SERVICE_SUBCLASS_STATS
table function - Return statistics of service
subclasses

COLLECT AGGREGATE ACTIVITY DATA

WLM_GET_WORKLOAD_STATS table
function - Return workload statistics

ACTIVITY METRICS BASE

Table 138. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_scstats -

Statistics event_wlstats -

Usage

This element can be used to help determine whether or not predictive thresholds
and work actions that prevent execution are being effective and whether or not
they are too restrictive.

424 DB2 Workload Management Guide and Reference

coord_partition_num - Coordinator partition number monitor
element

The coordinator partition of the unit of work or activity. In a multi-partition
system, the coordinator partition is the partition where the application connected
to the database.

Table 139. Table Function Monitoring Information

Table Function Monitor Element Collection Level

WLM_GET_SERVICE_CLASS_WORKLOAD
_OCCURRENCES table function - list
workload occurrences

ACTIVITY METRICS BASE

WLM_GET_WORKLOAD_OCCURRENCE
_ACTIVITIES table function - Return a list of
activities

ACTIVITY METRICS BASE

Table 140. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Unit of work - Always collected

Activities event_activity Always collected

Threshold violations event_thresholdviolations Always collected

Usage

This element allows the coordinator partition to be identified for activities or units
of work that have records on partitions other than the coordinator.

cost_estimate_top - Cost estimate top monitor element
The high watermark for the estimated cost of DML activities at all nesting levels in
a service subclass or work class. For service subclasses, this monitor element
returns -1 when COLLECT AGGREGATE ACTIVITY DATA for the service subclass
is set to NONE. For work classes, this monitor elements returns -1 if no COLLECT
AGGREGATE ACTIVITY DATA work action is specified for the work class.

For service classes, the estimated cost of DML activities is counted only toward the
service subclass in which the activity enters the system. When you remap activities
between service subclasses with a REMAP ACTIVITY action, the cost_estimate_top
of the service subclass you remap an activity to is unaffected.

Table 141. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_scstats -

Statistics event_wcstats -

Statistics event_wlstats -

Usage

Use this element to determine the highest DML activity estimated cost reached on
a member for a service class, workload, or work class in the time interval collected.

Chapter 8. Reference 425

cpu_limit - WLM dispatcher CPU limit monitor element
The WLM dispatcher CPU limit configured for the service class.

Table 142. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_SAMPLE_SERVICE_CLASS_METRICS
- Get sample service class metrics

ACTIVITY METRICS BASE

cpu_share_type - WLM dispatcher CPU share type monitor
element

The type of WLM dispatcher CPU shares configured for the service class. Possible
values are soft and hard.

Table 143. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_SAMPLE_SERVICE_CLASS_METRICS
- Get sample service class metrics

ACTIVITY METRICS BASE

cpu_shares - WLM dispatcher CPU shares monitor element
The number of WLM dispatcher CPU shares configured for the service class.

Table 144. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_SAMPLE_SERVICE_CLASS_METRICS
- Get sample service class metrics

ACTIVITY METRICS BASE

cpu_utilization - CPU utilization monitor element
The total CPU time consumed by the service class or workload on a particular
logical partition divided by the amount of CPU time available on the host or the
LPAR in a given period of time.

Table 145. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_SAMPLE_SERVICE_CLASS_METRICS
- Get sample service class metrics

REQUEST METRICS BASE

MON_SAMPLE_WORKLOAD_METRICS -
Get sample workload metrics

REQUEST METRICS BASE

WLM_GET_SERVICE_SUBCLASS_STATS
table function - Return statistics of service
subclasses

REQUEST METRICS BASE

WLM_GET_WORKLOAD_STATS table
function - Return workload statistics

REQUEST METRICS BASE

Table 146. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_scstats (reported in the
details_xml document)

REQUEST METRICS BASE

426 DB2 Workload Management Guide and Reference

Table 146. Event Monitoring Information (continued)

Event Type Logical Data Grouping Monitor Switch

Statistics event_wlstats (reported in the
details_xml document)

REQUEST METRICS BASE

Unit of work Reported in the
system_metrics document

REQUEST METRICS BASE

Usage

When returned by the WLM_GET_WORKLOAD_STATS or the
WLM_GET_SERVICE_SUBCLASS_STATS function, this monitor element represents
the CPU utilization since the last reset of the statistics.

When returned by the MON_SAMPLE_SERVICE_CLASS_METRICS or the
MON_SAMPLE_WORKLOAD_METRICS function, this monitor element represents
the CPU utilization since the function was executed.

cpu_velocity - CPU velocity monitor element
A measure of the amount of contention for the CPU resources, measured on a scale
from 0 to 1, with lower numbers meaning greater contention.

CPU velocity is computed by measuring the amount of time that work in a service
class has access to the CPU divided by the total time spent accessing the CPU or
waiting to access the CPU. It gives a measure of how efficiently the work is being
executed relative to how efficiently it could be executed if such work never had to
wait for the CPU. The formula is as follows:
cpu_velocity = total_cpu_time / (total_cpu_time + total_disp_run_queue_time)

The wlm_dispatcher database manager configuration parameter must be set to ON
for cpu_velocity to be collected.

Table 147. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_SAMPLE_SERVICE_CLASS_METRICS
- Sample service class metrics

REQUEST METRICS BASE

MON_SAMPLE_WORKLOAD_METRICS -
Sample workload metrics

REQUEST METRICS BASE

Usage

The dispatcher is effective at prioritizing a service class or workload when that
service class or workload demands more CPU resources at a given instant than can
be supplied. In such instances, the work executing in the service class or workload
spends time queuing to access the CPU resources. It is when this occurs that the
dispatcher can give more of the CPU resources to such a service class or workload
by reducing how much of the CPU resources it gives to another. A high CPU
velocity indicates that the dispatcher can have little effect on improving response
times or throughput for this service class at its current level of CPU demand
because this demand is already being met. A low CPU velocity indicates that the
dispatcher can potentially have a significant effect on improving response times or
throughput for this service class or workload at its current level of CPU demand.

Chapter 8. Reference 427

Use this element to determine whether the work executing in a service class or
workload is spending a relatively large proportion of its time queuing to use the
CPU resources. If the CPU velocity for a service class is low and you want to
increase it, you can adjust the WLM dispatcher control of the CPU resources by
increasing the number of CPU shares or increasing the CPU limit assigned to the
service class that is exhibiting a low CPU velocity.

db_work_action_set_id - Database work action set ID monitor
element

If this activity has been categorized into a work class of database scope, this
monitor element shows the ID of the work action set associated with the work
class set to which the work class belongs. Otherwise, this monitor element shows
the value of 0.

Table 148. Table Function Monitoring Information

Table Function Monitor Element Collection Command and Level

WLM_GET_ACTIVITY_DETAILS_COMPLETE (reported
in DETAILS XML document)

ACTIVITY METRICS BASE

MON_GET_ACTIVITY_DETAILS table function - Get
complete activity details

ACTIVITY METRICS BASE

Table 149. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity Always collected

Usage

This element can be used with the db_work_class_id element to uniquely identify
the database work class of the activity, if one exists.

db_work_class_id - Database work class ID monitor element
If this activity has been categorized into a work class of database scope, this
monitor element displays the ID of the work class. Otherwise, this monitor element
displays the value of 0.

Table 150. Table Function Monitoring Information

Table Function Monitor Element Collection Level

WLM_GET_ACTIVITY_DETAILS_COMPLETE table
function - Get complete activity details (reported in
DETAILS XML document)

ACTIVITY METRICS BASE

Table 151. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity Always collected

Usage

This element can be used with the db_work_action_set_id element to uniquely
identify the database work class of the activity, if one exists.

428 DB2 Workload Management Guide and Reference

destination_service_class_id – Destination service class ID
monitor element

The ID of the service subclass to which an activity was remapped when the
threshold violation record to which this element belongs was generated. This
element has a value of zero for any threshold action other than REMAP ACTIVITY.

Table 152. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Threshold violations event_thresholdviolations -

Usage

Use this element to trace the path of an activity through the service classes to
which it was remapped. This element can also be used to compute aggregates of
how many activities were mapped into a given service subclass.

estimated_cpu_entitlement - Estimated CPU entitlement
monitor element

The percentage of total CPU on a host or an LPAR that a service subclass is
configured to consume based on its CPU shares assuming that it consumes no
more and no less than what it is configured to consume. The determination of
which service classes participate in its calculation is based on the actual CPU
utilization measured over the sampling period versus the WLM_DISP_MIN_UTIL
database manager configuration setting. The impact of a CPU limit on a service
class itself, on the service classes with which it competes, or on a parent service
class (if it has one) are not taken into account in the calculation.

Table 153. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_SAMPLE_SERVICE_CLASS_METRICS
- Get sample service class metrics

ACTIVITY METRICS BASE

histogram_type - Histogram type monitor element
The type of the histogram, in string format.

There are seven histogram types.

CoordActQueueTime
A histogram of the time non-nested activities spend queued (for example,
in a threshold queue), measured on the coordinator member.

CoordActExecTime
A histogram of the time non-nested activities spend executing at the
coordinator member. Execution time does not include time spent
initializing or queued. For cursors, execution time includes only the time
spent on open, fetch and close requests. When an activity is remapped
between service subclasses, the execution time histogram is updated only
for the service subclass in which the activity completes execution.

CoordActLifetime
A histogram of the elapsed time from when a non-nested activity is
identified by the database manager until the activity completes execution,
as measured on the coordinator member. When you remap activities

Chapter 8. Reference 429

between service subclasses, the lifetime histogram is updated only for the
service subclass in which the activity completes execution.

CoordActInterArrivalTime
A histogram of the time interval between the arrival of non-nested
coordinator activities. The inter-arrival time mean is calculated for service
subclasses through which activities enter the system. When you remap
activities between service subclasses, the inter-arrival time histogram of the
service subclass you remap an activity to is unaffected.

CoordActEstCost
A histogram of the estimated cost of non-nested DML activities. The
estimated cost of an activity is counted only toward the service subclass in
which the activity enters the system.

ReqExecTime
A histogram of request execution times, which includes requests on the
coordinator member, and any subrequests on both coordinator and
non-coordinator members (like RPC requests or SMP subagent requests).
Requests included may or may not be associated with an activity: Both
PREPARE and OPEN requests are included in this histogram, for example,
but while OPEN requests are always associated with a cursor activity,
PREPARE requests are not part of any activity.The execution time
histogram of a service subclass involved in remapping counts the portion
of the execution time spent by the partial request in the service subclass.

UowLifetime
A histogram of the elapsed time, measured in milliseconds, from the time
that a unit of work is identified by the database manager until the time
that the unit of work completes execution (committed or rolled back).

Table 154. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_histogrambin Always collected

Usage

Use this element to identify the type of histogram. Several histograms can belong
to the same statistics record, but only one of each type.

last_wlm_reset - Time of last reset monitor element
This element, in the form of a local timestamp, shows the time at which the last
statistics event record of this type was created.

Table 155. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_scstats -

Statistics event_wlstats -

Statistics event_wcstats -

Statistics event_qstats -

430 DB2 Workload Management Guide and Reference

Usage

Use the wlm_last_reset and statistics_timestamp monitor elements to determine
a period of time over which the statistics in an event monitor statistics record were
collected. The collection interval begins at the wlm_last_reset time and ends at
statistics_timestamp.

num_remaps - Number of remaps monitor element
Count of the number of times this activity has been remapped. If num_remaps is
greater than zero, the service_class_id of this activity record is the ID of the last
service class to which the activity was remapped.

Table 156. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity Always collected

Usage

Use this information to verify whether the activity was remapped the expected
number of times.

num_threshold_violations - Number of threshold violations
monitor element

The number of threshold violations that have taken place in this database since it
was last activated.

This monitor element is an alias of the “thresh_violations - Number of threshold
violations monitor element” on page 446 monitor element, which is returned by
some monitoring (MON_*) table functions.

Table 157. Snapshot Monitoring Information

Snapshot Level Logical Data Grouping Monitor Switch

Database dbase Basic

For snapshot monitoring, this counter can be reset.

Table 158. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Database event_db Always collected

Usage

This element can be used to help determine whether or not thresholds are effective
for this particular application or whether the threshold violations are excessive.

number_in_bin - Number in bin monitor element
This element holds the count of the number of activities or requests that fall within
the histogram bin.

Chapter 8. Reference 431

Table 159. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_histogrambin -

Usage

Use this element to represent the height of a bin in the histogram.

parent_activity_id - Parent activity ID monitor element
The unique ID of the activity's parent activity within the parent activity's unit of
work. If there is no parent activity, the value of this monitor element is 0.

Table 160. Table Function Monitoring Information

Table Function
Monitor Element Collection Command and
Level

MON_GET_ACTIVITY_DETAILS table
function - Get complete activity details
(reported in DETAILS XML document)

ACTIVITY METRICS BASE

WLM_GET_SERVICE_CLASS_AGENTS table
function - list agents running in a service
class

ACTIVITY METRICS BASE

WLM_GET_WORKLOAD_OCCURRENCE
_ACTIVITIES table function - Return a list of
activities

ACTIVITY METRICS BASE

Table 161. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity Always collected

Usage

Use this element along with the parent_uow_id element and appl_id element to
uniquely identify the parent activity of the activity described in this activity record.

parent_uow_id - Parent unit of work ID monitor element
The unique unit of work identifier within an application handle. The ID of the unit
of work in which the activity's parent activity originates. If there is no parent
activity, the value is 0.

Table 162. Table Function Monitoring Information

Table Function
Monitor Element Collection Command and
Level

MON_GET_ACTIVITY_DETAILS table
function - Get complete activity details
(reported in DETAILS XML document)

ACTIVITY METRICS BASE

WLM_GET_SERVICE_CLASS_AGENTS table
function - list agents running in a service
class

ACTIVITY METRICS BASE

432 DB2 Workload Management Guide and Reference

Table 162. Table Function Monitoring Information (continued)

Table Function
Monitor Element Collection Command and
Level

WLM_GET_WORKLOAD_OCCURRENCE
_ACTIVITIES table function - Return a list of
activities

ACTIVITY METRICS BASE

Table 163. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity Always collected

Usage

Use this element along with the parent_activity_id element and appl_id element
to uniquely identify the parent activity of the activity described in this activity
record.

prep_time - Preparation time monitor element
Time in milliseconds required to prepare an SQL statement (if the activity is an
SQL statement; otherwise, the value is 0).

Table 164. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_GET_PKG_CACHE_STMT table
function - Get SQL statement activity metrics
in the package cache

ACTIVITY METRICS BASE

MON_GET_PKG_CACHE_STMT_DETAILS
table function - get detailed metrics for
package cache entries

ACTIVITY METRICS BASE

Table 165. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity Always collected

Package cache - COLLECT BASE DATA

Usage

The prep_time monitor element indicates how much time was spent preparing the
SQL statement, if this activity was an SQL statement, when the statement was first
introduced to the DB2 package cache. This preparation time is not part of the
activity lifetime nor does it represent time spent during a specific invocation of the
statement if the statement has already been cached in the package cache before
that invocation.

queue_assignments_total - Queue assignments total monitor
element

The number of times any connection or activity was assigned to this threshold
queue since the last reset.

Chapter 8. Reference 433

Table 166. Table Function Monitoring Information

Table Function Monitor Element Collection Level

WLM_GET_QUEUE_STATS table function -
Return threshold queue statistics

ACTIVITY METRICS BASE

Table 167. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_qstats -

Usage

This element can be used to determine the number of times any connection or
activity was queued in this particular queue in a given period of time determined
by the statistics collection interval. This can help to determine the effectiveness of
queuing thresholds.

queue_size_top - Queue size top monitor element
Highest queue size that has been reached since the last reset.

Table 168. Table Function Monitoring Information

Table Function Monitor Element Collection Level

WLM_GET_QUEUE_STATS table function -
Return threshold queue statistics

ACTIVITY METRICS BASE

Table 169. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_qstats -

Usage

Use this element to gauge the effectiveness of queuing thresholds and to detect
when queuing is excessive.

queue_time_total - Queue time total monitor element
Sum of the times spent in the queue for all connections or activities placed in this
queue since the last reset. Units are milliseconds.

Table 170. Table Function Monitoring Information

Table Function Monitor Element Collection Level

WLM_GET_QUEUE_STATS table function -
Return threshold queue statistics

ACTIVITY METRICS BASE

Table 171. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_qstats Always collected

This element is used to gauge the effectiveness of queuing thresholds and to detect
when queuing is excessive.

434 DB2 Workload Management Guide and Reference

Usage notes

queue_time_total is not reset at the end of a statistic collection interval. If
queue_time_total is used over multiple intervals, it can be greater than the
product of wlm_collect_int and queue_size_top.

request_exec_time_avg - Request execution time average
monitor element

Arithmetic mean of the execution times for requests associated with this service
subclass since the last reset. If the internally tracked average has overflowed, the
value -2 is returned. This monitor element returns -1 when COLLECT
AGGREGATE REQUEST DATA for the service subclass is set to NONE. Units are
milliseconds.

When you remap activities between service subclasses with a REMAP ACTIVITY
action, the request_exec_time_avg mean counts the partial request in each subclass
involved in remapping.

Table 172. Table Function Monitoring Information

Table Function Monitor Element Collection Level

WLM_GET_SERVICE_SUBCLASS_STATS
table function - Return statistics of service
subclasses

COLLECT AGGREGATE REQUEST DATA

Table 173. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_scstats -

Usage

Use this statistic to quickly understand the average amount of time that is spent
processing each request on a member in this service subclass.

This average can also be used to determine whether or not the histogram template
used for the request execution time histogram is appropriate. Compute the average
request execution time from the request execution time histogram. Compare the
computed average with this monitor element. If the computed average deviates
from the true average reported by this monitor element, consider altering the
histogram template for the request execution time histogram, using a set of bin
values that are more appropriate for your data.

routine_id - Routine ID monitor element
A unique routine identifier. This monitor element returns 0 if the activity is not
part of a routine.

Table 174. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_GET_ACTIVITY_DETAILS table
function - Get complete activity details
(reported in the DETAILS XML document)

ACTIVITY METRICS BASE

MON_GET_PKG_CACHE_STMT table
function

ACTIVITY METRICS BASE

Chapter 8. Reference 435

Table 174. Table Function Monitoring Information (continued)

Table Function Monitor Element Collection Level

MON_GET_PKG_CACHE_STMT_DETAILS -
Get detailed metrics for package cache
entries

ACTIVITY METRICS BASE

WLM_GET_SERVICE_CLASS_AGENTS table
function - list agents running in a service
class

ACTIVITY METRICS BASE

WLM_GET_WORKLOAD_OCCURRENCE
_ACTIVITIES table function - Return a list of
activities

ACTIVITY METRICS BASE

Table 175. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activitystmt Always collected

Unit of work uow_package_list Always collected

Package cache pkgcache_metrics ACTIVITY METRICS BASE

Usage

The value of this element matches a value from column ROUTINEID of view
SYSCAT.ROUTINES. When the activity is part of an SQL PL routine that you
declare in another SQL PL routine, the value of this element is the ROUTINEID of
the outer routine.

rows_fetched - Rows fetched monitor element
The number of rows read from the table.

This monitor element is an alias of the rows_read monitor element.

Note: This monitor element reports only the values for the member for which this
information is recorded. In multimember database environments, these values
might not reflect the correct totals for the whole activity.

Table 176. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity Statement

Usage

See the rows_read monitor element for details.

rows_modified - Rows modified monitor element
The number of rows inserted, updated, or deleted.

This monitor element is an alias of the rows_written monitor element.

436 DB2 Workload Management Guide and Reference

Table 177. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_FORMAT_XML_METRICS_BY_ROW -
Get formatted row-based output for all
metrics

Not applicable; reports whichever elements
are contained in the XML document
provided as input to the formatting function.

MON_GET_ACTIVITY_DETAILS table
function - Get complete activity details
(reported in DETAILS XML document)

ACTIVITY METRICS BASE

MON_GET_CONNECTION table function -
Get connection metrics

REQUEST METRICS BASE

MON_GET_CONNECTION_DETAILS table
function - Get detailed connection metrics
(reported in DETAILS XML document)

REQUEST METRICS BASE

MON_GET_PKG_CACHE_STMT table
function - Get SQL statement activity metrics
in the package cache

ACTIVITY METRICS BASE

MON_GET_PKG_CACHE_STMT_DETAILS
table function - get detailed metrics for
package cache entries

ACTIVITY METRICS BASE

MON_GET_SERVICE_SUBCLASS table
function - Get service subclass metrics

REQUEST METRICS BASE

MON_GET_SERVICE_SUBCLASS_DETAILS
table function - Get detailed service subclass
metrics (reported in DETAILS XML
document)

REQUEST METRICS BASE

MON_GET_UNIT_OF_WORK table function
- Get unit of work metrics

REQUEST METRICS BASE

MON_GET_UNIT_OF_WORK_DETAILS
table function - Get detailed unit of work
metrics (reported in DETAILS XML
document)

REQUEST METRICS BASE

MON_GET_WORKLOAD table function -
Get workload metrics

REQUEST METRICS BASE

MON_GET_WORKLOAD_DETAILS table
function - Get detailed workload metrics
(reported in DETAILS XML document)

REQUEST METRICS BASE

Table 178. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity (reported in
the details_xml document)

ACTIVITY METRICS BASE

Activities event_activitymetrics ACTIVITY METRICS BASE

Statistics event_scstats (reported in the
details_xml document)

REQUEST METRICS BASE

Statistics event_wlstats (reported in the
details_xml document)

REQUEST METRICS BASE

Unit of work Reported in the
system_metrics document.

REQUEST METRICS BASE

Activities event_activity Statement

Chapter 8. Reference 437

Table 178. Event Monitoring Information (continued)

Event Type Logical Data Grouping Monitor Switch

Package cache Reported in the
activity_metrics document.

ACTIVITY METRICS BASE

Usage

See the rows_written monitor element for details.

rows_returned - Rows returned monitor element
The number of rows that have been selected and returned to the application. This
element has a value of 0 for partial activity records (for example, if an activity is
collected while it is still executing or when a full activity record could not be
written to the event monitor due to memory limitations).

This monitor element is an alias of the fetch_count monitor element.

Table 179. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_FORMAT_XML_METRICS_BY_ROW -
Get formatted row-based output for all
metrics

Not applicable; reports whichever elements
are contained in the XML document
provided as input to the formatting function.

MON_GET_ACTIVITY_DETAILS table
function - Get complete activity details
(reported in DETAILS XML document)

ACTIVITY METRICS BASE

MON_GET_CONNECTION table function -
Get connection metrics

REQUEST METRICS BASE

MON_GET_CONNECTION_DETAILS table
function - Get detailed connection metrics
(reported in DETAILS XML document)

REQUEST METRICS BASE

MON_GET_PKG_CACHE_STMT table
function - Get SQL statement activity metrics
in the package cache

ACTIVITY METRICS BASE

MON_GET_PKG_CACHE_STMT_DETAILS
table function - get detailed metrics for
package cache entries

ACTIVITY METRICS BASE

MON_GET_SERVICE_SUBCLASS table
function - Get service subclass metrics

REQUEST METRICS BASE

MON_GET_SERVICE_SUBCLASS_DETAILS
table function - Get detailed service subclass
metrics (reported in DETAILS XML
document)

REQUEST METRICS BASE

MON_GET_UNIT_OF_WORK table function
- Get unit of work metrics

REQUEST METRICS BASE

MON_GET_UNIT_OF_WORK_DETAILS
table function - Get detailed unit of work
metrics (reported in DETAILS XML
document)

REQUEST METRICS BASE

MON_GET_WORKLOAD table function -
Get workload metrics

REQUEST METRICS BASE

438 DB2 Workload Management Guide and Reference

Table 179. Table Function Monitoring Information (continued)

Table Function Monitor Element Collection Level

MON_GET_WORKLOAD_DETAILS table
function - Get detailed workload metrics
(reported in DETAILS XML document)

REQUEST METRICS BASE

WLM_GET_WORKLOAD_OCCURRENCE
_ACTIVITIES table function - Return a list of
activities

REQUEST METRICS BASE

Table 180. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity (reported in
the details_xml document)

ACTIVITY METRICS BASE

Activities event_activitymetrics ACTIVITY METRICS BASE

Statistics event_scstats (reported in the
details_xml document)

REQUEST METRICS BASE

Statistics event_wlstats (reported in the
details_xml document)

REQUEST METRICS BASE

Unit of work Reported in the
system_metrics document.

REQUEST METRICS BASE

Activities event_activity Always collected

Package cache Reported in the
activity_metrics document.

ACTIVITY METRICS BASE

Usage

This element can be used to help determine thresholds for rows returned to the
application or can be used to verify that such a threshold is configured correctly
and doing its job.

rows_returned_top - Actual rows returned top monitor element
The high watermark for the actual rows returned of DML activities at all nesting
levels in a service class or work class. For service classes, this monitor element
returns -1 when COLLECT AGGREGATE ACTIVITY DATA for the service class is
set to NONE. For work classes, this monitor element returns -1 if no COLLECT
AGGREGATE ACTIVITY DATA work action is specified for the work class. For
workloads, this monitor element returns -1 when COLLECT AGGREGATE
ACTIVITY DATA for the workload is set to NONE.

For service classes, when you remap activities between service subclasses with a
REMAP ACTIVITY action, only the rows_returned_top high watermark of the
service subclass where an activity completes is updated. High watermarks of
service subclasses an activity is mapped to but does not complete in are
unaffected.

Table 181. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_scstats -

Statistics event_wcstats -

Statistics event_wlstats -

Chapter 8. Reference 439

Usage

Use this element to know the highest DML activity actual rows returned reached
on a member for a service class, workload, or work class in the time interval
collected.

sc_work_action_set_id - Service class work action set ID
monitor element

If this activity has been categorized into a work class of service class scope, this
monitor element displays the ID of the work action set associated with the work
class set to which the work class belongs. Otherwise, this monitor element displays
the value of 0.

Table 182. Table Function Monitoring Information

Table Function Monitor Element Collection Command and Level

WLM_GET_ACTIVITY_DETAILS_COMPLETE table
function - Get complete activity details (reported in
DETAILS XML document)

ACTIVITY METRICS BASE

Table 183. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity Always collected

Usage

This element can be used with the sc_work_class_id element to uniquely identify
the service class work class of the activity, if one exists.

sc_work_class_id - Service class work class ID monitor
element

If this activity has been categorized into a work class of service class scope, this
monitor element displays the ID of the work class assigned to this activity.
Otherwise, this monitor element displays the value of 0.

Table 184. Table Function Monitoring Information

Table Function Monitor Element Collection Command and Level

WLM_GET_ACTIVITY_DETAILS_COMPLETE table
function - Get complete activity details (reported in
DETAILS XML document)

ACTIVITY METRICS BASE

Table 185. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity Always collected

Usage

This element can be used with the sc_work_action_set_id element to uniquely
identify the service class work class of the activity, if one exists.

440 DB2 Workload Management Guide and Reference

section_env - Section environment monitor element
A blob that contains the section for an SQL statement. It is the actual section
contents, that is the executable form of the query plan.

Table 186. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activitystmt Always collected

Package cache - COLLECT DETAILED DATA

Usage

Use this element with the section explain procedures to explain the statement and
view the access plan for the statement.

service_class_id - Service class ID monitor element
Unique ID of service subclass. For a unit of work, this ID represents the service
subclass ID of the workload with which the connection issuing the unit of work is
associated.

Table 187. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_GET_ACTIVITY_DETAILS table function - Get
complete activity details (reported in DETAILS XML
document)

ACTIVITY METRICS BASE

MON_GET_SERVICE_SUBCLASS table function - Get
service subclass metrics

ACTIVITY METRICS BASE

MON_GET_SERVICE_SUBCLASS_DETAILS table
function - Get detailed service subclass metrics

ACTIVITY METRICS BASE

MON_GET_UNIT_OF_WORK table function - Get unit of
work metrics

ACTIVITY METRICS BASE

MON_GET_UNIT_OF_WORK_DETAILS table function -
Get detailed unit of work metrics

ACTIVITY METRICS BASE

MON_SAMPLE_SERVICE_CLASS_METRICS - Get
sample service class metrics

ACTIVITY METRICS BASE

WLM_GET_WORKLOAD_OCCURRENCE _ACTIVITIES
table function - Return a list of activities

ACTIVITY METRICS BASE

Table 188. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity (reported in
the details_xml document)

ACTIVITY METRICS BASE

Statistics event_scstats (reported in the
details_xml document)

REQUEST METRICS BASE

Locking - Always collected

Unit of work - Always collected

Statistics event_histogrambin Always collected

Statistics event_scstats Always collected

Chapter 8. Reference 441

Usage

The value of this element matches a value from column SERVICECLASSID of view
SYSCAT.SERVICECLASSES. Use this element to look up the service subclass name,
or link information about a service subclass from different sources. For example,
join service class statistics with histogram bin records.

The value of this element is 0 when the following conditions are met:
v The element is reported in an event_histogrambin logical data group.
v The histogram data is collected for an object that is not a service class.

service_subclass_name - Service subclass name monitor
element

The name of a service subclass.

Table 189. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_GET_SERVICE_SUBCLASS table
function - Get service subclass metrics

ACTIVITY METRICS BASE

MON_GET_SERVICE_SUBCLASS_DETAILS
table function - Get detailed service subclass
metrics (reported in DETAILS XML
document)

ACTIVITY METRICS BASE

MON_GET_UNIT_OF_WORK table function
- Get unit of work metrics

ACTIVITY METRICS BASE

MON_GET_UNIT_OF_WORK_DETAILS
table function - Get detailed unit of work
metrics (reported in DETAILS XML
document)

ACTIVITY METRICS BASE

MON_SAMPLE_SERVICE_CLASS_METRICS
- Get sample service class metrics

ACTIVITY METRICS BASE

WLM_GET_QUEUE_STATS table function -
Return threshold queue statistics

ACTIVITY METRICS BASE

WLM_GET_SERVICE_CLASS_AGENTS table
function - list agents running in a service
class

ACTIVITY METRICS BASE

WLM_GET_SERVICE_CLASS_WORKLOAD
_OCCURRENCES table function - list
workload occurrences

ACTIVITY METRICS BASE

WLM_GET_SERVICE_SUBCLASS_STATS
table function - Return statistics of service
subclasses

ACTIVITY METRICS BASE

Table 190. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_scstats (reported in the
details_xml document)

REQUEST METRICS BASE

Locking - Always collected

Unit of work - Always collected

Activities event_activity Always collected

442 DB2 Workload Management Guide and Reference

Table 190. Event Monitoring Information (continued)

Event Type Logical Data Grouping Monitor Switch

Statistics event_scstats Always collected

Statistics event_qstats Always collected

Usage

Use this element in conjunction with other activity elements for analysis of the
behavior of an activity or with other statistics elements for analysis of a service
class or threshold queue.

service_superclass_name - Service superclass name monitor
element

The name of a service superclass.

Table 191. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_GET_SERVICE_SUBCLASS table
function - Get service subclass metrics

ACTIVITY METRICS BASE

MON_GET_SERVICE_SUBCLASS_DETAILS
table function - Get detailed service subclass
metrics (reported in DETAILS XML
document)

ACTIVITY METRICS BASE

MON_GET_UNIT_OF_WORK table function
- Get unit of work metrics

ACTIVITY METRICS BASE

MON_GET_UNIT_OF_WORK_DETAILS
table function - Get detailed unit of work
metrics (reported in DETAILS XML
document)

ACTIVITY METRICS BASE

MON_SAMPLE_SERVICE_CLASS_METRICS
- Get sample service class metrics

ACTIVITY METRICS BASE

WLM_GET_QUEUE_STATS table function -
Return threshold queue statistics

ACTIVITY METRICS BASE

WLM_GET_SERVICE_CLASS_AGENTS table
function - list agents running in a service
class

ACTIVITY METRICS BASE

WLM_GET_SERVICE_CLASS_WORKLOAD
_OCCURRENCES table function - list
workload occurrences

ACTIVITY METRICS BASE

WLM_GET_SERVICE_SUBCLASS_STATS
table function - Return statistics of service
subclasses

ACTIVITY METRICS BASE

WLM_GET_SERVICE_SUPERCLASS_STATS
table function - Return statistics of service
superclasses

ACTIVITY METRICS BASE

Table 192. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_scstats (reported in the
details_xml document)

REQUEST METRICS BASE

Chapter 8. Reference 443

Table 192. Event Monitoring Information (continued)

Event Type Logical Data Grouping Monitor Switch

Unit of work - Always collected

Activities event_activity Always collected

Statistics event_scstats Always collected

Statistics event_qstats Always collected

Usage

Use this element in conjunction with other activity elements for analysis of the
behavior of an activity or with other statistics elements for analysis of a service
class or threshold queue.

source_service_class_id - Source service class ID monitor
element

The ID of the service subclass from which an activity was remapped when the
threshold violation record to which this element belongs was generated. This
element has a value of zero when the threshold action is anything other than a
REMAP ACTIVITY action.

Table 193. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Threshold violations event_thresholdviolations -

Usage

Use this element to trace the path of an activity through the service classes to
which it was remapped. It can also be used to compute aggregates of how many
activities were mapped out of a given service subclass.

statistics_timestamp - Statistics timestamp monitor element
The time at which this statistics record was generated.

Table 194. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_scstats -

Statistics event_wlstats -

Statistics event_wcstats -

Statistics event_qstats -

Statistics event_histogrambin -

Usage

Use this element to determine when this statistics record was generated.

Use this element along with the last_wlm_reset element to identify the time
interval over which the statistics in this statistics record were generated.

444 DB2 Workload Management Guide and Reference

This monitor element can also be used to group together all statistics records that
were generated for the same collection interval.

stmt_invocation_id - Statement invocation identifier monitor
element

An identifier that distinguishes one invocation of a routine from others at the same
nesting level within a unit of work. It is unique within a unit of work for a specific
nesting level.

Table 195. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_GET_ACTIVITY_DETAILS table
function - Get complete activity details
(reported in DETAILS XML document)

ACTIVITY METRICS BASE

Table 196. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activitystmt -

Locking - -

Deadlocks with Details
History Values1

event_stmt_history -

Deadlocks with Details
History1

event_stmt_history -

Unit of work Reported in the package list. -

1 This option has been deprecated. Its use is no longer recommended and
might be removed in a future release. Use the CREATE EVENT MONITOR
FOR LOCKING statement to monitor lock-related events, such as lock
timeouts, lock waits, and deadlocks.

Usage

You can use this element to uniquely identify the invocation in which a particular
SQL statement has been executed. You can also use this element in conjunction
with other statement history entries to see the sequence of SQL statements that
caused the deadlock.

temp_tablespace_top - Temporary table space top monitor
element

The high watermark in KB for the temporary table space usage of DML activities
at all nesting levels in a service class or work class. For service classes, this
monitor element returns -1 when COLLECT AGGREGATE ACTIVITY DATA for
the service class is set to NONE. For work classes, this monitor elements returns -1
if no COLLECT AGGREGATE ACTIVITY DATA work action is specified for the
work class. For workloads, this monitor element returns -1 when COLLECT
AGGREGATE ACTIVITY DATA for the workload is set to NONE.

For service classes, when you remap activities between service subclasses with a
REMAP ACTIVITY action, only the temp_tablespace_top high watermark of the
service subclass where an activity completes is changed. High watermarks of
service subclasses an activity is mapped to but does not complete in are
unaffected.

Chapter 8. Reference 445

Table 197. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_scstats -

Statistics event_wcstats -

Statistics event_wlstats -

Usage

Use this element to determine the highest DML activity system temporary table
space usage reached on a member for a service class, workload, or work class in
the time interval collected.

This element is only updated by activities that have a temporary table space
threshold applied to them. If no temporary table space threshold is applied to an
activity, a value of 0 is returned.

thresh_violations - Number of threshold violations monitor
element

Number of times a threshold was violated.

This monitor element is an alias of the “num_threshold_violations - Number of
threshold violations monitor element” on page 431 monitor element, which is
returned by snapshot monitoring routines and the Database event monitor.

Table 198. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_FORMAT_XML_METRICS_BY_ROW -
Get formatted row-based output for all
metrics

Not applicable; reports whichever elements
are contained in the XML document
provided as input to the formatting function.

MON_GET_ACTIVITY_DETAILS table
function - Get complete activity details
(reported in DETAILS XML document)

ACTIVITY METRICS BASE

MON_GET_CONNECTION table function -
Get connection metrics

REQUEST METRICS BASE

MON_GET_CONNECTION_DETAILS table
function - Get detailed connection metrics
(reported in DETAILS XML document)

REQUEST METRICS BASE

MON_GET_PKG_CACHE_STMT table
function - Get SQL statement activity metrics
in the package cache

ACTIVITY METRICS BASE

MON_GET_PKG_CACHE_STMT_DETAILS
table function - get detailed metrics for
package cache entries

ACTIVITY METRICS BASE

MON_GET_SERVICE_SUBCLASS table
function - Get service subclass metrics

REQUEST METRICS BASE

MON_GET_SERVICE_SUBCLASS_DETAILS
table function - Get detailed service subclass
metrics (reported in DETAILS XML
document)

REQUEST METRICS BASE

MON_GET_UNIT_OF_WORK table function
- Get unit of work metrics

REQUEST METRICS BASE

446 DB2 Workload Management Guide and Reference

Table 198. Table Function Monitoring Information (continued)

Table Function Monitor Element Collection Level

MON_GET_UNIT_OF_WORK_DETAILS
table function - Get detailed unit of work
metrics (reported in DETAILS XML
document)

REQUEST METRICS BASE

MON_GET_WORKLOAD table function -
Get workload metrics

REQUEST METRICS BASE

MON_GET_WORKLOAD_DETAILS table
function - Get detailed workload metrics
(reported in DETAILS XML document)

REQUEST METRICS BASE

Table 199. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity (reported in
the details_xml document)

ACTIVITY METRICS BASE

Activities event_activitymetrics ACTIVITY METRICS BASE

Statistics event_scstats (reported in the
details_xml) document)

REQUEST METRICS BASE

Statistics event_wlstats (reported in the
details_xml document)

REQUEST METRICS BASE

Package cache Reported in the
activity_metrics document.

ACTIVITY METRICS BASE

Unit of work Reported in the
system_metrics document.

REQUEST METRICS BASE

Usage

Use this element to quickly determine if there have been any WLM thresholds that
have been violated. If thresholds have been violated you can then use the
threshold violations event monitor (if created and active) to obtain details about
the threshold violations.

For example, to obtain details which threshold was violated.

threshold_action - Threshold action monitor element
The action of the threshold to which this threshold violation record applies.
Possible values include Stop, Continue and Remap.

Table 200. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Threshold violations event_thresholdviolations -

Usage

Use this element to determine whether the activity that violated the threshold was
stopped when the violation occurred, was allowed to continue executing, or was
remapped to another service subclass. If the activity was stopped, the application
that submitted the activity will have received an SQL4712N error. If the activity
was remapped to another service subclass, agents working for the activity on the

Chapter 8. Reference 447

member will be moving to the target service subclass of the threshold.

threshold_domain - Threshold domain monitor element
The domain of the threshold responsible for this queue.

Possible values are
v Database
v Work Action Set
v Service Superclass
v Service Subclass
v Workload

Table 201. Table Function Monitoring Information

Table Function Monitor Element Collection Level

WLM_GET_QUEUE_STATS table function -
Return threshold queue statistics

ACTIVITY METRICS BASE

Table 202. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_qstats -

Usage

This element can be used for distinguishing the queue statistics of thresholds that
have the same predicate but different domains.

threshold_maxvalue - Threshold maximum value monitor
element

For non-queuing thresholds, this monitor element represents the value that was
exceeded to cause this threshold violation. For queuing thresholds, this monitor
element represents the level of concurrency that caused the queuing. The level of
concurrency that caused the violation of the queuing threshold is the sum of
threshold_maxvalue and threshold_queuesize monitor elements.

Table 203. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Threshold violations event_thresholdviolations Always collected

Usage

For activity thresholds, this element provides a historical record of what the
threshold's maximum value was at the time the threshold was violated. This is
useful when the threshold's maximum value has changed since the time of the
violation and the old value is no longer available from the SYSCAT.THRESHOLDS
view. For the DATATAGINSC IN and DATATAGINSC NOT IN thresholds, this
element contains the value of the data tag that violated the threshold.

448 DB2 Workload Management Guide and Reference

threshold_name - Threshold name monitor element
The unique name of the threshold responsible for this queue.

Table 204. Table Function Monitoring Information

Table Function Monitor Element Collection Level

WLM_GET_QUEUE_STATS table function -
Return threshold queue statistics

ACTIVITY METRICS BASE

Table 205. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_qstats -

Usage

Use this element to uniquely identify the queuing threshold whose statistics this
record represents.

threshold_predicate - Threshold predicate monitor element
Identifies the type of threshold that was violated or for which statistics were
collected.

Table 206. Table Function Monitoring Information

Table Function Monitor Element Collection Level

WLM_GET_QUEUE_STATS table function -
Return threshold queue statistics

ACTIVITY METRICS BASE

Table 207. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Threshold violations event_thresholdviolations Always collected

Statistics event_qstats Always collected

Usage

Use this monitor element in conjunction with other statistics or threshold violation
monitor elements for analysis of a threshold violation.

The valid values for this monitor element when reported in the
event_thresholdviolations logical group are:

AggSQLTempSpace

SQLTempSpace

SQLRowsReturned

ActivityTotalTime

EstimatedSQLCost

TotalMemberConnections

ConnectionIdleTime

ConcurrentWorkloadOccurrences

Chapter 8. Reference 449

ConcurrentWorkloadActivities

ConcurrentDBCoordActivities

TotalSCMemberConnections

SQLRowsRead

SQLRowsReadInSC

CPUTime

CPUTimeInSC

UowTotalTime

DataTagInSC

DataTagNotInSC

The valid values for this monitor element when reported in the event_qstats logical
group are:

TotalMemberConnections

ConcurrentDBCoordActivities

TotalSCMemberConnections

threshold_queuesize - Threshold queue size monitor element
The size of the queue for a queuing threshold. An attempt to exceed this size
causes a threshold violation. For a non-queuing threshold, this value is 0.

Table 208. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Threshold violations event_thresholdviolations -

Usage

Use this element to determine the number of activities or connections in the queue
for this threshold at the time the threshold was violated.

thresholdid - Threshold ID monitor element
Identifies the threshold to which a threshold violation record applies or for which
queue statistics were collected.

Table 209. Table Function Monitoring Information

Table Function Monitor Element Collection Level

WLM_GET_QUEUE_STATS table function -
Return threshold queue statistics

ACTIVITY METRICS BASE

Table 210. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Threshold violations event_thresholdviolations -

Statistics event_qstats -

450 DB2 Workload Management Guide and Reference

Usage

Use this monitor element in conjunction with other activity history monitor
elements for analysis of a threshold queue or for analysis of the activity that
violated a threshold.

time_completed - Time completed monitor element
The time at which the activity described by this activity record finished executing.
This element is a local timestamp.

Table 211. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity Always collected

Usage

Use this element in conjunction with other activity history elements for analysis of
the behavior of an activity.

This field has a value of "0000-00-00-00.00.00.000000" when a full activity record
could not be written to a table event monitor due to memory limitations. If the
activity was captured while it was in progress, then this field represents the time
that activity was collected.

time_created - Time created monitor element
The time at which a user submitted the activity described by this activity record.
This element is a local timestamp.

Table 212. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity -

Usage

Use this element in conjunction with other activity history elements for analysis of
the behavior of an activity.

time_of_violation - Time of violation monitor element
The time at which the threshold violation described in this threshold violation
record occurred. This element is a local timestamp.

Table 213. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Threshold violations event_thresholdviolations -

Usage

Use this element in conjunction with other threshold violations monitor elements
for analysis of a threshold violation.

Chapter 8. Reference 451

time_started - Time started monitor element
The time at which the activity described by this activity record began executing.
This element is a local timestamp.

Table 214. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity Always collected

Usage

Use this element in conjunction with other activity history elements for analysis of
the behavior of an activity.

If the activity got rejected, then the value of act_exec_time monitor element is 0. In
this case, the value of time_started monitor element equals the value of
time_completed monitor element.

top - Histogram bin top monitor element
The inclusive top end of the range of a histogram bin. The value of this monitor
element is also the bottom exclusive end of the range of the next histogram bin.

Table 215. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_histogrambin -

Usage

Use this element with the corresponding bottom element to determine the range of
a bin within a histogram.

total_disp_run_queue_time - Total dispatcher run queue time
monitor element

The total time that requests, that were run in this service class, spent waiting to
access the CPU. This value is given in microseconds.

Table 216. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_FORMAT_XML_METRICS_BY_ROW -
Get formatted row-based output for all
metrics

Not applicable; reports whichever elements
are contained in the XML document
provided as input to the formatting function.

MON_GET_ACTIVITY_DETAILS table
function - Get complete activity details
(reported in DETAILS XML document)

ACTIVITY METRICS BASE

MON_GET_CONNECTION table function -
Get connection metrics

REQUEST METRICS BASE

MON_GET_CONNECTION_DETAILS table
function - Get detailed connection metrics
(reported in DETAILS XML document)

REQUEST METRICS BASE

MON_GET_PKG_CACHE_STMT table
function - Get SQL statement activity metrics
in the package cache

ACTIVITY METRICS BASE

452 DB2 Workload Management Guide and Reference

Table 216. Table Function Monitoring Information (continued)

Table Function Monitor Element Collection Level

MON_GET_PKG_CACHE_STMT_DETAILS -
Get detailed metrics for package cache
entries

ACTIVITY METRICS BASE

MON_GET_SERVICE_SUBCLASS table
function - Get service subclass metrics

REQUEST METRICS BASE

MON_GET_SERVICE_SUBCLASS_DETAILS
table function - Get detailed service subclass
metrics (reported in DETAILS XML
document)

REQUEST METRICS BASE

MON_GET_UNIT_OF_WORK table function
- Get unit of work metrics

REQUEST METRICS BASE

MON_GET_UNIT_OF_WORK_DETAILS
table function - Get detailed unit of work
metrics (reported in DETAILS XML
document)

REQUEST METRICS BASE

MON_GET_WORKLOAD table function -
Get workload metrics

REQUEST METRICS BASE

MON_GET_WORKLOAD_DETAILS table
function - Get detailed workload metrics
(reported in DETAILS XML document)

REQUEST METRICS BASE

MON_SAMPLE_SERVICE_CLASS_METRICS
- Get sample service class metrics

REQUEST METRICS BASE

MON_SAMPLE_WORKLOAD_METRICS -
Get sample workload metrics

REQUEST METRICS BASE

WLM_GET_SERVICE_SUBCLASS_STATS
table function - Return statistics of service
subclasses

REQUEST METRICS BASE

WLM_GET_WORKLOAD_STATS table
function - Return workload statistics

REQUEST METRICS BASE

Table 217. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity (reported in
the details_xml document)

ACTIVITY METRICS BASE

Package cache Reported in the
activity_metrics document

ACTIVITY METRICS BASE

Statistics event_scstats (reported in the
details_xml document)

REQUEST METRICS BASE

Statistics event_wlstats (reported in the
details_xml document)

REQUEST METRICS BASE

Unit of work Reported in the
system_metrics document

REQUEST METRICS BASE

Usage

Together with the total_cpu_time, the total_disp_run_queue_time monitor
element can be used to compute a measure of the amount of contention for the
CPU resource, measured on a scale from 0 to 1, with lower numbers meaning

Chapter 8. Reference 453

greater contention for the CPU resource. This measure, called CPU velocity, is
computed by measuring the amount of time that work in a service class has access
to the CPU divided by the total time spent accessing the CPU or waiting to access
the CPU. It gives a measure of how efficiently the work is being executed relative
to how efficiently it could be executed if such work never had to wait for the CPU.
The formula is as follows:
CPU velocity = total_cpu_time / (total_cpu_time + total_disp_run_queue_time)

When returned by the WLM_GET_SERVICE_SUBCLASS_STATS or the
WLM_GET_WORKLOAD_STATS function, this monitor element represents the
total dispatcher run queue wait time since the last reset of statistics.

When returned by the MON_SAMPLE_SERVICE_CLASS_METRICS or the
MON_SAMPLE_WORKLOAD_METRICS function, this monitor element represents
the total dispatcher run queue wait time since the function was executed.

uow_completed_total - Total completed units of work monitor
element

The total number of units of work that completed, either by being committed or
rolled back.

Table 218. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_SAMPLE_SERVICE_CLASS_METRICS
- Get sample service class metrics

REQUEST METRICS BASE

MON_SAMPLE_WORKLOAD_METRICS -
Get sample workload metrics

REQUEST METRICS BASE

WLM_GET_SERVICE_SUBCLASS_STATS
table function - Return statistics of service
subclasses

REQUEST METRICS BASE

WLM_GET_WORKLOAD_STATS table
function - Return workload statistics

REQUEST METRICS BASE

Table 219. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_scstats (reported in the
details_xml document)

Always collected

Statistics event_wlstats (reported in the
details_xml document)

Always collected

Usage

When returned by the WLM_GET_SERVICE_SUBCLASS_STATS or the
WLM_GET_WORKLOAD_STATS function, this monitor element represents the
total completed units of work since the last reset of the statistics.

When returned by the MON_SAMPLE_SERVICE_CLASS_METRICS or the
MON_SAMPLE_WORKLOAD_METRICS function, this monitor element represents
the total completed units of work since the function was executed.

454 DB2 Workload Management Guide and Reference

uow_comp_status - Unit of Work Completion Status
The status of the unit of work and how it stopped.

Element identifier
uow_comp_status

Element type
information

Table 220. Snapshot Monitoring Information

Snapshot Level Logical Data Grouping Monitor Switch

Application appl Unit of Work

DCS Application dcs_appl Basic

Table 221. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Transactions event_xact Always collected

Usage You may use this element to determine if the unit of work ended due to a
deadlock or abnormal termination. It may have been:
v Committed due to a commit statement
v Rolled back due to a rollback statement
v Rolled back due to a deadlock
v Rolled back due to an abnormal termination
v Committed at normal application termination.
v Unknown as a result of a FLUSH EVENT MONITOR command for

which units of work were in progress.

Note: API users should refer to the header file (sqlmon.h) containing
definitions of database system monitor constants.

uow_elapsed_time - Most Recent Unit of Work Elapsed Time
The elapsed execution time of the most recently completed unit of work.

Element identifier
uow_elapsed_time

Element type
time

Table 222. Snapshot Monitoring Information

Snapshot Level Logical Data Grouping Monitor Switch

Application appl Unit of Work, Timestamp

DCS Application dcs_appl Unit of Work, Timestamp

Usage

Use this element as an indicator of the time it takes for units of work to complete.

This element is composed of two subelements that report time spent as seconds
and microseconds (one millionth of a second). The names of the subelements can
be derived by adding "_s" and "_ms" to the name of this monitor element. To

Chapter 8. Reference 455

retrieve the total time spent for this monitor element, the values of the two
subelements must be added together. For example, if the "_s" subelement value is 3
and the "_ms" subelement value is 20, then the total time spent for the monitor
element is 3.00002 seconds.

uow_id - Unit of work ID monitor element
The unit of work identifier. The unit of work ID is unique within an application
handle.

Table 223. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_GET_ACTIVITY_DETAILS table
function - Get complete activity details

ACTIVITY METRICS BASE

MON_GET_UNIT_OF_WORK table function
- Get unit of work metrics

ACTIVITY METRICS BASE

MON_GET_UNIT_OF_WORK_DETAILS
table function - Get detailed unit of work
metrics

ACTIVITY METRICS BASE

WLM_GET_SERVICE_CLASS_AGENTS table
function - list agents running in a service
class

ACTIVITY METRICS BASE

WLM_GET_SERVICE_CLASS_WORKLOAD
_OCCURRENCES table function - list
workload occurrences

ACTIVITY METRICS BASE

WLM_GET_WORKLOAD_OCCURRENCE
_ACTIVITIES table function - Return a list of
activities

ACTIVITY METRICS BASE

Table 224. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Locking - Always collected

Unit of work - Always collected

Activities event_activity Always collected

Activities event_activitystmt Always collected

Activities event_activityvals Always collected

Activities event_activitymetrics ACTIVITY METRICS BASE

Threshold violations event_thresholdviolations Always collected

Change history ddlstmtexec
txncompletion

Always collected

Usage

Use this element in conjunction with other activity history elements for analysis of
the behavior of an activity.

You can also use this element with the activity_id and appl_id monitor elements
to uniquely identify an activity.

456 DB2 Workload Management Guide and Reference

uow_lifetime_avg - Unit of work lifetime average monitor
element

The average lifetime of a unit of work. Measured in milliseconds.

Table 225. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_SAMPLE_SERVICE_CLASS_METRICS
- Get sample service class metrics

REQUEST METRICS BASE

MON_SAMPLE_WORKLOAD_METRICS -
Get sample workload metrics

REQUEST METRICS BASE

WLM_GET_SERVICE_SUBCLASS_STATS
table function - Return statistics of service
subclasses

REQUEST METRICS BASE

WLM_GET_WORKLOAD_STATS table
function - Return workload statistics

REQUEST METRICS BASE

Table 226. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_scstats (reported in the
details_xml document)

Always collected

Statistics event_wlstats (reported in the
details_xml document)

Always collected

Usage

When returned by the WLM_GET_SERVICE_SUBCLASS_STATS or the
WLM_GET_WORKLOAD_STATS function, this monitor element represents the
average unit of work lifetime since the last reset of the statistics.

When returned by the MON_SAMPLE_SERVICE_CLASS_METRICS or the
MON_SAMPLE_WORKLOAD_METRICS function, this monitor element represents
the average unit of work lifetime since the function was executed.

uow_lock_wait_time - Total time unit of work waited on locks
monitor element

The total amount of elapsed time this unit of work has spent waiting for locks. The
value is given in milliseconds.

Element identifier
uow_lock_wait_time

Element type
counter

Table 227. Snapshot Monitoring Information

Snapshot Level Logical Data Grouping Monitor Switch

Application appl Unit of Work

Usage This element can help you determine the severity of the resource
contention problem.

Chapter 8. Reference 457

uow_log_space_used - Unit of work log space used monitor
element

The amount of log space (in bytes) used in the current unit of work of the
monitored application.

Table 228. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_GET_UNIT_OF_WORK table function
- Get unit of work metrics

ACTIVITY METRICS BASE

MON_GET_UNIT_OF_WORK_DETAILS
table function - Get detailed unit of work
metrics (reported in DETAILS XML
document)

ACTIVITY METRICS BASE

Table 229. Snapshot Monitoring Information

Snapshot Level Logical Data Grouping Monitor Switch

Application appl Unit of Work

Table 230. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Transactions event_xact Always collected

Unit of work - Always collected

Usage

You may use this element to understand the logging requirements at the unit of
work level.

uow_start_time - Unit of work start timestamp monitor
element

The date and time that the unit of work first required database resources.

Table 231. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_GET_UNIT_OF_WORK table function
- Get unit of work metrics

ACTIVITY METRICS BASE

MON_GET_UNIT_OF_WORK_DETAILS
table function - Get detailed unit of work
metrics (reported in DETAILS XML
document)

ACTIVITY METRICS BASE

Table 232. Snapshot Monitoring Information

Snapshot Level Logical Data Grouping Monitor Switch

Application appl Unit of Work, Timestamp

DCS Application dcs_appl Unit of Work, Timestamp

458 DB2 Workload Management Guide and Reference

Table 233. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Unit of work - -

Transaction event_xact -

Usage

This resource requirement occurs at the first SQL statement execution of that unit
of work:
v For the first unit of work, it is the time of the first database request (SQL

statement execution) after conn_complete_time.
v For subsequent units of work, it is the time of the first database request (SQL

statement execution) after the previous COMMIT or ROLLBACK.

Note: The SQL Reference defines the boundaries of a unit of work as the COMMIT
or ROLLBACK points.

The database system monitor excludes the time spent between the
COMMIT/ROLLBACK and the next SQL statement from its definition of a unit of
work. This measurement method reflects the time spent by the database manager
in processing database requests, separate from time spent in application logic
before the first SQL statement of that unit of work. The unit of work elapsed time
does include the time spent running application logic between SQL statements
within the unit of work.

You may use this element with the uow_stop_time monitor element to calculate the
total elapsed time of the unit of work and with the prev_uow_stop_time monitor
element to calculate the time spent in the application between units of work.

You can use the uow_stop_time and the prev_uow_stop_time monitor elements to
calculate the elapsed time for the SQL Reference definition of a unit of work.

uow_status - Unit of Work Status
The status of the unit of work.

Element identifier
uow_status

Element type
information

Table 234. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Transactions event_xact Always collected

Usage You may use this element to determine the status of a unit of work. API
users should refer to the sqlmon.h header file containing definitions of
database system monitor constants.

uow_stop_time - Unit of work stop timestamp monitor element
The date and time that the most recent unit of work completed, which occurs
when database changes are committed or rolled back.

Chapter 8. Reference 459

Table 235. Snapshot Monitoring Information

Snapshot Level Logical Data Grouping Monitor Switch

Application appl Unit of Work, Timestamp

DCS Application dcs_appl Unit of Work, Timestamp

Table 236. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Unit of work - -

Usage

Use this element with the prev_uow_stop_time monitor element to calculate the
total elapsed time between COMMIT/ROLLBACK points, and with the
uow_start_time monitor element to calculate the elapsed time of the latest unit of
work.

The timestamp contents will be set as follows:
v When the application has completed a unit of work and has not yet started a

new one (as defined in the uow_start_time monitor element), this element
reports a valid, non-zero timestamp.

v When the application is currently executing a unit of work, this element reports
zeros.

v When the application first connects to the database, this element is set to the
value of the conn_complete_time monitor element

As a new unit of work is started, the contents of this element are moved to the
prev_uow_stop_time monitor element.

uow_throughput - Unit of work throughput monitor element
The completion rate of units of work measured in units of work per second.

Table 237. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_SAMPLE_SERVICE_CLASS_METRICS
- Get sample service class metrics

REQUEST METRICS BASE

MON_SAMPLE_WORKLOAD_METRICS -
Get sample workload metrics

REQUEST METRICS BASE

WLM_GET_SERVICE_SUBCLASS_STATS
table function - Return statistics of service
subclasses

REQUEST METRICS BASE

WLM_GET_WORKLOAD_STATS table
function - Return workload statistics

REQUEST METRICS BASE

Table 238. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_scstats (reported in the
details_xml document)

Always collected

Statistics event_wlstats (reported in the
details_xml document)

Always collected

460 DB2 Workload Management Guide and Reference

Usage

When returned by the WLM_GET_SERVICE_SUBCLASS_STATS or the
WLM_GET_WORKLOAD_STATS function, this monitor element represents the
unit of work throughput since the last reset of the statistics.

When returned by the MON_SAMPLE_SERVICE_CLASS_METRICS or the
MON_SAMPLE_WORKLOAD_METRICS function, this monitor element represents
the unit of work throughput since the function was executed.

uow_total_time_top - UOW total time top monitor element
High watermark for unit of work lifetime, in milliseconds.

Table 239. Table Function Monitoring Information

Table Function Monitor Element Collection Level

WLM_GET_SERVICE_SUBCLASS_STATS
table function - Return statistics of service
subclasses

REQUEST METRICS BASE

WLM_GET_WORKLOAD_STATS table
function - Return workload statistics

REQUEST METRICS BASE

Table 240. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_wlstats Always collected

Statistics event_scstats Always collected

Usage

This element can be used to help determine whether or not the UOWTOTALTIME
threshold is effective and can also help to determine how to configure such a
threshold.

For service classes, this monitor element returns -1 when COLLECT AGGREGATE
ACTIVITY DATA for the service class is set to NONE.

For workloads, this monitor element returns -1 if COLLECT AGGREGATE
ACTIVITY DATA for the workload is set to NONE.

For a service class, measurements taken for this high watermark are computed for
the service class assigned by the workload. Any mapping by a work action set to
change the service class of an activity does not affect this high watermark.

wl_work_action_set_id - Workload work action set identifier
monitor element

If this activity has been categorized into a work class of workload scope, this
monitor element shows the ID of the work action set associated with the work
class set to which the work class belongs. Otherwise, this monitor element shows
the value of 0.

Chapter 8. Reference 461

Table 241. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_GET_ACTIVITY_DETAILS table
function - Get complete activity details
(reported in DETAILS XML document)

ACTIVITY METRICS BASE

Table 242. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity Always collected

Usage

Use this monitor element, together with the wl_work_class_id monitor element, to
uniquely identify the workload work class of the activity, if one exists.

wl_work_class_id - Workload work class identifier monitor
element

If this activity has been categorized into a work class of workload scope, then this
monitor element displays the identifier of the work class. Otherwise, this monitor
element displays the value of 0.

Table 243. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_GET_ACTIVITY_DETAILS table
function - Get complete activity details
(reported in DETAILS XML document)

ACTIVITY METRICS BASE

Table 244. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity Always collected

Usage

Use this monitor element, together with the wl_work_action_set_id monitor
element, to uniquely identify the workload work class of the activity, if one exists.

wlm_queue_assignments_total - Workload manager total
queue assignments monitor element

The number of times that activities have been queued by a WLM threshold.

Table 245. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_FORMAT_XML_METRICS_BY_ROW -
Get formatted row-based output for all
metrics

Not applicable; reports whichever elements
are contained in the XML document
provided as input to the formatting function.

MON_GET_ACTIVITY_DETAILS table
function - Get complete activity details
(reported in DETAILS XML document)

ACTIVITY METRICS BASE

462 DB2 Workload Management Guide and Reference

Table 245. Table Function Monitoring Information (continued)

Table Function Monitor Element Collection Level

MON_GET_CONNECTION table function -
Get connection metrics

REQUEST METRICS BASE

MON_GET_CONNECTION_DETAILS table
function - Get detailed connection metrics
(reported in DETAILS XML document)

REQUEST METRICS BASE

MON_GET_PKG_CACHE_STMT table
function - Get SQL statement activity metrics
in the package cache

ACTIVITY METRICS BASE

MON_GET_PKG_CACHE_STMT_DETAILS
table function - get detailed metrics for
package cache entries

ACTIVITY METRICS BASE

MON_GET_SERVICE_SUBCLASS table
function - Get service subclass metrics

REQUEST METRICS BASE

MON_GET_SERVICE_SUBCLASS_DETAILS
table function - Get detailed service subclass
metrics (reported in DETAILS XML
document)

REQUEST METRICS BASE

MON_GET_UNIT_OF_WORK table function
- Get unit of work metrics

REQUEST METRICS BASE

MON_GET_UNIT_OF_WORK_DETAILS
table function - Get detailed unit of work
metrics (reported in DETAILS XML
document)

REQUEST METRICS BASE

MON_GET_WORKLOAD table function -
Get workload metrics

REQUEST METRICS BASE

MON_GET_WORKLOAD_DETAILS table
function - Get detailed workload metrics
(reported in DETAILS XML document)

REQUEST METRICS BASE

Table 246. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity (reported in
the details_xml document)

ACTIVITY METRICS BASE

Activities event_activitymetrics ACTIVITY METRICS BASE

Statistics event_scstats (reported in the
details_xml) document)

REQUEST METRICS BASE

Statistics event_wlstats (reported in the
details_xml document)

REQUEST METRICS BASE

Package cache Reported in the
activity_metrics document.

ACTIVITY METRICS BASE

Unit of work Reported in the
system_metrics document.

REQUEST METRICS BASE

wlm_queue_time_total - Workload manager total queue time
monitor element

The time spent waiting on a WLM queuing threshold. This value is given in
milliseconds.

Chapter 8. Reference 463

Table 247. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_FORMAT_XML_METRICS_BY_ROW -
Get formatted row-based output for all
metrics

Not applicable; reports whichever elements
are contained in the XML document
provided as input to the formatting function.

MON_FORMAT_XML_TIMES_BY_ROW -
Get formatted row-based combined hierarchy
wait and processing times

Not applicable; reports whichever elements
are contained in the XML document
provided as input to the formatting function.

MON_FORMAT_XML_WAIT_TIMES_BY
_ROW - Get formatted row-based output for
wait times

Not applicable; reports whichever elements
are contained in the XML document
provided as input to the formatting function.

MON_GET_ACTIVITY_DETAILS table
function - Get complete activity details
(reported in DETAILS XML document)

ACTIVITY METRICS BASE

MON_GET_CONNECTION table function -
Get connection metrics

REQUEST METRICS BASE

MON_GET_CONNECTION_DETAILS table
function - Get detailed connection metrics
(reported in DETAILS XML document)

REQUEST METRICS BASE

MON_GET_PKG_CACHE_STMT table
function - Get SQL statement activity metrics
in the package cache

ACTIVITY METRICS BASE

MON_GET_PKG_CACHE_STMT_DETAILS
table function - get detailed metrics for
package cache entries

ACTIVITY METRICS BASE

MON_GET_SERVICE_SUBCLASS table
function - Get service subclass metrics

REQUEST METRICS BASE

MON_GET_SERVICE_SUBCLASS_DETAILS
table function - Get detailed service subclass
metrics (reported in DETAILS XML
document)

REQUEST METRICS BASE

MON_GET_UNIT_OF_WORK table function
- Get unit of work metrics

REQUEST METRICS BASE

MON_GET_UNIT_OF_WORK_DETAILS
table function - Get detailed unit of work
metrics (reported in DETAILS XML
document)

REQUEST METRICS BASE

MON_GET_WORKLOAD table function -
Get workload metrics

REQUEST METRICS BASE

MON_GET_WORKLOAD_DETAILS table
function - Get detailed workload metrics
(reported in DETAILS XML document)

REQUEST METRICS BASE

Table 248. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity (reported in
the details_xml document)

ACTIVITY METRICS BASE

Activities event_activitymetrics ACTIVITY METRICS BASE

Statistics event_scstats (reported in the
details_xml) document)

REQUEST METRICS BASE

464 DB2 Workload Management Guide and Reference

Table 248. Event Monitoring Information (continued)

Event Type Logical Data Grouping Monitor Switch

Statistics event_wlstats (reported in the
details_xml document)

REQUEST METRICS BASE

Package cache Reported in the
activity_metrics document.

ACTIVITY METRICS BASE

Unit of work Reported in the
system_metrics document.

REQUEST METRICS BASE

wlo_completed_total - Workload occurrences completed total
monitor element

The number of workload occurrences to complete since last reset.

Table 249. Table Function Monitoring Information

Table Function Monitor Element Collection Level

WLM_GET_WORKLOAD_STATS table
function - Return workload statistics

ACTIVITY METRICS BASE

Table 250. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_wlstats -

Usage

Use this element to determine how many occurrences of a given workload are
driving work into the system.

work_action_set_id - Work action set ID monitor element
The ID of the work action set to which this statistics record applies.

Table 251. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_histogrambin Always collected

Statistics event_wcstats Always collected

Usage

Use this element in conjunction with other activity history elements for analysis of
the behavior of an activity or with other statistics elements for analysis of a work
class.

The value of this element is 0 when the following conditions are met:
v The element is reported in an event_histogrambin logical data group.
v The histogram data is collected for an object that is not a work class.

Chapter 8. Reference 465

work_action_set_name - Work action set name monitor
element

The name of the work action set to which the statistics shown as part of this event
are associated.

Table 252. Table Function Monitoring Information

Table Function Monitor Element Collection Level

WLM_GET_QUEUE_STATS table function -
Return threshold queue statistics

ACTIVITY METRICS BASE

WLM_GET_WORK_ACTION_SET_STATS
table function - Return work action set
statistics

ACTIVITY METRICS BASE

Table 253. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_qstats -

Statistics event_wcstats -

Usage

Use this element along with the work_class_name element to uniquely identify the
work class whose statistics are being shown in this record or to uniquely identify
the work class which is the domain of the threshold queue whose statistics are
shown in this record.

work_class_id - Work class ID monitor element
The identifier of the work class to which this statistics record applies.

Table 254. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_wcstats Always collected

Statistics event_histogrambin Always collected

Usage

Use this element in conjunction with other statistics elements for analysis of a
work class.

The value of this element is 0 when the following conditions are met:
v The element is reported in an event_histogrambin logical data group.
v The histogram data is collected for an object that is not a work class.

work_class_name - Work class name monitor element
The name of the work class to which the statistics shown as part of this event are
associated.

466 DB2 Workload Management Guide and Reference

Table 255. Table Function Monitoring Information

Table Function Monitor Element Collection Level

WLM_GET_QUEUE_STATS table function -
Return threshold queue statistics

ACTIVITY METRICS BASE

WLM_GET_WORK_ACTION_SET_STATS
table function - Return work action set
statistics

ACTIVITY METRICS BASE

Table 256. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_qstats -

Statistics event_wcstats -

Usage

Use this element along with the work_action_set_name element to uniquely
identify the work class whose statistics are being shown in this record or to
uniquely identify the work class which is the domain of the threshold queue
whose statistics are shown in this record.

workload_id - Workload ID monitor element
An integer that uniquely identifies a workload.

Table 257. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_GET_WORKLOAD table function -
Get workload metrics

ACTIVITY METRICS BASE

MON_GET_WORKLOAD_DETAILS table
function - Get detailed workload metrics

ACTIVITY METRICS BASE

MON_SAMPLE_WORKLOAD_METRICS -
Get sample

ACTIVITY METRICS BASE

Table 258. Snapshot Monitoring Information

Snapshot Level Logical Data Grouping Monitor Switch

Application appl_info Basic

Table 259. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Locking - Always collected

Unit of work - Always collected

Activities event_activity (reported in
the details_xml document)

ACTIVITY METRICS BASE

Statistics event_scstats (reported in the
details_xml document)

REQUEST METRICS BASE

Statistics event_wlstats (reported in the
details_xml document)

REQUEST METRICS BASE

Unit of work Reported in the
system_metrics document.

Always collected

Chapter 8. Reference 467

Table 259. Event Monitoring Information (continued)

Event Type Logical Data Grouping Monitor Switch

Statistics event_wlstats Always collected

Statistics event_histogrambin Always collected

Activities event_activity Always collected

Usage

Use this ID to uniquely identify the workload to which this activity, application,
histogram bin, or workload statistics record belongs.

The value of this element is 0 when the following conditions are met:
v The element is reported in an event_histogrambin logical data group.
v The histogram data is collected for an object that is not a workload.

workload_name - Workload name monitor element
Name of the workload.

Table 260. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_FORMAT_LOCK_NAME table
function - Format the internal lock name and
return details

ACTIVITY METRICS BASE

MON_GET_UNIT_OF_WORK table function
- Get unit of work metrics

ACTIVITY METRICS BASE

MON_GET_UNIT_OF_WORK_DETAILS
table function - Get detailed unit of work
metrics

ACTIVITY METRICS BASE

MON_GET_WORKLOAD table function -
Get workload metrics

ACTIVITY METRICS BASE

MON_GET_WORKLOAD_DETAILS table
function - Get detailed workload metrics

ACTIVITY METRICS BASE

MON_SAMPLE_WORKLOAD_METRICS -
Get sample

ACTIVITY METRICS BASE

WLM_GET_QUEUE_STATS table function -
Return threshold queue statistics

ACTIVITY METRICS BASE

WLM_GET_SERVICE_CLASS_AGENTS table
function - list agents running in a service
class

ACTIVITY METRICS BASE

WLM_GET_SERVICE_CLASS_WORKLOAD
_OCCURRENCES table function - list
workload occurrences

ACTIVITY METRICS BASE

WLM_GET_WORKLOAD_STATS table
function - Return workload statistics

ACTIVITY METRICS BASE

Table 261. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Locking - Always collected

Unit of work - Always collected

468 DB2 Workload Management Guide and Reference

Table 261. Event Monitoring Information (continued)

Event Type Logical Data Grouping Monitor Switch

Activities event_activity (reported in
the details_xml document)

ACTIVITY METRICS BASE

Statistics event_scstats (reported in the
details_xml document)

REQUEST METRICS BASE

Statistics event_wlstats (reported in the
details_xml document)

REQUEST METRICS BASE

Unit of work Reported in the
system_metrics document.

Always collected

Statistics event_wlstats Always collected

Usage

In the statistics event monitor and workload table functions, the workload name
identifies the workload for which statistics or metrics are being collected and
reported. In the unit of work event monitor and unit of work table functions, the
workload name identifies the workload that the unit of work was associated with.

Use the workload name to identify units of work or sets of information that apply
to a particular workload of interest.

workload_occurrence_id - Workload occurrence identifier
monitor element

The ID of the workload occurrence to which this activity belongs.

Table 262. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_GET_UNIT_OF_WORK table function
- Get unit of work metrics

ACTIVITY METRICS BASE

MON_GET_UNIT_OF_WORK_DETAILS
table function - Get detailed unit of work
metrics

ACTIVITY METRICS BASE

WLM_GET_SERVICE_CLASS_AGENTS table
function - list agents running in a service
class

ACTIVITY METRICS BASE

WLM_GET_SERVICE_CLASS_WORKLOAD
_OCCURRENCES table function - list
workload occurrences

ACTIVITY METRICS BASE

Table 263. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Unit of work - Always collected

Activities event_activity Always collected

Usage

Use this to identify the workload occurrence that submitted the activity.

Chapter 8. Reference 469

workload_occurrence_state - Workload occurrence state
monitor element

The state of the workload occurrence.

Table 264. Table Function Monitoring Information

Table Function Monitor Element Collection Level

MON_GET_UNIT_OF_WORK table function
- Get unit of work metrics

ACTIVITY METRICS BASE

MON_GET_UNIT_OF_WORK_DETAILS
table function - Get detailed unit of work
metrics (reported in DETAILS XML
document)

ACTIVITY METRICS BASE

WLM_GET_SERVICE_CLASS_WORKLOAD
_OCCURRENCES table function - list
workload occurrences

ACTIVITY METRICS BASE

Usage

Possible values include:

DECOUPLED
Workload occurrence does not have a coordinator agent assigned
(concentrator case).

DISCONNECTPEND
Workload occurrence is disconnecting from the database.

FORCED
Workload occurrence has been forced.

INTERRUPTED
Workload occurrence has been interrupted.

QUEUED
Workload occurrence coordinator agent is queued by a workload
management queuing threshold. In a partitioned database environment,
this state may indicate that the coordinator agent has made an RPC
another member to obtain threshold tickets and has not yet received a
response.

TRANSIENT
Workload occurrence has not yet been mapped to a service superclass.

UOWEXEC
Workload occurrence is processing a request.

UOWWAIT
Workload occurrence is waiting for a request from the client.

Commands

SET WORKLOAD
Specifies the workload to which the database connection is to be assigned. This
command can be issued before connecting to a database or it can be used to
reassign the current connection once the connection has been established. If the
connection has been established, the workload reassignment will be performed at
the beginning of the next unit of work.

470 DB2 Workload Management Guide and Reference

Authorization

None, but see usage notes

Required connection

None

Command syntax

�� SET WORKLOAD TO
AUTOMATIC
SYSDEFAULTADMWORKLOAD ��

Command parameters

AUTOMATIC
Specifies that the database connection will be assigned to a workload chosen
by the workload evaluation that is performed automatically by the server.

SYSDEFAULTADMWORKLOAD
Specifies that the database connection will be assigned to the
SYSDEFAULTADMWORKLOAD, allowing users with accessctrl, dataaccess,
wlmadm, secadm or dbadm authority to bypass the normal workload evaluation.

Examples

To assign the connection to the SYSDEFAULTADMWORKLOAD:
SET WORKLOAD TO SYSDEFAULTADMWORKLOAD

To reset the workload assignment so that it uses the workload that is chosen by the
workload evaluation performed by the server:
SET WORKLOAD TO AUTOMATIC

Usage notes

If the session authorization ID of the database connection does not have accessctrl,
dataaccess, wlmadm, secadm or dbadm authority, the connection cannot be assigned to
the SYSDEFAULTADMWORKLOAD and an SQL0552N error will be returned. If the SET
WORKLOAD TO SYSDEFAULTADMWORKLOAD command is issued before connecting to a
database, the SQL0552N error will be returned after the database connection has
been established, at the beginning of the first unit of work. If the command is
issued when the database connection has been established, the SQL0552N error
will be returned at the beginning of the next unit of work, when the workload
reassignment is supposed to take place.

Configuration parameters

wlm_collect_int - Workload management collection interval
configuration parameter

This parameter specifies a collect and reset interval, in minutes, for workload
management (WLM) statistics.

Every x minutes, (where x is the value of the wlm_collect_int parameter) all
workload management statistics are collected and sent to any active statistics event

Chapter 8. Reference 471

monitor; then the statistics are reset. If an active statistics event monitor exists,
depending on how it was created, the statistics are written to a file, to a pipe, or to
a table. If it does not exist, the statistics are only reset and not collected.

Collections occur at the specified interval times as measured relative to Sunday at
00:00:00. When the catalog member becomes active, the next collection will occur at
the start of the next scheduled interval relative to this fixed time. The scheduled
interval is not relative to the catalog member activation time. If a member is not
active at the time of collection, no statistics are gathered for that member. For
example, if the interval value was set to 60 and the catalog member was activated
on 9:24 AM on Sunday, then the collections would be scheduled to occur each hour
on the hour. Therefore, the next collection will occur at 10:00 AM. If the member is
not active at 10:00 AM, then no statistics will be gathered for that member.

The collect and reset process is initiated from the catalog member. The
wlm_collect_int parameter must be specified on the catalog member. It is not used
on other members.

Configuration type
Database

Parameter type

v Configurable online

Default [range]
0 [0 (no collection performed), 5 - 32 767]

The workload management statistics collected by a statistics event monitor can be
used to monitor both short term and long term system behavior. A small interval
can be used to obtain both short term and long term system behavior because the
results can be merged together to obtain long term behavior. However, having to
manually merge the results from different intervals complicates the analysis. If it's
not required, a small interval unnecessarily increases the processing time.
Therefore, reduce the interval to capture shorter term behavior, and increase the
interval to reduce processing time when only analysis of long term behavior is
sufficient.

The interval needs to be customized per database, not for each SQL request, or
command invocation, or application. There are no other configuration parameters
that need to be considered.

Note: All WLM statistics table functions return statistics that have been
accumulated since the last time the statistics were reset. The statistics will be reset
regularly on the interval specified by this configuration parameter.

wlm_dispatcher - Workload management dispatcher
This parameter enables (YES) or disables (NO) the DB2 workload management
(WLM) dispatcher. By default, an enabled WLM dispatcher allows the setting of
the CPU limits.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

472 DB2 Workload Management Guide and Reference

Parameter type
Configurable Online

Propagation class
Immediate

Default [range]
NO [NO; YES]

When upgrading the DB2 database manager, the value of the
wlm_dispatcher database manager configuration parameter is set to NO.

The WLM dispatcher provides CPU scheduling capabilities at the service class
level in the DB2 database manager using shares-based allocation of CPU resources,
or CPU limits, or both.

With the WLM dispatcher enabled, all work running in user and maintenance
service classes is placed under the control of the dispatcher. When enabled, CPU
limit settings are enforced by the dispatcher as the default case. In order to use
shares-based allocation of CPU resources, the wlm_disp_cpu_shares database
manager configuration parameter must be enabled.

When the wlm_dispatcher configuration parameter is set to YES, the following
conditions apply:
v If any service class has an agent priority set to any value other than the default,

a warning message is written to the db2diag log and the administration
notification log at the time of database activation.

v Any attempt to create or alter a service class to set agent priority to a value
other than the default value results in a warning being returned to the
application that issued the statement to create or alter the service class.

wlm_disp_concur - Workload manager dispatcher thread
concurrency

This parameter specifies how the DB2 workload manager (WLM) dispatcher sets
the thread concurrency level. You can also manually set the thread concurrency
level to a fixed value.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable Online

Propagation class
Immediate

Default [range]
COMPUTED [COMPUTED; manually_set_value]

When upgrading DB2 database manager, the value of the wlm_disp_concur
database manager configuration parameter is COMPUTED.

COMPUTED
DB2 database manager computes a fixed thread concurrency level

Chapter 8. Reference 473

based upon the value of 4 times the number of logical CPUs
available to the DB2 database manager.

manually_set_value
You can manually set the thread concurrency level to a fixed value
(1 - 32767). The optimal value depends on the specific hardware
used and the operating system level; generally, in the range of 2 to
4 times the number of logical CPUs on the host or LPAR.

Unit of measure
Number of concurrent threads

The setting of this database manager configuration parameter controls the number
of threads that the WLM dispatcher allows to be dispatched to the operating
system run queues in parallel. The value is set as a low multiple of the number of
logical CPUs available to the DB2 database manager. In general, you can set the
value to 4 times the number of available logical CPUs to take into account possible
scheduling latencies that result when threads switch in and out of the active state.
An optimal value is just large enough to ensure that there are an adequate
numbers of threads for the DB2 database manager to fully use the CPUs on the
host or LPAR and no larger. This optimal value ensures maximum efficiency and
gives the DB2 WLM dispatcher maximum control over CPU allocation.

wlm_disp_cpu_shares - Workload manager dispatcher CPU
shares

This parameter enables (YES) or disables (NO) the control of CPU shares by the
DB2 workload manager (WLM) dispatcher. By default, an enabled WLM dispatcher
controls only CPU limits.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable Online

Propagation class
Immediate

Default [range]
NO [NO; YES]

When upgrading DB2 database manager, the value of the
wlm_disp_cpu_shares database manager configuration parameter is NO.

If the value of the wlm_dispatcher database manager configuration parameter is set
to YES and the value of the wlm_disp_cpu_shares database manager configuration
parameter is set to NO, the WLM dispatcher can apply only CPU limits to the
management of service classes.

If the value of the wlm_dispatcher database manager configuration parameter is set
to YES and the value of the wlm_disp_cpu_shares database manager configuration
parameter is set to YES, the WLM dispatcher can apply both CPU limits and CPU

474 DB2 Workload Management Guide and Reference

shares to the management of service classes. By default, all service classes are
assigned 1000 hard CPU shares to ensure an equal division of CPU resources.

Table 265. Summary of required database manager configuration parameter settings for
service class management by the DB2 WLM dispatcher

Service class management Setting of wlm_dispatcher
Setting of
wlm_disp_cpu_shares

None NO NO

CPU limits YES NO

CPU limits + CPU shares YES YES

wlm_disp_min_util - Workload manager dispatcher minimum
CPU utilization

This parameter specifies the minimum amount of CPU utilization that is necessary
for a service class to be included in the DB2 WLM-managed sharing of CPU
resources.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Multimember database server with local and remote clients

Parameter type
Configurable Online

Propagation class
Immediate

Default [range]
5 [0 to 100]

When upgrading DB2 database manager, the value of the
wlm_disp_min_util database manager configuration parameter is 5.

Unit of measure
Percent

To illustrate the usage of this database manager configuration parameter with an
example, suppose there are three service classes, A, B, and C, and each has 1000
shares of the CPU resources. In this example, the same result is obtained whether
the service class shares are hard or soft CPU shares. Service classes A and B each
have a CPU utilization that is greater than or equal to the 8% value set for the
wlm_disp_min_util configuration parameter. Service class C has a 3% CPU
utilization that is less than the 8% value set for the wlm_disp_min_util
configuration parameter. In CPU share calculations, service class C is considered to
not have any executing work. Therefore, only service classes A and B equally share
the CPU resources and each receives a 50% share. When service class C begins to
execute work to an extent that the CPU utilization is greater than or equal to the
8% value set for the wlm_disp_min_util configuration parameter, at this point
service classes A, B, and C are now considered to equally share the CPU resources
and each receives a 33.3% share.

Chapter 8. Reference 475

In multimember database environments, it is the aggregate of the CPU utilizations
of all the members on a host or LPAR that is compared to the wlm_disp_min_util
configuration parameter to determine if the host or LPAR is included in the
WLM-managed sharing of CPU resources.

Catalog views

SYSCAT.HISTOGRAMTEMPLATEBINS

Each row represents a histogram template bin.

Table 266. SYSCAT.HISTOGRAMTEMPLATEBINS Catalog View

Column Name Data Type Nullable Description

TEMPLATENAME VARCHAR (128) Y Name of the histogram template.

TEMPLATEID INTEGER Identifier for the histogram template.

BINID INTEGER Identifier for the histogram template bin.

BINUPPERVALUE BIGINT The upper value for a single bin in the
histogram template.

SYSCAT.HISTOGRAMTEMPLATES

Each row represents a histogram template.

Table 267. SYSCAT.HISTOGRAMTEMPLATES Catalog View

Column Name Data Type Nullable Description

TEMPLATEID INTEGER Identifier for the histogram template.

TEMPLATENAME VARCHAR (128) Name of the histogram template.

CREATE_TIME TIMESTAMP Time at which the histogram template was
created.

ALTER_TIME TIMESTAMP Time at which the histogram template was
last altered.

NUMBINS INTEGER Number of bins in the histogram template,
including the last bin that has an unbounded
top value.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

SYSCAT.HISTOGRAMTEMPLATEUSE

Each row represents a relationship between a workload management object that
can use histogram templates and a histogram template.

Table 268. SYSCAT.HISTOGRAMTEMPLATEUSE Catalog View

Column Name Data Type Nullable Description

TEMPLATENAME VARCHAR (128) Y Name of the histogram template.

TEMPLATEID INTEGER Identifier for the histogram template.

476 DB2 Workload Management Guide and Reference

Table 268. SYSCAT.HISTOGRAMTEMPLATEUSE Catalog View (continued)

Column Name Data Type Nullable Description

HISTOGRAMTYPE CHAR (1) The type of information collected by
histograms based on this template.

v C = Activity estimated cost histogram

v E = Activity execution time histogram

v I = Activity interarrival time histogram

v L = Activity life time histogram

v Q = Activity queue time histogram

v R = Request execution time histogram

v U = Unit of work life time histogram

OBJECTTYPE CHAR (1) The type of WLM object.

v b = Service class

v k = Work action

v w = Workload

OBJECTID INTEGER Identifier of the WLM object.

SERVICECLASSNAME VARCHAR (128) Y Name of the service class.

PARENTSERVICECLASSNAME VARCHAR (128) Y The name of the parent service class of the
service subclass that uses the histogram
template.

WORKACTIONNAME VARCHAR (128) Y The name of the work action that uses the
histogram template.

WORKACTIONSETNAME VARCHAR (128) Y The name of the work action set containing
the work action that uses the histogram
template.

WORKLOADNAME VARCHAR (128) Y The name of the workload that uses the
histogram template.

SYSCAT.SERVICECLASSES

Each row represents a service class.

Table 269. SYSCAT.SERVICECLASSES Catalog View

Column Name Data Type Nullable Description

SERVICECLASSNAME VARCHAR (128) Name of the service class.

PARENTSERVICECLASSNAME VARCHAR (128) Y Service class name of the parent service
superclass.

SERVICECLASSID SMALLINT Identifier for the service class.

PARENTID SMALLINT Identifier for the parent service class for this
service class. 0 if this service class is a super
service class.

CREATE_TIME TIMESTAMP Time when the service class was created.

ALTER_TIME TIMESTAMP Time when the service class was last altered.

ENABLED CHAR (1) State of the service class.

v N = Disabled

v Y = Enabled

Chapter 8. Reference 477

Table 269. SYSCAT.SERVICECLASSES Catalog View (continued)

Column Name Data Type Nullable Description

AGENTPRIORITY SMALLINT Thread priority of the agents in the service
class relative to the normal priority of DB2
threads.

v -20 to 20 (Linux and UNIX)

v -6 to 6 (Windows)

v -32768 = not set

PREFETCHPRIORITY CHAR (1) Prefetch priority of the agents in the service
class.

v H = High

v L = Low

v M = Medium

v Blank = not set

MAXDEGREE SMALLINT Y Reserved for future use.

BUFFERPOOLPRIORITY CHAR (1) Bufferpool priority of the agents in the
service class

v H = High

v L = Low

v M = Medium

v Blank = Not set

INBOUNDCORRELATOR VARCHAR (128) Y For future use.

OUTBOUNDCORRELATOR VARCHAR (128) Y String used to associate the service class with
an operating system workload manager
service class.

COLLECTAGGACTDATA CHAR (1) Specifies what aggregate activity data should
be captured for the service class by the
applicable event monitor.

v B = Collect base aggregate activity data

v E = Collect extended aggregate activity
data

v N = None

COLLECTAGGREQDATA CHAR (1) Specifies what aggregate request data should
be captured for the service class by the
applicable event monitor.

v B = Collect base aggregate request data

v N = None

COLLECTACTDATA CHAR (1) Specifies what activity data should be
collected by the applicable event monitor.

v D = Activity data with details

v N = None

v S = Activity data with details and section
environment

v V = Activity data with details and values

v W = Activity data without details

v X = Activity data with details, section
environment, and values

478 DB2 Workload Management Guide and Reference

Table 269. SYSCAT.SERVICECLASSES Catalog View (continued)

Column Name Data Type Nullable Description

COLLECTACTPARTITION CHAR (1) Specifies where activity data is collected.

v C = Coordinator member of the activity

v D = All members

COLLECTREQMETRICS CHAR (1) Specifies the monitoring level for requests
submitted by a connection that is associated
with the service superclass.

v B = Collect base request metrics

v E = Collect extended request metrics

v N = None

CPUSHARES INTEGER The number of CPU shares allocated to this
service class.

CPUSHARETYPE CHAR (1) Specifies the type of CPU shares.

v S = Soft shares

v H = Hard shares

CPULIMIT SMALLINT The maximum percentage of the CPU
resource that can be allocated to the service
class; -1 if there is no CPU limit.

SORTMEMORYPRIORITY CHAR (1) Reserved for future use.

SECTIONACTUALSOPTIONS VARCHAR (32) Specifies what section actuals are collected
during the execution of a section.
The first position in the string represents
whether the collection of section actuals is
enabled.

v B = Enabled and collect basic operator
cardinality counts and statistics for each
object referenced by the section (DML
statements only).

v N = Not enabled.

The second position is always 'N' and
reserved for future use.

COLLECTAGGUOWDATA CHAR (1) Specifies what aggregate unit of work data
should be captured for the service class by
the applicable event monitor.

v B = Collect base aggregate unit of work
data

v N = None

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

SYSCAT.THRESHOLDS

Each row represents a threshold.

Table 270. SYSCAT.THRESHOLDS Catalog View

Column Name Data Type Nullable Description

THRESHOLDNAME VARCHAR (128) Name of the threshold.

THRESHOLDID INTEGER Identifier for the threshold.

Chapter 8. Reference 479

Table 270. SYSCAT.THRESHOLDS Catalog View (continued)

Column Name Data Type Nullable Description

ORIGIN CHAR (1) Origin of the threshold.

v U = Threshold was created by a user

v W = Threshold was created through a
work action set

THRESHOLDCLASS CHAR (1) Classification of the threshold.

v A = Aggregate threshold

v C = Activity threshold

THRESHOLDPREDICATE VARCHAR (15) Type of the threshold. Possible values are:

v AGGTEMPSPACE

v CONCDBC

v CONCWCN

v CONCWOC

v CONNIDLETIME

v CPUTIME

v CPUTIMEINSC

v DATATAGINSC

v DATATAGNOTINSC

v DBCONN

v ESTSQLCOST

v ROWSREAD

v ROWSREADINSC

v ROWSRET

v SCCONN

v TEMPSPACE

v TOTALTIME

v UOWTOTALTIME

THRESHOLDPREDICATEID SMALLINT Identifier for the threshold predicate.

DOMAIN CHAR (2) Domain of the threshold.

v DB = Database

v SB = Service subclass

v SP = Service superclass

v WA = Work action set

v WD = Workload definition

v SQ = SQL statement

DOMAINID INTEGER Identifier for the object with which the
threshold is associated. This can be a service
class, work action, workload unique ID, or
SQL statement. If this is a database
threshold, this value is 0.

ENFORCEMENT CHAR (1) Scope of enforcement for the threshold.

v D = Database

v P = Member

v W = Workload occurrence

QUEUING CHAR (1) v N = The threshold is not queueing

v Y = The threshold is queueing

480 DB2 Workload Management Guide and Reference

Table 270. SYSCAT.THRESHOLDS Catalog View (continued)

Column Name Data Type Nullable Description

MAXVALUE BIGINT Upper bound specified by the threshold. If
THRESHOLDPREDICATE is
'DATATAGINSC' or 'DATATAGNOTINSC',
this value encodes one or more data tags.

DATATAGLIST VARCHAR (256) Y If THRESHOLDPREDICATE is
'DATATAGINSC' or 'DATATAGNOTINSC',
this value represents one or more data tags
as a comma separated list. Otherwise, the
null value.

QUEUESIZE INTEGER If QUEUEING is 'Y', the size of the queue. -1
otherwise.

OVERFLOWPERCENT SMALLINT Reserved for future use.

COLLECTACTDATA CHAR (1) Specifies what activity data should be
collected by the applicable event monitor.

v D = Activity data with details

v N = None

v S = Activity data with details and section
environment

v V = Activity data with details and values

v W = Activity data without details

v X = Activity data with details, section
environment, and values

COLLECTACTPARTITION CHAR (1) Specifies where activity data is collected.

v C = Coordinator member of the activity

v D = All members

EXECUTION CHAR (1) Indicates the execution action taken after a
threshold has been exceeded.

v C = Execution continues

v F = Application is forced off the system

v R = Execution is remapped to a different
service subclass

v S = Execution stops

REMAPSCID SMALLINT Target service subclass ID of the REMAP
ACTIVITY action.

VIOLATIONRECORDLOGGED CHAR (1) Indicates whether a record is written to the
event monitor upon threshold violation.

v N = No

v Y = Yes

CHECKINTERVAL INTEGER The interval, in seconds, in which the
threshold condition is checked if
THRESHOLDPREDICATE is:

v 'CPUTIME'

v 'CPUTIMEINSC'

v 'ROWSREAD'

v 'ROWSREADINSC'

Otherwise, -1.

Chapter 8. Reference 481

Table 270. SYSCAT.THRESHOLDS Catalog View (continued)

Column Name Data Type Nullable Description

ENABLED CHAR (1) v N = This threshold is disabled.

v Y = This threshold is enabled.

CREATE_TIME TIMESTAMP Time at which the threshold was created.

ALTER_TIME TIMESTAMP Time at which the threshold was last altered.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

SYSCAT.WORKACTIONS

Each row represents a work action that is defined for a work action set.

Table 271. SYSCAT.WORKACTIONS Catalog View

Column Name Data Type Nullable Description

ACTIONNAME VARCHAR (128) Name of the work action.

ACTIONID INTEGER Identifier for the work action.

ACTIONSETNAME VARCHAR (128) Y Name of the work action set.

ACTIONSETID INTEGER Identifier of the work action set to which this work
action belongs. This column refers to the
ACTIONSETID column in the
SYSCAT.WORKACTIONSETS view.

WORKCLASSNAME VARCHAR (128) Y Name of the work class.

WORKCLASSID INTEGER Identifier of the work class. This column refers to
the WORKCLASSID column in the
SYSCAT.WORKCLASSES view.

CREATE_TIME TIMESTAMP Time at which the work action was created.

ALTER_TIME TIMESTAMP Time at which the work action was last altered.

ENABLED CHAR (1) v N = This work action is disabled.

v Y = This work action is enabled.

482 DB2 Workload Management Guide and Reference

Table 271. SYSCAT.WORKACTIONS Catalog View (continued)

Column Name Data Type Nullable Description

ACTIONTYPE CHAR (1) The type of action performed on each DB2 activity
that matches the attributes in the work class within
scope.

v B = Collect basic aggregate activity data,
specifiable only for work action sets that apply to
service classes or workloads.

v C = Allow any DB2 activity under the associated
work class to execute and increment the work
class counter.

v D = Collect activity data with details at the
coordinating member of the activity.

v E = Collect extended aggregate activity data,
specifiable only for work action sets that apply to
service classes or workloads.

v F = Collect activity data with details, section, and
values at the coordinating member of the activity.

v G = Collect activity details and section at the
coordinating member of the activity and collect
activity data at all members.

v H = Collect activity details, section, and values at
the coordinating member of the activity and
collect activity data at all members.

v M = Map to a service subclass, specifiable only
for work action sets that apply to service classes.

v P = Prevent the execution of any DB2 activity
under the work class with which this work
action is associated.

v S = Collect activity data with details and section
at the coordinating member of the activity.

v T = The action represents a threshold, specifiable
only for work action sets that are associated with
a database or a workload.

v U = Map all activities with a nesting level of zero
and all activities nested under these activities to
a service subclass, specifiable only for work
action sets that apply to service classes.

v V = Collect activity data with details and values
at the coordinating member.

v W = Collect activity data without details at the
coordinating member.

v X = Collect activity data with details at the
coordinating member and collect activity data at
all members.

v Y = Collect activity data with details and values
at the coordinating member and collect activity
data at all members.

v Z = Collect activity data without details at all
members.

Chapter 8. Reference 483

Table 271. SYSCAT.WORKACTIONS Catalog View (continued)

Column Name Data Type Nullable Description

REFOBJECTID INTEGER Y If ACTIONTYPE is 'M' (map) or 'N' (map nested),
this value is set to the ID of the service subclass to
which the DB2 activity is mapped. If ACTIONTYPE
is 'T' (threshold), this value is set to the ID of the
threshold to be used. For all other actions, this
value is NULL.

REFOBJECTTYPE VARCHAR (30) If the ACTIONTYPE is 'M' or 'N', this value is set
to 'SERVICE CLASS'; if the ACTIONTYPE is 'T',
this value is 'THRESHOLD'; the null value
otherwise.

SECTIONACTUALSOPTIONS VARCHAR (32) Specifies what section actuals are collected during
the execution of a section.
The first position in the string represents whether
the collection of section actuals is enabled.

v B = Enabled and collect basic operator cardinality
counts and statistics for each object referenced by
the section (DML statements only).

v N = Not enabled.

The second position is always 'N' and reserved for
for future use.

SYSCAT.WORKACTIONSETS

Each row represents a work action set.

Table 272. SYSCAT.WORKACTIONSETS Catalog View

Column Name Data Type Nullable Description

ACTIONSETNAME VARCHAR (128) Name of the work action set.

ACTIONSETID INTEGER Identifier for the work action set.

WORKCLASSSETNAME VARCHAR (128) Y Name of the work class set.

WORKCLASSSETID INTEGER The identifier of the work class set that is to
be mapped to the object specified by the
OBJECTID. This column refers to
WORKCLASSSETID in the
SYSCAT.WORKCLASSSETS view.

CREATE_TIME TIMESTAMP Time at which the work action set was
created.

ALTER_TIME TIMESTAMP Time at which the work action set was last
altered.

ENABLED CHAR (1) v N = This work action set is disabled.

v Y = This work action set is enabled.

OBJECTTYPE CHAR (1) v b = Service superclass

v w = Workload

v Blank = Database

OBJECTNAME VARCHAR (128) Y Name of the service class or workload.

484 DB2 Workload Management Guide and Reference

Table 272. SYSCAT.WORKACTIONSETS Catalog View (continued)

Column Name Data Type Nullable Description

OBJECTID INTEGER The identifier of the object to which the
work class set (specified by the
WORKCLASSSETID) is mapped. If the
OBJECTTYPE is 'b', the OBJECTID is the ID
of the service superclass. If the OBJECTTYPE
is 'w', the OBJECTID is the ID of the
workload. If the OBJECTTYPE is blank, the
OBJECTID is -1.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

SYSCAT.WORKCLASSES

Each row represents a work class defined for a work class set.

Table 273. SYSCAT.WORKCLASSES Catalog View

Column Name Data Type Nullable Description

WORKCLASSNAME VARCHAR (128) Name of the work class.

WORKCLASSSETNAME VARCHAR (128) Y Name of the work class set.

WORKCLASSID INTEGER Identifier for the work class.

WORKCLASSSETID INTEGER Identifier for the work class set to which this
work class belongs. This column refers to the
WORKCLASSSETID column in the
SYSCAT.WORKCLASSSETS view.

CREATE_TIME TIMESTAMP Time at which the work class was created.

ALTER_TIME TIMESTAMP Time at which the work class was last
altered.

EVALUATIONORDER SMALLINT Uniquely identifies the evaluation order used
for choosing a work class within a work
class set.

SYSCAT.WORKCLASSSETS

Each row represents a work class set.

Table 274. SYSCAT.WORKCLASSSETS Catalog View

Column Name Data Type Nullable Description

WORKCLASSSETNAME VARCHAR (128) Name of the work class set.

WORKCLASSSETID INTEGER Identifier for the work class set.

CREATE_TIME TIMESTAMP Time at which the work class set was
created.

ALTER_TIME TIMESTAMP Time at which the work class set was last
altered.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

Chapter 8. Reference 485

SYSCAT.WORKLOADAUTH

Each row represents a user, group, or role that has been granted USAGE privilege
on a workload.

Table 275. SYSCAT.WORKLOADAUTH Catalog View

Column Name Data Type Nullable Description

WORKLOADID INTEGER Identifier for the workload.

WORKLOADNAME VARCHAR (128) Name of the workload.

GRANTOR VARCHAR (128) Grantor of the privilege.

GRANTORTYPE CHAR (1) v U = Grantee is an individual user

GRANTEE VARCHAR (128) Holder of the privilege.

GRANTEETYPE CHAR (1) v G = Grantee is a group

v R = Grantee is a role

v U = Grantee is an individual user

USAGEAUTH CHAR (1) Indicates whether grantee holds USAGE
privilege on the workload.

v N = Not held

v Y = Held

SYSCAT.WORKLOADCONNATTR

Each row represents a connection attribute in the definition of a workload.

Table 276. SYSCAT.WORKLOADCONNATTR Catalog View

Column Name Data Type Nullable Description

WORKLOADID INTEGER Identifier for the workload.

WORKLOADNAME VARCHAR (128) Name of the workload.

CONNATTRTYPE VARCHAR (30) Type of the connection attribute.

v 1 = APPLNAME

v 2 = SYSTEM_USER

v 3 = SESSION_USER

v 4 = SESSION_USER GROUP

v 5 = SESSION_USER ROLE

v 6 = CURRENT CLIENT_USERID

v 7 = CURRENT CLIENT_APPLNAME

v 8 = CURRENT CLIENT_WRKSTNNAME

v 9 = CURRENT CLIENT_ACCTNG

v 10 = ADDRESS

CONNATTRVALUE VARCHAR (1000) Value of the connection attribute.

486 DB2 Workload Management Guide and Reference

SYSCAT.WORKLOADS

Each row represents a workload.

Table 277. SYSCAT.WORKLOADS Catalog View

Column Name Data Type Nullable Description

WORKLOADID INTEGER Identifier for the workload.

WORKLOADNAME VARCHAR (128) Name of the workload.

EVALUATIONORDER SMALLINT Evaluation order used for choosing a
workload.

CREATE_TIME TIMESTAMP Time at which the workload was created.

ALTER_TIME TIMESTAMP Time at which the workload was last altered.

ENABLED CHAR (1) v N = This workload is disabled.

v Y = This workload is enabled.

ALLOWACCESS CHAR (1) v N = A UOW associated with this
workload will be rejected.

v Y = A unit of work (UOW) associated with
this workload can access the database.

MAXDEGREE SMALLINT Maximum degree of parallelism for the
workload. The valid values are: 1 to 32767,
and -1. If MAXIMUM DEGREE is DEFAULT,
the value is -1.

SERVICECLASSNAME VARCHAR (128) Name of the service subclass to which a unit
of work (associated with this workload) is
assigned.

PARENTSERVICECLASSNAME VARCHAR (128) Y Name of the service superclass to which a
unit of work (associated with this workload)
is assigned.

COLLECTAGGACTDATA CHAR (1) Specifies what aggregate activity data should
be captured for the workload by the
applicable event monitor.

v B = Collect base aggregate activity data

v E = Collect extended aggregate activity
data

v N = None

COLLECTACTDATA CHAR (1) Specifies what activity data should be
collected by the applicable event monitor.

v D = Activity data with details

v N = None

v S = Activity data with details and section
environment

v V = Activity data with details and values.
Applies when the COLLECT column is set
to 'C'

v W = Activity data without details

v X = Activity data with details, section
environment, and values

COLLECTACTPARTITION CHAR (1) Specifies where activity data is collected.

v C = Coordinator member of the activity

v D = All members

Chapter 8. Reference 487

Table 277. SYSCAT.WORKLOADS Catalog View (continued)

Column Name Data Type Nullable Description

COLLECTDEADLOCK CHAR (1) Specifies that deadlock events should be
collect by the applicable event monitor.

v H = Collect deadlock data with past
activities only

v N = Do not not collect deadlock data

v V = Collect deadlock data with past
activities and values

v W = Collect deadlock data without past
activities and values

COLLECTLOCKTIMEOUT CHAR (1) Specifies that lock timeout events should be
collect by the applicable event monitor.

v H = Collect lock timeout data with past
activities only

v N = Do not not collect lock timeout data

v V = Collect lock timeout data with past
activities and values

v W = Collect lock timeout data without
past activities and values

COLLECTLOCKWAIT CHAR (1) Specifies that lock wait events should be
collect by the applicable event monitor.

v H = Collect lock wait data with past
activities only

v N = Do not not collect lock wait data

v V = Collect lock wait data with past
activities and values

v W = Collect lock wait data without past
activities and values

LOCKWAITVALUE INTEGER Specifies the time in milliseconds a lock
should wait before a lock event is collected
by the applicable event monitor; 0 when
COLLECTLOCKWAIT = 'N'

COLLECTACTMETRICS CHAR (1) Specifies the monitoring level for activities
submitted by an occurrence of the workload.

v B = Collect base activity metrics

v E = Collect extended activity metrics

v N = None

488 DB2 Workload Management Guide and Reference

Table 277. SYSCAT.WORKLOADS Catalog View (continued)

Column Name Data Type Nullable Description

COLLECTUOWDATAOPTIONS VARCHAR (32) Specifies what unit of work data is collected
by the applicable event monitor. The first
position in the string represents whether the
collection of unit of work data is enabled.

v B = Enabled and collect base unit of work
data

v N = Not enabled

Starting from second position, each position
in the string represents a specific extended
option:

v 2 = Package Reference List

v 3 = Executable ID list

Each position representing an extended
option is then set to one of the following
values:

v Y = Extended option is included

v N = Extended option is not included

COLLECTUOWDATA CHAR (1) Specifies what unit of work data should be
collected by the applicable event monitor.

v B = Collect base unit of work data

v N = None

v P = Collect base unit of work data and the
package list

This column is deprecated. Information for
the column is available from
COLLECTUOWDATAOPTIONS.

EXTERNALNAME VARCHAR (128) Y Reserved for future use.

SECTIONACTUALSOPTIONS VARCHAR (32) Specifies what section actuals are collected
during the execution of a section.
The first position in the string represents the
whether the collection of section actuals is
enabled.

v B = Enabled and collect basic operator
cardinality counts and statistics for each
object referenced by the section (DML
statements only).

v N = Not enabled.

The second position is always 'N' and
reserved for for future use.

COLLECTAGGUOWDATA CHAR (1) Specifies what aggregate unit of work data
should be captured for the workload by the
applicable event monitor.

v B = Collect base aggregate unit of work
data

v N = None

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

Chapter 8. Reference 489

490 DB2 Workload Management Guide and Reference

Appendix A. General naming rules

Rules exist for the naming of all database objects, user names, passwords, groups,
files, and paths. Some of these rules are specific to the platform you are working
on.

For example, regarding the use of upper and lowercase letters in the names of
objects that are visible in the file system (databases, instances, and so on):
v On UNIX platforms, names are case-sensitive. For example, /data1 is not the

same directory as /DATA1 or /Data1

v On Windows platforms, names are not case-sensitive. For example, \data1 is the
same as \DATA1 and \Data1.

Unless otherwise specified, all names can include the following characters:
v The letters A through Z, and a through z, as defined in the basic (7-bit) ASCII

character set. When used in identifiers for objects created with SQL statements,
lowercase characters “a” through “z” are converted to uppercase unless they are
delimited with quotation marks (“)

v 0 through 9.
v ! % () { } . - ^ ~ _ (underscore) @, #, $, and space.
v \ (backslash).

Restrictions
v Do not begin names with a number or with the underscore character.
v Do not use SQL reserved words to name tables, views, columns, indexes, or

authorization IDs.
v Use only the letters defined in the basic ASCII character set for directory and file

names. While your computer's operating system might support different code
pages, non-ASCII characters might not work reliably. Using non-ASCII
characters can be a particular problem in distributed environment, where
different computers might be using different code pages.

v There are other special characters that might work separately depending on your
operating system and where you are working with the DB2 database. However,
while they might work, there is no guarantee that they will work. It is not
recommended that you use these other special characters when naming objects
in your database.

v User and group names also must follow the rules imposed by specific operating
systems. For example, on Linux and UNIX platforms, characters for user names
and group names must be lowercase a through z, 0 through 9, and _
(underscore) for names not starting with 0 through 9.

v Lengths must be less than or equal to the lengths listed in “SQL and XML
limits” in the SQL Reference.

v Restrictions on the AUTHID identifier: In DB2 Version 9.5 and later, you can
have a 128-byte authorization ID. However, when the authorization ID is
interpreted as an operating system user ID or group name, the operating system
naming restrictions apply. For example, the Linux and UNIX operating systems
can contain up to 8 characters and the Windows operating systems can contain
up to 30 characters for user IDs and group names. Therefore, while you can
grant a 128-byte authorization ID, you cannot connect as a user that has that
authorization ID. If you write your own security plug-in, you can use the

© Copyright IBM Corp. 2007, 2012 491

extended sizes for the authorization ID. For example, you can give your security
plug-in a 30-byte user ID and it returns a 128-byte authorization ID during
authentication that you can connect to.

You also must consider object naming rules, naming rules in an multicultural
support environment, and naming rules in a Unicode environment.

492 DB2 Workload Management Guide and Reference

Appendix B. Roles

Roles simplify the administration and management of privileges by offering an
equivalent capability as groups but without the same restrictions.

A role is a database object that groups together one or more privileges and can be
assigned to users, groups, PUBLIC, or other roles by using a GRANT statement, or
can be assigned to a trusted context by using a CREATE TRUSTED CONTEXT or
ALTER TRUSTED CONTEXT statement. A role can be specified for the
SESSION_USER ROLE connection attribute in a workload definition.

Roles provide several advantages that make it easier to manage privileges in a
database system:
v Security administrators can control access to their databases in a way that

mirrors the structure of their organizations (they can create roles in the database
that map directly to the job functions in their organizations).

v Users are granted membership in the roles that reflect their job responsibilities.
As their job responsibilities change, their membership in roles can be easily
granted and revoked.

v The assignment of privileges is simplified. Instead of granting the same set of
privileges to each individual user in a particular job function, the administrator
can grant this set of privileges to a role representing that job function and then
grant that role to each user in that job function.

v A role's privileges can be updated and all users who have been granted that role
receive the update; the administrator does not need to update the privileges for
every user on an individual basis.

v The privileges and authorities granted to roles are always used when you create
views, triggers, materialized query tables (MQTs), static SQL and SQL routines,
whereas privileges and authorities granted to groups (directly or indirectly) are
not used.
This is because the DB2 database system cannot determine when membership in
a group changes, as the group is managed by third-party software (for example,
the operating system or an LDAP directory). Because roles are managed inside
the database, the DB2 database system can determine when authorization
changes and act accordingly. Roles granted to groups are not considered, due to
the same reason groups are not considered.

v All the roles assigned to a user are enabled when that user establishes a
connection, so all privileges and authorities granted to roles are taken into
account when a user connects. Roles cannot be explicitly enabled or disabled.

v The security administrator can delegate management of a role to others.

All DB2 privileges and authorities that can be granted within a database can be
granted to a role. For example, a role can be granted any of the following
authorities and privileges:
v DBADM, SECADM, DATAACCESS, ACCESSCTRL, SQLADM, WLMADM,

LOAD, and IMPLICIT_SCHEMA database authorities
v CONNECT, CREATETAB, CREATE_NOT_FENCED, BINDADD,

CREATE_EXTERNAL_ROUTINE, or QUIESCE_CONNECT database authorities
v Any database object privilege (including CONTROL)

© Copyright IBM Corp. 2007, 2012 493

A user's roles are automatically enabled and considered for authorization when a
user connects to a database; you do not need to activate a role by using the SET
ROLE statement. For example, when you create a view, a materialized query table
(MQT), a trigger, a package, or an SQL routine, the privileges that you gain
through roles apply. However, privileges that you gain through roles granted to
groups of which you are a member do not apply.

A role does not have an owner. The security administrator can use the WITH
ADMIN OPTION clause of the GRANT statement to delegate management of the
role to another user, so that the other user can control the role membership.

Restrictions

There are a few restrictions in the use of roles:
v A role cannot own database objects.
v Permissions and roles granted to groups are not considered when you create the

following database objects:
– Packages containing static SQL
– Views
– Materialized query tables (MQT)
– Triggers
– SQL Routines

Only roles granted to the user creating the object or to PUBLIC, directly or
indirectly (such as through a role hierarchy), are considered when creating these
objects.

494 DB2 Workload Management Guide and Reference

Appendix C. Trusted contexts and trusted connections

A trusted context is a database object that defines a trust relationship for a
connection between the database and an external entity such as an application
server.

The trust relationship is based upon the following set of attributes:
v System authorization ID: Represents the user that establishes a database

connection
v IP address (or domain name): Represents the host from which a database

connection is established
v Data stream encryption: Represents the encryption setting (if any) for the data

communication between the database server and the database client

When a user establishes a database connection, the DB2 database system checks
whether the connection matches the definition of a trusted context object in the
database. When a match occurs, the database connection is said to be trusted.

A trusted connection allows the initiator of this trusted connection to acquire
additional capabilities that may not be available outside the scope of the trusted
connection. The additional capabilities vary depending on whether the trusted
connection is explicit or implicit.

The initiator of an explicit trusted connection has the ability to:
v Switch the current user ID on the connection to a different user ID with or

without authentication
v Acquire additional privileges via the role inheritance feature of trusted contexts

An implicit trusted connection is a trusted connection that is not explicitly
requested; the implicit trusted connection results from a normal connection request
rather than an explicit trusted connection request. No application code changes are
needed to obtain an implicit connection. Also, whether you obtain an implicit
trusted connection or not has no effect on the connect return code (when you
request an explicit trusted connection, the connect return code indicates whether
the request succeeds or not). The initiator of an implicit trusted connection can
only acquire additional privileges via the role inheritance feature of trusted
contexts; they cannot switch the user ID.

How using trusted contexts enhances security

The three-tiered application model extends the standard two-tiered client and
server model by placing a middle tier between the client application and the
database server. It has gained great popularity in recent years particularly with the
emergence of web-based technologies and the Java 2 Enterprise Edition (J2EE)
platform. An example of a software product that supports the three-tier application
model is IBM WebSphere Application Server (WAS).

In a three-tiered application model, the middle tier is responsible for authenticating
the users running the client applications and for managing the interactions with
the database server. Traditionally, all the interactions with the database server
occur through a database connection established by the middle tier using a
combination of a user ID and a credential that identify that middle tier to the
database server. This means that the database server uses the database privileges

© Copyright IBM Corp. 2007, 2012 495

associated with the middle tier's user ID for all authorization checking and
auditing that must occur for any database access, including access performed by
the middle tier on behalf of a user.

While the three-tiered application model has many benefits, having all interactions
with the database server (for example, a user request) occur under the middle tier's
authorization ID raises several security concerns, which can be summarized as
follows:
v Loss of user identity

Some enterprises prefer to know the identity of the actual user accessing the
database for access control purposes.

v Diminished user accountability
Accountability through auditing is a basic principle in database security. Not
knowing the user's identity makes it difficult to distinguish the transactions
performed by the middle tier for its own purpose from those performed by the
middle tier on behalf of a user.

v Over granting of privileges to the middle tier's authorization ID
The middle tier's authorization ID must have all the privileges necessary to
execute all the requests from all the users. This has the security issue of enabling
users who do not need access to certain information to obtain access anyway.

v Weakened security
In addition to the privilege issue raised in the previous point, the current
approach requires that the authorization ID used by the middle tier to connect
must be granted privileges on all resources that might be accessed by user
requests. If that middle-tier authorization ID is ever compromised, then all those
resources will be exposed.

v "Spill over" between users of the same connection
Changes by a previous user can affect the current user.

Clearly, there is a need for a mechanism whereby the actual user's identity and
database privileges are used for database requests performed by the middle tier on
behalf of that user. The most straightforward approach of achieving this goal
would be for the middle-tier to establish a new connection using the user's ID and
password, and then direct the user's requests through that connection. Although
simple, this approach suffers from several drawbacks which include the following:
v Inapplicability for certain middle tiers. Many middle-tier servers do not have

the user authentication credentials needed to establish a connection.
v Performance overhead. There is an obvious performance overhead associated

with creating a new physical connection and re-authenticating the user at the
database server.

v Maintenance overhead. In situations where you are not using a centralized
security set up or are not using single sign-on, there is maintenance overhead in
having two user definitions (one on the middle tier and one at the server). This
requires changing passwords at different places.

The trusted contexts capability addresses this problem. The security administrator
can create a trusted context object in the database that defines a trust relationship
between the database and the middle-tier. The middle-tier can then establish an
explicit trusted connection to the database, which gives the middle tier the ability
to switch the current user ID on the connection to a different user ID, with or
without authentication. In addition to solving the end-user identity assertion
problem, trusted contexts offer another advantage. This is the ability to control
when a privilege is made available to a database user. The lack of control on when
privileges are available to a user can weaken overall security. For example,

496 DB2 Workload Management Guide and Reference

privileges may be used for purposes other than they were originally intended. The
security administrator can assign one or more privileges to a role and assign that
role to a trusted context object. Only trusted database connections (explicit or
implicit) that match the definition of that trusted context can take advantage of the
privileges associated with that role.

Enhancing performance

When you use trusted connections, you can maximize performance because of the
following advantages:
v No new connection is established when the current user ID of the connection is

switched.
v If the trusted context definition does not require authentication of the user ID to

switch to, then the overhead associated with authenticating a new user at the
database server is not incurred.

Example of creating a trusted context

Suppose that the security administrator creates the following trusted context object:
CREATE TRUSTED CONTEXT CTX1

BASED UPON CONNECTION USING SYSTEM AUTHID USER2
ATTRIBUTES (ADDRESS ’192.0.2.1’)
DEFAULT ROLE managerRole
ENABLE

If user user1 requests a trusted connection from IP address 192.0.2.1, the DB2
database system returns a warning (SQLSTATE 01679, SQLCODE +20360) to
indicate that a trusted connection could not be established, and that user user1
simply got a non-trusted connection. However, if user user2 requests a trusted
connection from IP address 192.0.2.1, the request is honored because the connection
attributes are satisfied by the trusted context CTX1. Now that use user2 has
established a trusted connection, he or she can now acquire all the privileges and
authorities associated with the trusted context role managerRole. These privileges
and authorities may not be available to user user2 outside the scope of this trusted
connection

Appendix C. Trusted contexts and trusted connections 497

498 DB2 Workload Management Guide and Reference

Appendix D. Overview of the DB2 technical information

DB2 technical information is available in multiple formats that can be accessed in
multiple ways.

DB2 technical information is available through the following tools and methods:
v DB2 Information Center

– Topics (Task, concept and reference topics)
– Sample programs
– Tutorials

v DB2 books
– PDF files (downloadable)
– PDF files (from the DB2 PDF DVD)
– printed books

v Command-line help
– Command help
– Message help

Note: The DB2 Information Center topics are updated more frequently than either
the PDF or the hardcopy books. To get the most current information, install the
documentation updates as they become available, or refer to the DB2 Information
Center at ibm.com.

You can access additional DB2 technical information such as technotes, white
papers, and IBM Redbooks® publications online at ibm.com. Access the DB2
Information Management software library site at http://www.ibm.com/software/
data/sw-library/.

Documentation feedback

We value your feedback on the DB2 documentation. If you have suggestions for
how to improve the DB2 documentation, send an email to db2docs@ca.ibm.com.
The DB2 documentation team reads all of your feedback, but cannot respond to
you directly. Provide specific examples wherever possible so that we can better
understand your concerns. If you are providing feedback on a specific topic or
help file, include the topic title and URL.

Do not use this email address to contact DB2 Customer Support. If you have a DB2
technical issue that the documentation does not resolve, contact your local IBM
service center for assistance.

DB2 technical library in hardcopy or PDF format

The following tables describe the DB2 library available from the IBM Publications
Center at www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss.
English and translated DB2 Version 10.1 manuals in PDF format can be
downloaded from www.ibm.com/support/docview.wss?rs=71&uid=swg2700947.

Although the tables identify books available in print, the books might not be
available in your country or region.

© Copyright IBM Corp. 2007, 2012 499

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474

The form number increases each time a manual is updated. Ensure that you are
reading the most recent version of the manuals, as listed below.

Note: The DB2 Information Center is updated more frequently than either the PDF
or the hard-copy books.

Table 278. DB2 technical information

Name Form Number Available in print Last updated

Administrative API
Reference

SC27-3864-00 Yes April, 2012

Administrative Routines
and Views

SC27-3865-00 No April, 2012

Call Level Interface
Guide and Reference
Volume 1

SC27-3866-00 Yes April, 2012

Call Level Interface
Guide and Reference
Volume 2

SC27-3867-00 Yes April, 2012

Command Reference SC27-3868-00 Yes April, 2012

Database Administration
Concepts and
Configuration Reference

SC27-3871-00 Yes April, 2012

Data Movement Utilities
Guide and Reference

SC27-3869-00 Yes April, 2012

Database Monitoring
Guide and Reference

SC27-3887-00 Yes April, 2012

Data Recovery and High
Availability Guide and
Reference

SC27-3870-00 Yes April, 2012

Database Security Guide SC27-3872-00 Yes April, 2012

DB2 Workload
Management Guide and
Reference

SC27-3891-00 Yes April, 2012

Developing ADO.NET
and OLE DB
Applications

SC27-3873-00 Yes April, 2012

Developing Embedded
SQL Applications

SC27-3874-00 Yes April, 2012

Developing Java
Applications

SC27-3875-00 Yes April, 2012

Developing Perl, PHP,
Python, and Ruby on
Rails Applications

SC27-3876-00 No April, 2012

Developing User-defined
Routines (SQL and
External)

SC27-3877-00 Yes April, 2012

Getting Started with
Database Application
Development

GI13-2046-00 Yes April, 2012

500 DB2 Workload Management Guide and Reference

Table 278. DB2 technical information (continued)

Name Form Number Available in print Last updated

Getting Started with
DB2 Installation and
Administration on Linux
and Windows

GI13-2047-00 Yes April, 2012

Globalization Guide SC27-3878-00 Yes April, 2012

Installing DB2 Servers GC27-3884-00 Yes April, 2012

Installing IBM Data
Server Clients

GC27-3883-00 No April, 2012

Message Reference
Volume 1

SC27-3879-00 No April, 2012

Message Reference
Volume 2

SC27-3880-00 No April, 2012

Net Search Extender
Administration and
User's Guide

SC27-3895-00 No April, 2012

Partitioning and
Clustering Guide

SC27-3882-00 Yes April, 2012

pureXML Guide SC27-3892-00 Yes April, 2012

Spatial Extender User's
Guide and Reference

SC27-3894-00 No April, 2012

SQL Procedural
Languages: Application
Enablement and Support

SC27-3896-00 Yes April, 2012

SQL Reference Volume 1 SC27-3885-00 Yes April, 2012

SQL Reference Volume 2 SC27-3886-00 Yes April, 2012

Text Search Guide SC27-3888-00 Yes April, 2012

Troubleshooting and
Tuning Database
Performance

SC27-3889-00 Yes April, 2012

Upgrading to DB2
Version 10.1

SC27-3881-00 Yes April, 2012

What's New for DB2
Version 10.1

SC27-3890-00 Yes April, 2012

XQuery Reference SC27-3893-00 No April, 2012

Table 279. DB2 Connect-specific technical information

Name Form Number Available in print Last updated

DB2 Connect Installing
and Configuring DB2
Connect Personal Edition

SC27-3861-00 Yes April, 2012

DB2 Connect Installing
and Configuring DB2
Connect Servers

SC27-3862-00 Yes April, 2012

DB2 Connect User's
Guide

SC27-3863-00 Yes April, 2012

Appendix D. Overview of the DB2 technical information 501

Displaying SQL state help from the command line processor
DB2 products return an SQLSTATE value for conditions that can be the result of an
SQL statement. SQLSTATE help explains the meanings of SQL states and SQL state
class codes.

Procedure

To start SQL state help, open the command line processor and enter:
? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the
first two digits of the SQL state.
For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help
for the 08 class code.

Accessing different versions of the DB2 Information Center
Documentation for other versions of DB2 products is found in separate information
centers on ibm.com®.

About this task

For DB2 Version 10.1 topics, the DB2 Information Center URL is
http://publib.boulder.ibm.com/infocenter/db2luw/v10r1.

For DB2 Version 9.8 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r8/.

For DB2 Version 9.7 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r7/.

For DB2 Version 9.5 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r5.

For DB2 Version 9.1 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9/.

For DB2 Version 8 topics, go to the DB2 Information Center URL at:
http://publib.boulder.ibm.com/infocenter/db2luw/v8/.

Updating the DB2 Information Center installed on your computer or
intranet server

A locally installed DB2 Information Center must be updated periodically.

Before you begin

A DB2 Version 10.1 Information Center must already be installed. For details, see
the “Installing the DB2 Information Center using the DB2 Setup wizard” topic in
Installing DB2 Servers. All prerequisites and restrictions that applied to installing
the Information Center also apply to updating the Information Center.

502 DB2 Workload Management Guide and Reference

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1
http://publib.boulder.ibm.com/infocenter/db2luw/v9r8/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r8/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v8/

About this task

An existing DB2 Information Center can be updated automatically or manually:
v Automatic updates update existing Information Center features and languages.

One benefit of automatic updates is that the Information Center is unavailable
for a shorter time compared to during a manual update. In addition, automatic
updates can be set to run as part of other batch jobs that run periodically.

v Manual updates can be used to update existing Information Center features and
languages. Automatic updates reduce the downtime during the update process,
however you must use the manual process when you want to add features or
languages. For example, a local Information Center was originally installed with
both English and French languages, and now you want to also install the
German language; a manual update will install German, as well as, update the
existing Information Center features and languages. However, a manual update
requires you to manually stop, update, and restart the Information Center. The
Information Center is unavailable during the entire update process. In the
automatic update process the Information Center incurs an outage to restart the
Information Center after the update only.

This topic details the process for automatic updates. For manual update
instructions, see the “Manually updating the DB2 Information Center installed on
your computer or intranet server” topic.

Procedure

To automatically update the DB2 Information Center installed on your computer or
intranet server:
1. On Linux operating systems,

a. Navigate to the path where the Information Center is installed. By default,
the DB2 Information Center is installed in the /opt/ibm/db2ic/V10.1
directory.

b. Navigate from the installation directory to the doc/bin directory.
c. Run the update-ic script:

update-ic

2. On Windows operating systems,
a. Open a command window.
b. Navigate to the path where the Information Center is installed. By default,

the DB2 Information Center is installed in the <Program Files>\IBM\DB2
Information Center\Version 10.1 directory, where <Program Files>
represents the location of the Program Files directory.

c. Navigate from the installation directory to the doc\bin directory.
d. Run the update-ic.bat file:

update-ic.bat

Results

The DB2 Information Center restarts automatically. If updates were available, the
Information Center displays the new and updated topics. If Information Center
updates were not available, a message is added to the log. The log file is located in
doc\eclipse\configuration directory. The log file name is a randomly generated
number. For example, 1239053440785.log.

Appendix D. Overview of the DB2 technical information 503

Manually updating the DB2 Information Center installed on your
computer or intranet server

If you have installed the DB2 Information Center locally, you can obtain and install
documentation updates from IBM.

About this task

Updating your locally installed DB2 Information Center manually requires that you:
1. Stop the DB2 Information Center on your computer, and restart the Information

Center in stand-alone mode. Running the Information Center in stand-alone
mode prevents other users on your network from accessing the Information
Center, and allows you to apply updates. The Workstation version of the DB2
Information Center always runs in stand-alone mode. .

2. Use the Update feature to see what updates are available. If there are updates
that you must install, you can use the Update feature to obtain and install them

Note: If your environment requires installing the DB2 Information Center
updates on a machine that is not connected to the internet, mirror the update
site to a local file system by using a machine that is connected to the internet
and has the DB2 Information Center installed. If many users on your network
will be installing the documentation updates, you can reduce the time required
for individuals to perform the updates by also mirroring the update site locally
and creating a proxy for the update site.
If update packages are available, use the Update feature to get the packages.
However, the Update feature is only available in stand-alone mode.

3. Stop the stand-alone Information Center, and restart the DB2 Information Center
on your computer.

Note: On Windows 2008, Windows Vista (and higher), the commands listed later
in this section must be run as an administrator. To open a command prompt or
graphical tool with full administrator privileges, right-click the shortcut and then
select Run as administrator.

Procedure

To update the DB2 Information Center installed on your computer or intranet server:
1. Stop the DB2 Information Center.

v On Windows, click Start > Control Panel > Administrative Tools > Services.
Then right-click DB2 Information Center service and select Stop.

v On Linux, enter the following command:
/etc/init.d/db2icdv10 stop

2. Start the Information Center in stand-alone mode.
v On Windows:

a. Open a command window.
b. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the
Program_Files\IBM\DB2 Information Center\Version 10.1 directory,
where Program_Files represents the location of the Program Files
directory.

c. Navigate from the installation directory to the doc\bin directory.
d. Run the help_start.bat file:

504 DB2 Workload Management Guide and Reference

help_start.bat

v On Linux:
a. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the
/opt/ibm/db2ic/V10.1 directory.

b. Navigate from the installation directory to the doc/bin directory.
c. Run the help_start script:

help_start

The systems default Web browser opens to display the stand-alone Information
Center.

3. Click the Update button (). (JavaScript must be enabled in your browser.)
On the right panel of the Information Center, click Find Updates. A list of
updates for existing documentation displays.

4. To initiate the installation process, check that the selections you want to install,
then click Install Updates.

5. After the installation process has completed, click Finish.
6. Stop the stand-alone Information Center:

v On Windows, navigate to the doc\bin directory within the installation
directory, and run the help_end.bat file:
help_end.bat

Note: The help_end batch file contains the commands required to safely stop
the processes that were started with the help_start batch file. Do not use
Ctrl-C or any other method to stop help_start.bat.

v On Linux, navigate to the doc/bin directory within the installation directory,
and run the help_end script:
help_end

Note: The help_end script contains the commands required to safely stop the
processes that were started with the help_start script. Do not use any other
method to stop the help_start script.

7. Restart the DB2 Information Center.
v On Windows, click Start > Control Panel > Administrative Tools > Services.

Then right-click DB2 Information Center service and select Start.
v On Linux, enter the following command:

/etc/init.d/db2icdv10 start

Results

The updated DB2 Information Center displays the new and updated topics.

DB2 tutorials
The DB2 tutorials help you learn about various aspects of DB2 database products.
Lessons provide step-by-step instructions.

Before you begin

You can view the XHTML version of the tutorial from the Information Center at
http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/.

Appendix D. Overview of the DB2 technical information 505

http://publib.boulder.ibm.com/infocenter/db2luw/10r1/

Some lessons use sample data or code. See the tutorial for a description of any
prerequisites for its specific tasks.

DB2 tutorials

To view the tutorial, click the title.

“pureXML®” in pureXML Guide
Set up a DB2 database to store XML data and to perform basic operations
with the native XML data store.

DB2 troubleshooting information
A wide variety of troubleshooting and problem determination information is
available to assist you in using DB2 database products.

DB2 documentation
Troubleshooting information can be found in the Troubleshooting and Tuning
Database Performance or the Database fundamentals section of the DB2
Information Center, which contains:
v Information about how to isolate and identify problems with DB2

diagnostic tools and utilities.
v Solutions to some of the most common problem.
v Advice to help solve other problems you might encounter with your

DB2 database products.

IBM Support Portal
See the IBM Support Portal if you are experiencing problems and want
help finding possible causes and solutions. The Technical Support site has
links to the latest DB2 publications, TechNotes, Authorized Program
Analysis Reports (APARs or bug fixes), fix packs, and other resources. You
can search through this knowledge base to find possible solutions to your
problems.

Access the IBM Support Portal at http://www.ibm.com/support/entry/
portal/Overview/Software/Information_Management/
DB2_for_Linux,_UNIX_and_Windows

Terms and conditions
Permissions for the use of these publications are granted subject to the following
terms and conditions.

Applicability: These terms and conditions are in addition to any terms of use for
the IBM website.

Personal use: You may reproduce these publications for your personal,
noncommercial use provided that all proprietary notices are preserved. You may
not distribute, display or make derivative work of these publications, or any
portion thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these publications
solely within your enterprise provided that all proprietary notices are preserved.
You may not make derivative works of these publications, or reproduce, distribute
or display these publications or any portion thereof outside your enterprise,
without the express consent of IBM.

506 DB2 Workload Management Guide and Reference

http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/DB2_for_Linux,_UNIX_and_Windows
http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/DB2_for_Linux,_UNIX_and_Windows
http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/DB2_for_Linux,_UNIX_and_Windows

Rights: Except as expressly granted in this permission, no other permissions,
licenses or rights are granted, either express or implied, to the publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Trademarks: IBM, the IBM logo, and ibm.com are trademarks or registered
trademarks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be trademarks of
IBM or other companies. A current list of IBM trademarks is available on the Web
at www.ibm.com/legal/copytrade.shtml

Appendix D. Overview of the DB2 technical information 507

http://www.ibm.com/legal/copytrade.shtml

508 DB2 Workload Management Guide and Reference

Appendix E. Notices

This information was developed for products and services offered in the U.S.A.
Information about non-IBM products is based on information available at the time
of first publication of this document and is subject to change.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information about the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country/region where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions; therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements,
changes, or both in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to websites not owned by IBM are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 2007, 2012 509

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information that has been exchanged, should contact:

IBM Canada Limited
U59/3600
3600 Steeles Avenue East
Markham, Ontario L3R 9Z7
CANADA

Such information may be available, subject to appropriate terms and conditions,
including, in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems, and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements, or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility, or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious, and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating

510 DB2 Workload Management Guide and Reference

platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies
v Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.
v Java and all Java-based trademarks and logos are trademarks or registered

trademarks of Oracle, its affiliates, or both.
v UNIX is a registered trademark of The Open Group in the United States and

other countries.
v Intel, Intel logo, Intel Inside, Intel Inside logo, Celeron, Intel SpeedStep, Itanium,

and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

v Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of
others.

Appendix E. Notices 511

http://www.ibm.com/legal/copytrade.html
http://www.ibm.com/legal/copytrade.html

512 DB2 Workload Management Guide and Reference

Index

A
activities

aggregating metrics
across children 343

analysis example 61
application of work actions 110
assignment to work classes 59
business intelligence reports

controlling (scenario) 155, 156
canceling

scenario 346
cancelling 349

procedure 219, 274
data collection

example 276
procedure 272

Design Advisor 274
long-running

scenario 346
low estimated cost and long run time

scenario 351
mapping to service classes 72
monitor elements

act_throughput 405
act_total 406
activity_collected 406
activity_id 407
activity_secondary_id 408
activity_type 408
coord_act_aborted_total 419
coord_act_completed_total 419
coord_act_rejected_total 425
parent_activity_id 433

overview 15
queuing 140
rogue 275
states in service classes 79
thresholds 130

activities monitor elements
act_exec_time 404
act_remapped_in

details 404
act_remapped_out

details 404
activation time

last_wlm_reset 431
activities

act_throughput 405
act_total 406
activity_collected 406
activity_id 407
activity_secondary_id 408
activity_type 408
coord_act_aborted_total 419
coord_act_completed_total 419
coord_act_rejected_total 425
parent_activity_id 433

agg_temp_tablespace_top 409
CONCURRENTDBCOORDACTIVITIES threshold

concurrentdbcoordactivities_wl_was
_threshold_id 417

activities monitor elements (continued)
CONCURRENTDBCOORDACTIVITIES threshold

(continued)
concurrentdbcoordactivities_wl_was

_threshold_queued 417
concurrentdbcoordactivities_wl_was

_threshold_value 418
concurrentdbcoordactivities_wl_was

_threshold_violated 418
concurrentdbcoordactivities_db_threshold_id 412
concurrentdbcoordactivities_subclass_

threshold_value 414
concurrentdbcoordactivities_subclass

_threshold_queued 414
concurrentdbcoordactivities_subclass

_threshold_violated 415
concurrentdbcoordactivities_superclass

_threshold_id 415
concurrentdbcoordactivities_superclass

_threshold_queued 415
concurrentdbcoordactivities_superclass

_threshold_value 416
concurrentdbcoordactivities_superclass

_threshold_violated 416
coord_act_est_cost_avg 420
coord_act_exec_time_avg 421
coord_act_interarrival_time_avg 422
coord_act_lifetime_avg 422
coord_act_queue_time_avg 424
destination_service_class_id 429
histograms

histogram_type 430
number_in_bin 432
top 453

identifiers
arm_correlator 409
bin_id 409
db_work_action_set_id 429
db_work_class_id 429
sc_work_action_set_id 440
sc_work_class_id 441
service_class_id 442
work_action_set_id 466
work_class_id 467

locks
uow_lock_wait_time 458

log space
uow_log_space_used 459

names
service_subclass_name 442
service_superclass_name 444
work_action_set_name 467
work_class_name 467

num_remaps 432
partitions

coord_partition_num 425
queries

queue_assignments_total 434
queue_size_top 435
queue_time_total 435

© Copyright IBM Corp. 2007, 2012 513

activities monitor elements (continued)
ranges

bottom 410
request_exec_time_avg 435
routines

routine_id 436
rows

rows_fetched 437
rows_modified 437
rows_returned 438

sections
section_env 441

source_service_class_id 445
statements

stmt_invocation_id 445
thresholds

num_threshold_violations 432
thresh_violations 447
threshold_action 448
threshold_domain 448
threshold_maxvalue 449
threshold_name 449
threshold_predicate 450
threshold_queuesize 451
thresholdid 451

time
prep_time 434
time_completed 451
time_created 452
time_of_violation 452
time_started 452

time stamps
activate_timestamp 406
statistics_timestamp 445

units of work (UOW)
parent_uow_id 433
uow_comp_status 455
uow_completed_total 455
uow_elapsed_time 456
uow_id 456
uow_lifetime_avg 457
uow_start_time 459
uow_status 460
uow_stop_time 460
uow_throughput 461

watermarks
act_cpu_time_top 403
act_rows_read_top 404
concurrent_act_top 410
concurrent_connection_top 411
concurrent_wlo_act_top 411
concurrent_wlo_top 411
coord_act_lifetime_top 423
cost_estimate_top 426
rows_returned_top 440
temp_tablespace_top 446
uow_total_time_top 462

WLM dispatcher
cpu_limit 426
cpu_share_type 427
cpu_shares 427
cpu_utilization 427
cpu_velocity 428
estimated_cpu_entitlement 430
total_disp_run_queue_time 453

workload management
overview 403

activities monitor elements (continued)
workload management (continued)

total queue assignments 463
total queue time 464
wl_work_action_set_id 462
wl_work_class_id 463

workloads
wlo_completed_total 466
workload_id 468
workload_name 469
workload_occurrence_id 470
workload_occurrence_state 471

activity event monitors 233
activity throughput

monitor elements
act_throughput 405

ACTIVITYTOTALTIME activity threshold
details 131

agent priority
service classes 76

agents
service class usage 93

aggregate thresholds
definition 139

aggregation
data

example 231
AGGSQLTEMPSPACE threshold

details 140
AIX Workload Manager

integrating DB2 workload management 279
processor priority 76

APIs
sqleseti

workload assignment 38
AUTHID identifier

restrictions 491

B
bins

purpose 260
buffer pool priority

service classes 78

C
CALL statement

classification by schema 51
cancellation of activities

service classes
example 352

catalog views
HISTOGRAMTEMPLATEBINS 477
HISTOGRAMTEMPLATES 477
HISTOGRAMTEMPLATEUSE 477
SERVICECLASSES 478
THRESHOLDS 480
WORKACTIONS 483
WORKACTIONSETS 485
WORKCLASSES 486
WORKCLASSSETS 486
WORKLOADAUTH 487
WORKLOADCONNATTR 487
WORKLOADS 488

514 DB2 Workload Management Guide and Reference

commands
SET WORKLOAD

details 472
taking corrective actions 28

CONCURRENTDBCOORDACTIVITIES aggregate threshold
details 141

CONCURRENTWORKLOADACTIVITIES aggregate
threshold 142

CONCURRENTWORKLOADOCCURRENCES aggregate
threshold 144

configuration parameters
wlm_collect_int 472
wlm_disp_concur 474
wlm_disp_cpu_shares 475
wlm_disp_min_util 476
wlm_dispatcher 473

CONNECTIONIDLETIME connection threshold 130
connections

assigning
default administration workload 28
workload connection attributes with multiple

values 47
workloads 23

mapping to workloads
example 42

states in service classes 79
transient 146

cpu limit
monitor elements

cpu_limit 426
CPU limit

setting 209
cpu share type

monitor elements
cpu_share_type 427

cpu shares
monitor elements

cpu_shares 427
cpu utilization

monitor elements
cpu_utilization 427

cpu velocity
monitor elements

cpu_velocity 428
CPUTIME activity threshold

details 132
CPUTIMEINSC activity threshold 133

D
data representation

aggregation 231
database objects

DB2 workload management 18
roles 493

DATATAGINSC activity threshold
details 134

DB2 Information Center
updating 502, 504
versions 502

DB2 workload management
activities

analyzing workloads by activity type (example) 61
assignment of work actions 110
assignment to work classes 59
canceling 325
cancelling 219, 274

DB2 workload management (continued)
activities (continued)

controlling business intelligence reports (scenario) 155,
156

data collection 272, 329
data collection (example) 276
differentiating 306
discovering 326
identifying activities with low estimated costs and high

run times (example) 351
identifying long-running activities (example) 346
importing information into Design Advisor 274
isolating 296
mapping to service classes 72
overview 15
remapping 152
rogue 275
thresholds 130

activity queues 140
agents

priority 76
usage by service class (example) 93

aggregating metrics
activities 343

AIX Workload Manager integration 279
cancelling

activities 349
connections

assignment to workloads 23
states in service classes 79

CPU limit
details 195
setting 209

DB2 Governor
relationship 4

DDL statements 18
dispatch concurrency level

details 213
setting 214

dispatcher
details 161
enabling 180
ensuring maximum scheduling accuracy 181
multimember environments 178
overview 160

domains 1
event monitors

overview 233
extended aggregates 334
frequently asked questions 4
hard CPU shares

details 182
enabling and setting 188

histogram templates
altering 259
creating 258
dropping 259

histograms
computing averages and standard deviation

(example) 260
creating 313
overview 253

historical analysis tool 261
historical data 331
integration with operating system workload

managers 279
Linux workload management integration 284

Index 515

DB2 workload management (continued)
management stage 67, 93, 119
metrics 265
minimum CPU utilization

details 210
setting 212

monitor elements 403
total queue assignments 463
total queue time 464

monitoring
application delays 322
data 239
data collection 291
event monitors 233
overview 221
real-time 221
service class tiers 251
system behavior at different levels (example) 227
work 221

object ownership 18
overview 1
performance modeling 276
priority aging

details 147
sample scripts 152

Query Patroller 4
reports 331
sample application 341
service class tiering

overview 147
sample scripts 152

service classes
altering 82
analyzing system slowdown (example) 91
creating 80
dropping 85
entities not tracked 80
example 86
obtaining point-in-time statistics (example) 230
prefetch priority 77, 78
resource assignment 67

service subclasses 67
SET WORKLOAD command 472
soft CPU shares

details 190
enabling and setting 193

statistics
collecting using statistics event monitor 262
overview 242
resetting 264

stored procedures
WLM_CANCEL_ACTIVITY 241
WLM_CAPTURE_ACTIVITY_IN_PROGRESS 241
WLM_COLLECT_STATS 241
WLM_SET_CLIENT_INFO 241

table functions
aggregating data (example) 231
example to obtain WLM threshold queue

information 232
operational information 221
understanding what is running on data server

(example) 226
using with snapshot monitor table functions 266

thresholds
activity 130
ACTIVITYTOTALTIME 131
aggregate 139

DB2 workload management (continued)
thresholds (continued)

AGGSQLTEMPSPACE 140
altering 126
CONCURRENTDBCOORDACTIVITIES 141
CONCURRENTWORKLOADACTIVITIES 142
CONCURRENTWORKLOADOCCURRENCES 144
connection 130
CONNECTIONIDLETIME 130
controlling work 119
CPUTIME 132
CPUTIMEINSC 133
creating 125
DATATAGINSC 134
dropping 127
ESTIMATEDSQLCOST 135
evaluation order 123
managing database resources across departments

(example) 128
overview 119
remapping activities 147, 157
rogue activities 303
scope resolution 131
SQLROWSREAD 136
SQLROWSREADINSC 137
SQLROWSRETURNED 138
SQLTEMPSPACE 139
summary 122
TOTALMEMBERCONNECTIONS 145
TOTALSCMEMBERCONNECTIONS 146
UOWTOTALTIME 147
violation monitoring 267
work action set and database threshold (example) 116

tuning
capacity planning data available (example) 354
capacity planning data unavailable (example) 356

tutorial 291
unit of work

workload assignment when multiple workloads exist
(example) 44

USAGE privilege on workloads
granting 37
revoking 38

WLMADM authority
overview 3

work
controlling 67
identifying 15

work action sets
altering 104
creating 103
determining types of work being run (example) 118
disabling 105
dropping 106
overview 96
using with database threshold (example) 116
work actions 93

work actions
altering 101
assigning to database activities 110
creating 98
defining for work action set 106
disabling 102
dropping 103
thresholds 110

work class sets
altering 58

516 DB2 Workload Management Guide and Reference

DB2 workload management (continued)
work class sets (continued)

creating 57
DML activity management (example) 62
dropping 58
overview 51

work classes
altering 56
classification of CALL statement by schema 51
creating 53
defined with ALL keyword (example) 63
dropping 57
evaluation order 58
overview 48

workload management dispatcher
CPU limit 195
hard CPU shares 182
minimum CPU utilization 210
soft CPU shares 190

workloads
altering 32
analyzing system slowdown (example) 342
assignment (example) 38
assignment when multiple workloads exist

(example) 44
assignment when workload attributes have multiple

values (example) 47
connection assignment to the default administration

workload 28
creating 30
database access permission 35
database access prevention 36
default 25
disabling 34
dropping 34
enabling 33
overview 19

DDL
statements

DB2 workload management 18
default maintenance service superclass

overview 70
default system service superclass 70
default user service superclass 70
default workloads 25
Design Advisor

importing activity information 274
disconnection of all applications

service classes
example 353

dispatch concurrency level
setting 214

dispatcher
workload management

overview 160
documentation

overview 499
PDF files 499
printed 499
terms and conditions of use 506

dropping
histogram templates 259
service classes 85
thresholds 127
work action sets 106
work class sets 58
workloads 34

E
estimated cpu entitlement

monitor elements
estimated_cpu_entitlement 430

ESTIMATEDSQLCOST activity threshold 135
evaluation order

DB2 workload management thresholds 123
workloads 23

event monitors
activity data 272
DB2 workload management

statistics collection 262
threshold violations 267
types 233

examples
mapping connections to workloads 42
service classes 86
work action set and threshold 116
work class defined with ALL keyword 63
work class set management of activities 62

F
file names

general 491
functions

table
WLM_GET_ACTIVITY_DETAILS 366
WLM_GET_QUEUE_STATS 371
WLM_GET_SERVICE_CLASS_AGENTS 374
WLM_GET_SERVICE_CLASS_WORKLOAD

_OCCURRENCES 381
WLM_GET_SERVICE_SUBCLASS_STATS 384
WLM_GET_SERVICE_SUPERCLASS_STATS 391
WLM_GET_WORK_ACTION_SET_STATS 392
WLM_GET_WORKLOAD_OCCURRENCE

_ACTIVITIES 394
WLM_GET_WORKLOAD_STATS 398

H
hard CPU shares

enabling and setting 188
help

SQL statements 502
histogram templates

altering 259, 264
creating 258
dropping 259

histograms
example 260
monitor elements

histogram_type 430
number_in_bin 432
top 453

overview 253

I
identifiers

monitor elements
arm_correlator 409
bin_id 409
db_work_action_set_id 429
db_work_class_id 429

Index 517

identifiers (continued)
monitor elements (continued)

sc_work_action_set_id 440
sc_work_class_id 441
service_class_id 442
work_action_set_id 466
work_class_id 467

in-service-class thresholds 147

L
Linux

workload management integration with DB2 workload
management 284

locks
monitor elements

uow_lock_wait_time 458
logs

monitor elements
uow_log_space_used 459

M
metrics

DB2 workload management objects 265
minimum CPU utilization

setting 212
monitor elements

concurrentdbcoordactivities_db_threshold_value 413
concurrentdbcoordactivities_db_threshold_violated 413
concurrentdbcoordactivities_subclass_threshold_id 413

monitoring
data 239
entities not tracked by service class 80
historical trends 233
overview 221
priority aging 251
real-time 221
service class tiers 251
workload management dispatcher

details 215
performance 215
workload types 215

N
names

monitor elements
service_subclass_name 442
service_superclass_name 444
work_action_set_name 467
work_class_name 467

naming conventions
general 491

notices 509
notifications

threshold violations 269

O
operating systems

integrating DB2 workload management 279
ownership

DB2 workload management objects 18

P
partitioned databases

monitor elements
coord_partition_num 425

paths
naming rules 491

performance
DB2 workload management

examples 354, 356
performance modeling 276

prefetching
priority of service classes 77

privileges
roles 493

problem determination
information available 506
tutorials 506

procedures
WLM_CANCEL_ACTIVITY 361
WLM_CAPTURE_ACTIVITY_IN_PROGRESS 362
WLM_COLLECT_STATS 364
WLM_SET_CLIENT_INFO 401

Q
queries

monitor elements
queue_assignments_total 434
queue_size_top 435
queue_time_total 435

queues
prefetch 77

R
ranges

monitor elements
bottom 410

REMAP ACTIVITY action
defining 147
sample scripts 152

remapping activities
details 157
sample scripts 152

revoking
USAGE privilege on workload 38

roles
details 493

routine_id monitor element 436
routines

monitor elements
routine_id 436

WLM_CANCEL_ACTIVITY example 346
rows

monitor elements
rows_fetched 437
rows_modified 437
rows_returned 438
rows_returned_top 440

S
scenarios

aggregating activity metrics
across children 343

518 DB2 Workload Management Guide and Reference

scenarios (continued)
cancelling

activities 349
schemas

classification of CALL statement 51
sections

monitor elements
section_env 441

security
trusted contexts 495

service classes
activity states 79
agent priority 76
altering

changes occur at statistics reset 264
procedure 82

analyzing system slowdown 91
buffer pool priority 78
connection states 79
creating 80
default service subclasses 70
default service superclasses 70
dropping 85
entities not tracked by 80
examples 86, 91
mapping activities 72
point-in-time statistics 230
prefetch priority 77

service subclasses
altering 82
creating 80
dropping 85
monitoring data 239

service superclasses
altering 82
creating 80
dropping 85
monitoring data 239

SET WORKLOAD command
assigning connection to default administration

workload 28
details 472

snapshot monitoring
supplementing table functions 266

soft CPU shares
enabling and setting 193

SQL statements
help

displaying 502
monitor elements

stmt_invocation_id 445
sqleseti API

workload assignment 38
SQLROWSREAD activity threshold

details 136
SQLROWSREADINSC activity threshold 137
SQLROWSRETURNED activity threshold 138
SQLTEMPSPACE activity threshold

details 139
statement invocation identifier monitor element 445
statistics

collection
workload management 262

DB2 workload management objects 242
event monitor 233

stored procedures
WLM_CANCEL_ACTIVITY 241

stored procedures (continued)
WLM_CAPTURE_ACTIVITY_IN_PROGRESS 241
WLM_COLLECT_STATS 241
WLM_SET_CLIENT_INFO 241

SYSDEFAULTMAINTENANCECLASS service superclass
overview 70

SYSDEFAULTSYSTEMCLASS service superclass
overview 70

SYSDEFAULTUSERCLASS service superclass
overview 70

T
table functions

aggregating data 231
determining WLM threshold queue information

example 232
example of using 226
monitoring at different levels

example 227
snapshot monitor 266
WLM_COLLECT_STATS 264
WLM_GET_SERVICE_CLASS_AGENTS 374
WLM_GET_SERVICE_CLASS_WORKLOAD

_OCCURRENCES 381
WLM_GET_SERVICE_SUBCLASS_STATS 384
WLM_GET_WORKLOAD_STATS 398

table spaces
SQLTEMPSPACE threshold 139

terms and conditions
publications 506

threshold violations
email notifications 269

threshold violations event monitor 233
thresholds

action 119
activity 130
activity queuing 140
ACTIVITYTOTALTIME 131
aggregate 119, 139
AGGSQLTEMPSPACE

details 140
altering 126
CONCURRENTDBCOORDACTIVITIES 141
CONCURRENTWORKLOADACTIVITIES 142
CONCURRENTWORKLOADOCCURRENCES 144
connection 130
CONNECTIONIDLETIME 130
CPUTIME

details 132
CPUTIMEINSC 133
creating 125
DATATAGINSC 134
domain

overview 122
dropping 127
enforcement scope 122
ESTIMATEDSQLCOST 135
evaluation order 123
examples

usage 128
work action set and database threshold 116

monitor elements
num_threshold_violations 432
thresh_violations 447
threshold_action 448
threshold_domain 448

Index 519

thresholds (continued)
monitor elements (continued)

threshold_maxvalue 449
threshold_name 449
threshold_predicate 450
threshold_queuesize 451
thresholdid 451

monitoring violations 267
overview 119
remapping activities 147, 157
scope resolution of activity 131
SQLROWSREAD

details 136
SQLROWSREADINSC 137
SQLROWSRETURNED 138
SQLTEMPSPACE 139
TOTALMEMBERCONNECTIONS 145
TOTALSCMEMBERCONNECTIONS 146
unit of work 147
UOWTOTALTIME 147
work actions 110
work classifications 60

time
monitor elements

prep_time 434
time_completed 451
time_created 452
time_of_violation 452
time_started 452

time stamps
monitor elements

activate_timestamp 406
statistics_timestamp 445
uow_start_time 459
uow_stop_time 460

total completed units of work
monitor elements

uow_completed_total 455
total dispatcher queue time

monitor elements
total_disp_run_queue_time 453

TOTALMEMBERCONNECTIONS connection threshold 145
TOTALSCMEMBERCONNECTIONS connection

threshold 146
troubleshooting

online information 506
tutorials 506

trusted connections
overview 495

trusted contexts
overview 495

tutorials
list 505
problem determination 506
pureXML 505
troubleshooting 506

U
units of work

assignment to default workload 25
matching to workload

example 44
monitor elements

parent_uow_id 433
uow_comp_status 455
uow_completed_total 455

units of work (continued)
monitor elements (continued)

uow_elapsed_time 456
uow_id 456
uow_lifetime_avg 457
uow_lock_wait_time 458
uow_log_space_used 459
uow_start_time 459
uow_status 460
uow_stop_time 460
uow_throughput 461

thresholds 147
units of work lifetime average

monitor elements
uow_lifetime_avg 457

units of work throughput
monitor elements

uow_throughput 461
UOWTOTALTIME threshold 147
updates

DB2 Information Center 502, 504

W
watermark monitor elements

act_cpu_time_top 403
act_rows_read_top 404
concurrent_act_top 410
concurrent_connection_top 411
concurrent_wlo_act_top 411
concurrent_wlo_top 411
coord_act_lifetime_top 423
cost_estimate_top 426
rows_returned_top 440
temp_tablespace_top 446
uow_total_time_top 462

WLM_CANCEL_ACTIVITY procedure 361
WLM_CAPTURE_ACTIVITY_IN_PROGRESS procedure 362
wlm_collect_int database configuration parameter 472
WLM_COLLECT_STATS procedure

details 364
resetting statistics 264

wlm_disp_concur configuration parameter 474
wlm_disp_concur database manager configuration parameter

setting 214
wlm_disp_cpu_shares configuration parameter 475
wlm_disp_min_util configuration parameter 476
wlm_disp_min_util database manager configuration parameter

setting 212
wlm_dispatcher configuration parameter 473
wlm_dispatcher database manager configuration parameter

setting 180
WLM_GET_ACTIVITY_DETAILS table function 366
WLM_GET_QUEUE_STATS table function 371
WLM_GET_SERVICE_CLASS_AGENTS table function

details 374
investigating agent usage by service class (example) 93
WLM queue information

example 232
WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES

table function
details 381
examples

aggregating data 231
WLM_GET_SERVICE_SUBCLASS_STATS table function

details 384

520 DB2 Workload Management Guide and Reference

WLM_GET_SERVICE_SUBCLASS_STATS table function
(continued)

examples
aggregating data 231
analyzing system slowdown 91, 342
obtaining point-in-time statistics 230

WLM_GET_SERVICE_SUPERCLASS_STATS table
function 391

WLM_GET_WORK_ACTION_SET_STATS table function
analyzing workloads (examples) 61
details 392

WLM_GET_WORKLOAD_OCCURRENCE _ACTIVITIES table
function

description 394
WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES table

function
aggregating data (examples) 231
examples

identifying long-running activities 346
WLM_GET_WORKLOAD_STATS table function 398
WLM_SET_CLIENT_INFO procedure 401
WLMADM (workload administration) authority

details 3
work action sets

altering 104
concurrency control 112
creating 103
disabling 105
domain and permitted work actions 106
dropping 106
examples

association with other objects 94
determining types of work being run 118
work action set and database threshold 116

overview 96
work actions specifying thresholds 110
workload level

concurrency control 112
work actions

altering 101
assigning to database activities 110
association with other objects (example) 94
creating 98
disabling 102
dropping 103
thresholds 110
work action sets 106

work class sets
altering 58
association with other objects (example) 94
creating 57
dropping 58
managing DML activities (example) 62
overview 51
work class evaluation order 58

work classes
altering 56
assigning activities 59
creating 53
dropping 57
evaluation order 58
examples

association with other objects 94
defined with ALL keyword 63

overview 48
supported thresholds 60

workload management
examples

cancellation of all activities 352
disconnection of all applications 353

threshold violations
email notifications 269

workload management dispatcher
AIX

micropartition environments 178
CPU limit 195

setting 209
details 161
dispatch concurrency level 213

setting 214
enabling 180
ensuring maximum scheduling accuracy 181
hard CPU shares 182

enabling and setting 188
micropartition environments 178
minimum CPU utilization 210

setting 212
monitor elements

cpu_limit 426
cpu_share_type 427
cpu_shares 427
cpu_utilization 427
cpu_velocity 428
estimated_cpu_entitlement 430
total_disp_run_queue_time 453

monitoring
details 215

multimember environments
behaviors 178

overview 160
soft CPU shares 190

enabling and setting 193
workload management dispatcher configuration

parameter 473
workload manager dispatcher CPU shares configuration

parameter 475
workload manager dispatcher minimum CPU utilization

configuration parameter 476
workload manager dispatcher thread concurrency

configuration parameter 474
workloads

altering 32
assignment

details 23
examples 38

connection assignment to the default administration
workload 28

creating 30
default 25
disabling 34
dropping 34
enabling 33
evaluation order 23
examples

analyzing system slowdown 342
assignment when multiple workloads exist 44
assignment when workload attributes have multiple

values 47
assignment when workload attributes have single

values 42
monitor elements

wlo_completed_total 466
workload_id 468

Index 521

workloads (continued)
monitor elements (continued)

workload_name 469
workload_occurrence_id 470
workload_occurrence_state 471

monitoring data 239
overview 19
permitting database access 35
position in workload list 23
preventing database access 36
USAGE privilege

granting 37
revoking 38

work action set comparison 114

522 DB2 Workload Management Guide and Reference

����

Printed in USA

SC27-3891-00

Sp
in
e
in
fo
rm
at
io
n:

IB
M

DB
2

10
.1

fo
rL

in
ux

,U
NI

X,
an

d
W

in
do

w
s

DB
2

W
or

kl
oa

d
M

an
ag

em
en

tG
ui

de
an

d
Re

fe
re

nc
e

�
�

�

	Contents
	About this book
	Chapter 1. Introduction to DB2 workload management concepts
	Domains of workload management
	Workload management administrator authority (WLMADM)
	Frequently asked questions about DB2 workload management

	Chapter 2. Work identification
	Activities
	Workload management DDL statements
	Work identification by origin with workloads
	Workload assignment
	Default workloads
	Taking corrective action using the default administration workload

	Creating a workload
	Altering a workload
	Enabling a workload
	Disabling a workload
	Dropping a workload
	Permitting occurrences of a workload to access the database
	Preventing occurrences of a workload from accessing the database
	Granting the USAGE privilege on a workload
	Revoking the USAGE privilege on a workload
	Example: Workload assignment
	Example: Workload assignment when workload attributes have single values
	Example: Workload assignment for a unit of work when multiple workloads exist
	Example: Workload assignment when workload attributes have multiple values

	Work identification by type, cost, or data accessed with work classes
	Work classes and work class sets
	Creating a work class
	Altering a work class
	Dropping a work class
	Creating a work class set
	Altering a work class set
	Dropping a work class set

	Evaluation order of work classes in a work class set
	Assignment of activities to work classes
	Work classifications supported by thresholds
	Example: Analyzing workloads by activity type
	Example: Using a work class set to manage specific types of activities
	Example: Working with a work class defined with the ALL keyword

	Chapter 3. Activities management
	Resource assignment with service classes
	Default service superclasses and subclasses
	Activity-to-service class mapping
	Agent priority of service classes
	Prefetch priority of service classes
	Buffer pool priority of service classes
	States of connections and activities in a service class
	System-level entities not managed by service classes
	Creating a service class
	Altering a service class
	Dropping a service class
	Example: Using service classes
	Example: Analyzing a service class–related system slowdown
	Example: Investigating agent usage by service class

	Apply controls to types of activities with work action sets
	How work classes, work class sets, work actions, and work action sets work together and are associated with other DB2 objects
	Work actions and work action sets
	Creating a work action
	Altering a work action
	Disabling a work action
	Dropping a work action
	Creating a work action set
	Altering a work action set
	Disabling a work action set
	Dropping a work action set

	Work actions and the work action set domain
	Thresholds that can be used in work actions
	Application of work actions to database activities
	Concurrency control at the workload level using work action sets
	Workload and work action set comparison
	Example: Using a database work action set and database threshold
	Example: Using work action sets to determine the types of work being run

	Control of work with thresholds
	Threshold domain and enforcement scope
	Threshold evaluation order
	Creating a threshold
	Altering a threshold
	Dropping a threshold
	Example: Using thresholds
	Connection thresholds
	CONNECTIONIDLETIME threshold

	Activity thresholds
	Domain precedence for activity thresholds
	ACTIVITYTOTALTIME threshold
	CPUTIME threshold
	CPUTIMEINSC threshold
	DATATAGINSC threshold
	ESTIMATEDSQLCOST threshold
	SQLROWSREAD threshold
	SQLROWSREADINSC threshold
	SQLROWSRETURNED threshold
	SQLTEMPSPACE threshold

	Aggregate thresholds
	Activity queuing
	AGGSQLTEMPSPACE threshold
	CONCURRENTDBCOORDACTIVITIES threshold
	CONCURRENTWORKLOADACTIVITIES threshold
	CONCURRENTWORKLOADOCCURRENCES threshold
	TOTALMEMBERCONNECTIONS threshold
	TOTALSCMEMBERCONNECTIONS threshold

	Unit of work thresholds
	UOWTOTALTIME threshold

	Priority aging of ongoing work
	Sample priority aging scripts
	Scenario: Controlling resource intensive business intelligence reports with priority aging
	Scenario: Remapping incorrectly mapped queries through priority aging

	Remapping activities between service subclasses

	Workload management dispatcher overview
	Workload management dispatcher
	Workload management dispatcher behavior in multimember environments
	Enabling workload management dispatcher
	Ensuring maximum DB2 workload management dispatcher scheduling accuracy

	Hard CPU shares
	Enabling and setting hard CPU shares

	Soft CPU shares
	Enabling and setting soft CPU shares

	CPU limit
	Setting a CPU limit

	Minimum CPU resource utilization for service class to be considered active
	Setting minimum CPU resource utilization for service class to be considered active

	Dispatch concurrency level
	Setting dispatch concurrency level

	Monitoring and tuning workload management dispatcher performance

	Canceling activities

	Chapter 4. Monitoring and intervention
	Real-time monitoring with table functions
	Example: Using DB2 workload management table functions
	Example: Monitoring current system behavior at different levels using DB2 workload management table functions
	Example: Obtaining point-in-time statistics from service classes
	Example: Aggregating data using DB2 workload management table functions
	Example: Determining which activities are queued by a WLM threshold and their queue order

	Historical monitoring with WLM event monitors
	Available monitoring data
	DB2 workload management stored procedures
	Statistics for DB2 workload management objects
	Statistics collection and monitoring with remapped activities
	Histograms in workload management
	Creating a histogram template
	Altering a histogram template
	Dropping a histogram template
	Example: Computing averages and a standard deviation from histograms in a DB2 workload management configuration

	Historical analysis tool
	Collecting workload management statistics using a statistics event monitor
	Resetting statistics on DB2 workload management objects

	Monitoring metrics for DB2 workload management
	Workload management table functions and snapshot monitor integration
	Monitoring threshold violations
	How to generate email notifications for threshold violations

	Collecting data for individual activities
	Importing activity information into the Design Advisor
	Canceling activities
	Guidelines for capturing information about and investigating a rogue activity
	Workload management performance modelling
	Example: Capturing information about an activity for later analysis

	Chapter 5. Integration with operating system workload managers
	Integration of AIX Workload Manager with DB2 workload management
	Integration of Linux workload management with DB2 workload management

	Chapter 6. Tutorial for DB2 workload management
	Exercise 1: Getting started with basic monitoring using default DB2 workload management objects
	Exercise 2: Isolating activities using service classes and workloads
	Exercise 3: Using thresholds to control rogue activities and using the threshold violation monitor
	Exercise 4: Differentiating activities by activity type
	Exercise 5: Using histograms for service classes
	Exercise 6: Investigating delays with WLM table functions
	Exercise 7: Cancelling an ongoing activity
	Exercise 8: Discovering what types of activities are running on your system
	Exercise 9: Capturing detailed information about an executing activity
	Exercise 10: Generating historical data and reports
	Exercise 11: Using extended aggregates for service classes

	Chapter 7. Workload management scenarios
	Workload management sample application
	Scenario: Investigating a workload-related system slowdown
	Scenario: Aggregation of activity metrics across child activities
	Scenario: Identifying activities that are taking too long to complete
	Scenario: How to cancel activities queued for more than an hour
	Scenario: Identifying activities with low estimated cost and high runtime
	Scenario: Cancelling all activities being executed in a service subclass
	Scenario: Disconnecting all applications either mapped to or executing activities in a service class
	Scenario: Tuning a DB2 workload management configuration when capacity planning data is available
	Scenario: Tuning a DB2 workload management configuration when capacity planning information is unavailable

	Chapter 8. Reference
	Procedures and table functions
	WLM_CANCEL_ACTIVITY - Cancel an activity
	WLM_CAPTURE_ACTIVITY_IN_PROGRESS - Collect activity information for activities event monitor
	WLM_COLLECT_STATS - Collect and reset workload management statistics
	WLM_GET_ACTIVITY_DETAILS - Return detailed information about a specific activity
	WLM_GET_QUEUE_STATS table function - Return threshold queue statistics
	WLM_GET_SERVICE_CLASS_AGENTS table function - list agents running in a service class
	WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES - list workload occurrences
	WLM_GET_SERVICE_SUBCLASS_STATS table function - Return statistics of service subclasses
	WLM_GET_SERVICE_SUPERCLASS_STATS - Return statistics of service superclasses
	WLM_GET_WORK_ACTION_SET_STATS - Return work action set statistics
	WLM_GET_WORKLOAD_OCCURRENCE _ACTIVITIES - Return a list of activities
	WLM_GET_WORKLOAD_STATS table function - Return workload statistics
	WLM_SET_CLIENT_INFO procedure - Set client information

	Workload management monitor elements
	act_cpu_time_top – Activity CPU time top monitor element
	act_exec_time - Activity execution time monitor element
	act_remapped_in – Activities remapped in monitor element
	act_remapped_out – Activities remapped out monitor element
	act_rows_read_top – Activity rows read top monitor element
	act_throughput - Activity throughput monitor element
	act_total - Activities total monitor element
	activate_timestamp - Activate timestamp monitor element
	activity_collected - Activity collected monitor element
	activity_id - Activity ID monitor element
	activity_secondary_id - Activity secondary ID monitor element
	activity_type - Activity type monitor element
	agg_temp_tablespace_top - Aggregate temporary table space top monitor element
	arm_correlator - Application response measurement correlator monitor element
	bin_id - Histogram bin identifier monitor element
	bottom - Histogram bin bottom monitor element
	concurrent_act_top - Concurrent activity top monitor element
	concurrent_connection_top - Concurrent connection top monitor element
	concurrent_wlo_act_top - Concurrent WLO activity top monitor element
	concurrent_wlo_top - Concurrent workload occurrences top monitor element
	concurrentdbcoordactivities_db_ threshold_id - Concurrent database coordinator activities database threshold ID monitor eleme
	concurrentdbcoordactivities_db_threshold _queued - Concurrent database coordinator activities database threshold queued monit
	concurrentdbcoordactivities_db_ threshold_value - Concurrent database coordinator activities database threshold value monitor
	concurrentdbcoordactivities_db_ threshold_violated - Concurrent database coordinator activities database threshold violated m
	concurrentdbcoordactivities_subclass_ threshold_id - Concurrent database coordinator activities service subclass threshold ID
	concurrentdbcoordactivities_subclass_ threshold_queued - Concurrent database coordinator activities service subclass threshol
	concurrentdbcoordactivities_subclass_ threshold_value - Concurrent database coordinator activities service subclass threshold
	concurrentdbcoordactivities_subclass_ threshold_violated - Concurrent database coordinator activities service subclass thresh
	concurrentdbcoordactivities_superclass_ threshold_id - Concurrent database coordinator activities service superclass threshol
	concurrentdbcoordactivities_superclass_ threshold_queued - Concurrent database coordinator activities service superclass thre
	concurrentdbcoordactivities_superclass_ threshold_value - Concurrent database coordinator activities service superclass thres
	concurrentdbcoordactivities_superclass_ threshold_violated - Concurrent database coordinator activities service superclass th
	concurrentdbcoordactivities_wl_was_threshold _id - Concurrent database coordinator activities workload work action set thresh
	concurrentdbcoordactivities_wl_was_threshold _queued - Concurrent database coordinator activities workload work action set th
	concurrentdbcoordactivities_wl_was_threshold _value - Concurrent database coordinator activities workload work action set thr
	concurrentdbcoordactivities_wl_was_threshold _violated - Concurrent database coordinator activities workload work action set
	coord_act_aborted_total - Coordinator activities aborted total monitor element
	coord_act_completed_total - Coordinator activities completed total monitor element
	coord_act_est_cost_avg - Coordinator activity estimated cost average monitor element
	coord_act_exec_time_avg - Coordinator activities execution time average monitor element
	coord_act_interarrival_time_avg - Coordinator activity arrival time average monitor element
	coord_act_lifetime_avg - Coordinator activity lifetime average monitor element
	coord_act_lifetime_top - Coordinator activity lifetime top monitor element
	coord_act_queue_time_avg - Coordinator activity queue time average monitor element
	coord_act_rejected_total - Coordinator activities rejected total monitor element
	coord_partition_num - Coordinator partition number monitor element
	cost_estimate_top - Cost estimate top monitor element
	cpu_limit - WLM dispatcher CPU limit monitor element
	cpu_share_type - WLM dispatcher CPU share type monitor element
	cpu_shares - WLM dispatcher CPU shares monitor element
	cpu_utilization - CPU utilization monitor element
	cpu_velocity - CPU velocity monitor element
	db_work_action_set_id - Database work action set ID monitor element
	db_work_class_id - Database work class ID monitor element
	destination_service_class_id – Destination service class ID monitor element
	estimated_cpu_entitlement - Estimated CPU entitlement monitor element
	histogram_type - Histogram type monitor element
	last_wlm_reset - Time of last reset monitor element
	num_remaps - Number of remaps monitor element
	num_threshold_violations - Number of threshold violations monitor element
	number_in_bin - Number in bin monitor element
	parent_activity_id - Parent activity ID monitor element
	parent_uow_id - Parent unit of work ID monitor element
	prep_time - Preparation time monitor element
	queue_assignments_total - Queue assignments total monitor element
	queue_size_top - Queue size top monitor element
	queue_time_total - Queue time total monitor element
	request_exec_time_avg - Request execution time average monitor element
	routine_id - Routine ID monitor element
	rows_fetched - Rows fetched monitor element
	rows_modified - Rows modified monitor element
	rows_returned - Rows returned monitor element
	rows_returned_top - Actual rows returned top monitor element
	sc_work_action_set_id - Service class work action set ID monitor element
	sc_work_class_id - Service class work class ID monitor element
	section_env - Section environment monitor element
	service_class_id - Service class ID monitor element
	service_subclass_name - Service subclass name monitor element
	service_superclass_name - Service superclass name monitor element
	source_service_class_id - Source service class ID monitor element
	statistics_timestamp - Statistics timestamp monitor element
	stmt_invocation_id - Statement invocation identifier monitor element
	temp_tablespace_top - Temporary table space top monitor element
	thresh_violations - Number of threshold violations monitor element
	threshold_action - Threshold action monitor element
	threshold_domain - Threshold domain monitor element
	threshold_maxvalue - Threshold maximum value monitor element
	threshold_name - Threshold name monitor element
	threshold_predicate - Threshold predicate monitor element
	threshold_queuesize - Threshold queue size monitor element
	thresholdid - Threshold ID monitor element
	time_completed - Time completed monitor element
	time_created - Time created monitor element
	time_of_violation - Time of violation monitor element
	time_started - Time started monitor element
	top - Histogram bin top monitor element
	total_disp_run_queue_time - Total dispatcher run queue time monitor element
	uow_completed_total - Total completed units of work monitor element
	uow_comp_status - Unit of Work Completion Status
	uow_elapsed_time - Most Recent Unit of Work Elapsed Time
	uow_id - Unit of work ID monitor element
	uow_lifetime_avg - Unit of work lifetime average monitor element
	uow_lock_wait_time - Total time unit of work waited on locks monitor element
	uow_log_space_used - Unit of work log space used monitor element
	uow_start_time - Unit of work start timestamp monitor element
	uow_status - Unit of Work Status
	uow_stop_time - Unit of work stop timestamp monitor element
	uow_throughput - Unit of work throughput monitor element
	uow_total_time_top - UOW total time top monitor element
	wl_work_action_set_id - Workload work action set identifier monitor element
	wl_work_class_id - Workload work class identifier monitor element
	wlm_queue_assignments_total - Workload manager total queue assignments monitor element
	wlm_queue_time_total - Workload manager total queue time monitor element
	wlo_completed_total - Workload occurrences completed total monitor element
	work_action_set_id - Work action set ID monitor element
	work_action_set_name - Work action set name monitor element
	work_class_id - Work class ID monitor element
	work_class_name - Work class name monitor element
	workload_id - Workload ID monitor element
	workload_name - Workload name monitor element
	workload_occurrence_id - Workload occurrence identifier monitor element
	workload_occurrence_state - Workload occurrence state monitor element

	Commands
	SET WORKLOAD

	Configuration parameters
	wlm_collect_int - Workload management collection interval configuration parameter
	wlm_dispatcher - Workload management dispatcher
	wlm_disp_concur - Workload manager dispatcher thread concurrency
	wlm_disp_cpu_shares - Workload manager dispatcher CPU shares
	wlm_disp_min_util - Workload manager dispatcher minimum CPU utilization

	Catalog views
	SYSCAT.HISTOGRAMTEMPLATEBINS
	SYSCAT.HISTOGRAMTEMPLATES
	SYSCAT.HISTOGRAMTEMPLATEUSE
	SYSCAT.SERVICECLASSES
	SYSCAT.THRESHOLDS
	SYSCAT.WORKACTIONS
	SYSCAT.WORKACTIONSETS
	SYSCAT.WORKCLASSES
	SYSCAT.WORKCLASSSETS
	SYSCAT.WORKLOADAUTH
	SYSCAT.WORKLOADCONNATTR
	SYSCAT.WORKLOADS

	Appendix A. General naming rules
	Appendix B. Roles
	Appendix C. Trusted contexts and trusted connections
	Appendix D. Overview of the DB2 technical information
	DB2 technical library in hardcopy or PDF format
	Displaying SQL state help from the command line processor
	Accessing different versions of the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	Manually updating the DB2 Information Center installed on your computer or intranet server
	DB2 tutorials
	DB2 troubleshooting information
	Terms and conditions

	Appendix E. Notices
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W

