IBM Informix

Version 11.50

o ©
“dh>.
L dmal - 00 J
=)
N7 oe
ks | |

IBM Informix DataBlade APl Programmer’s Guide

SC23-9429-03

IBM Informix

Version 11.50

o ©
“dh>.
L dmal - 00 J
=)
N7 oe
ks | |

IBM Informix DataBlade APl Programmer’s Guide

SC23-9429-03

Note:
FBefore using this information and the product it supports, read the information in ['Notices” on page C-1]

This edition replaces SC23-9429-02.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this publication should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2009.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Introduction. . Xi
In This Introduction. .xi
About This Publication. . xi
Types of Users . xi
Software Dependencies . . xii
Assumptions About Your Locale . xii
Demonstration Databases. . Xii
Function Syntax Conventions . . Xii
DataBlade API Module Code Conventlons. . Xiii
Documentation Conventions . xiii
Technical Changes . . . xiii
Feature, Product, and Platform Markup. . xiii
Example Code Conventions. . xiii
Additional Documentation . . xiv
Compliance with Industry Standards . xiv
How to Provide Documentation Feedback . . Xiv
Part 1. DataBlade API Overview
Chapter 1. Using the DataBlade API . 1-1
In This Chapter. .11
DataBlade API Module . .11
User-Defined Routine (Server) . .12
Client LIBMI Application . .14
Compatibility of Client and Server DataBlade API Modules . .14
DataBlade API Components e . 1-5
Header Files . . . 1-5
Public Data Types . . .18
Regular Public Functions . . 1-14
Advanced Features (Server) . 1-18
Internationalization of DataBlade API Modules (GLS) . 1-19
Chapter 2. Accessmg SQL Data Types . 2-1
In This Chapter. .22
Type Identifiers . 2-2
Type Descriptors . 2-3
Type-Structure Converswn . . . 2-4
Data Type Descriptors and Column Type Descrlptors . . 25
Character Data Types . . 2-7
The mi_charl and mi un51gned charl Data Types . 2-7
The mi_char and mi_string Data Types . .28
The mi_lvarchar Data Type . . .29
Character Data in a Smart Large ObJect . 2-10
Character Processing. .o . 2-10
Varying-Length Data Type Structures . . 2-13
Using a Varying-Length Structure . 2-13
Managing Memory for a Varying-Length Structure . 2-14
Accessing a Varying-Length Structure . . 2-17
Byte Data Types 2-28
The mi_bitvarying Data Type . 2-28
Byte Data in a Smart Large Object . . 2-29
Byte Processing .o . 2-29
Boolean Data Types . . . 2-30
Boolean Text Representation . . 2-30
© Copyright IBM Corp. 1996, 2009 iii

Boolean Binary Representation . 2-30
Pointer Data Types (Server) . 231
Simple Large Objects . 2-32
The MI_DATUM Data Type . . 2-32
Contents of an MI_DATUM Structure . . . 2-33
Address Calculations with MI_DATUM Values . 2-35
Uses of MI_DATUM Structures . . 2-35
The NULL Constant . . 2-36
SQL NULL Value . . 2-36
NULL-Valued Pointer . 2-37
Part 2. Data Manipulation
Chapter 3. Using Numeric Data Types . 3-1
In This Chapter. . 3-1
Integer Data . . .31
Integer Text Representatlon 3-2
Integer Binary Representations. 3-2
Fixed-Point Data . . 3-8
Fixed-Point Text Representat1ons . . .39
Fixed-Point Binary Representations . . 3-10
Transferring Fixed-Point Data (Server) . . 3-14
Converting Decimal Data . . . 3-14
Performing Operations on Decimal Data . . 3-16
Obtaining Fixed-Point Type Information . . 3-16
Floating-Point Data . . . 3-16
Floating-Point Text Representatlon . . 3-17
Floating-Point Binary Representations . . 3-17
Transferring Floating-Point Data (Server) . . 3-19
Converting Floating-Point Decimal Data . . 320
Obtaining Floating-Point Type Information . 320
Formatting Numeric Strings . . . 3-20
Chapter 4. Using Date and Time Data Types . 4-1
In This Chapter. . 4-1
Date Data. .41
Date Text Representatlon . 4-1
Date Binary Representation . .42
Transfers of Date Data (Server) . 4-3
Conversion of Date Representations . .43
Operations on Date Data. . 4-5
Date-Time or Interval Data . . .45
Date-Time or Interval Text Representatlon . 4-6
Date-Time or Interval Binary Representation . .47
The datetime.h Header File 49
Retrieval and Insertion of DATETIME and INTERVAL Values . . 4-11
Transfers of Date-Time or Interval Data (Server) . 4-12
Conversion of Date-Time or Interval Representations . . 4-13
Operations on Date and Time Data . . . 4-15
Functions to Obtain Information on Date and Tlme Data . 4-15
Chapter 5. Using Complex Data Types. . 5-1
In This Chapter. . 5-1
Collections . . . 52
Collection Text Representat1on . 52
Collection Binary Representation . . 52
Creating a Collection . . 53
Opening a Collection . . 54
Accessing Elements of a Collectlon . .56
Releasing Collection Resources . 5-15

iV IBM Informix DataBlade API Programmer’s Guide

The listpos() UDR . . 5-16
Row Types . . 5-28
Row-Type Text Representatlon . 5-28
Row-Type Binary Representation . 5-29
Creating a Row Type . 5-33
Accessing a Row Type . . 5-36
Copying a Row Structure . . 5-36
Releasing Row Resources . . 5-37
Chapter 6. Using Smart Large Objects. . 6-1
In This Chapter. . . 62
Understanding Smart Large Ob]ects . . 62
Parts of a Smart Large Object . . . 6-3
Information About a Smart Large Object . .64
Storing a Smart Large Object in a Database . . 6-13
Valid Data Types . . . 6-13
Access to a Smart Large Ob]ect . . 6-14
Using the Smart-Large-Object Interface . 6-15
Smart-Large-Object Data Type Structures . . 6-16
Smart-Large-Object Functions. . . 6-19
Creating a Smart Large Object . . 6-24
Obtaining the LO-Specification Structure . . 6-25
Choosing Storage Characteristics . 6-28
Initializing an LO Handle and an LO F11e Descrrptor . 6-40
Writing Data to a Smart Large Object . . . 6-42
Storing an LO Handle . . . 6-42
Freeing Resources . 6-43
Sample Code to Create a New Smart Large Ob]ect . 6-44
Accessing a Smart Large Object . S . 6-46
Selecting the LO Handle . 6-47
Opening a Smart Large Object . 6-48
Reading Data from a Smart Large Ob]ect . 6-48
Freeing a Smart Large Object . . 6-49
Sample Code to Select an Existing Smart Large Ob]ect . 6-49
Modifying a Smart Large Object 6-50
Updating a Smart Large Object . . 6-50
Altering Storage Characteristics . . 6-51
Obtaining Status Information for a Smart Large Ob]ect . 6-52
Obtaining a Valid LO File Descriptor . . 6-52
Initializing an LO-Status Structure . . 6-53
Obtaining Status Information . . 6-54
Freeing an LO-Status Structure . 6-55
Deleting a Smart Large Object . 6-56
Managing the Reference Count . . 6-56
Freeing LO File Descriptors . 6-58
Converting a Smart Large Object to a Flle or Buffer . 6-59
Using Operating-System Files. . 6-59
Using User-Defined Buffers . . 6-59
Converting an LO Handle Between Blnary and Text . . 6-60
Binary and Text Representations of an LO Handle . . 6-60
DataBlade API Functions for LO-Handle Conversion . . 6-60
Transferring an LO Handle Between Computers (Server) . 6-61
Using Byte-Range Locking. . . 6-61
Passing a NULL Connection (Server) . 6-62
Part 3. Database Access
Chapter 7. Handling Connections . . 71
In This Chapter. . 7-1
Understanding Session Management . 7-1

A\

Client Connection .

UDR Connection (Server)

Connection Descriptor
Initializing a Client Connection

Using Connection Parameters .

Using Database Parameters .

Using Session Parameters

Setting Connection Parameters for a Chent Connectlon .

Establishing a Connection . .
Establishing a UDR Connection (Server) .
Establishing a Client Connection.

Associating User Data with a Connection.

Initializing the DataBlade API

Closing a Connection

Chapter 8. Executing SQL Statements .

In This Chapter. .

Executing SQL Statements . .
Choosing a DataBlade API Functlon
Executing Basic SQL Statements
Executing Prepared SQL Statements
Executing Multiple SQL Statements.

Processing Statement Results . .
Executing the mi_get_result() Loop
Example: The get_results() Function .

Retrieving Query Data .

Obtaining Row Information
Obtaining Column Information .
Retrieving Rows . .
Obtaining Column Values .

Completing Execution .

Finishing Execution .
Interrupting Execution .

Inserting Data into the Database.
Assembling an Insert String
Sending the Insert Statement .
Processing Insert Results

Using Save Sets
Creating a Save Set .

Inserting Rows into a Save Set
Building a Save Set .
Freeing a Save Set

Chapter 9. Executing User-Defined Routines .

In This Chapter. .
Accessing MI_FPARAM Routme State Informatlon .
Checking Routine Arguments . .

Accessing Return-Value Information .

Saving a User State .

Obtaining Other Routine Informatlon . .
Calling UDRs Within a DataBlade API Module .

Invoking a UDR Through an SQL Statement.

Calling a UDR Directly (Server) .

Named Parameters and UDRs .
Calling UDRs with the Fastpath Interface.

Obtaining a Function Descriptor .

Obtaining Information from a Function Descr1ptor

Executing the Routine .

Using a User-Allocated MI_ FPARAM Structure

Releasing Routine Resources . .

vi IBM Informix DataBlade API Programmer’s Guide

.72
.72
. 7-3
.74
. 74

. .78
. 7-10
. 7-11
. 7-11
. 7-14
. 7-16
. 717
. 7-18

. 811
. 8-32
. 833
. 8-34
. 8-39
. 8-39
. 8-40
. 8-41
. 841
. 842
. 857
. 857
. 8-58
. 8-59
. 8-59
. 8-59
. 8-59
. 8-60
. 8-60
. 8-60
. 8-61
. 8-64

. 9-12
. 9-12
. 9-13
. 9-13
. 9-14
. 9-14
. 9-17
. 9-23
. 927
. 9-36
. 9-38

Obtaining Trigger Execution Information and HDR Database Server Status . 9-39
Trigger Information . . 9-39
HDR Status Information . 9-40

Chapter 10. Handling Exceptlons and Events . 10-1

In This Chapter . . 10-1

DataBlade API Event Types . 10-2

Event-Handling Mechanisms . . 10-3
Invoking a Callback . .. 10-3
Using Default Behavior . 10-11

Callback Functions . . . 10-12
Declaring a Callback Functlon . . 10-13
Writing a Callback Function . . 10-16

Database Server Exceptions . . . 10-20
Understanding Database Server Exceptlons . 10-20
Providing Exception Handling . . 10-25
Returning Error Information to the Caller . 10-32
Handling Multiple Exceptions . . 10-38
Raising an Exception . . 10-40

State-Transition Events . . 10-49
Understanding State-Transition Events . 10-49
Providing State-Transition Handling . . 10-51

Client LIBMI Errors . 10-55

Chapter 11. Working with XA-Compliant External Data Sources 1141

Overview of Integrating XA-Compliant Data Sources in Transactions . 11-1
Support for the Two-Phase Commit Protocol. . . 11-2
XA-Compliant Data Sources and Data Source Types . . 112
Infrastructure for Creating Support Routines for XA Routines . . 11-3
Global Transaction IDs . . 11-3
System Catalog Tables . . . 11-3
Files Containing Necessary Components . . 11-3

Creating User-Defined XA-Support Routines. . 11-3
The xa_open() function. o . 114
The xa_close() function. . 114
The xa_start() function . . 11-5
The xa_end() function . . 11-5
The xa_prepare() function. . 11-6
The xa_rollback() function. . 11-7
The xa_commit() function . . 11-7
The xa_recover() function . . 11-8
The xa_forget() function . 11-8
The xa_complete() function . . 119
Dropping an XA Support User-Defmed Routme . 11-9

Managing XA Data Sources and Data Source Types . 119
Creating an XA Data Source Type . .. 119
Dropping an XA Data Source Type. L 11-11
Creating an XA Data Source . L 11-11
Dropping an XA Data Source L 11-11

Registering and Unregistering XA- Comphant Data Sources . 11-12
Using ax_reg() . S . 11-12
Using ax_unreg() . 11-13
Using mi_xa_register_ xadatasource() . 11-14
Using mi_xa_unregister_. xadatasource(). . 11-15
Getting the XID Structure. . 11-16
Getting the Resource Manager ID . . 11-16

Monitoring Integrated Transactions . 11-17

Part 4. Creating User-Defined Routines

Contents Vii

Chapter 12. Developlng a User-Defined Routine1241
In This Chapter C oo 1222
Designinga UDR. L. 1222
Development Tools L1222
Usesof aCUDR.o 12
Portability . . . C s 1244
Insert and Update Operatlons e)
Creating UDR Code ..o 125
Variable Declaration. .. 120
Session Management 126
SQL Statement Execution. 12710
Routine-State Information .1210
Event Handling 12n
Well-Behaved Routines 121
Compilinga CUDR 121
Compiling Options . . . C e s 1212
Creating a Shared-Object Flle s 1212
Registeringa C UDR C e e s 12114
EXTEND Role Required to Reglster a C UDR P 072 1)
The External Name. 1215
The UDR Language ... 1216
Routine Modifiers . . . O 025 V4
Parameters and Return Values O 02 V4
Privileges for the UDR. ... 1218
Executinga UDR 1218
Routine Resolution L o L oL 12-19
The Routine Manager ... 122
Debugginga UDR ..o 1225
Using a Debugger 1225
Running a Debugging Session ... 1227
Using Tracing ... 12-28
Changinga UDR ..o 1236
Altering a Routine . . . C oo s 12-86
Unloading a Shared-Object Flle e 12-36

Chapter 13. Wr|t|ng a User-Defined Routine131
In This Chapter . . . C e s 182
Codinga CUDR. . . . e (¢ 2
Defining Routine Parameters e k)
Obtaining Argument Values .135
Defining a Return Value .. .11
Coding the Routine Body. .1316
Using Virtual Processors . . e S 1O
Creating a Well-Behaved Routme e a vy
Managing Virtual Processors. oo 21337
Controlling the VP Environment . . . e fc SC]
Obtaining VP-Environment Informatlon e k26
Changing the VP Environment .1340
Lockinga UDR e 13
Performing Input and Output .. 1342
Access to a Stream (Server)o 132
Access to Operating-System Files .135B2
Sample File-Access UDR e ke 9
Accessing the UDR Execution Env1r0nment T ¢ ot
Accessing the Session Environment .1358
Accessing the Server Environment. .1358

Chapter14Manag|ngMemory e

In This Chapter . . . e |
UnderstandmgSharedMemory e 1 2

viii IBM Informix DataBlade API Programmer’s Guide

Accessing Shared Memory. . 142
Choosing the Memory Duration . . 144
Managing Shared Memory . 14-19
Managing User Memory . . 14-20
Managing Named Memory . . 14-24
Monitoring Shared Memory . . 14-33
Managing Stack Space. . 14-35
Managing Stack Usage . 14-35
Increasing Stack Space. . 14-36
Chapter 15. Creating Spemal Purpose UDRs. . 15-1
In This Chapter . 15-1
Writing an End-User Routme . 152
Writing a Cast Function . 152
Writing an Iterator Function . . 153
Initializing the Iterations . 15-6
Returning One Active-Set Item . 15-8
Releasing Iteration Resources . . . 159
Calling an Iterator Function from an SQL Statement . . . 159
Writing an Aggregate Function . . 15-11
Extending a Built-In Aggregate . . 15-12
Creating a User-Defined Aggregate . 15-16
Providing UDR-Optimization Functions . . 15-53
Writing Selectivity and Cost Functions . 15-54
Creating Negator Functions . . 15-60
Creating Commutator Functions . 15-60
Creating Parallelizable UDRs . 15-61
Chapter 16. Extending Data Types . . 16-1
In This Chapter . . 16-1
Creating an Opaque Data Type . . 16-1
Designing an Opaque Data Type. . . 16-2
Writing Opaque-Type Support Functions . . . 16-8
Registering an Opaque Data Type . . 16-39
Providing Statistics Data for a Column . . 16-40
Collecting Statistics Data . . 16-40
Using User-Defined Statistics . 16-48
Optimizing Queries. . 16-50
Query Plans . . 16-51
Selectivity Functions . 16-51
Part 5. Appendixes
Appendix A. Writing a Client LIBMI Appllcatlon . A1
Managing Memory in Client LIBMI Apphcatlons . A-1
Allocating User Memory A1
Deallocating User Memory . . . A2
Accessing Operating-System Files in Chent LIBMI Apphcatlons . A3
Handling Transactions o o . A-3
Appendix B. Accessibility . . . B-1
Accessibility features for IBM Informix Dynamic Server . . B-1
Accessibility Features. . B-1
Keyboard Navigation. . B-1
Related Accessibility Informatlon . B-1
IBM and Accessibility. . B-1
Notices . . C1
Trademarks . . C3

Contents 1X

Index .

X IBM Informix DataBlade API Programmer’s Guide

Introduction

In This Introduction.
About This Publication.
Types of Users
Software Dependenc1es .
Assumptions About Your Locale
Demonstration Databases.
Function Syntax Conventions

DataBlade API Module Code Conventlons.

Documentation Conventions
Technical Changes .

Feature, Product, and Platform Markup.

Example Code Conventions.
Additional Documentation .
Compliance with Industry Standards

How to Provide Documentation Feedback .

. xi
. Xi
. Xi
. Xxii
. xii
. xii
. Xxii
. xiii
. xiii
. xiii
it
. xiii
. Xiv
. Xiv
. Xxiv

In This Introduction

This introduction provides an overview of the information in this publication and

describes the conventions it uses.

About This Publication

This publication contains information on the DataBlade API, the C-language
application programming interface (API) provided with IBM Informix Dynamic

Server (IDS). You can use the DataBlade API to develop client LIBMI applications
and C user-defined routines (UDRs) that access data in an IBM Informix Dynamic

Server (IDS) database.

This publication explains how to use the DataBlade API functions. The companion

publication, the IBM Informix DataBlade API Function Reference, describes the
functions in alphabetical order.

This section discusses the intended audience, the software that you need to use the

DataBlade API, localization, and demonstration databases.

Types of Users

This publication is for the following users:

¢ Database-application programmers
+ DataBlade® developers
* Developers of C UDRs

To understand this publication, you need to have the following background:

* A working knowledge of your computer, your operating system, and the utilities

that your operating system provides

* Some experience working with relational databases or exposure to database

concepts

* Some experience with computer programming in the C programming language

* Some experience with database design and the optimization of database queries

© Copyright IBM Corp. 1996, 2009

xi

If you have limited experience with relational databases, SQL, or your operating
system, see the IBM Informix Dynamic Server Getting Started Guide for your database
server for a list of supplementary titles.

Software Dependencies

This publication is based on the assumption that you are using Version 11.50 of
IBM Informix Dynamic Server (IDS).

Assumptions About Your Locale

IBM Informix products can support many languages, cultures, and code sets. All
the information related to character set, collation, and representation of numeric
data, currency, date, and time is brought together in a single environment, called a
Global Language Support (GLS) locale.

The examples in this publication are for the default locale, en_us.8859-1. This locale
supports U.S. English format conventions for date, time, and currency. In addition,
this locale supports the ISO 8859-1 code set, which includes the ASCII code set
plus many 8-bit characters such as é, ¢, and f.

If you plan to use nondefault characters in your data or your SQL identifiers, or if
you want to conform to the nondefault collation rules of character data, you need
to specify the appropriate nondefault locale.

For instructions on how to specify a nondefault locale, additional syntax, and other
considerations related to GLS locales, see the IBM Informix GLS User’s Guide.

Demonstration Databases

The DB-Access utility, which is provided with your Informix® database server
products, includes one or more of the following demonstration databases:

¢ The stores_demo database illustrates a relational schema with information about
a fictitious wholesale sporting-goods distributor. Many examples in IBM
Informix publications are based on the stores_demo database.

* The superstores_demo database illustrates an object-relational schema. The
superstores_demo database contains examples of extended data types, type and
table inheritance, and user-defined routines.

For information about how to create and populate the demonstration databases,
see the IBM Informix DB—Access User’s Guide. For descriptions of the databases and
their contents, see the IBM Informix Guide to SQL: Reference.

The scripts that you use to install the demonstration databases reside in the
$INFORMIXDIR/bin directory on UNIX® or Linux and in the
%INFORMIXDIR% \bin directory on Windows.

Function Syntax Conventions

This guide uses the following conventions to specify DataBlade API function
syntax:

* Brackets ([]) surround optional items.
* Braces ({ }) surround items that can be repeated.
e A vertical line (|) separates alternatives.

 Function parameters are italicized; arguments that you must specify as shown
are not italicized.

Xii IBM Informix DataBlade API Programmer’s Guide

DataBlade APl Module Code Conventions

This publication includes sample code for DataBlade API modules. These samples
follow C-language coding conventions for indentation and use C ANSI format for
parameters in function declarations.

Note: Ellipsis points in a code example indicate that more code would be added in
a full application, but it is not necessary to show it to describe the concept
being discussed.

Documentation Conventions

Special conventions are used in the product documentation for IBM® Informix
Dynamic Server.

Technical Changes

Technical changes to the text are indicated by special characters depending on the
format of the documentation.

HTML documentation
New or changed information is surrounded by blue >> and << characters.

PDF documentation
A plus sign (+) is shown to the left of the current changes. A vertical bar
(]) is shown to the left of changes made in earlier shipments.

Feature, Product, and Platform Markup

Feature, product, and platform markup identifies paragraphs that contain
feature-specific, product-specific, or platform-specific information.

Some examples of this markup follow:

| Dynamic Server |

Identifies information that is specific to IBM Informix Dynamic Server

| End of Dynamic Server |

| Windows Only |

Identifies information that is specific to the Windows® operating system

| End of Windows Only |

This markup can apply to one or more paragraphs within a section. When an
entire section applies to a particular product or platform, this is noted as part of
the heading text, for example:

Table Sorting (Windows)

Example Code Conventions

Examples of SQL code occur throughout this publication. Except as noted, the code
is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by
semicolons. For instance, you might see the code in the following example:

Introduction Xiii

CONNECT TO stores_demo

DELETE FROM customer
WHERE customer_num = 121

COMMIT WORK
DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules for
that product. For example, if you are using an SQL API, you must use EXEC SQL
at the start of each statement and a semicolon (or other appropriate delimiter) at
the end of the statement. If you are using DB-Access, you must delimit multiple
statements with semicolons.

Tip: Ellipsis points in a code example indicate that more code would be added in
a full application, but it is not necessary to show it to describe the concept
being discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the documentation for your product.

Additional Documentation

Documentation about IBM Informix products is available in various formats.

You can view, search, and print all of the product documentation from the IBM
Informix Dynamic Server information center on the Web at |i_1ttp:/ / |
[publib.boulder.ibm.com /infocenter /idshelp /v115 /index.jsp|

For additional documentation about IBM Informix Dynamic Server and related
products, including release notes, machine notes, and documentation notes, go to

the online product library page at Ihttp: //www.ibm.com/software/data/informix/ |
Alternatively, you can access or install the product documentation
from the Quick Start CD that is shipped with the product.

Compliance with Industry Standards

IBM Informix products are compliant with various standards.

The American National Standards Institute (ANSI) and the International
Organization of Standardization (ISO) have jointly established a set of industry
standards for the Structured Query Language (SQL). IBM Informix SQL-based
products are fully compliant with SQL-92 Entry Level (published as ANSI
X3.135-1992), which is identical to ISO 9075:1992. In addition, many features of
IBM Informix database servers comply with the SQL-92 Intermediate and Full
Level and X/Open SQL Common Applications Environment (CAE) standards.

How to Provide Documentation Feedback

xiv

You are encouraged to send your comments about IBM Informix user
documentation.

Use one of the following methods:

* Send e-mail to |[docinf@us.ibm.com}

IBM Informix DataBlade API Programmer’s Guide

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://www.ibm.com/software/data/informix/techdocs.html
http://www.ibm.com/software/data/informix/techdocs.html
mailto:docinf@us.ibm.com

* Go to the information center at http:/ /publib.boulder.ibm.com /infocenter /|
lidshelp/v115/index.jsp|and open the topic that you want to comment on. Click
the feedback link at the bottom of the page, fill out the form, and submit your
feedback.

¢ Add comments to topics directly in the IDS information center and read
comments that were added by other users. Share information about the product
documentation, participate in discussions with other users, rate topics, and
more! Find out more at |http:/ /publib.boulder.ibm.com/infocenter/idshelp /|
[v115/index.jsp?topic=/com.ibm.start.doc/contributing htm|

Feedback from all methods is monitored by those who maintain the user
documentation. The feedback methods are reserved for reporting errors and
omissions in our documentation. For immediate help with a technical problem,
contact IBM Technical Support. For instructions, see the IBM Informix Technical
Support Web site at fhttp://www.ibm.com /planetwide/}

We appreciate your suggestions.

Introduction XV

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp?topic=/com.ibm.start.doc/contributing.htm
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp?topic=/com.ibm.start.doc/contributing.htm
http://www.ibm.com/planetwide/

XVi IBM Informix DataBlade API Programmer’s Guide

Part 1. DataBlade API Overview

© Copyright IBM Corp. 1996, 2009

IBM Informix DataBlade API Programmer’s Guide

Chapter 1. Using the DataBlade API

In This Chapter. .11
DataBlade API Module
User-Defined Routine (Server) 0012
Types of UDRs . . . A 2
Differences between C UDRs and UDRs Wrrtten in SPL I)
Using UDRs. 14
Client LIBMI Application . . e
Compatibility of Client and Server DataBlade API Modules O
DataBlade API Components .15
Header Files. . . e)
DataBlade API Header Flles e PG
ESQL/C Header Files. . . O £ 4

IBM Informix GLS Header F11e e]
Private Header Files .. .18
Public Data Types . . . e)
DataBlade API Data Types .. e o]
DataBlade API Support Data Types e £
DataBlade API Data Type Structures .112
Regular Public Functions .. .114
DataBlade API Functions . . e R

IBM Informix ESQL/C Functlons e £ V4

IBM Informix GLS Functions .1l17
Advanced Features (Server) . . T C ke
Internationalization of DataBlade API Modules (GLS) T £)

In This Chapter

The IBM Informix DataBlade API is the application programming interface (API)
for IBM Informix Dynamic Server (IDS). You can use DataBlade API functions in
DataBlade modules to access data stored in a Dynamic Server database.

This chapter provides the following information:

* A description of the different kinds of DataBlade API modules you can write
with the DataBlade API

* A summary of the basic parts of the DataBlade API

For information about how to develop DataBlade modules, see the IBM Informix
DataBlade Developers Kit User’s Guide.

DataBlade APl Module

A DataBlade API module is a C-language module that uses the functions of the
DataBlade API to communicate with Dynamic Server. You can use the DataBlade
API in either of the following kinds of DataBlade API modules:

¢ A C UDR: a user-defined routine that is written in C
* A client LIBMI application: a client application written in C

Tip: This publication uses the term “DataBlade API module” generically to refer to
either a client LIBMI application or a user-defined routine (UDR).

To provide portability for applications, most of the DataBlade API functions behave
identically in a UDR and a client LIBMI application. In cases where syntax or

© Copyright IBM Corp. 1996, 2009 1-1

1-2

semantics differ, this publication uses qualifying paragraphs to distinguish between
server-side and client-side behavior of the DataBlade APL

If neither the server-specific or client-specific qualifying paragraphs appear, you
can assume that the functionality is the same in both the server-side and client-side
implementations of the DataBlade API. For more information, see
[Product, and Platform Markup” on page xiii| of the introduction.

You can dynamically determine the kind of DataBlade API module with the
mi_client() function.

User-Defined Routine (Server)

A user-defined routine (UDR) is a routine that you can invoke within an SQL
statement or another UDR. UDRs are building blocks for the development of
DataBlade modules. Possible uses for a UDR follow:

* Support function for an opaque data type

* Cast function to cast data from one data type to another

* End-user routine for use in SQL statements

* Operator function to implement an operation on a particular data type

For a more complete list, see [“Uses of a C UDR” on page 12-3|

When you write a UDR in an external language (a language other than SPL), the
UDR is called an external routine. An external routine that is written in the C
language is called a C UDR. A C UDR uses the server-side implementation of the
DataBlade API to communicate with the database server.

This section provides the following information about C UDRs. For general
information about UDRs, see the IBM Informix User-Defined Routines and Data Types
Developer’s Guide.

Types of UDRs
You can write the following types of C UDRs.

Type of UDR Description C Implementation
User-defined Returns one or more values and therefore can be A C function that
function used in SQL expressions returns some data

type other than
For example, the following query returns the results void (usually a

of a UDR named area() as part of the query DataBlade API data
results: type)
SELECT diameter, area(diameter)

FROM shapes
WHERE diameter > 6;

User-defined Does not return any values and cannot be used in A C function that
procedure SQL expressions because it does not return a value returns void

You can call a user-defined procedure directly,
however, as the following example shows:

EXECUTE PROCEDURE myproc(l, 5);

IBM Informix DataBlade API Programmer’s Guide

Differences between C UDRs and UDRs Written in SPL

Advantages of C UDRs over UDRs written in the SPL language:

Performance, efficiency, and flexibility of C code

C UDRs are compiled to machine code. You can use the C programming
language to manipulate data at the level of bytes and bits and access data in
efficient data structures such as array, hash, linked list, or tree.

Access to the DataBlade API (DAPI) and other C libraries

DAPI provides many functions that are not available in SPL or SQL, including
the ESQL/C function library for manipulating data in C. Any C library that
follows the guidelines of the DataBlade API can also be included. For example, a
C UDR has random access to data within a smart large object.

Greater dynamic SQL support in C routines

C UDRs can dynamically build arbitrary SQL query strings at runtime and
execute them. In SPL, the CLOSE, DECLARE, EXECUTE IMMEDIATE, FETCH,
FREE, OPEN, and PREPARE statements support runtime replacement of
question mark (?) placeholders with specific input parameter values, but some
dynamic SQL syntax features and some cursor management statements of
ESQL/C are not supported in SPL. For example, IDS 11.50 only supports
sequential cursors. C UDRs can have other types of cursors such as scroll and
hold. The FOREACH statement of SPL declares a direct cursor, but its associated
SQL statement must have hard-coded names of database objects, such as tables,
columns, and functions because SPL variables can only represent values, not
SQL identifiers. (The EXEC Bladelet also supports some dynamic SQL features in
SPL routines, but its programming interface is more complex and less intuitive
than when SPL is used directly.)

Extending the server

You can use C UDRs to define user-defined data types (UDTs), user-defined
aggregates, and user-defined access methods (for example, to access stream data
outside IDS) to return data on the selectivity and cost of another UDR to the
optimizer and to access data of a ROW type that was unknown at compile time.

Advantages of UDRs written in SPL over C UDRs:

SPL routines typically require less coding SPL is a higher-level language than C
and can therefore accomplish a given task in fewer lines of code

For example, in SPL it takes only a few lines to execute SQL and fetch results in
a loop. In C, it takes many lines to define and prepare the statement, execute it
with a cursor, fetch rows, fetch columns, close the cursor, close the statement,
and check for errors during the process.

All SQL statements in SPL routines are automatically prepared

In SPL, any embedded SQL statements are parsed, prepared, and optimized
when the SPL routine is created and compiled. In a C UDR, if you want to
execute SQL repeatedly and efficiently, you must prepare it explicitly. (SPL can
only use the PREPARE statement to prepare a query or a call to a routine, but it
can then use EXECUTE IMMEDIATE to execute the prepared statement.)

SPL routines are easier to write

A C UDR must follow the documented guidelines of the DataBlade API in areas
that include yielding the processor, allocating memory and variables, performing
I/0, and making system calls that block. Failure to follow the guidelines can
cause problems for the IDS instance, although you can mitigate this risk by
registering the C UDR to run on a user-defined VP class.

Support for non-cursor EXECUTE...INTO statement

Chapter 1. Using the DataBlade API 1-3

1-4

Beginning with IDS 11.50, SPL supports only an EXECUTE IMMEDIATE
non-cursor statement that does not return any row. However, ESQL/C also
supports the non-cursor EXECUTE ... INTO statement. The query in this
statement can return a single row that is assigned to the SPL variables listed
after the INTO clause. Although SPL in IDS 11.50, or later does not support
multiple statements within the non-cursor EXECUTE IMMEDIATE statement,
this restriction reduces the risk of the insertion of unwanted SQL statements.

Using UDRs

You can write a UDR in C by using the DataBlade API functions to communicate
with the database server. You can also write subroutines in C that a UDR calls as it
executes. These subroutines must follow the same rules as the UDR with respect to
the use of DataBlade API functions.

Tip: Because of the subject matter of this publication, the publication uses the
terms “C UDR” and “UDR” interchangeably.

You compile UDRs into shared-object files. You then register the UDR in the
system catalog tables so that the database server can locate the code at runtime.
The database server dynamically loads the shared-object files into memory when
the UDR executes.

For more information on how to create C UDRs, see the following chapters of this
publication:

* [Chapter 12, “Developing a User-Defined Routine,” on page 12-1} provides an
overview to the development process, including information on compilation,
registration, execution, and debugging.

* [Chapter 13, “Writing a User-Defined Routine,” on page 13-1} describes specific
features and tasks of a C UDR.

* [Chapter 14, “Managing Memory,” on page 14-1} describes how to manage
memory allocation within a C UDR.

* |Chapter 15, “Creating Special-Purpose UDRs,” on page 15-1| describes how to
create special kinds of UDRs, such as iterator functions, user-defined aggregates,
and optimization functions.

Client LIBMI Application

A client LIBMI application is a stand-alone client application that uses the client-side
implementation of the DataBlade API to communicate with the database server.
The application might be written in C, C++, or Visual Basic.

Important: Support is provided for client LIBMI applications for backward
compatibility with existing applications. For the development of new C
client applications, use another IBM Informix C-language product such
as IBM Informix ODBC.

Compatibility of Client and Server DataBlade APl Modules

You can execute a UDR from an SQL statement as well as from a client application
with little or no modification to the code. Any function that does not require
interactive input from the client application can be written as a UDR. However, not
all application code should be in a C UDR. You must balance the load between the
client and the database server to achieve optimal performance.

To avoid interfering with the operation of the database server, you can develop
functions on the client side even if they are intended to run from the server

IBM Informix DataBlade API Programmer’s Guide

process eventually. When you develop a C UDR on a client computer, you can use
the same DataBlade API functions on the client and the server computers, in most
cases, without changing the code. Almost all of the DataBlade API functions
behave identically in a client LIBMI application and a C UDR to provide
portability for DataBlade API modules. If you are writing code that might execute
in either a C UDR or a client LIBMI application, you can use the mi_client()
function to determine at runtime where the code is running.

DataBlade APl Components
The DataBlade API contains the following components for the development of
DataBlade API modules:
* Header files
* Public data type structures
* Public functions

Header Files

The following categories of header files are provided for use in a DataBlade API
module:

* DataBlade API header files define DataBlade API data types and functions.

* IBM Informix ESQL/C header files define the IBM Informix ESQL/C library
functions and data types.

* The IBM Informix GLS header file provides the ability to internationalize your
DataBlade API module.

* Private header files, which you create, can support the DataBlade API module.

DataBlade APl Header Files
The DataBlade API header files begin with the mi prefix. The DataBlade API
provides the following public header files for use in DataBlade API modules.

Header File Description
mi.h Is the main DataBlade API header file

It includes other DataBlade API public header files: milib.h, milo.h,
and mitrace.h.

The mi.h header file does not automatically include mistrmtype.h. To
use the stream I/0O functions of the DataBlade API, you must explicitly
include mistrmtype.h.

milib.h Defines function prototypes for the public entry points and public
declarations of required data type structures and related macros

The mi.h header file automatically includes milib.h.

mitypes.h Defines all DataBlade API simple data types, accessor macros for these
data types, and directly related value macros

The mitypes.h header file automatically includes the Informix ESQL/C
header files: datetime.h, decimal.h, and int8.h.

The milib.h header file automatically includes mitypes.h.

milo.h Defines the data type structures, values, and function prototypes for the
smart-large-object interface (functions that have names starting with
mi_lo_

The mi.h header file automatically includes milo.h.

Chapter 1. Using the DataBlade API 1-5

1-6

Header File

Description

mistream.h

Contains definitions for stream data structures, error constants, and
generic stream I/O functions

The mistrmtype.h and mistrmutil.h header files automatically include
mistream.h.

mistrmtype.h

Contains definitions for the type-specific stream-open functions that the
DataBlade API provides

The mistrmtype.h header file automatically includes mistream.h;
however, the mi.h header file does not include mistrmtype.h. You must
explicitly include mistrmtype.h to use the stream I/O functions of the
DataBlade API.

mistrmutil.h

Contains definitions for the stream-conversion functions that the
DataBlade API provides for use in streamwrite() and streamread()
opaque-type support functions

The mistrmutil.h header file automatically includes mistream.h;
however, the mi.h header file does not include mistrmutil.h. You must
explicitly include mistrmutil.h to use the stream-conversion functions
of the DataBlade API.

mitrace.h

Defines the data type structures, values, and function prototypes for the
DataBlade API trace facility

The mi.h header file automatically includes mitrace.h.

miconv.h

Contains convention definitions, including on/off switches based on
architecture, compiler type, and so on

Other parts of the code use these switches to define data types
correctly.

The mitypes.h header file automatically includes miconv.h.

memdur.h

Contains the definition of the MI_MEMORY_DURATION data type,
which enumerates valid public memory durations

The milib.h header file automatically includes memdur.h.

The mi.h header file provides access to most of the DataBlade API header files in
the preceding table. Include this header file in your DataBlade API module to
obtain declarations of most DataBlade API functions and data types.

The DataBlade API provides the following advanced header files for the use of
advanced features in C UDRs.

Header File

Description

minmmem.h

Includes the minmdur.h and minmprot.h header files, which are
necessary for access to advanced memory durations and
memory-management functions

Neither the mi.h nor milib.h header file automatically includes
minmmem.h. You must explicitly include minmmem.h to use advanced
memory durations or memory-management functions.

minmdur.h

Contains definitions for the advanced memory durations

The minmmem.h header file automatically includes minmdur.h. You
must explicitly include minmmem.h to use advanced memory durations.

IBM Informix DataBlade API Programmer’s Guide

Header File

Description

minmprot.h

Contains definitions for the advanced DataBlade API functions

The minmmem.h header file automatically includes minmdur.h. You
must explicitly include minmmem.h to use advanced functions.

Neither mi.h nor milib.h provides access to the advanced header files. To use the
advanced features, include the minmmem.h header file in your DataBlade API
module to obtain declarations of DataBlade API functions and data types.

Tip: For a complete list of header files, check the incl/public subdirectory of the
INFORMIXDIR directory.

ESQL/C Header Files
The following header files are provided to support some of the functions and data
types of the IBM Informix ESQL/C library.

Header File Contents

datetime.h Structure and macro definitions for DATETIME and INTERVAL data
types

decimal.h Structure and macro definitions for DECIMAL and MONEY data types

int8.h Declarations for structure and Informix ESQL/C library functions for
the INT8 data type

sqlca.h Structure definition that Informix ESQL/C uses to store error-status
codes
This structure enables you to check for the success or failure of SQL
statements.

sqlda.h Structure definition for value pointers and descriptions of dynamically
defined variables

sqlhdr.h Function prototypes of all Informix ESQL/C library functions

sqlstype.h Definitions of strings that correspond to SQL statements
Informix ESQL/C uses these strings when your program contains a
DESCRIBE statement.

sqltypes.h Integer constants that correspond to Informix ESQL/C language and
SQL data types
ESQL/C uses these constants when your program contains a
DESCRIBE statement.

sqlxtype.h Integer constants that correspond to C language and SQL data types
that Informix ESQL/C uses in X/Open mode, when your program
contains a DESCRIBE statement

varchar.h Macros that you can use with the VARCHAR data type

Important: The mitypes.h header file automatically includes the datetime.h,

decimal.h, and int8.h header files. In turn, the milib.h header file
automatically includes mitypes.h, and mi.h automatically includes
milib.h. Therefore, you automatically have access to the information in
these Informix ESQL/C header files when you include mi.h in your
DataBlade API module.

Chapter 1. Using the DataBlade API 1-7

For additional information about the use of these Informix ESQL/C header files,
see the following sections of this publication.

Header File More Information

datetime.h [“The datetime.h Header File” on page 4-9|
decimal.h [“The decimal.h Header File” on page 3-11|
int8.h [“The int8.h Header File” on page 3-6|

IBM Informix GLS Header File

A header file is provided to support the IBM Informix GLS library. If you use the
IBM Informix GLS library in your DataBlade API module, include its header file,
ifxgls.h, in your source code. For more information on the IBM Informix GLS

library and how to use it in a DataBlade API module, see [“Internationalization of|
[DataBlade API Modules (GLS)” on page 1-19}

Private Header Files

If you define any opaque data types, you must include their header file in your
DataBlade API source code. An opaque-type header file usually contains the
declaration of the internal format for the opaque data type. For more information,
see [“Creating an Opaque Data Type” on page 16-1]

Public Data Types

The DataBlade API provides support for the following public data types:

* DataBlade API data types, which provide support for standard C, IBM Informix
ESQL/C, and SQL data types

* DataBlade API support data types, which provide support for functions of the
DataBlade API

* DataBlade API data type structures, which provide access to information that
functions of the DataBlade API use

DataBlade API Data Types

To ensure portability across dissimilar computer architectures, the DataBlade API
provides a set of data types, which [Table 1-1 on page 1-8 shows. These data types
begin with the mi_ prefix. Most of these data types correspond to common SQL or
C-language data types.

Table 1-1. DataBlade API, C, and SQL Data Types

Standard C or ESQL/C

DataBlade API Data Type Data Type SQL Data Type
Character Data Types:
mi_char C: char CHAR, VARCHAR,

IDSSECURITYLABEL,

GLS: NCHAR, NVARCHAR
mi_charl C: char CHAR(1)
mi_unsigned_charl C: unsigned char None
mi_wechar (deprecated) C: unsigned two-byte integer None
mi_string C: char * CHAR, VARCHAR,

GLS: NCHAR, NVARCHAR

1-8 IBM Informix DataBlade API Programmer’s Guide

Table 1-1. DataBlade API, C, and SQL Data Types (continued)

DataBlade API Data Type

Standard C or ESQL/C
Data Type

SQL Data Type

mi_lvarchar

Informix ESQL/C: lvarchar (though
lvarchar is null-terminated and
mi_lvarchar is not)

LVARCHAR

Within C UDRs: for CHAR, NCHAR,
TEXT, VARCHAR, and NVARCHAR
arguments and return value

Integer Numeric Data Types:

mi_sintl C: signed one-byte integer None

mi_intl C: unsigned one-byte integer, char None

mi_smallint C: signed two-byte integer (short integer ~SMALLINT
on many systems)

mi_unsigned_smallint C: unsigned two-byte integer None

mi_integer

C: signed four-byte integer

(long integer on many systems)

INTEGER, SERIAL

mi_unsigned_integer

C: unsigned four-byte integer

None

mi_int8

C: signed eight-byte integer; Informix
ESQL/C: int8, ifx_int8_t

INTS, SERIALS

mi_unsigned_int8

C: unsigned eight-byte integer; Informix
ESQL/C: int8, ifx_int8_t

None

mi_bigint C: unsigned eight-byte integer BIGINT, BIGSERIAL

mi_unsigned_bigint C: unsigned eight-byte integer None

Fixed-Point Numeric Data Types:

mi_decimal, mi_numeric Informix ESQL/C: decimal, dec_t DECIMAL(p,s)
(fixed-point)

mi_money Informix ESQL/C: decimal, dec_t MONEY

Floating-Point Numeric Data Types:

mi_decimal Informix ESQL/C: decimal, dec_t DECIMAL(p)

(floating-point)

mi_real

C: float

SMALLFLOAT, REAL

mi_double_precision

C: double

FLOAT, DOUBLE PRECISION

Date and Time Data Types:

mi_date C: four-byte integerInformix ESQL/C: DATE

date
mi_datetime Informix ESQL/C: datetime, dtime_t DATETIME
mi_interval Informix ESQL/C: interval, intrvl_t INTERVAL
Varying-Length Data Types:
mi_lvarchar C: void * LVARCHAR,

Informix ESQL/C: lvarchar (though
lvarchar is null-terminated and
mi_lvarchar is not)

Opaque types

Within C UDRs: for CHAR, NCHAR,
TEXT, VARCHAR, and NVARCHAR
arguments and return value

mi_sendrecv

C: void *

SENDRECYV, opaque-type support
functions: send, receive

Chapter 1. Using the DataBlade API 1-9

Table 1-1. DataBlade API, C, and SQL Data Types (continued)

Standard C or ESQL/C

DataBlade API Data Type Data Type SQL Data Type

mi_impexp C: void * IMPEXP, opaque-type support
functions: import, export

mi_impexpbin C: void * IMPEXPBIN, opaque-type support
functions: importbin, exportbin

mi_bitvarying C: void * BITVARYING

Complex Data Types:

MI_COLLECTION C: void * SET, LIST, MULTISET

MI_ROW C: void * ROW (unnamed row type), Named

row type

Other Data Types:

mi_boolean C: charInformix ESQL/C: boolean BOOLEAN
mi_pointer C: void * POINTER
MI_LO_HANDLE None CLOB, BLOB

Smart large objects

Important: To make your DataBlade API module portable, it is recommended that
you use the DataBlade API platform-independent data types (such as
mi_integer, mi_smallint, mi_real, mi_boolean, and
mi_double_precision) instead of their C-language counterparts. These
data types handle the different sizes of numeric values across computer

architectures.

Server Only

[Table 1-1 on page 1-§| lists the DataBlade API data types and SQL data types.

However, when you pass some of these data types to and from C UDRs, you must
pass them as pointers rather than as actual values. For more information, see

[“Passing Mechanism for MI_DATUM Values” on page 12-22|

End of Server Only

shows where you can find information about how DataBlade API data
types correspond to SQL data types.

Table 1-2. Correspondence of SQL Data Types to DataBlade API Data Types

SQL Data Type

Information on Corresponding DataBlade API Data Types

BITVARYING [“The mi_bitvarying Data Type” on page 2-28§|

BLOB |Chapter 6, “Using Smart Large Obijects,” on page 6-1
BOOLEAN [“Boolean Data Types” on page 2-30|

BYTE [“Simple Large Objects” on page 2-32|

CHAR [“Character Data Types” on page 2-7]

CLOB [Chapter 6, “Using Smart Large Objects,” on page 6-1
DATE [Chapter 4, “Using Date and Time Data Types,” on page 4-1
DATETIME |Chapter 4, “Using Date and Time Data Types,” on page 4-1|
DECIMAL [Chapter 3, “Using Numeric Data Types,” on page 3-1|

1-10 IBM Informix DataBlade API Programmer’s Guide

Table 1-2. Correspondence of SQL Data Types to DataBlade API Data Types (continued)

SQL Data Type

Information on Corresponding DataBlade API Data Types

Distinct [Chapter 16, “Extending Data Types,” on page 16-1]|
FLOAT [Chapter 3, “Using Numeric Data Types,” on page 3-1|
INT8 [Chapter 3, “Using Numeric Data Types,” on page 3-1|
INTEGER [Chapter 3, “Using Numeric Data Types,” on page 3-1|
INTERVAL [Chapter 4, “Using Date and Time Data Types,” on page 4-1|
LIST [Chapter 5, “Using Complex Data Types,” on page 5-1|
LVARCHAR [“Varying-Length Data Type Structures” on page 2-13|
MONEY [Chapter 3, “Using Numeric Data Types,” on page 3-1|
MULTISET [Chapter 5, “Using Complex Data Types,” on page 5-1|
NCHAR [“Character Data Types” on page 2-7|

NVARCHAR [“Character Data Types” on page 2-7|

Opaque [Chapter 16, “Extending Data Types,” on page 16-1]
POINTER [“Pointer Data Types (Server)” on page 2-31]

ROW [Chapter 5, “Using Complex Data Types,” on page 5-1|
SERIAL [Chapter 3, “Using Numeric Data Types,” on page 3-1|
SERIALS [Chapter 3, “Using Numeric Data Types,” on page 3-1|
SET [Chapter 3, “Using Numeric Data Types,” on page 3-1|
SMALLFLOAT [Chapter 3, “Using Numeric Data Types,” on page 3-1
SMALLINT [Chapter 3, “Using Numeric Data Types,” on page 3-1|
TEXT [“Simple Large Objects” on page 2-32|

VARCHAR [“Character Data Types” on page 2-7|

DataBlade API Support Data Types

The DataBlade API provides additional data types that DataBlade API functions
use. These data types are usually enumerated data types that restrict valid values
for an argument or return value of a DataBlade API function. Most of these data

types, which [Table 1-3| lists, start with the MI_ prefix.
Table 1-3. DataBlade API Support Data Types

Support Data Type Location of Description

MI_CALLBACK_STATUS

Purpose

“Return Value of a Callback Function” on|
[page 10-13|

[“Positioning the Cursor” on page 5-6|

Enumerates valid return values of a
callback function

MI_CURSOR_ACTION Enumerates movements through a

cursor
“Fetching Rows Into a Cursor” on page|
8-23
MI_EVENT_TYPE Classifies an event “DataBlade API Event Types” on page|
10-2
MI_FUNCARG Enumerates kinds of arguments thata |“MI_FUNCARG Data Type” on page 15-56|
companion UDR might receive
mi_funcid Holds a routine identifier [“Routine Resolution” on page 12-19|
MI_ID Enumerates the kinds of identifiers that Description of mi_get_id() in the IBM

the mi_get_id() function can obtain Informix DataBlade API Function Reference

Chapter 1. Using the DataBlade API 1-11

Table 1-3. DataBlade API Support Data Types (continued)

Support Data Type

Purpose

Location of Description

MI_SETREQUEST

Enumerates values of the iterator-status
constant, which the database server can
return to a UDR through the
mi_fp_request() function

“Writing an Iterator Function” on page|

15-3]

MI_TRANSITION_TYPE

Enumerates types of state transitions in
a transition descriptor

“Understanding State-Transition Events”]|

on page 10-49|

MI_UDR_TYPE

Enumerates the kind of UDR for which
the mi_routine_get_by_typeid()
function obtains a function descriptor

Description of
mi_routine_get_by_typeid() in the IBM
Informix DataBlade API Function Reference

DataBlade API Data Type Structures

Many DataBlade API functions provide information for DataBlade API modules in

special data type structures. The names of these data type structures begin with the
MI_ prefix. [Table 1-4|lists these data type structures, their purposes, and where you

can find detailed descriptions of them.

Table 1-4. DataBlade API Data Type Structures

DataBlade API Data Type
Structure

Purpose

More Information

MI_COLL_DESC

Collection descriptor, which describes the
structure of a collection

“Using a Collection Descriptor” onf

[page 5—3|

MI_COLLECTION

Collection structure, which contains the
elements of a collection

“Using a Collection Structure” on page|

5-

MI_CONNECTION

Connection descriptor, which contains the
execution context for a connection

“Establishing a Connection” on page|
7-11

MI_CONNECTION_INFO

Connection-information descriptor, which
contains connection parameters for an
open connection

“Using Connection Parameters” on|

page 7—4|

MI_DATABASE_INFO

Database-information descriptor, which

contains database parameters for an open |[7-

connection

“Using Database Parameters” on page|

MI_DATUM

Datum, which provides a transport
mechanism to pass data of an SQL data
type by value or by reference

“The MI_DATUM Data Type” on page|

2-32

MI_ERROR_DESC

Error descriptor, which describes an
exception

[“Event Information” on page 10-17]

MI_FPARAM

Function-parameter structure, which holds

information about a UDR that the routine

can access during its execution

" Accessing MI_FPARAM Routine-State|

Information” on page 9-2|

MI_FUNCARG

Function-argument structure, which holds
information about the argument of a
companion UDR

“MI_FUNCARG Data Type” on page|

15-56]

MI_FUNC_DESC

Function descriptor, which describes a UDR

that is to be invoked with the Fastpath
interface

“Obtaining a Function Descriptor” on|

[page 9-1Z|

MI_LO_FD

LO file descriptor, which describes an open

smart large object

“Obtaining an LO File Descriptor” on|

page 6—41|

MI_LO_HANDLE

LO handle, which identifies the location of

a smart large object in its sbspace

“Obtaining an LO Handle” on page|
6-40

1-12

IBM Informix DataBlade API Programmer’s Guide

Table 1-4. DataBlade API Data Type Structures (continued)

DataBlade API Data Type

Structure Purpose More Information

MI_LO_SPEC LO-specification structure, which contains “Obtaining the LO-Specification|
storage characteristics for a smart large Structure” on page 6-25|
object

MI_LO_STAT LO-status structure, which contains status [“Obtaining Status Information for al

information for a smart large object

Smart Large Object” on page 6-52|

MI_PARAMETER_INFO

Parameter-information descriptor, which
specifies whether callbacks are enabled or
disabled and whether pointers are
checked in client LIBMI applications

[“Using Session Parameters” on page 7-§|

MI_ROW

Row (or row structure), which contains
either the column values of a table row or
field values of a row type

“Retrieving Rows” on page 8-41]
“Using a Row Structure” on page 5-32|

MI_ROW_DESC

Row descriptor, which describes the
structure of a row

“Obtaining Row Information” on page]
8-40|
"“Using a Row Descriptor” on page 5-29|

MI_SAVE_SET

Save-set descriptor, which describes a save
set

[“Creating a Save Set” on page 8-60|

MI_STATEMENT

Statement descriptor, which describes a
prepared SQL statement

“Executing Prepared SQL Statements”|

on page 8-11]

mi_statret Statistics-return structure (C language “SET_END in statcollect()” on pagel
structure), which holds the collected 16-45|
statistics for a user-defined data type

MI_STREAM Stream descriptor, which describes an open

stream

A stream is an object that can be written to
or read from. The DataBlade API has
functions for the following predefined
stream classes:

* File stream
* String stream

* Varying-length-data stream

MI_TRANSITION_DESC

Transition descriptor, which describes a
state transition

“Understanding State-Transition|
Events” on page 10-49)

MI_TYPEID

Type identifier, which uniquely identifies a
data type within a database

[“Type Identifiers” on page 2-2|

MI_TYPE_DESC

Type descriptor, which provides
information about a data type

[“Type Descriptors” on page 2-3

The DataBlade API provides constructor and destructor functions for most of these
public data type structures. These functions handle memory allocation of these
data type structures, as follows:

* The constructor function for a DataBlade API data type structure creates a new

instance of the data type structure.

Chapter 1. Using the DataBlade API 1-13

A constructor function usually returns a pointer to the DataBlade API data type
structure and allocates memory for the structure.

| Server Only

The memory allocation is in the current memory duration, which is
PER_ROUTINE by default. For more information, see [“Choosing the Memory|
[Duration” on page 14-4}

| End of Server Only

* The destructor function for a DataBlade API data type structure frees the
instance of the data type structure.

You specify a pointer to the DataBlade API data type structure to the destructor
function. The destructor function deallocates memory for the specified data type
structure. Call destructor functions only for DataBlade API data type structures
that you explicitly allocated with the corresponding constructor function.

Regular Public Functions

The DataBlade API provides support for the following kinds of functions in a
DataBlade API module.

Kind of Functions Purpose

DataBlade API functions Provide access to the database server

IBM Informix ESQL/C functions Provide operations on certain data types

IBM Informix GLS functions Provide the ability to internationalize your DataBlade API
module

DataBlade API Functions
The DataBlade API functions begin with the mi_ prefix. The milib.h header file
declares most of these DataBlade API functions. The mi.h header file automatically

includes milib.h. You must include mi.h in any DataBlade API module that uses a
DataBlade API function.

The functions of the DataBlade API function library can be divided into the
following categories.

Category of DataBlade API Functions More Information

Data handling:

Obtaining type information [“Type Identifiers” on page 2-2|

[“Type Descriptors” on page 2-3|

Transferring data types between computers [“Conversion of Opaque-Type Data wit]

(database server only) Computer-Specific Data Types” on page
16-21

Converting data to a different data type “DataBlade API Functions for Date|

Conversion” on page 4-3|

“DataBlade API Functions for Date-Time o1
Interval Conversion” on page 4-13|

“DataBlade API Functions for Decimall
Conversion” on page 3-14|

“DataBlade API Functions for String]
Conversion” on page 2-11]|

1-14 1BM Informix DataBlade API Programmer’s Guide

Category of DataBlade API Functions

More Information

Handling collections: sets, multisets, and lists [‘Collections” on page 5-2|

Converting between code sets (database
server only)

“Internationalization of DataBlade API|
Modules (GLS)” on page 1-19|

Handling collections

[“Collections” on page 5-2|

Managing varying-length structures

“Varying-Length Data Type Structures” on|

page 2—13|

Obtaining SERIAL values

[“Processing Insert Results” on page 8-59|

Handling NULL values

[“SQL NULL Value” on page 2-36

Session, thread, and transaction management:

Obtaining connection information

[“Using Connection Parameters” on page 7-4|

[“Using Database Parameters” on page 7-6|

[“Using Session Parameters” on page 7-8|

Establishing a connection

|“Establishing a Connection” on page 7-11|

Initializing the DataBlade API

[“Initializing the DataBlade API” on page 7-17]

Managing Informix threads (database server
only)

[“Yielding the CPU VP” on page 13-19)

[“Managing Stack Usage” on page 14-35|

Obtaining transaction and server-processing
state changes

“Using a Transition Descriptor” on page|

10-19|

SQL statement processing:

Sending SQL statements

“Executing Basic SQL Statements” on pagel
8-6)

“Executing Prepared SQL Statements” on|

page 8—1l|

Obtaining statement information

“Returning a Statement Descriptor” on pagel
8-14

“Obtaining Input-Parameter Information” on|

page 8—15|

Obtaining result information

[“Processing Statement Results” on page 8-33|

Retrieving rows and row data (also row
types and row-type data)

[“Obtaining Row Information” on page 8-40|

[“Retrieving Rows” on page 8-41|

Retrieving columns

“Obtaining Column Information” on page|
8-41

[“Obtaining Column Values” on page 8-42|

Using save sets

[“Using Save Sets” on page 8-60)

Executing user-defined-routines:

Accessing an MI_FPARAM structure

“ Accessing MI_FPARAM Routine-State|
Information” on page 9-2|

Allocating an MI_FPARAM structure

“Using a User-Allocated MI_FPARAM|
Structure” on page 9-36|

Using the Fastpath interface

“Calling UDRs with the Fastpath Interface”]

on page 9-14]

Accessing a function descriptor

“Obtaining Information from a Function|
Descriptor” on page 9-23]

Chapter 1. Using the DataBlade API 1-15

Category of DataBlade API Functions

More Information

Executing selectivity and cost functions:

“Writing Selectivity and Cost Functions” on|

page 15-54]

Memory management:

Managing user memory

[“Managing User Memory” on page 14-20|

Managing named memory (database server
only)

[“Managing Named Memory” on page 14-24]

Exception handling;:

Raising a database exception

[“Raising an Exception” on page 10-40|

Accessing an error descriptor

[“Using an Error Descriptor” on page 10-17}

“Handling Multiple Exceptions” on page

10-38

Using callback functions

[“Invoking a Callback” on page 10-3|

Smart-large-object interface:

Creating a smart large object

“Functions That Create a Smart Large]
Object” on page 6-19

Performing I/O on a smart large object

“Functions That Perform Input and Output|
on a Smart Large Object” on page 6-20)|

Moving smart large objects to and from
operating-system files

“Functions That Move Smart Large Objects|
to and from Operating-System Files” on pagel
6-24

Manipulating LO handles

“Functions That Manipulate an LO Handle”

on page 6-21|

Handling LO-specification structures

“Functions That Access an LO-Specification|
Structure” on page 6-22|

Handling smart-large-object status

“Functions That Access an LO-Status|
Structure” on page 6-23)|

Operating-system file interface:

" Access to Operating-System Files” on page]

13-52f

Tracing (database server):

[“Using Tracing” on page 12-28§|

For a complete list of DataBlade API functions in each of these categories, see the
IBM Informix DataBlade API Function Reference, which provides descriptions of the
regular public and advanced functions, in alphabetical order. For more information
on advanced functions of the DataBlade API, see [“Advanced Features (Server)” on|

If an error occurs while a DataBlade API function executes, the function usually
indicates the error with one of the following return values.

Way to Indicate an Error

More Information

Functions that return a pointer return the
NULL-valued pointer

[“NULL-Valued Pointer” on page 2-37|

Functions that return an mi_integer value (or other

integer) return the MI_ERROR status code

“Handling Errors from DataBlade API|
Functions” on page 10-26|

Functions that raise an exception

“Handling Errors from DataBlade AP]|
Functions” on page 10-26|

IBM Informix DataBlade API Programmer’s Guide

IBM Informix ESQL/C Functions

In a DataBlade API module, you can use some of the functions in the IBM
Informix ESQL/C library functions to perform conversions and operations on
different data types. The Informix ESQL/C functions do not begin with the mi_
prefix. Various header files declare these functions. For more information, see
[“ESQL/C Header Files” on page 1-7

The functions of the Informix ESQL/C function library that are valid in a
DataBlade API module can be divided into the following categories.

Category of DataBlade API

Function More Information

Byte handling [“Manipulating Byte Data” on page 2-29|

Character processing “ESQL/C Functions for String Conversion” on page|
2-12

[“Operations on Character Values” on page 2-12|

DECIMAL-type and MONEY-type [‘ESQL/C Functions for Decimal Conversion” on page|
processing 3-15]

“Performing Operations on Decimal Data” on page|
3-16

DATE-type processing ["ESQL/C Functions for Date Conversion” on page 4-4|

[“Operations on Date Data” on page 4-5|

DATETIME-type processing and “ESQL/C Functions for Date, Time, and Interval|
INTERVAL-type processing Conversion” on page 4-13]

[“Operations on Date and Time Data” on page 4-15|

INT8-byte processing [“Converting INT8 Values” on page 3-7|
“Performing Operations on Eight-Byte Values” on page]
3-8

Processing for other C-language [“Formatting Numeric Strings” on page 3-20)

data types

For a complete list of Informix ESQL/C functions in each of these categories, see
the IBM Informix DataBlade API Function Reference, which provides descriptions of
these public functions, in alphabetical order.

IBM Informix GLS Functions

The IBM Informix GLS library is an API that lets developers of DataBlade API
modules create internationalized applications. This library is a threadsafe library.
The macros and functions of IBM Informix GLS provide access to the GLS locales,
which contain culture-specific information.

The IBM Informix GLS library contains functions that provide the following
capabilities:
* Process single-byte and multibyte characters

These functions are useful for processing character data in the NCHAR and
NVARCHAR data types, which can contain locale-specific information.

* Format date, time, and numeric data to locale-specific formats

These functions provide the ability to handle end-user formats for the DATE,
DATETIME, DECIMAL, and MONEY data types.

Chapter 1. Using the DataBlade API 1-17

1-18

The mi.h header file does not automatically include the IBM Informix GLS library.
For more information on the IBM Informix GLS library and how to use it in a
DataBlade API module, see [“Internationalization of DataBlade API Modules (GLS)”|

Advanced Features (Server)

The DataBlade API provides a set of advanced features to handle specialized needs
of a UDR or DataBlade module that the regular public features cannot handle.
able 1-5[lists the advanced DataBlade API features.

Table 1-5. Advanced Features of the DataBlade API

Advanced Feature

Description

More Information

Named memory

Enables a UDR to obtain a memory
address through a name assigned
to the memory block

“Managing Named Memory”|

on page 14-24]

Memory durations

Provides a UDR with memory
durations that exceed its lifetime

" Advanced Memory]|

Durations” on page 14-13)

Session-duration
connection descriptor

Enables a UDR to cache connection
information for the length of a
session

“Obtaining a Session-Duration|

Connection Descriptor” on|

page 7-13

Session-duration
function descriptor

Enables a UDR to cache function
descriptors in named memory so
that many UDRs can execute the
same UDR through Fastpath

“Reusing a Function|

Descriptor” on page 9-30)

Controlling the VP
environment

Enables a UDR to obtain
dynamically information about the
VP and VP class in which it
executes and to make some
changes to this environment

“Controlling the VP|

Environment” on page 13-38|

Setting the row and
column identifier in
the MI_FPARAM

structure of a UDR

Enables a UDR to change the row
associated with a UDR

Descriptions of
mi_fp_setcolid() and
mi_fp_setrow() in the IBM
Informix DataBlade API Function
Reference

Obtaining the current
MI_FPARAM address

Enables a UDR to obtain
dynamically the address of its own
MI_FPARAM structure

Description of
mi_fparam_get_current() in
the IBM Informix DataBlade API
Function Reference

Microseconds
component of
last-modification time
for a smart large
object

Enables UDRs to maintain the
microseconds component of
last-modification time, which the
database server does not maintain

Description of mi_lo_utimes()
in the IBM Informix DataBlade
API Function Reference

Warning: These DataBlade API features can adversely affect your UDR if you use
them incorrectly. Use them only when the public DataBlade API features
cannot perform the tasks you need done.

IBM Informix DataBlade API Programmer’s Guide

Internationalization of DataBlade APl Modules (GLS)

For your DataBlade API module to work in any IBM Informix locale, you must
implement your DataBlade API module so that it is internationalized. That is, the
module must not make any assumptions about the locale in which it will execute.

| Server Only |

A C UDR inherits the server-processing locale as its current processing locale. The
database server dynamically creates a server-processing locale for a particular
session when a client application establishes a connection. The database server uses
the client locale, database locale, the server locale, and information from the client
application to determine the server-processing locale. For more information on
how the database server determines the server-processing locale, see the IBM
Informix GLS User’s Guide.

| End of Server Only |

| Client Only |

A client LIBMI application performs its I/O tasks in the client locale. Any database
requests that the application makes execute on the database server in the
server-processing locale.

| End of Client Only |

This section provides the following information about how to internationalize a C
UDR and the support that the DataBlade API provides for internationalized UDRs.

An internationalized C UDR must handle the following GLS considerations.

GLS Consideration for an Internationalized UDR DataBlade API Function

What considerations must the C UDR take None

when copying character data?

How can the C UDR access GLS locales? IBM Informix GLS function library
How does the UDR handle code-set conversion? mi_get_string()

mi_put_string()

IBM Informix GLS function library

How does the UDR handle locale-specific end-user mi_date_to_string(),

formats? mi_decimal_to_string(),
mi_interval_to_string(),
mi_money_to_string(),
mi_string to_date(),
mi_string to_decimal(),
mi_string_to_interval(),
mi_string to_money()

How can the C UDR access internationalized mi_db_error_raise()
exception messages?

How can the C UDR access internationalized tracing ~GL_DPRINTF, gl_tprintf()
messages?

How do opaque-type support functions handle mi_get_string(), mi_put_string()
locale-sensitive data?

Chapter 1. Using the DataBlade API 1-19

GLS Consideration for an Internationalized UDR DataBlade API Function

How to you obtain names of the different locales mi_client_locale(),
from within a C UDR? mi_get_connection_info()

For more information on how to handle these GLS considerations within a C UDR,
see the chapter on database servers in the IBM Informix GLS User’s Guide.

1-20 IBM Informix DataBlade API Programmer’s Guide

Chapter 2. Accessing SQL Data Types

In This Chapter.
Type Identifiers .
Type Descriptors .o
Type-Structure Conversion . .
Data Type Descriptors and Column Type Descrrptors .
Character Data Types . .

The mi_charl and mi un51gned charl Data Types .

The mi_char and mi_string Data Types .

The mi_lvarchar Data Type . .

The SQL LVARCHAR Data Type .

Character Data in Binary Mode of a Query

Character Data in C UDRs (Server) .

External Representation of an Opaque Data Type (Server)

Character Data in a Smart Large Object

Character Processing. .

Transferring Character Data (Server)
Converting Character Data.
Operations on Character Values .
Character Type Information
Varying-Length Data Type Structures .

Using a Varying-Length Structure

Managing Memory for a Varying-Length Structure
Creating a Varying-Length Structure .
Deallocating a Varying-Length Structure .

Accessing a Varying-Length Structure . .
Varying-Length Data and Null Termination .
Storage of Varying-Length Data . .
Information About Varymg—Length Data .

Byte Data Types . . .o

The mi_bitvarying Data Type

Byte Data in a Smart Large Object .

Byte Processing .

Manipulating Byte Data
Transferring Byte Data (Server) .
Boolean Data Types . .

Boolean Text Representation .

Boolean Binary Representation

Pointer Data Types (Server)

Simple Large Objects
The MI_DATUM Data Type .o .

Contents of an MI_DATUM Structure .
MI_DATUM in a C UDR (Server) .
MI_DATUM in a Client LIBMI Apphcat1on .

Address Calculations with MI_DATUM Values .

Uses of MI_DATUM Structures .

The NULL Constant .

SQL NULL Value .

© Copyright IBM Corp. 1996, 2009

.22
.22
.23

. 2-5
. 2-7

. 2-8
. 29
. 29
. .29
. 2-10
. 2-10
. 2-10
. 2-10
. 2-11
. 2-11
. 2-12
. 2-12
. 2-13
. 2-13
. 2-14
. 2-14
. 2-16
. 2-17
. 2-17
. 2-18
. 2-24
. 2-28
. 2-28
. 2-29
. 2-29
. 2-29
. 2-30
. 2-30
. 2-30
. 2-30
. 2-31
. 2-32
. 2-32
. 2-33
. 2-33
. 2-35
. 2-35
. 2-35
. 2-36
. 2-36

2-1

NULL-Valued Pointero .2:37

In This Chapter

This chapter provides an overview of the data types that the DataBlade API
supports. It also describes DataBlade API support for the following types of data:

¢ Text and strings

* Varying-length structures

* Byte data

* Miscellaneous SQL data types: POINTER, BOOLEAN, and simple large objects
¢ The MI_DATUM structure

* The NULL constant

For references to discussions of different SQL data types in this publication, see
[Table 1-2 on page 1-10}

[Table 1-1 on page 1-8|lists the correspondences between SQL and DataBlade API
data types. To declare a variable for an SQL data type, use the appropriate
DataBlade API predefined data type or structure for the variable. The mi.h header
file includes the header files for the definitions of all DataBlade API data types.
Include mi.h in all DataBlade API modules that use DataBlade API data types.

The DataBlade API represents the SQL data type of a column value with the
following data type structures:

* A short name, called the type identifier, which identifies only the data type

* A long name, called the type descriptor, which provides the data type and
information about this type

| Server Only

Type descriptors and type identifiers do not have an associated memory duration.
The DataBlade API allocates them from a special data type cache.

| End of Server Only |

Type ldentifiers

A type identifier, MI_TYPEID, is a DataBlade API data type structure that identifies
a data type uniquely. For extended data types, the type identifier is
database-dependent; that is, the same type identifier might identify different data
types for different databases. You can determine the data type that a type identifier
represents with the following DataBlade API functions.

Type-Identifier Check DataBlade API Function
Are two type identifiers equal? mi_typeid_equals()

Does the type identifier represent a built-in data type? mi_typeid_is_builtin()
Does the type identifier represent a collection (SET, mi_typeid_is_collection()

MULTISET, LIST) data type?

Does the type identifier represent a complex data type (row mi_typeid_is_complex()
type or collection)?

Does the type identifier represent a distinct data type? mi_typeid_is_distinct()

Does the type identifier represent a LIST data type? mi_typeid_is_list()

2-2 IBM Informix DataBlade API Programmer’s Guide

Type-Identifier Check DataBlade API Function

Does the type identifier represent a MULTISET data type? mi_typeid_is_multiset()

Does the type identifier represent a row type (named or mi_typeid_is_row()
unnamed)?
Does the type identifier represent a SET data type? mi_typeid_is_set()

Important: To a DataBlade API module, the type identifier (MI_TYPEID) is an
opaque C data structure. Do not access its internal fields directly. The
internal structure of a type identifier may change in future releases.
Therefore, to create portable code, always use the accessor functions for
this structure to determine data type.

The DataBlade API uses type identifiers in the following situations.

Type Identifier Usage DataBlade API Function More Information

To indicate a column type in mi_column_type_id() “Obtaining Column|

a row descriptor [nformation” on page 8-41|

To indicate data type of mi_fp_argtype(), “Determining the Data]

arguments in a user-defined mi_fp_setargtype() Type of UDR Arguments”

routine (UDR) on page 9-3|

To indicate data type of mi_fp_rettype(), “Determining the Data|

return type of a UDR mi_fp_setrettype() Type of UDR Return|
Values” on page 9-6|

To indicate data type of a mi_parameter_type_id() “Obtainin

column with which an input Input-Paramete

parameter in a prepared [nformation” on page 8-15|

statement is associated

To identify a UDR by the mi_routine_get_by_typeid() “Looking Up UDRs” on|

data types of its arguments page 9-18

to generate its function

descriptor

To identify a cast function mi_cast_get() "Looking Up Cast|

by the source and target Functions” on page 9-20

data types to generate its
function descriptor

To identify the element type mi_collection_create() “Creating a Collection” on|

of a collection page 5-3|

Type Descriptors

A type descriptor, MI_TYPE_DESC, is a DataBlade API data type structure that
contains information about an SQL data type. For built-in data types, this
information comes from the syscolumns table. For extended data types, it contains
the information in the sysxtdtypes table. lists the DataBlade API accessor
functions that obtain information from a type descriptor.

Table 2-1. Data Type Information in a Type Descriptor

DataBlade API
Data Type Information Accessor Function

The alignment, in number of bytes, of the data type mi_type_align()

Chapter 2. Accessing SQL Data Types ~ 2-3

2-4

Table 2-1. Data Type Information in a Type Descriptor (continued)

Data Type Information

DataBlade API
Accessor Function

Whether a value of the data type is passed by reference or mi_type_byvalue()

passed by value

A type descriptor for the element type of a collection mi_type_element_typedesc()

data type

The full name (owner.type_name) of the data type

mi_type_full_name()

The length of the data type

mi_type_length()

The maximum length of the data type

mi_type_maxlength()

The owner of the data type

mi_type_owner()

The precision (total number of digits) of the data type mi_type_precision()

The qualifier of a DATETIME or INTERVAL data type mi_type_qualifier()

The scale of a data type

mi_type_scale()

The short name (no owner) of the data type

mi_type_typedesc()

The type identifier for the data type

mi_typedesc_typeid()

Important: To a DataBlade API module, the type descriptor (MI_TYPE_DESC) is
an opaque C data structure. Do not access its internal fields directly.
The internal structure of MI_TYPE_DESC may change in future
releases. Therefore, to create portable code, always use the accessor
functions in to obtain values from this structure.

The DataBlade API uses type descriptors in the following situations.

Type Descriptor Usage

More Information

To indicate a column type in a row
descriptor

Description of mi_column_typedesc() in the
IBM Informix DataBlade API Function Reference

“Obtaining Column Information” on page]
8-41

To obtain the source type of a distinct type

Description of mi_get_type_source_type() in
the IBM Informix DataBlade API Function
Reference

To process returned row data, especially
when not all the rows returned by a query
have the same size and structure

Description of
mi_get_row_desc_from_type_desc() in the
IBM Informix DataBlade API Function Reference

To identify a cast function by the source and
target data types to generate its function
descriptor

Description of mi_td_cast_get() in the IBM
Informix DataBlade API Function Reference

[“Looking Up Cast Functions” on page 9-20)|

Type-Structure Conversion

You can use the following DataBlade API
type identifier.

functions to obtain a type descriptor or

Convert from Convert to

DataBlade API Function

Type identifier

Type descriptor Description of mi_type_typedesc()

in the IBM Informix DataBlade API
Function Reference

IBM Informix DataBlade API Programmer’s Guide

Convert from Convert to DataBlade API Function

Type descriptor Type identifier Description of
mi_typedesc_typeid() in the IBM
Informix DataBlade API Function
Reference

Type name (as mi_lvarchar) Type identifier Description of
mi_typename_to_id() in the IBM
Informix DataBlade API Function
Reference

Type name (as mi_lvarchar) Type descriptor Description of
mi_typename_to_typedesc() in the
IBM Informix DataBlade API Function
Reference

Type name (as string: char *) Type identifier Description of
mi_typestring_to_id() in the IBM
Informix DataBlade API Function
Reference

Type name (as string: char *) Type descriptor Description of
mi_typestring_to_typedesc() in the
IBM Informix DataBlade API Function
Reference

Data Type Descriptors and Column Type Descriptors

A type descriptor for a data type and a type descriptor for a column use the same
accessor functions and share the same underlying data type structures. These
descriptors differ, however, in the handling of parameterized data types (such as
DATETIME, INTERVAL, DECIMAL, and money), as follows:

* A data type descriptor holds unparameterized information, which is general
information about the data type.

* A column type descriptor holds parameterized information, which is the
information for the data type of a particular column.

[Table 2-1 on page 2-3|lists the DataBlade API accessor functions that obtain
information from a type descriptor. When you use type-descriptor accessor
functions on parameterized data types, the results depend on which kind of type
descriptor you pass into the accessor function.

For example, shows a named row type with fields that have
parameterized data types.

CREATE ROW TYPE row_type
(time_f1d DATETIME YEAR TO SECOND,
dec_f1d DECIMAL(6,3));

Figure 2-1. Sample Named Row Type with Parameterized Fields

shows a code fragment that obtains a data type descriptor and a column
type descriptor for the first field (time_fld) from the row descriptor (row_desc) for
the row_type row type.

Chapter 2. Accessing SQL Data Types 2-5

2-6

type_id = mi_column_type_id(row_desc, 0);
type_desc = mi_type_typedesc(conn, type id);
col_type_desc = mi_column_type_desc(row_desc, 0);

Figure 2-2. Type Descriptor and Column Type Descriptor for DATETIME Field

For the DATETIME data type of the time_fld column, the type-descriptor accessor
functions obtain different qualifier information for each kind of type descriptor, as
follows:

* The data type descriptor, type_desc, stores the unparameterized type information
for the DATETIME data type.

The following code fragment calls the mi_type_typename() and

mi_type_qualifier() accessor functions on the type_desc type descriptor (which
defines):

type_string = mi_type typename(type_desc);

type_scale = mi_type_qualifier(type_desc);

The call to mi_type_typename() returns the string “datetime" as the
unparameterized name of the data type. The call to mi_type_qualifier() returns
zero (0) as the type qualifier.

¢ The column type descriptor, col_type_desc, stores the parameterized type
information for the DATETIME field of row_type.

The following code fragment calls the mi_type_typename() and

mi_type_qualifier() accessor functions on the col_type_desc type descriptor
(which defines):

type_string = mi_type_typename(col_type desc);

type_scale = mi_type qualifier(col_type desc);

The call to mi_type_typename() returns the string “datetime year to second”
as the parameterized name of the data type. The call to mi_type_qualifier()
returns the actual DATETIME qualifier of 3594, which is the encoded qualifier
value for:

TU_DTENCODE (TU_YEAR, TU_SECOND)

Similarly, for DECIMAL and MONEY data types, the type-descriptor accessor
functions can obtain scale and precision information from a column type descriptor
but not a data type descriptor. shows a code fragment that obtains a
data type descriptor and a column type descriptor for the second field (dec_fld)
from the row descriptor (row_desc) for the row_type row type.

type_id2 = mi_column_type_id(row_desc, 1);
type_desc2 = mi_type_typedesc(conn, type id2);
col_type desc2 = mi_column_type_desc(row_desc, 1);

Figure 2-3. Type Descriptor and Column Type Descriptor for DECIMAL Field

For the DECIMAL data type of the dec_fld column, the results from the
type-descriptor accessor functions depend on which type descriptor you pass into
the accessor function, as follows:

* The data type descriptor, type_desc2, stores the unparameterized type information
for DECIMAL.

The following code fragment calls the mi_type_precision() and

mi_type_scale() accessor functions on the type_desc2 type descriptor (which
defines):

IBM Informix DataBlade API Programmer’s Guide

type_prec = mi_type_precision(type_desc2);

type_scale = mi_type_scale(type_desc2);

Both the mi_type_precision() and mi_type_scale() functions return zero (0) for
the precision and scale.

¢ The column type descriptor, col_type_desc, stores the parameterized type
information for the DECIMAL field of row_type.

The following code fragment calls the mi_type_precision() and
mi_type_scale() accessor functions on the col_type_desc2 type descriptor
(which defines):

type_prec = mi_type_precision(col_type desc2);

type_scale = mi_type_scale(col_type_desc2);

The mi_type_precision() and mi_type_scale() functions return the actual
precision and scale of the DECIMAL column, 6 and 3, respectively.

Character Data Types

The DataBlade API supports the following data types that can hold character data
in a DataBlade API module.

DataBlade API Character SQL Character

Data Type Description Data Type

mi_charl One-byte character None

mi_unsigned_charl Unsigned one-byte character None

mi_char, mi_string Character string or array CHAR, VARCHAR,
NCHAR, NVARCHAR,
IDSSECURITYLABEL

mi_lvarchar Varying-length structure to hold LVARCHAR

varying-length character data
MI_LO_HANDLE LO handle to a smart large object that CLOB

holds character data

Tip: The database server also supports the TEXT data type for character data. It
stores TEXT character data as a simple large object. However, the DataBlade
API does not directly support simple large objects. For more information, see
[‘Simple Large Objects” on page 2-32|

The mi_char1 and mi_unsigned_char1 Data Types

The mi_charl and mi_unsigned_charl data types hold a single-byte character.
These data types can also hold an integer quantity within C code so you can also
use mi_unsigned_charl to hold unsigned one-byte integer values.

Important: To make your DataBlade API module portable, It is recommended that
you use the DataBlade API data type mi_charl for single-character
values instead of the native C-language counterpart, char. The
mi_charl data type ensures a consistent size across computer
architectures.

Global Language Support
| guag PP

The mi_charl and mi_unsigned_charl data types assume that one character uses
one byte of storage. Therefore, do not use these data types to hold multibyte
characters (which can require up to four bytes of storage). Instead, use the
mi_char, mi_string, or mi_lvarchar data type. For more information on multibyte

Chapter 2. Accessing SQL Data Types 2-7

characters, see the IBM Informix GLS User’s Guide.

| End of Global Language Support |

| Server Only |

The mi_charl and mi_unsigned_charl data types are guaranteed to be one byte on
all computer architectures. Therefore, they can fit into an MI_DATUM structure
and can be passed by value in C UDRs.

| End of Server Only |

| Client Only |

All data types, including mi_charl and mi_unsigned_charl, must be passed by
reference in client LIBMI applications.

| End of Client Only |

The mi_char and mi_string Data Types

The mi_char and mi_string data types are the DataBlade API equivalents of the
char C-language data type. These two data types are exactly the same in both
storage and functionality. Use them to declare character strings in your DataBlade
API module.

You can use the mi_char or mi_string data type to hold CHAR, VARCHAR, or
IDSSECURITYLABEL data, as long as this data is not an argument or return value
of a C UDR. For more information, see [“Character Data in C UDRs (Server)” on|
|o: e 2-10

| Global Language Support |

You can use the mi_char and mi_string data types to store multibyte characters
(NCHAR and NVARCHAR columns). However, your code must track how many
bytes each character contains. You can use the IBM Informix GLS interface to assist
with this process. For more information on multibyte characters, see the IBM
Informix GLS User’s Guide.

| End of Global Language Support |

| Server Only |

The mi_char and mi_string data types cannot fit into an MI_DATUM structure.
They must be passed by reference within C UDRs.

| End of Server Only |

| Client Only |

All data types, including mi_char and mi_string, must be passed by reference
within client LIBMI applications.

| End of Client Only |

2-8 IBM Informix DataBlade API Programmer’s Guide

The mi_lvarchar Data Type
The mi_lvarchar data type has the following uses:
* Holds data of an LVARCHAR column

* Holds character data that is passed to or received from an SQL statement when
the query is in binary mode

| Server Only |

* Holds data for character arguments and return values of C UDRs
* Holds the external format of an opaque data type

End of Server Only |

The following sections summarize each of these uses of an mi_lvarchar. For
information about the structure of the mi_lvarchar data type, see [“Varying-Lengthl
[Data Type Structures” on page 2-13

The SQL LVARCHAR Data Type

The LVARCHAR data type of SQL stores variable-length character strings whose
length can be up to 32,739 bytes. LVARCHAR is a built-in opaque data type that is
valid in distributed queries of tables, views, and synonyms of databases outside
the local server. The DataBlade API supports the LVARCHAR data type with the
mi_lvarchar data type, which is implemented in the DataBlade API as a
varying-length structure.

Tip: The SQL data type LVARCHAR and the DataBlade API data type mi_lvarchar
are not the same. Although you use mi_lvarchar to hold LVARCHAR data,
mi_lvarchar is also used for other purposes.

If you declare no maximum size for an LVARCHAR column, the default size is two
kilobytes. The maximum valid size is 32,739 bytes, but the maximum row size in a
database table is limited to 32 kilobytes. (In addition, no more than 195 columns in
the same database table can be of varying-length data types, named or unnamed
ROW data types, collection data types, or simple large object data types, regardless
of the declared size of individual columns.)

If you attempt to insert more than the declared maximum size into an LVARCHAR
column, the result depends on the data type of the data:

* If the value comes from a built-in type (such as CHAR or VARCHAR), the
database server truncates the data to the declared column size.

* The database server does not truncate data strings that come from an
mi_lvarchar structure, but the database server does return an error.

Tip: If you need to store more than 32,739 bytes of text data in a database of the
local database server, use the CLOB data type. The CLOB data type allows
you to store the text data outside the database table, in an sbspace. For more
information, see [Chapter 6, “Using Smart Large Objects,” on page 6-1]

Character Data in Binary Mode of a Query
When the database server processes a query, it might handle character data in the
following cases:

¢ Character data that is passed as an input parameter to an SQL statement

* Character data that an SQL statement returns (for example, as a column value)

Chapter 2. Accessing SQL Data Types ~ 2-9

When a query has a control mode of binary, the database server stores character
data in an mi_lvarchar varying-length structure. For more information on the
control modes of a query, see [“Control Modes for Query Data” on page 8-8

Character Data in C UDRs (Server)

You must use the mi_lvarchar data type if your UDR expects any of the SQL
character data types as an argument or a return value. Within an MI_DATUM
structure, the routine manager passes character data to and from a C UDR as a
pointer to an mi_lvarchar varying-length structure. Therefore, a C UDR must
handle text data as mi_lvarchar values when it receives arguments or returns data
of an SQL character data type, as the following table describes.

Handling Character Data More Information

If the C UDR receives an argument of an SQL character |“Handling Character Arguments”)
data type, it must declare its corresponding parameter as [on page 13-6|
a pointer to an mi_lvarchar data type.

If a C UDR returns a value of an SQL character data “Returning Character Values” on|
type, it must return a pointer to an mi_lvarchar data page 13-13]
type.

External Representation of an Opaque Data Type (Server)

The database server stores the external representation of an opaque data type in an
mi_lvarchar varying-length structure. The external representation is a text
representation of the opaque-type data. Therefore, the input and output support
functions of an opaque type handle the external representation as an mi_lvarchar.
For more information, see [“Input and Output Support Functions” on page 16-11|

Character Data in a Smart Large Object

You can use a smart large object to store very large amounts of character data. The
MI_LO_HANDLE data type has a structure, called an LO handle, that identifies the
location of smart-large-object data in a separate database partition, called an
sbspace. For smart-large-object data that is character data, use the SQL CLOB data
type. The CLOB data type allows you to store varying-length character data that is
potentially larger than 32 kilobytes. The CLOB data type is a predefined opaque
type (an opaque data type that Informix defines). For more information, see
[Chapter 6, “Using Smart Large Obijects,” on page 6-1|

Character Processing

The DataBlade API library provides the following functions to process character
data:

e Transfer functions
¢ Conversion functions

* Operation functions

| Global Language Support |

You can use these character-processing functions on NCHAR and NVARCHAR
data. You can also use the character processing that the IBM Informix GLS
interface provides to handle multibyte characters.

| End of Global Language Support |

2-10 IBM Informix DataBlade API Programmer’s Guide

Transferring Character Data (Server)
To transfer character data between different computer architectures, the DataBlade
API provides the following functions that handle type alignment.

DataBlade API
Function Description

mi_get_string() Copies a character string, converting any difference in alignment
on the client computer to that of the server computer

mi_put_string() Copies a character string, converting any difference in alignment
on the server computer to that of the client computer

The mi_get_string() and mi_put_string() functions are useful in the send and
receive support function of an opaque data type that contains character data (such
as mi_string or mi_char). They ensure that character data remains aligned when
transferred to and from client applications. For more information, see i”ConversioEl
[of Opaque-Type Data with Computer-Specific Data Types” on page 16-21|

Converting Character Data
Both the DataBlade API library and the Informix ESQL/C library provide functions
that convert between the binary and text representation of values.

DataBlade API Functions for String Conversion: Many DataBlade API functions
expect to manipulate character data as an mi_lvarchar value. In addition, all SQL
character data types are passed into a C UDR as an mi_lvarchar value. The
DataBlade API provides the following functions to allow for conversion between a
text (null-terminated string) representation of character data and its binary
(internal) equivalent. The binary representation of character data is a
varying-length structure (mi_lvarchar) equivalent.

DataBlade API Function Description

mi_lvarchar_to_string() Creates a null-terminated string from the data in a
varying-length structure

mi_string_to_lvarchar() Creates a varying-length structure to hold a string

The mi_lvarchar_to_string() and mi_string_to_lvarchar() functions are useful for
converting between null-terminated strings and varying-length structures (whose
data is not null-terminated).

| Server Only |

The mi_lvarchar_to_string() and mi_string to_lvarchar() functions are also
useful in the input and output support functions of an opaque data type that
contains mi_lvarchar values. They allow you to convert a string between its
external format (text) and its internal format (mi_lvarchar) when transferred to and
from client applications. For more information, see |“Conversion of Opaque-Type]
[Data Between Text and Binary Representations” on page 16-16

| End of Server Only |

For more information on the structure of an mi_lvarchar value, see
[“Varying-Length Data Type Structures” on page 2-13|

In addition, the DataBlade API library provides the following functions to convert
text representation of values to their binary representations.

Chapter 2. Accessing SQL Data Types 2-11

Type of String More Information

Decimal strings “DataBlade API Functions for Decimal Conversion” on page|
3-14]

Date strings [“DataBlade API Functions for Date Conversion” on page 4-3|

Date and time strings, “DataBlade API Functions for Date-Time or Intervall

Interval strings Conversion” on page 4-13)

ESQL/C Functions for String Conversion: The Informix ESQL/C function library
provides the following functions that facilitate conversion of values in character
data types (such as mi_string or mi_char) to and from some C-language data

types.

Function

Name Description

rstod() Converts a string to a double type

rstoi() Converts a null-terminated string to a two-byte integer (int2)
rstol() Converts a string to a four-byte integer (int4)

In addition, the Informix ESQL/C library provides the following functions to
convert text representation of values to their binary representation.

Type of String More Information

INT8 strings [“Converting INT8 Values” on page 3-7|

Decimal strings [“ESQL/C Functions for Decimal Conversion” on page 3-15
Date strings [“ESQL/C Functions for Date Conversion” on page 4-4f

Date and time strings [“ESQL/C Functions for Date, Time, and Interval Conversion” on|

page 4—13|

Operations on Character Values
The Informix ESQL/C function library provides the following functions to perform
operations on null-terminated strings.

Function

Name Description

Idchar() Copies a fixed-length string to a null-terminated string
rdownshift() Converts all letters to lowercase

rupshift() Converts all letters to uppercase

stcat() Concatenates one null-terminated string to another
stchar() Copies a null-terminated string to a fixed-length string
stcmpr() Compares two null-terminated strings

stcopy() Copies one null-terminated string to another string
stleng() Counts the number of bytes in a null-terminated string

Character Type Information
The DataBlade API provides functions to obtain the following information about a
character (CHAR, VARCHAR, and IDSSECURITYLABEL) data type:

* The data type: its type name (string), type descriptor, or type identifier

2-12 IBM Informix DataBlade API Programmer’s Guide

* The precision: the maximum number of characters in the data type

The DataBlade API provides the following functions to obtain the type and
precision of a character data type.

DataBlade API Functions
Type Name, Type Identifier,

Source or Type Descriptor Precision

For a basic data type mi_type_typedesc(), mi_type_precision()
mi_type_typename()

For a UDR argument mi_fp_argtype(), mi_fp_argprec(),
mi_fp_setargtype() mi_fp_setargprec()

For a UDR return value mi_fp_rettype(), mi_fp_retprec(),
mi_fp_setrettype() mi_fp_setretprec()

For a column mi_column_type_id(), mi_column_precision()

mi_column_typedesc()

For an input parameter =~ mi_parameter_type_id(), mi_parameter_precision()
in a prepared statement = mi_parameter_type_name()

Varying-Length Data Type Structures

A varying-length data type structure can hold data whose length varies from one
instance to the next. The database server uses varying-length structures extensively
to manage data transfer for DataBlade API modules.

This section provides the following information about varying-length data type
structures:

* How to use a varying-length structure
* How to manage memory for a varying-length structure
* How to access data in a varying-length structure

Using a Varying-Length Structure

The DataBlade API provides the following data types to support varying-length
data.

DataBlade API SQL Varying-Length
Data Type Data Type More Information

mi_lvarchar LVARCHAR [“The mi_lvarchar Data Type” on page 2-9|

“Input and Output Support Functions” on page|

16—11|

mi_bitvarying BITVARYING [“The mi_bitvarying Data Type” on page 2-28
mi_sendrecv SENDR