
IBM Informix

IBM Informix DataBlade API Programmer’s Guide

Version 11.50

SC23-9429-03

���

IBM Informix

IBM Informix DataBlade API Programmer’s Guide

Version 11.50

SC23-9429-03

���

Note:
Before using this information and the product it supports, read the information in “Notices” on page C-1.

This edition replaces SC23-9429-02.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this publication should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Introduction . xi
In This Introduction. xi
About This Publication. xi

Types of Users . xi
Software Dependencies . xii
Assumptions About Your Locale . xii
Demonstration Databases. xii

Function Syntax Conventions . xii
DataBlade API Module Code Conventions . xiii
Documentation Conventions . xiii

Technical Changes . xiii
Feature, Product, and Platform Markup. xiii
Example Code Conventions. xiii

Additional Documentation . xiv
Compliance with Industry Standards . xiv
How to Provide Documentation Feedback . xiv

Part 1. DataBlade API Overview

Chapter 1. Using the DataBlade API . 1-1
In This Chapter . 1-1
DataBlade API Module . 1-1

User-Defined Routine (Server) . 1-2
Client LIBMI Application . 1-4
Compatibility of Client and Server DataBlade API Modules 1-4

DataBlade API Components . 1-5
Header Files . 1-5
Public Data Types . 1-8
Regular Public Functions . 1-14
Advanced Features (Server) . 1-18

Internationalization of DataBlade API Modules (GLS). 1-19

Chapter 2. Accessing SQL Data Types . 2-1
In This Chapter . 2-2
Type Identifiers . 2-2
Type Descriptors . 2-3

Type-Structure Conversion . 2-4
Data Type Descriptors and Column Type Descriptors . 2-5

Character Data Types . 2-7
The mi_char1 and mi_unsigned_char1 Data Types . 2-7
The mi_char and mi_string Data Types . 2-8
The mi_lvarchar Data Type . 2-9
Character Data in a Smart Large Object . 2-10
Character Processing. 2-10

Varying-Length Data Type Structures . 2-13
Using a Varying-Length Structure . 2-13
Managing Memory for a Varying-Length Structure . 2-14
Accessing a Varying-Length Structure . 2-17

Byte Data Types . 2-28
The mi_bitvarying Data Type . 2-28
Byte Data in a Smart Large Object . 2-29
Byte Processing . 2-29

Boolean Data Types . 2-30
Boolean Text Representation . 2-30

© Copyright IBM Corp. 1996, 2009 iii

Boolean Binary Representation . 2-30
Pointer Data Types (Server) . 2-31

Simple Large Objects . 2-32
The MI_DATUM Data Type . 2-32

Contents of an MI_DATUM Structure . 2-33
Address Calculations with MI_DATUM Values . 2-35
Uses of MI_DATUM Structures . 2-35

The NULL Constant . 2-36
SQL NULL Value . 2-36
NULL-Valued Pointer . 2-37

Part 2. Data Manipulation

Chapter 3. Using Numeric Data Types . 3-1
In This Chapter . 3-1
Integer Data . 3-1

Integer Text Representation . 3-2
Integer Binary Representations. 3-2

Fixed-Point Data . 3-8
Fixed-Point Text Representations . 3-9
Fixed-Point Binary Representations . 3-10
Transferring Fixed-Point Data (Server) . 3-14
Converting Decimal Data . 3-14
Performing Operations on Decimal Data . 3-16
Obtaining Fixed-Point Type Information . 3-16

Floating-Point Data . 3-16
Floating-Point Text Representation . 3-17
Floating-Point Binary Representations . 3-17
Transferring Floating-Point Data (Server) . 3-19
Converting Floating-Point Decimal Data . 3-20
Obtaining Floating-Point Type Information . 3-20

Formatting Numeric Strings . 3-20

Chapter 4. Using Date and Time Data Types 4-1
In This Chapter . 4-1
Date Data. 4-1

Date Text Representation. 4-1
Date Binary Representation . 4-2
Transfers of Date Data (Server) . 4-3
Conversion of Date Representations . 4-3
Operations on Date Data. 4-5

Date-Time or Interval Data . 4-5
Date-Time or Interval Text Representation . 4-6
Date-Time or Interval Binary Representation . 4-7
The datetime.h Header File . 4-9
Retrieval and Insertion of DATETIME and INTERVAL Values 4-11
Transfers of Date-Time or Interval Data (Server) . 4-12
Conversion of Date-Time or Interval Representations . 4-13
Operations on Date and Time Data . 4-15
Functions to Obtain Information on Date and Time Data 4-15

Chapter 5. Using Complex Data Types . 5-1
In This Chapter . 5-1
Collections . 5-2

Collection Text Representation . 5-2
Collection Binary Representation . 5-2
Creating a Collection . 5-3
Opening a Collection . 5-4
Accessing Elements of a Collection . 5-6
Releasing Collection Resources . 5-15

iv IBM Informix DataBlade API Programmer’s Guide

The listpos() UDR . 5-16
Row Types . 5-28

Row-Type Text Representation . 5-28
Row-Type Binary Representation . 5-29
Creating a Row Type . 5-33
Accessing a Row Type . 5-36
Copying a Row Structure . 5-36
Releasing Row Resources . 5-37

Chapter 6. Using Smart Large Objects . 6-1
In This Chapter . 6-2
Understanding Smart Large Objects . 6-2

Parts of a Smart Large Object . 6-3
Information About a Smart Large Object . 6-4

Storing a Smart Large Object in a Database . 6-13
Valid Data Types . 6-13
Access to a Smart Large Object . 6-14

Using the Smart-Large-Object Interface . 6-15
Smart-Large-Object Data Type Structures . 6-16
Smart-Large-Object Functions. 6-19

Creating a Smart Large Object . 6-24
Obtaining the LO-Specification Structure . 6-25
Choosing Storage Characteristics . 6-28
Initializing an LO Handle and an LO File Descriptor . 6-40
Writing Data to a Smart Large Object . 6-42
Storing an LO Handle . 6-42
Freeing Resources . 6-43
Sample Code to Create a New Smart Large Object . 6-44

Accessing a Smart Large Object . 6-46
Selecting the LO Handle . 6-47
Opening a Smart Large Object . 6-48
Reading Data from a Smart Large Object . 6-48
Freeing a Smart Large Object . 6-49
Sample Code to Select an Existing Smart Large Object 6-49

Modifying a Smart Large Object . 6-50
Updating a Smart Large Object . 6-50
Altering Storage Characteristics . 6-51

Obtaining Status Information for a Smart Large Object . 6-52
Obtaining a Valid LO File Descriptor . 6-52
Initializing an LO-Status Structure . 6-53
Obtaining Status Information . 6-54
Freeing an LO-Status Structure . 6-55

Deleting a Smart Large Object . 6-56
Managing the Reference Count . 6-56
Freeing LO File Descriptors . 6-58

Converting a Smart Large Object to a File or Buffer . 6-59
Using Operating-System Files. 6-59
Using User-Defined Buffers . 6-59

Converting an LO Handle Between Binary and Text . 6-60
Binary and Text Representations of an LO Handle . 6-60
DataBlade API Functions for LO-Handle Conversion . 6-60

Transferring an LO Handle Between Computers (Server) 6-61
Using Byte-Range Locking. 6-61
Passing a NULL Connection (Server) . 6-62

Part 3. Database Access

Chapter 7. Handling Connections . 7-1
In This Chapter . 7-1
Understanding Session Management. 7-1

Contents v

Client Connection . 7-2
UDR Connection (Server) . 7-2
Connection Descriptor . 7-3

Initializing a Client Connection . 7-4
Using Connection Parameters . 7-4
Using Database Parameters . 7-6
Using Session Parameters . 7-8
Setting Connection Parameters for a Client Connection 7-10

Establishing a Connection . 7-11
Establishing a UDR Connection (Server) . 7-11
Establishing a Client Connection. 7-14

Associating User Data with a Connection . 7-16
Initializing the DataBlade API . 7-17
Closing a Connection . 7-18

Chapter 8. Executing SQL Statements . 8-1
In This Chapter . 8-2
Executing SQL Statements . 8-2

Choosing a DataBlade API Function . 8-3
Executing Basic SQL Statements . 8-6
Executing Prepared SQL Statements . 8-11
Executing Multiple SQL Statements . 8-32

Processing Statement Results . 8-33
Executing the mi_get_result() Loop . 8-34
Example: The get_results() Function . 8-39

Retrieving Query Data . 8-39
Obtaining Row Information . 8-40
Obtaining Column Information . 8-41
Retrieving Rows . 8-41
Obtaining Column Values . 8-42

Completing Execution . 8-57
Finishing Execution . 8-57
Interrupting Execution . 8-58

Inserting Data into the Database . 8-59
Assembling an Insert String . 8-59
Sending the Insert Statement . 8-59
Processing Insert Results . 8-59

Using Save Sets . 8-60
Creating a Save Set . 8-60
Inserting Rows into a Save Set . 8-60
Building a Save Set . 8-61
Freeing a Save Set . 8-64

Chapter 9. Executing User-Defined Routines 9-1
In This Chapter . 9-1
Accessing MI_FPARAM Routine-State Information . 9-2

Checking Routine Arguments . 9-3
Accessing Return-Value Information . 9-6
Saving a User State . 9-8
Obtaining Other Routine Information . 9-12

Calling UDRs Within a DataBlade API Module . 9-12
Invoking a UDR Through an SQL Statement . 9-13
Calling a UDR Directly (Server) . 9-13
Named Parameters and UDRs . 9-14

Calling UDRs with the Fastpath Interface . 9-14
Obtaining a Function Descriptor . 9-17
Obtaining Information from a Function Descriptor. 9-23
Executing the Routine . 9-27
Using a User-Allocated MI_FPARAM Structure . 9-36
Releasing Routine Resources . 9-38

vi IBM Informix DataBlade API Programmer’s Guide

Obtaining Trigger Execution Information and HDR Database Server Status 9-39
Trigger Information . 9-39
HDR Status Information . 9-40

Chapter 10. Handling Exceptions and Events 10-1
In This Chapter . 10-1
DataBlade API Event Types . 10-2
Event-Handling Mechanisms . 10-3

Invoking a Callback . 10-3
Using Default Behavior . 10-11

Callback Functions . 10-12
Declaring a Callback Function . 10-13
Writing a Callback Function . 10-16

Database Server Exceptions . 10-20
Understanding Database Server Exceptions . 10-20
Providing Exception Handling . 10-25
Returning Error Information to the Caller . 10-32
Handling Multiple Exceptions . 10-38
Raising an Exception . 10-40

State-Transition Events . 10-49
Understanding State-Transition Events . 10-49
Providing State-Transition Handling . 10-51

Client LIBMI Errors . 10-55

Chapter 11. Working with XA-Compliant External Data Sources 11-1
Overview of Integrating XA-Compliant Data Sources in Transactions 11-1

Support for the Two-Phase Commit Protocol. 11-2
XA-Compliant Data Sources and Data Source Types . 11-2
Infrastructure for Creating Support Routines for XA Routines 11-3
Global Transaction IDs . 11-3
System Catalog Tables . 11-3
Files Containing Necessary Components . 11-3

Creating User-Defined XA-Support Routines. 11-3
The xa_open() function. 11-4
The xa_close() function. 11-4
The xa_start() function . 11-5
The xa_end() function . 11-5
The xa_prepare() function . 11-6
The xa_rollback() function. 11-7
The xa_commit() function . 11-7
The xa_recover() function . 11-8
The xa_forget() function . 11-8
The xa_complete() function . 11-9
Dropping an XA Support User-Defined Routine . 11-9

Managing XA Data Sources and Data Source Types . 11-9
Creating an XA Data Source Type . 11-9
Dropping an XA Data Source Type. 11-11
Creating an XA Data Source . 11-11
Dropping an XA Data Source . 11-11

Registering and Unregistering XA-Compliant Data Sources 11-12
Using ax_reg() . 11-12
Using ax_unreg() . 11-13
Using mi_xa_register_xadatasource() . 11-14
Using mi_xa_unregister_xadatasource() . 11-15
Getting the XID Structure. 11-16
Getting the Resource Manager ID . 11-16

Monitoring Integrated Transactions . 11-17

Part 4. Creating User-Defined Routines

Contents vii

Chapter 12. Developing a User-Defined Routine 12-1
In This Chapter . 12-2
Designing a UDR . 12-2

Development Tools . 12-2
Uses of a C UDR . 12-3
Portability . 12-4
Insert and Update Operations . 12-5

Creating UDR Code . 12-5
Variable Declaration . 12-6
Session Management . 12-6
SQL Statement Execution . 12-10
Routine-State Information . 12-10
Event Handling . 12-11
Well-Behaved Routines . 12-11

Compiling a C UDR . 12-11
Compiling Options . 12-12
Creating a Shared-Object File . 12-12

Registering a C UDR . 12-14
EXTEND Role Required to Register a C UDR . 12-15
The External Name . 12-15
The UDR Language . 12-16
Routine Modifiers . 12-17
Parameters and Return Values . 12-17
Privileges for the UDR. 12-18

Executing a UDR . 12-18
Routine Resolution . 12-19
The Routine Manager . 12-20

Debugging a UDR . 12-25
Using a Debugger . 12-25
Running a Debugging Session . 12-27
Using Tracing . 12-28

Changing a UDR . 12-36
Altering a Routine . 12-36
Unloading a Shared-Object File . 12-36

Chapter 13. Writing a User-Defined Routine 13-1
In This Chapter . 13-2
Coding a C UDR . 13-2

Defining Routine Parameters . 13-2
Obtaining Argument Values . 13-5
Defining a Return Value . 13-11
Coding the Routine Body. 13-16

Using Virtual Processors . 13-16
Creating a Well-Behaved Routine . 13-17
Managing Virtual Processors. 13-37

Controlling the VP Environment . 13-38
Obtaining VP-Environment Information . 13-39
Changing the VP Environment . 13-40
Locking a UDR . 13-41

Performing Input and Output . 13-42
Access to a Stream (Server) . 13-42
Access to Operating-System Files . 13-52
Sample File-Access UDR . 13-56

Accessing the UDR Execution Environment. 13-58
Accessing the Session Environment . 13-58
Accessing the Server Environment . 13-58

Chapter 14. Managing Memory. 14-1
In This Chapter . 14-1
Understanding Shared Memory . 14-2

viii IBM Informix DataBlade API Programmer’s Guide

Accessing Shared Memory . 14-2
Choosing the Memory Duration . 14-4

Managing Shared Memory . 14-19
Managing User Memory . 14-20
Managing Named Memory . 14-24
Monitoring Shared Memory . 14-33

Managing Stack Space . 14-35
Managing Stack Usage . 14-35
Increasing Stack Space . 14-36

Chapter 15. Creating Special-Purpose UDRs. 15-1
In This Chapter . 15-1
Writing an End-User Routine . 15-2
Writing a Cast Function . 15-2
Writing an Iterator Function . 15-3

Initializing the Iterations . 15-6
Returning One Active-Set Item . 15-8
Releasing Iteration Resources . 15-9
Calling an Iterator Function from an SQL Statement . 15-9

Writing an Aggregate Function . 15-11
Extending a Built-In Aggregate . 15-12
Creating a User-Defined Aggregate . 15-16

Providing UDR-Optimization Functions . 15-53
Writing Selectivity and Cost Functions . 15-54
Creating Negator Functions . 15-60
Creating Commutator Functions . 15-60
Creating Parallelizable UDRs . 15-61

Chapter 16. Extending Data Types . 16-1
In This Chapter . 16-1
Creating an Opaque Data Type . 16-1

Designing an Opaque Data Type. 16-2
Writing Opaque-Type Support Functions . 16-8
Registering an Opaque Data Type . 16-39

Providing Statistics Data for a Column . 16-40
Collecting Statistics Data . 16-40
Using User-Defined Statistics . 16-48

Optimizing Queries. 16-50
Query Plans . 16-51
Selectivity Functions . 16-51

Part 5. Appendixes

Appendix A. Writing a Client LIBMI Application A-1
Managing Memory in Client LIBMI Applications . A-1

Allocating User Memory . A-1
Deallocating User Memory . A-2

Accessing Operating-System Files in Client LIBMI Applications A-3
Handling Transactions . A-3

Appendix B. Accessibility . B-1
Accessibility features for IBM Informix Dynamic Server . B-1

Accessibility Features . B-1
Keyboard Navigation . B-1
Related Accessibility Information . B-1
IBM and Accessibility. B-1

Notices . C-1
Trademarks . C-3

Contents ix

Index . X-1

x IBM Informix DataBlade API Programmer’s Guide

Introduction

In This Introduction. xi
About This Publication. xi

Types of Users . xi
Software Dependencies . xii
Assumptions About Your Locale . xii
Demonstration Databases. xii

Function Syntax Conventions . xii
DataBlade API Module Code Conventions . xiii
Documentation Conventions . xiii

Technical Changes . xiii
Feature, Product, and Platform Markup. xiii
Example Code Conventions. xiii

Additional Documentation . xiv
Compliance with Industry Standards . xiv
How to Provide Documentation Feedback . xiv

In This Introduction
This introduction provides an overview of the information in this publication and
describes the conventions it uses.

About This Publication
This publication contains information on the DataBlade API, the C-language
application programming interface (API) provided with IBM Informix Dynamic
Server (IDS). You can use the DataBlade API to develop client LIBMI applications
and C user-defined routines (UDRs) that access data in an IBM Informix Dynamic
Server (IDS) database.

This publication explains how to use the DataBlade API functions. The companion
publication, the IBM Informix DataBlade API Function Reference, describes the
functions in alphabetical order.

This section discusses the intended audience, the software that you need to use the
DataBlade API, localization, and demonstration databases.

Types of Users
This publication is for the following users:
v Database-application programmers
v DataBlade® developers
v Developers of C UDRs

To understand this publication, you need to have the following background:
v A working knowledge of your computer, your operating system, and the utilities

that your operating system provides
v Some experience working with relational databases or exposure to database

concepts
v Some experience with computer programming in the C programming language
v Some experience with database design and the optimization of database queries

© Copyright IBM Corp. 1996, 2009 xi

If you have limited experience with relational databases, SQL, or your operating
system, see the IBM Informix Dynamic Server Getting Started Guide for your database
server for a list of supplementary titles.

Software Dependencies
This publication is based on the assumption that you are using Version 11.50 of
IBM Informix Dynamic Server (IDS).

Assumptions About Your Locale
IBM Informix products can support many languages, cultures, and code sets. All
the information related to character set, collation, and representation of numeric
data, currency, date, and time is brought together in a single environment, called a
Global Language Support (GLS) locale.

The examples in this publication are for the default locale, en_us.8859-1. This locale
supports U.S. English format conventions for date, time, and currency. In addition,
this locale supports the ISO 8859-1 code set, which includes the ASCII code set
plus many 8-bit characters such as é, è, and ñ.

If you plan to use nondefault characters in your data or your SQL identifiers, or if
you want to conform to the nondefault collation rules of character data, you need
to specify the appropriate nondefault locale.

For instructions on how to specify a nondefault locale, additional syntax, and other
considerations related to GLS locales, see the IBM Informix GLS User’s Guide.

Demonstration Databases
The DB–Access utility, which is provided with your Informix® database server
products, includes one or more of the following demonstration databases:
v The stores_demo database illustrates a relational schema with information about

a fictitious wholesale sporting-goods distributor. Many examples in IBM
Informix publications are based on the stores_demo database.

v The superstores_demo database illustrates an object-relational schema. The
superstores_demo database contains examples of extended data types, type and
table inheritance, and user-defined routines.

For information about how to create and populate the demonstration databases,
see the IBM Informix DB–Access User’s Guide. For descriptions of the databases and
their contents, see the IBM Informix Guide to SQL: Reference.

The scripts that you use to install the demonstration databases reside in the
$INFORMIXDIR/bin directory on UNIX® or Linux and in the
%INFORMIXDIR%\bin directory on Windows.

Function Syntax Conventions
This guide uses the following conventions to specify DataBlade API function
syntax:
v Brackets ([]) surround optional items.
v Braces ({ }) surround items that can be repeated.
v A vertical line (|) separates alternatives.
v Function parameters are italicized; arguments that you must specify as shown

are not italicized.

xii IBM Informix DataBlade API Programmer’s Guide

DataBlade API Module Code Conventions
This publication includes sample code for DataBlade API modules. These samples
follow C-language coding conventions for indentation and use C ANSI format for
parameters in function declarations.

Note: Ellipsis points in a code example indicate that more code would be added in
a full application, but it is not necessary to show it to describe the concept
being discussed.

Documentation Conventions
Special conventions are used in the product documentation for IBM® Informix
Dynamic Server.

Technical Changes
Technical changes to the text are indicated by special characters depending on the
format of the documentation.

HTML documentation
New or changed information is surrounded by blue >> and << characters.

PDF documentation
A plus sign (+) is shown to the left of the current changes. A vertical bar
(│) is shown to the left of changes made in earlier shipments.

Feature, Product, and Platform Markup
Feature, product, and platform markup identifies paragraphs that contain
feature-specific, product-specific, or platform-specific information.

Some examples of this markup follow:

Dynamic Server

Identifies information that is specific to IBM Informix Dynamic Server

End of Dynamic Server

Windows Only

Identifies information that is specific to the Windows® operating system

End of Windows Only

This markup can apply to one or more paragraphs within a section. When an
entire section applies to a particular product or platform, this is noted as part of
the heading text, for example:

Table Sorting (Windows)

Example Code Conventions
Examples of SQL code occur throughout this publication. Except as noted, the code
is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by
semicolons. For instance, you might see the code in the following example:

Introduction xiii

CONNECT TO stores_demo
...

DELETE FROM customer
WHERE customer_num = 121

...

COMMIT WORK
DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules for
that product. For example, if you are using an SQL API, you must use EXEC SQL
at the start of each statement and a semicolon (or other appropriate delimiter) at
the end of the statement. If you are using DB–Access, you must delimit multiple
statements with semicolons.

Tip: Ellipsis points in a code example indicate that more code would be added in
a full application, but it is not necessary to show it to describe the concept
being discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the documentation for your product.

Additional Documentation
Documentation about IBM Informix products is available in various formats.

You can view, search, and print all of the product documentation from the IBM
Informix Dynamic Server information center on the Web at http://
publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp.

For additional documentation about IBM Informix Dynamic Server and related
products, including release notes, machine notes, and documentation notes, go to
the online product library page at http://www.ibm.com/software/data/informix/
techdocs.html. Alternatively, you can access or install the product documentation
from the Quick Start CD that is shipped with the product.

Compliance with Industry Standards
IBM Informix products are compliant with various standards.

The American National Standards Institute (ANSI) and the International
Organization of Standardization (ISO) have jointly established a set of industry
standards for the Structured Query Language (SQL). IBM Informix SQL-based
products are fully compliant with SQL-92 Entry Level (published as ANSI
X3.135-1992), which is identical to ISO 9075:1992. In addition, many features of
IBM Informix database servers comply with the SQL-92 Intermediate and Full
Level and X/Open SQL Common Applications Environment (CAE) standards.

How to Provide Documentation Feedback
You are encouraged to send your comments about IBM Informix user
documentation.

Use one of the following methods:
v Send e-mail to docinf@us.ibm.com.

xiv IBM Informix DataBlade API Programmer’s Guide

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://www.ibm.com/software/data/informix/techdocs.html
http://www.ibm.com/software/data/informix/techdocs.html
mailto:docinf@us.ibm.com

v Go to the information center at http://publib.boulder.ibm.com/infocenter/
idshelp/v115/index.jsp and open the topic that you want to comment on. Click
the feedback link at the bottom of the page, fill out the form, and submit your
feedback.

v Add comments to topics directly in the IDS information center and read
comments that were added by other users. Share information about the product
documentation, participate in discussions with other users, rate topics, and
more! Find out more at http://publib.boulder.ibm.com/infocenter/idshelp/
v115/index.jsp?topic=/com.ibm.start.doc/contributing.htm.

Feedback from all methods is monitored by those who maintain the user
documentation. The feedback methods are reserved for reporting errors and
omissions in our documentation. For immediate help with a technical problem,
contact IBM Technical Support. For instructions, see the IBM Informix Technical
Support Web site at http://www.ibm.com/planetwide/.

We appreciate your suggestions.

Introduction xv

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp?topic=/com.ibm.start.doc/contributing.htm
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp?topic=/com.ibm.start.doc/contributing.htm
http://www.ibm.com/planetwide/

xvi IBM Informix DataBlade API Programmer’s Guide

Part 1. DataBlade API Overview

© Copyright IBM Corp. 1996, 2009

IBM Informix DataBlade API Programmer’s Guide

Chapter 1. Using the DataBlade API

In This Chapter . 1-1
DataBlade API Module . 1-1

User-Defined Routine (Server) . 1-2
Types of UDRs . 1-2
Differences between C UDRs and UDRs Written in SPL 1-3
Using UDRs . 1-4

Client LIBMI Application . 1-4
Compatibility of Client and Server DataBlade API Modules 1-4

DataBlade API Components . 1-5
Header Files . 1-5

DataBlade API Header Files . 1-5
ESQL/C Header Files. 1-7
IBM Informix GLS Header File. 1-8
Private Header Files . 1-8

Public Data Types . 1-8
DataBlade API Data Types . 1-8
DataBlade API Support Data Types . 1-11
DataBlade API Data Type Structures . 1-12

Regular Public Functions . 1-14
DataBlade API Functions . 1-14
IBM Informix ESQL/C Functions . 1-17
IBM Informix GLS Functions . 1-17

Advanced Features (Server) . 1-18
Internationalization of DataBlade API Modules (GLS). 1-19

In This Chapter
The IBM Informix DataBlade API is the application programming interface (API)
for IBM Informix Dynamic Server (IDS). You can use DataBlade API functions in
DataBlade modules to access data stored in a Dynamic Server database.

This chapter provides the following information:
v A description of the different kinds of DataBlade API modules you can write

with the DataBlade API
v A summary of the basic parts of the DataBlade API

For information about how to develop DataBlade modules, see the IBM Informix
DataBlade Developers Kit User’s Guide.

DataBlade API Module
A DataBlade API module is a C-language module that uses the functions of the
DataBlade API to communicate with Dynamic Server. You can use the DataBlade
API in either of the following kinds of DataBlade API modules:
v A C UDR: a user-defined routine that is written in C
v A client LIBMI application: a client application written in C

Tip: This publication uses the term “DataBlade API module” generically to refer to
either a client LIBMI application or a user-defined routine (UDR).

To provide portability for applications, most of the DataBlade API functions behave
identically in a UDR and a client LIBMI application. In cases where syntax or

© Copyright IBM Corp. 1996, 2009 1-1

semantics differ, this publication uses qualifying paragraphs to distinguish between
server-side and client-side behavior of the DataBlade API.

If neither the server-specific or client-specific qualifying paragraphs appear, you
can assume that the functionality is the same in both the server-side and client-side
implementations of the DataBlade API. For more information, see “Feature,
Product, and Platform Markup” on page xiii of the introduction.

You can dynamically determine the kind of DataBlade API module with the
mi_client() function.

User-Defined Routine (Server)
A user-defined routine (UDR) is a routine that you can invoke within an SQL
statement or another UDR. UDRs are building blocks for the development of
DataBlade modules. Possible uses for a UDR follow:
v Support function for an opaque data type
v Cast function to cast data from one data type to another
v End-user routine for use in SQL statements
v Operator function to implement an operation on a particular data type

For a more complete list, see “Uses of a C UDR” on page 12-3.

When you write a UDR in an external language (a language other than SPL), the
UDR is called an external routine. An external routine that is written in the C
language is called a C UDR. A C UDR uses the server-side implementation of the
DataBlade API to communicate with the database server.

This section provides the following information about C UDRs. For general
information about UDRs, see the IBM Informix User-Defined Routines and Data Types
Developer’s Guide.

Types of UDRs
You can write the following types of C UDRs.

Type of UDR Description C Implementation

User-defined
function

Returns one or more values and therefore can be
used in SQL expressions

For example, the following query returns the results
of a UDR named area() as part of the query
results:

SELECT diameter, area(diameter)
FROM shapes
WHERE diameter > 6;

A C function that
returns some data
type other than
void (usually a
DataBlade API data
type)

User-defined
procedure

Does not return any values and cannot be used in
SQL expressions because it does not return a value

You can call a user-defined procedure directly,
however, as the following example shows:

EXECUTE PROCEDURE myproc(1, 5);

A C function that
returns void

1-2 IBM Informix DataBlade API Programmer’s Guide

Differences between C UDRs and UDRs Written in SPL

Advantages of C UDRs over UDRs written in the SPL language:

v Performance, efficiency, and flexibility of C code
C UDRs are compiled to machine code. You can use the C programming
language to manipulate data at the level of bytes and bits and access data in
efficient data structures such as array, hash, linked list, or tree.

v Access to the DataBlade API (DAPI) and other C libraries
DAPI provides many functions that are not available in SPL or SQL, including
the ESQL/C function library for manipulating data in C. Any C library that
follows the guidelines of the DataBlade API can also be included. For example, a
C UDR has random access to data within a smart large object.

v Greater dynamic SQL support in C routines
C UDRs can dynamically build arbitrary SQL query strings at runtime and
execute them. In SPL, the CLOSE, DECLARE, EXECUTE IMMEDIATE, FETCH,
FREE, OPEN, and PREPARE statements support runtime replacement of
question mark (?) placeholders with specific input parameter values, but some
dynamic SQL syntax features and some cursor management statements of
ESQL/C are not supported in SPL. For example, IDS 11.50 only supports
sequential cursors. C UDRs can have other types of cursors such as scroll and
hold. The FOREACH statement of SPL declares a direct cursor, but its associated
SQL statement must have hard-coded names of database objects, such as tables,
columns, and functions because SPL variables can only represent values, not
SQL identifiers. (The EXEC Bladelet also supports some dynamic SQL features in
SPL routines, but its programming interface is more complex and less intuitive
than when SPL is used directly.)

v Extending the server
You can use C UDRs to define user-defined data types (UDTs), user-defined
aggregates, and user-defined access methods (for example, to access stream data
outside IDS) to return data on the selectivity and cost of another UDR to the
optimizer and to access data of a ROW type that was unknown at compile time.

Advantages of UDRs written in SPL over C UDRs:

v SPL routines typically require less coding SPL is a higher-level language than C
and can therefore accomplish a given task in fewer lines of code
For example, in SPL it takes only a few lines to execute SQL and fetch results in
a loop. In C, it takes many lines to define and prepare the statement, execute it
with a cursor, fetch rows, fetch columns, close the cursor, close the statement,
and check for errors during the process.

v All SQL statements in SPL routines are automatically prepared
In SPL, any embedded SQL statements are parsed, prepared, and optimized
when the SPL routine is created and compiled. In a C UDR, if you want to
execute SQL repeatedly and efficiently, you must prepare it explicitly. (SPL can
only use the PREPARE statement to prepare a query or a call to a routine, but it
can then use EXECUTE IMMEDIATE to execute the prepared statement.)

v SPL routines are easier to write
A C UDR must follow the documented guidelines of the DataBlade API in areas
that include yielding the processor, allocating memory and variables, performing
I/O, and making system calls that block. Failure to follow the guidelines can
cause problems for the IDS instance, although you can mitigate this risk by
registering the C UDR to run on a user-defined VP class.

v Support for non-cursor EXECUTE...INTO statement

Chapter 1. Using the DataBlade API 1-3

Beginning with IDS 11.50, SPL supports only an EXECUTE IMMEDIATE
non-cursor statement that does not return any row. However, ESQL/C also
supports the non-cursor EXECUTE ... INTO statement. The query in this
statement can return a single row that is assigned to the SPL variables listed
after the INTO clause. Although SPL in IDS 11.50, or later does not support
multiple statements within the non-cursor EXECUTE IMMEDIATE statement,
this restriction reduces the risk of the insertion of unwanted SQL statements.

Using UDRs
You can write a UDR in C by using the DataBlade API functions to communicate
with the database server. You can also write subroutines in C that a UDR calls as it
executes. These subroutines must follow the same rules as the UDR with respect to
the use of DataBlade API functions.

Tip: Because of the subject matter of this publication, the publication uses the
terms “C UDR” and “UDR” interchangeably.

You compile UDRs into shared-object files. You then register the UDR in the
system catalog tables so that the database server can locate the code at runtime.
The database server dynamically loads the shared-object files into memory when
the UDR executes.

For more information on how to create C UDRs, see the following chapters of this
publication:
v Chapter 12, “Developing a User-Defined Routine,” on page 12-1, provides an

overview to the development process, including information on compilation,
registration, execution, and debugging.

v Chapter 13, “Writing a User-Defined Routine,” on page 13-1, describes specific
features and tasks of a C UDR.

v Chapter 14, “Managing Memory,” on page 14-1, describes how to manage
memory allocation within a C UDR.

v Chapter 15, “Creating Special-Purpose UDRs,” on page 15-1, describes how to
create special kinds of UDRs, such as iterator functions, user-defined aggregates,
and optimization functions.

Client LIBMI Application
A client LIBMI application is a stand-alone client application that uses the client-side
implementation of the DataBlade API to communicate with the database server.
The application might be written in C, C++, or Visual Basic.

Important: Support is provided for client LIBMI applications for backward
compatibility with existing applications. For the development of new C
client applications, use another IBM Informix C-language product such
as IBM Informix ODBC.

Compatibility of Client and Server DataBlade API Modules
You can execute a UDR from an SQL statement as well as from a client application
with little or no modification to the code. Any function that does not require
interactive input from the client application can be written as a UDR. However, not
all application code should be in a C UDR. You must balance the load between the
client and the database server to achieve optimal performance.

To avoid interfering with the operation of the database server, you can develop
functions on the client side even if they are intended to run from the server

1-4 IBM Informix DataBlade API Programmer’s Guide

process eventually. When you develop a C UDR on a client computer, you can use
the same DataBlade API functions on the client and the server computers, in most
cases, without changing the code. Almost all of the DataBlade API functions
behave identically in a client LIBMI application and a C UDR to provide
portability for DataBlade API modules. If you are writing code that might execute
in either a C UDR or a client LIBMI application, you can use the mi_client()
function to determine at runtime where the code is running.

DataBlade API Components
The DataBlade API contains the following components for the development of
DataBlade API modules:
v Header files
v Public data type structures
v Public functions

Header Files
The following categories of header files are provided for use in a DataBlade API
module:
v DataBlade API header files define DataBlade API data types and functions.
v IBM Informix ESQL/C header files define the IBM Informix ESQL/C library

functions and data types.
v The IBM Informix GLS header file provides the ability to internationalize your

DataBlade API module.
v Private header files, which you create, can support the DataBlade API module.

DataBlade API Header Files
The DataBlade API header files begin with the mi prefix. The DataBlade API
provides the following public header files for use in DataBlade API modules.

Header File Description

mi.h Is the main DataBlade API header file

It includes other DataBlade API public header files: milib.h, milo.h,
and mitrace.h.

The mi.h header file does not automatically include mistrmtype.h. To
use the stream I/O functions of the DataBlade API, you must explicitly
include mistrmtype.h.

milib.h Defines function prototypes for the public entry points and public
declarations of required data type structures and related macros

The mi.h header file automatically includes milib.h.

mitypes.h Defines all DataBlade API simple data types, accessor macros for these
data types, and directly related value macros

The mitypes.h header file automatically includes the Informix ESQL/C
header files: datetime.h, decimal.h, and int8.h.

The milib.h header file automatically includes mitypes.h.

milo.h Defines the data type structures, values, and function prototypes for the
smart-large-object interface (functions that have names starting with
mi_lo_)

The mi.h header file automatically includes milo.h.

Chapter 1. Using the DataBlade API 1-5

Header File Description

mistream.h Contains definitions for stream data structures, error constants, and
generic stream I/O functions

The mistrmtype.h and mistrmutil.h header files automatically include
mistream.h.

mistrmtype.h Contains definitions for the type-specific stream-open functions that the
DataBlade API provides

The mistrmtype.h header file automatically includes mistream.h;
however, the mi.h header file does not include mistrmtype.h. You must
explicitly include mistrmtype.h to use the stream I/O functions of the
DataBlade API.

mistrmutil.h Contains definitions for the stream-conversion functions that the
DataBlade API provides for use in streamwrite() and streamread()
opaque-type support functions

The mistrmutil.h header file automatically includes mistream.h;
however, the mi.h header file does not include mistrmutil.h. You must
explicitly include mistrmutil.h to use the stream-conversion functions
of the DataBlade API.

mitrace.h Defines the data type structures, values, and function prototypes for the
DataBlade API trace facility

The mi.h header file automatically includes mitrace.h.

miconv.h Contains convention definitions, including on/off switches based on
architecture, compiler type, and so on

Other parts of the code use these switches to define data types
correctly.

The mitypes.h header file automatically includes miconv.h.

memdur.h Contains the definition of the MI_MEMORY_DURATION data type,
which enumerates valid public memory durations

The milib.h header file automatically includes memdur.h.

The mi.h header file provides access to most of the DataBlade API header files in
the preceding table. Include this header file in your DataBlade API module to
obtain declarations of most DataBlade API functions and data types.

The DataBlade API provides the following advanced header files for the use of
advanced features in C UDRs.

Header File Description

minmmem.h Includes the minmdur.h and minmprot.h header files, which are
necessary for access to advanced memory durations and
memory-management functions

Neither the mi.h nor milib.h header file automatically includes
minmmem.h. You must explicitly include minmmem.h to use advanced
memory durations or memory-management functions.

minmdur.h Contains definitions for the advanced memory durations

The minmmem.h header file automatically includes minmdur.h. You
must explicitly include minmmem.h to use advanced memory durations.

1-6 IBM Informix DataBlade API Programmer’s Guide

Header File Description

minmprot.h Contains definitions for the advanced DataBlade API functions

The minmmem.h header file automatically includes minmdur.h. You
must explicitly include minmmem.h to use advanced functions.

Neither mi.h nor milib.h provides access to the advanced header files. To use the
advanced features, include the minmmem.h header file in your DataBlade API
module to obtain declarations of DataBlade API functions and data types.

Tip: For a complete list of header files, check the incl/public subdirectory of the
INFORMIXDIR directory.

ESQL/C Header Files
The following header files are provided to support some of the functions and data
types of the IBM Informix ESQL/C library.

Header File Contents

datetime.h Structure and macro definitions for DATETIME and INTERVAL data
types

decimal.h Structure and macro definitions for DECIMAL and MONEY data types

int8.h Declarations for structure and Informix ESQL/C library functions for
the INT8 data type

sqlca.h Structure definition that Informix ESQL/C uses to store error-status
codes

This structure enables you to check for the success or failure of SQL
statements.

sqlda.h Structure definition for value pointers and descriptions of dynamically
defined variables

sqlhdr.h Function prototypes of all Informix ESQL/C library functions

sqlstype.h Definitions of strings that correspond to SQL statements

Informix ESQL/C uses these strings when your program contains a
DESCRIBE statement.

sqltypes.h Integer constants that correspond to Informix ESQL/C language and
SQL data types

ESQL/C uses these constants when your program contains a
DESCRIBE statement.

sqlxtype.h Integer constants that correspond to C language and SQL data types
that Informix ESQL/C uses in X/Open mode, when your program
contains a DESCRIBE statement

varchar.h Macros that you can use with the VARCHAR data type

Important: The mitypes.h header file automatically includes the datetime.h,
decimal.h, and int8.h header files. In turn, the milib.h header file
automatically includes mitypes.h, and mi.h automatically includes
milib.h. Therefore, you automatically have access to the information in
these Informix ESQL/C header files when you include mi.h in your
DataBlade API module.

Chapter 1. Using the DataBlade API 1-7

For additional information about the use of these Informix ESQL/C header files,
see the following sections of this publication.

Header File More Information

datetime.h “The datetime.h Header File” on page 4-9

decimal.h “The decimal.h Header File” on page 3-11

int8.h “The int8.h Header File” on page 3-6

IBM Informix GLS Header File
A header file is provided to support the IBM Informix GLS library. If you use the
IBM Informix GLS library in your DataBlade API module, include its header file,
ifxgls.h, in your source code. For more information on the IBM Informix GLS
library and how to use it in a DataBlade API module, see “Internationalization of
DataBlade API Modules (GLS)” on page 1-19.

Private Header Files
If you define any opaque data types, you must include their header file in your
DataBlade API source code. An opaque-type header file usually contains the
declaration of the internal format for the opaque data type. For more information,
see “Creating an Opaque Data Type” on page 16-1.

Public Data Types
The DataBlade API provides support for the following public data types:
v DataBlade API data types, which provide support for standard C, IBM Informix

ESQL/C, and SQL data types
v DataBlade API support data types, which provide support for functions of the

DataBlade API
v DataBlade API data type structures, which provide access to information that

functions of the DataBlade API use

DataBlade API Data Types
To ensure portability across dissimilar computer architectures, the DataBlade API
provides a set of data types, which Table 1-1 on page 1-8 shows. These data types
begin with the mi_ prefix. Most of these data types correspond to common SQL or
C-language data types.

Table 1-1. DataBlade API, C, and SQL Data Types

DataBlade API Data Type
Standard C or ESQL/C
Data Type SQL Data Type

Character Data Types:

mi_char C: char CHAR, VARCHAR,
IDSSECURITYLABEL,

GLS: NCHAR, NVARCHAR

mi_char1 C: char CHAR(1)

mi_unsigned_char1 C: unsigned char None

mi_wchar (deprecated) C: unsigned two-byte integer None

mi_string C: char * CHAR, VARCHAR,

GLS: NCHAR, NVARCHAR

1-8 IBM Informix DataBlade API Programmer’s Guide

Table 1-1. DataBlade API, C, and SQL Data Types (continued)

DataBlade API Data Type
Standard C or ESQL/C
Data Type SQL Data Type

mi_lvarchar Informix ESQL/C: lvarchar (though
lvarchar is null-terminated and
mi_lvarchar is not)

LVARCHAR

Within C UDRs: for CHAR, NCHAR,
TEXT, VARCHAR, and NVARCHAR
arguments and return value

Integer Numeric Data Types:

mi_sint1 C: signed one-byte integer None

mi_int1 C: unsigned one-byte integer, char None

mi_smallint C: signed two-byte integer (short integer
on many systems)

SMALLINT

mi_unsigned_smallint C: unsigned two-byte integer None

mi_integer C: signed four-byte integer

(long integer on many systems)

INTEGER, SERIAL

mi_unsigned_integer C: unsigned four-byte integer None

mi_int8 C: signed eight-byte integer; Informix
ESQL/C: int8, ifx_int8_t

INT8, SERIAL8

mi_unsigned_int8 C: unsigned eight-byte integer; Informix
ESQL/C: int8, ifx_int8_t

None

mi_bigint C: unsigned eight-byte integer BIGINT, BIGSERIAL

mi_unsigned_bigint C: unsigned eight-byte integer None

Fixed-Point Numeric Data Types:

mi_decimal, mi_numeric Informix ESQL/C: decimal, dec_t DECIMAL(p,s)
(fixed-point)

mi_money Informix ESQL/C: decimal, dec_t MONEY

Floating-Point Numeric Data Types:

mi_decimal Informix ESQL/C: decimal, dec_t DECIMAL(p)
(floating-point)

mi_real C: float SMALLFLOAT, REAL

mi_double_precision C: double FLOAT, DOUBLE PRECISION

Date and Time Data Types:

mi_date C: four-byte integerInformix ESQL/C:
date

DATE

mi_datetime Informix ESQL/C: datetime, dtime_t DATETIME

mi_interval Informix ESQL/C: interval, intrvl_t INTERVAL

Varying-Length Data Types:

mi_lvarchar C: void *

Informix ESQL/C: lvarchar (though
lvarchar is null-terminated and
mi_lvarchar is not)

LVARCHAR,
Opaque types

Within C UDRs: for CHAR, NCHAR,
TEXT, VARCHAR, and NVARCHAR
arguments and return value

mi_sendrecv C: void * SENDRECV, opaque-type support
functions: send, receive

Chapter 1. Using the DataBlade API 1-9

Table 1-1. DataBlade API, C, and SQL Data Types (continued)

DataBlade API Data Type
Standard C or ESQL/C
Data Type SQL Data Type

mi_impexp C: void * IMPEXP, opaque-type support
functions: import, export

mi_impexpbin C: void * IMPEXPBIN, opaque-type support
functions: importbin, exportbin

mi_bitvarying C: void * BITVARYING

Complex Data Types:

MI_COLLECTION C: void * SET, LIST, MULTISET

MI_ROW C: void * ROW (unnamed row type), Named
row type

Other Data Types:

mi_boolean C: charInformix ESQL/C: boolean BOOLEAN

mi_pointer C: void * POINTER

MI_LO_HANDLE None CLOB, BLOB

Smart large objects

Important: To make your DataBlade API module portable, it is recommended that
you use the DataBlade API platform-independent data types (such as
mi_integer, mi_smallint, mi_real, mi_boolean, and
mi_double_precision) instead of their C-language counterparts. These
data types handle the different sizes of numeric values across computer
architectures.

Server Only

Table 1-1 on page 1-8 lists the DataBlade API data types and SQL data types.
However, when you pass some of these data types to and from C UDRs, you must
pass them as pointers rather than as actual values. For more information, see
“Passing Mechanism for MI_DATUM Values” on page 12-22.

End of Server Only

Table 1-2 shows where you can find information about how DataBlade API data
types correspond to SQL data types.

Table 1-2. Correspondence of SQL Data Types to DataBlade API Data Types

SQL Data Type Information on Corresponding DataBlade API Data Types

BITVARYING “The mi_bitvarying Data Type” on page 2-28

BLOB Chapter 6, “Using Smart Large Objects,” on page 6-1

BOOLEAN “Boolean Data Types” on page 2-30

BYTE “Simple Large Objects” on page 2-32

CHAR “Character Data Types” on page 2-7

CLOB Chapter 6, “Using Smart Large Objects,” on page 6-1

DATE Chapter 4, “Using Date and Time Data Types,” on page 4-1

DATETIME Chapter 4, “Using Date and Time Data Types,” on page 4-1

DECIMAL Chapter 3, “Using Numeric Data Types,” on page 3-1

1-10 IBM Informix DataBlade API Programmer’s Guide

Table 1-2. Correspondence of SQL Data Types to DataBlade API Data Types (continued)

SQL Data Type Information on Corresponding DataBlade API Data Types

Distinct Chapter 16, “Extending Data Types,” on page 16-1

FLOAT Chapter 3, “Using Numeric Data Types,” on page 3-1

INT8 Chapter 3, “Using Numeric Data Types,” on page 3-1

INTEGER Chapter 3, “Using Numeric Data Types,” on page 3-1

INTERVAL Chapter 4, “Using Date and Time Data Types,” on page 4-1

LIST Chapter 5, “Using Complex Data Types,” on page 5-1

LVARCHAR “Varying-Length Data Type Structures” on page 2-13

MONEY Chapter 3, “Using Numeric Data Types,” on page 3-1

MULTISET Chapter 5, “Using Complex Data Types,” on page 5-1

NCHAR “Character Data Types” on page 2-7

NVARCHAR “Character Data Types” on page 2-7

Opaque Chapter 16, “Extending Data Types,” on page 16-1

POINTER “Pointer Data Types (Server)” on page 2-31

ROW Chapter 5, “Using Complex Data Types,” on page 5-1

SERIAL Chapter 3, “Using Numeric Data Types,” on page 3-1

SERIAL8 Chapter 3, “Using Numeric Data Types,” on page 3-1

SET Chapter 3, “Using Numeric Data Types,” on page 3-1

SMALLFLOAT Chapter 3, “Using Numeric Data Types,” on page 3-1

SMALLINT Chapter 3, “Using Numeric Data Types,” on page 3-1

TEXT “Simple Large Objects” on page 2-32

VARCHAR “Character Data Types” on page 2-7

DataBlade API Support Data Types
The DataBlade API provides additional data types that DataBlade API functions
use. These data types are usually enumerated data types that restrict valid values
for an argument or return value of a DataBlade API function. Most of these data
types, which Table 1-3 lists, start with the MI_ prefix.

Table 1-3. DataBlade API Support Data Types

Support Data Type Purpose Location of Description

MI_CALLBACK_STATUS Enumerates valid return values of a
callback function

“Return Value of a Callback Function” on
page 10-13

MI_CURSOR_ACTION Enumerates movements through a
cursor

“Positioning the Cursor” on page 5-6

“Fetching Rows Into a Cursor” on page
8-23

MI_EVENT_TYPE Classifies an event “DataBlade API Event Types” on page
10-2

MI_FUNCARG Enumerates kinds of arguments that a
companion UDR might receive

“MI_FUNCARG Data Type” on page 15-56

mi_funcid Holds a routine identifier “Routine Resolution” on page 12-19

MI_ID Enumerates the kinds of identifiers that
the mi_get_id() function can obtain

Description of mi_get_id() in the IBM
Informix DataBlade API Function Reference

Chapter 1. Using the DataBlade API 1-11

Table 1-3. DataBlade API Support Data Types (continued)

Support Data Type Purpose Location of Description

MI_SETREQUEST Enumerates values of the iterator-status
constant, which the database server can
return to a UDR through the
mi_fp_request() function

“Writing an Iterator Function” on page
15-3

MI_TRANSITION_TYPE Enumerates types of state transitions in
a transition descriptor

“Understanding State-Transition Events”
on page 10-49

MI_UDR_TYPE Enumerates the kind of UDR for which
the mi_routine_get_by_typeid()
function obtains a function descriptor

Description of
mi_routine_get_by_typeid() in the IBM
Informix DataBlade API Function Reference

DataBlade API Data Type Structures
Many DataBlade API functions provide information for DataBlade API modules in
special data type structures. The names of these data type structures begin with the
MI_ prefix. Table 1-4 lists these data type structures, their purposes, and where you
can find detailed descriptions of them.

Table 1-4. DataBlade API Data Type Structures

DataBlade API Data Type
Structure Purpose More Information

MI_COLL_DESC Collection descriptor, which describes the
structure of a collection

“Using a Collection Descriptor” on
page 5-3

MI_COLLECTION Collection structure, which contains the
elements of a collection

“Using a Collection Structure” on page
5-3

MI_CONNECTION Connection descriptor, which contains the
execution context for a connection

“Establishing a Connection” on page
7-11

MI_CONNECTION_INFO Connection-information descriptor, which
contains connection parameters for an
open connection

“Using Connection Parameters” on
page 7-4

MI_DATABASE_INFO Database-information descriptor, which
contains database parameters for an open
connection

“Using Database Parameters” on page
7-6

MI_DATUM Datum, which provides a transport
mechanism to pass data of an SQL data
type by value or by reference

“The MI_DATUM Data Type” on page
2-32

MI_ERROR_DESC Error descriptor, which describes an
exception

“Event Information” on page 10-17

MI_FPARAM Function-parameter structure, which holds
information about a UDR that the routine
can access during its execution

“Accessing MI_FPARAM Routine-State
Information” on page 9-2

MI_FUNCARG Function-argument structure, which holds
information about the argument of a
companion UDR

“MI_FUNCARG Data Type” on page
15-56

MI_FUNC_DESC Function descriptor, which describes a UDR
that is to be invoked with the Fastpath
interface

“Obtaining a Function Descriptor” on
page 9-17

MI_LO_FD LO file descriptor, which describes an open
smart large object

“Obtaining an LO File Descriptor” on
page 6-41

MI_LO_HANDLE LO handle, which identifies the location of
a smart large object in its sbspace

“Obtaining an LO Handle” on page
6-40

1-12 IBM Informix DataBlade API Programmer’s Guide

Table 1-4. DataBlade API Data Type Structures (continued)

DataBlade API Data Type
Structure Purpose More Information

MI_LO_SPEC LO-specification structure, which contains
storage characteristics for a smart large
object

“Obtaining the LO-Specification
Structure” on page 6-25

MI_LO_STAT LO-status structure, which contains status
information for a smart large object

“Obtaining Status Information for a
Smart Large Object” on page 6-52

MI_PARAMETER_INFO Parameter-information descriptor, which
specifies whether callbacks are enabled or
disabled and whether pointers are
checked in client LIBMI applications

“Using Session Parameters” on page 7-8

MI_ROW Row (or row structure), which contains
either the column values of a table row or
field values of a row type

“Retrieving Rows” on page 8-41
“Using a Row Structure” on page 5-32

MI_ROW_DESC Row descriptor, which describes the
structure of a row

“Obtaining Row Information” on page
8-40
“Using a Row Descriptor” on page 5-29

MI_SAVE_SET Save-set descriptor, which describes a save
set

“Creating a Save Set” on page 8-60

MI_STATEMENT Statement descriptor, which describes a
prepared SQL statement

“Executing Prepared SQL Statements”
on page 8-11

mi_statret Statistics-return structure (C language
structure), which holds the collected
statistics for a user-defined data type

“SET_END in statcollect()” on page
16-45

MI_STREAM Stream descriptor, which describes an open
stream

A stream is an object that can be written to
or read from. The DataBlade API has
functions for the following predefined
stream classes:

v File stream

v String stream

v Varying-length-data stream

MI_TRANSITION_DESC Transition descriptor, which describes a
state transition

“Understanding State-Transition
Events” on page 10-49

MI_TYPEID Type identifier, which uniquely identifies a
data type within a database

“Type Identifiers” on page 2-2

MI_TYPE_DESC Type descriptor, which provides
information about a data type

“Type Descriptors” on page 2-3

The DataBlade API provides constructor and destructor functions for most of these
public data type structures. These functions handle memory allocation of these
data type structures, as follows:
v The constructor function for a DataBlade API data type structure creates a new

instance of the data type structure.

Chapter 1. Using the DataBlade API 1-13

A constructor function usually returns a pointer to the DataBlade API data type
structure and allocates memory for the structure.

Server Only

The memory allocation is in the current memory duration, which is
PER_ROUTINE by default. For more information, see “Choosing the Memory
Duration” on page 14-4.

End of Server Only

v The destructor function for a DataBlade API data type structure frees the
instance of the data type structure.
You specify a pointer to the DataBlade API data type structure to the destructor
function. The destructor function deallocates memory for the specified data type
structure. Call destructor functions only for DataBlade API data type structures
that you explicitly allocated with the corresponding constructor function.

Regular Public Functions
The DataBlade API provides support for the following kinds of functions in a
DataBlade API module.

Kind of Functions Purpose

DataBlade API functions Provide access to the database server

IBM Informix ESQL/C functions Provide operations on certain data types

IBM Informix GLS functions Provide the ability to internationalize your DataBlade API
module

DataBlade API Functions
The DataBlade API functions begin with the mi_ prefix. The milib.h header file
declares most of these DataBlade API functions. The mi.h header file automatically
includes milib.h. You must include mi.h in any DataBlade API module that uses a
DataBlade API function.

The functions of the DataBlade API function library can be divided into the
following categories.

Category of DataBlade API Functions More Information

Data handling:

Obtaining type information “Type Identifiers” on page 2-2

“Type Descriptors” on page 2-3

Transferring data types between computers
(database server only)

“Conversion of Opaque-Type Data with
Computer-Specific Data Types” on page
16-21

Converting data to a different data type “DataBlade API Functions for Date
Conversion” on page 4-3

“DataBlade API Functions for Date-Time or
Interval Conversion” on page 4-13

“DataBlade API Functions for Decimal
Conversion” on page 3-14

“DataBlade API Functions for String
Conversion” on page 2-11

1-14 IBM Informix DataBlade API Programmer’s Guide

Category of DataBlade API Functions More Information

Handling collections: sets, multisets, and lists “Collections” on page 5-2

Converting between code sets (database
server only)

“Internationalization of DataBlade API
Modules (GLS)” on page 1-19

Handling collections “Collections” on page 5-2

Managing varying-length structures “Varying-Length Data Type Structures” on
page 2-13

Obtaining SERIAL values “Processing Insert Results” on page 8-59

Handling NULL values “SQL NULL Value” on page 2-36

Session, thread, and transaction management:

Obtaining connection information “Using Connection Parameters” on page 7-4

“Using Database Parameters” on page 7-6

“Using Session Parameters” on page 7-8

Establishing a connection “Establishing a Connection” on page 7-11

Initializing the DataBlade API “Initializing the DataBlade API” on page 7-17

Managing Informix threads (database server
only)

“Yielding the CPU VP” on page 13-19

“Managing Stack Usage” on page 14-35

Obtaining transaction and server-processing
state changes

“Using a Transition Descriptor” on page
10-19

SQL statement processing:

Sending SQL statements “Executing Basic SQL Statements” on page
8-6

“Executing Prepared SQL Statements” on
page 8-11

Obtaining statement information “Returning a Statement Descriptor” on page
8-14

“Obtaining Input-Parameter Information” on
page 8-15

Obtaining result information “Processing Statement Results” on page 8-33

Retrieving rows and row data (also row
types and row-type data)

“Obtaining Row Information” on page 8-40

“Retrieving Rows” on page 8-41

Retrieving columns “Obtaining Column Information” on page
8-41

“Obtaining Column Values” on page 8-42

Using save sets “Using Save Sets” on page 8-60

Executing user-defined-routines:

Accessing an MI_FPARAM structure “Accessing MI_FPARAM Routine-State
Information” on page 9-2

Allocating an MI_FPARAM structure “Using a User-Allocated MI_FPARAM
Structure” on page 9-36

Using the Fastpath interface “Calling UDRs with the Fastpath Interface”
on page 9-14

Accessing a function descriptor “Obtaining Information from a Function
Descriptor” on page 9-23

Chapter 1. Using the DataBlade API 1-15

Category of DataBlade API Functions More Information

Executing selectivity and cost functions: “Writing Selectivity and Cost Functions” on
page 15-54

Memory management:

Managing user memory “Managing User Memory” on page 14-20

Managing named memory (database server
only)

“Managing Named Memory” on page 14-24

Exception handling:

Raising a database exception “Raising an Exception” on page 10-40

Accessing an error descriptor “Using an Error Descriptor” on page 10-17,

“Handling Multiple Exceptions” on page
10-38

Using callback functions “Invoking a Callback” on page 10-3

Smart-large-object interface:

Creating a smart large object “Functions That Create a Smart Large
Object” on page 6-19

Performing I/O on a smart large object “Functions That Perform Input and Output
on a Smart Large Object” on page 6-20

Moving smart large objects to and from
operating-system files

“Functions That Move Smart Large Objects
to and from Operating-System Files” on page
6-24

Manipulating LO handles “Functions That Manipulate an LO Handle”
on page 6-21

Handling LO-specification structures “Functions That Access an LO-Specification
Structure” on page 6-22

Handling smart-large-object status “Functions That Access an LO-Status
Structure” on page 6-23

Operating-system file interface: “Access to Operating-System Files” on page
13-52

Tracing (database server): “Using Tracing” on page 12-28

For a complete list of DataBlade API functions in each of these categories, see the
IBM Informix DataBlade API Function Reference, which provides descriptions of the
regular public and advanced functions, in alphabetical order. For more information
on advanced functions of the DataBlade API, see “Advanced Features (Server)” on
page 1-18.

If an error occurs while a DataBlade API function executes, the function usually
indicates the error with one of the following return values.

Way to Indicate an Error More Information

Functions that return a pointer return the
NULL-valued pointer

“NULL-Valued Pointer” on page 2-37

Functions that return an mi_integer value (or other
integer) return the MI_ERROR status code

“Handling Errors from DataBlade API
Functions” on page 10-26

Functions that raise an exception “Handling Errors from DataBlade API
Functions” on page 10-26

1-16 IBM Informix DataBlade API Programmer’s Guide

IBM Informix ESQL/C Functions
In a DataBlade API module, you can use some of the functions in the IBM
Informix ESQL/C library functions to perform conversions and operations on
different data types. The Informix ESQL/C functions do not begin with the mi_
prefix. Various header files declare these functions. For more information, see
“ESQL/C Header Files” on page 1-7.

The functions of the Informix ESQL/C function library that are valid in a
DataBlade API module can be divided into the following categories.

Category of DataBlade API
Function More Information

Byte handling “Manipulating Byte Data” on page 2-29

Character processing “ESQL/C Functions for String Conversion” on page
2-12

“Operations on Character Values” on page 2-12

DECIMAL-type and MONEY-type
processing

“ESQL/C Functions for Decimal Conversion” on page
3-15

“Performing Operations on Decimal Data” on page
3-16

DATE-type processing “ESQL/C Functions for Date Conversion” on page 4-4

“Operations on Date Data” on page 4-5

DATETIME-type processing and
INTERVAL-type processing

“ESQL/C Functions for Date, Time, and Interval
Conversion” on page 4-13

“Operations on Date and Time Data” on page 4-15

INT8-byte processing “Converting INT8 Values” on page 3-7

“Performing Operations on Eight-Byte Values” on page
3-8

Processing for other C-language
data types

“Formatting Numeric Strings” on page 3-20

For a complete list of Informix ESQL/C functions in each of these categories, see
the IBM Informix DataBlade API Function Reference, which provides descriptions of
these public functions, in alphabetical order.

IBM Informix GLS Functions
The IBM Informix GLS library is an API that lets developers of DataBlade API
modules create internationalized applications. This library is a threadsafe library.
The macros and functions of IBM Informix GLS provide access to the GLS locales,
which contain culture-specific information.

The IBM Informix GLS library contains functions that provide the following
capabilities:
v Process single-byte and multibyte characters

These functions are useful for processing character data in the NCHAR and
NVARCHAR data types, which can contain locale-specific information.

v Format date, time, and numeric data to locale-specific formats
These functions provide the ability to handle end-user formats for the DATE,
DATETIME, DECIMAL, and MONEY data types.

Chapter 1. Using the DataBlade API 1-17

The mi.h header file does not automatically include the IBM Informix GLS library.
For more information on the IBM Informix GLS library and how to use it in a
DataBlade API module, see “Internationalization of DataBlade API Modules (GLS)”
on page 1-19.

Advanced Features (Server)
The DataBlade API provides a set of advanced features to handle specialized needs
of a UDR or DataBlade module that the regular public features cannot handle.
Table 1-5 lists the advanced DataBlade API features.

Table 1-5. Advanced Features of the DataBlade API

Advanced Feature Description More Information

Named memory Enables a UDR to obtain a memory
address through a name assigned
to the memory block

“Managing Named Memory”
on page 14-24

Memory durations Provides a UDR with memory
durations that exceed its lifetime

“Advanced Memory
Durations” on page 14-13

Session-duration
connection descriptor

Enables a UDR to cache connection
information for the length of a
session

“Obtaining a Session-Duration
Connection Descriptor” on
page 7-13

Session-duration
function descriptor

Enables a UDR to cache function
descriptors in named memory so
that many UDRs can execute the
same UDR through Fastpath

“Reusing a Function
Descriptor” on page 9-30

Controlling the VP
environment

Enables a UDR to obtain
dynamically information about the
VP and VP class in which it
executes and to make some
changes to this environment

“Controlling the VP
Environment” on page 13-38

Setting the row and
column identifier in
the MI_FPARAM
structure of a UDR

Enables a UDR to change the row
associated with a UDR

Descriptions of
mi_fp_setcolid() and
mi_fp_setrow() in the IBM
Informix DataBlade API Function
Reference

Obtaining the current
MI_FPARAM address

Enables a UDR to obtain
dynamically the address of its own
MI_FPARAM structure

Description of
mi_fparam_get_current() in
the IBM Informix DataBlade API
Function Reference

Microseconds
component of
last-modification time
for a smart large
object

Enables UDRs to maintain the
microseconds component of
last-modification time, which the
database server does not maintain

Description of mi_lo_utimes()
in the IBM Informix DataBlade
API Function Reference

Warning: These DataBlade API features can adversely affect your UDR if you use
them incorrectly. Use them only when the public DataBlade API features
cannot perform the tasks you need done.

1-18 IBM Informix DataBlade API Programmer’s Guide

Internationalization of DataBlade API Modules (GLS)
For your DataBlade API module to work in any IBM Informix locale, you must
implement your DataBlade API module so that it is internationalized. That is, the
module must not make any assumptions about the locale in which it will execute.

Server Only

A C UDR inherits the server-processing locale as its current processing locale. The
database server dynamically creates a server-processing locale for a particular
session when a client application establishes a connection. The database server uses
the client locale, database locale, the server locale, and information from the client
application to determine the server-processing locale. For more information on
how the database server determines the server-processing locale, see the IBM
Informix GLS User’s Guide.

End of Server Only

Client Only

A client LIBMI application performs its I/O tasks in the client locale. Any database
requests that the application makes execute on the database server in the
server-processing locale.

End of Client Only

This section provides the following information about how to internationalize a C
UDR and the support that the DataBlade API provides for internationalized UDRs.

An internationalized C UDR must handle the following GLS considerations.

GLS Consideration for an Internationalized UDR DataBlade API Function

What considerations must the C UDR take
when copying character data?

None

How can the C UDR access GLS locales? IBM Informix GLS function library

How does the UDR handle code-set conversion? mi_get_string()
mi_put_string()

IBM Informix GLS function library

How does the UDR handle locale-specific end-user
formats?

mi_date_to_string(),
mi_decimal_to_string(),
mi_interval_to_string(),
mi_money_to_string(),
mi_string_to_date(),
mi_string_to_decimal(),
mi_string_to_interval(),
mi_string_to_money()

How can the C UDR access internationalized
exception messages?

mi_db_error_raise()

How can the C UDR access internationalized tracing
messages?

GL_DPRINTF, gl_tprintf()

How do opaque-type support functions handle
locale-sensitive data?

mi_get_string(), mi_put_string()

Chapter 1. Using the DataBlade API 1-19

GLS Consideration for an Internationalized UDR DataBlade API Function

How to you obtain names of the different locales
from within a C UDR?

mi_client_locale(),
mi_get_connection_info()

For more information on how to handle these GLS considerations within a C UDR,
see the chapter on database servers in the IBM Informix GLS User’s Guide.

1-20 IBM Informix DataBlade API Programmer’s Guide

Chapter 2. Accessing SQL Data Types

In This Chapter . 2-2
Type Identifiers . 2-2
Type Descriptors . 2-3

Type-Structure Conversion . 2-4
Data Type Descriptors and Column Type Descriptors . 2-5

Character Data Types . 2-7
The mi_char1 and mi_unsigned_char1 Data Types . 2-7
The mi_char and mi_string Data Types . 2-8
The mi_lvarchar Data Type . 2-9

The SQL LVARCHAR Data Type . 2-9
Character Data in Binary Mode of a Query . 2-9
Character Data in C UDRs (Server) . 2-10
External Representation of an Opaque Data Type (Server) 2-10

Character Data in a Smart Large Object . 2-10
Character Processing. 2-10

Transferring Character Data (Server) . 2-11
Converting Character Data. 2-11
Operations on Character Values . 2-12
Character Type Information . 2-12

Varying-Length Data Type Structures . 2-13
Using a Varying-Length Structure . 2-13
Managing Memory for a Varying-Length Structure . 2-14

Creating a Varying-Length Structure . 2-14
Deallocating a Varying-Length Structure . 2-16

Accessing a Varying-Length Structure . 2-17
Varying-Length Data and Null Termination . 2-17
Storage of Varying-Length Data . 2-18
Information About Varying-Length Data . 2-24

Byte Data Types . 2-28
The mi_bitvarying Data Type . 2-28
Byte Data in a Smart Large Object . 2-29
Byte Processing . 2-29

Manipulating Byte Data . 2-29
Transferring Byte Data (Server) . 2-30

Boolean Data Types . 2-30
Boolean Text Representation . 2-30
Boolean Binary Representation . 2-30
Pointer Data Types (Server) . 2-31

Simple Large Objects . 2-32
The MI_DATUM Data Type . 2-32

Contents of an MI_DATUM Structure . 2-33
MI_DATUM in a C UDR (Server) . 2-33
MI_DATUM in a Client LIBMI Application . 2-35

Address Calculations with MI_DATUM Values . 2-35
Uses of MI_DATUM Structures . 2-35

The NULL Constant . 2-36
SQL NULL Value . 2-36

© Copyright IBM Corp. 1996, 2009 2-1

NULL-Valued Pointer . 2-37

In This Chapter
This chapter provides an overview of the data types that the DataBlade API
supports. It also describes DataBlade API support for the following types of data:
v Text and strings
v Varying-length structures
v Byte data
v Miscellaneous SQL data types: POINTER, BOOLEAN, and simple large objects
v The MI_DATUM structure
v The NULL constant

For references to discussions of different SQL data types in this publication, see
Table 1-2 on page 1-10.

Table 1-1 on page 1-8 lists the correspondences between SQL and DataBlade API
data types. To declare a variable for an SQL data type, use the appropriate
DataBlade API predefined data type or structure for the variable. The mi.h header
file includes the header files for the definitions of all DataBlade API data types.
Include mi.h in all DataBlade API modules that use DataBlade API data types.

The DataBlade API represents the SQL data type of a column value with the
following data type structures:
v A short name, called the type identifier, which identifies only the data type
v A long name, called the type descriptor, which provides the data type and

information about this type

Server Only

Type descriptors and type identifiers do not have an associated memory duration.
The DataBlade API allocates them from a special data type cache.

End of Server Only

Type Identifiers
A type identifier, MI_TYPEID, is a DataBlade API data type structure that identifies
a data type uniquely. For extended data types, the type identifier is
database-dependent; that is, the same type identifier might identify different data
types for different databases. You can determine the data type that a type identifier
represents with the following DataBlade API functions.

Type-Identifier Check DataBlade API Function

Are two type identifiers equal? mi_typeid_equals()

Does the type identifier represent a built-in data type? mi_typeid_is_builtin()

Does the type identifier represent a collection (SET,
MULTISET, LIST) data type?

mi_typeid_is_collection()

Does the type identifier represent a complex data type (row
type or collection)?

mi_typeid_is_complex()

Does the type identifier represent a distinct data type? mi_typeid_is_distinct()

Does the type identifier represent a LIST data type? mi_typeid_is_list()

2-2 IBM Informix DataBlade API Programmer’s Guide

Type-Identifier Check DataBlade API Function

Does the type identifier represent a MULTISET data type? mi_typeid_is_multiset()

Does the type identifier represent a row type (named or
unnamed)?

mi_typeid_is_row()

Does the type identifier represent a SET data type? mi_typeid_is_set()

Important: To a DataBlade API module, the type identifier (MI_TYPEID) is an
opaque C data structure. Do not access its internal fields directly. The
internal structure of a type identifier may change in future releases.
Therefore, to create portable code, always use the accessor functions for
this structure to determine data type.

The DataBlade API uses type identifiers in the following situations.

Type Identifier Usage DataBlade API Function More Information

To indicate a column type in
a row descriptor

mi_column_type_id() “Obtaining Column
Information” on page 8-41

To indicate data type of
arguments in a user-defined
routine (UDR)

mi_fp_argtype(),
mi_fp_setargtype()

“Determining the Data
Type of UDR Arguments”
on page 9-3

To indicate data type of
return type of a UDR

mi_fp_rettype(),
mi_fp_setrettype()

“Determining the Data
Type of UDR Return
Values” on page 9-6

To indicate data type of a
column with which an input
parameter in a prepared
statement is associated

mi_parameter_type_id() “Obtaining
Input-Parameter
Information” on page 8-15

To identify a UDR by the
data types of its arguments
to generate its function
descriptor

mi_routine_get_by_typeid() “Looking Up UDRs” on
page 9-18

To identify a cast function
by the source and target
data types to generate its
function descriptor

mi_cast_get() “Looking Up Cast
Functions” on page 9-20

To identify the element type
of a collection

mi_collection_create() “Creating a Collection” on
page 5-3

Type Descriptors
A type descriptor, MI_TYPE_DESC, is a DataBlade API data type structure that
contains information about an SQL data type. For built-in data types, this
information comes from the syscolumns table. For extended data types, it contains
the information in the sysxtdtypes table. Table 2-1 lists the DataBlade API accessor
functions that obtain information from a type descriptor.

Table 2-1. Data Type Information in a Type Descriptor

Data Type Information
DataBlade API
Accessor Function

The alignment, in number of bytes, of the data type mi_type_align()

Chapter 2. Accessing SQL Data Types 2-3

Table 2-1. Data Type Information in a Type Descriptor (continued)

Data Type Information
DataBlade API
Accessor Function

Whether a value of the data type is passed by reference or
passed by value

mi_type_byvalue()

A type descriptor for the element type of a collection
data type

mi_type_element_typedesc()

The full name (owner.type_name) of the data type mi_type_full_name()

The length of the data type mi_type_length()

The maximum length of the data type mi_type_maxlength()

The owner of the data type mi_type_owner()

The precision (total number of digits) of the data type mi_type_precision()

The qualifier of a DATETIME or INTERVAL data type mi_type_qualifier()

The scale of a data type mi_type_scale()

The short name (no owner) of the data type mi_type_typedesc()

The type identifier for the data type mi_typedesc_typeid()

Important: To a DataBlade API module, the type descriptor (MI_TYPE_DESC) is
an opaque C data structure. Do not access its internal fields directly.
The internal structure of MI_TYPE_DESC may change in future
releases. Therefore, to create portable code, always use the accessor
functions in Table 2-1 to obtain values from this structure.

The DataBlade API uses type descriptors in the following situations.

Type Descriptor Usage More Information

To indicate a column type in a row
descriptor

Description of mi_column_typedesc() in the
IBM Informix DataBlade API Function Reference

“Obtaining Column Information” on page
8-41

To obtain the source type of a distinct type Description of mi_get_type_source_type() in
the IBM Informix DataBlade API Function
Reference

To process returned row data, especially
when not all the rows returned by a query
have the same size and structure

Description of
mi_get_row_desc_from_type_desc() in the
IBM Informix DataBlade API Function Reference

To identify a cast function by the source and
target data types to generate its function
descriptor

Description of mi_td_cast_get() in the IBM
Informix DataBlade API Function Reference

“Looking Up Cast Functions” on page 9-20

Type-Structure Conversion
You can use the following DataBlade API functions to obtain a type descriptor or
type identifier.

Convert from Convert to DataBlade API Function

Type identifier Type descriptor Description of mi_type_typedesc()
in the IBM Informix DataBlade API
Function Reference

2-4 IBM Informix DataBlade API Programmer’s Guide

Convert from Convert to DataBlade API Function

Type descriptor Type identifier Description of
mi_typedesc_typeid() in the IBM
Informix DataBlade API Function
Reference

Type name (as mi_lvarchar) Type identifier Description of
mi_typename_to_id() in the IBM
Informix DataBlade API Function
Reference

Type name (as mi_lvarchar) Type descriptor Description of
mi_typename_to_typedesc() in the
IBM Informix DataBlade API Function
Reference

Type name (as string: char *) Type identifier Description of
mi_typestring_to_id() in the IBM
Informix DataBlade API Function
Reference

Type name (as string: char *) Type descriptor Description of
mi_typestring_to_typedesc() in the
IBM Informix DataBlade API Function
Reference

Data Type Descriptors and Column Type Descriptors
A type descriptor for a data type and a type descriptor for a column use the same
accessor functions and share the same underlying data type structures. These
descriptors differ, however, in the handling of parameterized data types (such as
DATETIME, INTERVAL, DECIMAL, and money), as follows:
v A data type descriptor holds unparameterized information, which is general

information about the data type.
v A column type descriptor holds parameterized information, which is the

information for the data type of a particular column.

Table 2-1 on page 2-3 lists the DataBlade API accessor functions that obtain
information from a type descriptor. When you use type-descriptor accessor
functions on parameterized data types, the results depend on which kind of type
descriptor you pass into the accessor function.

For example, Figure 2-1 shows a named row type with fields that have
parameterized data types.

Figure 2-2 shows a code fragment that obtains a data type descriptor and a column
type descriptor for the first field (time_fld) from the row descriptor (row_desc) for
the row_type row type.

CREATE ROW TYPE row_type
(time_fld DATETIME YEAR TO SECOND,
dec_fld DECIMAL(6,3));

Figure 2-1. Sample Named Row Type with Parameterized Fields

Chapter 2. Accessing SQL Data Types 2-5

For the DATETIME data type of the time_fld column, the type-descriptor accessor
functions obtain different qualifier information for each kind of type descriptor, as
follows:
v The data type descriptor, type_desc, stores the unparameterized type information

for the DATETIME data type.
The following code fragment calls the mi_type_typename() and
mi_type_qualifier() accessor functions on the type_desc type descriptor (which
Figure 2-2 defines):
type_string = mi_type_typename(type_desc);
type_scale = mi_type_qualifier(type_desc);

The call to mi_type_typename() returns the string “datetime” as the
unparameterized name of the data type. The call to mi_type_qualifier() returns
zero (0) as the type qualifier.

v The column type descriptor, col_type_desc, stores the parameterized type
information for the DATETIME field of row_type.
The following code fragment calls the mi_type_typename() and
mi_type_qualifier() accessor functions on the col_type_desc type descriptor
(which Figure 2-2 defines):
type_string = mi_type_typename(col_type_desc);
type_scale = mi_type_qualifier(col_type_desc);

The call to mi_type_typename() returns the string “datetime year to second”
as the parameterized name of the data type. The call to mi_type_qualifier()
returns the actual DATETIME qualifier of 3594, which is the encoded qualifier
value for:
TU_DTENCODE(TU_YEAR, TU_SECOND)

Similarly, for DECIMAL and MONEY data types, the type-descriptor accessor
functions can obtain scale and precision information from a column type descriptor
but not a data type descriptor. Figure 2-3 shows a code fragment that obtains a
data type descriptor and a column type descriptor for the second field (dec_fld)
from the row descriptor (row_desc) for the row_type row type.

For the DECIMAL data type of the dec_fld column, the results from the
type-descriptor accessor functions depend on which type descriptor you pass into
the accessor function, as follows:
v The data type descriptor, type_desc2, stores the unparameterized type information

for DECIMAL.
The following code fragment calls the mi_type_precision() and
mi_type_scale() accessor functions on the type_desc2 type descriptor (which
Figure 2-3 defines):

type_id = mi_column_type_id(row_desc, 0);
type_desc = mi_type_typedesc(conn, type_id);
col_type_desc = mi_column_type_desc(row_desc, 0);

Figure 2-2. Type Descriptor and Column Type Descriptor for DATETIME Field

type_id2 = mi_column_type_id(row_desc, 1);
type_desc2 = mi_type_typedesc(conn, type_id2);
col_type_desc2 = mi_column_type_desc(row_desc, 1);

Figure 2-3. Type Descriptor and Column Type Descriptor for DECIMAL Field

2-6 IBM Informix DataBlade API Programmer’s Guide

type_prec = mi_type_precision(type_desc2);
type_scale = mi_type_scale(type_desc2);

Both the mi_type_precision() and mi_type_scale() functions return zero (0) for
the precision and scale.

v The column type descriptor, col_type_desc, stores the parameterized type
information for the DECIMAL field of row_type.
The following code fragment calls the mi_type_precision() and
mi_type_scale() accessor functions on the col_type_desc2 type descriptor
(which Figure 2-3 defines):
type_prec = mi_type_precision(col_type_desc2);
type_scale = mi_type_scale(col_type_desc2);

The mi_type_precision() and mi_type_scale() functions return the actual
precision and scale of the DECIMAL column, 6 and 3, respectively.

Character Data Types
The DataBlade API supports the following data types that can hold character data
in a DataBlade API module.

DataBlade API Character
Data Type Description

SQL Character
Data Type

mi_char1 One-byte character None

mi_unsigned_char1 Unsigned one-byte character None

mi_char, mi_string Character string or array CHAR, VARCHAR,
NCHAR, NVARCHAR,
IDSSECURITYLABEL

mi_lvarchar Varying-length structure to hold
varying-length character data

LVARCHAR

MI_LO_HANDLE LO handle to a smart large object that
holds character data

CLOB

Tip: The database server also supports the TEXT data type for character data. It
stores TEXT character data as a simple large object. However, the DataBlade
API does not directly support simple large objects. For more information, see
“Simple Large Objects” on page 2-32.

The mi_char1 and mi_unsigned_char1 Data Types
The mi_char1 and mi_unsigned_char1 data types hold a single-byte character.
These data types can also hold an integer quantity within C code so you can also
use mi_unsigned_char1 to hold unsigned one-byte integer values.

Important: To make your DataBlade API module portable, It is recommended that
you use the DataBlade API data type mi_char1 for single-character
values instead of the native C-language counterpart, char. The
mi_char1 data type ensures a consistent size across computer
architectures.

Global Language Support

The mi_char1 and mi_unsigned_char1 data types assume that one character uses
one byte of storage. Therefore, do not use these data types to hold multibyte
characters (which can require up to four bytes of storage). Instead, use the
mi_char, mi_string, or mi_lvarchar data type. For more information on multibyte

Chapter 2. Accessing SQL Data Types 2-7

characters, see the IBM Informix GLS User’s Guide.

End of Global Language Support

Server Only

The mi_char1 and mi_unsigned_char1 data types are guaranteed to be one byte on
all computer architectures. Therefore, they can fit into an MI_DATUM structure
and can be passed by value in C UDRs.

End of Server Only

Client Only

All data types, including mi_char1 and mi_unsigned_char1, must be passed by
reference in client LIBMI applications.

End of Client Only

The mi_char and mi_string Data Types
The mi_char and mi_string data types are the DataBlade API equivalents of the
char C-language data type. These two data types are exactly the same in both
storage and functionality. Use them to declare character strings in your DataBlade
API module.

You can use the mi_char or mi_string data type to hold CHAR, VARCHAR, or
IDSSECURITYLABEL data, as long as this data is not an argument or return value
of a C UDR. For more information, see “Character Data in C UDRs (Server)” on
page 2-10.

Global Language Support

You can use the mi_char and mi_string data types to store multibyte characters
(NCHAR and NVARCHAR columns). However, your code must track how many
bytes each character contains. You can use the IBM Informix GLS interface to assist
with this process. For more information on multibyte characters, see the IBM
Informix GLS User’s Guide.

End of Global Language Support

Server Only

The mi_char and mi_string data types cannot fit into an MI_DATUM structure.
They must be passed by reference within C UDRs.

End of Server Only

Client Only

All data types, including mi_char and mi_string, must be passed by reference
within client LIBMI applications.

End of Client Only

2-8 IBM Informix DataBlade API Programmer’s Guide

The mi_lvarchar Data Type
The mi_lvarchar data type has the following uses:
v Holds data of an LVARCHAR column
v Holds character data that is passed to or received from an SQL statement when

the query is in binary mode

Server Only

v Holds data for character arguments and return values of C UDRs
v Holds the external format of an opaque data type

End of Server Only

The following sections summarize each of these uses of an mi_lvarchar. For
information about the structure of the mi_lvarchar data type, see “Varying-Length
Data Type Structures” on page 2-13.

The SQL LVARCHAR Data Type
The LVARCHAR data type of SQL stores variable-length character strings whose
length can be up to 32,739 bytes. LVARCHAR is a built-in opaque data type that is
valid in distributed queries of tables, views, and synonyms of databases outside
the local server. The DataBlade API supports the LVARCHAR data type with the
mi_lvarchar data type, which is implemented in the DataBlade API as a
varying-length structure.

Tip: The SQL data type LVARCHAR and the DataBlade API data type mi_lvarchar
are not the same. Although you use mi_lvarchar to hold LVARCHAR data,
mi_lvarchar is also used for other purposes.

If you declare no maximum size for an LVARCHAR column, the default size is two
kilobytes. The maximum valid size is 32,739 bytes, but the maximum row size in a
database table is limited to 32 kilobytes. (In addition, no more than 195 columns in
the same database table can be of varying-length data types, named or unnamed
ROW data types, collection data types, or simple large object data types, regardless
of the declared size of individual columns.)

If you attempt to insert more than the declared maximum size into an LVARCHAR
column, the result depends on the data type of the data:
v If the value comes from a built-in type (such as CHAR or VARCHAR), the

database server truncates the data to the declared column size.
v The database server does not truncate data strings that come from an

mi_lvarchar structure, but the database server does return an error.

Tip: If you need to store more than 32,739 bytes of text data in a database of the
local database server, use the CLOB data type. The CLOB data type allows
you to store the text data outside the database table, in an sbspace. For more
information, see Chapter 6, “Using Smart Large Objects,” on page 6-1.

Character Data in Binary Mode of a Query
When the database server processes a query, it might handle character data in the
following cases:
v Character data that is passed as an input parameter to an SQL statement
v Character data that an SQL statement returns (for example, as a column value)

Chapter 2. Accessing SQL Data Types 2-9

When a query has a control mode of binary, the database server stores character
data in an mi_lvarchar varying-length structure. For more information on the
control modes of a query, see “Control Modes for Query Data” on page 8-8.

Character Data in C UDRs (Server)
You must use the mi_lvarchar data type if your UDR expects any of the SQL
character data types as an argument or a return value. Within an MI_DATUM
structure, the routine manager passes character data to and from a C UDR as a
pointer to an mi_lvarchar varying-length structure. Therefore, a C UDR must
handle text data as mi_lvarchar values when it receives arguments or returns data
of an SQL character data type, as the following table describes.

Handling Character Data More Information

If the C UDR receives an argument of an SQL character
data type, it must declare its corresponding parameter as
a pointer to an mi_lvarchar data type.

“Handling Character Arguments”
on page 13-6

If a C UDR returns a value of an SQL character data
type, it must return a pointer to an mi_lvarchar data
type.

“Returning Character Values” on
page 13-13

External Representation of an Opaque Data Type (Server)
The database server stores the external representation of an opaque data type in an
mi_lvarchar varying-length structure. The external representation is a text
representation of the opaque-type data. Therefore, the input and output support
functions of an opaque type handle the external representation as an mi_lvarchar.
For more information, see “Input and Output Support Functions” on page 16-11.

Character Data in a Smart Large Object
You can use a smart large object to store very large amounts of character data. The
MI_LO_HANDLE data type has a structure, called an LO handle, that identifies the
location of smart-large-object data in a separate database partition, called an
sbspace. For smart-large-object data that is character data, use the SQL CLOB data
type. The CLOB data type allows you to store varying-length character data that is
potentially larger than 32 kilobytes. The CLOB data type is a predefined opaque
type (an opaque data type that Informix defines). For more information, see
Chapter 6, “Using Smart Large Objects,” on page 6-1.

Character Processing
The DataBlade API library provides the following functions to process character
data:
v Transfer functions
v Conversion functions
v Operation functions

Global Language Support

You can use these character-processing functions on NCHAR and NVARCHAR
data. You can also use the character processing that the IBM Informix GLS
interface provides to handle multibyte characters.

End of Global Language Support

2-10 IBM Informix DataBlade API Programmer’s Guide

Transferring Character Data (Server)
To transfer character data between different computer architectures, the DataBlade
API provides the following functions that handle type alignment.

DataBlade API
Function Description

mi_get_string() Copies a character string, converting any difference in alignment
on the client computer to that of the server computer

mi_put_string() Copies a character string, converting any difference in alignment
on the server computer to that of the client computer

The mi_get_string() and mi_put_string() functions are useful in the send and
receive support function of an opaque data type that contains character data (such
as mi_string or mi_char). They ensure that character data remains aligned when
transferred to and from client applications. For more information, see “Conversion
of Opaque-Type Data with Computer-Specific Data Types” on page 16-21.

Converting Character Data
Both the DataBlade API library and the Informix ESQL/C library provide functions
that convert between the binary and text representation of values.

DataBlade API Functions for String Conversion: Many DataBlade API functions
expect to manipulate character data as an mi_lvarchar value. In addition, all SQL
character data types are passed into a C UDR as an mi_lvarchar value. The
DataBlade API provides the following functions to allow for conversion between a
text (null-terminated string) representation of character data and its binary
(internal) equivalent. The binary representation of character data is a
varying-length structure (mi_lvarchar) equivalent.

DataBlade API Function Description

mi_lvarchar_to_string() Creates a null-terminated string from the data in a
varying-length structure

mi_string_to_lvarchar() Creates a varying-length structure to hold a string

The mi_lvarchar_to_string() and mi_string_to_lvarchar() functions are useful for
converting between null-terminated strings and varying-length structures (whose
data is not null-terminated).

Server Only

The mi_lvarchar_to_string() and mi_string_to_lvarchar() functions are also
useful in the input and output support functions of an opaque data type that
contains mi_lvarchar values. They allow you to convert a string between its
external format (text) and its internal format (mi_lvarchar) when transferred to and
from client applications. For more information, see “Conversion of Opaque-Type
Data Between Text and Binary Representations” on page 16-16.

End of Server Only

For more information on the structure of an mi_lvarchar value, see
“Varying-Length Data Type Structures” on page 2-13.

In addition, the DataBlade API library provides the following functions to convert
text representation of values to their binary representations.

Chapter 2. Accessing SQL Data Types 2-11

Type of String More Information

Decimal strings “DataBlade API Functions for Decimal Conversion” on page
3-14

Date strings “DataBlade API Functions for Date Conversion” on page 4-3

Date and time strings,
Interval strings

“DataBlade API Functions for Date-Time or Interval
Conversion” on page 4-13

ESQL/C Functions for String Conversion: The Informix ESQL/C function library
provides the following functions that facilitate conversion of values in character
data types (such as mi_string or mi_char) to and from some C-language data
types.

Function
Name Description

rstod() Converts a string to a double type

rstoi() Converts a null-terminated string to a two-byte integer (int2)

rstol() Converts a string to a four-byte integer (int4)

In addition, the Informix ESQL/C library provides the following functions to
convert text representation of values to their binary representation.

Type of String More Information

INT8 strings “Converting INT8 Values” on page 3-7

Decimal strings “ESQL/C Functions for Decimal Conversion” on page 3-15

Date strings “ESQL/C Functions for Date Conversion” on page 4-4

Date and time strings “ESQL/C Functions for Date, Time, and Interval Conversion” on
page 4-13

Operations on Character Values
The Informix ESQL/C function library provides the following functions to perform
operations on null-terminated strings.

Function
Name Description

ldchar() Copies a fixed-length string to a null-terminated string

rdownshift() Converts all letters to lowercase

rupshift() Converts all letters to uppercase

stcat() Concatenates one null-terminated string to another

stchar() Copies a null-terminated string to a fixed-length string

stcmpr() Compares two null-terminated strings

stcopy() Copies one null-terminated string to another string

stleng() Counts the number of bytes in a null-terminated string

Character Type Information
The DataBlade API provides functions to obtain the following information about a
character (CHAR, VARCHAR, and IDSSECURITYLABEL) data type:
v The data type: its type name (string), type descriptor, or type identifier

2-12 IBM Informix DataBlade API Programmer’s Guide

v The precision: the maximum number of characters in the data type

The DataBlade API provides the following functions to obtain the type and
precision of a character data type.

Source

DataBlade API Functions

Type Name, Type Identifier,
or Type Descriptor Precision

For a basic data type mi_type_typedesc(),
mi_type_typename()

mi_type_precision()

For a UDR argument mi_fp_argtype(),
mi_fp_setargtype()

mi_fp_argprec(),
mi_fp_setargprec()

For a UDR return value mi_fp_rettype(),
mi_fp_setrettype()

mi_fp_retprec(),
mi_fp_setretprec()

For a column mi_column_type_id(),
mi_column_typedesc()

mi_column_precision()

For an input parameter
in a prepared statement

mi_parameter_type_id(),
mi_parameter_type_name()

mi_parameter_precision()

Varying-Length Data Type Structures
A varying-length data type structure can hold data whose length varies from one
instance to the next. The database server uses varying-length structures extensively
to manage data transfer for DataBlade API modules.

This section provides the following information about varying-length data type
structures:
v How to use a varying-length structure
v How to manage memory for a varying-length structure
v How to access data in a varying-length structure

Using a Varying-Length Structure
The DataBlade API provides the following data types to support varying-length
data.

DataBlade API
Data Type

SQL Varying-Length
Data Type More Information

mi_lvarchar LVARCHAR “The mi_lvarchar Data Type” on page 2-9

“Input and Output Support Functions” on page
16-11

mi_bitvarying BITVARYING “The mi_bitvarying Data Type” on page 2-28

mi_sendrecv SENDRECV “Send and Receive Support Functions” on page
16-17

mi_impexp IMPEXP “External Unload Representation” on page 16-22

mi_impexpbin IMPEXPBIN “Internal Unload Representation” on page 16-29

All these DataBlade API data types have the same underlying structure. For more
information about the structure of a varying-length data type, see “Creating a

Chapter 2. Accessing SQL Data Types 2-13

Varying-Length Structure” on page 2-14.

Informix SE

These varying-length data types (mi_lvarchar, mi_bitvarying, mi_sendrecv,
mi_impexp, mi_impexpbin, and varying-length opaque types) cannot fit into an
MI_DATUM structure. Therefore, they must be passed by reference to and from C
UDRs.

End of Informix SE

Client Only

All data types, including mi_lvarchar, must be passed by reference within client
LIBMI applications.

End of Client Only

Managing Memory for a Varying-Length Structure
The following table summarizes the memory operations for a varying-length
structure.

Memory Duration Memory Operation Function Name

Current
memory
duration

Constructor mi_new_var(),
mi_streamread_lvarchar(),
mi_string_to_lvarchar(),
mi_var_copy()

Destructor mi_var_free()

This section describes the DataBlade API functions that allocate and deallocate a
varying-length structure.

Important: Do not use either the DataBlade API memory-management functions
(such as mi_alloc() and mi_free()) or the operating-system
memory-management functions (such as malloc() and free()) to
handle allocation of varying-length structures.

Creating a Varying-Length Structure
Table 2-2 lists the DataBlade API functions that create a varying-length structure.
These functions are constructor functions for a varying-length structure.

Table 2-2. DataBlade API Allocation Functions for Varying-Length Structures

Accessor Function Name Description

mi_new_var() Creates a new varying-length structure with a data portion
of the specified size

mi_streamread_lvarchar() Reads a varying-length structure (mi_lvarchar) value from
a stream and copies the value to a buffer

mi_string_to_lvarchar() Creates a new varying-length structure and puts the
specified null-terminated string into the data portion

The data does not contain a null terminator once it is
copied to the data portion.

2-14 IBM Informix DataBlade API Programmer’s Guide

Table 2-2. DataBlade API Allocation Functions for Varying-Length Structures (continued)

Accessor Function Name Description

mi_var_copy() Allocates and creates a copy of an existing varying-length
structure

The copy contains its own data portion with the same
varying-length data as the original varying-length
structure.

The varying-length structure is not contiguous. The allocation functions in
Table 2-2 allocate this structure in two parts:
v The varying-length descriptor is a fixed-length structure that stores the metadata

for the varying-length data.
The allocation functions allocate the varying-length descriptor and set the data
length and the data pointer in this descriptor.

v The data portion contains the actual varying-length data.
The allocation functions allocate the data portion with the length that is
specified in the varying-length descriptor. They then set the data pointer in the
varying-length descriptor to point to this data portion.

Important: The varying-length data itself resides in a separate structure; it does
not actually reside in the varying-length descriptor.

For example, suppose you call the mi_new_var() function that Figure 2-4 shows.

Figure 2-5 shows the varying-length structure that this mi_new_var() call
allocates. This structure consists of both a descriptor and a data portion of 200
bytes. The mi_new_var() function returns a pointer to this structure, which the
code in Figure 2-4 assigns to the new_lvarch variable.

mi_lvarchar *new_lvarch;
...
new_lvarch = mi_new_var(200);

Figure 2-4. A Sample mi_new_var() Call

Figure 2-5. Memory Allocated for a Varying-Length Structure

Chapter 2. Accessing SQL Data Types 2-15

Server Only

The allocation functions in Table 2-2 on page 2-14 allocate the varying-length
structure with the current memory duration. By default, the current memory
duration is PER_ROUTINE. For PER_ROUTINE memory, the database server
automatically deallocates a varying-length structure at the end of the UDR in
which it was allocated. If your varying-length structure requires a longer memory
duration, call the mi_switch_mem_duration() function before the call to one of the
allocation functions in Table 2-2.

End of Server Only

The allocation functions in Table 2-2 return the newly allocated varying-length
structure as a pointer to an mi_lvarchar data type. For example, the call to
mi_new_var() in Figure 2-4 allocates a new mi_lvarchar structure with a data
portion of 200 bytes.

To allocate other varying-length data types, cast the mi_lvarchar pointer that the
allocation function returns to the appropriate varying-length data type. For
example, the following call to mi_new_var() allocates a new mi_sendrecv
varying-length structure with a data portion of 30 bytes:
mi_sendrecv *new_sndrcv;
...
new_sndrcv = (mi_sendrecv *)mi_new_var(30);

This cast is not strictly required, but many compilers recommend it and it does
improve clarity of purpose.

Deallocating a Varying-Length Structure
A varying-length structure has a default memory duration of the current memory
duration. To conserve resources, use the mi_var_free() function to explicitly
deallocate the varying-length structure once your DataBlade API module no longer
needs it. The mi_var_free() function is the destructor function for a
varying-length structure. It frees both parts of a varying-length structure: the
varying-length descriptor and the data portion.

Important: Do not use the DataBlade API memory-management function
mi_free() to deallocate a varying-length structure. The mi_free()
function does not deallocate both parts of a varying-length structure.

Use mi_var_free() to deallocate varying-length structures that you have allocated
with mi_new_var() or mi_var_copy(). Do not use it to deallocate any
varying-length structure that the DataBlade API has allocated.

The mi_var_free() function accepts as an argument a pointer to an mi_lvarchar
value. The following call to mi_var_free() deallocates the mi_lvarchar
varying-length structure that Figure 2-4 on page 2-15 allocates:
mi_var_free(new_lvarch);

To deallocate other varying-length data types, cast the mi_lvarchar argument of
mi_var_free() to the appropriate varying-length type, as the following code
fragment shows:
mi_sendrecv *new_sndrcv;
...
new_sndrcv = (mi_sendrecv *)mi_new_var(30);
...
mi_var_free((mi_lvarchar *)new_sndrcv);

2-16 IBM Informix DataBlade API Programmer’s Guide

This cast is not strictly required, but many compilers recommend it and it does
improve clarity of purpose.

Accessing a Varying-Length Structure
A varying-length structure contains the following information:
v Private members, which are not revealed to the DataBlade API programmer
v Public members, which you can access with DataBlade API functions

After you allocate a varying-length structure, you can access the public members of
this structure with the DataBlade API accessor functions in Table 2-3.

Table 2-3. Varying-Length Accessor Functions

Accessor Function Name Description

mi_get_varlen() Obtains from the varying-length descriptor the length of
the varying-length data

mi_get_vardata() Obtains from the varying-length descriptor the data
pointer to the data contained in the data portion

mi_get_vardata_align() Obtains from the varying-length descriptor the data
pointer to the data contained in the data portion,
adjusting for any initial padding required to align the
data on a specified byte boundary

mi_set_varlen() Sets the length of the varying-length data in the
varying-length descriptor

mi_set_vardata() Sets the data in the data portion of the varying-length
structure

mi_set_vardata_align() Sets the data in the data portion of the varying-length
structure, adding any initial padding required to align the
data on a specified byte boundary

mi_set_varptr() Sets the data pointer in the varying-length descriptor to
the location of a data portion that you allocate

Important: To a DataBlade API module, the varying-length structure is an opaque
C data structure. Do not access its internal fields directly. The internal
structure of the varying-length structure may change in future releases.
Therefore, to create portable code, always use the accessor functions for
this structure to obtain and store values.

Varying-Length Data and Null Termination
When you work with varying-length data, keep the following restrictions in mind:
v Do not assume that the data in a varying-length structure is null-terminated.
v Do not assume that you can use any DataBlade API functions or system calls

that operate on a null-terminated string to operate on varying-length data.

Instead, always use the data length (which you can obtain with the
mi_get_varlen() function) for all operations on varying-length data.

The varying-length accessor functions in Table 2-3 on page 2-17 do not
automatically interpret a null-terminator character. Instead, they transfer the
number of bytes that the data length in the varying-length descriptor specifies, as
follows:

Chapter 2. Accessing SQL Data Types 2-17

v The mi_set_vardata() and mi_set_vardata_align() functions copy the number
of bytes that the data length specifies from their string argument to a
varying-length structure.
For more information, see “Storing a Null-Terminated String” on page 2-20.

v The mi_get_vardata() and mi_get_vardata_align() functions obtain the data
pointer from the varying-length descriptor. Use the data length to move through
the varying-length data.
For more information, see “Obtaining the Data Pointer” on page 2-26.

To convert between null-terminated strings and an mi_lvarchar structure, use the
mi_string_to_lvarchar() and mi_lvarchar_to_string() functions. For more
information, see “DataBlade API Functions for String Conversion” on page 2-11.

Storage of Varying-Length Data
This section provides the following information about how to store varying-length
data:
v How to store data in a varying-length structure
v How to store a null-terminated string in a varying-length structure
v How to set the data pointer of a varying-length structure

Storing Data in a Varying-Length Structure: The mi_set_vardata() and
mi_set_vardata_align() functions copy data into an existing data portion of a
varying-length structure. These functions assume that the data portion is large
enough to hold the data being copied. The code fragment in Figure 2-6 uses
mi_set_vardata() to store data in the existing data portion of the varying-length
structure that new_lvarch references.

#define TEXT_LENGTH 200
...

mi_lvarchar *new_lvarch;
mi_char *local_var;
...
/* Allocate a new varying-length structure with a 200-byte
* data portion
*/
new_lvarch = mi_new_var(TEXT_LENGTH);

/* Allocate memory for null-terminated string */
local_var = (char *)mi_alloc(TEXT_LENGTH + 1);

/* Create the varying-length data to store */
sprintf(local_var, "%s %s %s", "A varying-length structure ",

"stores data in a data portion, which is separate from ",
"the varying-length structure.");

/* Update the data length to reflect the string length */
mi_set_varlen(new_lvarch, stleng(local_var));

/* Store the varying-length data in the varying-length
* structure that new_lvarch references
*/
mi_set_vardata(new_lvarch, local_var);

Figure 2-6. Storing Data in Existing Data Portion of a Varying-Length Structure

2-18 IBM Informix DataBlade API Programmer’s Guide

In Figure 2-6, the call to mi_new_var() creates a new varying-length structure and
sets the length field to 200. This call also allocates the 200-byte data portion (see
Figure 2-5 on page 2-15).

Figure 2-7 shows the format of the varying-length structure that new_lvarch
references after the call to mi_set_vardata() successfully completes.

The mi_set_vardata() function copies from the local_var buffer the number of
bytes that the data length specifies. Your code must ensure that the data-length
field contains the number of bytes you want to copy. In the code fragment in
Figure 2-6 on page 2-18, the data-length field was last set by the call to
mi_set_varlen() to 110 bytes. However, if the mi_set_varlen() function executed
after the mi_set_vardata() call, the data length would still have been 200 bytes (set
by mi_new_var()). In this case, mi_set_vardata() would try to copy 200 bytes
starting at the location of the local_var variable. Because the actual local_var data
only occupies 110 bytes of memory, 90 unused bytes remain in the data portion.

The mi_set_vardata() function aligns the data that it copies on four-byte
boundaries. If this alignment is not appropriate for your varying-length data, use
the mi_set_vardata_align() function to store data on a byte boundary that you
specify. For example, the following call to mi_set_vardata_align() copies data into
the var_struc varying-length structure and aligns this data on eight-byte
boundaries:
char *buff;
mi_lvarchar *var_struc;
...
mi_set_vardata_align(var_struc, buff, 8);

You can determine the alignment of a data type from its type descriptor with the
mi_type_align() function.

Tip: You can also store data in a varying-length structure through the data pointer
that you obtain with the mi_get_vardata() or mi_get_vardata_align()
function. For more information, see “Obtaining the Data Pointer” on page
2-26.

The mi_set_vardata_align() function copies the number of bytes that the
data-length field specifies.

Figure 2-7. Format of a Varying-Length Structure

Chapter 2. Accessing SQL Data Types 2-19

Storing a Null-Terminated String: The mi_string_to_lvarchar() function copies a
null-terminated string into a varying-length structure that it creates. This function
performs the following steps:
1. Allocates a new varying-length structure

The mi_string_to_lvarchar() function allocates the varying-length descriptor,
setting the data length and data pointer appropriately. Both the data length and
the size of the data portion are the length of the null-terminated string without
its null terminator.

Server Only

The mi_string_to_lvarchar() function allocates the varying-length structure
that it creates with the current memory duration.

End of Server Only

2. Copies the data of the null-terminated string into the newly allocated data
portion
The mi_string_to_lvarchar() function does not copy the null terminator of the
string.

3. Returns a pointer to the newly allocated varying-length structure

The following code fragment uses mi_string_to_lvarchar() to store a
null-terminated string in the data portion of a new varying-length structure:
char *local_var;
mi_lvarchar *lvarch;
...
/* Allocate memory for null-terminated string */
local_var = (char *)mi_alloc(200);

/* Create the varying-length data to store */
sprintf(local_var, "%s %s %s", "A varying-length structure ",

"stores data in a data portion, which is separate from ",
"the varying-length structure.");

/* Store the null-terminated string as varying-length data */
lvarch = mi_string_to_lvarchar(local_var);

Figure 2-8 shows the format of the varying-length structure that lvarch references
after the preceding call to mi_string_to_lvarchar() successfully completes.

Figure 2-8. Copying a Null-Terminated String into a Varying-Length Structure

2-20 IBM Informix DataBlade API Programmer’s Guide

The lvarch varying-length structure in Figure 2-8 has a data length of 110. The null
terminator is not included in the data length because the mi_string_to_lvarchar()
function does not copy the null terminator into the data portion.

If your DataBlade API module needs to store a null terminator as part of the
varying-length data, you can take the following steps:
1. Increment the data length accordingly and save it in the varying-length

descriptor with the mi_set_varlen() function.
2. Copy the data, including the null terminator, into the varying-length structure

with the mi_set_vardata() or mi_set_vardata_align() function.
These functions copy in the null terminator because the data length includes
the null-terminator byte in its count. These functions assume that the data
portion is large enough to hold the string and any null terminator.

After you perform these steps, you can obtain the null terminator as part of the
varying-length data.

Important: If you choose to store null terminators as part of your varying-length
data, your code must keep track that this data is null-terminated. The
DataBlade API functions that handle varying-length structures do not
track the presence of a null terminator.

The following code fragment stores a string plus a null terminator in the
varying-length structure that lvarch references:
#define TEXT_LENGTH 200
...

mi_lvarchar *lvarch;
char *var_text;
mi_integer var_len;
...
/* Allocate memory for null-terminated string */
var_text = (char *)mi_alloc(TEXT_LENGTH);

/* Create the varying-length data to store */
sprintf(var_text, "%s %s %s", "A varying-length structure ",

"stores data in a data portion, which is separate from ",
"the varying-length structure.");

var_len = stleng(var_text) + 1;

/* Allocate a varying-length structure to hold the
* null-terminated string (with its null terminator)
*/
lvarch = mi_new_var(var_len);

/* Copy the number of bytes that the data length specifies
* (which includes the null terminator) into the
* varying-length structure
*/
mi_set_vardata(lvarch, var_text);

Figure 2-9 shows the format of this varying-length structure after the preceding call
to mi_set_vardata() successfully completes.

Chapter 2. Accessing SQL Data Types 2-21

Setting the Data Pointer: The mi_set_varptr() function enables you to set the
data pointer in a varying-length structure to memory that you allocate. The
following code fragment creates an empty varying-length structure, which is a
varying-length structure that has no data portion allocated:
#define VAR_MEM_SIZE 20
...
mi_lvarchar *new_lvarch;
char *var_text;
mi_integer var_len;
...
/* Allocate PER_COMMAND memory for varying-length data */
var_text = (char *)mi_dalloc(VAR_MEM_SIZE, PER_COMMAND);

/* Allocate an empty varying-length structure */
(void)mi_switch_mem_duration(PER_COMMAND);
new_lvarch = mi_new_var(0);

/* Store the varying-length data in the var_text buffer
* with the fill_buffer() function (which you have coded).
* This function returns the actual length of the nonnull-
* terminated string. It does NOT put a null terminator at
* the end of the data.
*/
var_len = fill_buffer(var_text);

Figure 2-10 shows the format of the varying-length structure that new_lvarch
references after the fill_buffer() function successfully completes.

Figure 2-9. Copying a Null-Terminated String into a Varying-Length Structure

2-22 IBM Informix DataBlade API Programmer’s Guide

The varying-length structure in Figure 2-10 is empty because it has the following
characteristics:
v Data length of zero (0)
v NULL-valued pointer as its data pointer

After you have an empty varying-length structure, you can use the
mi_set_varptr() function to set the data pointer to the PER_COMMAND memory
duration, as the following code fragment shows:
/* Set the length of the new varying-length data */
mi_set_varlen(new_lvarch, VAR_MEM_SIZE);

/* Set the pointer to the data portion of the
* varying-length structure to the PER_COMMAND memory
* that 'var_text' references.
*/
mi_set_varptr(new_lvarch, var_text);

The preceding call to mi_set_varlen() updates the length in the varying-length
structure to the length of 20 bytes. Figure 2-11 shows the format of the
varying-length structure that new_lvarch references after the preceding call to
mi_set_varptr() successfully completes.

Figure 2-10. Empty Varying-Length Structure

Figure 2-11. Setting the Data-Portion Pointer in a Varying-Length Structure

Chapter 2. Accessing SQL Data Types 2-23

Server Only

Make sure that you allocate the data-portion buffer with a memory duration
appropriate to the use of the data portion.

End of Server Only

For more information in memory allocation, see Chapter 14, “Managing Memory,”
on page 14-1.

Information About Varying-Length Data
Use the following DataBlade API accessor functions to obtain information about
varying-length data from a varying-length structure.

Varying-Length Information DataBlade API Accessor Function

Length of varying-length data mi_get_varlen()

Data portion mi_lvarchar_to_string(), mi_var_to_buffer(),
mi_var_copy()

Data pointer mi_get_vardata(), mi_get_vardata_align()

Obtaining the Data Length: The mi_get_varlen() function returns the data
length from a varying-length descriptor. Keep in mind the following restrictions
about data length:
v Do not assume that the data in a varying-length structure is null-terminated.

Always use the data length to determine the end of the varying-length data
when you perform operations on this data.

v When you increase the length of the data with mi_set_varlen(), this function
does not automatically increase the amount of memory allocated to the data
portion.
You must ensure that there is sufficient space in the data portion to hold the
varying-length data. If there is insufficient space, allocate a new data portion
with a DataBlade API memory-management function (such as mi_dalloc()) and
assign a pointer to this new memory to the data pointer of your varying-length
structure.

For the varying-length structure in Figure 2-5 on page 2-15, a call to
mi_get_varlen() returns 200. For the varying-length structure that Figure 2-7 on
page 2-19 shows, a call to mi_get_varlen() returns 110.

Obtaining Data as a Null-Terminated String: The mi_lvarchar_to_string()
function obtains the data from a varying-length structure and converts it to a
null-terminated string. This function performs the following steps:
1. Allocates a new buffer to hold the null-terminated string

Server Only

The mi_lvarchar_to_string() function allocates the string that it creates with
the current memory duration.

End of Server Only

2. Copies the data in the data portion of the varying-length structure to the newly
allocated buffer

2-24 IBM Informix DataBlade API Programmer’s Guide

The mi_lvarchar_to_string() function automatically copies the number of bytes
that the data length in the varying-length descriptor specifies. It then appends a
null terminator to the string.

3. Returns a pointer to the newly allocated null-terminated string

Suppose you have the varying-length structure that Figure 2-8 on page 2-20 shows.
The following code fragment uses the mi_lvarchar_to_string() function to obtain
this varying-length data as a null-terminated string:
mi_lvarchar *lvarch;
char *var_str;
...
var_str = mi_lvarchar_to_string(lvarch);

The code fragment does not need to allocate memory for the var_str string because
the mi_lvarchar_to_string() function allocates memory for the new string. After
the call to mi_lvarchar_to_string() completes successfully, the var_str variable
contains the following null-terminated string:
A varying-length structure stores data in a data portion, which is separate
from the varying-length structure.

Copying Data into a User-Allocated Buffer: The mi_var_to_buffer() function
copies the data of an existing varying-length structure into a user-allocated buffer.
The function copies data up to the data length specified in the varying-length
descriptor. You can obtain the current data length with the mi_get_varlen()
function.

The following code fragment copies the contents of the varying-length structure in
Figure 2-8 on page 2-20 into the my_buffer user-allocated buffer:
mi_lvarchar *lvarch;
char *my_buffer;
...
my_buffer = (char *)mi_alloc(mi_get_varlen(lvarch));
mi_var_to_buffer(lvarch, my_buffer);

After the successful completion of mi_var_to_buffer(), the my_buffer variable
points to the following string, which is not null terminated:
A varying-length structure stores data in a data portion, which is separate
from the varying-length structure.

Important: Do not assume that the data in the user-allocated buffer is null
terminated. The mi_var_to_buffer() function does not append a null
terminator to the data in the character buffer.

Copying Data into a New Varying-Length Structure: The mi_var_copy()
function copies data from an existing varying-length structure into a new
varying-length structure. This function performs the following steps:
1. Allocates a new varying-length structure

For the new varying-length structure, the mi_var_copy() function allocates a
data portion whose size is that of the data in the existing varying-length
structure.

Server Only

The mi_var_copy() function allocates the varying-length structure that it
creates with the current memory duration.

End of Server Only

Chapter 2. Accessing SQL Data Types 2-25

2. Copies the data in the data portion of the existing varying-length structure to
the data portion of the newly allocated varying-length structure
The mi_var_copy() function automatically copies the number of bytes that the
data length in the existing varying-length descriptor specifies.

3. Returns a pointer to the newly allocated varying-length structure as a pointer
to an mi_lvarchar value

Suppose you have the varying-length structure that Figure 2-8 on page 2-20 shows.
The following code fragment uses the mi_var_copy() function to create a copy of
this varying-length structure:
mi_lvarchar *lvarch, *lvarch_copy;
...
lvarch_copy = mi_var_copy(lvarch);

After the call to mi_var_copy() completes successfully, the lvarch_copy variable
points to a new varying-length structure, as Figure 2-12 shows. The varying-length
structure that lvarch_copy references is a completely separate structure from the
structure that lvarch references.

Obtaining the Data Pointer: The mi_get_vardata() and mi_get_vardata_align()
functions obtain the actual data pointer from the varying-length descriptor.
Through this data pointer, you can directly access the varying-length data.

The following code fragment uses the mi_get_vardata() function to obtain the
data pointer from the varying-length structure in Figure 2-7 on page 2-19:
mi_lvarchar *new_lvarch;
char *var_ptr;
...
/* Get the data pointer of the varying-length structure */
var_ptr = mi_get_vardata(new_lvarch);

Figure 2-13 shows the format of the varying-length structure that new_lvarch
references after the preceding call to mi_get_vardata() successfully completes.

Figure 2-12. Copying a Varying-Length Structure

2-26 IBM Informix DataBlade API Programmer’s Guide

You can then access the data through the var_ptr data pointer, as the following
code fragment shows:
mi_lvarchar *new_lvarch;
mi_integer var_len, i;
mi_char one_char;
mi_char *var_ptr;

var_ptr = mi_get_vardata(new_lvarch);
var_len = mi_get_varlen(new_lvarch);
for (i=0; i<var_len; i++)

{
one_char = var_ptr[i];
/* process the character as needed */
...
}

Server Only

The database server passes text data to a UDR as an mi_lvarchar structure.
Figure 13-3 on page 13-8 shows the implementation of a user-defined function
named initial_cap(), which ensures that the first letter of a character string is
uppercase and that subsequent letters are lowercase.

The initial_cap() function uses mi_get_vardata() to obtain each character from
the data portion of the varying-length structure. This data portion contains the
character value that the function receives as an argument. The function checks each
letter to ensure that it has the correct case. If the case is incorrect, initial_cap()
uses the data pointer to update the appropriate letter. The function then returns a
new mi_lvarchar structure that holds the result. For more information, see
“Handling Character Arguments” on page 13-6.

End of Server Only

The varying-length structure aligns data on four-byte boundaries. If this alignment
is not appropriate for your varying-length data, use the mi_get_vardata_align()
function to obtain the data aligned on a byte boundary that you specify. You can
determine the alignment of a data type from its type descriptor with the
mi_type_align() function.

Figure 2-13. Getting the Data Pointer from a Varying-Length Structure

Chapter 2. Accessing SQL Data Types 2-27

Tip: When you obtain aligned data from a varying-length structure that is
associated with an extended data type, specify an alignment value to
mi_get_vardata_align() that is appropriate for the extended data type. For
more information, see “Specifying the Memory Alignment of an Opaque
Type” on page 16-6.

The mi_get_vardata_align() function obtains the number of bytes that the
data-length field specifies.

Byte Data Types
The DataBlade API supports the following data types that can hold byte data in a
DataBlade API module.

DataBlade API Character
Data Type Description

SQL Character
Data Type

mi_bitvarying Varying-length structure to hold
varying-length byte data

None

MI_LO_HANDLE LO handle to identify a smart large
object that holds byte data

BLOB

Tip: The database server also supports the BYTE data type for byte data. It stores
BYTE data as a simple large object. However, the DataBlade API does not
directly support simple large objects. For more information, see “Simple Large
Objects” on page 2-32.

The mi_bitvarying Data Type
The SQL BITVARYING data type stores variable-length byte data that is potentially
larger than 255 bytes. The BITVARYING data type is a predefined opaque type (an
opaque data type that Informix defines). The DataBlade API supports the
BITVARYING data type with the mi_bitvarying data type, which the DataBlade
API implements as a varying-length structure.

Tip: The SQL data type BITVARYING and the DataBlade API data type
mi_bitvarying are not exactly the same. Although you use the mi_bitvarying
varying-length structure to hold BITVARYING data, you can also use a
varying-length structure for other varying-length data.

For a BITVARYING column, the maximum size of the data is two kilobytes. This
limitation is not inherent to the BITVARYING data type; however, the maximum
row size in a database table is 32 kilobytes. If a BITVARYING column were to use
the full supported size of 32 kilobytes, the table could contain only one column: a
single BITVARYING column.

Tip: If you need to store more than two kilobytes of byte data, use the BLOB data
type. The BLOB data type enables you to store the byte data outside the
database table in an sbspace. For more information, see Chapter 6, “Using
Smart Large Objects,” on page 6-1.

You can use an mi_bitvarying varying-length structure to store large amounts of
byte data. For more information, see “Varying-Length Data Type Structures” on
page 2-13.

2-28 IBM Informix DataBlade API Programmer’s Guide

The routine manager uses an mi_bitvarying structure to hold data for an argument
or return value of a C UDR when this data is a varying-length opaque type. For
more information, see “Determining the Passing Mechanism for an Opaque Type”
on page 16-7.

Server Only

You must use the mi_bitvarying data type if your UDR expects any varying-length
data type as an argument or a return value. Within an MI_DATUM structure, the
routine manager passes varying-length opaque-type data to and from a C UDR as
a pointer to an mi_bitvarying varying-length structure. Therefore, a C UDR must
handle this data as mi_bitvarying values when it receives arguments or returns
data of a varying-length opaque data type, as the following table describes.

Handling Character Data More Information

If the C UDR receives an argument of a
varying-length opaque data type, it must
declare its corresponding parameter as a pointer
to an mi_bitvarying data type.

“Handling Varying-Length Opaque-Type
Arguments” on page 13-10

If a C UDR returns a value of a varying-length
opaque data type, it must return a pointer to an
mi_bitvarying data type.

“Returning Opaque-Type Values” on page
13-14

End of Server Only

Byte Data in a Smart Large Object
You can use a smart large object to store very large amounts of byte data. The
MI_LO_HANDLE data type holds a structure, called an LO handle, that identifies
the location of smart-large-object data in a separate database partition, called an
sbspace. For smart-large-object data that is byte data, use the SQL BLOB data type.
The BLOB data type allows you to store varying-length byte data of up to four
terabytes. The BLOB data type is a predefined opaque type (an opaque data type
that Informix defines). For more information, see Chapter 6, “Using Smart Large
Objects,” on page 6-1.

Byte Processing
The DataBlade API provides the following support for byte data:
v Informix ESQL/C functions that operate on byte data
v DataBlade API functions that transfer byte data

Manipulating Byte Data
The DataBlade API supports the following byte functions from the Informix
ESQL/C library to perform operations on byte data.

Function Name Description

bycmpr() Compares two groups of contiguous bytes

bycopy() Copies bytes from one area to another

byfill() Fills the specified area with a character

byleng() Counts the number of bytes in a string

Chapter 2. Accessing SQL Data Types 2-29

Transferring Byte Data (Server)
To transfer byte data between different computer architectures, the DataBlade API
provides the following functions that handle type alignment and byte order.

DataBlade API
Function Description

mi_get_bytes() Copies an aligned number of bytes, converting any difference in
alignment or byte order on the client computer to that of the server
computer

mi_put_bytes() Copies an aligned number of bytes, converting any difference in
alignment or byte order on the server computer to that of the client
computer

The mi_get_bytes() and mi_put_bytes() functions are useful in the send and
receive support function of an opaque data type that contains uninterpreted bytes.
They ensure that byte data remain aligned when transferred to and from client
applications. For more information, see “Conversion of Opaque-Type Data Between
Text and Binary Representations” on page 16-16.

Boolean Data Types
Boolean data holds values to indicate two states: true and false. The DataBlade API
provides support for boolean values in both their text and binary representations.

Boolean Text Representation
The DataBlade API supports a Boolean value in text representation as a character
enclosed in single quotation marks, with the format that Table 2-4 shows.

Table 2-4. Text Representation of Boolean Data

Boolean Value Text Representation

True ’t’ or ’T’

False ’f’ or ’F’

A Boolean value in its text representation is often called a Boolean string.

Boolean Binary Representation
The SQL BOOLEAN data type holds the internal (binary) format of a Boolean
value. This value is a single-byte representation of Boolean data, as the following
table shows.

Boolean Value Binary Representation

True \1

False \0

The BOOLEAN data type is a predefined opaque type (an opaque data type that
Informix defines). Its external format is the Boolean text representation that
Table 2-4 shows. Its internal format consists of the values that the preceding table
shows. For a complete description of the SQL BOOLEAN data type, see the IBM
Informix Guide to SQL: Reference.

Tip: The internal format of the BOOLEAN data type is often referred to as its
binary representation.

2-30 IBM Informix DataBlade API Programmer’s Guide

The DataBlade API supports the SQL BOOLEAN data type with the mi_boolean
data type. Therefore, the mi_boolean data type also holds the binary
representation of a Boolean value.

Server Only

An mi_boolean value is one byte on all computer architectures; therefore, it can fit
into an MI_DATUM structure. You can pass mi_boolean data by value in C UDRs.

End of Server Only

Client Only

In client LIBMI applications, you must pass all data by reference, including
mi_boolean values.

End of Client Only

Windows Only

Because an mi_boolean value is smaller than the size of an MI_DATUM structure,
the DataBlade API cast promotes the value to the size of MI_DATUM when you
copy the value into an MI_DATUM structure. When you obtain the mi_boolean
value from an MI_DATUM structure, you need to reverse the cast promotion to
ensure that your value is correct.
MI_DATUM datum;
mi_boolean bool_val;
...
bool_val = (char) datum;

Alternatively, you can declare an mi_integer value to hold the Boolean value.

End of Windows Only

Pointer Data Types (Server)
The SQL POINTER data type is the SQL equivalent of a generic pointer. This data
type is used in the routine registration of a UDR to indicate that some data type
has no equivalent SQL data type. The DataBlade API represents the POINTER data
type with the mi_pointer data type.

Use the mi_pointer data type only for communications between UDRs. The
POINTER data type is a predefined opaque type (an opaque data type that
Informix defines). However, no opaque-type support functions for this data type
are included.

Important: Because the POINTER data type does not include opaque-type support
functions, you cannot pass this type between the database server and a
client application. Also, do not define columns to be of type POINTER.

The mi_pointer data type is guaranteed to be the size of the C type void * on all
computer architectures. The C type void * is usually equivalent to a long type,

Chapter 2. Accessing SQL Data Types 2-31

which is usually four bytes in length.

64-bit

On 64-bit platforms, void * is eight bytes in length, so mi_pointer is also eight
bytes.

End of 64-bit

An mi_pointer value can fit into an MI_DATUM structure and can be passed by
value to and from C UDRs. Keep in mind that because mi_pointer actually
contains an address to a value, passing an mi_pointer by value is actually the
same as passing the value to which mi_pointer points by reference.

Important: When you use mi_pointer, make sure that the value that the
mi_pointer references is allocated with a memory duration appropriate
to the use of the value. For more information, see “Choosing the
Memory Duration” on page 14-4.

Simple Large Objects
The DataBlade API does not provide direct support for simple large objects.
Therefore, it cannot directly access TEXT and BYTE columns. However, the
database server provides the following cast functions between simple and smart
large objects.

Type Conversion SQL Cast Function

From the TEXT data type to the CLOB data type TextToClob()

From the BYTE data type to the BLOB data type ByteToBlob()

For more information on these SQL cast functions, see the description of the
Expression segment in the IBM Informix Guide to SQL: Syntax.

Server Only

C UDRs can accept TEXT data as arguments because the database server passes all
character data in the mi_lvarchar data type. For more information, see “Character
Data in C UDRs (Server)” on page 2-10.

C UDRs can also accept BYTE data as long as they declare and handle this data as
a smart large object. The database server converts the BYTE data to BLOB data
when it passes this data to the UDR.

End of Server Only

The MI_DATUM Data Type
The DataBlade API handles a generic data value as an MI_DATUM value, also
called a datum. A datum is stored in a chunk of memory that can fit into a
computer register.

In the C language, the void * type is a typeless way to point to any object and
should hold any integer value. This type is usually equivalent to the long int type
and is usually four bytes in length, depending on the computer architecture.

2-32 IBM Informix DataBlade API Programmer’s Guide

MI_DATUM is defined as a void * type. The MI_DATUM data type is guaranteed
to be the size of the C type void * on all computer architectures.

64-bit

On 64-bit platforms, void * is eight bytes in length, so an MI_DATUM value is
stored in eight bytes.

End of 64-bit

This section provides the following information about the MI_DATUM data type:
v Contents of an MI_DATUM structure
v Address calculations with MI_DATUM values
v Uses of MI_DATUM structures

Contents of an MI_DATUM Structure
A datum in an MI_DATUM structure can describe a value of any SQL data type.
You can use an MI_DATUM structure to transport a value of an SQL data type
between the database server and the DataBlade API module.

MI_DATUM in a C UDR (Server)
In a C UDR, the contents of an MI_DATUM structure depend on the SQL data
type of the value, as follows:
v For most data types, the MI_DATUM structure contains a pointer to the data

type.
The actual value of most data types is too large to fit within an MI_DATUM
structure. For such data types, the DataBlade API passes the value using the
pass-by-reference mechanism. Use the contents of the MI_DATUM structure as a
pointer to access the actual value.

v For a few small data types, the MI_DATUM structure contains the actual data
value.
Table 2-5 shows the few data types whose value can always fit in an
MI_DATUM structure. For these data types, the DataBlade API passes the value
using the pass-by-value mechanism. Use the contents of the MI_DATUM
structure as the actual data value.

Table 2-5. Types of Values That Fit in an MI_DATUM Structure (Passed by Value)

DataBlade API Data Types Length SQL Data Types

Data types that can hold four-byte integers,
including mi_integer and mi_unsigned_integer

4 The SQL INTEGER data type

mi_date 4 The SQL DATE data type

Data types that can hold two-byte integers,
including mi_smallint and mi_unsigned_smallint

2 The SQL SMALLINT data type

Data types that can hold a one-byte character,
including mi_char1 and mi_unsigned_char1

1 The SQL CHAR(1) data type

(Multicharacter values must be passed by
reference.)

mi_boolean 1 The SQL BOOLEAN data type

mi_pointer size of
(void *)

The SQL POINTER data type

Chapter 2. Accessing SQL Data Types 2-33

Table 2-5. Types of Values That Fit in an MI_DATUM Structure (Passed by Value) (continued)

DataBlade API Data Types Length SQL Data Types

C data structure for the internal format of an
opaque data type when the structure size can fit
into an MI_DATUM structure

Depends on the
size of the C
data structure

An opaque data type whose CREATE
OPAQUE TYPE statement specifies the
PASSEDBYVALUE modifier

For all data types that Table 2-5 lists, the DataBlade API passes the value in an
MI_DATUM structure by value unless the variable is declared as pass by
reference. For example, in the following sample function signature, the arg2
variable would be passed by reference to the my_func() UDR because it is
declared as a pointer:
mi_integer my_func(arg1, arg2)

mi_integer arg1; /* passed by value */
mi_integer *arg2; /* passed by reference */

Values of data types with sizes smaller than or equal to the size of void * can be
passed by value because they can fit into an MI_DATUM structure. A value
smaller than the size of MI_DATUM is cast promoted to the MI_DATUM size
with whatever byte position is appropriate for the computer architecture. When
you obtain a smaller passed-by-value value from an MI_DATUM structure, you
need to reverse the cast promotion to ensure that your value is correct.

For example, an mi_boolean value is a one-byte value. To pass it by value, the
DataBlade API performs something like the following example when it puts the
mi_boolean value into an MI_DATUM structure:
datum = (void *((char) bool))

In the preceding cast promotion, datum is an MI_DATUM structure and bool is an
mi_boolean value.

When you obtain the mi_boolean value from the MI_DATUM structure, reverse
the cast-promotion process with something like the following example:
mi_boolean bool_val;
MI_DATUM datum;
...
bool_val = (char) datum;

To avoid the cast promotion situation, it is recommended that you declare small
pass-by-value SQL types as mi_integer.

For all data types not listed in Table 2-5, the DataBlade API passes the value in an
MI_DATUM structure by reference; that is, the MI_DATUM structure contains a
pointer to the actual data type.

Warning: Do not assume that any data type of length 1, 2, or 4 is passed by value.
Not all one-, two-, or four-byte datums are passed by value. For
example, the mi_real data type is passed by reference. Always check the
data type or use the mi_type_byvalue() function to determine the
passing mechanism.

UDRs store the data types of their arguments in an MI_FPARAM structure. You
can check the type identifier of an argument to determine if it is passed by value
or by reference, as the following code fragment shows:

2-34 IBM Informix DataBlade API Programmer’s Guide

my_type_id = mi_fp_argtype(my_fparam, 1);
my_type_desc = mi_type_typedesc(conn, my_type_id);
if (mi_type_byvalue(my_type_desc) == MI_TRUE)

{
/* Argument is passed by value: extract one-, two-, or
* four-byte item from argument
*/
}

else
{
/* Argument is passed by reference: it contains a pointer
* to the actual value
*/
}

However, a UDR that hardcodes a type identifier in a switch or if statement to
determine actions can handle only built-in data types. It cannot handle all possible
user-defined types because not all of them have unique, type-specific identifiers.

MI_DATUM in a Client LIBMI Application
The preceding rules for passing values in MI_DATUM structures by reference and
by value do not apply to client LIBMI applications. In client LIBMI applications,
pass values of all data types in MI_DATUM structures by reference.

Address Calculations with MI_DATUM Values
In performing address calculations with datums, do not use char * as the type.
This practice can lead to problems. Instead, calculate addresses with the size_t data
type. To increment a datum by an arbitrary length, use the following equation:
void *ptr = (void *)((size_t)datum + (size_t)length)

In performing address calculations with an MI_DATUM value, it is common
practice to use char * as an intermediate type because arithmetic operators are not
allowed on the void * type. The ANSI C standard explicitly says that void * and
char * have the same representation.

For example, the following code increments an MI_DATUM value by an arbitrary
length:
MI_DATUM ptr = (MI_DATUM) ((char *)(datum) + (ptrdiff_t)(length))

In the preceding formula, ptrdiff_t is defined in the ANSI C header file, stddef.h,
and is a signed integer data type.

Another addressing scheme follows:
void *ptr = ((char *)datum) + length

Uses of MI_DATUM Structures
An MI_DATUM structure holds a value that is transferred to or from the database
server. DataBlade API functions handle MI_DATUM structures consistently. The
following table lists uses of MI_DATUM structures.

Use of MI_DATUM
Structures Description More Information

Routine arguments for a
UDR

When a UDR is called, the routine manager passes
UDR arguments as datums. The data type of each
argument determines whether the routine manager
passes the argument by reference or by value.

“MI_DATUM Arguments” on
page 13-3

Chapter 2. Accessing SQL Data Types 2-35

Use of MI_DATUM
Structures Description More Information

Return value from a
user-defined function

When a user-defined function exits, the routine
manager passes the return value as a datum. The
return-value data type determines whether the routine
manager passes the return value by reference or by
value.

“Returning a Value” on page
13-12

OUT parameter from a
user-defined function

When a user-defined function sets an OUT parameter,
the routine manager passes the parameter back as a
datum. The routine manager always passes an OUT
parameter by reference.

“Using an OUT Parameter” on
page 13-14

Routine arguments for a
UDR that you execute with
the Fastpath interface

When you execute a UDR with the Fastpath interface,
the mi_routine_exec() function passes UDR arguments
as datums. The data type of each argument determines
whether this function passes the argument by reference
or by value.

“Passing in Argument Values”
on page 9-27

Return value from a UDR
that you execute with the
Fastpath interface

When a user-defined function that you execute with the
Fastpath interface returns, the mi_routine_exec()
function passes the return value as a datum. The
return-value data type determines whether this function
passes the return value by reference or by value.

“Receiving the Return Value”
on page 9-27

Column values returned or
inserted in SQL statements

When the mi_value() or mi_value_by_name()
function returns a column value for a query in binary
representation, it returns this value as a datum.

When the mi_row_create() function creates a row
structure, it accepts column values as datums.

“Obtaining Column Values”
on page 8-42

Element values retrieved or
inserted in SQL collections

When the mi_collection_fetch() function fetches an
element from a collection, it represents the element as a
datum.

When the mi_collection_insert() function inserts an
element from a collection, it represents the element as a
datum.

“Accessing Elements of a
Collection” on page 5-6

Input-parameter values in
a prepared SQL statement

When the mi_exec_prepared_statement() or
mi_open_prepared_statement() function provides
input-parameter values, it represents them as datums.

“Assigning Values to Input
Parameters” on page 8-27

The NULL Constant
The DataBlade API supports two different uses of a NULL constant:
v The SQL NULL value
v The NULL-valued pointer

Important: The DataBlade API NULL-valued pointer is not the same as the SQL
NULL value.

SQL NULL Value
The SQL NULL value represents a null or empty value in a database column. The
NULL value is distinct from all valid values for a given data type. For example,
the INTEGER data type holds a four-byte integer. This four-byte data type can
hold 232 (or 4,294,967,296) values:
v zero (0)
v positive values: 1 to 2,147,483,647

2-36 IBM Informix DataBlade API Programmer’s Guide

v negative values: -1 to -2,147,483,647
v NULL value: 2,147,483,648 (the maximum negative number)

Because the representation of the NULL value is unique to each data type, the
DataBlade API provides the following functions to assist in determining whether a
value is the SQL NULL value.

Handling the SQL NULL Value DataBlade API Function

Can a column hold NULL values?

(Was the NOT NULL constraint used to defined the
column?)

mi_column_nullable(),
mi_parameter_nullable()

Does the value represent a NULL value? mi_fp_argisnull(),
mi_fp_setargisnull(),
mi_fp_returnisnull(),
mi_fp_setreturnisnull()

Does the UDR handle NULL arguments?

(Has the UDR been registered to indicate that it
contains code to handle NULL values as arguments?)

mi_func_handlesnulls()

Does an expensive-UDR argument hold a NULL
value?

mi_funcarg_isnull()

NULL-Valued Pointer
The NULL-valued pointer, as defined in stddef.h, is a DataBlade API constant that
represents an initialized pointer. NULL is usually represented as zero (0) for a C
pointer. However zero does not always represent NULL. Use the keyword NULL
in your DataBlade API code to initialize pointers, as the following line shows:
MI_ROW *row = NULL;

In addition, the DataBlade API uses the NULL-value pointer for the following:
v To signify a default value for arguments in many DataBlade API functions
v To indicate an unsuccessful execution of a DataBlade API function that, when

successful, returns a pointer to some value

Chapter 2. Accessing SQL Data Types 2-37

2-38 IBM Informix DataBlade API Programmer’s Guide

Part 2. Data Manipulation

© Copyright IBM Corp. 1996, 2009

IBM Informix DataBlade API Programmer’s Guide

Chapter 3. Using Numeric Data Types

In This Chapter . 3-1
Integer Data . 3-1

Integer Text Representation . 3-2
Integer Binary Representations. 3-2

One-Byte Integers . 3-2
Two-Byte Integers . 3-3
Four-Byte Integers . 3-4
Eight-Byte Integers. 3-5

Fixed-Point Data . 3-8
Fixed-Point Text Representations . 3-9

Decimal Text Representation . 3-9
Monetary Text Representation . 3-9

Fixed-Point Binary Representations . 3-10
DECIMAL Data Type: Fixed-Point Data . 3-10
MONEY Data Type . 3-11
The decimal.h Header File . 3-11

Transferring Fixed-Point Data (Server) . 3-14
Converting Decimal Data . 3-14

DataBlade API Functions for Decimal Conversion . 3-14
ESQL/C Functions for Decimal Conversion . 3-15

Performing Operations on Decimal Data . 3-16
Obtaining Fixed-Point Type Information . 3-16

Floating-Point Data . 3-16
Floating-Point Text Representation . 3-17
Floating-Point Binary Representations . 3-17

DECIMAL Data Type: Floating-Point Data . 3-17
SMALLFLOAT Data Type . 3-18
The FLOAT Data Type . 3-19

Transferring Floating-Point Data (Server) . 3-19
Converting Floating-Point Decimal Data . 3-20
Obtaining Floating-Point Type Information . 3-20

Formatting Numeric Strings . 3-20

In This Chapter
The DataBlade API provides support for the following numeric data types.

Numeric Data Type DataBlade API Numeric Data Type

Integer data types mi_sint1, mi_int1, mi_smallint, mi_unsigned_smallint,
mi_integer, mi_unsigned_integer, mi_int8,
mi_unsigned_int8

Fixed-point data types mi_decimal, mi_numeric, mi_money

Floating-point data types mi_decimal, mi_double_precision, mi_real

This chapter describes these numeric data types as well as the functions that the
DataBlade API supports to process numeric data.

Integer Data
Integer data is a value with no digits to the right of the decimal point. The
DataBlade API provides support for integer values in both their text and binary
representations.

© Copyright IBM Corp. 1996, 2009 3-1

Integer Text Representation
The DataBlade API supports an integer value in text representation as a quoted
string that contains the following characters.

Contents of Integer String Character

Digits 0–9

Thousands separator: symbol between every three digits , (comma)

An integer value in its text representation is often called an integer string. For
example, the following integer string contains the value for 1,345:
"1,345"

In an integer string, the thousands separator is optional.

Global Language Support

A locale defines the end-user format for numeric values. The end-user format is the
format in which data appears in a client application when the data is a literal
string or character variable. The preceding integer string is the end-user format for
the default locale, U.S. English. A nondefault locale can define an end-user format
that is particular to a country or culture outside the U.S. For more information, see
the IBM Informix GLS User’s Guide.

End of Global Language Support

Integer Binary Representations
The DataBlade API provides the following data types to support the binary
representations of integer values.

Integer Data DataBlade API Data Type
SQL Integer Data
Type

One-byte integers mi_sint1, mi_int1 None

Two-byte integers mi_smallint, mi_unsigned_smallint SMALLINT

Four-byte integers mi_integer, mi_unsigned_integer INTEGER, SERIAL

Eight-byte integers mi_int8, mi_unsigned_int8, mi_bigint,
mi_unsigned_bigint

INT8, SERIAL8,
BIGINT, BIGSERIAL

Tip: The internal format of integer data types is often referred to as their binary
representation.

One-Byte Integers
The DataBlade API supports the following data types for one-byte integer values.

DataBlade API One-Byte Integer Description

mi_sint1 Signed one-byte (eight bits) value

mi_int1 Unsigned one-byte (eight bits) value

To hold unsigned one-byte integers, you can also use the mi_unsigned_char1 data
type.

3-2 IBM Informix DataBlade API Programmer’s Guide

Tip: The one-byte integer data types have names that are not consistent with those
of other integer data types. The mi_int1 data type is for an unsigned one-byte
integer while the mi_smallint, mi_integer, and mi_int8 data types are for the
signed version of the two-, four-, and eight-byte integers, respectively. Use the
mi_sint1 data type to hold a signed one-byte integer value.

The DataBlade API ensures that these integer data types are one byte on all
computer architectures. There is no corresponding SQL data type for one-byte
integers.

Server Only

Values of the mi_int1 and mi_sint1 data types can fit into an MI_DATUM
structure. They can be passed by value within C user-defined routines (UDRs).

End of Server Only

Client Only

All data types, including mi_int1 and mi_sint1, must be passed by reference
within client LIBMI applications.

End of Client Only

Two-Byte Integers
The DataBlade API supports the following data types for two-byte integer values.

DataBlade API Two-Byte Integers Description

mi_smallint Signed two-byte integer value

mi_unsigned_smallint Unsigned two-byte integer value

Use these integer data types to hold values for the SQL SMALLINT data type,
which stores two-byte integer numbers that range from -32,767 to 32,767. For a
description of the SQL SMALLINT data type, see the IBM Informix Guide to SQL:
Reference.

The mi_smallint and mi_unsigned_smallint data types hold the internal (binary)
format of a SMALLINT value. The DataBlade API ensures that the mi_smallint
and mi_unsigned_smallint data types are two bytes on all computer architectures.
Use these integer data types instead of the native C types (such as short int). If
you access two-byte values stored in a SMALLINT in the database, but use the C
short int type, conversion errors might arise if the two types are not the same size.

Important: To make your DataBlade API module portable across different
architectures, it is recommended that you use the DataBlade API data
type mi_smallint for two-byte integer values instead of the native
C-language counterpart. The mi_smallint data type handles the
different sizes of integer values across computer architectures.

Server Only

Values of the mi_smallint and mi_unsigned_smallint data types can fit into an
MI_DATUM structure. They can be passed by value within C UDRs.

Chapter 3. Using Numeric Data Types 3-3

Client Only

All data types, including mi_smallint and mi_unsigned_smallint, must be passed
by reference within client LIBMI applications.

End of Client Only

To transfer two-byte integers between different computer architectures, the
DataBlade API provides the following functions that handle type alignment and
byte order.

DataBlade API Function Description

mi_get_smallint() Copies an aligned two-byte integer, converting any
difference in alignment or byte order on the client
computer to that of the server computer

mi_put_smallint() Copies an aligned two-byte integer, converting any
difference in alignment or byte order on the server
computer to that of the client computer

mi_fix_smallint() Converts the specified two-byte integer to or from
the type alignment and byte order of the client
computer

These DataBlade API functions are useful in the send and receive support
functions of an opaque data type that contains mi_smallint values. They ensure
that two-byte integer (SMALLINT) values remain consistent when transferred to
and from client applications. For more information, see “Conversion of
Opaque-Type Data with Computer-Specific Data Types” on page 16-21.

Four-Byte Integers
The DataBlade API supports the following data types for four-byte integer values.

DataBlade API Four-Byte Integers Description

mi_integer Signed four-byte integer value

mi_unsigned_integer Unsigned four-byte integer value

Use these integer data types to hold values for the following SQL four-byte integer
data types:
v The SQL INTEGER data type can hold integer values in the range from

-2,147,483,647 to 2,147,483,647.
v The SQL SERIAL data type holds four-byte integer values that the database

server automatically assigns when a value is inserted in the column.

For a description of the SQL INTEGER and SERIAL data types, see the IBM
Informix Guide to SQL: Reference.

The mi_integer and mi_unsigned_integer data types hold the internal (binary)
format of an INTEGER or SERIAL value. The DataBlade API ensures that the
mi_integer and mi_unsigned_integer data types are four bytes on all computer
architectures. Use these integer data types instead of the native C types (such as

3-4 IBM Informix DataBlade API Programmer’s Guide

int or long int). If you access four-byte values stored in a INTEGER in the
database, but use the C int type, conversion errors might arise if the two types are
not the same size.

Important: To make your DataBlade API module portable across different
architectures, it is recommended that you use of the DataBlade API
data type mi_integer for four-byte integer values instead of the native
C-language counterpart. The mi_integer data type handles the different
sizes of integer values across computer architectures.

Server Only

Values of the mi_integer and mi_unsigned_integer data types can fit into an
MI_DATUM structure. They can be passed by value within a C UDR.

End of Server Only

Client Only

All data types, including mi_integer and mi_unsigned_integer, must be passed by
reference within client LIBMI applications.

To transfer four-byte integers between different computer architectures, the
DataBlade API provides the following functions that handle type alignment and
byte order.

DataBlade API Function Description

mi_get_integer() Copies an aligned four-byte integer, converting any
difference in alignment or byte order on the client
computer to that of the server computer

mi_put_integer() Copies an aligned four-byte integer, converting any
difference in alignment or byte order on the server
computer to that of the client computer

mi_fix_integer() Converts the specified four-byte integer to or from
the alignment and byte order of the client
computer

The mi_get_integer() and mi_put_integer() functions are useful in the send and
receive support functions of an opaque data type that contains mi_integer values.
They ensure that four-byte integer (INTEGER) values remain consistent when
transferred to and from client applications. For more information, see “Conversion
of Opaque-Type Data with Computer-Specific Data Types” on page 16-21.

End of Client Only

Eight-Byte Integers
The DataBlade API supports the following data types for eight-byte integer values.

DataBlade API Eight-Byte Integers Description

mi_int8 Signed eight-byte integer value

mi_unsigned_int8 Unsigned eight-byte integer value

mi_bigint Signed eight-byte integer value

mi_unsigned_bigint Unsigned eight-byte integer value

Chapter 3. Using Numeric Data Types 3-5

The DataBlade API ensures that these integer data types are eight bytes on all
computer architectures. Use these integer data types to hold values for the
following SQL eight-byte integer data types:
v The SQL INT8 data type and the BIG INT data type can hold integer values in

the range from
-9,223,372,036,854,775,807 to 9,223,372,036,854,775,807
[or -(263-1) to 263-1].

v The SQL SERIAL8 and BIGSERIAL data types hold eight-byte integer values that
the database server automatically assigns when a value is inserted in the
column.

For a description of the SQL INT8, SERIAL8, BIGINT, and BIGSERIAL data types,
see the IBM Informix Guide to SQL: Reference.

The mi_int8 and mi_unsigned_int8 data types hold the internal (binary) format of
an INT8 or SERIAL8 value. The mi_bigint and mi_unsigned_bigint data types
hold the internal (binary) format of an BIGINT or BIGSERIAL value.

Server Only

Values of the mi_int8, mi_unsigned_int8, mi_bigint, and mi_unsigned_bigint data
types cannot fit into an MI_DATUM structure. They must be passed by reference
within C UDRs.

End of Server Only

Client Only

All data types, including mi_int8, mi_unsigned_int8, mi_bigint, and
mi_unsigned_bigint must be passed by reference within client LIBMI applications.

End of Client Only

The int8.h Header File: The int8.h header file contains the following declarations
for use with the INT8 data type:
v The ifx_int8_t structure
v The INT8-type functions of the Informix ESQL/C library

The mitypes.h header file automatically includes int8.h. In turn, the milib.h
header file automatically includes mitypes.h, and mi.h automatically includes
milib.h. Therefore, you automatically have access to the ifx_int8_t structure, the
mi_int8 data type, or any of the Informix ESQL/C INT8-type functions when you
include mi.h in your DataBlade API module.

Internal INT8 Format: The INT8 data type stores eight-byte integers in an
Informix-proprietary internal format: the ifx_int8_t structure. This structure allows
the database to store eight-byte integers in a computer-independent format.

Tip: The internal format of the INT8 data type is often referred to as its binary
representation.

The mi_int8 data type uses the ifx_int8_t structure to hold the binary
representation of an INT8 value.

3-6 IBM Informix DataBlade API Programmer’s Guide

Important: The ifx_int8_t structure is an opaque C data structure to DataBlade
API modules. Do not access its internal fields directly. The internal
structure of ifx_int8_t may change in future releases.

ESQL/C INT8-Type Functions: Because the binary representation of an INT8 (and
mi_int8) value is an Informix-proprietary format, you cannot use standard system
functions to perform integer calculations on mi_int8 values. Instead, the DataBlade
API provides support for the following categories of Informix ESQL/C functions
on the INT8 data type.

Type of INT8 Function More Information

Conversion functions “Converting INT8 Values” on page 3-7

Arithmetic-operation functions “Performing Operations on Eight-Byte Values” on page
3-8

Any other operations, modifications, or analyses can produce unpredictable results.

Transferring Eight-Byte Integers (Server): To transfer eight-byte integers between
different computer architectures, the DataBlade API provides the following
functions that handle type alignment and byte order.

DataBlade API Function Description

mi_get_int8() or mi_get_bigint()
Copies an aligned eight-byte integer, converting
any difference in alignment or byte order on the
client computer to that of the server computer

mi_put_int8() or mi_put_bigint()
Copies an aligned eight-byte integer, converting
any difference in alignment or byte order on the
server computer to that of the client computer

The mi_get_int8() and mi_put_int8() functions are useful in the send and receive
support function of an opaque data type that contains mi_int8 values. The
mi_get_bigint() and mi_put_bigint() functions are useful in the send and receive
support function of an opaque data type that contains mi_bigint values. These
functions ensure that eight-byte integer (INT8) values remain aligned when
transferred to and from client applications. For more information, see “Conversion
of Opaque-Type Data with Computer-Specific Data Types” on page 16-21.

Converting INT8 Values: The Informix ESQL/C library provides the following
functions that facilitate conversion of the binary representation of INT8 (mi_int8)
values to and from some C-language data types.

Function Name Description

ifx_int8cvasc() Converts a C char type value to an mi_int8 type
value

ifx_int8cvdbl() Converts a C double (mi_double_precision) type
value to an mi_int8 type value

ifx_int8cvdec() Converts a mi_decimal type value to an mi_int8
type value

ifx_int8cvflt() Converts a C float (mi_real) type value to an
mi_int8 type value

Chapter 3. Using Numeric Data Types 3-7

ifx_int8cvint() Converts a C two-byte integer value to an mi_int8
type value

ifx_int8cvlong() Converts a C four-byte integer value to an mi_int8
type value

ifx_int8toasc() Converts an mi_int8 type value to a text string

ifx_int8todbl() Converts an mi_int8 type value to a C double
(mi_double_precision) type value

ifx_int8todec() Converts an mi_int8 type value to a mi_decimal
type value

ifx_int8toflt() Converts an mi_int8 type value to a C float
(mi_real) type value

ifx_int8toint() Converts an mi_int8 type value to a C two-byte
integer value

ifx_int8tolong() Converts an mi_int8 type value to a C four-byte
integer value

Performing Operations on Eight-Byte Values: Use the following Informix
ESQL/C library functions to perform arithmetic operations on INT8 (mi_int8) type
values.

Function Name Description

ifx_int8add() Adds two mi_int8 numbers

ifx_int8cmp() Compares two mi_int8 numbers

ifx_int8copy() Copies an mi_int8 number

ifx_int8div() Divides two mi_int8 numbers

ifx_int8mul() Multiplies two mi_int8 numbers

ifx_int8sub() Subtracts two mi_int8 numbers

Any other operations, modifications, or analyses can produce unpredictable results.

Fixed-Point Data
Fixed-point data is a decimal value with a fixed number of digits to the right and
left of the decimal point. The fixed number of digits to the right of the decimal
point is called the scale of the value. The total number of digits in the fixed-point
value is called the precision of the value.

The DataBlade API provides support for the following kinds of fixed-point data
(which correspond to existing SQL data types).

Type of Fixed-Point Value SQL Data Type

Decimal DECIMAL(p,s)

Monetary MONEY(p)

Each of these kinds of fixed-point values has a text and a binary representation.

3-8 IBM Informix DataBlade API Programmer’s Guide

Fixed-Point Text Representations
The text representation of a fixed-point value is a quoted string that contains a
series of digits. The DataBlade API supports a text representation for both decimal
and monetary values.

Decimal Text Representation
The DataBlade API supports a decimal value in text representation as a quoted
string that contains the characters that the following table shows.

Contents of Fixed-Point String Character

Digits 0–9

Thousands separator: symbol between every three digits , (comma)

Decimal separator: symbol between the integer and fraction portions of the
number

. (period)

A decimal value in its text representation is often called a decimal string. For
example, the following decimal string contains the value for 1,345.77:
"1,345.77"

In a decimal string, the thousands separator is optional.

Global Language Support

A locale defines the end-user format for numeric values. The end-user format is the
format in which data appears in a client application when the data is a literal
string or character variable. The preceding decimal string is the end-user format
for the default locale, U.S. English. A nondefault locale can define an end-user
format that is particular to a country or culture outside the U.S. For more
information, see the IBM Informix GLS User’s Guide.

End of Global Language Support

Monetary Text Representation
The DataBlade API supports a monetary value in text representation as a quoted
string that contains the characters that the following table shows.

Contents of Fixed-Point String Character

Digits 0–9

Thousands separator: symbol between every three digits , (comma)

Decimal separator: symbol between the integer and fraction portions of
the number

. (period)

Currency symbol: symbol that identifies the units of currency
(can appear in front of or at the end of the monetary value)

$ (dollar sign)

A monetary value in its text representation is often called a monetary string. For
example, the following money string contains the value for $1,345.77:
"$1,345.77"

In a monetary string, the thousands separator and the currency symbol are
optional. You can change the format of the monetary string with the DBMONEY

Chapter 3. Using Numeric Data Types 3-9

environment variable.

Global Language Support

A locale defines the end-user format for monetary values. The end-user format is the
format in which data appears in a client application when the data is a literal
string or character variable. The preceding monetary string is the end-user format
for the default locale, U.S. English. A nondefault locale can define monetary
end-user formats that are particular to a country or culture outside the U.S. For
more information, see the IBM Informix GLS User’s Guide.

End of Global Language Support

Fixed-Point Binary Representations
The DataBlade API provides the following data types to support the binary
representations of SQL fixed-point data types.

DataBlade API Data Type SQL Fixed-Point Data Type

mi_decimal, mi_numeric DECIMAL

mi_money MONEY

Both the DECIMAL and MONEY data types use the same internal format to store
a fixed-point value. For more information on this format, see “Internal Fixed-Point
Decimal Format” on page 3-12.

DECIMAL Data Type: Fixed-Point Data
When you define a column with the DECIMAL(p,s) data type, the syntax of this
definition specifies a fixed-point value for the column. This value has a total of p
(<= 32) significant digits (the precision) and s (<= p) digits to the right of the
decimal point (the scale).

Tip: The DECIMAL data type can also declare a floating-point value with the
syntax DECIMAL(p). For more information, see “DECIMAL Data Type:
Floating-Point Data” on page 3-17. For a complete description of the
DECIMAL data type, see the IBM Informix Guide to SQL: Reference.

The SQL DECIMAL data type holds the internal (binary) format of a decimal
value. This value is a computer-independent method that represents numbers of
up to 32 significant digits, with valid values in the range 10-129 to 10+125. For more
information, see “Internal Fixed-Point Decimal Format” on page 3-12.

Tip: The internal format of the DECIMAL data type is often referred to as its
binary representation.

The DataBlade API supports the SQL DECIMAL data type with the mi_decimal
data type. Therefore, the mi_decimal data type also holds the binary representation
of a decimal value. The mi_numeric data type is a synonym for mi_decimal.

Server Only

Values of the mi_decimal data type cannot fit into an MI_DATUM structure. They
must be passed by reference within C UDRs.

3-10 IBM Informix DataBlade API Programmer’s Guide

Client Only

All data types, including mi_decimal, must be passed by reference within client
LIBMI applications.

End of Client Only

MONEY Data Type
When you define a column with the MONEY(p) data type, it has a total of p (<=
32) significant digits (the precision) and a scale of 2 digits.

Global Language Support

The default value that the database server uses for scale is locale-dependent. The
default locale specifies a default scale of two. For nondefault locales, if the scale is
omitted from the declaration, the database server creates MONEY values with a
locale-specific scale. For more information, see the IBM Informix GLS User’s Guide.

End of Global Language Support

You can also specify a scale with the MONEY(p,s) syntax, where s represents the
scale. For a complete description of the MONEY data type, see the IBM Informix
Guide to SQL: Reference.

Tip: The internal format of the MONEY data type is often referred to as its binary
representation.

The DataBlade API supports the SQL MONEY data type with the mi_money data
type. The mi_money data type holds the internal (binary) format of a MONEY
value. This binary representation of the MONEY data type has the same structure
as the fixed-point DECIMAL data type. For more information, see “Internal
Fixed-Point Decimal Format” on page 3-12.

Server Only

Values of the mi_money data type cannot fit into an MI_DATUM structure. They
must be passed by reference within C UDRs.

End of Server Only

Client Only

All data types, including mi_money, must be passed by reference within client
LIBMI applications.

End of Client Only

The decimal.h Header File
The decimal.h header file contains definitions for use with the DECIMAL and
MONEY data types. This header file defines the following items:
v The dec_t typedef
v The decimal macros

Chapter 3. Using Numeric Data Types 3-11

v The DECIMAL-type functions of the Informix ESQL/C library

The mitypes.h header file automatically includes decimal.h. In turn, the milib.h
header file automatically includes mitypes.h, and mi.h automatically includes
milib.h. Therefore, you automatically have access to the dec_t structure, the
mi_decimal and mi_money data types, any of the decimal macros, or any of the
Informix ESQL/C DECIMAL-type functions when you include mi.h in your
DataBlade API module.

Internal Fixed-Point Decimal Format: The DECIMAL and MONEY data types
store fixed-point values in an Informix-proprietary internal format: the dec_t
structure. This structure holds the internal (binary) format of a DECIMAL or
MONEY value, as follows:
#define DECSIZE 16

struct decimal
{
short dec_exp;
short dec_pos;
short dec_ndgts;
char dec_dgts[DECSIZE];
};

typedef struct decimal dec_t;

This dec_t structure stores the number in pairs of digits. Each pair is a number in
the range 00 to 99. (Therefore, you can think of a pair as a base-100 digit.) Table 3-1
shows the four parts of the dec_t structure.

Table 3-1. Fields in the dec_t Structure

Field Description

dec_exp The exponent of the normalized dec_t type number

The normalized form of this number has the decimal point at the left of
the left-most digit. This exponent represents the number of digit pairs to
count from the left to position the decimal point (or as a power of 100 for
the number of base-100 numbers).

dec_pos The sign of the dec_t type number

The dec_pos can assume any one of the following three values:
1 when the number is zero or greater
0 when the number is less than zero
-1 when the value is null

dec_ndgts The number of digit pairs (number of base-100 significant digits) in the
dec_t type number

This value is also the number of entries in the dec_dgts array.

dec_dgts[] A character array that holds the significant digits of the normalized dec_t
type number, assuming dec_dgts[0] != 0

Each byte in the array contains the next significant base-100 digit in the
dec_t type number, proceeding from dec_dgts[0] to dec_dgts[dec_ndgts].

3-12 IBM Informix DataBlade API Programmer’s Guide

Table 3-2 shows some sample dec_t values.

Table 3-2. Sample Decimal Values

Value

dec_t Structure Field Values

dec_exp dec_pos dec_ndgts dec_dgts[]

-12345.6789 3 0 5 dec_dgts[0] = 01

dec_dgts[1] = 23

dec_dgts[2] = 45

dec_dgts[3] = 67

dec_dgts[4] = 89

1234.567 2 1 4 dec_dgts[0] = 12

dec_dgts[1] = 34

dec_dgts[2] = 56

dec_dgts[3] = 70

-123.456 2 0 4 dec_dgts[0] = 01

dec_dgts[1] = 23

dec_dgts[2] = 45

dec_dgts[3] = 60

480 2 1 2 dec_dgts[0] = 04

dec_dgts[1] = 80

.152 0 1 2 dec_dgts[0] = 15

dec_dgts[1] = 20

-6 1 0 1 dec_dgts[0] = 06

The mi_decimal and mi_money data types use the dec_t structure to hold the
binary representation of a DECIMAL and MONEY value, respectively.

The Decimal Macros: The decimal.h header file also includes the following
macros that might be useful in a DataBlade API module.

Decimal Macro Description

DECLEN(p, s) Calculates the minimum number of bytes required
to hold the DECIMAL(p,s) value

DECPREC(size) Calculates a default precision given the number of
bytes (size) used to store the number

PRECTOT(dec) Returns the total precision of the dec value

PRECDEC(dec) Returns the scale of the dec value

PRECMAKE(p, s) Creates a precision value from the specified total
precision (p) and scale (s)

Tip: For a complete list of decimal macros, consult
the decimal.h header file that is installed with
your database server. This header file resides

Chapter 3. Using Numeric Data Types 3-13

in the incl/public subdirectory of the
INFORMIXDIR directory.

ESQL/C DECIMAL-Type Functions: Because the binary representation of
DECIMAL (mi_decimal) and MONEY (mi_money) values is an
Informix-proprietary format, you cannot use standard system functions to perform
decimal operations on mi_decimal and mi_money values. Instead, the DataBlade
API provides support for the following Informix ESQL/C functions on the
DECIMAL and MONEY data types.

Type of DECIMAL Function More Information

Conversion functions “ESQL/C Functions for Decimal Conversion” on
page 3-15

Arithmetic-operation functions “Performing Operations on Decimal Data” on page
3-16

Any other operations, modifications, or analyses can produce unpredictable results.

Transferring Fixed-Point Data (Server)
To transfer fixed-point data between different computer architectures, the
DataBlade API provides the following functions that handle type alignment and
byte order.

DataBlade API Function Description

mi_get_decimal() Copies an aligned mi_decimal value, converting
any difference in alignment or byte order on the
client computer to that of the server computer

mi_get_money() Copies an aligned mi_money value, converting any
difference in alignment or byte order on the client
computer to that of the server computer

mi_put_decimal() Copies an aligned mi_decimal value, converting
any difference in alignment or byte order on the
server computer to that of the client computer

mi_put_money() Copies an aligned mi_money value, converting any
difference in alignment or byte order on the server
computer to that of the client computer

The mi_get_decimal(), mi_get_money(), mi_put_decimal(), and
mi_put_money() functions are useful in the send and receive support function of
an opaque data type that contains mi_decimal or mi_money values. They ensure
that fixed-point (DECIMAL or MONEY) values remain aligned when transferred to
and from client applications. For more information, see “Conversion of
Opaque-Type Data with Computer-Specific Data Types” on page 16-21.

Converting Decimal Data
Both the DataBlade API library and the Informix ESQL/C library provide functions
that convert the binary representation for DECIMAL (mi_decimal) or MONEY
(mi_money) values.

DataBlade API Functions for Decimal Conversion
The DataBlade API library provides the following functions that convert between a
text (string) representation of a decimal or monetary value and its binary (internal)

3-14 IBM Informix DataBlade API Programmer’s Guide

equivalent.

DataBlade API Function Converts from Converts to

mi_decimal_to_string() DECIMAL (mi_decimal) Decimal string

mi_money_to_string() MONEY (mi_money) Interval string

mi_string_to_decimal() Decimal string DECIMAL (mi_decimal)

mi_string_to_money() Monetary string MONEY (mi_money)

Server Only

The mi_decimal_to_string(), mi_money_to_string(), mi_string_to_decimal(),
and mi_string_to_money() functions are useful in the input and output support
function of an opaque data type that contains mi_decimal or mi_money values.
They allow you to convert fixed-point (DECIMAL or MONEY) values between
their external format (text) and their internal format (dec_t) when transferred to
and from client applications. For more information, see “Conversion of
Opaque-Type Data Between Text and Binary Representations” on page 16-16.

End of Server Only

Global Language Support

The mi_decimal_to_string(), mi_money_to_string(), mi_string_to_decimal(),
and mi_string_to_money() functions use the current processing locale to handle
locale-specific formats in the decimal or monetary string. For more information, see
the IBM Informix GLS User’s Guide.

End of Global Language Support

ESQL/C Functions for Decimal Conversion
The Informix ESQL/C function library provides the following functions to convert
a DECIMAL (or MONEY) value to and from some C-language data types.

Function Name Description

deccvasc() Converts a C char type to an mi_decimal type
value

deccvdbl() Converts a C double (mi_double_precision) type
to an mi_decimal type value

deccvint() Converts a C two-byte integer value to an
mi_decimal type value

deccvlong() Converts a C four-byte integer value to an
mi_decimal type value

dececvt() and decfcvt() Converts an mi_decimal type value to text

dectoasc() Converts an mi_decimal type value to text

dectodbl() Converts an mi_decimal type value to a C double
(mi_double_precision) type value

dectoint() Converts an mi_decimal type value to a C
two-byte integer value

dectolong() Converts an mi_decimal type value to a C
four-byte integer value

Chapter 3. Using Numeric Data Types 3-15

Tip: The Informix ESQL/C library also provides
functions to convert some numeric data types
to formatted strings. For more information,
see “Formatting Numeric Strings” on page
3-20.

Performing Operations on Decimal Data
The Informix ESQL/C function library provides the following functions to perform
arithmetic operations on DECIMAL (mi_decimal) and MONEY (mi_money)
values.

Function Name Description

decadd() Adds two mi_decimal numbers

deccmp() Compares two mi_decimal numbers

deccopy() Copies a mi_decimal number

decdiv() Divides two mi_decimal numbers

decmul() Multiplies two mi_decimal numbers

decround() Rounds an mi_decimal number

decsub() Subtracts two mi_decimal numbers

dectrunc() Truncates an mi_decimal number

Any other operations, modifications, or analyses can produce unpredictable results.

Obtaining Fixed-Point Type Information
The DataBlade API provides the following functions to obtain the scale and
precision of a fixed-point (DECIMAL and MONEY) data type.

Source DataBlade API Functions

For a data type mi_type_precision(), mi_type_scale()

For a UDR argument mi_fp_argprec(), mi_fp_setargprec(),
mi_fp_argscale(), mi_fp_setargscale()

For a UDR return value mi_fp_retprec(), mi_fp_setretprec(), mi_fp_retscale(),
mi_fp_setretscale()

For a column in a row
(or field in a row type)

mi_column_precision(), mi_column_scale()

For an input parameter in a
prepared statement

mi_parameter_precision(), mi_parameter_scale()

Floating-Point Data
A floating-point value is a large decimal value that is stored in a fixed field width.
Because the field width is fixed, a floating-point number that is larger than the
field width only retains its most significant digits. That is, digits that do not fit into
the fixed width are dropped (rounded or truncated).

The DataBlade API provides support for the following kinds of floating-point data
(which correspond to existing SQL data types).

3-16 IBM Informix DataBlade API Programmer’s Guide

Type of Floating-Point Value SQL Data Type

Decimal DECIMAL(p)

True floating-point SMALLFLOAT, FLOAT

These floating-point values have both text and binary representations.

Floating-Point Text Representation
The DataBlade API supports a floating-point value in text representation as a
quoted string that contains the following characters.

Contents of Integer String Character

Digits 0–9

Thousands separator: symbol between every three digits , (comma)

Decimal separator: symbol between the integer and fraction portions of the
number

. (period)

For example, the following integer string contains the value for 1,345.77431:
"1,345.77431"

In a floating-point string, the thousands separator is optional.

Important: Because floating-point numbers retain only their most significant digits,
the number that you enter in this type of column and the number the
database server displays can differ slightly.

Global Language Support

A locale defines the end-user format for numeric values. The end-user format is the
format in which data appears in a client application when the data is a literal
string or character variable. The preceding floating-point string is the end-user
format for the default locale, U.S. English. A nondefault locale can define an
end-user format that is particular to a country or culture outside the U.S. For more
information, see the IBM Informix GLS User’s Guide.

End of Global Language Support

Floating-Point Binary Representations
The DataBlade API provides the following data types to support the binary
representations of floating-point values.

SQL Floating-Point Data Type DataBlade API Data Type

DECIMAL mi_decimal

SMALLFLOAT mi_real

FLOAT mi_double_precision

DECIMAL Data Type: Floating-Point Data
When you define a column with the DECIMAL(p) data type, the syntax of this
definition specifies a floating-point value for the column. This value has a total of p
(<= 32) significant digits (its precision). DECIMAL(p) has an absolute value range
between 10-130 and 10124.

Chapter 3. Using Numeric Data Types 3-17

Tip: The DECIMAL data type can also declare a fixed-point value with the syntax
DECIMAL(p,s). For more information, see “DECIMAL Data Type: Fixed-Point
Data” on page 3-10. For a complete description of the DECIMAL data type,
see the IBM Informix Guide to SQL: Reference.

The mi_decimal data type stores floating-point DECIMAL values as well as
fixed-point values. Therefore, information about mi_decimal in “Fixed-Point Data”
on page 3-8 also applies to mi_decimal when it contains a floating-point value. In
particular, the following statements are true.

Decimal Information More Information

The mi_decimal data type stores values in an internal
(binary) format.

“Internal Fixed-Point Decimal
Format” on page 3-12

All the Informix ESQL/C library functions that handle
fixed-point values in mi_decimal can also handle
mi_decimal when it contains floating-point values.

“ESQL/C DECIMAL-Type
Functions” on page 3-14

All DataBlade API functions that accept fixed-point
values in mi_decimal also accept mi_decimal when it
contains a floating-point value.

“Transferring Fixed-Point Data
(Server)” on page 3-14 and
“Converting Decimal Data” on
page 3-14

Server Only

Values of the mi_decimal data type cannot fit into an MI_DATUM structure. They
must be passed by reference within C UDRs.

End of Server Only

Client Only

All data types, including mi_decimal, must be passed by reference within client
LIBMI applications.

End of Client Only

SMALLFLOAT Data Type
The SQL SMALLFLOAT data type can hold single-precision floating-point values.
The DataBlade API supports the SMALLFLOAT data type with the mi_real data
type. The mi_real data type stores internal SMALLFLOAT values, as 32-bit
floating-point values.

Server Only

Although an mi_real value can fit into an MI_DATUM structure, values of this
data type are always passed by reference. Unlike other four-byte values, mi_real
values cannot be passed by value. All values greater than four bytes are passed by
reference.

Therefore, if a UDR is called from an SQL statement, the database server passed a
pointer to any mi_real arguments; it does not pass the actual value. Similarly, if a
user-defined function returns an mi_real value to an SQL statement, you must
allocate space for the value, fill this space, and return a pointer to this space.

DataBlade API modules that are not invoked from SQL statements might pass
mi_real values by value. However, for consistency, you might want to pass them

3-18 IBM Informix DataBlade API Programmer’s Guide

by reference.

End of Server Only

Client Only

All data types, including mi_real, must be passed by reference within client LIBMI
applications.

End of Client Only

Important: To make your DataBlade API module portable across different
architectures, it is recommended that you use the DataBlade API data
type, mi_real, instead of the native C-language counterpart, float. The
mi_real data type handles the different sizes of small floating-point
values across computer architectures.

The FLOAT Data Type
The SQL FLOAT data type can hold double-precision floating-point values. The
DataBlade API supports the FLOAT data type with the mi_double_precision data
type. The mi_double_precision data type stores internal FLOAT values, as 64-bit
floating-point values.

Server Only

Values of the mi_double_precision data type cannot fit into an MI_DATUM
structure. They must be passed by reference within C UDRs.

End of Server Only

Client Only

All data types, including mi_double_precision, must be passed by reference within
client LIBMI applications.

End of Client Only

Important: To make your DataBlade API module portable across different
architectures, it is recommended that you use the DataBlade API data
type, mi_double_precision, instead of the native C-language
counterpart, double. The mi_double_precision data type handles the
different sizes of large floating-point values across computer
architectures.

Transferring Floating-Point Data (Server)
To transfer floating-point data between different computer architectures, the
DataBlade API provides the following functions that handle type alignment and
byte order.

DataBlade API Function Description

mi_get_decimal() Copies an aligned mi_decimal value, converting any
difference in alignment or byte order on the client
computer to that of the server computer

Chapter 3. Using Numeric Data Types 3-19

DataBlade API Function Description

mi_get_double_precision() Copies an aligned mi_double_precision value,
converting any difference in alignment or byte order on
the client computer to that of the server computer

mi_get_real() Copies an aligned mi_real value, converting any
difference in alignment or byte order on the client
computer to that of the server computer

mi_put_decimal() Copies an aligned mi_decimal value, converting any
difference in alignment or byte order on the server
computer to that of the client computer

mi_put_double_precision() Copies an aligned mi_double_precision value,
converting any difference in alignment or byte order on
the server computer to that of the client computer

mi_put_real() Copies an aligned mi_real value, converting any
difference in alignment or byte order on the server
computer to that of the client computer

The mi_get_decimal(), mi_get_double_precision(), mi_get_real(),
mi_put_decimal(), mi_put_double_precision(), and mi_put_real() functions are
useful in the send and receive support function of an opaque data type that
contains mi_decimal, mi_double_precision, or mi_real values. They ensure that
floating-point (DECIMAL, FLOAT, or SMALLFLOAT) values remain aligned when
transferred to and from client applications. For more information, see “Conversion
of Opaque-Type Data with Computer-Specific Data Types” on page 16-21.

Converting Floating-Point Decimal Data
Both the DataBlade API library and the Informix ESQL/C library provide functions
that convert between floating-point decimal strings and internal DECIMAL
formats. For more information, see “Converting Decimal Data” on page 3-14.

Obtaining Floating-Point Type Information
The DataBlade API provides the following functions to obtain the precision of a
floating-point DECIMAL (DECIMAL(p)).

Source DataBlade API Functions

For a data type mi_type_precision()

For a UDR argument mi_fp_argprec(), mi_fp_setargprec()

For a UDR return value mi_fp_retprec(), mi_fp_setretprec()

For a column mi_column_precision()

For an input parameter in a prepared statement mi_parameter_precision()

Tip: The FLOAT and SMALLFLOAT data types do not have precision and scale
values.

Formatting Numeric Strings
The Informix ESQL/C library provides special functions that enable you to format
numeric expressions as strings. These numeric-formatting functions apply a given
formatting mask to a numeric value to allow you to line up decimal points, right-
or left-justify the number, enclose a negative number in parentheses, and so on.

3-20 IBM Informix DataBlade API Programmer’s Guide

The Informix ESQL/C library includes the following functions that support
numeric-formatting masks for numeric values.

Function Name Description

rfmtdec() Converts an mi_decimal value to a string

rfmtdouble() Converts a C-language double value to a string

rfmtlong() Converts a C-language long integer value to a
string

Tip: Both the Informix ESQL/C library and the
DataBlade API library provide functions to
convert between mi_decimal values and other
C-language data types. For more information,
see “Converting Decimal Data” on page 3-14.

This section describes the characters that you can use to create a numeric-
formatting mask. It also provides extensive examples that show the results of
applying these masks to numeric values. A numeric-formatting mask specifies a
format to apply to some numeric value. This mask is a combination of the
following formatting characters:

* This character fills with asterisks any positions in the display field
that would otherwise be blank.

& This character fills with zeros any positions in the display field that
would otherwise be blank.

This character changes leading zeros to blanks. Use this character
to specify the maximum leftward extent of a field.

< This character left-justifies the numbers in the display field. It
changes leading zeros to a null string.

, This character indicates the symbol that separates groups of three
digits (counting leftward from the units position) in the
whole-number part of the value. By default, this symbol is a
comma. You can set the symbol with the DBMONEY environment
variable. In a formatted number, this symbol appears only if the
whole-number part of the value has four or more digits.

. This character indicates the symbol that separates the
whole-number part of a money value from the fractional part. By
default, this symbol is a period. You can set the symbol with the
DBMONEY environment variable. You can have only one period
in a format string.

- This character is a literal. It appears as a minus sign when expr1 is
less than zero. When you group several minus signs in a row, a
single minus sign floats to the rightmost position that it can
occupy; it does not interfere with the number and its currency
symbol.

+ This character is a literal. It appears as a plus sign when expr1 is
greater than or equal to zero and as a minus sign when expr1 is
less than zero. When you group several plus signs in a row, a
single plus or minus sign floats to the rightmost position that it can
occupy; it does not interfere with the number and its currency
symbol.

Chapter 3. Using Numeric Data Types 3-21

(This character is a literal. It appears as a left parenthesis to the left
of a negative number. It is one of the pair of accounting
parentheses that replace a minus sign for a negative number. When
you group several in a row, a single left parenthesis floats to the
rightmost position that it can occupy; it does not interfere with the
number and its currency symbol.

) This is one of the pair of accounting parentheses that replace a
minus sign for a negative value.

$ This character displays the currency symbol that appears at the
front of the numeric value. By default, the currency symbol is the
dollar ($) sign. You can set the currency symbol with the
DBMONEY environment variable. When you group several dollar
signs in a row, a single currency symbol floats to the rightmost
position that it can occupy; it does not interfere with the number.

Any other characters in the formatting mask are reproduced literally in the result.

When you use the following characters within a formatting mask, the characters
float; that is, multiple occurrences of the character at the left of the pattern in the
mask appear as a single character as far to the right as possible in the formatted
number (without removing significant digits):
-
+

(

)

$

For example, if you apply the mask $$$,$$$.## to the number 1234.56, the result is
$1,234.56.

Global Language Support

When you use rfmtdec(), rfmtdouble(), or rfmtlong() to format MONEY values,
the function uses the currency symbols that the DBMONEY environment variable
specifies. If you do not set this environment variable, the numeric-formatting
functions use the currency symbols that the client locale defines. The default locale,
U.S. English, defines currency symbols as if you set DBMONEY to “$,.”. (For a
discussion of DBMONEY, see the IBM Informix Guide to SQL: Reference). For more
information on locales, see the IBM Informix GLS User’s Guide.

End of Global Language Support

Table 3-3 shows sample format strings for numeric expressions. The character b
represents a blank or space.

Table 3-3. Sample Format Patterns and Their Results

Formatting Mask Numeric Value Formatted Result

″#####″
″&&&&&″
″$$$$$″
″*****″
″<<<<<″

0
0
0
0
0

bbbbb
00000
bbbb$

(null string)

3-22 IBM Informix DataBlade API Programmer’s Guide

Table 3-3. Sample Format Patterns and Their Results (continued)

Formatting Mask Numeric Value Formatted Result

“##,###”
″##,###″
″##,###″
″##,###″
″##,###″
″##,###″
″##,###″

12345
1234
123
12
1
-1
0

12,345
b1,234
bbb123
bbbb12
bbbbb1
bbbbb1
bbbbbb

″&&,&&&″
″&&,&&&″
″&&,&&&″
″&&,&&&″
″&&,&&&″
″&&,&&&″
″&&,&&&″

12345
1234
123
12
1
-1
0

12,345
01,234
000123
000012
000001
000001
000000

″$$,$$$″
″$$,$$$″
″$$,$$$″
″$$,$$$″
″$$,$$$″
″$$,$$$″
″$$,$$$″
″$$,$$$″
(DBMONEY set to DM)

12345
1234
123
12
1
-1
0
1234

***** (overflow)
$1,234
bb$123
bbb$12
bbbb$1
bbbb$1
bbbbb$
DM1,234

″**,***″
″**,***″
″**,***″
″**,***″
″**,***″
″**,***″

12345
1234
123
12
1
0

12,345
*1,234
***123
****12
*****1

″##,###.##″
″##,###.##″
″##,###.##″
″##,###.##″
″##,###.##″
″##,###.##″
″##,###.##″
″##,###.##″
″##,###.##″

12345.67
1234.56
123.45
12.34
1.23
0.12
0.01
-0.01
-1

12,345.67
b1,234.56
bbb123.45
bbbb12.34
bbbbb1.23
bbbbbb.12
bbbbbb.01
bbbbbb.01
bbbbb1.00

″&&,&&&.&&″
″&&,&&&.&&″
″&&,&&&.&&″
″&&,&&&.&&″

.67
1234.56
123.45
0.01

000000.67
01,234.56
000123.45
000000.01

″$$,$$$.$$″
″$$,$$$.$$″
″$$,$$$.##″
″$$,$$$.##″
″$$,$$$.&&″
″$$,$$$.&&″

12345.67
1234.56
0.00
1234.00
0.00
1234.00

********* (overflow)
$1,234.56
bbbbb$.00
$1,234.00
bbbbb$.00
$1,234.00

Chapter 3. Using Numeric Data Types 3-23

Table 3-3. Sample Format Patterns and Their Results (continued)

Formatting Mask Numeric Value Formatted Result

″-##,###.##″
″-##,###.##″
″-##,###.##″
″--#,###.##″
″---,###.##″
″---,-##.##″
″---,--#.##″
″--#,###.##″
″---,--#.##″

-12345.67
-123.45
-12.34
-12.34
-12.34
-12.34
-12.34
-1.00
-1.00

-12,345.67
-bbb123.45
-bbbb12.34
b-bbb12.34
bb-bb12.34
bbbb-12.34
bbbb-12.34
b-bbbb1.00
bbbbb-1.00

″-##,###.##″
″-##,###.##″
″-##,###.##″
″-##,###.##″
″--#,###.##″
″---,###.##″
″---,-##.##″
″---,---.##″
″---,---.--″
″---,---.&&″

12345.67
1234.56
123.45
12.34
12.34
12.34
12.34
1.00
-.01
-.01

b12,345.67
bb1,234.56
bbbb123.45
bbbbb12.34
bbbbb12.34
bbbbb12.34
bbbbb12.34
bbbbbb1.00
bbbbbb-.01
bbbbbb-.01

″-$$$,$$$.&&″
″-$$$,$$$.&&″
″-$$$,$$$.&&″
″--$$,$$$.&&″
″--$$,$$$.&&″
″--$$,$$$.&&″
″--$$,$$$.&&″
″--$$,$$$.&&″

-12345.67
-1234.56
-123.45
-12345.67
-1234.56
-123.45
-12.34
-1.23

-$12,345.67
-b$1,234.56
-bbb$123.45
-$12,345.67
b-$1,234.56
b-bb$123.45
b-bbb$12.34
b-bbbb$1.23

″----,--$.&&″
″----,--$.&&″
″----,--$.&&″
″----,--$.&&″
″----,--$.&&″
″----,--$.&&″

-12345.67
-1234.56
-123.45
-12.34
-1.23
-.12

-$12,345.67
b-$1,234.56
bbb-$123.45
bbbb-$12.34
bbbbb-$1.23
bbbbbb-$.12

″$***,***.&&″
″$***,***.&&″
″$***,***.&&″
″$***,***.&&″
″$***,***.&&″
″$***,***.&&″

12345.67
1234.56
123.45
12.34
1.23
.12

$*12,345.67
$**1,234.56
$****123.45
$*****12.34
$******1.23
$*******.12

″($$$,$$$.&&)″
″($$$,$$$.&&)″
″($$$,$$$.&&)″

-12345.67
-1234.56
-123.45

($12,345.67)
(b$1,234.56)
(bbb$123.45)

″(($$,$$$.&&)″
″(($$,$$$.&&)″
″(($$,$$$.&&)″
″(($$,$$$.&&)″
″(($$,$$$.&&)″
″((((,(($.&&)″
″((((,(($.&&)″
″((((,(($.&&)″
″((((,(($.&&)″
″((((,(($.&&)″
″((((,(($.&&)″

-12345.67
-1234.56
-123.45
-12.34
-1.23
-12345.67
-1234.56
-123.45
-12.34
-1.23
-.12

($12,345.67)
b($1,234.56)
b(bb$123.45)
b(bbb$12.34)
b(bbbb$1.23)
($12,345.67)
b($1,234.56)
bbb($123.45)
bbbb($12.34)
bbbbb($1.23)
bbbbbb($.12)

3-24 IBM Informix DataBlade API Programmer’s Guide

Table 3-3. Sample Format Patterns and Their Results (continued)

Formatting Mask Numeric Value Formatted Result

″($$$,$$$.&&)″
″($$$,$$$.&&)″
″($$$,$$$.&&)″

12345.67
1234.56
123.45

b$12,345.67
bb$1,234.56
bbbb$123.45

″(($$,$$$.&&)″
″(($$,$$$.&&)″
″(($$,$$$.&&)″
″(($$,$$$.&&)″
″(($$,$$$.&&)″

12345.67
1234.56
123.45
12.34
1.23

b$12,345.67
bb$1,234.56
bbbb$123.45
bbbbb$12.34
bbbbbb$1.23

″((((,(($.&&)″
″((((,(($.&&)″
″((((,(($.&&)″
″((((,(($.&&)″
″((((,(($.&&)″
″((((,(($.&&)″

12345.67
1234.56
123.45
12.34
1.23
.12

b$12,345.67
bb$1,234.56
bbbb$123.45
bbbbb$12.34
bbbbbb$1.23
bbbbbbb$.12

″<<<,<<<″
″<<<,<<<″
″<<<,<<<″
″<<<,<<<″

12345
1234
123
12

12,345
1,234
123
12

Chapter 3. Using Numeric Data Types 3-25

3-26 IBM Informix DataBlade API Programmer’s Guide

Chapter 4. Using Date and Time Data Types

In This Chapter . 4-1
Date Data. 4-1

Date Text Representation. 4-1
Date Binary Representation . 4-2
Transfers of Date Data (Server) . 4-3
Conversion of Date Representations . 4-3

DataBlade API Functions for Date Conversion . 4-3
ESQL/C Functions for Date Conversion . 4-4

Operations on Date Data. 4-5
Date-Time or Interval Data . 4-5

Date-Time or Interval Text Representation . 4-6
Date-Time or Interval Binary Representation . 4-7

The DATETIME Data Type . 4-7
The INTERVAL Data Type . 4-8

The datetime.h Header File . 4-9
Retrieval and Insertion of DATETIME and INTERVAL Values 4-11

Fetch or Insert into an mi_datetime Variable . 4-11
Fetch or Insert into an mi_interval Variable . 4-11
Implicit Data Conversion . 4-12

Transfers of Date-Time or Interval Data (Server) . 4-12
Conversion of Date-Time or Interval Representations . 4-13

DataBlade API Functions for Date-Time or Interval Conversion 4-13
ESQL/C Functions for Date, Time, and Interval Conversion 4-13

Operations on Date and Time Data . 4-15
Functions to Obtain Information on Date and Time Data 4-15

Qualifier of a Date-Time or Interval Data Type . 4-16
Precision of a Date-Time or Interval Data Type . 4-17
Scale of a Date-Time or Interval Data Type . 4-17

In This Chapter
The DataBlade API provides support for the following date and time data types.

SQL Date and
Time Data Type

Standard C or ESQL/C
Date and Time Data Type

DataBlade API Date and
Time Data Type

DATE C: four-byte integerInformix
ESQL/C: date

mi_date

DATETIME Informix ESQL/C: datetime, dtime_t mi_datetime

INTERVAL Informix ESQL/C: interval, intrvl_t mi_interval

This chapter describes these date and time data types as well as the functions that
the DataBlade API supports to process date and time data.

Date Data
Date data is a calendar date. The DataBlade API provides support for date values in
both their text and binary representations.

Date Text Representation
The DataBlade API supports a date value in text representation as a quoted string
with the following format:

© Copyright IBM Corp. 1996, 2009 4-1

"mm/dd/yyyy"

mm is the 2-digit month.

dd is the 2-digit day of the month.

yyyy is the 4-digit year.

A date value in its text representation is often called a date string. For example, the
following date string contains the value for July 12, 1999 (for the default locale):
"7/12/1999"

You can change the format of the date string with the DBDATE environment
variable.

Global Language Support

A locale defines the end-user format of a date. The end-user format is the format in
which data appears in a client application when the data is a literal string or
character variable. The preceding date string is the end-user format for the default
locale, U.S. English. A nondefault locale can define an end-user format that is
particular to a country or culture outside the U.S. You can also customize the
end-user format of a date with the GL_DATE environment variable. For more
information, see the IBM Informix GLS User’s Guide.

End of Global Language Support

Date Binary Representation
The SQL DATE data type holds the internal (binary) format of a decimal value.
This value is an integer value that represents the number of days since December
31, 1899. Dates before December 31, 1899, are negative numbers, while dates after
December 31, 1899, are positive numbers. For a detailed description of the SQL
DATE data type, see the IBM Informix Guide to SQL: Reference.

Tip: The internal format of the DATE data type is often referred to as its binary
representation.

The DataBlade API supports the SQL DATE data type with the mi_date data type.
Therefore, the mi_date data type also holds the binary representation of a date
value.

Server Only

The mi_date data type is guaranteed to be four bytes on all computer architectures.
All mi_date values can fit into an MI_DATUM structure and can be passed by
value within C UDRs.

End of Server Only

Client Only

All data types, including mi_date, must be passed by reference within client LIBMI
applications.

End of Client Only

4-2 IBM Informix DataBlade API Programmer’s Guide

Because the binary representation of a DATE (and mi_date) value is an
Informix-proprietary format, you cannot use standard system functions to obtain
date information from mi_date values. Instead, the DataBlade API provides the
following support for the DATE data type.

Category of DATE Function More Information

Conversion functions “Conversion of Date Representations” on page 4-3

Operation functions “Operations on Date Data” on page 4-5

Transfers of Date Data (Server)
For date data to be portable when transferred across different computer
architectures, the DataBlade API provides the following functions to handle type
alignment and byte order.

DataBlade API
Function Description

mi_get_date() Copies an aligned mi_date value, converting any difference in
alignment or byte order on the client computer to that of the server
computer

mi_put_date() Copies an aligned mi_date value, converting any difference in
alignment or byte order on the server computer to that of the client
computer

The mi_get_date() and mi_put_date() functions are useful in the send and
receive support function of an opaque data type that contains mi_date values.
They enable you to ensure that DATE values remain aligned when transferred to
and from client applications, which possibly have unaligned data buffers. For more
information, see “Conversion of Opaque-Type Data with Computer-Specific Data
Types” on page 16-21.

Conversion of Date Representations
Both the DataBlade API library and the Informix ESQL/C library provide functions
that convert from the text (string) representation of a date value to the binary
(internal) representation for DATE.

DataBlade API Functions for Date Conversion
The DataBlade API provides the following functions for conversion between text
and binary representations of date data.

DataBlade API Function Convert from Convert to

mi_date_to_string() DATE (mi_date) Date string

mi_string_to_date() Date string DATE (mi_date)

Server Only

The mi_date_to_string() and mi_string_to_date() functions are useful in the
input and output support functions of an opaque data type that contains mi_date
values. They allow you to convert DATE values between their external format
(text) and their internal (binary) format when transferred to and from client
applications. For more information, see “Conversion of Opaque-Type Data Between
Text and Binary Representations” on page 16-16.

Chapter 4. Using Date and Time Data Types 4-3

Global Language Support

The mi_date_to_string() and mi_string_to_date() functions use the current
processing locale to handle locale-specific formats in the date string. For more
information, see the IBM Informix GLS User’s Guide.

End of Global Language Support

ESQL/C Functions for Date Conversion
The Informix ESQL/C function library provides the following functions to convert
a DATE (mi_date) value to and from char strings.

Function Name Description

rdatestr() Converts an internal format to string

rdefmtdate() Converts a string to an internal format using a
formatting mask

rfmtdate() Converts an internal format to a string using a
formatting mask

rstrdate() Converts a string to an internal format

The rdatestr() and rstrdate() functions convert mi_date values to and from a
date string that is formatted with the DBDATE environment variable.

Global Language Support

These functions also examine the GL_DATE environment variable for the format of
the date string. When you use a nondefault locale and do not set the DBDATE or
GL_DATE environment variable, rdatestr() uses the date end-user format that the
client locale defines. For more information, see the IBM Informix GLS User’s Guide.

End of Global Language Support

The rdefmtdate() and rfmtdate() functions convert mi_datetime values to and
from a date-time string using a date-formatting mask. A date-formatting mask
specifies a format to apply to some date value. This mask is a combination of the
following formats.

Format Meaning

dd Day of the month as a two-digit number (01 through 31)

ddd Day of the week as a three-letter abbreviation (Sun through Sat)

mm Month as a two-digit number (01 through 12)

mmm Month as a three-letter abbreviation (Jan through Dec)

yy Year as a two-digit number in the 1900s (00 through 99)

yyyy Year as a four-digit number (0001 through 9999)

4-4 IBM Informix DataBlade API Programmer’s Guide

Any other characters in the formatting mask are reproduced literally in the result.

Global Language Support

When you use a nondefault locale whose dates contain eras, you can use
extended-format strings in a numeric-formatting mask. For more information, see
the IBM Informix GLS User’s Guide.

When you use rfmtdate() or rdefmtdate() to format DATE values, the function
uses the date end-user formats that the GL_DATE or DBDATE environment
variable specifies. If neither of these environment variables is set, these
date-formatting functions use the date end-user formats for the locale. The default
locale, U.S. English, uses the format mm/dd/yyyy. For a discussion of GL_DATE
and DBDATE, see the IBM Informix GLS User’s Guide.

End of Global Language Support

Operations on Date Data
Use the following Informix ESQL/C library functions to perform operations on
DATE (mi_date) values.

Function Name Description

rdayofweek() Returns the day of the week

rjulmdy() Returns month, day, and year from an internal
format

rleapyear() Determines whether a specified year is a leap year

rmdyjul() Returns an internal format from month, day, and
year

rtoday() Returns a system date in internal format

Any other operations, modifications, or comparisons can produce unpredictable
results.

Date-Time or Interval Data
The DataBlade API provides support for the following kinds of fixed-point data,
which correspond to existing SQL data types.

Type of Fixed-Point Value SQL Data Type

Date and time, date, or time DATETIME

Year and month interval or day and time interval INTERVAL

Date-time data is an instant in time that is expressed as a calendar date and time of
day, just a calendar date, or just a time of day. A date-time value can also have a
precision and a scale. The precision is the number of digits required to store the
value. The scale is the end qualifier of the date-time value, such as YEAR TO
HOUR.

Interval data is a span of time that is expressed as the number of units in either of
the following interval classes:
v Year-month intervals

Chapter 4. Using Date and Time Data Types 4-5

A year-month interval value specifies the number of years and months, years, or
months that have passed.

v Day-time intervals

A day-time interval value specifies the number of days and hours, days, or
hours that have passed.

The DataBlade API provides support for date-time or interval data in both text and
binary representations.

Date-Time or Interval Text Representation
The text representation of a date-time or interval value is a quoted string that
contains a series of digits and symbols. The DataBlade API supports a text
representation for date-time or interval values as quoted strings with the formats
that the following table shows.

SQL Data Type Text Representation

DATETIME Date-time string:

The date-time string must match the qualifier of
the DATETIME column. The default format of the
date-time string for the largest DATETIME column
is:

″yyyy-mm-dd HH:MM:SS.FFFF″

INTERVAL Interval string:

The interval string must match the qualifiers of the
INTERVAL column. INTERVAL columns have two
classes. The default format of an interval string for
the largest year-month interval follows:

″yyyy-mm″

The default format of an interval string for the
largest day-time interval follows:

″dd HH:SS.FFFF″

The text representations in the preceding table use the following abbreviations:

yyyy is the 4-digit year (for a DATETIME) or the number of years (for
an INTERVAL).

mm is the 2-digit month (for a DATETIME) or the number of months
(for an INTERVAL).

dd is the 2-digit day of the month (for a DATETIME) or the number of
days (for an INTERVAL).

HH is the 2-digit hour (for a DATETIME) or the number of hours (for
an INTERVAL).

MM is the 2-digit minute (for a DATETIME) or the number of minutes
(for an INTERVAL).

SS is the 2-digit second (for a DATETIME) or the number of seconds
(for an INTERVAL).

FFFF is a fraction of a second (for a DATETIME) or the number of years
(for an INTERVAL). Fractions can be from 1 to 5 digits.

4-6 IBM Informix DataBlade API Programmer’s Guide

A date-time value in its text representation is often called a date-time string. For
example, the following date-time string contains the value for 2 p.m. on July 12,
1999, with a qualifier of year to minute:
"1999-07-12 14:00:00"

Usually, a date-time string must match the qualifier of the date-time binary
representation with which the string is associated.

The following interval string indicates a passage of three years and three months:
"03-06"

Global Language Support

A locale defines the end-user format of a date or time or interval value. The
end-user format is the format in which data appears in a client application when the
data is a literal string or character variable. The preceding strings are the end-user
formats for the default locale, U.S. English. A nondefault locale can define date or
time end-user formats that are particular to a country or culture outside the U.S.
You can also customize the end-user format of a date with the GL_DATETIME
environment variable. For more information, see the IBM Informix GLS User’s
Guide.

End of Global Language Support

Date-Time or Interval Binary Representation
The DataBlade API supports the following SQL data types that can hold
information about date-time or interval values.

DataBlade API Date and Time Data Type SQL Date and Time Data Type

mi_datetime DATETIME

mi_interval INTERVAL

The DATETIME Data Type
The SQL DATETIME data type provides the internal (binary) format of a date-time
value. This data type stores an instant in time expressed as a calendar date and
time of day, just a calendar date, or just a time of day. You choose how precisely a
DATETIME value is stored with a qualifier. The precision can range from a year to
a fraction of a second. For a detailed description of the SQL DATETIME data type,
see the IBM Informix Guide to SQL: Reference.

The DATETIME data type uses a computer-independent method to encode the
date or time qualifiers. It stores the information in the dtime_t structure, as
follows:
typedef struct dtime {

short dt_qual;
dec_t dt_dec;

} dtime_t;

The dtime structure and dtime_t typedef have two parts, which the following table
shows.

Field Description

dt_qual The qualifier of the datetime value

dt_dec The digits of the fields of the datetime value

Chapter 4. Using Date and Time Data Types 4-7

This field is a decimal value.

Tip: The internal format of the DATETIME data type is often
referred to as its binary representation.

The DataBlade API supports the SQL DATETIME data type with the mi_datetime
data type. Therefore, the mi_datetime data type holds the binary representation of
a date and/or time value.

Server Only

Values of the mi_datetime data type cannot fit into an MI_DATUM structure. They
must be passed by reference within C UDRs.

End of Server Only

Client Only

All data types, including mi_datetime, must be passed by reference within client
LIBMI applications.

End of Client Only

Because the binary representation of a DATETIME (mi_datetime) value is an
Informix-proprietary format, you cannot use standard system functions to perform
operations on mi_datetime values. Instead, the DataBlade API provides the
following support for the DATETIME data type.

Category of DATETIME Function More Information

Conversion functions “Conversion of Date-Time or Interval Representations”
on page 4-13

Arithmetic-operation functions “Operations on Date and Time Data” on page 4-15

The INTERVAL Data Type
The SQL INTERVAL data type holds the internal (binary) format of an interval
value. It encodes a value that represents a span of time. INTERVAL types are
divided into two classes: year-month intervals and day-time intervals. A year-month
interval can represent a span of years and months, and a day-time interval can
represent a span of days, hours, minutes, seconds, and fractions of a second. For a
detailed description of the SQL INTERVAL data type, see the IBM Informix Guide to
SQL: Reference.

The INTERVAL data type uses a computer-independent method to encode the
interval qualifiers. It stores the information in the intrvl_t structure, as follows:
typedef struct intrvl {

short in_qual;
dec_t in_dec;

} intrvl_t;

The intrvl structure and intrvl_t typedef have the two parts that Table 4-1 shows.

Table 4-1. Fields in the intrvl_t Structure

Field Description

in_qual The qualifier of the interval value

4-8 IBM Informix DataBlade API Programmer’s Guide

Table 4-1. Fields in the intrvl_t Structure (continued)

Field Description

in_dec The digits of the fields of the interval value

This field is a decimal value.

Tip: The internal format of the INTERVAL data type is often referred to as its
binary representation.

The DataBlade API supports the SQL INTERVAL data type with the mi_interval
data type. Therefore, an mi_interval data type holds the binary representation of
an interval value.

Server Only

Values of the mi_interval data type cannot fit into an MI_DATUM structure. They
must be passed by reference within C UDRs.

End of Server Only

Client Only

All data types, including mi_interval, must be passed by reference within client
LIBMI applications.

End of Client Only

Because the binary representation of an INTERVAL (mi_interval) value is an
Informix-proprietary format, you cannot use standard system functions to perform
operations on mi_interval values. Instead, the DataBlade API provides the
following support for the INTERVAL data type.

Category of INTERVAL Function More Information

Conversion functions “Conversion of Date-Time or Interval Representations”
on page 4-13

Arithmetic-operation functions “Operations on Date and Time Data” on page 4-15

The datetime.h Header File
The datetime.h header file contains definitions for use with the DATETIME and
INTERVAL data types. The header file datetime.h contains the declarations for the
date, time, and interval data types, as follows:
v The internal format represents DATETIME and mi_datetime values with the

dtime_t structure.
v The internal format represents INTERVAL and mi_interval values with the

intrvl_t structure.

In addition to these data structures, the datetime.h file defines the constants and
macros for date and time qualifiers that Table 4-2 shows.

Table 4-2. Qualifier Macros and Constants for mi_datetime and mi_interval Data Types

Name of Macro Description

TU_YEAR The time unit for the YEAR qualifier field

Chapter 4. Using Date and Time Data Types 4-9

Table 4-2. Qualifier Macros and Constants for mi_datetime and mi_interval Data
Types (continued)

Name of Macro Description

TU_MONTH The time unit for the MONTH qualifier field

TU_DAY The time unit for the DAY qualifier field

TU_HOUR The time unit for the HOUR qualifier field

TU_MINUTE The time unit for the MINUTE qualifier field

TU_SECOND The time unit for the SECOND qualifier field

TU_FRAC The time unit for the leading qualifier field of FRACTION

TU_Fn The names for mi_datetime ending fields of FRACTION(n), for n
from 1 to 5

TU_START(q) Returns the leading field number from qualifier q

TU_END(q) Returns the trailing field number from qualifier q

TU_LEN(q) Returns the length in digits of the qualifier q

TU_FLEN(f) Returns the length in digits of the first field, f, of an interval
qualifier

TU_ENCODE(p,f,t) Creates a qualifier from the first field number f with precision p
and trailing field number t

TU_DTENCODE(f,t) Creates an mi_datetime qualifier from the first field number f and
trailing field number t

TU_IENCODE(p,f,t) Creates an mi_interval qualifier from the first field number f with
precision p and trailing field number t

Tip: For a complete list of date and time macros, consult the datetime.h header
file that is installed with your database server. This header file resides in the
incl/public subdirectory of the INFORMIXDIR directory.

Table 4-2 on page 4-9 shows the macro definitions that you can use to compose
qualifier values. You need these macros only when you work directly with
qualifiers in binary form. For example, if your program does not provide an
mi_interval qualifier in the variable declaration, you need to use the mi_interval
qualifier macros to initialize and set the mi_interval variable, as the following
example shows:
/* Use the variable that was declared intvl1. */

mi_interval intvl1;
...
/* Set the interval qualifier for the variable */
intvl1.in_qual = TU_IENCODE(2, TU_DAY, TU_SECOND);
...
/* Assign a value to the variable */
incvasc ("5 2:10:02", &intvl1);

In the previous example, the mi_interval variable gets a day to second qualifier.
The precision of the largest field in the qualifier, day, is set to 2.

In addition to the declaration of the dtime_t typedef and the preceding date and
time macros, the datetime.h header file declares the DATETIME-type functions of
the Informix ESQL/C library. The mitypes.h header file automatically includes
datetime.h. In turn, the milib.h header file automatically includes mitypes.h and
mi.h automatically includes milib.h. Therefore, you automatically have access to
the dtime_t and intrvl_t structures, the mi_datetime and mi_interval data types,

4-10 IBM Informix DataBlade API Programmer’s Guide

any of the date or time macros, or any of the Informix ESQL/C DATETIME-type
functions when you include mi.h in your DataBlade API module.

Retrieval and Insertion of DATETIME and INTERVAL Values
When an application retrieves or inserts a DATETIME or INTERVAL value, the
DataBlade API module must ensure that the qualifier field of the variable is valid:
v When an application fetches a DATETIME value into an mi_datetime variable or

inserts a DATETIME value from an mi_datetime variable, the application must
ensure that the dt_qual field of the dtime_t structure is valid.

v When an application fetches an INTERVAL value into an mi_interval variable or
inserts an INTERVAL value from an mi_interval variable, the application must
ensure that the in_qual field of the intrvl_t structure is valid.

Fetch or Insert into an mi_datetime Variable
When a DataBlade API module uses an mi_datetime variable to fetch or insert a
DATETIME value, the module must find a valid qualifier in the mi_datetime
variable. The DataBlade API takes one the following actions, based on the value of
the dt_qual field in the dtime_t structure that is associated with the variable:
v When the dt_qual field contains a valid qualifier, the DataBlade API extends the

column value to match the dt_qual qualifier.
Extending is the operation of adding or dropping fields of a DATETIME value to
make it match a given qualifier. You can explicitly extend DATETIME values
with the SQL EXTEND function and the dtextend() function.

v When the dt_qual field does not contain a valid qualifier, the DataBlade API
takes different actions for a fetch and an insert:
– For a fetch, the DataBlade API uses the DATETIME column value and its

qualifier to initialize the mi_datetime variable.
Zero is an invalid qualifier. Therefore, if you set the dt_qual field to zero, you
can ensure that the DataBlade API uses the qualifier of the DATETIME
column.

– For an insert, the DataBlade API cannot perform the insert or update
operation.
The DataBlade API sets the SQLSTATE status variable to an error-class code
(and SQLCODE to a negative value) and the update or insert operation on
the DATETIME column fails.

Fetch or Insert into an mi_interval Variable
When a DataBlade API module uses an mi_interval variable to fetch or insert an
INTERVAL value, the DataBlade API must find a valid qualifier in the mi_interval
variable. The DataBlade API takes one of the following actions, based on the value
of the in_qual field the intrvl_t structure that is associated with the variable:
v When the in_qual field contains a valid qualifier, the DataBlade API checks it for

compatibility with the qualifier from the INTERVAL column value.
The two qualifiers are compatible if they belong to the same interval class: either
year to month or day to fraction. If the qualifiers are incompatible, the
DataBlade API sets the SQLSTATE status variable to an error-class code (and
SQLCODE is set to a negative value) and the select, update, or insert operation
fails.
If the qualifiers are compatible but not the same, the DataBlade API extends the
column value to match the in_qual qualifier. Extending is the operation of
adding or dropping fields within one of the interval classes of an INTERVAL
value to make it match a given qualifier. You can explicitly extend INTERVAL
values with the invextend() function.

Chapter 4. Using Date and Time Data Types 4-11

v When the in_qual field does not contain a valid qualifier, the DataBlade API
takes different actions for a fetch and an insert:
– For a fetch, if the in_qual field contains zero or is not a valid qualifier, the

DataBlade API uses the INTERVAL column value and its qualifier to initialize
the mi_interval variable.

– For an insert, if the in_qual field is not compatible with the INTERVAL
column or if it does not contain a valid value, the DataBlade API cannot
perform the insert or update operation.
The DataBlade API sets the SQLSTATE status variable to an error-class code
(and SQLCODE is set to a negative value) and the update or insert operation
on the INTERVAL column fails.

Implicit Data Conversion
You can select a DATETIME or INTERVAL column value into a character variable.
The DataBlade API converts the DATETIME or INTERVAL column value to a
character string before it stores it in the character variable. This character string
conforms to the ANSI SQL standards for DATETIME and INTERVAL values.

Important: IBM Informix products do not support automatic data conversion from
DATETIME and INTERVAL column values to numeric
(mi_double_precision, mi_integer, and so on) variables.

You can also insert a DATETIME or INTERVAL column value from a character
variable. The DataBlade API uses the data type and qualifiers of the column value
to convert the character value to a DATETIME or INTERVAL value. It expects the
character string to contain a DATETIME or INTERVAL value that conforms to
ANSI SQL standards.

If the conversion fails, the DataBlade API sets the SQLSTATE status variable to an
error-class code (and SQLCODE status variable to a negative value) and the
update or insert operation fails.

Important: IBM Informix products do not support automatic data conversion from
numeric and mi_date variables to DATETIME and INTERVAL column
values.

Transfers of Date-Time or Interval Data (Server)
For date-time or interval values to be portable when transferred across different
computer architectures, the DataBlade API provides the following functions to
handle type alignment and byte order.

DataBlade API Function Description

mi_get_datetime() Copies an aligned mi_datetime value, converting
any difference in alignment or byte order on the
client computer to that of the server computer

mi_get_interval() Copies an aligned mi_interval value, converting
any difference in alignment or byte order on the
client computer to that of the server computer

mi_put_datetime() Copies an aligned mi_datetime value, converting
any difference in alignment or byte order on the
server computer to that of the client computer

mi_put_interval() Copies an aligned mi_interval value, converting

4-12 IBM Informix DataBlade API Programmer’s Guide

any difference in alignment or byte order on the
server computer to that of the client computer

The mi_get_datetime(), mi_get_interval(), mi_put_datetime(), and
mi_put_interval() functions are useful in the send and receive support function of
an opaque data type that contains mi_datetime or mi_interval values. They allow
you to ensure that DATETIME or INTERVAL values remained aligned when
transferred to and from client applications. For more information, see “Conversion
of Opaque-Type Data with Computer-Specific Data Types” on page 16-21.

Conversion of Date-Time or Interval Representations
Both the DataBlade API library and the Informix ESQL/C library provide functions
that convert from the text (string) representation of a date, time, or interval value
to the binary (internal) representation for DATETIME or INTERVAL, respectively.

DataBlade API Functions for Date-Time or Interval Conversion
The DataBlade API provides the following functions for conversion between text
and binary representations of date-time or interval data.

DataBlade API Function Convert from Convert to

mi_datetime_to_string() DATETIME
(mi_datetime)

Date-time string

mi_interval_to_string() INTERVAL
(mi_interval)

Interval string

mi_string_to_datetime() Date-time string DATETIME (mi_datetime)

mi_string_to_interval() Interval string INTERVAL (mi_interval)

The mi_datetime_to_string(), mi_interval_to_string(), mi_string_to_datetime(),
and mi_string_to_interval() functions convert DATETIME and INTERVAL values
to and from the ANSI SQL standards formats for these data types.

Server Only

The mi_datetime_to_string(), mi_interval_to_string(), mi_string_to_datetime(),
and mi_string_to_interval() functions are useful in the input and output support
functions of an opaque data type that contains mi_datetime and mi_interval
values, as long as these values use the ANSI SQL formats. They enable you to
convert DATETIME and INTERVAL values between their external format (text) and
their internal (binary) format when transferred to and from client applications. For
more information, see “Conversion of Opaque-Type Data Between Text and Binary
Representations” on page 16-16.

End of Server Only

ESQL/C Functions for Date, Time, and Interval Conversion
The Informix ESQL/C function library provides functions for conversion between
text and binary representations of date, time, and interval data.

Data Conversion for DATETIME Values: The Informix ESQL/C library provides
the following functions that convert internal DATETIME (mi_datetime) values to
and from char strings.

Function Name Description

Chapter 4. Using Date and Time Data Types 4-13

dtcvasc() Converts an ANSI-compliant character string to an
mi_datetime value

dtcvfmtasc() Converts a character string to an mi_datetime
value

dtextend() Changes the qualifier of an mi_datetime value

dttoasc() Converts an mi_datetime value to an
ANSI-compliant character string

dttofmtasc() Converts an mi_datetime value to a character
string

The dttoasc() and dtcvasc() functions convert mi_datetime values to and from
the ANSI SQL standard values for DATETIME strings. The ANSI SQL standards
specify qualifiers and formats for character representations of DATETIME and
INTERVAL values. The standard qualifier for a DATETIME value is YEAR TO
SECOND, and the standard format is as follows:
YYYY-MM-DD HH:MM:SS

The dttofmtasc() and dtcvfmtasc() functions convert mi_datetime values to and
from a date-time string using a time-formatting mask. This time-formatting mask
contains the same formatting directives that the DBTIME environment variable
supports. (For a list of these directives, see the description of DBTIME in the IBM
Informix Guide to SQL: Reference.)

The dtextend() function extends an mi_datetime value to a different qualifier. You
can use it to convert between DATETIME and DATE values.

To convert a DATETIME value to a DATE value:

1. Use dtextend() to adjust the DATETIME qualifier to year to day.
2. Apply dttoasc() to create a character string in the form yyyy-mm-dd.
3. Use rdefmtdate() with a pattern argument of yyyy-mm-dd to convert the string

to a DATE value.

To convert a DATE value into a DATETIME value:

1. Declare a variable with a qualifier of year to day (or initialize the qualifier with
the value that the TU_DTENCODE (TU_YEAR,TU_DAY) macro returns).

2. Use rfmtdate() with a pattern of yyyy-mm-dd to convert the DATE value to a
character string.

3. Use dtcvasc() to convert the character string to a value in the prepared
DATETIME variable.

4. If necessary, use dtextend() to adjust the DATETIME qualifier.

Data Conversion for INTERVAL Values: The Informix ESQL/C library provides
the following functions that convert internal INTERVAL (mi_interval) values to
and from char text.

Function Name Description

incvasc() Converts an ANSI-compliant character string to an
interval value

incvfmtasc() Converts a character string to an interval value

intoasc() Converts an interval value to an ANSI-compliant
character string

4-14 IBM Informix DataBlade API Programmer’s Guide

intofmtasc() Converts an interval value to a string

invextend() Copies an interval value under a different qualifier

The intoasc() and incvasc() functions convert mi_interval values to and from the
ANSI SQL standards for INTERVAL strings. The ANSI SQL standards specify
qualifiers and formats for character representations of DATETIME and INTERVAL
values. The standards for an INTERVAL value specify the following two classes of
intervals:
v The YEAR TO MONTH class has the following format:

YYYY-MM

A subset of this format is also valid: for example, just a month interval.
v The DAY TO FRACTION class has the following format:

DD HH:MM:SS.F

Any subset of contiguous fields is also valid: for example, MINUTE TO
FRACTION.

The intofmtasc() and incvfmtasc() functions convert mi_interval values to and
from an interval string using a time-formatting mask. This time-formatting mask
contains the same formatting directives that the DBTIME environment variable
supports. (For a list of these directives, see the description of DBTIME in the IBM
Informix Guide to SQL: Reference.)

Operations on Date and Time Data
The Informix ESQL/C library provides the following functions to perform
operations on DATETIME (mi_datetime) and INTERVAL (mi_interval) values.

Function Name Description

dtaddinv() Adds an mi_interval value to a mi_datetime value

dtcurrent() Gets current date and time

dtsub() Subtracts one mi_datetime value from another

dtsubinv() Subtracts an mi_interval value from a mi_datetime
value

invdivdbl() Divides an mi_interval value by a numeric value

invdivinv() Divides an mi_interval value by an mi_interval
value

invmuldbl() Multiplies an mi_interval value by a numeric value

Any other operations, modifications, or analyses can produce unpredictable results.

Functions to Obtain Information on Date and Time Data
Table 4-3 shows the DataBlade API functions that obtain qualifier information for a
DATETIME (mi_datetime) or INTERVAL (mi_interval) value.

Table 4-3. DataBlade API Functions That Obtain DATETIME or INTERVAL Information

Source DataBlade API Functions

For a data type mi_type_qualifier(),
mi_type_precision(),
mi_type_scale()

Chapter 4. Using Date and Time Data Types 4-15

Table 4-3. DataBlade API Functions That Obtain DATETIME or INTERVAL
Information (continued)

Source DataBlade API Functions

For a UDR argument mi_fp_argprec(),
mi_fp_setargprec()
mi_fp_argscale(),
mi_fp_setargscale()

For a UDR return value mi_fp_retprec(),
mi_fp_setretprec()
mi_fp_retscale(),
mi_fp_setretscale()

For a column in a row (or field in a row type) mi_column_precision(),
mi_column_scale()

For an input parameter in a prepared statement mi_parameter_precision(),
mi_parameter_scale()

Suppose you have a table with a single column, dt_col, of type DATETIME YEAR
TO SECOND. If row_desc is a row descriptor for a row in this table, the code
fragment in Figure 4-1 obtains the name, qualifier, precision, and scale for this
column value.

In Figure 4-1, the value in the type_buf buffer would be as follows:
column=0, type name=datetime year to second, qualifier=3594 precision=14 scale=10

Qualifier of a Date-Time or Interval Data Type
The mi_type_qualifier() function returns the encoded qualifier of a DATETIME or
INTERVAL data type from a type descriptor. This qualifier is the internal value
that the database server uses to track the complete qualifier range, from the
starting field to the end field. It is the value stored in the collength column of the
syscolumns table for DATETIME and INTERVAL columns. You can use the
qualifier macros and constants (see Table 4-2 on page 4-9) to interpret this encoded
value.

In Figure 4-1, the value in type_qual contains the encoded integer qualifier (3594)
for the dt_col column. You can obtain the starting qualifier for the DATETIME
value from the encoded qualifier with the TU_START macro, as follows:
TU_START(type_qual)

MI_TYPE_DESC *col_type_desc;
MI_ROW_DESC *row_desc;
mi_string *type_name;
mi_integer type_qual;
...
col_type_desc = mi_column_typedesc(row_desc, 0);
type_name = mi_type_typename(col_type_desc);
type_qual = mi_type_qualifier(col_type_desc);
type_prec = mi_type_precision(col_type_desc);
type_scale = mi_type_scale(col_type_desc);
sprintf(type_buf,

"column=%d: type name=%s, qualifier=%d precision=%d \
scale=%d\n",
i, type_name, type_qual, type_prec, type_scale);

Figure 4-1. Obtaining Type Information for a DATETIME Value

4-16 IBM Informix DataBlade API Programmer’s Guide

This TU_START call yields 0, which is the value of the TU_YEAR constant in the
datetime.h header file. You can obtain also the ending qualifier for the DATETIME
value from the encoded qualifier with the TU_END macro, as follows:
TU_END(type_qual)

This TU_END call yields 10, which is the value of the TU_SECOND constant in the
datetime.h header file. Therefore, the encoded qualifier 3594 represents the
qualifier year to second.

Precision of a Date-Time or Interval Data Type
For the DATETIME and INTERVAL data types, the precision is the number of digits
required to store a value with the specified qualifier. In Figure 4-1, the call to the
mi_type_precision() function saves in type_prec the precision for the dt_col
column from its type descriptor. This precision has a value of 14 because a
DATETIME YEAR TO SECOND value requires 14 digits:
YYYYMMDDHHMMSS

YYYY is the 4-digit year.

MM is the 2-digit month.

DD is the 2-digit day of the month.

HH is the 2-digit hour.

MM is the 2-digit minute.

SS is the 2-digit second.

The DataBlade API also provides functions that obtain DATETIME or INTERVAL
precision of a column associated with an input parameter, a UDR argument, UDR
return value, or a row column. For a list of these functions, see Table 4-3 on page
4-15.

Scale of a Date-Time or Interval Data Type
For the DATETIME and INTERVAL data types, the scale is the encoded integer
value for the end qualifier. In Figure 4-1, the call to the mi_type_scale() function
stores in type_scale the scale for the dt_col column. This precision has a value of
10 because the end qualifier for the DATETIME YEAR TO SECOND data type is
SECOND, whose encoded value (TU_SECOND) is 10.

The DataBlade API also provides functions that obtain DATETIME or INTERVAL
scale of an input parameter, a UDR argument, UDR return value, or column. For a
list of these functions, see Table 4-3 on page 4-15.

Chapter 4. Using Date and Time Data Types 4-17

4-18 IBM Informix DataBlade API Programmer’s Guide

Chapter 5. Using Complex Data Types

In This Chapter . 5-1
Collections . 5-2

Collection Text Representation . 5-2
Collection Binary Representation . 5-2

Using a Collection Structure . 5-3
Using a Collection Descriptor . 5-3

Creating a Collection . 5-3
Opening a Collection . 5-4

Using mi_collection_open() . 5-4
Using mi_collection_open_with_options() . 5-5

Accessing Elements of a Collection . 5-6
Positioning the Cursor . 5-6
Inserting an Element . 5-7
Fetching an Element . 5-9
Updating a Collection . 5-13
Deleting an Element . 5-14
Determining the Cardinality of a Collection . 5-15

Releasing Collection Resources . 5-15
Closing a Collection . 5-15
Freeing the Collection Structure . 5-16

The listpos() UDR . 5-16
SQL Statements . 5-16
C-Language Implementation . 5-16
Sample listpos() Trace Output . 5-26

Row Types . 5-28
Row-Type Text Representation . 5-28
Row-Type Binary Representation . 5-29

Using a Row Descriptor . 5-29
Using a Row Structure . 5-32

Creating a Row Type . 5-33
Creating the Row Descriptor . 5-33
Assigning the Field Values. 5-33
Example: Creating a Row Type . 5-35

Accessing a Row Type . 5-36
Copying a Row Structure . 5-36
Releasing Row Resources . 5-37

Freeing a Row Structure . 5-38
Freeing a Row Descriptor . 5-38

In This Chapter
The DataBlade API provides support for the following complex data types.

Complex Data Type DataBlade API Data Type

Collection data types:

v LIST

v MULTISET

v SET

MI_COLLECTION, MI_COLL_DESC

Row types:

v Named

v Unnamed

MI_ROW, MI_ROW_DESC

© Copyright IBM Corp. 1996, 2009 5-1

This chapter describes these complex data types as well as the functions that the
DataBlade API supports to process collection and row-type data.

Collections
A collection is a complex data type that is made up of elements, each of which has
the same data type. A collection is similar to an array in the C language. The
DataBlade API provides support for collections in both their text and binary
representations.

Collection Text Representation
The DataBlade API supports a collection in text representation as a quoted string
with the following format:
"coll_type{elmnt_value, elmnt_value, ...}"

coll_type is the type of the collection: SET, MULTISET, or LIST.

elmnt_value is the text representation of the element value.

A collection in its text representation is often called a collection string. For example,
the following collection string provides the text representation for a SET of integer
values:
"SET{1, 6, 8, 3}"

For a complete description of the text representation of a collection, see the
description of the Literal Collection segment in the IBM Informix Guide to SQL:
Syntax.

Collection Binary Representation
The database server supports the following kinds of collections.

Collection Data Type Description

LIST An ordered group of elements that can contain
duplicate elements

MULTISET An unordered group of elements that can contain
duplicate elements

SET An unordered group of elements that cannot
contain duplicate elements

All collection data types use the same internal format to store their values. For
more information on collection data types, see the IBM Informix Guide to SQL:
Reference.

Tip: The internal format of a collection data type is often referred to as its binary
representation.

The DataBlade API supports the following SQL collection data types and data type
structures:
v A collection structure (MI_COLLECTION) holds the binary representation of the

collection.
v A collection descriptor (MI_COLL_DESC) provides information about the

collection.

5-2 IBM Informix DataBlade API Programmer’s Guide

Using a Collection Structure
A collection structure, MI_COLLECTION, is a DataBlade API structure that holds
the collection (LIST, MULTISET, or SET) and its elements. The following table
summarizes the memory operations for a collection structure.

Memory Duration Memory Operation Function Name

Current memory duration Constructor mi_collection_copy(),
mi_collection_create(),
mi_streamread_collection()

Destructor mi_collection_free()

The following DataBlade API functions return an existing collection structure.

DataBlade API Function Description

mi_value(),
mi_value_by_name()

Returns a collection structure as a column value when the
function returns an MI_COLLECTION_VALUE value status

Using a Collection Descriptor
A collection descriptor, MI_COLL_DESC, is a DataBlade API structure that contains
a collection cursor to access elements of a collection. The following table
summarizes the memory operations for a collection descriptor.

Memory Duration Memory Operation Function Name

Current memory duration Constructor mi_collection_open(),
mi_collection_open_with_options()

Destructor mi_collection_close()

Important: To a DataBlade API module, the collection descriptor
(MI_COLL_DESC) is an opaque C data structure. Do not access its
internal fields directly. The internal structure of a collection descriptor
may change in future releases. Therefore, to create portable code,
always use the functions that access collection elements.

Creating a Collection
To create a collection, use the mi_collection_create() function. The
mi_collection_create() function is the constructor function for the collection
structure (MI_COLLECTION). The collection structure includes the type of
collection (LIST, MULTISET, or SET) and the element data type.

The following code shows an example of how to use the mi_collection_create()
function to create a new list of integers:
/*
* Create a LIST collection with INTEGER elements
*/

MI_CONNECTION *conn;
MI_TYPEID *typeid;
MI_COLLECTION *coll;

typeid = mi_typestring_to_id(conn, "list(integer not null)");

if (typeid != NULL)
{
coll = mi_collection_create(conn, typeid);

...

Chapter 5. Using Complex Data Types 5-3

Opening a Collection
Once you have a collection structure for a collection, you can open the collection
with one of the functions in Table 5-1.

Table 5-1. DataBlade API Functions To Open a Collection

DataBlade API Function Use

mi_collection_open() Opens a collection in a read/write scroll cursor

mi_collection_open_with_options() Opens a collection in either of the following
open modes:

v Read only

v Nonscrolling

Both of the functions in Table 5-1 are constructor functions for a collection
descriptor. Use this collection descriptor in calls to DataBlade API functions that
access the collection.

When one of the functions in Table 5-1 opens a collection, it creates a collection
cursor, which is an area of memory that serves as a holding place for collection
elements. This cursor has an associated cursor position, which points to one element
of the collection cursor. When these functions complete, the cursor position points
to the first element of the collection.

The difference between the mi_collection_open() and
mi_collection_open_with_options() functions is the open mode that they create for
the collection cursor.

Using mi_collection_open()
When you open a collection with mi_collection_open(), you obtain an update
scroll cursor to hold the collection elements. Therefore, you can perform the
following operations on a collection opened with mi_collection_open().

Cursor Attribute Valid Operations

Read/write cursor Insert, delete, update, fetch

Scroll cursor Fetch forward and backward through the collection
elements

All Fetch operations are valid. (See Table 5-2 on
page 5-6)

Figure 5-1 shows an example of using the mi_collection_open() function to create
and open a LIST collection with INTEGER elements.

5-4 IBM Informix DataBlade API Programmer’s Guide

Figure 5-2 shows the cursor position after the mi_collection_open() call.

Using mi_collection_open_with_options()
When you open a collection with mi_collection_open_with_options(), you can
override the cursor characteristics that mi_collection_open() uses. The control
argument of mi_collection_open_with_options() can create a collection cursor
with any of the cursor characteristics in the following table.

Cursor Attribute Control Flag Valid Operations

Read-only cursor MI_COLL_READONLY Fetch only

Sequential
(nonscrolling)
cursor

MI_COLL_NOSCROLL Fetch forward only (MI_CURSOR_NEXT)
through the collection elements

Any fetch operation that moves the
cursor position backward in the cursor is
not valid.

Most collections need the capabilities of the read/write scroll cursor that
mi_collection_open() creates. However, the database server can perform a special
optimization for a collection from a collection subquery if you use a read-only
sequential cursor to hold the collection subquery. It can fetch each row of the
subquery on demand. That is, you can fetch the elements one at a time with
mi_collection_fetch(). You can use mi_collection_open() or
mi_collection_open_with_options() to create some other type of cursor for a
collection subquery. However, if a collection subquery resides in some other type
of cursor, the database server fetches all the rows of the subquery and puts them in
the collection cursor.

To create a collection subquery, preface the query with the MULTISET keyword.
For example, the following SQL statement creates a collection subquery of order
numbers for customer 120 and then sends them to the check_orders()
user-defined function (which expects a MULTISET argument):

/*
* Create and open a collection
*/
MI_CONNECTION *conn;
MI_COLL_DESC *coll_desc;
MI_COLLECTION *coll_ptr;
MI_TYPEID *type_id;
...
type_id = mi_typestring_to_id(conn, "list(integer not null)");
coll_ptr = mi_collection_create(conn, type_id);
coll_desc = mi_collection_open(conn, coll_ptr);

Figure 5-1. Opening a LIST (INTEGER) Collection

Figure 5-2. Collection Cursor After the Collection Is Opened

Chapter 5. Using Complex Data Types 5-5

SELECT check_orders(
MULTISET(SELECT ITEM order_num FROM orders

WHERE customer_num = 120))
FROM customer
WHERE customer_num = 120;

To have the database server perform the collection-subquery optimization, use the
following call to mi_collection_open_with_options() when you open a collection
subquery:
mi_collection_open_with_options(conn, coll_ptr,

(MI_COLL_READONLY | MI_COLL_NOSCROLL));

Accessing Elements of a Collection
The DataBlade API provides the following functions for accessing collection data
types.

DataBlade API Collection Function Description

mi_collection_copy() Creates a copy of an existing open collection

mi_collection_delete() Deletes an element from a collection

mi_collection_fetch() Fetches an element from a collection

mi_collection_insert() Inserts a new element into an open collection

mi_collection_update() Updates an element in an open collection

Positioning the Cursor
When you open a collection cursor with mi_collection_open(), the cursor position
points to the first element of the collection. The cursor position identifies the
current element in the collection cursor. The DataBlade API functions that access a
collection must specify where in the collection to perform the operation. To specify
location, these functions all have an action argument of type
MI_CURSOR_ACTION, which supports the cursor-action constants in Table 5-2.

Table 5-2. Valid Cursor-Action Constants

Cursor Movement Cursor-Action Constant

Valid Cursor Types

Sequential Scroll

Move the cursor position one element
forward within the cursor

MI_CURSOR_NEXT Yes Yes

Move the cursor position one element
backward within the cursor

MI_CURSOR_PRIOR No Yes

Move the cursor position to the
beginning of the cursor, at the first
element

MI_CURSOR_FIRST Only if the cursor
position does not
move backward

Yes

Move the cursor position to the end of
the cursor, at the last element

MI_CURSOR_LAST Yes Yes

Move the cursor to the absolute position
within the cursor, where the first
element in the cursor is at position 1.

MI_CURSOR_ABSOLUTE Yes Yes

As long as collection is a LIST because
only LISTs have ordered elements

5-6 IBM Informix DataBlade API Programmer’s Guide

Table 5-2. Valid Cursor-Action Constants (continued)

Cursor Movement Cursor-Action Constant

Valid Cursor Types

Sequential Scroll

Move the cursor forward or back a
specified number of elements from the
current position.

MI_CURSOR_RELATIVE Only if relative
position is a
positive value

Yes

Relative position
can be a negative or
positive value

As long as collection is a LIST because
only LISTs have ordered elements

Leave the cursor position at its current
location.

MI_CURSOR_CURRENT Yes Yes

The following code fragment uses the mi_collection_fetch() function to fetch a
VARCHAR element from a collection:
/*
* Fetch next VARCHAR() element from a collection.
*/

MI_CONNECTION *conn;
MI_COLL_DESC *colldesc;
MI_ROW_DESC *rowdesc;
MI_COLLECTION *nest_collp;
MI_DATUM value;
mi_integer ret_code, ret_len;
char *buf;

/* Fetch a VARCHAR() type */
ret_code = mi_collection_fetch(conn, colldesc,

MI_CURSOR_NEXT, 0, &value, &ret_len);

switch (ret_code)
{
case MI_NORMAL_VALUE:

buf = mi_get_vardata((mi_lvarchar *)value);
DPRINTF("trace_class", 15, ("Value: %s", buf));
break;

case MI_NULL_VALUE:
DPRINTF("trace_class", 15, ("NULL"));
break;

case MI_ROW_VALUE:
rowdesc = (MI_ROW_DESC *)value;
break;

case MI_COLLECTION_VALUE:
nested_collp = (MI_COLLECTION *)value;
break;

case MI_END_OF_DATA:
DPRINTF("trace_class", 15,

("End of collection reached"));
return (100);

}

Inserting an Element
You insert an element into an open collection with the mi_collection_insert()
function. You can perform an insert operation only on a read/write cursor. An
insert is not valid on a read-only cursor.

Chapter 5. Using Complex Data Types 5-7

The mi_collection_insert() function uses an MI_DATUM value to represent an
element that it inserts into a collection. The contents of the MI_DATUM structure
depend on the passing mechanism that the function used, as follows:

Server Only

v In a C user-defined routine (UDR), when mi_collection_insert() inserts an
element value, it can pass the value by reference or by value, depending on the
data type of the column value. If the function passes the element value by value,
the MI_DATUM structure contains the value. If the function passes the element
value by reference, the MI_DATUM structure contains a pointer to the value.

End of Server Only

Client Only

v In a client LIBMI application, when mi_collection_insert() inserts an element
value, it always passes the value in an MI_DATUM structure by reference. Even
for values that you can pass by value in a C UDR (such as an INTEGER values),
this function passes the element value by reference. The MI_DATUM structure
contains a pointer to the value.

End of Client Only

The mi_collection_insert() function inserts the new element at the location in the
collection cursor that its action argument specifies. For a list of valid cursor-action
flags, see Table 5-2 on page 5-6.

Server Only

The following call to mi_collection_insert() can pass in an actual value because it
inserts an INTEGER element into a LIST collection and integer values are passed
by value in a C UDR:
MI_CONNECTION *conn;
MI_DATUM datum;
MI_COLL_DESC *colldesc;

datum=6;
mi_collection_insert(conn, colldesc, datum,

MI_CURSOR_ABSOLUTE, 1);

datum=3;
mi_collection_insert(conn, colldesc, datum,

MI_CURSOR_ABSOLUTE, 2);

datum=15;
mi_collection_insert(conn, colldesc, datum,

MI_CURSOR_ABSOLUTE, 3);

datum=1;
mi_collection_insert(conn, colldesc, datum,

MI_CURSOR_ABSOLUTE, 4);

datum=4;
mi_collection_insert(conn, colldesc, datum,

MI_CURSOR_ABSOLUTE, 5);

datum=8;
mi_collection_insert(conn, colldesc, datum,

MI_CURSOR_ABSOLUTE, 6);

5-8 IBM Informix DataBlade API Programmer’s Guide

End of Server Only

Figure 5-3 shows the cursor position after the preceding calls to
mi_collection_insert() complete.

These mi_collection_insert() calls specify absolute addressing
(MI_CURSOR_ABSOLUTE) for the collection because the collection is defined as a
LIST. Only LIST collections have ordered position assigned to their elements. SET
and MULTISET collections do not have ordered position of elements.

Fetching an Element
You fetch an element from an open collection with the mi_collection_fetch()
function. You can perform a fetch operation on a read/write or a read-only cursor.
To fetch a collection element, you must specify:
v The connection with which the collection is associated
v The collection descriptor for the collection from which you want to fetch

elements
v The location of the cursor position at which to begin the fetch
v A variable that holds a single fetched element and one that holds its length

Moving Through a Cursor: The mi_collection_fetch() function obtains the
element specified by its action argument from the collection cursor. For a list of
valid cursor-action flags, see Table 5-2 on page 5-6. You can move the cursor
position back to the beginning of the cursor with the mi_collection_fetch()
function, as the following example shows:
mi_collection_fetch(conn, coll_desc, MI_CURSOR_FIRST, 0,

coll_element, element_len);

if (((mi_integer)coll_element != 1) ||
(element_len != sizeof(mi_integer)))

/* raise an error */

This function moves the cursor position backward with respect to its position after
a call to mi_collection_insert() (Figure 5-3 on page 5-9). The
mi_collection_fetch() function is valid only for the following kinds of cursors:
v Sequential collection cursors, if the cursor position does not move backward
v Scroll collection cursors

Only scroll cursors provide the ability to move the cursor position forward and
backward.

Figure 5-4 shows the cursor position and coll_element value after the preceding
call to mi_collection_fetch().

Figure 5-3. Collection Cursor After Inserts Complete

Chapter 5. Using Complex Data Types 5-9

Figure 5-5 shows the cursor position and value of coll_element after the following
mi_collection_fetch() call:
mi_collection_fetch(conn, coll_desc, MI_CURSOR_NEXT, 0,

coll_element, element_len);

Figure 5-6 shows the cursor position and value of coll_element after the following
mi_collection_fetch() call:
mi_collection_fetch(conn, coll_desc, MI_CURSOR_RELATIVE, 3,

coll_element, element_len);

The preceding mi_collection_fetch() call is valid only if the collection is a LIST.
Only LIST collections are ordered. Therefore relative fetches, which specify the
number of elements to move forward or backward, can only be used on LIST
collections. If you try to perform a relative fetch on a SET or MULTISET,
mi_collection_fetch() generates an error.

Figure 5-7 shows the cursor position and value of coll_element after the following
mi_collection_fetch() call:
mi_collection_fetch(conn, coll_desc, MI_CURSOR_RELATIVE, -2,

coll_element, element_len);

Figure 5-4. Collection Cursor After Fetch First

Figure 5-5. Collection Cursor After Fetch Next

Figure 5-6. Collection Cursor After Fetch Relative 3

5-10 IBM Informix DataBlade API Programmer’s Guide

Because the preceding mi_collection_fetch() call moves the cursor position
backward, the call is valid only if the collection cursor is a scroll cursor. When you
open a collection with mi_collection_open(), you get a read/write scroll collection
cursor. However, if you open the collection with
mi_collection_open_with_options() and the MI_COLL_NOSCROLL option,
mi_collection_fetch() generates an error.

Figure 5-8 shows the cursor position and value of coll_element after the following
mi_collection_fetch() call:
mi_collection_fetch(conn, coll_desc, MI_CURSOR_ABSOLUTE, 6,

coll_element, element_len);

The preceding mi_collection_fetch() call is valid only if the collection is a LIST.
Because absolute fetches specify a position within the collection by number, they
can only be used on an ordered collection (a LIST). If you try to perform an
absolute fetch on a SET or MULTISET, mi_collection_fetch() generates an error.

Because only six elements are in this collection, the absolute fetch of 6 positions the
cursor on the last element in the collection. This result is the same as if you had
issued the following mi_collection_fetch():
mi_collection_fetch(conn, coll_desc, MI_CURSOR_LAST, 0,

coll_element, element_len);

The fetch last is useful when you do not know the number of elements in a
collection and want to obtain the last one.

Obtaining the Element Value: The mi_collection_fetch() function uses an
MI_DATUM value to represent an element that it fetches from a collection. You
must pass in a pointer to the value buffer in which mi_collection_fetch() puts the
element value. However, you do not have to allocate memory for this buffer. The
mi_collection_fetch() function handles memory allocation for the MI_DATUM
value that it passes back.

Figure 5-7. Collection Cursor After Fetch Relative -2

Figure 5-8. Collection Cursor After Fetch Absolute 6

Chapter 5. Using Complex Data Types 5-11

The contents of the MI_DATUM structure that holds the retrieved element
depends on the passing mechanism that the function used, as follows:

Server Only

v In a C UDR, when mi_collection_fetch() passes back an element value, it
passes back the value by reference or by value, depending on the data type of
the column value. If the function passes back the element value by value, the
MI_DATUM structure contains the value. If the function passes back the
element value by reference, the MI_DATUM structure contains a pointer to the
value.

End of Server Only

Client Only

v In a client LIBMI application, when mi_collection_fetch() passes back an
element value, it always passes back the value by reference. Even for values that
you can pass by value in a C UDR (such as an INTEGER value), this function
passes back the element value by reference. The MI_DATUM structure contains
a pointer to the value.

End of Client Only

Important: The difference in behavior of mi_collection_fetch() between C UDRs
and client LIBMI applications means that collection-retrieval code is
not completely portable between these two types of DataBlade API
modules. When you move your DataBlade API code from one of these
uses to another, you must change the collection-retrieval code to use
the appropriate passing mechanism for element values that
mi_collection_fetch() returns.

You declare a value buffer for the fetched element and pass in the address of this
buffer to mi_collection_fetch(). You can declare the buffer in either of the
following ways:
v If you know the data type of the field value, declare the value buffer of this data

type.
Declare the value buffer as a pointer to the field data type, regardless of whether
the data type is passed by reference or by value.

v If you do not know the data type of the field value, declare the value buffer to
have the MI_DATUM data type.
Your code can dynamically determine the field type with the
mi_column_type_id() or mi_column_typedesc() function. You can then
convert (or cast) the MI_DATUM value to a data type that you need.

Figures 5-4 through 5-8 fetch elements from a LIST collection of INTEGER values.
To fetch elements from this LIST, you can declare the value buffer as follows:
mi_integer *coll_element;

Server Only

Because you can pass INTEGER values by value in a C UDR, you access the
MI_DATUM structure that these calls to mi_collection_fetch() pass back as the
actual value, as follows:
int_element = (mi_integer)coll_element;

5-12 IBM Informix DataBlade API Programmer’s Guide

If the element type is a data type that must be passed by reference, the contents of
the MI_DATUM structure that mi_collection_fetch() passes back is a pointer to
the actual value. The following call to mi_collection_fetch() also passes in the
value buffer as a pointer. However, it passes back an MI_DATUM value that
contains a pointer to a FLOAT (mi_double_precision) value:
mi_double_precision *coll_element, flt_element;
...
/* Fetch a FLOAT value in a C UDR */
mi_collection_fetch(conn, coll_desc, action, jump,

&coll_element, &retlen);
flt_element = *coll_element;

End of Server Only

Client Only

For the fetches in Figures 5-4 through 5-8, a client LIBMI application declares the
value buffer in the same way as a C UDR. However, because all data types are
passed back by reference, the MI_DATUM structure that mi_collection_fetch()
passes back contains a pointer to the INTEGER value, not the actual value itself:
mi_integer *coll_element, int_element;
...
/* Fetch an INTEGER value in a client LIBMI application */
mi_collection_fetch(conn, coll_desc, action, jump,

&coll_element, &retlen);
int_element = *coll_element;

End of Client Only

Updating a Collection
You update an element in an open collection with the mi_collection_update()
function. You can perform an update operation only on a read/write cursor. An
update is not valid on a read-only cursor.

The mi_collection_update() function uses an MI_DATUM value to represent the
new value for the element it updates in a collection. The contents of this
MI_DATUM structure depend on the passing mechanism that the function used,
as follows:

Server Only

v In a C UDR, when mi_collection_update() updates an element value, it can
pass the value by reference or by value, depending on the data type of the
column value. If the function passes back the element value by value, the
MI_DATUM structure contains the value. If the function passes back the
element value by reference, the MI_DATUM structure contains a pointer to the
value.

End of Server Only

Client Only

v In a client LIBMI application, when mi_collection_update() updates an element
value, it always passes the value by reference. Even for values that you can pass
by value in a C UDR (such as an INTEGER value), these functions return the

Chapter 5. Using Complex Data Types 5-13

column value by reference. The MI_DATUM structure contains a pointer to the
value.

End of Client Only

The mi_collection_update() function updates the element at the location in the
collection cursor that its action argument specifies. For a list of valid cursor-action
flags, see Table 5-2 on page 5-6.

Server Only

The following code shows an example of using the mi_collection_update()
function to update the first element in a collection:
/*
* Update position 1 in the collection to contain 3.0
* Note that single-precision value is passed by REFERENCE.
*/

MI_CONNECTION *conn;
MI_COLL_DESC *colldesc;
MI_DATUM val;
mi_integer ret, jump;
mi_real value;

/* Update 1st element to 3.0 */
value = 3.0;
val = (MI_DATUM)&value;
jump = 1;
DPRINTF("trc_class", 11,

("Update set value %d @%d", value, jump));

/* Pass single-precision values by reference */
ret = mi_collection_update(conn, colldesc, val,

MI_CURSOR_ABSOLUTE, jump);

if (ret != MI_OK)
{
DPRINTF("trc_class", 11,

("Update @%d value %d MI_CURSOR_ABSOLUTE\
failed", jump, value));

}

End of Server Only

Deleting an Element
You delete an element from an open collection with the mi_collection_delete()
function. You can perform a delete operation only on a read/write cursor. A delete
is not valid on a read-only cursor.

The mi_collection_delete() function deletes the element at the location in the
collection cursor that its action argument specifies. For a list of valid cursor-action
flags, see Table 5-2 on page 5-6.

The following code shows an example of using the mi_collection_delete()
function to delete the last element of a collection:
/*
* Delete last element in the collection
*/

MI_CONNECTION *conn;
MI_COLL_DESC *coll_desc;

5-14 IBM Informix DataBlade API Programmer’s Guide

mi_integer ret;

ret = mi_collection_delete(conn, coll_desc,
MI_CURSOR_LAST, 0);

Determining the Cardinality of a Collection
The DataBlade API provides the mi_collection_card() function for obtaining the
number of elements in a collection (its cardinality). The following code fragment
uses the mi_collection_card() function to perform separate actions based on
whether a collection is NULL or has elements (possibly 0 elements):
MI_COLLECTION *collp;
mi_integer cardinality;
mi_boolean isnull;

/* Attach collp to a collection */

cardinality = mi_collection_card(collp, &isnull);
if (isnull == MI_TRUE)

{
mi_db_error_raise(conn, MI_MESSAGE, "Warning: Collection is NULL.");
}

else
{
if (cardinality > 0)

{
/* Open collection and perform action on individual elements */
}

}

Releasing Collection Resources
When your DataBlade API module no longer needs a collection, you can release
the resources that it uses with the following DataBlade API functions.

DataBlade API Function Purpose

mi_collection_close() Closes the collection cursor and frees the collection
descriptor.

mi_collection_free() Frees the collection structure

Closing a Collection
A collection descriptor contains a collection cursor. The scope of the collection
descriptor and its associated collection cursor is from the time they are created, by
mi_collection_open_with_options() or mi_collection_open(), until one of the
following events occurs:
v The mi_collection_close() function frees the collection descriptor, thereby

closing and freeing the associated collection cursor.

Server Only

v The current memory duration expires.

End of Server Only

v The mi_close() function closes the connection.

To conserve resources, use the mi_collection_close() function to free the collection
descriptor as soon as your DataBlade API module no longer needs it. This function
also explicitly closes and frees the associated collection cursor. The

Chapter 5. Using Complex Data Types 5-15

mi_collection_close() function is the destructor function for the collection
descriptor as well as for its associated cursor.

Freeing the Collection Structure
The collection structure holds the collection elements. The scope of this structure is
from the time it is created, by mi_collection_create() or mi_collection_copy(),
until one of the following events occurs:
v The mi_collection_free() function frees the collection structure.

Server Only

v The current memory duration expires.

End of Server Only

v The mi_close() function closes the connection.

To conserve resources, use the mi_collection_free() function to free the collection
structure once your DataBlade API module no longer needs it. The
mi_collection_close() function is the destructor function for the collection
structure.

The listpos() UDR
The sample listpos() UDR consists of the following parts:
v The SQL statements that register the function, create a table, and run the

listpos() user-defined function
v The C code to implement the listpos() UDR
v Sample output from the listpos.trc trace file that the listpos() UDR generates

SQL Statements
The SQL statements for the following tasks handle the database objects that the
listpos() function requires:
1. Register the user-defined function named listpos():

CREATE FUNCTION listpos()
RETURNS INTEGER
EXTERNAL NAME '$USERFUNCDIR/sql_listpos.udr'
LANGUAGE C;

2. Create a table named tab2:
CREATE TABLE tab2 (a INT);
INSERT INTO tab2 VALUES (1);

3. Add the trace class that the DPRINTF statements in listpos() use:
INSERT INTO informix.systraceclasses(name)

VALUES ('trace_class');

4. Run the listpos() UDR:
SELECT listpos() FROM tab2;

5. Clean up the resources:
DROP FUNCTION listpos;
DROP TABLE tab2;

C-Language Implementation
The following C file contains the functions that implement the listpos()
user-defined function:
/* C file (listpos.c) contents:
* Examples of mi_collection_*() functions
*/

5-16 IBM Informix DataBlade API Programmer’s Guide

#include <stdio.h>
#include <mi.h>
#include <sqltypes.h>

void do_fetch(
MI_CONNECTION *conn,
MI_COLL_DESC *colldesc,
MI_CURSOR_ACTION action,
mi_integer type,
mi_integer jump,
MI_DATUM expected);

mi_integer create_collection(
MI_CONNECTION *conn,
char *typestring,
MI_COLLECTION **ret_coll_struc,
MI_COLL_DESC **ret_coll_desc);

mi_integer list_int_ins(MI_CONNECTION *conn);
mi_integer list_char_ins(MI_CONNECTION *conn);
mi_integer list_float_ins(MI_CONNECTION *conn);

/***
* Function: The listpos() user-defined routine
* Purpose: Run inserts on three types of LIST collections:
* LIST of INTEGER: list_int_ins()
* LIST of CHAR: list_char_ins()
* LIST of FLOAT: list_float_ins()
* Results are printed to a trace file named 'listpos.trc',
* which is the file that the mi_tracefile_set() function
* specifies.
* Return Values:
* 0 Success
* -1 No valid connection descriptor
* -50 Unable to convert data type to type identifer
* -51 Unable to create specified collection
* -52 Unable to open new collection
*/
mi_integer listpos()
{

MI_CONNECTION *conn;
mi_integer ret_code, error;

/* Obtain a UDR connection descriptor and verify that it
* is valid
*/

conn = mi_open(NULL, NULL, NULL);
if (conn == NULL)

return (-1);

/* Turn on tracing of trace class "trace_class" and set the
* trace file to listpos.trc.
*/

mi_tracelevel_set("trace_class 20");
mi_tracefile_set("/usr/local/udrs/colls/listpos.trc");

/* Run list_int_ins() to insert INTEGER values into the LIST */
error = 0;
ret_code = list_int_ins(conn);
if (ret_code)

error = ret_code;

/* Run list_char_ins() to insert CHAR values into the LIST */
list_char_ins(conn);
if (ret_code)

error = ret_code;

Chapter 5. Using Complex Data Types 5-17

/* Run list_float_ins() to insert FLOAT values into the LIST */
list_float_ins(conn);
if (ret_code)

error = ret_code;

return (ret_code);
} /* end listpos() */

/***
* Function: list_int_ins()
* Purpose:
* 1. insert 3 INTEGER values into a LIST
* 2. verify each inserted value
* 3. update first element
* Return Values:
* 0 Success
* -50 Unable to convert data type to type identifer
* -51 Unable to create specified collection
* -52 Unable to open new collection
* (status of steps in trace file)
*/
mi_integer list_int_ins(MI_CONNECTION *conn)
{

MI_COLLECTION *list;
MI_COLL_DESC *colldesc;

MI_CURSOR_ACTION action;
mi_integer jump, value, ret_code;

/* Create the LIST of INTEGERs */
ret_code = create_collection(conn, "list(int not null)",

&list, &colldesc);
if (ret_code != 0)

return (ret_code);

action = MI_CURSOR_ABSOLUTE;

/* Insert three INTEGER values
* position 1: 1
* position 2: 2
* position 3: 3
* INTEGER datums are passed by value. Normally one would use
* an action of MI_CURSOR_NEXT (jump is ignored), but this
* function inserts at positions.
*/

value = jump = 1;
DPRINTF("trace_class", 15,

("Insert %d into LIST of INTEGER @%d", value,
jump));

ret_code = mi_collection_insert(conn, colldesc,
(MI_DATUM) value, action, jump);

if (ret_code != MI_OK)
{
DPRINTF("trace_class", 15,

("list_int_ins: insert MI_CURSOR_ABSOLUTE %d @%d failed",
value, jump));
}

value = jump = 2;
DPRINTF("trace_class", 15,

("Insert %d into LIST of INTEGER @%d", value,
jump));

ret_code = mi_collection_insert(conn, colldesc,
(MI_DATUM) value, action, jump);

if (ret_code != MI_OK)

5-18 IBM Informix DataBlade API Programmer’s Guide

{
DPRINTF("trace_class", 15,

("list_int_ins: insert MI_CURSOR_ABSOLUTE %d @%d failed",
value, jump));
}

value = jump = 3;
DPRINTF("trace_class", 15,

("Insert %d into LIST of INTEGER @%d", value,
jump));

ret_code = mi_collection_insert(conn, colldesc,
(MI_DATUM) value, action, jump);

if (ret_code != MI_OK)
{
DPRINTF("trace_class", 15,

("list_int_ins: insert MI_CURSOR_ABSOLUTE %d @%d failed",
value, jump));
}

/* Fetch each inserted INTEGER value from the collection,
* comparing it against the value actually inserted.
* Use a jump equal to the data value to simplify the
* validation.
*/

dofetch(conn, colldesc, MI_CURSOR_ABSOLUTE, SQLINT, 1,
(MI_DATUM) 1);

dofetch(conn, colldesc, MI_CURSOR_ABSOLUTE, SQLINT, 3,
(MI_DATUM) 3);

dofetch(conn, colldesc, MI_CURSOR_ABSOLUTE, SQLINT, 2,
(MI_DATUM) 2);

dofetch(conn, colldesc, MI_CURSOR_PRIOR, SQLINT, 1,
(MI_DATUM) 1);

dofetch(conn, colldesc, MI_CURSOR_LAST, SQLINT, 3,
(MI_DATUM) 3);

dofetch(conn, colldesc, MI_CURSOR_FIRST, SQLINT, 1,
(MI_DATUM) 1);

dofetch(conn, colldesc, MI_CURSOR_RELATIVE, SQLINT, 2,
(MI_DATUM) 3);

dofetch(conn, colldesc, MI_CURSOR_RELATIVE, SQLINT, -2,
(MI_DATUM) 1);

/* Update 1st element to 3. */
jump=1;
value=3;
DPRINTF("trace_class", 15,

("Update %d into LIST of INTEGER @%d", value,
jump));

ret_code = mi_collection_update(conn, colldesc,
(MI_DATUM) value, action, jump);

if (ret_code != MI_OK)
{
DPRINTF("trace_class", 15,

("list_int_ins: update MI_CURSOR_ABSOLUTE @%d failed",
jump));
}

/* Fetch the updated element back and validate it */
dofetch(conn, colldesc, MI_CURSOR_ABSOLUTE, SQLINT, 1,

(MI_DATUM) 3);

/* Free collection resources */
mi_collection_close(conn, colldesc);
mi_collection_free(conn, list);

return 0;
} /* end list_int_ins() */

Chapter 5. Using Complex Data Types 5-19

/***
* Function: list_float_ins()
* Purpose:
* 1. insert 3 FLOAT values into a LIST
* 2. verify each inserted value
* 3. update first element
* Return Values:
* 0 Success
* -50 Unable to convert data type to type identifer
* -51 Unable to create specified collection
* -52 Unable to open new collection
* (status of steps in trace file)
*/
mi_integer list_float_ins(MI_CONNECTION *conn)
{

MI_COLLECTION *list;
MI_COLL_DESC *colldesc;

MI_CURSOR_ACTION action;
mi_integer jump, value, ret_code;
mi_double_precision val1, val2, val3, val4;

/* Create the LIST of FLOATs */
ret_code = create_collection(conn,

"list(float not null)", &list, &colldesc);
if (ret_code != 0)

return (ret_code);

action = MI_CURSOR_ABSOLUTE;

/* Insert three FLOAT values
* position 1: 1.1
* position 2: -2.2
* position 3: 3.3
* FLOAT datums are passed by reference.
*/

val1 = 1.1;
val2 = -2.2;
val3 = 3.3;

jump = 1;
DPRINTF("trace_class", 15,

("Insert %f into LIST of FLOAT @%d", val1, jump));
ret_code = mi_collection_insert(conn, colldesc,

(MI_DATUM) &val1, action, jump);
if (ret_code != MI_OK)

{
DPRINTF("trace_class", 15,

("list_float_ins: insert MI_CURSOR_ABSOLUTE %f @%d failed",
val1, jump));
}

jump = 2;
DPRINTF("trace_class", 15,

("Insert %f into LIST of FLOAT @%d", val2, jump));
ret_code = mi_collection_insert(conn, colldesc,

(MI_DATUM) &val2, action, jump);
if (ret_code != MI_OK)

{
DPRINTF("trace_class", 15,

("list_float_ins: insert MI_CURSOR_ABSOLUTE %f @%d failed",
val2, jump));
}

jump = 3;
DPRINTF("trace_class", 15,

5-20 IBM Informix DataBlade API Programmer’s Guide

("Insert %f into LIST of FLOAT @%d", val3, jump));
ret_code = mi_collection_insert(conn, colldesc,

(MI_DATUM) &val3, action, jump);
if (ret_code != MI_OK)

{
DPRINTF("trace_class", 15,

("list_float_ins: insert MI_CURSOR_ABSOLUTE %f @%d failed",
val3, jump));
}

/* Fetch each inserted FLOAT value from the collection,
* comparing it against the value actually inserted.
*/

dofetch(conn, colldesc, MI_CURSOR_ABSOLUTE, SQLFLOAT, 1,
(MI_DATUM) &val1);

dofetch(conn, colldesc, MI_CURSOR_ABSOLUTE, SQLFLOAT, 3,
(MI_DATUM) &val3);

dofetch(conn, colldesc, MI_CURSOR_ABSOLUTE, SQLFLOAT, 2,
(MI_DATUM) &val2);

dofetch(conn, colldesc, MI_CURSOR_PRIOR, SQLFLOAT, 1,
(MI_DATUM) &val1);

dofetch(conn, colldesc, MI_CURSOR_LAST, SQLFLOAT, 3,
(MI_DATUM) &val3);

dofetch(conn, colldesc, MI_CURSOR_FIRST, SQLFLOAT, 1,
(MI_DATUM) &val1);

dofetch(conn, colldesc, MI_CURSOR_RELATIVE, SQLFLOAT, 2,
(MI_DATUM) &val3);

dofetch(conn, colldesc, MI_CURSOR_RELATIVE, SQLFLOAT, -2,
(MI_DATUM) &val1);

/* Update 1st element to 44E-4. */
jump=1;
val4=44e-4;
DPRINTF("trace_class", 15,

("Update %f into LIST of FLOAT @%d", val4, jump));
ret_code = mi_collection_update(conn, colldesc,

(MI_DATUM) &val4, action, jump);
if (ret_code != MI_OK)

{
DPRINTF("trace_class", 15,

("list_float_ins: update MI_CURSOR_ABSOLUTE @%d failed",
jump));
}

/* Fetch the updated element back and validate it */
dofetch(conn, colldesc, MI_CURSOR_ABSOLUTE, SQLFLOAT, 1,

(MI_DATUM) &val4);

/* Free collection resources */
mi_collection_close(conn, colldesc);
mi_collection_free(conn, list);

return 0;
} /* end list_float_ins() */

/***
* Function: list_char_ins()
* Purpose:
* 1. insert 3 CHAR values into a LIST
* 2. verify each inserted value
* 3. update first element
* Return Values:
* 0 Success
* -50 Unable to convert data type to type identifer
* -51 Unable to create specified collection
* -52 Unable to open new collection

Chapter 5. Using Complex Data Types 5-21

* (status of steps in trace file)
*/
mi_integer list_char_ins(MI_CONNECTION *conn)
{

MI_COLLECTION *list;
MI_COLL_DESC *colldesc;

MI_CURSOR_ACTION action;
MI_DATUM val;
mi_integer retlen, jump, ret_code;
mi_lvarchar *lvc;
char *buf;
char *val1, *val2, *val3;

/* Create the LIST of CHAR(10)s */
ret_code = create_collection(conn,

"list(char(10) not null)", &list, &colldesc);
if (ret_code != 0)

return (ret_code);

action = MI_CURSOR_ABSOLUTE;

/* Insert three CHAR(10) values:
* position 1: "1234567689"
* position 2: "abcdefghij"
* position 3: "three"
* CHAR datums are passed by reference in an mi_lvarchar
* structure.
*/

val1 = "1234567689";
val2 = "abcdefghij";
val3 = "three";

lvc = mi_new_var(10);
buf = mi_get_vardata(lvc);

jump = 1;
strcpy(buf, val1);
DPRINTF("trace_class", 15,

("Insert '%s' into LIST of CHAR @%d",
buf, jump));

ret_code = mi_collection_insert(conn, colldesc,
(MI_DATUM)lvc, action, jump);

if (ret_code != MI_OK)
{
DPRINTF("trace_class", 15,

("list_char_ins: insert MI_CURSOR_ABSOLUTE @%d failed",
jump));
}

jump = 2;
strcpy(buf, val2);
DPRINTF("trace_class", 15,

("Insert '%s' into LIST of CHAR @%d",
buf, jump));

ret_code = mi_collection_insert(conn, colldesc,
(MI_DATUM)lvc, action, jump);

if (ret_code != MI_OK)
{
DPRINTF("trace_class", 15,

("list_char_ins: insert MI_CURSOR_ABSOLUTE @%d failed",
jump));
}

jump = 3;
strcpy(buf, val3);
DPRINTF("trace_class", 15,

5-22 IBM Informix DataBlade API Programmer’s Guide

("Insert '%s' into LIST of CHAR @%d",
buf, jump));

ret_code = mi_collection_insert(conn, colldesc,
(MI_DATUM)lvc, action, jump);

if (ret_code != MI_OK)
{
DPRINTF("trace_class", 15,

("list_char_ins: insert MI_CURSOR_ABSOLUTE @%d failed",
jump));
}

/* Fetch each inserted CHAR value from the collection,
* comparing it against the value actually inserted.
*/

dofetch(conn, colldesc, MI_CURSOR_ABSOLUTE, SQLCHAR, 1,
val1);

dofetch(conn, colldesc, MI_CURSOR_ABSOLUTE, SQLCHAR, 3,
val3);

dofetch(conn, colldesc, MI_CURSOR_ABSOLUTE, SQLCHAR, 2,
val2);

dofetch(conn, colldesc, MI_CURSOR_PRIOR, SQLCHAR, 1,
val1);

dofetch(conn, colldesc, MI_CURSOR_LAST, SQLCHAR, 3,
val3);

dofetch(conn, colldesc, MI_CURSOR_FIRST, SQLCHAR, 1,
val1);

dofetch(conn, colldesc, MI_CURSOR_RELATIVE, SQLCHAR, 2,
val3);

dofetch(conn, colldesc, MI_CURSOR_RELATIVE, SQLCHAR, -2,
val1);

/* Update 1st element to "mnopqrstuv". */
jump=1;
strcpy(buf, "mnopqrstuv");
DPRINTF("trace_class", 15,

("Update '%s' into LIST of CHAR @ %d", buf, jump));
ret_code = mi_collection_update(conn, colldesc,

(MI_DATUM)lvc, action, jump);
if (ret_code != MI_OK)

{
DPRINTF("trace_class", 15,

("list_char_ins: update MI_CURSOR_ABSOLUTE @%d failed",
jump));
}

/* Fetch the updated element back and validate it */
dofetch(conn, colldesc, MI_CURSOR_FIRST, SQLCHAR, 1,

buf);

/* Free collection resources */
mi_collection_close(conn, colldesc);
mi_collection_free(conn, list);

return 0;
} /* end list_char_ins() */

/***
* Function: do_fetch()
* Purpose: Fetch specified element from a collection and
* compare it with the specified expected value
* Return Values: NONE
*/
void do_fetch(

MI_CONNECTION *conn,
MI_COLL_DESC *colldesc,
MI_CURSOR_ACTION action,

Chapter 5. Using Complex Data Types 5-23

mi_integer type,
mi_integer jump,
MI_DATUM expected)

{
MI_DATUM val;
mi_integer retlen, ret_code;
char *actionstr, *buf;

switch (action)
{

case MI_CURSOR_NEXT:
actionstr="MI_CURSOR_NEXT";
break;

case MI_CURSOR_PRIOR:
actionstr="MI_CURSOR_PRIOR";
break;

case MI_CURSOR_FIRST:
actionstr="MI_CURSOR_FIRST";
break;

case MI_CURSOR_LAST:
actionstr="MI_CURSOR_LAST";
break;

case MI_CURSOR_ABSOLUTE:
actionstr="MI_CURSOR_ABSOLUTE";
break;

case MI_CURSOR_RELATIVE:
actionstr="MI_CURSOR_RELATIVE";
break;

default:
actionstr="UNKNOWN";

}

DPRINTF("trace_class", 15,
("Fetch %s @ jump=%d:", actionstr, jump));

/* Print what is the expected value */
switch (type)
{

case SQLINT:
DPRINTF("trace_class", 15,

(" should get %d: ", expected));
break;

case SQLCHAR:
DPRINTF("trace_class", 15,

(" should get '%s': ", expected));
break;

case SQLFLOAT:
DPRINTF("trace_class", 15,

(" should get %f: ", *(double *)expected));
break;

default:
DPRINTF("trace_class", 15,

(" type not handled: %d", type));
}

/* Fetch collection element at position 'jump' into 'val' */
ret_code = mi_collection_fetch(conn, colldesc, action,

jump, &val, &retlen);

5-24 IBM Informix DataBlade API Programmer’s Guide

if (ret_code != MI_NORMAL_VALUE)
{
DPRINTF("trace_class", 15,

("do_fetch: %s @%d failed", actionstr, jump));
return;
}

/* Compare fetched value with expected value */
switch (type)
{

case SQLINT:
if (expected != val)

{
DPRINTF("trace_class", 15,

("do_fetch: fetch value not expected; got %d",
val));
}

else
{
DPRINTF("trace_class", 15,

(" got %d, fetch succeeded", val));
}

break;

case SQLCHAR:
buf = mi_get_vardata((mi_lvarchar *)val);
if (strcmp(buf, (char *)expected) != 0)

{
DPRINTF("trace_class", 15,

("do_fetch: fetch value not expected; got %s",
buf));
}

else
{
DPRINTF("trace_class", 15,

(" got '%s', fetch succeeded", buf));
}

break;

case SQLFLOAT:
if (*(double *)expected != *(double *)val)

{
DPRINTF("trace_class", 15,

("do_fetch: fetch value not expected; got %f",
*(double *)val));
}

else
{
DPRINTF("trace_class", 15,

(" got %f, fetch succeeded",
*(double *)val));

}
break;

default:
DPRINTF("trace_class", 15,

("do_fetch: %d type not handled", type));
}

} /* end do_fetch() */

/***
* Function: create_collection()
* Purpose: create a collection of the specified type
* Return Values:
* thru parameters:
* ret_coll_desc: address of collection descriptor

Chapter 5. Using Complex Data Types 5-25

* ret_coll_struc: address of collection structure
* thru return value:
* 0 Success
* -50 Unable to convert data type to type identifer
* -51 Unable to create specified collection
* -52 Unable to open new collection
*/
mi_integer create_collection(

MI_CONNECTION *conn,
char *typestring,
MI_COLLECTION **ret_coll_struc,
MI_COLL_DESC **ret_coll_desc)

{
MI_TYPEID *typeid;
MI_COLLECTION *collstruc;
MI_COLL_DESC *colldesc;

/* Convert data type string to type identifier */
typeid = mi_typestring_to_id(conn, typestring);
if (typeid == NULL)

{
DPRINTF("trace_class", 15,

("create_collection: mi_typestring_to_id() failed"));
return (-50);
}

/* Create collection whose elements have the data type
* indicated by the specified type identifer
*/

if ((collstruc =
mi_collection_create(conn, typeid)) == NULL)

{
DPRINTF("trace_class", 15,

("create_collection: mi_collection_create() failed"));
return (-51);
}

/* Open the collection */
if ((colldesc =

mi_collection_open(conn, collstruc)) == NULL)
{
DPRINTF("trace_class", 15,

("mi_collection_open() failed"));
return -52;
}

/* Return through the parameters the addresses of:
* the collection descriptor: ret_coll_desc
* the collection structure: ret_coll_struc
*/

*ret_coll_desc = colldesc;
*ret_coll_struc = collstruc;

/* Return a status of zero to indicate success */
return 0;

/* end create_collection() */

Sample listpos() Trace Output
When the listpos() user-defined function executes successfully, it produces the
following output in the listpos.trc file:
==

Tracing session: 18 on 03/16/2000

13:12:24 Insert 1 into LIST of INTEGER @1
13:12:24 Insert 2 into LIST of INTEGER @2

5-26 IBM Informix DataBlade API Programmer’s Guide

13:12:24 Insert 3 into LIST of INTEGER @3
13:12:24 Fetch MI_CURSOR_ABSOLUTE @ jump=1:
13:12:24 should get 1
13:12:24 got 1, fetch succeeded
13:12:24 Fetch MI_CURSOR_ABSOLUTE @ jump=3:
13:12:24 should get 3
13:12:24 got 3, fetch succeeded
13:12:24 Fetch MI_CURSOR_ABSOLUTE @ jump=2:
13:12:24 should get 2
13:12:24 got 2, fetch succeeded
13:12:24 Fetch MI_CURSOR_PRIOR @ jump=1:
13:12:24 should get 1
13:12:24 got 1, fetch succeeded
13:12:24 Fetch MI_CURSOR_LAST @ jump=3:
13:12:24 should get 3
13:12:24 got 3, fetch succeeded
13:12:24 Fetch MI_CURSOR_FIRST @ jump=1:
13:12:24 should get 1
13:12:24 got 1, fetch succeeded
13:12:24 Fetch MI_CURSOR_RELATIVE @ jump=2:
13:12:24 should get 3
13:12:24 got 3, fetch succeeded
13:12:24 Fetch MI_CURSOR_RELATIVE @ jump=-2:
13:12:24 should get 1
13:12:24 got 1, fetch succeeded
13:12:24 Update 3 into LIST of INTEGER @1
13:12:24 Fetch MI_CURSOR_ABSOLUTE @ jump=1:
13:12:24 should get 3
13:12:24 got 3, fetch succeeded
13:12:24 Insert '1234567689' into LIST of CHAR @1
13:12:24 Insert 'abcdefghij' into LIST of CHAR @2
13:12:24 Insert 'three' into LIST of CHAR @3
13:12:24 Fetch MI_CURSOR_ABSOLUTE @ jump=1:
13:12:24 should get '1234567689'
13:12:24 got '1234567689', fetch succeeded
13:12:24 Fetch MI_CURSOR_ABSOLUTE @ jump=3:
13:12:24 should get 'three'
13:12:24 got 'three', fetch succeeded
13:12:24 Fetch MI_CURSOR_ABSOLUTE @ jump=2:
13:12:24 should get 'abcdefghij'
13:12:24 got 'abcdefghij', fetch succeeded
13:12:24 Fetch MI_CURSOR_PRIOR @ jump=1:
13:12:24 should get '1234567689'
13:12:24 got '1234567689', fetch succeeded
13:12:24 Fetch MI_CURSOR_LAST @ jump=3:
13:12:24 should get 'three'
13:12:24 got 'three', fetch succeeded
13:12:24 Fetch MI_CURSOR_FIRST @ jump=1:
13:12:24 should get '1234567689'
13:12:24 got '1234567689', fetch succeeded
13:12:24 Fetch MI_CURSOR_RELATIVE @ jump=2:
13:12:24 should get 'three'
13:12:24 got 'three', fetch succeeded
13:12:24 Fetch MI_CURSOR_RELATIVE @ jump=-2:
13:12:24 should get '1234567689'
13:12:24 got '1234567689', fetch succeeded
13:12:24 Update 'mnopqrstuv' into LIST of CHAR @1
13:12:24 Fetch MI_CURSOR_FIRST @ jump=1:
13:12:24 should get 'mnopqrstuv'
13:12:24 got 'mnopqrstuv', fetch succeeded
13:12:24 Insert 1.100000 into LIST of FLOAT @1
13:12:24 Insert -2.200000 into LIST of FLOAT @2
13:12:24 Insert 3.300000 into LIST of FLOAT @3
13:12:24 Fetch MI_CURSOR_ABSOLUTE @ jump=1:
13:12:24 should get 1.100000
13:12:24 got 1.100000, fetch succeeded
13:12:24 Fetch MI_CURSOR_ABSOLUTE @ jump=3:

Chapter 5. Using Complex Data Types 5-27

13:12:24 should get 3.300000
13:12:24 got 3.300000, fetch succeeded
13:12:24 Fetch MI_CURSOR_ABSOLUTE @ jump=2:
13:12:24 should get -2.200000
13:12:24 got -2.200000, fetch succeeded
13:12:24 Fetch MI_CURSOR_PRIOR @ jump=1:
13:12:24 should get 1.100000
13:12:24 got 1.100000, fetch succeeded
13:12:24 Fetch MI_CURSOR_LAST @ jump=3:
13:12:24 should get 3.300000
13:12:24 got 3.300000, fetch succeeded
13:12:24 Fetch MI_CURSOR_FIRST @ jump=1:
13:12:24 should get 1.100000
13:12:24 got 1.100000, fetch succeeded
13:12:24 Fetch MI_CURSOR_RELATIVE @ jump=2:
13:12:24 should get 3.300000
13:12:24 got 3.300000, fetch succeeded
13:12:24 Fetch MI_CURSOR_RELATIVE @ jump=-2:
13:12:24 should get 1.100000
13:12:24 got 1.100000, fetch succeeded
13:12:24 Update 0.004400 into LIST of FLOAT @1
13:12:24 Fetch MI_CURSOR_ABSOLUTE @ jump=1:
13:12:24 should get 0.004400
13:12:24 got 0.004400, fetch succeeded

Row Types
A row type is a complex data type that is made up of a sequence of one or more
elements called fields. Each field has a name and a data type. A row type is similar
to a C struct data type. The DataBlade API provides support for row types in both
their text and binary representations.

Row-Type Text Representation
The DataBlade API supports a text representation for row types as a quoted string
with the formats that the following table shows.

Row Type Text Representation

Unnamed ″ROW(fld_value1, fld_value2, ...)″

Named ″row_type(fld_value1, fld_value2, ...)″

The text representations in the preceding table use the following abbreviations:

fld_value1, fld_value2
are the text representations of the field values.

row_type is the name of the named row type.

A row type in its text representation is often called a row-type string. For example,
suppose you have the following unnamed row type defined:
ROW(fld1 INTEGER, fld2 CHAR(20))

The following row-type string provides the text representation for this unnamed
row type:
"ROW(7, 'Dexter')"

For a detailed description of the text representation of a row type, see the
description of the Literal Row segment in the IBM Informix Guide to SQL: Syntax.

5-28 IBM Informix DataBlade API Programmer’s Guide

Row-Type Binary Representation
The database server supports the following kinds of row types.

Row Type Description

Named row type
A named row type is identified by its name. With the CREATE
ROW TYPE statement, you create a template of a row type. You
can then use this template to take the following actions:
v Use type inheritance
v Define columns that all have the same row type
v Assign a named row type to a table with the OF TYPE clause of

the CREATE TABLE statement

Unnamed row type
An unnamed row type is identified by its structure. With the ROW
keyword, you create a row type. This row type contains fields but
has no user-defined name. Therefore, if you want a second column
to have the same row type, you must specify all fields.

All row types use the same internal format to store their values. For more
information, see the IBM Informix Guide to SQL: Reference.

Tip: The internal format of a row type is often referred to as its binary
representation.

The DataBlade API supports the SQL row types with the following data type
structures:
v A row descriptor (MI_ROW_DESC) provides information about the row type.
v A row structure (MI_ROW) holds the binary representation of the field values in

the row type.

Important: The fields of a row type are comparable to the columns in the row of a
table. This similarity means that you use the same DataBlade API data
type structures to access row types that you do to access columns in a
row.

Using a Row Descriptor
A row descriptor, MI_ROW_DESC, is a DataBlade API structure that describes the
type of data in each field of a row type. The following table summarizes the
memory operations for a row descriptor.

Memory Duration Memory Operation Function Name

Current memory duration Constructor mi_row_desc_create()

Destructor mi_row_desc_free()

Tip: A row descriptor can describe a row type or a row in a table. Therefore, you
use the same DataBlade API functions to handle memory operations for a row
descriptor when it describes a row type or a table row.

Server Only

In a C UDR, the row structure and row descriptor are part of the same data type
structure. The row structure is just a data buffer in the row descriptor that holds

Chapter 5. Using Complex Data Types 5-29

the column values of a row. A one-to-one correspondence exists between the row
descriptor (which mi_row_desc_create() allocates) and its row structure (which
mi_row_create() allocates). Therefore:
v When the mi_row_desc_create() function creates a new row descriptor, it

assigns a NULL-valued pointer to the data buffer.
v The mi_row_desc_free() function frees both the row descriptor and its

associated row structure.

End of Server Only

Client Only

In a client LIBMI application, a row structure and a row descriptor are separate
data type structures. A one-to-many correspondence can exist between a row
descriptor and its associated row structures. When you call mi_row_desc_free(),
you free only the specified row descriptor.

End of Client Only

Table 5-3 lists the DataBlade API accessor functions that obtain information about
fields of a row type (or columns of a row) from the row descriptor.

Table 5-3. Field and Column Information in the Row Descriptor

Column Information
DataBlade API
Accessor Functions

The number of columns and/or fields in the row descriptor mi_column_count()

The name of the column or field, given its position in the row mi_column_name()

The column identifier, which is the position of the column or
field within the row, given its name

mi_column_id()

The precision (total number of digits) of a column or field data
type

mi_column_precision()

The scale of a column or field data type mi_column_scale()

Whether a column or field in the row descriptor has the NOT
NULL constraint

mi_column_nullable()

The type identifier of the column or field data type mi_column_type_id()

The type descriptor of the column or field data type mi_column_typedesc()

Important: To DataBlade API modules, the row descriptor (MI_row_DESC) is an
opaque C data structure. Do not access its internal fields directly. The
internal structure of MI_ROW_DESC may change in future releases.
Therefore, to create portable code, always use the accessor functions for
this structure to obtain column information.

The row descriptor stores column information in several parallel arrays.

Column Array Contents

Column-type ID array Each element is a pointer to a type identifier
(MI_TYPEID) that indicates the data type of the column.

Column-type-descriptor array Each element is a pointer to a type descriptor
(MI_TYPE_DESC) that describes the data type of the
column.

5-30 IBM Informix DataBlade API Programmer’s Guide

Column Array Contents

Column-scale array Each element is the scale of the column data type.

Column-precision array Each element is the precision of the column data type.

Column-nullable array Each element has either of the following values:

v MI_TRUE: The column can contain SQL NULL values.

v MI_FALSE: The column cannot contain SQL NULL
values.

All of the column arrays in the row descriptor have zero-based indexes. Within the
row descriptor, each column has a column identifier, which is a zero-based position
of the column (or field) in the column arrays. When you need information about a
column (or field), specify its column identifier to one of the row-descriptor accessor
functions in Table 5-3 on page 5-30.

Tip: The system catalog tables refer to the unique number that identifies a column
definition as its “column identifier.” However, the DataBlade API refers to
this number as a “column number” and the position of a column within the
row structure as a “column identifier.” These two terms do not refer to the
same value.

Figure 5-9 shows how the information at index position 1 of these arrays holds the
column information for the second column in a row descriptor.

To access information for the nth column, provide an index value of n-1 to the
appropriate accessor function in Table 5-3 on page 5-30. The following calls to the
mi_column_type_id() and mi_column_nullable() functions obtain from a row
descriptor that row_desc identifies the type identifier (col_type) and whether the
column is nullable (col_nullable) for the second column:
MI_ROW_DESC *row_desc;
MI_TYPEID *col_type;
mi_integer col_nullable;
...
col_type = mi_column_type_id(row_desc, 1);
col_nullable = mi_column_nullable(row_desc, 1);

To obtain the number of columns in the row descriptor (which is also the number
of elements in the column arrays), use the mi_column_count() function.

Figure 5-9. Column Arrays in the Row Descriptor

Chapter 5. Using Complex Data Types 5-31

Using a Row Structure
The DataBlade API always holds fields of a row type in a row structure (MI_ROW
structure). Each row structure stores the data from a single row-type column in a
table. The following table summarizes the memory operations for a row structure.

Memory Duration Memory Operation Function Name

Current memory duration Constructor mi_row_create(),
mi_streamread_row()

Destructor mi_row_free()

Tip: A row structure can hold values for the fields of a row type or the columns of
a row in a table. Use the same DataBlade API functions to handle memory
operations for a row structure when it holds values for a row type or a table
row.

Server Only

In a C UDR, the row structure and row descriptor are part of the same data type
structure. The mi_row_create() function just adds a data buffer, which holds the
column values of a row, to the row descriptor. A one-to-one correspondence exists
between the row descriptor (which mi_row_desc_create() allocates) and its row
structure (which mi_row_create() allocates).

If you call mi_row_create() twice with the same row descriptor, the second call
overwrites the row values of the first call.

The mi_row_free() function frees the memory associated with the data buffer and
assigns a NULL-valued pointer to this buffer in the row descriptor.

End of Server Only

Client Only

In a client LIBMI application, a row structure and a row descriptor are separate
data type structures. A one-to-many correspondence exists between a row
descriptor and its associated row structures. When you call mi_row_create() a
second time with the same row descriptor, you obtain a second row structure. The
mi_row_free() function frees a row structure.

End of Client Only

The following DataBlade API functions obtain field values from an existing row
structure.

DataBlade API Function Description

mi_value(),
mi_value_by_name()

Returns a row structure as a column value when the function
returns an MI_ROW_VALUE value status

The row structure holds the fields of the row type.

Tip: A row structure can hold the fields of a row type or the columns of a
database row. You use the same DataBlade API functions to handle memory
operations for a row structure when it holds row-type fields as when it

5-32 IBM Informix DataBlade API Programmer’s Guide

describes columns of a row. For more information on how to obtain column
values from a row, see “Obtaining Column Values” on page 8-42.

Creating a Row Type
To create a row type, you create a row structure (MI_ROW) that holds the row
type. The mi_row_create() function is the constructor function for the row
structure (MI_ROW). To create a row type with mi_row_create(), you must
provide the following information to the function:
v A row descriptor that describes the fields of the row type (or columns of a row)
v The values of the row-type fields (or row columns)

Creating the Row Descriptor
You create a new row descriptor for a row type with the mi_row_desc_create()
function. The mi_row_desc_create() is the constructor function for a row
descriptor. You provide this function with the type identifier of the row type for
which you want the row descriptor. If you do not know the type identifier for
your row type, use the mi_type_typename() function or mi_typestring_to_id() to
create a type identifier based on the type name. The type name for a row type is
its text representation. For more information, see “Row-Type Text Representation”
on page 5-28.

Assigning the Field Values
To provide values for the columns (or fields) of a row structure, you pass
information for the columns in several parallel arrays:
v Column-value array
v Column-value null array

These column-value arrays are similar to the column arrays in the row descriptor
(see Figure 5-9 on page 5-31). They have an element for each column in the row
descriptor. The column-value arrays are different from the column arrays in the
row descriptor, in the following ways:
v The column-value arrays describe the actual value for a column.

Column arrays describe the column data type.
v You must allocate and manage the column-value arrays.

The DataBlade API does not provide accessor functions for these column-value
arrays. For each column, your DataBlade API module must declare, allocate, and
assign values to these arrays.

All of the column-value arrays have zero-based indexes. Figure 5-10 shows how
the information at index position 1 of these arrays holds the column-value
information for the second column of a row.

Chapter 5. Using Complex Data Types 5-33

The following sections provide additional information about each of the
column-value arrays.

Column-Value Array: The column-value array, col_values, is the third argument of
the mi_row_create() function. Each element of the column-value array is a pointer
to an MI_DATUM structure that holds the value for each column. The format of
this value depends on whether the MI_DATUM value is passed by reference or by
value:

Server Only

v For C UDRs, the data type of the value determines the passing mechanism. If
the function passes the value by value, the MI_DATUM structure contains the
value. If the function passes value by reference, the MI_DATUM structure
contains a pointer to the value.

End of Server Only

Client Only

v For client LIBMI applications, pass all values (regardless of data type) by
reference. The MI_DATUM structure contains a pointer to the value.

End of Client Only

Important: The difference in behavior of mi_row_create() between C UDRs and
client LIBMI applications means that row-creation code is not
completely portable between these two types of DataBlade API
module. When you move your DataBlade API code from one of these
uses to another, you must change the row-creation code to use the
appropriate passing mechanism for column values that
mi_row_create() accepts.

For more information on the passing mechanism for an MI_DATUM value, see
“Contents of an MI_DATUM Structure” on page 2-33.

Column-Value Null Array: The column-value null array, col_nulls, is the fourth
argument of the mi_row_create() function. Each element of the column-value null
array is either:
v MI_FALSE

The column value is not an SQL NULL value.
v MI_TRUE

Figure 5-10. Arrays for Initialization of Column

5-34 IBM Informix DataBlade API Programmer’s Guide

The column value is an SQL NULL value.

Example: Creating a Row Type
Suppose you have the row type that the following SQL statement creates:
CREATE ROW TYPE rowtype_t
(
id INTEGER,
name CHAR(20)
);

Server Only

The following code shows how to use the mi_row_create() function to create a
new row type of type rowtype_t:
/*
* Create a row structure for the 'rowtype_t' row type
*/

MI_CONNECTION *conn;
MI_ROW_DESC *rowdesc;
MI_ROW *row;
MI_DATUM *values;
mi_boolean *nulls;
mi_integer num_cols;

/* Allocate a row descriptor for the 'rowtype_t' row type */
rowdesc = mi_row_desc_create(

mi_typestring_to_id(conn, "rowtype_t"));

/* Assume number of columns is known */
num_cols = 2;

/* Allocate the 'col_values' and 'col_nulls' arrays */
values = mi_alloc(num_cols *sizeof(MI_DATUM));
nulls = mi_alloc(num_cols *sizeof(mi_boolean));

/* Populate the 'col_values' and 'col_nulls' arrays */

/* Initialize value for field 1: 'id' */
values[0] = 1;
nulls[0] = MI_FALSE;

/* Initialize value for field 2: 'name' */
values[1] = mi_string_to_lvarchar("Dexter");
nulls[1] = MI_FALSE;

/* Create row structure for 'name_t' */
row = mi_row_create(conn, rowdesc, values, nulls);

When this code completes, the row variable points to a row structure that contains
the following field values.

Field Name Field Value

fname ″Dexter″

middle ″M″

lname ″Haven″

Chapter 5. Using Complex Data Types 5-35

End of Server Only

Client Only

If the preceding code fragment were part of a client LIBMI application, it would
require changes to the way the values are addressed in the values array. For
example, the INTEGER value would require the following cast to create a copy of
the column value:
mi_integer col_val;
...
/* Initialize value for field 1: 'id' */
col_val = 1;
values[0] = &col_val;
nulls[0] = MI_FALSE;

This different kind of addressing is required because in client LIBMI applications,
mi_row_create() passes values for all data types by reference. Therefore, the
contents of the MI_DATUM structure is always a pointer to the actual value, never
the value itself.

End of Client Only

Accessing a Row Type
When a row type (named or unnamed) is used as a column of a table, its fields can
be accessed in exactly the same ways that the columns of a row are accessed. That
is, you create a series of nested loops that use the following functions:
v The mi_next_row() function controls a loop that iterates through each retrieved

row type.
v The mi_value() or mi_value_by_name() function controls a loop that iterates

through each field value.

For more information on how to use these functions, see “Obtaining Row Values”
on page 8-50.

Copying a Row Structure
To create a copy of a row structure, you must:
v Create a new row descriptor that describes the row type.

For more information, see “Creating the Row Descriptor” on page 5-33.
v Copy the row values from the old row structure into the col_values and col_nulls

arrays to be used for the new row structure.
v Create the new row structure with the values in the col_values and col_nulls

arrays.

The following code fragment copies a row structure:
MI_CONNECTION *conn;
MI_ROW_DESC *rowdesc, *new_rowdesc;
mi_integer num_cols, i, len;
MI_DATUM *values;
mi_boolean *nulls;
MI_ROW *new_row;
...

/* Allocate a new row descriptor for the 'name_t' row type */
new_rowdesc = mi_row_desc_create(

mi_typestring_to_id(conn, "name_t"));

5-36 IBM Informix DataBlade API Programmer’s Guide

/* Determine number of columns needed */
num_cols = mi_column_count(new_rowdesc);

/* Allocate the 'col_values' and 'col_nulls' arrays */
values = mi_alloc(num_cols * sizeof(MI_DATUM));
nulls = mi_alloc(num_cols * sizeof(mi_boolean));

/* Populate the 'col_values' and 'col_nulls' arrays */
for (i=0; i < num_cols; i++)

{
nulls[i] = MI_FALSE; /* assume non-NULL value */

/* Put field value from original row type ('rowdesc')
* into 'values' array for new row type ('new_rowdesc'
*/
switch (mi_value(rowdesc, i, &values[i], &len))

{
case MI_ERROR:

/* Unable to get field value. Raise an error */
break;

case MI_NULL_VALUE:
/* Field value is an SQL NULL value. Set 'nulls'
* array for new row type ('new_rowdesc')
*/
nulls[i] = MI_TRUE;
break;

case MI_NORMAL_VALUE:
/* No action needed: mi_value() call has already
* copied field value into 'values' array
*/
break;

case MI_COLLECTION_VALUE:
/* Need to add code to handle collection */
break;

case MI_ROW_VALUE:
/* Need to add code to handle nested rows */
break;

default:
/* Handle error */
break;

} /* end switch */
} /* end for */

/* Create new row type with values copied from old row type */
new_row = mi_row_create(conn, new_rowdesc, values, nulls);

/* Deallocate memory for 'values' and 'nulls' arrays */
mi_free(values);
mi_free(nulls);

After this code fragment executes, the new_row row structure contains a copy of
the values in the row row structure.

Releasing Row Resources
After your DataBlade API module no longer needs the row type (or row) that you
allocated, you need to assess whether you can release resources that the row is
using, specifically the row descriptor and the row structure.

Chapter 5. Using Complex Data Types 5-37

Freeing a Row Structure
A row structure has the current memory duration. A row remains valid until one
of the following events occurs:
v The mi_row_free() function frees the row.

Server Only

v The current memory duration expires.

End of Server Only

v The mi_close() function closes the current connection.

To conserve resources, use the mi_row_free() function to explicitly deallocate the
row once your DataBlade API module no longer needs it. The mi_row_free()
function is the destructor function for a row structure. It frees the row and any
resources that are associated with it.

Server Only

In a C UDR, the row structure and row descriptor are part of the same data type
structure. The mi_row_create() function just adds a data buffer, which holds the
column values of a row, to the row descriptor. The mi_row_free() function drops
the row structure from the row descriptor. It is useful for big rows where the data
you want has already been examined.

However, the mi_row_desc_free() function frees a row descriptor and the
associated row structure. Once mi_row_desc_free() frees the row descriptor, you
no longer have access to the row structure. Examine the contents of a row structure
before you deallocate the row descriptor with mi_row_desc_free().

End of Server Only

Client Only

In a client LIBMI application, a row structure and a row descriptor are separate
data type structures. When you free a row descriptor with mi_row_desc_free(),
the associated row structure is not freed. You must explicitly free the row structure
with mi_row_free().

End of Client Only

Important: Use mi_row_free() only for row structures that you have explicitly
allocated with mi_row_create(). Do not use this function to free row
structures that other DataBlade API functions (such as mi_next_row())
allocate.

Freeing a Row Descriptor
A row descriptor has the current memory duration. A row descriptor remains valid
until one of the following events occurs:
v The mi_row_desc_free() function frees the row.

Server Only

5-38 IBM Informix DataBlade API Programmer’s Guide

v The current memory duration expires.

End of Server Only

v The mi_close() function closes the current connection.

To conserve resources, use the mi_row_desc_free() function to explicitly
deallocate the row descriptor once your DataBlade API module no longer needs it.
The mi_row_desc_free() function is the destructor function for a row descriptor. It
frees the row descriptor and any resources that are associated with it.

Server Only

In a C UDR, the row structure and row descriptor are part of the same data type
structure. The mi_row_create() function just adds a data buffer, which holds the
column values of a row, to the row descriptor. The mi_row_desc_free() function
frees a row descriptor and the associated row structure. Once mi_row_desc_free()
frees the row descriptor, you no longer have access to the row structure.

End of Server Only

Client Only

In a client LIBMI application, a row structure and a row descriptor are separate
data type structures. When you free a row descriptor with mi_row_desc_free(),
the associated row structure is not freed. You must explicitly free the row structure
with mi_row_free().

End of Client Only

Important: Use mi_row_desc_free() only for row descriptors that you have
explicitly allocated with mi_row_desc_create(). Do not use this
function to free row structures that other DataBlade API functions
(such as mi_get_row_desc_without_row()) allocate.

Chapter 5. Using Complex Data Types 5-39

5-40 IBM Informix DataBlade API Programmer’s Guide

Chapter 6. Using Smart Large Objects

In This Chapter . 6-2
Understanding Smart Large Objects . 6-2

Parts of a Smart Large Object . 6-3
The Sbspace . 6-3
The LO Handle . 6-4

Information About a Smart Large Object . 6-4
Storage Characteristics . 6-4
Status Information . 6-12

Storing a Smart Large Object in a Database . 6-13
Valid Data Types . 6-13

CLOB and BLOB Data Types . 6-13
Opaque Data Type . 6-14

Access to a Smart Large Object . 6-14
Selecting a Smart Large Object . 6-14
Storing a Smart Large Object . 6-15

Using the Smart-Large-Object Interface . 6-15
Smart-Large-Object Data Type Structures . 6-16

LO-Specification Structure . 6-16
LO Handle . 6-17
LO File Descriptor . 6-18
LO-Status Structure . 6-19

Smart-Large-Object Functions. 6-19
Functions That Create a Smart Large Object . 6-19
Functions That Perform Input and Output on a Smart Large Object 6-20
Functions That Manipulate an LO Handle . 6-21
Functions That Access an LO-Specification Structure 6-22
Functions That Access an LO-Status Structure . 6-23
Functions That Move Smart Large Objects to and from Operating-System Files 6-24

Creating a Smart Large Object . 6-24
Obtaining the LO-Specification Structure . 6-25

Specifying New Storage Characteristics . 6-25
Copying Storage Characteristics from an Existing Smart Large Object 6-27

Choosing Storage Characteristics . 6-28
Obtaining Storage Characteristics . 6-28
Using the Storage-Characteristics Hierarchy . 6-29

Initializing an LO Handle and an LO File Descriptor . 6-40
Obtaining an LO Handle . 6-40
Obtaining an LO File Descriptor . 6-41

Writing Data to a Smart Large Object . 6-42
Storing an LO Handle . 6-42
Freeing Resources . 6-43

Freeing an LO-Specification Structure . 6-43
Freeing an LO Handle . 6-43

Sample Code to Create a New Smart Large Object . 6-44
Accessing a Smart Large Object . 6-46

Selecting the LO Handle . 6-47
Validating an LO Handle . 6-47

Opening a Smart Large Object . 6-48
Reading Data from a Smart Large Object . 6-48
Freeing a Smart Large Object . 6-49
Sample Code to Select an Existing Smart Large Object 6-49

Modifying a Smart Large Object . 6-50
Updating a Smart Large Object . 6-50
Altering Storage Characteristics . 6-51

Obtaining Status Information for a Smart Large Object . 6-52

© Copyright IBM Corp. 1996, 2009 6-1

Obtaining a Valid LO File Descriptor . 6-52
Initializing an LO-Status Structure . 6-53

Obtaining a Valid LO-Status Structure . 6-53
Filling the LO-Status Structure . 6-54

Obtaining Status Information . 6-54
Freeing an LO-Status Structure . 6-55

Deleting a Smart Large Object . 6-56
Managing the Reference Count . 6-56

Reference Counts for CLOB and BLOB Columns . 6-56
Reference Counts for Opaque-Type Columns . 6-57
Reference Counts for Transient Smart Large Objects 6-57

Freeing LO File Descriptors . 6-58
Converting a Smart Large Object to a File or Buffer . 6-59

Using Operating-System Files. 6-59
Using User-Defined Buffers . 6-59

Converting an LO Handle Between Binary and Text . 6-60
Binary and Text Representations of an LO Handle . 6-60
DataBlade API Functions for LO-Handle Conversion . 6-60

Transferring an LO Handle Between Computers (Server) 6-61
Using Byte-Range Locking. 6-61
Passing a NULL Connection (Server) . 6-62

In This Chapter
This chapter describes smart large objects and provides information about
performing the following tasks:
v Storing a smart large object in a database
v Using the smart-large-object interface
v Creating a smart large object
v Accessing a smart large object
v Modifying a smart large object
v Obtaining status information for a smart large object
v Deleting a smart large object
v Converting a smart large object to a file or buffer
v Converting an LO handle to text or binary representation
v Using byte-range locking
v Passing a NULL connection

Tip: For information on the DataBlade API support for simple large objects, see
“Simple Large Objects” on page 2-32.

Understanding Smart Large Objects
A smart large object is a large object with the following features:
v A smart large object can hold a very large amount of data.

Currently, a single smart large object can hold up to four terabytes of data. This
data is stored in a separate disk space called an sbspace.

v A smart large object is recoverable.
The database server can log changes to smart large objects and therefore can
recover smart-large-object data in the event of a system or hardware failure.
Logging of smart large objects is not the default behavior.

v A smart large object supports random access to its data.

6-2 IBM Informix DataBlade API Programmer’s Guide

Access to a simple large object (BYTE or TEXT) is on an “all or nothing” basis;
that is, the database server returns all of the simple-large-object data that you
request at one time. With smart large objects, you can seek to a desired location
and read or write the desired number of bytes.

v You can customize storage characteristics of a smart large object.
When you create a smart large object, you can specify storage characteristics for
the smart large object, such as the following characteristics:
– Whether the database server logs the smart large object in accordance with

the current database logging mode
– Whether the database server keeps track of the last time the smart large object

was accessed
– Whether the database server uses page headers to detect data corruption

The rest of this section describes the parts of a smart large object and the
information that the database server keeps about a smart large object.

Parts of a Smart Large Object
Each smart large object has two parts:
v The sbspace, which stores the data of the smart large object
v An LO handle, which identifies the location of the smart-large-object data in its

sbspace

Suppose you store the picture of an employee as a smart large object. Figure 6-1
shows how the LO handle contains information about the location of the actual
employee picture in the sbspace1_100 sbspace.

The Sbspace
An sbspace is a logical storage area that contains one or more chunks and stores
only smart large objects. The sbspace can contain the following parts:
v A metadata area

The database server writes the following information to the metadata area of an
sbspace:
– Internal information that helps the smart-large-object optimizer manage the

data efficiently
– Storage characteristics for the smart large object
– Status information for the smart large object

v A user-data area

User applications write smart-large-object data to the user-data area of an
sbspace.

Figure 6-1. Parts of a Smart Large Object

Chapter 6. Using Smart Large Objects 6-3

In Figure 6-1 on page 6-3, the sbspace1_100 sbspace holds the actual employee
image that the LO handle identifies. For more information about the structure of
an sbspace, see the chapter on disk structures and storage in your IBM Informix
Administrator’s Guide.

The onspaces database utility creates and drops sbspaces for the database server.
For more information about the onspaces utility, see the chapter on utilities in your
IBM Informix Administrator’s Guide.

Important: Smart large objects can only be stored in sbspaces. They cannot be
stored in dbspaces. You must create an sbspace before you attempt to
insert smart large objects into the database.

The LO Handle
An LO handle is an opaque C data structure that identifies the location of the
smart-large-object data in its sbspace. Because a smart large object is potentially
very large, the database server stores only its LO handle in a database table; it can
then use this LO handle to locate the actual data of the smart large object in the
sbspace. This arrangement minimizes the table size.

Applications obtain the LO handle from the database and use it to locate the
smart-large-object data and to open the smart large object for read and write
operations. In Figure 6-1 on page 6-3, the LO handle identifies the location of the
actual employee image in the sbspace1_100 sbspace. You can store this LO handle
in a database column to save this reference for future use. For more information,
see “Access to a Smart Large Object” on page 6-14.

Information About a Smart Large Object
The database server keeps the following information about a smart large object:
v Storage characteristics
v Status information

The database server stores this information in a metadata area of the sbspace for
the smart large object.

Storage Characteristics
The storage characteristics tell the database server how to manage a smart large
object in an sbspace. Three groups of information make up the storage
characteristics for a smart large object:
v Disk-storage information
v Attribute information
v Open-mode information

You can specify storage characteristics at three points.

When Specified Method of Specification

When an sbspace is created Options of onspaces utility

When a database table is created Keywords in PUT clause of CREATE TABLE
statement

When a smart large object is created DataBlade API functions

The following sections describe the three groups of storage characteristics. For
additional information, see “Choosing Storage Characteristics” on page 6-28.

6-4 IBM Informix DataBlade API Programmer’s Guide

Disk-Storage Information: Disk-storage information helps the smart-large-object
optimizer of the database server determine how to manage the smart large object
most efficiently on disk. The smart-large-object optimizer manages the allocation of
and access to smart large objects in an sbspace.

Each smart-large-object has the following disk-storage information:
v Allocation-extent information

An allocation extent is a collection of contiguous bytes within an sbspace that the
smart-large-object optimizer allocates to the smart large object at one time.
Information about allocation extents is as follows:
– Extent size

The smart-large-object optimizer allocates storage for the smart large object in
the amount of the extent size.

– Next-extent size
The smart-large-object optimizer attempts to allocate an extent as a single,
contiguous region in a chunk. If no single extent is large enough for the smart
large object, the optimizer uses multiple extents as necessary to satisfy the
current write request. After the initial extent fills, the smart-large-object
optimizer attempts to allocate another extent of contiguous disk space. This
process is called next-extent allocation.

For more information on extents, see the chapter on disk structure and storage
in the IBM Informix Administrator’s Reference.

v Sizing information
– Average size of smart large objects in the sbspace
– Estimated number of bytes in the new smart large object
– Maximum number of bytes to which the smart large object can grow

v Location
The name of the sbspace identifies the location at which to store the smart large
object.

The smart-large-object optimizer uses the disk-storage information to determine
how best to size, allocate, and manage the extents of the sbspace. It can calculate
all disk-storage information for a smart large object except the sbspace name.

Important: For most applications, use the values that the smart-large-object
optimizer calculates for the disk-storage information.

For special situations, you can set disk-storage information for a smart large object
as part of its storage characteristics. For more information, see “Choosing Storage
Characteristics” on page 6-28.

Attribute Information: Attribute information tells the database server what
options, or attributes, to assign to the smart large object:
v Logging indicators, which tell the database server whether to log changes to the

smart large object in the system log file
v Last-access-time indicators, which tell the database server whether to save the

last-access time for a smart large object
v Data-integrity indicators, which tell the database server how to format the pages

in the sbspace of the smart large object

Logging: When a database performs logging, smart large objects might result in
long transactions for the following reasons:

Chapter 6. Using Smart Large Objects 6-5

v Smart large objects can be very large, even several gigabytes in size.
The amount of log storage needed to log user data can easily overflow the log.

v Smart large objects might be used in situations where the data collection process
can be quite long.
For example, if a smart large object holds low-quality audio recording, the
amount of data collection might be modest but the recording session might be
quite long.

A simple workaround is to divide a long transaction into multiple smaller
transactions. If this solution is not acceptable, you can control when the database
server performs logging of smart large objects. Table 6-10 on page 6-31 shows how
you can control the logging behavior for a smart large object.

When logging is enabled, the database server logs changes to the user data of a
smart large object. It performs this logging in accordance with the current database
log mode. For a database that is not ANSI compliant, the database server does not
guarantee that log records that pertain to smart large objects are flushed at
transaction commit. However, the metadata is always restorable to an
action-consistent state; that is, to a state that ensures no structural inconsistencies
exist in the metadata (control information of the smart large object, such as
reference counts).

American National Standards Institute

An ANSI-compliant database uses unbuffered logging. When smart-large-object
logging is enabled, all log records (metadata and user-data) that pertain to smart
large objects are flushed to the log at transaction commit. However, user data is
not guaranteed to be flushed to its stable storage location at commit time.

End of American National Standards Institute

When logging is disabled, the database server does not log changes to user data
even if the database server logs other database changes. However, the database
server always logs changes to the metadata. Therefore, the database server can still
restore the metadata to an action-consistent state.

Important: Consider carefully whether to enable logging for a smart large object.
The database server incurs considerable overhead to log smart large
objects. You must also ensure that the system log file is large enough to
hold the value of the smart large object. The logical-log size must
exceed the total amount of data that the database server logs while the
update transaction is active.

Write your DataBlade API modules so that any transactions with smart large
objects that have potentially long updates do not cause other transactions to wait.
Multiple transactions can access the same smart-large-object instance if the
following conditions are satisfied:
v The transaction can access the database row that contains an LO handle for the

smart large object.
Multiple references can exist on the same smart large object if more than one
column holds an LO handle for the same smart large object.

v Another transaction does not hold a conflicting lock on the smart large object.
For more information on smart-large-object locks, see “Locking Modes” on page
6-11.

6-6 IBM Informix DataBlade API Programmer’s Guide

The best update performance and fewest logical-log problems result when you
disable the logging feature when you load a smart large object and re-enable it
after the load operation completes. If logging is turned on, you might want to turn
logging off before a bulk load and then perform a level-0 backup.

By default, the database server does not log the user data of a smart large object.
You can control the logging behavior for a smart large object as part of its storage
characteristics. For more information, see “Choosing Storage Characteristics” on
page 6-28.

Last-Access Time: The last-access time of a smart large object is the system time at
which the database server last read or wrote to the smart large object. The
last-access time records access to the user data and metadata of a smart large
object. The database server stores this system time as number of seconds since
January 1, 1970, in the metadata area of the sbspace.

Tip: The database server automatically tracks the last-change and last-modification
time for a smart large object in the status information. For more information,
see “Status Information” on page 6-12.

By default, the database server does not save the last access time. You can choose
to track the last-access time for a smart large object as part of its storage
characteristics. For more information, see “Choosing Storage Characteristics” on
page 6-28.

Important: Consider carefully whether to track last-access time for a smart large
object. To maintain last-access times for smart large objects, the
database server incurs considerable overhead in logging and
concurrency.

Data Integrity: The structure of an sbpage in the sbspace determines how much
data integrity the database server can provide. An sbpage is the unit of allocation
for smart-large-object data, which is stored in the user-data area of an sbspace. The
database server supports the following levels of data integrity:
v High integrity, which tells the database server to use both a page header and a

page trailer in each sbpage
The database server uses the page header and trailer to detect incomplete writes
and data corruption. This option detects incomplete writes and data corruption.

v Moderate integrity, which tells the database server to use a page header, but no
page trailer, in each sbpage.
This option cannot compare the page header with the page trailer to detect
incomplete writes and data corruption.

Moderate integrity provides the following benefits:
v It eliminates an additional data copy operation that is necessary when an sbpage

has page headers and page trailers.
v It preserves the user data alignments on pages.

Moderate integrity might be useful for smart large objects that contain large
amounts of audio or video data that is moved through the database server and
that does not require a high data integrity.

Chapter 6. Using Smart Large Objects 6-7

By default, the database server uses high integrity (page headers and page trailers)
for sbspace pages. You can control the data integrity for a smart large object as part
of its storage characteristics. For more information, see “Choosing Storage
Characteristics” on page 6-28.

Important: Consider carefully whether to use moderate integrity for sbpages of a
smart large object. Although moderate integrity takes less disk space
per page, it also reduces the ability of the database server to recover
information if disk errors occur.

For information on the structure of sbspace pages, see your IBM Informix
Administrator’s Guide.

Open-Mode Information: When you open a smart large object, you can specify
the open mode for the data. The open mode describes the context in which the I/O
operations on the smart large object are performed. It includes the following
information:
v The access mode for the smart large object: read-only, dirty-read, read/write,

write-only, or write-append
v The access method for the smart large object: random or sequential
v The buffering mode for the data to and from the smart large object: buffered or

unbuffered
v The locking mode for the smart large object: lock-all or byte-range mode

The database server uses the following system default open mode when it opens a
smart large object.

Open-Mode Information Default Open Mode

Access mode Read-only

Access method Random

Buffering Buffered access

Locking Whole-object locks

If your smart large object usually requires certain access capabilities when it is
opened, you can associate a default open mode with the smart large object. The
database server stores this default open mode with other storage characteristics of
the smart large object. For more information, see “Choosing Storage
Characteristics” on page 6-28. To override the default open mode, you can specify
an open mode for a particular smart large object when you open it. For more
information, see “Opening a Smart Large Object” on page 6-48.

Access Modes: The smart-large-object open mode includes an access mode, which
determines which read and write operations are valid on the open smart large
object. Table 6-1 shows the access modes for a smart large object.

Table 6-1. Access Modes for Smart Large Objects

Access Mode Purpose

Read-only mode Only read operations are valid on the data.

Dirty-read mode You can read uncommitted data pages for the smart large object.
No locks are requested on the data. You cannot write to a smart
large object after you set the mode to MI_LO_DIRTY_READ.
When you set this flag, you reset the current transaction isolation
mode to dirty read for this smart large object.

6-8 IBM Informix DataBlade API Programmer’s Guide

Table 6-1. Access Modes for Smart Large Objects (continued)

Access Mode Purpose

Write-only mode Only write operations are valid on the data.

Write/append mode Any data you write is appended to the end of the smart large
object. By itself, it is equivalent to write-only mode followed by a
seek to the end of the smart large object. Read operations fail.

When you open a smart large object in write/append mode only,
the smart large object is opened in write-only mode. Seek
operations move the seek position, but read operations to the
smart large object fail, and the LO seek position remains
unchanged from its position just before the write. Write operations
occur at the LO seek position, and then the seek position is
moved.

Read/write mode Both read and write operations are valid on the data.

Truncate Delete any existing data in the smart large object and move the
LO seek position to the start of the smart large object (byte 0). If
the smart large object does not contain data, this access mode has
no effect.

Access Methods: The smart-large-object open mode includes the access method,
which determines whether to access the smart-large-object data sequentially or
with random access. Table 6-2 shows the access methods for a smart large object.

Table 6-2. Access Methods for a Smart Large Object

Method of Access Purpose

Random access Indicates that I/O is random

When you plan to read in nonsequential locations in the smart large
object, the smart-large-object optimizer should not read ahead a few
pages.

Sequential access Indicates that reads are sequential in either forward or reverse
direction

When you read a smart large object sequentially, the
smart-large-object optimizer can read ahead a few pages.

Forward Indicates that the direction of sequential access is
forward

If you do not specify a direction, the default is
forward.

Reverse Indicates that the direction of sequential access is
reverse

The default access method is random, although the smart-large-object optimizer
might change this default based on a particular read pattern.

Buffering Modes: The smart-large-object open mode includes a buffering mode,
which determines how read and write operations on the open smart large object
are buffered. Table 6-3 shows the buffering modes for a smart large object.

Chapter 6. Using Smart Large Objects 6-9

Table 6-3. Buffering Modes for a Smart Large Object

Buffering Mode Purpose

Buffered access Indicates that I/O of the smart-large-object data goes through the
buffer pool of the database server

This method of access is called buffered I/O. Buffered I/O tells the
optimizer that someone might be planning to reread the same LO
page.

Unbuffered access Indicates that I/O of the smart-large-object data does not use the
buffer pool

This method of access is called lightweight I/O. lightweight I/O tells
the smart-large-object optimizer to use private buffers instead of the
buffer pool for these I/O operations. These private buffers are
allocated out of the session pool of the database server. With
lightweight I/O, you bypass the overhead of the buffer pool
management when the database server performs a sequential scan.

Keep the following issues in mind when you use lightweight I/O:
v Be sure that you close smart large objects that use lightweight I/O.

Otherwise, the memory that has been allocated to the private buffers remains
allocated. This private-buffer memory is only deallocated when you close the
smart large object.

v Be careful about using lightweight I/O when you open the same smart large
object many times and concurrently access this object in the same transaction.
All opens of the same smart large object share the same lightweight I/O buffers.
Potentially, an operation can cause the pages in the buffer to be flushed while
other operations might still expect these pages to exist.

Important: In general, if read and write operations to the smart large objects are
less than 8080 bytes, do not use lightweight I/O. In other words, if you
are reading or writing short blocks of data, such as two kilobytes or
four kilobytes, the default buffered I/O operations provide better
performance.

The smart-large-object optimizer imposes the following restrictions when you
switch from lightweight I/O to buffered I/O for a given smart large object:
v You can alter the buffering mode of a smart large object that was created with

lightweight I/O to buffered I/O as long as no open instances exist for that smart
large object.
However, you cannot alter the buffering mode from buffered I/O to one with
lightweight I/O.

v You must specify lightweight I/O when you open a smart large object that was
created with lightweight I/O.
If an open smart large object specifies buffered I/O, the smart-large-object
optimizer ignores any attempt to open it with lightweight I/O. However, if you
first change the buffering mode from lightweight I/O to buffered I/O, you can
then specify buffered I/O when you open the smart large object.

v You can specify lightweight I/O when you open a smart large object that was
created with buffered I/O only if you open the smart large object in read-only
mode.

6-10 IBM Informix DataBlade API Programmer’s Guide

In this case, the smart-large-object optimizer does not allow write operations on
the smart large object. Attempts to do so generate an error. To write to the smart
large object, you must close it then reopen it with buffered I/O and an access
mode that enables write operations.

These limitations ensure consistency of the smart-large-object buffers without
imposing processing overhead for I/O operations.

If you do not specify a buffering mode, the default is buffered I/O. The
smart-large-object optimizer determines the default buffering mode for a smart
large object.

Locking Modes: To prevent simultaneous access to smart-large-object data, the
smart-large-object optimizer obtains a lock on this data when you open the smart
large object. This smart-large-object lock is distinct from the following kinds of
locks:
v Row locks

A lock on a smart large object does not lock the row in which the smart large
object resides. However, if you retrieve a smart large object from a row and the
row is still current, the database server might hold a row lock as well as a
smart-large-object lock. Locks are held on the smart large object instead of on
the row because many columns could be accessing the same smart-large-object
data.

v Locks of different smart large objects in the same row of a table
A lock on one smart large object does not affect other smart large objects in the
row.

The smart-large-object open mode includes a lock mode, which determines the kind
of the lock requests made on a smart large object. Table 6-4 shows the lock modes
that a smart large object can support.

Table 6-4. Lock Modes for a Smart Large Object

Lock Mode Purpose Description

Lock-all Lock the entire smart large
object

Indicates that lock requests apply to all data
for the smart large object

Byte-range Lock only specified
portions of the smart large
object

Indicates that lock requests apply only to the
specified number of bytes of
smart-large-object data

When the smart-large-object optimizer opens a smart large object, it uses the
following information to determine the lock mode of the smart large object:
v The access mode of the smart large object

The database server obtains a lock as follows:
– In share mode, when you open a smart large object for reading (read-only or

dirty read)
– In update mode, when you open a smart large object for writing (write-only,

read-write, write/append, truncate)
When a write operation (or some other update) is actually performed on the
smart large object, the database server upgrades this lock to an exclusive lock.

v The isolation level of the current transaction

Chapter 6. Using Smart Large Objects 6-11

If you have selected an isolation mode of repeatable read, the smart-large-object
optimizer does not release any locks that it obtains on a smart large object until
the end of the transaction.

By default, the smart-large-object optimizer chooses the lock-all lock mode. You
can request locks on the data of a smart large object at the byte level with a
byte-range lock. For more information, see “Accessing the Default Open Flag” on
page 6-38.

The smart-large-object optimizer retains the lock as follows:
v It holds share-mode locks and update locks (which have not yet been upgraded

to exclusive locks) until one of the following events occurs:
– The closing of the smart large object
– The end of the transaction
– An explicit request to release the lock (for a byte-range lock only)

v It holds exclusive locks until the end of the transaction even if you close the
smart large object.

When one of the preceding conditions occurs, the smart-large-object optimizer
releases the lock on the smart large object.

Important: You lose the lock at the end of a transaction even if the smart large
object remains open. When the smart-large-object optimizer detects that
a smart large object has no active lock, it automatically obtains a new
lock when the first access occurs to the smart large object. The lock that
it obtains is based on the original access mode of the smart large
object.

The smart-large-object optimizer releases the lock when the current transaction
terminates. However, the optimizer obtains the lock again when the next function
that needs a lock executes. If this behavior is undesirable, use BEGIN WORK
transaction blocks and place a COMMIT WORK or ROLLBACK WORK statement
after the last statement that needs to use the lock.

Status Information
Table 6-5 shows the status information that the database server maintains for a
smart large object.

Table 6-5. Status Information for a Smart Large Object

Status Information Description

Last-access time The time, in seconds, that the smart large object was last
accessed

This value is available only if the last-access time attribute is
enabled for the smart large object.

Storage characteristics The storage characteristics for the smart large object

Last-change time The time, in seconds, of the last change in status for the smart
large object

A change in status includes changes to metadata and user data
(data updates and changes to the number of references). This
system time is stored as number of seconds since January 1,
1970.

6-12 IBM Informix DataBlade API Programmer’s Guide

Table 6-5. Status Information for a Smart Large Object (continued)

Status Information Description

Last-modification time The time, in seconds, that the smart large object was last
modified

A modification includes only changes to user data (data
updates). This system time is stored as number of seconds since
January 1, 1970.

On some platforms, the last-modification time might also have
a microseconds component, which can be obtained separately
from the seconds component.

Reference count The number of references (LO handles) to the smart large object

Size The size, in bytes, of the smart large object

The database server stores the status information in the metadata area of the
sbspace.

Tip: The time values (such as last-access time and last-change time) might differ
slightly from the system time. This difference is due to the algorithm that the
database server uses to obtain the time from the operating system.

For more information on how to obtain status information in a DataBlade API
module, see “Obtaining Status Information for a Smart Large Object” on page 6-52.

Storing a Smart Large Object in a Database
To store a smart large object in a database, you must save its LO handle in a
column. This section describes the valid data types to hold an LO handle and how
to access a smart large object.

Valid Data Types
In the database, you can use either of the following ways to store a smart large
object in a column:
v For direct access to the smart large object, create a column of the CLOB or BLOB

data type.
v To hide the smart large object within an atomic data type, create an opaque type

that holds a smart large object.

CLOB and BLOB Data Types
You can store a smart large object directly in a column that has one of the
following data types:
v The CLOB data type holds text data.
v The BLOB data type can store any kind of binary data in an undifferentiated

byte stream.

The CLOB or BLOB column holds an LO handle for the smart large object.
Therefore, when you select a CLOB or BLOB column, you do not obtain the actual
data of the smart large object, but the LO handle that identifies this data. The
BLOB and CLOB data types have identical internal representation. Externally, an
LO handle is represented as a flat array of bytes with a length of MI_LO_SIZE.

Chapter 6. Using Smart Large Objects 6-13

Suppose an employee table has a BLOB column named emp_picture to hold the
picture of an employee. Figure 6-2 shows that in a row of the employee table, the
emp_picture column contains an LO handle. This LO handle contains information
about the location of the actual employee picture in the sbspace1_100 sbspace.

The CLOB and BLOB data types are often referred to collectively as
smart-large-object data types. For more information on these data types, see the IBM
Informix Guide to SQL: Reference.

Opaque Data Type
An opaque data type is a user-defined atomic data type. You can define a field of
an opaque data type to be a smart large object. The support functions of the
opaque type must perform the conversion between the LO handle in the opaque
type and the smart-large-object data in the sbspace. For more information, see
“Managing the Reference Count” on page 6-56.

In Figure 6-2, the emp_picture column could be an opaque data type named
picture instead of a BLOB data type. The picture data type could hold the image
in a smart large object in one field of its internal structure and other information
about the picture in other fields.

For more information on opaque data types, see the IBM Informix Guide to SQL:
Reference and the IBM Informix User-Defined Routines and Data Types Developer’s
Guide.

Access to a Smart Large Object
The DataBlade API provides the smart-large-object interface for access to smart
large objects. This interface contains a set of functions and data types to provide
access to smart large objects. (For more information, see “Using the
Smart-Large-Object Interface” on page 6-15.) The smart-large-object interface
provides access to the smart large object through its LO handle, as follows:
v Once you select a column that contains an LO handle, you can use this handle to

access the smart-large-object data in an sbspace.
v To store a new smart large object, you create a new LO handle, write the data to

the sbspace, and store the LO handle in the column.

Selecting a Smart Large Object
A SELECT statement on a CLOB, BLOB, or opaque-type column retrieves an LO
handle for a smart large object. It does not retrieve the actual data for the smart
large object because this data resides in an sbspace.

To select a smart large object:

Figure 6-2. A Smart Large Object in a Database Column

6-14 IBM Informix DataBlade API Programmer’s Guide

1. Use a SELECT statement to retrieve the LO handle from the CLOB, BLOB, or
opaque-type column.
The LO handle identifies the location of the smart large object on disk.

2. Read the smart-large-object data from the sbspace of the smart large object.
The LO handle identifies the smart large object to open. Once you open the
smart large object, you obtain an LO file descriptor, which you can use to read
data from the sbspace of the smart large object.

Storing a Smart Large Object
Because a smart large object can be quite large, it is not practical to store it directly
in the database table. Instead, the INSERT and UPDATE statements store the LO
handle of the smart large object in the CLOB, BLOB, or opaque-type column. The
data of the smart large object resides in an sbspace.

To save a smart large object in a CLOB, BLOB, or opaque-type column:

1. For a new smart large object, ensure that the smart large object has an sbspace
specified for its data.
For most smart large objects, the sbspace name is the only storage characteristic
that you need to specify. The smart-large-object optimizer can calculate values
for all other storage characteristics. You can set particular storage characteristics
to override these calculated values. However, most applications do not need to
set storage characteristics at this level of detail. For more information, see
“Obtaining Storage Characteristics” on page 6-28.

2. Create a new LO handle for the smart large object and open the smart large
object.
When you create a smart large object, you obtain an LO handle and an LO file
descriptor for the new smart large object.

3. Write the smart-large-object data to the sbspace of the smart large object.
Use the LO file descriptor to identify the smart large object whose data you
want to write to the sbspace.

4. Use the INSERT or UPDATE statement to store the LO handle into the CLOB,
BLOB, or opaque-type column.
The LO handle for the smart large object identifies the location of the smart
large object on disk. Once you have written the data to the smart large object,
provide its LO handle to the INSERT or UPDATE statement to save it in the
database. The smart-large-object data remains in the sbspace.

Important: The sbspace for the smart large object must exist before the INSERT
statement executes.

When you store an LO handle in the database, the database server can ensure that
the smart large objects are only freed when no more database columns reference
them. For more information, see “Deleting a Smart Large Object” on page 6-56. For
information on how to insert a smart large object from within a DataBlade API
module, see “Creating a Smart Large Object” on page 6-24.

Using the Smart-Large-Object Interface
The smart-large-object interface contains a set of functions and data types to
provide access to smart large objects. It enables you to access the data of a smart
large object in much the same way as you would access an operating-system file
on UNIX, Linux, or Windows. The interface provides the following:
v Smart-large-object functions

Chapter 6. Using Smart Large Objects 6-15

v Smart-large-object data type structures

The milo.h header file defines the functions and data type structures of the
smart-large-object interface. The mi.h header file automatically includes the milo.h
header file. You must include either mi.h or milo.h in any DataBlade API routine
that calls a smart-large-object function or declares one of the smart-large-object
data type structures.

Sections of this chapter describe how to use the smart-large-object interface to
perform the following operations on a smart large object.

Smart-Large-Object Operation More Information

Create a new smart large object page 6-24

Access data in an existing smart large object page 6-46

Modify an existing smart large object page 6-50

Obtain status information about an existing smart large object page 6-52

Delete a smart large object page 6-56

Smart-Large-Object Data Type Structures
The smart-large-object interface provides data type structures that store
information about a smart large object. Table 6-6 summarizes the data type
structures of the smart-large-object interface.

Table 6-6. Data Types of the Smart-Large-Object Interface

Smart-Large-Object Data
Type Structure Data Type Description

The LO-specification structure MI_LO_SPEC Holds storage characteristics for
a smart large object

The LO handle MI_LO_HANDLE Identifies the location of the
smart large object; analogous to
the filename of an
operating-system file

The LO file descriptor MI_LO_FD Identifies an open smart large
object; analogous to the file
descriptor of an
operating-system file

The LO-status structure MI_LO_STAT Holds status information about a
smart large object

These structures are all opaque to a DataBlade API module; that is, you do not
access their fields directly but instead use accessor functions that the
smart-large-object interface provides.

LO-Specification Structure
The LO-specification structure, MI_LO_SPEC, defines the storage characteristics for
an existing or a new smart large object. The storage characteristics provide
information about features of the smart large object and how to store it on disk.
For a description of the storage characteristics available, see “Storage
Characteristics” on page 6-4.

The following table summarizes the memory operations for an LO-specification
structure.

6-16 IBM Informix DataBlade API Programmer’s Guide

Memory Duration Memory Operation Function Name

Current memory duration Constructor mi_lo_spec_init()

Destructor mi_lo_spec_free()

To access an LO-specification structure in a DataBlade API module, declare a
pointer to an MI_LO_SPEC structure. For example, the following line shows the
valid syntax of a variable that accesses an LO-specification structure:
MI_LO_SPEC *myspec; /* valid syntax */

Declaration of a flat LO-specification structure generates a compile error. The
following line shows invalid syntax for an LO-specification structure:
MI_LO_SPEC myspec; /* INVALID syntax */

The milo.h header file defines the MI_LO_SPEC data type. Therefore, you must
include the milo.h (or mi.h) file in DataBlade API modules that access this
structure. For information on how to use an LO-specification structure, see
“Obtaining the LO-Specification Structure” on page 6-25.

LO Handle
An LO handle, MI_LO_HANDLE, serves as a reference to a smart large object. It is
analogous to the filename of an operating-system file in that it is a unique
identifier of a smart large object. The LO handle contains encoded information
about the smart large object, such as its physical disk location and other
security-related information. After a smart large object is created, an associated LO
handle is a valid reference for the life of that smart large object.

The following table summarizes the memory operations for an LO handle.

Memory Duration Memory Operation Function Name

Current memory duration Constructor mi_get_lo_handle(),
mi_lo_copy(),
mi_lo_create(),
mi_lo_expand(),
mi_lo_from_buffer(),
mi_lo_from_string(),
mi_streamread_lo()

Destructor mi_lo_delete_immediate(),
mi_lo_release()

To access an LO handle in a user-defined routine (UDR), declare it in one of the
following ways:
v As a pointer to the MI_LO_HANDLE data type:

MI_LO_HANDLE *my_LOhndl; /* an LO-handle pointer */

When you declare an LO handle in this way, you must allocate memory for it
before you use it. For more information, see “Obtaining an LO Handle” on page
6-40.

v As a flat MI_LO_HANDLE structure:
MI_LO_HANDLE my_flat_LOhnld; /* a flat LO handle */

When you declare a flat MI_LO_HANDLE structure, you do not need to allocate
memory for it. This flat structure is useful when you need to embed an LO
handle within an opaque data type.

Chapter 6. Using Smart Large Objects 6-17

The milo.h header file defines the MI_LO_HANDLE data type. Therefore, you
must include the milo.h (or mi.h) file in DataBlade API modules that access this
handle. For information on how to use an LO handle, see “Initializing an
LO-Specification Structure” on page 6-27 and “Selecting the LO Handle” on page
6-47.

LO File Descriptor
The LO file descriptor, MI_LO_FD, is a reference to an open smart large object. An
LO file descriptor is similar to a file descriptor for an operating-system file. It is an
integer number that serves as a transient descriptor for performing I/O on the data
of the smart large object. It provides the following information about an open
smart large object:
v The LO seek position, the current position at which read and write operations

occur.
When you first open a smart large object, the seek position is at byte zero (0).

v The open mode of the smart large object, which determines which operations can
be performed on the data and how to buffer the data for I/O operations.
You specify the open mode when you open a smart large object. For more
information, see “Open-Mode Information” on page 6-8.

The following table summarizes the memory operations for an LO file descriptor.

Memory Duration Memory Operation Function Name

Not allocated from memory-duration pools Constructor mi_lo_copy(),
mi_lo_create(),
mi_lo_expand(),
mi_lo_from_file(),
mi_lo_open()

Destructor mi_lo_close()

To access an LO file descriptor in a DataBlade API module, declare a variable with
the MI_LO_FD data type. For example, the following line declares the variable
my_lofd that is an LO file descriptor:
MI_LO_FD my_lofd;

The milo.h header file defines the MI_LO_FD data type. Therefore, you must
include the milo.h (or mi.h) file in DataBlade API modules that access this handle.

Tip: Other smart-large-object data type structures require that you declare a
pointer to them because the DataBlade API handles memory allocation for
these structures. However, you can declare an LO file descriptor directly.

Server Only

Because you declare an LO file descriptor directly, its scope is that of the variable
you declare to hold it. When you assign an LO file descriptor to a local variable,
the LO file descriptor is deallocated when the function that declares it ends. If you
want to keep the LO file descriptor longer, you can allocate user memory with the
memory duration you want (up to the advanced duration of PER_SESSION) and
copy the LO file descriptor into this memory. For example, you could assign the
LO file descriptor to PER_COMMAND memory and copy it into the user state of
the MI_FPARAM structure. For more information, see “Managing the Memory
Duration” on page 14-21 and “Saving a User State” on page 9-8.

6-18 IBM Informix DataBlade API Programmer’s Guide

Important: Although the scope of an LO file descriptor is determined by its
declaration, the scope of the open smart large object (which the LO file
descriptor identifies) is the entire session. Make sure you explicitly
close a smart large object before the scope of its LO file descriptor
expires. For more information, see “Freeing a Smart Large Object” on
page 6-49.

End of Server Only

For information on how to use an LO file descriptor, see “Initializing an
LO-Specification Structure” on page 6-27.

LO-Status Structure
The LO-status structure, MI_LO_STAT, contains the status information for an
existing smart large object. The following table summarizes the memory operations
for an LO-status structure.

Memory Duration Memory Operation Function Name

Current memory duration Constructor mi_lo_stat()

Destructor mi_lo_stat_free()

To access an LO-status structure in a DataBlade API module, declare a pointer to
an MI_LO_STAT structure. For example, the following line declares the variable
mystat that points to an LO-specification structure:
MI_LO_STAT *mystat; /* valid syntax */

Declaration of a flat LO-status structure generates a compile error. The following
line shows invalid syntax for an LO-status structure:
MI_LO_STAT mystat; /* INVALID syntax */

The milo.h header file defines the MI_LO_STAT data type. Therefore, you must
include the milo.h (or mi.h) file in DataBlade API modules that access this
structure. For information on how to allocate and use an LO-status structure, see
“Obtaining Status Information” on page 6-54.

Smart-Large-Object Functions
The smart-large-object interface includes functions that provide the following
operations on a smart large object:
v Creating a smart large object
v Performing input and output (I/O) on smart-large-object data
v Manipulating LO handles
v Accessing storage characteristics
v Obtaining status information
v Moving smart large objects to and from operating-system files

Most of the smart-large-object function names begin with the string ‘mi_lo_’. The
IBM Informix DataBlade API Function Reference contains an alphabetical list of all
DataBlade API functions, including the smart-large-object functions.

Functions That Create a Smart Large Object
The smart-large-object creation functions create a new smart large object, open it,
and return a new LO handle and LO file descriptor for it. Table 6-7 lists the

Chapter 6. Using Smart Large Objects 6-19

smart-large-object creation functions.

Table 6-7. Smart-Large-Object Creation Functions

Smart-Large-Object
Creation Function Description

mi_lo_create() Creates a new, empty smart large object

mi_lo_copy() Creates a new smart large object that is a copy of an existing
smart large object

mi_lo_expand()
(deprecated)

Creates a new smart large object from existing
multirepresentational data

mi_lo_from_file() Creates a new smart large object from data in an operating-system
file

For more information on how to use the smart-large-object creation functions, see
“Creating a Smart Large Object” on page 6-24.

Functions That Perform Input and Output on a Smart Large
Object
The smart-large-object interface for Dynamic Server includes functions that provide
basic file operations such as create, open, seek, read, write, alter, and truncate.
These routines bypass the query processor, executor, and optimizer, and give the
application direct access to a smart large object. These functions use an LO file
descriptor to identify the open smart large object.

Table 6-8 shows the basic file-like operations on a smart large object with the
smart-large-object function that performs them and the analogous operating-system
calls for file operations.

Table 6-8. Main DataBlade API Functions of the Smart-Large-Object Interface

Smart-Large-Object Operation
Smart-Large-Object
Function Operating-System Call

Open the smart large object that the
LO handle identifies: the open
operation generates an LO file
descriptor for the smart large object.

mi_lo_open() open()

Seek to the desired LO seek position
to begin a read or write operation.

mi_lo_seek() seek()

Obtain the current LO seek position. mi_lo_tell() tell()

Lock the specified number of bytes of
data.

mi_lo_lock() lock()

Perform the read or write operation
for the specified number of bytes.

mi_lo_read(),
mi_lo_readwithseek(),
mi_lo_write(),
mi_lo_writewithseek()

read(), write()

Unlock the specified number of bytes
of data.

mi_lo_unlock() unlock()

Obtain status information about a
particular smart large object.

mi_lo_stat() stat()

Truncate smart-large-object data at a
specified location.

mi_lo_truncate() truncate()

Close the smart large object and free
the LO file descriptor.

mi_lo_close() close()

6-20 IBM Informix DataBlade API Programmer’s Guide

For more information, see “Opening a Smart Large Object” on page 6-48.

Functions That Manipulate an LO Handle
The following table shows the smart-large-object functions that act on an LO
handle, not on the smart large object that it identifies.

DataBlade API Function Purpose

mi_get_lo_handle() Obtains an LO handle from a user-defined buffer

mi_lo_alter() Alters the storage characteristics of the smart large
object that the LO handle identifies

mi_lo_copy() Copies the contents of a smart large object (that an
LO handle identifies) into a new smart large object
and initializes the LO handle of the new smart
large object

mi_lo_create() Creates a new smart large object and initializes its
LO handle

mi_lo_decrefcount() Decrements the reference count of the smart large
object that the LO handle identifies

mi_lo_expand()
(deprecated) Copies multirepresentational data into a new smart

large object and initializes the LO handle

mi_lo_filename() Returns the name of the file where the
mi_lo_to_file() function would store the smart
large object that the LO handle identifies

mi_lo_from_buffer() Copies a specified number of bytes from a
user-defined buffer into a smart large object that
the LO handle identifies

mi_lo_from_file() Copies the contents of an operating-system file to a
smart large object that the LO handle identifies

mi_lo_from_string() Converts an LO handle from its text representation
to its binary representation

mi_lo_increfcount() Increments the reference count of the smart large
object that the LO handle identifies

mi_lo_invalidate() Marks an LO handle as invalid

mi_lo_lolist_create() Converts an array of LO handles into an
MI_LO_LIST structure

mi_lo_open() Opens the smart large object that the LO handle
identifies

mi_lo_ptr_cmp() Compares two LO handles to see if they identify
the same smart large object

mi_lo_release() Releases resources held by a transient smart large
object, including its LO handle

mi_lo_to_buffer() Copies a specified number of bytes from a smart
large object that the LO handle identifies into a
user-defined buffer

mi_lo_to_file() Copies the smart large object that the LO handle
identifies to an operating-system file

Chapter 6. Using Smart Large Objects 6-21

mi_lo_to_string() Converts an LO handle from its binary
representation to its text representation

mi_lo_validate() Checks whether an LO handle is valid

mi_put_lo_handle() Puts an LO handle into a user-defined buffer

Important: The LO handle, MI_LO_HANDLE, is
an opaque structure to DataBlade API
modules. Do not access its internal
structure directly. There is no guarantee
that the internal structure of
MI_LO_HANDLE will not change. To
create portable code, use the
appropriate DataBlade API function to
access this structure.

For more information on how to use these functions, see “Obtaining an LO
Handle” on page 6-40.

Functions That Access an LO-Specification Structure
The following table shows the smart-large-object functions that access the
LO-specification structure.

DataBlade API Function Purpose

mi_lo_alter() Alters the storage characteristics of an existing smart
large object

mi_lo_colinfo_by_ids() Updates the LO-specification structure with the
column-level storage characteristics for a column
identified by a row descriptor

mi_lo_colinfo_by_name() Updates the LO-specification structure with the
column-level storage characteristics for a column
identified by name

mi_lo_copy() Copies the contents of the smart large object into a
new smart large object, whose storage characteristics
the LO-specification structure contains

mi_lo_create() Creates a new smart large object that has the storage
characteristics in the LO-specification structure

mi_lo_expand()
(deprecated)

Copies multirepresentational data into a new smart
large object, whose storage characteristics the
LO-specification structure contains

mi_lo_from_file() Copies the contents of an operating-system file to a
smart large object, whose storage characteristics the
LO-specification structure contains

mi_lo_spec_free() Frees the resources of the LO-specification structure

mi_lo_spec_init() Allocates and initializes an LO-specification
structure

mi_lo_specget_def_open_flags() Retrieves the default open mode from the
LO-specification structure

mi_lo_specget_estbytes() Retrieves the estimated number of bytes from the
LO-specification structure

mi_lo_specget_extsz() Accessor function to get the allocation extent size
from the LO-specification structure

6-22 IBM Informix DataBlade API Programmer’s Guide

DataBlade API Function Purpose

mi_lo_specget_flags() Accessor function to get the attributes flag from the
LO-specification structure

mi_lo_specget_maxbytes() Accessor function to get the maximum number of
bytes from the LO-specification structure

mi_lo_specget_sbspace() Accessor function to get the name of the sbspace
from the LO-specification structure

mi_lo_specset_def_open_flags() Accessor function to set the default open mode in
the LO-specification structure

mi_lo_specset_estbytes() Accessor function to set the estimated number of
bytes in the LO-specification structure

mi_lo_specset_extsz() Accessor function to set the allocation extent size in
the LO-specification structure

mi_lo_specset_flags() Accessor function to set the attribute flags in the
LO-specification structure

mi_lo_specset_maxbytes() Accessor function to set the maximum number of
bytes in the LO-specification structure

mi_lo_specset_sbspace() Accessor function to set the name of the sbspace in
the LO-specification structure

mi_lo_stat_cspec() Returns a pointer to the LO-specification structure
that contains the storage characteristics obtained
from the LO-status structure of an existing smart
large object

Important: The LO-specification structure, MI_LO_SPEC, is an opaque structure to
DataBlade API modules. Do not access its internal structure directly.
The internal structure of MI_LO_SPEC may change in future releases.
Therefore, to create portable code, always use the LO-specification
accessor functions to obtain and store values in this structure.

For more information on how to use these functions, see “Obtaining the
LO-Specification Structure” on page 6-25 and “Choosing Storage Characteristics”
on page 6-28.

Functions That Access an LO-Status Structure
The following table shows the smart-large-object functions that access the
LO-status structure.

DataBlade API Function Purpose

mi_lo_stat() Allocates and initializes an LO-status structure with status
information of an open smart large object

mi_lo_stat_atime() Accessor function to get the last-access time

mi_lo_stat_cspec() Accessor function to get the storage characteristics

mi_lo_stat_ctime() Accessor function to get the last-change time

mi_lo_stat_free() Frees the resources of the LO-status structure

mi_lo_stat_mtime_sec() Accessor function to get the seconds component of the
last-modification time

mi_lo_stat_mtime_usec() Accessor function to get the microseconds component of the
last-modification time

mi_lo_stat_refcnt() Accessor function to get the reference count

Chapter 6. Using Smart Large Objects 6-23

DataBlade API Function Purpose

mi_lo_stat_size() Accessor function to get the size of smart large object

Important: The LO-status structure, MI_LO_STAT, is an opaque structure to
DataBlade API modules. Do not access its internal structure directly.
The internal structure of MI_LO_STAT may change in future releases.
Therefore, to create portable code, always use the LO-status accessor
functions to obtain and store values from this structure.

For more information on how to use these functions, see “Obtaining Status
Information” on page 6-54.

Functions That Move Smart Large Objects to and from
Operating-System Files
The following table shows the smart-large-object functions that move smart large
objects to and from operating-system files.

DataBlade API Function Purpose

mi_file_to_file() Copies the contents of one operating-system file to another

mi_lo_from_file() Copies the contents of an operating-system file to a new
smart large object

mi_lo_from_file_by_lofd() Copies the contents of an operating-system file to an
existing smart large object

mi_lo_to_file() Copies the contents of a smart large object to a new
operating-system file

For more information on how to use these functions, see “Using Operating-System
Files” on page 6-59.

Creating a Smart Large Object
To create a smart large object and save its LO handle in the database, you need to
take the following steps. For details on a step, see the page listed under “More
Information.”

Step Task Smart-Large-Object Function More Information

1. Obtain an LO-specification structure to
hold the storage characteristics for the
new smart large object.

mi_lo_spec_init(), mi_lo_stat_cspec() page 6-25

2. Ensure that the LO-specification structure
contains the desired storage
characteristics for the new smart large
object.

System-specified storage characteristics:
mi_lo_spec_init()

Column-level storage characteristics:
mi_lo_colinfo_by_name(),
mi_lo_colinfo_by_ids()

User-specified storage characteristics:
Table 6-14 on page 6-35,
Table 6-15 on page 6-36

page 6-28

3. Create an LO handle for the new smart
large object and open the smart large
object.

mi_lo_create(), mi_lo_expand(),
mi_lo_copy(), mi_lo_from_file()

page 6-40

6-24 IBM Informix DataBlade API Programmer’s Guide

Step Task Smart-Large-Object Function More Information

4. Write a specified number of bytes from a
user-defined buffer to the open smart
large object.

mi_lo_write(), mi_lo_writewithseek() page 6-42

5. Pass the LO handle as the column value
for an INSERT or UPDATE statement.

C Casting page 6-42

6. Execute an INSERT or UPDATE
statement to save the LO handle of the
smart large object in a database column.

mi_exec(), mi_exec_prepared_statement(),
mi_value()

page 6-42

7. Close the smart large object. mi_lo_close() page 6-49

8. Free resources. mi_lo_spec_free(), mi_lo_release() page 6-43

Figure 6-3 shows the first six of these steps that a DataBlade API module uses to
insert the smart-large-object data into the emp_picture column of the employee
table (Figure 6-2 on page 6-14).

Obtaining the LO-Specification Structure
Before you create a new smart large object, obtain a valid LO-specification
structure to hold its storage characteristics. You can obtain an LO-specification
structure in either of the following ways:
v Create a new LO-specification structure to hold the storage characteristics of a

new smart large object with the mi_lo_spec_init() function.
v Obtain an LO-specification structure that holds the storage characteristics of an

existing smart large object with the mi_lo_stat_cspec() function.

Specifying New Storage Characteristics
The mi_lo_spec_init() function is the constructor for the LO-specification
structure. This function performs the following tasks to create a new
LO-specification structure:
1. It allocates a new LO-specification structure when you provide a NULL-valued

pointer as an argument.

Figure 6-3. Inserting Into a BLOB Column

Chapter 6. Using Smart Large Objects 6-25

2. It initializes all fields of the LO-specification structure (disk-storage information
and attributes flag) to the appropriate null values.

Important: Do not handle memory allocation for an LO-specification structure with
system memory-allocation routines (such as malloc() or mi_alloc())
or by direct declaration. You must use the LO-specification constructor,
mi_lo_spec_init(), to allocate a new LO-specification structure.

Allocating Memory for an LO-Specification Structure: When you pass a
NULL-valued pointer as the second argument of the mi_lo_spec_init() function,
this function allocates an LO-specification structure.

Server Only

This new LO-specification structure has the current memory duration.

End of Server Only

The following code fragment declares a pointer named myspec and initializes this
pointer to NULL:
MI_LO_SPEC *myspec;
MI_CONNECTION *conn;
...
/* Allocate a new LO-specification structure */
myspec = NULL;
if (mi_lo_spec_init(conn, &myspec) != MI_OK)

handle_error();
/* Perform tasks with LO-specification structure */
...

/* Once finished with LO-specification structure, free it */
if (mi_lo_spec_free(conn, myspec)!= MI_OK)

handle_error();

After the execution of mi_lo_spec_init(), the myspec variable points to the newly
allocated LO-specification structure. For more information on how to use an
LO-specification structure to create a new smart large object, see “Choosing Storage
Characteristics” on page 6-28.

If you provide a second argument that does not point to NULL, the
mi_lo_spec_init() function assumes that this pointer references an existing
LO-specification structure that a previous call to mi_lo_spec_init() has allocated.
An LO-specification pointer that is not NULL allows a DataBlade API module to
reuse an LO-specification structure. The following code fragment reuses the
LO-specification structure that the LO_spec pointer references when the first_time
flag is false:
MI_CONNECTION *conn;
MI_LO_SPEC *LO_spec = NULL;
mi_integer first_time = 1;
...
if (first_time)

{
...
LO_spec = NULL; /* tell interface to allocate memory */
first_time = 0; /* set "first_time" flag to false */
...
}

6-26 IBM Informix DataBlade API Programmer’s Guide

if (mi_lo_spec_init(conn, &LO_spec) != MI_OK)
{
/* error */
}

Important: Before you use an LO-specification structure, make sure that you either
call mi_lo_spec_init() with the LO-specification pointer set to NULL,
or that you have initialized this pointer with a previous call to
mi_lo_spec_init().

Once you have a valid LO-specification structure, you can use the accessor
functions to obtain the storage characteristics from this LO-specification structure.
For more information, see “Defining User-Specified Storage Characteristics” on
page 6-35. For the syntax of mi_lo_spec_init(), see the IBM Informix DataBlade API
Function Reference.

Initializing an LO-Specification Structure: The mi_lo_spec_init() function
initializes the LO-specification structure with values that obtain the
system-specified storage characteristics. The system-specified storage characteristics
are the defaults that the database server uses. They are the storage characteristics
at the bottom of the storage-characteristics hierarchy.

After this initialization, you can change the values in the LO-specification
structure:
v The new smart large object inherits column-level storage characteristics of a

CLOB or BLOB column.
v You provide user-specified storage characteristics for the new smart large object.

For more information on storage characteristics and the storage-characteristics
hierarchy, see “Choosing Storage Characteristics” on page 6-28.

Copying Storage Characteristics from an Existing Smart Large
Object
The mi_lo_stat_cspec() function copies the create specification storage
characteristics from an existing smart large object to a flags field that can then be
passed to mi_lo_create to create a new smart large object. This function is used
when you want a new smart large object to have the same characteristics as an
existing smart large object.

The LO_stat structure in the following example holds status information for an
existing smart large object. You initialize an LO-status structure with the
mi_lo_stat() function. For more information on an LO-status structure, see
“Obtaining Status Information” on page 6-54.

The following code fragment assumes that the old_LOfd variable has already been
initialized as the LO file descriptor of an existing smart large object. This code
fragment uses the storage characteristics of the existing smart large object (which
the mi_lo_stat() function puts into the MI_LO_STAT structure that LO_stat
specifies) as the create time storage characteristics for the new smart large object
that the mi_lo_create() function creates.
MI_LO_HANDLE *LO_hdl = NULL;
MI_LO_STAT *LO_stat = NULL;
MI_LO_SPEC *LO_spec;
MI_LO_FD new_LOfd, old_LOfd;
mi_integer flags;
...
if (mi_lo_stat(conn, old_LOfd, &LO_stat) != MI_OK)

Chapter 6. Using Smart Large Objects 6-27

{
/* handle error and exit */
}

LO_spec = mi_lo_stat_cspec(LO_stat);
new_LOfd = mi_lo_create(conn, LO_spec, flags, &LO_hdl);

Choosing Storage Characteristics
After initializing an LO-specification structure, you need to ensure that this
structure contains the appropriate values for the storage characteristics you want
the smart large object to have. Then you pass this LO-specification structure to one
of the smart-large-object creation functions (Table 6-7 on page 6-20) so that the
smart-large-object optimizer can obtain the storage characteristics to use for the
new smart large object.

To choose storage characteristics for a new smart large object:

1. Use the system-specified storage characteristics as a basis for obtaining the
storage characteristics of a smart large object.
The system-specified storage characteristics are the default storage characteristics
for a smart large object.

2. Customize the storage characteristics.
You can override the system-specified storage characteristics with one of the
following levels of the storage-characteristics hierarchy:
v Storage characteristics defined for a particular CLOB or BLOB column in

which you want to store the smart large object
Storage characteristics that are unique to a particular CLOB or BLOB column
are called column-level storage characteristics.

v User-specified storage characteristics
Special storage characteristics that you define for this smart large object only
are called user-specified storage characteristics.

Important: For most applications, use the system-specified values for the
disk-storage information. Most DataBlade API modules need to ensure
correct storage characteristics only for an sbspace name (the location of
the smart large object) and for the smart-large-object attributes.

Obtaining Storage Characteristics
For most smart large objects, all you need to do is obtain the system-specified
storage characteristics. When you obtain these storage characteristics for a smart
large object, you can specify a location for it and override system-specified
attributes.

To obtain system-specified storage characteristics:

1. Use the mi_lo_spec_init() function to allocate an LO-specification structure
and to initialize this structure to the appropriate null values.
When a storage characteristic in the LO-specification structure has the
appropriate null value (zero or a NULL-valued pointer), the smart-large-object
optimizer obtains the system-specified value for the storage characteristic. The
smart-large-object optimizer calculates the system-specified values for
disk-storage storage characteristics. Most applications can use these
system-specified values. For more information, see “Using System-Specified
Storage Characteristics” on page 6-32.

2. Specify the location of the smart large object to override the default location.
You can specify the location as one of the following:

6-28 IBM Informix DataBlade API Programmer’s Guide

v The name of the sbspace associated with the CLOB or BLOB column in
which you want to store the smart large object
To store a new smart large object in a CLOB or BLOB column, use the
mi_lo_colinfo_by_name() or mi_lo_colinfo_by_ids() function. These
functions obtain the column-level storage characteristics for this column. One
of the storage characteristics they obtain is the sbspace name for the column.
For more information, see “Obtaining Column-Level Storage Characteristics”
on page 6-33.

v The name of some other sbspace
You might want to specify an sbspace name for a new smart large object that
is embedded in an opaque data type. The mi_lo_specset_sbspace() accessor
function sets the name of the sbspace in the LO-specification structure. For
more information, see “Defining User-Specified Storage Characteristics” on
page 6-35.

3. Optionally, override any attributes for the smart large object with the
mi_lo_specset_flags() accessor function.
The system-specified attributes have both logging and last-access time disabled.
You might want to enable one or more attributes for the new smart large object.
The mi_lo_specset_flags() function sets the attributes flag in the
LO-specification structure. For more information, see “Defining User-Specified
Storage Characteristics” on page 6-35.

4. Pass this LO-specification structure to one of the smart-large-object creation
functions (mi_lo_create(), mi_lo_copy(), mi_lo_expand(), or
mi_lo_from_file()) to create the new smart large object.
The smart-large-object creation function creates a new smart large object that
has storage characteristics that the LO-specification structure indicates. For
more information, see “Initializing an LO-Specification Structure” on page 6-27.

You would probably want to modify the storage characteristics of the new smart
large object in the following cases:
v Your application needs to obtain extra performance.

You can use other LO-specification accessor functions to change the disk-storage
information of a new smart large object. For more information, see “Defining
User-Specified Storage Characteristics” on page 6-35.

v You want to use the storage characteristics of an existing smart large object.
The mi_lo_stat_cspec() function can obtain the storage characteristics of an
open smart large object through its LO-status structure. For more information,
see “Copying Storage Characteristics from an Existing Smart Large Object” on
page 6-27.

Using the Storage-Characteristics Hierarchy
Dynamic Server uses the storage-characteristics hierarchy, which Figure 6-4 shows, to
obtain the storage characteristics for a new smart large object.

Chapter 6. Using Smart Large Objects 6-29

For a given storage characteristic, any value defined at the column level overrides
the system-specified value, and any user-level value overrides the column-level
value. Table 6-9 summarizes the ways to specify disk-storage information for a
smart large object.

Table 6-9. Specifying Disk-Storage Information

Disk-Storage Information

System-Specified Storage Characteristics

Column-Level
Storage
Characteristics

User-Specified
Storage
Characteristics

System Default
Value

Specified by onspaces
Utility

Specified by the
PUT clause of
CREATE TABLE

Specified by a
DataBlade API
Function

Size of extent Calculated by
smart-large-object
optimizer

EXTENT_SIZE EXTENT SIZE Yes

Size of next extent Calculated by
smart-large-object
optimizer

NEXT_SIZE No No

Minimum extent size Four kilobytes MIN_EXT_SIZE No No

Size of smart large object Calculated by
smart-large-object
optimizer

Average size of all
smart large objects in
sbspace:

AVG_LO_SIZE

No Estimated size of a
particular smart
large object

Maximum size of a
particular smart
large object

Maximum size of I/O
block

Calculated by
smart-large-object
optimizer

MAX_IO_SIZE No No

Figure 6-4. Storage-Characteristics Hierarchy

6-30 IBM Informix DataBlade API Programmer’s Guide

Table 6-9. Specifying Disk-Storage Information (continued)

Disk-Storage Information

System-Specified Storage Characteristics

Column-Level
Storage
Characteristics

User-Specified
Storage
Characteristics

System Default
Value

Specified by onspaces
Utility

Specified by the
PUT clause of
CREATE TABLE

Specified by a
DataBlade API
Function

Name of sbspace SBSPACENAME -S option Name of an existing
sbspace that stores
a smart large object:

IN clause

Yes

For most applications, use the values for the disk-storage information that the
smart-large-object optimizer determines. If you know the size of the smart large
object, it is recommended that you specify this size as a user-specified storage
characteristic, instead of as a system-specified or column-level storage
characteristic.

For more information on any of the disk-storage information in Table 6-9, see
“Disk-Storage Information” on page 6-5.

Table 6-10 summarizes the ways to specify attribute information for a smart large
object.

Table 6-10. Specifying Attribute Information

Attribute Information

System-Specified Storage
Characteristics

Column-Level Storage
Characteristics

User-Specified Storage
Characteristics

System Default
Value

Specified by the
onspaces Utility

Specified by the PUT
clause of CREATE TABLE

Specified by a
DataBlade API
Function

Logging OFF LOGGING LOG, NO LOG Yes

Last-access time OFF ACCESSTIME KEEP ACCESS TIME,

NO KEEP ACCESS TIME

Yes

Buffering mode OFF BUFFERING No Yes

Lock mode Lock entire smart
large object

LOCK_MODE No Yes

Data integrity High integrity No HIGH INTEG, MODERATE
INTEG

Yes

For more information on any of the attributes in Table 6-10, see “Attribute
Information” on page 6-5.

Table 6-11 summarizes the ways to specify open-mode information for a smart
large object.

Chapter 6. Using Smart Large Objects 6-31

Table 6-11. Specifying Open-Mode Information

Storage Characteristic

System-Specified Storage
Characteristics

Column-Level Storage
Characteristics

User-Specified Storage
Characteristics

System Default
Value

Specified by the
onspaces Utility

Specified by the PUT
clause of CREATE TABLE

Specified by a
DataBlade API
Function

Open-mode
information

Default open
mode

No No Yes

For more information on the open mode and the default open mode, see “Attribute
Information” on page 6-5.

Using System-Specified Storage Characteristics: The Database Administrator
(DBA) establishes system-specified storage characteristics when he or she initializes
the database server and creates an sbspace with the onspaces utility, as follows:
v If the onspaces utility has specified a value for a particular storage characteristic,

the smart-large-object optimizer uses the onspaces value as the system-specified
storage characteristic.

v If the onspaces utility has not specified a value for a particular storage
characteristic, the smart-large-object optimizer uses the system default as the
system-specified storage characteristic.

The system-specified storage characteristics apply to all smart large objects that are
stored in the sbspace, unless a smart large object specifically overrides them with
column-level or user-specified storage characteristics.

The onspaces utility establishes storage characteristics for an sbspace. For the
storage characteristics that onspaces can set as well as the system defaults, see
Table 6-9 on page 6-30 and Table 6-10 on page 6-31. For example, the following call
to the onspaces utility creates an sbspace named sb1 in the /dev/sbspace1
partition:
onspaces -c -S sb1 -p /dev/sbspace1 -o 500 -s 2000

-Df "AVG_LO_SIZE=32"

Table 6-12 shows the system-specified storage characteristics for all smart large
objects in the sb1 sbspace.

Table 6-12. System-Specified Storage Characteristics for the sb1 Sbspace

Storage Characteristic System-Specified Value
Specified by the
onspaces Utility

Disk-storage information:

Size of extent Calculated by
smart-large-object optimizer

system default

Size of next extent Calculated by
smart-large-object optimizer

system default

Minimum extent size Calculated by
smart-large-object optimizer

system default

Size of smart large object 32 kilobytes
(smart-large-object optimizer
uses as size estimate)

AVG_LO_SIZE

Maximum size of I/O block Calculated by
smart-large-object optimizer

system default

6-32 IBM Informix DataBlade API Programmer’s Guide

Table 6-12. System-Specified Storage Characteristics for the sb1 Sbspace (continued)

Storage Characteristic System-Specified Value
Specified by the
onspaces Utility

Name of sbspace sb1 -S option

Attribute information:

Logging OFF system default

Last-access time OFF system default

For a smart large object that has system-specified storage characteristics, the
smart-large-object optimizer calculates values for all disk-storage information except
the sbspace name. The DBA can specify a default sbspace name with the
SBSPACENAME configuration parameter in the ONCONFIG file. However, you
must ensure that the location (the name of the sbspace) is correct for the smart
large object that you create. If you do not specify an sbspace name for a new smart
large object, the database server stores it in this default sbspace. This arrangement
can quickly lead to space constraints.

Important: For new smart large objects, use the system-specified values of all
disk-storage information except the sbspace name. The
smart-large-object optimizer can best determine most of the values of
the storage characteristics. Most applications only need to specify an
sbspace name for their disk-storage information.

Obtaining Column-Level Storage Characteristics: The DBA can establish
column-level storage characteristics for a database table with the CREATE TABLE
statement. If the table contains a CLOB or BLOB column, the PUT clause of
CREATE TABLE can specify the storage characteristics that Table 6-9 on page 6-30
and Table 6-10 on page 6-31 show. This statement stores column-level storage
characteristics in the syscolattribs system catalog table.

The column-level storage characteristics apply to all smart large objects whose LO
handles are stored in the column, unless a smart large object specifically overrides
them with user-specified storage characteristics. Column-level storage
characteristics override any corresponding system-specified storage characteristics.

For example, if the sb1 sbspace was defined as Table 6-12 on page 6-32 shows, the
following CREATE TABLE statement specifies column-level storage characteristics
of a location and last-access time for the cat_descr column:
CREATE TABLE catalog2
(

catalog_num INTEGER,
cat_descr CLOB

) PUT cat_descr IN (sb1) (KEEP ACCESS TIME);

Table 6-13 shows the storage characteristics for all smart large objects in the
cat_descr column.

Table 6-13. Storage Characteristics for the cat_descr Column

Storage Characteristic Column-Level Value

Specified by PUT
Clause of CREATE
TABLE

Disk-storage information:

Chapter 6. Using Smart Large Objects 6-33

Table 6-13. Storage Characteristics for the cat_descr Column (continued)

Storage Characteristic Column-Level Value

Specified by PUT
Clause of CREATE
TABLE

Size of extent Calculated by
smart-large-object
optimizer

system-specified

Size of next extent Calculated by
smart-large-object
optimizer

system-specified

Minimum extent size Calculated by
smart-large-object
optimizer

system-specified

Size of smart large object 32 kilobytes
(smart-large-object
optimizer uses as size
estimate)

system-specified

Maximum size of I/O block Calculated by
smart-large-object
optimizer

system-specified

Name of sbspace sb1 IN (sb1)

Attribute information:

Logging OFF system-specified

Last-access time ON KEEP LAST ACCESS

For more information on the syntax of the CREATE TABLE statement, see its
description in the IBM Informix Guide to SQL: Syntax.

The following DataBlade API functions obtain column-level storage characteristics
for a specified CLOB or BLOB column:
v The mi_lo_colinfo_by_name() function allows you to identify the column by

the table and column name.
v The mi_lo_colinfo_by_ids() function allows you to identify the column by an

MI_ROW structure and the relative column identifier.

Both these functions store the column-level storage characteristics for the specified
column in an existing LO-specification structure. When a smart-large-object
creation function receives this LO-specification structure, it creates a new
smart-large-object instance that has these column-level storage characteristics.

Tip: When you use the column-level storage characteristics, you do not usually
need to override the name of the sbspace for the smart large object. The
sbspace name is specified in the PUT clause of the CREATE TABLE statement.

For example, the following code fragment obtains the column-level storage
characteristics for the emp_picture column of the employee table (Figure 6-2 on
page 6-14) and puts them in the LO-specification structure that LO_spec references:
MI_LO_SPEC *LO_spec = NULL;
MI_CONNECTION *conn;
...
mi_lo_spec_init(conn, &LO_spec);
mi_lo_colinfo_by_name(conn, "employee.emp_picture",

LO_spec);

6-34 IBM Informix DataBlade API Programmer’s Guide

The call to mi_lo_colinfo_by_name() overwrites the system-specified storage
characteristics that the call to mi_lo_spec_init() put in the LO-specification
structure. The LO-specification structure that LO_spec references now contains the
column-level storage characteristics for the emp_picture column.

Defining User-Specified Storage Characteristics: You can establish user-specified
storage characteristics when you create a new smart large object. DataBlade API
functions can specify the storage characteristics that Table 6-9 on page 6-30 and
Table 6-10 on page 6-31 show. The user-specified storage characteristics apply only
to the particular smart-large-object instance that is being created. They override
any corresponding column-level or system-specified storage characteristics.

After you have an LO-specification structure allocated, you can use the appropriate
LO-specification accessor functions to set fields of this structure. Accessor functions
also exist to retrieve storage-characteristic values from the LO-specification
structure. When a smart-large-object creation function receives the LO-specification
structure, it creates a new smart-large-object instance that has these user-specified
storage characteristics.

Important: The LO-specification structure, MI_LO_SPEC, is an opaque structure to
DataBlade API modules. Do not access its internal structure directly.
The internal structure of MI_LO_SPEC may change in future releases.
Therefore, to create portable code, always use the LO-specification
accessor functions to obtain and store values from this structure.

The following sections describe how to access each group of storage characteristics
in the LO-specification structure.

Accessing Disk-Storage Information: Table 6-14 shows the disk-storage information
with the corresponding LO-specification accessor functions.

Table 6-14. Disk-Storage Information in the LO-Specification Structure

Disk-Storage
Information Description

LO-Specification
Accessor Function

Estimated number of
bytes

An estimate of the final size, in bytes, of the smart large
object

The smart-large-object optimizer uses this value to
determine the extents in which to store the smart large
object. This value provides optimization information. If
the value is grossly incorrect, it does not cause incorrect
behavior. However, it does mean that the optimizer
might not necessarily choose optimal extent sizes for the
smart large object.

By default, this value is -1, which tells the
smart-large-object optimizer to calculate the extent size
from a set of heuristics.

mi_lo_specget_estbytes()

mi_lo_specset_estbytes()

Maximum number of
bytes

The maximum size, in bytes, for the smart large object

The smart-large-object optimizer does not allow the
smart large object to grow beyond this size. By default,
this value is -1, which tells the smart-large-object
optimizer that there is no preset maximum size.

mi_lo_specget_maxbytes()

mi_lo_specset_maxbytes()

Chapter 6. Using Smart Large Objects 6-35

Table 6-14. Disk-Storage Information in the LO-Specification Structure (continued)

Disk-Storage
Information Description

LO-Specification
Accessor Function

Allocation extent size The allocation extent size, in kilobytes

It is the size of the page extents for the smart large
object. By default, this value is -1, which tells the
smart-large-object optimizer to obtain the allocation
extent size from the storage-characteristics hierarchy.

mi_lo_specget_extsz()

mi_lo_specset_extsz()

Name of the sbspace The name of the sbspace that contains the smart large
object

The sbspace name can be at most 18 characters long and
must be null terminated. By default, this value is null,
which tells the smart-large-object optimizer to obtain the
sbspace name from the storage-characteristics hierarchy.

mi_lo_specget_sbspace()

mi_lo_specset_sbspace()

For most applications, use the values for the disk-storage information that the
smart-large-object optimizer determines. If you know the size of the smart large
object, it is recommended that you specify this size in the
mi_lo_specset_estbytes() function instead of in the onspaces utility or the
CREATE TABLE or the ALTER TABLE statement. This mi_lo_specset_estbytes()
function (and the corresponding Informix ESQL/C ifx_lo_specset_estbytes()
function) is the best way to set the extent size because the database server can
allocate the entire smart large object as one extent. For more information, see
“Disk-Storage Information” on page 6-5.

Accessing Attributes: The LO-specification structure uses a bitmask flag, called an
attributes flag, to specify the attributes of a smart large object. Table 6-15 shows the
attribute constants of an LO-specification structure.

Table 6-15. Attribute Constants in the LO-Specification Structure

Attribute Attribute Constant Description

Logging: MI_LO_ATTR_LOG Log changes to the smart large object in
the system log file.

MI_LO_ATTR_NO_LOG Turn off logging for all operations that
involve the associated smart large object.

Consider carefully whether to use the MI_LO_ATTR_LOG flag value. The database server incurs
considerable overhead to log smart large objects. For more information, see “Logging” on page
6-5.

Last-access time: MI_LO_ATTR_KEEP_LASTACCESS_TIME Save the last-access time for the smart
large object.

MI_LO_ATTR_NOKEEP_LASTACCESS_TIME Do not maintain the last-access time for
the smart large object.

Consider carefully whether to use the MI_LO_ATTR_KEEP_LASTACCESS_TIME flag value. The
database server incurs considerable overhead in logging and concurrency to maintain last-access
times for smart large objects. For more information, see “Last-Access Time” on page 6-7.

6-36 IBM Informix DataBlade API Programmer’s Guide

Table 6-15. Attribute Constants in the LO-Specification Structure (continued)

Attribute Attribute Constant Description

Data integrity: MI_LO_ATTR_HIGH_INTEG Use both a page header and a page trailer
for the pages of the sbspace.

MI_LO_ATTR_MODERATE_INTEG Use only a page header for the pages of
the sbspace.

Consider carefully whether to use the MI_LO_ATTR_MODERATE_INTEG flag value. Although
moderate integrity takes less disk space per page, it also reduces the ability of the database
server to recover information should disk errors occur. For more information, see “Data
Integrity” on page 6-7.

The milo.h header file defines the attribute constants: MI_LO_ATTR_LOG,
MI_LO_ATTR_NO_LOG, MI_LO_ATTR_KEEP_LASTACCESS_TIME, and
MI_LO_ATTR_NOKEEP_LASTACCESS_TIME, MI_LO_ATTR_HIGH_INTEG, and
MI_LO_ATTR_MODERATE_INTEG.

Table 6-16 shows the LO-specification accessor functions for the attribute
information.

Table 6-16. Accessor Functions for Attribute Information in the LO-Specification Structure

LO-Specification
Accessor Function Description

mi_lo_specget_flags() Overrides system-specified or column-level attributes in the
LO-specification structure with the attributes that the
attributes flag specifies

mi_lo_specset_flags() Retrieves the attributes flag from the LO-specification
structure

To set an attributes flag:

1. If you need to set more than one attribute, use the C-language bitwise OR
operator (|) to mask attribute constants together.

2. Use the mi_lo_specset_flags() accessor function to store the attributes flag in
the LO-specification structure.

Masking mutually exclusive flags results in an error. If you do not specify a value
for a particular attribute, the database server uses the storage-characteristics
hierarchy to determine this information.

For example, the following code fragment specifies the constants to enable logging
the last-access time for the attributes flag in the LO-specification structure that
LO_spec identifies:
MI_CONNECTION *conn;
MI_LO_SPEC *LO_spec = NULL;
mi_integer create_flgs;
...

if (mi_lo_spec_init(conn, &LO_spec) != MI_OK)
/* handle error and exit */

create_flgs =
MI_LO_ATTR_LOG | MI_LO_ATTR_KEEP_LASTACCESS_TIME;

if (mi_lo_specset_flags(LO_spec, create_flgs) != MI_OK)
/* handle error and exit */

Chapter 6. Using Smart Large Objects 6-37

For more information on the attributes of a smart large object, see “Attribute
Information” on page 6-5 and the descriptions of the mi_lo_specset_flags() and
mi_lo_specget_flags() functions in the IBM Informix DataBlade API Function
Reference.

Accessing the Default Open Flag: When you open a smart large object, you can
specify the open mode for the data. The open mode describes the context in which
the I/O operations on the smart large object are performed. The LO-specification
structure uses a bitmask flag, called a default-open-mode flag, to specify the default
open mode of a smart large object. Table 6-17 shows the open-mode constants of an
LO-specification structure.

Table 6-17. Open-Mode Constants in the LO-Specification Structure

Open-Mode
Information Open-Mode Constant Description

Access modes MI_LO_RDONLY Read-only mode

MI_LO_DIRTY_READ Dirty-read mode

MI_LO_WRONLY Write-only mode

MI_LO_APPEND Write/append mode

MI_LO_RDWR Read/write mode

MI_LO_TRUNC Truncate

These access-mode flags for a smart large object are patterned after the UNIX System V
file-access modes. For more information, see “Access Modes” on page 6-8.

Access methods MI_LO_RANDOM Random access

MI_LO_SEQUENTIAL Sequential access

MI_LO_FORWARD Forward

MI_LO_REVERSE Reverse

For more information, see “Access Methods” on page 6-9.

Buffering modes MI_LO_BUFFER Buffered access (Buffered I/O)

MI_LO_NOBUFFER Unbuffered access (Lightweight I/O)

For more information, see “Buffering Modes” on page 6-9.

Locking modes MI_LO_LOCKALL Lock-all locks

MI_LO_LOCKRANGE Byte-range locks

For more information, see “Locking Modes” on page 6-11.

The milo.h header file defines the open-mode constants: MI_LO_RDONLY,
MI_LO_DIRTY_READ, MI_LO_WRONLY, MI_LO_APPEND, MI_LO_RDWR,
MI_LO_TRUNC, MI_LO_RANDOM, MI_LO_SEQUENTIAL, MI_LO_FORWARD,
MI_LO_REVERSE, MI_LO_BUFFER, MI_LO_NOBUFFER, MI_LO_LOCKALL, and
MI_LO_LOCKRANGE.

Table 6-18 shows the LO-specification accessor functions for the default-open-mode
information.

6-38 IBM Informix DataBlade API Programmer’s Guide

Table 6-18. Accessor Functions for Attribute Information in the LO-Specification Structure

LO-Specification
Accessor Function Description

mi_lo_specget_def_open_flags() Overrides the system default open mode with the
open mode that the default-open-mode flag specifies

mi_lo_specset_def_open_flags() Retrieves the default-open-mode flag from the
LO-specification structure

To set a default-open-mode flag:

1. Use the appropriate open-mode constants from the list in Table 6-17 on page
6-38. If you need to set more than one default-open-mode value, use the
C-language bitwise OR operator (|) to mask open-mode constants together.

2. Use the mi_lo_specset_def_open_flags() accessor function to store the
default-open-mode flag in the LO-specification structure.

Masking mutually exclusive flags results in an error. However, you can mask the
MI_LO_APPEND constant with another access-mode constant. In any of these OR
combinations, the seek operation remains unaffected. The following table shows
the effect that each of the OR combinations has on the read and write operations.

OR Operation Read Operations Write Operations

MI_LO_RDONLY |
MI_LO_APPEND

Starts at the LO seek
position and then moves
the seek position to the end
of the data that has been
read

Fails and does not move the LO seek
position

MI_LO_WRONLY |
MI_LO_APPEND

Fails and does not move
the LO seek position

Moves the LO seek position to the
end of the smart large object and
then writes the data

The LO seek position is at the end of
the data after the write operation.

MI_LO_RDWR |
MI_LO_APPEND

Starts at the LO seek
position and then moves
the seek position to the end
of the data that has been
read

Moves the LO seek position to the
end of the smart large object and
then writes the data

The LO seek position is at the end of
the data after the write operation.

For more information on access modes of a smart large object, see “Access Modes”
on page 6-8.

If you do not specify a value for a particular part of the open mode, the database
server assumes the following system default open mode when you open a smart
large object.

Access Capability Default Open Mode Smart-Large-Object Constant

Access mode Read-only MI_LO_RDONLY

Access method Random MI_LO_RANDOM

Buffering Buffered access MI_LO_BUFFER

Locking Whole-object locks MI_LO_LOCKALL

Chapter 6. Using Smart Large Objects 6-39

You can specify a different open mode for a particular smart large object when you
open a smart large object. For more information on how to open a smart large
object, see “Opening a Smart Large Object” on page 6-48.

Initializing an LO Handle and an LO File Descriptor
Once you have an LO-specification structure that describes the storage
characteristics for the new smart large object, you can create the smart large object
with one of the smart-large-object creation functions: mi_lo_copy(),
mi_lo_create(), mi_lo_expand(), or mi_lo_from_file(). These smart-large-object
creation functions perform the following tasks to create a new smart large object:
1. Initialize the LO handle for the new smart large object

You provide a pointer to an LO handle as an argument to these functions. The
creation functions initialize the LO handle with information about the location
of the new smart large object.

2. Store the storage characteristics in a user-supplied LO-specification structure for
the new smart large object in the metadata area of the sbspace
You provide a pointer to an LO-specification structure as an argument to these
functions. For more information, see “Obtaining the LO-Specification Structure”
on page 6-25.

3. Open the new smart large object in the specified access mode
You provide the open mode as an argument to the mi_lo_create(),
mi_lo_copy(), or mi_lo_expand() function. The mi_lo_from_file() function
opens a smart large object in read/write mode. For more information, see
“Opening a Smart Large Object” on page 6-48.

4. Write any associated data to the new smart large object
The mi_lo_copy(), mi_lo_expand(), and mi_lo_from_file() function specifies
data to write to the sbspace of the new smart large object.

5. Return an LO file descriptor that identifies the open smart large object
The LO file descriptor is needed for most subsequent operations on the smart
large object. However, this LO file descriptor is only valid within the current
database connection.

These smart-large-object creation functions initialize the following data type
structures for a smart large object:
v An LO handle, which identifies the location of the smart large object and can be

stored in a CLOB, BLOB, or opaque-type column
v An LO file descriptor, which identifies the open smart large object

Obtaining an LO Handle
A DataBlade API module can obtain an LO handle with any of the following
methods:
v Any of the smart-large-object creation functions can allocate an LO handle for a

new smart large object.
v A DataBlade API module can explicitly allocate an LO handle.
v A SELECT statement can return an LO handle from a CLOB or BLOB column in

the database.

For more information, see “Selecting the LO Handle” on page 6-47.

Implicitly Allocating an LO Handle: Any of the smart-large-object creation
functions (Table 6-7 on page 6-20) can allocate memory for an LO handle when you
specify a NULL-valued pointer for the last argument. For example, the following

6-40 IBM Informix DataBlade API Programmer’s Guide

code fragment declares a pointer to an LO handle named LO_hdl, initializes it to
NULL, and then calls the mi_lo_create() function to allocate memory for this LO
handle:
MI_CONNECTION *conn;
MI_LO_SPEC *LO_spec;
MI_LO_HANDLE *LO_hdl = NULL; /* request allocation */
MI_LO_FD LO_fd;
mi_integer flags;
...
LO_fd = mi_lo_create(conn, &LO_spec, flags, &LO_hdl);

After the execution of mi_lo_create(), the LO_hdl variable is a pointer to the new
LO handle, which identifies the location of the new smart large object.

Server Only

This new LO handle has a default memory duration of PER_ROUTINE. If you
switch the memory duration, the creation function uses the current memory
duration for the LO handle that it allocates.

End of Server Only

If you provide an LO-handle pointer that does not point to NULL, the
smart-large-object creation function assumes that memory has already been
allocated for the LO handle and it uses the LO handle that you provide.

Explicitly Allocating an LO Handle: You can explicitly allocate an LO handle in
either of the following ways:
v Dynamically, with one of the DataBlade API memory-management functions

such as mi_alloc():
MI_LO_HANDLE *LO_hdl = mi_alloc(sizeof(MI_LO_HANDLE));

v On the stack, with a direct declaration:
MI_LO_HANDLE my_LOhndl;
MI_LO_HANDLE *LO_hndl2 = &my_LOhndl;

However, this LO handle is still an opaque C data structure; that is, it is declared
as a flat array of undifferentiated bytes and its fields are not available to the
DataBlade API module.

Important: The LO handle structure is the only smart-large-object structure that a
DataBlade API module can allocate directly. You must allocate other
smart-large-object data type structures, such as the LO-specification
structure and the LO-status structure, with the appropriate DataBlade
API constructor function.

Obtaining an LO File Descriptor
The smart-large-object creation functions (Table 6-7 on page 6-20) return an LO file
descriptor for a smart large object. The LO file descriptor is needed for most
subsequent operations on the smart large object. However, this LO file descriptor is
only valid within the current database connection.

The following code fragment uses the mi_lo_create() function to generate an LO
file descriptor for a new smart large object:
MI_LO_FD LO_fd;
MI_LO_HANDLE *LO_hdl;
MI_LO_SPEC *LO_spec;

Chapter 6. Using Smart Large Objects 6-41

MI_CONNECTION *conn;
...
LO_fd = mi_lo_create(conn, LO_spec, MI_LO_RDONLY, &LO_hdl);

Tip: A return value of zero (0) from a smart-large-object creation function does not
indicate an error. The value zero (0) is a valid LO file descriptor.

Writing Data to a Smart Large Object
To write data to the sbspace of a smart large object, use one of the following
smart-large-object functions:
v The mi_lo_write() function begins the write operation at the current LO seek

position.
You can obtain the current LO seek position with the mi_lo_tell() function, or
you can set the LO seek position with the mi_lo_seek() function.

v The mi_lo_writewithseek() function performs the seek and write operations
with a single function call.
You specify the seek position at which to begin the write operation as arguments
to mi_lo_writewithseek().

These functions both write a specified number of bytes from a user-defined
character buffer to the open smart large object that an LO file descriptor identifies.
The smart-large-object optimizer determines the default extent size for the smart
large object based on the amount of data that you write. Therefore, try to
maximum the amount of data you write in a single call to mi_lo_write() or
mi_lo_writewithseek().

Important: An attempt to write data to an sbspace that does not exist results in an
error.

In addition to a write operation, you might also need to perform the following
operations on the open smart large object.

Task
Smart-Large-Object
Function More Information

Read data from the sbspace mi_lo_read(),
mi_lo_readwithseek()

page 6-48

Obtain the LO seek position mi_lo_tell() page 6-48

Obtain status information mi_lo_stat() page 6-54

Obtain storage characteristics mi_lo_stat_cspec() page 6-28

Storing an LO Handle
The INSERT or UPDATE statement can store the LO handle of a smart large object
into the CLOB, BLOB, or opaque-type column.

To store a smart large object in the database:

1. Provide the LO handle to the INSERT or UPDATE statement, as follows:
v For a CLOB or BLOB column, provide the LO handle as data for the column.
v For an opaque-type column, store the LO handle in the internal structure of

the opaque data type and pass this internal structure as data for the column.
2. Execute the INSERT or UPDATE statement with a DataBlade API function such

as mi_exec() or mi_exec_prepared_statement().

6-42 IBM Informix DataBlade API Programmer’s Guide

Tip: The data of the smart large object is stored when you write it to the sbspace
of the smart large object.

When you save the LO handle in the CLOB or BLOB column, the
smart-large-object optimizer increments the reference count of the smart large
object by one. When you save the LO handle in an opaque-type column, the
assign() support function for the opaque type must increment the reference count.

If you create a new smart large object but do not store it in a database column, the
smart large object is a transient smart large object. The database server does not
guarantee that transient smart large objects remain valid once they are closed.
When all references to the smart large objects are deleted, the database server
deletes the smart large object. For more information, see “Deleting a Smart Large
Object” on page 6-56.

For more information on how to execute an INSERT or UPDATE statement, see
Chapter 8, “Executing SQL Statements,” on page 8-1.

Freeing Resources
After you store the new smart large object in the database, make sure that any
resources you no longer need are freed. When you create a new smart large object,
you might need to free resources of the following data type structures:
v The LO-specification structure
v The LO handle

Server Only

If any of the smart-large-object data type structures has a memory duration of
PER_ROUTINE, the database server automatically frees the structure when the
UDR completes.

End of Server Only

Freeing an LO-Specification Structure

Server Only

The mi_lo_spec_init() function allocates an LO-specification structure in the
current memory duration. Therefore, if an LO-specification structure has a memory
duration of PER_ROUTINE, the database server automatically frees it when the
UDR completes.

End of Server Only

To explicitly free the resources assigned to an LO-specification structure, use the
mi_lo_spec_free() function. The mi_lo_spec_free() function is the destructor
function for the LO-specification structure. When these resources are freed, they
can be reallocated to other structures that your program needs.

Freeing an LO Handle

Server Only

The LO handle structure is allocated with the current memory duration. Therefore,
if it has the default memory duration of PER_ROUTINE, the database server

Chapter 6. Using Smart Large Objects 6-43

automatically frees it when the UDR completes.

End of Server Only

To explicitly free the resources assigned to an LO handle, you can use one of the
following DataBlade API functions.

DataBlade API Function Object Freed

mi_lo_release() Frees resources of a transient smart large object

Frees an LO handle that the DataBlade API allocated

mi_free() Frees an LO handle that you have allocated

If you allocate an LO handle with a DataBlade API
memory-management function (such as mi_alloc() or
mi_dalloc()), use mi_free() to explicitly free the
resources.

mi_lo_delete_immediate() Immediately frees the resources of a smart large object
(rather than waiting for the end of the transaction)

When these resources are freed, they can be reallocated to other structures that
your program needs.

Sample Code to Create a New Smart Large Object
Suppose you want to create a new smart large object for the cat_descr column in
the catalog2 table that contains the following data:
The rain in Spain stays mainly in the plain. In Hartford, Hereford, and
Hampshire, hurricanes hardly happen.

The following code fragment creates a new smart large object, which assumes the
storage characteristics of its column, cat_descr, and then modifies the logging
behavior:
#include "int8.h"
#include "mi.h"

#define BUFSZ 10000

{
MI_CONNECTION *conn;
MI_LO_SPEC *create_spec = NULL;
MI_LO_HANDLE *descrip = NULL;
MI_LO_FD lofd;
char buf[BUFSZ];
mi_integer buflen = BUFSZ;
mi_int8 offset, est_size;
mi_integer numbytes;

...
/* Allocate and initialize the LO-specification structure */

if (mi_lo_spec_init(conn, &create_spec) == MI_ERROR)
handle_lo_error("mi_lo_spec_init()");

/* Obtain the following column-level storage characteristics
* for the cat_desc column:
* sbspace name = sb1 (this sbspace must already exist)
* keep last access time is ON
*/

if (mi_lo_colinfo_by_name(conn, "catalog2.cat_descr",
create_spec) == MI_ERROR)

handle_lo_error("mi_lo_colinfo_by_name()");

6-44 IBM Informix DataBlade API Programmer’s Guide

/* Provide user-specified storage characteristics:
* logging behavior is ON
* size estimate of two kilobytes
*/

mi_lo_specset_flags(create_spec, MI_LO_ATTR_LOG);
ifx_int8cvint(2000, &est_size);
mi_lo_specset_estbytes(create_spec, &est_size)

/* Create an LO handle and LO file descriptor for the new
* smart large object
*/

if (lofd = mi_lo_create(conn, create_spec, MI_LO_RDWR,
&descrip) == MI_ERROR)

handle_lo_error("mi_lo_create()");

/* Copy data into the character buffer 'buf' */
sprintf(buf, "%s %s %s"

"The rain in Spain stays mainly in the plain. ",
"In Hartford, Hereford, and Hampshire, hurricanes",
" hardly happen.");

/* Write contents of character buffer to the open smart
* large object to which lofd points.
*/

ifx_int8cvint(0, &offset);
if (numbytes = mi_lo_writewithseek(conn, lofd, buf,

buflen, &offset, MI_LO_SEEK_SET) == MI_ERROR)
handle_lo_error("mi_lo_writewithseek()");

/* Close the LO file descriptor */
mi_lo_close(conn, lofd);

/* Free LO-specification structure */
mi_lo_spec_free(conn, create_spec);

After the mi_lo_create() function executes, the following items are true:
v The create_spec LO handle was allocated and identifies the new smart large

object.
v The lofd LO file descriptor identifies the open smart large object.
v The new smart large object has user-specified storage characteristics for logging

behavior and estimated size.
The smart large object inherits the other storage characteristics. Table 6-19 shows
the complete storage characteristics for this new smart large object.

Table 6-19. Storage Characteristics for the New Smart Large Object

Storage Characteristic Value Specified By

Disk-storage information:

Size of extent Calculated by smart-large-object optimizer system-specified

Size of next extent Calculated by smart-large-object optimizer system-specified

Minimum extent size Calculated by smart-large-object optimizer system-specified

Size of smart large object Two kilobytes (smart-large-object optimizer
uses as size estimate)

mi_lo_specset_estbytes()

Maximum size of I/O block Calculated by smart-large-object optimizer system-specified

Name of sbspace sb1 column-level

Attribute information:

Chapter 6. Using Smart Large Objects 6-45

Table 6-19. Storage Characteristics for the New Smart Large Object (continued)

Storage Characteristic Value Specified By

Logging ON mi_lo_specset_flags() with
MI_LO_ATTR_LOG

Last-access time ON column-level

Table 6-13 on page 6-33 shows the column-level storage characteristics for the
cat_descr column and Table 6-12 on page 6-32 shows the system-specified storage
characteristics for the sb1 sbspace.

The mi_lo_writewithseek() function writes the buf data to the smart large object
that lofd identifies. When the write operation is successful, the descrip LO handle
is ready to be stored in the CLOB column with the INSERT statement.

For more information on how to insert a value into a column, see Chapter 8,
“Executing SQL Statements,” on page 8-1.

Accessing a Smart Large Object
To access an existing smart large object in the database, you need to perform the
following steps. For details on a step, see the page listed under “More
Information.”

Step Task Smart-Large-Object Function
More
Information

1. Execute a SELECT statement to
obtain the LO handle of the
smart large object from the
CLOB or BLOB column.

mi_exec(),
mi_exec_prepared_statement(),
mi_value()

page 6-47

2. Convert the returned column
value into an LO handle.

C Cast page 6-60

3. Open the smart large object
that the LO handle identifies
and return a valid LO file
descriptor.

mi_lo_open() page 6-48

4. Read a specified number of
bytes and store them in a
user-defined buffer.

mi_lo_read(),
mi_lo_readwithseek()

page 6-48

5. Close the smart large object. mi_lo_close() page 6-49

6. Free resources. mi_lo_release() page 6-43

Figure 6-5 shows the first four of these steps that a DataBlade API module uses to
access the smart-large-object data from the emp_picture column of the employee
table (Figure 6-2 on page 6-14).

6-46 IBM Informix DataBlade API Programmer’s Guide

Selecting the LO Handle
The SELECT statement can select an LO handle of a smart large object from a
CLOB, BLOB, or opaque-type column. Because the desired result of a query is
usually the contents of an object, not just its LO handle, the DataBlade API module
must then use the LO handle that the mi_value() or mi_value_by_name()
function returns to access the smart-large-object data in its sbspace.

To select a smart large object from the database:

1. Execute the SELECT statement with a DataBlade API statement-execution
function such as mi_exec() or mi_exec_prepared_statement().

2. Obtain the column value that the mi_value() or mi_value_by_name()
function passes back in the MI_DATUM structure as appropriate for the
control mode of the query:
v For binary representation, the MI_DATUM structure contains a pointer to an

LO handle.
v For text representation, the MI_DATUM structure contains the hexadecimal

dump of an LO handle. To access the smart-large-object data, you must
convert the LO handle to its binary representation with
mi_lo_from_string().

For more information, see “Binary and Text Representations of an LO Handle”
on page 6-60.

3. Optionally, ensure that the LO handle is valid with mi_lo_validate().

For more information on how to select smart large objects, see “Accessing Smart
Large Objects” on page 8-48.

Validating an LO Handle
An LO handle is valid when it correctly identifies the location of a smart large
object in an sbspace. An LO handle might be invalid for either of the following
reasons:
v The memory address is invalid or a NULL-valued pointer.
v The LO handle contains invalid reference data.

Figure 6-5. Selecting a BLOB Column

Chapter 6. Using Smart Large Objects 6-47

Use the mi_lo_validate() function to check whether an LO handle is valid. If
mi_lo_validate() returns a positive integer, the LO handle is invalid. You can
mark this LO handle as invalid with the mi_lo_invalidate() function. The
following code fragment checks whether the LO handle that LO_hdl references is
valid:
if (mi_lo_validate(conn, LO_hdl) > 0)

mi_lo_invalidate(conn, LO_hdl);

You can use the mi_lo_validate() function in the support function of an opaque
data type that contains smart large objects. In the lohandles() support function,
this function can determine unambiguously which LO handles are valid for the
given instance of the opaque type.

Opening a Smart Large Object
You can open a smart large object with one of the following functions:
v The mi_lo_open() function
v One of the smart-large-object creation functions: mi_lo_copy(), mi_lo_create(),

mi_lo_expand(), or mi_lo_from_file()

These functions open the smart large object in a particular open mode, which in turn
determines the lock mode of the smart large object. When you open a smart large
object with the mi_lo_copy(), mi_lo_create(), mi_lo_expand(), or mi_lo_open()
function, you tell the database server the open mode for the smart large object in
either of the following ways:
v Provide an open mode of zero (0) as an argument to specify use of the default

open mode of the smart large object.
For information on how to associate a default open mode with a smart large
object, see “Accessing the Default Open Flag” on page 6-38.

v Provide a non-zero open-mode argument to override the default open mode
with an open mode you provide.
Choose the appropriate open-mode constants from the list in Table 6-17 on page
6-38. If you need to set more than one open-mode value, use the C-language
bitwise OR operator (|) to mask open-mode constants together.

Tip: The mi_lo_from_file() function does not require an open mode for the smart
large object it creates. It always opens a smart large object in read/write
access mode. The smart-large-object optimizer determines which method of
access is most efficient (buffered I/O or lightweight I/O).

All these open functions return an LO file descriptor, through which you can
access the data of a smart large object as if it were in an operating-system file.

Reading Data from a Smart Large Object
To read data from the sbspace of a smart large object, use one of the following
smart-large-object functions:
v The mi_lo_read() function begins the read operation at the current LO seek

position.
You can obtain the current LO seek position with the mi_lo_tell() function, or
you can set the LO seek position with the mi_lo_seek() function.

v The mi_lo_readwithseek() function performs a seek to a specified LO seek
position and then begins the read operation.

6-48 IBM Informix DataBlade API Programmer’s Guide

You specify the seek position at which to begin the read operation as arguments
to mi_lo_readwithseek().

These functions both read a specified number of bytes from the open smart large
object to a user-defined character buffer. For information on the syntax of the
mi_lo_read() and mi_lo_readwithseek() functions, see the IBM Informix
DataBlade API Function Reference.

You might also need to perform other operations on the open smart large object.

Task
Smart-Large-Object
Function

For More
Information

Write data to the sbspace mi_lo_write(),
mi_lo_writewithseek()

page 6-42

Obtain the LO seek position mi_lo_tell() page 6-48

Obtain status information mi_lo_stat() page 6-54

Obtain storage characteristics mi_lo_stat_cspec() page 6-28

Freeing a Smart Large Object
A smart large object remains open until it is freed in either of the following ways:
v Explicitly, by a call to the mi_lo_close() function
v Implicitly, when the current session ends

Once you finish the operations on the smart large object, you can close it explicitly
with the mi_lo_close() function. This function frees the resources associated with
the LO file descriptor and LO handle so that they can be reallocated to other
structures that your program needs. In addition, the LO file descriptor can be
reassigned to another smart large object.

When you close a smart large object, you release any share-mode or update-mode
locks on that object. However, you do not release exclusive locks until the end of
the transaction. For more information, see “Locking Modes” on page 6-11.

Important: The end of a transaction does not close any smart large objects that are
open. However, it does release any locks on the smart large objects.

If you do not explicitly close a smart large object, the database server closes it
automatically at the end of the session. For information on the syntax of the
mi_lo_close() function, see the IBM Informix DataBlade API Function Reference. For
more information on when the database server deletes a smart large object, see
“Deleting a Smart Large Object” on page 6-56.

Sample Code to Select an Existing Smart Large Object
Suppose you want to select the following data from a smart large object that was
inserted into a CLOB column named cat_descr in the catalog2 table:
The rain in Spain stays mainly in the plain. In Hartford, Hereford, and
Hampshire, hurricanes hardly happen.

The following code fragment assumes that the descrip LO handle identifies the
smart large object that was selected from the CLOB column. This LO handle was
obtained with the SELECT statement on the cat_descr column.

Chapter 6. Using Smart Large Objects 6-49

#include "int8.h"
#include "mi.h"

#define BUFSZ 1000

{
MI_CONNECTION *conn;
MI_LO_HANDLE *descrip;
MI_LO_FD lofd;
char buf[BUFSZ];
mi_integer buflen = BUFSZ;
mi_int8 offset;
mi_integer numbytes;

...

/* Use the LO handle to identify the smart large object
* to open and get an LO file descriptor.
*/

lofd = mi_lo_open(conn, descrip, MI_LO_RDONLY);
if (lofd < 0)

handle_lo_error("mi_lo_open()");

/* Use the LO file descriptor to read the data of the
* smart large object.
*/

ifx_int8cvint(0, &offset);
strcpy(buf, "");
numbytes = mi_lo_readwithseek(conn, lofd, buf, buflen,

&offset, MI_LO_SEEK_CUR);
if (numbytes == 0)

handle_lo_error("mi_lo_readwithseek()");

/* Close the smart large object */
mi_lo_close(lofd);

}

The mi_lo_readwithseek() function reads 1000 bytes of data from the smart large
object that lofd identifies to the buf user-defined buffer.

For more information on how to select a value from a column, see “Accessing
Smart Large Objects” on page 8-48.

Modifying a Smart Large Object
Once you have an LO file descriptor for an open smart large object, you can
modify the smart large object, as follows:
v You can update the smart large object.
v You can alter some storage characteristics of the smart large object.

The following sections describe each of these tasks.

Updating a Smart Large Object
A smart large object has two parts: its LO handle and its data in the sbspace. You
can update either of these parts.

The UPDATE statement can store a new LO handle in a CLOB, BLOB, or
opaque-type column. For the steps to update a column, see “Storing an LO
Handle” on page 6-42.

To update an LO handle:

6-50 IBM Informix DataBlade API Programmer’s Guide

1. Update the column with a new smart large object.
Overwrite the existing LO handle in the column with the LO handle for the
new smart large object.

2. Store an additional reference to an existing smart large object.
Multiple columns can reference the same smart large object on disk. You can
overwrite an existing LO handle in the column with the LO handle for an
existing smart large object. Both columns now reference the same smart large
object.

To update the data of an existing smart large object:

1. Use the SELECT statement to obtain the LO handle that identifies the location
of the data.
For more information, see “Selecting the LO Handle” on page 6-47.

2. Open the smart large object to obtain an LO file descriptor.
For more information, see “Opening a Smart Large Object” on page 6-48.

3. Read data from and write data to the open smart large object.
For more information, see “Reading Data from a Smart Large Object” on page
6-48 and “Writing Data to a Smart Large Object” on page 6-42.

4. Close the smart large object.
For more information, see “Freeing a Smart Large Object” on page 6-49.

Important: To update data of an existing smart large object, you do not need to
use the UPDATE statement to update the CLOB, BLOB, or opaque-type
column. The LO handle in the column does not need to change if you
modify only the smart-large-object data.

Altering Storage Characteristics
After you create a smart large object, you can change some of its storage
characteristics with the mi_lo_alter() function. This function enables you to alter
the following storage characteristics:
v Logging behavior
v Last-access time
v Extent size

All other storage characteristics cannot be changed once the smart large object is
created. For information on the syntax of the mi_lo_alter() function, see the IBM
Informix DataBlade API Function Reference.

You can alter these storage characteristics in either of the following ways:
v Execute the SQL statement, ALTER TABLE.

The PUT clause of ALTER TABLE enables you to modify any storage
characteristics. However, any changes do not affect existing smart large objects;
they only affect smart large objects in rows created after the ALTER TABLE
statement executes. For more information, see the description of ALTER TABLE
in the IBM Informix Guide to SQL: Syntax.

v Call the mi_lo_alter() function.
This function enables you to modify the logging characteristics, last-access time
characteristics, and the extent size.

Chapter 6. Using Smart Large Objects 6-51

Obtaining Status Information for a Smart Large Object
To obtain the status information for an existing smart large object, take the
following steps.

Step Task
Smart-Large-Object
Function

More
Information

1. Obtain a valid LO file descriptor for
the smart large object whose status
information you need.

mi_lo_create(),
mi_lo_copy(),
mi_lo_expand(),
mi_lo_from_file()
mi_lo_open()

page 6-41

2. Initialize an LO-status structure with
the status information for the smart
large object.

mi_lo_stat() page 6-53

3. Use the appropriate LO-status accessor
function to obtain the status
information that you need.

Table 6-20 on page 6-54 page 6-54

4. Free resources. mi_lo_stat_free() page 6-55

Figure 6-6 shows the first three of these steps that a DataBlade API module uses to
obtain status information for the smart large object data in the emp_picture
column of the employee table (Figure 6-2 on page 6-14).

Obtaining a Valid LO File Descriptor
You can obtain status information for any smart large object for which you have a
valid LO file descriptor. To obtain an LO file descriptor, you can take any of the
following actions:
v Select an existing smart large object from a column in a database and open it

For more information, see “Accessing a Smart Large Object” on page 6-46.
v Create a new smart large object

For more information, see “Creating a Smart Large Object” on page 6-24.
v Receive the LO handle as an argument

Figure 6-6. Obtaining Status Information

6-52 IBM Informix DataBlade API Programmer’s Guide

A DataBlade API module can receive an argument that might provide the LO
handle directly or it might provide an opaque data type in which the smart
large object is embedded.

Initializing an LO-Status Structure
The mi_lo_stat() function performs the following tasks:
1. It obtains either a new or existing LO-status structure.
2. It fills the LO-status structure with all status information for the smart large

object that the specified LO file descriptor identifies.

Important: Do not handle memory allocation for an LO-status structure with
system memory-allocation routines (such as malloc() or mi_alloc())
or by direct declaration. You must use the LO-status constructor,
mi_lo_stat(), to allocate a new LO-status structure.

Obtaining a Valid LO-Status Structure
The mi_lo_stat() function is the constructor for the LO-status structure. The third
argument to the mi_lo_stat() function indicates whether to create a new LO-status
structure:
v When you pass a NULL-valued pointer, the mi_lo_stat() function allocates a

new LO-status structure.

Server Only

This LO-status structure has the current memory duration.

End of Server Only

v When you pass a pointer that does not point to NULL, the mi_lo_stat()
function assumes that the pointer references an existing LO-status structure that
a previous call to mi_lo_stat() has allocated.
An LO-status pointer that does not point to NULL allows a DataBlade API
module to reuse an LO-status structure.

For example, the code fragment in Figure 6-7 uses the mi_lo_stat() function to
allocate memory for the LO-status structure only when the first_time flag is true.

MI_CONNECTION *conn;
MI_LO_HANDLE *LO_hdl;
MI_LO_STAT *LO_stat;
MI_LO_FD LO_fd;
mi_integer first_time;
...
LO_fd = mi_lo_open(conn, LO_hdl, MI_LO_RDONLY);
if (first_time)

{
...
LO_stat = NULL; /* tell interface to allocate memory */
first_time = 0; /* set "first_time" flag to false */
...
}

err = mi_lo_stat(conn, LO_fd, &LO_stat);

Figure 6-7. Sample mi_lo_stat() Call

Chapter 6. Using Smart Large Objects 6-53

Filling the LO-Status Structure
Once mi_lo_stat() has a pointer to a valid LO-status structure, it fills this structure
with the status information for the open smart large object. You pass an LO file
descriptor of the open smart large object as an argument to the mi_lo_stat()
function.

After the execution of mi_lo_stat() in Figure 6-7, the LO_stat variable points to an
allocated LO-status structure that contains status information for the smart large
object that the LO file descriptor, LO_fd, identifies.

Important: Before you use an LO-status structure, make sure that you either call
mi_lo_stat() with the LO-status pointer set to NULL or initialize this
pointer with a previous call to mi_lo_stat().

For more information, see Table 6-20. For the syntax of the mi_lo_stat() function,
see the IBM Informix DataBlade API Function Reference.

Obtaining Status Information
Once you have a valid LO-status structure, you can use the accessor functions to
obtain the status information from this structure. Table 6-20 shows the status
information that an LO-status structure contains and the corresponding LO-status
accessor functions.

Table 6-20. Status Information in the LO-Status Structure

Status Information LO-Status Accessor Function

Last-access time

This value is available only if the last-access time
attribute (MI_LO_ATTR_KEEP_LASTACCESS_TIME) is
set for this smart large object.

mi_lo_stat_atime()

Storage characteristics

These characteristics are stored in an LO-specification
structure. Use the LO-specification accessor functions
(see “Defining User-Specified Storage Characteristics” on
page 6-35) to obtain information from this structure.

mi_lo_stat_cspec()

Last-change time mi_lo_stat_ctime()

Last-modification time mi_lo_stat_mtime_sec(),
mi_lo_stat_mtime_usec()

Reference count mi_lo_stat_refcnt()

Size mi_lo_stat_size()

Important: The LO-status structure, MI_LO_STAT, is an opaque structure to
DataBlade API modules. Do not access its internal structure directly.
The internal structure of MI_LO_STAT may change in future releases.
Therefore, to create portable code, always use the LO-status accessor
functions for this structure.

The following code fragment obtains the reference count from an LO-status
structure that the LO_stat variable references:
MI_CONNECTION *conn;
MI_LO_HANDLE *LO_hdl;
MI_LO_FD LO_fd;
MI_LO_STAT *LO_stat = NULL; /* DataBlade API allocates */

6-54 IBM Informix DataBlade API Programmer’s Guide

mi_integer ref_count, err;
...
/* Open the selected large object */
LO_fd = mi_lo_open(conn, LO_hdl, MI_LO_RDONLY);
if (LO_fd == MI_ERROR)

/* handle error */

/* Allocate LO-specification structure and get status
* information for the opened smart large object
*/
if (mi_lo_stat(conn, LO_fd, &LO_stat) != MI_OK)

/* handle error */
else

{
/* get reference count for this smart large object */
ref_count = mi_lo_stat_refcnt(LO_stat);

/* free the LO-status structure */
err = mi_lo_stat_free(LO_stat);
}

The mi_lo_open() function opens the smart large object that the LO handle,
LO_hdl, identifies. The mi_lo_stat() function then obtains the status information
for this open smart large object. The mi_lo_stat() function performs the following
tasks:
1. Allocates a new LO-status structure because the value of *LO_stat is NULL

The mi_lo_stat() function assigns a pointer to this new LO-status structure to
the LO_stat variable.

2. Initializes the LO_stat structure with the status information for the open smart
large object that the LO file descriptor, LO_fd, identifies

Once the LO-status structure contains the status information, the
mi_lo_stat_refcnt() accessor function obtains the reference count from the
LO-status structure and returns it into the ref_count variable. When the code no
longer needs the LO-status structure, it frees this structure with the
mi_lo_stat_free() function.

Freeing an LO-Status Structure

Server Only

The mi_lo_stat() function allocates an LO-status structure in the current memory
duration. Therefore, if the current memory duration is the default duration of
PER_ROUTINE, an LO-status structure has a memory duration of PER_ROUTINE
and the database server automatically frees it when the UDR completes.

End of Server Only

To explicitly free the resources assigned to an LO-status structure, use the
mi_lo_stat_free() function. The mi_lo_stat_free() function is the destructor
function for an LO-status structure. When the resources are freed, they can be
reallocated to other structures that your program needs.

Chapter 6. Using Smart Large Objects 6-55

Deleting a Smart Large Object
The following table shows the methods that can cause a smart large object to be
marked for deletion.

Location of Smart
Large Object Task for Deletion Method for Deletion

For a CLOB or BLOB
column

Remove the LO handle as
data for the column

The DELETE statement

For an opaque-type
column (for an opaque
type that contains a
smart large object)

Remove the LO handle from
the internal structure of the
opaque data type and store
this revised internal structure
as data for the column

The destroy() support function

Transient smart large
object

Remove the LO handle Wait for the end of the session.

The mi_lo_delete_immediate()
function

Alternatively, you can mark an LO handle as invalid with the mi_lo_invalidate()
function to indicate that it no longer identifies a valid smart large object.

When you delete an LO handle, the database server decrements the reference count
of the smart large object that the LO handle references by one. The database server
cannot delete a smart large object until it meets the following conditions:
v A reference count of zero

To decrement the reference count of a smart large object, you delete an LO
handle that references that smart large object. For more information, see
“Managing the Reference Count” on page 6-56.

v No open LO file descriptors
When the smart large object is closed, its LO file descriptor is freed. For more
information, see “Freeing an LO Handle” on page 6-43.

Managing the Reference Count
The reference count of a smart large object is the number of LO handles that refer to
the smart large object in its sbspace. Each LO handle contains the location of the
smart large object in an sbspace. The reference count is stored with the
smart-large-object data in an sbspace. (For more information on sbspaces, see your
IBM Informix Administrator’s Guide.) You can obtain the reference count with the
mi_lo_stat_refcnt() function.

A smart large object remains allocated as long as its reference count is greater than
zero (0). A reference count greater than zero indicates that at least one column
contains an LO handle that references the smart large object. In this sense, the
smart large object is permanent. The management that the database server performs
on a reference count depends on the associated smart large object:
v A smart large object whose LO handle is stored in a CLOB or BLOB column
v A smart large object whose LO handle is stored in an opaque data type
v A transient smart large object

Reference Counts for CLOB and BLOB Columns
For smart-large-object columns (CLOB and BLOB), the database server
automatically manages the reference count, as follows:

6-56 IBM Informix DataBlade API Programmer’s Guide

v When you store an LO handle into a CLOB or BLOB column, the
smart-large-object optimizer increments by one (1) the reference count for the
smart large object that the LO handle identifies.

v When you delete an LO handle from a CLOB or BLOB column, the
smart-large-object optimizer decrements by one (1) the reference count for the
smart large object that the LO handle identifies.

At the end of the transaction, the smart-large-object optimizer automatically deletes
all smart large objects stored in CLOB or BLOB columns with reference counts of
zero and no open LO file descriptors.

Reference Counts for Opaque-Type Columns
The database server does not automatically manage the reference count for an
opaque type that contains a smart large object (including multirepresentational
opaque types). For these opaque-type columns, you must explicitly manage the
reference count in special support functions of the opaque data type, as follows.

Support Function Reference-Count Task DataBlade API Function

assign() Increment the reference count by one
each time a new LO handle for the
smart large object is saved in the
database.

mi_lo_increfcount()

destroy() Decrement the reference count by one
each time an LO handle that is stored
in the database is removed from the
database.

mi_lo_decrefcount()

lohandles() If the opaque type does not have an lohandles() support function,
you must handle the reference count in the assign() and destroy()
support functions.

If the opaque type has an lohandles() support function, you do not
need to handle the reference count in the assign() and destroy()
support functions. The database server handles the decrement of the
reference count when it executes the lohandles() support function.

If you increment or decrement the reference count for a smart large object within a
transaction causing it to end up with a value of zero (0), the database server
automatically deletes the smart large object at the end of the transaction (as long as
it has no open LO file descriptors).

Reference Counts for Transient Smart Large Objects
A transient smart large object is one that you created but have not stored its LO
handle in the database. Transient smart large objects can occur in the following
ways:
v You create a smart large object (with mi_lo_create(), mi_lo_copy(),

mi_lo_expand(), or mi_lo_from_file()) but do not insert its LO handle into a
column of the database.

v You invoke a UDR that creates a smart large object in a query but never assigns
its LO handle to a column of the database.

For example, the following query creates one smart large object for each row in the
table1 table:
SELECT FILETOBLOB(...) FROM table1;

Chapter 6. Using Smart Large Objects 6-57

However, the preceding query does not store the LO handles for these smart large
objects in any database column. Therefore, each of these smart large objects is
transient.

Important: A smart large object is “temporary” in the sense that it will
automatically be deleted at the end of the session (unless its LO handle
is stored in the database). A transient smart large object is not a smart
large object that is stored in a temporary sbspace.

You only increment the reference count to tell the database server that the LO
handle for the smart large object is going to be stored in the database (and become
a permanent smart large object). Therefore, the reference count of a transient smart
large object is zero. The database server deletes the transient smart large object at
the end of the session.

You can explicitly deallocate the LO handle for a transient smart large object with
the mi_lo_release() function.

You can explicitly delete a transient smart large object with the
mi_lo_delete_immediate() function.

Freeing LO File Descriptors
An LO file descriptor exists until one of the following conditions occurs:
v You explicitly close a smart large object with the mi_lo_close() function.

When mi_lo_close() closes a smart large object, the associated LO file
descriptor is freed.

v The database server implicitly closes any open smart large objects at a session
boundary (when the current database or connection closes).
The resources that an open smart large object uses get automatically released at
the end of a session. However, LO handles get released based on their memory
duration. For more information on the memory duration of LO handles, see
“Freeing an LO Handle” on page 6-43.

The effect of closing the LO file descriptors of a smart large object depends on
whether the smart large object is permanent or transient:
v Closing a permanent smart large object

When you close all its LO file descriptors, a permanent smart large object (one
that is referenced by at least one column) remains allocated. The database server
does not delete the data until the reference count is zero.

v Closing a transient smart large object
However, when you close the last LO file descriptor for a transient smart large
object, the database server marks the smart large object for deletion because both
deallocation conditions are true:
– The reference count of the transient smart large object is zero (0).

The reference count of any transient smart large object is zero because it has
no LO handles stored in the database. For more information, see “Managing
the Reference Count” on page 6-56.

– No LO file descriptors exist for the transient smart large object.
Once you close the last open LO file descriptor (explicitly or implicitly), no
more references to this smart large object exist, and the data is not kept.

6-58 IBM Informix DataBlade API Programmer’s Guide

Converting a Smart Large Object to a File or Buffer
The DataBlade API provides support for the conversion of a smart large object to
or from either of the following structures:
v Operating-system file
v User-defined buffer

Using Operating-System Files
The DataBlade API supports the following types of functions for conversion
between operating-system files and smart large objects.

DataBlade API
Function Description

mi_lo_from_file(),
mi_lo_from_file_by_lofd()

Copies data in an operating-system file to a smart large
object

mi_lo_to_file(),
mi_lo_filename()

Copies data in a smart large object to an operating-system
file

The file functions have a set of file-mode constants that are distinct from the open
modes of smart large objects, as the table in Table 6-21 shows.

Table 6-21. File Modes for Operating-System Files

File Mode for
Operating-System Files Purpose

MI_O_EXCL Fail if the file already exists

MI_O_APPEND Append to the end of file

MI_O_TRUNC Truncate to zero if file exists

MI_O_RDWR Read/write mode (default)

MI_O_RDONLY Read-only mode (copying from operating-system files only)

MI_O_WRONLY Write-only mode (copying to operating-system files only)

MI_O_TEXT Text mode (default off)

MI_O_CLIENT_FILE Indication that file is on client computer (default)

MI_O_SERVER_FILE Indication that file is on server computer

You can include an environment variable in the filename path for the
mi_lo_to_file(), mi_lo_from_file(), and mi_lo_from_file_by_lofd() functions.
This environment variable must be set in the server environment; that is, it must
be set before the database server starts.

Using User-Defined Buffers
The DataBlade API supports the following functions for conversion between
user-defined buffers and smart large objects.

DataBlade API Function Description

mi_lo_from_buffer() Copies data in a user-defined buffer to a smart
large object

mi_lo_to_buffer() Copies data in a smart large object to a
user-defined buffer

Chapter 6. Using Smart Large Objects 6-59

Converting an LO Handle Between Binary and Text
The DataBlade API library provides functions that convert between the binary
(internal) representation of an LO handle and its text (string) representation.

Binary and Text Representations of an LO Handle
The MI_LO_HANDLE data type (for an LO handle) is an opaque C data structure
with a length of MI_LO_SIZE. The binary representation of the LO handle is a flat
array of MI_LO_SIZE bytes. You can perform the following actions on the binary
representation of an LO handle:
v Store it in a C variable of type MI_LO_HANDLE.
v Pass it to a UDR.
v Bind it an MI_LO_HANDLE variable to hold a smart large object retrieved by a

query whose control mode is binary representation (for example, in mi_exec()).
v Store it in a CLOB or BLOB column of the database.
v Send it as part of the internal (binary) representation of an opaque type.

The text representation of an LO handle is the text hexadecimal dump of the flat
binary array. To represent the hexadecimal format, each binary byte requires two
bytes of characters. You can perform the following actions on the text
representation of an LO handle:
v Store it in a C character string or array.
v Bind it to a character-pointer variable to hold a smart large object retrieved by a

query whose control mode is text representation (for example, in mi_exec()).
v Store it in a CHAR (or other character-based) column in a database.

DataBlade API Functions for LO-Handle Conversion
The DataBlade API provides the following functions for conversion between binary
and text representations of an LO handle.

DataBlade API Function Converts from Converts to

mi_lo_to_string() LO handle
(MI_LO_HANDLE)

Text representation of LO handle

mi_lo_from_string() Text representation of LO
handle

LO handle (MI_LO_HANDLE)

Server Only

The mi_lo_to_string() and mi_lo_from_string() functions are useful in the input
and output support function of an opaque data type that contains smart large
objects. These functions enable you to convert CLOB and BLOB values (LO
handles) between their external format (text) and their internal format (binary)
when you transfer them to and from client applications. For more information, see
“Conversion of Opaque-Type Data Between Text and Binary Representations” on
page 16-16.

End of Server Only

6-60 IBM Informix DataBlade API Programmer’s Guide

Transferring an LO Handle Between Computers (Server)
For an LO handle to be portable when transferred across different computer
architectures, the DataBlade API provides the following functions to handle type
alignment and byte order.

DataBlade API Function Description

mi_get_lo_handle() Copies an aligned LO handle, converting any
difference in alignment or byte order on the client
computer to that of the server computer

mi_put_lo_handle() Copies an aligned LO handle, converting any
difference in alignment or byte order on the server
computer to that of the client computer

The mi_get_lo_handle() and mi_put_lo_handle() functions are useful in the send
and receive support function of an opaque data type that contains a smart large
object. They enable you to ensure that BLOB or CLOB values (LO handles)
remained aligned when transferred to and from client applications. For more
information, see “Conversion of Opaque-Type Data with Computer-Specific Data
Types” on page 16-21.

Using Byte-Range Locking
By default, the database server uses whole lock-all locks when it needs to lock a
smart large object. Lock-all locks are an “all or nothing” lock; that is, they lock the
entire smart large object. When the database server obtains an exclusive lock, no
other user can access the data of the smart large object as long as the lock is held.
(For more information on the default locking, see “Locking Modes” on page 6-11.)

If this locking is too restrictive for the concurrency requirements of your
application, you can use byte-range locking instead of lock-all locking. With
byte-range locking, you can specify the range of bytes to lock in the
smart-large-object data. If other users access other portions of the data, they can
still acquire their own byte-range lock.

To use byte-range locking:

1. Enable the byte-range locking feature on the smart large object you need to
lock.
You can specify the byte-range locking feature either when you create the smart
large object or when you open it, as follows:
v At the time of smart-large-object creation

You can specify the LO_LOCKRANGE lock-mode constant as a default open
flag for the new smart large object.

v When you open the smart large object
You can specify the LO_LOCKRANGE lock-mode constant in the open-mode
argument of mi_lo_open().

2. Handle the lock requests for the byte-range locks with the appropriate function
of the smart-large-object interface.
The smart-large-object interface provides the following functions for handle
lock requests of byte-range locks.

Byte-Range Locking Function Description

Chapter 6. Using Smart Large Objects 6-61

mi_lo_lock() Obtains a byte-range lock on the specified number
of bytes in a smart large object

mi_lo_unlock() Releases a byte-range lock on a smart large object

With the mi_lo_lock() function, you can specify the following information for the
lock request of the byte-range lock:
v The location in the smart-large-object data at which to begin the byte-range lock
v The number of bytes to lock
v The type of lock to obtain: shared or exclusive lock

Passing a NULL Connection (Server)
Many functions in the smart-large-object interface take a connection descriptor as a
parameter. However, many of the functions also accept a NULL-valued pointer as
a connection descriptor. Use of a NULL-valued connection descriptor has the
following performance impact:
v The smart-large-object functions do not need to check the validity of a

connection descriptor.
v The calling code is not required to open and close a connection.

To improve performance, you can pass a NULL-valued pointer as a connection
descriptor to any of the following functions of the smart-large-object interface:

mi_lo_alter()
mi_lo_close()
mi_lo_colinfo_by_ids()
mi_lo_colinfo_by_name()
mi_lo_copy()
mi_lo_create()
mi_lo_decrefcount()
mi_lo_delete_immediate()
mi_lo_expand()
mi_lo_filename()
mi_lo_from_buffer()
mi_lo_from_file()
mi_lo_from_file_by_lofd()
mi_lo_increfcount()
mi_lo_invalidate()
mi_lo_lock()
mi_lo_lolist_create()
mi_lo_open()

mi_lo_spec_init()
mi_lo_stat()
mi_lo_stat_free()
mi_lo_tell()
mi_lo_to_buffer()
mi_lo_to_file()
mi_lo_truncate()
mi_lo_unlock()
mi_lo_utimes()
mi_lo_validate()
mi_lo_write()
mi_lo_writewithseek()
mi_lo_ptr_cmp()
mi_lo_read()
mi_lo_readwithseek()
mi_lo_release()
mi_lo_seek()
mi_lo_spec_free()

The following code fragment passes a valid connection descriptor to the
mi_lo_alter() function:
conn = mi_open(NULL, NULL, NULL);
if (mi_lo_alter(conn, LO_ptr, LO_spec) == MI_ERROR)

/* Code execution does not reach here when a database server
* exception occurs.
*/

return MI_ERROR;
mi_close(conn);

When you specify a NULL-valued pointer as a connection descriptor, you can omit
the calls to mi_open() and mi_close(), as the following code fragment shows:

6-62 IBM Informix DataBlade API Programmer’s Guide

if (mi_lo_alter(NULL, LO_ptr, LO_spec) == MI_ERROR)

/* Code execution does not reach here when a database server
* exception occurs.
*/

return MI_ERROR;

Chapter 6. Using Smart Large Objects 6-63

6-64 IBM Informix DataBlade API Programmer’s Guide

Part 3. Database Access

© Copyright IBM Corp. 1996, 2009

IBM Informix DataBlade API Programmer’s Guide

Chapter 7. Handling Connections

In This Chapter . 7-1
Understanding Session Management. 7-1

Client Connection . 7-2
UDR Connection (Server) . 7-2
Connection Descriptor . 7-3

Initializing a Client Connection . 7-4
Using Connection Parameters . 7-4

Establishing Default Connection Parameters . 7-5
Obtaining Current Connection Parameters . 7-6

Using Database Parameters . 7-6
Establishing Default Database Parameters . 7-7
Obtaining Current Database Parameters . 7-8

Using Session Parameters . 7-8
Using System-Default Session Parameters . 7-9
Using User-Defined Session Parameters. 7-9

Setting Connection Parameters for a Client Connection 7-10
Establishing a Connection . 7-11

Establishing a UDR Connection (Server) . 7-11
Obtaining a Connection Descriptor . 7-12
Obtaining a Session-Duration Connection Descriptor 7-13

Establishing a Client Connection. 7-14
Connections with mi_open() . 7-14
Connections with mi_server_connect() . 7-16

Associating User Data with a Connection . 7-16
Initializing the DataBlade API . 7-17
Closing a Connection . 7-18

In This Chapter
When a DataBlade API module begins execution, it has no communication with a
database server; however, for SQL statements to execute, such communication
must exist. To establish this communication, a DataBlade API module must take
the following steps:

Client Only

1. Initialize a connection to the database server and, optionally, a database.

End of Client Only

2. Establish the connection and initialize the DataBlade API.

To end the communication, the DataBlade API module must close the connection.

This chapter describes how to initialize, establish, and close connections.

Understanding Session Management
Session management is the handling of a connection to a database server and the
associated session within a DataBlade API module. A session is the period of time
that elapses between when a client application establishes a connection and when
this connection is closed.

© Copyright IBM Corp. 1996, 2009 7-1

A connection is the mechanism over which a DataBlade API module communicates
with the database server and, optionally, a database that this database server
manages. The term connection has different meanings depending on whether it
refers to a connection within a client LIBMI application or a C user-defined routine
(UDR), as follows:
v A client connection is established by a client application to a particular database

server and database.
v A UDR connection is established by a C UDR to obtain information about the

current session.

Client Connection
For a client application, a connection is the mechanism that the application uses to
request a synchronization with the database server for the purpose of exchanging
data. A client application (such as an Informix ESQL/C or client LIBMI
application) takes the following steps to request a connection:
1. Initializes the connection

A client LIBMI application can set connection, database, and session parameters
to determine attributes of the connection.
For more information, see “Initializing a Client Connection” on page 7-4.

2. Establishes the connection
An Informix ESQL/C client application uses SQL statements (such as
CONNECT or DATABASE) to establish a connection. A client LIBMI
application uses the DataBlade API to establish a connection in either of the
following ways:
v Uses the mi_open() function
v Uses the mi_server_connect() function
For more information, see “Establishing a Client Connection” on page 7-14.

When a client application connects to the database server, the database server
performs the following tasks:
v Creates a session structure, called a session control block, to hold information

about the connection and the user
v Creates a thread structure, called a thread-control block (TCB), to hold information

about the current state of the thread
v Determines the server-processing locale, the locale to use for SQL statements

during the session
v Initializes a primary thread, called the session thread (or sqlexec thread), to

handle client-application requests

When the client application successfully establishes a connection, it begins a
session. Only a client application can begin a session. The session context consists of
data structures and state information that are associated with a specific session,
such as cursors, save sets, and user data.

UDR Connection (Server)
A C UDR cannot establish a connection to the database server. It must run within
an existing session, which a client application begins when it establishes a client
connection. To obtain access to an existing session, a UDR establishes a UDR
connection. A UDR uses the mi_open() function (with NULL-valued pointers for
all arguments) to establish a UDR connection. A UDR can have one or more UDR
connections to the session.

7-2 IBM Informix DataBlade API Programmer’s Guide

Because a C UDR cannot establish a connection, it never begins a session. Instead,
it inherits the context of an existing session from the SQL statement that invokes
the UDR. This SQL statement executes within a session that the client application
has begun. Therefore, the UDR is already connected to a particular database server
and has access to a database that has already been opened. The UDR is also inside
the current transaction.

A UDR connection provides access to the session context. This session context
persists across all invocations of a UDR instance because a UDR connection has the
duration of an SQL command. That is, the mi_open() function and its
corresponding mi_close() function do not necessarily have to be called from
within the same invocation of the UDR but they do have to be called within the
same instance. For more information, see “Establishing a UDR Connection
(Server)” on page 7-11.

Connection Descriptor
A DataBlade API module (C UDR or client LIBMI application) obtains access to the
session context through a connection descriptor, MI_CONNECTION. This descriptor
is an opaque C data structure that points to the threadsafe context-sensitive portion
of the session information. The session context includes the information in
Table 7-1.

Table 7-1. Session-Context Information in a Connection Descriptor

Connection Information More Information

Save sets “Using Save Sets” on page 8-60

Statement descriptors:

v For SQL statement, last executed with
mi_exec()

v For prepared statements

“Executing Basic SQL Statements” on page 8-6

“Executing Prepared SQL Statements” on page
8-11

Cursors (implicit and explicit) “Queries and Implicit Cursors” on page 8-5 and
“Defining an Explicit Cursor” on page 8-22

Resources for the current row of the
current statement:

v Row descriptor

v Row structure

“Retrieving Query Data” on page 8-39

Function descriptors “Obtaining a Function Descriptor” on page 9-17

Callbacks registered for the connection “Registering a Callback” on page 10-4

User data “Associating User Data with a Connection” on
page 7-16

The integer byte order of the client
computer

“Conversion of Opaque-Type Data with
Computer-Specific Data Types” on page 16-21

You obtain a connection descriptor when you establish a connection in the
DataBlade API module. For more information, see “Establishing a Connection” on
page 7-11.

Chapter 7. Handling Connections 7-3

Initializing a Client Connection
Before a client LIBMI application can establish a connection, it must initialize the
connection with the name of the database server and database to which it needs to
connect. This initialization occurs in the following steps.

Connection-Initialization Steps DataBlade API Task

1. Indicate the database server to which you
want to connect.

Set connection parameters in the
connection-information descriptor.

2. Indicate the database to which you want to
connect and the user you want to log in as.

Set database parameters in the
database-information descriptor.

3. Indicate settings for session-specific features
(optional).

Set session parameters in the
parameter-information descriptor.

Using Connection Parameters
To indicate which database server the client LIBMI application needs to connect to,
the application uses connection parameters. The DataBlade API provides a
connection-information descriptor, MI_CONNECTION_INFO, to access connection
parameters. This data type structure is similar in concept to a file descriptor in
UNIX. It identifies the database server for a particular session.

Unlike most DataBlade API structures, the connection-information descriptor is not
an opaque C data structure. To access connection parameters, you must allocate a
connection-information descriptor and directly access its fields. Table 7-2 shows the
fields in the connection-information descriptor.

Table 7-2. Fields in the Connection-Information Descriptor

Field Data Type Description

server_name char * The name of the default database server

This field corresponds to the value of the
INFORMIXSERVER environment variable.

server_port mi_integer This value is ignored. It must always be set to zero (0).

A client LIBMI application does not need to specify the
server port. It only needs to specify a database server by
its name (the server_name field).

locale char * In a C UDR: The name of the server locale

This field corresponds to the SERVER_LOCALE
environment variable (as set on the computer with the
database server).

In a client LIBMI application: the name of the database
locale

This field corresponds to the DB_LOCALE environment
variable (as set on the computer with the client LIBMI
application).

reserved1 mi_integer Unused

reserved2 mi_integer Unused

The milib.h header file defines the MI_CONNECTION_INFO structure.

7-4 IBM Informix DataBlade API Programmer’s Guide

With the connection-information descriptor, you can use the following DataBlade
API functions to perform the connection-parameter tasks.

Connection-Parameter Task DataBlade API Function

Access the default connection parameters to
determine the database server for the
connection

mi_set_default_connection_info(),
mi_get_default_connection_info()

Obtain current connection parameters for an
open connection

mi_get_connection_info()

Establishing Default Connection Parameters
The default connection parameters identify to which database server to connect.
Before you establish a connection, determine which of the following connection
parameters to use:
v The system-default connection parameters
v Default connection parameters that you specify

System-Default Connection Parameters: The database server obtains values for
the system-default connection parameters from the execution environment of the
client LIBMI application. When you use system-default connection parameters, you
enable your application to be portable across client/server environments. However,
before the application begins execution, you must ensure that the client/server
environment is correctly initialized.

Table 7-3 shows the system-default connection parameters that the database server
uses to establish a connection.

Table 7-3. System-Default Connection Parameters

System-Default Connection Parameter System-Default Connection Value

Database server name INFORMIXSERVER environment variable

(Server) Server locale SERVER_LOCALE environment variable or
default locale (en_us)

(Client) Database locale DB_LOCALE environment variable or default
locale (en_us)

The system-default connection parameters provide connection information for all
connections made within a client LIBMI application unless you explicitly override
them within the application.

To use the default database server, initialize the server_name field to a
NULL-valued pointer and server_port to 0.

User-Defined Connection Parameters: The database server obtains values for the
connection parameters from the connection-information descriptor. The database
server initializes the connection-information descriptor with the system-default
connection parameters in Table 7-7 on page 7-9. You can initialize your own
connection-information descriptor to override the system-default connection
parameters. When you override system-default connection parameters, you enable
your application to have connection information that is independent of the
client/server environment in which it runs.

To override the system-default connection parameters:

1. Allocate a connection-information descriptor.

Chapter 7. Handling Connections 7-5

2. Fill the fields of the connection-information descriptor with the default
connection parameters you need.
To change the database server, specify a value for server_name. Any non-zero
value for the server_port field is ignored. If you do not set a particular field,
the database server uses the system-default value in Table 7-3 on page 7-5 for
the associated connection parameter.

3. Pass a pointer to this connection-information descriptor to the
mi_set_default_connection_info() function.

The user-defined connection parameters provide connection information for all
connections made within a client LIBMI application after these functions execute
(unless the functions are called again to set new default values).

You can obtain existing default connection parameters with the
mi_get_default_connection_info() function. This function populates a
user-defined connection-information descriptor with the current default connection
parameters.

Server Only

In a C UDR, mi_get_default_connection_info() obtains the same information as
mi_get_connection_info(). The mi_set_default_connection_info() function is
ignored when it is used in a UDR.

End of Server Only

Obtaining Current Connection Parameters
To obtain connection parameters associated with an open connection, use the
mi_get_connection_info() function. This function populates a user-defined
connection-information descriptor with values from the specified open connection.

Server Only

The mi_get_connection_info() function is valid when it is used in a C UDR. For
more information, see “Accessing the Session Environment” on page 13-58.

End of Server Only

Using Database Parameters
To indicate which database it needs to connect to, the client LIBMI application uses
database parameters. The DataBlade API provides a database-information descriptor,
MI_DATABASE_INFO, to access database parameters. This data type structure
identifies the database for a particular session.

Unlike most DataBlade API structures, the database-information descriptor is not
an opaque C data structure. To access database information, you must allocate a
database-information descriptor and directly access its fields. Table 7-4 shows the
fields in the database-information descriptor.

Table 7-4. Fields in the Database-Information Descriptor

Field Data Type Description

database_name char * The name of the database

user_name char * The user account name, as defined by the operating
system

7-6 IBM Informix DataBlade API Programmer’s Guide

Table 7-4. Fields in the Database-Information Descriptor (continued)

Field Data Type Description

password char * The account password, as defined by the operating system

The milib.h header file defines the MI_DATABASE_INFO structure.

With the database-information descriptor, you can use the following DataBlade API
functions to perform the database-parameter tasks.

Database-Parameter Task DataBlade API Function

Access the default database parameters to determine
the database and user for the connection

mi_set_default_database_info(),
mi_get_default_database_info()

Obtain current database parameters for an open
connection

mi_get_database_info()

Establishing Default Database Parameters
The default database parameters identify the database and user for the connection.
Before you establish a connection, you can determine which of the following
database parameters to use:
v The system-default database parameters
v Default database parameters that you specify

System-Default Database Parameters: The database server obtains values for the
system-default database parameters from the execution environment of the client
LIBMI application. When you use system-default database parameters, you enable
your application to be portable across client/server environments. However, you
must ensure that the client/server environment is correctly initialized to provide
the system-default values.

Table 7-5 shows the system-default database parameters that the database server
uses to open a database.

Table 7-5. System-Default Database Parameters

System-Default Database Parameter System-Default Value

Database name None

User-account name Account name of user that invoked the client
LIBMI application

Account password Account password of user that invoked the client
LIBMI application

The system-default database parameters provide database information for all
connections made within a client LIBMI application unless you explicitly override
them within the application.

User-Defined Database Parameters: The database server obtains values for the
database parameters from the database-information descriptor. The database server
initializes the database-information descriptor with the system-default database
parameters in Table 7-5. You can initialize your own database-information
descriptor to override the default database parameters. When you override
system-default database parameters, you enable your application to have database
information that is independent of the client/server environment in which it runs.

Chapter 7. Handling Connections 7-7

To override the system-default database parameters:

1. Allocate a database-information descriptor.
2. Fill the fields of the database-information descriptor with the default database

parameters you need.
If you do not set a particular field, the database server uses the system-default
value in Table 7-5 for the associated database parameter.

3. Pass a pointer to this database-information descriptor to the
mi_set_default_database_info() function.

The user-defined database parameters provide database information for all
connections made within a client LIBMI application after these functions execute
(unless the functions are called again to set new default values).

You can obtain existing default database parameters with the
mi_get_default_database_info() function. This function populates a user-defined
database-information descriptor with the current default database parameters.

Server Only

In a C UDR, mi_get_default_database_info() obtains the same information as
mi_get_database_info(). The mi_set_default_database_info() function is ignored.

End of Server Only

Obtaining Current Database Parameters
To obtain database parameters associated with an open connection, use the
mi_get_database_info() function. This function populates a user-defined
database-information descriptor with values from the specified open connection.

Server Only

The mi_get_database_info() function is valid with a C UDR.

End of Server Only

Using Session Parameters
The parameter-information descriptor, MI_PARAMETER_INFO, allows you to set the
following session parameters for the client LIBMI application:
v Disables invocation of callbacks
v Enables checking of pointers

Unlike most DataBlade API structures, the parameter-information descriptor is not
an opaque C data structure. To access session-parameter information, you must
directly access the fields of a parameter-information descriptor that you allocate.
Table 7-6 shows the fields in the MI_PARAMETER_INFO structure.

Table 7-6. Fields in the Parameter-Information Descriptor

Field Data Type Description

callbacks_enabled mi_integer Indicates whether callbacks are enabled:

v A value of 1 indicates that callbacks are
enabled.

v A value of 0 indicates that callbacks are
disabled.

7-8 IBM Informix DataBlade API Programmer’s Guide

Table 7-6. Fields in the Parameter-Information Descriptor (continued)

Field Data Type Description

pointer_checks_enabled mi_integer Indicates whether pointers (such as MI_ROW
pointers) that the client LIBMI application
passes to the database server are checked to
ensure that they are within the heap space of
the process:

v A value of 1 indicates that pointers are
checked.

v A value of 0 indicates that pointers are not
checked.

The milib.h header file defines the MI_PARAMETER_INFO structure.

Before you establish a connection, you can determine which of the following
session parameters to use:
v The system-default session parameters
v Default session parameters that you specify

Using System-Default Session Parameters
When the database server establishes a connection, it uses the values in Table 7-7
as the system-default session parameters.

Table 7-7. System-Default Session Parameters

System-Default Session Parameter System-Default Value

Callbacks Enabled? Yes

Pointers Checked? Yes

The system-default session parameters provide session-parameter information for
all connections made within a client LIBMI application unless you explicitly
override them within the application.

Using User-Defined Session Parameters
The database server obtains values for the session parameters from the
parameter-information descriptor. The database server initializes the
parameter-information descriptor with the system-default session parameters in
page 7-9. To override these system-default values, you can initialize your own
parameter-information descriptor to set session parameters.

The following DataBlade API functions access default session parameters for a
client LIBMI application.

DataBlade API Function Purpose

mi_set_parameter_info() Sets session parameters for the current session

mi_get_parameter_info() Obtains session parameters for the current session

To override the system-default session parameters:

1. Allocate a parameter-information descriptor.
2. Fill the fields of the parameter-information descriptor with the default session

parameters you need.

Chapter 7. Handling Connections 7-9

If you do not set a particular field, the database server uses the system-default
value in Table 7-7 on page 7-9 for the associated session parameter.

3. Pass a pointer to this parameter-information descriptor to the
mi_set_parameter_info() function.

You can examine existing session parameters with the mi_get_parameter_info()
function. This function populates a user-defined parameter-information descriptor
with the current session parameters.

Setting Connection Parameters for a Client Connection
The following example shows one way to set default connection parameters.
Assume that the system-default connection parameters are as follows.

System-Default Parameter Parameter Value

Default database server joe

(INFORMIXSERVER environment variable is set to joe.)

Default user tester

Default user password No password

Callbacks enabled? Yes (system default)

Pointers checked? Yes (system default)

The following code fragment uses DataBlade API functions to change the following
default system values.

DataBlade API Function Default Parameter Default Value

mi_set_default_connection_info() Database server name beth

Server port = 0 None

mi_set_default_database_info() Database name template1

User-account name miadmin

User-account password No password

extern void MI_PROC_CALLBACK all_callback();
MI_CONNECTION *conn;
MI_CONNECTION_INFO conn_info;
MI_DATABASE_INFO db_info;

/* Initialize DataBlade API */
mi_register_callback(conn, MI_Exception, all_callback,

NULL, NULL);

/* Assign default connection parameter in the
* connection-information descriptor
*/
conn_info.server_name = "beth";
conn_info.server_port = 0;

/* Set default connection parameters for the application */
if (mi_set_default_connection_info(&conn_info) == MI_ERROR)

printf("FAILED: mi_set_default_connection_info()\n");

/* Assign default database parameters in the
* database-information descriptor
*/
db_info.user_name = "miadmin";
db_info.database_name = "template1";

7-10 IBM Informix DataBlade API Programmer’s Guide

db_info.password = NULL;

/* Set default database parameters for the application */
if (mi_set_default_database_info(&db_info) == MI_ERROR)

printf("FAILED: mi_set_default_database_info()\n");

/* Get default connection and database parameters for
* application
*/
mi_get_default_connection_info(&conn_info);
mi_get_default_database_info(&db_info);

/* Make sure the right database server is set as the default */
if (strcmp("beth", conn_info.server_name) != 0)

printf("FAILED: got server_name %s, should be beth\n",
conn_info.server_name);

/* Connect to database server 'beth' */
conn = mi_server_connect(&conn_info);
if (conn == NULL)

printf("FAILED: CONNECT to beth\n");
else

{
printf("OK: connected to %s\n", conn_info.server_name);

}

After these new defaults are established, the application calls mi_server_connect()
to request a connection to the beth database server. If this request is successful, the
application opens the template1. For more information on mi_server_connect(),
see “Connections with mi_server_connect()” on page 7-16.

Establishing a Connection
The following DataBlade API functions are constructor functions for a connection
descriptor:
v The mi_open() function

Client Only

v The mi_server_connect() function

End of Client Only

These functions establish a connection and return a pointer to a connection
descriptor, which holds information from the session context. You can then pass
this connection descriptor to subsequent DataBlade API functions that need to
access the session context.

The DataBlade API supports the establishment of two kinds of connections:
v UDR connection
v Client connection

Establishing a UDR Connection (Server)
A UDR connection is the way that a C UDR obtains access to the session context;
that is, to the database server and database that the calling client application has
already established. For a summary of restrictions that the UDR imposes on a
session, see “Session Restrictions” on page 12-6.

A C UDR can establish one of two kinds of connections to a session:

Chapter 7. Handling Connections 7-11

v The public connection descriptor provides the C UDR invocations within an SQL
command with access to the session context.

v The session-duration connection descriptor provides the C UDR invocations
within a session with access to the session context.

Obtaining a Connection Descriptor
A public connection descriptor (usually just called a connection descriptor) provides a
local copy of session information for the use of the UDR. Because it has a
PER_STMT_EXEC memory duration, all UDR invocations in the same SQL
statement can share the session-context information (see Table 7-1 on page 7-3). The
following table summarizes the memory operations for a connection descriptor in a
C UDR.

Memory Duration Memory Operation Function Name

PER_STMT_EXEC Constructor mi_open()

Destructor mi_close()

To establish a UDR connection, pass all three arguments of mi_open() as
NULL-valued pointers. The following code fragment uses mi_open() to establish
a connection for a UDR:
mi_integer func1()
{

MI_CONNECTION *conn;

/* Open a connection from C UDR to database server
* of current session context:
* database = currently open database
* user = operating-system user account which is running
* the SQL statement that called this
* user-defined routine
* password = default specified for this user
*/

conn = mi_open(NULL, NULL, NULL);

/* If connection descriptor is NULL, there was an error
* connecting to the session context.
*/

if (conn == NULL)
{
mi_db_error_raise(conn, MI_EXCEPTION,

"func1: cannot establish connection", NULL);
}

... /* Code for use of this connection goes here */
}

Important: When called within a C UDR, many DataBlade API functions do not
use the connection descriptor. You can pass a NULL-valued pointer as
a connection descriptor to the DataBlade API functions for smart large
objects, which have the mi_lo_ prefix. The IBM Informix DataBlade API
Function Reference describes these functions. Exceptions to this rule are
listed in the documentation. Instead, pass in the connection descriptor
that the mi_open() function obtains.

The mi_open() call can be expensive in a C UDR. If the UDR instance contains
many invocations, you can obtain the connection descriptor the first time the UDR

7-12 IBM Informix DataBlade API Programmer’s Guide

is invoked and store it as part of the MI_FPARAM state information, as
Figure 10-6 on page 10-29 shows. For more information, see “Saving a User State”
on page 9-8.

Tip: It is not valid for a UDR to cache a connection descriptor at a memory
duration higher than PER_COMMAND. If you need session-context
information with a higher duration, use a session-duration connection
descriptor. For more information, see “Obtaining a Session-Duration
Connection Descriptor” on page 7-13.

Obtaining a Session-Duration Connection Descriptor
A session-duration connection descriptor provides a public copy of connection
information, providing access to the actual session information of the client
application. Because this connection descriptor has a PER_SESSION memory
duration, all UDR invocations in the session can share the session-context
information (see Table 7-1 on page 7-3). (For more information on a session, see
“PER_SESSION Memory Duration” on page 14-15.)

The following table summarizes the memory operations for a session-duration
connection descriptor in a C UDR.

Memory Duration Memory Operation Initiator of Operation

PER_SESSION Constructor mi_get_session_connection()

Destructor End of session

Warning: The advanced mi_get_session_connection() function can adversely
affect your UDR if you use it incorrectly. Use it only when a regular
function cannot perform the task you need done.

The mi_get_session_connection() function is not a true constructor, in the sense
that it does not actually allocate a connection descriptor in a PER_SESSION
duration. Instead, it returns a handle to the actual session connection, which has a
PER_SESSION duration. Therefore, the mi_get_session_connection() is often
faster than mi_open() (which does allocate a connection descriptor in
PER_COMMAND memory).

The minmprot.h header file defines the restricted-access
mi_get_session_connection() function. The minmmem.h header file automatically
includes the minmprot.h header file. However, the mi.h header file does not
automatically includes minmmem.h. To use mi_get_session_connection(), you
must include minmmem.h in any DataBlade API routine that calls these functions.

A session-duration connection descriptor is useful in the following cases:
v As an alternative to frequent calls to mi_open()

The mi_open() function is a relatively expensive call. If you need to open
connections frequently in your UDR, mi_get_session_connection() is the
preferred alternative. With a session-duration connection descriptor, the database
server caches a connection for you.

v To obtain access to session-duration function descriptors
One of the DataBlade API data type structures that the connection descriptor
holds is a function descriptor. When you pass a Fastpath look-up function (see
Table 9-5 on page 9-18) a public connection descriptor, the function descriptor
that these functions allocate is valid until the SQL command completes. If you
pass these look-up functions a session-duration connection descriptor instead of

Chapter 7. Handling Connections 7-13

a public connection descriptor, you can obtain a session-duration function
descriptor, which is valid until the session ends. In this way, other UDRs can use
Fastpath to execute the same UDR without having to create and destroy its
function descriptor for each execution. For more information, see “Reusing a
Function Descriptor” on page 9-30.

Keep the following restrictions in mind when you decide to use a session-duration
connection:
v Do not use mi_close() to free a session-duration connection descriptor.

A session-duration connection descriptor has the duration of the session. An
attempt to free a session-duration connection with mi_close() generates an
error.

v Do not cache a session-duration connection descriptor in the user state of an
MI_FPARAM structure.
You must obtain a session-duration connection descriptor in each UDR that uses
it.

v Do not call mi_get_session_connection() in a parallelizable UDR.
If the UDR must be parallelizable, use mi_open() to obtain a connection
descriptor.

Establishing a Client Connection
A client LIBMI application can establish a client connection in either of the
following ways:
v The mi_open() function
v The mi_server_connect() function

These DataBlade API functions obtain a connection descriptor for the client
connection. The following table summarizes the memory operations for a
connection descriptor in a client LIBMI application.

Memory Duration Memory Operation Function Name

For the duration of the session Constructor mi_open(), mi_server_connect()

Destructor mi_close()

Important: When called within a client LIBMI application, DataBlade API
functions always use the connection descriptor. Therefore, never send in
a NULL-valued pointer as a connection descriptor to DataBlade API
functions. Instead, pass in the connection descriptor that the
mi_open(), mi_server_connect(), or mi_server_reconnect() function
obtains.

After the client LIBMI application has established a connection, the session begins.

Connections with mi_open()
The mi_open() function establishes a default connection for the calling DataBlade
API module and returns a connection descriptor. A default connection is a
connection to the default database server (which the INFORMIXSERVER
environment variable specifies) and a specified database.

To establish a default connection, the mi_open() function accepts the following
information as arguments.

7-14 IBM Informix DataBlade API Programmer’s Guide

mi_open() Argument Purpose
Default Used When Argument
is NULL

Database name The name of the database to open None

User account name The name of the login account for
the user who is to open the
database

This account must be valid on the
server computer.

The name of the system-defined
user account

(See Table 7-5 on page 7-7.)

Account password The password of the login
account for the user who is to
open the database

This account must be valid on the
server computer.

The password of the
system-defined user account

(See Table 7-5 on page 7-7.)

All of these arguments are passed as pointers to character strings. You can specify
NULL for any of these arguments, in which case mi_open() uses the specified
default values. If the client LIBMI application uses a shared-memory
communication, it can only establish one connection per application.

The following code fragment demonstrates the simplest way for a client LIBMI
application to initiate a connection to the default database server and to open a
database:
/*
* Use mi_open() to connect to the database passed on the
* client application command line. Close the connection with
* mi_close().
*/

#include <mi.h>
#include <stdio.h>

main(mi_integer argc, char *argv[])
{

MI_CONNECTION *conn;

/* Check incomming parameters from command line */
if (argc != 2)

{
printf(stderr, "Usage:%s <db name>\n", argv[0]);
exit(2);
}

/* Open a connection from client LIBMI application to
* database server.
* database = parameter on command line
* user = operating-system user account which is
* running this application
* password = default specified for this user
*/

conn = mi_open(argv[1], NULL, NULL);

/* If connection descriptor is NULL, there was an error
* attempting to connect to the database server and database
* specified. Exit application.
*/

if (NULL == conn)
{
fprintf(stderr, "Cannot open database: %s\n",

argv[1]);

Chapter 7. Handling Connections 7-15

exit(3);
}

/* Code for application use of this connection goes here */
...

/* Valid connection has occurred. Close the connection
* and exit the application.
*/

mi_close(conn);
exit(0);

}

In this example, the name of the database to be opened is passed on the command
line. The user_name and the user_password arguments to mi_open() are both
passed as NULL, which indicates that mi_open() uses the default user and
password.

Connections with mi_server_connect()
To exercise more control over which connection to establish, a client LIBMI
application can use mi_server_connect(), which establishes a connection to a
specified database server. The mi_server_connect() function obtains information
about which database server to connect to from a connection-information
descriptor. This function does not open a database.

This DataBlade API function provides greater flexibility for client LIBMI
applications that run against different database servers. You can pass information
about the connection through descriptors.

Associating User Data with a Connection
The connection descriptor provides information about various data type structures
associated with the current connection. (For a list of this information, see Table 7-1
on page 7-3.) In addition, you can store the address of private information, called
user data, in the connection descriptor. The connection descriptor can hold this
user-data pointer, which points to the private user-data information.

Server Only

You allocate the user data with a DataBlade API memory-management function
from the shared memory of the database server. The memory duration of this user
data must correspond with the connection descriptor that holds the user-data
pointer, as the following table shows.

Type of Connection Descriptor
Memory Duration
of User Data Which UDRs Can Access User Data

Public connection descriptor
(with mi_open())

MI_COMMAND All UDR invocations in the same SQL command
have access to the connection descriptor that
mi_open() returns.

Session-duration connection descriptor
(with mi_get_session_connection())

MI_SESSION All C UDR invocations in the session have
access to the connection descriptor that
mi_get_session_connection() returns.

Therefore, your user data is available to all UDRs that can access its connection
descriptor.

7-16 IBM Informix DataBlade API Programmer’s Guide

Important: A session-duration connection descriptor is a restricted feature that can
adversely affect your UDR if used incorrectly. Use it only when a
public connection descriptor will not support the task you need to
perform. For more information, see “Obtaining a Session-Duration
Connection Descriptor” on page 7-13.

End of Server Only

Client Only

The user data is allocated in client-side memory. Therefore, your user data is
available to all DataBlade API functions that execute in the session.

End of Client Only

Table 7-8 shows the functions that the DataBlade API provides to access the user
data of a connection descriptor.

Table 7-8. DataBlade API Accessor Functions for User Data in the Connection Descriptor

DataBlade API
Accessor Function User-State Information

mi_get_connection_user_data() Obtains the user-data pointer from the connection
descriptor

mi_set_connection_user_data() Sets the user-data pointer in the connection
descriptor

The size of the connection user data is the size of a pointer of type “void *”. The
DataBlade API does not interpret or touch the associated user-data address, other
than to store and retrieve it from the connection descriptor.

Initializing the DataBlade API
Before you can use the DataBlade API to communicate with the database server,
you must make sure that it is initialized. When you establish a connection, the
DataBlade API function automatically initializes the DataBlade API. However, if
your DataBlade API module does not establish a connection, it must still ensure
that it initializes the DataBlade API.

Important: If the DataBlade API was not initialized, calls to subsequent DataBlade
API functions generate errors.

Table 7-9 lists the functions that can initialize the DataBlade API.

Table 7-9. DataBlade API Functions That Initialize the DataBlade API

DataBlade API Initialization Function
Valid in Client
LIBMI Application?

Valid in User-Defined
Routine?

mi_client_locale() Yes Yes

mi_get_default_connection_info() Yes Yes

mi_get_default_database_info() Yes Yes

mi_get_next_sysname() Yes No

mi_get_parameter_info() Yes Yes

mi_init_library() Yes No

Chapter 7. Handling Connections 7-17

Table 7-9. DataBlade API Functions That Initialize the DataBlade API (continued)

DataBlade API Initialization Function
Valid in Client
LIBMI Application?

Valid in User-Defined
Routine?

mi_open() Yes Yes

mi_register_callback() Yes Yes

mi_server_connect() Yes No

mi_set_default_connection_info() Yes Ignored

mi_set_default_database_info() Yes Ignored

mi_set_parameter_info() Yes No

mi_sysname() Yes Yes

One of the functions listed in Table 7-9 must be the first DataBlade API function
called in a DataBlade API session. If you do not call one of these functions, the
DataBlade API is not initialized and all subsequent DataBlade API calls return
error status.

Closing a Connection
To close a connection, free the associated connection descriptor. When the
connection descriptor is freed, the DataBlade API also frees the session-context
resources, including the following:
v Save sets
v Prepared statements (explicit statement descriptors)
v For an SQL statement executed with mi_exec() (also called the current

statement):
– The implicit statement descriptor for the current statement
– The row structure and associated row descriptor for the current statement

v Cursors (implicit and explicit)
v Function descriptors
v Callbacks registered for the connection
v Connection user data

To conserve resources, use mi_close() to deallocate the connection descriptor
explicitly once your DataBlade API module no longer needs it. The mi_close()
function is the destructor function for a connection descriptor. It frees the
connection descriptor and any resources that are associated with it.

Server Only

In a C UDR, a public connection descriptor has a memory duration of
PER_STMT_EXEC. Therefore, a connection descriptor remains active until one of
the following events occurs:
v The mi_close() function closes the specified UDR connection.
v The current SQL statement completes execution.

When a UDR connection is closed, the UDR can no longer access the associated
connection information (see Table 7-1 on page 7-3). However, the session remains
open until the client application ends it. Therefore, a UDR can obtain a new UDR
connection with another call to mi_open().

7-18 IBM Informix DataBlade API Programmer’s Guide

Tip: After a C UDR closes a connection, the UDR can no longer access the
connection resources in Table 7-1 on page 7-3. Any open smart large objects
and operating-system files, however, remain valid for the duration of the
session. You can explicitly close these descriptors with the mi_lo_close() and
mi_file_close() functions, respectively.

A session-duration connection descriptor has a memory duration of PER_SESSION.
Therefore, it and its associated connection information remain valid until the end
of the session. However, a session-duration connection is a restricted feature of the
DataBlade API. Use it only when a public connection descriptor will not perform
the task you need. For more information, see “Obtaining a Session-Duration
Connection Descriptor” on page 7-13.

End of Server Only

Client Only

In a client LIBMI application, a connection descriptor has a scope of the session.
When the client connection closes, the session ends. Therefore, a connection
descriptor remains active until one of the following events occurs:
v The mi_close() function closes the specified connection, ending the session.
v The client LIBMI application completes.

Tip: Once a client LIBMI application closes a connection, it can no longer access
the connection information. In addition, any open smart large objects and files
are closed.

End of Client Only

Chapter 7. Handling Connections 7-19

7-20 IBM Informix DataBlade API Programmer’s Guide

Chapter 8. Executing SQL Statements

In This Chapter . 8-2
Executing SQL Statements . 8-2

Choosing a DataBlade API Function . 8-3
Type of Statement . 8-3
Prepared Statements and Input Parameters . 8-4
Queries and Implicit Cursors . 8-5

Executing Basic SQL Statements . 8-6
Assembling a Statement String. 8-6
Sending an SQL Statement . 8-7

Executing Prepared SQL Statements . 8-11
Preparing an SQL Statement . 8-11
Obtaining Input-Parameter Information . 8-15
Sending the Prepared Statement . 8-17
Releasing Prepared-Statement Resources . 8-31

Executing Multiple SQL Statements . 8-32
Processing Statement Results . 8-33

Executing the mi_get_result() Loop . 8-34
Handling Unsuccessful Statements . 8-34
Handling a DDL Statement . 8-34
Handling a DML Statement . 8-36
Handling Query Rows . 8-38
Handling No More Results Status . 8-38

Example: The get_results() Function . 8-39
Retrieving Query Data . 8-39

Obtaining Row Information . 8-40
Obtaining Column Information . 8-41
Retrieving Rows . 8-41

Accessing the Current Row . 8-41
Executing the mi_next_row() Loop . 8-42

Obtaining Column Values . 8-42
Executing the Column-Value Loop . 8-43
Accessing the Columns . 8-43
Obtaining Normal Values . 8-44
Obtaining NULL Values . 8-49
Obtaining Row Values . 8-50
Obtaining Collection Values . 8-52
Example: The get_data() Function . 8-54

Completing Execution . 8-57
Finishing Execution . 8-57

Processing Remaining Rows . 8-57
Releasing Statement Resources . 8-57

Interrupting Execution . 8-58
Inserting Data into the Database . 8-59

Assembling an Insert String . 8-59
Sending the Insert Statement . 8-59
Processing Insert Results . 8-59

Using Save Sets . 8-60
Creating a Save Set . 8-60
Inserting Rows into a Save Set . 8-60
Building a Save Set . 8-61

© Copyright IBM Corp. 1996, 2009 8-1

Freeing a Save Set . 8-64

In This Chapter
One basic task of a DataBlade API module is to send SQL statements to the
database server for execution. To execute an SQL statement, a DataBlade API
module must perform the following tasks:
v Assemble the SQL statement and send it to the database server for execution
v Process results that the database server returns to the module
v If the SQL statement (such as a SELECT) returns rows, obtain each row of data
v For each row, obtain the column value or values of interest
v Complete the execution of the statement

This chapter describes each of these execution steps in detail.

Executing SQL Statements
To execute an SQL statement, a DataBlade API module must send the SQL
statement to the database server, where the statement is actually executed. The
DataBlade API provides the following statement-execution functions for use in a
DataBlade API module:
v mi_exec()

v mi_exec_prepared_statement()

v mi_open_prepared_statement()

All of these functions perform the same basic task: they send a string
representation of an SQL statement to the database server, which executes it and
returns statement results. The mi_exec() function is the simplest way to execute
an SQL statement.

Server Only

A C user-defined routine (UDR) that executes SQL statements must be registered
as a variant function; that is, its CREATE FUNCTION statement must either
include the VARIANT routine modifier or omit both the NOT VARIANT and
VARIANT routine modifiers (VARIANT is the default).

End of Server Only

This section provides a summary of factors to consider when choosing the
DataBlade API statement-execution function to use. It then describes the two
methods for statement execution.

Method of Statement Execution More Information

Parse, optimize, and execute the statement
in one step

“Executing Basic SQL Statements” on page 8-6

Parse and optimize the statement to create a
prepared statement Execute the prepared
statement

“Executing Prepared SQL Statements” on
page 8-11

Tip: Before you use a DataBlade API function that sends an SQL statement to the
database server, make sure you obtain a valid connection descriptor.

8-2 IBM Informix DataBlade API Programmer’s Guide

Choosing a DataBlade API Function
Table 8-1 shows the functions that the DataBlade API provides to send SQL
statements to the database server for execution.

Table 8-1. Statement-Execution Functions of the DataBlade API

DataBlade API Function

When to Use Function

Type of Statement

Statement Executed
Many Times or Contains
Input Parameters?

Query Can Use
Implicit Cursor?

mi_exec() Query Other valid SQL
statements

No Yes

mi_exec_prepared_statement() Query Other valid SQL
statements

Yes Yes

mi_open_prepared_statement() Query only Yes No

As the preceding table shows, you need to consider the following factors when
deciding which DataBlade API statement-execution function to use:
v What type of SQL statement do you need to send?
v Does your SQL statement contain input parameters?
v If the SQL statement is a query, can you use an implicit cursor to access the

retrieved rows?

Choose the DataBlade API statement-execution function that is appropriate for the
needs of your DataBlade API application.

Type of Statement
The DataBlade API statement-execution functions can execute the following types
of SQL statements:
v An SQL statement that does not return rows of data (is not a SELECT statement

and not an EXECUTE FUNCTION statement that executes an iterator function)
Most SQL statements do not return rows. For example, all data definition (DDL)
statements and most data manipulation (DML) statements return only a status to
indicate the statement’s success.

v An SQL statement that does return one or more rows of data
The following SQL statements return rows:
– SELECT statement
– EXECUTE FUNCTION statement, when the user-defined function returns

more than one row of data
An SQL statement that returns rows is often called a query because it asks the
database server to answer a question: which rows match?

Tip: The term “query” is sometimes used to refer to any SQL statement. However,
this publication uses the more specific definition of “query”: an SQL
statement that returns rows.

The following table shows how to choose a DataBlade API statement-execution
function based on the type of SQL statement.

Type of Statement DataBlade API Function

Query,
Other valid statements

mi_exec(),
mi_exec_prepared_statement()

Chapter 8. Executing SQL Statements 8-3

Type of Statement DataBlade API Function

Query only mi_open_prepared_statement()

Prepared Statements and Input Parameters
A prepared SQL statement is the parsed version of an SQL statement. The database
server prepares an SQL statement for execution at a later time. Preparing a
statement enables you to separate the parsing and execution phases of the
statement execution. When you prepare a statement, you send the statement to the
database server to be parsed. The database server checks the statement for syntax
errors and creates an optimized version of the statement for execution.

You need to prepare an SQL statement only once. You can then execute the
statement multiple times. Each time you execute the statement, you avoid the
parsing phase. Prepared statements are useful for SQL statements that execute
often in your DataBlade API module.

SQL statements that have missing column or expression values are called
parameterized statements because you use input parameters as placeholders for
missing column or expression values. An input parameter is a placeholder in an
SQL statement that indicates that the actual column value is provided at runtime.
You can specify input parameters in the statement text representation of an SQL
statement for either of the following reasons:
v A column or expression value is unknown at the time you prepare the SQL

statement.
v A column or expression value changes for each execution of the SQL statement.

For a parameterized SQL statement, your DataBlade API module must provide the
following information to the database server for each of its input parameters.

Input-Parameter Information More Information

Specify the input parameter in the text of the
SQL statement

“Assembling a Prepared Statement” on page
8-11

Specify the value for the input parameter
when the statement executes

“Assigning Values to Input Parameters” on
page 8-27

You can also obtain information about the input parameters after the
parameterized statement is prepared. For more information, see “Obtaining
Input-Parameter Information” on page 8-15.

A DataBlade API module can prepare an SQL statement for the following reasons:
v To increase performance by reducing the number of times that the database

server parses and optimizes the statement
v To execute a parameterized SQL statement and provide different

input-parameter values each time the statement executes

The following table shows how to choose a DataBlade API statement-execution
function based on whether the SQL statement needs to be prepared.

Statement Needs To Be Prepared? DataBlade API Function

No mi_exec()

Yes mi_exec_prepared_statement(),
mi_open_prepared_statement()

8-4 IBM Informix DataBlade API Programmer’s Guide

The mi_exec_prepared_statement() or mi_open_prepared_statement() function
provides argument values for specifying the input-parameter values when the
function executes the statement. You can also use these functions to execute
prepared statements that do not have input parameters.

Queries and Implicit Cursors
When a DataBlade API statement-execution function executes a query, the function
must create a place to hold the resulting rows. Each of these functions (mi_exec(),
mi_exec_prepared_statement(), or mi_open_prepared_statement()) automatically
creates a row cursor (often called simply a cursor). The row cursor is an area of
memory that serves as a holding place for rows that the database server has
retrieved.

The simplest way to hold the rows of a query is to use an implicit cursor, which is
defined with the following characteristics.

Cursor Characteristic Restriction

Read-only You can only examine the contents of the row
cursor. You cannot modify these contents.

Sequential A sequential cursor allows movement through the
rows of the cursor in the forward direction only.
You cannot go backward through the cursor. To
reaccess a row that you have already accessed, you
must close the cursor, reopen it, and move to the
desired row.

Most DataBlade API modules can use an implicit cursor for accessing rows.
However, if the cursor characteristics of the implicit cursor are not adequate for the
needs of your DataBlade API module, you can define an explicit cursor with any of
the following cursor characteristics.

Cursor Characteristic Description

Cursor type In which direction does the cursor enable you to
access rows? You can choose a sequential cursor or
a scroll cursor.

Cursor mode Which operations are valid on the rows in the
cursor? You can choose read-only or update mode.

Cursor lifespan How long does the cursor remain open? You can
choose whether to use a hold cursor.

For more information on these cursor characteristics, see “Defining an Explicit
Cursor” on page 8-22.

The following table shows how to choose a DataBlade API statement-execution
function based on the type of cursor that the query requires.

Can Query Use Implicit Cursor? DataBlade API Function

Yes mi_exec(),
mi_exec_prepared_statement()

No mi_open_prepared_statement()

Chapter 8. Executing SQL Statements 8-5

With the mi_open_prepared_statement() function, you can specify an explicit
cursor to hold the query rows. In addition, you can assign a name to the cursor
that you can use in other SQL statements.

Executing Basic SQL Statements
The mi_exec() function provides the simplest way to send a basic SQL statement
to the database server for execution. A basic SQL statement is one that does not
need to be prepared. That is, the statement does not execute many times in the
DataBlade API module or it does not contain input parameters. To send a basic
SQL statement to the database server for execution, take the following steps:
v Assemble a statement string, which contains the SQL statement to execute.
v Send the statement string to the database server with mi_exec().

The database server parses the statement string, optimizes it, executes it, and sends
back the statement results.

Assembling a Statement String
The mi_exec() function passes the SQL statement to the database server as a
statement string, which is a text representation of the SQL statement. To execute a
statement with mi_exec(), the statement string must include the entire SQL
statement; that is, it cannot contain any input parameters.

You can assemble this statement string in the following ways:
v If you know all the information at compile time, assemble the statement as a

fixed string.
If you know the whole statement structure, you can specify the string itself as
the argument to mi_exec(), as the following line shows:
mi_exec(conn,

“select company from customer where \
customer_num = 101;”, MI_QUERY_BINARY);

v If you do not know all the information about the statement at compile time, you
can use the following features to assemble the statement string:
– Character variables can hold the identifiers in the SQL statement (column

names or table names) or parts of the statement like the WHERE clause. They
can also contain keywords of the statement.
You can then build the SQL statement as a series of string operations, as
Figure 8-1 shows.

v If you know what column values the statement specifies, you can declare
program variables to provide column values that are needed in a WHERE clause
or to hold column values that database server returns.

mi_string stmt_txt[30];
mi_string fld_name[15];
...
stcopy("select ", stmt_txt);
fld_name = obtain_fldname(...);
stcat(fld_name, stmt_txt);
stcat("from customer where customer_num = 101", stmt_txt);
...
mi_exec(conn, stmt_txt, MI_QUERY_BINARY);

Figure 8-1. Assembling a SELECT Statement from a Character String

8-6 IBM Informix DataBlade API Programmer’s Guide

Figure 8-2 shows the SELECT statement of Figure 8-1 changed so that it uses a
variable to determine the customer number dynamically.

The statement string can contain multiple SQL statements. Each SQL statement
must be terminated with the semicolon (;) symbol. For more information, see
“Executing Multiple SQL Statements” on page 8-32.

Sending an SQL Statement
The mi_exec() function is for the execution of basic SQL statements, both queries
and other valid SQL statements. In a DataBlade API module, use the following
DataBlade API functions to execute a basic SQL statement.

Step in Execution of Basic SQL Statement DataBlade API Function

Send the basic SQL statement to the database server for
execution and open any cursor required

mi_exec()

Release statement resources mi_query_finish(),
mi_query_interrupt()

Once the database server executes the statement that mi_exec() sends, the
statement becomes the current statement. The current statement is the most recent
SQL statement on the connection. Only one statement per connection is current.
The database server sends back the results of the current statement, including
whether the current statement was successful.

The mi_exec() function creates an implicit statement descriptor to hold the
information about the current statement. The following table summarizes the
memory operations for an implicit statement descriptor.

Memory Duration Memory Operation Function Name

Not allocated from memory-duration pools Constructor mi_exec()

Destructor mi_query_finish()

Table 8-2 lists the DataBlade API accessor functions for the implicit statement
descriptor that mi_exec() creates.

Table 8-2. Accessor Functions for an Implicit Statement Descriptor

Statement-Descriptor Information DataBlade API Accessor Function

The name of the SQL statement that is
the current statement

mi_result_command_name()

mi_string stmt_txt[30];
mi_integer cust_num;
...
stcopy("select company from customer where customer_num = ",

stmt_txt);
cust_num = obtain_custnum(...);
stcat(cust_num, stmt_txt);
...
stmt_desc = mi_exec(conn, stmt_txt, MI_QUERY_BINARY);

Figure 8-2. Using a Variable to Assemble a SELECT Statement

Chapter 8. Executing SQL Statements 8-7

Table 8-2. Accessor Functions for an Implicit Statement Descriptor (continued)

Statement-Descriptor Information DataBlade API Accessor Function

A row descriptor for the columns in the
current statement

mi_get_row_desc_without_row()

From the row descriptor, you can use the
row-descriptor accessor functions to obtain
information about a particular column (see
Table 5-3 on page 5-30).

You obtain the status of the current statement with the mi_get_result() function.
For more information, see “Processing Statement Results” on page 8-33.

Tip: The return value that the mi_exec() function returns does not indicate the
success of the current statement. It indicates if mi_exec() was able to
successfully send the statement to the database server.

When mi_exec() executes a query, it performs the following additional steps:
1. Opens an implicit cursor to hold the query rows
2. Reads the query rows into the open cursor

The Implicit Row Cursor: When mi_exec() executes a query, it automatically
opens an implicit cursor to hold the resulting rows. This cursor is associated with
the current statement and is stored as part of the connection descriptor. Therefore,
only one cursor per connection can be current. For more information, see “Queries
and Implicit Cursors” on page 8-5.

Tip: If the implicit cursor that mi_exec() creates does not adequately meet the
needs of your DataBlade API module, you can use the
mi_open_prepared_statement() function to define other types of cursors. For
more information, see “Defining an Explicit Cursor” on page 8-22.

When the mi_exec() function successfully fetches the query results into the cursor,
the cursor position points to the first row of the cursor, and the mi_get_result()
function returns a status of MI_ROWS to indicate that the cursor contains rows.

You can access these rows one at a time with the mi_next_row() function. Each
access obtains the row to which the cursor position points. After each access to the
cursor, the cursor position moves to the next row. For more information, see
“Retrieving Query Data” on page 8-39.

Control Modes for Query Data: The data that the database server returns for a
query can be in one of two control modes:
v In text representation, the query data is represented as null-terminated strings.

Data in its text representation is often called a literal value.
v In binary representation, the query data is represented in its internal format; that

is, in the format that the database server uses to store the value.

Table 8-3 shows the format of different data types in the two control modes.

Table 8-3. Control Modes for Data

Type of Data Text Representation Binary Representation

Character Null-terminated string Varying-length structure:
mi_lvarchar

8-8 IBM Informix DataBlade API Programmer’s Guide

Table 8-3. Control Modes for Data (continued)

Type of Data Text Representation Binary Representation

Date ″mm/dd/yyyy″

Nondefault locale: End-user date format

Integer number of days since
December 31, 1899

(DATE, mi_date)

Date/time ″yyyy-mm-dd HH:MM:SS″

Nondefault locale: End-user date and time format

dtime_t

(DATETIME, mi_datetime)

Interval ″yyyy-mm″

″dd HH:MM:SS″

Nondefault locale: End-user date and time format

intrvl_t

(INTERVAL, mi_interval)

Integer Integer value as a string:

thousands separator = ″,″

Nondefault locale: End-user numeric format

Internal format:

v Two-byte integer
(SMALLINT, mi_smallint)

v Four-byte integer
(INTEGER, mi_integer)

v Eight-byte integer: ifx_int8_t
(INT8, mi_int8)

Decimal Fixed-point value as a string:

thousands separator = ″,″
decimal separator = ″.″

Nondefault locale: End-user numeric format

dec_t

(DECIMAL, mi_decimal)

Monetary Fixed-point value as a string:

thousands separator = ″,″
decimal separator = ″.″
currency symbol = ″$″

Nondefault locale: End-user monetary format

dec_t

(MONEY, mi_money)

Floating-point Floating-point value as a string:

thousands separator = ″,″
decimal separator = ″.″

Nondefault locale: End-user numeric format

Internal format:

v single-precision floating point
(SMALLFLOAT, mi_real)

v double-precision floating point
(FLOAT, mi_double_precision)

Boolean ″t″ or ″T″

″f″ or ″F″

MI_TRUE, MI_FALSE

(BOOLEAN, mi_boolean)

Smart large object Text representation of the LO handle
(obtained with mi_lo_to_string())

LO handle

(CLOB, BLOB; MI_LO_HANDLE)

Row type Unnamed row type:

″ROW(fld_value1, fld_value2, ...)″

Named row type:

″row_type(fld_value1, fld_value2, ...)″

Row structure

(ROW, named row type; MI_ROW)

Chapter 8. Executing SQL Statements 8-9

Table 8-3. Control Modes for Data (continued)

Type of Data Text Representation Binary Representation

Collection type ″SET{elmnt_value, elmnt_value, ...}″

″MULTISET{elmnt_value, elmnt_value, ...}″

″LIST{elmnt_value, elmnt_value, ...}″

Collection structure

(SET, LIST, MULTISET;
MI_COLLECTION)

Varying-length
opaque type

External format of opaque type
(as returned by output support function)

Varying-length structure:
mi_bitvarying
(which contains the internal C data
type)

Fixed-length
opaque type

External format of opaque type
(as returned by output support function)

Internal C data type

Distinct type Text representation of its source data type Binary representation of its source
data type

The mi_exec() function indicates the control mode of the query with a bit-mask
control argument, which is one of the following flags.

Control Mode Control-Flag Value

Text representation MI_QUERY_NORMAL

Binary representation MI_QUERY_BINARY

In the send_statement() function (page 8-10), mi_exec() sets the control mode of
the query data to text representation.

To determine the control mode for query data, use the mi_binary_query()
function. The mi_binary_query() function determines the control mode for data of
the current statement.

Example: The send_statement() Function: The send_statement() function takes
an existing open connection and an SQL statement string as arguments and sends
the statement to the database server with the mi_exec() function. It specifies text
representation for the query results.
/* FUNCTION: send_statement()
* PURPOSE: To send an SQL statement to the database server for
* execution
*
* CALLED BY: Called from within a C user-defined function to
* execute a basic SQL statement
*/

mi_integer
send_statement(MI_CONNECTION *conn, mi_string *stmt)
{

mi_integer count;

/* Send the statement, specifying results be sent
* in their text representation (MI_QUERY_NORMAL)
*/
if (MI_ERROR == mi_exec(conn, stmt, MI_QUERY_NORMAL))

{
mi_db_error_raise(conn, MI_EXCEPTION,

"mi_exec failed\n");
}

/* Get the results of the current statement */
count = get_results(conn);

8-10 IBM Informix DataBlade API Programmer’s Guide

/* Release statement resources */
if (mi_query_finish(conn) == MI_ERROR)

{
mi_db_error_raise(conn, MI_EXCEPTION,

"mi_query_finish failed\n");
}

return (count);
}

The send_statement() function calls another user function, get_results(), to
examine the status of the current statement. For the implementation of the
get_results() function, see “Example: The get_results() Function” on page 8-39.

Executing Prepared SQL Statements
A prepared statement is an SQL statement that is parsed and ready for execution. For
these statements, you prepare the statement once and execute it as many times as
needed. The DataBlade API provides the following functions to execute a prepared
SQL statement.

DataBlade API Function Step in Prepared-Statement Execution

mi_prepare() Prepares a text representation of the SQL
statement to execute

mi_statement_command_name(),
mi_get_statement_row_desc(), or
input-parameter accessor function
(Table 8-5 on page 8-15)

Obtains information about the prepared
statement

mi_exec_prepared_statement() or
mi_open_prepared_statement()

Sends the prepared statement to the database
server for execution

mi_drop_prepared_statement() Releases prepared-statement resources

Preparing an SQL Statement
To turn a statement string for an SQL statement into a format that the database
server can execute, use the mi_prepare() statement. The mi_prepare() function
performs the following tasks to create a prepared statement:
v Sends a statement string to the database server for parsing
v Assigns an optional name to the SQL statement
v Returns a pointer to a statement descriptor for the prepared statement

Tip: The mi_prepare() function performs the same basic task for a DataBlade API
module as the SQL PREPARE statement does for an IBM Informix ESQL/C
application.

Assembling a Prepared Statement: The mi_prepare() function passes the SQL
statement to the database server as a statement string. For the mi_prepare()
function, a statement string can contain either of the following formats of an SQL
statement:
v An unparameterized SQL statement (the same as the mi_exec() function

accepts)
v A parameterized SQL statement, which contains input parameters

Assembling Unparameterized Statements: If you know all the statement information
before the statement is prepared, you assemble an unparameterized statement as the

Chapter 8. Executing SQL Statements 8-11

statement string. Pass the SQL statement as a string (or a variable that contains a
string) to the mi_prepare() function. For example, Figure 8-3 prepares an
unparameterized SELECT statement that obtains column values from the customer
table.

For more information, see “Assembling a Statement String” on page 8-6.

Assembling Parameterized Statements: If some column or expression value is
provided when the statement actually executes, you assemble the parameterized
statement as the statement string. Specify input parameters in the statement text
representation of an SQL statement. For a description of an input parameter, see
“Prepared Statements and Input Parameters” on page 8-4.

You indicate the presence of an input parameter with a question mark (?)
anywhere within a statement where an expression is valid. You cannot list a
program-variable name in the text of an SQL statement because the database server
knows nothing about variables declared in the DataBlade API module. You cannot
use an input parameter to represent an identifier such as a database name, a table
name, or a column name.

For example, Figure 8-4 shows an INSERT statement that uses input parameters as
placeholders for two column values in the customer table.

In Figure 8-4, the first input parameter is defined for the value of the
customer_num column and the second for the value of the company column.

Before the prepared statement executes, your DataBlade API module must assign a
value to the input parameter. You pass these input-parameter values as arguments
to the mi_exec_prepared_statement() or mi_open_prepared_statement()
function. For more information, see “Assigning Values to Input Parameters” on
page 8-27.

Assigning an Optional Name: You can obtain access to a prepared statement
through its statement descriptor. However, other SQL statements that need to
reference the prepared statement cannot use a statement descriptor. Therefore, you
can assign an optional string name to a prepared SQL statement. Specify a name as
the third argument of the mi_prepare() function.

Server Only

The last argument to mi_prepare() specifies the cursor name for the prepared
statement. Assigning a cursor name is useful for a statement that includes an
update cursor so that an UPDATE or DELETE statement that contains the
following clause can reference the cursor in this clause:

stmt_desc = mi_prepare(conn,
"SELECT * FROM customer;", NULL)

Figure 8-3. Preparing an Unparameterized Statement

insrt_stdesc = mi_prepare(conn,
"INSERT INTO customer (customer_num, company) \
VALUES (?,?);", NULL

Figure 8-4. Preparing a Statement That Contains Input Parameters

8-12 IBM Informix DataBlade API Programmer’s Guide

WHERE CURRENT OF cursor_name

You can specify an update cursor in the syntax of the SELECT statement that you
prepare, as the following versions of the SELECT statement show:
SELECT customer_num, company FROM customer
WHERE customer_num = 104 FOR UPDATE OF company;

SELECT customer_num, company FROM customer
WHERE customer_num = 104;

For more information on the FOR UPDATE keywords of SELECT with databases
that are ANSI compliant and not ANSI compliant, see “Defining a Cursor Mode”
on page 8-22.

End of Server Only

The following code fragment uses the mi_prepare() statement to assign a name to
a cursor and an UPDATE WHERE CURRENT OF statement to update the fifth row
in this cursor:
/* Prepare the FOR UPDATE statement */
if ((stmt1 = mi_prepare(conn,

"select * from tab1 for update;",
"curs1")) == NULL)

return MI_ERROR;

/* Open the cursor */
if (mi_open_prepared_statement(stmt1, MI_BINARY,

MI_QUERY_BINARY, num_params, values, lengths, nulls,
types, NULL, 0, NULL) != MI_OK)

return MI_ERROR;

/* Fetch the 5th row */
if (mi_fetch_statement(stmt1, MI_CURSOR_NEXT, 0, 5)

!= MI_OK)
return MI_ERROR;

/* Get values from 5th row */
if (mi_get_result(conn) != MI_ROWS

|| mi_next_row(conn, &res) == NULL)
return MI_ERROR;

/* Update 5th row */
if (mi_exec("update tab1 set int_col = int_col + 2 \

where current of curs1;", NULL) != MI_OK)
return MI_ERROR;

/* Clean up */
if (mi_close_statement(stmt1) != MI_OK)

return MI_ERROR;
if (mi_drop_prepared_statement(stmt1) != MI_OK)

return MI_ERROR;

The mi_open_prepared_statement() function also provides the ability to name the
cursor. However, if you specify a cursor name in mi_prepare(), make sure that
you pass a NULL-valued pointer as the cursor name to
mi_open_prepared_statement(). Conversely, if you want to specify the cursor
name in mi_open_prepared_statement(), use a NULL-valued pointer as the
cursor name in mi_prepare(). If you specify a cursor name in both mi_prepare()
and mi_open_prepared_statement(), the DataBlade API uses the cursor name that
mi_open_prepared_statement() provides.

Chapter 8. Executing SQL Statements 8-13

If your prepared statement does not fetch rows, pass a NULL-valued pointer as the
third argument to mi_prepare().

Client Only

The last argument to mi_prepare() specifies the statement name for the prepared
statement. The cursor_name argument of mi_open_prepared_statement() specifies
the cursor name for the prepared statement. If you do not need to assign a
statement name, pass a NULL-valued pointer as the last argument to
mi_prepare().

End of Client Only

Returning a Statement Descriptor: The mi_prepare() function sends the contents
of an SQL statement string to the database server, which parses the statement and
returns it in an optimized executable format. The function returns a pointer to an
explicit statement descriptor (usually called just a statement descriptor). A statement
descriptor, MI_STATEMENT, is a DataBlade API structure that contains the
information about a prepared SQL statement, including the executable format of
the SQL statement.

The following table summarizes the memory operations for a statement descriptor.

Memory Duration Memory Operation Function Name

Not allocated from
memory-duration pools

Constructor mi_prepare()

Destructor mi_drop_prepared_statement(),
mi_close_statement()

A statement descriptor can be identified in either of the following ways:
v As a pointer to an MI_STATEMENT structure, which mi_prepare() returns

The mi_prepare() function is a constructor function for a statement descriptor.
v As an integer statement identifier, which the mi_get_id() function returns when

passed MI_STATEMENT_ID as its second argument

Table 8-4 lists the DataBlade API accessor functions for an explicit statement
descriptor.

Table 8-4. Accessor Functions for an Explicit Statement Descriptor

Statement-Descriptor Information DataBlade API Accessor Function

The name of the SQL statement that was
prepared

mi_statement_command_name()

Information about any input parameters in
the prepared statement

The input-parameter accessor functions
(Table 8-5 on page 8-15)

A row descriptor for the columns in the
prepared statement

mi_get_statement_row_desc()

From the row descriptor, you can use the
row-descriptor accessor functions to obtain
information about a particular column (see
Table 5-3 on page 5-30).

Important: To DataBlade API modules, the statement descriptor (MI_STATEMENT)
is an opaque C structure. Do not access the internal fields of this
structure directly. The internal structure of the MI_STATEMENT may

8-14 IBM Informix DataBlade API Programmer’s Guide

change in future releases. Therefore, to create portable code, always use
these accessor functions to obtain prepared-statement information.

You pass a statement descriptor to the other DataBlade API functions that handle
prepared statements, including mi_exec_prepared_statement(),
mi_open_prepared_statement(), mi_fetch_statement(), mi_close_statement(),
and mi_drop_prepared_statement().

Obtaining Input-Parameter Information
From a statement descriptor, you can obtain information about an input parameter
once an SQL statement has been prepared. An input parameter indicates a value
that is provided when the prepared statement executes. Table 8-5 lists the
DataBlade API accessor functions that obtain input-parameter information from the
statement descriptor.

Table 8-5. Input-Parameter Information in the Statement Descriptor

Column Information
DataBlade API
Accessor Function

The number of input parameters in the prepared
statement

mi_parameter_count()

The precision (total number of digits) of the column
associated with an input parameter

mi_parameter_precision()

The scale of a column that is associated with the input
parameter

mi_parameter_scale()

Whether the column associated with each input
parameter was defined with the NOT NULL constraint

mi_parameter_nullable()

The type identifier of the column that is associated with
the input parameter

mi_parameter_type_id()

The type name of the column that is associated with the
input parameter

mi_parameter_type_name()

Important: To DataBlade API modules, the input-parameter information in the
statement descriptor (MI_STATEMENT) is part of an opaque C data
structure. Do not access the internal fields of this structure directly. The
internal structure of the MI_STATEMENT structure may change in
future releases. Therefore, to create portable code, always use these
accessor functions to obtain input-parameter information.

Input-parameter information is available only for the INSERT and UPDATE
statements. Support for the UPDATE statement includes the following forms of
UPDATE:
v UPDATE with or without a WHERE clause
v UPDATE WHERE CURRENT OF

If you attempt to request input-parameter information for other SQL statements,
the input-parameter functions in Table 8-5 raise an exception.

The statement descriptor stores input-parameter information in several parallel
arrays.

Input-Parameter Array Contents

Parameter-type ID array Each element is a pointer to a type identifier (MI_TYPEID) that
indicates the data type of the input parameter.

Chapter 8. Executing SQL Statements 8-15

Input-Parameter Array Contents

Parameter-type name
array

Each element is a pointer to the string name of the data type for
each input parameter.

Parameter-scale array Each element is the scale of the column associated with the input
parameter.

Parameter-precision
array

Each element is the precision of the column associated with the
input parameter.

Parameter-nullable array Each element is either MI_FALSE or MI_TRUE:

v MI_FALSE indicates that the input parameter is associated with
a column that cannot contain SQL NULL values.

v MI_TRUE indicates that the input parameter is associated with
a column that can contain SQL NULL values.

All of the input-parameter arrays in the statement descriptor have zero-based
indexes. Within the statement descriptor, each input parameter in the prepared
statement has a parameter identifier, which is the zero-based position of the input
parameter within the input-parameter arrays. When you need information about
an input parameter, specify its parameter identifier to one of the
statement-descriptor accessor functions in Table 8-5 on page 8-15.

Figure 8-5 shows how the information at index position 1 of these arrays holds the
input-parameter information for the second input parameter of a prepared
statement.

To access information for the nth input parameter, provide an index value of n-1 to
the appropriate accessor function in Table 8-5 on page 8-15. The following calls to
the mi_parameter_type_id() and mi_parameter_nullable() functions obtain from
the statement descriptor that stmt_desc identifies the type identifier (param_type)
and whether the column is nullable (param_nullable) for the second input
parameter:
MI_STATEMENT *stmt_desc;
MI_TYPEID *param_type;
mi_integer param_nullable;
...
param_type = mi_parameter_type_id(stmt_desc, 1);
param_nullable = mi_parameter_nullable(stmt_desc, 1);

Figure 8-5. Input-Parameter Arrays in the Statement Descriptor

8-16 IBM Informix DataBlade API Programmer’s Guide

To obtain the number of input parameters in the prepared statement (which is also
the number of elements in the input-parameter arrays), use the
mi_parameter_count() function.

Sending the Prepared Statement
For a prepared statement to be executed, you must send it to the database server
with one of the following DataBlade API functions.

DataBlade API Function When To Use

mi_exec_prepared_statement() If the prepared statement does not return rows

If the prepared statement does return rows but you
only need to access these rows sequentially (with an
implicit cursor)

mi_open_prepared_statement() If the prepared statement does return rows and you
need to perform one of the following tasks:

v Access these rows with a scroll, update, or hold
cursor (instead of a read-only sequential cursor)

v Control how many rows the database server puts
into the cursor at one time

Both these functions support the following parameters.

Parameter Description

stmt_desc Is a pointer to a statement descriptor for the prepared statement

The mi_prepare() function generates this statement descriptor.

control flag Determines whether any query rows are in binary or text
representation

params_are_binary Indicates whether the input-parameter values are in binary or text
representation

n_params Is the number of input-parameter values in the
input-parameter-value arrays

Input-parameter-value
arrays:

v values

v types

v lengths

v nulls

Arrays that contain the following information for each
input-parameter value:

v Value

v Data type

v Length (for varying-length data types)

v Whether the input-parameter value is an SQL NULL value

For more information, see “Assigning Values to Input Parameters”
on page 8-27.

retlen The number of column values that are in each retrieved row

rettypes An array that contains the data types of any returned column
values

Once the database server executes the prepared statement, the statement becomes
the current statement. The database server sends back the statement results,
including whether the current statement was successful. Obtain the status of the
current statement with the mi_get_result() function. For more information, see
“Processing Statement Results” on page 8-33.

Chapter 8. Executing SQL Statements 8-17

Tip: The return value that the mi_exec_prepared_statement() or
mi_open_prepared_statement() function returns does not indicate the
success of the current statement. It indicates if
mi_exec_prepared_statement() or mi_open_prepared_statement() was able
to successfully send the prepared statement to the database server.

Statements with mi_exec_prepared_statement(): The
mi_exec_prepared_statement() function is for the execution of prepared
statements, both queries and other valid SQL statements. In a DataBlade API
module, use the following DataBlade API functions to execute a prepared SQL
statement with mi_exec_prepared_statement().

DataBlade API Function Step in Prepared-Statement Execution

mi_prepare() Prepares the statement string for execution

mi_statement_command_name(),
mi_get_statement_row_desc(), or
input-parameter accessor function
(Table 8-5 on page 8-15)

Obtains information about the prepared statement
(optional)

mi_exec_prepared_statement() Sends the prepared statement to the database
server for execution and opens any cursor
required

mi_drop_prepared_statement() Releases prepared-statement resources

The mi_exec_prepared_statement() function performs the following tasks for the
prepared SQL statement:
v Binds any input-parameter values to the appropriate input parameters in the

prepared statement
For more information, see “Assigning Values to Input Parameters” on page 8-27.

v Sends the prepared statement to the database server for execution
The control flag supports the MI_BINARY flag to indicate that query rows are to
be returned in binary representation. For more information, see “Determining
Control Mode for Query Data” on page 8-30.

v When it executes a query, it performs the following additional steps:
– Opens an implicit cursor to hold the query rows
– Reads the query rows into the open cursor
The DataBlade API stores the cursor as part of the statement descriptor. For
more information on this row cursor, see “Queries and Implicit Cursors” on
page 8-5.

Tip: If the implicit cursor that mi_exec_prepared_statement() creates does not
adequately meet the needs of your DataBlade API module, you can use the
mi_open_prepared_statement() function to define other types of cursors. For
more information, see “Defining an Explicit Cursor” on page 8-22.

When the mi_exec_prepared_statement() function successfully fetches the query
rows into the cursor, the cursor position points to the first row of the cursor, and the
mi_get_result() function returns a status of MI_ROWS to indicate that the cursor
contains rows.

8-18 IBM Informix DataBlade API Programmer’s Guide

You can access these rows one at a time with the mi_next_row() function. Each
access obtains the row to which the cursor position points. After each access to the
cursor, the cursor position moves to the next row. For more information, see
“Retrieving Query Data” on page 8-39.

The following variation of the send_statement() function (page 8-10) uses
mi_exec_prepared_statement() instead of mi_exec() to send an SQL statement to
the database server:
mi_integer send_statement2(conn, stmt)

MI_CONNECTION *conn;
mi_string *stmt;

{
mi_integer count;
MI_STATEMENT *stmt_desc;

/* Prepare the statement */
if ((stmt_desc = mi_prepare(conn, stmt, NULL)) == NULL)

mi_db_error_raise(conn, MI_EXCEPTION,
"mi_prepared failed\n");

/* Send the basic statement, specifying that query
* be sent in its text representation
*/
if (mi_exec_prepared_statement(stmt_desc, 0, MI_FALSE,

0, NULL, NULL, NULL, 0, NULL) == MI_ERROR)
mi_db_error_raise(conn, MI_EXCEPTION,

"mi_exec_prepared_statement failed\n");

/* Get the results of the current statement */
count = get_results(conn);

/* Release statement resources */
if (mi_drop_prepared_statement(stmt_desc) == MI_ERROR)

mi_db_error_raise(conn, MI_EXCEPTION,
"mi_drop_prepared_statement failed\n");

if (mi_query_finish(conn) == MI_ERROR)
mi_db_error_raise(conn, MI_EXCEPTION,

"mi_query_finish failed\n");

return (count);
}

The mi_exec_prepared_statement() function allocates type descriptors for each of
the data types of the input parameters. If the calls to
mi_exec_prepared_statement() are in a loop in which these data types do not
vary between loop iterations, mi_exec_prepared_statement() can reuse the type
descriptors, as follows:
v On the first call to mi_exec_prepared_statement(), specify in the types array the

correct data type names for the input parameters.
v On subsequent calls to mi_exec_prepared_statement(), replace the array of data

type names with a NULL-valued pointer.

This method saves on the number of type descriptors that
mi_exec_prepared_statement() must allocate, thereby reducing memory usage.

In Figure 8-6, mi_exec_prepared_statement() in the initial pass of the for loop
specifies the INTEGER data type for the single input parameter in an INSERT
statement. For subsequent passes of the for loop, mi_exec_prepared_statement()
receives a NULL-valued pointer for its types array. When it receives this
NULL-valued pointer, mi_exec_prepared_statement() reuses the type descriptor

Chapter 8. Executing SQL Statements 8-19

that it has already created.

Statements with mi_open_prepared_statement(): The
mi_open_prepared_statement() function is for the execution of queries. In a
DataBlade API module, use the following DataBlade API functions to execute a
prepared SQL statement with mi_open_prepared_statement().

DataBlade API Function Step in Execution of Prepared Statement

mi_prepare() Prepares the statement string for execution

mi_statement_command_name(),
mi_get_statement_row_desc(), or
input-parameter accessor function
(Table 8-5 on page 8-15)

Obtains information about the prepared statement
(optional)

mi_open_prepared_statement() Sends the prepared statement to the database
server for execution and open the cursor

mi_fetch_statement() Retrieves any data that the query returns

mi_close_statement(),
mi_drop_prepared_statement()

Releases prepared-statement resources

The mi_open_prepared_statement() function performs the following tasks for the
prepared SQL statement:
v Binds any input-parameter values to the appropriate input parameters in the

prepared statement
For more information on how to assign input-parameter values, see “Assigning
Values to Input Parameters” on page 8-27.

mi_string *types[1] = {"int"};
mi_string **types_exec;
...
sprintf(command, "insert into tabA values(?, %d);", j);
if ((stmt_desc = mi_prepare(conn, command, NULL)) == NULL)

{
return -1;
}

types_exec = types;
for (j=0; j < numLoop; j++)

{
values[0] = (MI_DATUM) j;

if ((ret = mi_exec_prepared_statement(stmt_desc,
MI_BINARY, 1, 1, values, lengths, nulls,
types_exec, 0, NULL)))

{
return -2;
}

if ((ret = mi_get_result(conn)) == MI_ERROR)
return -4;

if (ret == MI_DML || MI_DDL)
row_count += mi_result_row_count(conn);

types_exec = NULL; /* reuse data types from 1st pass */
}

Figure 8-6. Reusing Type Descriptors in Repeated Calls to mi_exec_prepared_statement()

8-20 IBM Informix DataBlade API Programmer’s Guide

v Sends the prepared statement to the database server for execution
v Creates and opens an explicit cursor with characteristics specified in the control

argument
The DataBlade API stores the cursor as part of the statement descriptor. For
more information on this cursor, see “Defining an Explicit Cursor” on page 8-22.

Tip: The mi_open_prepared_statement() function performs the same basic task
for a DataBlade API module as the SQL OPEN statement does for an IBM
Informix ESQL/C application.

The main difference between mi_exec_prepared_statement() and
mi_open_prepared_statement() is that the latter allows more flexibility in the
definition of the cursor used for the query rows. With
mi_open_prepared_statement(), you can define an explicit cursor. In particular,
mi_open_prepared_statement() allows you to specify:
v A string name to assign to the cursor

The cursor_name parameter is a pointer to the string name that you want to
assign to the cursor. You can use this cursor_name for an update cursor so that
the UPDATE or DELETE statement can reference the cursor in its clause:
WHERE CURRENT OF cursor_name

For more information, see “Assigning an Optional Name” on page 8-12.

Client Only

To use an internally-generated unique name for the cursor, specify a
NULL-valued pointer for the cursor_name argument.

End of Client Only

v The type of cursor to use for holding the query rows
The mi_open_prepared_statement() function supports several flag values in its
control flag that determine the type of cursor it creates. For more information, see
“Defining an Explicit Cursor” on page 8-22.
In addition, the control flag also supports the MI_BINARY flag to indicate that
query rows are to be returned in binary representation. For more information,
see “Determining Control Mode for Query Data” on page 8-30.

v The number of rows to read into the cursor at one time
Unlike mi_exec() and mi_exec_prepared_statement(),
mi_open_prepared_statement() does not read any retrieved rows into the open
cursor. To fetch rows into the explicit cursor, use the mi_fetch_statement()
function. For more information, see “Fetching Rows Into a Cursor” on page 8-23.

The mi_open_prepared_statement() function allocates type descriptors for each of
the data types of the input parameters. If the calls to
mi_open_prepared_statement() are in a loop in which these data types do not
vary between loop iterations, mi_open_prepared_statement() can reuse the type
descriptors, as follows:
v On the first call to mi_open_prepared_statement(), specify in the types array

the correct data type names for the input parameters.
v On subsequent calls to mi_open_prepared_statement(), replace the array of

data type names with a NULL-valued pointer.

Chapter 8. Executing SQL Statements 8-21

This method saves on the number of type descriptors that
mi_open_prepared_statement() must allocate, thereby reducing memory usage.
For sample code in which the mi_exec_prepared_statement() function reuses type
descriptors, see Figure 8-6 on page 8-20.

Defining an Explicit Cursor: The control flag of mi_open_prepared_statement()
allows you to define an explicit cursor to hold the rows that the prepared query
returns. You can choose the following cursor characteristics when you define the
cursor:
v The cursor type
v The cursor mode
v The cursor lifespan

Defining a Cursor Type: The mi_open_prepared_statement() function supports the
following types of cursors for holding query rows.

Cursor Type Description

Sequential cursor Enables you to move through the rows of the
cursor in the forward direction only

You can pass only once through the rows.

Scroll cursor Enables you to move through the rows of the
cursor in the forward and backward directions

You can move back in the rows without having to
reopen the cursor; however, the database server
stores the data for a scroll cursor in a temporary
table. The data can become stale; that is, the data
in the cursor is consistent with the data in the
database when the cursor is filled, but if the data
in the database changes, the data in the cursor
does not reflect these changes.

Table 8-6 shows the control-flag values that determine cursor type and cursor
mode.

Defining a Cursor Mode: You can specify one of the following cursor modes for the
cursor with the control-flag bit mask.

Cursor Mode Description SELECT Statement

Update Enables you to read and modify the data
within the cursor

SELECT...FOR UPDATE

Read-only Enables you to read the data within the
cursor; does not allow you to update or
delete any row it fetches

SELECT...FOR READ ONLY

When you execute a prepared SELECT statement with no FOR UPDATE or FOR
READ ONLY clause, the cursor mode you need depends on whether your database
is ANSI-compliant, as follows:
v In a database that is not ANSI compliant, the SELECT statement specifies a

read-only mode by default.
You do not need to specify the FOR READ ONLY keywords in the SELECT
statement. The only advantage of specifying the FOR READ ONLY keywords
explicitly is for better program documentation. To specify an update mode, you

8-22 IBM Informix DataBlade API Programmer’s Guide

must specify the FOR UPDATE keywords in the SELECT statement.

American National Standards Institute

v In an ANSI-compliant database, the SELECT statement specifies an update mode
by default.
You do not need to specify the FOR UPDATE keywords in the SELECT
statement. The only advantage of specifying the FOR UPDATE keywords
explicitly is for better program documentation. To specify a read-only mode, you
must specify the FOR READ ONLY keywords in the SELECT statement.

End of American National Standards Institute

For more information on the FOR UPDATE and FOR READ ONLY clauses, see the
description of the SELECT statement in the IBM Informix Guide to SQL: Syntax.

By default, both the sequential and scroll cursor types have a cursor mode of
update (also called read/write). Table 8-6 shows the cursor types and cursor modes,
with the required bit-mask values for the control flag.

Table 8-6. Control-Flag Values for Cursor Type and Mode

Cursor Control-Flag Value

Update sequential cursor None (default)

Read-only sequential cursor MI_SEND_READ

Update scroll cursor MI_SEND_SCROLL

Read-only scroll cursor MI_SEND_READ + MI_SEND_SCROLL

Defining a Cursor Lifespan: You can define the lifespan of the cursor with the
control-flag bit mask. By default, the database server closes all cursors at the end of
a transaction. If your DataBlade API module requires uninterrupted access to a set
of rows across transaction boundaries, you can define a hold cursor. A hold cursor
can be either a sequential or a scroll cursor.

To define a hold cursor, you specify the MI_SEND_HOLD constant in the
control-flag bit mask of the mi_open_prepared_statement() function, as the
following table shows.

Cursor Control-Flag Value

Update sequential cursor with hold MI_SEND_HOLD

Read-only sequential cursor with hold MI_SEND_READ + MI_SEND_HOLD

Update scroll cursor with hold MI_SEND_SCROLL + MI_SEND_HOLD

Read-only scroll cursor with hold MI_SEND_READ + MI_SEND_SCROLL +
MI_SEND_HOLD

Fetching Rows Into a Cursor: When mi_open_prepared_statement() successfully
opens a cursor, the cursor is empty, with the cursor position pointing to the first
location of the cursor, and the mi_get_result() function returns a status of
MI_NO_MORE_RESULTS to indicate that the cursor does not contain rows.

Figure 8-7 shows the state of the explicit cursor that contains one integer column
after mi_open_prepared_statement() executes.

Chapter 8. Executing SQL Statements 8-23

To populate the open cursor, use the mi_fetch_statement() function, which fetches
the specified number of retrieved rows from the database server into the cursor.
You can perform a fetch operation on an update or a read-only cursor. To fetch
rows into a cursor, you must specify the following information to
mi_fetch_statement():
v The statement descriptor for the prepared statement that returns rows
v The location in the rows on the database server at which to begin the fetch
v The number of rows to fetch into the cursor

The mi_fetch_statement() function requests the specified number of retrieved
rows from the database server and copies them into the cursor, which is associated
with the specified statement descriptor. When mi_fetch_statement() completes
successfully, the following items are true:
v The cursor contains the number of rows that the num_rows argument specifies.
v The cursor position points to the first of the fetched rows in the cursor.
v The mi_get_result() function returns a status of MI_ROWS to indicate that the

cursor does contain rows.

With mi_fetch_statement(), you can request rows at different locations based on
the type of cursor that mi_open_prepared_statement() has defined. To specify
location, mi_fetch_statement() has an action argument of type
MI_CURSOR_ACTION, which supports the cursor-action constants in the
following table.

Cursor-Action Flag Description Type of Cursor

MI_CURSOR_NEXT Fetches the next num_rows rows, starting
at the current retrieved row on the
database server

Sequential

Scroll

MI_CURSOR_PRIOR Fetches the previous num_rows rows,
starting at the current retrieved row

Scroll

MI_CURSOR_FIRST Fetches the first num_rows rows Sequential

Scroll

MI_CURSOR_LAST Fetches the last num_rows rows Sequential

Scroll

Figure 8-7. Row Cursor After mi_open_prepared_statement()

8-24 IBM Informix DataBlade API Programmer’s Guide

Cursor-Action Flag Description Type of Cursor

MI_CURSOR_ABSOLUTE Moves jump rows into the retrieved rows
and fetches num_rows rows

Sequential (as long as the jump argument
does not move the cursor position
backward)

Scroll

MI_CURSOR_RELATIVE Moves jump rows from the current
retrieved row and fetch num_rows rows

Sequential (as long as the jump argument
is a positive number)

Scroll

Figure 8-8 shows the state of a row cursor that Figure 8-7 on page 8-24 defines
after the following mi_fetch_statement() executes:
mi_fetch_statement(stmt_desc, MI_CURSOR_NEXT, 0, 0);

Once the rows reside in the cursor, your DataBlade API module can access these
rows one at a time with the mi_next_row() function. For more information, see
“Retrieving Query Data” on page 8-39.

If you specify a non-zero value for the num_rows argument, mi_fetch_statement()
fetches the requested number of rows into the cursor. Specify a non-zero value for
num_rows if your DataBlade API module needs to handle rows in smaller groups.
In this case, you retrieve num_rows number of query rows from the cursor with
mi_next_row(). When mi_next_row() indicates that no more rows are in the
cursor, you must determine whether to fetch any remaining rows from the
database server into the cursor, as follows:
v If you do not need to examine additional rows, exit the mi_next_row() and

mi_get_result() loops normally and close the cursor with
mi_close_statement().

v If you do need to fetch any rows remaining on the database server into the
cursor, execute the mi_fetch_statement() function again after the following
conditions occur:
– The mi_get_result() function returns MI_DML (for a SELECT statement).
– The number of query rows that mi_next_row() obtains is less than the

number of rows that mi_fetch_statement() fetches (num_rows) from the
database server.

Figure 8-8. Fetching All Retrieved Rows Into a Cursor

Chapter 8. Executing SQL Statements 8-25

You can obtain the number of query rows with the mi_result_row_count()
function.

The mi_fetch_statement() for Figure 8-8 on page 8-25 specified a value of zero (0)
as the number of rows to fetch, which tells the function to fetch all retrieved rows.
Figure 8-9 shows the state of the row cursor that Figure 8-7 on page 8-24 defines
when the mi_fetch_statement() function specifies a num_rows argument of three
instead of zero, as follows:
mi_fetch_statement(stmt_desc, MI_CURSOR_NEXT, 0, 3);

Server Only

The following code fragment uses the mi_open_prepared_statement() function to
assign an input-parameter value, execute a SELECT statement, and retrieve the
query rows:
mi_string *cmd =

"select order_num from orders \
where customer_num = ?;";

MI_STATEMENT *stmt;
...
if ((stmt = mi_prepare(conn, cmd, NULL)) == NULL)

mi_db_error_raise(NULL, MI_EXCEPTION,
"mi_prepare() failed");

values[0] = 104;
types[0] = "integer";
lengths[0] = 0;
nulls[0] = MI_FALSE;

/* Open the read-only cursor to hold the query rows */
if (mi_open_prepared_statement(stmt, MI_SEND_READ,

MI_TRUE, 1, values, lengths, nulls, types,
"cust_select", retlen, rettypes)
!= MI_OK)

mi_db_error_raise(NULL, MI_EXCEPTION,
"mi_open_prepared_statement() failed");

/* Fetch the retrieved rows into the cursor */
if (mi_fetch_statement(stmt, MI_CURSOR_NEXT, 0, 3) != MI_OK)

mi_db_error_raise(NULL, MI_EXCEPTION,
"mi_fetch_statement() failed");

if (mi_get_result(conn) != MI_ROWS)
mi_db_error_raise(NULL, MI_EXCEPTION,
"mi_get_result() failed or found nonquery statement");

/* Retrieve the query rows from the cursor */

Figure 8-9. Fetching First Three Rows into a Cursor

8-26 IBM Informix DataBlade API Programmer’s Guide

if (!(get_data(conn)))
mi_db_error_raise(NULL, MI_EXCEPTION,

"get_data() failed");

/* Close the cursor */
if (mi_close_statement(stmt) == MI_ERROR)

mi_db_error_raise(NULL, MI_EXCEPTION,
"mi_close_statement() failed");

/* Release resources */
if (mi_drop_prepared_statement(stmt) == MI_ERROR)

mi_db_error_raise(NULL, MI_EXCEPTION,
"mi_drop_prepared_statement() failed");

if (mi_close(conn) == MI_ERROR)
mi_db_error_raise(NULL, MI_EXCEPTION,

"mi_close() failed");

This code fragment sends its input-parameter value in binary representation. The
code fragment is part of a C UDR because it passes the INTEGER input-parameter
value by value. For more information, see “Assigning Values to Input Parameters”
on page 8-27.

End of Server Only

Assigning Values to Input Parameters: For a parameterized SQL statement, your
DataBlade API module must perform the following steps:
1. Specify input parameters in the text of the SQL statement.
2. Send the SQL statement to the database server for parsing.
3. Provide input-parameter values when the SQL statement executes.

The mi_prepare() statement performs these first two steps for a parameterized
statement. For more information, see “Preparing an SQL Statement” on page 8-11.

The mi_exec_prepared_statement() and mi_open_prepared_statement()
functions assign values to input parameters when they send a parameterized SQL
to the database server for execution. To provide a value for an input parameter,
you pass information in several parallel arrays:
v Parameter-value array
v Parameter-value type array
v Parameter-value length array
v Parameter-value null array

These input-parameter value arrays are similar to the input-parameter arrays in the
statement descriptor (see Figure 8-5 on page 8-16). They have an element for each
input parameter in the prepared statement. However, they are unlike the
input-parameter arrays in the statement descriptor in the following ways:
v An input-parameter value array describes the actual value for an input

parameter.
An input-parameter array describes the column with which the input parameter
is associated.

v You must allocate and manage an input-parameter value array.
The DataBlade API does not provide accessor functions for input-parameter
value arrays. For each input parameter, your DataBlade API module must
declare, allocate, and assign a value to the array.

Chapter 8. Executing SQL Statements 8-27

All of the input-parameter-value arrays have zero-based indexes. Figure 8-10 shows
how the information at index position 1 of these arrays holds the
input-parameter-value information for the second input parameter of a prepared
statement.

You specify the number of input-parameter values in the input-parameter value
arrays with the nparams argument of mi_exec_prepared_statement() or
mi_open_prepared_statement().

The following sections provide additional information about each of the
input-parameter-value arrays.

Parameter-Value Array: The parameter-value array, values, is the fifth argument of
the mi_exec_prepared_statement() and mi_open_prepared_statement()
functions. Each element of the parameter-value array is a pointer to an
MI_DATUM structure that holds the value for each input parameter. The format of
this value depends on:
v Whether the control mode for the input-parameter data is text or binary

representation:
The params_are_binary argument of mi_exec_prepared_statement() or
mi_open_prepared_statement() indicates this control mode. For more
information on the format of data for different control modes, see Table 8-3 on
page 8-8.

v In binary representation, whether the MI_DATUM value is passed by reference
or by value:

Server Only

– For C UDRs, the data type of the value determines the passing mechanism.

End of Server Only

Client Only

– For client LIBMI applications, pass all values (regardless of data type) by
reference.

End of Client Only

For more information, see “Contents of an MI_DATUM Structure” on page 2-33.

For the prepared INSERT statement in Figure 8-4 on page 8-12, the code fragment
in Figure 8-11 assigns values to the input parameters for the customer_num and

Figure 8-10. Arrays for Initialization of Input Parameters

8-28 IBM Informix DataBlade API Programmer’s Guide

company columns. These values are in text representation because the
params_are_binary argument of mi_exec_prepared_statement() is MI_FALSE.

Server Only

The following code fragment initializes the input parameters to the same values
but it assigns these values in binary representation instead of text representation:
/* Initialize input parameter for customer_num column */
values[0] = 0; /* value of 0 for SERIAL customer_num */
lengths[0] = 0; /* SERIAL is built-in type: no length */
types[0] = "serial";
nulls[0] = MI_FALSE;

/* Initialize input parameter for company column */
values[1] = mi_string_to_lvarchar("Trievers Inc.");
lengths[1] = 0; /* CHAR types need length! */
types[1] = "char(20)";
nulls[1] = MI_FALSE;

/* Send INSERT statement to database server for execution along
* with the input-parameter-value arrays
*/
mi_exec_prepared_statement(insrt_stdesc, 0, MI_TRUE, 2

values, lengths, nulls, types, 0, NULL);

In the preceding code fragment, the first element of the values array is assigned an
integer value. Because this code executes in a C UDR, the integer value in the
MI_DATUM structure of this array must be passed by value.

End of Server Only

Client Only

In a client LIBMI application, all values in MI_DATUM structure must be passed
by reference. Therefore, to assign values to input parameters within a client LIBMI
application, you must assign all values in the values array as pointers to the actual
values.

The preceding code fragment assumes that it executes within a C UDR because it
passes the value for the first input parameter (an INTEGER column by value). In a

/* Initialize input parameter for customer_num column */
values[0] = "0"; /* value of '0' for SERIAL customer_num */
lengths[0] = 0; /* SERIAL is built-in type: no length */
types[0] = "serial";
nulls[0] = MI_FALSE;

/* Initialize input parameter for company column */
stcopy("Trievers Inc.", strng);
values[1] = strng;
lengths[1] = stleng(strng); /* CHAR types need length! */
types[1] = "char(20)";
nulls[1] = MI_FALSE;

/* Send INSERT statement to database server for execution along
* with the input-parameter-value arrays
*/
mi_exec_prepared_statement(insrt_stdesc, 0, MI_FALSE, 2

values, lengths, nulls, types, 0, NULL);

Figure 8-11. Executing a Statement That Contains Text-Representation Input Parameters

Chapter 8. Executing SQL Statements 8-29

client LIBMI application, you cannot use the pass-by-value mechanism. Therefore,
the assignment to the first input parameter must pass a pointer to the integer
value, as follows:
col1 = 0;
values[0] = &col1;

End of Client Only

Parameter-Value Length Array: The parameter-value length array, lengths, is the
sixth argument of the mi_exec_prepared_statement() and
mi_open_prepared_statement() functions. Each element of the parameter-value
length array is the integer length (in bytes) of the data type for the
input-parameter value.

The meaning of the values in the lengths array depends on the control mode of the
input-parameter values, as follows:
v For input-parameter values that are in text representation, the lengths array lists

the lengths of the text strings.
Make sure the lengths value matches the length of the null-terminated string of
the input-parameter value (minus the null terminator). Use a library function,
such as strlen() or stleng(), to determine the string length.

v For input-parameter values that are in binary representation, the database server
does not need to access the entry of the parameter-value length array.
Lengths are not needed in the following special cases:
– Input parameters whose data types (such as mi_integer) are passed with

fixed lengths
– Input parameters with string values are passed in varying-length structures

A varying-length structure holds its own data length.

Important: Even though there are some cases in which the database server does
not read the length of the input-parameter value, it is recommended
that you always specify lengths to maintain consistency of code.

Parameter-Value Null Array: The parameter-value null array, nulls, is the seventh
argument of the mi_exec_prepared_statement() and
mi_open_prepared_statement() functions. Each element of the parameter-value
null array is either:
v MI_FALSE: the input-parameter value is not an SQL NULL value
v MI_TRUE: the input-parameter value is an SQL NULL value

Parameter-Value Type Array: The parameter-value type array, types, is the eighth
argument of the mi_exec_prepared_statement() and
mi_open_prepared_statement() functions. Each element of the parameter-value
type array is a pointer to a string that identifies the data type of the
input-parameter value. The type names must match those that the
mi_type_typename() function would generate for the data type.

If the prepared statement has input parameters and is not an INSERT statement,
you must use the types array to supply the data types of the input parameters.
Otherwise, you can pass in a NULL-valued pointer as the types argument.

Determining Control Mode for Query Data: The mi_exec_prepared_statement()
and mi_open_prepared_statement() functions specify the control mode for the

8-30 IBM Informix DataBlade API Programmer’s Guide

data of a prepared query in their bit-mask control argument. To determine the
control mode, set the control argument as the following table shows.

Control Mode Control Argument

Text representation Zero (default)

Binary representation MI_BINARY

For mi_exec_prepared_statement(), MI_BINARY is the only valid control-flag
constant for the control argument. Therefore, a default value of zero (0) as the
control argument indicates text representation of the data. The following
mi_exec_prepared_statement() call specifies a control mode of binary
representation:
mi_open_prepared_statement(stmt_desc, MI_BINARY, ...);

For mi_open_prepared_statement(), the control argument indicates the cursor
characteristics in addition to the control mode. To specify a text representation,
omit the MI_BINARY control-flag constant from the control argument. Including
MI_BINARY in the control argument indicates that results are to be returned in
binary representation. The following mi_open_prepared_statement() call specifies
an update scroll cursor and a control mode of binary representation:
mi_open_prepared_statement(

stmt_desc,
MI_BINARY + MI_SEND_SCROLL,
...);

For information on how to specify cursor characteristics to
mi_open_prepared_statement(), see “Defining an Explicit Cursor” on page 8-22.
For more information on the control mode, see “Control Modes for Query Data”
on page 8-8.

Releasing Prepared-Statement Resources
When your DataBlade API module no longer needs a prepared statement, you can
release the resources that it uses with the following DataBlade API functions.

Prepared-Statement Resource DataBlade API Function

Explicit cursor mi_close_statement()

Statement descriptor (including any cursor) mi_drop_prepared_statement()

Closing a Statement Cursor: For prepared queries (SQL statements that return
rows), the statement descriptor has a cursor associated with it. The scope of this
cursor is from the time it is opened, with mi_exec_prepared_statement() or
mi_open_prepared_statement(), until one of the following events occurs:
v The mi_close_statement() function closes the cursor (explicit cursors only).
v The mi_drop_prepared_statement() function frees the statement descriptor.
v The mi_close() function closes the connection.

Server Only

v The SQL statement that invoked the C UDR ends.

End of Server Only

To conserve resources, use the mi_close_statement() function to explicitly close an
explicit cursor once your DataBlade API module no longer needs it. The

Chapter 8. Executing SQL Statements 8-31

mi_close_statement() function is the destructor function for an explicit cursor that
is associated with a statement descriptor. That is, it frees the cursor that the
mi_open_prepared_statement() function opens. Until you drop the prepared
statement with mi_drop_prepared_statement(), you can still reopen an explicit
cursor with another call to mi_open_prepared_statement().

Tip: The mi_close_statement() function performs the same basic task for a
DataBlade API module as the SQL CLOSE statement does for an IBM
Informix ESQL/C application.

The mi_close_statement() function is not the destructor function for an implicit
cursor that is associated with a statement descriptor. That is, it does not free the
cursor that the mi_exec_prepared_statement() function opens. To close an implicit
cursor, use the mi_drop_prepared_statement() function.

Dropping a Prepared Statement: A statement descriptor describes a prepared
statement. However, this DataBlade API structure is not allocated from the
memory-duration pools. Instead, its scope is from the time it is created with
mi_prepare() until whichever of the following events occurs first:
v The mi_drop_prepared_statement() function frees the statement descriptor.
v The mi_close() function closes the connection.

Server Only

v The SQL statement that invoked the C UDR ends.

End of Server Only

To conserve resources, use the mi_drop_prepared_statement() function to
explicitly deallocate the statement descriptor once your DataBlade API module no
longer needs it. The mi_drop_prepared_statement() function is the destructor
function for a statement descriptor. It frees the statement descriptor and any
resources (such as an implicit or explicit cursor) that are associated with the
statement descriptor. These resources include the prepared statement and any
associated row cursor. Once you drop a prepared statement, you must reprepare it
before it can be executed again.

Executing Multiple SQL Statements
A DataBlade API statement-execution function can send more than one SQL
statement to the database server at a time. In this case, the statement string
contains several SQL statements, each terminated by a semicolon (;). When the
statement string contains more than one SQL statement, the mi_get_result()
function executes for each statement in the string.

Suppose you send the following statement string for execution:
"insert into tab1 (id) values (1); \
insert into tab1 (id) values (2); \
insert into tab1 (id) values (3); "

For the preceding statement string, the mi_get_result() function executes four
times, three times returning an MI_DML status for each INSERT statement and
once to return the final MI_NO_MORE_RESULTS status. For more information on
mi_get_result(), see “Processing Statement Results” on page 8-33.

8-32 IBM Informix DataBlade API Programmer’s Guide

Keep in mind that the effects of one part of the statement string are not visible to
other parts. If one SQL statement depends on an earlier one, do not put them both
in the same statement string. For example, the following statement string causes an
error:
mi_exec(myconn, "create table tab1(a int, b int); \

insert into tab1 values (1,2);",
MI_QUERY_NORMAL);

The preceding mi_exec() call generates an error because the INSERT statement
cannot see the result of the CREATE TABLE statement. The solution is to call
mi_exec() twice, as follows:
/* Execute CREATE TABLE statement in first mi_exec() call */
mi_exec(myconn, "create table tab1 (a integer, b integer);",

MI_QUERY_NORMAL);
mi_query_finish(myconn);

/* Execute INSERT statement in second mi_exec() call */
mi_exec(myconn, "insert into tab1 values (1,2);",

MI_QUERY_NORMAL);
mi_query_finish(myconn);

Processing Statement Results
Once a DataBlade API statement-execution function (see Table 8-1 on page 8-3)
executes, the SQL statement that it sent to the database server is the most recent
SQL statement on the connection. This most recent SQL statement is called the
current statement. Information about the current statement is associated with a
connection. Only one statement is current at a time.

After you send the current statement to the database server for execution, your
DataBlade API module must process the statement results by:
v Determining the status of the current statement, including whether results are

available
v Retrieving any results

Retrieving the results of an SQL statement is a multiphase process that involves
several levels of nested iteration, as the following table shows.

Statement-Processing
Loop Description More Information

mi_get_result() loop Outermost loop of the row-retrieval code iterates
through each current statement.

“Executing the mi_get_result()
Loop” on page 8-34

mi_next_row() loop Middle loop of the row-retrieval code iterates
through each row that the current statement has
retrieved.

“Executing the mi_next_row()
Loop” on page 8-42

Column-value loop Innermost loop of the row-retrieval code iterates
through each column value of a query row. This
loop uses the mi_value() or mi_value_by_name()
function to obtain the column values.

“Executing the Column-Value Loop”
on page 8-43

The first step in processing statement results is to determine the status of the
current statement with the mi_get_result() function, as follows:
v Execute the mi_get_result() function in a loop that iterates for each current

statement.

Chapter 8. Executing SQL Statements 8-33

v Interpret the statement status that mi_get_result() returns for each current
statement.

For a sample function that shows one way to use mi_get_result() to process
statement results, see “Example: The get_data() Function” on page 8-54.

Executing the mi_get_result() Loop
The mi_get_result() function is usually executed in a loop after one of the
DataBlade API statement-execution functions (in Table 8-1 on page 8-3) sends a
statement to the database server. The function is normally called in the outermost
loop of row-retrieval code. This loop executes for each of several states of the
database server as it processes statement results. These states are represented as the
status of the current statement. The mi_get_result() function can return the
following status information.

Information About Current SQL Statement Statement-Status Constant

The current statement has generated an error. MI_ERROR

The current statement is a data definition (DDL) statement
that has completed successfully.

MI_DDL

The current statement is a data manipulation (DML)
statement that has completed successfully.

MI_DML

The current statement is a query that has executed
successfully.

MI_ROWS

No more results are pending for the current statement. MI_NO_MORE_RESULTS

You can use a switch statement based on these statement-status constants to
determine how to handle the status of the current statement. The mi_get_result()
loop terminates when mi_get_result() returns the status
MI_NO_MORE_RESULTS. Think of the mi_get_result() loop as an iteration over
the states of the database server.

Handling Unsuccessful Statements
The mi_get_result() function returns a status of MI_ERROR to indicate that the
current statement did not execute successfully. When mi_get_result() returns this
status, you can use the mi_db_error_raise() function to raise a database server
exception. If you have registered a callback on the MI_Exception event type, you
can obtain an SQL status variable (SQLCODE or SQLSTATE) from the error
descriptor that the database server passes to the callback. This SQL status variable
can help determine the cause of the failure. For more information on how to
handle the MI_Exception event, see “Database Server Exceptions” on page 10-20.

Handling a DDL Statement
The mi_get_result() function returns a status of MI_DDL to indicate that the
current statement was a DDL statement that has successfully executed. When you
receive the MI_DDL statement status, you can use the
mi_result_command_name() function to obtain the name of the DDL statement
that executed as the current statement.

The mi_get_result() function returns an MI_DDL status for any SQL statement
that is valid in a UDR and is not a DML statement (see Table 8-7 on page 8-36). For
example, mi_get_result() returns the MI_DDL status for a GRANT statement,
even though SQL does not strictly consider GRANT as a DDL statement. However,
the following SQL statements are not valid with a UDR that is called from within
an INSERT, UPDATE, or DELETE statement in SQL:

8-34 IBM Informix DataBlade API Programmer’s Guide

ALTER ACCESS_METHOD

ALTER FRAGMENT

ALTER FUNCTION

ALTER INDEX

ALTER PROCEDURE

ALTER ROUTINE

ALTER SEQUENCE

ALTER SECURITY LABEL COMPONENT

ALTER TABLE

CLOSE DATABASE

CREATE ACCESS_METHOD

CREATE AGGREGATE

CREATE CAST

CREATE DATABASE

CREATE DISTINCT TYPE

CREATE DUPLICATE

CREATE EXTERNAL TABLE

CREATE FUNCTION

CREATE FUNCTION FROM

CREATE INDEX

CREATE OPAQUE TYPE

CREATE OPCLASS

CREATE PROCEDURE

CREATE PROCEDURE FROM

CREATE ROLE

CREATE ROUTINE FROM

CREATE ROW TYPE

CREATE SCHEMA

CREATE SECURITY LABEL

CREATE SECURITY LABEL COMPONENT

CREATE SECURITY POLICY

CREATE SEQUENCE

CREATE SYNONYM

CREATE TABLE

CREATE Temporary TABLE

CREATE TRIGGER

CREATE VIEW

CREATE XADATASOURCE

CREATE XADATASOURCE TYPE

DROP ACCESS_METHOD

DROP AGGREGATE

DROP CAST

DROP DATABASE

DROP DUPLICATE

DROP FUNCTION

DROP INDEX

DROP OPCLASS

DROP PROCEDURE

DROP ROLE

DROP ROUTINE

DROP ROW TYPE

DROP SECURITY

DROP SEQUENCE

DROP SYNONYM

DROP TABLE

DROP TRIGGER

DROP TYPE

DROP VIEW

DROP XADATASOURCE

DROP XADATASOURCE TYPE

MOVE

RENAME COLUMN

RENAME DATABASE

RENAME INDEX

RENAME SECURITY

RENAME SEQUENCE

RENAME TABLE

TRUNCATE

UPDATE STATISTICS

Chapter 8. Executing SQL Statements 8-35

For any valid DDL statement, the mi_get_result() loop returns the following
states of the database server:
1. An MI_DDL status indicates that the SQL statement has successfully completed.
2. In the next iteration of the mi_get_result() loop, mi_get_result() returns

MI_NO_MORE_RESULTS.

Handling a DML Statement
The mi_get_result() function returns a status of MI_DML to indicate that the
current statement is a data manipulation (DML) statement that has successfully
executed. SQL contains the DML statements that Table 8-7 lists.

Table 8-7. SQL Statements with an MI_DML Status

DML Statement Purpose
Statement-Status
Constant

DELETE Remove a row from a database table MI_DML

INSERT Add a new row to a database table MI_DML

UPDATE Modify values in an existing row of a database
table

MI_DML

SELECT Fetch a row or group of rows from the
database

MI_ROWS, MI_DML

EXECUTE
FUNCTION

Execute a user-defined function MI_ROWS, MI_DML

Tip: The mi_get_result() function returns the MI_DML status when the current
statement is the EXECUTE FUNCTION statement. This SQL statement can
return rows of data and therefore is handled in the same way as the SELECT
statement. However, execution of the EXECUTE PROCEDURE statement
causes a statement status of MI_DDL because this SQL statement never
returns rows.

When you receive the MI_DML statement status, you can use the DataBlade API
functions in the following table to obtain information about the results of the
current statement.

Result Information DataBlade API Function Additional Information

The name of the
DML statement that
executed as the
current statement

mi_result_command_name() This function might be useful in
an interactive application in
which the statement sent is not
determined until runtime. Use
this routine only when
mi_get_result() reports that a
DML or DDL statement has
completed.

The number of rows
that the current
statement affected

mi_result_row_count() This function is applicable only
when mi_get_result() reports
that a DML statement completed.

Important: If you want a count of the numbers of rows that satisfy a given query,
but you do not want the data in the rows, you can run a query that

8-36 IBM Informix DataBlade API Programmer’s Guide

uses the COUNT aggregate more efficiently than you can run a query
that returns the actual rows. For example, the following query counts
the number of rows in mytable:

SELECT COUNT(*) FROM mytable;

Figure 8-12 shows a sample function, named handle_dml(), that handles the
MI_DML statement status that mi_get_result() returns.

The handle_dml() function in Figure 8-12 on page 8-37 uses the
mi_result_command_name() and mi_result_row_count() functions to obtain
additional information about the DML statement. The function returns the number
of rows affected (from mi_result_row_count()) to the calling routine.

Server Only

The handle_dml() function in Figure 8-12 assumes it is called from within a C
UDR because it uses the DPRINTF statement. The DPRINTF statement is part of
the DataBlade API tracing feature and available only to C UDRs. The first
DPRINTF statement in Figure 8-12 sends the name of the current statement to a
trace file when the current trace level is 11 or higher. For more information on
tracing, see “Using Tracing” on page 12-28.

End of Server Only

Client Only

For the handle_dml() function to execute in a client LIBMI application, it would
need to replace the DPRINTF statements with a client-side output function such as

mi_integer handle_dml(conn)
MI_CONNECTION *conn;

{
char *cmd;
mi_integer count;

/* What kind of statement was it? */
cmd = mi_result_command_name(conn);
DPRINTF("trc_class", 11,

("Statement executed was %s", cmd));

/* Get # rows affected by statement */
if ((count = mi_result_row_count(conn)) == MI_ERROR)

{
DPRINTF("trc_class", 11,

("Cannot get row count\n"));
return(-1);
}

else if (count = 0)
{
DPRINTF("trc_class", 11,

("No rows returned from query\n"));
}

else
DPRINTF("trc_class", 11,

("Rows Returned\n"));

return (count);
}

Figure 8-12. Sample Function to Handle MI_DML Statement Status

Chapter 8. Executing SQL Statements 8-37

printf() or fprintf(). The following line shows the use of the printf() function to
display the name of the current statement:
printf("Statement executed was %s", cmd);

End of Client Only

For an example of how to call handle_dml(), see the MI_DML case of the switch
statement in “Example: The get_results() Function” on page 8-39.

For a successful UPDATE, INSERT, and DELETE statement, the mi_get_result()
loop returns the following states of the database server:
1. An MI_DML status indicates that the DML statement has successfully

completed.
2. In the next iteration of the mi_get_result() loop, mi_get_result() returns

MI_NO_MORE_RESULTS.

For a successful SELECT (or EXECUTE FUNCTION) statement, the
mi_get_result() loop returns the following states of the database server:
1. An MI_ROWS statement status indicates that the current statement is a query

that has executed successfully and whose cursor is ready for processing of
query rows.

2. After all query rows are retrieved, the next iteration of the mi_get_result()
loop returns an MI_DML statement status to indicate that the SELECT (or
EXECUTE FUNCTION) has successfully completed.

3. The next iteration of the mi_get_result() loop returns the
MI_NO_MORE_RESULTS status to indicate that statement processing is
complete.

For more information, see “Handling Query Rows” on page 8-38.

Handling Query Rows
The mi_get_result() function returns a status of MI_ROWS to indicate that a
current statement is a query that has successfully executed and a cursor is open. A
query can be instigated by a SELECT or an EXECUTE FUNCTION statement. The
MI_ROWS statement status does not indicate that rows are in the cursor. If the
query has not found any matching rows (the NOT FOUND condition),
mi_get_result() still returns MI_ROWS. To retrieve rows from the cursor, use the
mi_next_row() statement. If no rows exist in the cursor, mi_next_row() returns a
NULL-valued pointer. For more information, see “Retrieving Query Data” on page
8-39.

Handling No More Results Status
The mi_get_result() function returns a status of MI_NO_MORE_RESULTS to
indicate that statement processing for the current statement is complete. The
function can return MI_NO_MORE_RESULTS when any of the following
conditions occur for the current statement:
v When the cursor is empty after mi_open_prepared_statement() has opened the

cursor and before mi_fetch_statement() has fetched rows into this cursor
v After mi_next_row() has retrieved the last row from the cursor
v When the query is complete, after mi_query_finish() or mi_query_interrupt()

has executed
v When any non-query statement is complete: after mi_get_result() has returned

the MI_DML or MI_DDL statement status

8-38 IBM Informix DataBlade API Programmer’s Guide

Tip: When a SELECT or FETCH statement encounters NOT FOUND (or END OF
DATA), the database server sets SQLSTATE to "02000" (class = "02").
However, the NOT FOUND condition does not generate a database server
exception.

Example: The get_results() Function
The following user function, get_results(), demonstrates the mi_get_result()
row-retrieval loop, controlled with the mi_get_result() function. It also
demonstrates the use of the mi_result_command_name() function to get the name
of the current statement and the mi_result_row_count() function to get the
number of rows affected by this statement.
/*
* FUNCTION: get_results()
* PURPOSE: Get results of current statement.
* Obtain the kind of statement and the number of
* rows affected.
* Return the number of rows affected.
*
* CALLED BY: send_statement(), see page

8-10. */ #include ″mi.h″ mi_integer get_results(MI_CONNECTION *conn) {
mi_integer count; mi_integer result; char cmd[25]; while ((result =
mi_get_result(conn)) != MI_NO_MORE_RESULTS) { switch(result) { case
MI_ERROR: mi_db_error_raise(conn, MI_EXCEPTION, ″Could not get statement
results (mi_get_result)\n″); case MI_DDL: count = 0; break; case MI_DML: count =
handle_dml(conn); break; case MI_ROWS: count = get_data(conn); break; default:
mi_db_error_raise(conn, MI_EXCEPTION, ″Unknown statement results
(mi_get_result)\n″); } /* end switch */ } /* end while */ return (count); }

When a query returns rows of data, the mi_get_result() loop in get_results()
executes three times:
1. The first iteration of the mi_get_result() loop returns MI_ROWS to indicate

that the query has successfully opened a cursor.
The get_results() function executes the MI_ROWS case of the switch
statement. This function then calls another user function, get_data(), to iterate
over all query rows. For the implementation of the get_data() function, see
“Example: The get_data() Function” on page 8-54.

2. The second iteration of the mi_get_result() loop returns MI_DML to indicate
that the cursor processing has completed and the query has successfully
completed.
The get_data() function has handled the rows in the cursor so no more query
rows remain to be processed. The get_results() function executes the MI_DML
case of the switch statement, which calls the handle_dml() function to obtain
the name and number of statements from the current statement. For the
implementation of the handle_dml() function, see Figure 8-12 on page 8-37.

3. The third iteration of the mi_get_result() loop returns
MI_NO_MORE_RESULTS to indicate that processing for the query is complete.
The MI_NO_MORE_RESULTS value from mi_get_result() causes the
mi_get_result() loop to terminate.

Retrieving Query Data
When mi_get_result() returns the MI_ROWS statement status, the query has
executed and a cursor is open, as follows:

Chapter 8. Executing SQL Statements 8-39

v For SQL statements sent with mi_exec() or mi_exec_prepared_statement(), the
database server opens an implicit cursor. This cursor contains the retrieved rows,
with the database server controlling the rows that are fetched.

v For SQL statements sent with mi_open_prepared_statement(), the database
server opens an explicit cursor. This cursor is empty, with the
mi_fetch_statement() controlling the rows that are fetched.

The DataBlade API module receives the query data on a row-by-row basis. To
handle the rows that the current statement has retrieved, the DataBlade API creates
the following data type structures:
v The row descriptor is the data-description portion, which contains information

such as row size and column data types.
v The row structure is the data portion, which holds one row of data that the query

returns.

A one-to-one correspondence occurs between row descriptors and rows. Each row
descriptor has an associated row structure.

Server Only

In a C UDR, the row structure and row descriptor are part of the same data type
structure. The row structure is just a data buffer in the row descriptor that holds
copies of the column values of a row.

End of Server Only

The row descriptor and row structure are valid until the next row is fetched. A row
descriptor might need to change on a row-to-row basis for jagged rows. (For more
information, see “Obtaining Jagged Rows” on page 8-51.) A row structure holds
each row, one row at a time.

To retrieve the row of query data:

1. Get a copy of the row descriptor for a query row.
2. Get the number of columns from the row descriptor.
3. Retrieve query rows, one row at a time.
4. For every query row, get the value of any desired column.

Obtaining Row Information
A row descriptor (MI_ROW_DESC) contains information about the columns in a
row. For example, the row descriptor for the following query would contain two
columns, order_num and order_date:
SELECT order_num, order_date FROM orders

WHERE ship_date > "07/15/98";

To obtain a row descriptor for a row, you can use one of the DataBlade API
functions in the following table.

Use DataBlade API Function Description

For rows with
the same type
and size:

mi_get_row_desc_without_row() Returns a row descriptor for
the current statement

mi_get_statement_row_desc() Returns a row descriptor for a
prepared statement

8-40 IBM Informix DataBlade API Programmer’s Guide

Use DataBlade API Function Description

For rows of
different types or
sizes (jagged
rows):

mi_get_row_desc() Returns a row descriptor
associated with a particular
row structure

mi_get_row_desc_from_type_desc() Returns a row descriptor
based on a type descriptor

These functions allocate the memory for the row descriptor that they allocate.

To obtain a row descriptor for the query rows in an implicit or explicit cursor, use
the mi_get_row_desc_without_row() function. To free this row descriptor,
complete the query. For more information, see “Completing Execution” on page
8-57.

Obtaining Column Information
Once you have a row descriptor for the row, you can obtain information about the
columns with the row-descriptor access functions, which Table 5-3 on page 5-30
shows. For each column in an SQL statement, you can obtain information about
the column (such as its data type) from the row descriptor.

You can use the mi_column_count() function to determine how many columns
are in the row. The number of columns in the row descriptor is the number of
columns that the query has retrieved. Use this value to control the number of times
to call the mi_value() or mi_value_by_name() function. Each call to mi_value()
or mi_value_by_name() passes back one column value from the row structure to
the DataBlade API module. For more information, see “Obtaining Column Values”
on page 8-42.

Retrieving Rows
After a query executes, a cursor holds the query rows. The mi_next_row()
function takes the following actions to obtain the rows from a cursor:
v Obtains access to the current row
v Executes the mi_next_row() function in a loop that iterates for each query row

For a sample function that shows one way to use mi_next_row() to retrieve query
rows, see “Example: The get_data() Function” on page 8-54.

Accessing the Current Row
The mi_next_row() function accesses rows in the cursor that is associated with the
current statement. Because a current statement is associated with a connection, you
must pass a connection descriptor into mi_next_row() to identify the cursor to
access. From this cursor, mi_next_row() obtains the current row. The current row is
the row in the cursor that the cursor position identifies. Each time mi_next_row()
retrieves a row, this cursor position moves by one. One cursor per connection is
current and within this cursor, only one row at a time is current.

The mi_next_row() function returns the current row in an implicit row structure
(MI_ROW structure). The row structure stores the column values of a single query
row. The contents of this row structure are valid until mi_next_row() returns the
next row. You can obtain column values from the row structure with the
mi_value() or mi_value_by_name() function. For more information, see
“Obtaining Column Values” on page 8-42.

Chapter 8. Executing SQL Statements 8-41

This implicit row structure is freed when the query is completed, which can occur
in any of the following ways:
v When mi_next_row() returns the NULL-valued pointer to indicate no more

rows exist in the cursor
v When the mi_query_finish() function executes
v When the connection is closed

Executing the mi_next_row() Loop
The mi_next_row() function is usually the middle loop of row-retrieval code. In
the mi_next_row() loop, each call to mi_next_row() returns one query row from
the cursor that is associated with the current statement. This query row is the
current row only until the next iteration of the loop, when mi_next_row()
retrieves another row from the cursor. This loop terminates when mi_next_row()
returns a NULL-valued pointer and its error argument is zero (0). These conditions
indicate either that no more rows exist in the cursor or that the cursor is empty.
Think of the mi_next_row() loop as an iteration over the matching rows of the
query.

The contents of a row structure become invalid as soon as you fetch a new row
into it with mi_next_row(). If you want to save the row values that you obtain
with mi_value() or mi_value_by_name(), copy the values that these functions
pass back before the next call to mi_next_row().

Tip: If your DataBlade API module requires simultaneous access to several rows at
a time, you can use a save set to hold rows. Save sets are useful for
comparing or processing multiple rows. For more information, see “Using
Save Sets” on page 8-60.

The mi_next_row() function allocates memory for the row structure that it
returns. To free this row structure, you must complete the query. For more
information, see “Completing Execution” on page 8-57.

As long as rows remain to be retrieved from the cursor, the mi_get_result()
function returns a statement status of MI_ROWS. Therefore, you cannot exit the
mi_get_result() loop until one of the following actions occurs:
v The mi_next_row() loop continues until no more rows exist in the cursor. That

is, mi_next_row() returns a NULL-valued pointer.
v You terminate the mi_get_result() loop prematurely with a call to

mi_query_finish() or mi_query_interrupt().

Obtaining Column Values
When the mi_next_row() function retrieves a query row from the cursor, it
returns this row in a row structure. The DataBlade API provides the following
functions to get actual column values from a row structure.

DataBlade API Function Obtaining a Column Value

mi_value() Obtains a column value, as identified by its column identifier,
from a row structure

mi_value_by_name() Obtains a column value, as identified by its column name, from
a row structure

Use mi_value() or mi_value_by_name() to retrieve columns from the current
row as follows:

8-42 IBM Informix DataBlade API Programmer’s Guide

v Execute the mi_value() or mi_value_by_name() function in a loop that iterates
for each desired column value.

v Interpret the value status that these functions return to correctly access the
column value.

The final section, “Example: The get_data() Function” on page 8-54, contains
sample code that shows one way to use mi_value() to get column values.

Executing the Column-Value Loop
The mi_value() or mi_value_by_name() function is usually called in the
innermost loop of row-retrieval code. In the column-value loop, mi_value() or
mi_value_by_name() retrieves a column value from the current row. This loop
terminates when a value is retrieved for every column in the row (or every column
your DataBlade API module needs to access). You can obtain the number of
columns in a row with the mi_column_count() function.

Accessing the Columns
The mi_value() and mi_value_by_name() functions access the row structure for
the current row. The current row is in the cursor that is associated with the current
statement. Because a current statement is associated with a connection, you must
pass a connection descriptor into mi_value() or mi_value_by_name() to identify
the row to access.

These functions pass back the column value as an MI_DATUM value. The format
of this value depends on whether the control mode for the query data is text or
binary representation. Each of the DataBlade API statement-execution functions
indicates the control mode for query data. For more information, see “Control
Modes for Query Data” on page 8-8 and “Determining Control Mode for Query
Data” on page 8-30.

To obtain this column value, your DataBlade API module must perform the
following steps:
v Declare a value buffer to hold the column value that mi_value() or

mi_value_by_name() passes back.
v Obtain the column value from the value buffer, based on the value status that

mi_value() or mi_value_by_name() returns.

Passing In the Value Buffer: To obtain the column value, you must pass in a
pointer to a value buffer as an argument to mi_value() or mi_value_by_name().
The value buffer is the place that these functions put the column value that they
retrieve from the current row. Both mi_value() and mi_value_by_name()
represent a column value as a pointer to an MI_DATUM structure.

You can declare the value buffer in either of the following ways:
v If you know the data type of the column value, declare the value buffer of this

data type.
Declare the value buffer as a pointer to the column data type, regardless of
whether the data type is passed by reference or by value.

v If you do not know the data type of the column value, declare the value buffer
with the MI_DATUM data type.
Your code can dynamically determine column type with the
mi_column_type_id() or mi_column_typedesc() function. You can then
convert (or cast) the MI_DATUM value to the data type that you need.

Chapter 8. Executing SQL Statements 8-43

The mi_value() and mi_value_by_name() functions allocate memory for the
value buffer. However, this memory is only valid until a new SQL statement
executes or until the query completes. In addition, the DataBlade API might
overwrite the value-buffer data in any of the following cases:
v The mi_next_row() function is called on the same connection.
v A call to mi_row_create() uses the row descriptor.
v The mi_row_free() function is called on the row structure.
v The mi_row_desc_free() function is called on the row descriptor.

If you need to save the value-buffer data for later use, you must create your own
copy of the data in the value buffer.

Tip: If your DataBlade API module requires simultaneous access to several rows at
a time, you can use a save set to hold rows. Save sets are useful for
comparing or processing multiple rows. For more information, see “Using
Save Sets” on page 8-60.

Interpreting Column-Value Status: The mi_value() and mi_value_by_name()
functions return a value status, which identifies how to interpret the column value
that these functions pass back. The following table shows the kinds of column
values that these functions can identify.

Type of Column Value Value-Status Constant More Information

A built-in, opaque, or
distinct data type

MI_NORMAL_VALUE “Obtaining Normal Values” on
page 8-44

An SQL NULL value MI_NULL_VALUE “Obtaining NULL Values” on
page 8-49

A row type MI_ROW_VALUE “Obtaining Row Values” on page
8-50

A collection MI_COLLECTION_VALUE “Obtaining Collection Values” on
page 8-52

You can use a switch statement based on these value-status constants to determine
how to handle the column value.

Obtaining Normal Values
The mi_value() and mi_value_by_name() functions return the
MI_NORMAL_VALUE value status for a column with any data type other than a
row type or collection. Therefore, these functions return MI_NORMAL_VALUE for
columns that have a built-in data type, smart large object, opaque type, or distinct
type.

When the mi_value() or mi_value_by_name() function returns
MI_NORMAL_VALUE, the contents of the MI_DATUM structure that holds the
column value depends on whether the control mode for the query data is text or
binary representation, as follows:
v Text representation: the MI_DATUM structure contains a pointer to a

null-terminated string, which has the text representation of the column value.
v Binary representation: the MI_DATUM structure contains a value whose

interpretation depends on the passing mechanism used, as follows:

Server Only

8-44 IBM Informix DataBlade API Programmer’s Guide

– When mi_value() or mi_value_by_name() passes back a column value to a
C UDR, it can pass the value by reference or by value, depending on the data
type of the column value. If the function passes back the value by value, the
MI_DATUM structure contains the value. If the function passes back the
value by reference, the MI_DATUM structure contains a pointer to the value.

End of Server Only

Client Only

– When mi_value() or mi_value_by_name() passes back a column value to a
client LIBMI application, it always passes the value by reference. Even for
values that you can pass by value in a C UDR (such as an INTEGER value),
these functions return the column value by reference. The MI_DATUM
structure contains a pointer to the value.

End of Client Only

For a list of the text and binary representations of built-in, opaque, and distinct
data types, see Table 8-3 on page 8-8. For more information on the passing
mechanism for an MI_DATUM value, see “Contents of an MI_DATUM Structure”
on page 2-33.

Important: The difference in behavior of mi_value() and mi_value_by_name()
between C UDRs and client LIBMI applications means that
row-retrieval code is not completely portable between these two types
of DataBlade API modules. When you move your DataBlade API code
from one of these uses to another, you must change the row-retrieval
code to use the appropriate passing mechanism for column values that
mi_value() or mi_value_by_name() returns.

Column Values Passed Back to a C UDR (Server): Within a C UDR, the value
buffer that mi_value() or mi_value_by_name() fills can contain either of the
following values:
v For data types that are passed by value, the value buffer contains the actual

column value.
v For data types that are passed by reference, the value buffer contains a pointer

to this column value.

Tip: The value buffer also contains a pointer to the column value if the return
status of mi_value() or mi_value_by_name() is MI_ROW_VALUE or
MI_COLLECTION_VALUE. For more information, see “Obtaining Row
Values” on page 8-50 and “Obtaining Collection Values” on page 8-52.

Therefore, within your C UDR, you cannot assume what the MI_DATUM value
contains without checking its data type (or length).

Windows Only

If the mi_value() or mi_value_by_name() function passes back a value smaller
than the size of an MI_DATUM structure, the DataBlade API cast promotes the
smaller value to the size of MI_DATUM. (For more information, see “MI_DATUM
in a C UDR (Server)” on page 2-33). If you now want to pass a pointer in the
MI_DATUM structure, you might have problems on Windows if you passed the
address of the MI_DATUM value, as the following pseudocode shows:

Chapter 8. Executing SQL Statements 8-45

MI_DATUM datum;
mi_integer length;
mi_char bool;
mi_short small;
mi_int large;
void *pointer;

switch (mi_value(..., &datum, &length))
{
....
} /* end switch */

/* Assume that 'datum' contains a BOOLEAN value
* (which uses only one byte of the MI_DATUM storage space).
* Pass the address of the actual data to another function.
* YOU CANNOT ALWAYS DO THIS!
* my_func(&datum, length);
* This address might point to the wrong byte! */

The preceding code fragment works if datum always contains a pointer to a
column value or contains data the size of MI_DATUM. It might not work on some
computer architectures, however, for data that is smaller than MI_DATUM (such
as mi_boolean).

To convert the MI_DATUM value into a pointer to the data value, you must be
sure that the address points to the starting position of the cast-promoted data. The
following code fragment determines what the MI_DATUM value in datum
contains and then correctly copies the value and obtains its address, based on the
length of datum:
MI_ROW_DESC *row_desc;
MI_ROW *row;
MI_DATUM datum;
mi_integer length;
mi_boolean *bool;
mi_smallint *small_int;
mi_integer *full_int;
mi_date *date_val;
mi_string *col_type_name;
void *ptr_to_value;
...
switch (mi_value(row, i, col_id, &datum, &length))

{
...
case MI_NORMAL_VALUE:

col_type_name =
mi_type_typename(

mi_column_typedesc(row_desc, i));

/* To obtain the datum value and its address, first check
* if the value is passed by value. If not, assume that
* the value is passed by reference.
*/

switch(length)
{

/* Case 1: Assume that a length of one byte means
* that 'datum' contains a BOOLEAN value.
*/

case 1:
bool = (mi_boolean) datum;
ptr_to_value = &bool;
break;

/* Case 2: Assume that a length of two bytes means
* that 'datum' contains a SMALLINT value
*/

case 2:

8-46 IBM Informix DataBlade API Programmer’s Guide

small_int = (mi_smallint) datum;
ptr_to_value = &small_int;
break;

/* Case 4: Assume that a length of four bytes means
* that 'datum' contains an INTEGER or DATE value
*/

case 4:
if (stcopy(col_type_name, "date") == 0)

{
date_val = (mi_date) datum;
ptr_to_value = &date_val;
}

else /* data type is INTEGER */
{
full_int = (mi_integer) datum;
ptr_to_value = &full_int;
}

break;

/* Default Case: Assume that any for any other lengths,
* 'datum' contains a pointer to the value.
*/

default:
ptr_to_value = &datum;
break;

} /* end switch */

my_func(ptr_to_value);

The preceding code fragment handles only built-in data types that are passed by
value. It was not written to handle all possible user-defined types (such as small
fixed-length opaque types) because these do not have unique lengths.

End of Windows Only

In a C UDR, if the data type of the column value can fit into an MI_DATUM
structure, the value buffer contains the actual column value. If you know the data
types of the column values, the value buffers you declare to hold the column
values must be declared as pointers to their data type. For example, the code
fragment declares the value buffer that holds a SMALLINT value can be declared
as follows:
mi_integer *small_int_ptr;

After the call to mi_value(), the C UDR must cast the contents of the value buffer
from a pointer variable (as small_int_ptr is declared) to the actual data type. For
the SMALLINT value, the code can perform the following cast to create a copy of
the column value:
small_int = (mi_smallint) small_int_ptr;

This cast is necessary only for column values whose data types are passed by value
because the MI_DATUM structure contains the actual column value, not a pointer
to the value.

You can use the mi_type_byvalue() function to determine the passing mechanism
of the column value that mi_value() passes back, as the following code fragment
shows:
row_desc = mi_get_row_desc_without_row(conn);
...
switch (mi_value(row, i, col_id, &datum, &length))

{

Chapter 8. Executing SQL Statements 8-47

...
case MI_NORMAL_VALUE:

if (mi_type_byname(mi_column_typedesc(row_desc, i))
== MI_TRUE)

{
/* handle pass-by-value data types */;

The mi_type_byvalue() function helps to determine if a one-, two-, or four-byte
value is actually passed by value. You can use this function to determine the
passing mechanism of a fixed-length opaque data type.

Column Values Passed Back to a Client LIBMI Application: The mi_value()
and mi_value_by_name() functions pass back by reference column values for all
data types; therefore, the returned MI_DATUM structure always contains a pointer
to the actual value, never the value itself. Even column values that can fit into an
MI_DATUM structure are passed by reference. For example, a SMALLINT value
could have the same value-buffer declaration as it would in a C UDR, as follows:
mi_integer *small_int_ptr;

Unlike a C UDR, however, the column value in the value buffer does not require a
cast to create a copy:
small_int = *small_int_ptr;

Accessing Smart Large Objects: In a database, smart large objects are in columns
with the data type CLOB or BLOB. A smart-large-object column contains an LO
handle that describes the smart large object, including the location of its data in an
sbspace. This LO handle does not contain the actual smart-large-object data.

When a query retrieves a smart large object (a BLOB or CLOB column), the
mi_value() and mi_value_by_name() functions return the MI_NORMAL_VALUE
value status. For a BLOB or CLOB column, the MI_DATUM structure that these
functions pass back contains the LO handle for the smart large object. The control
mode of the query data determines whether this LO handle is in text or binary
representation, as follows.

Query Control Mode Contents of Value Buffer

Text representation Character string that contains the hexadecimal
dump of the LO-handle structure

Binary representation Pointer to an LO-handle structure
(MI_LO_HANDLE *)

When query data is in binary representation, the mi_value() and
mi_value_by_name() functions pass back the LO handle by reference. Regardless
of whether you obtain a smart large object in a C UDR or a client LIBMI
application, the MI_DATUM structure that these functions pass back contains a
pointer to an LO handle (MI_LO_HANDLE *).

To make a copy of the LO handle within your DataBlade API module, you can
copy the contents of the value buffer, as follows:
MI_LO_HANDLE *blob_col, my_LO_hdl;
...
switch (mi_value(row, i, col_id, &blob_col, &length))

{

8-48 IBM Informix DataBlade API Programmer’s Guide

...
case MI_NORMAL_VALUE:

my_LO_hdl = *blob_col;

To obtain the smart-large-object data, use the binary representation of the LO
handle with the functions of the smart-large-object interface. The smart-large-object
interface allows you to access smart-large-object data through its LO handle. You
access the smart-large-object data with read, write, and seek operations similar to
an operating-system file.

The following code fragment implements the get_smart_large_object() function,
which reads smart-large-object data in 4,000-byte chunks:
#define BUFSIZE 4000;

mi_integer get_smart_large_object(conn, LO_hndl)
MI_CONNECTION *conn;
MI_LO_HANDLE *LO_hndl;

{
MI_LO_FD LO_fd;
mi_char read_buf[BUFSIZE];

/* Open the selected smart large object */
LO_fd = mi_lo_open(conn, LO_hndl, MI_LO_RDONLY);
if (LO_fd == MI_ERROR)

/* handle error */
return (-1);

else
{
while (mi_lo_read(conn, LO_fd, read_buf, BUFSIZE)

!= MI_ERROR)
{
/* perform processing on smart-large-object data */
...
}

mi_lo_close(conn, LO_fd);
return (0);
}

}

For a description of the smart-large-object interface, see Chapter 6, “Using Smart
Large Objects,” on page 6-1.

Obtaining NULL Values
The mi_value() and mi_value_by_name() functions return the
MI_NULL_VALUE value status for a column that contains the SQL NULL value.
These functions return MI_NULL_VALUE for columns of any data type. When the
mi_value() or mi_value_by_name() function returns MI_NULL_VALUE, the
contents of the MI_DATUM structure that these functions pass back depends on
whether the control mode for the query data is text or binary representation, as the
following table shows.

Control Mode
Contents of Value Buffer
(From mi_value() or mi_value_by_name())

Text representation No valid value

Binary representation The internal representation of the SQL NULL value for the data
type

Chapter 8. Executing SQL Statements 8-49

Obtaining Row Values
The mi_value() and mi_value_by_name() functions return the MI_ROW_VALUE
value status for a column that meets either of the following conditions:
v The column has a row type (a named or unnamed row type) as its data type.
v The item being selected is a correlation variable that represents an entire row.

A correlation variable is used in a select list when jagged rows are selected from
a supertable in an inheritance hierarchy, as in the query:
SELECT p FROM parent p;

When the mi_value() or mi_value_by_name() function returns
MI_ROW_VALUE, the MI_DATUM structure that these functions pass back
contains a pointer to the row structure, regardless of whether the query data is in
binary or text representation. You can extract the individual values from the row
structure by passing the returned MI_ROW pointer to mi_value() or
mi_value_by_name() for each value you need to retrieve.

Obtaining Row Types: The mi_value() and mi_value_by_name() functions can
return the MI_ROW_VALUE value status for a column with a row data type:
unnamed or named. The contents of the MI_DATUM structure that these functions
pass back is a pointer to a row structure that contains the fields of the row type.
The format of the field values depends on whether the control mode for the query
data is text or binary representation, as the following table shows.

Control Mode Contents of Fields Within Row Structure

Text representation Null-terminated strings

Binary representation Internal formats of field values

For a list of the text and binary representations of data types, see Table 8-3 on page
8-8.

You can extract the individual field value from the row type by passing the
returned MI_ROW pointer to mi_value() or mi_value_by_name() for each field
value you need to retrieve.

The get_data() function calls the get_row_data() function for an mi_value()
return value of MI_ROW_VALUE (see the example on page 8-54). This function
takes the pointer to a row structure as an argument and uses mi_value() on it to
obtain field values in text representation.
mi_integer get_row_data(row)

MI_ROW *row;
{

mi_integer numflds, fldlen;
MI_ROW_DESC *rowdesc;
mi_integer i;
char *fldname, *fldval;
mi_boolean is_nested_row;

/* Get row descriptor */
rowdesc = mi_get_row_desc(row);

/* Get number of fields in row type */
numflds = mi_column_count(rowdesc);

/* Display the field names of the row type */
for (i=0; i < numflds; i++)

{

8-50 IBM Informix DataBlade API Programmer’s Guide

fldname = mi_column_name(rowdesc, i);
DPRINTF("trc_class, 11, ("%s\t", fldname));
}

DPRINTF("trc_class", 11, ("\n"));

/* Get field values for each field of row type */
for (i=0, i < numflds; i++)

{
is_nested_row = MI_FALSE;
switch(mi_value(row, i, &fldval, &fldlen))

{
case MI_ERROR:

...

case MI_NULL_VALUE:
fldval = "NULL";
break;

case MI_NORMAL_VALUE:
break;

case MI_ROW_VALUE:
/* have nested row type - make recursive call */

is_nested_row = MI_TRUE;
get_row_data((MI_ROW *)fldval);
break;

default:
...

}
if (is_nested_row == MI_FALSE)

DPRINTF("trc_class", 11, ("%s\t", fldval));
}

return (0);
}

Obtaining Jagged Rows: When all the rows that a query retrieves are not the
same type and length, the rows are called jagged rows. Jagged rows occur as a
result of a query that uses the following syntax to request all the rows in a
supertable and all its subtables:
SELECT correlation_variable
FROM table_name correlation_variable;

In the preceding query, table_name represents a supertable in an inheritance
hierarchy. Suppose you create the following schema in which the table parent has
one column, child has two columns, and grandchild has three columns:
CREATE TABLE parent OF TYPE parent_t (num1 INTEGER);
INSERT INTO parent VALUES (10);

CREATE TABLE child OF TYPE child_t (num2 SMALLFLOAT)
UNDER parent;

INSERT INTO child VALUES (20, 3.5);

CREATE TABLE grandchild OF TYPE grandchild_t (name TEXT)
UNDER child;

INSERT INTO grandchild VALUES (30, 7.8, 'gundrun');

The following SELECT statement queries the parent supertable:
SELECT p FROM parent p;

Chapter 8. Executing SQL Statements 8-51

This query returns the following three jagged rows:

p (parent_t)

num1
10

p (child_t)

num1
20

num2
3.5E+00

p (grandchild_t)

num1
30

num2
7.8E+00

name
gundrun

The DataBlade API indicates that a query returned a jagged row as follows:
v The mi_value() or mi_value_by_name() function returns a value status of

MI_ROW_VALUE.
v The contents of the MI_DATUM structure that holds the retrieved column is a

pointer to a row structure.

The format of the columns depends on whether the control mode for the query
data is text or binary representation, as the following table shows.

Control Mode Contents of Elements within Row Structure

Text representation Null-terminated strings

Binary representation Internal formats of column values

For a list of the text and binary representations of data types, see Table 8-3 on page
8-8.

To retrieve jagged rows:

1. Use the mi_get_row_desc() function to get a row descriptor for each row
structure that mi_value() or mi_value_by_name() obtains.

2. Use the mi_column_count() function with the row descriptor to get a column
count for each row that mi_next_row() retrieves.

3. Retrieve the individual components of the row within an inner column-value
loop.

Obtaining Collection Values
For a collection, the value that the mi_value() and mi_value_by_name()
functions return depends on whether the control mode for the query data is text or
binary representation, as the following table shows.

Return Value Control Mode Contents of Value Buffer

MI_NORMAL_VALUE Text representation Null-terminated string that
contains the text representation
of the collection

MI_COLLECTION_VALUE Binary representation A pointer to a collection
structure (MI_COLLECTION)

In a DataBlade API module, a collection can be created in either of the following
ways:

8-52 IBM Informix DataBlade API Programmer’s Guide

v A column has a collection type (SET, LIST, or MULTISET) as its data type.
v An item being selected is a collection subquery, which represents a collection.

A Collection in Text Representation: When the control mode of the query data is
text representation, the mi_value() or mi_value_by_name() function returns a
value status of MI_NORMAL_VALUE for a collection column. The value buffer
contains the text representation of the column.

For example, suppose that a query selects the set_col column, which is defined as
Figure 8-13 shows.

If the set_col column contains a SET collection with the values of 3, 5, and 7, the
value buffer contains the following string after mi_value() or
mi_value_by_name() executes:
"SET{3 ,5 ,7 }"

For a description of collection text representation, see “Collection Text
Representation” on page 5-2.

A Collection in Binary Representation: When the control mode of the query data
is in binary representation, the mi_value() or mi_value_by_name() function
returns a value status of MI_COLLECTION_VALUE for a collection column. The
value buffer contains a pointer to the collection structure for the collection. You can
extract the individual elements from the collection structure with the DataBlade
API collection functions, as follows:
v The mi_collection_open() function opens the collection that the collection

structure describes.
v The mi_collection_fetch() functions fetches the elements from the collection.

The element that mi_collection_fetch() obtains is in its binary representation.
v The mi_collection_close() function closes the collection that the collection

structure describes.

For more information on the use of the DataBlade API collection functions, see
“Collections” on page 5-2.

For the collection column that Figure 8-13 on page 8-53 defines, the following code
fragment handles the MI_COLLECTION_VALUE value status that mi_value() or
mi_value_by_name() returns for a collection column in binary representation:
switch(mi_value(row, i, &colval, &collen))

{
...
case MI_COLLECTION_VALUE:

if ((colldesc = mi_collection_open(conn,
(MI_COLLECTION *)colval) != NULL)

{
while (mi_collection_fetch(conn, colldesc,

MI_CURSOR_NEXT, 0, (MI_DATUM *)&elmtval,
&elmtlen) != MI_END_OF_DATA)

CREATE TABLE table1
(
....
set_col SET(INTEGER NOT NULL),
...
)

Figure 8-13. A Sample Collection Column

Chapter 8. Executing SQL Statements 8-53

{
int_val = (mi_integer)elmtval;
DPRINTF("trc_class", 11,

("Element value=%d\n", int_val));
}

}
break;

Example: The get_data() Function
The get_data() function retrieves data from a query that mi_exec() sends to the
database server. This example makes the following assumptions:
v The query data is in text representation because the original call to mi_exec() in

the send_statement() function specifies the MI_QUERY_NORMAL control flag
(see the example on page 8-10).

v All the rows are of the same type and therefore share the same row descriptor
(that is, no jagged rows).

The code for the get_data() function follows:
/*
* FUNCTION: get_data()
* PURPOSE: Gets rows that a query returns.
*
* CALLED BY: get_results() (See page 8-39.)
*/
#include "mi.h"

mi_integer get_data(MI_CONNECTION *conn)
{

MI_ROW *row = NULL;
MI_ROW_DESC *rowdesc;
mi_integer error;
mi_integer numcols;
mi_integer i;
mi_string *colname;
mi_integer collen;
mi_string *colval;
mi_integer is_nested_row;

/* Get the row descriptor for the current statement */
rowdesc = mi_get_row_desc_without_row(conn);

/* Get the number of columns in the row */

numcols = mi_column_count(rowdesc);

/* Obtain the column names from the row desriptor */
i = 0;
while(i < numcols)

{
colname = mi_column_name(rowdesc, i);
DPRINTF("trc_class", 11, (" %s\t", colname));

i++;
}

DPRINTF("trc_class", 11,("\n\n"));

/* For each retrieved row: */
while (NULL != (row = mi_next_row(conn, &error)))

{
/* For each column */
for (i = 0; i < numcols; i++)

{
is_nested_row = MI_FALSE;

8-54 IBM Informix DataBlade API Programmer’s Guide

/* Initialize column value and length */
colval = NULL;
collen = 0;

/* Put the column value in colval */
switch(mi_value(row, i, &colval, &collen))

{
case MI_ERROR:

mi_db_error_raise(conn, MI_EXCEPTION,
"\nCannot get column value (mi_value)\n");

case MI_NULL_VALUE:
colval = "NULL";
break;

case MI_NORMAL_VALUE:
break;

case MI_ROW_VALUE:
is_nested_row = MI_TRUE;
get_rowtype_data((MI_ROW *)colval);
break;

default:
mi_db_error_raise(conn, MI_EXCEPTION,

"\nUnknown value (mi_value)\n");
return(-1);

} /* end switch */

if (is_nested_row)
{
/* process row type */
}

else
{
/* Print the column value */
DPRINTF("trc_class", 11, (" %s\t", colval));
}

} /* end for */

DPRINTF("trc_class", 11, ("\n"));
} /* end while */

if (MI_ERROR == error)
{
DPRINTF("trc_class", 11, ("\nReached last row\n"));
}

DPRINTF("trc_class", 11, ("\n"));

return(1);
}

The get_data() function calls mi_get_row_desc_without_row() to obtain the row
descriptor and mi_column_count() to obtain the number of columns. It then calls
mi_column_name() in a for loop to obtain and print the names of the columns in
the row descriptor.

Server Only

The get_data() function assumes it is called from within a C UDR. The function
uses the DPRINTF statement, which is part of the DataBlade API tracing feature
and is available only to C UDRs. The first DPRINTF statement sends the name of
each retrieved column to a trace file when the trace level is 11 or higher. Another

Chapter 8. Executing SQL Statements 8-55

DPRINTF statement sends the column value to the trace file. For more information
on tracing, see “Using Tracing” on page 12-28.

End of Server Only

Client Only

For the get_data() function to execute in a client LIBMI application, it would need
to replace the DPRINTF statement with a client-side output function such as
printf() or fprintf(). The following code fragment uses the fprintf() function to
display the names of retrieved columns:
while(i < numcols)

{
colname = mi_column_name(rowdesc, i);
fprintf(stderr, "%s\t", colname);

i++;
}

fprintf(stderr, "\n\n");

All occurrences of DPRINTF would need to be replaced by appropriate client-side
output functions.

End of Client Only

In the outer loop, mi_next_row() obtains every row, and in the inner loop,
mi_value() obtains every value in the row. The pointer returned in the value
buffer is not valid after the next call to mi_value(). If the data were needed for
later use, you would need to copy the data in the value buffer into a previously
defined variable.

The get_data() function retrieves column data that is in text representation. The
return values of the mi_value() function handle the text representations as
follows:
v For the MI_NORMAL_VALUE return value, get_data() breaks out of the switch

statement.
It does not need to perform any special handling based on column data type
because values for all data types have the same data type: they are all
null-terminated strings. Therefore, the colval variable that is passed into
mi_value() is declared as a pointer to an mi_string. After mi_value()
completes, colval points to the null-terminated string for the column value.

v For the MI_NULL_VALUE return value, get_data() assigns the string ″NULL″ as
the column value.
The mi_value() function does not assign a null-terminated string to a column
value when the column contains the SQL NULL value. Therefore, get_data()
explicitly sets the column value to hold the null-terminated string: ″NULL″.

v For the MI_ROW_VALUE return value, get_data() calls the get_row_data()
function to handle the row structure.
The get_row_data() function obtains values from the row structure in their text
representation. For more information, see “Obtaining Row Values” on page 8-50.

v The get_data() function does not handle the MI_COLLECTION_VALUE return
status.
The mi_value() function returns the MI_NORMAL_VALUE value status for a
collection column when the query is in text representation. For sample code that

8-56 IBM Informix DataBlade API Programmer’s Guide

handles a collection column when query data is in binary mode, see “A
Collection in Binary Representation” on page 8-53.

Completing Execution
The DataBlade API provides the following functions to complete execution of the
current statement.

DataBlade API Function Statement Completion

mi_query_finish() Finishes processing any remaining rows and releases implicitly
allocated resources for the current statement

mi_query_interrupt() Releases implicitly allocated resources for the current statement

After each of these functions executes, the next iteration of the mi_get_result()
function returns a status of MI_NO_MORE_RESULTS.

Finishing Execution
The mi_query_finish() function completes execution of the current statement. The
function performs the following steps:
v Processes any pending results that are not already processed with calls to

mi_next_row()

v Releases the implicit resources for the current statement

The mi_query_finish() function does not affect prepared statements or calls to
DataBlade API file-access functions. To determine whether the current statement
has completed execution, use the mi_command_is_finished() function.

Processing Remaining Rows
The mi_exec() function opens an implicit cursor to hold the resulting rows of a
query. For such queries, the mi_query_finish() function ensures that the database
server processes the results of a statement. The mi_query_finish() function
processes all the remaining rows in the cursor of the current statement and throws
them away.

If the current statement failed, mi_query_finish() returns MI_ERROR. In this case,
mi_query_finish() guarantees that the database server is ready for the next
statement (unless the database server has dropped the connection). All callbacks
are properly invoked during mi_query_finish() processing.

Releasing Statement Resources
The mi_query_finish() function releases implicitly allocated resources associated
with the current statement. The following table summarizes the implicitly allocated
resources for different query executions.

DataBlade API Function That
Allocated Statement Resource Resources That mi_query_finish() Releases

mi_exec() v Close any implicit cursor (for queries).

v Release the implicit statement descriptor
associated with the current statement.

v Release any other resources associated with the
current statement.

Chapter 8. Executing SQL Statements 8-57

DataBlade API Function That
Allocated Statement Resource Resources That mi_query_finish() Releases

mi_exec_prepared_statement(),
mi_open_prepared_statement()

None

Use mi_close_statement() and
mi_drop_prepared_statement(). For more
information, see “Releasing Prepared-Statement
Resources” on page 8-31.

mi_next_row() Release the row structure for the current row.

mi_get_row_desc_without_row() Release the row descriptor for the current row.

The mi_exec() function creates an implicit statement descriptor and opens an
implicit cursor for the SQL statement it executes. These structures have as their
scope from the time they are allocated with mi_exec() until whichever of the
following events occurs first:
v The mi_query_finish() function finishes execution of the current statement.
v The mi_query_interrupt() function interrupts execution of the current

statement.
v The mi_close() function closes the connection.

Server Only

v The SQL statement that invoked the C UDR ends.

End of Server Only

To conserve resources, use the mi_query_finish() function to explicitly close the
implicit cursor and free the implicit statement descriptor once your DataBlade API
module no longer needs access to the current statement. The mi_query_finish()
function is the destructor function for the implicit cursor and its associated implicit
statement descriptor.

The mi_query_finish() and mi_query_interrupt() functions also free the implicit
row structure and row descriptor that hold each row as it is fetched from a cursor.
A general rule of DataBlade API programming is that you do not explicitly free a
data type structure that you have not explicitly allocated. This rule applies to the
row structure and row descriptor of the current statement, in particular:
v Do not explicitly free the row structure for the current statement (which the

mi_next_row() function returns).
v Do not explicitly free the row descriptor for the current statement (which the

mi_get_row_desc_without_row() function returns).

These data type structures are freed when the connection closes. For more
information, see “Closing a Connection” on page 7-18.

Interrupting Execution
The mi_query_interrupt() function interrupts execution of the current statement
on a connection. It releases resources that an mi_exec() function implicitly
allocates without processing any remaining rows in a query. To release resources,
mi_query_interrupt() has the same behavior as mi_query_finish(). For more
information, see “Releasing Statement Resources” on page 8-57.

8-58 IBM Informix DataBlade API Programmer’s Guide

Inserting Data into the Database
To insert a row of data into a database, you must execute the INSERT statement.

To send an INSERT statement to the database server for execution:

1. Assemble the statement string.
2. Send the INSERT statement with either mi_exec() or

mi_exec_prepared_statement().
3. Process the results of the completed statement.

Assembling an Insert String
Assemble a statement string for the INSERT statement you want to execute. If you
know the values you want to insert into the columns, you can create a basic SQL
statement; that is, one that you can execute with mi_exec(). If you do not know
the column values, use input parameters in the statement string in place of the
column values in the VALUES clause. You must prepare any parameterized
INSERT statement with a call to mi_prepare(). Figure 8-4 on page 8-12 shows a
statement string for an INSERT that contains input parameters.

Sending the Insert Statement
The choice of DataBlade API statement-execution function for an INSERT statement
depends on whether the statement string was prepared with mi_prepare(), as
follows:
v If the statement string is not prepared, use mi_exec() to send the INSERT to the

database server.
v If the statement string was prepared, use mi_exec_prepared_statement() to

send the INSERT to the database server.

Processing Insert Results
After the database server executes an INSERT statement, the mi_get_result()
function returns a MI_DML statement status. You can obtain the following
information about the statement:
v The mi_result_row_count() function returns the number of rows that were

inserted.
v The value of the SERIAL, SERIAL8, or BIGSERIAL column in the row just

inserted.

The SERIAL, SERIAL8, and BIGSERIAL data types allow you to have an integer
column for which the database server automatically increments the value with
each insert. You can obtain the newly inserted serial value for the most recent
INSERT statement with the following DataBlade API functions.

Serial Data Type DataBlade API Function

SERIAL mi_last_serial()

SERIAL8 mi_last_serial8()

BIGSERIAL mi_last_bigserial()

Chapter 8. Executing SQL Statements 8-59

Using Save Sets
Save sets provide a mechanism for a DataBlade API module to access several rows
simultaneously. When a DataBlade API module retrieves rows from a cursor in an
mi_next_row() loop, only one row is current at a time. Each iteration of
mi_next_row() overwrites the row from the previous iteration. If your DataBlade
API module needs to perform comparisons or other types of processing on more
than one row, you can save the rows in a save set. The DataBlade API maintains a
save set as a FIFO (first-in, first-out) queue.

The DataBlade API provides the save-set structure, MI_SAVE_SET, to hold the
rows of a save set. The following table summarizes the memory operations for a
save-set structure.

Memory Duration Memory Operation Function Name

PER_STMT_EXEC Constructor mi_save_set_create()

Destructor mi_save_set_destroy()

Table 8-8 lists the functions that the DataBlade API provides for use with a save
set.

Table 8-8. Save-Set Functions of the DataBlade API

Save-Set Operation DataBlade API Function

Determine the number of rows in a save set mi_save_set_count()

Create a new save set mi_save_set_create()

Delete a row from a save set mi_save_set_delete()

Free resources associated with a save set mi_save_set_destroy()

Get first row from a save set mi_save_set_get_first()

Get last row from a save set mi_save_set_get_last()

Get next row from a save set mi_save_set_get_next()

Get previous row from a save set mi_save_set_get_previous()

Insert a new row into the save set mi_save_set_insert()

Determine if a specified row is a member of a save set mi_save_set_member()

Creating a Save Set
You create a save set with mi_save_set_create(), which returns a pointer to a
save-set structure (MI_SAVE_SET). The mi_save_set_create() function is a
constructor for the save-set structure. You pass this save-set structure to other
DataBlade API save-set functions so they can access the save set.

The save set is associated with a specified connection. Therefore, you must pass a
connection descriptor into mi_save_set_create().

Inserting Rows into a Save Set
The mi_save_set_insert() function inserts a row into a save set.

To insert a new row into a save set:

1. Obtain a row structure for the row you want to insert into the save set.

8-60 IBM Informix DataBlade API Programmer’s Guide

This row structure is usually the row that the mi_next_row() function retrieves
from a cursor of a query.

2. Pass a pointer to this row structure to mi_save_set_insert().
Because a save set is a FIFO structure, mi_save_set_insert() appends the new
row to the end of the save set.

If the insert is successful, the mi_save_set_insert() function returns a pointer to
the row structure it just inserted.

Building a Save Set
To build a save set, a DataBlade API module can create a save set and fetch rows
into it from the mi_next_row() loop. The rows inserted into the save set are copies
of the rows in the database, so modifications to the database after a row is inserted
into a save set are not reflected in the save set. In effect, the save set stores stale
rows.

To build a save set:

1. Create the save set with mi_save_set_create().
2. Execute the query to select rows from the database (for example, with

mi_exec()).
3. When mi_get_result() returns MI_ROWS, initiate an mi_next_row() loop to

get the rows.
4. Inside the mi_next_row() loop, for each row that you want to save in the save

set, invoke mi_save_set_insert().

The user function build_saveset() creates a save set and inserts rows into it. It is
called when mi_get_result() returns MI_ROWS and the application wants to store
the rows temporarily in a save set. Another user function, get_saveset_data(), is
called to access and manipulate the data in the save set.
/*
* Example of how to build a save set.
*/
#include <mi.h>

mi_integer build_saveset(MI_CONNECTION *conn)
{
MI_SAVE_SET *save_set;
MI_ROW *row;
MI_ROW *row_in_saveset;

mi_integer error;

save_set = mi_save_set_create(conn);

if (NULL == save_set)
{
DPRINTF("trc_class", 11,

("Could not create save set\n"));
return (-1);
}

/* Insert each row into the save set */
while(NULL != (row = mi_next_row(conn, &error)))

{

row_in_saveset = mi_save_set_insert(save_set, row);

if(NULL == row_in_saveset)
{

Chapter 8. Executing SQL Statements 8-61

mi_db_error_raise(conn, MI_MESSAGE,
"Could not insert into save set\n");

return (-1);
}

} /* end while */

/* Check reason for mi_next_row() completion */
if (error == MI_ERROR)
{
mi_db_error_raise(conn, MI_MESSAGE,

"Could not get next row\n");
return(-1);
}

/* Print out message to trace file */
DPRINTF("trc_class", 11,

("%d rows inserted in save set\n",
mi_save_set_count(save_set)));

get_saveset_data(save_set);

error = mi_save_set_destroy(save_set);
if(MI_ERROR == error)

{
mi_db_error_raise(conn, MI_MESSAGE,

"Could not destroy save set\n");
return (-1);
}

return(0);
}

Once the build_saveset() function successfully completes, the get_saveset_data()
function can traverse the save set as a FIFO queue. The mi_save_set_get_first()
function retrieves the first row of the save set, which is the most recently added
row. The DataBlade API module can scan forward through the save set with
mi_save_set_get_next() and then backward with mi_save_set_get_previous(). All
of these routines return a pointer to the row structure (MI_ROW) for the current
row in the save set.

The following function, get_saveset_data(), traverses the save set:
/*
* Get Save-Set Data Example
*/
#include "mi.h"

mi_integer get_saveset_data(MI_SAVE_SET *save_set)
{
MI_ROW *row;
MI_ROW_DESC *rowdesc;
mi_integer error;
mi_integer numcols;
mi_integer i;
char *colname;
mi_integer collen;
char *colval;

/* Get the first row from the save set */
row = mi_save_set_get_first(save_set, &error);
if (error == MI_ERROR)

{
DPRINTF("trc_class", 11,

("Could not get first row from save set\n"));
return(-1);
}

8-62 IBM Informix DataBlade API Programmer’s Guide

/* Get the description of the row */
rowdesc = mi_get_row_desc(row);

/* Get the number of columns in the row */
numcols = mi_column_count(rowdesc);

/* Print the column names */
for (i = 0; i < numcols; i++)

{
colname = mi_column_name(rowdesc, i);
DPRINTF("trc_class", 11, ("%s\t", colname));
} /* end for */

DPRINTF("trc_class", 11, ("\n\n"));

/* For each column */
for (i = 0; i < numcols; i++)

{
switch(mi_value(row, i, &colval, &collen))

{
case MI_ERROR:

DPRINTF("trc_class", 11,
("\nCannot get value\n"));

return(-1);

case MI_NULL_VALUE:
colval = "NULL";
break;

case MI_NORMAL_VALUE:
break;

default:
DPRINTF("trc_class", 11,

("\nUnknown value\n"));
return(-1);

} /* end switch */

DPRINTF("trc_class", 11, ("%s\t", colval));
} /* end for */

/* For each row */
while ((row = mi_save_set_get_next(save_set, &error))

!= NULL)
{
if (error == MI_ERROR)

{
DPRINTF("trc_class", 11,

("\nCould not get next row"));
return (-1);
}

/* For each column */
for (i = 0; i < numcols; i++)

{
switch(mi_value(row, i, &colval, &collen))

{
case MI_ERROR:

DPRINTF("trc_class", 11,
("\nCannot get value\n"));

return(-1);

case MI_NULL_VALUE:
colval = "NULL";
break;

Chapter 8. Executing SQL Statements 8-63

case MI_NORMAL_VALUE:
break;

default:
DPRINTF("trc_class", 11,

("\nUnknown value\n"));
break;

} /* end switch */

DPRINTF("trc_class", 11, ("%s\t", colval));

} /* end for */

DPRINTF("trc_class", 11, ("\n"));

} /* end while */

DPRINTF("trc_class", 11, ("\n"));
return(1);

}

When a row is obtained from the save set, its values are extracted using an
mi_value() loop, as demonstrated in “Example: The get_data() Function” on
page 8-54.

Freeing a Save Set
A save-set structure has a memory duration of PER_STMT_EXEC. Therefore, a
save-set structure remains active until one of the following events occurs:
v The mi_save_set_destroy() function frees the save-set structure.
v The end of the current SQL statement is reached.
v The mi_close() function closes the current connection.

To conserve resources, use the mi_save_set_destroy() function to explicitly
deallocate the save set once your DataBlade API module no longer needs it. The
mi_save_set_destroy() function is the destructor function for a save-set structure.
It frees the save-set structure and any resources that are associated with it.

8-64 IBM Informix DataBlade API Programmer’s Guide

Chapter 9. Executing User-Defined Routines

In This Chapter . 9-1
Accessing MI_FPARAM Routine-State Information . 9-2

Checking Routine Arguments . 9-3
Determining the Data Type of UDR Arguments . 9-3
Handling NULL Arguments with MI_FPARAM . 9-5

Accessing Return-Value Information . 9-6
Determining the Data Type of UDR Return Values . 9-6
Returning a NULL Value . 9-8

Saving a User State . 9-8
Obtaining Other Routine Information . 9-12

Calling UDRs Within a DataBlade API Module . 9-12
Invoking a UDR Through an SQL Statement . 9-13
Calling a UDR Directly (Server) . 9-13
Named Parameters and UDRs . 9-14

Calling UDRs with the Fastpath Interface . 9-14
Obtaining a Function Descriptor . 9-17

Looking Up UDRs . 9-18
Looking Up Cast Functions . 9-20

Obtaining Information from a Function Descriptor. 9-23
Obtaining the MI_FPARAM Structure . 9-23
Obtaining a Routine Identifier . 9-24
Determining If a UDR Handles NULL Arguments . 9-24
Checking for a Variant Function . 9-25
Checking for a Negator Function . 9-26
Checking for a Commutator Function . 9-26

Executing the Routine . 9-27
Passing in Argument Values . 9-27
Receiving the Return Value . 9-27
Sample mi_routine_exec() Calls . 9-28
Executing a Built-in Cast Function . 9-30
Reusing a Function Descriptor . 9-30

Using a User-Allocated MI_FPARAM Structure . 9-36
Creating a User-Allocated MI_FPARAM Structure . 9-36
Using a User-Allocated MI_FPARAM Structure (Server) 9-37
Passing a User-Allocated MI_FPARAM Structure . 9-37
Freeing a User-Allocated MI_FPARAM . 9-38

Releasing Routine Resources . 9-38
Obtaining Trigger Execution Information and HDR Database Server Status 9-39

Trigger Information . 9-39
HDR Status Information . 9-40

In This Chapter
This chapter covers the following topics about how to call a user-defined routine
(UDR):
v How to access routine-state information from within a UDR
v How to use the DataBlade API Fastpath interface to execute a registered UDR
v How to use UDRs invoked in the trigger action statements to obtain information

about the trigger and triggering table information and how to enable UDRs to
recognize the High-Availability Data Replication (HDR) server status

© Copyright IBM Corp. 1996, 2009 9-1

Accessing MI_FPARAM Routine-State Information
When the routine manager calls a UDR, it passes the routine-state information as
an extra argument, called the function-parameter structure, to the routine. This
function-parameter structure, MI_FPARAM, holds the routine-state information for
the C UDR with which it is associated.

This MI_FPARAM structure that the routine manager passes lasts for the duration
of an SQL command (subquery execution). The following table summarizes the
memory operations for an MI_FPARAM structure.

Memory Duration
Memory
Operation Function Name

PER_COMMAND Constructor Routine manager (when it invokes a UDR)

mi_fparam_allocate(), mi_fparam_copy()

Destructor Routine manager (when it exits a UDR)

mi_fparam_free()

Most UDRs do not need to access this routine-state information. For such routines,
you do not have to include an MI_FPARAM structure as a parameter in the C
declaration. Your UDR needs to declare an MI_FPARAM parameter only if it
needs to perform one of the following tasks.

Task More Information

Obtain information about each routine argument,
such as data type and whether it is NULL

“Checking Routine Arguments” on
page 9-3

Obtain or set information about each return value,
such as data type and whether it is NULL

“Accessing Return-Value Information”
on page 9-6

Maintain user-state information between
invocations of the routine for the duration of a
single SQL statement

“Saving a User State” on page 9-8

Obtain information about the routine itself, such as
the routine identifier and iterator information

“Obtaining Other Routine
Information” on page 9-12

Tip: When you declare an MI_FPARAM parameter, this declaration must be the
last parameter in the C declaration of your UDR. For more information, see
“MI_FPARAM Argument” on page 13-4.

The UDR can then use the DataBlade API accessor functions that Table 9-1 on page
9-3, Table 9-2 on page 9-6, and Table 9-4 on page 9-12 list to access values in the
MI_FPARAM structure.

Important: The MI_FPARAM structure is an opaque C structure to DataBlade API
modules. Do not access its internal fields directly. The internal structure
of MI_FPARAM may change in future releases. Therefore, to create
portable code, always use the accessor functions for this structure to
obtain and store values.

A UDR can also allocate an MI_FPARAM structure for a UDR that it invokes with
the Fastpath interface. For more information, see “Using a User-Allocated
MI_FPARAM Structure” on page 9-36.

9-2 IBM Informix DataBlade API Programmer’s Guide

Checking Routine Arguments
The user state of a C UDR provides the following information about routine
arguments:
v Data type information about any arguments
v Boolean value to indicate whether an argument is NULL

Table 9-1 lists the DataBlade API accessor functions that obtain and set information
about routine arguments in an MI_FPARAM structure.

Table 9-1. Argument Information in an MI_FPARAM Structure

Argument Information
DataBlade API
Accessor Function

The number of arguments for the UDR with which the
MI_FPARAM structure is associated

mi_fp_nargs()
mi_fp_setnargs()

The type identifier of each argument that the MI_FPARAM
structure contains

mi_fp_argtype()
mi_fp_setargtype()

The length of each argument that the MI_FPARAM structure
contains

mi_fp_arglen()
mi_fp_setarglen()

The precision (total number of digits) of each argument that the
MI_FPARAM structure contains

mi_fp_argprec()
mi_fp_setargprec()

The scale of each argument that the MI_FPARAM structure
contains

mi_fp_argscale()
mi_fp_setargscale()

Whether each argument that the MI_FPARAM structure contains
is an SQL NULL value

mi_fp_argisnull()
mi_fp_setargisnull()

Determining the Data Type of UDR Arguments
With the MI_FPARAM structure, you can write UDRs that operate over a type
hierarchy, rather than on a single type. At runtime, the routine can examine the
MI_FPARAM structure to determine what data types were passed to the current
invocation of the routine.

The MI_FPARAM structure stores the information about each UDR argument in
several parallel arrays.

Argument Array Contents

Argument-type array Each element is a pointer to a type identifier (MI_TYPEID)
that indicates the data type of the argument.

Argument-length array Each element is the integer length of the data type for each
argument.

Argument-scale array Each element is the integer scale in the fixed-point argument.

The default value of the scale elements is zero (0). Therefore,
any arguments that do not have a fixed-point data type have
a scale value of zero (0).

Argument-precision array Each element is the integer precision in the fixed-point or
floating-point argument.

The default value of the precision elements is zero (0).
Therefore, any arguments that have neither fixed-point nor
floating-point data types have a precision value of zero (0).

Chapter 9. Executing User-Defined Routines 9-3

Argument Array Contents

Parameter-null array Each element is either MI_FALSE or MI_TRUE:

v MI_FALSE indicates that the argument is not an SQL NULL
value.

v MI_TRUE indicates that the argument is an SQL NULL
value.

For more information, see “Handling NULL Arguments with
MI_FPARAM” on page 9-5.

Use the appropriate MI_FPARAM accessor function in Table 9-1 on page 9-3 to
access the desired argument array.

All the argument arrays in the MI_FPARAM structure have zero-based indexes. To
access information for the nth argument, provide an index value of n-1 to the
appropriate accessor function, as Table 9-1 on page 9-3 shows. Figure 9-1 shows
how the information at index position 1 of these arrays holds the argument
information for the second argument of the UDR.

The following calls to the mi_fp_argtype() and mi_fp_arglen() functions obtain
the type identifier (arg_type) and length (arg_len) for the second argument from
an MI_FPARAM structure that fparam_ptr identifies:
mi_integer my_func(arg0, arg1, arg2, fparam_ptr)

MI_DATUM arg0;
MI_DATUM arg1;
MI_DATUM arg2;
MI_FPARAM *fparam_ptr;

{
MI_TYPEID *arg_type;
mi_integer arg_len;
...
arg_type = mi_fp_argtype(fparam_ptr, 1);
arg_len = mi_fp_arglen(fparam_ptr, 1);

To obtain the number of arguments passed to the UDR (which is also the number
of elements in the argument arrays), use the mi_fp_nargs() function. For the
argument arrays of the MI_FPARAM structure in the preceding code fragment,
mi_fp_nargs() would return a value of 3. The mi_fp_setnargs() function stores
the number of routine arguments in the MI_FPARAM structure.

Figure 9-1. Argument Arrays in the MI_FPARAM Structure

9-4 IBM Informix DataBlade API Programmer’s Guide

Tip: For more information on type identifiers and lengths, see “Type Identifiers”
on page 2-2. For more information on the scale and precision of fixed-point
and floating-point data types, see Chapter 3, “Using Numeric Data Types,” on
page 3-1.

Handling NULL Arguments with MI_FPARAM
By default, C UDRs do not handle SQL NULL values. A UDR is not executed if any
of its arguments is NULL; the routine automatically returns a NULL value. If you
want your UDR to be invoked when it receives NULL values as arguments, take
the following steps:
1. Use the following DataBlade API functions to programmatically handle SQL

NULL values within the C UDR:
v Use the mi_fp_argisnull() function to determine whether an argument is

NULL.
v Use the mi_fp_setargisnull() function to set an argument to NULL.

2. Register the UDR that checks for and handles NULL values with the
HANDLESNULLS routine modifier in the CREATE FUNCTION or CREATE
PROCEDURE statement.
For more information on how to register a UDR, see “Registering a C UDR” on
page 12-14.

The mi_fp_argisnull() function obtains an mi_boolean value from an element in
the null-argument array of the MI_FPARAM structure. If mi_fp_argisnull()
returns MI_TRUE, your UDR can take the appropriate action, such as supplying a
default value or exiting gracefully from the routine. The code in Figure 9-2
implements the add_one() function that returns a NULL value if the argument is
NULL.

The following CREATE FUNCTION statement registers a function named
add_one() in the database:
CREATE FUNCTION add_one(i INTEGER) RETURNS INTEGER

WITH (HANDLESNULLS)
EXTERNAL NAME '/usr/lib/db_funcs/add.so(add_one)'
LANGUAGE C;

mi_integer add_one(i, fParam)
mi_integer i;
MI_FPARAM *fParam;

{
/* determine if the first argument is NULL */
if (mi_fp_argisnull(fParam, 0) == MI_TRUE)

{
mi_db_error_raise(NULL, MI_MESSAGE,

"Addition to a NULL value is undefined.\n");

/* return an SQL NULL value */
mi_fp_setreturnisnull(fParam, 0, MI_TRUE);

/* the argument to this "return" statement is ignored by the
* database server because the previous call to the
* mi_fp_setreturnisnull() function has set the return value
* to NULL
*/
return 0;
}

else
return(i+1);

}

Figure 9-2. The add_one() User-Defined Routine

Chapter 9. Executing User-Defined Routines 9-5

This CREATE FUNCTION statement omits the MI_FPARAM parameter of the
add_one() user-defined function from the definition of the SQL add_one() UDR.

Accessing Return-Value Information
The MI_FPARAM structure of a C user-defined function provides the following
information about function return values:
v Data type information about any return values
v Boolean value to indicate whether a return value is NULL

Important: Because a user-defined function is written in the C language, it can
only return a single value. However, this single value can be a
structure (such as a row descriptor) that contains multiple values. For
information on how to return multiple values, see “Returning Multiple
Values” on page 13-14.

Table 9-2 lists the DataBlade API accessor functions that obtain and set information
about function return values in an MI_FPARAM structure. (Only user-defined
functions return values; user-defined procedures do not.)

Table 9-2. Return-Value Information in the MI_FPARAM Structure

Return-Value Information
DataBlade API
Accessor Function

The number of return values for the C UDR with which the
MI_FPARAM structure is associated

mi_fp_nrets()
mi_fp_setnrets()

The type identifier of each return value that the MI_FPARAM
structure contains

mi_fp_rettype()
mi_fp_setrettype()

The length of each return value that the MI_FPARAM
structure contains

mi_fp_retlen()
mi_fp_setretlen()

The precision (total number of digits) of each return value that
the MI_FPARAM structure contains

mi_fp_retprec()
mi_fp_setretprec()

The scale (number of digits to the right of the decimal point)
of each fixed-point and floating-point return value that the
MI_FPARAM structure contains

mi_fp_retscale()
mi_fp_setretscale()

Whether each return value that the MI_FPARAM structure
contains is NULL

mi_fp_returnisnull()
mi_fp_setreturnisnull()

Determining the Data Type of UDR Return Values
The database server sets the return-value data type of the user-defined function.
Most user-defined functions might need to check the return-value data type but
they do not need to set it.

The routine manager uses the return-value information to determine how to bind
the return value to a return variable or an SQL value. You need to access
return-value information only if your UDR needs to perform one of the following
tasks:
v Override the expected return type (for type hierarchies)

You can set this return-value data type in the MI_FPARAM structure
v Set the actual length, precision, or scale of the return value
v Return an SQL NULL value

See “Returning a NULL Value” on page 9-8.

9-6 IBM Informix DataBlade API Programmer’s Guide

v Check the return value of a UDR that you are going to execute with the Fastpath
interface and for which you have created a user-allocated MI_FPARAM
structure
See “Using a User-Allocated MI_FPARAM Structure” on page 9-36.

If your UDR does not need to perform these tasks, it does not need to modify
return-value information in the MI_FPARAM structure.

The MI_FPARAM structure uses several parallel arrays to store the following
information about each return value.

Return-Value Array Contents

Return-type array Each element is a pointer to a type identifier (MI_TYPEID) that
indicates the data type of the return value.

Return-length array Each element is the integer length of the data type for each
return value.

Return-scale array Each element is the integer scale in the fixed-point return
value.

Return-precision array Each element is the integer precision of the fixed-point or
floating-point return value.

Return-null array Each element has either of the following values:

v MI_FALSE: The return value is not an SQL NULL value.

v MI_TRUE: The return value is an SQL NULL value.

For more information, see “Returning a NULL Value” on page
9-8.

Use the appropriate MI_FPARAM accessor function in Table 9-2 on page 9-6 to
access the desired return-value array.

All of the return-value arrays in the MI_FPARAM structure have zero-based
indexes. To access information for the nth return value, provide an index value of
n-1 to the appropriate accessor function in Table 9-2 on page 9-6. Figure 9-3 shows
how the information at index position 0 of these arrays holds the return-value
information for the first (and only) return value of a user-defined function.

The following calls to the mi_fp_rettype() and mi_fp_retlen() functions obtain
the type identifier (ret_type) and length (ret_len) for the first (and only) return
value from an MI_FPARAM structure that fparam_ptr identifies:

Figure 9-3. Return-Value Arrays in the MI_FPARAM Structure

Chapter 9. Executing User-Defined Routines 9-7

MI_FPARAM *fparam_ptr;
MI_TYPEID *ret_type;
mi_integer ret_len;
...
ret_type = mi_fp_rettype(fparam_ptr, 0);
ret_len = mi_fp_retlen(fparam_ptr, 0);

To obtain the number of return values of the user-defined function, use the
mi_fp_nrets() function. However, the number of return values is always 1 for a C
user-defined function. The mi_fp_setnrets() function stores the number of return
values in the MI_FPARAM structure.

Returning a NULL Value
To return most values from a user-defined function, you use a C return statement.
(For more information, see “Returning a Value” on page 13-12.) To return the SQL
NULL value, however, you must access the MI_FPARAM structure of the UDR.

The DataBlade API provides the following functions to support the return of an
SQL NULL value from a C user-defined function:
v To indicate that your user-defined function returns a NULL value, use the

mi_fp_setreturnisnull() function to store the value of MI_TRUE at the
appropriate index position in the null-return array of the MI_FPARAM
structure.

v The mi_fp_returnisnull() function accesses the MI_FPARAM structure to
determine whether a return value is NULL.

The mi_fp_setreturnisnull() function sets an mi_boolean value to indicate
whether the return value is NULL. The code in Figure 9-2 on page 9-5 implements
the add_one() function that uses the mi_fp_setreturnisnull() function to return a
NULL value when add_one() receives a NULL argument.

Warning: Do not return a NULL-valued pointer from a UDR. If you need to have
the UDR return an SQL NULL value, always use
mi_fp_setreturnisnull(). Otherwise, serious memory corruption might
occur.

Saving a User State
The routine manager provides information about arguments and return values of a
UDR in the MI_FPARAM structure that is associated with a UDR. In addition, you
can store the address of private-state information, called user-state information, in a
special field of the MI_FPARAM structure.

The database server passes the same MI_FPARAM structure to every invocation of
the UDR within the same routine sequence. When your user-state information is
part of the MI_FPARAM structure, your UDR can access this information across
all the invocations within the same routine sequence. Your routine can use this
private area of the MI_FPARAM structure to cache information that preserves its
own state.

Tip: For more information about user state and the routine sequence, see “Creating
the Routine Sequence” on page 12-22.

The MI_FPARAM structure can hold a user-state pointer that points to this private
state information. The user-state pointer references a thread-private place holder
that allows a UDR to associate a user-defined state information with a routine
sequence. Table 9-3 shows that the DataBlade API provides the following accessor

9-8 IBM Informix DataBlade API Programmer’s Guide

functions to access the user state of a UDR.

Table 9-3. User-State Information in the MI_FPARAM Structure

User-State Information
DataBlade API
Accessor Function

Obtain the user-state pointer from the MI_FPARAM structure
of a UDR.

mi_fp_funcstate()

Set the user-state pointer in the MI_FPARAM structure of a
UDR.

mi_fp_setfuncstate()

User-state information is useful for a UDR in the following cases:
v To save information between invocations of an iterator function

For more information, see “Writing an Iterator Function” on page 15-3.
v To replace static or global variables in C function

Use of the MI_FPARAM structure to hold state information enables a UDR to
access global information without the use of static or global variables. It is never
safe to use static and global variables that are updated because the updated
value is not visible if the thread migrates to another virtual processor (VP) and
concurrent activity is not interleaved.

Warning: Avoid the use of static and global variables in a UDR. If a UDR uses
variables with these scopes, it is an ill-behaved routine. You must
execute an ill-behaved UDR in a separate virtual-processor class, called a
user-defined VP. For more information, see “Using Virtual Processors”
on page 13-16.

To save user-state information in the first invocation of a UDR:

1. Use the mi_fp_funcstate() function to retrieve the user-state pointer from the
MI_FPARAM structure.
Once the UDR has the user-state pointer, it can obtain state information from
the private storage area on subsequent invocations.

2. Check for a NULL-valued user-state pointer.
On the first invocation of your UDR, the user-state pointer is a NULL-valued
pointer. If the user-state pointer is a NULL-valued pointer, allocate a private
user-defined buffer or structure for the user-state information.
When you allocate memory for the user-state information, you must protect
this memory so that it is not reclaimed while it is still in use. Define a memory
duration of PER_COMMAND for this memory with a DataBlade API
memory-allocation function such as mi_dalloc() or
mi_switch_mem_duration(). For more information, see “Choosing the
Memory Duration” on page 14-4.

3. Put the private data in the user-defined buffer or structure to initialize the user
state.

4. If the UDR has just allocated the private user-state buffer, use the
mi_fp_setfuncstate() function to store the address of this user-defined buffer
or structure as a user-state pointer in the MI_FPARAM structure.
You save the user-state pointer in the MI_FPARAM structure so that later UDR
invocations of the routine sequence can access the routine-state information.

To obtain user-state information in subsequent invocations of the UDR:

Chapter 9. Executing User-Defined Routines 9-9

1. Use the mi_fp_funcstate() function to retrieve the user-state pointer from the
MI_FPARAM structure.

2. If the user-state pointer is not a NULL-valued pointer, cast the pointer to the
data type of your user-state information.
Once the user-state pointer points to the correct data type, you can access the
user-state information.

The MI_FPARAM structure is associated with the routine sequence. Therefore, for
a UDR in a query that executes in parallel, each thread has its own routine
sequence and therefore its own MI_FPARAM structure. The first invocation of the
routine by each thread would have to perform any initialization. Only UDRs that
are declared as parallelizable can be executed in parallel queries. The database
server always executes an SQL statement that contains a nonparallelizable UDR
serially.

Tip: By default, the CREATE FUNCTION statement registers a UDR as
non-parallelizable. To declare a user-defined function as parallelizable, specify
the PARALLELIZABLE routine modifier in the CREATE FUNCTION or
CREATE PROCEDURE statement. For more information, see “Creating
Parallelizable UDRs” on page 15-61.

The MI_FPARAM structure has a memory duration of PER_COMMAND. The
database server reinitializes the user-state information that mi_fp_funcstate()
references to NULL at the end of the SQL command (for example, at the end of the
subquery execution for each outer row from an outer query).

The code example in Figure 9-4 implements the rowcount() function. This
function uses the MI_FPARAM structure to hold a count of the number of rows in
a query.

9-10 IBM Informix DataBlade API Programmer’s Guide

The rowcount() function uses the mi_fp_funcstate() function to obtain the
user-state pointer from the MI_FPARAM structure. If this pointer is NULL,
rowcount() allocates memory for the count variable and uses the
mi_fp_setfuncstate() function to store this pointer as the user-state pointer in the
MI_FPARAM structure. It uses the mi_dalloc() function to allocate this memory
with a duration of PER_COMMAND so that the database server does not
deallocate the memory after the first invocation of the function.

Tip: The rowcount() function in Figure 9-4 shows how to use the MI_FPARAM
structure to hold private user-state information. This method removes the
need for global or static variables, which can make a C UDR ill-behaved.
Figure 13-8 on page 13-24 shows the bad_rowcount() function, which
incorrectly implements a row counter with a static variable.

For the rowcount() function to be used in an SQL statement, it must be registered
in the database. The following CREATE FUNCTION statement registers the
rowcount() function for use in SQL statements:
CREATE FUNCTION rowcount() RETURNS INTEGER

EXTERNAL NAME '/usr/lib/db_funcs/count.so(rowcount)'
LANGUAGE C;

The CREATE FUNCTION statement must omit the MI_FPARAM argument;
therefore the registered rowcount() function has no arguments. Suppose that the
following query uses the rowcount() function:
SELECT rowcount() from employee;

The query calls the rowcount() function for each row in the employee table.
Because the rowcount() function uses the MI_FPARAM structure to hold its state

/* The rowcount() function maintains the row count with a variable that
* is stored as user-state information in the MI_FPARAM structure
*/
mi_integer rowcount (fparam_ptr)

MI_FPARAM *fparam_ptr;
{

mi_integer *count = NULL;

/* obtain the current user-state pointer from the MI_FPARAM structure */
count = (mi_integer *)mi_fp_funcstate(fparam_ptr);

/* if the user-state pointer is NULL, this is the first
* invocation of the function
*/
if (count == NULL)

{
/* allocate memory for the user-state information */
count = (mi_integer *)mi_dalloc(sizeof(mi_integer), PER_COMMAND);

/* save user-state pointer in the MI_FPARAM structure */
mi_fp_setfuncstate(fparam_ptr, (void *)count);

/* initialize the row counter */
*count = 0;
}

/* increment the row counter */
(*count)++;
return (*count);

}

Figure 9-4. Using the MI_FPARAM Structure to Hold Private-State Information

Chapter 9. Executing User-Defined Routines 9-11

information (the count variable), each query has its own private count variable.
Separate queries do not interfere with one another as they might with static and
global variables.

Tip: You could also implement the rowcount() function as a user-defined
aggregate function. User-defined aggregates do not use the MI_FPARAM
structure to hold state information. For more information, see “Writing an
Aggregate Function” on page 15-11.

Obtaining Other Routine Information
The MI_FPARAM structure of a C UDR provides additional information about a
UDR. Table 9-4 lists the DataBlade API accessor functions that obtain and set other
routine information of a UDR.

Table 9-4. Other Routine Information in the MI_FPARAM Structure

Routine Information
DataBlade API
Accessor Function

The name of the UDR mi_fp_funcname()

The iterator status for this iteration of an iterator function

Values are SET_INIT, SET_RETONE, and SET_END.

mi_fp_request()

The iterator-completion flag, which indicates whether an
iterator function has finished returning rows of data

mi_fp_setisdone()

The identifier of the UDR with which the MI_FPARAM
structure is associated

mi_fp_getfuncid(),
mi_fp_setfuncid()

The MI_FPARAM structure of the UDR

A UDR needs to obtain the address of its MI_FPARAM
structure only in special cases. For more information, see
the description of the accessor function.

mi_fparam_get_current()

The column identifier associated with the UDR

A UDR needs to access its column identifier only in special
cases. For more information, see the description of the
accessor function.

mi_fp_getcolid()
mi_fp_setcolid()

The row structure associated with the UDR

A UDR needs to access its row structure only in special
cases. For more information, see the description of the
accessor function.

mi_fp_getrow()
mi_fp_setrow()

For more information about the use of the iterator-completion flag and iterator
status, see “Writing an Iterator Function” on page 15-3. For information about the
use of routine identifiers, see “Routine Resolution” on page 12-19.

Calling UDRs Within a DataBlade API Module
Within a DataBlade API module, you can use either of the following methods to
call a UDR, as long as you know the name of the UDR you want to call:
v Execute an SQL statement that invokes a registered UDR

Server Only

9-12 IBM Informix DataBlade API Programmer’s Guide

v Call directly any UDR that resides in the same shared-object file

End of Server Only

Invoking a UDR Through an SQL Statement
You can call any registered UDR in an SQL statement. When your UDR is called in
an SQL statement, the database server parses the statement and produces a query
plan. It then automatically performs any routine resolution necessary and loads the
shared-object file in which that UDR resides into shared memory (if it is not
already loaded) when it parses and compiles the SQL statement. For more
information on how the database server executes a UDR in an SQL statement, see
“Executing a UDR” on page 12-18.

Within the DataBlade API, you can execute SQL statements with the mi_exec()
function and execute prepared SQL statements with the
mi_exec_prepared_statement() function. For example, the following call to
mi_exec() sends the EXECUTE FUNCTION statement to the database server to
execute the myfunc() user-defined function:
mi_exec(conn, "EXECUTE FUNCTION myfunc(5,5);",

MI_QUERY_BINARY);

For more information on the use of mi_exec() and
mi_exec_prepared_statement(), see Chapter 7, “Handling Connections,” on page
7-1.

Calling a UDR Directly (Server)
From within a C UDR, you can directly call another C function when the following
conditions are met:
v At compile time, you know the name of the C function that you want to call.
v The C function resides in the same shared-object file as the calling UDR.

This C function can be a registered UDR. In Figure 9-5, assume that the func2()
and func3() functions were registered as user-defined functions with the CREATE
FUNCTION statement. The func3() user-defined function can directly call the
func2() UDR because func3() and func2() reside in the same shared-object file,
source1.so.

If the UDR that you want to call is an overloaded routine, the database server
executes the version of the UDR that resides in the same shared-object file. This
UDR gets neither parameter casting nor a default MI_FPARAM structure. If no

Figure 9-5. Calling a UDR Directly from Another UDR

Chapter 9. Executing User-Defined Routines 9-13

version of this UDR exists in the same shared-object file, you receive a runtime
error. To execute UDRs in other shared-object files, use the Fastpath interface.

Named Parameters and UDRs
Named parameters cannot be used to invoke UDRs that overload data types in
their routine signatures. Named parameters are valid in resolving non-unique
routine names only if the signatures have different numbers of parameters:
func(x::integer, y); -- VALID if only these 2 routines
func(x::integer, y, z); -- have the same 'func' identifier

func(x::integer, y); -- NOT VALID if both routines have
func(x::float, y ; -- same identifier and 2 parameters

For both ordinal and named parameters, the routine with the fewest parameters is
executed if two or more UDR signatures have multiple numbers of defaults:
func(x, y default 1)
func(x, y default 1, z default 2)

If two registered UDRs that are both called func have the signatures shown above,
then the statement EXECUTE func(100) invokes func(100,1).

You cannot supply a subset of default values using named parameters unless they
are in the positional order of the routine signature. That is, you cannot skip a few
arguments and rely on the database server to supply their default values.

For example, given the signature:
func(x, y default 1, z default 2)

you can execute:
func(x=1, y=3)

but you cannot execute:
func(x=1, z=3)

Calling UDRs with the Fastpath Interface
The DataBlade API Fastpath interface allows DataBlade API modules to directly
invoke a UDR that was registered in the database. This interface bypasses the
overhead associated with invoking a UDR through an SQL statement. This
interface bypasses the query optimizer and executor (which are needed for an SQL
statement). You can use this interface to execute any SQL routine.

Important: You cannot use the Fastpath interface to execute iterator functions or
SPL functions with the WITH RESUME keywords in their RETURN
statement. For more information on iterator functions, see “Writing an
Iterator Function” on page 15-3.

The Fastpath interface is useful for calling a UDR in the following situations:
v You do not know the location of the UDR you want to call.
v At compile time, you do not know the name of the UDR you want to call.
v You need to promote or cast arguments of the UDR you want to call.

9-14 IBM Informix DataBlade API Programmer’s Guide

v The UDR you want to call is an overloaded routine and you need to obtain the
version for particular argument data types.

Server Only

v The UDR you want to call resides in a different shared-object file or DataBlade.

End of Server Only

The Fastpath interface looks up a UDR or cast function in the system catalog tables
to obtain information about the routine and then executes it. It passes any return
values from the routine to the caller in internal (binary) format. With the Fastpath
interface, a DataBlade API module can call a foreign UDR.

Server Only

For a C UDR, a foreign UDR is a UDR that does not reside in the same
shared-object file as the UDR that calls it. One UDR can only call another UDR
directly when that called UDR resides within the same shared-object file or
DataBlade module as the calling UDR. For example, in Figure 9-5 on page 9-13, the
func3() user-defined function can directly call func2() because both of these
functions reside in the source1.so shared-object file.

However, there is no portable way for the C code in one shared-object file to
directly call a function in another shared-object file. Different operating systems
provide different degrees of support for this type of calling. In addition, if the
foreign UDR is part of a DataBlade module, your UDR has no way of knowing
which DataBlade modules might be installed at a particular customer site.

To call a foreign UDR, a C UDR must use the DataBlade API Fastpath interface.
Figure 9-6 shows how a UDR that is one shared-object file, source1.so, can call a
foreign UDR, funcB(). Even though the funcB() routine is defined in the
source2.so shared-object file, func3() can invoke it through the Fastpath interface.

In Figure 9-6, the Fastpath interface loads the source2.so shared-object file, which
contains the funcB() routine, into memory. For Fastpath to be able to invoke
funcB(), the funcB() routine must already have been registered in the database.

Figure 9-6. Using Fastpath to Access a Routine in Another Shared-Object File

Chapter 9. Executing User-Defined Routines 9-15

The call to funcB() within funcC() does not require use of the Fastpath interface
because these two functions reside in the same shared-object file, source2.so.

The Fastpath interface allows a DataBlade developer to extend a DataBlade module
that someone else provides. This developer can define new UDRs on data types
that some other DataBlade provides.

End of Server Only

Client Only

For a client LIBMI application, a foreign UDR is any UDR that is registered in the
database that is currently open. Client LIBMI programs can use the Fastpath
interface to directly invoke registered UDRs.

End of Client Only

You can execute foreign UDRs with an SQL statement, such as EXECUTE
FUNCTION. (For more information, see “Calling UDRs Within a DataBlade API
Module” on page 9-12.) However, Fastpath is usually a quicker method for the
execution of a UDR because it bypasses query processing.

Important: For the Fastpath interface to execute a UDR, the UDR must be
registered in the database with a CREATE FUNCTION or CREATE
PROCEDURE statement. When you create a DataBlade, register
internal UDRs that might be of general use. In this way, you can
cleanly protect private interfaces and support public ones.

The Fastpath interface provides the following DataBlade API functions to look up a
registered UDR, execute it, and free resources.

DataBlade API Function Purpose
More
Information

Look up a UDR and obtain a function descriptor for it: page 9-17

mi_cast_get() Looks up a cast function that casts between two data
types (specified by type identifiers) and returns its
function descriptor

mi_func_desc_by_typeid() Looks up a UDR by its routine identifier and returns its
function descriptor

mi_routine_get() Looks up a UDR by its routine signature (specified as a
character string) and returns its function descriptor

mi_routine_get_by_typeid() Looks up a UDR by its routine signature (specified as
separate arguments) and returns its function descriptor

mi_td_cast_get() Looks up a cast function that casts between two data
types (specified by type descriptors) and returns its
function descriptor

Obtain information from a function descriptor: page 9-23

mi_fparam_get() Returns a pointer to the MI_FPARAM structure that is
associated with the function descriptor

mi_func_handlesnulls() Determines whether the UDR that is associated with the
function descriptor can handle NULL arguments

9-16 IBM Informix DataBlade API Programmer’s Guide

DataBlade API Function Purpose
More
Information

mi_func_isvariant() Determines whether the user-defined function that is
associated with the function descriptor is a variant
function

mi_func_negator() Determines whether the user-defined function that is
associated with the function descriptor has a negator
function

mi_routine_id_get() Returns the identifier for the routine that is associated
with the function descriptor

Execute the UDR through its function descriptor: page 9-27

mi_routine_exec() Executes a UDR that is associated with a specified
function descriptor

Use a user-allocated MI_FPARAM structure for the UDR: page 9-36

mi_fparam_allocate() Allocates an MI_FPARAM structure

mi_fparam_copy() Creates a copy of an existing MI_FPARAM structure

mi_fparam_free() Deallocates a user-allocated MI_FPARAM structure

mi_fp_usr_fparam() Determines whether a specified MI_FPARAM has been
allocated by the database server or the user

Free resources that the function descriptor uses: page 9-38

mi_routine_end() Releases resources that are associated with the function
descriptor

The following sections describe each of these tasks in detail.

Obtaining a Function Descriptor
A function descriptor, MI_FUNC_DESC, contains static information about a UDR
that is to be invoked with the Fastpath interface. It is basically a structured version
of the row in the sysprocedures system catalog table that describes the UDR. The
function descriptor also identifies the routine sequence for the associated UDR.
(For more information on the routine sequence, see “Creating the Routine
Sequence” on page 12-22.)

The following table summarizes the memory operations for a function descriptor.

Memory Duration Memory Operation Function Name

PER_COMMAND Constructor mi_cast_get(),
mi_func_desc_by_typeid(),
mi_routine_get(),
mi_routine_get_by_typeid(),
mi_td_cast_get()

Destructor mi_routine_end()

Tip: Function descriptors are stored with the connection descriptor. Because a
connection descriptor has a PER_COMMAND duration, so too does a
function descriptor. However, it is possible to obtain a session-duration
connection descriptor and, consequently, session-duration function
descriptors. For more information, see “Obtaining a Session-Duration
Connection Descriptor” on page 7-13.

Chapter 9. Executing User-Defined Routines 9-17

A calling DataBlade API module uses a function descriptor as a handle to identify
the UDR it needs to invoke with the Fastpath interface. To obtain a function
descriptor, call one of the Fastpath look-up functions in Table 9-5.

Table 9-5. Fastpath Look-Up Functions

Type of UDRs Fastpath Look-Up Function

Looking up general UDRs mi_func_desc_by_typeid(),
mi_routine_get(),
mi_routine_get_by_typeid()

Looking up cast functions mi_cast_get(), mi_td_cast_get()

Looking Up UDRs
To look up a UDR, use one of the following Fastpath look-up functions.

DataBlade API Function How It Looks Up a UDR

mi_routine_get() Looks up a UDR using a routine signature that is
passed as a character string

mi_routine_get_by_typeid() Looks up a UDR using a routine signature that is
passed as separate arguments

mi_func_desc_by_typeid() Looks up a UDR by its routine identifier and returns its
function descriptor

Server Only

The mi_func_desc_by_typeid() function is available only within a C UDR. It is
not valid within a client LIBMI application.

End of Server Only

To obtain a function descriptor for a UDR, a Fastpath look-up function performs
the following steps:
1. Asks the database server to look up the UDR in the sysprocedures system

catalog
If the name of the UDR in the routine signature that you specify is not unique
in the database, the mi_routine_get() and mi_routine_get_by_typeid()
functions use the routine signature to perform routine resolution. For more
information, see “Routine Resolution” on page 12-19.

Server Only

A routine identifier uniquely identifies a UDR, so the
mi_func_desc_by_typeid() function does not need to perform routine
resolution. The routine identifier corresponds to the entry for the UDR in
sysprocedures.procid. A negative routine identifier indicates a built-in function
that does not have an entry in sysprocedures. The database server looks up
information for a built-in function in an internal cache.

End of Server Only

2. Allocates a function descriptor for the routine and save the routine sequence in
this descriptor
You can obtain information about the UDR from this function descriptor. For
more information, see “Obtaining Information from a Function Descriptor” on
page 9-23. You can also allocate your own MI_FPARAM structure to use

9-18 IBM Informix DataBlade API Programmer’s Guide

instead of this automatically allocated one. For more information, see “Using a
User-Allocated MI_FPARAM Structure” on page 9-36.

3. Allocates an MI_FPARAM structure for the function descriptor
You can get a pointer to this structure with the mi_fparam_get() function. For
more information, see “Obtaining the MI_FPARAM Structure” on page 9-23.

4. Returns a pointer to the function descriptor that identifies the specified UDR
Subsequent calls to mi_routine_exec() can use this function descriptor to
identify the UDR to execute. For more information, see “Executing the Routine”
on page 9-27.

Suppose the following CREATE FUNCTION statements register three user-defined
functions named numeric_func() in your database:
CREATE FUNCTION numeric_func(INTEGER, INTEGER) RETURNS INTEGER;
CREATE FUNCTION numeric_func(FLOAT, FLOAT) RETURNS FLOAT;
CREATE FUNCTION numeric_func(MONEY, MONEY) RETURNS MONEY;

The numeric_func() user-defined function is an overloaded routine. The code
fragment in Figure 9-7 uses the mi_routine_get() function to obtain the function
descriptor for the version of numeric_func() that handles INTEGER arguments.

The mi_routine_get() function returns a NULL-valued pointer to indicate either
no matching routine exists or the routine has multiple return values. Figure 9-7
also shows how to determine which of these conditions a NULL return value
indicates. It uses the mi_fparam_get() function to obtain the MI_FPARAM
structure that is associated with the located numeric_func() function. (The
mi_routine_get() function has allocated and initialized this MI_FPARAM
structure as part of the look-up process.) The code fragment then uses the
mi_fp_nrets() accessor function to obtain the number of UDR return values from
this MI_FPARAM structure. Because C UDRs can only return one value, any UDR
that returns more than one value must be an SPL routine.

Use mi_routine_get() when you can create the full signature of the UDR as a
literal string. Otherwise, you can use the mi_routine_get_by_typeids() function to
build the routine signature. For example, if you have a user-supplied query, you
could use mi_column_typeid() to get the type identifier for the column that the
query returns. The mi_routine_get_by_typedesc() function is also useful when
you need to invoke overloaded UDRs with different parameter data types (and
you have parameter type identifiers).

MI_CONNECTION *conn;
MI_FUNC_DESC *fdesc = NULL;
MI_FPARAM *fparam;
...
fdesc = mi_routine_get(conn, 0,

"function numeric_func(integer, integer)");
if (fdesc =! NULL)

{
fparam = mi_fparam_get(conn, fdesc);
if (mi_fp_nrets(fparam) > 1)

/* multiple return values: have SPL routine */
...

else
/* no matching user-defined routine*/
...

}

Figure 9-7. Obtaining a Function Descriptor for the numeric_func() Function

Chapter 9. Executing User-Defined Routines 9-19

In Figure 9-7, you could replace the call to mi_routine_get() with the following
call to the mi_routine_get_by_typeid() function:
MI_TYPEID *arg_types[2];
...
arg_type[0] = mi_typestring_to_id(conn, "integer");
arg_type[1] = arg_type[0];
fdesc = mi_routine_get_by_typeid(conn, MI_FUNC,

"numeric_func", NULL, 2, arg_types);

In this call to mi_routine_get_by_typeid(), the arg_types array contains pointers
to the type identifiers for the two INTEGER parameters.

Server Only

If you already have a routine identifier for the UDR that you want to execute with
Fastpath, use the mi_func_desc_by_typeid() function to obtain the function
descriptor of the UDR. In Figure 9-7, you could replace the call to
mi_routine_get() with the following call to mi_func_desc_by_typeid():
mi_funcid rout_id;
...
fdesc = mi_func_desc_by_typeid(conn, rout_id);

In this call, the mi_funcid data type holds the routine identifier of the UDR to look
up.

End of Server Only

Client Only

When you call mi_routine_get() or mi_routine_get_by_typeid() from a client
LIBMI application, the function allocates a local copy (on the client computer) of
the function descriptor and MI_FPARAM structure. You can use the function
descriptor and MI_FPARAM accessor functions within a client LIBMI application
to access these local copies.

The mi_func_desc_by_typeid() function is not valid within a client LIBMI
application.

End of Client Only

Looking Up Cast Functions
A cast function is a user-defined function that converts one data type (the source
data type) to a different data type (the target data type).

Tip: For more information on how to register a cast function, see the IBM Informix
User-Defined Routines and Data Types Developer’s Guide.

The way that a cast is called depends on the type of the cast, as the following table
shows.

Type of Cast How It Is Called

Built-in cast Called by the database server automatically when built-in types need
conversion in an SQL statement or a UDR call

Implicit cast Called by the database server automatically when castable data types are
part of an SQL statement

9-20 IBM Informix DataBlade API Programmer’s Guide

Type of Cast How It Is Called

Explicit cast v Called explicitly within an SQL statement with the :: operator or CAST
AS keywords

v Called explicitly within a DataBlade API module with the Fastpath
interface

To look up a cast function by its source and target data types, use one of the
following Fastpath look-up functions.

DataBlade API Function How It Looks Up a Cast Function

mi_cast_get() Looks up a cast function for source and target data types
specified as type identifiers

mi_td_cast_get() Looks up a cast function for source and type data types
specified as type descriptors

To obtain a function descriptor for a cast function, the mi_cast_get() or
mi_td_cast_get() function performs the following steps:
1. Asks the database server to look up the cast function in the syscasts system

catalog
Once the function locates a syscasts entry for the cast function, it obtains
routine information for the cast function from the sysprocedures system catalog
table. These functions also determine the type of cast that the cast function
performs: an explicit cast, an implicit cast, or a built-in cast.

2. Allocates a function descriptor for the cast function and save the routine
sequence in this descriptor
You can obtain information about the UDR from this function descriptor. For
more information, see “Obtaining Information from a Function Descriptor” on
page 9-23.

3. Allocates an MI_FPARAM structure for the function descriptor
You can get a pointer to this structure with the mi_fparam_get() function. For
more information, see “Obtaining the MI_FPARAM Structure” on page 9-23.
You can also allocate your own MI_FPARAM structure to use instead of this
automatically allocated one. For more information, see “Using a User-Allocated
MI_FPARAM Structure” on page 9-36.

4. Returns a pointer to the function descriptor that identifies the specified cast
function
Subsequent calls to mi_routine_exec() can use this function descriptor to
identify the cast function to execute. For more information, see “Executing the
Routine” on page 9-27.

Tip: The mi_cast_get() and mi_td_cast_get() functions search for cast functions
only in the syscasts system catalog table. Therefore, these functions can locate
only cast functions that the CREATE CAST statement has registered.

Suppose the following CREATE CAST statements register explicit casts between
the DECIMAL and mytype data types in your database:
CREATE CAST (mytype AS DECIMAL(5,3) WITH mt_to_dec);
CREATE CAST (DECIMAL(5,3) AS mytype WITH dec_to_mt);

Chapter 9. Executing User-Defined Routines 9-21

Figure 9-8 uses the mi_cast_get() function to obtain the function descriptor for a
cast function that casts from a DECIMAL data type to the mytype data type.

The mi_cast_get() function allocates and initializes a function descriptor, fdesc2,
for the dec_to_mt() cast function. The src_type and trgt_type variables are
pointers to the type identifiers for the DECIMAL(5,3) and mytype data types,
respectively.

The mi_cast_get() function returns a NULL-valued pointer to indicate several
different conditions. In Figure 9-8, the cast_status variable identifies which of these
conditions has occurred, as follows.

cast_status Value Condition

MI_ERROR_CAST The mi_cast_get() function has not executed successfully.

MI_NO_CAST No cast function exists between the specified source and target
types.

MI_NOP_CAST No cast function is needed between the specified source and
target types.

The switch statement handles the possible status cast_status values from the
mi_cast_get() call.

If you have type descriptors instead of type identifiers for the source and target
types, use the mi_td_cast_get() function instead of mi_cast_get(). For example,

MI_CONNECTION *conn;
MI_FUNC_DESC *fdesc2 = NULL;
MI_TYPEID *src_type, *trgt_type;
mi_char cast_status = 0;
mi_boolean need_cast = MI_TRUE;
mi_integer error;
MI_DATUM *ret_val;
mi_decimal dec_val;
...
/* Get type identifiers for source and target types */
src_type = mi_typestring_to_id(conn, "DECIMAL(5,3)");
trgt_type = mi_typestring_to_id(conn, "mytype");

/* Look up cast function based on type identifiers */
fdesc2 = mi_cast_get(conn, src_type, trgt_type, &cast_status);

switch (cast_status)
{
case MI_ERROR_CAST: /* error in function look-up */

mi_db_error_raise(NULL, MI_EXCEPTION, "mi_cast_get() failed");
break;

case MI_NO_CAST: /* no cast function exists */
mi_db_error_raise(NULL, MI_EXCEPTION, "No cast function found");
break;

case MI_NOP_CAST: /* do not need a cast */
need_cast = MI_FALSE;
break;

}

if (need_cast)
/* Execute the cast function with Fastpath */
...

Figure 9-8. Obtaining a Cast Function for a DECIMAL-to-mytype Cast

9-22 IBM Informix DataBlade API Programmer’s Guide

the casting process might need information about scale and precision for built-in
data types that have this information. A type descriptor stores scale and precision;
a type identifier does not.

You could replace the call to mi_cast_get() in Figure 9-8 with the following call to
the mi_td_cast_get() function:
MI_TYPEID *src_type, *trgt_type;
MI_TYPE_DESC *src_tdesc, *trgt_tdesc;

...
/* Get type descriptors for source and target types */
src_tdesc = mi_type_typedesc(conn, src_type);
trgt_tdesc = mi_type_typedesc(conn, trgt_type);

/* Look up cast function based on type descriptors */
fdesc2 = mi_td_cast_get(conn, src_tdesc, trgt_tdesc,

&cast_status);

The src_tdesc and trgt_tdesc variables are pointers to type descriptors for the
DECIMAL(5,3) and mytype data types, respectively. The mi_type_typedesc()
function creates type descriptors from the type identifiers that src_type and
trgt_type reference.

Client Only

When you call mi_cast_get() or mi_td_cast_get() from a client LIBMI application,
the function allocates a local copy (on the client computer) of the function
descriptor and MI_FPARAM structure. You can use the function-descriptor and
MI_FPARAM accessor functions within a client LIBMI application to access these
local copies.

End of Client Only

Obtaining Information from a Function Descriptor
You can use the following DataBlade API functions to obtain additional
information about the UDR or cast function that is associated with a function
descriptor.

DataBlade API Function Description

mi_fparam_get() Returns a pointer to the MI_FPARAM structure that is
associated with the function descriptor

mi_routine_id_get() Returns the identifier for the UDR or cast function

mi_func_commutator() Determines if the UDR has a commutator function

mi_func_handlesnulls() Determines whether the UDR or cast function handles
NULL arguments

mi_func_isvariant() Determines if the UDR or cast function is a variant
function

mi_func_negator() Determines if the UDR has a negator function

Obtaining the MI_FPARAM Structure
By default, the Fastpath look-up functions allocate an MI_FPARAM structure and
assign a pointer to this structure in the function descriptor. To obtain the
MI_FPARAM structure that is associated with a function descriptor, use the
mi_fparam_get() function. After the call to mi_fparam_get(), you can use the
MI_FPARAM accessor functions to retrieve information from the MI_FPARAM

Chapter 9. Executing User-Defined Routines 9-23

structure, such as argument information (Table 9-1 on page 9-3) and return-value
information (Table 9-2 on page 9-6). For information about these accessor functions
and the information that they can retrieve from an MI_FPARAM structure, see
“Accessing MI_FPARAM Routine-State Information” on page 9-2.

Figure 9-7 on page 9-19 shows the use of the mi_fparam_get() function to obtain
the MI_FPARAM structure that is associated with the numeric_func()
user-defined function. This code fragment uses the mi_fp_nrets() accessor
function to obtain the number of return values for numeric_func() from the
MI_FPARAM structure.

Tip: You can allocate your own MI_FPARAM structure for a UDR that you
execute with the Fastpath interface. For more information, see “Using a
User-Allocated MI_FPARAM Structure” on page 9-36.

Obtaining a Routine Identifier
To obtain the identifier for a UDR or cast function that a function descriptor
describes, use the mi_routine_id_get() function. A routine identifier is a unique
integer that identifies a UDR within the sysprocedures system catalog. This routine
identifier is stored in the procid column of sysprocedures.

The following code fragment obtains the identifier for the numeric_func()
function that accepts INTEGER arguments:
MI_CONNECTION *conn;
MI_FUNC_DESC *fdesc;
mi_integer rout_id;
...
fdesc = mi_routine_get(conn, 0,

"function numeric_func(integer, integer)");
rout_id = mi_routine_id_get(conn, fdesc);

Server Only

If your UDR is executing many other UDRs and it needs to keep several function
descriptors for subsequent execution, it can use the routine identifiers to
distinguish the different function descriptors.

End of Server Only

Determining If a UDR Handles NULL Arguments
Before you execute a UDR with the Fastpath interface, you can determine whether
this routine handles SQL NULL values as arguments. If the current argument
values are SQL NULL values and the UDR does not handle NULL values, you do
not need to call the actual UDR. By default, a C UDR does not handle NULL
values. When the routine manager receives NULL arguments for such a UDR, it
does not even invoke the UDR. It just returns a NULL value.

To determine whether the UDR or cast function that a function descriptor describes
can handle SQL NULL values as arguments, use the mi_func_handlesnulls()
function. This function determines whether the UDR was registered with the
HANDLESNULLS routine modifier of the CREATE FUNCTION or CREATE
PROCEDURE statement (stored in the handlesnulls column of the sysprocedures
system catalog table).

The mi_func_handlesnulls() function indicates whether a UDR can handle SQL
NULL values, as follows.

9-24 IBM Informix DataBlade API Programmer’s Guide

mi_func_handlesnulls()
Return Value Meaning

1 The routine that the function descriptor describes has been
registered with the HANDLESNULLS routine modifier.

2 The routine that the function descriptor describes has not been
registered with the HANDLESNULLS routine modifier.

The code fragment in Figure 9-9 determines whether to invoke the
numeric_func() function based on whether it handles NULL arguments.

If numeric_func() handles NULL arguments, the mi_func_handlesnulls()
function returns 1 and the code fragment invokes numeric_func() with arguments
of NULL and 2. The code fragment uses the mi_fparam_get() and
mi_fp_setargisnull() functions to set the first argument to an SQL NULL value.

If numeric_func() does not handle NULL arguments, the code fragment does not
invoke numeric_func(); instead, it sets the return value of numeric_func() to
zero (0).

Checking for a Variant Function
Before you execute a UDR with the Fastpath interface, you might need to
determine whether this routine is variant. By default, a UDR is a variant function.
A variant function has one of the following characteristics:
v It returns different values when it is invoked with the same arguments.
v It has variant side effects that access some database or variable state.

A nonvariant function always returns the same value when it receives the same
arguments and it has none of the above variant side effects. Therefore, nonvariant
functions cannot contain SQL statements or access external files.

To determine whether a UDR is variant, pass its function descriptor to the
mi_func_isvariant() function. This function determines whether the user-defined
function was registered with the VARIANT or NOT VARIANT routine modifier of
the CREATE FUNCTION or CREATE PROCEDURE statement. If the UDR was

MI_CONNECTION *conn;
MI_FUNC_DESC *fdesc;
MI_FPARAM *fdesc_fparam;
MI_DATUM ret_val;
mi_integer error;
...
fdesc = mi_routine_get(conn, 0,

"function numeric_func(integer, integer)");

/* Determine whether to execute the UDR */
if (mi_func_handlesnulls(fdesc) == 1)

{
fdesc_fparam = mi_fparam_get(conn, fdesc);
mi_fp_setargisnull(fdesc_fparam, 0, MI_TRUE);
ret_val = mi_routine_exec(conn, fdesc, &error, 0, 2);
}

else
/* have numeric_func() return zero if it has NULL args */
ret_val = 0;

Figure 9-9. Handling Fastpath Execution of a UDR with NULL Arguments

Chapter 9. Executing User-Defined Routines 9-25

registered with neither the VARIANT nor NOT VARIANT modifier, the variant
column of sysprocedures indicates that the UDR is variant.

The mi_func_isvariant() function indicates whether a UDR is variant, as follows.

mi_func_isvariant()
Return Value Meaning

1 The routine that the function descriptor describes is variant.

2 The routine that the function descriptor describes is not variant.

For more information about variant and nonvariant functions, see the IBM Informix
User-Defined Routines and Data Types Developer’s Guide.

Checking for a Negator Function
Before you execute a Boolean user-defined function with the Fastpath interface,
you might want to determine whether this function has a negator function. A
negator function evaluates the Boolean NOT condition for its associated Boolean
user-defined function. In many cases, a negator can be more efficient to execute
than the actual Boolean user-defined function.

To determine whether a user-defined function has a negator function, pass its
function descriptor to the mi_func_negator() function. This function determines
whether the user-defined function associated with this function descriptor was
registered with the NEGATOR routine modifier of the CREATE FUNCTION
statement. If so, mi_func_negator() returns the name of the negator function
(from the negator column of the sysprocedures system catalog table). If the
negator is more efficient, you can use this function name to obtain a function
descriptor for the negator function with a Fastpath function such as
mi_routine_get().

For more information about negator functions, see “Creating Negator Functions”
on page 15-60.

Checking for a Commutator Function
Before you execute a user-defined function with the Fastpath interface, you might
want to determine whether this function has a commutator function. If a
user-defined function has either of the following characteristics, it is a commutator
of another user-defined function:
v A user-defined function takes the same arguments as another user-defined

function, but in opposite order.
v A user-defined function returns the same result as another user-defined function.

In many cases, a commutator function can be more efficient to execute than the
actual user-defined function.

To determine whether a user-defined function has a commutator function, pass its
function descriptor to the mi_func_commutator() function. This function
determines whether the user-defined function associated with this function
descriptor was registered with the COMMUTATOR routine modifier of the
CREATE FUNCTION statement. If so, mi_func_commutator() returns the name of
the commutator function (from the commutator column of the sysprocedures
system catalog table). If the commutator is more efficient, you can use this function
name to obtain a function descriptor for the commutator function with a Fastpath
function such as mi_routine_get().

9-26 IBM Informix DataBlade API Programmer’s Guide

For more information about commutator functions, see “Creating Commutator
Functions” on page 15-60.

Executing the Routine
The mi_routine_exec() function can execute any UDR that is registered in the
open database. Therefore, any UDR that you can use in an SQL statement, you can
directly execute with mi_routine_exec(). Once you obtain a function descriptor for
a registered UDR or cast function, the mi_routine_exec() function sends it to the
routine manager for execution. You can use the function descriptor in repeated
calls to mi_routine_exec(). This executed routine runs in the virtual processor
(VP) that was defined for it. This VP is not necessarily the VP in which the calling
UDR runs.

Important: You cannot use the Fastpath interface to execute iterator functions or
SPL functions with the WITH RESUME keywords in their RETURN
statement. However, to simulate iterator functionality, you can call the
same UDR repeatedly, passing it the same MI_FPARAM structure.
Each invocation of the UDR can return one value. For more
information on iterator functions, see “Writing an Iterator Function” on
page 15-3.

The mi_routine_exec() function takes the following steps:
1. Passes the argument values in its argument list to the UDR
2. Returns any return value from the user-defined function to the calling module

Passing in Argument Values
When you call mi_routine_exec(), you provide argument values for the UDR that
Fastpath is to execute. Keep the following points in mind when you create the
argument list for mi_routine_exec():
v If an argument has a default value, you do not need to include its argument

value in this argument list.
v You must pass in the arguments as MI_DATUM values.

Therefore, you must pass in the arguments with the appropriate passing
mechanism for the data type. Most data types are to be passed by reference to
the UDR. For a list of data types that can be passed by value, see Table 2-5 on
page 2-33. For examples of how to pass arguments to a UDR through
mi_routine_exec(), see “Sample mi_routine_exec() Calls” on page 9-28.

v If the UDR can handle NULL arguments, pass a NULL-valued pointer as an
argument to mi_routine_end(), as Figure 9-9 on page 9-25 shows.
If you call a UDR that does not handle NULLs with a NULL argument value,
the routine might return incorrect values.

v If you allocate your own MI_FPARAM structure, pass in a pointer to this
structure as the last argument in the argument list.
For more information, see “Using a User-Allocated MI_FPARAM Structure” on
page 9-36.

The mi_routine_exec() function dispatches the UDR through the routine manager.
Therefore, each UDR gets a call to mi_call() because the routine manager checks
for sufficient space before it executes the UDR.

Receiving the Return Value
When the mi_routine_exec() function executes a user-defined function, it returns
as an MI_DATUM value the return value of the user-defined function that it has

Chapter 9. Executing User-Defined Routines 9-27

executed. This MI_DATUM value contains a value appropriate for the passing
mechanism for the data type. Most data types are to be passed by reference from
the UDR. For a list of data types that can be passed by value, see Table 2-5 on page
2-33.

You can then use C casting to convert this MI_DATUM value to the appropriate
data type. You can obtain information about the return type (such as its data type)
from the MI_FPARAM structure.

If the user-defined function returned an SQL NULL value, mi_routine_exec()
returns a NULL-valued pointer and sets the status argument to MI_OK.

For examples of how to receive a UDR return value from mi_routine_exec(), see
“Sample mi_routine_exec() Calls” on page 9-28. For more information on
MI_DATUM values, see “The MI_DATUM Data Type” on page 2-32.

Sample mi_routine_exec() Calls
The code fragment in Figure 9-10 uses the mi_routine_exec() function to execute
the numeric_func() routine that has INTEGER parameters.

In Figure 9-10, the mi_routine_exec() function uses the fdesc function descriptor
that the mi_routine_get() function obtained for the numeric_func() function that
accepts INTEGER arguments and returns an INTEGER value (Figure 9-7 on page
9-19). The last two arguments to mi_routine_exec() are the integer argument
values for numeric_func(). The ret_val variable is an MI_DATUM value for the
mi_integer data type that the numeric_func() function returns.

Figure 9-10 also tests the return status of mi_routine_exec() to check for the return
value from numeric_func(). If the return value (ret_val) is a NULL-valued
pointer, the code then determines which of the following results this NULL value
indicates:

MI_CONNECTION *conn;
MI_FUNC_DESC *fdesc;
MI_DATUM ret_val;
mi_integer int_ret;
mi_integer error;
...
/* fdesc obtains from code in Figure 9-7 on page 9-19 */
ret_val = mi_routine_exec(conn, fdesc, &error, 1, 2);
if (ret_val == NULL)

{
if (error == MI_OK)

/* numeric_func() returned an SQL NULL value */
...

else /* error in mi_routine_exec() */
{
mi_db_error_raise(NULL, MI_EXCEPTION,

"mi_routine_exec() failed");
return MI_ERROR;
}

}
else /* cast MI_DATUM in ret_val to INTEGER */

{
int_ret = (mi_integer) MI_DATUM;
...

Figure 9-10. Executing the numeric_func() Function with INTEGER Arguments

9-28 IBM Informix DataBlade API Programmer’s Guide

v The numeric_func() function has returned an SQL NULL value: error is
MI_OK.

v The mi_routine_exec() function failed: error is not MI_OK.

Finally, the code fragment in Figure 9-10 casts the MI_DATUM value that
mi_routine_exec() has returned to an mi_integer value. The MI_DATUM
structure contains the actual return value because the routine manager can pass
integer values by value (they can fit into an MI_DATUM structure).

Suppose the call to mi_routine_get() had been calling the version of
numeric_func() that accepted a FLOAT argument and returned a FLOAT value, as
follows:
fdesc = mi_routine_get(conn, 0,

"function numeric_func(float)");

The call to mi_routine_exec() to execute this version of numeric_func() would
require that the argument and the return value be passed by reference, because the
FLOAT data type cannot be stored directly in an MI_DATUM structure.

Figure 9-11 shows a sample call to mi_routine_exec() to execute the
numeric_func(FLOAT) user-defined function. The argument list to
mi_routine_exec() passes the FLOAT value by reference and the returned FLOAT
value is returned by reference.

The following call to mi_routine_exec() executes the DECIMAL-to-mytype cast
function for which Figure 9-8 on page 9-22 obtained the function descriptor, fdesc2:
ret_val = mi_routine_exec(conn, fdesc2, &error, dec_val);
mytype_val = (mytype *)ret_val;

MI_CONNECTION *conn;
MI_FUNC_DESC *fdesc;
MI_DATUM ret_val;
mi_double_precision double_arg1, double_arg2, double_ret;
mi_integer error;
...
fdesc = mi_routine_get(conn, 0, "function numeric_func(float)");
ret_val = mi_routine_exec(conn, fdesc, &error, &double_arg1,

&double_arg2);
if (ret_val == NULL)

{
if (error == MI_OK)

/* numeric_func() returned an SQL NULL value */
...

else /* error in mi_routine_exec() */
{
mi_db_error_raise(NULL, MI_EXCEPTION,

"mi_routine_exec() failed");
return MI_ERROR;
}

}
else /* cast MI_DATUM in ret_val to FLOAT */

{
double_ret = (mi_double_precision *)MI_DATUM;
...

Figure 9-11. Executing the numeric_func() Function with INTEGER Arguments

Chapter 9. Executing User-Defined Routines 9-29

The dec_val argument is an mi_decimal variable that contains the DECIMAL
source data type to cast to the mytype target data type with the dec_to_mt() cast
function. The ret_val variable is an MI_DATUM value of the mytype data type
that contains the casted DECIMAL value.

Executing a Built-in Cast Function
The execution of a built-in cast (system or MI_SYSTEM_CAST) function is different
from the execution of a user-defined cast function. A user-defined cast function
takes only one argument, the data value to be converted, but a built-in cast
function takes three arguments:
v The source value to be cast.
v The length or the maxlength of the target type. If this parameter is NULL, then

the casting function obtains the length from the return type information in
FPARAM. It is best to either pass this value by getting the length or the
maxlength value from the target type or to use the
mi_fp_setretlen(fparam,0,length) function.

v Target type precision value. For the DATETIME, INTERVAL, DECIMAL, or
MONEY data types, the total precision value also includes the scale value. It is
recommended that you set this target type precision value as NULL, and then
use the mi_fp_setretprec() and the mi_fp_setretscale() functions to set the
return value’s precision and scale.

The FPARAM information for the value argument comes from the source type for
the cast. The length and precision fields are both integers so their precision is
always 0. Below is an example of a system cast.

if (cast_status == MI_SYSTEM_CAST)
{

mi_integer precision
=
mi_type_precision(tdTarget);

mi_integer length =
mi_type_maxlength(tdTarget);

mi_integer scale = mi_type_scale(tdTarget);
fd_fparam =

mi_fparam_get(conn,fd);
....
.....
mi_setretlen(fd_fparam,0,length);
mi_setretprec(fd_fparam,0,precision);
mi_setretscale(fd_fparam,0,scale);
retValue = mi_routine_exec(conn, fd, &error,

value,
NULL,NULL);

Reusing a Function Descriptor
Looking up a UDR and creating its function descriptor can be an expensive
operation. If you have multiple UDR invocations calling the same UDR through
Fastpath, you can cache the function descriptor to make it available for reuse
within either of the following scopes:
v Within the current SQL command

If the same UDR executes many times within a single SQL command, you can
cache this function descriptor as part of the MI_FPARAM structure of the UDR.

v Within the session
If the same UDR executes many times within a session, you can cache the
function descriptor in PER_SESSION named memory.

9-30 IBM Informix DataBlade API Programmer’s Guide

When you reuse the function descriptor, you save the overhead of looking up the
UDR and allocating a function descriptor each time you re-execute the same UDR.

Function Descriptors Within an SQL Command: When you pass a public
connection descriptor to one of the Fastpath look-up functions (see Table 9-5 on
page 9-18), the look-up function allocates the function descriptor with a
PER_COMMAND memory duration. Therefore, the function descriptor remains
allocated for the duration of the SQL command that invokes the UDR.

To cache the function descriptor, save its address in the MI_FPARAM structure of
the UDR. The MI_FPARAM structure has a PER_COMMAND duration. Therefore,
storing the function-descriptor address in the user state of MI_FPARAM
guarantees that all UDR invocations within the SQL command can access it. You
can also cache the connection description in MI_FPARAM. When the SQL
command completes, the function descriptor, the connection descriptor, and the
MI_FPARAM structure are deallocated.

The following code fragment for the non_optimal() UDR opens a connection and
obtains the function descriptor for the user-defined function equal() for each
invocation of non_optimal():
mi_integer non_optimal(arg1, arg2, fparam)

mi_integer arg1, arg2;
MI_FPARAM *fparam;

{
MI_CONNECTION *conn=NULL;
MI_FUNC_DESC *func_desc=NULL;
MI_DATUM func_result;
mi_integer func_error;
mi_string *func_sig="equal(int, int)";

/* Open a connection */
if ((conn = mi_open(NULL, NULL, NULL))

== (MI_CONNECTION *)NULL)
{
mi_db_error_raise(NULL, MI_EXCEPTION,

"mi_open() call failed");
return MI_ERROR;
}

/* Get the function descriptor for equal() */
if ((func_desc = mi_routine_get(conn, 0, func_sig))

== (MI_FUNC_DESC *)NULL)
{
mi_db_error_raise(NULL, MI_EXCEPTION,

"mi_routine_get() call failed");
return MI_ERROR;
}

/* Execute the equal() user-defined function */
func_result = mi_routine_exec(conn, func_desc, &func_error,

arg1, arg2);
if (func_error == MI_ERROR)

{
mi_db_error_raise(NULL, MI_EXCEPTION,

"mi_routine_exec() call failed");
return MI_ERROR;
}

...

When you cache the function descriptor in the user state of MI_FPARAM, you do
not have to repeatedly call mi_routine_get() for each invocation of the equal()
function. Instead, you can call mi_routine_get() only in the first invocation of

Chapter 9. Executing User-Defined Routines 9-31

equal(). The following code fragment opens a connection and gets the function
descriptor in the first invocation of the user-defined function equal() only. It
caches these descriptors into the user_state structure, whose address it stores in the
user-state pointer of MI_FPARAM, for subsequent invocations of equal():
typedef struct user_state

{
MI_CONNECTION *conn;
MI_FUNC_DESC *func_desc;
};

mi_integer optimal(arg1, arg2, fparam)
mi_integer arg1, arg2;
MI_FPARAM *fparam;

{
MI_CONNECTION *local_conn = NULL;
MI_FUNC_DESC *local_fdesc = NULL;
mi_string *func_sig="equal(int, int)";
user_state *func_state;

/* Obtain the connection descriptor from MI_FPARAM */
func_state = (user_state *)mi_fp_funcstate(fparam);
if (func_state == NULL) /* first time UDR is called */

{
/* Allocate a user_state structure */
func_state =

(user_state *)mi_dalloc(sizeof(user_state),
PER_COMMAND);

/* Obtain the connection descriptor */
if ((local_conn = mi_open(NULL, NULL, NULL))

== (MI_CONNECTION *)NULL)
{
mi_db_error_raise(NULL, MI_EXCEPTION,

"mi_open() call failed");
return MI_ERROR;
}

/* Obtain the function descriptor for equal() */
if ((local_fdesc =

mi_routine_get(local_conn, 0, func_sig))
== (MI_FUNC_DESC *)NULL)

{
mi_db_error_raise(NULL, MI_EXCEPTION,

"mi_routine_get() call failed");
return MI_ERROR;
}

/* Cache the connection descriptor and function
* descriptor in MI_FPARAM
*/
func_state->conn = local_conn;
func_state->func_desc = local_fdesc;

/* Save the user state in MI_FPARAM */
mi_fp_setfuncstate(fparam, (void *)func_state);
}

/* Execute the equal() user-defined function */
func_result = mi_routine_exec(func_state->conn,

func_state->func_desc, &func_error, arg1, arg2);
if (func_error == MI_ERROR)

{
mi_db_error_raise(NULL, MI_EXCEPTION,

9-32 IBM Informix DataBlade API Programmer’s Guide

"mi_routine_exec() call failed");
return MI_ERROR;
}

...

Function Descriptors Within a Session (Server): When you pass a
session-duration connection descriptor to one of the Fastpath look-up functions
(see Table 9-5 on page 9-18), the look-up function allocates a function descriptor
with a PER_SESSION memory duration, called a session-duration function descriptor.
The session-duration function descriptor remains allocated until the session ends.
In this case, all UDRs within the session can access the cached function descriptor.

Warning: The session-duration connection descriptor and session-duration function
descriptor are advanced features of the DataBlade API. They can
adversely affect your UDR if you use them incorrectly. In addition,
session-duration function descriptors require named memory to store the
pointers to function descriptors. Without named memory, UDRs cannot
share these pointers. Named memory is also an advanced feature of the
DataBlade API. Use a session-duration function descriptor only when a
regular function descriptor cannot perform the task you need done.

The following table summarizes the memory operations for a session-duration
function descriptor in a C UDR.

Memory Duration Memory Operation Function Name

PER_SESSION Constructor mi_cast_get(), mi_func_desc_by_typeid(),
mi_routine_get(), mi_routine_get_by_typeid(),
mi_td_cast_get()

When passed a session-duration connection
descriptor instead of a public connection
descriptor

Destructor mi_routine_end()

When the session ends

Caching a Session-Duration Function Descriptor: To cache the function descriptor,
save its address in PER_SESSION named memory. This location guarantees that all
UDRs within the session can access the function descriptor. A UDR can create a
session-duration function descriptor and cache it as follows:
v Obtain a session-duration connection descriptor with the

mi_get_session_connection() function.
v Allocate named memory with a PER_SESSION memory duration to hold the

address of the session-duration function descriptor.
The UDR must store the pointers to these function descriptors in a
named-memory block so that they can be accessed across different UDRs. Use
the mi_named_alloc() or mi_named_zalloc() function to allocate the
PER_SESSION memory. Other UDRs might also be using the same
session-duration connection. Therefore, you might need to handle concurrency
issues on the named memory.

v Allocate a session-duration function descriptor by passing the session-duration
connection descriptor to one of the Fastpath look-up functions (see Table 9-5 on
page 9-18).

Chapter 9. Executing User-Defined Routines 9-33

When one of these look-up functions receives a session-duration connection
descriptor (instead of a public connection descriptor), it allocates a
session-duration function descriptor.

The following code fragment uses the mi_routine_get() function to obtain a
session-duration function descriptor for the func1() UDR:
MI_CONNECTION *sess_conn;
MI_FUNC_DESC **fdesc;
mi_integer status;

/* Obtain a session-duration connection descriptor */
sess_conn = mi_get_session_connection();

/* Allocate a PER_SESSION named-memory block named
* 'funcptr_blk'. Assign address of this block to fdesc
* pointer.
*/
if ((status = mi_named_alloc((sizeof)(MI_FUNC_DESC *),

"funcptr_blk", PER_SESSION, (void **)&fdesc))
!= MI_OK)

{
/* Unable to allocate named-memory block. Handle error */
}

/* Obtain the session-duration function descriptor for
* func1(). Store function descriptor in named-memory block.
*/
if ((*fdesc = mi_routine_get(sess_conn, 0,

"function func1(int, char)") == (MI_FUNC_DESC *)NULL)
{
/* Unable to obtain function descriptor for func1() UDR.
* Handle error.
*/
}

The preceding code fragment uses the mi_get_session_connection() function to
obtain the session-duration connection descriptor, sess_conn. It then passes
sess_conn to the mi_routine_get() function to obtain a session-duration function
descriptor for func1(). The address of this session-duration function descriptor is
stored in a PER_SESSION named-memory block named funcptr_blk. All UDRs
that need to access the func1() function descriptor can obtain it from funcptr_blk.
For more information, see “Reusing the Session-Duration Function Descriptor” on
page 9-34.

Important: Do not store the address of a session-duration function descriptor in
the MI_FPARAM structure of the UDR. Neither should you allocate
PER_SESSION memory with mi_dalloc() and store the address of this
memory in MI_FPARAM. Both these methods cause the address of the
session-duration function descriptor to be lost because the
MI_FPARAM structure gets freed when the UDR instance completes.
However, you can optimize the named-memory look-up by caching the
address of the named-memory block in MI_FPARAM. This method
requires only one call to mi_named_get() for each instance of the
UDR. The first UDR invocation that needs the information must
allocate the named-memory block and populate the named memory.

Reusing the Session-Duration Function Descriptor: To reuse the session-duration
function descriptor in another UDR, you:
v Get the address of the PER_SESSION named-memory block that contains the

function descriptor.

9-34 IBM Informix DataBlade API Programmer’s Guide

v Extract the address of the session-duration function descriptor from the
named-memory block.

v Pass the session-duration function descriptor to the mi_routine_exec() function
to execute the associated UDR.

The following code fragment shows how other UDRs can access the fdesc function
descriptor until the session ends:
MI_CONNECTION *sess_conn;
MI_FUNC_DESC **fdesc;
mi_integer status, error;
mi_integer i = 55;
mi_char ch = 'c';
MI_DATUM *value;

/* Obtain a public and session-duration connection
* descriptor
*/
conn = mi_open(NULL, NULL, NULL);
sess_conn = mi_get_session_connection();

/* Obtain the address of the 'funcptr_blk' named-memory block,
* which contains the session-duration function descriptor
*/
if ((status = mi_named_get("funcptr_blk", PER_SESSION,

(void **)&fdesc)) != MI_OK)
{
/* Handle error */
...
}

/* Execute the UDR associated with the 'fdesc'
* session-duration function descriptor
*/
value = mi_routine_exec(conn, *fdesc, &error, i, c);

Once you obtain the session-duration function descriptor, the mi_routine_exec()
function can execute the associated UDR. You can specify either a public
connection descriptor or a session-duration connection descriptor to
mi_routine_exec(). If the UDR that the function descriptor references is dropped
while the session-duration function descriptor is still in use, the database server
generates an error when you try to execute the routine.

Deallocating a Session-Duration Function Descriptor: The session-duration function
descriptor has a PER_SESSION memory duration. The function descriptor remains
active until either of the following events occurs:
v The mi_routine_end() function explicitly releases the session-duration function

descriptor.
To explicitly free a session-duration function descriptor, you must free both the
function descriptor with mi_routine_end() and the associated PER_SESSION
named memory with mi_named_free(), as the following code fragment shows:
/* Free resources for the session-duration function
* descriptor
*/
if (mi_routine_end(sess_conn, *fdesc) != MI_OK)

{
/* Handle error */
...
}

mi_named_free("funcptr_blk", PER_SESSION);

v The client application ends the session.

Chapter 9. Executing User-Defined Routines 9-35

The database server automatically frees memory for the session-duration
function descriptor and its PER_SESSION named memory at the end of the
session.

Using a User-Allocated MI_FPARAM Structure
The Fastpath look-up functions (in Table 9-5 on page 9-18) automatically allocate
an MI_FPARAM structure and save a pointer to this structure in the function
descriptor that they allocate. However, there are some cases in which you might
want to allocate your own MI_FPARAM structure for the UDR that Fastpath
executes.

The following DataBlade API functions support use of a user-allocated
MI_FPARAM structure.

DataBlade API Function Description

mi_fparam_allocate() Allocates a new MI_FPARAM structure

mi_fparam_copy() Copies an existing MI_FPARAM structure into a new
MI_FPARAM structure

mi_fparam_free() Frees a user-allocated MI_FPARAM structure

mi_fp_usr_fparam() Determines whether a specified MI_FPARAM structure was
allocated by the database server or by a UDR

Creating a User-Allocated MI_FPARAM Structure
The following DataBlade API functions create a user-allocated MI_FPARAM
structure and return a pointer to this newly allocated structure:
v The mi_fparam_allocate() function allocates an MI_FPARAM structure and

returns a pointer to this newly allocated structure.
This user-allocated MI_FPARAM structure holds the number of arguments that
you specify to mi_fparam_allocate().

v The mi_fparam_copy() function copies an existing MI_FPARAM structure to a
new MI_FPARAM structure that the function allocates.
The user-allocated MI_FPARAM structure holds the same number of arguments
as the MI_FPARAM structure that mi_fparam_copy() copied.

Both these functions are constructor functions for an MI_FPARAM structure. They
allocate the user-allocated MI_FPARAM structure in the current memory duration.
By default, the current memory duration is PER_ROUTINE. For calling a UDR
with Fastpath, the PER_ROUTINE memory duration refers to the duration of the
calling UDR, not the UDR that you call with Fastpath.

If you have changed the current memory duration with the
mi_switch_mem_duration() function, mi_fparam_allocate() or
mi_fparam_copy() uses the current memory duration that
mi_switch_mem_duration() has specified for the MI_FPARAM structure that it
allocates.

If the current memory duration is not acceptable for your use of the MI_FPARAM
structure, call mi_switch_mem_duration() with the desired memory duration
before the call to mi_fparam_allocate() or mi_fparam_copy(). Keep in mind that
when you call mi_switch_mem_duration(), you change the current memory
duration for all subsequent memory allocations, including those made by
mi_alloc().

9-36 IBM Informix DataBlade API Programmer’s Guide

Using a User-Allocated MI_FPARAM Structure (Server)
For C UDRs, one of the primary uses of a user-allocated MI_FPARAM structure is
for data type control for generic routines. If you are calling a generic UDR, one that
handles many possible data types, you can set the arguments in the MI_FPARAM
structure to the specific data type. Possible uses for generic UDRs include over
collection types or over type hierarchies. You can set the MI_FPARAM structure to
accept the correct parameter data types for a particular invocation of the routine.
For example, you could pass an employee_t data type into a UDR that was
defined with the supertype person_t.

Suppose you have a type hierarchy with person_t as the supertype and
employee_t as a subtype of person. The person_udr() UDR might be called with
either the person_t or employee_t data type in the first two arguments. Suppose
person_udr() needs to use Fastpath to execute another UDR, named
person_udr2(), to handle some additional task. The following code fragment
shows how the second and third arguments from person_udr() are passed to
person_udr2():
person_udr(person1, person2, data, fparam)

pers_type *person1;
pers_type *person2;
mi_lvarchar *data;
MI_FPARAM *fparam;

{
MI_TYPEID *pers2_typeid;
MI_FUNC_DESC *my_funcdesc;
MI_FPARAM *my_fparam;
mi_integer *myint_error;

...

pers2_typeid = mi_fp_argtype(fparam, 1);
my_funcdesc = mi_routine_get(conn, 0,

"myfunc(person_t, lvarchar)");
my_fparam = mi_fparam_get(conn, my_funcdesc);
mi_fp_setargtype(my_fparam, 0, pers2_typeid);
mi_routine_exec(conn, my_funcdesc, &myint_error, person2,

data, my_fparam);
...
}

In the preceding code fragment, the first argument of person_udr2() is set to have
the same type as the second argument of person_udr(), based on its
MI_FPARAM structure. In this implementation, person_udr2() needs the actual
data type of the argument, not the supertype.

Tip: Another possible use of a user-allocated MI_FPARAM structure is in
conjunction with per-session function descriptors. Per-session function
descriptors are an advanced feature of the DataBlade API. For more
information, see “Obtaining a Session-Duration Connection Descriptor” on
page 7-13.

Passing a User-Allocated MI_FPARAM Structure
To pass the user-allocated MI_FPARAM structure to the Fastpath interface, specify
it as the last argument of the argument list that you provide to mi_routine_exec().
The following call to mi_routine_exec() executes the numeric_func() UDR (see
Figure 9-7 on page 9-19) and specifies a user-allocated MI_FPARAM structure:
my_fparam = mi_fparam_allocate(2);
...
ret_val = mi_routine_exec(conn, fdesc, &error, 1, 2,

my_fparam);

Chapter 9. Executing User-Defined Routines 9-37

Freeing a User-Allocated MI_FPARAM
The database server automatically deallocates memory for the MI_FPARAM
structures that it allocates for the function descriptor of a UDR. However, the
database server does not deallocate any MI_FPARAM structure that you allocate.
A user-defined MI_FPARAM structure has a memory duration of
PER_COMMAND.

To conserve resources, use the mi_fparam_free() function to deallocate explicitly
the user-defined MI_FPARAM structure once your DataBlade API module no
longer needs it. The mi_fparam_free() function is the destructor function for a
user-defined MI_FPARAM structure. It frees the MI_FPARAM structure and any
resources that are associated with it.

Releasing Routine Resources
A function descriptor for a UDR has a memory duration of PER_COMMAND.
Therefore, a function descriptor remains active until one of the following events
occurs:
v The mi_routine_end() function frees the function descriptor.
v The end of the current SQL command is reached.
v The mi_close() function closes the current connection.

To conserve resources, use the mi_routine_end() function to explicitly deallocate
the function descriptor once your DataBlade API module no longer needs it. The
mi_routine_end() function is the destructor function for a function descriptor. It
frees the function descriptor and any resources that are associated with it.

The following call to mi_routine_end() explicitly releases the resources for the
fdesc function descriptor that the code in Figure 9-7 on page 9-19 and Figure 9-10
on page 9-28 uses:
if (mi_routine_end(conn, fdesc) != MI_OK)

/* handle error */
...

Important: It is recommended that you explicitly deallocate function descriptors
with mi_routine_end() once you no longer need them. Otherwise,
these function descriptors remain until the end of the associated SQL
command.

Server Only

If your UDR accesses any session-duration function descriptors, these descriptors
have a memory duration of PER_SESSION. Therefore, they remain active until the
end of the session. You can explicitly deallocate them with mi_routine_end().

Warning: Session-duration function descriptors are an advanced feature of the
DataBlade API. Do not use session-duration function descriptors unless
regular function descriptors (PER_COMMAND) cannot perform the task
you need done. For more information, see “Obtaining a Session-Duration
Connection Descriptor” on page 7-13.

End of Server Only

9-38 IBM Informix DataBlade API Programmer’s Guide

Obtaining Trigger Execution Information and HDR Database Server
Status

Trigger Information
You can create user-defined routines that are invoked in trigger action statements
to obtain information about the triggers, triggering tables, views, statements, and
the values of rows involved in the trigger actions. To create such a reporting
routine, use the DataBlade APIs described below. Using these DataBlade APIs, you
can write a general purpose user-defined routine that you can use to audit any
table and any trigger event. You can use mi_trigger functions in the triggered
action list of the FOR EACH ROW clause.

DataBlade API Function Purpose

mi_trigger_event() Returns the value derived from an OR operation from
the following events. These values are defined in the
milib.h file.

v MI_TRIGGER_NOT_IN_EVENT

v MI_TRIGGER_INSERT_EVENT

v MI_TRIGGER_DELETE_EVENT

v MI_TRIGGER_UPDATE_EVENT

v MI_TRIGGER_SELECT_EVENT

v MI_TRIGGER_BEFORE_EVENT

v MI_TRIGGER_AFTER_EVENT

v MI_TRIGGER_FOREACH_EVENT

v MI_TRIGGER_INSTEAD_EVENT

v MI_TRIGGER_REMOTE_EVENT

Each bit set in the returned value indicates the type of
trigger currently executing. These definitions are in the
public header file. The returned value is combined with
these values to determine the current event. If the UDR
is not currently executing, it returns
MI_TRIGGER_NOT_IN_EVENT.

mi_trigger_get_new_row() Returns the new row being inserted or the updated
value of the row. It returns NULL when called in other
trigger action statements.

mi_trigger_get_old_row() Returns the row that was deleted or the value of the
row before it was updated. It returns all the columns in
the requested row, not just those columns into which
data was explicitly inserted. Columns with default data
are also returned. It returns NULL when called in other
trigger action statements.

mi_trigger_level() Returns the nesting level of the current trigger. The
values returned begin at 1 and increment by 1 for each
nesting level, with a maximum of 61 levels.

mi_trigger_name() Returns the name of the currently executing trigger in
the format ownername.triggername.

mi_trigger_tabname() Returns the triggering table or view name.

For the syntax of these functions and for more information about their purposes,
see the IBM Informix DataBlade API Function Reference.

Chapter 9. Executing User-Defined Routines 9-39

HDR Status Information
To enable UDRs to recognize a High-Availability Data Replication (HDR)
configuration, you can use the following function.

mi_hdr_status()

The mi_hdr_status() function checks if the current database server is executing in
an HDR environment and returns the following information:
v The server type, such as primary server, SD secondary server, RS secondary

server, or HDR secondary server
v The HDR status
v The ability to update data on secondary servers

For a full description and the syntax of this function, see the IBM Informix
DataBlade API Function Reference.

9-40 IBM Informix DataBlade API Programmer’s Guide

Chapter 10. Handling Exceptions and Events

In This Chapter . 10-1
DataBlade API Event Types . 10-2
Event-Handling Mechanisms . 10-3

Invoking a Callback . 10-3
Registering a Callback . 10-4
Enabling and Disabling a Callback . 10-8
Retrieving a Callback Function . 10-8

Using Default Behavior . 10-11
Default Behavior in a C UDR (Server) . 10-11
Default Behavior in Client LIBMI Applications. 10-11

Callback Functions . 10-12
Declaring a Callback Function . 10-13

Return Value of a Callback Function . 10-13
MI_PROC_CALLBACK Modifier (Windows) . 10-15
Callback-Function Parameters . 10-15

Writing a Callback Function . 10-16
Restrictions on Content . 10-16
Event Information . 10-17

Database Server Exceptions . 10-20
Understanding Database Server Exceptions . 10-20

Warnings and Errors . 10-20
Status Variables . 10-21

Providing Exception Handling . 10-25
Exceptions in a C UDR (Server) . 10-25
Exceptions in a Client LIBMI Application (Client) 10-31

Returning Error Information to the Caller . 10-32
Defining a User-Defined Error Structure . 10-33
Implementing the Callback . 10-33

Handling Multiple Exceptions . 10-38
Raising an Exception . 10-40

Specifying the Connection . 10-40
Specifying the Message . 10-42

State-Transition Events . 10-49
Understanding State-Transition Events . 10-49

Beginning a Transaction . 10-50
Ending a Session (Server). 10-51

Providing State-Transition Handling . 10-51
State Transitions in a C UDR (Server). 10-51
State Transitions in a Client LIBMI Application . 10-55

Client LIBMI Errors . 10-55

In This Chapter
This chapter covers the following topics, which describe events and explain how to
handle them in DataBlade API modules:
v DataBlade API event types
v Event-handling mechanisms
v Callback functions
v Database server exceptions
v State-transition events
v Client LIBMI errors

© Copyright IBM Corp. 1996, 2009 10-1

DataBlade API Event Types
For a DataBlade API module, an event is a communication from IBM Informix
software that indicates the existence of some predefined condition, usually the
occurrence of an exception (warning or error). The DataBlade API represents an
event as one of the enumerated values of the MI_EVENT_TYPE data type.
Table 10-1 shows the MI_EVENT_TYPE values that the DataBlade API supports.

Table 10-1. DataBlade API Event Types

Event Type Occurrence

Where Event Occurs

C UDR
Client LIBMI
Application

MI_Exception Raised when the database server generates an
exception (a warning or an error)

Yes Yes

MI_EVENT_SAVEPOINT Raised after the cursor flushes within an explicit
transaction

Yes No

MI_EVENT_COMMIT_ABORT Raised when the database server reaches the end
of a transaction in which work was done

Yes No

MI_EVENT_END_XACT Raised when the database server reaches the end
of a transaction, or if a hold cursor is involved,
raised only after the hold cursor is closed

It is preferable to register the
MI_EVENT_COMMIT_ABORT callback.

Yes No

MI_EVENT_END_STMT Raised when the database server completes the
execution of the current SQL statement, or for
statements associated with a cursor, raised when
the cursor is closed

Yes No

MI_EVENT_POST_XACT Raised just after the database commits or rolls
back a transaction if work was done in the
transaction or if an MI_EVENT_END_XACT event
was raised

Yes No

MI_EVENT_END_SESSION Raised when the database server reaches the end
of the current session

Yes No

MI_Xact_State_Change Raised when the database server starts or ends a
transaction, whether the transaction contains one
or multiple SQL statements

No Yes

MI_Client_Library_Error Raised when the client LIBMI library encounters
an error

No Yes

Important: MI_All_Events is a deprecated event type and is not listed with the
MI_EVENT_TYPE values. Using the MI_All_Events event type is not
recommended.

The milib.h header file defines the MI_EVENT_TYPE data type and its event
types. The DataBlade API event types can be grouped as follows.

Event Type Event Group More Information

MI_Exception Database server
exceptions

“Database Server Exceptions”
on page 10-20

10-2 IBM Informix DataBlade API Programmer’s Guide

Event Type Event Group More Information

MI_EVENT_SAVEPOINT

MI_EVENT_COMMIT_ABORT

MI_EVENT_POST_XACT

MI_EVENT_END_STMT

MI_EVENT_END_XACT

MI_EVENT_END_SESSION

MI_Xact_State_Change

State-transition events “State-Transition Events” on
page 10-49

MI_Client_Library_Error Client LIBMI errors “Client LIBMI Errors” on page
10-55

Event-Handling Mechanisms
An event-handling mechanism provides a way for one DataBlade API module to
inform another module (or another part of the same module) that an event has
occurred during execution of a function. An event-handling mechanism has two
parts:
v A function that throws an event

A function in a DataBlade API module might encounter a condition that it
cannot handle. Events represent many common conditions (see Table 10-1 on
page 10-2). When a module encounters one of these conditions, it can throw the
associated event to indicate that some event handling needs to be performed.

v A function that catches an event
A special function, called a callback function, is invoked when its associated event
occurs. The callback function can perform the appropriate actions to handle or
recover from this event.

This division of event-handling responsibility enables you to put common
event-handling code for a particular condition in a single location, in a callback
function. Any DataBlade API module that requires the associated event handling
can then register this callback function.

When an event occurs, the DataBlade API performs event handling based on
whether it finds a registered callback that can catch (or handle) the event, as
follows:
v If a registered callback exists for the event, the DataBlade API invokes this

callback.
v If no registered callback exists for the event, the DataBlade API takes the

appropriate default behavior.

Invoking a Callback
A callback function (or just callback) is a function that you write to handle a
particular event. The DataBlade API provides the following functions to handle
invocation of a callback function.

Callback Task DataBlade API Function

Register a callback mi_register_callback(),
mi_unregister_callback()

Chapter 10. Handling Exceptions and Events 10-3

Callback Task DataBlade API Function

Enable a callback mi_enable_callback()

Disable a callback mi_disable_callback()

Retrieve a pointer to the callback function mi_retrieve_callback()

For the DataBlade API to invoke a callback when the associated event occurs, the
following conditions must be met in the DataBlade API module:
v The module must register the callback for the event on the current connection.

The mi_register_callback() function registers a callback for a particular event.
The DataBlade API module that requires the event handling must register the
callback.

v The registered callback must be enabled.
It is possible to disable a registered callback to suspend its invocation. The
mi_enable_callback() function enables a previously disabled callback.

In addition, a module can save a registered callback and restore it at a later time.

Registering a Callback
For a callback to execute when its associated event occurs, you must register it with
the mi_register_callback() function. When you register a callback, you take the
following actions:
v Associate the callback function with the event it is to catch.
v Provide arguments for the callback parameters.

The call to the mi_register_callback() function must occur before the statement for
which you want the exception handling. If you register more than one callback to
handle a particular event, all registered callbacks execute when the event occurs.
The order in which these callbacks execute is not predetermined.

Tip: You do not need to register a callback function in the database with the
CREATE FUNCTION statement. You need to register the callback only with
the mi_register_callback() function.

The mi_register_callback() function requires the following arguments.

Argument Type Description More Information

MI_CONNECTION * A pointer to the connection on
which the callback is to be
registered. It might be NULL
if the connection is undefined,
as is the case with some client
LIBMI errors and
state-transition events.

“Connection Descriptor”
on page 10-6

MI_EVENT_TYPE The event type that the
callback handles

“Types of Callbacks” on
page 10-5

MI_CALLBACK_FUNC A pointer to the callback
function to invoke when the
specified event occurs

“Callback-Function
Pointer” on page 10-7

10-4 IBM Informix DataBlade API Programmer’s Guide

Argument Type Description More Information

void * A pointer to the user data,
which is passed to the
callback function when the
specified event occurs. It can
be used to pass additional
information to and from the
callback.

“Returning Error
Information to the
Caller” on page 10-32

“Managing Memory
Allocations” on page
10-52

MI_CALLBACK_HANDLE * Must be NULL “Callback Handle” on
page 10-7

These arguments initialize many of the parameters of the callback function. For
more information, see Figure 10-2 on page 10-16.

When mi_register_callback() registers the callback, the function returns a callback
handle for the callback. For more information, see “Callback Handle” on page 10-7.

If a callback is not registered when its event occurs, the DataBlade API takes the
default behavior. For more information, see “Using Default Behavior” on page
10-11.

By default, a callback remains registered until the end of the connection. For more
information, see “Registration Duration” on page 10-7.

Types of Callbacks: The second argument of the mi_register_callback() function
is the event type. The DataBlade API supports a type of callback for each event
type. The following table lists the types of callbacks that the DataBlade API
supports and the events that invoke them.

Callback Type Event Type More Information

Exception callback MI_Exception “Database Server
Exceptions” on page
10-20

State-transition callbacks: “State-Transition Events”
on page 10-49

Savepoint callback

Commit-abort callback

Post-transaction callback

End-of-statement callback

End-of-transaction callback

End-of-session callback

State-change callback

MI_EVENT_SAVEPOINT

MI_EVENT_COMMIT_ABORT

MI_EVENT_POST_XACT

MI_EVENT_END_STMT

MI_EVENT_END_XACT

MI_EVENT_END_SESSION

MI_Xact_State_Change

Client LIBMI callback MI_Client_Library_Error “Client LIBMI Errors” on
page 10-55

For a general introduction on how to write a callback function, see “Callback
Functions” on page 10-12.

Chapter 10. Handling Exceptions and Events 10-5

Connection Descriptor: The first argument of the mi_register_callback()
function is a connection descriptor. This connection descriptor can be either a
NULL-valued pointer or a pointer to a valid connection. The valid value depends
on whether the calling module is a C user-defined routine (UDR) or a client LIBMI
application.

Server Only

For a UDR, the connection descriptor must be a NULL-valued pointer when you
register callbacks for the following state-transition events:
v MI_EVENT_SAVEPOINT
v MI_EVENT_COMMIT_ABORT
v MI_EVENT_POST_XACT
v MI_EVENT_END_STMT
v MI_EVENT_END_XACT
v MI_EVENT_END_SESSION

For example, the following call to mi_register_callback() specifies a connection
descriptor of NULL to register the endxact_callback() end-of-transaction callback,
(which “State Transitions in a C UDR (Server)” on page 10-51 defines):
cback_hndl = mi_register_callback(NULL, MI_EVENT_END_XACT,

endxact_callback, NULL, NULL);

The mi_register_callback() function requires a valid connection descriptor for the
MI_Exception event type. For example, the following code fragment registers the
handle_errs() callback:
conn = mi_open(NULL, NULL, NULL);

if (mi_register_callback(conn, MI_Exception, handle_errs,
NULL, NULL) == NULL)

/* handle error */

In the preceding code fragment, the mi_register_callback() function specifies a
valid connection descriptor, which the mi_open() function has initialized.

For the MI_Exception event, you can also provide a NULL-valued pointer as a
connection descriptor. In this case, the DataBlade API looks for callbacks registered
by the function that called the C UDR. If no callback exists for this calling function,
the DataBlade API continues up the calling hierarchy looking for registered
callbacks until it reaches the client application (which initially invoked the UDR).
This hierarchy of callbacks takes advantage of the calling hierarchy.

For further information on how to register an exception callback, see “Exceptions
in a C UDR (Server)” on page 10-25.

End of Server Only

Client Only

For a client LIBMI application, you must provide a valid connection descriptor to
mi_register_callback() to register callbacks for the following event types:
v MI_Exception
v MI_Xact_State_Change
v MI_Client_Library_Error

10-6 IBM Informix DataBlade API Programmer’s Guide

If the connection descriptor is not valid, the mi_register_callback() function raises
an exception.

End of Client Only

Callback-Function Pointer: The third argument of the mi_register_callback()
function is a callback-function pointer. The DataBlade API stores a pointer to the
location of a callback function in the MI_CALLBACK_FUNC data type. In the
mi_register_callback() function, you can specify the callback function in either of
the following ways:
v The name of the function

When you specify the function name as the third argument,
mi_register_callback() creates a callback-function pointer from the function
name.
The sample callback registrations in “Connection Descriptor” on page 10-6 pass
the name of the callback as the third argument of mi_register_callback(). Both
of these registrations are the first time that the callback is registered within the
module.

v A pointer to an MI_CALLBACK_FUNC variable
If mi_register_callback() has already initialized a callback-function pointer, you
can specify this pointer as the third argument of mi_register_callback().
In the code fragment in “Retrieving a Callback Function” on page 10-8, the
second registration of the initial_cback() function passes a pointer to an
MI_CALLBACK_FUNC variable (&initial_cbptr) as the third argument of
mi_register_callback().

Callback Handle: The mi_register_callback() function returns a callback handle,
which accesses a registered callback within a DataBlade API module. A callback
handle has the MI_CALLBACK_HANDLE data type. Use a callback handle to
identify a callback for the following tasks.

Callback Task DataBlade API Function

Enable a callback mi_enable_callback()

Disable a callback mi_disable_callback()

Retrieve a pointer to a callback function mi_retrieve_callback()

Unregister a callback mi_unregister_callback()

Tip: The last argument of the mi_register_callback() function is also a callback
handle, but this argument is reserved for future use and must currently be a
NULL-valued pointer.

Registration Duration: The registration of a callback survives until one of the
following conditions is met:
v The connection on which the callback is registered closes (either the UDR exits

or the mi_close() function executes).
v The DataBlade API calls the callback, which happens for state-transition

callbacks when one of the following events occurs:
– MI_EVENT_SAVEPOINT
– MI_EVENT_COMMIT_ABORT
– MI_EVENT_POST_XACT
– MI_EVENT_END_STMT

Chapter 10. Handling Exceptions and Events 10-7

– MI_EVENT_END_XACT
– MI_EVENT_END_SESSION

v You explicitly unregister the callback with the mi_unregister_callback()
function.

Enabling and Disabling a Callback
A callback must be enabled for the database server to invoke it. The
mi_register_callback() function automatically enables the callback that it registers.
You can explicitly disable a registered callback with the mi_disable_callback()
function. When you disable a callback, you suspend its invocation. You can later
explicitly re-enable it with the mi_enable_callback() function.

Tip: If you want to reuse a callback, it is usually less resource intensive to disable
and re-enable the callback than to unregister and reregister it.

Both the mi_enable_callback() and mi_disable_callback() functions take the
following arguments:
v A connection descriptor

The connection descriptor must have the same value that the
mi_register_callback() statement used when it registered the callback. For more
information, see “Connection Descriptor” on page 10-6.

v An MI_EVENT_TYPE value
This argument identifies the event type that the callback handles. For more
information, see Table 10-1 on page 10-2.

v A callback handle for a registered callback
The mi_register_callback() function returns a callback handle when it
successfully registers a callback. This handle identifies the callback to the
mi_enable_callback() or mi_disable_callback() function. For more
information, see “Callback Handle” on page 10-7.

Retrieving a Callback Function
The mi_retrieve_callback() function returns a callback-function pointer
(MI_CALLBACK_FUNC) when you pass in a callback handle
(MI_CALLBACK_HANDLE). This function is useful when a DataBlade API
module needs to change temporarily the callback that is registered for a particular
event.

To change a registered callback temporarily:

1. Register the initial callback with mi_register_callback().
The mi_register_callback() function returns a callback handle for the callback
that it receives as its third argument.

2. Perform tasks that require the event handling of the initial callback.
3. Obtain the callback-function pointer for the initial callback with

mi_retrieve_callback().
Pass the callback handle for the initial callback as an argument to the
mi_retrieve_callback() function. The function returns a callback-function
pointer, which saves the location of the registered initial callback.
The initial callback should be unregistered.

4. Register the temporary callback with mi_register_callback().
This call to mi_register_callback() overwrites the previous callback that was
registered for the event and returns a callback handle for the temporary
callback.

10-8 IBM Informix DataBlade API Programmer’s Guide

5. Perform the tasks that require the event handling of the temporary callback.
6. Restore the initial callback with mi_register_callback().

Pass the saved callback-function pointer (step 3) of the initial callback as the
third argument of mi_register_callback(). The function returns a new callback
handle for the initial callback.

A temporary callback is useful when C UDRs are nested and some inner function
wants to trap an event type in its own way instead of in the way that the outer
function provides.

For example, suppose the func1() function specifies the func1_callback()
function to handle event_type events and then calls the func2() function, as
follows:
func1(...)
{

MI_CALLBACK_HANDLE *cback_hndl;
...
/* Set callback for event_type event type in func1() */
cback_hndl = mi_register_callback(conn, event_type,

func1_callback, ...)

/* do some stuff */
...
/* call func2(), which "inherits" func1() callback */
func2()
...

}

func2()
{

MI_CALLBACK_HANDLE *cback_hndl;
MI_CALLBACK_FUNC *old_callback;

/* Save func1() callback in 'old_callback' */
if (mi_retrieve_callback(conn, event_type, cback_hndl,

old_callback, NULL) == MI_ERROR)
/* handle error */

/* Set up func2() callback */
mi_unregister_callback(conn, event_type, cback_hndl);
mi_register_callback(conn, event_type, func2_callback, ...);

/* do some other stuff */
...

/* restore func1() callback */
cback_hndl = mi_register_callback(conn, event_type,

old_callback, ...)
...

}

By default, the database server uses the func1_callback() callback to handle any
event_type events that occur during execution of func2(). For the func2() routine
to trap an event_type event in its own way, the routine must save the
func1_callback() callback and then register its own callback for the event_type
event type.

In the preceding code, the func2() function performs the following tasks:
1. Saves the func1_callback() from the func1() function

Chapter 10. Handling Exceptions and Events 10-9

The func2() function passes in the func1_callback() callback handle
(cback_hndl) to the mi_retrieve_callback() function, which puts the
MI_CALLBACK_FUNC handle for func1_callback() into the old_callback
argument.

2. Registers its own callback, func2_callback()

The mi_register_callback() function registers the func2_callback() function
for the event_type event type.

3. Performs its own work
Any event_type event that occurs during this work causes the database server to
invoke the func2_callback() function.

4. Restores the callback of the func1() function
The func2() function uses mi_register_callback() again, this time to restore
the func1_callback() as the callback for the event_type event type.

Server Only

For example, suppose the UDR func1() specifies the initial_cback() function to
handle the MI_Exception event type, but the UDR requires the tmp_cback()
callback for MI_Exception events during a portion of its execution. The following
code fragment shows the use of mi_retrieve_callback() and
mi_register_callback() to save the initial_cback() callback, to use the
tmp_cback() callback temporarily, and then to restore initial_cback():
func1()
{

MI_CONNECTION *conn;
MI_CALLBACK_HANDLE *initial_hndl, *tmp_hndl;
MI_CALLBACK_FUNC initial_cbptr;

conn = mi_open(NULL, NULL, NULL);

/* Register the initial callback (register #1). */
initial_hndl = mi_register(conn, MI_Exception,

initial_cback, NULL, NULL);

/* Do tasks that require initial_cback() as callback. */
...
/* Retrieve the current callback-function pointer on
* this connection into initial_cbptr. Pass in the
* callback handle of initial_cback().
*/
mi_retrieve_callback(conn, MI_Exception, initial_hndl,

&initial_cbptr, NULL);
/* Register the temporary callback (register #2).
* Callback handle for initial callback is overwritten.
*/
tmp_hndl = mi_register_callback(conn, MI_Exception,

tmp_cback, NULL, NULL);

/* Do tasks that require tmp_cback() as callback. */
...
/* Restore initial callback (register #3) */
initial_hndl = mi_register(conn, MI_Exception,

&initial_cbptr, NULL, NULL);

/* Continue with tasks that require initial_cback() as
* callback.
*/
...

}

10-10 IBM Informix DataBlade API Programmer’s Guide

End of Server Only

Using Default Behavior
If no callback is registered for a particular event, the DataBlade API uses its default
behavior when this event occurs. The default event handling depends on whether
the event occurs in a C UDR or in a client LIBMI application.

Default Behavior in a C UDR (Server)
If an exception occurs during the execution of the UDR and the UDR does not
register any callback to handle this event, the DataBlade API takes one of the
following default actions.

Exception Type Default Behavior

MI_Exception An unhandled MI_MESSAGE exception does not halt execution
of the current statement. The DataBlade API passes the
warning to the client application, and processing continues at
the next statement of the UDR.

An unhandled MI_EXCEPTION exception aborts execution of
the current statement in the UDR. The DataBlade API returns
control to the calling module.

MI_Xact_State_Change When received in a UDR, an MI_Xact_State_Change exception
is treated the same as an MI_EVENT_END_XACT event.

If a UDR does not register a callback for the MI_Exception event whose exception
level is MI_EXCEPTION (a runtime error), the DataBlade API aborts the UDR and
returns control to the calling module, which might have been either of the
following modules:
v A client application that called the UDR in an SQL statement
v Another UDR that called the UDR that encountered the runtime error

The calling module might have a registered callback (or some other method) to
handle the exception. To prevent database runtime errors from aborting a UDR,
use the mi_register_callback() function to register callbacks in the UDR. For more
information, see “Exceptions in a C UDR (Server)” on page 10-25.

Important: Programming errors do not cause execution of callbacks. If a UDR
contains a serious programming error (such as a segmentation fault),
execution jumps out of the routine and back to the routine manager.
The routine manager attempts to make an entry in the database server
message log file (online.log by default).

Default Behavior in Client LIBMI Applications
If an exception occurs during the execution of a client LIBMI application and the
application does not register any callback to handle the exception, the client LIBMI
takes one of the following default actions.

Chapter 10. Handling Exceptions and Events 10-11

Exception Type Default Behavior

MI_Exception The client LIBMI executes the system-default callback. The
mi_default_callback() function implements this
system-default callback.

An unhandled MI_MESSAGE does not halt execution of the
current statement. The DataBlade API passes the warning to
the client LIBMI application, and processing continues at the
next statement of this client application.

An unhandled MI_EXCEPTION aborts execution of the
current statement in the client LIBMI application. The
DataBlade API passes the error to the client LIBMI
application and returns control to this client application.

MI_Xact_State_Change An unhandled MI_Xact_State_Change does not halt execution
of the current statement. Processing continues at the next
statement of the client LIBMI application.

MI_Client_Library_Error The client LIBMI executes the system-default callback. The
mi_default_callback() function implements this
system-default callback.

UNIX/Linux Only

On UNIX or Linux, the system-default callback causes the client LIBMI application
to send an error or warning message to stderr in response to an unhandled
exception.

End of UNIX/Linux Only

Windows Only

On Windows, the system-default callback causes the client LIBMI to display an
error or warning message in a Windows message box in response to an unhandled
exception.

End of Windows Only

To prevent the execution of the system-default callback, use the
mi_register_callback() function to register callbacks in the client LIBMI
application. For more information, see “Exceptions in a Client LIBMI Application
(Client)” on page 10-31 and “Client LIBMI Errors” on page 10-55.

Callback Functions
To catch or handle an event, you create a C function called a callback function. In
your DataBlade API module, you can register callback functions to handle recovery
from events. The DataBlade API invokes a registered (and enabled) callback when
the event associated with the callback occurs.

This section describes how to declare a callback function and how to write the
body of a callback function. For more information on how to register callbacks, see
“Registering a Callback” on page 10-4.

10-12 IBM Informix DataBlade API Programmer’s Guide

Declaring a Callback Function
To declare a callback function, you provide the following information:

Windows 2000 Only

v The MI_CALLBACK_STATUS return type

End of Windows 2000 Only

v The optional MI_PROC_CALLBACK modifier
v Parameter declarations

Figure 10-1 shows the declaration of a callback function named myhandler() for
use in a UDR.

Return Value of a Callback Function
When a callback function completes execution, it returns any return value that it
might have to the DataBlade API, which invoked it. The data type of the callback
return value depends on whether a UDR or a client LIBMI application triggered
the callback.

Server Only

When a UDR causes a callback function to be invoked, the DataBlade API expects
the callback-function return value to be one of the enumerated values of the
MI_CALLBACK_STATUS data type. The MI_CALLBACK_STATUS values
indicate how to continue handling the event once the callback completes.
Table 10-2 shows the valid values for the MI_CALLBACK_STATUS return type.

Table 10-2. MI_CALLBACK_STATUS Return-Status Values

Return-Status Values Description

MI_CB_EXC_HANDLED Only an exception callback can return this status value.
When the callback completes, the DataBlade API returns
control to the first statement after the statement that raised
the exception event. This return status indicates that the
callback has successfully handled the event and the
DataBlade API does not need to continue with event
handling. Therefore, the DataBlade API does not abort the
statement that invoked the callback.

Figure 10-1. A Sample Callback Declaration

Chapter 10. Handling Exceptions and Events 10-13

Table 10-2. MI_CALLBACK_STATUS Return-Status Values (continued)

Return-Status Values Description

MI_CB_CONTINUE This is the only status value that a callback other than an
exception callback can return. If a nonexception callback
returns this value, the database server continues processing
after the callback completes.

When an exception callback completes, the DataBlade API
continues to look for registered callbacks that handle the
event:

v Callbacks registered for the same event (on the same
connection) and at the same level in the calling sequence

v Callbacks registered for the same event (on the same
connection) in a higher level of the calling sequence

When an exception callback returns this value to the
highest-level function in a calling sequence and no other
registered callback exists, the DataBlade API aborts the UDR
and any current transaction.

The milib.h header file defines MI_CALLBACK_STATUS and its return-status
values.

The end-of-transaction callback on page 10-51 shows use of the
MI_CB_CONTINUE status. For information on the use of these return codes in
exception callbacks, see “Determining How to Handle the Exception” on page
10-29.

End of Server Only

Client Only

When a client LIBMI application causes a callback to be invoked, the DataBlade
API does not expect the callback to return a status value. The client LIBMI ignores
any return value from a callback that a client LIBMI application registers.
Therefore, any such callbacks can return void.

In effect, the client LIBMI always assumes a MI_CB_EXC_HANDLED return status
from a callback. The client LIBMI returns control to the first statement after the one
that threw the event. The client LIBMI application must include code that decides
how to proceed based on the failure.

If a callback returns MI_CB_CONTINUE, the client LIBMI ignores the return code
because this return value does not have a meaning within a client application.
Within a C UDR, you can pass an exception up to a higher level in the calling
sequence because the routine executes in the context of the database server.
However, a client LIBMI application does not execute in the context of the database
server. Therefore, it cannot assume this general exception-handling mechanism.

For an example of a callback that a client LIBMI application registers, see the
clntexcpt_callback() function in “Returning Error Information to the Caller” on
page 10-32.

End of Client Only

10-14 IBM Informix DataBlade API Programmer’s Guide

MI_PROC_CALLBACK Modifier (Windows)
The MI_PROC_CALLBACK modifier on a callback definition is required for
callbacks that execute with Windows applications. For all other operating systems,
this modifier is optional. To make callbacks portable between operating systems,
include the MI_PROC_CALLBACK modifier in your callback declaration.

The MI_PROC_CALLBACK modifier follows the callback return type and precedes
the callback name. Figure 10-1 on page 10-13 shows the location of the
MI_PROC_CALLBACK modifier in the declaration of the myhandler()
callback.1fs

Callback-Function Parameters
A callback function takes the following parameters.

Argument Type Description
Initialized by
mi_register_callback()?

MI_EVENT_TYPE The event type that triggers the
callback

Yes

MI_CONNECTION * A pointer to the connection on
which the event occurred

If the connection is undefined, it
might be NULL, as is the case with
some client-library errors and
state-transition events.

Yes

void * A pointer to an event-type structure
that holds event information

For example, if the event is an
MI_Exception event, the DataBlade
API passes in an
MI_ERROR_DESC structure,
which holds the exception level
and the message text.

No

The DataBlade API sets this
pointer to the associated
event structure when it
invokes the callback.

void * A pointer to any user data, which
you can use to pass any additional
information to and from the
callback

Yes

When you register a callback with the mi_register_callback() function, you
provide arguments for most parameters of the callback. Figure 10-2 shows how a
call to mi_register_callback() provides the arguments that initialize the
parameters of the myhandler() callback.

Chapter 10. Handling Exceptions and Events 10-15

The only callback parameter that the mi_register_callback() call does not initialize
is the event-type structure (the event_data parameter in Figure 10-2). For more
information about event-type structures, see “Event Information” on page 10-17.

Writing a Callback Function
Within the body of a callback function, you provide the code that handles a
particular event or events. Only certain tasks are valid within a callback. When a
callback function is invoked for an event, the DataBlade API passes information
about the event to the callback.

Restrictions on Content
A callback can call a DataBlade API function to perform its task. Callbacks often
clean up resources with such functions as mi_free(), mi_close(), and
mi_lo_spec_free(). The MI_EXCEPTION, MI_END_SESSION, and
MI_EVENT_POST_XACT callbacks cannot perform the following tasks:
v Execute SQL statements
v Raise database server exceptions
v Register other callbacks

Server Only

The following types of callbacks are not subject to the same restrictions as other
callbacks:
v Commit-abort callback
v End-of-statement callback
v End-of-transaction callback
v Savepoint callback

Specifically, these callbacks can raise an exception and they can register their own
exception callbacks. If an end-of-transaction or end-of-statement callback issues a
call to a DataBlade API function that generates an exception, the action taken
depends on whether the callback has registered its own exception callback, as
follows:
v If the callback has not registered any exception callback, any failure of a

DataBlade API function results in the return of the MI_ERROR or NULL failure
code from the DataBlade API function.
The callback must check for possible failure and take any necessary
exception-handling tasks.

Figure 10-2. Initializing a Callback

10-16 IBM Informix DataBlade API Programmer’s Guide

v If the callback has registered an exception callback, control is thrown to the
exception callback.
For information on how an end-of-event callback can handle exceptions, see
“State Transitions in a C UDR (Server)” on page 10-51.

v An MI_EVENT_POST_XACT callback cannot raise an error because the
transaction has already been committed or rolled back.

End of Server Only

Event Information
When a callback function is invoked for a particular event, the DataBlade API
passes an event-type structure as the third parameter of this function. This
event-type structure contains information about the event that triggered the
callback. The DataBlade API stores event information in one of the following
structures based on the event type:
v Exceptions and errors are stored in error descriptors.
v State transitions are stored in transition descriptors.

The following table shows the event types and the corresponding event-type
structures that describe them.

Event-Type Structure Event Type

Error descriptor
(MI_ERROR_DESC)

MI_Exception
MI_Client_Library_Error

Transition descriptor
(MI_TRANSITION_DESC)

MI_EVENT_SAVEPOINT
MI_EVENT_COMMIT_ABORT
MI_EVENT_POST_XACT
MI_EVENT_END_STMT
MI_EVENT_END_XACT
MI_EVENT_END_SESSION
MI_Xact_State_Change

The milib.h header file defines the MI_ERROR_DESC and
MI_TRANSITION_DESC structures.

Using an Error Descriptor: The DataBlade API stores information about
exceptions and errors in an error descriptor. An error descriptor is an
MI_ERROR_DESC structure. It holds information for the MI_Exception and
MI_Client_Library_Error event types. The following table summarizes the memory
operations for an error descriptor.

Memory Duration Memory Operation Function Name

Current memory duration Constructor mi_error_desc_copy()

Destructor mi_error_desc_destroy()

When an MI_Exception or MI_Client_Library_Error event occurs, the DataBlade
API invokes the appropriate callback. To this callback, the DataBlade API passes an
initialized error descriptor as the third callback argument. The error descriptor
contains information about the MI_Exception or MI_Client_Library_Error event.
Within the callback, use the accessor functions in Table 10-3 on page 10-18 to
obtain the error information from the error descriptor.

Chapter 10. Handling Exceptions and Events 10-17

Accessing an Error Descriptor: The error descriptor is an opaque structure. You
must use the DataBlade API functions in Table 10-3 to access information within it.

Table 10-3. Accessor Functions for an Error Descriptor

Error-Descriptor
Information Description

DataBlade API
Function

Error or warning
message

The text of the error or warning
message

mi_errmsg()

Exception or error
level

An MI_Exception event has an exception
level that indicates the type of exception
that has occurred: a warning
(MI_WARNING) or a runtime error
(MI_EXCEPTION)

An MI_Client_Library_Error event has
an error level to indicate the type of
error that has occurred. For a list of
possible client LIBMI error levels, see
“Client LIBMI Errors” on page 10-55.

mi_error_level()

SQLSTATE value A five-character status value that is
compliant with ANSI and X/Open
standards. For more information, see
“SQLSTATE Status Value” on page
10-22.

mi_error_sql_state()

SQLCODE value An Informix-specific status value that
contains an integer value. For more
information, see “SQLCODE Status
Value” on page 10-24.

mi_error_sqlcode()

Each of the DataBlade API functions in Table 10-3 requires that you pass in a
pointer to a valid error descriptor.

Important: The MI_ERROR_DESC structure is an opaque structure to DataBlade
API modules. Do not access its internal fields directly. The internal
structure of MI_ERROR_DESC may change in future releases.
Therefore, to create portable code, always use the accessor functions in
Table 10-3 to obtain values from this structure.

For a sample callback that obtains information from an error descriptor, see the
excpt_callback2() function in “Associating with a Callback” on page 10-33.

Creating a Copy of an Error Descriptor: The DataBlade API passes the error
descriptor as an argument to the callback. Therefore, the DataBlade API allocates
memory for the error descriptor when it invokes the callback and deallocates this
memory when the callback exits. To preserve the error information for the calling
routine, you can create a user copy of the error descriptor within the callback.

The following DataBlade API functions facilitate an error-descriptor copy.

DataBlade API Function Description

mi_error_desc_copy() Allocates memory for a user copy of a specified error
descriptor and returns a pointer to this user copy

mi_error_desc_is_copy() Determines whether the specified error descriptor is a user
copy

10-18 IBM Informix DataBlade API Programmer’s Guide

DataBlade API Function Description

mi_error_desc_destroy() Frees memory for a specified user copy of an error
descriptor (which was allocated with mi_error_desc_copy())

Using a Transition Descriptor: The transition descriptor, MI_TRANSITION_DESC,
stores information about a transition in the processing state of the database server.
It holds information for all state-transition events:

Server Only

v MI_EVENT_SAVEPOINT
v MI_EVENT_COMMIT_ABORT
v MI_EVENT_POST_XACT
v MI_EVENT_END_STMT
v MI_EVENT_END_XACT
v MI_EVENT_END_SESSION

End of Server Only

v MI_Xact_State_Change

The milib.h header file defines the MI_TRANSITION_DESC structure.

When a state transition event occurs, the DataBlade API invokes the appropriate
callback. To this callback, the DataBlade API passes an initialized transition
descriptor as the third callback argument. The transition descriptor contains the
transition type that initiated the state-transition event. To obtain the transition type
from the descriptor, use the mi_transition_type() function. This function returns a
value of type MI_TRANSITION_TYPE to indicate the transition type of the event
that occurred. For a list of valid MI_TRANSITION_TYPE values, see
“Understanding State-Transition Events” on page 10-49.

Important: The MI_TRANSITION_DESC structure is an opaque structure to
DataBlade API modules. Do not access its internal fields directly. The
internal structure of MI_TRANSITION_DESC may change in future
releases. Therefore, to create portable code, always use the
mi_transition_type() accessor function to obtain the transition type
from this structure.

The following code fragment uses the mi_transition_type() function to determine
which action to take when it receives a state-transition event:
MI_TRANSITION_DESC *event_data;
MI_TRANSITION_TYPE trans_type;
mi_string s[30];
...
trans_type = mi_transition_type(event_data);
switch (trans_type)

{
case MI_BEGIN: /* client LIBMI apps only */

s = "Transaction started.";
break;

case MI_NORMAL_END:
s = "Successful event";
break;

case MI_ABORT_END:
s = "Event failed and rolled back,";

Chapter 10. Handling Exceptions and Events 10-19

break;
default:

s = "Unknown transition type";
break;

}
fprintf(stderr, "%s\n", s);

Database Server Exceptions
When the database server or a UDR raises a database server exception, the
DataBlade API invokes any callbacks that are registered for the exception. This
section provides information about exception handling in DataBlade API modules:
v An explanation of database server exceptions
v How to handle a database server exception in a UDR and in a client LIBMI

application
v How to return error information to the calling code
v How to handle errors that generate multiple exceptions
v How to explicitly raise a database server exception

Understanding Database Server Exceptions
A database server exception is an unexpected condition that occurs within the
database server. A database server exception can occur in any of the following
tasks:
v Within an SQL statement

The mi_exec() and mi_exec_prepared_statement() functions execute SQL
statements. An exception can occur when the database server executes an SQL
statement.

v Within a UDR
The mi_routine_exec() function executes UDRs through the Fastpath interface.
An exception can occur when this UDR executes.

v By the DataBlade API function, mi_db_error_raise()

The mi_db_error_raise() function can explicitly raise a database server
exception within a DataBlade API module. For more information, see “Raising
an Exception” on page 10-40.

v Within the execution of some other DataBlade API function
Other functions in the DataBlade API might raise exceptions when they execute.

When the database server encounters a database server exception, it raises the
MI_Exception event.

Warnings and Errors
The MI_Exception event indicates which of the following status conditions has
caused the database server exception:
v A warning is a condition that does not prevent successful execution of an SQL

statement; however, the effect of the statement is limited and the statement
might not produce the expected results.

v A runtime error (or failure) indicates that the SQL statement or DataBlade API
function did not execute successfully and it made no change to the database.
Runtime errors can occur at the following levels:
– Hardware errors include controller failure, bad sector on disk, and so on.
– Kernel errors include file-table overflow, insufficient semaphores, and so on.

10-20 IBM Informix DataBlade API Programmer’s Guide

– Access-method errors include duplicated index keys, SQL null inserted into
non-null columns, and so on.

– Parser errors include invalid syntax, unknown objects, invalid statements, and
so on.

– DataBlade API library errors are usually caused by invalid arguments.

The following list describes the most common DataBlade API library errors:
v The DataBlade API might not have been initialized.
v One of the DataBlade API initialization functions must be the first DataBlade

API call in the module. For more information, see “Initializing the DataBlade
API” on page 7-17.

v A function that passes a connection descriptor (MI_CONNECTION) passes an
invalid connection, one that was closed or dropped.

v A function that passes a row descriptor (MI_ROW_DESC) can pass an invalid
row descriptor.

v A function that passes a row structure (MI_ROW) passes an invalid row.
v A function that passes a column name passes a column name that does not exist

in the object or objects being accessed.
v A function that passes a column number passes a column number that is out of

range (greater or less than the number of columns in the object).
v A function that passes an event type (MI_EVENT_TYPE) passes a nonexistent

event type.
v A function that passes a save set (MI_SAVE_SET) passes an invalid save set.
v A function that passes a buffer passes a null buffer or a buffer that is too small.
v A function that passes a pointer passes an invalid pointer.
v If the pointer_checks_enabled field of the parameter information structure is set,

a pointer might not be within the process heap space.

Potential exceptions other than these types of common invalid arguments are
mentioned in the Return Values section of the individual function descriptions in
the IBM Informix DataBlade API Function Reference.

An error descriptor for an MI_Exception event indicates the status condition of the
event with one of the following exception levels.

Status Condition Exception Level Description

Warning MI_MESSAGE Raised when the database server generates a
warning or an informational message. The
database server passes a warning back to the
client application; it is up to the client to display
the warning message.

Runtime error
(failure)

MI_EXCEPTION Raised when the database server generates a
runtime error.

The mi_error_level() function returns the exception level from an error descriptor
for the MI_Exception event.

Status Variables
To identify the particular cause of an exception, the database server sets the
following status variables:

Chapter 10. Handling Exceptions and Events 10-21

v The SQLSTATE status variable holds a five-character code that is compliant
with ANSI and X/Open standards.

v The SQLCODE status variable holds an integer value that is Informix specific.

SQLSTATE Status Value: SQLSTATE is a five-character string that the database
server sets after it executes each DataBlade API function. The value of SQLSTATE
indicates the status of the function execution.

American National Standards Institute

The SQLSTATE status variable is compliant with ANSI and X/Open standards.

End of American National Standards Institute

This five-character code consists of a two-character class code and a three-character
subclass code. In Figure 10-3, "IX" is the class code and "000" is the subclass code.
The SQLSTATE value "IX000" indicates that an Informix-specific error has
occurred.

SQLSTATE can contain only digits and capital letters. The class code is unique but
the subclass code is not. The meaning of the subclass code depends on the
associated class code. The initial character of the class code indicates the source of
the exception, as Table 10-4 summarizes.

Table 10-4. Initial SQLSTATE Class-Code Values

Initial Class-Code
Value Source of Exception Code Notes

0 to 4
A to H

X/Open and ANSI/ISO The associated subclass codes also begin in
the range 0 to 4 or A to H.

5 to 9 Defined by the
implementation

Subclass codes are also defined by the
implementation.

I to Z Dynamic Server,
a DataBlade module,
a C UDR,
a client LIBMI application

Any of the Informix-specific error
messages (those that the X/Open or
ANSI/ISO reserved range does not
support) have an initial class-code value of
″I″ (SQLSTATE value of ″IX000″).

If a UDR returns an error message that
this routine has defined, the initial
class-code value is ″U″ (SQLSTATE value
of ″U0001″).

Other SQLSTATE class-code values can be
defined by the implementation.

After the database server executes a DataBlade API function, it sets SQLSTATE to
indicate one of the status conditions, as Table 10-5 shows.

Figure 10-3. The Structure of the SQLSTATE Code with the Value ″IX000″

10-22 IBM Informix DataBlade API Programmer’s Guide

Table 10-5. Status Conditions in SQLSTATE

Status
Condition

SQLSTATE Value

Class Code Subclass Code

Success ″00″ ″000″

Success, but no rows
found

″02″ ″000″

Success, but warnings
generated

″01″ For ANSI and X/Open warnings:

"000" to "006"

For Informix-specific warnings:

"I01" to "I11"

For literal warnings that DataBlade API
modules raise:

"U01"

For custom warnings that DataBlade API
modules define: other subclass values, as
defined in the syserrors system catalog
table

Failure, runtime error
generated

For ANSI and X/Open errors: > ″02″

For Informix-specific errors: ″IX″

For literal errors that DataBlade API modules
raise: ″U0″

For custom errors that DataBlade API modules
define: other class codes, as defined in the
syserrors system catalog table

Error-specific value

For a list of reserved ANSI and X/Open values for SQLSTATE, see the description
of the GET DIAGNOSTICS statement in the IBM Informix Guide to SQL: Syntax. For
more information on DataBlade API literal exceptions (″U0001″ and ″01U01″), see
“Passing Literal Messages” on page 10-42. For more information on DataBlade API
custom exceptions, see “Raising Custom Messages” on page 10-43.

Identifying Warnings with SQLSTATE: When the database server executes a
DataBlade API function successfully but encounters a warning condition, it takes
the following actions:
v Sets the class code of SQLSTATE to "01"

v Sets the subclass code of SQLSTATE to a unique value that indicates the cause
of the warning (see Table 10-5 on page 10-23)

v Throws an MI_Exception event with an MI_MESSAGE exception level

Identifying Runtime Errors with SQLSTATE: When an SQL statement results in a
runtime error, the database server takes the following actions:
v Sets the class code of SQLSTATE to a value greater than "02" (see Table 10-5 on

page 10-23)
v Sets the subclass code of SQLSTATE to a unique value that indicates the cause

of the error
v Raises an MI_Exception event with an MI_EXCEPTION exception level

Chapter 10. Handling Exceptions and Events 10-23

The actual class and subclass codes of SQLSTATE identify the particular error. For
Informix-specific errors (SQLSTATE is ″IX000″), you can also check the value of
the SQLCODE variable to identify the error.

Tip: The database server sets SQLSTATE to "02000" (class = "02") when a
SELECT or FETCH statement encounters NOT FOUND (or END OF DATA).
However, the NOT FOUND condition does not cause a database server
exception. Therefore, you do not use SQLSTATE to detect this condition from
within a callback of a DataBlade API module. Instead, your DataBlade API
module can check for the MI_NO_MORE_RESULTS return code from the
mi_get_result() function. For more information, see “Retrieving Query Data”
on page 8-39.

SQLCODE Status Value: Each SQLSTATE value also has an associated
Informix-specific status code. The database server saves this Informix-specific
status code in the SQLCODE status variable. The SQLCODE variable is an integer
that indicates whether the SQL statement succeeded or failed.

When the database server executes an SQL statement, the database server
automatically updates the SQLCODE variable. After an SQL statement executes,
the SQLCODE variable can indicate one of the status conditions that Table 10-6
shows.

Table 10-6. Status Conditions In SQLCODE

Status Condition SQLCODE Value

Success 0

Success, but no rows found 100

Success, but warnings generated not available directly from SQLCODE

Failure, runtime error generated < 0

Identifying Warnings with SQLCODE: When the database server executes an SQL
statement successfully but encounters a warning condition, it takes the following
actions:
v Sets the SQLSTATE variable to a five-character warning value
v Sets the SQLCODE variable to zero (success)
v Raises the MI_Exception event with the MI_MESSAGE exception level

To identify warnings, examine the value of SQLSTATE. The SQLCODE value does
not indicate the cause of a warning. For more information, see “Identifying
Warnings with SQLSTATE” on page 10-23.

Identifying Runtime Errors with SQLCODE: When an SQL statement results in a
runtime error, the database server takes the following actions:
v Sets SQLCODE to a negative value
v Raises an MI_Exception event with an MI_EXCEPTION exception level

The actual number in SQLCODE identifies the particular Informix runtime error.
The finderr or Error Messages utility lists error messages and describes corrective
actions.

Tip: The database server sets SQLCODE to 100 when a SELECT or FETCH
statement encounters NOT FOUND (or END OF DATA). However, the NOT
FOUND condition does not cause a database server exception. Therefore, you

10-24 IBM Informix DataBlade API Programmer’s Guide

do not use SQLCODE to detect this condition from within a callback of a
DataBlade API module. Instead, your DataBlade API module can check for
the MI_NO_MORE_RESULTS return code from the mi_get_result() function.
For more information, see “Retrieving Query Data” on page 8-39.

Providing Exception Handling
By default, the DataBlade API aborts the current statement when the statement
generates a database runtime error and continues execution when the statement
generates a database warning. (For more information, see “Using Default
Behavior” on page 10-11.)

To override the default exception handling, you must take the following actions:
1. Write a callback function that handles the MI_Exception event.

To handle an MI_Exception event, you can write either of the following types
of callback functions:
v Exception callback, which executes only when the MI_Exception event occurs
v All-events callback, which executes when many events occur and can include

handling for the MI_Exception event
Within a callback, the DataBlade API function mi_error_level() returns the
exception level for the database server exception. You can also use
mi_error_sql_state(), mi_error_sqlcode(), and mi_errmsg() to get more
details about the database server exception from its error descriptor. For more
information, see “Accessing an Error Descriptor” on page 10-18.

2. Register the callback that handles the MI_Exception event in the DataBlade API
module that needs the exception handling.
Use the mi_register_callback() function to register callback functions. After
you register a callback that handles the MI_Exception event, the DataBlade API
invokes this callback instead of performing its default exception handling for
the event.

Important: Exception callbacks are subject to some restrictions on what tasks they
can perform. For more information, see “Writing a Callback Function”
on page 10-16.

A database server exception triggers an exception callback only if the DataBlade
API module has registered (and enabled) a callback that handles the MI_Exception
event. The way that your DataBlade API module handles a database server
exception depends on whether the DataBlade API module is a UDR or a client
LIBMI application.

Exceptions in a C UDR (Server)
If a C UDR has not registered an exception callback on the current connection, the
DataBlade API takes a default action based on the exception level of the
MI_Exception event. For more information, see “Default Behavior in a C UDR
(Server)” on page 10-11.

For example, in Figure 10-4, the return statement never executes when a runtime
error occurs in the SQL statement that mi_exec() executes.

Chapter 10. Handling Exceptions and Events 10-25

When an exception with an MI_EXCEPTION exception level occurs, the DataBlade
API aborts the mi_exec() call and the no_exception_handling() routine. The
database server returns control to the calling module.

To provide event handling for database server exceptions within a UDR, perform
the following tasks:
v Determine if a callback can handle the runtime error.
v In the UDR, register a callback that handles the MI_Exception event.
v In the callback function, return a value that determines how to continue the

exception handling once the callback completes.

Handling Errors from DataBlade API Functions: Function descriptions in the
IBM Informix DataBlade API Function Reference contain a section titled “Return
Values.” This section lists the possible return values for the associated DataBlade
API function. However, whether the calling code actually receives a return value
depends on whether the DataBlade API function throws an MI_Exception event
when it encounters a runtime error. The DataBlade API functions can be divided
into the following subsets based on their response to a database server exception:
v Functions that throw an MI_Exception event
v Functions that do not throw an MI_Exception event but provide either

MI_ERROR or a NULL-valued pointer when a database server exception occurs
v Functions that can raise an error when a database server exception occurs

Functions That Throw MI_Exception: Most DataBlade API functions throw an
MI_Exception event when they encounter a database server exception. For these
functions, you can register an exception callback to gain control after a database
server exception occurs. Whether the calling code receives a return value from the
DataBlade API function depends on how the registered callback handles the
MI_Exception event.

Tip: Even if you expect a DataBlade API function to throw an error, the exception
handling might possibly ignore it. Therefore, it is recommended that you
always check the return value of each DataBlade API function for possible
failure.

Functions That Return MI_ERROR or NULL-Valued Pointer: The DataBlade API
functions that do not throw an MI_Exception event when they encounter a
database server exception include the following functions:

mi_integer
no_exception_handling(flag)

mi_integer flag;
{

MI_CONNECTION *conn;

conn = mi_open(NULL, NULL, NULL);
mi_exec(conn, "bad SQL statement", MI_QUERY_NORMAL);

/* Not reached; this function aborts on an exception. */
...

return 1;
}

Figure 10-4. A C UDR with Default Exception Handling

10-26 IBM Informix DataBlade API Programmer’s Guide

v DataBlade API file-access functions: mi_file_allocate(), mi_file_close(),
mi_file_errno(), mi_file_open(), mi_file_read(), mi_file_seek(),
mi_file_sync(), mi_file_tell(), mi_file_to_file(), mi_file_unlink(), and
mi_file_write()

v Memory-allocation functions: mi_alloc(), mi_dalloc(), mi_realloc(), and
mi_zalloc()

When one of the preceding DataBlade API functions encounters an exception, the
function does not cause any callbacks registered for the MI_Exception event to be
invoked. Instead, these functions return one of the following values to the calling
code to indicate failure:
v MI_ERROR, if the function returns an integer value
v NULL-valued pointer, if the function returns a pointer

The calling code must check the return value of the DataBlade API function and
take the appropriate actions. Uncorrected error conditions might lead to worse
failures later in processing. For conditions that cannot be corrected, the calling code
can provide an informational message to notify the user about what has occurred.
The calling code can use the mi_db_error_raise() function to perform the
following tasks:
v Explicitly raise an MI_Exception event
v Send a message to the client application

Registering an Exception Callback: When the database server or a UDR raises a
database server exception, the database server invokes any callbacks that handle
the MI_Exception event and that the UDR has registered (and enabled) on the
current connection. Use the mi_register_callback() function to register such a
callback. For general information about mi_register_callback(), see “Registering a
Callback” on page 10-4.

The code fragment in Figure 10-5 contains the same mi_exec() call as Figure 10-4
on page 10-26. However, this UDR, has_exception_handling(), registers the
excpt_callback() function as an exception callback.

Chapter 10. Handling Exceptions and Events 10-27

When the database server exception occurs in the SQL statement that mi_exec()
executes, mi_exec() returns MI_ERROR and the if statement handles the
exception. For a sample implementation of the excpt_callback() callback function,
see Figure 10-7 on page 10-30.

For the excpt_callback() function to be invoked for database exceptions that occur
on the current connection, you must specify the connection descriptor of the
current connection when you register excpt_callback(). In Figure 10-5,
mi_register_callback() passes the conn connection descriptor, which the
mi_open() call has obtained, when it registers excpt_callback().

The mi_open() function can be resource intensive. If your UDR is likely to be
executed many times in the context of a single SQL statement, you might want to
cache the connection descriptor from the initial mi_open() call in an
MI_FPARAM structure. After you save this descriptor, you can reuse it in
subsequent invocations of the UDR.

The C UDR in Figure 10-6, has_exception_handling2(), saves the connection
descriptor in its MI_FPARAM structure the first time it is called and obtains the
saved connection descriptor on subsequent calls.

#include <mi.h>

mi_integer
has_exception_handling(flag)

mi_integer flag;
{

static MI_CALLBACK_STATUS MI_PROC_CALLBACK
excpt_callback();

MI_CONNECTION *conn = NULL;
MI_CALLBACK_HANDLE *cback_hndl;

/* Obtain the connection descriptor */
conn = mi_open(NULL, NULL, NULL);

/* Register the 'excpt_callback' function as an
** exception callback */
cback_hndl = mi_register_callback(conn, MI_Exception,

excpt_callback, NULL, NULL);

/* Generate a syntax error that excpt_callback() will
** catch */
ret = mi_exec(conn, "bad SQL statement",

MI_QUERY_NORMAL);
if (ret == MI_ERROR)

/* handle exception */
...

}

Figure 10-5. A C UDR with Exception Handling

10-28 IBM Informix DataBlade API Programmer’s Guide

For more information on the MI_FPARAM structure and the user state, see
“Saving a User State” on page 9-8.

In the preceding code fragment, the has_exception_handling2() routine registers
the excpt_callback2() function as its exception callback. This callback uses a
user-provided buffer to store event information. As its fourth argument, the
mi_register_callback() call passes a user-defined buffer named error to the
exception callback. For more information, see “Returning Error Information to the
Caller” on page 10-32.

Determining How to Handle the Exception: The return value of an exception
callback tells the database server how to continue handling a database server
exception once the callback completes. An exception callback for a UDR must
return one of the MI_CALLBACK_STATUS values that Table 10-2 on page 10-13
lists.

Handling an Exception in the Callback: To indicate that the callback function
executes instead of the default exception handling, an exception callback function
returns the MI_CB_EXC_HANDLED status. This return status tells the DataBlade
API that the actions of the callback have completely handled the exception.

An exception callback function returns the MI_CB_EXC_HANDLED status to
indicate that the callback has completely handled the exception. That is, the actions
of the callback have provided the exception handling. When the DataBlade API
receives the MI_CB_EXC_HANDLED return status, it does not perform its default
exception handling. It assumes that the callback has executed instead of the default
exception handling. (For more information, see “Default Behavior in a C UDR
(Server)” on page 10-11.)

mi_integer
has_exception_handling2(flag, fparam)

mi_integer flag;
MI_FPARAM *fparam;

{
MI_CONNECTION *conn = NULL;
MI_CALLBACK_HANDLE *cback_hndl;
DB_ERROR_BUF error;

/* Obtain the connection descriptor from MI_FPARAM */
conn = (MI_CONNECTION *)mi_fp_funcstate(fparam);
if (conn == NULL) /* first time routine is called */

{
/* Obtain the connection descriptor */
conn = mi_open(NULL, NULL, NULL);

/* Register the 'excpt_callback2() function as an
** exception callback on this connection */
cback_hndl = mi_register_callback(conn,

MI_Exception,
excpt_callback2, (void *)&error, NULL);

/* Save connection descriptor in MI_FPARAM */
mi_fp_setfuncstate(fparam, (void *)conn);
}

...
}

Figure 10-6. Caching the Connection Descriptor in an Exception Callback

Chapter 10. Handling Exceptions and Events 10-29

When a callback returns MI_CB_EXC_HANDLED, the DataBlade API does not
propagate the exception up the calling sequence. Therefore, a client application that
has executed an SQL expression that contains a UDR does not receive an error
from the execution of the UDR (unless the callback uses a user-provided error
buffer). If the SQL expression contains no other exceptions, the client application
would have an SQLSTATE value of 00000 (success).

Figure 10-7 shows the excpt_callback() exception callback, which is written to
handle the MI_Exception event. It returns MI_CB_EXC_HANDLED to indicate that
no further exception handling is required.

The excpt_callback() function in Figure 10-7 returns MI_CB_EXC_HANDLED,
which prevents the DataBlade API from taking any further exception-handling
steps, such as invoking other callbacks that handle MI_Exception or aborting the
current statement. This callback executes instead of the default exception handling.

For the has_exception_handling() routine (which Figure 10-5 on page 10-28
defines), the DataBlade API takes the following steps when the mi_exec() function
executes:
1. Executes the excpt_callback() callback when mi_exec() throws an exception
2. Returns control to the first statement in has_exception_handling() after

mi_exec(). As a result, execution of the has_exception_handling() routine
returns from the mi_exec() call with a return value of MI_ERROR.

Important: Because excpt_callback() returns MI_CB_EXC_HANDLED, the
database server assumes that the MI_Exception event does not require
any further handling. However, excpt_callback() does not actually
take any exception-handling steps; it contains only a return statement
to return an MI_CB_EXC_HANDLED status. In an actual DataBlade
API module, you would probably want to add code to
excpt_callback() that provides exception handling.

Continuing with Exception Handling: To indicate that the callback function executes
in addition to the default exception handling, an exception callback function returns
the MI_CB_CONTINUE return status. This return status tells the DataBlade API
that the actions of the callback have not completely handled the exception and that
the DataBlade API should continue with its default exception handling. (For more
information, see “Default Behavior in a C UDR (Server)” on page 10-11.) The
actions of the callback provide supplemental exception handling.

If the excpt_callback() function in Figure 10-7 had returned MI_CB_CONTINUE
instead of MI_CB_EXC_HANDLED, the database server would handle the
exception in the has_exception_handling() routine as follows:

static MI_CALLBACK_STATUS MI_PROC_CALLBACK
excpt_callback(event_type, conn, event_data, user_data)

MI_EVENT_TYPE event_type;
MI_CONNECTION *conn;
void *event_data;
void *user_data;

{
/* claim to have handled the exception */
return MI_CB_EXC_HANDLED;

}

Figure 10-7. A Simple Exception Callback

10-30 IBM Informix DataBlade API Programmer’s Guide

1. Execute the excpt_callback() function when the mi_exec() call throws an
exception.

2. Abort the mi_exec() call in has_exception_handling().
3. Return control back to the calling module that called

has_exception_handling().

If has_exception_handling() was a UDR in an SQL statement, the database server
would abort the SQL statement and return control to the client application. The
client application would be expected to handle the runtime error for the end user.

However, if has_exception_handling() was called by another C UDR that had
registered an exception callback, the database server would have executed this
callback and continued with the exception handling as the return status of this
callback indicated (MI_CB_CONTINUE or MI_CB_EXC_HANDLED). If this
callback also returned MI_CB_CONTINUE, the database server would continue up
the calling sequence, looking for a registered callback that handled the
MI_Exception event. If the database server reached the top-most level in the calling
sequence (the UDR within an SQL statement) without locating an exception
callback that returned MI_CB_EXC_HANDLED, the database server would abort
the UDR and return control to the client application.

For more information on how to write a callback function for a UDR, see “Callback
Functions” on page 10-12.

Tip: The MI_Exception event might overlap with the MI_EVENT_END_STMT and
MI_EVENT_END_XACT events because an exception always causes either a
statement or a transaction to abort. Design the corresponding callbacks with
this relationship in mind.

Exceptions in a Client LIBMI Application (Client)
If the client LIBMI application has not registered a callback that handles the
MI_Exception event on the current connection, the client LIBMI calls the
system-default callback. (For more information, see “Default Behavior in Client
LIBMI Applications” on page 10-11.)

To provide event handling for database server exceptions within a client LIBMI
application, register a callback that handles the MI_Exception event in the client
LIBMI application. The DataBlade API invokes any exception callback that the
application has registered (and enabled) on the current connection when either of
the following actions occurs:
v A client LIBMI application executes a DataBlade API function that throws an

MI_Exception event.
v An exception occurs in a UDR that is invoked from a statement in the client

LIBMI application and any exception callbacks that the UDR has registered
return the MI_CB_CONTINUE return status.

Function descriptions in the IBM Informix DataBlade API Function Reference contain
a section titled “Return Values.” This section lists the possible return values for the
DataBlade API function. In a C UDR, DataBlade API function calls might or might
not return a value, depending on whether the DataBlade API function throws an
MI_Exception event when it encounters a runtime error. However, DataBlade API
function calls in a client LIBMI application always indicate failure because
client-side callbacks always return to the DataBlade API function that generated
the error.

Chapter 10. Handling Exceptions and Events 10-31

On failure, DataBlade API functions return one of the following values to a client
LIBMI application:
v MI_ERROR if the return value is an integer
v NULL if the return value is a pointer.

The client LIBMI application can check for these error values and take any
appropriate actions.

The client LIBMI application registers callbacks with the mi_register_callback()
function. You must provide a valid connection descriptor to
mi_register_callback() for all valid event types. For more information, see
“Registering a Callback” on page 10-4.

For example, the following mi_register_callback() call registers the
clntexcpt_callback() function to handle MI_Exception events:
int main (argc, arcv)

int argc;
char *argv;

{
MI_CONNECTION *client_conn;
MI_CALLBACK_HANDLE *client_cback;
mi_integer ret;

/* Open a connection to the database server */
client_conn = mi_open(argv[1], NULL, NULL);

/* Register the exception callback */
client_cback = mi_register_callback(client_conn,

MI_Exception, (MI_VOID *)clntexcpt_callback, NULL, NULL);
if (client_cback == NULL)

/* do something appropriate */
...
ret = mi_exec(client_conn, "bad SQL statement",

MI_QUERY_NORMAL);
if (ret == MI_ERROR)

/* perform error recovery */
...
}

For more information about how to write a callback function for a client LIBMI
application, see “Callback Functions” on page 10-12.

Returning Error Information to the Caller
The fourth argument of a callback function is a pointer to callback user data. The
user data is a C variable or structure that contains application-specific information
that a callback can use. You pass the user data to a callback when you register the
callback with the mi_register_callback() function. The fourth argument of
mi_register_callback() provides a pointer to the user data (see Figure 10-2 on
page 10-16).

One of the most common uses of user data is a user-defined error structure. When a
callback handles exceptions, DataBlade API functions return either MI_ERROR or
NULL on failure. This information is often not specific enough for the calling code
to determine the cause of the error. You can create a user-defined error structure to
pass more specific error information back to the calling code, as follows:
1. The calling code defines and allocates a user-defined error structure.
2. The callback function populates the user-defined structure with error

information.

10-32 IBM Informix DataBlade API Programmer’s Guide

Defining a User-Defined Error Structure
The calling code can define a user-defined error structure to hold error
information. This user-defined structure can be a single C variable or a structure
with several pieces of error information. It can contain as much error information
as the calling code requires.

Figure 10-8 shows a sample user-defined error structure named DB_ERROR_BUF.

The DB_ERROR_BUF structure holds the following error information.

Error Field Description

error_type The event type for the event

For exception handling, this event type should always be
MI_Exception.

error_level The exception level (or error level) for the event

For exception handling, this field holds the exception level:
MI_MESSAGE or MI_EXCEPTION.

sqlstate The value of the SQLSTATE variable, which indicates the cause of
the exception

error_msg The text of the error message, up to a limit of MSG_SIZE bytes

The calling code must allocate memory for the user-defined error structure. You
can use the DataBlade API memory-allocation functions such as mi_alloc() and
mi_dalloc(). When you allocate the user-defined error structure, you must
associate a memory duration with this structure that you declare that is
appropriate to its usage. For example, if the user-defined error structure is to be
associated with a registered callback, you must allocate the structure with a
memory duration of PER_STMT_EXEC so that this memory is still allocated when
the callback executes.

The following mi_dalloc() call allocates a DB_ERROR_BUF buffer with a
PER_STMT_EXEC memory duration:
mi_dalloc(sizeof(DB_ERROR_BUF), PER_STMT_EXEC);

Implementing the Callback
The calling code can use one of the following ways to make a user-defined error
structure available to a callback:
v Associate the user-defined structure with the callback.
v Associate the user-defined structure with the database connection.

Associating with a Callback: To associate a user-defined error structure with the
registered callback, specify the address of the structure as the fourth argument of

#define MSG_SIZE 256
typedef struct error_buf_
{

mi_integer error_type;
mi_integer error_level;
mi_string sqlstate[6];
mi_string error_msg[MSG_SIZE];

} DB_ERROR_BUF;

Figure 10-8. A Sample User-Defined Error Structure

Chapter 10. Handling Exceptions and Events 10-33

mi_register_callback() function. The call to mi_register_callback() initializes the
fourth parameter of the exception callback with a pointer to the user-defined
structure. For more information, see Figure 10-2 on page 10-16.

Server Only

The following func1() UDR registers a callback named excpt_callback2(), which
puts error information in the DB_ERROR_BUF user-defined structure (which
Figure 10-8 on page 10-33 defines):
void func1(flag)

mi_integer flag;
{

MI_CONNECTION *conn;
MI_CALLBACK_HANDLE *cback_hndl;
DB_ERROR_BUF error;

/* Initialize information in the error buffer */
error.sqlstate[0] = '\0';
strcpy(error.error_msg,

"func3: initialized error buffer.");

/* Obtain connection descriptor */
conn = mi_open(NULL, NULL, NULL);
if (conn == NULL)

mi_db_error_raise(NULL, MI_EXCEPTION,
"func1: mi_open() call failed!");

/* Register the exception callback */
cback_hndl = mi_register_callback(conn, MI_Exception,

excpt_callback2, (void *)&error), NULL):

/* Execute SQL statement */
mi_exec(conn, "bad SQL statement", MI_QUERY_NORMAL);

/* Execution does not reach this point if the
* excpt_callback2() callback returns MI_CB_CONTINUE.
*/

The call to mi_register_callback() specifies the address of the user-defined
structure as its fourth argument. This structure is, in turn, passed in as the third
argument of the excpt_callback2() callback (see Figure 10-2 on page 10-16). The
following code implements the excpt_callback2() callback function:
MI_CALLBACK_STATUS
excpt_callback2(event_type, conn, event_info, user_data)

MI_EVENT_TYPE event_type;
MI_CONNECTION *conn;
void *event_info;
void *user_data; /* user-defined error buffer gets

* passed here
*/

{
DB_ERROR_BUF *user_info;
mi_integer state_type;
mi_string *msg;

user_info = ((DB_ERROR_BUF *)user_data);
user_info->error_type = event_type;

if (event_type != MI_Exception)
{
user_info->sqlstate[0] = '\0';
sprintf(user_info->error_msg,

"excpt_callback2 called with wrong event type ",
"%d", event_type);

10-34 IBM Informix DataBlade API Programmer’s Guide

}
else /* event_type is MI_Exception */

{
mi_error_sql_state((MI_ERROR_DESC *)event_info,

user_info->sqlstate, 6);
mi_errmsg((MI_ERROR_DESC *)event_info,

user_info->error_msg, MSG_SIZE-1);
}

return MI_CB_EXC_HANDLED;
}

Important: Make sure that you allocate the user-defined error structure with a
memory duration that is compatible with the callback that uses it.
Memory durations longer than PER_COMMAND exist for use with
end-of-statement, end-of-transaction, and end-of-session callbacks.
However, these longer memory durations should be used only in
special cases. For more information, see “Choosing the Memory
Duration” on page 14-4.

End of Server Only

Client Only

The following code fragment from a client LIBMI application registers a callback
named clntexcpt_callback2(), which puts error information in the
DB_ERROR_BUF user-defined structure (which Figure 10-8 on page 10-33 defines).
int main (argc, argv)

int argc;
char **argv;

{
MI_CONNECTION *conn = NULL;
char stmt[300];
MI_CALLBACK_HANDLE callback_hdnl;
DB_ERROR_BUF error_buff;
mi_integer ret;

/* Open a connection to the database server */
conn = mi_open(argv[1], NULL, NULL);
if (conn == NULL)

/* do something appropriate */

/* Register the exception callback, with the user-defined
* error structure as the fourth argument to
* mi_register_callback()
*/
callback_hndl = mi_register_callback(conn, MI_Exception,

(MI_VOID *)clntexcpt_callback2;
(MI_VOID *)&error_buff, NULL);

if (callback_hndl == NULL)
/* do something appropriate */

...
/* Execute the SQL statement that 'stmt' contains */
ret = send_statement(conn, stmt);
/* If an exception occurred during the execution of the
* SQL statement, the exception callback initialized the
* 'error_buff' structure. Obtain error information from
* 'error_buff'.
*/
if (ret == MI_ERROR)

{
if (error_buff.error_type == MI_Exception)

{
if (error_buf.error_level == MI_EXCEPTION)

Chapter 10. Handling Exceptions and Events 10-35

{
fprintf(stderr, "MI_Exception: level = %d",

error_buff.error_level);
fprintf(stderr, "SQLSTATE='%s'\n",

error_buff.sqlstate);
fprintf(stderr, "message = '%s'\n",

error_buff.error_msg);
/* discontinue processing */
}

else /* error_level is MI_WARNING */
{
sprintf(warn_msg, "WARNING: %s\n",

error_buf.error_msg);
display_msg(warn_msg);
}

}
/* do something appropriate */

...
}

The call to mi_register_callback() specifies the address of the user-defined
structure as its fourth argument. This structure is, in turn, passed in as the fourth
argument of the clntexcpt_callback2() callback. The following code implements
the clntexcpt_callback2() callback function.
void clntexcpt_callback2(event_type, conn, event_info,

error_info)
MI_EVENT_TYPE event_type;
MI_CONNECTION *conn;
void *event_info;
void *error_info; /* user-defined error buffer here */

{
DB_ERROR_BUF *error_buf = (DB_ERROR_BUF *)error_info;

/* Fill user-defined structure with error information */
error_buf->error_type = event_type;
if (event_type == MI_Exception)

{
error_buf->error_level = mi_error_level(event_info);
mi_error_sql_state(event_info, error_buf->sqlstate, 6);
mi_errmsg(event_info, error_buf->error_msg, MSG_SIZE-1);
}

else
fprintf(stderr,

"Warning! clntexcpt_callback() fired for event ",
"%d", event_type);

return;
}

The clntexcpt_callback() function is an example of an exception callback for a
client LIBMI application. This callback returns void because the client LIBMI does
not interpret the MI_CALLBACK_STATUS return value, as does the database
server for UDRs.

End of Client Only

Associating with the Connection: To associate a user-defined error structure with
the connection, you:
v Use the mi_set_connection_user_data() function in the calling function to bind

the structure to a connection descriptor (an MI_CONNECTION structure).
v Use the mi_get_connection_user_data() function in the callback to obtain the

structure that is bound to the connection descriptor.

10-36 IBM Informix DataBlade API Programmer’s Guide

Important: You can associate a user-defined error structure with a connection only
if a valid connection exists and this connection does not change
between the point at which the callback is registered and the point at
which the exception event occurs. If you cannot guarantee that these
two conditions exist, associate the user-defined error structure with the
registered callback (page 10-33).

Client Only

The following code fragment from a client LIBMI application binds the
DB_ERROR_BUF user-defined structure (Figure 10-8 on page 10-33) to a
connection:
int main (argc, argv)

int argc;
char **argv;

{
MI_CONNECTION *conn = NULL;
MI_CALLBACK_HANDLE *cback_hndl;
char query[300];
mi_integer ret;
DB_ERROR_BUF error_buff;

conn = mi_open(argv[1], NULL, NULL);
if (conn == NULL)

/* do something appropriate */
...

cback_hndl = mi_register_callback(conn, MI_Exception,
(MI_VOID)clntexcpt_callback2, NULL, NULL);

ret = mi_set_connection_user_data(conn,
(MI_VOID)&error_buff);

if (ret == MI_ERROR)
/* do something appropriate */
...

ret = send_command(conn, query);
if (ret == MI_ERROR)

{
fprintf(stderr, "MI_Exception: level = %d",

error_buff.error_level);
fprintf(stderr, "SQLSTATE='%s'\n",

error_buff.sqlstate);
fprintf(stderr, "message = '%s'\n",

error_buff.error_msg);
}

/* do something appropriate */
...

}

The call to mi_register_callback() does not specify the address of the user-defined
structure as its fourth argument because this structure is associated with the
connection. The following code implements the clntexcpt_callback() callback
function, which uses the mi_get_connection_user_data() function to obtain the
user-defined structure:
void clntexcpt_callback2(event_type, conn, event_info,

user_data)
MI_EVENT_TYPE event_type;
MI_CONNECTION *conn; /* user-defined error buffer here */
void *event_info;
void *user_data;

{
DB_ERROR_BUF *error_buf

mi_get_connection_user_data(conn, (void **)&error_buf)
error_buf->error_type = event_type;

Chapter 10. Handling Exceptions and Events 10-37

if (event_type == MI_Exception)
{
error_buf->error_level = mi_error_level(event_info);
mi_error_sql_state(event_info, error_buf->sqlstate, 6);
mi_errmsg(event_info, error_buf->error_msg, MSG_SIZE-1);
}

else
fprintf(stderr,

"Warning! clntexcpt_callback2() fired for event "
"%d", event_type);

return;
}

In the preceding code fragment, the italicized portion is the only difference
between this client LIBMI application and the one that registers a user-defined
variable with the callback (in “Associating with a Callback” on page 10-33).

End of Client Only

Handling Multiple Exceptions
The database server can generate multiple exceptions for a single SQL statement. A
single statement might generate multiple exceptions when any of the following
conditions have occurred:
v Multiple warnings occur.
v Multiple details are associated with a single error occurrence.

For example, a DROP TABLE statement might set both the SQLCODE value
and the ISAM error value. Similarly, nested UDRs might generate errors at many
levels.

The database server normally calls a registered exception callback once for each
exception message. If a single error causes multiple exceptions, you must use the
following DataBlade API functions in the callback to process multiple messages in
a single invocation.

DataBlade API Function Description

mi_error_desc_next() Obtains the next error descriptor from the current
exception list

The list of exceptions that the current statement
generates is called the current exception list.

mi_error_desc_finish() Completes the processing of the current exception list

A callback can use this function to prevent its being
called again for any more exceptions currently associated
with the current statement.

A callback is not called again for any messages that have already been processed.
The database server presents exceptions from highest message level to lowest
message level. Therefore, a UDR or SQL message occurs first, followed by any
ISAM message.

The smart-large-object functions (mi_lo_*) raise an MI_Exception event if they
encounter a database server exception. However, the smart-large-object error is the
second message that the database server returns. Therefore, an exception callback
needs to include the following steps to obtain an exception from an mi_lo_*
function:

10-38 IBM Informix DataBlade API Programmer’s Guide

1. Call mi_error_sqlcode() to get the high-level SQLCODE value.
2. Call mi_error_desc_next() to get the next error descriptor.
3. Call mi_error_sqlcode() again to get the detailed smart-large-object error (and

ISAM error code).

The following callback function, excpt_callback3(), is a modified version of the
excp_callback2() callback that handles multiple exceptions:
MI_CALLBACK_STATUS excpt_callback3(event_type, conn,

event_info, user_data)
MI_EVENT_TYPE event_type;
MI_CONNECTION *conn;
void *event_info;
void *user_data; /* user-defined error buffer gets

* passed here
*/

{
DB_ERROR_BUF *user_info;
mi_integer state_type;
mi_string *msg;

mi_integer i=0;
/* Pointer to multiple error messages */
MI_ERROR_DESC *err_desc=NULL;

user_info = ((DB_ERROR_BUF *)user_data);

user_info->error_type = event_type;
if (event_type != MI_Exception)

{
user_info->sqlstate[0] = '\0';
sprintf(user_info->error_msg,

"excpt_callback3 called with wrong event type ",
"%d", event_type);

/* Send trace message for default trace class */
DPRINTF("__myErrors__", 1, ("<<<<>>>> mesg=%s",

user_info->error_msg));
return MI_CB_CONTINUE;
}

err_desc = (MI_ERROR_DESC *)event_info;
i++;
mi_error_sql_state(err_desc, user_info->sqlcode, 6);
mi_errmsg(err_desc, user_info->error_msg, MSG_SIZE-1);

DPRINTF("__myErrors__", 1,
("<<<<>>>> mesg %d: sqlcode=%s, mesg=%s", i,
user_info->sqlcode, user_info->error_msg));

/* Overwrites previous error. Another approach would be to
* allocate enough 'user_info' space to store all errors
*/

if ((err_desc=
mi_error_desc_next((MI_ERROR_DESC *)event_info))
!= NULL)

{
i++;
mi_error_sql_state(err_desc, user_info->sqlcode, 6);
mi_errmsg(err_desc, user_info->error_msg,

MSG_SIZE-1);

DPRINTF("__myErrors__", 1,
("<<<<>>>> mesg %d: sqlcode=%s, mesg=%s", i,

Chapter 10. Handling Exceptions and Events 10-39

user_info->sqlcode, user_info->error_msg));
}

return MI_CB_CONTINUE;
}

This callback also uses the DPRINTF macro to send trace messages to an output
file. For more information on tracing, see “Using Tracing” on page 12-28.

Raising an Exception
If a DataBlade API module detects an error, it can use the mi_db_error_raise()
function to raise an exception.

Server Only

In a C UDR, the mi_db_error_raise() function raises an exception to the database
server.

End of Server Only

Client Only

In a client LIBMI application, the mi_db_error_raise() function sends the
exception over to the database server.

End of Client Only

When the mi_db_error_raise() function raises an exception, the database server
handles this exception in the same way it would if a database server exception
occurred in a DataBlade API function. If the DataBlade API module has registered
an exception callback, this call to mi_db_error_raise() invokes the exception
callback. If no exception callback has been registered, the DataBlade API uses the
default behavior for the handling of exceptions.

Specifying the Connection
The first argument to the mi_db_error_raise() function is a connection descriptor.
This connection descriptor can be either a NULL-valued pointer or a pointer to a
valid connection. Which values are valid depend on whether the calling module is
a UDR or a client LIBMI application.

Server Only

In a C UDR, you can specify the connection descriptor to mi_db_error_raise() as
either of the following values:
v A NULL-valued pointer, which raises an exception on the parent connection
v A pointer to the current connection descriptor, which raises an exception on the

current connection

Raising an Exception on the Parent Connection:

When you specify a NULL-valued connection descriptor to the
mi_db_error_raise() function, this function raises the exception against the parent
connection, which is the connection on which the C UDR was invoked. This
connection might be a client connection or a UDR-owned connection that was
passed to mi_exec(), mi_exec_prepared_statement(), or mi_routine_exec().

10-40 IBM Informix DataBlade API Programmer’s Guide

If the raised exception has an MI_EXCEPTION exception level, the database server
aborts both the UDR and the current SQL expression. For both exception levels
(MI_EXCEPTION and MI_MESSAGE), the database server passes the event
message to the module on the parent connection and returns control to this
module. If the UDR needs control of the exception, it must call
mi_db_error_raise() with a pointer to the current connection descriptor.

The following example shows how the MI_EXCEPTION exception level causes the
my_function() UDR to abort when mi_db_error_raise() specifies a NULL-valued
pointer as its connection descriptor:
void MI_PROC_VACALLBACK my_function()
{

... Processing ...
if (error condition)

{
... do any clean-up here ...
ret = mi_db_error_raise ((MI_CONNECTION *)NULL,

MI_EXCEPTION, "FATAL ERROR in my_function()!");
}

... These lines never get reached ...
}

Execution returns to the code that called my_function(). If this code has an
exception callback, this callback determines how the exception handling continues.

Raising an Exception on the Current Connection:

When you specify a valid connection descriptor to the mi_db_error_raise()
function, this function raises the exception against the specified connection. The
DataBlade API invokes any callbacks that are registered for the MI_Exception event
on this same connection. If a registered callback returns the
MI_CB_EXC_HANDLED status, control returns to the UDR. (For more
information, see “Determining How to Handle the Exception” on page 10-29.

When the my_function() routine registers a callback, the callback can catch the
exception with an MI_EXCEPTION exception level, as the following example
shows:
void MI_PROC_VACALLBACK
my_function()
{

conn = mi_open(NULL, NULL, NULL);
...
cback_hndl = mi_register_callback(conn, MI_Exception,

excpt_callback, NULL, NULL);
... Processing ...
if (error condition)

{
... do any clean-up here ...
ret = mi_db_error_raise (conn, MI_EXCEPTION,

"The excpt_callback() function is invoked from \
my_function().");

}
... These lines do get reached if excpt_callback()

returns MI_CB_EXC_HANDLED...
}

For a sample implementation of the excpt_callback() function, see Figure 10-7 on
page 10-30.

Chapter 10. Handling Exceptions and Events 10-41

Client Only

In a client LIBMI application, you must specify a valid connection descriptor to the
mi_db_error_raise() function. For an exception callback to be invoked when the
mi_db_error_raise() function raises an exception, specify the same connection
descriptor as the one on which the callback was registered.

For example, in the following code fragment, the call to mi_db_error_raise()
causes the excpt_callback() function to be invoked when an MI_Exception event
occurs:
conn1 = mi_open(argv[1], NULL, NULL);
cback_hndl = mi_register_callback(conn1, MI_Exception,

clnt_callback, (void *)&error, NULL);
...
mi_db_error_raise(conn1, MI_EXCEPTION,

"The clnt_callback() callback is invoked.");

Both mi_register_callback(), which registers the callback for the MI_Exception
event, and mi_db_error_raise(), which raises the MI_Exception event, specify
conn1 as their connection descriptor.

End of Client Only

Specifying the Message
The message that mi_db_error_raise() passes to an exception callback can be
either of the following types:
v A literal message, which you provide as the third argument to

mi_db_error_raise()

v A custom message that is associated with a SQLSTATE value, which you provide
as the third argument to mi_db_error_raise()

Passing Literal Messages: To raise an exception whose message text you provide,
the mi_db_error_raise() function requires the following information:
v A message type of MI_MESSAGE or MI_EXCEPTION
v The associated message text

When you pass the MI_MESSAGE or MI_EXCEPTION message type to the
mi_db_error_raise() function, the function raises an MI_Exception event whose
error descriptor contains the following information.

Error Descriptor Field Warning Runtime Error

Exception level
(2nd argument)

MI_MESSAGE MI_EXCEPTION

SQLSTATE value ″01U01″ ″U0001″

Message text
(3rd argument)

Specified warning text Specified error text

For example, the following call to mi_db_error_raise() raises an MI_Exception
event with an exception level of MI_MESSAGE, an SQLSTATE value of ″01U01″,
and the ″Operation Successful″ warning message:
mi_db_error_raise(conn, MI_MESSAGE, "Operation Successful");

10-42 IBM Informix DataBlade API Programmer’s Guide

For the following line, mi_db_error_raise() raises an MI_Exception event with an
exception level of MI_EXCEPTION, an SQLSTATE value of ″U0001", and the ″Out
of Memory!!!″ error message:
mi_db_error_raise(conn, MI_EXCEPTION, "Out of Memory!!!");

If any exception callback is registered for the same connection, the DataBlade API
sends this error descriptor to the callback when the MI_Exception event is raised.

Server Only

If the C UDR (or any if its calling routines) has not registered an exception callback
when the MI_Exception event is raised, the DataBlade API performs the default
exception handling, which depends on the exception level of the exception:
v If the exception has an MI_EXCEPTION exception level, the database server

aborts the UDR and returns control to the calling module.
v If the exception has an MI_MESSAGE exception level, the database server sends

the warning message to the calling module and continues execution of the UDR.

End of Server Only

Client Only

If the client LIBMI application has not registered an exception callback when the
MI_Exception event is raised, the client LIBMI calls the system-default callback,
which provides the following information:
v The connection
v The exception type: MI_MESSAGE or MI_EXCEPTION
v The message text that is associated with the exception

For more information on the actions of the system-default callback, see “Using
Default Behavior” on page 10-11.

End of Client Only

Raising Custom Messages: The mi_db_error_raise() function can raise
exceptions with custom messages, which DataBlade modules and UDRs can store
in the syserrors system catalog table. The syserrors table maps these messages to
five-character SQLSTATE values.

To raise an exception whose message text is stored in syserrors, you provide the
following information to the mi_db_error_raise() function:
v A message type of MI_SQL
v The value of the SQLSTATE variable that identifies the custom exception
v Optionally, values specified in parameter pairs that replace markers in the

custom exception message

When you pass the MI_SQL message type to the mi_db_error_raise() function,
the function raises an MI_Exception event whose error descriptor contains the
following information:

Chapter 10. Handling Exceptions and Events 10-43

Error Descriptor Field Warning Runtime Error

Exception level MI_MESSAGE

(If the SQLSTATE value has a
class code of ″01″)

MI_EXCEPTION

(If the SQLSTATE value has a
class code of ″02″ or greater)

SQLSTATE value
(3rd argument)

Specified warning value:

″01xxx″

Specified error value:

″xxxxx″

(class code of ″02″ or greater)

Message text Associated warning text from
syserrors table

Associated error text from
syserrors table

If any exception callback is registered for the same connection, the DataBlade API
sends this error descriptor to the callback when the MI_Exception event is raised.
For example, assume that the following predefined error message is under an
SQLSTATE value of ″03I01" in the syserrors table:
Operation Interrupted.

The following call to mi_db_error_raise() sends this predefined error message to a
registered (and enabled) callback that handles the MI_Exception event:
mi_db_error_raise (conn, MI_SQL, "03I01", NULL);

The exception level for this exception would be MI_EXCEPTION because any
SQLSTATE value whose class code is greater than ″02″ is considered to represent a
runtime error. If no such callback was registered (or enabled), the database server
would take its default exception-handling behavior.

If the SQLSTATE value had a class code of ″01″, mi_db_error_raise() would raise
a warning instead of an error. (For more information on SQLSTATE values, see
“SQLSTATE Status Value” on page 10-22.) The following mi_db_error_raise() call
raises an MI_Exception event whose exception level is MI_MESSAGE:
mi_db_error_raise(conn, MI_SQL, "01877", NULL);

When this exception is raised, execution continues at the next line after this call to
mi_db_error_raise().

Tip: Both of the preceding mi_db_error_raise() examples specify NULL as the
last argument because neither of their syserrors messages contains parameter
markers. For more information on parameter markers, see “Specifying
Parameter Markers” on page 10-46.

Searching for Custom Messages: When the mi_db_error_raise() function initiates a
search of the syserrors table, it requests the message in which all components of
the locale (language, territory, code set, and optional modifier) are the same in the
current processing locale and the locale column of syserrors.

Tip: For more information on the columns of the syserrors system catalog table,
see the chapter on the system catalog tables in the IBM Informix Guide to SQL:
Reference. For more information on SQLSTATE, see “SQLSTATE Status Value”
on page 10-22.

For DataBlade API modules that use the default locale, the current processing
locale is U.S. English (en_us). (The name of the default code set depends upon the
platform you use. For more information on default code sets, see the IBM Informix

10-44 IBM Informix DataBlade API Programmer’s Guide

GLS User’s Guide.) When the current processing locale is U.S. English,
mi_db_error_raise() looks only for messages that use the U.S. English locale.

Global Language Support

For DataBlade API modules that use nondefault locales, the current processing
locale is one of the following locales:

Server Only

v For C UDRs, the current processing locale is the server-processing locale.

End of Server Only

Client Only

v For client LIBMI applications, the current processing locale is the client locale.

End of Client Only

For more information on the client, database server, and server-processing locales,
see the IBM Informix GLS User’s Guide.

End of Global Language Support

A GLS locale name has the format ll_tt.codeset@modf, in which ll is the name of the
language, tt is the name of the territory, codeset is the name of the code set, and
modf is the 4-character name of the optional locale modifier. (For more information
on locale names, see the IBM Informix GLS User’s Guide.) The ll_tt.codeset@modf
format is the standard GLS locale name. Locale names can take other forms.
However, mi_db_error_raise() first attempts to convert the names of the current
processing locale and the syserrors locale into this standard GLS format.

The mi_db_error_raise() function then performs a string comparison on these two
locale names. The function attempts to match a value in the locale column of
syserrors with the GLS name of the current processing locale as follows:
1. Convert the current processing locale and syserrors locale names into standard

GLS names, if possible.
If mi_db_error_raise() cannot map the current processing locale name to a
standard name, it cannot perform the match.

2. Match the current processing locale name with an entire locale name, if
possible.
Locate a row in syserrors whose locale column has a value that matches the
full ll_tt.codeset@modf locale name.

3. Match the current processing locale name with only the language and territory
part of a locale name, if possible.
Locate a row in syserrors whose locale column starts with the value ll_tt (only
language and territory names match).

4. Match the current processing locale name with only the language part of a
locale name, if possible.
Locate a row in syserrors whose locale column starts with the value ll (only
language name matches).

5. Match the current processing locale name with the default locale (U.S. English),
if it is available.

Chapter 10. Handling Exceptions and Events 10-45

Locate a row in syserrors whose locale column matches the standard GLS
name of the default locale.

When mi_db_error_raise() finds a matching locale name for the specified
SQLSTATE value, it then verifies that the code set of the locale name from
syserrors is compatible with the code set of the current processing locale. A
compatible code set is one that is either the same as or can be converted to the
current processing code set. If the two code sets are not compatible,
mi_db_error_raise() continues to search the syserrors table for rows that match
the specified SQLSTATE value. Once mi_db_error_raise() finds a matching row, it
obtains the text from the corresponding message column of syserrors.

For example, suppose the current processing locale is the French Canadian locale,
fr_ca.8859-1, and you issue the following call to mi_db_error_raise():
mi_db_error_raise(conn, MI_SQL, "08001", NULL);

The mi_db_error_raise() function performs the following search process to locate
entries in syserrors:
1. Is there a row with the sqlstate column of ″08001″ and a locale value that

matches ″fr_ca.8859-1″?
2. Is there a row with the sqlstate column of ″08001″ and a locale value that starts

with ″fr_ca″?
3. Is there a row with the sqlstate column of ″08001″ and a locale value that starts

with ″fr″?
4. Is there a row with the sqlstate column of ″08001″ and a locale value that starts

with ″en_us″?

Suppose mi_db_error_raise() finds a row in syserrors with an sqlstate value of
″08001″ and a locale of ″fr_ca.1250″. The function obtains the associated text from
the message column of this row if it can find valid code-set conversion files
between the ISO8859-1 code set (8859-1) and the Microsoft® 1250 code set (1250).

Server Only

For C UDRs, these code-set conversion files must exist on the server computer.

End of Server Only

Client Only

For client LIBMI applications, these code-set conversion files must exist on the
client computer.

End of Client Only

Specifying Parameter Markers: The custom message in the syserrors system catalog
table can contain parameter markers. These parameter markers are sequences of
characters enclosed by a single percent sign on each end (for example,
%TOKEN%). A parameter marker is treated as a variable for which the
mi_db_error_raise() function can supply a value.

For messages with parameter markers, mi_db_error_raise() can handle a
variable-length parameter list, as follows:
v Values specified in parameter pairs can replace parameter markers in the

syserrors error or warning message.

10-46 IBM Informix DataBlade API Programmer’s Guide

v The function passes in NULL to terminate the list of parameter pairs.

The mi_db_error_raise() function requires a parameter pair for each parameter
marker in the message. A parameter pair has the following values:
v The first member of the pair is a null-terminated string that represents the name

and format of the parameter marker.
v The second member of the pair is the value to assign the parameter.

Parameter pairs do not have to be in the same order as the markers in the string.

Important: Terminate the parameter list arguments with a NULL pointer. If a
NULL pointer does not terminate the list, the results are unpredictable.

The first member of the parameter pair has the following syntax:
parameter_name%format_character

The mi_db_error_raise() function supports following format_character values.

Format Character Meaning

d Integer

f,g,G,e,E Double (by reference)

T Text (mi_lvarchar type, that is, a pointer to
mi_lvarchar)

t Length followed by string (two separate
parameters)

s Null-terminated C string

For example, suppose that the following message is under an SQLSTATE value of
″2AM10" in the syserrors table:
"Line %LINE%: Syntax error at '%TOKEN%':%CMD%"

This message contains the following parameter markers: LINE, TOKEN, and CMD.
The following call to mi_db_error_raise() assigns the string ″selecl″ to the
TOKEN parameter, 500 to the LINE parameter, and the text of the query to the
CMD parameter in the message text:
mi_db_error_raise (conn, MI_SQL, "2AM10",

"TOKEN%s", "selecl",
"LINE%d", (mi_integer)500,
"CMD%s", "selecl * from tables\;",
NULL);

The string ″TOKEN%s" indicates that the value that replaces the parameter marker
%TOKEN% in the message string is to be formatted as a string (%s). The next
member of the parameter pair, the string "selecl", is the value to format.

This mi_db_error_raise() call sends the following message to an exception
callback:
"Line 500: Syntax error at 'selecl':selecl * from tables;"

Chapter 10. Handling Exceptions and Events 10-47

Global Language Support

The mi_db_error_raise() function assumes that any message text or message
parameter strings that you supply are in the current processing locale.

End of Global Language Support

Adding Custom Messages: You can store custom status codes and their associated
messages in the syserrors system catalog table.

To add a custom message:

1. Determine the SQLSTATE code for the message you want to add.
2. Insert a row into the syserrors system catalog table for the new message.

Choosing an SQLSTATE Code: The syserrors system catalog table holds custom
messages for DataBlade modules and UDRs. A unique SQLSTATE value identifies
each row in the syserrors system catalog table. Therefore, to store a custom
message in syserrors, you assign it an SQLSTATE value.

You must ensure that this SQLSTATE value is unique within syserrors. When you
choose an SQLSTATE value, keep the following restrictions in mind:
v The database server has its own set of system messages.

Messages that the database server provides are not stored in the syserrors
system catalog table. However, any special modules that are included with the
database server (such as R-tree support) might have their own messages in
syserrors.

v SQL reserves various SQLSTATE codes for its own use.
These messages are not stored in the syserrors table. For a list of the reserved
values of SQLSTATE, see “SQLSTATE Status Value” on page 10-22.

v All SQLSTATE values for warnings begin with the ″01″ class code.
To define a custom warning message, you must define an SQLSTATE value that
has a ″01″ class code and an unused subclass code.

v An installed DataBlade module might have stored its messages in syserrors.
When a DataBlade module is installed, associated messages might be added to
syserrors. Avoid the use of any SQLSTATE values that an installed DataBlade
module might use. You must also take care not to delete installed messages, or
they must be re-created by a restore from a backup or a reinstallation.

v If you are developing a DataBlade module, coordinate your SQLSTATE values
with other DataBlade modules that you are using.
You can group warnings and errors for your DataBlade modules into the same
class code, each with a different subclass code.

You can use the following query to determine the current list of SQLSTATE
message strings in syserrors:
SELECT sqlstate, locale, message FROM syserrors
ORDER BY sqlstate, locale;

Global Language Support

The locale column is used for the internationalization of error and warning
messages. For more information, see “Searching for Custom Messages” on page

10-48 IBM Informix DataBlade API Programmer’s Guide

10-44.

End of Global Language Support

Adding New Messages: To create a new message, insert a row into the syserrors
system catalog table. By default, all users can view this table, but only users with
the DBA privilege can modify it. For more information on columns of the syserrors
system catalog table, see the IBM Informix Guide to SQL: Reference.

For example, the following INSERT statement inserts a new message into syserrors
whose SQLSTATE value is ″03I01″:
INSERT INTO syserrors
VALUES ("03I01", "en_us.8859-1", 0, 1,

"Operation Interrupted.");

Global Language Support

Enter message text in the language of the target locale, with the characters in the
locale code set. By convention, do not include any newline characters in the
message. Make sure you also update the locale column of syserrors with the name
of the target locale of the message text. For information on locale names, see the
IBM Informix GLS User’s Guide.

Do not allow any code-set conversion to take place when you insert the message
text. If the code sets of the client and database locales differ, temporarily set both
the CLIENT_LOCALE and DB_LOCALE environment variables in the client
environment to the name of the database locale. This workaround prevents the
client application from performing code-set conversion.

If you specify any parameters in the message text, include only ASCII characters in
the parameters names. Following this convention means that the parameter name
can be the same for all locales. All code sets include the ASCII characters.

End of Global Language Support

State-Transition Events
When the database server raises a state-transition event, the database server
invokes any callbacks registered for the state transition. This section provides
information about state-transition handling in DataBlade API modules, including
an explanation of state-transition events and a description of how to handle a
state-transition event in a C UDR and a client LIBMI application.

Understanding State-Transition Events
State-transition events occur when the database server changes its processing state.
The DataBlade API represents a state transition as one of the enumerated values of
the MI_TRANSITION_TYPE data type. The following table shows the transitions
in the server-processing state and the corresponding MI_TRANSITION_TYPE
values.

State-Transition Type Description

MI_BEGIN The database server is beginning a new transaction.

MI_NORMAL_END The database server just completed the current event
successfully.

Chapter 10. Handling Exceptions and Events 10-49

State-Transition Type Description

MI_ABORT_END The database server just rolled back the current event. (The
statement failed, or the transaction was aborted or rolled back.)

The milib.h header file defines the MI_TRANSITION_TYPE data type and its
state-transition values.

The following table shows the state-transition types and the state-transition events
that they can cause.

State-Transition Type
Event in
Client LIBMI Application

Event in
C UDR

Begin transaction or
savepoint (MI_BEGIN)

MI_Xact_State_Change None

Event end: commit
(MI_NORMAL_END)

MI_Xact_State_Change MI_EVENT_SAVEPOINT
MI_EVENT_COMMIT_ABORT
MI_EVENT_POST_XACT
MI_EVENT_END_STMT
MI_EVENT_END_XACT
MI_EVENT_END_SESSION

Event end: rolled back
(MI_ABORT_END)

MI_Xact_State_Change MI_EVENT_SAVEPOINT
MI_EVENT_COMMIT_ABORT
MI_EVENT_POST_XACT
MI_EVENT_END_STMT
MI_EVENT_END_XACT
MI_EVENT_END_SESSION

Beginning a Transaction

Client Only

When the database server begins a transaction block, it raises only the
MI_Xact_State_Change event. The MI_Xact_State_Change event occurs only in the
context of a client LIBMI application when the database server enters and leaves a
transaction block. Only client callback functions can catch this begin-transaction
event.

You handle the MI_Xact_State_Change event only in the context of a client LIBMI
application. It occurs within a client LIBMI application when the current
transaction ends with either a commit or a rollback. The MI_Xact_State_Change
event also occurs when the database server begins a transaction.

End of Client Only

A state-transition callback executes when the following state-transition event
occurs.

State-Transition Event Type Callback Type

MI_Xact_State_Change State-change callback

10-50 IBM Informix DataBlade API Programmer’s Guide

Server Only

A C UDR does not begin transactions. It inherits the transaction of the client
application that calls the SQL statement that contains the UDR.

End of Server Only

Ending a Session (Server)
The MI_EVENT_END_SESSION event occurs when the database server reaches the
end of the current session. A session begins when the client application opens a
database connection and ends when the client application closes the connection (or
when the client application ends). For more information, see “Closing a
Connection” on page 7-18.

These events occur only within the context of a C UDR. Their main purpose is to
clean up resources that the UDR might have allocated. The database server does
not throw the MI_EVENT_END_SESSION event when it terminates abnormally.

Providing State-Transition Handling
The database server throws a state-transition event when it changes its processing
state.

To handle a transition in the processing state:

1. Write a state-transition callback.
Within a state-transition callback, use the mi_transition_type() function on the
transition descriptor to determine the state-transition type (begin, normal end,
or abort end) that caused the event. The processing required is typically
different for each transition type.

2. Register the state-transition callback in the DataBlade API module that needs
the state-transition handling.
To provide required DataBlade processing at a state-transition point, your
DataBlade API module must register state-transition callbacks with the
mi_register_callback() function.

The way that your DataBlade API module handles a state-transition event depends
on whether the DataBlade API module is a C UDR or a client LIBMI application.

State Transitions in a C UDR (Server)
In a C UDR, the following state-transition events might occur:
v MI_EVENT_SAVEPOINT
v MI_EVENT_COMMIT_ABORT
v MI_EVENT_POST_XACT
v MI_EVENT_END_STMT
v MI_EVENT_END_XACT
v MI_EVENT_END_SESSION

For these state-transition events, the mi_transition_type() function returns a
state-transaction type of normal end (MI_NORMAL_END) or abort end
(MI_ABORT_END). In a UDR, state-transition callbacks are always called at the
end of a transaction (normal or aborted), never at the beginning.

Chapter 10. Handling Exceptions and Events 10-51

Managing Memory Allocations: If your code allocates memory for user data that
the callback function needs, this memory must have a duration long enough to
persist until the execution of the callback. Otherwise, the callback cannot access the
user data. This user data might include information that the callback function
needs to handle the event or to notify users of the cause of the event.

The following table shows the memory durations associated with callback and
event types.

Callback or Event Type Memory Duration to Use

End-of-statement PER_STMT_EXEC

End-of-transaction PER_TRANSACTION

End-of-session PER_SESSION

MI_EVENT_POST_XACT PER_TRANSACTION

MI_EVENT_SAVEPOINT PER_TRANSACTION

MI_EVENT_COMMIT_ABORT PER_TRANSACTION

At the end of the memory duration associated with the callback, the database
server deallocates the memory as part of its final cleanup.

For more information on memory durations, see “Choosing the Memory Duration”
on page 14-4.

Managing the Transaction: The transaction system of the database server only
guarantees transaction semantics on all objects that are internal to the database.
However, transactions might also include operations on external objects. A UDR
might perform such operations, such as creating a temporary file or sending a
message.

For transactions that consist of operations on both internal and external objects,
you can use one of the following types of callbacks to commit or to undo (if
possible) the operations on the external objects, based on the transaction status:
v Commit-abort callback (MI_EVENT_COMMIT_ABORT)
v End-of-statement callback (MI_EVENT_END_STMT)

Each SQL statement behaves like a subtransaction when in a transaction block or
like a transaction when not in a transaction block.

v End-of-transaction callback (MI_EVENT_END_XACT)
Registration of a commit-abort callback is preferable.

v Savepoint callback (MI_EVENT_SAVEPOINT)
Each cursor flush behaves like a subtransaction when in a transaction block.

To enable these callbacks to roll back a transaction, the DataBlade API allows
end-of-statement and end-of-transaction callbacks to raise an exception and register
their own exception callbacks.

The database server calls an end-of-statement or end-of-transaction callback before
it attempts to commit the transaction. When called before a commit, these callbacks
receive a transition descriptor that has a transition state of MI_NORMAL_END.
However, if either of these callbacks encounters an error during its execution, you
probably do not want to allow the transaction to commit.

10-52 IBM Informix DataBlade API Programmer’s Guide

To cause an event to be aborted or rolled back, you can raise an exception from a
state-transition callback by calling the mi_db_error_raise() function. When a
state-transition callback raises an exception, the DataBlade API takes the following
actions:
1. Terminates further processing of the end-of-statement or end-of-transaction

callback
2. Terminates the current transaction and changes the transition state from

MI_NORMAL_END (commit) to MI_ABORT_END (rollback)
3. Invokes any end-of-statement or end-of-transaction callbacks again, this time

with the MI_ABORT_END transition state
4. Invokes any exception callback that the end-of-statement or end-of-transaction

callback has registered to handle the exception

An end-of-transaction callback executes within a C UDR when the
MI_EVENT_END_XACT event occurs. The following code implements an
end-of-transaction callback named endxact_callback(), which inserts a row into a
database table, tran_state, to indicate the state of the current transaction:
MI_CALLBACK_STATUS MI_PROC_CALLBACK
endxact_callback(event_type, conn, event_data, user_data)

MI_EVENT_TYPE event_type;
MI_CONNECTION *conn;
void *event_data;
void *user_data;

{
MI_CONNECTION *cb_conn;
cb_conn = mi_open(NULL, NULL, NULL);
(void) mi_register_callback(cb_conn, MI_Exception,

eox_excpt_callback(), NULL, NULL);
if (event_type == MI_EVENT_END_XACT)

{
mi_integer change_type;

change_type = mi_transition(event_data);
switch (change_type)

{
case MI_NORMAL_END:

ret = mi_exec(cb_conn,"insert \
into tran_state \
values(\"Transaction Committed.\")\;",
0);

if (ret == MI_ERROR)
mi_db_error_raise(cb_conn, MI_EXCEPTION,

"Unable to save transaction \
state: Commit.");

break;
case MI_ABORT_END:

ret = mi_exec(cb_conn,"insert \
into tran_state \
values(\"Transaction Aborted.\")\;",
0);

if (ret == MI_ERROR)
make_log_entry(log_file,

"Unable to save transaction state: \
Roll Back.");

break;

default:
mi_exec(cb_conn,"insert into tran_state \

values(\"Unhandled Transaction \
Event.\")\;", 0);

break;
}

Chapter 10. Handling Exceptions and Events 10-53

}
else

{
mi_exec(cb_conn, "insert into tran_state \

values(\"Unhandled Event.\");", 0);
break;
}

mi_close(cb_conn);
return MI_CB_CONTINUE;

}

MI_CALLBACK_STATUS MI_PROC_CALLBACK
eox_excpt_callback(event_type, conn, event_data, user_data)

MI_EVENT_TYPE event_type;
MI_CONNECTION *conn;
void *event_data;
void *user_data;

{
... Perform clean-up tasks ...
return MI_CB_CONTINUE;

}

The database server invokes the endxact_callback() callback with a transition
state of MI_NORMAL_END just before it commits the transaction. The
endxact_callback() function executes as follows:
1. It executes the MI_NORMAL_END case in the switch statement.
2. If mi_exec() in the MI_NORMAL_END case fails, mi_exec() returns

MI_ERROR, as does any DataBlade API function except mi_db_error_raise().
3. The condition in the if statement evaluates to TRUE and mi_db_error_raise()

executes, which raises an exception.
4. The DataBlade API invokes the registered exception callback,

eox_excpt_callback().
5. Because eox_excpt_callback() returns a status of MI_CB_CONTINUE, the

database server aborts the transaction.
If eox_excpt_callback() had instead returned MI_CB_EXC_HANDLED,
execution would continue at the next statement of the endxact_callback()
callback:
mi_close(cb_conn);

The endxact_callback() function would then return MI_CB_CONTINUE,
which would cause the database server to commit current transaction.

6. Before the database server aborts the transaction, it invokes endxact_callback()
with a transition state of MI_ABORT_END. This second invocation of
endxact_callback() proceeds as follows:
a. It executes the MI_ABORT_END case in the switch statement.
b. It calls mi_exec() to execute the INSERT statement.
c. If mi_exec() fails, the database server invokes the registered exception

callback eox_excpt_callback(). The mi_exec() function does not return
MI_ERROR. Because eox_excpt_callback() returns MI_CB_CONTINUE,
control does not return to endxact_callback().

If endxact_callback() had not registered its own exception callback, then when
mi_exec() in the MI_NORMAL_END case fails, execution would proceed as
follows:
1. The mi_exec() function returns MI_ERROR.

10-54 IBM Informix DataBlade API Programmer’s Guide

2. The condition in the if statement evaluates to TRUE and mi_db_error_raise()
executes, which raises an exception.

3. When mi_db_error_raise() throws an exception, the database server aborts the
transaction.

4. Before the database server aborts the transaction, it invokes endxact_callback()
with a transition state of MI_ABORT_END. This second invocation of
endxact_callback() proceeds as follows:
a. Execute the MI_ABORT_END case in the switch statement.
b. Call mi_exec() to execute the INSERT statement.
c. If mi_exec() fails, it returns MI_ERROR.
d. The condition in the if statement evaluates to TRUE and the user-defined

make_log_entry() function makes a log entry in a text file.

Unlike some other types of callbacks, an end-of-transaction callback can register
callbacks of its own. The preceding end-of-transaction callback registers the
excpt_callback() to handle database server exceptions that might arise from the
INSERT statements that mi_exec() executes. For a sample implementation of the
excpt_callback() callback, see Figure 10-7 on page 10-30.

State Transitions in a Client LIBMI Application
In a client LIBMI application, the only state-transition event that might occur is
MI_Xact_State_Change. The MI_Xact_State_Change event occurs only within a
client application.

In a client LIBMI application, a state-change callback is invoked for the following
state-transition types:
v An explicit begin transaction

You execute an explicit begin with the SQL statement, BEGIN WORK.

American National Standards Institute

v An ANSI-standard implicit begin
In databases that are ANSI compliant, every SQL statement is a separate
transaction. Therefore, ANSI-compliant databases execute an implicit begin for
each SQL statement.

End of American National Standards Institute

v An explicit end transaction
You execute an explicit end transaction with one of the following SQL
statements: COMMIT WORK (normal end) or ROLLBACK WORK (aborted end).

Client LIBMI Errors
The DataBlade API throws the MI_Client_Library_Error event to indicate an error
in the client LIBMI library. The MI_Client_Library_Error event indicates the type of
error that has occurred with one of the error levels that Table 10-7 shows.

Table 10-7. Client LIBMI Error Levels

Error Level Description

MI_LIB_BADARG Raised when a DataBlade API function receives an incorrect
argument, such as a bad connection descriptor or a NULL value
where a pointer is required

Chapter 10. Handling Exceptions and Events 10-55

Table 10-7. Client LIBMI Error Levels (continued)

Error Level Description

MI_LIB_BADSERV Raised when the DataBlade API client library is unable to
connect to a database server

MI_LIB_DROPCONN Raised when the DataBlade API client library has lost the
connection to the database server

MI_LIB_INTERR Raised when an internal DataBlade API error occurs

MI_LIB_NOIMP Raised when the called function or feature has not yet been
implemented

MI_LIB_USAGE Raised when a DataBlade API function is called out of sequence;
for example, a call to mi_next_row() occurs when the statement
did not return row data

To handle a client LIBMI error:
1. Write a callback that handles the MI_Client_Library_Error event.

To handle an MI_Client_Library_Error event, you can write either of the
following types of callback function:
v A client LIBMI callback executes only when the MI_Client_Library_Error

event occurs.
v An all-events callback executes when many events occur and can include

handling for the MI_Client_Library_Error event.
2. Register the callback function that handles the MI_Client_Library_Error event

in the client LIBMI application that requires the error handling.
Use the mi_register_callback() function to register callback functions. After
you register a callback that handles the MI_Client_Library_Error event, the
client LIBMI invokes this callback instead of performing its default error
handling.

Write a callback that handles MI_Client_Library_Error when you need to provide
special handling for one or more client LIBMI errors, which Table 10-7 on page
10-55 shows. Within the callback, the mi_error_level() function returns the error
level for the client LIBMI error. You can also use the following DataBlade API
functions to get more details about the client LIBMI error from its error descriptor:
v The mi_error_sql_state() function returns an SQLSTATE value of ″IX000″ to

indicate an Informix-specific error.
v The mi_error_sqlcode() function returns the Informix-specific error.
v The mi_errmsg() function returns the error message text.

For more information, see “Accessing an Error Descriptor” on page 10-18.

Important: Client LIBMI callbacks are subject to some restrictions on what tasks
they can perform. For more information, see “Writing a Callback
Function” on page 10-16.

The following sample code uses special-purpose handlers (not shown) to handle
messages (message_handler()) and database server exceptions
(exception_handler()). The message_handler() routine might simply display a
message on standard error, while the other handlers could take some specific
user-defined action based on the type of exception.

10-56 IBM Informix DataBlade API Programmer’s Guide

/* This routine dispatches callback events for the following
* events:
* MI_Exception (client-side & server-side),
* MI_Client_Library_Error (client-side only)
* MI_Xact_State_Change (client-side only)
*/
#include "mi.h"

MI_CALLBACK_STATUS MI_PROC_CALLBACK
all_callback(event_type, conn, event_data, user_data)

MI_EVENT_TYPE event_type;
MI_CONNECTION *conn;
void *event_data;
void *user_data;

{
mi_integer elevel;
char err_msg[200];
char *msg;

switch (event_type)
{
/* A database server exception calls a special-purpose
** handler to handle a message (warning) or an
** exception. */

case MI_Exception:
/* Obtain exception level from event */
elevel = mi_error_level(event_data);

switch (elevel)
{
case MI_MESSAGE:

message_handler(event_data, user_data);
break;

case MI_EXCEPTION:
exception_handler(event_data,

user_data);
break;

}
break;

/* A client LIBMI error is any type of internal
** client-library error, library-usage problem, or
** a dropped connection. */
case MI_Client_Library_Error:

/* Obtain error level from event */
elevel = mi_error_level(event_data);

switch (elevel)
{
case MI_LIB_BADARG:

msg = "MI_LIB_BADARG";
break;

case MI_LIB_USAGE:
msg = "MI_LIB_USAGE";
break;

case MI_LIB_INTERR:
msg = "MI_LIB_INTERR";
break;

case MI_LIB_NOIMP:
msg = "MI_LIB_NOIMP";
break;

case MI_LIB_DROPCONN:

Chapter 10. Handling Exceptions and Events 10-57

msg = "MI_LIB_DROPCONN";
break;

default:
msg = "UNKNOWN";
break;

}
mi_errmsg(event_data, err_msg, 200);
fprintf(stderr, "%s: %s\n", msg, err_msg);
break;

/* A transaction-state-change event occurs whenever
** the client LIBMI module begins or ends a
** transaction block. */
case MI_Xact_State_Change:

{
mi_integer change_type;

/* Obtain transition type from event */
change_type = mi_transition_type(event_data);

switch (change_type)
{
case MI_BEGIN:

msg = "Transaction started.";
break;

case MI_NORMAL_END:
msg = "Transaction committed.";
break;

case MI_ABORT_END:
msg = "Transaction aborted!";
break;

default:
msg = "Unknown transaction type!";
break;

}
fprintf(stderr, "%s\n", msg);
break;
}

/* No other types of events are expected here,
* although they could happen. Let the user know
* what happened and continue.
*/
default:

fprintf(stderr,
"Caught an unexpected event type.\n");

break;
}

return MI_CB_CONTINUE;
}

Server Only

The all_callback() callback returns a status of MI_CB_CONTINUE when it is
invoked from a C UDR. Therefore, the database server would check for additional
callbacks that are registered for the event once it completed execution of
all_callback(). If no additional callbacks existed, the database server would abort
the UDR.

End of Server Only

10-58 IBM Informix DataBlade API Programmer’s Guide

Chapter 11. Working with XA-Compliant External Data
Sources

Overview of Integrating XA-Compliant Data Sources in Transactions 11-1
Support for the Two-Phase Commit Protocol. 11-2
XA-Compliant Data Sources and Data Source Types . 11-2
Infrastructure for Creating Support Routines for XA Routines 11-3
Global Transaction IDs . 11-3
System Catalog Tables . 11-3
Files Containing Necessary Components . 11-3

Creating User-Defined XA-Support Routines. 11-3
The xa_open() function. 11-4
The xa_close() function. 11-4
The xa_start() function . 11-5
The xa_end() function . 11-5
The xa_prepare() function . 11-6
The xa_rollback() function. 11-7
The xa_commit() function . 11-7
The xa_recover() function . 11-8
The xa_forget() function . 11-8
The xa_complete() function . 11-9
Dropping an XA Support User-Defined Routine . 11-9

Managing XA Data Sources and Data Source Types . 11-9
Creating an XA Data Source Type . 11-9
Dropping an XA Data Source Type. 11-11
Creating an XA Data Source . 11-11
Dropping an XA Data Source . 11-11

Registering and Unregistering XA-Compliant Data Sources 11-12
Using ax_reg() . 11-12
Using ax_unreg() . 11-13
Using mi_xa_register_xadatasource() . 11-14
Using mi_xa_unregister_xadatasource() . 11-15
Getting the XID Structure. 11-16
Getting the Resource Manager ID . 11-16

Monitoring Integrated Transactions . 11-17

Overview of Integrating XA-Compliant Data Sources in Transactions
The Dynamic Server transaction manager, which is an integral part of the database
server, not a separate module, can invoke support routines for each XA-compliant,
external data source that participates in a distributed transaction at a particular
transactional event, such as prepare, commit, or rollback. This interaction conforms
to X/Open XA interface standards.

Transaction support in Dynamic Server for XA-compliant, external data sources,
which are also called resource managers, enables you to:
v Create XA-compliant, external data source types and instances of XA-compliant,

external data sources.
v Create XA purpose functions, such as xa_prepare, xa_commit, and xa_rollback,

for each XA data source type to keep external data in sync with Dynamic Server
transactional semantics.

v Register XA-compliant, external data sources with a Dynamic Server transaction.
v Unregister XA-compliant, external data sources.

© Copyright IBM Corp. 1996, 2009 11-1

v Use multiple XA-compliant, external data sources within the same global
transaction.

The transaction coordination with an XA-compliant, external data source is
supported only in Dynamic Server logged databases and ANSI-compliant
databases. These databases support transactions. Transaction coordination with an
XA-compliant, external data source is not supported in non-logged databases.

This chapter contains information on the following processes:
1. Creating user-defined XA-support routines
2. Creating and dropping XA-compliant, external data source types.
3. Creating and dropping XA-compliant, external data sources.
4. Registering and unregistering XA-compliant, external data sources as needed.

The IBM Informix MQ DataBlade Module, which provides a set of user-defined
routines (UDRs) to enable Dynamic Server applications to exchange messages
between Dynamic Server and IBM WebSphere® MQ, uses the XA data-source
functionality described in this chapter. For information on the MQ DataBlade
Module, see the IBM Informix Database Extensions User’s Guide.

For general information on XA specifications, refer to the ″Distributed Transaction
Processing: The XA Specification.″ This is the X/Open standard specification that is
available on the Internet.

Note: At the present time, the Dynamic Server transaction manager does not
support the asychronous execution of purpose functions, thread migration,
and transaction branch features.

Support for the Two-Phase Commit Protocol
Dynamic Server supports the two-phase commit protocol with registered
XA-compliant data sources. The two-phase commit protocol ensures that
transactions are uniformly committed or rolled back across multiple database
servers. This protocol governs the order in which commit transactions are
performed and provides a recovery mechanism in case a transaction does not
execute.

XA-Compliant Data Sources and Data Source Types
An XA-compliant data source type is a type of data source that is capable of
supporting XA protocol requirements for a resource manager that is participating
in a transaction.

A data source is an instance of a data source type. An XA-compliant data source
must be created in each database in which you want it, and the data source must
be registered into the transaction manager when it participates in the transaction.

The transaction manager maintains a list of XA data sources participating in each
transaction. Each XA data source participating in each transaction must
dynamically register itself with the transaction manager by calling the
mi_xa_register_xadatasource() or ax_reg() function at least once per transaction.
If, for some reason, the XA data source does not participate in the two-phase
commit protocol, it can be unregistered by calling the
mi_xa_unregister_xadatasource() or ax_unreg() function.

11-2 IBM Informix DataBlade API Programmer’s Guide

Infrastructure for Creating Support Routines for XA Routines
The interaction between the Dynamic Server transaction manager and an XA data
source occurs through a set of XA-support purpose functions, such as xa_open(),
xa_close(), xa_start(), xa_end(), xa_prepare(), xa_commit(), xa_rollback(),
xa_forget(), xa_recover(), and xa_complete(). These UDRs contain XA data
source information and operate for the global transaction ID, which is passed as a
parameter to a UDR.

The support routines must exist in every database in which the application creates
XA data source types and their instances. You should create these UDRs before
creating XA-compliant data source types. For more information, see “Creating
User-Defined XA-Support Routines.”

Global Transaction IDs
The Dynamic Server transaction manager generates and maintains a global
transaction ID (of type XID) for each distributed XA transaction in the system. If a
transaction already has a current transaction ID, the transaction manager uses that
transaction ID for the global transaction and fills the XID structure with the
transaction ID.

The XID structure is defined in the xa.h file in the in the $INFORMIXDIR/incl/
public directory.

System Catalog Tables
The sysxasourcetypes system catalog table stores information about XA
data-source types. The sysxadatasources system catalog table stores information
about XA data-source instances.

Files Containing Necessary Components
DataBlade modules obtain the XA-defined return values, the XID structure
definition, and other necessary information from the from the
$INFORMIXDIR/incl/public/xa.hfile.

The prototypes for mi_xa_register_xadatasource(),
mi_xa_unregister_xadatasource(), mi_xa_get_xadatasource_rmid(), and
mi_xa_get_current_xid() are in the $INFORMIXDIR/incl/public/milib.h file.

Creating User-Defined XA-Support Routines
You can create user-defined XA-support routines, such as xa_open(), xa_start(),
xa_prepare(), xa_rollback(), xa_commit(), xa_recover(), xa_complete(),
xa_forget(), xa_close(), and xa_end(). These purpose functions, which are
described in this section, are used for transaction management.

You use these functions when you create new XA data source types for external
XA-compliant data sources.

Important: Even though Dynamic Server does not call all of the routines described
in this section, you must have the routines to use as parameters when
you create an XA data source type. In the CREATE XADATASOURCE
TYPE statement, all of the parameters are mandatory. For an example
of the CREATE XADATASOURCE TYPE statement, see “Creating an
XA Data Source Type” on page 11-9.

Chapter 11. Working with XA-Compliant External Data Sources 11-3

There is no reason to invoke these functions directly from SQL or from
user-defined routines.

The functions that you create must follow X/Open XA standards.

The xa_open() function
The xa_open() function is called once per database session for each XA data
source that participates in a Dynamic Server transaction. The xa_open() function is
called when a user-defined function registers the XA data source with a transaction
by calling mi_ register_xadatasource() or using ax_reg() for the first time after the
database opens.

Subsequent calls to mi_register_xadatasource() or ax_reg() in the same the same
database session do not result in the invocation of the xa_open() function.

The syntax for the function is:
mint xa_open(char *xa_info, /* IN */

mint rmid, /* IN */
int4 flags) /* IN */

Table 11-1. xa_open() Parameters

Parameter Description

xa_info Information string (″session-id:databasename@servername″)

rmid Unique resource manager identifier

flags TMNOFLAGS, the valid value

The following code fragment contains the xa_open() function:
#include "xa.h"
mint mqseries_open(char *xa_info, mint rmid, int4 flags)

{
/* setup the datastructures/etc. */
if ((myloc = mi_dalloc(sizeof(struct my_location), PER_SESSION))

== (char *) NULL)
{
return XAER_RMERR;
}

....
Return XA_OK;

}

For valid return values, refer to X/Open information, including Distributed
Transaction Processing: The XA Specification.

The xa_close() function
When the database is closed or the session ends, whichever occurs first, Dynamic
Server calls the xa_close() function for each XA data source used in the database
session. This occurs when a new local database is opened, a database is closed, or
a client session ends.

The xa_close() function is also called when the XA data source is created and
registered in a transaction and the transaction is rolled back.

When a database session is closed, all of the XA resources are freed and Dynamic
server calls xa_close() for any registered XA datasources in the database session.

11-4 IBM Informix DataBlade API Programmer’s Guide

The syntax for the function is:
mint xa_close(char *xa_info, /* IN */

mint rmid, /* IN */
int4 flags) /* IN */

Table 11-2. xa_close() Parameters

Parameter Description

xa_info Information string (″session-id:databasename@servername″)

rmid Unique resource manager identifier

flags TMNOFLAGS, the valid value

The following code fragment contains the xa_close() function:
#include "xa.h"
mint mqseries_close(char *xa_info, mint rmid, int4 flags)

{
/* Error */

return XAER_RMERR;
/* Success */

return XA_OK;
}

For valid return values, refer to X/Open information, including Distributed
Transaction Processing: The XA Specification.

The xa_start() function
In each transaction, when an XA data source registers statically with a Dynamic
Server transaction, Dynamic Server invokes the xa_start() function.

The syntax for the function is:
mint xa_start(XID *xid, /* IN */

mint rmid, /* IN */
int4 flags) /* IN */

Table 11-3. xa_start() Parameters

Parameter Description

xid Pointer to the XID data structure that is defined in the xa.h file and used
for the current transaction

rmid Unique resource manager identifier

flags TMNOFLAGS, which is the valid value

For valid return values, refer to X/Open information, including Distributed
Transaction Processing: The XA Specification.

Note: Currently, Dynamic Server does not call the xa_start() function because the
XA data source should be created with the TMREGISTER flag.

The xa_end() function
For each XA data source participating in a transaction, the xa_end() function is
called before a direct rollback or before the prepare stage for a commit operation.

The syntax for the function is:

Chapter 11. Working with XA-Compliant External Data Sources 11-5

mint xa_end (XID *xid, /* IN */
mint rmid, /* IN */
int4 flags) /* IN */

Table 11-4. xa_end() Parameters

Parameter Description

xid Pointer to the XID data structure that is defined in the xa.h file and used
for the current transaction

rmid Unique resource manager identifier

flags TMSUCCESS, when commit issued, or

TMFAIL, indicating the transaction will be rolled back

The following code fragment contains the xa_end() function:
#include "xa.h"
mint mqseries_end(XID *xid, mint rmid, int4 flags)

{
/* Error */

return XAER_RMERR;
/* Success */

return XA_OK;
}

For valid return values, refer to X/Open information, including Distributed
Transaction Processing: The XA Specification.

The xa_prepare() function
The xa_prepare() function prepares XA data source transaction changes for a
commit or rollback operation. A successful return from xa_prepare() indicates that
the XA data source will successfully commit or rollback when requested.

The syntax for the function is:
mint xa_prepare (XID *xid, /* IN */

mint rmid, /* IN */
int4 flags) /* IN */

Table 11-5. xa_prepare() Parameters

Parameter Description

xid Pointer to the XID data structure that is defined in the xa.h file and used
for the current transaction

rmid Unique resource manager identifier

flags TMNOFLAGS, which is the valid value.

The following code fragment contains the xa_prepare() function:
#include "xa.h"
mint mqseries_prepare(XID *xid, mint rmid, int4 flags)

{
/* Error */

return XAER_RMERR;
/* Success */

return XA_OK;
}

For valid return values, refer to X/Open information, including Distributed
Transaction Processing: The XA Specification.

11-6 IBM Informix DataBlade API Programmer’s Guide

The xa_rollback() function
The xa_rollback() function is called if an application rolls back the transaction or
if the prepare stage of the transaction fails.

The syntax for the function is:
mint xa_rollback (XID *xid, /* IN */

mint rmid, /* IN */
int4 flags) /* IN */

Table 11-6. xa_rollback() Parameters

Parameter Description

xid Pointer to the XID data structure that is defined in the xa.h file and used
for the current transaction

rmid Unique resource manager identifier

flags TMNOFLAGS, which is the valid value.

The following code sample code fragment contains the xa_rollback() function:
#include "xa.h"
mint mqseries_rollback(XID *xid, mint rmid, int4 flags)

{
/* Error */

return XAER_RMERR;
/* Success */

return XA_OK;
}

For valid return values, refer to X/Open information, including Distributed
Transaction Processing: The XA Specification.

The xa_commit() function
The xa_commit() function requests each participating XA data source to commit a
transaction. If all of the XA data sources return TMSUCCESS on calls to xa_end()
and to xa_prepare(), the database server calls xa_commit() on each participating
XA data source.

The syntax for the function is:
mint xa_commit (XID *xid, /* IN */

mint rmid, /* IN */
int4 flags) /* IN */

Table 11-7. xa_commit() Parameters

Parameter Description

xid Pointer to the XID data structure that is defined in the xa.h file and used
for the current transaction

rmid Unique resource manager identifier

flags TMNOFLAGS, which is the valid value.

The following code sample code fragment contains the xa_commit() function:
#include "xa.h"
mint mqseries_commit(XID *xid, mint rmid, int4 flags)

{
/* Error */

Chapter 11. Working with XA-Compliant External Data Sources 11-7

return XAER_RMERR;
/* Success */

return XA_OK;
}

For valid return values, refer to X/Open information, including Distributed
Transaction Processing: The XA Specification.

The xa_recover() function
The xa_recover() function obtains a list of prepared transaction branches from a
resource manager.

The syntax for the function is:
mint xa_recover (XID *xids, /* IN/OUT */

int4 count, /* IN */
mint rmid, /* IN */
int4 flags) /* IN */

Table 11-8. xa_recover() Parameters

Parameter Description

xids Array of the XID data structure that is defined in the xa.h file and used
for the current transaction

count Size of the array defined by the count argument

rmid Unique resource manager identifier

flags TMNOFLAGS, which is the valid value.

Note: Currently Dynamic Server does not call the xa_recover() function.

The xa_forget() function
The xa_forget() function enables an XA data source to disregard an heuristically
completed transaction.

The syntax for the function is:
mint xa_forget (XID *xid, /* IN */

mint rmid, /* IN */
int4 flags) /* IN */

Table 11-9. xa_forget() Parameters

Parameter Description

xid Pointer to the XID data structure that is defined in the xa.h file and used
for the current transaction

rmid Unique resource manager identifier

flags TMNOFLAGS, which is the valid value.

The following code sample code fragment contains the xa_forget() function:
#include "xa.h"
mint mqseries_forget(XID *xid, mint rmid, int4 flags)

{
/* Error */

return XAER_RMERR;
/* Success */

return XA_OK;
}

11-8 IBM Informix DataBlade API Programmer’s Guide

For valid return values, refer to X/Open information, including Distributed
Transaction Processing: The XA Specification.

The xa_complete() function
The xa_complete() function waits for an asynchronous operation to complete. If an
operation is still pending, xa_complete() waits for the completion and returns the
status.

The syntax for the function is:
mint xa_complete (char *handle, /* IN*/

int * retval, /* OUT */
mint rmid, /* IN */
int4 flags) /* IN */

Table 11-10. xa_complete() Parameters

Parameter Description

handle Handle returned by the xa_ call

retval Return value of the xa_ call that returned handle

rmid Unique resource manager identifier

flags TMNOFLAGS, which indicates no flags

For valid return values, refer to X/Open information, including Distributed
Transaction Processing: The XA Specification.

Note: Currently Dynamic Server does not call the xa_complete() function because
Dynamic Server does not support asynchronous completion.

Dropping an XA Support User-Defined Routine
You cannot drop an XA support user-defined routine until all of the XA data
source types that use the support function are dropped.

Managing XA Data Sources and Data Source Types
This section contains information on creating and dropping XA-compliant data
source types and instances of XA-compliant data sources.

Creating an XA Data Source Type
You must create an XA data source type, before you create an XA data source.

To create an XA data source type, use the CREATE XADATASOURCE TYPE
statement, as follows:
CREATE XADATASOURCE TYPE datasourcetypename (purpose options);

For example, in your code, you could specify information as shown in the
following example:
create function "informix".mqseries_open(lvarchar(256), int, int) returns int;

external name '$USERFUNCDIR/mqseries.udr(mqseries_open)' language c;

grant execute on function "informix".mqseries_open(lvarchar(256), int, int)
to public;

create function "informix".mqseries_close(lvarchar(256), int, int) returns int;
external name '$USERFUNCDIR/mqseries.udr(mqseries_close)' language c;

Chapter 11. Working with XA-Compliant External Data Sources 11-9

grant execute on function "informix".mqseries_close(lvarchar(256), int, int)
to public;

create function "informix".mqseries_start(informix.pointer, int, int) returns int;
external name '$USERFUNCDIR/mqseries.udr(mqseries_start)' language c;

grant execute on function "informix".mqseries_start(informix.pointer, int, int)
to public;

create function "informix".mqseries_end(informix.pointer, int, int) returns int;
external name '$USERFUNCDIR/mqseries.udr(mqseries_end)' language c;

grant execute on function "informix".mqseries_end(informix.pointer, int, int)
to public;

create function "informix".mqseries_rollback(informix.pointer, int, int)
returns int;
external name '$USERFUNCDIR/mqseries.udr(mqseries_rollback)' language c;

grant execute on function "informix".mqseries_rollback(informix.pointer, int, int)
to public;

create function "informix".mqseries_prepare(informix.pointer, int, int) returns int;
external name '$USERFUNCDIR/mqseries.udr(mqseries_prepare)' language c;

grant execute on function "informix".mqseries_prepare(informix.pointer, int, int)
to public;

create function "informix".mqseries_commit(informix.pointer, int, int) returns int;
external name '$USERFUNCDIR/mqseries.udr(mqseries_commit)' language c;

grant execute on function "informix".mqseries_commit(informix.pointer, int, int)
to public;

create function "informix".mqseries_forget(informix.pointer, int, int) returns int;
external name '$USERFUNCDIR/mqseries.udr(mqseries_forget)' language c;

grant execute on function "informix".mqseries_forget(informix.pointer, int, int)
to public;

create function "informix".mqseries_recover(informix.pointer, int, int, int)
returns int;
external name '$USERFUNCDIR/mqseries.udr(mqseries_recover)' language c;

grant execute on function "informix".mqseries_recover(informix.pointer, int, int,
int) to public;

create function "informix".mqseries_complete(informix.pointer, informix.pointer,
int, int) returns int;
external name '$USERFUNCDIR/mqseries.udr(mqseries_complete)' language c;

grant execute on function "informix".mqseries_complete(informix.pointer,
informix.pointer int, int) to public;

CREATE XADATASOURCE TYPE informix.MQSeries
(xa_flags = 1,
xa_version = 0,
xa_open = informix.mqseries_open,
xa_close = informix.mqseries_close,
xa_start = informix.mqseries_start,
xa_end = informix.mqseries_end,
xa_rollback = informix.mqseries_rollback,
xa_prepare = informix.mqseries_prepare,
xa_commit = informix.mqseries_commit,
xa_recover = informix.mqseries_recover,
xa_forget = informix.mqseries_forget,
xa_complete = informix.mqseries_complete);

11-10 IBM Informix DataBlade API Programmer’s Guide

In this statement, xa_flags must be set to 1.

You must provide one value for each of the options listed above, but not
necessarily in the sequence shown above.

ANSI database and non-ANSI database namespace rules apply for the XA data
source type, XA data source names, and user-defined function names.

After you create a data source type, information on the data source type is stored
in the sysxasourcetypes system catalog table.

For syntax details, see the IBM Informix Guide to SQL: Syntax.

Dropping an XA Data Source Type
You cannot drop an XA data source type until all of the XA data source instances
that use the type are dropped.

To drop an XA data source type, use the DROP XADATASOURCE TYPE statement
as follows:
DROP XADATASOURCE TYPE datasourcetypename RESTRICT;

For example:
DROP XADATASOURCE TYPE informix.MQSeries RESTRICT;

For syntax details, see the IBM Informix Guide to SQL: Syntax.

Creating an XA Data Source
To create an XA data source, use the CREATE XADATASOURCE statement, as
follows:
CREATE XADATASOURCE datasourcename USING datasourcetypename;

The datasourcename and datasourcetypename optionally include the owner name
separated from the data source type name by a period.

For example:
CREATE XADATASOURCE informix.NewYork USING informix.MQSeries;

ANSI database and non-ANSI database namespace rules apply for the XA data
source type, XA data source names, and user-defined function names.

Each new XA data source will have a unique ID in the sysxadatasources system
catalog table.

For syntax details, see the IBM Informix Guide to SQL: Syntax.

Dropping an XA Data Source
Use the DROP XADATASOURCE statement to drop an XA data source.

DROP XADATASOURCE datasourcename RESTRICT;

For example:
DROP XADATASOURCE informix.NewYork RESTRICT;

Chapter 11. Working with XA-Compliant External Data Sources 11-11

The XA data source must already exist in the system because it was previously
created with a CREATE XADATASOURCE TYPE statement. Information on the
data source type is stored in the sysxasourcetypes system catalog table.

If an XA data source has been registered with a transaction that is not complete,
the data source can be dropped only if the database is closed or the database
session exits.

For syntax details, see the IBM Informix Guide to SQL: Syntax.

Registering and Unregistering XA-Compliant Data Sources
After you create an external XA-compliant data source, transactions can register
and unregister the data source using the mi_xa_register_xadatasource() or ax_reg(
) and mi_xa_unregister_xadatasource() or ax_unreg() functions.

The mi_xa_register_xadatasource() function and the ax_reg() function both
register XA-compliant, external data sources. However, these functions use
different parameters and have different return values.

Similarly, the mi_xa_unregister_xadatasource() and ax_unreg() functions perform
the same operation, but use different parameters and have different return values.

Unlike SQL CREATE operations, which create entries in system catalog tables,
registration is transient, lasting only for the duration of the transaction. A
transaction must be started, implicitly or explicitly, before the application can
register the XA data source.

In a distributed environment, you must register a data source using the local
coordinator server.

Multiple registrations of the same XA data source in a transaction have the same
effect as a single registration. Dynamic Server does not maintain a count of the
number of times an application has registered. A single call to ax_unreg() or
mi_xa_unregister_xadatasource() unregisters the data source from the transaction.

Using ax_reg()
The ax_reg() function registers an XA data source with the current transaction.
This function must be repeated with each new transaction.

Use the following syntax for an ax_reg() function:
int ax_reg(int rmid, XID *xid, int4 flags)

For example:
#include "xa.h"
#include "milib.h"
int rmid, retcode;
XID *xid;
if ((rmid = mi_xa_get_xadatasource_rmid("informix.Newyork")) <= 0)

{
/* Error while getting XA data source id */
}

if (!(xid = (XID *)mi_alloc(sizeof(XID))))
{

/* Memory allocation error */
}

retcode = ax_reg(rmid, xid, TMNOFLAGS);

11-12 IBM Informix DataBlade API Programmer’s Guide

if (retcode != TM_OK)
{

/* ax_reg() Error */
}

/* ax_reg() is Successful */

When you use the ax_reg() function, follow these guidelines:
v Be sure the correct rmid (resource manager ID) is correct.

You can use the mi_xa_get_xadatasource_rmid() function to enable the
DataBlade module to get the ID the correct rmid value.
The resource manager ID must be present in a row in the sysxadatasources
system catalog table that was created with the CREATE XADATASOURCE
statement of SQL.

v xid is a valid pointer to the XID data structure, which is defined in the
$INFORMIXDIR/incl/public/xa.h file. Make sure that memory for xid is
allocated.

v Set flags to TMNOFLAGS. The value for TMNOFLAGS is defined in the
$INFORMIXDIR/incl/public/xa.h file.

v Only call the ax_reg() function within an explicit or implicit transaction.
v Do not call the ax_reg() function in these contexts:

– From the sub-ordinator of a distributed transaction or from within a resource
manager global transaction
Dynamic Server can operate as a resource manager in a global transaction
managed by a third party transaction manager. The ax_reg() function should
not be used if Dynamic Server is operating as a resource manager.

– In a non-logging database
– From any of the XA purpose functions that are specified in a CREATE

XADATASOURCE TYPE statement, which creates a type of XA-compliant
external data source.

Multiple registrations of the same XA data source in a single transaction do not
effect either the transaction or the XA data source.

For more information on this function, see the IBM Informix DataBlade API Function
Reference.

Using ax_unreg()
The ax_unreg() function unregisters the previously registered XA data source from
the transaction.

By default, all XA-compliant external data sources are unregistered at the end of a
transaction. Use the ax_unreg() function to unregister the data source before the
end of the transaction so the data source does not participate in the transaction.

Use the following syntax for an ax_unreg() function:
int ax_unreg(int rmid, int4 flags)

For example:
#include "xa.h"
#include "milib.h"
int rmid, retcode;

if ((rmid = mi_xa_get_xadatasource_rmid("informix.Newyork")) <= 0)
{
/* Error while getting XA data source id */

Chapter 11. Working with XA-Compliant External Data Sources 11-13

}
retcode = ax_unreg(rmid, TMNOFLAGS);
if (retcode != TM_OK)

{
/* ax_uunreg() Error */

}
/* ax_unreg() is Successful */

When you use the ax_unreg() function, follow these guidelines:
v Get the correct rmid (resource manager ID) value to use in the syntax for this

function. If you do not know the resource manager ID, you can use the
mi_xa_get_xadatasource_rmid() function to get the ID.

v Make sure the flags are passed as TMNOFLAGS.
v Only call the ax_unreg() function within an explicit or implicit transaction.
v Do not call the ax_unreg() function from these contexts:

– From the sub-ordinator of a distributed transaction
– From within a resource manager global transaction
– In a non-logging database
– From any of the XA purpose functions that are specified in a CREATE

XADATASOURCE TYPE statement.
v Do not unregister an XA data source that is not registered or already

unregistered.

For more information on this function, see the IBM Informix DataBlade API Function
Reference.

Using mi_xa_register_xadatasource()
The mi_xa_register_xadatasource() function registers an XA data source with the
current transaction. This function must be repeated with each new transaction. This
function operates the same way as the ax_reg() function.

Use the following syntax for an mi_xa_register_xadatasource() function:
mi_integer mi_xa_register_xadatasource(mi_string *xasrc)

For example:
#include "xa.h"
#include "milib.h"
int retcode;

retcode = mi_xa_register_xadatasource("informix.Newyork"));
if (retcode != MI_OK)

{
/* Error while registering the XA data source */
}

/* Success fully registered */

When you use the mi_xa_register_xadatasource() function, follow these
guidelines:
v Get the correct value for xarsc, which is the user-defined name of the XA data

source. The format of the xarsc name is owner.xadatasourcename.
v Only call the mi_xa_register_xadatasource() function within an explicit or

implicit transaction.
v Do not call the mi_xa_register_xadatasource() function:

– From the sub-ordinator of a distributed transaction or from within a resource
manager global transaction

11-14 IBM Informix DataBlade API Programmer’s Guide

Dynamic Server can operate as a resource manager in a global transaction
managed by a third party transaction manager. The
mi_xa_register_xadatasource() function should not be used if Dynamic
Server is operating as a resource manager.

– In a non-logging database
– From any of the XA purpose functions that are specified in a CREATE

XADATASOURCE TYPE statement.

Multiple registrations of the same XA data source in a single transaction do not
effect either the transaction or the XA data source.

For more information on this function, see the IBM Informix DataBlade API Function
Reference.

Using mi_xa_unregister_xadatasource()
The mi_xa_unregister_xadatasource() function unregisters the previously
registered XA data source from the transaction.

Use the following syntax for an mi_xa_unregister_xadatasource() function:
mi_integer mi_xa_unregister_xadatasource(mi_string *xasrc)

For example:
#include "xa.h"
#include "milib.h"
int retcode;

retcode = mi_xa_unregister_xadatasource("informix.Newyork"));
if (retcode != MI_OK)

{
/* Error while unregistering the XA data source */
}

/* Successfully unregistered */

When you use the mi_xa_unregister_xadatasource() function, follow these
guidelines:
v Get the correct value for xarsc, which is the user-defined name of the XA data

source. The format of the xarsc name is owner.xadatasourcename.
You can use the mi_xa_get_current_xid() function to return the pointer to the
current XID structure for an XA-compliant, external data source.

v Only call the mi_xa_unregister_xadatasource() function within an explicit or
implicit transaction.

v Do not call the mi_xa_unregister_xadatasource() function:
– From the sub-ordinator of a distributed transaction
– From within a resource manager global transaction
– In a non-logging database
– From any of the XA purpose functions that are specified in a CREATE

XADATASOURCE TYPE statement.
v Do not unregister an XA data source that is not registered or already

unregistered.

For more information on this function, see the IBM Informix DataBlade API Function
Reference.

Chapter 11. Working with XA-Compliant External Data Sources 11-15

Getting the XID Structure
The mi_xa_get_current_xid() function returns the pointer to the current XID
structure for an XA-compliant, external data source. The XID structure is defined
in the $INFORMIXDIR/incl/public/xa.h file.

This XID structure that is returned is valid only until the user-defined routine
terminates. The calling user-defined routine must copy this function if it is
necessary to keep the data for a longer period of time.

The syntax for the function is:
XID * mi_xa_get_current_xid ()

For example:
#include "xa.h"
#include "milib.h"

XID * xid;
xid = mi_xa_get_current_xid();
if ((!xid)

{
/* Error while getting the curret XID */
}

/* Successful */

If successful, this function returns the pointer to the XID structure, which is not
null.

For more information on this function, see the IBM Informix DataBlade API Function
Reference.

Getting the Resource Manager ID
When specifying how user-defined routines register and unregister a data source
using the ax_reg() or ax_unreg() function, you can use the
mi_xa_get_xadatasource_rmid() function to get the resource manager ID that was
previously created in the database for an XA-compliant, external data source. The
mi_xa_get_xadatasource_rmid() function can be used while invoking the ax_reg()
or the ax_unreg() function in subsequent calls.

The syntax for the function is:
mi_integer mi_xa_get_xadatasource_rmid(mi_string *xasrc)

xasrc is the user-defined name of the XA data source.

For example:
#include "xa.h"
#include "milib.h"
int rmid;

rmid = mi_xa_get_xadatasource_rmid("informix.Newyork");
if (rmid <= 0)

{
/* Error while getting XA data source id */
}

/* Successful */

For more information on this function, see the IBM Informix DataBlade API Function
Reference.

11-16 IBM Informix DataBlade API Programmer’s Guide

Monitoring Integrated Transactions
Use the following onstat options to display information about transactions
involving XA-compliant data sources:

onstat Option What XA Data Source Information This Command Displays

onstat -x Displays information on XA participants in a transaction.

onstat -G Displays information on XA participants in a global transaction.

onstat -g ses session id Displays session information, including information about XA
data sources participating in a transaction.

Chapter 11. Working with XA-Compliant External Data Sources 11-17

11-18 IBM Informix DataBlade API Programmer’s Guide

Part 4. Creating User-Defined Routines

© Copyright IBM Corp. 1996, 2009

IBM Informix DataBlade API Programmer’s Guide

Chapter 12. Developing a User-Defined Routine

In This Chapter . 12-2
Designing a UDR . 12-2

Development Tools . 12-2
Uses of a C UDR . 12-3
Portability . 12-4

DataBlade API Data Types . 12-4
Data Conversion . 12-4

Insert and Update Operations . 12-5
Creating UDR Code . 12-5

Variable Declaration . 12-6
Session Management . 12-6

Session Restrictions . 12-6
Transaction Management . 12-7

SQL Statement Execution . 12-10
Setting Input Parameters . 12-10
Retrieving Column Values . 12-10

Routine-State Information . 12-10
Event Handling . 12-11
Well-Behaved Routines . 12-11

Compiling a C UDR . 12-11
Compiling Options . 12-12
Creating a Shared-Object File . 12-12

Registering a C UDR . 12-14
EXTEND Role Required to Register a C UDR . 12-15
The External Name . 12-15

Specifying the Entry Point . 12-16
Using Environment Variables . 12-16

The UDR Language . 12-16
Routine Modifiers . 12-17
Parameters and Return Values . 12-17
Privileges for the UDR. 12-18

Executing a UDR . 12-18
Routine Resolution . 12-19
The Routine Manager . 12-20

Loading a Shared-Object File . 12-20
Creating the Routine Sequence . 12-22
Pushing Arguments Onto the Stack . 12-22
Managing UDR Execution . 12-23
Returning the Value . 12-24
Releasing the Routine Sequence . 12-25

Debugging a UDR . 12-25
Using a Debugger . 12-25

Creating a Debugging Version . 12-26
Connecting to the Database Server from a Client . 12-26
Loading the Shared-Object File for Debugging. 12-26
Identifying the VP Process . 12-27

Running a Debugging Session . 12-27
Breakpoints . 12-27
Debugging Hints . 12-27
Possible Memory Errors . 12-28
Symbols in Shared-Object Files . 12-28

Using Tracing . 12-28
Adding a Tracepoint in Code . 12-29
Using Tracing at Runtime. 12-33
Understanding Tracing Output . 12-35

© Copyright IBM Corp. 1996, 2009 12-1

Changing a UDR . 12-36
Altering a Routine . 12-36
Unloading a Shared-Object File . 12-36

In This Chapter
A C user-defined routine (UDR) is a UDR that is written in the C language and
uses the server-side implementation of the DataBlade API to communicate with the
database server. C UDRs (functions and procedures) are implemented as
C-language functions. DataBlade modules often include C UDRs that are made
available for use by registering them in the database.

Tip: The terms “C UDR” and “UDR” are used interchangeably in this publication.

The development process for a C UDR follows these steps:
1. Design the use and development process for the UDR
2. Code a C routine that uses the DataBlade API functions to interact with the

database server
3. Compile and link the C routine to create a shared-object file
4. Register the C routine with the CREATE FUNCTION or CREATE PROCEDURE

statement
5. Execute the UDR
6. Use tracing and the debugging features to work out any problems in the UDR
7. Change any characteristics of the UDR that are required during its lifetime
8. Optimize performance of the UDR

This chapter describes each of these steps in the development of a C UDR. For
general information on the development steps of a UDR, see the IBM Informix
User-Defined Routines and Data Types Developer’s Guide.

Client Only

This chapter covers topics specific to the development of a C UDR. This material
does not apply to the creation of client LIBMI applications with the client-side
implementation of the DataBlade API.

End of Client Only

Designing a UDR
This section provides the following design considerations for the development of a
C UDR:
v Development tools
v Uses of a UDR
v Portability
v Insert and update operations

Development Tools
The creation of a C UDR involves the production of source code, header files, SQL
statements, and many other files. This publication describes how to generate the
code for C UDRs yourself, using the DataBlade API and the basic tools available
with an operating system.

12-2 IBM Informix DataBlade API Programmer’s Guide

However, IBM provides a package of development tools, called the Informix
DataBlade Developers Kit (DBDK), that helps you build and manage the C UDRs of
a DataBlade module project. A DataBlade module is a package of software that
extends the functionality of the database server. It can include the following
objects:
v New or extended data types
v UDRs
v Error messages
v Functional tests
v Interfaces to other DataBlade modules
v Packaging and installation scripts

Windows Only

The DBDK runs on Windows. The following table summarizes the development
tools of the DBDK.

DBDK Development Tool Description

BladeSmith v Provides an interactive wizard and generates code for many
C UDRs

v Generates a project, with as much code as possible,
including source for opaque-type support functions, header
files, a makefile for compilation, SQL statements, and
functional tests

BladePack v Understands the contents of a project that BladeSmith
produces, enabling it to be extended to include
documentation and online help

v Produces a releasable package for a DataBlade module

BladeManager Understands the contents of the releasable package that
BladePack creates, enabling it to install a DataBlade module in
a database

These development tools include online help to describe their use. The IBM
Informix DataBlade Developers Kit User’s Guide is provided to describe these tools.

End of Windows Only

UNIX/Linux Only

BladeSmith can develop source code and a makefile that can be compiled on UNIX
or Linux.

End of UNIX/Linux Only

Consider using the development tools of the DBDK to generate the initial code for
your C UDRs. You can then use the information in this publication to enhance and
change this code to handle the unique needs of your C UDR or DataBlade module.

Uses of a C UDR
The following table summarizes the tasks that a C UDR can perform. It also
describes where you can find additional information in this publication for each of
these UDR uses.

Chapter 12. Developing a User-Defined Routine 12-3

Type of UDR Purpose More Information

Cast function A UDR that converts one data type to another “Writing a Cast Function” on page 15-2

Cost function A UDR that determines the cost of execution
for an expensive UDR

“Writing Selectivity and Cost
Functions” on page 15-54

End-user routine A UDR that performs some common task for
an end user

“Writing an End-User Routine” on
page 15-2

Iterator function A function that returns more than one row of
data

“Writing an Iterator Function” on page
15-3

Opaque-type support
function

One of a group of user-defined functions that
tell the database server how to handle the
data of an opaque data type

“Creating an Opaque Data Type” on
page 16-1

Operator-class function User-defined functions that define operators
to use with a particular secondary access
method

See your access-method documentation.

Negator function A user-defined function that calculates the
Boolean NOT operation for a particular
operator or function.

“Creating Negator Functions” on page
15-60

Selectivity function A UDR that determines the percentage of
rows likely to be returned by an expensive
UDR

“Writing Selectivity and Cost
Functions” on page 15-54

Parallelizable UDR A UDR that can run in parallel when executed
within a PDQ statement

“Creating Parallelizable UDRs” on page
15-61

User-defined aggregate A function that calculates an aggregate value
on a particular column or value

“Writing an Aggregate Function” on
page 15-11

Portability
To ensure portability of your C UDR, include the following items in the design and
implementation of your C UDR:
v Use the DataBlade API data types for data types whose size might vary across

computer architectures.
v Use the DataBlade API functions to transfer data between client and server

computers.

DataBlade API Data Types
The DataBlade API provides platform-independent data types, such as mi_smallint
(two-byte integer), mi_integer (four-byte integer), and mi_double_precision
(floating-point values). For a complete list of DataBlade API data types, see
Table 1-1 on page 1-8. The mitypes.h header file defines these data types.

Tip: The mi.h header file automatically includes the milib.h header, which in turn
includes the mitypes.h header file. Therefore, you do not need to explicitly
include mitypes.h to use the DataBlade API data types.

To ensure maximum portability of your code, use these platform-independent data
types instead of their C-language equivalents.

Data Conversion
The DataBlade API provides special functions to handle the following data
conversions that a C UDR might need to perform:
v Data conversion between the text and binary representations of the data

12-4 IBM Informix DataBlade API Programmer’s Guide

The control mode of a query determines whether the query results are in text or
binary representation. The DataBlade API provides functions that convert
between these two representations. Conversion between these two
representations might also be useful in the input and output support functions
of an opaque type. For a list of these functions, see “Conversion of Opaque-Type
Data Between Text and Binary Representations” on page 16-16.

v Data transfer between a client application and the database server
When opaque-type data is transferred between a client application and the
database server, the database server calls the send and receive support functions.
For these UDRs, you can handle potential differences in computer architecture
that might affect the byte ordering or size with special DataBlade API functions.
For more information, see “Conversion of Opaque-Type Data with
Computer-Specific Data Types” on page 16-21.

Insert and Update Operations
An SPL routine has the restriction that it cannot perform INSERT or UPDATE
operations in an SPL routine that is invoked from a DML statement. This
restriction ensures that the SPL routine cannot change the state of the statement
that invoked it.

This restriction is relaxed for UDRs. The database server issues an error if the table
that is being accessed in the UDR is referenced in the statement that invoked it. If
this is a nested UDR invocation, then the database server checks the chain of
parent queries.

If a UDR is called as part of an INSERT, UPDATE, DELETE, or SELECT statement
and if the referenced table appears in the chain of statements that eventually
invoked the UDR, the called routine cannot execute any of the following
statements:
v ALTER FRAGMENT
v ALTER INDEX
v ALTER OPTICAL
v ALTER TABLE
v DROP INDEX
v DROP OPTICAL
v DROP SYNONYM
v DROP TABLE
v DROP TRIGGER
v DROP VIEW
v RENAME COLUMN
v RENAME TABLE

Creating UDR Code
This section provides an overview of C UDR development:
v Variable declarations
v Session management
v SQL statement execution
v Routine-state information
v Event handling

Chapter 12. Developing a User-Defined Routine 12-5

v Well-behaved routines

Tip: For a discussion of special implementation issues specific to a C UDR, see
Chapter 13, “Writing a User-Defined Routine,” on page 13-1.

Variable Declaration
In a C UDR, you declare variables to hold information just as you would in a C
function. The DataBlade API provides many data types for variable declaration.
The DataBlade API prepends special prefixes to the names of its data types, as the
following table shows.

DataBlade API Data Type Data Type Prefix More Information

Data types to hold SQL data types mi_ Table 1-1 on page 1-8

Data type structures that hold information
for DataBlade API functions

MI_ Table 1-4 on page 1-12

Table 1-2 on page 1-10 lists where in this publication each of the SQL data types is
discussed in detail.

Use the DataBlade API data types for variable declaration in your C UDR even if
there is a C-language equivalent. The DataBlade API data types are more portable
if your C UDR moves to different computer architectures. For more information,
see “DataBlade API Data Types” on page 12-4.

Session Management
Session management is different in a C UDR than in a client LIBMI application.
Unlike a client LIBMI application, which can simultaneously connect to several
databases, a UDR inherits a particular session context. That is, it is within an
existing session and uses a database that is already opened. For information, see
“Establishing a UDR Connection (Server)” on page 7-11.

Because a C UDR can establish only a UDR connection, not a client connection,
restrictions apply in the following areas:
v Sessions
v Transactions

Session Restrictions
The following restrictions exist within a UDR with respect to the session:
v Session-connection restrictions

A UDR runs within an existing session. It can only obtain a connection to this
session after a client application has already begun the session. However, a UDR
can obtain more than one connection to the session.

v Cursor restrictions
– Cursors opened in one session are only visible in the context of that session.

Cursors defined on one UDR are not visible in other UDRs. Therefore,
multiple UDRs can use the same cursor names.

– A cursor opened in a session persists until an mi_close() or an
mi_drop_prepared_statement() function, or until the end of the statement
that called the UDR (if mi_close() was not called). Therefore, cursors last
across routine invocations.

v Database restrictions
– A UDR cannot connect to a remote database server.

12-6 IBM Informix DataBlade API Programmer’s Guide

– A UDR uses the default database, which the client application has established.
However, it cannot change the database.

v Table restrictions
The scope of temporary tables created in a logging database is the current
session. Temporary tables created in a database that does not use logging or
with a CREATE TABLE statement that includes the WITH NO LOG clause
persist until beyond the CLOSE DATABASE statement.

v Constraint restrictions
Violations that are associated with the execution of the UDR are added to a
violation temporary table. Therefore, if the SET CONSTRAINTS statement sets
the constraint mode to IMMEDIATE, constraint checking is done per statement.
Otherwise, constraint checking is deferred to the time when the transaction is
committed. If the constraint mode is set to IMMEDIATE, the constraint is
checked after each statement in the UDR. If you want per-UDR constraint
checking, change the constraint mode to DEFERRED at the beginning of the UDR
and back to IMMEDIATE at the end of the UDR.

Transaction Management
Against databases that use logging, a UDR inherits the transaction state that is
started by the SQL statement that invoked the UDR. All statements in a UDR occur
inside a transaction because the UDR is called from within an SQL statement. An
SQL statement is always part of a transaction. The type of transaction that the SQL
statement is part of is based on the type of database and whether it uses
transaction logging, as Table 12-1 shows.

Table 12-1. Types of Transactions

Status of Database Status of SQL Statement Description

Database is not ANSI-compliant:

Database does not use
transaction logging.

Database does use
transaction logging.

No transactions exist. The database server does not log changes to the database that
SQL statements might make. Any UDRs that are part of the
SQL statement are not logged and their actions cannot be
rolled back.

Each SQL statement is within either an explicit transaction or a single-statement
transaction:

v Explicit transaction The client application begins an explicit transaction with the
BEGIN WORK statement and ends it with either the COMMIT
WORK statement (transaction successful) or the ROLLBACK
WORK statement (transaction not successful). Operations
within a single cursor (from OPEN to CLOSE) constitute a
transaction as well.

SQL statements between the BEGIN WORK and COMMIT
WORK or ROLLBACK WORK statements (or within a cursor)
execute within the explicit transaction. If these SQL statements
contain any UDRs, each of the UDRs executes within the
explicit transaction.

v Single-statement
transaction

The client application begins a single-statement transaction for
any SQL statement that is not contained within a BEGIN
WORK statement and a COMMIT WORK or ROLLBACK
WORK statement. Any UDRs that are part of the SQL
statement are within this single-statement transaction. The
only exception to this rule is the EXECUTE FUNCTION
statement; it does not execute within a transaction.

Database is ANSI-compliant:

Chapter 12. Developing a User-Defined Routine 12-7

Table 12-1. Types of Transactions (continued)

Status of Database Status of SQL Statement Description

Database logging is
always in effect.

Each SQL statement
executes within an implicit
transaction, which is
always in effect.

The client application invokes an SQL statement, which begins
the implicit transaction, and the transaction ends explicitly
with COMMIT WORK or ROLLBACK WORK. Any UDRs
within the SQL statement that began the implicit transaction
are automatically part of the transaction. In addition, any SQL
statements that execute before the COMMIT WORK or
ROLLBACK WORK statement ends the transaction are also
part of the implicit transaction.

You can obtain the transaction ID of the current transaction with the
mi_get_transaction_id() function.

As a rule, a C UDR must not issue any of the following SQL transaction statements
because they interfere with transaction boundaries:
v BEGIN WORK
v COMMIT WORK
v ROLLBACK WORK

In all databases that use logging, an SQL statement is within a transaction. In such
databases, a DML statement (SELECT, INSERT, UPDATE, DELETE) implicitly starts
a transaction, if a transaction is not already in effect. If a UDR that executes one of
these SQL transaction statements is called from a DML statement, the database
server raises an error (-535).

However, the EXECUTE PROCEDURE and EXECUTE FUNCTION statements do
not implicitly start another transaction, if they are not already in a transaction. If a
UDR is called from an EXECUTE PROCEDURE or EXECUTE FUNCTION
statement, the database server only raises an error if the UDR interferes with the
current transaction boundaries.

For example, suppose you have a UDR named udr1() that uses the mi_exec()
function to execute two SQL statements:
void udr1(...)
{

mi_exec(...DML statement 1...);
mi_exec(...DML statement 2...);

}

Suppose also that you execute this UDR with the EXECUTE PROCEDURE
statement, as follows:
EXECUTE PROCEDURE udr1();

If a transaction has not already been started, this UDR would have two
transactions, one for each call to mi_exec().

To get a single transaction, you could surround these SQL statements with a begin
and end work, as udr2() shows:
void udr2(...)
{

mi_exec(...'begin work'..);

12-8 IBM Informix DataBlade API Programmer’s Guide

mi_exec(...DML statement 1...);
mi_exec(...DML statement 2...);
mi_exec(...'commit work'...);

}

However, you can only start a transaction within a UDR if you are not already in a
transaction. Therefore, you can only invoke a UDR that starts a transaction when
the following restrictions are met:
v You must invoke the UDR with the EXECUTE PROCEDURE or EXECUTE

FUNCTION statement.
Because udr2() is a user-defined procedure, you must use EXECUTE
PROCEDURE to invoke it, as follows:
EXECUTE PROCEDURE udr2();

Suppose you tried to invoke udr2() with the following SELECT statement:
SELECT udr2() FROM tab WHERE x=y;

If a transaction had not started, the SELECT operation starts its own implicit
transaction. The database server raises an error when execution reaches the first
call to mi_exec() in udr2():
mi_exec(...'begin work'..);

v The UDR calling context must not have already started a transaction.
The following code fragment fails because the EXECUTE PROCEDURE
statement is already within a transaction block and udr2() attempts to start
another transaction:
BEGIN WORK;
...
EXECUTE PROCEDURE udr2(); /* This statement fails. */
...
COMMIT WORK:

The database server raises an error when execution reaches the first call to
mi_exec() in udr2():
mi_exec(...'begin work'..);

Important: Unless a UDR knows its calling context, it should not issue an SQL
transaction statement. If the caller has already begun a transaction, the
UDR fails.

You can execute an SQL transaction statement in a UDR that you call directly from
a DataBlade API module (not from within an SQL statement). You can also choose
whether to commit or rollback the current transaction from within an
end-of-statement or end-of-transaction callback function. For more information, see
“State Transitions in a C UDR (Server)” on page 10-51.

In a database with logging, the database server creates an internal savepoint before
execution of each statement within a UDR that might affect the database state. If
one of these statements fails, the database server performs a rollback to this
internal savepoint. At this point, the database server does not release table locks.
However, the same user can obtain a lock on the same table in the same
transaction. The database server releases the table lock when the entire transaction
ends (commit or rollback).

Warning: For databases that do not use logging, no changes to the database that a
UDR might make are logged. Therefore, none of these changes can be
rolled back. Consider carefully whether you want to use logging for
your database.

Chapter 12. Developing a User-Defined Routine 12-9

SQL Statement Execution
The differences in the execution of SQL statements in a C UDR and a client LIBMI
application are because of the differences in passing mechanisms that they use for
the contents of an MI_DATUM structure. In a C UDR, you must consider the data
type of the value in the MI_DATUM structure to determine how to obtain the
value. For more information on the passing mechanism for an MI_DATUM value,
see “Contents of an MI_DATUM Structure” on page 2-33.

In SQL statement execution, the DataBlade API uses an MI_DATUM structure for
the following values:
v Input-parameter value that the DataBlade API sends to a prepared statement
v Column value that the DataBlade API retrieves from a query

Setting Input Parameters
When you send a prepared statement for execution, you pass any input-parameter
values in MI_DATUM structures. Therefore, the data type of the column
associated with an input parameter determines the passing mechanism for the
input-parameter value, as follows:
v For data types that are passed by value, the MI_DATUM structure must contain

the actual input-parameter value.
v For data types that are passed by reference, the MI_DATUM structure must

contain a pointer to the input-parameter value.

Within your C UDR, you must use the column data type to determine how to
assign the input-parameter value in the MI_DATUM structure. To assign the
input-parameter values, you send an array of MI_DATUM structures to the
mi_exec_prepared_statement() or mi_open_prepared_statement() function,
which sends the prepared statement to the database server for execution. For more
information, see “Assigning Values to Input Parameters” on page 8-27.

Retrieving Column Values
When you execute a query (SELECT or EXECUTE FUNCTION statement) in a C
UDR, you choose a control mode for the retrieved data. If the query data is in
binary representation, the column value that mi_value() or mi_value_by_name()
passes back is in an MI_DATUM structure. Therefore, the size of the data type
associated with the column determines the passing mechanism for the column
value, as follows:
v For data types that are passed by value, the MI_DATUM structure contains the

actual column value.
v For data types that are passed by reference, the MI_DATUM structure contains a

pointer to this column value.

Within your C UDR, you must use the column data type to determine how to
obtain the column value in the MI_DATUM structure. For more information, see
“Obtaining Column Values” on page 8-42.

Routine-State Information
When the routine manager executes a C UDR, it puts information about the
routine sequence for the UDR in an MI_FPARAM structure and passes this
MI_FPARAM structure as the last argument to the UDR. From the MI_FPARAM
structure, the UDR can obtain the following information:
v The number and data types of its arguments
v The assumed data type of its return value (for a user-defined function only)

12-10 IBM Informix DataBlade API Programmer’s Guide

v Any user data associated with the UDR

For information about how the routine manager executes a UDR, see “Executing a
UDR” on page 12-18. For information about how to access the routine-state
information in the MI_FPARAM structure, see “Accessing MI_FPARAM
Routine-State Information” on page 9-2.

Event Handling
Your C UDR must perform event handling to ensure recovery from unexpected
results, usually a warning or runtime error from the database server. To handle
warnings and errors, the C UDR can define callback functions that the DataBlade
API invokes when a particular event occurs. A C UDR can receive the following
events.

Event Description Event Type

Database server exception Raised when the database server generates an
exception (a warning or an error)

MI_Exception

End of statement Raised when the database server completes the
execution of the current SQL statement

MI_EVENT_END_STMT

End a transaction (commit
or rollback)

Raised when the database server reaches the end of
the current transaction, whether the transaction
contains one or many SQL statements

MI_EVENT_END_XACT

End of session Raised when the database server reaches the end of
the current session

MI_EVENT_END_SESSION

The UDR can register callback functions for any of these events. For more
information about how to handle database server exceptions, see “Database Server
Exceptions” on page 10-20. For information on how to handle state-transition
events (such as end of statement, end of transaction, and end of session), see
“State-Transition Events” on page 10-49.

Well-Behaved Routines
The most efficient way for a C UDR to execute is in the CPU virtual-process (CPU
VP) class. However, to execute in the CPU VP, the UDR must be well-behaved. A
well-behaved UDR adheres to a set of safe-code requirements that prevent the
UDR from interfering with the efficient operation of the CPU VP. Table 13-1 on
page 13-18 summarizes the safe-coding guidelines for a well-behaved UDR. You
must ensure that your C UDR follows these guidelines for it to safely execute in
the CPU VP class. Otherwise, the UDR must execute in a user-defined VP class.
For more information, see “Using Virtual Processors” on page 13-16.

Compiling a C UDR
To compile a C UDR, use a C compiler to compile the source file (.c file extension)
into an object file (.o file extension) and create a shared-object file that contains the
object file.

Tip: The IBM Informix BladeSmith development tool, which is part of the Informix
DataBlade Developers Kit, automatically generates makefiles to compile the
DataBlade module code that it generates. It creates a makefile with a .mak
extension for compilation on UNIX or Linux or with a .dsw extension for
compilation on Windows. A makefile automates compilation of C UDRs. To
compile a C UDR into a shared-object file (with a .bld extension), you only

Chapter 12. Developing a User-Defined Routine 12-11

have to run the appropriate makefile. For more information, see the IBM
Informix DataBlade Developers Kit User’s Guide.

Compiling Options
Use the C compiler to compile a C UDR. Include the following compiler options:
v Specify the necessary paths for any header files that the file needs, such as an

mi.h header file, which includes the declarations of the DataBlade API data type
structures and functions.
These paths include the following subdirectories of the main Informix
installation directory (which the INFORMIXDIR environment variable specifies):
– The incl/public subdirectory contains public header files, such as mi.h.
– The incl/esql subdirectory contains IBM Informix ESQL/C header files, such

as decimal.h.
v Indicate that the DataBlade API module is a C UDR with the following compiler

flag:
MI_SERVBUILD

UNIX/Linux Only

On UNIX or Linux, the following sample command compiles the C UDR in the
abs.c source file:
/compilers/bin/cc -I $INFORMIXDIR/incl

-I $INFORMIXDIR/incl/esql -c abs.c

cc -KPIC -DMI_SERVBUILD -I$INFORMIXDIR/incl/public \
-I$INFORMIXDIR/incl -L$INFORMIXDIR/esql/lib -c abs.c

End of UNIX/Linux Only

At runtime:
LB_LIBRARY_PATH=/opt/informix/lib:/opt/informix/lib/esql

Windows Only

The following command is a sample of how to compile a C UDR named abs.c for
Windows:
cl /DNT_MI_SAPI /DMI_SERVBUILD
-Id:\msdev\include -Id:\informix\incl\public
-Id:\informix\incl -c abs.c

End of Windows Only

Creating a Shared-Object File
You create a shared-object file to hold the compiled UDRs. This file resides in a
directory on the server computer. Each UDR must have a unique name within the
shared-object file.

UNIX/Linux Only

On UNIX or Linux a shared-object file is often called a shared library. On Solaris
systems, shared-object files have the .so file extension.

12-12 IBM Informix DataBlade API Programmer’s Guide

Windows Only

On Windows a shared-object file is called a dynamic link library (DLL). DLLs
usually have the .dll file extension.

End of Windows Only

When the database server executes an SQL statement that contains a UDR, it loads
in memory the shared-object file in which the UDR executable code resides. It
determines which shared-object file to load from the externalname column of the
row in the sysprocedures system catalog table that describes the UDR. The
CREATE FUNCTION or CREATE PROCEDURE statement creates a row for a UDR
in sysprocedures when it registers the UDR.

To create a shared-object file for a C UDR:

1. Create a shared-object file and put the UDR object file (.o file) into this
shared-object file.
You can put C functions for related UDRs into the same shared-object file.
However, the name of each C function must be unique within the shared-object
file.

2. Put the shared-object file in a directory on which the user informix has read
permission and the shared-object owner has write permission.
The shared-object file must not have permissions that allow any user other than
user informix to have write permission.

3. Specify the path of the shared-object file in the EXTERNAL NAME clause of
the CREATE FUNCTION (or CREATE PROCEDURE) statement when you
register the C UDR.
The shared-object file does not have to exist before you register its path with
CREATE FUNCTION or CREATE PROCEDURE. However, at UDR runtime, the
paths of the shared-object file and the registered UDR must match for the
database server to locate the UDR.

Important: If a shared-object file has write permission set to all, the database
server issues error -9793 and writes a message in the log file when
someone tries to execute any UDR in the shared object.

Note: For more information, see “Executing a UDR” on page 12-18. For
information on how to create a shared-object file, see the IBM Informix
User-Defined Routines and Data Types Developer’s Guide.

To create a shared-object file on UNIX or Linux:

1. Load the abs.o object file into the abs.so shared library, as the following
example shows:
/compilers/bin/cc -K abs.o -o abs.so

ld -G abs.o -o abs.so

2. Put the shared library in a directory on which user informix has read
permission and set the permissions to 755 or 775 so that only the owner can
write to the shared libraries.

Chapter 12. Developing a User-Defined Routine 12-13

ls -ld /usr/code
drwxr-xr-x 12 informix devel 2560 Feb 25 05:27 /usr/code
chmod 775 /usr/code/abs.so
drwxrwxr-x 12 informix devel 2560 Feb 25 05:27

/usr/code

To create a shared-object file on Windows:

1. Load the abs.o object file into a DLL named abs.dll, as the following example
shows:
link /DLL /OUT:abs.dll /DEF:abs.def abs.obj d:\informix\lib\SAPI.LIB

The preceding command uses the IBM Informix software installed on the d:
drive in a directory named informix.

2. If you are using Visual Studio 2005, embed the manifest file in the DLL with
this command:
mt -manifest abs.dll.manifest -outputresource:abs.dll;2

The manifest file abs.dll.manifest was generated by the link command in step
1. The mt command embeds this manifest file in abs.dll. For more information
on manifests, see the Microsoft Web site.

3. Put the DLL in a directory on which user informix has read permission and set
the READONLY attribute with the attrib +r command:
attrib +r abs.dll

Registering a C UDR
The CREATE FUNCTION and CREATE PROCEDURE statements register
user-defined functions and user-defined procedures, respectively, in the database.
These functions store information about the UDR in the sysprocedures system
catalog table.

Registration for a C UDR requires the following special clauses of the CREATE
FUNCTION and CREATE PROCEDURE statements to help the database server
identify the routine:
v The required EXTERNAL NAME clause specifies the path to the shared-object

file that contains the compiled C code for the UDR.
v The required LANGUAGE clause specifies the language in which the body of

the UDR is written.
v The optional WITH clause specifies the routine modifiers for the UDR.

For example, Figure 12-1 shows a CREATE FUNCTION statement that registers a
user-defined function named abs_eq() whose corresponding C function is in a
shared-object file named abs.so.

12-14 IBM Informix DataBlade API Programmer’s Guide

Tip: The BladeSmith development tool, which is part of the Informix DataBlade
Developers Kit, automatically generates a file with the SQL statements needed
to register a DataBlade. The BladeManager development tool can install and
register a DataBlade module. For more information, see the IBM Informix
DataBlade Developers Kit User’s Guide.

EXTEND Role Required to Register a C UDR
For security reasons, when the IFX_EXTEND_ROLE configuration parameter is set
to 1 or to On, only users who have been granted the EXTEND role by the database
server administrator (DBSA) can register external UDRs.

When a user creates or drops a procedure or a function, the database server checks
if the statement has the EXTERNAL clause, and then it checks if the user has been
granted the required permission. If the user does not have the EXTEND role, the
statement will fail. The default setting for the IFX_EXTEND_ROLE configuration
parameter is On. For more information about the IFX_EXTEND_ROLE
configuration parameter, see the IBM Informix Dynamic Server Administrator’s
Reference.

The External Name
The EXTERNAL NAME clause of the CREATE FUNCTION or CREATE
PROCEDURE statement tells the database server where to find the object code for
the UDR. These statements store this location in the externalname column of the
sysprocedures system catalog table. When the database server executes an SQL
statement that contains a UDR, it loads into memory the shared-object file that
contains its executable code. The database server examines the externalname
column to determine which shared-object file to load.

In Figure 12-1, the EXTERNAL NAME clause of this CREATE FUNCTION
statement tells the database server that the object code for the abs_eq()
user-defined function is in a Solaris shared-object file named abs.so, which resides
in the /usr/code directory.

By default, the database server uses the same name for the entry point into the
shared-object file for the UDR object code as the name of the UDR. For example,
the CREATE FUNCTION statement in Figure 12-1 on page 12-15 specifies that the
entry point in the abs.so shared-object file for the abs_eq() user-defined function
is a C function named abs_eq().

Figure 12-1. Registering a C UDR

Chapter 12. Developing a User-Defined Routine 12-15

The EXTERNAL NAME clause provides the following features to allow flexibility
in the UDR external-name specification:
v Specifying a different entry point
v Including environment variables in the pathname

Each of these features is described in more detail below. For more information
about the EXTERNAL NAME clause, see the External Reference segment of the
IBM Informix Guide to SQL: Syntax.

Specifying the Entry Point
To specify an entry point whose name is different from the name of the UDR, put
the name of the actual entry point in parentheses after the name of the
shared-object file. You must specify an entry point when your UDR has a different
name from the UDR that it implements. The following CREATE FUNCTION
statement specifies that the entry point for the object code of the abs_eq() UDR is
a C function named abs_equal():
CREATE FUNCTION abs_eq(INTEGER, INTEGER)

RETURNS boolean
EXTERNAL NAME '/usr/code/abs.so(abs_equal)'
LANGUAGE C;

The database server invokes the C function abs_equal() whenever an SQL
statement calls the abs_eq() function with two arguments of INTEGER data type.

Using Environment Variables
You can include environment variables in the external-name specification of the
EXTERNAL NAME clause. These environment variables must be set in the
database server environment; that is, they must be set before the database server
starts. For example, the following function registration specifies to evaluate the
USERFUNCDIR environment variable when determining the location of the
my_func() user-defined function:
CREATE FUNCTION my_func(arg INTEGER)
RETURNING FLOAT
EXTERNAL NAME "$USERFUNCDIR/funcs.udr"
LANGUAGE C;

The UDR Language
The LANGUAGE clause of the CREATE FUNCTION or CREATE PROCEDURE
statement tells the database server in which language the UDR is written. For C
UDRs, the LANGUAGE clause must be as follows:
LANGUAGE C

The database server stores valid UDR languages in the sysroutinelangs system
catalog table. These statements store the UDR language as an integer, called a
language identifier, in the langid column of the sysprocedures system catalog
table.

By default, only users with DBA privilege have the Usage privilege on the C
language for UDRs. These users include user informix and the user who created
the database. If you attempt to execute the CREATE FUNCTION or CREATE
PROCEDURE statement with the LANGUAGE C clause as some other user, the
database server generates an error.

To allow other users to register C UDRs in the database, a user with the DBA
privilege can grant the Usage privilege on the C language with the GRANT
statement. The following GRANT statement allows any user to register C UDRs:

12-16 IBM Informix DataBlade API Programmer’s Guide

GRANT USAGE ON LANGUAGE C TO public;

This statement stores the UDR-language privileges in the syslangauth system
catalog table. By default, Usage privilege on C is only granted to the DBA. For
more information on the syntax of the GRANT statement, see the IBM Informix
Guide to SQL: Syntax.

Routine Modifiers
The routine modifiers tell the database server about attributes of the UDR. You
specify routine modifiers in the WITH clause of the CREATE FUNCTION or
CREATE PROCEDURE statement. The database server supports routine modifiers
for C UDRs to perform the following tasks.

Type of UDR Routine Modifier More Information

Iterator function ITERATOR “Writing an Iterator Function” on
page 15-3

Negator function NEGATOR “Creating Negator Functions” on page
15-60

Selectivity function SELFUNC, SELCONST “Writing Selectivity and Cost
Functions” on page 15-54

Cost function COSTFUNC,
PERCALL_COST

“Writing Selectivity and Cost
Functions” on page 15-54

Parallelizable UDR PARALLELIZABLE “Creating Parallelizable UDRs” on
page 15-61

Recursive UDR STACK “Managing Stack Usage” on page
14-35

Ill-behaved UDR CLASS “Defining a User-Defined VP” on
page 13-34

UDR that handles SQL
NULL values as arguments

HANDLESNULLS “Handling NULL Arguments” on
page 13-8

UDR that is not valid
within an SQL statement

INTERNAL None

Parameters and Return Values
The CREATE FUNCTION and CREATE PROCEDURE statements specify any
parameters and return value for a C UDR. For user-defined functions, the
RETURN clause of the CREATE FUNCTION statement specifies the return value.
Use SQL data types for parameters and the return value. These SQL data types
must be compatible with the DataBlade API data types in the routine declaration.
Table 1-1 on page 1-8 lists the SQL data types that correspond to the different
DataBlade API data types.

For example, suppose you have a C UDR with the following C declaration:
mi_double_precision *func1(parm1, parm2)

mi_integer parm1;
mi_double_precision *parm2;

The following CREATE FUNCTION statement registers the func1() user-defined
function:
CREATE FUNCTION func1(INTEGER, FLOAT)
RETURNS FLOAT;

Chapter 12. Developing a User-Defined Routine 12-17

Use the opaque SQL data type, POINTER, to specify a data type for a C UDR
whose parameter or return type has no SQL data type equivalent. For example,
suppose you have a C UDR that has the following C declaration:
my_private_struc *func2(parm1, parm2)

mi_integer parm1, parm2;

The following CREATE FUNCTION statement registers the func2() user-defined
function:
CREATE FUNCTION func2(INTEGER, INTEGER)
RETURNS POINTER;

This CREATE FUNCTION statement uses the POINTER data type because the data
structure to which func2() returns a pointer is a private data type, not one that is
surfaced to users by registering it in the database.

Tip: If the C implementation of your UDR requires an MI_FPARAM structure in
its declaration, omit this structure from the parameter list of the CREATE
FUNCTION or CREATE PROCEDURE statement. For more information about
when a C UDR requires an MI_FPARAM structure, see “MI_FPARAM
Argument” on page 13-4.

For more information about how to declare a C UDR, see “Coding a C UDR” on
page 13-2.

Privileges for the UDR
The CREATE FUNCTION and CREATE PROCEDURE statements assign the
Execute privilege to the user who registers the UDR. Routine privileges for UDRs
are stored in the sysprocauth system catalog table. By default, Execute privilege is
granted to public. Whether you need to explicitly grant the Execute privilege for a
UDR to other users depends on the whether or not the database is ANSI-compliant
and on the setting of the NODEFDAC environment variable. For more
information, see the description of the GRANT statement in the IBM Informix Guide
to SQL: Syntax.

Executing a UDR
After you register a UDR as an external routine in the database, it can be called in
one of the following ways:
v In a client application or SPL routine, through SQL statements:

– In the select list of a SELECT statement
– In the WHERE clause of a SELECT, UPDATE, or DELETE statement
– In the VALUES clause of an INSERT statement
– In the SET clause of an UPDATE statement
– With the EXECUTE PROCEDURE or EXECUTE FUNCTION statement

v In a C UDR, as an SQL statement that one of the following DataBlade API
statement-execution functions sends to the database server:
– mi_exec()

– mi_exec_prepared_statement()

– mi_open_prepared_statement()

For more information on how to use statement-execution functions, see
Chapter 8, “Executing SQL Statements,” on page 8-1.

v Through an implicit UDR call

12-18 IBM Informix DataBlade API Programmer’s Guide

An implicit UDR is a UDR that the database server calls automatically in
response to some SQL task. For example, in the following SELECT statement, the
database server calls the a_to_int() cast function when it executes the SELECT
statement:
CREATE IMPLICIT CAST (a AS INTEGER WITH a_to_int);
...
SELECT a:int FROM tab1 WHERE b > 6;

v Through the Fastpath interface
The Fastpath interface of the DataBlade API allows you to call a UDR directly
from within another UDR. For more information, see “Calling UDRs with the
Fastpath Interface” on page 9-14.

Tip: Within a C UDR, you can obtain the name of the SQL statement that invoked
the UDR with the mi_current_command_name() function.

Each occurrence of a UDR, implicit or explicit, in an SQL or SPL statement is a
routine instance. One routine instance might involve several routine invocations. A
routine invocation is one execution of the UDR. For example, if the following query
selects five matching rows, the query has one routine instance of the a_func()
user-defined function and five routine invocations for this function:
SELECT a_func(x) FROM table1 WHERE y > 7;

Similarly an iterator function might contain many invocations in a single routine
instance.

To execute a UDR instance in an SQL statement, the database server takes the
following steps:
1. The query parser breaks the SQL statement into its syntactic parts and performs

any routine resolution required.
The query optimizer develops a query plan, which efficiently organizes the
execution of the SQL-statement parts.

2. The query executer calls the routine manager, which handles execution of the
UDR instance and any invocations.

The following sections provide information about how the steps of UDR execution
can affect the way that you write the UDR. For more general information, see the
chapter on how a UDR runs in the IBM Informix User-Defined Routines and Data
Types Developer’s Guide.

Routine Resolution
If more than one registered UDR has the same routine name, the routine is
overloaded. Routine overloading enables several routines to share a name and each
of the routines to handle arguments of different data types. When an SQL
statement includes a call to an overloaded routine, the query parser uses routine
resolution to determine which of the overloaded routines best handles the data type
of the arguments in the routine call of the SQL statement.

To perform routine resolution, the query parser looks up information in the system
catalogs based on the routine signature. The routine signature contains the following
information:
v The routine name
v The number and data types of the arguments
v Whether the routine is a function or a procedure

Chapter 12. Developing a User-Defined Routine 12-19

The database server combines this information to create an identifier that uniquely
identifies the UDR. This routine identifier is in the procid column of the
sysprocedures system catalog.

Tip: The DataBlade API provides the mi_funcid data type to hold routine
identifiers. The mi_funcid data type has the same structure as the mi_integer
data type. For backward compatibility, some DataBlade API functions (such as
mi_routine_id_get()) continue to store an mi_integer for a routine identifier.

For a detailed description of the steps involved in routine resolution, see the IBM
Informix User-Defined Routines and Data Types Developer’s Guide.

The Routine Manager
After the query parser has used routine resolution to determine which UDR to
invoke, the query executor calls the routine manager to handle the UDR execution.
The routine manager performs the following steps to execute the C UDR:
1. For each UDR instance:

a. Load the shared-object file that contains the object code for the UDR into
shared memory.

b. Allocate and initialize the routine sequence for the UDR.
2. For each invocation of the UDR:

a. Push the UDR argument values onto the thread stack.
b. Dispatch the UDR to the appropriate virtual-processor class for execution.
c. Save the return value of a user-defined function on the thread stack.

3. At the end of the UDR instance, release the routine sequence.

The following sections briefly describe each of these steps. For a general discussion
of the routine manager, see the IBM Informix User-Defined Routines and Data Types
Developer’s Guide.

Loading a Shared-Object File
When you compile a C UDR, you store its object code in a shared-object file. (For
more information, see “Compiling a C UDR” on page 12-11.) For a UDR to
execute, its object code must reside in memory so that a virtual processor (VP) can
execute it. The database server uses virtual processors to service client-application
SQL requests. A thread is a database server task that a VP schedules for processing.

Tip: For a detailed discussion of virtual processors and threads, see “Using Virtual
Processors” on page 13-16.

When the routine manager reaches the first occurrence of the UDR in the SQL
statement, the routine manager determines whether its shared-object file is
currently loaded into the memory space of the appropriate VP class. If the file is
not yet loaded, the routine manager dynamically loads its code and data sections
into the data segment for all virtual processors of the VP class. The routine
manager obtains the pathname of the shared-object file from the externalname
column of the row in the sysprocedures system catalog for the UDR. This loading
occurs for both explicit UDR calls and implicit calls (such as operator functions
and opaque-type support functions).

Figure 12-2 shows a schematic representation of what VPs look like after the
routine manager loads a shared-object file.

12-20 IBM Informix DataBlade API Programmer’s Guide

In Figure 12-2, assume that the func1(), func2() and func3() functions are
registered as user-defined functions with the CREATE FUNCTION statement and
linked into the source1.so UNIX or Linux shared-object file. The client application
calls the func1() user-defined function within a SELECT statement. The routine
manager loads the source1.so file into memory, if this file is not yet loaded. For
subsequent references to these UDRs, the routine manager can skip the
shared-object load.

The routine manager sends an entry to the message log file about the status of the
shared-object load, as follows:
v When it successfully loads the shared-object file
v When it is not able to load the shared-object file for any of the following

reasons:
– The routine manager cannot find the shared-object file.
– The shared-object file does not have read permission.
– One of the symbols in the shared-object file cannot be resolved.

v When it unloads a shared-object file

For example, when the routine manager loads the source1.so shared-object file, the
message log file would contain messages of the form:
12:28:45 Loading Module </usr/udrs/source1.so>
12:28:45 The C Language Module </usr/udrs/source1.so> loaded

Check the message log file for these messages to ensure that the correct
shared-object file is loaded into the virtual processors.

You can monitor the loaded shared-object files with the -g dll option of onstat.
This option lists the shared-object files that are currently loaded into the database
server.

Figure 12-2. Loading a Shared-Object File

Chapter 12. Developing a User-Defined Routine 12-21

For information on when the shared-object file is unloaded, see “Unloading a
Shared-Object File” on page 12-36. For information on how to create a
shared-object file, see “Creating a Shared-Object File” on page 12-12. For general
information about loading a shared-object file, see the IBM Informix User-Defined
Routines and Data Types Developer’s Guide.

Creating the Routine Sequence
A routine sequence is the context in which the UDR executes. Generally, each routine
instance (whether implicit or explicit) creates a single, independent routine
sequence. For example, suppose you have the following query:
SELECT a_func(x) FROM table1 WHERE a_func(y) > 7;

When this query executes in serial, it contains two routine instances of a_func():
one in the select list and the second in the WHERE clause. Therefore, this query
has two routine sequences.

However, when a query with a parallelizable UDR (one that is registered with the
PARALLELIZABLE routine modifier) executes in parallel, each routine instance
might have more than one routine sequence. For more information, see “Executing
the Parallelizable UDR” on page 15-64.

For each routine sequence, the routine manager creates a routine-state space, called
an MI_FPARAM structure, that contains routine-state information from the routine
sequence, including the following information:
v The routine identifier
v The number of arguments passed to the UDR
v Information about the UDR arguments
v The user state (optional)

The MI_FPARAM structure does not contain the actual argument values.

The routine manager allocates an MI_FPARAM structure when it initializes the
routine sequence. This structure persists across all routine invocations in that
routine sequence because the MI_FPARAM structure has a memory duration of
PER_COMMAND. The routine manager passes an MI_FPARAM structure as the
last argument to a UDR. (For more information, see “MI_FPARAM Argument” on
page 13-4.) To obtain routine-state information, a C UDR invocation can access its
MI_FPARAM structure. (For more information, see “Accessing MI_FPARAM
Routine-State Information” on page 9-2.)

Pushing Arguments Onto the Stack
When the routine manager pushes arguments onto the thread stack, it pushes them
as MI_DATUM values. The routine manager takes the following factors into
account:
v Whether the argument is passed by value or by reference
v Whether the argument needs to be promoted

Passing Mechanism for MI_DATUM Values: The routine manager pushes
MI_DATUM values onto the thread stack before it invokes the routine. The
MI_DATUM structures contain the data in its internal database format. The size of
the MI_DATUM data type determines whether the routine manager passes a
particular argument by value or by reference, as follows:
v The routine manager passes most argument values by reference; that is, it passes a

pointer to the actual argument value.

12-22 IBM Informix DataBlade API Programmer’s Guide

If the argument value has a data type whose size is greater than the size of the
MI_DATUM data type, the routine manager passes the argument by reference
because it cannot fit the actual value onto the stack. Instead, the MI_DATUM
structure that the routine manager pushes onto the stack contains a pointer to
the value. The routine manager allocates the memory for these pass-by-reference
arguments with a PER_ROUTINE duration.

v The routine manager passes a few special types of argument by value; that is, the
MI_DATUM structure contains the actual argument value.
If the argument value is a data type whose size is less than or equal to the size
of the MI_DATUM data type, the routine manager passes the argument by
value because it can fit the actual value onto the stack.

Table 2-5 on page 2-33 lists the data types that the routine manager passes by
value. All arguments whose data type is listed in this figure are passed by value
unless the argument is an OUT parameter. OUT parameters are never passed by
value; they are always passed by reference. The routine manager passes by
reference any argument whose data type is not listed in Table 2-5 on page 2-33.

Tip: For a particular argument data type, you can determine from its type
descriptor whether it is passed by reference or passed by value with the
mi_type_byvalue() function.

For information on how to code routine parameters, see “Defining Routine
Parameters” on page 13-2. For information on how the routine manager passes
return values out of a UDR, see “Returning the Value” on page 12-24.

Argument Promotion: C compilers that accept Kernighan-&-Ritchie (K&R) syntax
promote all arguments to the int data type when they are passed to a routine. The
size of this int data type is native for the computer architecture. ANSI C compilers
permit arguments to be shorter than the native computer architecture size of an
int. However, the routine manager uses K&R calling conventions when it pushes
an MI_DATUM value onto the thread stack.

Tip: Many ANSI C compilers can use K&R calling conventions so code does work
correctly across all platforms.

The routine manager cast promotes arguments with passed-by-value data types
whose sizes are smaller than the size of the MI_DATUM data type to the size of
MI_DATUM. When you obtain the smaller passed-by-value data type from the
MI_DATUM structure, you should reverse the cast promotion to assure that your
value is correct. For more information, see “MI_DATUM in a C UDR (Server)” on
page 2-33.

Tip: To avoid this cast-promotion situation, the BladeSmith product generates C
source code for BOOLEAN arguments as mi_integer instead of mi_boolean.

If you pass an argument smaller than an MI_DATUM structure, it is
recommended that you pass a small “by-value” SQL type as an mi_integer value.

Managing UDR Execution
After the routine manager creates a routine sequence and pushes the arguments
onto the stack, it invokes the UDR. It then manages the execution of the UDR
associated with this routine sequence. The number of times that the UDR is
invoked depends on the following factors:
v Does the UDR handle SQL NULL values?

Chapter 12. Developing a User-Defined Routine 12-23

If an argument to the UDR is the SQL NULL value and the UDR does not
handle NULL values (it was not registered with the HANDLESNULLS routine
modifier), the routine manager does not invoke the UDR.

v Is the UDR an iterator function?
An iterator function has several iterations. It executes once to initialize the
iterations, once for each iteration, and once to release iteration resources. For
more information, see “Writing an Iterator Function” on page 15-3.

v Where is the UDR invoked within the SQL statement?
– If the UDR is in the select list, it executes once per row that the WHERE

clause qualifies.
– If the UDR is in the WHERE clause, the exact number of times that it

executes cannot be predicted. It might be less than or equal to the number of
rows or it might not be executed at all. The query optimizer makes this
determination.

– If the UDR is in an EXECUTE FUNCTION or EXECUTE PROCEDURE
statement, it executes once (unless it is an iterator function).

A C UDR executes in one or more virtual processors (VPs). VPs are grouped by the
kind of task they perform into VP classes. The presence of the CLASS routine
modifier in the UDR registration determines in which VP class the UDR executes,
as follows:
v If the UDR registration did not have a CLASS routine modifier or this CLASS

routine modifier specified the CPU VP, the routine manager dispatches the UDR
to a CPU VP for execution.

v If the UDR registration has a CLASS routine modifier that specifies a
user-defined VP class, the routine manager dispatches the UDR to a VP in the
specified VP class for execution.

For more information on how VPs execute C UDRs, see “Using Virtual Processors”
on page 13-16.

Tip: The DataBlade API does provide some functions to change the VP
environment once the UDR begins execution; however, these are advanced
functions. You should use them only under special circumstances. For more
information, see “Controlling the VP Environment” on page 13-38.

Returning the Value
For execution of a user-defined function, the routine manager returns any resulting
value to the query executor when execution is complete. When the routine
manager returns the value from a user-defined function, it passes this value as an
MI_DATUM value. As with routine arguments, the passing mechanism that the
routine manager uses depends on the size of the return-value data type, as follows:
v The routine manager passes most return values by reference; that is, it passes a

pointer to the actual return value.
If the return value has a data type whose size is greater than the size of the
MI_DATUM data type, the routine manager passes the return value by
reference because it cannot fit the actual value onto the stack. The routine
manager allocates the memory for these pass-by-reference return values with a
PER_ROUTINE duration.

v The routine manager passes a few special types of return values by value; that is,
the MI_DATUM structure contains the actual return value.
If the return value is a data type whose size is less than or equal to the size of
the MI_DATUM data type, the routine manager passes the return value back by

12-24 IBM Informix DataBlade API Programmer’s Guide

value because it can fit the actual value onto the stack. Table 2-5 on page 2-33
lists the data types that the routine manager passes by value.

Tip: For a particular return-value data type, you can determine from its type
descriptor whether it is passed by reference or passed by value with the
mi_type_byvalue() function.

The routine manager determines information about the return value (such as
whether it is an SQL NULL value) from the MI_FPARAM structure of the UDR.
For information on how to code routine return values, see “Defining a Return
Value” on page 13-11.

Releasing the Routine Sequence
At the end of the routine instance, the routine manager releases the associated
routine sequence. At this time, it also deallocates the MI_FPARAM structure.

Debugging a UDR
Because a UDR runs as part of the database server process, the routine must not
do anything that might negatively affect the running of the database server, such
as exiting. (For information on how to minimize the likelihood of interfering the
database server, see “Creating a Well-Behaved Routine” on page 13-17.)

This section provides information on how to use a C debugger to attach to a
virtual processor, handle the debugging session of a C UDR, and use DataBlade
API tracing.

Using a Debugger
To debug your DataBlade module, use a debugger that can attach to the active
server process and access the symbol tables of dynamically loaded shared object
files.

UNIX/Linux Only

On UNIX or Linux, the debugger and dbx utilities meet these criteria. To start a
debugger, enter the following command at the shell prompt, in which pid is the
process identifier of the CPU or virtual processor:
debugger - pid

This command starts the debugger on the server virtual-processor process without
starting a new instance of the virtual processor. For more information about
available debugger commands, see the debugger manual page.

End of UNIX/Linux Only

To attach to the database server process:

1. Create a debugging version of the shared-object file.
2. Connect to the database server from a client application, such as DB–Access.
3. Make sure that the shared-object file is loaded into the server address space.
4. Obtain the process identifier for the virtual processor you want to debug.
5. Start the debugger on the server process.

The following sections describe these steps.

Chapter 12. Developing a User-Defined Routine 12-25

Creating a Debugging Version
To debug a shared-object file, you must compile the shared-object file with an
option that makes additional symbol-table information available to the debugger.
Many C compilers use the -g compiler option to create a debugging version of a
shared-object file. For more information on how to compile, see “Compiling a C
UDR” on page 12-11.

Connecting to the Database Server from a Client
To connect to the database server, choose a client tool that allows you to submit
ad-hoc queries.

UNIX/Linux Only

On UNIX or Linux, you can use the DB-Access utility. For example, execute the
following command, where database is a database in which you registered the
shared-object file that you want to debug:
dbaccess database

End of UNIX/Linux Only

Windows Only

On Windows, you can use the SQL Editor.

End of Windows Only

Loading the Shared-Object File for Debugging
To load the shared-object file, you must execute one of the UDRs within the file.
One technique is to execute the UDR itself within DB–Access. For example, if a
user-defined function named my_udf() resides within the shared-object file, you
can use the following SQL statement to execute my_udf(), which causes the
database server to load the shared-object file that contains my_udf():
EXECUTE FUNCTION my_udf();

Another technique for loading the shared-object file is to define a dummy UDR in
the shared-object file that you use to load the shared-object file, as follows:
1. Create the dummy UDR in the shared-object file.

The routine can be as simple as the following example:
mi_integer load_so()
{

return 0;
}

To prevent name conflicts with other shared-object files (or DataBlade
modules), you can put a prefix in the routine name.

2. Compile the shared-object file.
3. Register the dummy UDR with the CREATE FUNCTION statement.

CREATE FUNCTION load_so()
RETURNS INTEGER
WITH (NOT VARIANT)
EXTERNAL NAME '/usr/lib/udrs/myudrs.so(load_so)'
LANGUAGE C;

12-26 IBM Informix DataBlade API Programmer’s Guide

To load the shared-object file, execute the dummy UDR. The following SELECT
statement in your client application (or DB–Access) loads the myudrs shared-object
file, which contains load_so():
SELECT load_so() FROM informix.systables WHERE tabid=1;

For more information about loading a shared-object file, see “Loading a
Shared-Object File” on page 12-20.

Identifying the VP Process
To find the virtual processor in which your shared-object file is loaded, execute the
onstat utility with the -g glo or -g sch option. Locate the CPU or user-defined
virtual processor that you want to debug and record its process identifier (pid) for
the next step. For more information on the -g glo and -g sch options of onstat, see
“Monitoring Virtual Processors” on page 13-37.

Running a Debugging Session
You can set breakpoints, examine the stack, resume execution, or carry out any
other normal debugger commands.

Breakpoints
You can set breakpoints in any function with an entry point known to your
debugger. Valid functions include internal functions and the UDRs in your
shared-object file. The database server is compiled with debugging support turned
off, so local storage and line number information is not available for UDRs.
However, because you compiled the shared-object file for debugging, you can see
line number information and local storage for your functions.

The database server routine that calls functions in your shared-object file is named
udr_execute(). When you enter a command in the client application that calls one
of your UDRs, the debugger stops in the udr_execute() routine. You can then step
through your UDR. Because your shared-object file is compiled with debugging
support, you can view the local variables and stack for your functions.

UNIX/Linux Only

On UNIX or Linux, you can set a breakpoint in the debugger utility on the
udr_execute() function as follows:
stop in udr_execute
cont

End of UNIX/Linux Only

Debugging Hints
When you need to debug a UDR, keep the following considerations in mind:
v During the development of a UDR, to avoid interfering with the operation of the

database server, develop UDRs on the client computer even if they are
eventually intended to run from the database server process.

v Examine the database server log file for messages that the database server
generates when it executes the UDR.
The database server writes status messages to the message log file. By default,
this file is named online.log. You can change the name of this file with the
MSGPATH configuration parameter.

v Use the UDR tracing facility to insert trace messages within the body of the
function.

Chapter 12. Developing a User-Defined Routine 12-27

The database server puts these trace messages in a trace file when the UDR
executes. For more information, see “Using Tracing” on page 12-28.

v Simplify the UDR to create a good test case.
Good test cases are as simple as possible.

v Install and register any required DataBlade modules
If your execution environment includes DataBlade modules, you might want to
first attempt debugging without these DataBlade modules so that the
environment is as simple as possible. However, if this is not possible, make sure
that you install and register any DataBlade modules that affect the execution of
the UDR you are debugging. To install and register other DataBlade modules,
such as the DataBlade modules included with Dynamic Server, see the
instructions that accompany them.

Possible Memory Errors
Memory errors are usually caused by overrunning memory in a UDR. To avoid
common causes of memory errors in a UDR, make sure you meet the following
memory-handling requirements.

Memory-Handling Requirement More Information

Do not return the NULL-valued pointer from a
UDR.

“Returning a NULL Value” on page
13-13

Do not use null-terminated strings as data in a
varying-length structure such as mi_lvarchar.

“Varying-Length Data and Null
Termination” on page 2-17

Do not return local variables from a UDR. “Returning a Value” on page 13-12

Make sure that you handle data types for
parameters and return values with the correct
passing mechanism.

“MI_DATUM Arguments” on page
13-3 and “Returning a Value” on page
13-12

Make sure memory that a UDR allocates is of the
appropriate memory duration for its use. Do not
access memory after its duration has expired.

“Choosing the Memory Duration” on
page 14-4

Symbols in Shared-Object Files
The database server resolves undefined symbols in a shared-object file when it
loads the shared-object file. If a symbol is missing, the load fails on the first
execution of the UDR, and the database server writes a message in the log file.
Symbols defined in two different shared-object files are distinct entities and do not
resolve against each other.

A symbol defined in both a shared-object file and the Dynamic Server main
module behaves in one of two ways:
v If the symbol referenced in the shared-object file is in the same source file that

references it, the debugger accesses the symbol in the shared object file, as
expected.

v If the shared-object file includes more than one source file and a cross-file symbol
reference exists, the symbol is resolved to the main module of the database
server.

Using Tracing
A tracepoint is a point within the code that can send special information about the
current executing state of the UDR. Each tracepoint has the following parts:
v A trace class groups related tracepoints together so that they can be turned on

and off at the same time.

12-28 IBM Informix DataBlade API Programmer’s Guide

v A trace message is the text that the database server sends to the tracing-output
file.

v A tracepoint threshold determines when the tracepoint executes; if a tracepoint
threshold is not greater than the current trace level, the DataBlade API writes the
associated trace message to the trace output file.

Tip: The IBM Informix BladeSmith development tool, which is part of the Informix
DataBlade Developers Kit, automatically includes tracing statements in the C
source code that it generates. For more information, see the IBM Informix
DataBlade Developers Kit User’s Guide.

Client Only

The DataBlade API tracing support is available only in C UDRs. Do not use this
feature within client LIBMI applications.

End of Client Only

The mitrace.h header file defines the functions and data type structures of the
tracing interface. The mi.h header file automatically includes the mitrace.h header
file. You must include either mi.h or mitrace.h in any C UDR that uses a
DataBlade API tracing function.

The DataBlade API provides the following tracing support.

Time of Use Tracing Support

At UDR-development time Adds tracepoints in the C UDR with associated trace-level
thresholds

At UDR runtime Turns on different trace classes at specified trace levels

Adding a Tracepoint in Code
A user-defined tracepoint is a point within the code of a C UDR that can send special
information about the current executing state of that routine.

To use a user-defined tracepoint:

1. Choose the trace class for the tracepoint.
2. Put trace messages into the UDR code.

A tracepoint contains a trace message whose text you want to output. You
assign to each tracepoint a trace class and a threshold level. If a tracepoint
threshold is not greater than the current trace level, the DataBlade API writes
the associated trace message to the trace output file.

3. Turn tracing on with an appropriate trace level for the tracepoints that you
want to execute.
You assign the current trace level when you turn on tracing with the
mi_tracelevel_set() function.

Choosing a Trace Class: Trace messages are grouped into trace classes. A trace
class enables you to set up categories of related tracepoints, which you can then
turn on or turn off independently. Within your UDR, you can choose either type of
trace class for your tracepoint:
v The built-in __myErrors__ trace class
v A user-defined trace class

Chapter 12. Developing a User-Defined Routine 12-29

Using the Built-In Trace Class: The DataBlade API provides a built-in trace class
named __myErrors__. The __myErrors__ trace class writes out the full text of
database server exceptions (errors and warnings) as they occur. You can set the
trace level of __myErrors__ with mi_tracelevel_set(), just as with any other trace
class.

The __myErrors__ trace class provides the following trace levels:
v A level of 10 or above to trace only error messages
v A level of 20 or above to trace both error and warning messages

Tip: The __myErrors__ trace class does not appear in the systraceclasses system
catalog table.

Creating a New Trace Class: To create your own trace class, define an entry for the
trace class in the systraceclasses system catalog table. By default, all users can
view this table, but only users with the DBA privilege can modify it. You can
create as many trace classes as you like. The database server prevents you from
creating a trace class name that is already in use.

Tip: The BladeSmith of the Informix DataBlade Developers Kit (DBDK) can add
trace messages to the systracemsgs system catalog table. For more
information, see your BladeSmith documentation.

Figure 12-3 shows the INSERT statement that creates a trace class named
funcEntry.

When you insert a new trace class into systraceclasses, the database server assigns
it a unique identifier, called a trace-class identifier. It stores this trace-class identifier
in the classid column of systraceclasses.

Tip: For more information on the columns of the systraceclasses system catalog
table, see the IBM Informix Guide to SQL: Reference.

The built-in tracing that the DataBlade Developers Kit (DBDK) provides assumes
that you create a single trace class and that its name is the same as the name of
your DataBlade module. For more information, see the IBM Informix DataBlade
Developers Kit User’s Guide.

Putting Trace Messages into Code: The DataBlade API supports the following
types of tracepoints in a C UDR:
v Tracepoints whose trace message is in U.S. English

Global Language Support

v Internationalized tracepoints
For more information on internationalized tracepoints, see the IBM Informix GLS
User’s Guide.

End of Global Language Support

INSERT INTO informix.systraceclasses(name)
VALUES ('funcEntry');

Figure 12-3. Creating the funcEntry Trace Class

12-30 IBM Informix DataBlade API Programmer’s Guide

The DataBlade API provides the following tracing functions to insert U.S. English
tracepoints into UDR code:
v The DPRINTF macro
v The trace-block functions, tf() and tprintf()

Tip: The BladeSmith of the Informix DataBlade Developers Kit (DBDK) can create
tracing routines and macros as part of the code it generates for a DataBlade
module. For more information, see your BladeSmith documentation.

Using DPRINTF Macro: The DPRINTF macro directly marks a tracepoint in the
code. It formats a trace message and specifies the threshold for the tracepoint. The
syntax for DPRINTF is as follows:
DPRINTF(trace_class, threshold, (format [, arg]...));

These syntax elements have the following values:

trace_class is either a trace-class name or the trace-class identifier (an integer
value) expressed as a character string.

threshold is a non-negative integer that sets the tracepoint threshold for
execution.

format is a printf-style output format that formats the trace message and
can include print formatting directives.

arg is an expression to be evaluated for output. It provides the value
for a print formatting directive in the format argument.

Global Language Support

The DataBlade API also provides the GL_DPRINTF macro for formatting
internationalized trace messages. For more information, see the IBM Informix GLS
User’s Guide.

End of Global Language Support

The following example uses DPRINTF to insert a tracepoint of the funcEntry
trace_class (which Figure 12-3 on page 12-30 defines) after the doAbigPiece()
function executes:
result = doAbigPiece(x, "x location");
DPRINTF("funcEntry", 50,

("After calling doAbigPiece with x = %d and %s \
result = %f", x, "x location", result));

The trace message consists of the literal text, the print formatting directives, and
the expressions for the print formatting directives.

To determine the value of a trace-class identifier, you can query the systraceclasses
system catalog table for the classid column. The following SELECT statement
obtains the trace-class identifier for the funcEntry trace class:
SELECT classid FROM informix.systraceclasses
WHERE name = 'funcEntry';

If the trace-class identifier for the funcEntry trace class is 42, the following
DPRINTF call performs the same task as the preceding DPRINTF call:

Chapter 12. Developing a User-Defined Routine 12-31

result = doAbigPiece(x, "x location");
DPRINTF("42", 50,

("After calling doAbigPiece with x = %d and %s \
result = %f", x, "x location", result));

The tracepoint threshold determines which tracepoints generate output, based on
the current trace levels of the trace class. If a tracepoint threshold is not greater
than the current trace level, the database server writes the associated trace message
to the trace-output file.

The simplest tracing scheme is to have only two trace levels:
v Trace level = 0

No tracing occurs.
v Trace level > 0

Any tracepoint with a threshold greater than zero (0) prints. All others do not.

A more complex scheme could have four states: no tracing, light tracing, medium
tracing, and heavy tracing. As an example, suppose you want to define the
following trace levels for the funcEntry trace class.

Tracing
Level

Threshold
Values Sample DPRINTF Call

None 0 None

Light 1 to 10 DPRINTF(″funcEntry″, 1, (″Entering doTheJob: the main
function″));

Medium 11 to 20 DPRINTF(″funcEntry″, 11, (″Entering doAbigPiece: a top-level
\help function″));

Heavy >= 20 DPRINTF(″funcEntry″, 21, (″Entering doAlittlePiece: an
often-called \helper″));

The maximum number of trace levels is the largest non-negative integer
representable on the platform.

Trace Blocks: In some cases, you might need to perform some computations before
you decide whether to output certain trace data. To perform computations for a
tracepoint, define a trace block. A trace block initially compares a specified
threshold with the current trace level to determine whether to continue with the
trace computations. Within the trace block, it can output a result in a trace
message.

The DataBlade API provides the following tracing functions for use in a trace
block:
v The tf() function acts as a threshold check that determines whether to execute a

particular trace block.
The syntax of the tf() function is as follows:
tf(trace_class, threshold)

This function returns a Boolean result; it is TRUE if the current trace level of the
trace_class class is greater than or equal to the threshold.

v The tflev() function returns the current trace level of the specified trace class.
The syntax of the tflev() function is as follows:
tflev(trace_class)

12-32 IBM Informix DataBlade API Programmer’s Guide

This function returns an integer result that is the current trace level of the
trace_class class.

v The tprintf() function outputs a trace message but does not require the
threshold argument.
The syntax of the tprintf() function is as follows:
tprintf(format [,arg]...)

The format and arg arguments are the same as those in the DPRINTF macro.

Global Language Support

The DataBlade API also provides the gl_tprintf() function for formatting
internationalized trace messages within a trace block. For more information on
gl_tprintf(), see the IBM Informix GLS User’s Guide.

End of Global Language Support

You can combine these trace-block functions with conventional C structures. The
following example is typical:
/* Compare current trace level of "chck_consist" class and
* with a tracepoint threshold of 20. Continue execution of
* trace block if trace level >= 20
*/
if(tf("chck_consist", 20))

{
x = fastScan(aList, y);
consFactor = checkRconsit(x, bList);

/* Generate trace message (in U.S. English) */
tprintf("...in doWork: x = %f and consFactor = %f",

x, consFactor);
}

Defining Internationalized Trace Messages (GLS): The DataBlade API also
supports internationalized trace messages, which are trace messages that
correspond to a particular non-English locale. The current database locale
determines which code set the trace message uses. Based on the current database
locale, a given tracepoint can produce an internationalized trace message.
Internationalized tracing enables you to develop and test the same code in many
different locales. For more information on how to use internationalized trace
messages, see the IBM Informix GLS User’s Guide.

Using Tracing at Runtime
When your C UDR executes, you can use DataBlade API functions to perform the
following tracing tasks.

Tracing Task DataBlade API Function

Turn on tracing for one or more trace classes mi_tracelevel_set()

Set the trace-output file mi_tracefile_set()

After the trace-output file is created, you can examine its content for information
about the runtime behavior of your UDR.

Turning Tracing On: The mi_tracelevel_set() function sets the current trace level
for one or more trace classes. You can use this function to perform the following
tasks:
v Turn tracing for specified trace classes on or off.

Chapter 12. Developing a User-Defined Routine 12-33

By default, tracing for a particular trace class is off; that is, the current trace level
of trace class is set to zero (0) for all trace classes. Any nonzero value for a trace
level turns tracing on for the specified trace class.

v Change the current trace level for a trace class.
You can reset the trace level as often as necessary during testing. Once set,
tracing persists throughout the session.

You pass to the mi_tracelevel_set() function a series of set commands, one set
command for each trace class that you want set. A set command has the following
format:
traceclass_name trace_level

The following example sets the trace class funcEntry (which Figure 12-3 on page
12-30 defines) to a medium level (trace level of 14) and enables consistency
checking with a trace class named chk_consist:
mi_integer ret;
...
ret = mi_tracelevel_set("chk_consist 1000 funcEntry 14");

You can also change the current trace level of a trace class with the
mi_tracelevel_set() function. The following example changes the trace level of the
funcEntry trace class from 14 (from the previous example) to a lower level of 5:
ret = mi_tracelevel_set("funcEntry 5");

Specifying the Trace-Output File: By default, the database server puts all trace
messages in a system-defined trace-output file with a .trc file extension. For the
name of this system-defined trace-output file, see the description of
mi_tracefile_set() in the IBM Informix DataBlade API Function Reference.

You can change the destination of trace messages with the mi_tracefile_set()
function. With this function, you can specify the name of the trace-output file. For
example, the following call to mi_tracefile_set() sets the trace file to a UNIX file
named test14_may2.trc in the /d2/blades/tests directory:
mi_integer status;
...
status =

mi_tracefile_set("/d2/blades/tests/test14_may2.trc");

For more information, see the description of the mi_tracefile_set() function.

Creating a UDR to Turn Tracing On: As a shortcut for debugging a UDR, you
can create a UDR that automatically turns on tracing for your UDR. The
registration of a sample user-defined procedure to perform such a task follows:
CREATE PROCEDURE trace_on(LVARCHAR, LVARCHAR)
EXTERNAL NAME '/usr/lib/udrs/my_tools.so(trace_on)'
LANGUAGE C;

The code for this user-defined procedure could be something like the following
example:
void trace_on(trace_path, trace_level)

mi_lvarchar *trace_path;
mi_lvarchar *trace_level;

{
mi_tracefile_set(mi_lvarchar_to_string(trace_path));
mi_tracelevel_set(mi_lvarchar_to_string(trace_level));

};

12-34 IBM Informix DataBlade API Programmer’s Guide

After you register the trace-on procedure, you can turn on tracing for an SQL
session with the following SQL statement:
EXECUTE PROCEDURE trace_on('trace_log_path',

'my_trace_class 20');

In the preceding statement, trace_log_path is the path to your trace log.

Alternatively, you could create a user-defined procedure to turn on a particular
trace class. The following CREATE PROCEDURE statement registers a user-defined
procedure to turn on the MyBlade trace class:
CREATE PROCEDURE traceset_myblade(LVARCHAR, INTEGER)
EXTERNAL NAME '/usr/lib/udrs/myblade.bld(db_trace_on)'
LANGUAGE C;

The following code implements such a user-defined procedure:
void db_trace_on(trace_path, trace_level)

mi_lvarchar *trace_path;
mi_integer trace_level;

{
char[16] trace_cmd;

mi_tracefile_set(mi_lvarchar_to_string(trace_path));
sprintf(trace_cmd, "%s %d", "MyBlade", trace_level);
mi_tracelevel_set(trace_cmd);

}

Now the following SQL statement turns on tracing for trace class MyBlade with a
trace level of 20 whose tracing output goes in the UNIX file /u/dexter/udrs/
myblade.trc:
EXECUTE PROCEDURE trace_on('/u/dexter/udrs/myblade.trc', 20);

Understanding Tracing Output
The DataBlade API tracing functions prepend each trace message with a time
stamp to show the time that the trace message is written to the trace-output file.
The time stamp enables you to associate trace output with other information, such
as entries in the database server log file.

Suppose you use the DPRINTF macro to create the following tracepoints:
mi_string *udr_name = "myUDR";
...
DPRINTF("funcEntry", 15, ("%s: entering UDR", udr_name));
x = 9;
result = doSomething(x);
DPRINTF("funcEntry", 15,

("%s: after calling doSomething\(%d\), result = %f",
udr_name, x, result));

If you set a trace level of 15 or greater and run the UDR at 8:56 A.M., the
tracepoints generate the following lines in the trace-output file:
08:56:03 myUDR: entering UDR
08:56:03 myUDR: after calling doSomething(9), result = value

In the previous trace output, value would be the value that the function call of
doSomething(9) returned.

When trace messages in the source of the UDR appear in English and the UDR
uses the default locale as its server-processing locale, messages appear in English
in the trace-output file. If the code set of the trace-message characters in the UDR

Chapter 12. Developing a User-Defined Routine 12-35

source is different from (but compatible with) the code set of the server-processing
locale, the database server performs the appropriate code-set conversion on these
trace messages.

Global Language Support

To write an internationalized trace message to your trace-output file, the database
server must locate a row in the systracemsgs system catalog table whose locale
column matches (or is compatible with) the server-processing locale for your UDR.
For more information, see the IBM Informix GLS User’s Guide.

End of Global Language Support

Changing a UDR
This section provides information about how to alter a C UDR and how to unload
a shared-object file.

Altering a Routine
The SQL statements ALTER FUNCTION, ALTER PROCEDURE, and ALTER
ROUTINE allow you to alter some of the routine modifiers of a UDR after the
UDR has been registered.

For information on how to alter a UDR, see the IBM Informix User-Defined Routines
and Data Types Developer’s Guide and the syntax of the ALTER FUNCTION, ALTER
PROCEDURE, and ALTER ROUTINE statements in the IBM Informix Guide to SQL:
Syntax.

Unloading a Shared-Object File
In an attempt to keep memory usage to a minimum, the routine manager attempts
to unload a shared-object file when it finds that no one is using any of its UDRs.
That is, it unloads a shared-object file when all references to the UDRs within the
shared-object file are removed from the internal cache of the database server and
any one of them is marked as being dropped.

The database server cleans up its cache entries when you take any of the following
actions:
v Explicitly drop a UDR

When you use the DROP FUNCTION, DROP PROCEDURE, or DROP
ROUTINE to drop all UDRs in a shared-object file, the routine manager unloads
the shared-object file.

v Explicitly drop a database
The routine manager unloads all shared-object files when DROP DATABASE
executes.

v Create and reference UDRs in a transaction

For example, in the following SQL fragment, the shared-object file is loaded in and
unloaded out of memory because the transaction has private cache entries until
committed and the management mechanism treats them as being dropped:
BEGIN WORK;
CREATE FUNCTION c_func() ...;
CREATE FUNCTION spl_func() RETURNING c_func()...;
COMMIT WORK;

12-36 IBM Informix DataBlade API Programmer’s Guide

To unload a shared-object file, you can take any of the following actions:
v For each routine that references the shared object (external file), execute the

following SQL statement
ALTER ROUTINE routine-name (args, ...)

WITH (
MODIFY EXTERNAL NAME = 'shared-obj'
);

The new pathname for the shared object must be different from the existing one
for the shared object to be unloaded. Instead of ROUTINE, you can specify
FUNCTION for a function or PROCEDURE for a procedure.
After the last routine is altered, nothing in the database server should refer to
the old shared object, and a message appears in the online log to report that the
shared object has been unloaded.

v Drop all UDRs in the shared-object file
When you execute DROP FUNCTION, DROP PROCEDURE, or DROP
ROUTINE to drop all UDRs in a shared-object file, the routine manager unloads
the shared-object file. Similarly, the routine manager unloads all shared-object
files when DROP DATABASE executes. Execution of one of these SQL
statements is the safest way to unload a shared-object file.

v Execute the SQL procedure, ifx_unload_module(), to request that an unused
shared-object file be unloaded
The ifx_unload_module() function can only unload an unused shared-object
file; that is when no executing SQL statements (in any database) are using any
UDRs in the specified shared-object file. If any UDR in the shared-object file is
currently in use, ifx_unload_module() raises an error.

v Load a new module of a different name with the SQL function
ifx_replace_module()

With the ifx_replace_module() function, you do not have to change all the
routine definitions. This action should eventually cause the old shared-object file
to unload.

For the syntax of the ifx_unload_module() and ifx_replace_module() functions,
see the IBM Informix Guide to SQL: Syntax.

Important: Do not use the ifx_replace_module() function to reload a module of
the same name. If the full names of the old and new modules that you
send to ifx_replace_module() are the same, unpredictable results can
occur.

DataBlade modules can be shared across databases. Therefore, you might have
more than one database using the same DataBlade module.

In Figure 12-2 on page 12-21, the routine manager has loaded the shared-object file
named source1.so. This shared-object file contains definitions for the user-defined
functions func1(), func2(), and func3().

The routine manager sends an entry in the message log file when it loads and
unloads a shared-object file. When the routine manager unloads the source1.so
shared-object file, the message-log file would contain messages of the form:
19:14:44 Unloading Module </usr/udrs/source1.so>
19:14:44 The C Language Module </usr/udrs/source1.so> unloaded

Chapter 12. Developing a User-Defined Routine 12-37

The message-log file is a useful place to check that the shared-object file is
unloaded from the virtual processors. Alternatively, you can use the onstat -g dll
command to monitor the results of an shared-object-file unload.

For information about when the shared-object file is loaded, see “Loading a
Shared-Object File” on page 12-20. For information on how to prevent a
shared-object file from being unloaded, see “Locking a Shared-Object File in
Memory” on page 13-42.

12-38 IBM Informix DataBlade API Programmer’s Guide

Chapter 13. Writing a User-Defined Routine

In This Chapter . 13-2
Coding a C UDR . 13-2

Defining Routine Parameters . 13-2
Routines with No Arguments . 13-3
MI_DATUM Arguments . 13-3
MI_FPARAM Argument . 13-4

Obtaining Argument Values . 13-5
Handling Character Arguments . 13-6
Handling NULL Arguments . 13-8
Handling Opaque-Type Arguments . 13-9
Modifying Argument Values . 13-11

Defining a Return Value . 13-11
Returning a Value . 13-12
Returning Multiple Values . 13-14

Coding the Routine Body. 13-16
Using Virtual Processors . 13-16

Creating a Well-Behaved Routine . 13-17
Preserving Availability of the CPU VP . 13-18
Writing Threadsafe Code . 13-21
Avoiding Restricted System Calls . 13-26
Choosing the User-Defined VP Class . 13-30
Defining a User-Defined VP . 13-34
Assigning a C UDR to a User-Defined VP Class . 13-36

Managing Virtual Processors. 13-37
Initializing a VP Class . 13-37
Adding and Dropping VPs . 13-37
Monitoring Virtual Processors . 13-37

Controlling the VP Environment . 13-38
Obtaining VP-Environment Information . 13-39

Identifying the Current VP . 13-39
Identifying a VP Class . 13-40

Changing the VP Environment . 13-40
Executing on Another VP. 13-40
Forking and Executing a Process . 13-41

Locking a UDR . 13-41
Locking a Routine Instance to a VP . 13-41
Locking a Shared-Object File in Memory . 13-42

Performing Input and Output . 13-42
Access to a Stream (Server) . 13-42

Using Predefined Stream Classes . 13-44
Creating a User-Defined Stream Class . 13-47
Registering a UDR That Accesses a Stream . 13-51
Releasing Stream Resources . 13-52

Access to Operating-System Files . 13-52
Opening a File . 13-53
Closing a File. 13-55
Copying a File . 13-56

Sample File-Access UDR . 13-56
Accessing the UDR Execution Environment. 13-58

Accessing the Session Environment . 13-58

© Copyright IBM Corp. 1996, 2009 13-1

Accessing the Server Environment . 13-58

In This Chapter
This chapter outlines some implementation issues for C user-defined routines
(UDRs):
v Coding a C UDR
v Choosing the type of virtual processor in which to run your C UDR
v Controlling the virtual-processor environment
v Accessing operating-system files
v Accessing information in the server environment from within a C UDR

For information on how to manage memory within a C UDR, see Chapter 14,
“Managing Memory,” on page 14-1.

Client Only

This chapter covers topics specific to the creation of a C UDR. This material does
not necessarily apply to the creation of client LIBMI applications. For information
specific to the creation of client LIBMI applications, see Appendix A, “Writing a
Client LIBMI Application,” on page A-1.

End of Client Only

Coding a C UDR
When you code a C UDR, you perform the following tasks to write a C function:
v Define routine parameters
v Obtain argument values
v Define a return value
v Code the routine body

Defining Routine Parameters
When the routine manager invokes a C UDR, the routine manager passes to the
UDR any argument values that the calling SQL statement provided. When you
write a C UDR, you can define routine parameters that indicate the data types of
the arguments that you expect the UDR to handle.

This section provides information about how to define routine parameters for the
following UDR arguments:
v MI_DATUM argument
v MI_FPARAM argument, which the routine manager passes in to every UDR

Tip: Routine arguments are optional; however, if your UDR does not require
arguments, you must still declare an MI_FPARAM parameter in the
C-function declaration. For more information, see “MI_FPARAM Argument”
on page 13-4.

The routine manager uses the parameter data types in routine resolution.
Therefore, you can have multiple UDRs with the same name, provided that their
parameter lists uniquely identify the UDRs. For more information, see “Routine
Resolution” on page 12-19.

13-2 IBM Informix DataBlade API Programmer’s Guide

Routines with No Arguments
Routine parameters are optional. If your UDR does not need parameters, follow
your C-compiler conventions for the syntax to use when declaring the C function.

MI_DATUM Arguments
When an SQL statement invokes a UDR, the statement can specify column values
or expressions to pass to the UDR. The routine manager passes these argument
values to a UDR as MI_DATUM values. The data type of each argument
determines the passing mechanism that the routine manager uses for the argument
value, as follows:
v Values of most data types cannot fit into an MI_DATUM structure. The routine

manager passes these argument values by reference.
v Values of a few data types can fit into an MI_DATUM structure. The routine

manager passes these argument values by value.

The passing mechanism that the routine manager uses for a particular argument
determines how you must declare the corresponding parameter of the UDR. For
more information about how the routine manager passes argument values to a C
UDR, see “The MI_DATUM Data Type” on page 2-32 and “Pushing Arguments
Onto the Stack” on page 12-22.

Pass-by-Reference Arguments: When an argument has a value that cannot fit into
an MI_DATUM structure, the routine manager passes the argument by reference.
For each of these pass-by-reference arguments, you declare a parameter that is a
pointer to a value of the parameter data type, in the C-function declaration.

Figure 13-1 shows the bigger_double() user-defined function, which compares
two mi_double_precision values. Because the routine manager passes
mi_double_precision values by reference, bigger_double() declares the two
parameters as pointers to values of the mi_double_precision data type.

Important: Memory that the routine manager allocates to pass an argument by
reference has a PER_ROUTINE memory duration. Therefore, it is
guaranteed to be valid only for the duration of the UDR execution. The
database server automatically frees this memory when the UDR
completes.

mi_double_precision *bigger_double(left, right)
mi_double_precision *left, *right;

{
mi_double_precision *dpp;

dpp = mi_alloc(sizeof(mi_double_precision));
if (*left > *right)

{
*dpp = *left;
return(dpp);
}

else
{
*dpp = *right;
return(dpp);
}

}

Figure 13-1. Passing Arguments by Reference

Chapter 13. Writing a User-Defined Routine 13-3

Any C-language code that calls bigger_double() must pass the
mi_double_precision values by reference, as in the following sample call:
mi_double_precision double1, double2, *result;

double1 = 13497.931669;
double2 = 235521832.00484;
result = bigger_double(&double1, &double2);

Tip: For varying-length data, the routine manager does not pass a pointer to the
actual data itself. Instead, it stores the varying-length data inside a
varying-length structure. Therefore, your C UDR must declare parameters that
expect varying-length data as a pointer to the appropriate varying-length
structure. Varying-length data includes text arguments (see “Handling
Character Arguments” on page 13-6) and varying-length opaque data types
(see “Handling Varying-Length Opaque-Type Arguments” on page 13-10).

Values passed into a UDR are often also used in other places in the SQL statement.
If your UDR modifies a pass-by-reference value, successive routines in the SQL
statement might use the modified value. When your UDR is run within the context
of an SQL statement, a routine that runs before it can see (and possibly modify)
any pass-by-reference values.

Tip: Avoid the modification of a pass-by-reference argument within a C UDR. For
more information, see “Modifying Argument Values” on page 13-11.

Pass-by-Value Parameters: When an argument has a data type that can fit into an
MI_DATUM structure, the routine manager passes the argument by value.
Table 2-5 on page 2-33 lists data types for arguments that you can pass by value.
For these pass-by-value arguments, you declare a parameter as the actual parameter
data type in the C-function declaration.

Figure 13-2 shows the bigger_int() UDR, which compares two mi_integer values.
Because the routine manager passes mi_integer values by value, the UDR declares
the two parameters with the mi_integer data type, not as pointers to mi_integer.

Any C-language code that calls bigger_int() must also pass the mi_integer values
by value, as in the following sample call:
mi_integer int1, int2, result;
...
int1 = 6;
in2 = 8;
result = bigger_int(int1, int2);

MI_FPARAM Argument
The routine manager passes an MI_FPARAM structure into every UDR that it
executes. This structure contains routine-state information about the UDR, such as
information about arguments and return values. Because the routine manager

mi_integer bigger_int(left, right)
mi_integer left, right;

{
if (left > right)

return(left);
else

return(right);
}

Figure 13-2. Passing Arguments by Value

13-4 IBM Informix DataBlade API Programmer’s Guide

automatically passes an MI_FPARAM structure to a UDR, you do not need to
explicitly declare this structure in most C-function declarations.

You should include an MI_FPARAM declaration in the C-function declaration in
the following cases:
v You need to access routine-state information within the UDR.

When you declare an MI_FPARAM parameter, this declaration must be the last
parameter in the C declaration of your UDR. For more information about the
DataBlade API functions that access the routine-state information from
MI_FPARAM, see “Accessing MI_FPARAM Routine-State Information” on page
9-2.

v You declare a UDR that does not take any arguments.
A C UDR always gets at least one argument: a pointer to the MI_FPARAM
structure. When the parameter list of your SQL UDR is empty, you must still
include a declaration for the MI_FPARAM structure, even if the UDR does not
access routine-state information.

For example, the bigger_double() user-defined function in Figure 13-1 on page
13-3 does not include a declaration for the MI_FPARAM structure because it does
not need to access routine-state information and it has other parameters. However,
suppose you register a user-defined function named func_noargs() that does not
require any arguments:
CREATE FUNCTION func_noargs() RETURNS INTEGER

EXTERNAL NAME '/usr/lib/udrs/udrs.so' LANGUAGE C;

In the C UDR, you can declare the func_noargs() function with a single
parameter, a pointer to the MI_FPARAM structure:
mi_integer func_noargs(MI_FPARAM *fparam)
{
...
}

The declaration of the MI_FPARAM structure allows the routine manager to pass
this structure into the UDR.

Tip: If your C UDR does not declare an MI_FPARAM structure but determines
dynamically that it needs information in this structure, it can use the
mi_fparam_get_current() function to obtain a pointer to its MI_FPARAM
structure. This function, however, is an advanced feature. Make sure you need
it before you use it in a C UDR.

Obtaining Argument Values
To obtain the argument value with a C UDR, access the parameter that you have
specified in the C declaration of the function. The parameter declaration indicates
the appropriate passing mechanism for the UDR parameters. You can access the
argument values through these declarations, as you would any other C-function
parameter, as follows:
v For pass-by-reference parameters, access the argument value through its pointer.

Do not modify this pointer within the body of the UDR.
Most data types are passed by reference. The sample UDR bigger_double(), in
Figure 13-1 on page 13-3, shows how to access pass-by-reference arguments
within a UDR.

v For pass-by-value parameters, you can access the argument value directly
through its parameter variable.

Chapter 13. Writing a User-Defined Routine 13-5

For a list of data types that can be returned by value, see Table 2-5 on page 2-33.
The sample UDR bigger_int(), in Figure 13-2 on page 13-4, shows how to
access pass-by-value arguments within a UDR.

Tip: You can obtain information about an argument, such as its type and length,
from the MI_FPARAM structure. For more information, see “Checking
Routine Arguments” on page 9-3.

Handling Character Arguments
When the routine manager receives text data for a C UDR, it puts this text data
into an mi_lvarchar varying-length structure. It then passes a pointer to this
mi_lvarchar structure as the MI_DATUM structure for the UDR argument.
Therefore, a C UDR must have its text parameter declared as a pointer to an
mi_lvarchar structure when the parameter accepts data from the following SQL
character data types:
v CHAR

v IDSSECURITYLABEL

v LVARCHAR

v NCHAR

v NVARCHAR

v VARCHAR

Note: Use of the SQL TEXT data type in a C UDR is not supported.

Global Language Support

For more information on the NCHAR and NVARCHAR data types, see the IBM
Informix GLS User’s Guide.

End of Global Language Support

Important: These SQL data types cannot be represented as null-terminated strings.
A C UDR never receives a null-terminated string as an argument. Do
not code a C UDR to receive null-terminated strings as arguments. For
more information on how to access mi_lvarchar, see “Varying-Length
Data Type Structures” on page 2-13.

For example, suppose you want to define a user-defined function named
initial_cap() that accepts a VARCHAR string, ensures that the string begins with
an uppercase letter, and ensures that the rest of the string consists of lowercase
letters. This UDR would be useful in the following query to retrieve a customer’s
last name:
SELECT customer_num
FROM customer
WHERE initial_cap(lname) = "Sadler";

In the preceding query, use of the initial_cap() function means that you do not
have to ensure that the customer last names (in the lname column) were entered
with an initial uppercase letter. The preceding query would locate the customer
number for either Sadler or sadler.

The following CREATE FUNCTION statement registers the initial_cap() function
in the database:

13-6 IBM Informix DataBlade API Programmer’s Guide

CREATE FUNCTION initial_cap(str VARCHAR(50))
RETURNS VARCHAR(50)
EXTERNAL NAME '/usr/udrs/text/checkcaps.so'
LANGUAGE C;

The following declaration of initial_cap() specifies an mi_lvarchar pointer as the
parameter data type even though the function is registered to accept a VARCHAR
column value:
/* Valid C UDR declaration for string parameter */
mi_lvarchar *initial_cap(str)

mi_lvarchar *str;

The following declaration of initial_cap() is invalid because it specifies an
mi_string pointer as the parameter data type:
/* INVALID declaration for string parameter */
mi_string *initial_cap(string)

mi_string *string;

The initial_cap() function in the preceding declaration would not execute correctly
because it interprets its argument as an mi_string value when the routine manager
actually sends this argument as an mi_lvarchar value.

Figure 13-3 shows the implementation of the initial_cap() function.

Chapter 13. Writing a User-Defined Routine 13-7

Tip: A C UDR that returns data for one of the SQL character data types must
return a pointer to an mi_lvarchar. The initial_cap() function returns a
varying-length structure to hold the initial-capital string. For more
information, see “Returning Character Values” on page 13-13.

Handling NULL Arguments
By default, a C UDR does not handle SQL NULL values. When you call a UDR
with an SQL NULL as the argument, the routine manager does not invoke the
UDR. It returns a value of SQL NULL for the UDR. To have the UDR invoked
when it is called with SQL NULL arguments, register the UDR with the
HANDLESNULLS routine modifier and code the UDR to take special steps when
it receives a NULL argument.

To determine whether an argument is SQL NULL, declare the MI_FPARAM
structure as the last argument in the UDR and use the mi_fp_argisnull() function
to check for NULL argument values. Do not just compare the argument with a
NULL-valued pointer. For more information, see “Handling NULL Arguments
with MI_FPARAM” on page 9-5.

#include <mi.h>
#include <ctype.h>

mi_lvarchar *initial_cap(str)
mi_lvarchar *str;

{
char *var_ptr, one_char;
mi_lvarchar *lvarch_out;
mi_integer i, var_len;

/* Create copy of input data */
lvarch_out = mi_var_copy(str);

/* Obtain data pointer for varying-length data */
var_ptr = mi_get_vardata(lvarch_out);

/* Obtain data length */
var_len = mi_get_varlen(lvarch_out);

/* Check string for proper letter case */
for (i=0; i < var_len; i++)

{
one_char = var_ptr[i];

if (i == 0)
/* Change lowercase first letter to uppercase */
{
if (islower(one_char)) /* is lowercase */

var_ptr[i] = toupper(one_char);
}

else
/* Change uppercase other letters to lowercase */
if (isupper(one_char)) /* is uppercase */

var_ptr[i] = tolower(one_char);
}

return (lvarch_out);
}

Figure 13-3. Handling Character Data in a UDR

13-8 IBM Informix DataBlade API Programmer’s Guide

Handling Opaque-Type Arguments
When the routine manager receives opaque-type data for a C UDR, the way the
routine manager passes this data to the UDR depends on the kind of opaque data
type, as follows:
v For fixed-length opaque types, the routine manager usually passes a pointer to

the internal format of the opaque type.
v For varying-length opaque types, the routine manager passes a pointer to an

mi_bitvarying varying-length structure.

A C UDR must declare its opaque-type parameter appropriately.

Handling Fixed-Length Opaque-Type Arguments: For UDR arguments that are
fixed-length opaque types, the routine manager passes a pointer to the internal
format of the opaque type to the C UDR. If the fixed-length opaque type is defined
as passed by value, however, the routine manager passes the actual internal
format. For more information, see “Determining the Passing Mechanism for an
Opaque Type” on page 16-7.

For example, suppose you want to define a user-defined function named
circle_area() that accepts a fixed-length opaque type named circle (which is
defined in Figure 16-2 on page 16-3) and computes its area. The following CREATE
FUNCTION statement registers the circle_area() function in the database:
CREATE FUNCTION circle_area(arg1 circle)
RETURNS FLOAT
EXTERNAL NAME '/usr/udrs/circle/circle.so'
LANGUAGE C;

Because circle is a fixed-length data type that cannot fit into an MI_DATUM
structure, the following declaration of circle_area() specifies a pointer to the
internal format of circle:
/* Valid C UDR declaration for fixed-length opaque-type
* parameter
*/
mi_double_precision *circle_area(circle_ptr)

circle_t *circle_ptr;

Figure 13-4 shows the implementation of the circle_area() function.

Chapter 13. Writing a User-Defined Routine 13-9

Tip: A C UDR that returns fixed-length opaque data must return a pointer to the
internal format (unless the internal format can fit into an MI_DATUM
structure and is declared to be passed by value). For more information, see
“Returning Opaque-Type Values” on page 13-14.

Handling Varying-Length Opaque-Type Arguments: For UDR arguments that
are varying-length opaque types, the routine manager puts the data into an
mi_bitvarying varying-length structure. It then passes a pointer to this
mi_bitvarying structure as the MI_DATUM structure for the UDR argument. Your
UDR must extract the actual opaque-type data from the data portion of the
mi_bitvarying varying-length structure. For more information on how to access
varying-length structures, see “Using a Varying-Length Structure” on page 2-13.

Suppose that you want to create a user-defined function named image_id() that
accepts a varying-length opaque type named image (which is defined in
Figure 16-3 on page 16-5) and returns its integer image identifier (img_id). The
following CREATE FUNCTION statement registers the image_id() function in the
database:
CREATE FUNCTION image_id(arg1 image)
RETURNS INTEGER
EXTERNAL NAME '/usr/udrs/image/image.so'
LANGUAGE C;

Because image is a varying-length data type, the following declaration of
image_id() specifies an mi_bitvarying pointer as the parameter data type even
though the function is registered to accept a value of type image:
/* Valid C UDR declaration for varying-length opaque-type
* parameter
*/
mi_integer image_id(image)

mi_bitvarying *image;

The following declaration of image_id() is invalid because it specifies an image
pointer as the parameter data type:

#include <mi.h>
#include <ctype.h>
#include <circle.h>

mi_double_precision *circle_area(circle)
circle_t *circle;

{
mi_double_precision *area;

/* Allocate memory for mi_double_precision return
* value
*/
area = mi_alloc(sizeof(mi_double_precision));

/* Calculate circle area using radius from circle_t
* structure and constant PI_CONSTANT (defined in
* circle.h).
*/
*area = (circle->radius * circle->radius) * PI_CONSTANT;

return (area)
}

Figure 13-4. Handling Fixed-Length Opaque-Type Data in a UDR

13-10 IBM Informix DataBlade API Programmer’s Guide

/* INVALID declaration for varying-length opaque-type
* parameter
*/
mi_integer image_id(image)

image_t *image;

The image_id() function in the preceding declaration would not execute correctly
because it interprets its argument as the internal structure for image (image_t)
when the routine manager actually sends this argument as an mi_bitvarying value.

Figure 13-5 shows the implementation of the image_id() function.

Tip: A C UDR that returns varying-length opaque-type data must return a pointer
to an mi_bitvarying structure. For more information, see “Returning
Opaque-Type Values” on page 13-14.

Modifying Argument Values
Do not modify a UDR argument unless it is an OUT parameter. The routine
manager does not make routine-specific copies of the arguments that it passes to
UDRs because it is more efficient not to do so. Keep in mind that values passed
into a UDR are often used on other places in the SQL statement. If you modify a
pass-by-reference value within the UDR, you also modify it for all other parts of
the SQL statement (including other UDRs) that operate on the value after the UDR
executes. When you modify a pass-by-reference argument within the UDR, you
might create an order-dependent result of the SQL statement. That is, it now might
make a difference when your UDR is run within the SQL statement.

Defining a Return Value
When you declare a C UDR, you specify the routine return value, as follows:
v For a user-defined function, the C declaration specifies the data type that the

UDR returns.
v For a user-defined procedure, the C declaration specifies the void data type as a

return value.

Important: A C user-defined function can only return one value.

#include <mi.h>
#include <ctype.h>
#include <image.h>

mi_integer image_id(image)
mi_bitvarying *image;

{
image_t *image_ptr;

/* Obtain pointer to image_t structure, contained
* within the data portion of the mi_bitvarying
* structure.
*/
image_ptr = (image_t *)mi_get_vardata((mi_lvarchar *)image);

return (image_ptr->img_id);
}

Figure 13-5. Handling Varying-Length Opaque-Type Data in a UDR

Chapter 13. Writing a User-Defined Routine 13-11

Returning a Value
When a user-defined function completes, the routine manager returns its value as
an MI_DATUM value. The data type of the return value determines the passing
mechanism that the routine manager uses for the value, as follows:
v Most data types cannot fit into an MI_DATUM structure and are passed by

reference.
v A few data types can fit into an MI_DATUM structure and are passed by value

(see Table 2-5 on page 2-33).

The passing mechanism that the routine manager uses for a particular return value
determines how you must declare it in the user-defined function, as follows.

Return-Value Data Type Tasks to Return the Value

Data types that cannot fit into an
MI_DATUM structure

Return the value by reference:

v Declare a local variable that is a pointer to the actual
return value

v Allocate the memory for the return value with the
PER_ROUTINE memory duration. Use a DataBlade
API memory-management function. For more
information, see “Managing User Memory” on page
14-20.

v Assign the address of this memory to a local variable

v Store the return value in this memory

v Return the pointer to this memory as the return
value

Data types that can fit into the
MI_DATUM structure

Can return the value by value:

v Declare a local variable to hold the actual return
value

v Store the return value in this local variable

v Return the local variable as the return value

Important: A user-defined function cannot return an automatic or local variable if
its data type cannot be returned by value. That is, any automatic or
local variables with data types that cannot fit into an MI_DATUM
structure cannot be returned by value from the UDR.

To return a value, use the automatic or local variable that you declared in the
user-defined function, like you would any other C-function variable, as follows:
v For a pass-by-reference return value, use a pointer to allocated memory.

Most data types are passed by reference. The sample UDR bigger_double(), in
Figure 13-1 on page 13-3, shows how to return an mi_double_precision value by
reference. It allocates PER_ROUTINE memory for the return value, which the
database server frees when the user-defined function completes.

v For a pass-by-value return value, you can return a variable directly as the value.
For a list of data types that can be returned by value, see Table 2-5 on page 2-33.
The sample UDR bigger_int(), in Figure 13-2 on page 13-4, shows how to
return an mi_integer value by value.

Tip: You can obtain information about a return value, such as its type or
maximum length, from the MI_FPARAM structure. For more information, see
“Accessing Return-Value Information” on page 9-6.

13-12 IBM Informix DataBlade API Programmer’s Guide

Returning a NULL Value: To return an SQL NULL value from a user-defined
function, pass the MI_FPARAM structure as the last argument in the UDR and use
the mi_fp_setreturnisnull() function to set the NULL value in this MI_FPARAM
structure. You must call the mi_fp_setreturnisnull() function with MI_TRUE
before your UDR completes. If you do not, you might receive an incorrect result
from the UDR. Do not just return a NULL-valued pointer. For more information,
see “Returning a NULL Value” on page 9-8.

Returning Character Values: The routine manager handles all character return
values from a C UDR as mi_lvarchar values. Therefore, a C UDR must declare its
return value as a pointer to an mi_lvarchar when it returns data for any of the
following SQL character data types:
v CHAR

v IDSSECURITYLABEL

v LVARCHAR

v NCHAR

v NVARCHAR

v VARCHAR

Note: Use of the SQL TEXT data type in a C UDR is not supported.

Global Language Support

For more information on the NCHAR and NVARCHAR data types, see the IBM
Informix GLS User’s Guide.

End of Global Language Support

Important: SQL data types are not represented as null-terminated strings, so do
not code a C UDR to return a null-terminated string. For more
information on how to access an mi_lvarchar structure, see
“Varying-Length Data Type Structures” on page 2-13.

For example, the initial_cap() function in Figure 13-3 on page 13-8 can ensure that
names are entered with an initial uppercase letter followed by lowercase letters.
This UDR would be useful in the following query to ensure consistent
capitalization of the customer last name:
INSERT INTO customer(customer_num, lname, fname)
VALUES (0, initial_cap("ANDERSON"), initial_cap("TASHI"));

The calls to initial_cap() in this INSERT statement convert the last and first names
of this customer as Anderson and Tashi, respectively.

Figure 13-3 on page 13-8 shows the following declaration for initial_cap():
/* Valid C UDR declaration for string return value */
mi_lvarchar *initial_cap(str)

mi_lvarchar *str;

This declaration correctly specifies an mi_lvarchar pointer as the return type so
that the function can return the VARCHAR value. The following declaration of
initial_cap() is invalid because it specifies an mi_string pointer as the return type:
/* INVALID declaration for string return value */
mi_string *initial_cap(string)

mi_lvarchar *string;

Chapter 13. Writing a User-Defined Routine 13-13

The initial_cap() function in the preceding declaration would not return the
expected value because the routine manager interprets the mi_string that the UDR
returns as an mi_lvarchar.

Tip: A C UDR that accepts data for one of these SQL character data types must
also declare its parameters as mi_lvarchar pointers. For more information, see
“Handling Character Arguments” on page 13-6.

Returning Opaque-Type Values: When the routine manager returns opaque-type
data from a C UDR, the way it handles the return value depends on the kind of
opaque data type, as follows:
v For fixed-length opaque types, the routine manager expects a pointer to the

internal format of the opaque type, unless it was declared as pass by value.
Therefore, a C UDR must declare its return value as a pointer to the internal
format of the fixed-length opaque type. Only if the internal format can fit into
an MI_DATUM structure can the C UDR pass the internal format by value.

v For varying-length opaque types, the routine manager expects a pointer to an
mi_bitvarying varying-length structure.
Therefore, a C UDR must declare its return value as a pointer to an
mi_bitvarying. To return a varying-length opaque type, the UDR must put the
varying-length structure into the data portion of the mi_bitvarying structure and
return a pointer to this mi_bitvarying structure.

Tip: A C UDR that accepts opaque-type data must also declare its parameters
based on whether the opaque type is fixed-length or varying-length. For more
information, see “Handling Opaque-Type Arguments” on page 13-9.

Returning Multiple Values
Unlike an SPL routine, a C user-defined function can directly return at most one
value. However, a user-defined function can return multiple values when you use
the following features together:
v An OUT parameter in the user-defined function
v A statement local variable (SLV) in the SQL statement that calls the user-defined

function

OUT parameters and SLVs enable a user-defined function to return a second value
to the calling SQL statement.

Tip: This section discusses the use of SLVs and OUT parameters in the context of a
C user-defined function. You cannot use SLVs and OUT parameters in SPL
functions. A user-defined procedure with an OUT parameter must be called in
the WHERE clause of an SQL statement. For general information on how to
use an OUT parameter, see the discussion of how to return multiple values
from external functions in the IBM Informix User-Defined Routines and Data
Types Developer’s Guide.

An alternative to using an OUT parameter is an iterator function. This
special-purpose user-defined function can return multiple values, one value per
iteration of the function. For more information, see “Writing an Iterator Function”
on page 15-3.

Using an OUT Parameter: An OUT parameter is a routine argument that is always
passed by reference to the C user-defined function. A C user-defined function can
use an OUT parameter to return a value indirectly. For the OUT parameter, the
database server allocates storage for an opaque data type or for a data type that

13-14 IBM Informix DataBlade API Programmer’s Guide

you could pass by value (but not for a varying-length data type) and passes a
pointer to that storage to the UDR. Multiple OUT parameters are supported and
they are allowed anywhere in the argument list, not just at the end.

For a C user-defined function to receive an OUT parameter, it must perform the
following actions:
v Declare the OUT parameter as a pointer to the appropriate data type

The size of the OUT parameter must be the size of an MI_DATUM structure.
The passing mechanism for the parameter must be pass by reference regardless
of the data type that you pass back.

v Set the argument-value array of the MI_FPARAM structure to NULL.
The UDR should update the argument-value array.

DataBlade API modules often use OUT parameters for Boolean functions to return
rank or scoring information (which can indicate how closely the return result
matched the query criteria). For example, Figure 13-6 shows a C UDR, named
out_test(), that does not actually search a particular title for a string, but returns a
100 percent relative weight of match success as an OUT parameter.

In Figure 13-6, the call to the mi_fp_setargisnull() function sets the third
argument, which is the OUT parameter, to MI_FALSE, which indicates that the
argument does not contain an SQL NULL value. The MI_FPARAM structure stores
routine arguments in zero-based arrays. Therefore, the mi_fp_setargisnull()
function specifies a position of 2 to access the third argument.

Tip: For more information on how to access the MI_FPARAM structure, see
“Accessing MI_FPARAM Routine-State Information” on page 9-2.

When you register the user-defined function, precede the OUT parameter with the
OUT keyword. For example, the following CREATE FUNCTION statement
registers the out_test() function (which is defined in Figure 13-6):
CREATE FUNCTION out_test(doc LVARCHAR,

query VARCHAR(120),
OUT weight INTEGER)

RETURNING BOOLEAN
EXTERNAL NAME '/usr/udrs/udrs.so'
LANGUAGE C;

Using the Statement-Local Variable: When you call a user-defined function that
has an OUT parameter, you must declare a statement-local variable (SLV) in the

mi_integer out_test(
mi_lvarchar *doc,
mi_lvarchar *query,
mi_integer *weight, /* OUT parameter */
MI_FPARAM *fp)

{
/* Set the value of the OUT parameter */
*weight = 100;

/* Set the value of the OUT parameter to "not null" */
mi_fp_setargisnull(fp, 2, MI_FALSE);

return MI_TRUE;
}

Figure 13-6. The out_test() User-Defined Function

Chapter 13. Writing a User-Defined Routine 13-15

WHERE clause of the SQL statement. The SLV holds the value that the OUT
parameter returns. Other parts of the SQL statement can then access the OUT
parameter value through the SLV.

For example, the following SELECT statement calls the out_test() function (which
Figure 13-6 on page 13-15 defines) and saves the result of the OUT parameter in a
statement-local variable named weight:
SELECT title, weight FROM mytab

WHERE out_test(title, 'aaa', weight # INTEGER);

The SELECT statement specifies the statement-local variable in its select list so it
can return the value of the OUT parameter.

For more information on the syntax and use of SLVs, see the description of how to
return multiple values from a function in the IBM Informix User-Defined Routines
and Data Types Developer’s Guide.

Coding the Routine Body
The actual work of the C UDR is done with C-language statements in the routine
body. You can use the following statements and calls in the routine body:
v C-language statements
v Calls to functions in libraries that the DataBlade API supports

For a description of these function libraries, see “Regular Public Functions” on
page 1-14.

v Calls to other C functions
You can call any of the following kinds of C functions:
– Any other C UDR that is linked into the same shared-object file

For more information, see “Calling UDRs Within a DataBlade API Module”
on page 9-12.

– A C UDR that does not reside in the same shared-object file
For more information, see “Calling UDRs with the Fastpath Interface” on
page 9-14.

You cannot directly call any other functions within a C UDR.

Using Virtual Processors
To service multiple client-application SQL requests, the database server uses virtual
processors (VPs). The database server breaks the SQL request into distinct tasks,
based on the resource that the task requires. Different VP types, called
virtual-processor classes (VP classes), service the different kinds of tasks. The
following table lists some of the types of VP classes that the database server
supports.

Virtual-Processor Class Description

System VP classes:

CPU Central processing (the primary VP class, which controls
client-application requests)

AIO Asynchronous disk I/O

SHM Shared-memory network communications

User-defined VP class Special VP class for additional types of processing

13-16 IBM Informix DataBlade API Programmer’s Guide

Tip: User-defined VPs are also referred to as Extension VPs, EXP VPs, EVPs, or
Named VPs. This manual uses only the term “user-defined VP” to refer to a
VP class that you define.

The database server preserves the state of each request in a thread. The database
server assigns the thread to a VP class that manages the task or resource that the
request requires. The VPs in the VP class service multiple requests for their
resource by scheduling the threads on the resource.

The CPU virtual processor (CPU VP) is the main VP for the database server. The
CPU VP acts as the central processor for client-application SQL requests. When a
client application establishes a connection, the CPU VP creates the session thread for
that client application. A CPU VP runs multiple session threads to service multiple
SQL client applications.

Tip: This section describes VPs in the context of C UDRs. For a general description
of VPs and UDRs, see the description of VPs in the IBM Informix User-Defined
Routines and Data Types Developer’s Guide. For a general description of VPs, see
the chapter on database server architecture in your IBM Informix
Administrator’s Guide.

When an SQL request includes a C UDR, execution of this UDR becomes one of
the tasks that the thread performs. Because a session thread is the primary thread
for the processing of SQL requests, any C UDRs in an SQL request normally
execute in the CPU VP. However, the tasks that your C UDR needs to perform
might limit its ability to execute in the CPU VP, as follows:
v A well-behaved UDR can execute in the CPU VP.

A well-behaved UDR adheres to a set of safe-code requirements that prevent the
UDR from interfering with the efficient operation of the CPU VP.

v An ill-behaved UDR cannot execute in the CPU VP.
If a C UDR does not follow all the safe-code requirements for a well-behaved
routine, it must execute in a user-defined VP class. Some of the safe-code
requirements can be relaxed for a C UDR that runs in a user-defined VP.

Important: The success of your C UDRs and your DataBlade API project depends
in large degree on how well you implement the features related to the
safety and interoperability of your C UDR.

Creating a Well-Behaved Routine
Because the CPU VP is used to execute all client requests, it is important that the
code it executes be well-behaved; that is, all code should have the following
attributes:
v Preserve availability of the CPU VP

The CPU VP performs system services and related tasks and executes code for
UDRs. If a UDR issues a standard blocking I/O call in a CPU VP, then the VP
must wait for the I/O to complete and cannot attend to other threads and
administrative tasks. The time spent waiting adversely affects the overall
performance of the system. DataBlade API I/O functions enable the CPU VP to
process the I/O asynchronously and do not block the CPU VP.
The benefit of releasing the CPU VP so that it can execute other threads
outweighs the overhead involved in saving the current thread state and
switching to another thread. Each thread should explicitly yield the CPU VP in a
timely manner (at least every 1/10 of a second).

Chapter 13. Writing a User-Defined Routine 13-17

v Be process safe

Well-behaved code must be able to migrate among processes without loss of
essential information or changing the global VP state. C UDR code is process
safe when all state information is entirely encapsulated within the arguments to
each C function and within the scope of the function itself. UDRs should not use
global variables or system calls that change the process state.

Code that is provided to execute within SQL statements (such as built-in SQL
functions) is well-behaved. However, IBM does not have control over the code you
write in your C UDR. A C UDR must be well-behaved to execute in the CPU VP.
As a UDR developer, you must ensure that your C UDR adheres to the safe-code
requirements in Table 13-1.

Table 13-1. Safe-Code Requirements for a Well-Behaved UDR

Safe-Code
Requirement Coding Rule Possible Workarounds

Preserve
availability.

Yield the CPU VP in a timely
manner (at least every 1/10 of a
second).

To execute in the CPU VP, use mi_yield() to explicitly yield
the CPU VP during resource-intensive processing.

Otherwise, execute in a user-defined VP class.

Do not use blocking I/O calls. Execute in a yielding user-defined VP class.

Never change the working
directory.

None

Be process safe. No heap-memory allocation To execute in the CPU VP, use the DataBlade API
memory-management functions.

No modification of global or static
data

To execute in the CPU VP, use the MI_FPARAM structure if
you need to preserve state information. If necessary, global or
static data can be read, as long as it is not updated.

Otherwise, execute in a nonyielding user-defined VP class or a
single-instance user-defined VP.

No modification of the global
state of the virtual processor

A C UDR that modifies the global VP state cannot execute
safely in any VP.

If modification of this data is essential to the application,
execute the C UDR in a nonyielding user-defined VP class or a
user-defined VP class that has only one VP defined.

Avoid unsafe
operating-system
calls.

Do not use any system calls that
might impair availability or
allocate local resources.

If use of such system calls is essential to the application,
execute the C UDR in a nonyielding user-defined VP class and
a single-instance VP and then change back.

If a UDR does not follow the safe-code requirements in Table 13-1, it is called an
ill-behaved routine. An ill-behaved routine cannot safely execute in the CPU VP.

Warning: Execution of an ill-behaved routine in the CPU VP can cause serious
interference with the operation of the database server. In addition, the
UDR itself might not produce correct results.

If your C UDR has one of the ill-behaved traits in Table 13-1, follow the
suggestions in the Possible Workarounds column. The following sections describe
more fully the safe-code requirements for a well-behaved C UDR.

Preserving Availability of the CPU VP
A well-behaved C UDR must preserve the availability of the CPU virtual processor
(CPU VP). The CPU virtual processor appears to execute multiple threads

13-18 IBM Informix DataBlade API Programmer’s Guide

simultaneously because it switches between threads. The database server tries to
keep a thread running on the same CPU VP that begins the thread execution.
However, if the current thread is waiting for some other type of resource to be
accessed or some other task to be performed, the CPU virtual processor is
needlessly held up. To avoid this situation, the database server can migrate the
current thread to another VP.

For example, a query request starts as a session thread in the CPU VP. Suppose
this query contains a C UDR that accesses a smart large object. While the thread
waits for the smart-large-object data to be fetched from disk, the database server
migrates the thread to an AIO VP, releasing control of the CPU VP so that other
threads can execute.

At a given time, a VP can run only one thread. To maintain availability for session
threads, the CPU VP swaps out one thread to allow another to execute. This
process of swapping threads is sometimes called thread yielding. This continual
thread yielding keeps the CPU VP available to process many threads. The speed at
which CPU-VP processing occurs produces the appearance that the database server
processes multiple tasks simultaneously.

Unlike an operating system, which assigns time slices to processes for their CPU
access, the database server does not preempt a running thread when a fixed
amount of time expires. Instead, it runs a thread until the thread yields the CPU
VP. Thread yielding can occur at either of the following events:
v When the thread explicitly calls mi_yield()

v When the thread requires some external resource to continue execution (such as
file or data I/O)

When a thread yields, the VP switches to the next thread that is ready to run. The
VP continues execution and migration of threads until it eventually returns to the
original thread.

For a C UDR to preserve availability of the CPU VP, the UDR must ensure that it
does not monopolize the CPU VP. When a C UDR keeps exclusive control of the
CPU VP, the UDR blocks other threads from accessing this VP. A C UDR can impair
concurrency of client requests if it behaves in either of the following ways:
v It does not regularly yield the CPU.

You must ensure that the C UDR yields the CPU VP at appropriate intervals.
v It calls a blocking-I/O function.

You must ensure that the C UDR does not call any blocking I/O functions
because they can monopolize the CPU VP and possibly hang the database
server.

Denying other threads access to the CPU VP can affect every user on the system,
not just the users whose queries contain the same C UDR. If you cannot code a C
UDR to explicitly yield during resource-intensive processing and to avoid
blocking-I/O functions, the UDR is an ill-behaved routine and must execute in a
user-defined VP class.

Yielding the CPU VP: To preserve the availability of the CPU VP, a well-behaved
C UDR must ensure that it regularly yields the CPU VP to other threads. A C UDR
might yield when it calls a DataBlade API function because DataBlade API
functions automatically yield the VP when appropriate. For example, the UDR
thread might migrate to the AIO VP to perform any of the following kinds of I/O:

Chapter 13. Writing a User-Defined Routine 13-19

v Smart-large-object I/O with a DataBlade API function such as mi_lo_open(),
mi_lo_read(), or mi_lo_write()

v External-file I/O with a DataBlade API file-access function such as
mi_file_open(), mi_file_read(), or mi_file_write()

Therefore, you can assume that thread migration might occur during execution of
any DataBlade API function.

However, if your C UDR performs any of the following types of resource-intensive
tasks (which do not involve calls to DataBlade API functions), your UDR does not
automatically yield the VP:
v A task that is CPU- or I/O-bound
v A task that causes other threads to wait for an undue length of time (usually

longer than 0.1 seconds)

For such a C UDR to be well-behaved, it must explicitly yield the CPU VP with
the DataBlade API function mi_yield(). The mi_yield() function causes the
thread that is executing the UDR to voluntarily yield the CPU VP so that other
threads get a chance to execute in the VP. When the original thread is ready to
continue execution, execution resumes at the point immediately after the call to the
mi_yield() function.

Write your C UDR so that it yields the VP at strategic points in its processing.
Possible points include the beginning or end of lengthy loops and before and/or
after expensive computations. Judicious use of mi_yield() generally leads to an
improved response time overall.

If you cannot code the C UDR to explicitly yield during resource-intensive
passages of code, the UDR is considered an ill-behaved routine and must not
execute in the CPU VP. To isolate a resource-intensive UDR from the CPU VP, you
can assign the routine to a user-defined VP class. To determine which kind of
user-defined VP to define, you must also consider whether you need to preserve
availability of the user-defined VP. Keep in mind that all VPs of a class share a
thread queue. If there are multiple users of your UDR, multiple threads can
accumulate in the same thread queue. If your UDR does not yield, it blocks other
UDRs that execute in the same VP class. Therefore, the VP might not effectively
share between users. One user might have to wait while the UDR in the query of
some other user completes.

You can use a user-defined VP to execute a resource-intensive routine:
v To preserve availability of a user-defined VP, execute the routine in a yielding

user-defined VP.
Within your UDR, you can use the mi_yield() function to yield the user-defined
VP to other threads that execute in the same VP class. To increase availability,
you can define multiple instances of the yielding user-defined VP.

v If you cannot rewrite the routine to yield, add more user-defined VPs.
A nonyielding user-defined VP is used for code that must maintain ownership of
the process until it completes. A nonyielding VP might modify a global variable
or use a command resource that cannot be shared.

Avoiding Blocking I/O Calls: To preserve concurrency, a well-behaved C UDR
must avoid system calls that perform blocking input and output operations (I/O).
Some of these operating-system calls follow:

13-20 IBM Informix DataBlade API Programmer’s Guide

accept()
bind()
fopen()
getmsg()

msgget()
open()
pause()
poll()

putmsg()
read()
select()

semop()
wait()
write()

When a C UDR executes any of these system calls, the CPU VP must wait for the
I/O to complete. In the meantime, the CPU VP cannot process any other requests.
The database server can appear to stall because the concurrency of the CPU VP is
impaired.

If your C UDR needs to perform file I/O, do not use operating-system calls to
perform this task. Instead, use the DataBlade API file-access functions. These
file-access functions allow the CPU VP to process the I/O asynchronously.
Therefore, they do not block the CPU VP. For more information, see “Access to
Operating-System Files” on page 13-52.

If your UDR must issue blocking I/O calls, assign the routine to execute in a
user-defined VP class. When a UDR blocks a user-defined VP, only those UDRs
that are assigned to that VP are affected. You might need to use a single instance of
a user-defined VP, which would affect client response. Your UDR must also handle
any problems that could occur if the thread yielded; for example, operating-system
file descriptors do not migrate with a thread if it moves to a different VP.

Writing Threadsafe Code
A well-behaved C UDR must be threadsafe. During execution, an SQL request
might travel around the different VP classes. For example, a query starts in the
CPU VP, but it might migrate to a user-defined VP to execute a UDR that was
registered for that VP class. In turn, the UDR might fetch a smart large object,
which would cause the thread to migrate to the AIO VP.

Migrating a thread to a different VP means that the database server must preserve
the state of the thread before it migrates the thread. When a client application
connects to the database server, the database server creates a thread-control block
(TCB) to store thread-state information needed when a thread switches VPs. The
TCB includes the following thread-state information:
v Contents of the VP system registers
v Program counter, which contains the address of the next instruction to execute.
v Stack pointer, which points to private memory, called a thread stack

For more information on use of the thread stack by a UDR, see “Managing Stack
Space” on page 14-35.

Tip: For more information on the structure and use of the thread-control block, see
your IBM Informix Administrator’s Guide.

When a thread migrates from one VP to another, it releases its original VP so this
VP can execute other threads. The benefit of releasing the CPU VP outweighs the
overhead involved in saving the thread state. Therefore, a C UDR must be able to
continue execution without loss of information when it migrates to a different VP.

For a C UDR to successfully migrate among VPs, its code must be threadsafe; that
is, it must have the following attributes:
v Does not perform any dynamic memory allocation with operating-system calls
v Does not modify global or static data

Chapter 13. Writing a User-Defined Routine 13-21

v Does not modify other global process-state information

Tip: A parallelizable UDR has additional coding restrictions. For more information,
see “Creating Parallelizable UDRs” on page 15-61.

Restricting Memory Allocation: To be threadsafe, a well-behaved C UDR must
not use system memory-management routines to allocate memory dynamically
including the following operating-system calls:

calloc()
free()
malloc()

mmap()
realloc()

shmat()
valloc()

Many other system calls allocate memory as well.

These operating-system calls allocate memory from the program heap space. The
location of this heap space on only one VP creates the following problems:
v Heap memory available to one VP is not visible after a thread migrates to

another VP.
Once the thread migrates, the UDR can no longer access any data that was
stored in heap memory. Even if the UDR allocates heap memory at the
beginning of execution and frees this memory before it completes, the thread
might still migrate to a different VP during execution of the UDR.

v Other VPs are not prevented from using the same address space for the
shared-memory pool.
When a VP needs to extend the virtual memory pool, it negotiates the addition
of new shared-memory segments to the existing pool. The VP then updates the
resident portion of shared memory and sends a signal to other VPs so that they
can become aware of changes to shared memory.
A VP that extends the memory pool is not aware of any portion of memory that
malloc() (or any other system memory-management routine) is using.
Therefore, the VP might try to use the same address space that a system
memory-management call has reserved.

v Heap memory that system memory-management calls allocate is not
automatically freed.
If a C UDR does not explicitly free this heap memory, memory leaks can occur.

For a C UDR to be well-behaved, it must handle dynamic memory allocation with
the DataBlade API memory-management functions. These DataBlade API functions
provide the following benefits:
v They allocate user memory from the database server shared memory.

All VPs can access database server shared memory. Figure 14-2 on page 14-3
shows the areas of memory from which DataBlade API and operating-system
memory-management functions allocate. For more information, see “Managing
User Memory” on page 14-20.

v They allocate user memory with a specified lifetime called a memory duration.
If a C UDR does not explicitly free memory that these DataBlade API functions
allocate, the database server automatically deallocates it when its memory
duration has expired. This automatic reclamation reduces memory leaks. For
more information, see “Choosing the Memory Duration” on page 14-4.

Important: Do not call operating-system memory-management functions from
within a C UDR. Use these DataBlade API memory-management

13-22 IBM Informix DataBlade API Programmer’s Guide

functions instead. The DataBlade API memory-management functions
are safer in a C UDR than their operating-system equivalents.

If you are porting legacy code to a C UDR, you might want to write simple C
programs to implement system memory-management calls and link these functions
into your code before you make the UDR shared-object module. The following
code fragment shows a simple implementation of malloc() and free() functions:
/* mallocfix.c: This file contains "fixed" versions of the
* malloc() and free() system memory-management
* calls for use in legacy code that currently
* uses malloc() and free().
* Use mi_alloc() and mi_free() in new code.
*/
#include <mi.h>
void *malloc(size_t size)
{

return (mi_alloc((mi_integer)size));
}

void free(void *ptr)
{

mi_free(ptr);
}

This code fragment uses mi_alloc(), which allocates user memory in the current
memory duration. Therefore, the fragment allocates the memory with the default
memory duration of PER_ROUTINE. For more information, see “Managing the
Memory Duration” on page 14-21.

If you cannot avoid using system memory-management functions, your C UDR is
ill-behaved. You can use system memory-management functions in your UDR only
if you can guarantee that the thread will not migrate. A thread could migrate
during any DataBlade API call. To guarantee that the thread never migrates, you
can either allocate and free the memory inside a code block that does not execute
any DataBlade API functions or use a single-instance VP.

This restriction means that if you must use a system memory-management
function, you must segment the UDR into sections that use DataBlade API
functions and sections that are not safe in the CPU VP. All files must be closed and
memory deallocated before you leave the sections that are not safe in the CPU VP.
For more information, see “External-Library Routines” on page 13-28.

Avoiding Modification of Global and Static Variables: To be threadsafe, a
well-behaved C UDR must avoid use of global and static variables. Global and
static variables are stored in the address space of a virtual processor, in the data
segment of a shared-object file. These variables belong to the address space of the
VP, not of the thread itself. Modification of or taking pointers to global or static
variables is not safe across VP migration boundaries.

When an SQL statement contains a C UDR, the routine manager loads the
shared-object file that contains the UDR object code into each VP. Therefore, each
VP receives its own copy of the data and text segments of a shared-object file and
all VPs have the same initial data in their shared-object data segments. Figure 13-7
shows a schematic representation of a virtual processor and indicates the location
of global and static variables.

Chapter 13. Writing a User-Defined Routine 13-23

As Figure 13-7 shows, global and static variables are not stored in database server
shared memory, but in the data and text segments of a VP. These segments in one
VP are not visible after a thread migrates to another VP. Therefore, if a C UDR
modifies global or static data in the data segment of one VP, the same data is not
available if the thread migrates.

Figure 13-8 shows an implementation of a C UDR named bad_rowcount() that
creates an incremented row count for the results of a query.

Suppose the following SELECT statement executes:
SELECT bad_rowcount(), customer_id FROM customer;

Figure 13-7. Location of Global and Static Variables in a VP

/* bad_rowcount()
* Increments a counter for each row in a query result.
* This is the WRONG WAY to implement the function
* because it updates a static variable.
*/
mi_integer
bad_rowcount(Gen_fparam)

MI_FPARAM *Gen_fparam;
{

static mi_integer bad_count = 0;
bad_count++;
return bad_count;

}

Figure 13-8. Incorrect Use of Static Variable in a C UDR

13-24 IBM Informix DataBlade API Programmer’s Guide

The CPU VP that is processing this query (for example, CPU-VP 1) executes the
bad_rowcount() function. The bad_rowcount() function is not well-behaved
because it uses a static variable to hold the row count. Use of this static bad_count
variable creates the following problems:
v The updated bad_count value is not visible when the thread migrates to another

VP.
When bad_rowcount() increments the bad_count variable to 1, it updates the
static variable in the shared-object data segment of CPU-VP 1. If the thread now
migrates to a different CPU VP (for example, CPU-VP 2), this incremented value
of bad_count is not available to the bad_rowcount() function. This next
invocation of bad_rowcount() gets an initialized value of zero (0), instead of 1.

v Concurrent activity of the bad_rowcount() function is not interleaved.
For example, suppose CPU-VP 1 and CPU-VP 2 are processing session threads
for three client applications, each of which execute the bad_rowcount()
function. Now two copies of the bad_count static variable are being incremented
among the three client applications.

A well-behaved C UDR can avoid use of global and static data with the following
workarounds.

Workaround Description

Use only local (stack) variables
and user memory (which the
DataBlade API
memory-management
functions allocate).

Both of these types of memory remain accessible when a
thread migrates to another VP:

v Because the stack is maintained as part of the thread,
reads and writes of local variables are maintained when
the thread migrates among VPs. Write reentrant code that
keeps variables on the stack.

v User memory resides in database server shared memory
and therefore is accessible by all VPs.

For more information, see “Managing User Memory” on
page 14-20.

Use a function-parameter
structure, named
MI_FPARAM, to track private
state information for a C UDR.

The MI_FPARAM structure is available to all invocations of
a UDR within a routine sequence. Figure 9-4 on page 9-11
shows the implementation of the rowcount() function,
which uses the MI_FPARAM structure to correctly
implement the row counter that bad_rowcount() attempts
to implement. For more information, see “Saving a User
State” on page 9-8.

If necessary, you can use
read-only static or global
variables because the values of
these variables remain the
same in each CPU VP.

Keep in mind, however, that addresses of global and static
variables as well as addresses of functions are not stable
when the UDR migrates across VPs.

If your C UDR cannot avoid using global or static variables, it is an ill-behaved
routine. You can execute the ill-behaved routine in a nonyielding user-defined VP
class but not in the CPU VP. A nonyielding user-defined VP prevents the UDR
from yielding and thus from migrating to another VP. Because the nonyielding VP
executes the UDR to completion, any global (or static) value is valid for the
duration of a single invocation of the UDR. The nonyielding VP prevents other
invocations of the same UDR from migrating into the VP and updating the global
or static variables. However, it does not guarantee that the UDR will return to the
same VP for the next invocation.

Chapter 13. Writing a User-Defined Routine 13-25

For the global (or static) value to be valid across a single UDR instance (all
invocations of the UDR), define a single-instance user-defined VP. This VP class
contains one nonyielding VP. It ensures that all instances of the same UDR execute
on the same VP and update the same global variables. A single-instance
user-defined VP is useful if your UDR must access a global or static variable by its
address.

For more information, see “Choosing the User-Defined VP Class” on page 13-30.

Modifying the Global Process State: To be VP safe, a well-behaved C UDR must
avoid modification of the global process state. All virtual processors that belong to
the same VP class share access to both data and processing queues in memory.
However, the global process state is not shared. The database server assumes that
the global process state of each VP is the same. This consistency ensures that VPs
can exchange work on threads.

For a C UDR to be well-behaved, it must avoid any programming tasks that
modify the global process state of the virtual processor. Update of global and static
data (“Avoiding Modification of Global and Static Variables” on page 13-23)
involves modification of the global process. A well-behaved UDR must not use
operating-system calls that can alter the process state, such as chdir(), fork(),
signal(), or unmask(). Such operating-system calls can interfere with thread
migration because the global process state does not migrate with the thread. In
addition, you need to be careful with tasks such as opening file descriptors and
using operating-system threads.

Avoiding Restricted System Calls
A well-behaved C UDR must avoid the use of restricted system calls, which can
have the following adverse effects:
v They might block I/O, which causes the operating system to suspend the

process that calls them.
This suspension slows down both the C UDR that contains the calls and any
other threads that share the same CPU virtual processor.

v Many system calls allocate resources local to the process and are not re-entrant.

IBM cannot provide a definitive list of unsafe system calls because system calls
that are unsafe vary among versions of operating systems and different types of
operating systems. Additionally, the implementation of the VPs is different
between UNIX or Linux and Windows:

UNIX Only

v On UNIX or Linux, the VPs are implemented as separate processes.

End of UNIX Only

Windows Only

v On Windows, each VP is a thread of a common process.

End of Windows Only

The difference in VP implementation means that some system calls are acceptable
when the C UDR runs on Windows but not when this same UDR runs on UNIX or
Linux. There are also differences in how UNIX or Linux handles shared libraries

13-26 IBM Informix DataBlade API Programmer’s Guide

and how Windows handles dynamic link libraries (DLLs) that can affect the
platform on which operating-system calls are valid. Therefore, UDRs might not be
portable from one operating system to another.

Unsafe Operating-System Calls: An unsafe system call is one that blocks, causing
the virtual processor to stall the CPU until the call returns, or one that allocates
resources local to the virtual processor instead of in shared memory. A system call
within a transaction is not terminated by a rollback, so a suspended transaction
can wait indefinitely for the call to return. For instructions on recovery from a
deadlock during a long transaction rollback, see the IBM Informix Dynamic Server
Administrator’s Guide.

A well-behaved C UDR must not include any of the categories of system calls in
Table 13-2. The system calls listed in the Sample Operating-System Calls column
are listed only as possible examples. The operating-system calls that are unsafe in
your C UDR can depend on your operating system. Consult your operating-system
documentation for information on system calls that perform the categories of tasks
in Table 13-2.

Table 13-2. Unsafe Operating-System Calls

Type of Operating-System Call Sample Operating-System Calls

Calls that manipulate signals to processes signal(), alarm(), sleep()

Calls that modify the system security setuid(), seteuid(), setruid(), setgid(),
setegid(), setrgid()

Calls that initiate or halt system processes fork(), exec(), exit(), system(), popen()

Calls that modify the shared-memory
segments

shmat()

Calls that modify the runtime environment of
the dynamic linker

dlopen(), dlsym(), dlerror(),
dlclose()Windows: LoadLibrary()

Warning: The database server reserves all operating-system signals for its own
use. The virtual processors use signals to communicate with one another.
If a UDR were to use signals, these signals would conflict with those
that the virtual processors use. Therefore, do not raise, handle, or mask
signals within a C UDR.

You can use system utilities to check if undesired system calls were included in
your shared-object file:

UNIX Only

v On UNIX or Linux, you can use the nm and ldd commands to obtain this
information. The ldd command lists the dynamic dependencies from a shared
object.

End of UNIX Only

Windows Only

v On Windows, you can use the DUMPBIN command with its /IMPORTS option
to obtain this information.

End of Windows Only

Chapter 13. Writing a User-Defined Routine 13-27

Tip: Given a DataBlade build (.bld) file, check for unresolved references in the file
and all its dependencies. You can compare this list for system calls that
violate the rules of the VP you have chosen to execute your C UDR.

For a list of operating-system calls that are generally safe in a C UDR, see “Safe
Operating-System Calls” on page 13-28.

External-Library Routines: It is recommended that a C UDR avoid the use of
routines from existing external libraries. Some of these external routines might
contain system calls that are restricted in your VP. If your C UDR must use an
external routine, it might be ill behaved. Avoid calling the following kinds of
external library routines, which are not safe in the CPU VP:
v Routines that do blocking I/O, such as routines that open files
v Routines that dynamically allocate memory, such as malloc()

v Routines that allocate static memory

To execute one of these routines safely in a UDR, the following steps are possible:
1. Divide the UDR into critical-code sections and DataBlade-API-code sections.
2. Execute the UDR in a user-defined VP.

The following text explains these steps.

Important: Any external-library routine that uses signals cannot be used in a C
UDR. Do not use this suggested workaround for any external library
call that uses signals.

For an external routine to execute safely, the thread that executes the UDR must
not migrate out of the VP as long as the UDR uses the unsafe resources (open files,
memory allocated with malloc(), or static-memory data). However, DataBlade API
functions might automatically yield the VP when they execute. This yielding
causes the thread to migrate to another VP.

Therefore, you cannot interleave DataBlade API calls and external routines in your
UDR. Instead, you must segment your C UDR into the following distinct sections:
v Critical-code sections

These sections contain only the external-library calls that are not safe in the CPU
VP. Before execution leaves the critical-code section, any unsafe resources must
be released: open files must be closed and memory allocated with malloc()
must be deallocated.

v DataBlade-API code sections
These sections contain only DataBlade API functions. No external-library
functions that are not safe in the CPU VP exist in these sections because any
DataBlade API function might cause the thread to migrate.

Safe Operating-System Calls: The following table lists operating-system calls that
are considered safe within a well-behaved C UDR on all supported platforms. Be
sure to use threadsafe (_r) versions where applicable.

Category System Calls Notes

Character
classification

isalnum(), isalpha(), isascii(),
isastream(), isatty(), iscntrl(),
isdigit(), isgraph(), islower(),
isspace(), isprint(), ispunct(),
isupper(), isxdigit()

None

13-28 IBM Informix DataBlade API Programmer’s Guide

Category System Calls Notes

String manipulation tolower(), toupper(), toascii() None

String parsing getopt(), getsubopt() None

Multibyte strings mbtowc(), wctomb(), mblen(),
mbstowcs(), wcstombs()

None.

String processing strcasecmp(), strcat(), strchr(),
strcmp(), strcoll(), strcpy(), strcspn(),
strdup(), strerror(), strlen(),
strncasecmp(), strncat(), strncmp(),
strncpy(), strpbrk(), strrchr(),
strsignal(), strspn(), strstr(), strtod(),
strtok(), strtok_r(), strtol(), strtoll(),
strtoul(), strtoull(), strxfrm()

None.

String formatting sprintf(), sscanf() None

Numeric processing a641(), l64a(), abs(), labs(), llabs(),
atof(), atoi(), atol(), atoll(), div(),
ldiv(), lldiv(), lltostr(), strtoll()

None

Random-number
generation

srand(), rand(), srandom(),
random(), srand48(), drand48(),
erand48(), lrand48(), nrand48(),
mrand48()

The random-number
generator must be
reseeded whenever a
thread switch might have
occurred.

Numeric conversion econvert(), fconvert(), gconvert(),
seconverty(), sfconvert(), sgconvert(),
qeconvert(), qfconvert(), ecvt(),
fcvt(), gcvt()

ifx_dececvt(),
ifx_decfcvt()

Time functions ascftime(), strftime(), cftime(),
ctime(), ctime_r(), asctime(),
asctime_r(), gmtime(), gmtime_r(),
difftime(), localtime(),
localtime_r()clock(), gettimeofday(),
mktime()

No time-zone changes are
permitted.

Date functions getdate() None

Sorting and
searching

bsearch(), qsort(), lfind(), lsearch() None

Encryption crypt(), setkey(), encrypt() None

Memory
management

memccpy(), memchr(), memcmp(),
memcpy(), memmove(), memset()

Use memmove() and
memset() only for
memory that was
allocated with mi_alloc().

Environment
information

getenv() None

Bit manipulation ffs() None

Byte manipulation swab() None

Structure-member
manipulation

offsetof() None

Trigonometric
functions

acos(), acosh(), asin(), asinh(),
atan(), atan2(), atanh()cos(), cosh(),
sin(), sinh(), tan(), tanh()

None

Bessel functions j0(), j1(), jn(), y0(), y1(), yn() None

Root extraction cbrt(), sqrt() None

Chapter 13. Writing a User-Defined Routine 13-29

Category System Calls Notes

Rounding ceil(), floor(), rint() None

IEEE functions copysign(), isnan(), fabs(), fmod(),
nextafter(), remainder()

None

Error functions erf(), erfc() None

Exponentials and
logarithms

exp(), expm1(), log(), log10(),
log1p(), pow()

None

Gamma functions lgamma(), lgamma_r() The contents of signgam
are unreliable after a
thread switch.

Euclidean distance hypot() None

Tip: The system calls in the preceding table follow the Portable Operating System
Interface for Computing Environments (POSIX) specification.

For a list of categories of operating-system calls that are generally unsafe in a
UDR, see “Unsafe Operating-System Calls” on page 13-27.

Windows Only

The following actions are valid only in C UDRs that run on Windows and only if
they do not interfere with the shared-memory model that the database server uses:
v C UDRs can create additional threads or processes.
v C UDRs can use shared memory for interprocess communication.

End of Windows Only

Important: Use of user-defined VPs can result in slightly lower performance
because the thread must migrate from the CPU VP to the user-defined
VP on which the C UDR executes. Use a user-defined VP only when
necessary.

Choosing the User-Defined VP Class
When you run your C UDR in a user-defined VP, you can relax some, but not all,
of the CPU VP safe-code requirements (Table 13-1 on page 13-18). You must choose
a user-defined VP that is appropriate for the ill-behaved traits of your UDR. The
following types of user-defined VPs allow a C UDR to contain the ill-behaved
traits.

Type of User-Defined VP Purpose

Yielding user-defined VP Prevents a UDR from blocking the CPU VP because it
blocks a user-defined VP thread

Nonyielding user-defined VP Preserves global state of the VP across one UDR
invocation

Single-instance user-defined VP Preserves global state of the VP across all UDR
invocations and instances

Warning: The user-defined VP class frees the CPU VPs from effects of some
ill-behaved traits of a UDR. However, this VP class provides little
protection from process failures. Even when the UDR runs in a

13-30 IBM Informix DataBlade API Programmer’s Guide

user-defined VP class, programming errors that cause process failures
can severely affect the database server.

The Yielding User-Defined VP: By default, a user-defined virtual processor is a
yielding VP. That is, it expects the thread to yield execution whenever the thread
waits for other resources. Once a thread yields a user-defined VP, the VP can run
other threads that execute UDRs assigned to this VP class. The most common use
of a yielding user-defined VP class is for execution of code that cannot be rewritten
to use the DataBlade API file-access functions to perform file-system activity.

The following table summarizes the programming requirements for C UDRs that
apply to execution in a yielding user-defined VP.

CPU VP Safe-Code Requirement Rule
Required for Yielding
User-Defined VP?

Yields the VP on a regular basis Recommended

Does not use blocking operating-system calls Not required

Does not allocate local resources, including heap memory Yes

Does not modify global or static data Yes

Does not modify other global process-state information Yes

Does not use restricted operating-system calls Yes

The main advantages of a yielding user-defined VP class are as follows:
v You can use the mi_yield() function in your UDR to explicitly yield the

user-defined VP.
Failure to use mi_yield() in a UDR creates the same loss of concurrency that it
would in a CPU VP. However, loss of concurrency is not as critical in
user-defined VPs because these VPs do not handle all query processing, as the
CPU VPs do. For more information, see “Yielding the CPU VP” on page 13-19.

v You are no longer restricted from use of blocking I/O calls in the UDR.
The C UDR can issue direct file-system calls that block further VP processing
until the I/O is complete. Because user-defined VPs are not in the same VP class
as CPU VPs, this blocking does not affect concurrency of the CPU VP or threads
on other VPs. The most common use of a yielding user-defined VP is to run a
UDR in which it is not practical to rewrite file-system activity with the
DataBlade API file-access functions. For more information, see “Avoiding
Blocking I/O Calls” on page 13-20.

Important: A yielding user-defined VP relaxes the restriction on use of blocking
I/O calls. However, they do not remove the restrictions on other types
of unsafe system calls. For more information, see “Avoiding Restricted
System Calls” on page 13-26.

The main disadvantage of a yielding user-defined VP is that it can reduce
performance of UDR execution. Execution in the CPU VP maximizes performance
of a well-behaved UDR.

For more information, see “Defining a Yielding User-Defined VP Class” on page
13-35.

The Nonyielding User-Defined VP: A nonyielding user-defined virtual-processor
class runs a C UDR in a way that gives the routine exclusive use of the VP. It
executes the UDR serially. That is, each UDR runs to completion before the next

Chapter 13. Writing a User-Defined Routine 13-31

UDR begins. The C UDR does not yield. The most common use of a nonyielding
user-defined VP class is for porting of legacy code that is not designed to handle
concurrency issues (non-reentrant code) or that uses global memory.

The following table summarizes the programming rules that apply to execution in
a nonyielding user-defined VP.

CPU VP Safe-Code Requirement
Required for Nonyielding
User-Defined VP?

Yields the CPU on a regular basis Not required

Does not use blocking operating-system calls Not required

Does not allocate local resources, including heap
memory

Yes

Does not modify global or static data Not required
(for global changes accessed by a
single invocation of the UDR)

Does not modify other global data Not required
(for global changes accessed by a
single invocation of the UDR)

Does not use unsafe operating-system calls Yes

The main advantages of a nonyielding user-defined VP class is that a single
invocation of the UDR is guaranteed to run on the same VP. This restriction creates
the following benefits for an ill-behaved routine.

Feature of a Nonyielding User-Defined VP Benefit to an Ill-Behaved UDR

Provides the same support for blocking I/O as a
yielding user-defined VP

A UDR can perform blocking I/O functions. For a list of some
sample blocking I/O functions, see “Avoiding Blocking I/O
Calls” on page 13-20.

Can execute a C UDR that was not designed or
coded to handle the concurrency issues of
multiprocessing

A UDR executes to completion. A nonyielding user-defined VP
ignores requests for a yield within DataBlade API functions as
well as explicit calls to mi_yield().

Allows your UDR to modify global information A UDR can modify global information (such as global or static
variables, or global process information) as long as the
changes to this global information are only needed within a
single invocation of the UDR.

For more information, see “Avoiding Modification of Global
and Static Variables” on page 13-23 and “Modifying the
Global Process State” on page 13-26.

However, a nonyielding user-defined VP has the following disadvantages:
v It reduces concurrency of the UDR execution.

If you have multiple VPs in the nonyielding VP class, multiple instances of the
UDR can run concurrently, one per VP. However, each UDR invocation runs to
completion. No migration occurs while one UDR invocation executes (or if the
UDR performs blocking I/O).

v It does not guarantee that the state remains across multiple instances of the
UDR.
Two invocations of the UDR might not overlap on the same VP. Therefore, the
global VP state remains stable. However, another instance of the UDR might
migrate into the VP and change the global VP state.

13-32 IBM Informix DataBlade API Programmer’s Guide

Important: If your UDR needs to make changes to global information that is
available across the UDR instance, you must use a single-instance
user-defined VP to execute the UDR.

For more information, see “Defining a Nonyielding User-Defined VP Class” on
page 13-35.

The Single-Instance User-Defined VP: A single-instance user-defined VP class is a
VP class that has only one VP. Therefore, it runs a C UDR in a way that gives the
routine exclusive use of the entire VP class. As with a nonyielding user-defined VP,
a single-instance VP executes a C UDR serially. Therefore, the UDR does not need
to yield. Because a single-instance VP class has only one VP, the thread that
executes the UDR does not migrate to another VP.

Depending on your requirements for yielding, a single-instance user-defined VP
can be regular or nonyielding. A regular single-instance user-defined VP can
handle the use of malloc() and other local memory access. If it is nonyielding, the
VP can deal with problems like modification of global variables.

CPU VP Safe-Code Requirement
Required for Single-Instance
User-Defined VP?

Yields the CPU on a regular basis Not required

Does not use blocking operating-system calls Not required

Does not allocate local resources, including heap
memory

Yes

Does not modify global or static data Not required
(for global changes accessed by a single
instance of the UDR)

Does not modify other global process-state
information

Not required
(for global changes accessed by a single
instance of the UDR)

Does not use restricted operating-system calls Required for some calls

The main advantage of a single-instance user-defined VP class is that all instances
of the UDR are guaranteed to run on the same VP (that is, on the same system
process). Therefore, changes the UDR makes to the global information (global or
static variables, or the global process state) are accessible across all instances of the
UDR. A UDR might execute many times for a query, once for each row processed.
With multiple VPs in a class, you cannot guarantee that all instances of a UDR
execute on the same VP. Though execution for the first invocation might be on one
VP, the execution for the next invocation might be on some other VP.

The only way to guarantee that all instances execute on one VP is to define a
single-instance user-defined VP class. Therefore, a single-instance user-defined VP
class is useful for a UDR that shares special information across multiple instances.
Examples might be a special iterator function or a user-defined aggregate.

Tip: The DataBlade API supports the mi_udr_lock() function to explicitly lock a
UDR to a VP. For more information, see “Locking a Routine Instance to a VP”
on page 13-41.

For example, suppose you have a UDR that contains the following code fragment:

Chapter 13. Writing a User-Defined Routine 13-33

{
static stat_var;
static file_desc;
mi_integer num_bytes_read;
...
file_desc = mi_file_open(....);
num_bytes_read = mi_file_read(file_desc);
...

}

If this UDR ran on a yielding user-defined VP, the thread might yield at the
mi_file_read() call. Another thread might then execute this same code and change
the value of file_desc. When the original thread returned, it would no longer be
reading from the file it had opened. Instead, if you can assign this UDR to a
nonyielding user-defined VP, the thread never yields and the value of file_desc
cannot be changed by other threads.

The main disadvantage of a single-instance user-defined VP is that it removes
concurrency of UDR execution. This loss of concurrency brings the following
restrictions:
v A single-instance user-defined VP is probably not a scalable solution.

All instances of the UDR that execute on a single-instance VP must compete for
the same VP. You cannot increase the number of VPs in the single-instance class
to improve performance.

v A single-instance user-defined VP does not support execution of parallel UDRs.

Important: If your UDR needs to make changes to global information that is
available across only a single invocation of the UDR, use a nonyielding
user-defined VP to execute the UDR. For more information, see “The
Nonyielding User-Defined VP” on page 13-31.

You must weigh these advantages and disadvantages carefully when choosing
whether to use a single-instance user-defined VP class to execute your ill-behaved
UDR. For more information, see “Defining a Single-Instance User-Defined VP
Class” on page 13-36.

Defining a User-Defined VP
You define a new virtual-processor class in the ONCONFIG file with the VPCLASS
configuration parameter. The num option specifies the number of virtual
processors in a user-defined VP class that the database server starts during its
initialization. The class name is not case sensitive, but it must have fewer than 128
characters. If your DataBlade uses a prefix, such as USR, begin the names of any
user-defined VPs with this prefix.

Dynamic Server supports the following types of user-defined VP classes for
execution of an ill-behaved C UDR.

Type of User-Defined VP Class VPCLASS Option

Yielding user-defined VP None
(default type of user-defined VP class)

Nonyielding user-defined VP noyield

Single-instance user-defined VP
(yielding or nonyielding)

num=1

13-34 IBM Informix DataBlade API Programmer’s Guide

Important: When you edit the ONCONFIG file to create a new virtual-processor
class, you must add a VPCLASS parameter and remove the
SINGLE_CPU_VP parameter. For more information on the ONCONFIG
file, see the IBM Informix Administrator’s Reference.

After you add or modify the VPCLASS configuration parameter, restart the
database server with the oninit utility (or its equivalent). For more information
about how to restart the database server, see your IBM Informix Administrator’s
Guide. You can add or drop user-defined virtual processors while the database
server is online. For more information, see “Adding and Dropping VPs” on page
13-37.

When you use a class of user-defined virtual processors to run a C UDR, you must
ensure that the name of the VP is the same in both of the following locations:
v In the VPCLASS parameter in the ONCONFIG file, which defines the VP class
v In the CLASS routine modifier of the CREATE FUNCTION or CREATE

PROCEDURE statement, which registers the C UDR in the database

For more information, see “Assigning a C UDR to a User-Defined VP Class” on
page 13-36.

Defining a Yielding User-Defined VP Class: The VPCLASS configuration
parameter creates a yielding user-defined VP by default. You can also use the num
option to specify the number of VPs in the yielding user-defined VP class.

Figure 13-9 defines a yielding user-defined VP class named newvp with three
virtual processors.

The C user-defined function, GreaterThanEqual(), in Figure 13-12 on page 13-36,
executes in the newvp VP class.

Defining a Nonyielding User-Defined VP Class: To create a nonyielding
user-defined VP, include the noyield option of the VPCLASS configuration
parameter. You can also use the num option to specify the number of VPs in the
nonyielding user-defined VP class.

Tip: The noyield option is ignored for predefined virtual-processor classes such as
CPU and AIO. For more information on the VPCLASS configuration
parameter, see the IBM Informix Administrator’s Reference.

Figure 13-10 defines the nonyielding user-defined VP class named nonyield_vp
with two VPs in the class.

At runtime you can determine whether the VP on which a UDR is running is part
of a nonyielding user-defined VP class with the mi_vpinfo_isnoyield() function.
For more information, see “Obtaining VP-Environment Information” on page 13-39.

VPCLASS newvp,num=3 # Yielding VP class with 3 instances

Figure 13-9. Defining a Yielding User-Defined VP Class

VPCLASS nonyield_vp, num=2, noyield # Nonyielding VP class

Figure 13-10. Defining a Nonyielding User-Defined VP Class

Chapter 13. Writing a User-Defined Routine 13-35

Defining a Single-Instance User-Defined VP Class: To define a single-instance
user-defined VP, specify a value of one (1) for the num option of the VPCLASS
configuration parameter. Figure 13-11 creates a yielding single-instance
user-defined VP class, single_vp.

At runtime you can determine whether the VP on which a UDR is running is part
of a single-instance user-defined VP class with the mi_vpinfo_vpid() and
mi_class_numvp() functions. For more information, see “Obtaining
VP-Environment Information” on page 13-39.

Assigning a C UDR to a User-Defined VP Class
When you register an ill-behaved C UDR, you assign it to a class of user-defined
virtual processors with the CLASS routine modifier of the CREATE FUNCTION or
CREATE PROCEDURE statement.

Tip: By default, all C UDRs execute in any VP. To have your C UDR run only in
the CPU VP, you can specify the string “cpu vp” with the CLASS modifier. If
your C UDR can run anywhere, you should omit the CLASS modifier.

For example, Figure 13-12 shows a CREATE FUNCTION statement that registers
the C user-defined function, GreaterThanEqual() and specifies that the
user-defined VP class named newvp executes this function.

Figure 13-9 on page 13-35 shows the definition of the newvp user-defined VP class.
All UDRs that specify the newvp VP class with the CLASS routine modifier share
the three VPs in the newvp VP class.

When you register user-defined functions or user-defined procedures with the
CREATE FUNCTION or CREATE PROCEDURE statement, you can reference any
user-defined VP class that you like. The CREATE FUNCTION and CREATE
PROCEDURE statements do not verify that the VP class you specify exists when
they register the UDR.

Important: When you try to run a UDR that was registered to execute in a
user-defined VP class, that VP class must exist and it must have virtual
processors assigned to it. If the class does not have any virtual
processors, you receive an SQL error. For information on how to define
a user-defined VP, see “Defining a User-Defined VP” on page 13-34.

For more information on the syntax of CREATE FUNCTION or CREATE
PROCEDURE to assign a C UDR to a VP class, see the description of the CLASS
routine modifier in the Routine Modifier segment of the IBM Informix Guide to
SQL: Syntax.

VPCLASS single_vp, num=1 # Single-instance VP class

Figure 13-11. Defining a Single-Instance User-Defined VP Class

CREATE FUNCTION GreaterThanEqual(ScottishName, ScottishName)
RETURNS BOOLEAN
WITH (CLASS = 'newvp')
EXTERNAL NAME '/usr/lib/objects/udrs.so(grtrthan_equal'
LANGUAGE C;

Figure 13-12. Specifying a User-Defined VP Class for a C UDR

13-36 IBM Informix DataBlade API Programmer’s Guide

Managing Virtual Processors
To manage virtual processors, you need to perform the following tasks:
v Initialize VP classes
v Add and drop VPs
v Monitor VPs

Initializing a VP Class
Check your IBM Informix Administrator’s Guide and the IBM Informix Administrator’s
Reference for information on VP-class initialization.

Adding and Dropping VPs
You can add or drop virtual processors in a user-defined VP class or in the CPU
VP class while the database server is online. Use onmode -p to add a VP to a class
or to drop a VP from a class.

The following command adds one virtual processor to the newvp class (which
Figure 13-9 on page 13-35 defines):
onmode -p +1 newvp

To remove a virtual processor, specify a negative value in the -p option. For more
information on the onmode utility, see the IBM Informix Administrator’s Reference.

Monitoring Virtual Processors
You can use the following onstat -g commands to monitor VPs. Use:
v onstat -g glo to generate information about global multithreading such as CPU

use of virtual processors and total number of sessions.
v onstat -g rea to generate information about the number of threads in the ready

queue of the VP class.
v onstat -g sch to generate information about the number of semaphore

operations, spins, and busy waits for each virtual processor.

A user-defined VP class appears in the onstat -g glo output as a new process. You
can use the -g glo option to find the virtual process in which your DataBlade API
module is loaded. Figure 13-13 shows the last section of the output of this onstat
command.

In Figure 13-13, the onstat utility displays CPU usage for the CPU VP as the first
line of output. It displays the processor and CPU usage for the user-defined VP
newvp.

For more information on the onstat utility, see the IBM Informix Administrator’s
Reference.

Individual virtual processors:
vp pid class usercpu syscpu total Thread Eff
1 23322 cpu 26.15 1.11 27.26 185.03 14%
2 23326 adm 0.00 0.05 0.05 0.00 0%
3 23327 lio 0.07 0.82 0.89 34.74 2%
4 23352 pio 0.02 0.59 0.61 7.20 8%
5 23353 aio 1.12 2.30 3.42 78.70 4%
6 23354 newvp 0.00 0.02 0.02 0.00 0%

Figure 13-13. onstat -g glo Command Output

Chapter 13. Writing a User-Defined Routine 13-37

In addition, you can select information from the sysvpprof SMI table about the
virtual processors that are currently running. The sysvpprof SMI table exists only
in the sysmaster database.

Controlling the VP Environment
The routine manager executes your C UDR in a virtual-processor (VP) environment.
The VP environment consists of a VP and VP class, as follows:
v The current VP

When a C UDR executes, it runs on a particular virtual processor called the
current VP, which has an ID number from 1 to MAXVPS. A current VP is an
active VP; that is, it is currently performing some task. The task that the active
VP performs depends on the VP class to which it belongs. For example, a CPU
VP can execute SQL statements and well-behaved UDRs. A user-defined VP
executes those UDRs that are assigned to it (with the CLASS routine modifier of
the CREATE FUNCTION or CREATE PROCEDURE statement).

v The VP class to which the current VP belongs
The UDR specifies its VP class with the CLASS routine modifier when it is
registered. If the CREATE FUNCTION or CREATE PROCEDURE statement
omits the CLASS modifier, the UDR executes in the current active VP class.

The following traits of C UDRs are common reasons for needing to control the VP
environment:
v The code uses advanced operating-system calls.

For more information, see “Avoiding Restricted System Calls” on page 13-26.
v The code performs some other task that is ill-behaved.

For more information, see “Preserving Availability of the CPU VP” on page
13-18 and “Writing Threadsafe Code” on page 13-21.

v The code is written in C++.
All C++ code has the potential to not follow the memory management rules for
well-behaved code. The most serious violation of these rules is the use of static
virtual function pointers in C++ classes.

Warning: The ability of the database server to support some C++ features should
not be taken as an open invitation to freely use C++ in your UDR code.
Many C++ features implicitly violate the Safe-Coding Requirements for a
well-behaved routine (see Table 13-1 on page 13-18). Problems can arise
if some C++ features are used in a UDR.

If the source code is not available to change the UDR so that it is well-behaved, the
only solution is to isolate the code execution from the CPU VP class. Possible
execution scenarios include executing:
v In a user-defined VP class
v Locked to one VP or VP class
v As a separate process

The DataBlade API provides the following functions to enable UDRs and
DataBlade modules to examine their VP environment and to control portions
thereof.

13-38 IBM Informix DataBlade API Programmer’s Guide

VP-Environment Information DataBlade API Function

Obtain information about the current VP environment from
within a UDR

mi_vpinfo_classid(),
mi_vpinfo_isnoyield(),
mi_vpinfo_vpid()
mi_class_id(),
mi_class_maxvps(),
mi_class_name(),
mi_class_numvp()

Lock the UDR to a VP environment mi_module_lock(),
mi_udr_lock()

Change the VP environment in which a UDR executes mi_call_on_vp(),
mi_process_exec()

Warning: These advanced functions can adversely affect your UDR if you use
them incorrectly. Use them only when no regular DataBlade API
functions can perform the tasks you need done.

Obtaining VP-Environment Information
By default, the routine manager executes a C UDR in a CPU VP class, which is a
yielding VP class. However, execution on the CPU VP implies that the UDR is
well-behaved. (For more information, see “Creating a Well-Behaved Routine” on
page 13-17.) If your UDR is not well-behaved, you can specify that the routine
manager execute the UDR in a user-defined VP class. However, a user-defined VP
class imposes limitations on the tasks that the UDR can perform. If these
limitations are too restrictive for your UDR, the UDR can dynamically obtain
information about its VP environment and make decisions about whether to
change it.

Warning: The need to examine and possibly change the VP environment should
only be done in special cases. For the most efficient execution, a C UDR
should be well-behaved and thereby execute safely in the CPU VP.
Ill-behaved routines can usually execute in a user-defined VP class
without changing the VP environment.

From within a C UDR, you can obtain the following kinds of information about
the VP environment:
v Information about the current VP
v Information about the VP class to which the current VP belongs

If a UDR can identify its VP environment, it can sometimes take care of its own
migratory needs.

Identifying the Current VP
A VP that is currently performing some task is called an active VP. The database
server assigns a unique integer, called the VP identifier, to each active VP. The
onstat -g glo command displays the VP identifier in the first column of the output
it generates (column with the heading “vp”). For example, the onstat output in
Figure 13-13 on page 13-37 shows information for VPs whose VP identifiers range
from 1 to 13.

The VP identifier uniquely identifies the running oninit process. You can use it as
an identifier for named memory that stores information unique to that VP.

Chapter 13. Writing a User-Defined Routine 13-39

The active VP on which a UDR executes is the current VP for the UDR. To obtain
the VP identifier of the current VP, use the mi_vpinfo_vpid() function. Once you
have the VP identifier of the current VP, you can use the following functions to
obtain additional information about the VP environment of the UDR.

VP-Environment Information DataBlade API Function

VP-class identifier mi_vpinfo_classid()

Whether the current VP is part of a nonyielding VP class mi_vpinfo_isnoyield()

Identifying a VP Class
The database server assigns a unique integer, called the VP-class identifier, to each
VP class, including:
v System VP classes (such as CPU and AIO)
v User-defined VP classes (which the VPCLASS configuration parameter defines)

You can obtain a VP-class identifier with either of following DataBlade API
functions.

DataBlade API Function VP-Class Identifier Returned

mi_vpinfo_classid() The VP-class identifier for the VP class of the current VP (the
VP on which the current UDR is running)

mi_class_id() The VP-class identifier for a specified VP class

Once you have a VP-class identifier for an active VP, you can obtain the following
information about the associated VP class.

VP-Class Information DataBlade API Function

VP-class name mi_class_name()

Maximum number of VPs in the VP class mi_class_maxvps()

Number of active VPs in the VP class mi_class_numvp()

Changing the VP Environment
If the UDR determines that its VP environment is not correct for its execution
requirements, it can perform either of the following tasks to change it.

Change to VP Environment DataBlade API Function

Execute a specified C function on another VP mi_call_on_vp()

Fork and execute a new process to perform some task mi_process_exec()

Executing on Another VP
If the VP environment is not useful for the execution of your C function, you can
tell the routine manager to switch its execution to another VP with the
mi_call_on_vp() function. Pass the following arguments to this function:
v The VP identifier of the VP on which to execute the C function
v A pointer to the return value of the function
v The address of the C function to execute
v The number of arguments to the C function
v Any arguments that the C function needs to execute

13-40 IBM Informix DataBlade API Programmer’s Guide

The mi_call_on_vp() function switches the current thread to the specified VP and
executes the C function on this VP. When the C function completes,
mi_call_on_vp() stores as one of its arguments the C-function return value and
returns control to the originating VP.

Forking and Executing a Process
If you need to run some program or script as a separate process, you can use the
mi_process_exec() function. The mi_process_exec() function forks and executes a
new process and returns immediately. The database server does not wait for
completion, and the new process is allowed to run independently.

Warning: Never use the operating-system fork() and exec() calls from within a
UDR. These system calls are unsafe within a UDR. (For more
information, see “Unsafe Operating-System Calls” on page 13-27.) If you
must execute a separate process, use the mi_process_exec() function to
create this new process.

The mi_process_exec() function is similar to most operating-system exec()
system calls in that you pass the function an argv array. This array contains all the
command strings that are to be passed after the new process is forked. For more
information on the syntax of the argv array, see the description of the
mi_process_exec() function in the IBM Informix DataBlade API Function Reference.

Locking a UDR
If the UDR determines that its VP environment is correct and needs to remain as it
is, the UDR can perform either of the following tasks.

Lock UDR DataBlade API Function

Lock the UDR to the current VP mi_udr_lock()

Lock the shared-object file that contains the UDR into memory mi_module_lock()

Locking a Routine Instance to a VP
If your UDR allocates resources that are process specific, it needs to be locked onto
the VP where it started execution. When you write a UDR that needs access to
global process information, you must take either of the following actions:
v Restrict execution of the UDR to a single-instance VP class.

By executing in a single-instance VP, a UDR can be guaranteed that all
invocations and instances execute in the same VP. Therefore, all UDRs can access
global information of the process. (For more information, see “Avoiding
Modification of Global and Static Variables” on page 13-23.) However, a
single-instance VP class does have significant impact on performance and
parallel scalability.

v Lock the UDR to a VP with the mi_udr_lock() function.
When you call mi_udr_lock() with an argument of MI_TRUE, you set the VP
lock flag to prevent this instance of the UDR from migrating to another VP.
Therefore, the UDR instance always executes on the VP where it is running.
However, an MI_TRUE VP lock flag does not prevent another instance of the
UDR from executing on a different VP.

Important: These solutions do not address resource allocations that last longer
than the individual routine sequence in a statement or subquery. nor
do they address the general issue of reclaiming resources for these
sequences.

Chapter 13. Writing a User-Defined Routine 13-41

Locking a Shared-Object File in Memory
If the set of UDRs in a shared-object file requires a lot of initialization or uses
external resources, it can be costly to have the routine manager continually load
and unload this shared-object file. To prevent the routine manager from unloading
a shared-object file, use the mi_module_lock() function. When you call
mi_module_lock() with an argument of MI_TRUE, you set the module-lock flag,
which locks the shared-object file in memory. Therefore, the routine manager does
not allow the shared-object file to be unloaded for any reason.

This feature enables a DataBlade (or group of related UDRs) to prevent its
shared-object file from being unloaded in any of the following cases:
v On execution of the DROP FUNCTION, DROP PROCEDURE, DROP ROUTINE,

or DROP DATABASE statements
v In various transaction rollback scenarios

Performing Input and Output
Because a C UDR executes in the context of the database server, it should not use
the standard input/output (I/O) calls such as scanf() and printf(). The
DataBlade API provides the following support for I/O from a UDR:
v I/O on a generic stream
v I/O on an operating-system file

Access to a Stream (Server)
The DataBlade API provides a stream I/O interface, which enables you to use the
same function calls to access different objects. Stream is a generic term for an object
that can be written to or read from. A stream has the following information
associated with it:
v The stream data, to which the stream provides access
v The stream seek position, which identifies where the next read or write operation

starts in the stream
When you first open a stream, its seek position is at byte zero (0).

v The stream descriptor, which contains information about the stream

To provide access to a stream from within a C UDR, the DataBlade API has the
MI_STREAM data type structure for stream descriptors. An MI_STREAM
structure contains information about a stream on a particular object. The following
table summarizes the memory operations for a stream descriptor.

Memory Duration Memory Operation Function Name

Current memory
duration

Constructor mi_stream_open_fio(),
mi_stream_open_mi_lvarchar(),
mi_stream_open_str()

Other, user-defined stream-open functions

Destructor mi_stream_close()

To access a stream in your UDR:

1. Open the stream with the appropriate type-specific stream-open function.
The stream-open function is the stream I/O function that opens the stream,
making the data available for a read or write operation. It returns a pointer to a

13-42 IBM Informix DataBlade API Programmer’s Guide

stream descriptor, which the C UDR uses to access the stream. For more
information, see “The Stream-Open Function” on page 13-47.

2. Access the opened stream with the appropriate generic stream I/O function.
Once a particular stream is open, a UDR can use the generic functions of the
stream I/O interface to access the associated I/O object. Each of the generic
stream I/O functions requires a stream descriptor for the stream on which the
function is to operate. The usual sequence of access is to seek to the desired
location in the stream, read or write the desired number of bytes, and close the
stream.

Table 13-3 shows the generic stream I/O functions of the DataBlade API. You can
use these generic stream I/O functions on any stream (as long as the stream class
implements them).

Table 13-3. Generic Stream I/O Functions

Stream-I/O Function Description

mi_stream_close() Close the stream.

mi_stream_eof() Check the stream for the end-of-stream condition.

mi_stream_get_error() Obtain the last error that occurred on the specified stream.

mi_stream_getpos() Obtain the current stream seek position, returning it in a
function parameter.

mi_stream_length() Obtain the length of the stream data.

mi_stream_read() Read a specified number of bytes from the stream.

mi_stream_seek() Move the stream seek position to the desired location.

mi_stream_set_error() Sets the last error status on the specified stream.

mi_stream_setpos() Set the stream seek position.

mi_stream_tell() Obtain the current stream seek position, returning it from the
function.

mi_stream_write() Write a specified number of bytes to the stream.

The advantage of accessing data through a stream is that the call to the generic
stream I/O function is the same, regardless of the format of the underlying data.
With these generic stream-I/O functions, the DataBlade API provides a common
interface for the transportation and access of data independent of the data type or
destination.

For example, the following call to mi_stream_read() reads 164 bytes of data from
a stream into a user-defined buffer named buf:
nbytes_read = mi_stream_read(strm_desc, buf, 164);

The calling code does not need to concern itself about the format of the underlying
data. Whether mi_stream_read() reads the data from a file, character array,
varying-length structure, or user-defined stream depends on which stream-open
function has obtained the pointer to the stream descriptor (MI_STREAM
structure).

In addition to the generic stream I/O functions in Table 13-3 on page 13-43, the
stream I/O interface contains the following functions for different stream classes.

Chapter 13. Writing a User-Defined Routine 13-43

Classes of Stream I/O Function Stream I/O Function More Information

Stream-open functions for the
predefined stream classes:

“Using Predefined Stream
Classes” on page 13-44

v File stream

v String stream

v Varying-length-data stream

mi_stream_open_fio()

mi_stream_open_mi_lvarchar()

mi_stream_open_str()

Abstract stream I/O functions for
user-defined streams

mi_stream_init()

Type-specific stream-open function

“Creating a User-Defined
Stream Class” on page 13-47

Using Predefined Stream Classes
The DataBlade API provides several predefined stream classes that you can access
with the stream I/O interface.

To use a predefined stream class in your UDR:

1. Open a stream with the appropriate type-specific stream-open function.
The following table shows the predefined stream classes that the DataBlade API
provides and their associated stream-open functions.

Predefined Stream Class Stream-Open Function

File stream mi_stream_open_fio()

String stream mi_stream_open_str()

Varying-length-data stream mi_stream_open_mi_lvarchar()

The mistrmtype.h header file declares these predefined stream-open functions.
2. Access the open stream with the appropriate stream I/O function.

Table 13-3 on page 13-43 lists the stream I/O functions that the DataBlade API
provides.

For example, the following code fragment reads 26 bytes of data from a string
stream into a user-defined buffer named buf:
#define STRING_SIZE = 80

MI_STREAM *strm_desc;
mi_integer nbytes;
char buf[200];
char string_txt[STRING_SIZE] =

"A stream is a generic term for some object that can be\
written to or read from."

strm_desc = mi_stream_open_str(NULL, string_txt, STRING_SIZE);
if ((nbytes = mi_stream_read(strm_desc, buf, 26)) != 26)

/* error in read */
mi_stream_close(strm_desc);

After this code fragment completes, the buf user-defined buffer contains the
following character string:
A stream is a generic term

The following sections provide additional details on each of the predefined
DataBlade API stream classes.

13-44 IBM Informix DataBlade API Programmer’s Guide

The File Stream: The file stream provides access to an operating-system file
through the stream I/O interface. To support a data stream on an operating-system
file, the DataBlade API provides the stream I/O functions in Table 13-4.

Table 13-4. Stream I/O Functions for a File Stream

Stream I/O Task Stream I/O Function

Initialize and open a file stream. mi_stream_open_fio()

Move the file seek position to the desired location. mi_stream_seek()

Read a specified number of bytes from the file stream. mi_stream_read()

Write a specified number of bytes to the file stream. mi_stream_write()

Obtain the current file seek position, returning it from the
function.

mi_stream_tell()

Obtain the current file seek position, returning it in a function
parameter.

mi_stream_getpos()

Set the file seek position. mi_stream_setpos()

Obtain the length of the operating-system file. mi_stream_length()

Close the file stream. mi_stream_close()

Tip: You can also use the mi_stream_get_error() and mi_stream_eof() functions
on a file stream.

As Table 13-4 shows, the stream I/O interface for a file stream consists of a
type-specific stream-open function, mi_stream_open_fio(), plus the generic stream
I/O functions. The mi_stream_open_fio() function opens the file and returns a
new file stream.

The other stream I/O functions in Table 13-4 handle return status differently from
DataBlade API file-access functions because the stream I/O functions do not allow
you to obtain the errno status value directly. Instead, these functions handle their
return status as follows:
v A file-access function returns MI_OK for success and sets errno to indicate an

error, but a stream I/O function returns the MI_OK status for success and a
negative number to indicate an error.
The stream I/O function maps the values associated with errno to DataBlade
API constants that have negative values. The mistream.h header file defines
these constants.

v A file-access function returns the amount written to or read from a file, but a
stream I/O function returns either of the following values:
– On success, the amount written or read
– On failure, a negative number (defined in mistream.h)

The String Stream: The string stream provides access to a character array through
the stream I/O interface. The string stream does not handle character data as
null-terminated strings. It does not evaluate the contents of the data stream in any
way. To support a data stream on a character array, the DataBlade API provides the
stream I/O functions in Table 13-5.

Table 13-5. Stream I/O Functions for a String Stream

Stream I/O Task Stream I/O Function

Initialize and open a string stream. mi_stream_open_str()

Chapter 13. Writing a User-Defined Routine 13-45

Table 13-5. Stream I/O Functions for a String Stream (continued)

Stream I/O Task Stream I/O Function

Move the string seek position to the desired location. mi_stream_seek()

Read a specified number of bytes from the string stream. mi_stream_read()

Write a specified number of bytes to the string stream. mi_stream_write()

Obtain the current string seek position, returning it from the
function.

mi_stream_tell()

Obtain the current string seek position, returning it in a
function parameter.

mi_stream_getpos()

Set the string seek position. mi_stream_setpos()

Obtain the length of the character array.

This is the str_len value to pass to mi_stream_open_str() when
you create the string stream.

mi_stream_length()

Close the string stream. mi_stream_close()

Tip: You can also use the mi_stream_get_error() and mi_stream_eof() functions
on a string stream.

As Table 13-5 shows, the stream I/O interface for a string stream consists of the
generic stream I/O functions plus a type-specific stream-open function,
mi_stream_open_str().

The Varying-Length-Data Stream: The varying-length-data stream provides access
to the data within a varying-length structure (mi_lvarchar) through the stream I/O
interface. A varying-length-data stream does not handle varying-length data as
null-terminated strings. It also does not evaluate the contents of the data stream in
any way. To support a data stream on a varying-length structure, the DataBlade
API provides the stream I/O functions in Table 13-6.

Table 13-6. Stream I/O Functions for a Varying-Length-Data Stream

Stream I/O Task Stream I/O Function

Initialize and open a varying-length-data stream. mi_stream_open_mi_lvarchar()

Move the stream seek position to the desired
location.

mi_stream_seek()

Read a specified number of bytes from the
varying-length-data stream.

mi_stream_read()

Write a specified number of bytes to the
varying-length-data stream.

mi_stream_write()

Obtain the current stream seek position, returning it
from the function.

mi_stream_tell()

Obtain the current stream seek position, returning it
in a function parameter.

mi_stream_getpos()

Set the stream seek position. mi_stream_setpos()

Obtain the length of the varying-length data. mi_stream_length()

Close the varying-length-data stream. mi_stream_close()

Tip: You can also use the mi_stream_get_error() and mi_stream_eof() functions
on a varying-length-data stream.

13-46 IBM Informix DataBlade API Programmer’s Guide

As Table 13-6 shows, the stream I/O interface for a varying-length-data stream
consists of the generic stream I/O functions plus a type-specific stream-open
function, mi_stream_open_mi_lvarchar(). This function returns a new
varying-length-data stream.

Creating a User-Defined Stream Class
You can provide a stream I/O interface to create your own protocol for reciprocal
reading and writing of SQL data and other data streams. The DataBlade API
stream I/O interface provides a consistent interface for accessing data; that is, each
stream I/O function has a fixed function name and argument list, regardless of the
actual kind of stream that it accesses. This fixed syntax provides the main benefits
of stream access:
v The calling code can use the exact same syntax to access different kinds of data.
v The underlying data can be transparent to the calling code.

Important: Enterprise Replication does not support user-defined stream classes.

To create a user-defined stream class, you need to write the following stream I/O
functions:
v A type-specific stream-open function

Each type of data to which a stream provides access usually has a unique way
of being opened. Its stream-open function must accept as arguments the
information required to open the data so that the mi_stream_init() function can
initialize the stream.

v Type-specific implementations for the generic stream I/O functions
You must implement the generic stream I/O functions that your stream supports
so that they correctly handle the format of your stream data.

The mi_stream_init() function initializes the stream descriptor with the arguments
it receives. The following code fragment of a stream-open function calls
mi_stream_init() with the stream-operations structure in Figure 13-15, the internal
structure for the mytype opaque type, and a NULL-valued pointer:
MI_STREAM *mi_stream_open_mytype(void *mydata)
{

MI_STREAM *strm_desc; /* could be passed in as input to open()
* also.
*/

/* Code to process any stream-open arguments */
...
/* Call to mi_stream_init() to allocate and initialize
* the stream descriptor
*/

strm_desc = mi_stream_init(stream_ops_mytype, mydata, NULL);

/* Return pointer to newly allocated stream descriptor */
return strm_desc;

}

Because mi_stream_init() receives a NULL-valued pointer as its stream descriptor,
it allocates the stream descriptor in the current memory duration. The
mi_stream_init() function then returns a pointer to this newly allocated structure,
which the mi_stream_open_mytype() function also returns.

The Stream-Open Function: Your stream-open function must take the following
steps:
1. Accept as its arguments the type-specific initialization information and use

them to open the data.

Chapter 13. Writing a User-Defined Routine 13-47

2. Call mi_stream_init() with appropriate information to initialize an
MI_STREAM structure (see Table 1-4 on page 1-12).

The stream-open function must prepare the arguments for the call to the
mi_stream_init() function, which initializes and optionally allocates an
MI_STREAM structure. The mi_stream_init() function takes the following
arguments:
v The stream-operations structure
v The stream data
v A stream descriptor

The Stream-Operations Structure: The stream-operations structure contains pointers to
the C functions that implement the generic stream I/O functions for the particular
stream. A valid stream-operations structure must exist for the DataBlade API to
locate at runtime your type-specific implementations of these generic stream I/O
functions. Therefore, it must be initialized before the call to mi_stream_init().

Figure 13-14 shows the declaration of the stream-operations structure, mi_st_ops.
For the most current definition, see the mistream.h header file.

#define OPS_NAME_LENGTH 40

struct mi_stream_operations {
/* the pointers to the functions */
mi_integer (*close)(MI_STREAM *strm_desc);
mi_integer (*read)(MI_STREAM *strm_desc, void *buf,

mi_integer nbytes);
mi_integer (*write)(MI_STREAM *strm_desc, void *buf,

mi_integer nbytes);
mi_integer (*seek)(MI_STREAM *strm_desc,

mi_int8 *offset, mi_integer whence);
mi_int8 * (*tell)(MI_STREAM *strm_desc);
mi_integer (*setpos)(MI_STREAM *strm_desc,

mi_int8 *pos);
mi_integer (*getpos)(MI_STREAM *strm_desc,

mi_int8 *pos);
mi_integer (*length)(MI_STREAM *strm_desc,

mi_int8 *length);
/* names of the functions above */
char close_name [OPS_NAME_LENGTH];
char read_name [OPS_NAME_LENGTH];
char write_name [OPS_NAME_LENGTH];
char seek_name [OPS_NAME_LENGTH];
char tell_name [OPS_NAME_LENGTH];
char setpos_name[OPS_NAME_LENGTH];
char getpos_name[OPS_NAME_LENGTH];
char length_name[OPS_NAME_LENGTH];
/* the function handles for the functions above */
void *close_fhandle;
void *read_fhandle;
void *write_fhandle;
void *seek_fhandle;
void *tell_fhandle;
void *setpos_fhandle;
void *getpos_fhandle;
void *length_fhandle;

} mi_st_ops;

Figure 13-14. The Stream-Operations Structure

13-48 IBM Informix DataBlade API Programmer’s Guide

As Figure 13-14 shows, the stream-operations structure consists of the following
parts:
v The function pointers to the generic stream I/O functions
v The names of the generic stream I/O functions
v The function handles of the generic stream I/O functions

You should initialize the pointers and names and set the handles to NULL.

Figure 13-15 shows a sample stream-operations structure that provides function
pointers for the type-specific implementations of the mi_stream_close(),
mi_stream_read(), and mi_stream_write() functions for a stream on a
user-defined type named newstream.

The code fragment in Figure 13-15 statically initializes the stream-operations
structure. If you initialize this structure dynamically, do so in the stream-open
function.

The Stream Data: The second argument to mi_stream_init() is an uninterpreted
data pointer that is stored in the MI_STREAM structure initialized by the call to
mi_stream_init(). The stream interface does not interpret this pointer, which is for
the benefit of the stream implementer. You can retrieve the value of this pointer
through a call to mi_stream_get_dataptr().

The Stream Descriptor: A stream descriptor holds information about the stream that
all stream I/O functions need to access. The mi_stream_init() function accepts as
its stream-descriptor argument either of the following values:
v A NULL-valued pointer
v A pointer to a valid, allocated MI_STREAM structure

static struct mi_st_ops stream_ops_newstream =
{

stream_close_newstream,
stream_read_newstream,
stream_write_newstream,
NULL,
NULL,
NULL,
NULL,
NULL,
"stream_close_newstream",
"stream_read_newstream",
"stream_write_newstream",
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL

};

Figure 13-15. A Sample Stream-Operations Structure

Chapter 13. Writing a User-Defined Routine 13-49

When you pass the mi_stream_init() function a NULL-valued pointer for its
stream-descriptor argument, the function allocates a new stream descriptor in the
current memory duration. If your application requires a specific memory duration
for the stream descriptor, your stream-open function can perform one of the
following tasks:
v Before the call to mi_stream_init(), change the current memory duration to what

is required.
The mi_switch_mem_duration() function changes the current memory
duration. Its return value is the previous current duration so that you can return
the duration to its original value. For more information, see “Changing the
Memory Duration” on page 14-22.
In this case, pass a NULL-valued pointer as the stream descriptor to
mi_stream_init() so that mi_stream_init() allocates a new stream descriptor in
the new current memory duration.

v Allocate a stream descriptor in the required memory duration.
In this case, pass a pointer to the allocated stream descriptor as the stream
descriptor for mi_stream_init() so that this function does not allocate a new
stream descriptor. The mi_stream_close() function does not automatically free a
stream descriptor that your stream-open function allocates. Your code must
handle the deallocation.

Initialization of the Stream Descriptor: After your type-specific stream-open
function has prepared the arguments for the mi_stream_init() function, it must
call mi_stream_init() to initialize the stream descriptor.

Tip: Whether the mi_stream_init() function actually allocates the stream
descriptor depends on the value of its third argument. For more information,
see “The Stream Descriptor” on page 13-49.

The stream descriptor, MI_STREAM, holds information about the data stream such
as the data and its seek position. For the most current definition of the
MI_STREAM structure, see the mistream.h header file.

Support for Stream Access: To provide access to the data in your user-defined
stream, you must implement the appropriate generic stream I/O functions. The
following table shows which stream I/O functions to implement for the stream
characteristics that your stream supports.

Stream Characteristic Description Stream I/O Function

Stream seek position The location within the data at which
the next read or write operation begins

mi_stream_seek(),
mi_stream_tell(),
mi_stream_getpos(),
mi_stream_setpos()

Stream length The size of the data This length can be
the size of the data when the stream is
initialized or the current size of the
data.

mi_stream_length()

Stream mode Which operations are valid: read-only,
read/write, or write-only

mi_stream_read(),
mi_stream_write()

Tip: You do not have to implement the stream I/O functions
mi_stream_get_error() and mi_stream_eof() for your user-defined stream.
The implementation of these functions is generic for any stream.

13-50 IBM Informix DataBlade API Programmer’s Guide

Consider the following information when deciding which stream I/O functions to
implement:
v Implement only those stream I/O functions needed to support the selected

stream mode.
If your stream is to be read-only, you need to implement the mi_stream_read()
function but not the mi_stream_write() function. For a write-only stream,
implement only the mi_stream_write() function. For a read/write stream,
implement both mi_stream_read() and mi_stream_write().

v Implement stream I/O functions that access the stream seek position only if your
stream supports a seek position.
If your stream supports a seek position, you must maintain the st_pos field of
the stream descriptor. You can choose whether to support one or two methods of
accessing the stream seek position:
– The mi_stream_seek() function provides specification of the stream seek

position through an offset and a “whence” stream position.
– The mi_stream_getpos() function provides specification of the stream seek

position through an absolute position.
The mi_stream_tell() function returns the current stream seek position as its
return value. This function cannot return any negative error value to indicate the
cause of an error.
The mi_stream_setpos() function returns the current stream seek position as
one of its parameters. This function can return an integer status value.
If your stream does not have a seek position, you do not need to write any of
the following functions: mi_stream_seek(), mi_stream_tell(),
mi_stream_getpos(), or mi_stream_setpos().

v Implement an mi_stream_close() function to deallocate stream resources.
The type-specific implementation of mi_stream_close() must explicitly free any
memory that the associated stream-open function (or any other of the generic
stream I/O functions) has allocated. For information, see “Releasing Stream
Resources” on page 13-52.

The following general rules apply to values that the generic stream I/O functions
return:
v All stream I/O functions except mi_stream_tell() must return the following

values:
– On success, MI_OK
– On failure, a negative integer defined in the mistream.h header file

v The mi_stream_tell() function must return the following values:
– On success, a valid pointer to the current stream seek position, an mi_int8

value
– On failure, a NULL-valued pointer

Registering a UDR That Accesses a Stream
To declare a stream as an argument or return value of a C UDR, use the
MI_STREAM data type. When you register this UDR in the database, use the
opaque data type stream to represent the stream descriptor.

The database server represents a stream with the stream opaque type. As for other
opaque types, the database server stores information on stream in the sysxtdtypes
system catalog table.

For example, suppose you have a C declaration for a UDR named get_data():

Chapter 13. Writing a User-Defined Routine 13-51

mi_lvarchar *get_data(strm_desc, nbytes)
MI_STREAM *strm_desc;
mi_integer nbytes;

The following CREATE FUNCTION statement registers the get_data() UDR, using
the stream data type as its first argument:
CREATE FUNCTION get_data(data_source stream, nbytes INTEGER)
RETURNS VARCHAR
EXTERNAL NAME '/usr/local/udrs/stream/stream.so(get_data)'
LANGUAGE C;

Releasing Stream Resources
When your DataBlade API module no longer needs a stream, you need to assess
whether you can release resources that the stream is using. A stream descriptor
that the mi_stream_init() function allocated has the current memory duration, so
it remains valid until one of the following events occurs:
v The mi_stream_close() function closes the stream, freeing the stream descriptor.
v The current memory duration expires.

To conserve resources, use the mi_stream_close() function to deallocate the stream
descriptor explicitly when your DataBlade API module no longer needs it. The
mi_stream_close() function is the destructor function for a stream descriptor. This
function frees a stream descriptor that mi_stream_init() allocated and any
associated resources, including the stream-data buffer.

The mi_stream_close() function does not automatically free a stream descriptor
allocated by your stream-open function. If the mi_stream_init() function does not
allocate a stream descriptor, your type-specific implementation of
mi_stream_close() must handle the deallocation.

Access to Operating-System Files
The DataBlade API provides file-access functions for access to operating-system
files from within a C UDR. These functions provide file management that is similar
to what operating-system file-access functions provide. The DataBlade API
file-access functions call the corresponding operating-system functions to perform
their tasks; however, the DataBlade API functions periodically yield the virtual
processor to limit the effects of blocking I/O.

Important: Do not call operating-system file I/O functions from within a C UDR.
Use these DataBlade API file-access functions instead because they are
safer in a C UDR than their operating-system equivalents. For more
information, see “Avoiding Blocking I/O Calls” on page 13-20.

Table 13-7 lists the DataBlade API functions for the basic file-access operations and
the analogous operating-system calls for these operations.

Table 13-7. DataBlade API File-Access Functions

File-Access Operation File-Access Function Operating-System Call

Open an operating-system file and
generate a file descriptor for the file

mi_file_open() open()

Seek to a specified position to begin a
read or write operation

mi_file_seek() seek()

Obtain the current seek position mi_file_tell() tell()

13-52 IBM Informix DataBlade API Programmer’s Guide

Table 13-7. DataBlade API File-Access Functions (continued)

File-Access Operation File-Access Function Operating-System Call

Perform a read or write operation for a
specified number of bytes

mi_file_read(),
mi_file_write()

read(), write()

Obtain status information about a
specified smart large object

mi_file_sync() sync()

Close an operating-system file and
deallocate the file descriptor

mi_file_close() close()

Unlink (remove) an operating-system
file

mi_file_unlink() unlink()

Obtain an errno value for the file
operation

mi_file_errno() GLOBAL INT ERRNO;

Tip: The DataBlade API file-access functions execute in client LIBMI applications
as well as C UDRs. For DataBlade API modules that you design to run in
both client LIBMI applications and UDRs, use these file-access functions. For
information on the behavior of these functions in a client LIBMI application,
see Appendix A, “Writing a Client LIBMI Application,” on page A-1.

The DataBlade API accesses operating-system files through file descriptors. These
file descriptors are similar in purpose to operating-system file descriptors. The
following table summarizes the memory durations for a file descriptor.

Memory Duration Memory Operation Function Name

Duration of session
(PER_SESSION)

Constructor mi_file_open()

Destructor mi_file_close(), mi_file_unlink()

Opening a File
The mi_file_open() function is the constructor function for a file descriptor.
Through the file descriptor, you access an operating-system file. This section
provides the following information on how to open a file:
v How to specify the filename, including its path
v How to specify the open flags and open mode, which the underlying

operating-system call supports
v How UDRs can share open files

Specifying a Filename: The filename argument of mi_file_open() identifies the
operating-system file to open. This filename is relative to the server computer. You
can include an environment variable in the filename path for the mi_file_open()
and mi_file_to_file() file-access functions. This environment variable must be set
in the database server environment; that is, it must be set before the database server
starts.

For example, Figure 13-16 shows an mi_file_open() call that opens the
operating-system file data_file1, which resides in the directory that the
DATA_FILES environment variable specifies.

Chapter 13. Writing a User-Defined Routine 13-53

Suppose the DATA_FILES environment variable is set to the following directory in
the database server environment:
/usr/local/app/load_files

The call to mi_file_open() in Figure 13-16 opens the following file:
/usr/local/app/load_files/data_file1

Calling the Operating-System Open Call: To open a file, the mi_file_open()
function calls the open system call that your operating system supports.

UNIX/Linux Only

On UNIX or Linux, the open() system call opens an operating-system file.

End of UNIX/Linux Only

Windows Only

On Windows, the _open command opens an operating-system file.

End of Windows Only

The mi_file_open() function provides the following information about the file to
the appropriate system call.

Argument of mi_file_open() Information Provided

open_flags (second argument) Access mode for the operating-system file

open_mode (third argument) Open mode for the operating-system file.

The function takes this information and passes it directly to the underlying
operating-system call. Therefore, mi_file_open() supports the access modes and
open modes that your operating-system open call supports.

Tip: For more information on the open flags and open mode, see the
documentation for your operating-system open call.

Specifying Open Flags: The mi_file_open() function takes as its second argument
the open flags with which to open the operating-system file. The open flags value
provides two pieces of information:
v A masked flag value that specifies information such as access mode (read/write,

read-only, write-only)
The mi_file_open() function passes these open flags directly to the underlying
operating-system call that opens a file, so you must use flag values that your
operating system supports. Also, you must include the operating-system header
file (such as fcntl.h) that defines the open-flag constants you use.

v A file-mode flag to indicate on which computer the file to open resides
The DataBlade API file-access functions support access to a file on either the
server or client computer. By default, the mi_file_open() function opens a file

fd = mi_file_open("$DATA_FILES/data_file1",
O_WRONLY | O_APPEND | O_CREAT, 0644);

Figure 13-16. Sample Call to Open an Operating-System File

13-54 IBM Informix DataBlade API Programmer’s Guide

on the server computer. To open a server file, you can omit the file-mode flag or
specify the MI_O_SERVER_FILE file-mode flag. To open a client file, you must
include the MI_O_CLIENT_FILE file-mode flag as part of the open flags.

For example, the mi_file_open() call in Figure 13-16 on page 13-54 masks the
following open flags for the file to open.

Open-Flag Constant Purpose

O_WRONLY Open the file write-only.

O_APPEND Append new data to the end of the file.

O_CREAT If the file does not exist, create it.

The example in Figure 13-16 on page 13-54 is based on the following assumptions:
v The operating-system open call supports the O_WRONLY, O_APPEND, and

O_CREAT flags.
v The code that executes this mi_file_open() call includes the header file that

defines O_WRONLY, O_APPEND, and O_CREAT.
v The file resides on the server computer.

Specifying the Open Mode: The mi_file_open() function takes as its third argument
the open mode in which to open the operating-system file. The open mode specifies
the ownership of the file. The mi_file_open() function passes this open mode
directly to the underlying operating-system call. The semantics for mode must
match those that the underlying operating-system call supports.

For example, the mi_file_open() call in Figure 13-16 on page 13-54 specifies an
open mode of 0644:
v Read/write for owner
v Read-only for group
v Read-only for general public

Sharing Open Files: All UDRs that execute under the same connection can share
a file (because they have the same connection descriptor). For example, if UDR1
opens a file, UDR2 can read, write to, or close this file, as long as these two UDRs
execute under the same connection. However, UDRs that do not execute under the
same connection cannot share a file.

The DataBlade API generates an error if your UDR attempts any of the following
file I/O tasks:
v To access a file that a UDR outside the session opened
v To access a file that was not opened at all
v To access a file that was opened and was closed

Closing a File
To close an operating-system file, free the associated file descriptor. A file
descriptor remains active until either of the following events occurs:
v The mi_file_close() function explicitly closes the file.
v The client application ends the session.

Chapter 13. Writing a User-Defined Routine 13-55

Server Only

In a C UDR, a file descriptor has a memory duration of PER_SESSION. Files
remain open after the UDR closes the connection.

End of Server Only

Client Only

In a client LIBMI application, a connection descriptor has a scope of the session.
For more information, see “Accessing Operating-System Files in Client LIBMI
Applications” on page A-3.

End of Client Only

Copying a File
The DataBlade API provides the mi_file_to_file() function to enable you to copy
an operating-system file between the computer on which the database server runs
and the client computer. This function provides the open-mode flags for the new
operating-system file. Unlike the mi_file_open() function, these open-mode flags
are not those of the underlying operating-system open function. Instead,
mi_file_to_file() supports the set of DataBlade API file-mode constants in
Table 6-21 on page 6-59.

Sample File-Access UDR
The following sample UDR, logmsg(), uses the DataBlade API file-access
functions to output messages to an external file:
#include <mi.h>
#include <fcntl.h>
#include <errno.h>

void logmsg (filename, message, Gen_fparam)
mi_lvarchar *filename,
mi_lvarchar *message,
MI_FPARAM *Gen_fparam

{
mi_integer fd, /* file descriptor */

ret, /* return status from file-access funcs
*functions
*/

error; /* mi_file_errno() errno return */

mi_string pathname[256], /* mi_lvarchar_to_buffer() result */
msg_str, / mi_lvarchar_to_string() result */
newline = "\n", / output new line */
msg_error[150], /* errno error message */
tmp_error[150], /* temp error message */
*p;

if (mi_get_varlen(filename) >= sizeof(pathname))
{
mi_db_error_raise(NULL, MI_EXCEPTION,

"Pathname exceeded 255 characters!");
return;
}

mi_var_to_buffer(filename, pathname);
msg_str = mi_lvarchar_to_string(message);

fd = mi_file_open(pathname,
O_WRONLY | O_APPEND | O_CREAT, 0644);

13-56 IBM Informix DataBlade API Programmer’s Guide

if (fd == MI_ERROR)
{
error = mi_file_errno();
switch(error)

{
/* Include your favorite errors from
* /usr/include/sys/errno.h.
*/
case ENOENT:

p = "No such file or directory";
break;

case EACCES:
p = "Permission denied";
break;

case EISDIR:
p = "Pathname is a directory instead of file";
break;

default:
p = "Unhandled errno case";
break;

}

tmp_error = "logmsg: mi_file_open() failed for";
sprintf(msg_error, "%s '%s' -- %s (errno=%d)",

tmp_error, pathname, p, error);

mi_db_error_raise(NULL, MI_EXCEPTION, msg_error);
return; /* not reached */
}

ret = mi_file_write(fd, msg_str, strlen(msg_str));
if(ret == MI_ERROR)

{
error=mi_file_errno();
switch(error)

{
case ENOSPC:

p = "No space left on device";
break;

default:
p = "Unhandled errno case";
break;

}

tmp_err = "logmsg: mi_file_write() failed for"
sprintf(msg_error, "%s '%s' -- %s (errno=%d)",

tmp_err, pathname, p, error);
mi_db_error_raise(NULL, MI_EXCEPTION, msg_error);
return; /* not reached */
}

ret = mi_file_write(fd, newline, strlen(newline));
if(ret == MI_ERROR)

{
mi_db_error_raise(NULL, MI_EXCEPTION,

"mi_file_write() failed for newline!");
return;
}

mi_file_close(fd);
mi_free(msg_str); /* mi_lvarchar_to_string() allocated

* result
*/

return;
}

Chapter 13. Writing a User-Defined Routine 13-57

Accessing the UDR Execution Environment
When the UDR obtains a session, its execution environment is made up of the
following environments:
v The session environment, which describes the current connection
v The server environment, which describes the environment in which the database

server executes

Accessing the Session Environment
The session environment describes the current session, which includes the database
server and open database that are in effect when the client application called the
SQL statement that contains the UDR. The UDR obtains its session environment
when it obtains a connection descriptor with the mi_open() function.

The following DataBlade API functions provide information about the session
environment of a UDR.

Session-Environment Information DataBlade API Function

Connection parameters:

v Name of the database server

v Server port for a connection

mi_get_connection_info(),
mi_get_default_connection_info()

Database parameters:

v Name of the open database

v Name of the account and password for the user
that established the connection

mi_get_database_info(),
mi_get_default_database_info()

Database options:

v ANSI compliant

v Transaction logging

v Exclusive mode

mi_get_connection_option()

Global Language Support

The session environment also includes the following locale information:
v The server-processing locale, which the database server creates when the client

application establishes a connection)
v The server locale (which is the locale that the database server uses to read and

write its own files)

You can obtain the name of the server locale from the connection-information
descriptor (MI_CONNECTION_INFO) with the mi_get_connection_info() or
mi_get_default_connection_info() function. For more information on these
locales, see the IBM Informix GLS User’s Guide.

End of Global Language Support

Tip: You can use the mi_get_id() function to obtain the session identifier for the
session. A session identifier uniquely identifies the session.

Accessing the Server Environment
The server environment describes the environment of the database server in which
the UDR executes. The server environment is established when the database server

13-58 IBM Informix DataBlade API Programmer’s Guide

is initialized with the oninit utility (or its equivalent). The operating-system
process that runs the oninit utility (or its equivalent) is called the
server-initialization process. This process invokes the database server instance.

The server environment includes the following information.

Server-Environment Information How It Is Established

Environment variables The environment variables set for the
server-initialization process

File-access permissions The file-access permissions of the server-initialization
process

Configuration parameters The ONCONFIG file that is current for the database
server

Working directory The working directory of the server-initialization
process

Global Language Support

The server environment includes the value of the SERVER_LOCALE environment
variable, which can specify a nondefault server locale. Values of the DB_LOCALE
and CLIENT_LOCALE environment variables in the server locale do not
necessarily apply to the UDR. While it executes, a UDR obtains the client and
database locales from the server-processing locale (which the database server
creates when the client application establishes a connection). You can obtain the
current value of DB_LOCALE with the mi_get_db_locale() function. For more
information on these locales, see the IBM Informix GLS User’s Guide.

End of Global Language Support

The UDR obtains its server environment when it begins execution. You can obtain
the values of the server-environment variables and configuration parameters with
the mi_get_serverenv() function.

Chapter 13. Writing a User-Defined Routine 13-59

13-60 IBM Informix DataBlade API Programmer’s Guide

Chapter 14. Managing Memory

In This Chapter . 14-1
Understanding Shared Memory . 14-2

Accessing Shared Memory . 14-2
Choosing the Memory Duration . 14-4

Public Memory Durations . 14-5
Advanced Memory Durations . 14-13
Memory-Duration Considerations . 14-17

Managing Shared Memory . 14-19
Managing User Memory . 14-20

Allocating User Memory (Server) . 14-20
Managing the Memory Duration . 14-21
Deallocating User Memory . 14-23

Managing Named Memory . 14-24
Allocating Named Memory . 14-25
Obtaining a Block of Allocated Named Memory . 14-26
Handling Concurrency Issues . 14-27
Deallocating Named Memory . 14-32

Monitoring Shared Memory . 14-33
Managing Stack Space . 14-35

Managing Stack Usage . 14-35
Increasing Stack Space . 14-36

In This Chapter
A C user-defined routine (UDR) has access to the following types of memory:
v Shared memory for dynamic allocations
v Stack memory for routine arguments (including the MI_FPARAM structure),

local stack variables, return values

The DataBlade API provides functions to manage these types of memory.

Memory-Allocation Task

DataBlade API Function

Allocation Deallocation Other

Shared memory

User memory mi_alloc(),
mi_dalloc(),
mi_realloc()),
mi_zalloc()

mi_free() mi_switch_mem_duration()

Named memory mi_named_alloc(),
mi_named_zalloc()

mi_named_free() mi_named_get(),
mi_lock_memory(),
mi_try_lock_memory(),
mi_unlock_memory()

Stack memory for routine
arguments

mi_call() None None

This chapter describes each of these kinds of memory management in detail.

© Copyright IBM Corp. 1996, 2009 14-1

Understanding Shared Memory
When a C UDR executes in a virtual processor (VP), it allocates memory from the
shared memory of the database server. To perform this allocation, the UDR takes
the following steps:
1. Ensures that dynamic memory allocations come from the shared memory of the

database server
All virtual processors can access database server shared memory.

2. Chooses a memory duration to associate with this memory
The database server automatically reclaims its shared memory through an
associated memory duration.

Accessing Shared Memory
A C UDR executes in a virtual processor, which is associated with an
operating-system process. While a C UDR executes on a VP (VP #1), it can access
memory that is associated with that virtual processor. This memory space includes
the stack, heap, and data segments of the VP. Figure 14-1 shows a schematic
representation of what a virtual processor that has loaded a shared-object file looks
like internally.

If the UDR needs to perform some noncomputational task (such as I/O), the
database server migrates its thread to the appropriate VP class. When this
noncomputational task is complete, the database server migrates the thread back to
a computational VP (such as the CPU VP). Once the UDR migrates from VP #1 to
another VP (VP #2), it no longer has access to any information in the memory
space of VP #1. It can now only access the memory space of the new VP. The only
memory that the UDR can access from both VP #1 and VP #2 is the database server
shared memory. This restriction leads to the following guidelines for the dynamic
memory allocation in a C UDR:
v The C UDR must be threadsafe.

The UDR must not assume that it can always access information that is stored in
the VP memory space. This guideline is part of the requirements for a
well-behaved UDR. For more information, see “Creating a Well-Behaved
Routine” on page 13-17.

v The C UDR must use the DataBlade API memory-management functions to
allocate memory dynamically.

Figure 14-1. VP Memory Space for a C UDR

14-2 IBM Informix DataBlade API Programmer’s Guide

The DataBlade API memory-management functions in Table 14-7 on page 14-19
allocate memory from the shared memory of the database server, not from the
memory space of a virtual processor, as Figure 14-2 shows.

The DataBlade API memory-management functions allocate memory from shared
memory, which remains accessible if a thread migrates to another virtual processor.
All VPs can access information in memory that these memory-management
functions allocate because all VPs can access the shared memory of the database
server.

The system memory-management functions (such as malloc() and calloc())
allocate memory in the heap space of the VP. If a UDR migrates to another VP, it
no longer has access to the heap space of the previous VP. Therefore, the address
to dynamic memory in some variable is not valid once the UDR executes in the
new VP.

Important: A C UDR must dynamically allocate memory from the shared memory
of the database server, not from the memory of the VP that runs the
UDR. Therefore, a C UDR must use the DataBlade API
memory-management functions for all dynamic memory allocation.

To ensure that a C UDR does not retain unnecessary amounts of shared memory, it
must use the following guidelines for the dynamic memory allocation:
v The C UDR must ensure that it can access both the memory and its address

when it needs to.

Figure 14-2. Location of Dynamically Allocated Memory for a C UDR

Chapter 14. Managing Memory 14-3

Both the memory and the memory address must have a memory duration
sufficient for all UDRs that need to access the information. For more
information, see “Memory-Duration Considerations” on page 14-17.

v The C UDR must use the DataBlade API memory-management functions to
dynamically allocate memory that has an associated memory duration.
The DataBlade API memory-management functions allocate memory from the
memory-duration memory pools of the database server shared memory.
Therefore, the database server can automatically reclaim this memory, reducing
the chance of memory leaks. For more information, see “Managing Shared
Memory” on page 14-19.

Choosing the Memory Duration
Because a C UDR executes in the memory space of the database server, its
dynamic memory allocations can increase the memory usage of the database
server. For this reason, it is very important that a UDR release its dynamically
allocated memory as soon as it no longer needs to access this memory.

To help ensure that unneeded memory is freed, the database server associates a
memory duration with memory allocation made from its shared memory. The
portion of shared memory that the database server provides for dynamic allocation
by C UDRs is organized into several memory pools. Each memory pool is associated
with a memory duration, which specifies the lifetime of the memory allocated from
the pool. Keeping related memory allocations in one pool helps to reduce memory
fragmentation.

Figure 14-3 shows a schematic representation of the shared memory of the database
server, including the memory-duration memory pools.

Tip: For more information about the use and structure of database server memory
pools, see your IBM Informix Administrator’s Guide. For more information on
how to monitor the amount of shared memory that exists in each of the
memory pools, see “Monitoring Shared Memory” on page 14-33.

When the database server calls a UDR, it creates a memory context. This context
records all of the allocations that the UDR makes before the routine returns. The
UDR might run for some time, calling other UDRs or DataBlade API functions. The
database server automatically reclaims shared memory based on its memory

Figure 14-3. Memory-Duration Memory Pools in Database Server Shared Memory

14-4 IBM Informix DataBlade API Programmer’s Guide

duration. When a particular memory duration expires, the database server marks
the associated memory pool for deallocation.

The DataBlade API provides the following regular and advanced groups of
memory durations for dynamically allocated memory in C UDRs:
v Use the following public memory durations in all UDRs.

Available Memory Durations Memory-Duration Constant

Current memory duration PER_ROUTINE
(by default)

For the duration of one iteration of the UDR PER_ROUTINE,
PER_FUNCTION

For the duration of the current SQL command PER_COMMAND

For the duration of the current SQL statement PER_STATEMENT (Deprecated)

For the duration of the execution of the current SQL
statement

PER_STMT_EXEC

For the duration of the current prepared SQL statement PER_STMT_PREP

Most memory allocations can be allocated with a regular memory duration.
v Use the following advanced memory durations only in specialized cases.

Available Memory Durations Memory-Duration Constant

For the duration of the current transaction PER_TRANSACTION

For the duration of the current session PER_SESSION

For the duration of the database server execution PER_SYSTEM

These memory durations are quite long and therefore increase the chance of
memory leaks.

Warning: The advanced memory durations can adversely affect your UDR if you
use them incorrectly. Use them only when no regular DataBlade API
memory duration can perform the task you need.

Public Memory Durations
The DataBlade API memory-management functions support several public memory
durations. A UDR can use a public memory duration for most dynamic allocations
of memory. The DataBlade API provides the public memory durations that
Table 14-1 shows.

Table 14-1. Public Memory Durations

Public Memory Duration
Memory-Duration
Constant Description

For the duration of one
iteration of the UDR

PER_ROUTINE,
PER_FUNCTION

The database server frees the memory
after the UDR returns.

For the duration of the
current SQL subquery

PER_COMMAND The database server frees memory
when an SQL command terminates.

For the duration of the
current SQL statement

PER_STATEMENT
(Deprecated)

The database server frees memory
when an SQL statement terminates.

For the duration of the
execution of the current SQL
statement

PER_STMT_EXEC The database server frees memory
when the execution of an SQL
statement is complete.

Chapter 14. Managing Memory 14-5

Table 14-1. Public Memory Durations (continued)

Public Memory Duration
Memory-Duration
Constant Description

For the duration of the
current prepared SQL
statement

PER_STMT_PREP The database server frees memory
when a prepared SQL statement
terminates.

The PER_ROUTINE and PER_COMMAND memory durations are the most
common for C UDRs. The memory-duration constants in Table 14-1 are of type
MI_MEMORY_DURATION, which the memdur.h header file defines. All
memory-duration constants in Table 14-1 are also declared in the memdur.h header
file.

PER_ROUTINE Memory Duration: A PER_ROUTINE memory pool is associated
with each UDR invocation. A routine invocation is one single execution of a UDR
within a routine instance.

Tip: The two memory-duration constants PER_ROUTINE and PER_FUNCTION
are synonyms for the same memory duration. PER_ROUTINE is the more
current name.

When a C UDR allocates PER_ROUTINE memory, this memory is available to code
within that single routine invocation of that UDR. The database server reclaims
any PER_ROUTINE memory in the memory context when a single invocation of a
UDR completes. This memory is actually freed on entry to the next routine
invocation. The database server does not reclaim any memory in the memory
context with a higher duration than PER_ROUTINE.

In a C UDR, the PER_ROUTINE memory duration is useful for information
required for a single UDR invocation. A UDR cannot allocate memory, save a
pointer to this memory in static space, and expect the pointer to be valid for the
next routine invocation. To save information across invocations, use the user-state
pointer of the MI_FPARAM structure. For more information, see “Saving a User
State” on page 9-8.

Several DataBlade API constructor functions allocate their DataBlade API data type
structure with a PER_ROUTINE memory duration. Table 14-2 shows the DataBlade
API data type structures that have a memory duration of PER_ROUTINE.

Table 14-2. DataBlade API Data Type Structures with a PER_ROUTINE Memory Duration

DataBlade API Data Type
Structure DataBlade API Constructor Function

DataBlade API
Destructor Function

UDR arguments that are
passed by reference

Routine manager
(when it invokes a UDR)

Routine manager
(when it exits a UDR)

UDR return value that is
passed by value

UDR with its declaration of its return
value

Routine manager
(when it exits a UDR)

UDR return value that is
passed by reference

UDR with call to mi_alloc(),
mi_dalloc(), or mi_zalloc()

Routine manager
(when it exits a UDR)

The current memory duration is initialized to this default memory duration. The
default memory duration is PER_ROUTINE. For more information, see “Managing
the Memory Duration” on page 14-21.

14-6 IBM Informix DataBlade API Programmer’s Guide

PER_COMMAND Memory Duration: A PER_COMMAND memory pool is
associated with each SQL command. An SQL command is a subquery, which is a
separate SQL statement initiated as part of the current SQL statement. The most
common kind of subquery is a SELECT statement in the WHERE clause of a
SELECT.

When a C UDR allocates PER_COMMAND memory, this memory is available to
all routine instances that execute in the same SQL command. For example, the
following SELECT statement contains two SQL commands:
SELECT a_func(x) FROM table1

WHERE i <=
(SELECT y FROM table2 WHERE a_func(x) <= 17);

The SELECT operation on table1 is the main query and is one SQL command. The
SELECT operation on table2 is a subquery of the main query and is therefore a
separate SQL command. All invocations of the a_func() function in the main
query can share any PER_COMMAND memory that this instance of a_func()
allocates; however, the invocations of a_func() in the subquery have their own
PER_COMMAND memory pool. These invocations would not share their memory
pool with the invocations of a_func() in the main query.

Other examples of subqueries follow:
v A SELECT statement after an IN, EXISTS, ALL, ANY, or SOME keyword in a

WHERE clause:
SELECT stock_num, manu_code FROM stock

WHERE NOT EXISTS
(SELECT stock_num, manu_code FROM items

WHERE stock.stock_num = items.stock_num
AND stock.manu_code = items.manu_code);

v A SELECT statement after the table name in an INSERT statement:
INSERT INTO table1 (int_col)

SELECT another_int_col FROM table2
WHERE a_func(x) <= 17);

A separate SQL command is not created for simple WHERE clauses. For example,
the following query contains only one SQL command:
SELECT a_func(x) FROM table1 WHERE a_func(y) > 6;

Both instances of a_func() use the same PER_COMMAND memory pool for their
PER_COMMAND allocations. Therefore, any PER_COMMAND memory that the
a_func() function allocates can be shared by all invocations of the a_func()
function in the select list as well as the invocations of a_func() in the WHERE
clause. If an SQL statement does not contain any subqueries, PER_COMMAND
memory lasts for the duration of the SQL statement; that is, the PER_COMMAND
and PER_STMT_EXEC memory durations are the same.

Tip: You can obtain the name of the SQL command that invoked the current UDR
with the mi_current_command_name() function.

The database server reclaims any PER_COMMAND memory in the memory
context as follows:
v For an SQL statement with no subqueries, the database server deallocates

PER_COMMAND memory when the SQL statement completes.
v For an SQL statement with one subquery, the database server deallocates

PER_COMMAND memory as follows:

Chapter 14. Managing Memory 14-7

– For the main query, the database server frees PER_COMMAND memory after
this main query completes.

– For a subquery, the database server frees PER_COMMAND memory each
time the subquery finishes execution for one outer row of the main query, and
after the main query completes.

The only exception to this rule is if this SQL statement is a cursor statement
(DECLARE, OPEN, FETCH, UPDATE...WHERE CURRENT OF or
DELETE...WHERE CURRENT OF, CLOSE), in which case the database server frees
the PER_COMMAND memory when the cursor closes.

The PER_COMMAND memory duration is useful for accumulating calculations, in
iterator functions, and for initialization of expensive resources. The most common
way for UDR invocations within a routine instance to share information is to store
this information in the user state of its MI_FPARAM structure. The routine
manager allocates an MI_FPARAM structure for each C UDR instance. This
MI_FPARAM structure has a PER_COMMAND memory duration. Therefore, to
retain user state across a routine instance, a UDR can allocate PER_COMMAND
memory and store its address in the MI_FPARAM structure. The UDR does not
need to take special steps to preserve the address of this user-state memory. Each
UDR invocation can use the mi_fp_funcstate() function to obtain the address
from the MI_FPARAM structure.

For example, if a UDR calculates a total, PER_ROUTINE memory would not be
adequate to hold this total because the memory would be freed after a single
routine invocation. PER_COMMAND memory would be available for the entire
routine instance, regardless of the number of invocations involved. For more
information on the user state in MI_FPARAM, see “Saving a User State” on page
9-8.

Several DataBlade API constructor functions allocate their DataBlade API data type
structure with a PER_COMMAND memory duration. Table 14-3 shows the
DataBlade API data type structures that have a memory duration of
PER_COMMAND.

Table 14-3. DataBlade API Data Type Structures with a PER_COMMAND Memory Duration

DataBlade API Data
Type Structure

DataBlade API
Constructor Function

DataBlade API
Destructor Function

Function descriptor
(MI_FUNC_DESC)

mi_cast_get(),
mi_func_desc_by_typeid(),
mi_routine_get(),
mi_routine_get_by_typeid(),
mi_td_cast_get()

mi_routine_end()

MI_FPARAM structure Routine manager
(when it invokes a UDR)

Routine manager
(when it exits a UDR)

MI_FPARAM structure
(user-defined)

mi_fparam_allocate(),
mi_fparam_copy()

mi_fparam_free()

Switching the current memory duration before one of the constructor functions in
Table 14-3 does not change the PER_COMMAND memory duration of the allocated
DataBlade API data type structure. These data type structures are freed by their
destructor function or when the current SQL command completes. To retain access
to some of these DataBlade API data type structures after the command completes,
you must save them at the per-session level.

14-8 IBM Informix DataBlade API Programmer’s Guide

Tip: The DataBlade API supports the ability to save information at a per-session
level. This ability, however, is an advanced feature of the DataBlade API. For
more information, see “Obtaining a Session-Duration Connection Descriptor”
on page 7-13.

PER_STATEMENT Memory Duration: A PER_STATEMENT memory pool can be
associated with each SQL statement, until execution of the statement is complete
and for a prepared statement, until the statement terminates. The statement
includes any SQL commands that the SQL statement initiates.

Important: The PER_STATEMENT memory duration is supported for
compatibility with existing UDRs. In new code, you should use either
the PER_STMT_EXEC or PER_STMT_PREP memory duration. These
more precise memory durations replace PER_STATEMENT, which is
deprecated.

When a C UDR allocates memory with the PER_STATEMENT memory duration,
this memory is available to all routine instances that execute in the same SQL
statement.

PER_STMT_EXEC Memory Duration: A PER_STMT_EXEC memory pool is
associated with the execution of each SQL statement. A statement is the entire SQL
statement plus any SQL commands that the SQL statement initiates, as follows:
v An SQL statement that the client application invokes
v An SQL statement that an SPL routine invokes
v An SQL statement that one of the following DataBlade API statement-execution

functions executes:
– mi_exec()

– mi_exec_prepared_statement()

– mi_open_prepared_statement()

When a C UDR allocates memory with the PER_STMT_EXEC memory duration,
this memory is available to all routine instances that execute in the same SQL
statement. For example, suppose that the following SELECT statement invokes the
a_func2() user-defined function:
SELECT a_func2(x) FROM table1 WHERE y > 7;

Suppose also that the a_func2() function calls mi_exec() to execute a SELECT
that also invokes a_func2(), as follows:
mi_integer a_func2(arg)

mi_integer arg;
{

...
mi_exec(

"select a_func2(y) from table2 where b_func(y) > 7;", ...)

The SELECT query in the call to mi_exec() is a separate SQL command from the
main SELECT query. All invocations of the a_func2() function in the mi_exec()
SELECT statement can share any PER_STMT_EXEC memory that this instance of
a_func2() allocates. They can also share any PER_STMT_EXEC memory that the
b_func() function (in the WHERE clause) allocates.

The invocations of a_func2() in the SELECT on table1 have their own
PER_STMT_EXEC memory pool. They would not share it with invocations of
a_func2() in the mi_exec() call.

Chapter 14. Managing Memory 14-9

The database server reclaims any PER_STMT_EXEC memory in the current
memory context as follows:
v If the SQL statement does not contain any subqueries, the statement consists of a

single SQL command. The database server deallocates PER_STMT_EXEC and
PER_COMMAND memory at the same time.

v If the SQL statement contains one or more subqueries, the statement consists of
several SQL commands, one for the main query and one for each subquery. The
PER_STMT_EXEC memory remains allocated until all SQL commands and UDRs
complete.

At the completion of execution of a statement, the database server does not reclaim
any memory in the memory context with a duration higher than
PER_STMT_EXEC. The database server reclaims any PER_STMT_EXEC memory
when the SQL statement completes execution, as follows:
v For a noncursor statement, the database server deallocates PER_STMT_EXEC

memory as soon as the statement status is returned to the client application.
This memory is actually freed on entry to the next execution of an SQL
statement. After the last (or only) execution of the SQL statement, the database
server deallocates the PER_STMT_EXEC memory after sending the status of the
SQL statement to the client application. If a statement completes before the
status is returned, the database server schedules the memory for release but
does not free it until the return value is sent to the client application.

v For a cursor statement, the database server deallocates PER_STMT_EXEC
memory as soon as the statement status of close cursor is returned to the client
application.
This memory is actually freed on entry to the next open of the cursor. After the
last (or only) open of the cursor, the database server deallocates the memory
after sending the status of the closed cursor to the client application.

Examples of Using PER_STMT_EXEC Memory Duration: For example, suppose the
a_func() user-defined function allocates PER_STMT_EXEC memory. The code
fragment in Figure 14-4 shows a UDR that calls a_func() in a noncursor statement
that executes twice.

PER_STMT_EXEC memory that a_func() allocates in the first call to
mi_exec_prepared_statement() is released just before the second execution of the
prepared INSERT statement begins. Any code after the first

mi_integer udr_with_prepared_stmt()
{

...
stmt3 = mi_prepare(conn,

"insert into tab3 values (a_func(87));", NULL);

/* 1st execution of prepared INSERT */
mi_exec_prepared_statement(stmt3, ...);

/* Code that needs to access PER_STMT_EXEC memory is here */
...

/* 2nd execution of prepared INSERT */
mi_exec_prepared_statement(stmt3, ...);
...
return stat;

}

Figure 14-4. PER_STMT_EXEC Memory in a Noncursor Statement

14-10 IBM Informix DataBlade API Programmer’s Guide

mi_exec_prepared_statement() call that needs to access this memory can do so.
The PER_STMT_EXEC memory that a_func() allocates in the second call to
mi_exec_prepared_statement() remains allocated until the database server returns
to the client application the status of the SQL statement that has called the
udr_with_prepared_stmt() UDR.

The code fragment in Figure 14-5 shows use of a_func() in a cursor statement.

mi_integer get_orders(start_with_cust, end_with_cust)
mi_integer start_with_cust;
mi_integer end_with_cust;

{
mi_string *cmd =

"select order_num, a_func(order_num) from orders \
where customer_num = ?;";

MI_STATEMENT *stmt;
mi_integer i;

...
if ((stmt = mi_prepare(conn, cmd, NULL)) == NULL)

mi_db_error_raise(NULL, MI_EXCEPTION,
"mi_prepare() failed");

if (start_with_cust > end_with_cust)
mi_db_error_raise(NULL, MI_EXCEPTION,

"Arguments invalid.");

for (i = start_with_cust; i <= end_with_cust; i++)
{
values[0] = i;
types[0] = "integer";
lengths[0] = 0;
nulls[0] = MI_FALSE;

/* Open the read-only cursor to hold the query rows */
if (mi_open_prepared_statement(stmt, MI_SEND_READ,

MI_TRUE, 1, values, lengths, nulls, types,
"cust_select", retlen, rettypes)
!= MI_OK)

mi_db_error_raise(NULL, MI_EXCEPTION,
"mi_open_prepared_statement() failed");

Figure 14-5. PER_STMT_EXEC Memory in a Cursor Statement (Part 1 of 2)

Chapter 14. Managing Memory 14-11

PER_STMT_EXEC memory that a_func() allocated is released just before the
cursor is reopened. Therefore, any code after the mi_close_statement() function
that needs to access this memory can do so. However, once the cursor is reopened,
code can no longer access this same PER_STMT_EXEC memory. The
PER_STMT_EXEC memory that a_func() allocates in the previous (or only) open of
the cursor remains allocated until the database server returns to the client
application the status of the SQL statement that has called the get_orders() UDR.

Uses of PER_STMT_EXEC Memory Duration: The PER_STMT_EXEC memory
duration is useful for communications between UDRs, parallel execution,
user-defined aggregates, and named memory, and for memory allocations within
an end-of-statement callback (if you have information to pass to the callback).

Important: Any memory with a duration higher than PER_COMMAND could
have multiple threads access it. Consider whether you need to handle
concurrency issues for any PER_STMT_EXEC memory you allocate. For
more information, see “Handling Concurrency Issues” on page 14-27.

Several DataBlade API constructor functions allocate their DataBlade API data type
structure with a PER_STMT_EXEC memory duration. Table 14-4 lists DataBlade
API data type structures that have a memory duration of PER_STMT_EXEC.

/* Fetch the retrieved rows into the cursor */
if (mi_fetch_statement(stmt, MI_CURSOR_NEXT, 0, 3)

!= MI_OK)
mi_db_error_raise(NULL, MI_EXCEPTION,

"mi_fetch_statement() failed");

if (mi_get_result(conn) != MI_ROWS)
mi_db_error_raise(NULL, MI_EXCEPTION,

"mi_get_result() failed or found non-query statement");

/* Retrieve the query rows from the cursor */
if (!(get_data(conn)))

mi_db_error_raise(NULL, MI_EXCEPTION,
"get_data() failed");

/* Close the cursor */
if (mi_close_statement(stmt) == MI_ERROR)

mi_db_error_raise(NULL, MI_EXCEPTION,
"mi_close_statement() failed");

/* Code that needs to access PER_STMT_EXEC memory is here. */
...

} /* end for */

/* Release resources */
if (mi_drop_prepared_statement(stmt) == MI_ERROR)

mi_db_error_raise(NULL, MI_EXCEPTION,
"mi_drop_prepared_statement() failed");

if (mi_close(conn) == MI_ERROR)
mi_db_error_raise(NULL, MI_EXCEPTION,

"mi_close() failed");
}

Figure 14-5. PER_STMT_EXEC Memory in a Cursor Statement (Part 2 of 2)

14-12 IBM Informix DataBlade API Programmer’s Guide

Table 14-4. DataBlade API Data Type Structures with a PER_STMT_EXEC Memory Duration

DataBlade API Data
Type Structure

DataBlade API
Constructor Function

DataBlade API
Destructor Function

Connection descriptor
(MI_CONNECTION)

mi_open() mi_close()

Save-set structure
(MI_SAVE_SET)

mi_save_set_create() mi_save_set_destroy()

Switching the current memory duration before one of the constructor functions in
Table 14-4 does not change the PER_STMT_EXEC memory duration of the allocated
DataBlade API structure. These data type structures are freed by their destructor
function or when execution of the current SQL statement completes. To retain
access to some of these DataBlade API data type structures after the statement
completes, you must save them at the per-session level.

Tip: The DataBlade API supports the ability to save information at a per-session
level. This ability, however, is an advanced feature of the DataBlade API. For
more information, see “Obtaining a Session-Duration Connection Descriptor”
on page 7-13.

PER_STMT_PREP Memory Duration: A PER_STMT_PREP memory pool is
associated with each prepared SQL statement. A prepared statement is an SQL
statement that is parsed and ready for execution. The following table summarizes
ways to create and drop a prepared statement.

Method
To Create a Prepared
Statement To Drop a Prepared Statement

Client application (SQL) PREPARE FREE

C UDR
(DataBlade API)

mi_prepare() mi_drop_prepared_statement()

When a C UDR allocates PER_STMT_PREP memory, this memory is available to all
routine instances that execute before the current prepared statement is dropped.
Unlike PER_STMT_EXEC memory, PER_STMT_PREP memory does not get freed
upon re-execution of the prepared statement; that is, it remains allocated if the
cursor is closed and reopened. For example, in Figure 14-5 on page 14-11, any
PER_STMT_PREP memory that a_func() allocated is not released when the cursor
is reopened. Therefore, any code that needs to access this memory once the cursor
is reopened can do so. The PER_STMT_PREP memory that a_func() allocates
remains allocated until the mi_drop_prepared_statement() drops the stmt
prepared statement.

When the prepared SQL statement is dropped, the database server reclaims any
PER_STMT_PREP memory in the memory context. It does not reclaim any memory
in the memory context with a duration higher than PER_STMT_PREP.

No DataBlade API constructor function allocates its data type structure with a
memory duration of PER_STMT_PREP.

Advanced Memory Durations
The DataBlade API memory-management functions also support several advanced
memory durations, which Table 14-5 shows.

Chapter 14. Managing Memory 14-13

Table 14-5. Advanced Memory Durations

Advanced Memory Duration
Memory-Duration
Constant Description

For the duration of the current
transaction

PER_TRANSACTION The database server frees the memory after the
current transaction ends (commit or rollback).

For the duration of the current
session

PER_SESSION The database server frees memory at the end of the
current session.

For the duration of the database
server execution

PER_SYSTEM The database server frees memory when it is
brought down.

Warning: The memory durations in Table 14-5 are advanced and can adversely
affect your UDR if you use them incorrectly. Use them only when no
regular DataBlade API memory duration can perform the task you need.

As with the public memory-duration constants, the advanced memory-duration
constants in Table 14-5 are of type MI_MEMORY_DURATION. However, these
constants are declared in the minmdur.h header file, not the memdur.h header file.
The minmmem.h header file automatically includes the minmdur.h header file.
The mi.h header file, however, does not automatically include minmmem.h. To
access advanced memory durations, you must include minmmem.h in any
DataBlade API routine that uses these memory durations.

Important: Any memory with a duration higher than PER_COMMAND could
have multiple threads access it. Therefore, consider whether you need
to handle concurrency issues for any PER_TRANSACTION,
PER_SESSION, or PER_SYSTEM memory you allocate. For more
information, see “Handling Concurrency Issues” on page 14-27.

PER_TRANSACTION Memory Duration: A PER_TRANSACTION memory pool
can be associated with either of the following:
v Each client transaction

If the UDR makes a PER_TRANSACTION allocation during a client transaction,
the database server uses memory from the PER_TRANSACTION memory pool.
The way that a transaction begins and ends depends on whether the database is
ANSI-compliant and whether it uses logging. (For more information, see
“Transaction Management” on page 12-7.)

v A cursor started in a transaction
Statements within a cursor are considered a type of transaction. If the UDR
makes a PER_TRANSACTION allocation within a cursor, the database server
allocates memory from a special PER_CURSOR memory pool, which lasts from
the open to the close of the cursor.
The PER_CURSOR memory duration is for internal use only. However, you might
see information about the PER_CURSOR memory pool in the output of onstat -g
mem. The database server creates a PER_CURSOR memory pool for each cursor
in a transaction.

When a C UDR allocates PER_TRANSACTION memory, this memory is available
to all routine instances that execute before the current transaction closes. The
database server reclaims any PER_TRANSACTION shared memory in the memory
context in either of the following situations:
v When the current transaction ends (with commit or rollback)

14-14 IBM Informix DataBlade API Programmer’s Guide

– If SQL statements execute in an explicit transaction, PER_TRANSACTION
memory remains allocated until all statements in the transaction complete.

– If each SQL statement is a separate transaction, the database server
deallocates PER_TRANSACTION and PER_STMT_EXEC memory at the same
time.

If a hold cursor is open when the transaction ends, the database server does not
deallocate PER_TRANSACTION memory. However, it does deallocate
PER_TRANSACTION memory whenever a hold cursor closes.

v When the cursor closes
If the UDR allocated PER_TRANSACTION memory within a cursor, the
database server reclaims this memory when the cursor closes.

Tip: An EXECUTE PROCEDURE statement does not create an implicit transaction.
If EXECUTE PROCEDURE is not already part of an explicit transaction, the
UDR that it calls can use a BEGIN WORK and COMMIT WORK (or
ROLLBACK WORK) to specify a transaction. For more information, see
“Transaction Management” on page 12-7.

At this time, the database server does not reclaim any memory in the memory
context with a duration higher than PER_TRANSACTION.

The PER_TRANSACTION memory duration is useful for the following tasks:
v Cooperating UDRs in user-defined access methods (created with the IBM

Informix VTI and VII interfaces)
v Committing and rolling back external resources (such as files and smart large

objects)
v Allocating memory within an end-of-transaction callback (if you have

information to pass to the callback)
v Allocating data type structures that need to persist during an implicit or explicit

transaction

Allocate PER_TRANSACTION memory as named memory because this memory
requires locking. To access it, a C UDR must know the name of the memory and it
must be within the scope of the transaction. Such a UDR can explicitly free this
memory with the mi_named_free() function. However, consider
PER_TRANSACTION memory as permanent to the current transaction. For more
information, see “Managing Named Memory” on page 14-24.

No DataBlade API constructor function allocates its data type structure with a
memory duration of PER_TRANSACTION.

PER_SESSION Memory Duration: A PER_SESSION memory pool is associated
with each session. A session begins when a client connects to the database server,
and it ends when the connection terminates. When a C UDR allocates
PER_SESSION memory, this memory is available to all routine instances that
execute before the current session ends. When the current session ends, the
database server reclaims any PER_SESSION shared memory in the memory
context. It does not reclaim any memory in the memory context with a duration
higher than PER_SESSION.

The PER_SESSION memory duration is useful for the following tasks:
v External-resource management
v Session initialization

Chapter 14. Managing Memory 14-15

v Allocating memory within an end-of-session callback (if you have information to
pass to the callback)

v Using cursors defined as hold cursors (hold cursors can span transactions)
v Caching expensive information between transactions for the life of the session or

information that pertains to the session connection

Allocate PER_SESSION memory as named memory because this memory requires
locking. To access it, a C UDR must know the name of the memory and it must be
within the scope of the session. Such a UDR can explicitly free this memory with
the mi_named_free() function. However, consider PER_SESSION memory as
permanent to the session. For more information, see “Managing Named Memory”
on page 14-24.

Several DataBlade API constructor functions allocate their DataBlade API data type
structures with a PER_SESSION memory duration. Table 14-6 shows the DataBlade
API data type structures that have a memory duration of PER_SESSION.

Table 14-6. DataBlade API Data Type Structures with a PER_SESSION Memory Duration

DataBlade API Data
Type Structure

DataBlade API
Constructor Function

DataBlade API
Destructor Function

Session-duration
connection descriptor
(MI_CONNECTION)

mi_get_session_connection() End of session

Session-duration
function descriptor
(MI_FUNC_DESC)

mi_cast_get(),
mi_func_desc_by_typeid(),
mi_routine_get(),
mi_routine_get_by_typeid(),
mi_td_cast_get()

(when these functions receive a session-duration
connection descriptor as an argument)

End of session

File descriptor mi_file_open() mi_file_close()

Transient smart large object mi_lo_copy(),
mi_lo_create(),
mi_lo_expand(),
mi_lo_from_file(),
mi_lo_from_string()

(but do not insert the LO handle into a column of the
database)

mi_lo_release(),
mi_lo_delete_immediate()

Switching the current memory duration before one of the constructor functions in
Table 14-6 does not change the PER_SESSION memory duration of the allocated
DataBlade API structure. These data type structures are freed by their destructor
function or when the current session ends.

PER_SYSTEM Memory Duration: A PER_SYSTEM memory pool is associated
with the database server instance. A database server instance begins when the oninit
utility (or its equivalent) initializes the database server, and it ends when the
database server is brought down. When a C UDR allocates PER_SYSTEM memory,
this memory is available to all routine instances that execute before the database
server instance is shut down. As the database server shuts down, it frees any
PER_SYSTEM shared memory.

14-16 IBM Informix DataBlade API Programmer’s Guide

The PER_SYSTEM memory duration is useful for system-wide caching and
resource initialization. Allocate PER_SYSTEM memory as named memory because
this memory requires locking. To access it, a C UDR must know the name of the
memory. The UDR can explicitly free this memory with the mi_named_free()
function. However, consider PER_SYSTEM memory as permanent to the database
server. For more information, see “Managing Named Memory” on page 14-24.

Warning: The PER_SYSTEM memory duration takes up memory that the database
server might use for other tasks. Restrict your use of memory with the
PER_SYSTEM memory duration. For most uses, memory can be
successfully allocated with shorter memory durations.

No DataBlade API constructor function allocates its data type structure with a
memory duration of PER_SYSTEM.

Memory-Duration Considerations
When a UDR needs to allocate memory dynamically, it must take the following
actions:
v Choose an appropriate memory duration for which to allocate the memory
v Save the address of the memory so that all UDRs that need to use the memory

can access it

Choosing Memory Duration: When the UDR allocates memory, it must ensure
that this memory has a appropriate memory duration. Choose a memory duration
on the basis of which UDR instances need to share the information stored in the
memory. Make sure you choose a memory duration that is appropriate to the use
of the allocated memory. An inappropriate memory duration can cause the
following problems:
v If you allocate memory with a duration that is too small, expect to see assertion

failures in the message log file.
For example, if you allocate PER_ROUTINE memory and store its address in the
MI_FPARAM structure (which has a PER_COMMAND duration), the memory
is freed after one invocation of the UDR, causing the address in the
MI_FPARAM to be no longer valid.

v If you allocate memory with a duration that is too large, you might see memory
leaks as your UDR executes.
Memory leakage can occur when you allocate memory that has a higher
duration than the structure that holds its address. For more information, see
“Monitoring Shared Memory” on page 14-33.

Whenever possible, use the following public memory-management features of the
DataBlade API:
v Public memory-management functions

mi_alloc()
mi_dalloc()

mi_zalloc(
mi_free()

mi_switch_mem_duration()
mi_realloc()

These public functions are appropriate for a UDR that executes in the context of
just one SQL statement. The current memory duration, which these functions
use, is a useful way to ensure that all allocations occur with the same duration.
For more information, see “Managing the Memory Duration” on page 14-21.

Chapter 14. Managing Memory 14-17

v Public memory durations

PER_ROUTINE
PER_COMMAND

PER_STMT_EXEC
PER_STMT_PREP

For more information, see “Public Memory Durations” on page 14-5. Advanced
memory durations are necessary only in certain situations.

Warning: Keep track of the scope and memory duration of the memory that you
allocate with the DataBlade API memory-management functions.
Incorrect memory duration can create serious memory corruption.

Saving the Memory Address: In addition to ensuring that the allocated memory
has an appropriate memory duration, you must ensure that the UDR can obtain
the address of this memory when it needs to access the information within the
memory. For example, if you allocate PER_COMMAND memory within a UDR but
only store its address in a local variable, this address is deallocated when the UDR
completes.

Important: The deallocation of the memory address but not the associated
memory is one of the most common causes of memory leaks. Make
sure that the duration of the memory address is compatible with that
of its memory.

The following table summarizes common ways to save a memory address.

Memory Duration Where To Store Memory Address Scope of Address

PER_ROUTINE Does not need to be handled
because the memory and its address
are only valid within a single
routine invocation.

Current invocation of UDR

PER_COMMAND Store the memory address in the
user state of the MI_FPARAM
structure.

You can take special steps (such as
named memory) to store the
memory address so that it can be
accessed by other UDRs:

v Named memory

v Session-duration connection

All invocations of the UDR
within the current SQL
command

All UDRs that know the
name of the named-memory
block

All UDRs that have access
to the session-duration
connection descriptor

PER_STMT_EXEC If the SQL statement does not
contain any subqueries, you can
store the memory address in the
user state of the MI_FPARAM
structure.

If the SQL statement contains
subqueries, you must take special
steps (such as named memory) to
store the memory address so that it
can be accessed by other instances
of the same UDR or by other UDRs.

All invocations of the UDR
within the current SQL
statement

14-18 IBM Informix DataBlade API Programmer’s Guide

Managing Shared Memory
The following kinds of C functions can make allocations from the database server
shared memory:
v C UDRs

A C UDR has access to the following types of shared memory for dynamic
allocations: user memory and named memory.

v DataBlade API constructor functions
A constructor function allocates its DataBlade API data type structure in user
memory. The constructor can allocate a particular data type structure with a
specified memory duration (Table 14-2 through Table 14-4) or the current
memory duration (Table 14-6 on page 14-16).

The DataBlade API provides the memory-management functions in Table 14-7 for
the dynamic allocation of database server shared memory.

Table 14-7. Memory-Management Functions of the DataBlade API

Type of Shared
Memory Description DataBlade API Functions

User memory Memory that is accessible by its
address only. User memory can be
allocated in the current memory
duration or have a specified
memory duration.

mi_alloc(), mi_dalloc(),
mi_realloc(), mi_zalloc(),
mi_switch_mem_duration(),
mi_free()

Named memory Memory that has a name assigned
and is accessible by its address or its
name. Named memory has a
specified memory duration.

mi_named_alloc(),
mi_named_zalloc(),
mi_named_get(),
mi_named_free()

mi_lock_memory(),
mi_try_lock_memory(),
mi_unlock_memory()

Important: Named memory is an advanced feature that can adversely affect your
UDR if you use it incorrectly. Use it only when no regular DataBlade
API feature can perform the task you need done.

Tip: A client LIBMI application can also use DataBlade API memory-management
functions to perform dynamic allocations. However, these
memory-management functions allocate memory from the client process, not
from the shared memory of the database server. Therefore, memory that these
functions allocate from within a client LIBMI application does not have a
memory duration associated with it. For more information, see “Managing
Memory in Client LIBMI Applications” on page A-1.

These DataBlade API memory-management functions in Table 14-7 on page 14-19
work correctly with the transaction management and memory reclamation of the
database server. In particular, they provide the following advantages:
v These functions allocate the memory from shared memory so that all VPs can

access it.
v The database server automatically reclaims memory allocated with these

functions.

Chapter 14. Managing Memory 14-19

These functions establish a memory duration for the memory they allocate.
When this memory duration expires, the database server automatically marks
the memory for reclamation. For more information, see “Choosing the Memory
Duration” on page 14-4.

Managing User Memory
A C UDR allocates user memory from the database server shared memory. It is
accessed by address. The DataBlade API provides memory-management functions
to allocate user memory dynamically. These functions return a pointer to the
address of the allocated memory and subsequent operations are performed on that
pointer. Table 14-8 shows the memory-management functions that the DataBlade
API provides for memory operations on user memory.

Table 14-8. DataBlade API User-Memory-Management Functions

User-Memory Task DataBlade API Function

Allocating user memory mi_alloc(), mi_dalloc(), mi_realloc(),
mi_zalloc()

Changing the size of an existing memory
block

mi_realloc()

Changing current memory duration mi_switch_mem_duration()

Deallocating user memory mi_free()

Tip: The DataBlade API memory-management functions execute in client LIBMI
applications as well as C UDRs. For DataBlade API modules that you design
to run in both client LIBMI applications and UDRs, use these
memory-management functions. For information on the behavior of these
memory-management functions in a client LIBMI application, see
Appendix A, “Writing a Client LIBMI Application,” on page A-1.

The following table summarizes the memory operations for user memory.

Memory Duration Memory Operation Function Name

Current memory duration Constructor mi_alloc(), mi_dalloc(),
mi_zalloc()

Destructor mi_free()

Allocating User Memory (Server)
To handle dynamic memory allocation of user memory, use one of the following
DataBlade API memory-management functions.

Memory-Allocation Task
DataBlade API
Function

To allocate user memory with the current memory duration mi_alloc()

To allocate user memory with a specified memory duration mi_dalloc()

To allocate user memory with the current memory duration that is
initialized with zeros

mi_zalloc()

These user-memory-allocation functions allocate memory from the shared memory
of the database server at a particular memory duration.

14-20 IBM Informix DataBlade API Programmer’s Guide

Tip: The DataBlade API library also provides memory-management functions to
manage named memory. These named-memory-management functions are
advanced functions. Use them only when user-memory-management
functions cannot perform the task you need done. For more information, see
“Managing Named Memory” on page 14-24.

Managing the Memory Duration
The current memory duration is the memory duration that applies when the
mi_alloc() or mi_zalloc() function allocates memory. These functions do not
specify a memory duration for their allocation. Instead, they use the current
memory duration for the memory they allocate. By default, the current memory
duration is the default memory duration. The default memory duration is
PER_ROUTINE; that is, the database server marks the memory for reclamation
when the UDR completes. Therefore, the mi_alloc() and mi_zalloc() functions
allocate memory with a duration of PER_ROUTINE by default.

Subsequent sections provide the following information:
v The DataBlade API structures allocated in the current memory duration
v How to change the current memory duration

Using the Current Memory Duration: Many of the DataBlade API constructor
functions assign the current memory duration to the DataBlade API data type
structures that they allocate. Table 14-9 shows the DataBlade API data type
structures that are allocated with the current memory duration.

Table 14-9. DataBlade API Data Type Structures with the Current Memory Duration

DataBlade API Data Type Structure DataBlade API Constructor Function
DataBlade API
Destructor Function

Collection descriptor
(MI_COLL_DESC)

mi_collection_open(),
mi_collection_open_with_options()

mi_collection_close()

Collection (MI_COLLECTION) mi_collection_copy(),
mi_collection_create(),
mi_streamread_collection()

mi_collection_free()

Error descriptor (MI_ERROR_DESC) mi_error_desc_copy() mi_error_desc_destroy()

LO handle (MI_LO_HANDLE) mi_get_lo_handle(), mi_lo_copy(),
mi_lo_create(), mi_lo_expand(),
mi_lo_from_file(), mi_lo_from_string()

mi_lo_delete_immediate(),
mi_lo_release()

LO-specification structure
(MI_LO_SPEC)

mi_lo_spec_init() mi_lo_spec_free()

LO-status structure (MI_LO_STAT) mi_lo_stat() mi_lo_stat_free()

MI_LO_LIST mi_lo_lolist_create() None

Row descriptor (MI_ROW_DESC) mi_row_desc_create() mi_row_desc_free()

Row structure (MI_ROW) mi_row_create(), mi_streamread_row() mi_row_free()

Stream descriptor (MI_STREAM) mi_stream_init(), mi_stream_open_fio(),
mi_stream_open_mi_lvarchar(),
mi_stream_open_str()

mi_stream_close()

User memory mi_alloc(), mi_zalloc() mi_free()

Varying-length structure (mi_lvarchar,
mi_sendrecv, mi_impexp,
mi_impexpbin)

mi_new_var(),
mi_streamread_lvarchar(),
mi_string_to_lvarchar(), mi_var_copy()

mi_var_free()

Chapter 14. Managing Memory 14-21

To change the memory duration of a DataBlade API data type structure, call the
mi_switch_mem_duration() function with the desired duration before the
DataBlade API function call that allocates the object. For more information, see
“Changing the Memory Duration” on page 14-22.

Important: All the DataBlade API functions in Table 14-9 allocate structures with
the current memory duration. If you switch the current memory
duration, you affect not only explicit allocations you make with
mi_alloc() or mi_zalloc() but the memory allocations that all these
DataBlade API constructor functions do as well.

Changing the Memory Duration: The PER_ROUTINE memory duration is the
default protection on a region of user memory. You can change the memory
duration of user memory to another duration in either of the following ways:
v Use mi_dalloc() instead of mi_alloc() to allocate memory.

The mi_dalloc() function works in the same way as mi_alloc() but provides
the option of specifying the memory duration of the memory to allocate. This
function does not switch the current memory duration.

v Call mi_switch_mem_duration() before you call mi_alloc().
The mi_switch_mem_duration() function switches the current memory
duration. All user-memory allocations by subsequent calls to mi_alloc() or
mi_zalloc() have the new current memory duration.

You can use regular or advanced memory durations for user memory. For most
memory allocations in a C UDR, use one of the regular memory-duration constants
(PER_ROUTINE, PER_COMMAND, PER_STMT_EXEC, or PER_STMT_PREP).

Important: Use an advanced memory duration for user memory only if a regular
memory duration cannot safely perform the task you need done. These
advanced memory durations have long duration times and can
increase the possibility of memory leakage.

Changing the current memory duration with mi_switch_mem_duration() has an
effect on the memory durations of all DataBlade API data type structures that
Table 14-9 on page 14-21 lists. It does not have an effect on the memory duration of
DataBlade API data type structures allocated at the PER_COMMAND (Table 14-3
on page 14-8) and PER_STMT_EXEC (Table 14-4 on page 14-13) durations or at the
advanced memory durations (Table 14-6 on page 14-16).

The mi_switch_mem_duration() function returns the previous memory duration.
You can use this return value to restore memory duration after performing some
allocations at a different duration. The following code fragment temporarily
changes the current memory duration from PER_ROUTINE (the default) to
PER_COMMAND:
/* Switch current memory duration to PER_COMMAND and save
* old current memory duration in 'old_mem_dur'
*/
old_mem_dur = mi_switch_mem_duration(PER_COMMAND);

/* Perform allocations for a new current memory duration */
buffer = (char *)mi_alloc(BUFF_SIZE);
new_lvarch = mi_new_var(BUFF_SIZE-1);
save_set = mi_save_set_create(conn);

/* Restore old current memory duration */
(void)mi_switch_mem_duration(old_mem_dur);

14-22 IBM Informix DataBlade API Programmer’s Guide

In the preceding code fragment, the PER_COMMAND memory duration is in
effect for the allocation of user memory that the call to mi_alloc() makes. Because
the mi_new_var() function allocates a new varying-length structure in the current
memory duration, this call to mi_new_var() allocates the varying-length structure
with a PER_COMMAND duration. However, the mi_save_set_create() function
does not allocate its save-set structure at the current memory duration. Therefore,
the call to mi_save_set_create() still allocates its save-set structure with the
PER_STMT_EXEC duration. The second call to mi_switch_mem_duration()
restores the current memory duration to PER_ROUTINE.

Deallocating User Memory
The database server automatically reclaims the user memory that mi_alloc(),
mi_dalloc(), and mi_zalloc() allocate. The memory duration of the user memory
determines when the database server marks the memory for deallocation.

Tip: If a DataBlade API function allocates memory to hold its return result, the
database server automatically frees this memory when its duration expires
unless otherwise noted in its description in function descriptions.

User memory remains valid until one of the following events occurs:
v The mi_free() function frees the memory.
v The memory duration expires.
v The mi_close() function closes the current connection (except memory with a

PER_SYSTEM duration).
v A database server exception is raised.

A C UDR is not allowed to cache information from the database across transaction
boundaries. Because the state of the database might change entirely when the
current transaction commits, any cached information might be invalid. Therefore,
UDRs must reinitialize any database state that they require when the next
transaction begins. To enforce the policy of no caching across transactions, the
database server automatically reclaims memory marked for deallocation at
transaction boundaries. In addition, the database server reclaims memory when
specified memory durations expire, usually when a UDR allocates and returns a
value.

To conserve resources, use the mi_free() function to explicitly deallocate the user
memory once your DataBlade API module no longer needs it. The mi_free()
function is the destructor function for user memory.

Keep the following restrictions in mind about memory deallocation:
v Do not free user memory that you allocate for the return value of a UDR.
v Do not free memory until you are finished accessing the memory.
v Do not use mi_free() to deallocate memory that you have not explicitly

allocated.
v Do not use mi_free() for data type structures that other DataBlade API

constructor functions allocate.
v Do not attempt to free user memory after its memory duration has expired.
v Reuse memory whenever possible. Do not repeat calls to allocation functions if

you can reuse the memory for another task.

Chapter 14. Managing Memory 14-23

Managing Named Memory
Named memory is memory allocated from the database server shared memory, just
as user memory. You can, however, assign a name to a block of named memory
and then access this memory block by name and memory duration. The database
server stores the name and its corresponding address internally. By contrast, user
memory is always accessed by its address.

The disadvantage of user memory is that the database server deallocates
PER_COMMAND, PER_STMT_EXEC, PER_STMT_PREP, and PER_STATEMENT
memory after the command or statement completes. Because a UDR might execute
many times for a particular SQL statement (once for each row processed), you
might want to retain the memory pointer across all calls to the same UDR.

Tip: The DataBlade API named-memory-management functions execute only in C
UDRs. Do not use these memory-management functions in client LIBMI
applications. For DataBlade API modules that you design to run in both client
LIBMI applications and UDRs, use the user-memory-management functions.
For information on memory management in a client LIBMI application, see
Appendix A, “Writing a Client LIBMI Application,” on page A-1.

To save memory across invocations of a UDR, you can perform one of the
following tasks:
v You can save the memory pointer as part of the user state in the MI_FPARAM

structure that is associated with the UDR.
For more information, see “Saving a User State” on page 9-8.

v You can allocate named memory with an appropriate memory duration.
The advantage of named memory is that it is global within the memory duration
it was allocated. Therefore, it can be accessed by many UDRs that execute in the
context of many queries, or even by more than one session. Named memory is
useful as global memory for caching data across UDRs or for sharing memory
between UDRs executing in the context of many SQL statements.

Possible uses for named memory follow:
v Semi-static lookup information that can be shared among UDRs or sessions
v Caching function descriptors at the session level for repeated calls to

mi_routine_exec()

v Index methods that need to store global information for an index scan across a
fragmented index

The DataBlade API provides the memory-management functions to dynamically
allocate named memory in a C UDR. These functions return a name of the
named-memory block and subsequent operations are performed on that name and
memory duration. Table 14-10 shows the memory-management functions that the
DataBlade API provides for memory operations on named memory.

Table 14-10. DataBlade API Named-Memory-Management Functions

Named-Memory Task DataBlade API Functions

Allocating named memory mi_named_alloc(),
mi_named_zalloc()

Obtaining an allocated named-memory block mi_named_get()

Controlling concurrency mi_lock_memory(),
mi_try_lock_memory(),
mi_unlock_memory()

14-24 IBM Informix DataBlade API Programmer’s Guide

Table 14-10. DataBlade API Named-Memory-Management Functions (continued)

Named-Memory Task DataBlade API Functions

Deallocating named memory mi_named_free()

Warning: These advanced memory-management functions can adversely affect
your UDR if you use them incorrectly. Use them only when the regular
DataBlade API user-memory-management functions cannot perform the
task you need done.

The minmprot.h header file defines the functions and data type structures of the
named-memory-management functions. The minmmem.h header file automatically
includes the minmprot.h header file. However, the mi.h header file does not
automatically includes minmmem.h. To access the named-memory-management
functions, you must include minmmem.h in any DataBlade API routine that calls
these functions.

Tip: Each of the named-memory functions in Table 14-10 have tracepoints in them
that generate output when the trace level is greater than zero (0). The output
consists of the function name and the arguments passed to it. For more
information on tracepoints, see “Using Tracing” on page 12-28.

The following table summarizes the memory operations for named memory.

Memory Duration Memory Operation Function Name

Specified memory duration Constructor mi_named_alloc(),
mi_named_zalloc()

Destructor mi_named_free()

Allocating Named Memory
To handle dynamic memory allocation of named memory, use one of the following
DataBlade API memory-management functions.

Memory-Allocation Task
DataBlade API
Function

To allocate named memory with a specified memory duration mi_named_alloc()

To allocate named memory with a specified memory duration that
is initialized with zeros

mi_named_zalloc()

These named-memory-allocation functions allocate a block of named memory of a
specified size and a specified memory duration. You can use both regular and
advanced memory durations for named memory. Usually, named-memory
allocations are at memory durations longer than PER_COMMAND. With
PER_ROUTINE and PER_COMMAND memory durations, you can use the
MI_FPARAM structure to store information. You must ensure that the memory
duration is sufficiently long that all UDRs that need to access it can access it.

Tip: These named-memory-management functions do not use the current memory
duration.

If the allocation of the named-memory block is successful, these functions store a
pointer to the allocated block in their mem_ptr argument. The UDR that allocated
the named-memory block can access this named memory through this address.

Chapter 14. Managing Memory 14-25

However, this address is deallocated when the routine invocation completes. Other
UDRs must use the block name to access the named-memory block. For more
information, see “Obtaining a Block of Allocated Named Memory” on page 14-26.

These DataBlade API memory-management functions work correctly with the
transaction management and memory reclamation of the database server. They
provide the same advantages as the user-memory-management functions (see
“Allocating User Memory (Server)” on page 14-20). In addition, they provide the
advantage that the named-memory block can be accessed by a name, which
facilitates access to the memory across UDRs.

Obtaining a Block of Allocated Named Memory
The benefit of named memory is that several UDRs can access it. Therefore, UDRs
can cache data for sharing between UDRs executing in different contexts. To use
named memory, UDRs that need to access it must take the following steps:
v One UDR needs to allocate the named-memory block with mi_named_alloc()

or mi_named_zalloc().
This named-memory block must have a name that will be known to all UDRs
that need to access the block. It must also have a memory duration that is
sufficient for the required lifetime of the cached data. The UDR that allocates the
named memory can access the data from the address that mi_named_alloc() or
mi_named_zalloc() returns. However, once this UDR completes, the local copy
of this address is deallocated.

v Any UDR that needs to access the data in the named-memory block can specify
the name and memory duration of the memory block to mi_named_get().
The mi_named_get() function returns the address of the named-memory block.
The UDR can use this address to access the desired data within the named
memory.

For example, suppose a UDR named initialize() allocates a named-memory block
named cache_blk with the following mi_named_alloc() call:
mi_integer *blk_ptr;
mi_integer status;
...
status = mi_named_alloc(sizeof(mi_integer), "cache_blk",

PER_STMT_EXEC, &blk_ptr);

switch(status)
{

case MI_ERROR:
mi_db_error_raise(NULL, MI_EXCEPTION,

"mi_named_alloc for cache_blk failed.");
break;

case MI_NAME_ALREADY_EXISTS:
break;

case MI_OK:
*blk_ptr = 0;
break;

default:
mi_db_error_raise(NULL, MI_EXCEPTION,

"Invalid mi_named_alloc status for cache_blk");
}

If another UDR, for example, some_task(), needs to access the integer in
cache_blk, it can use the mi_named_get() function, as the following code
fragment shows:

14-26 IBM Informix DataBlade API Programmer’s Guide

mi_integer *blk_ptr;
mi_integer status;
...
status = mi_named_get("cache_blk", PER_STMT_EXEC, &blk_ptr);

switch(status)
{

case MI_ERROR:
mi_db_error_raise(NULL, MI_EXCEPTION,

"mi_named_get for cache_blk failed.");
break;

case MI_NO_SUCH_NAME:
/* maybe need to call mi_named_alloc() here */
...
break;

case MI_OK:
if (*blk_ptr > 0)

*blk_ptr++;
break;

default:
mi_db_error_raise(NULL, MI_EXCEPTION,

"Invalid mi_named_alloc status for cache_blk");
}

If some_task() successfully obtains the address of the cache_blk named-memory
block (status is MI_OK), it increments the cached integer.

Important: The preceding code fragment does not handle concurrency issues that
result from multiple UDRs trying to access the cache_blk named
memory at the same time. For more information, see “Handling
Concurrency Issues” on page 14-27.

Handling Concurrency Issues
By default, the database server runs UDRs concurrently. A UDR that uses data it
shares with other UDRs or with multiple instances of the same routine must
implement concurrency control on its data. When the named-memory functions
mi_named_alloc(), mi_named_zalloc(), and mi_named_get() return the address
of a named-memory block, they do not request a lock on this named memory. It is
the responsibility of your UDRs or DataBlade to manage concurrency issues on the
named-memory block.

The greater the memory duration that is associated with the named memory, the
more likely that you must manage concurrency of that memory. If the named
memory is never updated (it is read-only), there are no concurrency problems.
However, if any UDR updates the named memory that has a duration of
PER_COMMAND or greater, there are concurrency issues just like there are for any
global variable that gets updated.

For example, suppose the function myfunc() allocates a named-memory block
named named_mem1. The memory duration of named_mem1 determines possible
concurrency issues when myfunc() is called in the following query:
SELECT * FROM my_table

WHERE myfunc(column1) = 1
OR myfunc(column2) = 2

The following table shows possible concurrency issues of named_mem1.

Chapter 14. Managing Memory 14-27

Named-Memory Allocation Concurrency Issues?

mi_named_alloc(2048, ″named_mem1″,
PER_COMMAND, nmem1_ptr)

Yes

Each invocation of myfunc() in the query gets it own private
instance of named_mem1, which expires when the UDR completes,
but there might be multiple threads running in a subquery that share
the same PER_COMMAND pool.

If PER_COMMAND memory is cached in the MI_FPARAM user
data, however, there are no concurrency issues because each thread
has its own MI_FPARAM structure. Unless you need memory to be
shared between threads, this is the preferable alternative for
PER_COMMAND.

mi_named_alloc(2048, ″named_mem1″,
PER_SESSION, nmem1_ptr)

Yes

Each invocation of myfunc() in the same query accesses the same
named_mem1. This memory does not get deallocated until the
session closes.

mi_named_alloc(2048, ″named_mem1″,
PER_SYSTEM, nmem1_ptr)

Yes

Every invocation of myfunc() in every SQL statement accesses the
same named_mem1. This memory does not get deallocated until the
database server shuts down.

To handle concurrency problems, use the following DataBlade API memory-locking
functions in UDRs that update named memory.

Memory-Locking Task
DataBlade API
Memory-Locking Function

Request a lock on the specified named-memory block and wait
for the lock to be obtained.

mi_lock_memory()

Request a lock on the specified named-memory block and do
not wait for the lock to be obtained.

mi_try_lock_memory()

Unlock the specified named-memory block. mi_unlock_memory()

The following guidelines are recommended for handling concurrency problems:
v The safest approach, even for threads that only read named memory, is to lock

the named-memory block.
After the named-memory block is locked, you can guarantee that all accesses
will obtain a consistent read.

v Keep the time that you lock a named-memory block as short as possible.
The DataBlade API locking interface is intended to be used in a tightly coupled,
fast section of code that protects a critical region during modification. Code
should follow these steps:
– Lock the named memory with mi_lock_memory() or

mi_try_lock_memory().
– Perform the modification or consistent read.
– Immediately unlock the memory with mi_unlock_memory().

v If you need to hold locks for a long time, do it with SQL in a client application.

Tip: Locking of named memory (with mi_lock_memory() and
mi_try_lock_memory()) uses its own locking mechanism to keep track of
named-memory locks. It does not consume database locks.

14-28 IBM Informix DataBlade API Programmer’s Guide

Suppose you have a user-defined structure named MyInfo with the following
declaration:
typedef struct
{

mi_integer is_initialized;
... other members here....

} MyInfo;

The following sample code allocates a named-memory block named
MyInfo_memory for the MyInfo structure. It then locks a critical section of code
before updating the is_initialized integer in this named-memory block.
MyInfo *GetMyInfo()
{

mi_string *memname="MyInfo_memory",
msgbuf[80];

mi_integer status;
MyInfo *my_info = NULL;

/* Allocate the named-memory block. If it has already been
* allocated, obtain a pointer to this block.
*/

status = mi_named_zalloc(sizeof(MyInfo),
memname, PER_SESSION, (void **)&myinfo);

if(status == MI_NAME_ALREADY_EXISTS)
status = mi_named_get(memname, PER_SESSION,

(void **)&my_info);

switch(status)
{

case MI_ERROR:
mi_db_error_raise(NULL, MI_EXCEPTION,

"GetMyInfo: mi_named_get or mi_named_zalloc failed.");
return (MyInfo *)NULL;
break;

/* Have a pointer to the named_memory block. */
case MI_OK:

break;

case MI_NO_SUCH_NAME:
mi_db_error_raise(NULL, MI_EXCEPTION,

"GetMyInfo: no name after good get");
return (MyInfo *)NULL;
break;

default:
sprintf(msgbuf,
"GetMyInfo: mi_named memory case %d.", status);
mi_db_error_raise(NULL, MI_EXCEPTION, msgbuf);
return (MyInfo *)NULL;
break;

}

/*
* BEGIN CRITICAL SECTION.
*
* All access to the my_info structure is done
* inside this lock-protected section of code.
*
* If two threads try to initialize information
* at the same time, the second one blocks on
* the mi_lock_memory call.
*
* A reader also blocks so that it gets a
* consistent read if another thread is updating

Chapter 14. Managing Memory 14-29

* that memory.
*/
status = mi_lock_memory(memname, PER_SESSION);
switch(status)
{

case MI_ERROR:
mi_db_error_raise(NULL, MI_EXCEPTION,

"GetMyInfo: mi_lock_memory call failed.");
return (MyInfo *)NULL;
break;

case MI_OK:
break;

case MI_NO_SUCH_NAME:
mi_db_error_raise(NULL, MI_EXCEPTION,

"mi_lock_memory got MI_NO_SUCH_NAME.");
return (MyInfo *)NULL;
break;

default:
sprintf(msgbuf,

"GetMyInfo: mi_lock_memory case %d.",
status);

mi_db_error_raise(NULL, MI_EXCEPTION, msgbuf);
return (MyInfo *)NULL;
break;

}

/* The lock on the named-memory block has been
* obtained.
*/

/* The mi_named_zalloc() call above zeroed out
* the structure, like calloc(). So if the is_initialized
* flag is set to zero, named memory has not been
* initialized yet.
*/
if (my_info->is_initialized == 0)
{

/* In this block we populate the named-memory
* structure. After initialization succeeds, set the
* is_initialized flag.
*
* If any operation fails, MUST release the lock
* before calling mi_db_error_raise():
*
* if (whatever != MI_OK)
* {
* mi_unlock_memory(memname, PER_SESSION);
* mi_db_error_raise(NULL, MI_EXCEPTION,
* "operation X failed!");
* return (MyInfo *)NULL;
* }
*
*/

my_info->is_initialized = 1;

} /* endif: MyInfo structure not initialized */
else
{

/* Update or get a consistent read here. Again,
* before any exception is raised with
* mi_db_error_raise(), the lock MUST be released.
*/

}

14-30 IBM Informix DataBlade API Programmer’s Guide

/*
* END CRITICAL SECTION.
*/
mi_unlock_memory (memname, PER_SESSION);

return my_info;
}

The preceding code fragment uses the mi_lock_memory() function to obtain the
lock on the named memory. The following code fragment uses
mi_try_lock_memory() to try to get a lock on a named-memory block 10 times
before it gives up:
for (lockstat=MI_LOCK_IS_BUSY, i=0;

lockstat == MI_LOCK_IS_BUSY && i < 10;
i++)

{
lockstat = mi_try_lock_memory(mem_name, PER_STMT_EXEC);
switch(lockstat)
{

case MI_OK:
break;

case MI_LOCK_IS_BUSY:
mi_yield(); /* Yield the processor. */
break;

case MI_NO_SUCH_NAME:
mi_db_error_raise(NULL, MI_EXCEPTION,

"Invalid name of memory after good get");
return MI_ERROR;
break;

case MI_ERROR:
mi_db_error_raise(NULL, MI_EXCEPTION,

"Lock request failed.");
return MI_ERROR;
break;

default:
mi_db_error_raise(NULL, MI_EXCEPTION,

"Invalid status from mi_try_lock_memory()");
return MI_ERROR;
break;

}
}
/* Check the status after coming out of the loop. */
if(lockstat == MI_LOCK_IS_BUSY)

{
mi_db_error_raise(NULL, MI_EXCEPTION,

"Could not get lock on named memory.");
return MI_ERROR;

}

/* Now have a locked named-memory block. Can perform a
* read or update on the memory.
*/
...
mi_unlock_memory(mem_name, PER_STMT_EXEC);

Usually, the mi_try_lock_memory() function is a better choice than
mi_lock_memory() for lock requests because mi_try_lock_memory() does not
hang if the lock is busy.

Chapter 14. Managing Memory 14-31

The database server does not release any locks you acquire on named memory. You
must ensure that your code uses the mi_unlock_memory() function to release
locks in the following cases:
v Immediately after you are done accessing the named memory
v Before you raise an exception with mi_db_error_raise()

v Before you call another DataBlade API function that raises an exception internally
(For more information, see “Handling Errors from DataBlade API Functions” on
page 10-26.)

v Before the session ends
v Before the memory duration of the named memory expires
v Before you attempt to free the named memory

Warning: After you obtain a lock on a named-memory block, you must explicitly
release it with the mi_unlock_memory() function. Failure to release a
lock before one of the previous conditions occurs can severely impact
the operation of the database server.

Deallocating Named Memory
The database server automatically reclaims the named memory that
mi_named_alloc() and mi_named_zalloc() allocate. The memory duration of the
named memory determines when the database server marks the memory for
deallocation. Named memory remains valid until either of the following events
occurs:
v The mi_named_free() function frees the memory.
v The memory duration expires.

To conserve resources, use the mi_named_free() function to explicitly deallocate
the named memory once your DataBlade API module no longer needs it. The
mi_named_free() function is the destructor function for named memory.

Keep the following restrictions in mind about memory deallocation of named
memory:
v Do not free memory until you are finished accessing the memory.
v Do not free memory that is still locked.
v Do not use mi_named_free() to deallocate memory that you have not explicitly

allocated with mi_named_alloc() or mi_named_zalloc().
v Do not attempt to free named memory after its memory duration has expired.
v Reuse memory whenever possible. Do not repeat calls to allocation functions if

you can reuse the memory for another task.

The mi_named_free() function cannot free a named-memory block that is
currently locked by another owner. If a UDR with another owner has a lock on the
requested memory block, mi_named_free() marks the block as “deallocation
pending” but does not actually free the memory. A subsequent call to
mi_named_get() would return the MI_NO_SUCH_NAME return value for this
named-memory block. Once the UDR with another owner has explicitly unlocked
the memory block with mi_unlock_memory(), a “deallocation pending” memory
block is automatically freed. A subsequent call to mi_named_get() from this other
UDR would return the MI_NO_SUCH_NAME return value for this
named-memory block.

14-32 IBM Informix DataBlade API Programmer’s Guide

Monitoring Shared Memory
You can monitor use of memory that your UDR allocates (explicitly or implicitly)
with the following options of the onstat utility:
v The -g ses option outputs session information.

You can specify a particular session identifier after the ses keyword. If you do
not include a session identifier, onstat -g ses outputs a one-line summary for
each active session. Look for any session whose memory allocation or usage
steadily increases.

v The -g mem option outputs statistics for a memory pool.
Internally, the database server organizes memory allocations into memory pools
by duration. You can specify a particular pool name after the mem keyword. If
you do not include a pool name, onstat -g mem outputs a one-line summary for
each memory pool. To detect memory leakage, look for any pool whose memory
allocation or usage steadily increases.

Tip: You can use the -r option of onstat in conjunction with either of the preceding
options to have onstat repeat the command every specified number of
seconds.

Monitoring memory is useful for tracking down memory leakage. Memory leakage
occurs when memory remains allocated after the structure that holds its address
was deallocated. There is no way to access the memory once its address is gone.
Therefore, the memory remains with no way to remove it.

Suppose that the onstat -g ses command produces the following sample output:
session #RSAM total used
id user tty pid hostname threads memory memory
24 informix - 0 - 0 8192 5880
23 informix - 13453 bison 1 6701056 6608512
8 informix - 0 - 0 8192 5880
7 informix - 0 - 0 16384 14344
6 informix - 0 - 0 8192 5880
4 informix - 0 - 0 16384 14344
3 informix - 0 - 0 8192 5880
2 informix - 0 - 0 8192 5880
ps auxw | grep 13453

Suppose also that your DB–Access session is hooked to session 23 (the italicized
line in the preceding sample output).

UNIX/Linux Only

You can determine the session identifier of the DB–Access session on UNIX or
Linux with the following command:
ps auxw | grep 13453

End of UNIX/Linux Only

You can now obtain information about memory-pool usage with the
-g mem option of onstat:
onstat -g mem

Suppose that the preceding onstat command generated the following sample
output (some output lines are omitted for brevity):

Chapter 14. Managing Memory 14-33

Pool Summary:
name class addr
resident R a002018
res-buff R a118018
global V a18a018
mt V a18e018
smartblob V a192018
...
23 V a3e0018
24 V a3e2018
23.RTN.SAPI V a40c018
23.CMD.SAPI V a3ee018
...

Figure 14-6 shows the lines of the onstat -g mem output that indicate user memory
allocations.

Each memory duration has a separate memory pool. The three letters before
“SAPI” identify each memory pool. The following table shows the memory-pool
names for regular and advanced memory durations.

Memory-Pool Name Associated Memory Pool

RTN PER_ROUTINE

CMD PER_COMMAND

STM PER_STATEMENT (deprecated duration)

EXE PER_STMT_EXEC

PRP PER_STMT_PREP

TRX PER_TRANSACTION (advanced duration)

UNK PER_CURSOR (advanced duration)

SES PER_SESSION (advanced duration)

SYS PER_SYSTEM (advanced duration)

After you determine a specific session identifier or memory-pool name that
exhibits a problem, you can find out which specific kind of memory is affected
with the -g ufr option of onstat. The -g ufr option of onstat shows memory
fragments by usage. For example, the following onstat command captures a
snapshot every 30 seconds of memory pools that session 23 uses:
onstat -g ufr 23 -r 30

Sample output for the preceding command follows:

Figure 14-6. Memory Pools in onstat -g mem Output

14-34 IBM Informix DataBlade API Programmer’s Guide

Memory usage for pool name 23:
size memid
2152 log
2016 ostcb
2600 sqtcb
8472 gentcb
1664 osenv
6392648 sqscb
792 filetable
112 rdahead
120 overhead
96 scb
416 sapi
3296 fragman
18808 opentable
280 hashfiletab
10056 temprec
592 GenPg
224 ru
56 sort
94848 ralloc

In the preceding sample output, the main memory consumer is sqscb.

Any memory leakage from a DataBlade API function would show up in the
memid column entry labelled sapi. For more information on the onstat command,
see the IBM Informix Administrator’s Reference.

Managing Stack Space
Session threads execute C UDRs and their thread-stack space is allocated from a
common region in shared memory. The thread stack stores nonshared data for the
UDRs and system routines that the thread executes. This stack contains everything
that would normally be on the execution stack, including the following:
v Routine arguments, including the MI_FPARAM structure
v Local (stack) variables
v Function return values

Like all memory that UDRs use, stack segments can be overrun. The database
server can only check for stack violations when the UDR yields. Therefore, you
must ensure that you perform the following tasks within a UDR:
v Efficiently manage stack space usage in your UDR

Limit usage of stack space in your UDR and ensure sufficient stack-space
allocation when you register the UDR.

v Use the mi_call() function for UDRs that potentially use unlimited recursion.

Managing Stack Usage
To avoid stack overflow, follow these design restrictions in your UDR:
v Do not use large automatic arrays.
v Avoid excessively deep calling sequences.
v Use mi_call() within a UDR to manage recursive calls.

By default, when a thread of a virtual processor executes a UDR, the database
server uses a thread-stack size that the STACKSIZE configuration parameter
specifies (32 kilobytes, if STACKSIZE is not set). To determine how much stack
space a UDR requires, monitor the UDR from the system prompt with the
following onstat command:

Chapter 14. Managing Memory 14-35

onstat -g sts

The -g sts option prints the maximum and current stack usage per thread. For
more information on the onstat utility and its -g sts option, see the IBM Informix
Administrator’s Reference.

You must ensure that your UDR has sufficient stack space for its execution. That is,
the UDR must have enough stack space to hold all local variables of the routine. If
you see errors in the message log file of the following format when you try to
allocate a large block of memory, your stack space is being overrun:
Assert Failed: Condition Failed (Bad pool pointer 0xe2fe018),
in (mt_shm_free)

Assert Failed: Memory block header corruption detected in mt_shm_free

To determine if there is enough stack space for your UDR, use the
mi_stack_limit() function. This function checks if the space available on the stack
exceeds the sum of the stack margin and the specified stack size.

To override the stack size for a particular UDR, use the STACK routine modifier of
the CREATE FUNCTION or CREATE PROCEDURE statement when you register
your UDR. For example, the following CREATE FUNCTION statement specifies a
stack size of 64 kilobytes for the func1() UDR:
CREATE FUNCTION func1(INTEGER)

RETURNS INTEGER
WITH (STACK=65536)
EXTERNAL NAME '/usr/srv_routs/funcs.so'
LANGUAGE C;

When the UDR completes, the database server allocates thread stacks for
subsequent UDRs based on the STACKSIZE parameter (unless these subsequent
UDRs have also specified the STACK routine modifier).

Increasing Stack Space
The DataBlade API provides the mi_call() function to dynamically manage stack
space. This function performs the following tasks:
v It checks the amount of unused stack space and allocates additional stack

segments if necessary.
v It executes the specified UDR.

Use the mi_call() function to increase stack space for recursive UDRs.

Keep in mind that mi_call() does not know the size of the routine arguments.
When mi_call() creates a new stack and copies an argument onto this new stack,
the function uses the size of the MI_DATUM data type for the argument. If the
data type of the routine argument is larger than MI_DATUM, mi_call() does not
copy all the argument bytes.

For example, consider a UDR that includes an mi_double argument.

UNIX/Linux Only

On UNIX or Linux, an mi_double_precision argument takes the space of two long
int values. Therefore, the mi_call() function pushes only half of the argument
onto the new stack. Any arguments after the mi_double_precision might get

14-36 IBM Informix DataBlade API Programmer’s Guide

garbled, and the last one might be truncated.

End of UNIX/Linux Only

When you design UDRs that require the use of mi_call(), make sure you use the
correct passing mechanism for the argument data type. Pass all data types larger
than MI_DATUM by reference. Examples of large data types are floating-point
types (such as mi_real and mi_double_precision) and data type structures.

The following example illustrates stack-space allocation with mi_call():
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "mi.h"

mi_integer factorial(mi_integer value)
{

mi_integer callstatus=0,
retval=0;

if (value < 0)
return -1;

else if (value == 1 || value == 0)
return 1;

else if (value > 30)
mi_db_error_raise(NULL, MI_EXCEPTION,

"factorial: input value too big for result.");

callstatus = mi_call(&retval, factorial, 1, value-1);
switch(callstatus)

{
case MI_TOOMANY:

mi_db_error_raise(NULL, MI_EXCEPTION,
"factorial: too many parameters.");

case MI_CONTINUE:
return (value * factorial(value-1));

case MI_NOMEM:
mi_db_error_raise(NULL, MI_EXCEPTION,

"factorial: not enough memory");

case MI_DONE:
/* At the end of the factorial recursion, the
* function still needs to calculate:
* value * factorial(value-1)
*/
retval *= value;
break;

}

return retval;
}

This code sample implements a factorial function. If the mi_call() function
determines that there is sufficient stack space, the code recursively calls the
handle_row() function to process the row value. The return value of the
mi_call() function indicates whether mi_call() has allocated additional
thread-stack memory, as follows.

Chapter 14. Managing Memory 14-37

mi_call() Return Value Description Action

MI_CONTINUE The thread stack currently
has room for another
invocation of factorial().

The mi_call() function does not need to allocate a new
thread stack.

The code fragment explicitly calls factorial() on the value-1
value.

MI_DONE The thread stack currently
does not have room for
another invocation of
factorial().

The mi_call() function allocates a new thread stack, copies
the arguments onto this stack, and invokes the factorial()
function on the value-1 value, returning its value in
callstatus.

The code fragment does not need to explicitly call
factorial() on the value-1 value. The mi_call() function did
the work of invoking the routine; however, mi_call()
completed only the following portion of the calculation:

factorial(value-1)

To complete the factorial, the function needs to complete the
following calculation:

value * factorial(value-1)

The other mi_call() return values (MI_NOMEM and MI_TOOMANY) indicate
error conditions. For these return values, the function uses the
mi_db_error_raise() function to raise a database server exception and provide an
error message.

The following CREATE FUNCTION registers the factorial() function:
CREATE FUNCTION factorial (INTEGER)

RETURNS INTEGER
EXTERNAL NAME

"$INFORMIXDIR/extend/misc/fact_ius.bld"
LANGUAGE C;

The following EXECUTE FUNCTION invokes the factorial() function:
EXECUTE FUNCTION factorial(5);

14-38 IBM Informix DataBlade API Programmer’s Guide

Chapter 15. Creating Special-Purpose UDRs

In This Chapter . 15-1
Writing an End-User Routine . 15-2
Writing a Cast Function . 15-2
Writing an Iterator Function . 15-3

Initializing the Iterations . 15-6
Returning One Active-Set Item . 15-8
Releasing Iteration Resources . 15-9
Calling an Iterator Function from an SQL Statement . 15-9

Registering the Iterator Function. 15-9
Executing the Iterator Function . 15-10

Writing an Aggregate Function . 15-11
Extending a Built-In Aggregate . 15-12

Choosing the Operator Function . 15-12
Writing the Operator Function . 15-12
Registering the Overloaded Operator Function . 15-15
Using the Extended Aggregate . 15-15

Creating a User-Defined Aggregate . 15-16
Determining the Aggregate State . 15-17
Writing the Aggregate Support Functions . 15-18
Defining the User-Defined Aggregate . 15-23
Using the User-Defined Aggregate. 15-24
Determining Required Aggregate Support Functions. 15-25
Sample User-Defined Aggregates . 15-37

Providing UDR-Optimization Functions . 15-53
Writing Selectivity and Cost Functions . 15-54

Query Selectivity . 15-54
Query Cost . 15-55
MI_FUNCARG Data Type . 15-56
Obtaining Information About Constant Arguments 15-59
Obtaining Information About Column Arguments 15-59

Creating Negator Functions . 15-60
Creating Commutator Functions . 15-60
Creating Parallelizable UDRs . 15-61

Writing the Parallelizable UDR . 15-62
Registering the Parallelizable UDR . 15-63
Executing the Parallelizable UDR . 15-64
Debugging the Parallelizable UDR. 15-64

In This Chapter
This chapter describes how to write C user-defined routines (UDRs) with the
following purposes.

Type of UDR More Information

Cast function page 15-2

Cost function page 15-54

End-user routine page 15-2

Iterator function page 15-3

Negator function page 15-60

Parallelizable UDR page 15-61

Selectivity function page 15-54

© Copyright IBM Corp. 1996, 2009 15-1

User-defined aggregates page 15-11

Writing an End-User Routine
A C UDR can implement an end-user routine. An end-user routine provides some
additional functionality to the SQL end user. It is an SQL-invoked routine; that is,
it is called directly from an SQL statement. An end-user routine can provide any
task that is useful to SQL users. This user might be a database administrator or an
SQL end user.

For more information on possible tasks of an end-user routine, see the IBM
Informix User-Defined Routines and Data Types Developer’s Guide.

Writing a Cast Function
A cast function is a user-defined function that converts one data type (the source
data type), to another data type (the target data type). A cast can be one of the
following types:
v An implicit cast is a cast that the database server can invoke automatically when

it encounters data types that cannot be compared with the system-defined casts.
v An explicit cast is a cast that you must specifically invoke, with either the CAST

AS keywords or with the cast operator (::).

Tip: This section describes how to create a cast function that is written in C. For
general information on how to create user-defined functions and casts, see the
IBM Informix User-Defined Routines and Data Types Developer’s Guide.

To register a C UDR as a cast function:

1. Use the CREATE FUNCTION statement to register the C UDR as a cast
function.
For more information, see “Registering a C UDR” on page 12-14.

2. Use the CREATE CAST statement to register the cast in the database.
Casts are stored in the syscasts system catalog table. For more information on
the syntax of the CREATE CAST statement, see the IBM Informix Guide to SQL:
Syntax

The following lines register the C function, a_to_b(), as an implicit cast from the a
to b data type:
CREATE FUNCTION a_to_b(source a)
RETURNS b
EXTERNAL NAME '/usr/udrs/casts.so(a_to_b)'
LANGUAGE C;

CREATE CAST (a AS b WITH a_to_b);

These SQL statements assume that a and b are already registered as user-defined
types. These statements only provide the ability to convert from type a to type b.
To provide the ability to cast from the b to the a data type, you must create a
second cast, as the following sample lines show:
CREATE FUNCTION b_to_a(source b)
RETURNS a
EXTERNAL NAME '/usr/udrs/casts.so(b_to_a)'
LANGUAGE C;

CREATE CAST (b AS a WITH b_to_a);

15-2 IBM Informix DataBlade API Programmer’s Guide

The following lines declare the C function, a_to_b(), which accepts the a
fixed-length opaque type as an argument and returns the b fixed-length opaque
type:
b_t *a_to_b(source_type)

a_t *source_type;
{

b_t *target;

target = (b_t *)mi_alloc(sizeof(b_t));

/* Perform necessary conversions from a to b */

return (target);
}

Writing an Iterator Function
An iterator function is a user-defined function that returns to its calling SQL
statement several times, each time returning a value. The database server gathers
these returned values together in an active set. To access a value in the active set,
you must obtain it from a database cursor. Therefore, an iterator function is a
cursor function because it must be associated with a cursor when it is executed.

Tip: This section describes how to create an iterator function that is written in C.
For general information on how to create user-defined functions, see the IBM
Informix User-Defined Routines and Data Types Developer’s Guide.

The database server might execute an iterator function many times. It groups these
iterations into the iterator-status values and puts the iterator status for a given
iteration in the MI_FPARAM structure. Within an iterator function, you examine
the MI_FPARAM structure for an iterator status to determine which actions the
iterator function must take.

Tip: The IBM Informix BladeSmith development tool, which is part of the Informix
DataBlade Developers Kit, automatically generates C source code for an
iterator function as well as the SQL statements to register the iterator
function. For more information, see the IBM Informix DataBlade Developers Kit
User’s Guide.

To specify the different points at which the database server calls an iterator
function, the iterator-status flag (of type MI_SETREQUEST) supports the constants
in Table 15-1.

Table 15-1. Iterator-Status Constants for Calls to an Iterator Function

When Is the Iterator Function
Called?

What Does the Iterator
Function Do?

Iterator-Status
Constant in
MI_FPARAM

The first time that the iterator
function is called

Initializes the iterations SET_INIT

Once for each item in the active
set

Returns one item of the active
set

SET_RETONE

After the last item of the active set
is returned

Releases iteration resources SET_END

To implement an iterator function with a C user-defined function:

Chapter 15. Creating Special-Purpose UDRs 15-3

1. Declare the iterator function so that its return value has a data type that is
compatible with one of the items in the active set.
For example, to return an active set of integer values, declare the iterator
function to return the mi_integer data type.

2. Include an MI_FPARAM structure as the last parameter of the C declaration of
the iterator function.
The MI_FPARAM structure holds the iterator status, the iterator-completion
flag, and the user-state pointer.

3. Within the iterator function, obtain the iterator status from the MI_FPARAM
structure with the mi_fp_request() function.
This function returns the iterator-status constant (SET_INIT, SET_RETONE, or
SET_END) that the database server has set for the distinct groups of iterations
of the iterator function.

4. For each of the iterator-status values, take the appropriate actions within the
iterator function.

Iterator-Status Value More Information

SET_INIT “Initializing the Iterations” on page 15-6

SET_RETONE “Returning One Active-Set Item” on page 15-8

SET_END “Releasing Iteration Resources” on page 15-9

5. Register the iterator function as a user-defined function with the ITERATOR
routine modifier in the CREATE FUNCTION statement.
Omit the MI_FPARAM parameter from the parameter list when you register
the iterator function. For more information, see “Registering a C UDR” on page
12-14.

The Fibonacci series is a list of numbers for which each value is the sum of the
previous two. For example, the Fibonacci series up to a stop value of 20 is as
follows:
0, 1, 1, 2, 3, 5, 8, 13

Figure 15-1 is an implementation of an iterator function named fibGen(). This
function builds an active set that contains a Fibonacci series of numbers up to a
specified stop value.

15-4 IBM Informix DataBlade API Programmer’s Guide

The database server calls this fibGen() iterator function at the following execution
points:
v Once, to initialize the calculation of the Fibonacci series of numbers

At this point, the database server has set the iterator status to SET_INIT and
fibGen() calls the fibGen_init() function (see Figure 15-2 on page 15-7).

v Repeatedly, to calculate each number in the series until a number exceeds the
stop value
As long as the number is less than the stop value, the database server sets the
iterator status to SET_RETONE and fibGen() calls the fibGen_retone()
function (see Figure 15-3 on page 15-8).

v Once, to deallocate resources that the iterator function uses
At this point, the database server has set the iterator status to SET_END and
fibGen() calls the fibGen_end() function (see Figure 15-4 on page 15-9).

Tip: For end users to be able to use an iterator function within an SQL statement,
you must register the iterator function with the ITERATOR routine modifier

typedef struct fibState1 /* function-state structure */
{

mi_integer fib_prec1; /* second most recent number in series */
mi_integer fib_prec2; /* most recent number in series */
mi_integer fib_ncomputed; /* number computed */
mi_integer fib_endval; /* stop value */

}fibState;

/* fibGen(): an iterator function to return the Fibonacci series.
* This function takes a stop value as a parameter and returns the
* Fibonacci series up to this stop value.
*
* Three states of iterator status:
* SET_INIT : Allocate the defined user-state structure.
* SET_RETONE : Compute the next number in the series.
* SET_END : Free the user-allocated user-state structure.
*/
mi_integer fibgen(stop_val,fparam)

mi_integer stop_val;
MI_FPARAM *fparam;

{
mi_integer next;
fibState *fibstate = NULL;

switch(mi_fp_request(fparam))
{
case SET_INIT:

next = fibGen_init(stop_val, fparam);
break;

case SET_RETONE:
next = fibGen_retone(fparam);
fibstate = (fibState *)mi_fp_funcstate(fparam);
if (next > fibstate->fib_endval)

{
mi_fp_setisdone(fparam, 1);
next = 0; /* return value ignored */
}

break;

case SET_END:
next = fibGen_end(fparam);
break;

}
return (next);

}

Figure 15-1. The fibGen() Iterator Function

Chapter 15. Creating Special-Purpose UDRs 15-5

of the CREATE FUNCTION statement. For more information, see “Calling an
Iterator Function from an SQL Statement” on page 15-9.

When the iterator function reaches the last item, call the mi_fp_setisdone()
function to set the iterator-completion flag of the MI_FPARAM structure to one (1).
This flag indicates to the database server that it has reached the end condition for
the iterator function. The database server no longer needs to continue calling the
iterator function with the SET_RETONE iterator-status value. Instead, it calls the
iterator function one more time, with the SET_END status value.

Important: Make sure that you include a call to the mi_fp_setisdone() function
within your iterator function that sets the iterator-completion flag to
one (1). Without this call, the database server never reaches an end
condition for the iteration, which causes it to iterate the function in an
infinite loop.

In Figure 15-1 on page 15-5, the fibGen() iterator function determines if it has
reached an end condition after it calls fibGen_retone(). It makes this
determination as follows:
v If this number is greater than the user-specified stop value (in the fib_endval

field of the user-state information), the end condition was reached.
The fibGen() function calls the mi_fp_setisdone() function to set the
iterator-completion flag to 1. The function then exits with a return value of zero
(0). However, this last return value of 0 is not returned as part of the active set.
The database server calls the next iteration of fibGen() with an iterator-status
value of SET_END.

v If the next Fibonacci number is less than or equal to the stop value, the end
condition was not reached.
The function returns this next number in the Fibonacci series to the active set.
The database server calls the next iteration of fibGen() with an iterator-status
value of SET_RETONE.

Initializing the Iterations
The first time that the database server calls the iterator function, the database
server passes it an MI_FPARAM structure with the iterator status set to SET_INIT
and the user-state pointer set to NULL. When the iterator function obtains this
iterator-status value, it can perform the following initialization tasks for the iterator
function:
v Allocate memory for the structure in which you save the user-state information

with a DataBlade API memory-management function such as mi_dalloc()

Make sure that this memory has a memory duration of PER_COMMAND so
that the user state remains for the duration of all iterations of the iterator
function. If the memory has the default PER_ROUTINE memory duration, the
database server automatically deallocates it after only one iteration of the iterator
function. For more information, see “Choosing the Memory Duration” on page
14-4.

v Save the user-state pointer in the MI_FPARAM structure with the
mi_fp_funcstate() function
Each subsequent call to the iterator function uses the same MI_FPARAM
structure, so each iteration can reuse the cached user-state memory. The iterator
function must save enough information to return values one at a time on
demand. For more information, see “Saving a User State” on page 9-8.

15-6 IBM Informix DataBlade API Programmer’s Guide

You can perform these initialization tasks directly in the iterator function or you
can declare a separate iterator-initialization function, which the iterator function calls
when it receives the SET_INIT iterator-status value. Declare the
iterator-initialization function to return the same data type as the main iterator
function. However, the database server ignores the return value of this function; it
does not put this return value in the active set.

Figure 15-2 implements an iterator-initialization function, call fibGen_init(), which
the fibGen() iterator function (Figure 15-1 on page 15-5) calls when it obtains the
SET_INIT iterator-status value.

The fibGen_init() function returns an mi_integer value (0) because the main
iterator function, fibGen(), returns an active set of mi_integer values. However,
the database server does not return this value as part of the active set. Once
fibGen_init() completes, the database server calls the next iteration of fibGen()
with an iterator-status value of SET_RETONE to return the first item of the active
set.

mi_integer fibGen_init(stop_val, fparam)
mi_integer stop_val;
MI_FPARAM *fparam;

{
fibState *fibstate;

/* Allocate the user-state structure, fibState. This user-state
* structure is allocated with PER_COMMAND duration to hold the memory
* until the end of all iterations of the iterator function.
*/
fibstate = (fibState *)mi_dalloc(sizeof(fibState), PER_COMMAND);

/* Save a pointer to the user-state structure in the MI_FPARAM structure.
*/
mi_fp_setfuncstate(fparam, (void *)fibstate);

/* Set return value of function to NULL for either of the following:
* - no argument passed into function (MI_FPARAM has a NULL argument)
* - stop value is < 0
*/
if (mi_fp_argisnull(fparam, 0) || stop_val < 0)

{
mi_fp_setreturnisnull(fparam,0,1);
return;
}

/* Set the first two numbers of the series: 0 and 1. Set the stop value
* field in the user-state structure (stop_val) to the stop value passed
* to the function.
*/
if (stop_val < 1)

{
fibstate->fib_prec1 = 0;
fibstate->fib_prec2 = 1;
fibstate->fib_ncomputed = 1;
fibstate->fib_endval = stop_val;
}

else
{
fibstate->fib_prec1 = 0;
fibstate->fib_prec2 = 1;
fibstate->fib_ncomputed = 0;
fibstate->fib_endval = stop_val;
}

return (0); /* return value is ignored */
}

Figure 15-2. The fibGen_init() Initialization Function

Chapter 15. Creating Special-Purpose UDRs 15-7

Returning One Active-Set Item
When the iterator status is SET_RETONE, the iterator function can return one item
of the active set. When the iterator function obtains this iterator-status value, it can
perform the iteration tasks needed to generate one item of the active set.

You can perform these iterator tasks directly in the iterator function or you can
declare a separate iterator-value-return function, which the iterator function calls
when it receives the SET_RETONE iterator-status value. Declare the
iterator-value-return function to return the same data type as the main iterator
function. The database server puts the return value of this function in the active
set.

Figure 15-3 implements an iterator-value-return function, named fibGen_retone(),
that the fibGen() iterator function (Figure 15-1 on page 15-5) calls each time it
obtains the SET_RETONE iterator status.

Each item in the active set that the fibGen() function generates is one call to the
fibGen_retone() function. The fibGen_retone() function returns one number of
the Fibonacci series. It uses the mi_fp_funcstate() function to obtain the user-state
pointer from the MI_FPARAM structure. This user-state pointer points to a
fibstate structure (which the fibGen_init() function in Figure 15-2 on page 15-7
allocated).

From the information in the fibstate structure, the fibGen_retone() function
determines the next Fibonacci number and stores it in the next variable. The
function then updates the fibstate structure for the next iteration of fibGen().
Finally, the function returns one item of the active set: the value of next.

/* fibGen_retone():
* Generates the next number in the series. Compares it with the stop
* value to check if the end condition is met. Then performs following
* calculations:
* num1 = num2;
* num2 = next number in the series.
*/
mi_integer fibGen_retone(fparam)

MI_FPARAM *fparam;
{

fibState *fibstate;
mi_integer next;

fibstate = (fibState *)mi_fp_funcstate(fparam);

/* Generate next Fibonacci number */
if (fibstate->fib_ncomputed < 2)

return((fibstate->fib_ncomputed++ == 0) ? 0 : 1);

/* Update user state for next iteration */
next = fibstate->fib_prec1 + fibstate->fib_prec2;

if (next == 0)
{
fibstate->fib_prec1 = 0;
fibstate->fib_prec2 = 1;
}

else
{
fibstate->fib_prec1 = fibstate->fib_prec2;
fibstate->fib_prec2 = next;
}

return (next);

Figure 15-3. The fibGen_retone() Value-Return Function

15-8 IBM Informix DataBlade API Programmer’s Guide

Releasing Iteration Resources
Once the mi_fp_setisdone() function sets the iterator-completion flag to 1, the
database server calls the iterator function one last time with the iterator-status
value in the MI_FPARAM structure set to SET_END. When the iterator function
obtains this iterator-status value, it can perform any tasks needed to deallocate
resources that the iterator function has allocated.

Important: Free only resources that you have allocated. Do not attempt to free
resources that the database server has allocated (such as the
MI_FPARAM structure).

You can perform these deallocation tasks directly in the iterator function or you
can declare a separate iterator-end function, which the iterator function calls when it
receives the SET_END iterator-status value. Declare the iterator-end function to
return the same data type as the main iterator function. However, the database
server ignores the return value of this function; it does not put this return value in
the active set.

Figure 15-4 implements an iterator-end function, named fibGen_end(), that the
fibGen() iterator function (see Figure 15-1 on page 15-5) calls when it obtains the
SET_END iterator-status value.

The fibGen_end() function uses the mi_fp_funcstate() function to obtain the
user-state pointer from the MI_FPARAM structure. It then calls the mi_free()
function to free the resources in the fibstate state structure, which the
fibGen_init() function (see Figure 15-2 on page 15-7) has allocated. The
fibGen_end() function returns an mi_integer value (0) because the main iterator
function, fibGen(), returns an active set of mi_integer values.

Calling an Iterator Function from an SQL Statement
For end users to be able to use an iterator function within an SQL statement, take
the following actions:
v Register the iterator function with the ITERATOR routine modifier.
v Associate the iterator function with a cursor to execute the function.

Registering the Iterator Function
Register the iterator function with the CREATE FUNCTION statement. The
CREATE FUNCTION must include the ITERATOR routine modifier to tell the
database server that it must call the function until the iterator-completion flag is
set to 1.

Tip: If your iterator function calls other functions (such as an iteration-
initialization function, iterator-value-return function, or iterator-end function)

mi_integer fibGen_end(fparam)
MI_FPARAM *fparam;

{
fibState *fibstate;

fibstate = (fibState *)mi_fp_funcstate(fparam);
mi_free(fibstate);

return (0); /* return value is ignored */
}

Figure 15-4. The fibGen_end() Iterator-End Function

Chapter 15. Creating Special-Purpose UDRs 15-9

to implement its iterations, you do not have to register these other functions
with the CREATE FUNCTION statement.

The following CREATE FUNCTION statement registers the fibGen() iterator
function, which Figure 15-1 on page 15-5 defines, in the database:
CREATE FUNCTION fibgen(arg INTEGER)
RETURNING INTEGER
WITH (ITERATOR)
EXTERNAL NAME "$USERFUNCDIR/fib.so"
LANGUAGE C;

This statement assumes that the object code for the fibGen() function resides in
the UNIX or Linux fib.so shared-object file in the directory that the
USERFUNCDIR environment variable specifies. It also assumes that
USERFUNCDIR was set in the server environment.

For more information on how to register a user-defined function, see “Registering
a C UDR” on page 12-14.

Executing the Iterator Function
After you register an iterator function (and assign it the appropriate privileges),
users who have the Execute privilege can execute it. However, because an iterator
function returns an active set of items, you must associate the function with a
cursor. The cursor holds the active set, which the application can then access one at
a time.

Each iteration of the iterator function returns one item of the active set. To execute
an iterator function, you must associate it with a cursor. This EXECUTE
FUNCTION statement generates an active set that contains the following Fibonacci
values:
0, 1, 1, 2, 3, 5, 8

To obtain these values from within an application, you must associate the
EXECUTE FUNCTION statement with a cursor to execute the function.

Once you register the fibGen() function, you can execute the following SQL
statement from an interactive database utility (such as DB–Access):
EXECUTE FUNCTION fibgen(10);

From within a DataBlade API module, execute fibGen() with the
mi_exec_prepared_statement() function, as follows:
MI_CONNECTION *conn;
mi_string *cmd = "EXECUTE FUNCTION fibgen(10);";
MI_STATEMENT *stmt;
mi_integer error, col_val;
MI_ROW *row;
...
/* Prepare the EXECUTE FUNCTION to execute fibGen() */
stmt = mi_prepare(conn, cmd, NULL);

/* Open the cursor to allocate the active set */
if (mi_open_prepared_statement(stmt, MI_SEND_READ, 1, 0,

NULL, NULL, NULL, NULL, NULL, 0, NULL) == MI_OK)

/* Initialize the fetch direction */
if (mi_fetch_statement(stmt, MI_CURSOR_NEXT, 0, 0)

== MI_OK)

if (mi_get_result(conn) == MI_ROWS)

15-10 IBM Informix DataBlade API Programmer’s Guide

{
/* Fetch the items of the active set.
* Process each item of active set until
* last item is found
*/
while ((row = mi_next_row(conn, &error)) != NULL)

{
colval = NULL;

/* Obtain one number of Fibonacci series */
mi_value(row, 0, (mi_integer)&col_val,

sizeof(mi_integer));

/* Process current Fibonacci number */
...

} /* end while */
} /* end if mi_get_result */

/* Close the cursor to deallocate active set */
mi_close_statement(stmt);

/* Release statement descriptor */
mi_drop_prepared_statement(stmt);

For more information on how to use mi_exec_prepared_statement(), see
“Executing Prepared SQL Statements” on page 8-11.

Writing an Aggregate Function
An aggregate is a function that returns one value for a group of queried rows. The
aggregate function performs one iteration for each of the queried rows. For each
row, an aggregate iteration receives one column value (called the aggregate
argument). The value that the aggregate returns to the SQL statement is called the
aggregate result. For example, the following query calls the built-in SUM aggregate
to determine the total cost of item numbers in order 1002:
SELECT SUM(total_price) FROM items
WHERE order_num = 1002;

For this invocation of the SUM aggregate, each value of the total_price column
that is passed into SUM is one aggregate argument. The total sum of all total_price
values, which SUM returns to the SELECT, is the aggregate result.

The database server supports extensions of aggregates in the following ways:
v Extensions of built-in aggregates
v User-defined aggregates

You can write C user-defined functions to implement these aggregate extensions.
For an overview of how to create aggregate functions and how to write them in an
SPL routine, see the chapter on this topic in the IBM Informix User-Defined Routines
and Data Types Developer’s Guide. The following sections provide information
specific to the creation of aggregate functions as C user-defined functions.

Tip: The IBM Informix BladeSmith development tool automatically generates C
source code for a user-defined aggregate as well as the SQL statements to
register the aggregate function. For more information, see the IBM Informix
DataBlade Developers Kit User’s Guide.

Chapter 15. Creating Special-Purpose UDRs 15-11

Extending a Built-In Aggregate
This section explains how to extend a built-in aggregate by overloading an
operator function.

To extend a built-in aggregate function with a C user-defined function:

1. Determine the appropriate operator function that you must overload to
implement the desired built-in aggregate function.
For a list of built-in aggregate functions and the associated operator functions
to overload, see the chapter on aggregate functions in the IBM Informix
User-Defined Routines and Data Types Developer’s Guide.

2. Write the C UDR that implements the required operator function for the data
type that you want the aggregate to handle.
To extend built-in aggregates so that they handle user-defined data types, write
an operator function that accepts the user-defined data type as an argument.
Compile the C UDR and link it into a shared-object file.

3. Register the overloaded operator function with the CREATE FUNCTION
statement.

4. Use the newly extended aggregate on the data.

Suppose you want to use the SUM aggregate on complex numbers, which are
stored in the following user-defined data type: a named row type named
complexnum_t. Figure 15-5 shows the CREATE ROW TYPE statement that
registers the complexnum_t named row type.

The following sections show how to extend the SUM aggregate on the
complexnum_t named row type.

Choosing the Operator Function
The SUM built-in aggregate function uses the plus operator (+), which the plus()
user-defined function implements. The database server provides implementations
of the plus() function over the built-in data types. Therefore, the SUM aggregate
function works over built-in data types. To have the SUM aggregate operate on the
complexnum_t row type, you implement a plus() function that handles this
named row type; that is, it adds the two parts of the complex number and returns
a complex number with the summed parts.

The following C function, complex_plus(), defines such a plus() function:
MI_ROW *complex_plus(arg1, arg2)

MI_ROW *arg1;
MI_ROW *arg2;

Writing the Operator Function
The code segment shows the implementation of the complex_plus() function,
which implements a plus() function for the complexnum_t data type:
MI_ROW *complex_plus(arg1, arg2, fparam)

MI_ROW *arg1;
MI_ROW *arg2;
MI_FPARAM *fparam;

CREATE ROW TYPE complexnum_t
(real_part SMALLFLOAT,
imaginary_part SMALLFLOAT);

Figure 15-5. A Named Row Type to Hold a Complex Number

15-12 IBM Informix DataBlade API Programmer’s Guide

{
mi_real real_zero, imag_zero = 0.0;
mi_real *real_value1, *real_value2;
mi_integer real_len1, real_len2;
mi_real *imag_value1, *imag_value2;
mi_integer imag_len1, imag_len2;

mi_real sum_real, sum_imag;

MI_CONNECTION *conn;
MI_TYPEID *type_id;
MI_ROW_DESC *row_desc;

mi_integer i;
MI_ROW *ret_row;
MI_DATUM values[2];
mi_boolean nulls[2] = {MI_FALSE, MI_FALSE};

for (i=0; i<=1; i++)
{
if (mi_fp_argisnull(fparam, i) == MI_TRUE)

{
/* Put initialized complex number into 'values'
* array
*/
values[0] = (MI_DATUM)&real_zero;
values[1] = (MI_DATUM)&imag_zero;

/* Generate initialized row type for arg1 */
conn = mi_open(NULL, NULL, NULL);
type_id = mi_typestring_to_id(conn,

"complexnum_t");
row_desc = mi_row_desc_create(type_id);

ret_row = mi_row_create(conn, row_desc, values,
nulls);

if (i == 0)
arg1 = ret_row;

else
arg2 = ret_row;

}
}

/* Extract values from arg1 row type */
mi_value_by_name(arg1, "real_part",

(MI_DATUM *)&real_value1, &real_len1);
mi_value_by_name(arg1, "imaginary_part",

(MI_DATUM *)&imag_value1, &imag_len1);

/* Extract values from arg2 row type */
mi_value_by_name(arg2, "real_part",

(MI_DATUM *)&real_value2, &real_len2);
mi_value_by_name(arg2, "imaginary_part",

(MI_DATUM *)&imag_value2, &imag_len2);

/* Sum the complex numbers */
sum_real = *real_value1 + *real_value2;
sum_imag = *imag_value1 + *imag_value2;

/* Put sum into 'values' array */
values[0] = (MI_DATUM)&sum_real;
values[1] = (MI_DATUM)&sum_imag;

/* Generate return row type */
conn = mi_open(NULL, NULL, NULL);
type_id = mi_typestring_to_id(conn, "complexnum_t");

Chapter 15. Creating Special-Purpose UDRs 15-13

row_desc = mi_row_desc_create(type_id);
ret_row = mi_row_create(conn, row_desc, values, nulls);

return (ret_row);
}

This version of the plus() function performs the following tasks:
v Checks for a NULL-valued state (which indicates the first invocation of the ITER

function) to initialize the state
v Checks for a NULL-valued aggregate argument to initialize a NULL the

argument
v Accepts the two complexnum_t arguments as row-type pointers (MI_ROW *)

and uses the mi_value_by_name() function to extract the individual fields of
the row type from the arguments

v Calculates the sum of the complex numbers by adding the real values together
and the imaginary values together

v Creates an MI_ROW type to hold the complexnum_t value with the final sum:
the mi_row_desc_create() function creates a row descriptor for the
complexnum_t data type and the mi_row_create() function populates the
associated row structure with the final sum values

v Returns a pointer to the MI_ROW structure (because a row type must be
returned by reference, not by value)

Once the complex_plus() function is written, you compile it and put it into a
shared-object file. Suppose that complex_plus() is compiled and linked into a
shared-object module named sqsum.

UNIX/Linux Only

On UNIX or Linux, the executable code for the complex_plus() operator function
would be in a shared library named sqsum.so.

End of UNIX/Linux Only

For more information, see “Compiling a C UDR” on page 12-11.

To extend a built-in aggregate over a user-defined data type, you overload the
appropriate operator function to handle the user-defined type. However, operator
functions can also be used as part of an expression that does not involve
aggregates. Therefore, aggregate support functions for built-in aggregates on
user-defined data types (opaque types, distinct types, and named row types) must
allocate a new state when they need to modify the state.

For example, the following SUM aggregate uses the overloaded plus() operator to
calculate the sum of values in the col1 column:
SELECT SUM(col1) FROM tab2 WHERE;

For each aggregate argument, the SUM aggregate invokes the plus() operator to
add the aggregate argument (agg_arg) into the sum of the previous values in the
aggregate state (agg_state), as follows:
plus(agg_state, agg_arg)

When you modify the aggregate state in-place, the value of the agg_state argument
to plus() changes. When plus() exits, the agg_state argument holds the new sum
of the aggregate arguments, which includes the agg_arg value.

15-14 IBM Informix DataBlade API Programmer’s Guide

However, the plus() function is also valid in expressions that do not involve
aggregates, as in the following query:
SELECT col1 FROM tab2 WHERE col1 + 4 > 17;

In this WHERE clause, the database server invokes the plus() operator to add 4 to
the col1 value, as follows:
plus(col1, 4)

If the plus() operator modifies the aggregate state in-place, the value of its first
argument changes to hold the sum of col1 and 4. It is not safe to modify
arguments in place because the values of arguments (col1 and 4) must not change.
Therefore, when you modify the aggregate state in an operator function of a
built-in aggregate, you must be careful not to use the “in-place” modification
method.

Registering the Overloaded Operator Function
With the operator function written, compiled, and linked into a shared-object file,
you can register this function in the database with the CREATE FUNCTION
statement. You must have the appropriate privileges for this registration to be
successful. For more information, see the chapter on user-defined aggregates in the
IBM Informix User-Defined Routines and Data Types Developer’s Guide.

Figure 15-6 shows the CREATE FUNCTION statement that overloads the plus()
function with a new version that handles the complexnum_t named row type.

Tip: Because SUM is a built-in aggregate, you do not have to use the CREATE
AGGREGATE statement to define the SUM aggregate.

Using the Extended Aggregate
Once you execute the CREATE FUNCTION statement in Figure 15-6 on page 15-15,
you can use the SUM aggregate on complexnum_t columns. For example, suppose
you create the tab1 table as Figure 15-7 shows.

CREATE FUNCTION plus(arg1 complexnum_t, arg2 complexnum_t)
RETURNS complexnum_t
EXTERNAL NAME '/usr/udrs/aggs/sums/sqsum.so(complex_plus)'
LANGUAGE C;

Figure 15-6. Registering the Overloaded plus() Function

Chapter 15. Creating Special-Purpose UDRs 15-15

The following query uses the SUM aggregate function on the complexnum_t
column, col2:
SELECT SUM(col2) FROM tab1;

With the rows that Figure 15-7 has inserted, the preceding query yields a
complexnum_t value of:
ROW(28.6, 34.7)

As a side effect of the new plus() function, you can also add two complexnum_t
columns in an SQL expression, as follows:
SELECT complex_num1 + complex_num2 FROM complex_nums
WHERE id > 6;

Creating a User-Defined Aggregate
The built-in aggregates provide basic aggregations. However, if your data requires
some special aggregation, you can create a custom aggregate function, called a
user-defined aggregate. To implement your custom aggregation, you design an
aggregate algorithm, which consists of the following parts:
v The aggregate state, which contains the information that needs to be passed

between iterations of the aggregate
v The aggregation tasks, which are implemented as special-purpose user-defined

functions called aggregate support functions

To implement a user-defined aggregate function with C user-defined functions:

1. Determine the content and data type of the aggregate state.
2. Write the C UDRs that implement the required aggregate support functions for

the data type on which you want to implement the user-defined aggregate.
3. Define the user-defined aggregate in the database with the CREATE

AGGREGATE and CREATE FUNCTION statements.

After you complete these steps, you can use the aggregate in an SQL statement.

The following sections describe each of these development steps in more detail and
use the SQSUM1 user-defined aggregate (which Table 15-2 describes) as an
example.

CREATE TABLE tab1
(col1 INTEGER,
col2 complexnum_t,
col3 INTEGER);

INSERT INTO tab1
VALUES (1, row(1.5, 3.7)::complexnum_t, 24);

INSERT INTO tab1
VALUES (2, row(6.9, 2.3)::complexnum_t, 13);

INSERT INTO tab1
VALUES (3, row(4.2, 9.4)::complexnum_t, 9);

INSERT INTO tab1
VALUES (4, row(7.0, 8.5)::complexnum_t, 5);

INSERT INTO tab1
VALUES (5, row(5.1, 6.2)::complexnum_t, 31);

INSERT INTO tab1
VALUES (6, row(3.9, 4.6)::complexnum_t, 19);

Figure 15-7. A Table with a complexnum_t Column

15-16 IBM Informix DataBlade API Programmer’s Guide

Table 15-2. A Sample User-Defined Aggregate

User-Defined Aggregate Description Definition

SQSUM1 Sums all values and calculates the
square of this sum

(x1 + x2 + x3 + ...)2

Determining the Aggregate State
An aggregate is a series of iterations. Each iteration processes one aggregate
argument (which contains one column value) and performs the necessary
computations to merge it into a partial result. The partial result is a snapshot of the
aggregate arguments that the aggregate has merged so far. Once the aggregate has
received all column values, it returns a value to the calling statement, based on the
final partial result.

Each iteration of the aggregate is a separate invocation of a user-defined function.
If user-allocated memory has the default PER_ROUTINE memory duration, the
database server automatically deallocates it after only one iteration of the iteration
function. (For more information, see “Choosing the Memory Duration” on page
14-4.) Therefore, while an iteration executes, it can access only the following
information:
v Its own local variables, which are deallocated at the end of each iteration and

therefore unavailable to other iterations
v The aggregate argument, which contains a new column value for each iteration
v The aggregate state, which contains any nonlocal information that the iteration

needs to perform its merge, including the partial result and any other external
information (such as an operating-system file) that an iteration might need to
access

During its invocation, each aggregate iteration merges the aggregate argument into
the aggregate state and returns the updated state. The database server preserves
the updated aggregate state and passes it into the next iteration of the aggregate.
When you create a user-defined aggregate, you must determine what nonlocal
information each iteration needs and then define an aggregate state to contain this
information. Otherwise, the aggregate iterations cannot obtain the information they
need to perform their computations.

Important: Design the aggregate state so that each aggregate support function can
obtain all the state information that it needs.

As a starting point, try using the data type of the aggregate argument for the
aggregate state. Such a state is called a simple state. For more information, see
“Aggregate Support Functions for the Aggregate State” on page 15-27.

For example, to determine the state for the SQSUM1 user-defined aggregate (which
Table 15-2 on page 15-17 describes), assess what tasks need to be performed in
each iteration of SQSUM1. For each aggregate argument, SQSUM1 needs to add
together the following values:
v The aggregate argument, which is passed to each iteration of the aggregate
v The partial sum of previous argument values, which must exist in the aggregate

state

The data type that you choose for the aggregate state affects how the state must be
managed. When the SQSUM1 aggregate receives INTEGER values as its aggregate

Chapter 15. Creating Special-Purpose UDRs 15-17

arguments, the sum of these values is also an INTEGER value. Therefore, the
SQSUM1 aggregate has an integer state, which holds the partial sum.

Writing the Aggregate Support Functions
An aggregate support function is a special-purpose user-defined function that
implements some task in the aggregate algorithm. You write aggregate support
functions to initialize, calculate, and return the aggregate result to the calling code.
An aggregate algorithm can include the following kinds of aggregate support
functions.

Aggregate Support
Function Algorithm Step

INIT Possible initialization tasks that must be performed before the
iterations can begin

ITER An iteration step, which is performed on each aggregate argument
and merges this argument into a partial result

COMBINE Merging one partial result with another partial result, thus allowing
parallel execution of the user-defined aggregate

FINAL Post-iteration tasks that must be performed after all aggregate
arguments were merged into a partial result

The following sections summarize each of the aggregate support functions.

INIT Function: The INIT aggregate support function performs the initialization
for the user-defined aggregate. Table 15-3 summarizes possible initialization tasks.

Table 15-3. Initialization Tasks for the INIT Aggregate Support Function

Initialization Task More Information

Set-up for any additional resources outside the
state that the aggregation might need

“Aggregate Support Functions That the
Algorithm Requires” on page 15-26

Initial calculations that the user-defined
aggregate might need

“Aggregate Support Functions That the
Algorithm Requires” on page 15-26

Allocation and initialization of the aggregate
state that the rest of the aggregation computation
might need

“Aggregate Support Functions for the
Aggregate State” on page 15-27

Handling of an optional set-up argument “Implementing a Set-Up Argument” on
page 15-34

The INIT support function is an optional aggregate support function. If your
aggregate algorithm does not require any of the tasks in Table 15-3, you do not
need to define an INIT function. When you omit the INIT function from your
user-defined aggregate, the database server performs the state management for the
aggregate state. For more information, see “Handling a Simple State” on page
15-28.

To declare an INIT support function as a C function, use the following syntax:
agg_state init_func(dummy_arg, set_up_arg)

agg_arg_type dummy_arg;
set_up_type set_up_arg; /* optional */

agg_state is the data type of the aggregate state.

dummy_arg is a dummy parameter that has the same data type as the

15-18 IBM Informix DataBlade API Programmer’s Guide

aggregate argument that this aggregate support function is to
handle for the user-defined aggregate.

init_func is the name of the INIT aggregate support function.

set_up_arg is an optional parameter for the set-up argument. For more
information, see “Implementing a Set-Up Argument” on page
15-34.

In the execution of a UDA, the database server calls the INIT function before it
begins the actual aggregation computation. It passes in any optional set-up
argument (set_up_arg) from the user-defined aggregate and copies any initialized
aggregate state that INIT returns into the state buffer. For more information on the
state buffer, see “Aggregate Support Functions for the Aggregate State” on page
15-27.

The first argument of the INIT function serves only to identify the data type of the
aggregate argument that the user-defined aggregate handles. The routine manager
uses this argument in routine resolution to determine the correct version of the
overloaded INIT function. At the time of invocation, the routine manager just
passes in a NULL value for the first argument of the INIT function, as the
following syntax shows:
agg_state init_func(NULL, optional set-up argument)

Tip: For more information on how the routine manager resolves the overloaded
aggregate support functions, see the chapter on aggregates in the IBM
Informix User-Defined Routines and Data Types Developer’s Guide.

Figure 15-8 shows the INIT aggregate support function that handles an INTEGER
argument for the SQSUM1 user-defined aggregate (which Table 15-2 on page 15-17
describes).

For other aggregate support functions of SQSUM1, see Figure 15-9 on page 15-21,
Figure 15-10 on page 15-22, and Figure 15-11 on page 15-23.

ITER Function: The ITER aggregate support function performs the sequential
aggregation or iteration for the user-defined aggregation. It merges a single
aggregate argument into the partial result, which the aggregate state contains. The
ITER function is a required aggregate support function; that is, you must define an
ITER function for every user-defined aggregate. If you do not define an ITER
function for your user-defined aggregate, the database server generates an error.

Tip: If the UDA does not have an INIT support function, the ITER support
function can initialize the aggregate state. For more information, see
“Handling a Simple State” on page 15-28.

If the UDA was registered with the HANDLESNULLS modifier in the CREATE
AGGREGATE statement, the database server calls the ITER support function once

/* SQSUM1 INIT support function on INTEGER */
mi_integer init_sqsum1(dummy_arg)

mi_integer dummy_arg;
{

return (0);
}

Figure 15-8. INIT Aggregate Support Function for SQSUM1 on INTEGER

Chapter 15. Creating Special-Purpose UDRs 15-19

for each aggregate argument that passed to the user-defined aggregate. Each
aggregate argument is one column value. If you omit the HANDLESNULLS
modifier from CREATE AGGREGATE, the database server does not call ITER for
any NULL-valued aggregate arguments. Therefore, NULL-valued aggregate
arguments do not contribute to the aggregate result.

For example, suppose you execute the SQSUM1 user-defined aggregate (which
Table 15-2 on page 15-17 describes) in the following query:
SELECT SQSUM1(col3) FROM tab1;

The tab1 table (which Figure 15-7 on page 15-16 defines) contains 6 rows.
Therefore, the preceding query (which contains no WHERE clause) causes 6
invocations of the SQSUM1 ITER function. Each invocation of this ITER function
processes one value from the col3 column.

To declare an ITER function as a C function, use the following syntax:
agg_state iter_func(current_state, agg_argument)

agg_state current_state;
agg_arg_type agg_argument;

agg_state is the data type of the current and updated aggregate state. After
the ITER function merges the agg_argument into the current_state
state, it returns a pointer to the updated state.

agg_arg_type is the data type of the agg_argument, which is the data type that the
aggregate support function handles for the user-defined aggregate.

agg_argument is a single aggregate argument, usually a column value, which the
ITER function merges into the partial result in the current_state
aggregate state.

current_state is the current aggregate state, which previous calls to the ITER
function and to the INIT function have generated.

iter_func is the name of the ITER aggregate support function.

Important: Make sure that the ITER support function obtains all
state information that it needs from its “current_state”
argument. The INIT function cannot maintain
additional state information as user data in its
MI_FPARAM structure because MI_FPARAM is not
shared among the other aggregate support functions.
However, the ITER function can store user data in
MI_FPARAM that is not part of the aggregate result.

Figure 15-9 shows the ITER aggregate support function that handles an INTEGER
argument for the SQSUM1 user-defined aggregate (which Table 15-2 on page 15-17
describes).

15-20 IBM Informix DataBlade API Programmer’s Guide

For other aggregate support functions of SQSUM1, see Figure 15-8 on page 15-19,
Figure 15-10 on page 15-22, and Figure 15-11 on page 15-23.

COMBINE Function: The COMBINE aggregate support function allows your
user-defined aggregate to execute in a parallel query. When a query that contains a
user-defined aggregate is processed in parallel, each parallel thread operates on a
one subset of selected rows. The COMBINE function merges the partial results
from two such subsets. This aggregate support function ensures that the result of
aggregating over a group of rows sequentially is the same as aggregating over two
subsets of the rows in parallel and then combining the results.

The COMBINE function is required for parallel execution. When a query includes a
user-defined aggregate, the database server uses parallel execution when the query
includes only aggregates. However, the COMBINE function might be used even
when a query is not parallelized. For example, when a query contains both distinct
and non-distinct aggregates, the database server can decompose the computation
of the non-distinct aggregate into sub-aggregates based on the distinct column
values. Therefore, you must provide a COMBINE function for every user-defined
aggregate.

If you do not define an COMBINE function for your user-defined aggregate, the
database server generates an error. However, if your user-defined aggregate uses a
simple state, the COMBINE function can be the same as the ITER function. For
more information, see “Handling a Simple State” on page 15-28.

To declare a COMBINE function as a C function, use the following syntax:
agg_state combine_func(agg_state1, agg_state2)

agg_state agg_state1, agg_state2;

agg_state is the data type of the two partial aggregate states (agg_state1 and
agg_state2) as well as the updated aggregate state, which the
COMBINE function returns.

agg_state1 is the aggregate state from one parallel thread.

agg_state2 is the aggregate state from the second parallel thread.

combine_func is the name of the COMBINE aggregate support function.

In the execution of a UDA, the database server calls the COMBINE once for each
pair of threads (agg_state1 and agg_state2) that execute a parallel query that
contains the user-defined aggregate. When the COMBINE function combines two
partial results, it might also need to release resources associated with one of the
partial results.

Figure 15-10 shows the COMBINE aggregate support function that handles an
INTEGER argument for the SQSUM user-defined aggregate (which Table 15-2 on

/* SQSUM1 ITER support function on INTEGER */
mi_integer iter_sqsum1(state, value)

mi_integer state;
mi_integer value;

{
/* add 'state' and 'value' together */

return (state + value);
}

Figure 15-9. ITER Aggregate Support Function for SQSUM1 on INTEGER

Chapter 15. Creating Special-Purpose UDRs 15-21

page 15-17 describes).

For other aggregate support functions of SQSUM1, see Figure 15-8 on page 15-19,
Figure 15-9 on page 15-21, and Figure 15-11 on page 15-23. For more information
on parallel execution of a UDA, see “Executing a User-Defined Aggregate in
Parallel Queries” on page 15-35.

FINAL Function: The FINAL aggregate support function performs the
post-iteration tasks for the user-defined aggregate. Table 15-4 summarizes possible
post-iteration tasks.

Table 15-4. Post-Iteration Tasks for the FINAL Aggregate Support Function

Post-Iteration Task More Information

Type conversion of the final state into the return
type of the user-defined aggregate

“Returning an Aggregate Result Different
from the Aggregate State” on page 15-35

Post-iteration calculations that the user-defined
aggregate might need

“Aggregate Support Functions That the
Algorithm Requires” on page 15-26

Deallocation of memory that the INIT aggregate
support function has allocated

“Managing a Pointer-Valued State” on
page 15-32

The FINAL function is an optional aggregate support function. If your user-defined
aggregate does not require one of the tasks in Table 15-4, you do not need to define
a FINAL function. When you omit the FINAL function from your user-defined
aggregate, the database server returns the final aggregate state as the return value
of the user-defined aggregate. If this state does not match the expected data type of
the aggregate return value, the database server generates a data type mismatch
error.

Important: In general, the FINAL support function must not deallocate the
aggregate state. Only for a pointer-valued state (in which the aggregate
support functions must handle all state management) does the FINAL
support function need to deallocate the state. For more information, see
“Managing a Pointer-Valued State” on page 15-32.

To declare a FINAL function as a C function, use the following syntax:
agg_type final_func(final_state)

agg_state final_state;

agg_type is the data type of the aggregate result, which is what the
user-defined aggregate returns to the SQL statement in which it
was invoked.

/* SQSUM1 COMBINE support function on INTEGER */
mi_integer combine_sqsum1(state1, state2)

mi_integer state1, state2;
{

/* Return the new partial sum from two parallel partial
* sums
*/
state1 += state2;
return (state1);

}

Figure 15-10. COMBINE Aggregate Support Function for SQSUM1 on INTEGER

15-22 IBM Informix DataBlade API Programmer’s Guide

final_state is the final aggregate state, as previous calls to the INIT and ITER
functions have generated.

final_func is the name of the FINAL aggregate support function.

In the execution of a UDA, the database server calls the FINAL function after all
iterations of the ITER function are complete.

Figure 15-11 shows the aggregate support functions that handle an INTEGER
argument for the SQSUM user-defined aggregate (which Table 15-2 on page 15-17
describes).

For other aggregate support functions of SQSUM1, see Figure 15-8 on page 15-19,
Figure 15-9 on page 15-21, and Figure 15-10 on page 15-22.

Defining the User-Defined Aggregate
You can define the user-defined aggregate before you create the C implementation
of the aggregate support functions. However, you must ensure that the names of
the C functions match the names in the CREATE FUNCTION statements that
register them.

To define a user-defined aggregate in a database with SQL:

1. Register the user-defined aggregate in the database with the CREATE
AGGREGATE statement

2. Register the aggregate support functions in the database with the CREATE
FUNCTION statement

The development steps for a UDA list the definition of the UDA after the aggregate
support functions are written. However, the CREATE AGGREGATE statement does
not verify that the aggregate support functions it lists were registered nor does the
CREATE FUNCTION statement verify that the executable C code exists.

Figure 15-12 shows the CREATE AGGREGATE statement that defines the SQSUM1
user-defined aggregate (which Table 15-2 on page 15-17 describes) in the database.

Suppose that the INIT, ITER, COMBINE, and FINAL aggregate support functions
for the SQSUM1 aggregate are compiled and linked into a shared-object module

/* SQSUM1 FINAL support function on INTEGER */
mi_integer final_sqsum1(state)

mi_integer state;
{

/* Calculate square of sum */
state *= state;

return (state);
}

Figure 15-11. FINAL Aggregate Support Function for SQSUM1 on INTEGER

CREATE AGGREGATE sqsum1
WITH (INIT = init_sqsum1,

ITER = iter_sqsum1,
COMBINE = combine_sqsum1,
FINAL = final_sqsum1);

Figure 15-12. Registering the SQSUM1 User-Defined Aggregate

Chapter 15. Creating Special-Purpose UDRs 15-23

named sqsum.

UNIX/Linux Only

On UNIX or Linux, the executable code for the SQSUM1 aggregate support
functions would be in a shared library named sqsum.so.

End of UNIX/Linux Only

Figure 15-13 shows the CREATE FUNCTION statements that register the aggregate
support functions for the SQSUM1 user-defined aggregate to handle the INTEGER
data type.

The registered names of the aggregate support functions must match the names
that the CREATE AGGREGATE statement lists. For example, in Figure 15-13, a
CREATE FUNCTION statement registers the INIT support function as
init_sqsum1, which is the same name that the INIT option lists in the CREATE
AGGREGATE statement (see Figure 15-12 on page 15-23).

In addition, the CREATE FUNCTION for the INIT support function must include
the HANDLESNULLS routine modifier so that the database server can pass the
INIT function the dummy NULL-valued argument.

For more information on the use of the CREATE AGGREGATE and CREATE
FUNCTION statements to define user-defined aggregates, see the chapter on
aggregates in the IBM Informix User-Defined Routines and Data Types Developer’s
Guide. For the syntax of these statements, see the IBM Informix Guide to SQL:
Syntax.

Using the User-Defined Aggregate
After you complete the aggregate-development steps, the end user can use the
user-defined aggregate on the defined data type in SQL statements. However, use
of the user-defined aggregate does assume the appropriate privileges.

CREATE FUNCTION init_sqsum1(dummy_arg INTEGER)
RETURNS INTEGER
WITH (HANDLESNULLS)
EXTERNAL NAME '/usr/udrs/aggs/sums/sqsum.so'
LANGUAGE C;

CREATE FUNCTION iter_sqsum1(state INTEGER,
one_value INTEGER)

RETURNS INTEGER
EXTERNAL NAME '/usr/udrs/aggs/sums/sqsum.so'
LANGUAGE C;

CREATE FUNCTION combine_sqsum1(state1 INTEGER,
state2 INTEGER)

RETURNS INTEGER
EXTERNAL NAME '/usr/udrs/aggs/sums/sqsum.so'
LANGUAGE C;

CREATE FUNCTION final_sqsum1(state INTEGER)
RETURNS INTEGER
EXTERNAL NAME '/usr/udrs/aggs/sums/sqsum.so'
LANGUAGE C;

Figure 15-13. Registering the Aggregate Support Functions for SQSUM1 to Handle INTEGER

15-24 IBM Informix DataBlade API Programmer’s Guide

For the tab1 table, which Figure 15-7 on page 15-16 defines, the following query
uses the new SQSUM1 aggregate function on the INTEGER column, col3:
SELECT SQSUM1(col3) FROM tab1;

With the rows that Figure 15-7 has inserted, the preceding query yields an
INTEGER value of 10201.

To be able to use SQSUM1 on other data types, you need to ensure that the
appropriate aggregate support functions exist for this data type. For example,
“SQSUM2 User-Defined Aggregate” on page 15-39 shows the definition of a
version of the SQSUM aggregate on both an INTEGER and a named row type.

Determining Required Aggregate Support Functions
Figure 15-14 shows the execution sequence of aggregate support functions for a
user-defined aggregate that is not executed in a parallel query.

Tip: For information about how to execute a user-defined aggregate in parallel
queries, see “Executing a User-Defined Aggregate in Parallel Queries” on
page 15-35.

These aggregate support functions use the aggregate state to pass shared
information between themselves.

As you design your aggregate algorithm, you must determine which of the
support functions the algorithm requires. As a minimum, the user-defined

Figure 15-14. Execution of a Nonparallel User-Defined Aggregate

Chapter 15. Creating Special-Purpose UDRs 15-25

aggregate must have an ITER function. It is the ITER function that performs a
single iteration of the aggregate on one aggregate argument. Although Figure 15-14
on page 15-25 shows the execution of both the INIT and FINAL support functions,
these functions are optional for a user-defined aggregate. In addition, the
COMBINE function, though required, often does not require separate code; it can
simply call the ITER function.

Writing aggregate support functions that your user-defined aggregate does not
require means unnecessary coding and execution time. Therefore, it is important to
assess your aggregate for required functions. The following table shows the design
decisions in the determination of required aggregate support functions.

Design Decision
Aggregate Support
Functions Involved More Information

Does the algorithm require
initialization or clean-up tasks?

INIT and FINAL “Aggregate Support Functions
That the Algorithm Requires” on
page 15-26

Does the aggregate have a simple
aggregate state?

INIT, COMBINE,
and FINAL

Yes: “Handling a Simple State”
on page 15-28

No: “Handling a Nonsimple
State” on page 15-29

Does the aggregate have a
set-up argument?

INIT “Implementing a Set-Up
Argument” on page 15-34

Does the aggregate return a value
whose data type is different from
the aggregate state?

FINAL “Returning an Aggregate Result
Different from the Aggregate
State” on page 15-35

Does the aggregate have special
needs to run in a parallel query?

COMBINE “Executing a User-Defined
Aggregate in Parallel Queries” on
page 15-35

You can overload the aggregate support functions to provide support for different
data types. Any overloaded version of the UDA, however, cannot omit any of the
aggregate support functions that the CREATE AGGREGATE statement has listed or
use any support function that CREATE AGGREGATE has not specified.

When the database server executes a UDA (regardless of the data type of the
aggregate argument), the database expects to find all the aggregate support
functions that the CREATE AGGREGATE statement has registered. Therefore, if
you omit a support function for one of the reasons in the preceding table, all
versions of the aggregate for all data types must be able to execute using only the
aggregate support functions that CREATE AGGREGATE specifies.

Aggregate Support Functions That the Algorithm Requires: To implement a
user-defined aggregate, you must develop an algorithm that calculates an
aggregate return value based on the aggregate-argument values. You need to break
this algorithm into the following steps.

Algorithm Step
Aggregate Support
Function

Calculations or initializations that must be done before the iterations
can begin

INIT

Calculations that must be done on each aggregate argument to merge
this argument into a partial result

ITER

15-26 IBM Informix DataBlade API Programmer’s Guide

Algorithm Step
Aggregate Support
Function

Post-iteration tasks must be performed after all aggregate arguments
were merged into a partial result

FINAL

All aggregate algorithms must include an ITER function to handle each aggregate
argument. However, the INIT and FINAL support functions are optional. To
determine whether your algorithm requires an INIT or FINAL function, make the
following design assessments:
v Are there calculations or initializations that must be done before the iterations can

begin?
If the algorithm requires additional resources to perform its task (such as
operating-system files or smart large objects), use the INIT function to set up
these resources. The INIT function can also initialize the partial result.

v Are there post-iteration tasks that must be performed after all aggregate
arguments were merged into a partial result?
If the INIT function has set up resources to perform the aggregation, the FINAL
function can deallocate or close resources so that they are free for other users. In
addition, if the aggregation requires calculations that must be performed on the
final partial result, use the FINAL function to perform these calculations.

For example, the following algorithm defines the SQSUM1 aggregate (which
Table 15-2 on page 15-17 describes):
(x1 + x2 + ...)2

where each xi is one column value; that is, one aggregate argument. The ITER
function for SQSUM1 takes a single aggregate argument and adds it to a partial
sum (see Figure 15-9 on page 15-21). The algorithm does not require initialization
of additional resources. Therefore, no INIT function is required for this task.
However, the INIT function can initialize the partial result (see Figure 15-8 on page
15-19).

The SQSUM1 user-defined aggregate does require post-iteration calculations. When
the last iteration is reached, the partial sum needs to be squared to obtain the
aggregate return value. This final calculation is performed in a FINAL function and
returned as the return value for the SQSUM1 aggregate (see Figure 15-11 on page
15-23).

The SUMSQ user-defined aggregate (described on page 15-37) is an example of a
user-defined aggregate that requires neither initialization nor post-iteration tasks.
Therefore, it does not require the INIT and FINAL support functions.

Aggregate Support Functions for the Aggregate State: The aggregate support
functions pass information about the aggregate among themselves in the aggregate
state.

Tip: For an explanation of the aggregate state, see “Determining the Aggregate
State” on page 15-17.

The database server invokes all aggregate support functions as regular UDRs.
Therefore, each support function has a default memory duration of
PER_ROUTINE, which means that the database server frees any memory that the
support function allocates when that function terminates. However, the aggregate
state must be valid across all invocations of all aggregate support functions,

Chapter 15. Creating Special-Purpose UDRs 15-27

including possible multiple iterations of the ITER function. Therefore, a special
state buffer (with a PER_COMMAND memory duration) must exist so that the
aggregate state is available to all aggregate support functions. The database server
then passes this state buffer to each invocation of an aggregate support function.

The purpose of the INIT support function is to return a pointer to the initialized
aggregate state. To determine whether your aggregate state requires an INIT
support function for state management, assess the data type of this state. The
aggregate-state data type determines whether the INIT function must handle state
management, as follows:
v If the data type of the aggregate state is the same as the aggregate argument, the

aggregate has a simple state.
If your user-defined aggregate uses a simple state, the database server can
perform the state management. It can automatically allocate the state buffer for
the aggregate state. Therefore, the INIT support function does not need to handle
this allocation.

v If the data type of the aggregate state is different from the aggregate argument,
the aggregate has a nonsimple state.
There are several types of non-simple states possible. The database server cannot
perform state management for these non-simple states. Instead, the INIT support
functions must perform the state-management tasks to handle non-simple states.

Once the user-defined aggregate has an aggregate state, the database server passes
a pointer to this state buffer to each invocation of the ITER function and to the
FINAL function.

Handling a Simple State: A simple state is an aggregate state whose data type is the
same as the aggregate argument. At any point in the iteration, a simple state
contains only the partial result of the aggregation. For example, the SUM built-in
aggregate uses a simple state because its state contains only the partial result: the
running total of the aggregate arguments. When the SUM aggregate operates on
INTEGER aggregate arguments, it creates an integer partial sum for these
arguments. Therefore, the data type of its aggregate argument and aggregate state
is the same.

However, the AVG built-in aggregate does not use a simple state. Because it must
divide the total by the number of values processed, its state requires two values:
the running total and the number of arguments processed. When the AVG
aggregate operates on INTEGER aggregate arguments, it creates an integer partial
sum and an integer count for these arguments. Therefore, the data type of its
aggregate argument (INTEGER) cannot be not the same as its aggregate state (two
INTEGER values).

When a user-defined aggregate has a simple state, the following items apply:
v The INIT aggregate support function does not need to allocate the aggregate

state.
In this case, the database server automatically performs the state management. If
a UDA with a simple state does not include any other tasks that require an INIT
support function (see Table 15-3 on page 15-18), you can omit the INIT function
from the definition of the UDA. The only possible state-management task you
might want to perform in the INIT function is state initialization. For more
information, see “When to Allocate and Deallocate a State” on page 15-33.

v The COMBINE aggregate support function can just call the ITER support
function.

15-28 IBM Informix DataBlade API Programmer’s Guide

In this case, you do not have to create special code in the COMBINE function
for the handling of parallel execution. Instead, the ITER function can perform
the merge of two partial results. For more information, see “Executing a
User-Defined Aggregate in Parallel Queries” on page 15-35.

v The FINAL function is not required if the data type of the simple state is the
same as the aggregate result.
In this case, the aggregate argument, aggregate state, and aggregate result have
the same data type. Such a user-defined aggregate is called a simple binary
operator. If a UDA is a simple binary operator and does not include any other
tasks that require a FINAL support function (see Table 15-4 on page 15-22), you
can omit the FINAL function from the definition of the UDA. For more
information, see “Returning an Aggregate Result Different from the Aggregate
State” on page 15-35.

When a UDA does not include an INIT function, the database server takes the
following state-management steps:
v Allocates the PER_COMMAND state buffer to hold the aggregate state

The database server can determine the size of the state buffer from the data type
of the aggregate argument, which is passed into the user-defined aggregate.

v Initializes this aggregate state to an SQL NULL value whose data type is the
same as the aggregate argument

v Passes the NULL-valued aggregate state to the first invocation of the ITER
support function
The ITER support function can just use the system-allocated state buffer to hold
the state information. If you have some minor initialization tasks that you need
to perform, the ITER function can check for a NULL-valued aggregate state on
its first iteration. If the state is NULL, ITER can initialize the state to its
appropriate value. In this way, you can perform minor state initialization
without the overhead of a separate invocation of the INIT function.

When a UDA does not include a FINAL function, the database server passes the
final state as the aggregate result of the user-defined aggregate.

The implementation on the SQSUM1 aggregate includes an INIT support function
that initializes the aggregate state (see Figure 15-8 on page 15-19). However,
because SQSUM1 has a simple state, this INIT function is not required. Instead, an
ITER function can check for a NULL-valued state and perform the state
initialization. The ITER support function of the SQSUM2 aggregate (see
Figure 15-18 on page 15-40) shows this type of implementation.

The SUMSQ user-defined aggregate (described on page 15-37) also has a simple
state and therefore does not require an INIT support function for state
management.

Handling a Nonsimple State: When the data type of the aggregate argument is not
adequate for the state information, you must use a nonsimple state for your UDA. A
nonsimple state is an aggregate state whose data type is not the same as the
aggregate argument. Possible uses for a nonsimple state include an aggregate state
that contains:
v An aggregate state that contains more information than the aggregate-argument

data type can hold
v An aggregate state that contains information of a data type different than that of

the aggregate argument

Chapter 15. Creating Special-Purpose UDRs 15-29

When the aggregate-argument data type is not adequate for the state information,
you must determine the appropriate data structure to hold the state information.
This data structure depends upon the size of the aggregate state that you need to
maintain, as the following table shows.

Nonsimple State Description More Information

Single-valued state Consists of information that can
be stored in an Informix built-in
data type

“Managing a Single-Valued
State” on page 15-30

Opaque-type state Consists of several values, but
these values do not exceed the
maximum size of an opaque
data type

“Managing an Opaque-Type
State” on page 15-31.

Pointer-valued state Consists of values whose size
does exceed the maximum size of
an opaque data type

“Managing a Pointer-Valued
State” on page 15-32.

If your user-defined aggregate uses a single-valued or opaque-type state, the
database server can still perform the state management. However, it cannot
provide all necessary state management for a pointer-valued state.

Managing a Single-Valued State: A single-valued state uses a built-in SQL data type
to hold the aggregate state. Use a single-valued state for an aggregate state that
can fit into a built-in data type but whose data type does not match that of the
aggregate argument.

Tip: Built-in SQL data types are provided data types. For more information, see
the chapter on data types in the IBM Informix Guide to SQL: Reference.

To use a single-valued state for a UDA:

1. Write the appropriate aggregate support functions so that they handle a
single-valued state.
Declare the state parameters and return values of the aggregate support
functions to use the DataBlade API data type that corresponds to the built-in
SQL data type that your state requires. For a list of these data type
correspondences, see Table 1-1 on page 1-8. Information on how to handle state
management for a single-valued state is provided below.

2. Register the aggregate support functions with the CREATE FUNCTION
statement.
Specify the built-in SQL data type as the data type of the state parameters and
return values in the function signatures of the aggregate support functions.

The database server can perform memory management for a single-valued state
because it can determine the size of a built-in data type. Therefore, you do not
need to allocate memory for a single-valued state in the INIT support function.

In the ITER function, you can initialize or update a single-valued state in either of
the following ways:
v In-place state update

To modify the state, change the value (or values) of the DataBlade API variable
that the database server has passed into the ITER function as the state argument.

v Allocate a new state

15-30 IBM Informix DataBlade API Programmer’s Guide

To modify the state, declare a local variable or allocate PER_ROUTINE memory
for a new variable and put the new values into this variable.

For more information, see “When to Allocate and Deallocate a State” on page
15-33.

For a single-valued state, the FINAL support function does not need to perform
any state-management tasks. However, it must convert to the data type of the final
aggregate state to that of the aggregate result. For more information, see
“Returning an Aggregate Result Different from the Aggregate State” on page 15-35.

Managing an Opaque-Type State: An opaque-type state uses an opaque data type to
hold the aggregate state. A possible use for an opaque-type state is to include an
aggregate state that contains more information than the aggregate-argument data
type or a built-in data type can hold. The size of an aggregate state that can be
implemented as an opaque-type state is limited by the maximum size of an opaque
type.

Important: The maximum size of an opaque type is system dependent. On many
systems, this limit is 32 kilobytes. Consult your machine notes for the
limit on your system. If your aggregate state might contain more data
than the opaque-type limit, you must use a pointer-valued state
instead. For more information, see “Managing a Pointer-Valued State”
on page 15-32.

To use an opaque-type state for a UDA, write the appropriate aggregate support
functions so that they handle an opaque-type state.

Declare the state parameters and return values of the aggregate support functions
to use the internal format of the opaque type. This internal format is usually a C
struct structure. For more information, see “Determining Internal Representation”
on page 16-3.

Handling State Management for an Opaque-Type State: Register the opaque data type
in the database with the CREATE OPAQUE TYPE statement.

After you register the opaque data type, the database server can obtain information
about the data type of the state value when the CREATE FUNCTION statement
registers the function signatures of the aggregate support functions.

You need to write the opaque-type support functions only if you need such
functionality in the aggregate support functions. For example, the input and output
support functions might be useful when you debug your UDA. If you do write
opaque-type support functions, you must compile and link them into a
shared-object module, as “Compiling a C UDR” on page 12-11 describes.

Register the aggregate support functions with the CREATE FUNCTION statement.

Specify the registered opaque type as the data type of the state parameters and
return values in the function signatures of the aggregate support functions.

The database server can perform memory management for an opaque-type state
because it can determine the size of the opaque data type. The CREATE OPAQUE
TYPE statement registers the opaque type, including its size, in the system catalog
tables of the database. From the system catalog tables, the database server can

Chapter 15. Creating Special-Purpose UDRs 15-31

determine the size of the aggregate state to allocate. Therefore, you do not need to
allocate the opaque-type state in the INIT support function.

In the ITER function, you can initialize or update an opaque-type state in either of
the following ways:
v In-place state update

To modify the state, change the values in the internal opaque-type structure that
the database server has passed into the ITER function as an argument.

v Allocate a new state
To modify the state, allocate PER_ROUTINE memory for a new internal
opaque-type structure and put the new values into this structure.
If you need to initialize the internal structure of the opaque type, the INIT or
ITER function can allocate PER_ROUTINE memory for the structure perform the
appropriate initializations. When the support function exits, the database server
copies the contents of this PER_ROUTINE structure into the PER_COMMAND
system-allocated state buffer.

For more information, see “When to Allocate and Deallocate a State” on page
15-33. For an example of a user-defined aggregate that uses an opaque-type state,
see the description of the PERCENT_GTR aggregate on page 15-43.

Managing a Pointer-Valued State: A pointer-valued state uses the POINTER data type
as the aggregate state. The mi_pointer data type is the DataBlade API type that
represents the SQL data type, POINTER. (For more information, see “Pointer Data
Types (Server)” on page 2-31.) Use a pointer-valued state when an aggregate state
might contain more information than can fit into the maximum opaque-type size.

Important: The maximum size of an opaque type is system dependent. On many
systems, this limit is 32 kilobytes. Consult your machine notes for the
limit on your system. If your aggregate state contains less data than the
opaque-type limit, use an opaque-type state instead. For more
information, see “Managing an Opaque-Type State” on page 15-31.

To use a pointer-valued state for a UDA:

1. Write the appropriate aggregate support functions so that they handle a
pointer-valued state.
Declare the state parameters and return values of the aggregate support
functions to use the mi_pointer data type. Information on how to handle state
management of a pointer-valued state follows.

2. Register the aggregate support functions with the CREATE FUNCTION
statement.
Specify the POINTER data type for the state parameters and return values in
the function signatures of the aggregate support functions.

The database server cannot perform state management for a pointer-valued state
because it cannot determine the size of the state. The DataBlade API data type
mi_pointer is a typedef for the following C data type:
void *

Because this data type is only a pointer, the database server cannot determine how
large the aggregate state is. Therefore, it cannot allocate the PER_COMMAND
system-allocated state buffer. In this case, the INIT and FINAL aggregate support
functions are not optional. They must perform state management of the nonsimple
aggregate state, as follows:

15-32 IBM Informix DataBlade API Programmer’s Guide

v The INIT function can allocate and initialize the aggregate state.
The INIT function must also allocate any related resources that the aggregate
state might need. Keep in mind that the database server does not interpret the
contents of the pointer-valued state. It cannot manage any objects that the state
type might reference. Therefore, use states with embedded pointers with caution.

v The ITER function must perform an in-place update to initialize or modify a
pointer-valued state.
Once you allocate the pointer-valued state, the database server passes a pointer
to this state to the other aggregate support functions. Initialize or update the
pointer-valued state only with an in-place update. For more information, see
“When to Allocate and Deallocate a State” on page 15-33.

v The FINAL function can handle deallocation of resources that the INIT function
has set up.
For a pointer-valued state, the FINAL function must always deallocate the
aggregate state. If your INIT support function has allocated related resources
that the aggregate state uses, make sure that the FINAL function deallocates
these resources.

Important: Make sure that you use a memory duration that extends for the life of
the user-defined aggregate. A PER_ROUTINE memory duration (the
default) expires after one invocation of the ITER function completes.
Therefore, you must use a memory duration of at least
PER_COMMAND for memory associated with the state.

When to Allocate and Deallocate a State: To each invocation of the ITER support
function, the database server automatically passes a pointer to the state buffer.
When you need to initialize or update the state information, the ITER function can
handle the modification in either of two ways, as the following table describes.

Changing the State State Memory Duration Results

Merge the aggregate
argument into the existing
state in-place and return the
existing state.

The existing state has a PER_COMMAND
memory duration:

v For single-valued and opaque-type states, this
state is the system-allocated state buffer.

v For a pointer-valued state, this state is a
user-allocated state buffer.

The new state value is at the address
that the database server has passed
into the ITER function. The ITER
function then returns this address as
the updated state. Because the state
memory has a PER_COMMAND
memory duration, the database
server can re-use the same state for
subsequent invocations of ITER.

Allocate fresh memory for
a new state, merge the
existing state with the new
aggregate argument into
this state, and return this
new state.

The new state has a PER_ROUTINE memory
duration:

v For a single-valued state, this state can be
either a declared local variable or
user-allocated PER_ROUTINE memory.

v For an opaque-type state, the new state must
be user-allocated PER_ROUTINE memory.

v For a pointer-valued state, this state is
user-allocated memory with either a
PER_ROUTINE or PER_COMMAND memory
duration. However, for PER_COMMAND
memory, you must also handle deallocation of
the old state. For more information, see
“Managing a Pointer-Valued State” on page
15-32.

The new state value is at the address
of the new state. The ITER function
then returns the address of the new
state as the updated state. Because
this memory has a PER_ROUTINE
memory duration, the database
server must copy the returned state
back into the PER_COMMAND
buffer.

Chapter 15. Creating Special-Purpose UDRs 15-33

The new state method can be slower than the in-place method. Design your ITER
support function to use the in-place method whenever possible. When the database
server can skip the copy operation, you can improve performance of your UDA.

To determine which of these methods was used in the ITER support function, the
database server compares the state value that ITER returns and the state value that
was passed into ITER. If these two pointers identify the same memory location, the
ITER function has modified the state in-place. Therefore, the database server does
not need to perform the copy operation. If these two pointers identify different
memory locations, the database server proceeds with the copy operation.

Aggregate support functions have the following restrictions on the deallocation of
an aggregate state:
v For any state other than a pointer-valued state, no aggregate support function

must deallocate the state memory.
v No aggregate support function can return a NULL-valued pointer as the state.

Implementing a Set-Up Argument: You can define a UDA so that the end user
can supply a set-up argument to the aggregate. The set-up argument can customize
the aggregate for a particular invocation. For example, the PERCENT_GTR
user-defined aggregate (see page 15-43) determines the percentage of numbers
greater than a particular value. The UDA could have been implemented so that the
value to compare against is hardcoded into the UDA. However, this would mean a
separate user-defined aggregate that checks for values greater than 10, another that
checks for values greater than 15, and so on.

Instead, the PERCENT_GTR aggregate accepts the value to compare against as a
set-up argument. In this way, the end user can determine what values are needed,
as follows:
SELECT PERCENT_GTR(col1, 10) FROM tab1; -- values > 10;
SELECT PERCENT_GTR(col1, 15) FROM tab1; -- values > 15;

The database server passes in the set-up argument as the second argument to the
INIT function. Therefore, the INIT support function must handle the set-up
argument. Usually, this handling involves performing any initial processing
required for the value and then saving this value in the aggregate state. It might
also check for a possible SQL NULL value as a set-up argument.

This set-up argument is optional, in the sense that you can define a UDA with one
or without one. However, if you define your UDA to include a set-up argument,
the end user must provide a value for this argument. When the UDA is invoked
with two arguments (aggregate argument and set-up argument), the database
server looks for an INIT function with two arguments. If you omit the set-up
argument when you invoke the UDA, the database server looks for an INIT
function with just one argument.

To indicate no set-up argument, the end user can provide the SQL NULL value as
a set-up value. However, if you really want to make the set-up argument truly
optional for the end user, you must create and register two INIT functions:
v One that takes two arguments
v One that takes only one argument

In this case, you could assign the set-up argument some known default value.

As the writer of the UDA, you need to decide whether this feature is useful.

15-34 IBM Informix DataBlade API Programmer’s Guide

Returning an Aggregate Result Different from the Aggregate State: The
aggregate result is the value that the user-defined aggregate returns to the calling
SQL statement. If the user-defined aggregate does not include a FINAL support
function, the database server returns the final aggregate state; that is, it returns the
value of the aggregate state after the last aggregate iteration. However, if your
UDA needs to return a value whose data type is different from the aggregate state,
use a FINAL support function to convert the final aggregate state to the data type
that you want to return from the aggregate.

For example, the PERCENT_GTR user-defined aggregate (see page 15-43) returns
the percentage of values greater than some value as a percentage; that is, as a
fixed-point number in the range 0.00 to 100.00. To handle integer values, the
user-defined aggregate would require an aggregate state that holds the following
values:
v The total number of aggregate arguments greater than 10
v The total number of aggregate arguments
v The value to compare against

However, the aggregate result of PERCENT_GTR is a fixed-point number.
Therefore, you would not want the aggregate to return the final state to the calling
SQL statement. Instead, the FINAL support function needs to perform the
following steps:
1. Divide the total number of arguments that are greater than 10 by the total

number of arguments and multiply by 100.
2. Return the fixed-point quotient, which is the percentage of values greater than

10.

For the complete example of the PERCENT_GTR user-defined aggregate, see page
15-43.

Executing a User-Defined Aggregate in Parallel Queries: The database server
can break up the aggregation computation into several pieces and compute them
in parallel. Each piece is computed sequentially as follows:
1. The INIT support function initializes execution in the parallel thread.
2. For each aggregate argument in the subset, the ITER support function merges

the aggregate argument into a partial result.

The database server then calls the COMBINE support function to merge the partial
states, two at a time, into a final state. For example, for the AVG built-in aggregate,
the COMBINE function would add the two partial sums and adds the two partial
counts. Finally, the database server calls the FINAL support function on the final
state to generate the aggregate result.

Figure 15-15 shows the execution sequence of aggregate support functions for a
user-defined aggregate that is executed in two parallel threads.

Chapter 15. Creating Special-Purpose UDRs 15-35

Figure 15-15 shows how the COMBINE function is used to execute a user-defined
aggregate with two parallel threads. For more than two parallel threads, the
database server calls COMBINE on two thread states to obtain one, combines this
state with another thread state, and so on until it has processed all parallel threads.
The database server makes the decision whether to parallelize execution of a
user-defined aggregate and the degree of such parallelism. However, these
decisions are invisible to the end user.

Parallel aggregation must give the same results as an aggregate that is not
computed in parallel. Therefore, you must write the COMBINE function so that the
result of aggregating over the entire group of selected rows is the same as
aggregating over two partitions of the group separately and then combining the
results.

For an example of COMBINE functions in user-defined aggregates, see “Sample
User-Defined Aggregates” on page 15-37.

Figure 15-15. Parallel Execution of a UDA

15-36 IBM Informix DataBlade API Programmer’s Guide

Sample User-Defined Aggregates
This section provides the sample user-defined aggregates that the following table
describes.

User-Defined
Aggregate Description

SUMSQ Squares each value and calculates the sum of these squared values

SQSUM2 Sums all values and calculates the square of this sum

PERCENT_GTR Determines the percentage of values greater than a user-specified
value

X_PERCENTILE Determines the value in a group of values that is the x-percentile,
where x is a percent that the end user specifies.

Each description includes the aggregate support functions written in C and the
SQL statements to define the user-defined aggregate in the database.

SUMSQ User-Defined Aggregate: The SUMSQ user-defined aggregate squares
each value and calculates the sum of these squared values. It has the following
algorithm:
x1

2 + x2
2 + ...

where each xi is one column value; that is, one aggregate argument.

To determine the aggregate state for SUMSQ, examine what information needs to
be available for each iteration of the aggregate. To perform one iteration of
SUMSQ, the ITER function must:
1. Square the aggregate argument.

The ITER function has access to the aggregate argument because the database
server passes it in. Therefore, ITER does not require additional information to
perform this step.

2. Add the squared argument to the partial sum of previous squared values.
To add in the squared argument, the aggregate must keep a partial sum of the
previous squared values. For the ITER function to have access to the partial
sum from the previous iterations, the aggregate state must contain it.

The SUMSQ has a simple state because the data type of the partial sum is the same
as that of the aggregate argument. For example, when the SUMSQ aggregate
receives INTEGER values, this partial sum is also an INTEGER value. Therefore,
SUMSQ can allow the database server to manage this state, which has the
following effect on the design of the aggregate support functions:
v The INIT support function does not need to perform state management.

An aggregate with a simple state does not need to explicitly handle the
allocation and deallocation of the aggregate state. Instead, the database server
automatically allocates the aggregate state and initializes it to NULL. Therefore,
the INIT function does not require other INIT-function tasks (see Table 15-3 on
page 15-18). Therefore, this support function can safely be omitted from the
aggregate definition.

v The COMBINE support function can be the same as its ITER function.
No special processing is required to merge two partial states. The ITER function
can adequately perform this merge.

Chapter 15. Creating Special-Purpose UDRs 15-37

Before the iterations begin, the partial sum needs to be initialized to zero (0).
However, because the INIT function is not required for state management, this
aggregate initializes the state in the first invocation of its ITER function. The ITER
function then calculates the square of a single aggregate argument, and adds this
value to a partial sum. When the last iteration is reached, the final partial sum is
the value that the SUMSQ aggregate returns. Therefore, the SUMSQ algorithm
does not require a FINAL function for post-iteration tasks.

Figure 15-16 shows the required aggregate support functions that handle an
INTEGER argument for the SUMSQ user-defined aggregate.

The following SQL statement registers the SUMSQ user-defined aggregate in the
database:
CREATE AGGREGATE sumsq

WITH (ITER = iter_sumsq,
COMBINE = combine_sumsq);

This CREATE AGGREGATE statement lists only the aggregate support functions
that are required to implement SUMSQ: ITER and COMBINE.

Suppose that the ITER and COMBINE aggregate support functions for the SUMSQ
aggregate are compiled and linked into a shared-object module named sumsq.

UNIX/Linux Only

On UNIX or Linux, the executable code for the SUMSQ aggregate support
functions would be in a shared library named sumsq.so.

End of UNIX/Linux Only

/* SUMSQ ITER support function on INTEGER */
mi_integer iter_sumsq(state, value, fparam)

mi_integer state;
mi_integer value;
MI_FPARAM *fparam;

{
/* If 'state' is NULL, this is the first invocation.
* Just return square of 'value'.
*/
if (mi_fp_argisnull(fparam, 0))

return (value * value);
else /* add 'state' and square of 'value' together */

return (state + (value * value));
}

/* SUMSQ COMBINE support function on INTEGER */
mi_integer combine_sumsq(state1, state2)

mi_integer state1, state2;
{

/* Return the new partial sum from two parallel partial
* sums
*/
return (iter_sumsq(state1, state2));

}

Figure 15-16. Aggregate Support Functions for SUMSQ on INTEGER

15-38 IBM Informix DataBlade API Programmer’s Guide

Figure 15-17 shows the CREATE FUNCTION statements that register the aggregate
support functions for SUMSQ to handle INTEGER aggregate arguments.

For the tab1 table, which Figure 15-7 on page 15-16 defines, the following query
uses the new SUMSQ aggregate function on the INTEGER column, col3:
SELECT SUMSQ(col3) FROM tab1;

With the rows that Figure 15-7 has inserted, the preceding query yields an
INTEGER value of 2173. To be able to use SUMSQ on other data types, you need
to ensure that the appropriate aggregate support functions exist for this data type.

SQSUM2 User-Defined Aggregate: The SQSUM2 user-defined aggregate is
another version of the SQSUM1 aggregate, which Table 15-2 on page 15-17
describes. Its algorithm is the same as SQSUM1:
(x1 + x2 + ...)2

where each xi is one column value; that is, one aggregate argument.

However, the SQSUM2 aggregate takes advantage of the fact that this aggregate
has a simple state. Because the database server automatically handles state
management, the SQSUM2 aggregate can safely omit the INIT function.

Figure 15-18 shows the aggregate support functions that handle an INTEGER
argument for the SQSUM2 user-defined aggregate.

CREATE FUNCTION iter_sumsq(state INTEGER, one_value INTEGER)
RETURNS INTEGER
WITH (HANDLESNULLS)
EXTERNAL NAME '/usr/udrs/aggs/sums/sumsq.so'
LANGUAGE C;

CREATE FUNCTION combine_sumsq(state1 INTEGER, state2 INTEGER)
RETURNS INTEGER
EXTERNAL NAME '/usr/udrs/aggs/sums/sumsq.so'
LANGUAGE C;

Figure 15-17. Registering the SUMSQ Aggregate Support Functions for INTEGER

Chapter 15. Creating Special-Purpose UDRs 15-39

In its first invocation, the ITER function performs the state initialization. It then
takes a single aggregate argument and adds it to a partial sum. For aggregates
with a simple state, the COMBINE function can be the same as the ITER function.
Therefore, this COMBINE function just calls iter_sumsq2() to perform the merge
of two partial states.

Tip: The ITER function in Figure 15-18 could use the binary operator plus() to
perform the addition. This operator is already defined on the INTEGER data
type and therefore would not need to be written or registered. To use plus()
in ITER, you would need to ensure that it is defined for the data type on
which the SQSUM2 aggregate is defined.

The data type of the aggregate result is also the same as the aggregate state.
Therefore, SQSUM2 is a simple binary operator and the FINAL support function is
not needed to convert the data type of the final state. However, the SQSUM2
aggregate still does require a FINAL support function. The SQSUM2 algorithm
involves a post-iteration calculation: it must square the final sum to obtain the
aggregate return value. The FINAL function performs this final calculation and
returns it as the aggregate result for the SQSUM2 aggregate.

Suppose that the ITER, COMBINE, and FINAL aggregate support functions for the
SQSUM2 aggregate are compiled and linked into a shared-object module named

/* SQSUM2 ITER support function on INTEGER */
mi_integer iter_sqsum2(state, value, fparam)

mi_integer state;
mi_integer value;
MI_FPARAM *fparam;

{
/* If 'state' is NULL, this is the first invocation.
* Just return 'value'.
*/
if (mi_fp_argisnull(fparam, 0))

return (value);
else /* add 'state' and 'value' together */

return (state + value);
}

/* SQSUM2 COMBINE support function on INTEGER */
mi_integer combine_sqsum2(state1, state2)

mi_integer state1, state2;
{

/* Return the new partial sum from two parallel partial
* sums
*/
return (iter_sqsum2(state1, state2));

}

/* SQSUM2 FINAL support function on INTEGER */
mi_integer final_sqsum2(state)

mi_integer state;
{

/* Calculate square of sum */
state *= state;

return (state);
}

Figure 15-18. Aggregate Support Functions for SQSUM2 on INTEGER

15-40 IBM Informix DataBlade API Programmer’s Guide

sqsum.

UNIX/Linux Only

On UNIX or Linux, the executable code for the SQSUM2 aggregate support
functions would be in a shared library named sqsum.so.

End of UNIX/Linux Only

Once you have successfully compiled and linked the aggregate support functions,
you can define the SQSUM2 aggregate in the database. Figure 15-19 shows the
CREATE AGGREGATE statement that registers the SQSUM2 user-defined
aggregate. This statement specifies the registered SQL names of the required
aggregate support functions.

Figure 15-20 shows the CREATE FUNCTION statements that register the SQSUM2
aggregate support functions for the aggregate argument of the INTEGER data type.

In Figure 15-20, the CREATE FUNCTION statement that registers the ITER support
function requires the HANDLESNULLS routine modifier because the aggregate
does not have an INIT support function.

For the tab1 table, which Figure 15-7 on page 15-16 defines, the following query
uses the new SQSUM2 aggregate function on the INTEGER column, col3:
SELECT SQSUM2(col3) FROM tab1;

With the rows that Figure 15-7 has inserted, the preceding query yields an
INTEGER value of 10201, which is the same value that the SQSUM1 aggregate
returned for these same rows.

Now, suppose that you want to define the SQSUM2 user-defined aggregate on the
complexnum_t named row type, which Figure 15-5 on page 15-12 defines. This
version of SQSUM2 must have the same aggregate support functions as the version

CREATE AGGREGATE sqsum2
WITH (ITER = iter_sqsum2,

COMBINE = combine_sqsum2,
FINAL = final_sqsum2);

Figure 15-19. Registering the SQSUM2 User-Defined Aggregate

CREATE FUNCTION iter_sqsum2(state INTEGER, one_value INTEGER)
RETURNS INTEGER
WITH (HANDLESNULLS)
EXTERNAL NAME '/usr/udrs/aggs/sums/sqsum.so'
LANGUAGE C;

CREATE FUNCTION combine_sqsum2(state1 INTEGER, state2 INTEGER)
RETURNS INTEGER
EXTERNAL NAME '/usr/udrs/aggs/sums/sqsum.so'
LANGUAGE C;

CREATE FUNCTION final_sqsum2(state INTEGER)
RETURNS INTEGER
EXTERNAL NAME '/usr/udrs/aggs/sums/sqsum.so'
LANGUAGE C;

Figure 15-20. Registering the SQSUM2 Aggregate Support Functions for INTEGER

Chapter 15. Creating Special-Purpose UDRs 15-41

that handles INTEGER (see Figure 15-19 on page 15-41).

Aggregate Support
Function SQL Function Name C Function Name

ITER iter_sqsum2() iter_sqsum2_complexnum()

COMBINE combine_sqsum2() combine_sqsum2_complexnum()

FINAL final_sqsum2() final_sqsum2_complexnum()

The following code shows the aggregate support functions that handle a
complexnum_t named row type as an argument for the SQSUM2 user-defined
aggregate:
/* SQSUM2 ITER support function for complexnum_t */
MI_ROW *iter_sqsum2_complexnum(state, value, fparam)

MI_ROW *state;
MI_ROW *value;
MI_FPARAM *fparam;

{
/* Compute the new partial sum using the complex_plus()
* function. Put the sum in a new MI_ROW, which
* complex_plus() allocates (and returns a pointer to)
*/
return (complex_plus(state, value, fparam));

}

/* SQSUM2 COMBINE support function for complexnum_t */
MI_ROW *combine_sqsum2_complexnum(state1, state2, fparam)

MI_ROW *state1, *state2;
MI_FPARAM *fparam;

{
MI_ROW *ret_state;

ret_state =
iter2_sqsum2_complexnum(state1, state2, fparam);

mi_free(state1);
mi_free(state2);

return (ret_state);
}

/* SQSUM2 FINAL support function for complexnum_t */
MI_ROW *final_sqsum2_complexnum(state)

MI_ROW *state;
{

MI_CONNECTION *conn;
MI_TYPEID *type_id;
MI_ROW_DESC *row_desc;

MI_ROW *ret_row;
MI_DATUM values[2];
mi_boolean nulls[2] = {MI_FALSE, MI_FALSE};

mi_real *real_value, *imag_value;
mi_integer real_len, imag_len;
mi_real sqsum_real, sqsum_imag;

/* Extract complex values from state row structure */
mi_value_by_name(state, "real_part",

(MI_DATUM *)&real_value, &real_len);
mi_value_by_name(state, "imaginary_part",

(MI_DATUM *)&imag_value, &imag_len);

/* Calculate square of sum */

15-42 IBM Informix DataBlade API Programmer’s Guide

sqsum_real = (*real_value) * (*real_value);
sqsum_imag = (*imag_value) * (*imag_value);

/* Put final result into 'values' array */
values[0] = (MI_DATUM)&sqsum_real;
values[1] = (MI_DATUM)&sqsum_imag;

/* Generate return row type */
conn = mi_open(NULL, NULL, NULL);
type_id = mi_typestring_to_id(conn, "complexnum_t");
row_desc = mi_row_desc_create(type_id);
ret_row = mi_row_create(conn, row_desc, values, nulls);

return (ret_row);
}

Figure 15-21 shows the CREATE FUNCTION statements that register the SQSUM2
aggregate support functions for an aggregate argument of the complexnum_t data
type.

The following query uses the SQSUM2 aggregate function on the complexnum_t
column, col2:
SELECT SQSUM2(col2) FROM tab1;

With the rows that Figure 15-7 on page 15-16 has inserted, the preceding query
yields a complexnum_t value of:
ROW(817.96, 1204.09)

PERCENT_GTR User-Defined Aggregate: Suppose you want to create a
user-defined aggregate that determines the percentage of values greater than some
user-specified value and returns this percentage as a fixed-point number in the
range 0 to 100. The implementation of this UDA uses the following aggregate
features:
v Uses a set-up argument to allow the end user to specify the value to compare

against

CREATE FUNCTION iter_sqsum2(state complexnum_t,
one_value complexnum_t)

RETURNS complexnum_t
WITH (HANDLESNULLS)
EXTERNAL NAME

'/usr/udrs/aggs/sums/sqsum.so(iter_sqsum2_complexnum)'
LANGUAGE C;

CREATE FUNCTION combine_sqsum2(state1 complexnum_t,
state2 complexnum_t)

RETURNS complexnum_t
EXTERNAL NAME

'/usr/udrs/aggs/sums/sqsum.so(combine_sqsum2_complexnum)'
LANGUAGE C;

CREATE FUNCTION final_sqsum2(state complexnum_t)
RETURNS complexnum_t
EXTERNAL NAME

'/usr/udrs/aggs/sums/sqsum.so(final_sqsum2_complexnum)'
LANGUAGE C;

Figure 15-21. Registering the SQSUM2 Aggregate Support Functions for the complexnum_t
Named Row Type

Chapter 15. Creating Special-Purpose UDRs 15-43

v Uses an opaque-type state to hold the state information and initialize the state in
the INIT support function

v Uses a COMBINE function that must do more than just call the ITER support
function

v Returns an aggregate result whose data type is different from that of the
aggregate argument

v Handles NULL values as aggregate arguments

The PERCENT_GTR user-defined aggregate needs the following state information:
v The user-specified set-up argument
v The current number of values greater than the set-up argument
v The current number of values processed

Therefore, it uses the following C structure, named percent_state_t, to hold the
aggregate state:
typedef struct percent_state

{
mi_integer gtr_than;
mi_integer total_gtr;
mi_integer total;
} percent_state_t;

Because the size of the percent_state_t structure never exceeds the maximum
opaque-type size, PERCENT_GTR can use an opaque-type state to hold its
aggregate state. The following code shows the INIT aggregate support function
that handles an INTEGER argument for the PERCENT_GTR aggregate:
/* PERCENT_GTR INIT support function for INTEGER */
percent_state_t *init_percentgtr(dummy_arg, gtr_than, fparam)

mi_integer dummy_arg;
mi_integer gtr_than;
MI_FPARAM *fparam;

{
percent_state_t *state;

/* Allocate PER_ROUTINE memory for state and initialize it */
state = mi_alloc(sizeof(percent_state_t));

/* Check for a NULL-valued set-up argument */
if (mi_fp_argisnull(fparam, 1))

state->gtr_than = 0;
else

state->gtr_than = gtr_than;
state->total_gtr = 0;
state->total = 0;

return (state);
}

This INIT function performs the following tasks:
v Handles a set-up argument

This set-up argument is the value that the end user specifies so that the
aggregate knows which value to compare the aggregate arguments against. If
the end user provides a NULL value for the set-up argument, PERCENT_GTR
checks for values greater than zero (0).

v Allocates PER_ROUTINE memory for the opaque-type state
The INIT function does not need to allocate memory for an opaque-type state
because the database server can perform the state management. However,

15-44 IBM Informix DataBlade API Programmer’s Guide

because PERCENT_GTR already requires an INIT function to handle the set-up
argument, INIT allocates a PER_ROUTINE percent_state_t structure so that it
can initialize the opaque-type state.

The following code implements the ITER aggregate support function that handles
an INTEGER argument for the PERCENT_GTR aggregate:
/* PERCENT_GTR ITER support function for INTEGER */
percent_state_t *iter_percentgtr(curr_state, agg_arg, fparam)

percent_state_t *curr_state;
mi_integer agg_arg;
MI_FPARAM *fparam;

{
if (mi_fp_argisnull(fparam, 1) == MI_TRUE)

agg_arg = 0;

if (agg_arg > curr_state->gtr_than)
curr_state->total_gtr += 1;

curr_state->total += 1;

return (curr_state);
}

The PERCENT_GTR aggregate is defined to handle NULL values (see Figure 15-22
on page 15-46). This ITER function must check for a possible NULL aggregate
argument. The function converts any NULL value to a zero (0) so that the numeric
comparison can occur.

The following COMBINE aggregate support function handles an INTEGER
argument for the PERCENT_GTR aggregate:
/* PERCENT_GTR COMBINE support function for INTEGER */
percent_state_t *combine_percentgtr(state1, state2)

percent_state_t *state1;
percent_state_t *state2;

{
state1->total += state2->total;
state1->total_gtr += state2->total_gtr;

mi_free(state2);

return(state1);
}

Because PERCENT_GTR does not have a simple state, its COMBINE function must
explicitly perform the merging of two parallel threads, as follows:
v It adds the two partial sums (total and total_gtr).
v It deallocates the PER_COMMAND memory for the second parallel thread

(merging of the two states was done “in-place” in state1).

The following code shows the FINAL aggregate support function that handles an
INTEGER argument for the PERCENT_GTR aggregate:
/* PERCENT_GTR FINAL support function for INTEGER */
mi_decimal *final_percentgtr(final_state)

percent_state_t *final_state;
{

mi_double_precision quotient;
mi_decimal return_val;
mi_integer ret;

quotient =
((mi_double_precision)(final_state->total_gtr)) /

Chapter 15. Creating Special-Purpose UDRs 15-45

((mi_double_precision)(final_state->total)) * 100;

if ((ret = deccvdbl(quotient, &return_val)) < 0)
ret = deccvasc("0.00", 4, &return_val);

return (&return_val);
}

The PERCENT_GTR aggregate returns a data type different from the aggregate
state. The FINAL function must convert the final state from the aggregate-state
data type (percent_state_t) to the aggregate-result data type (DECIMAL).

Once you have successfully compiled and linked the aggregate support functions,
you can define the PERCENT_GTR aggregate in the database. For a user-defined
aggregate that uses an opaque-type state, this definition includes the following
steps:
1. Use CREATE OPAQUE TYPE to register the opaque type that holds the

opaque-type state.
2. Use CREATE AGGREGATE to register the aggregate.
3. Use CREATE FUNCTION to register the aggregate support functions.

The PERCENT_GTR aggregate uses a fixed-length opaque type, percent_state_t, to
hold its opaque-type state. The following CREATE OPAQUE TYPE statement
registers this opaque type:
CREATE OPAQUE TYPE percent_state_t (INTERNALLENGTH = 12);

The INTERNALLENGTH modifier specifies the size of the fixed-length C data
structure, percent_state_t, that holds the opaque-type state.

Figure 15-22 shows the CREATE AGGREGATE statement that defines the
PERCENT_GTR user-defined aggregate. This statement specifies the registered SQL
names of the required aggregate support functions. It also includes the
HANDLESNULLS modifier to indicate that the PERCENT_GTR aggregate does
process NULL values as aggregate arguments. By default, the database server does
not pass a NULL value to an aggregate.

Suppose that the INIT, ITER, COMBINE, and FINAL aggregate support functions
for the PERCENT_GTR aggregate are compiled and linked into a shared-object
module named percent.

UNIX/Linux Only

On UNIX or Linux, the executable code for the PERCENT_GTR aggregate support
functions would be in a shared library named percent.so.

End of UNIX/Linux Only

CREATE AGGREGATE percent_gtr
WITH (INIT = init_percent_gtr,

ITER = iter_percent_gtr,
COMBINE = combine_percent_gtr,
FINAL = final_percent_gtr,
HANDLESNULLS);

Figure 15-22. Registering the PERCENT_GTR User-Defined Aggregate

15-46 IBM Informix DataBlade API Programmer’s Guide

The following CREATE FUNCTION statements register the PERCENT_GTR
aggregate support functions for an aggregate argument of the INTEGER data type:
CREATE FUNCTION init_percent_gtr(dummy INTEGER, gtr_val INTEGER)
RETURNING percent_state_t
WITH (HANDLESNULLS)
EXTERNAL NAME '/usr/udrs/aggs/percent/percent.so(init_percentgtr)'
LANGUAGE C;

CREATE FUNCTION iter_percent_gtr(state percent_state_t, one_value INTEGER)
RETURNS percent_state_t
WITH (HANDLESNULLS)
EXTERNAL NAME '/usr/udrs/aggs/percent/percent.so(iter_percentgtr)'
LANGUAGE C;

CREATE FUNCTION combine_percent_gtr(state1 percent_state_t,
state2 percent_state_t)

RETURNS percent_state_t
WITH (HANDLESNULLS)
EXTERNAL NAME '/usr/udrs/aggs/percent/percent.so(combine_percentgtr)'
LANGUAGE C;

CREATE FUNCTION final_percent_gtr (state percent_state_t)
RETURNS DECIMAL(5,2)
WITH (HANDLESNULLS)
EXTERNAL NAME '/usr/udrs/aggs/percent/percent.so(final_percentgtr)'
LANGUAGE C;

These CREATE FUNCTION statements register an SQL name for each of the
aggregate support functions that you have written in C. They must all include the
HANDLESNULLS routine modifier because the PERCENT_GTR aggregate handles
NULL values.

The following query uses the PERCENT_GTR aggregate function on the INTEGER
column, col3, to determine the percentage of values greater than 25:
SELECT PERCENT_GTR(col3, 20) FROM tab1;

With the rows that Figure 15-7 on page 15-16 has inserted, the preceding query
yields a DECIMAL(5,2) value of 33.33 percent: 2 of the 6 values are greater than 20
(24 and 31).

X_PERCENTILE User-Defined Aggregate: Suppose you want to create a
user-defined aggregate that calculates the x-percentile for a group of values. The
x-percentile is the number within the group of values that separates x percent of the
values below and (100-x) percent above. The median is a special case of the
x-percentile. It represents the 50th-percentile:
X_PERCENTILE(y, 50)

That is, the above aggregate returns the value within a sample of y values that has
an equal number of values (50 percent) above and below it in the sample.

The implementation of this UDA uses the following aggregate features:
v Uses a set-up argument to enable the end user to specify the x-percentile to

obtain
v Uses a pointer-valued state to hold the state information, and allocates and

initializes the state in the INIT support function
v Uses a COMBINE function that must do more than just call the ITER support

function

Chapter 15. Creating Special-Purpose UDRs 15-47

v Handles NULL values as aggregate arguments, including returning an SQL
NULL value if the aggregate argument to return was NULL

The X_PERCENTILE user-defined aggregate needs the following state information:
v The user-specified set-up argument
v The current number of values processed
v The current list of values processed
v The current list of whether the values processed are NULL.

Therefore, X_PERCENTILE uses a C structure named percentile_state_t to hold the
aggregate state:
#define MAX_N 1000

typedef struct percentile_state
{
mi_integer percentile;
mi_integer count;
mi_integer value_array[MAX_N];
mi_integer value_is_null[MAX_N];
} percentile_state_t;

Important: The percentile_state_t structure stores the number of values processed
in an in-memory array within the state. You could also choose to store
these values elsewhere, such as in an operating-system file or in a
separate location in memory. Each of these locations has advantages
and disadvantages. Choose the structure that best fits your application
needs.

The size of the percentile_state_t structure depends on the number of aggregate
arguments stored in the value_array array; that is, values less then or equal to the
MAX_N constant. On a system with four-byte mi_integer values, the size of this
structure is:
8 + 4(MAX_N)

If X_PERCENTILE used an opaque-type state, this structure must be less than the
maximum opaque-type size. For systems that have a 32 kilobyte maximum
opaque-type size, the X_PERCENTILE aggregate could use an opaque-type state as
long as it is called in a query that finds 8190 or fewer rows. If the query finds
more than 8190 rows, the state would not fit into an opaque type. To avoid this
restriction, X_PERCENTILE implements the aggregate state as a pointer-valued
state.

The following code shows the INIT aggregate support function that handles an
INTEGER argument for the X_PERCENTILE aggregate:
/* X_PERCENTILE INIT support function on INTEGER */
mi_pointer init_xprcnt(dummy, prcntile, fparam)

mi_integer dummy;
mi_integer prcntile;
MI_FPARAM *fparam;

{
percentile_state_t *state;

/* Allocate memory for the state from the PER_COMMAND
* pool
*/
state = (percentile_state_t *)

mi_dalloc(sizeof(percentile_state_t), PER_COMMAND);

15-48 IBM Informix DataBlade API Programmer’s Guide

/* Initialize the aggregate state */
if (mi_fp_argisnull(fparam, 1))

state->percentile = 50; /* median */
else

state->percentile = prcntile;
state->count = 0;

return ((mi_pointer)state);
}

This INIT support function performs the following tasks:
v Handles a set-up argument

This set-up argument is the value that the end user specifies so that the
aggregate can determine the value that has x percent values below and (100-x)
percent above. If the end user provides an SQL NULL for the set-up argument,
X_PERCENTILE assumes a value of 50 and therefore calculates the median.

v Allocates PER_COMMAND memory for the pointer-valued state
The database server does not perform state management for pointer-valued
states. Therefore, the INIT function must allocate the memory for the state. It
also assigns the appropriate values to the percentile_state_t structure to initialize
the state.

The following code implements the ITER aggregate support function that handles
an INTEGER argument for the X_PERCENTILE aggregate:
/* X_PERCENTILE ITER support function on INTEGER */
mi_pointer iter_xprcnt(state_ptr, value, fparam)

mi_pointer state_ptr;
mi_integer value;
MI_FPARAM *fparam;

{
mi_integer i, j;
mi_integer is_null = 0;
percentile_state_t *state =

(percentile_state_t *)state_ptr;

/* Check for NULL-valued 'value' */
if (mi_fp_argisnull(fparam, 1))

{
value = 0;
is_null = 1;
}

/* Find position of 'value' in ordered 'value_array' */
for (i=0; i < state->count; i++)

{
if (state->value_array[i] > value)

break;
}

/* Increment number of values (count) */
++state->count;

/* Put value into ordered list of existing values */
for (j=state->count - 1; j > i; j--)

{
state->value_array[j] = state->value_array[j-1];
state->value_is_null[j] = state->value_is_null[j-1];
}

state->value_array[i] = value;
state->value_is_null[i] = is_null;

return ((mi_pointer)state);
}

Chapter 15. Creating Special-Purpose UDRs 15-49

The ITER support function updates the aggregate state in-place with the following
information:
v Increments the number of aggregate arguments processed (count)
v Stores the new aggregate argument in increasing sorted order in the value_array

array
v Stores the is-NULL flag that corresponds to each aggregate argument in its

corresponding position in the value_is_null array

The ITER function also handles a possible NULL-valued aggregate argument.
Because the X_PERCENTILE aggregate is defined to handle NULL values (see
Figure 15-23 on page 15-51), the database server calls ITER for NULL-valued
aggregate arguments.

The following COMBINE aggregate support function handles an INTEGER
argument for the X_PERCENTILE aggregate:
/* X_PERCENTILE COMBINE support function on INTEGER */
mi_pointer combine_xprcnt(state1_ptr, state2_ptr)

mi_pointer state1_ptr, state2_ptr;
{

mi_integer i;
percentile_state_t *state1 =

(percentile_state_t *)state1_ptr;
percentile_state_t *state2 =

(percentile_state_t *)state2_ptr;

/* Merge the two ordered value arrays */
for (i=0; i < state2->count; i++)

(void) iter_xprcnt(state1_ptr,
state2->value_array[i]);

/* Free the PER_COMMAND memory allocated to the state of
* the 2nd parallel thread (state2). The memory
* allocated to the state of the 1st parallel thread
* (state1) holds the updated state. It is in the FINAL
* support function.
*/
mi_free(state2);

return (state1_ptr);
}

This COMBINE support function merges two aggregate states, as follows:
v Two ordered lists are merged into a single ordered list.
v Two counts are added together.
v Memory for one of the partial states is freed.
v A pointer to the merged aggregate state is returned.

The following FINAL aggregate support function handles an INTEGER argument
for the X_PERCENTILE aggregate:
/* X_PERCENTILE FINAL support function on INTEGER */
mi_integer final_xprcnt(state_ptr, fparam)

mi_pointer state_ptr;
MI_FPARAM *fparam;

{
mi_integer index, trunc_int;
mi_integer x_prcntile;
percentile_state_t *state =

(percentile_state_t *)state_ptr;

/* Obtain index position of x-percentile value */

15-50 IBM Informix DataBlade API Programmer’s Guide

trunc_int = (state->count) * (state->percentile);
index = trunc_int/100;
if ((trunc_int % 100) >= 50)

index++;

/* Obtain x-percentile value from sorted 'value_array' */
x_prcntile = state->value_array[index];

/* Check for NULL value so it can be returned as such */
if (state->value_is_null[index])

mi_fp_setreturnisnull(fparam, 0, MI_TRUE);

/* Free the PER_COMMAND memory allocated to the state */
mi_free(state);

/* Return retrieved x-percentile value */
return (x_prcntile);

}

This FINAL support function performs the following tasks:
v Calculates the x-percentile for the values in the sorted array

The FINAL function must obtain the index position for the value that represents
the x-percentile, where x is the percentage that the end user has passed in as a
set-up argument.

v Deallocates PER_COMMAND memory for the pointer-valued state
The database server does not perform any state management for pointer-valued
states. Therefore, the FINAL function must deallocate the PER_COMMAND state
memory that the INIT function has allocated.

After you successfully compile and link the aggregate support functions, you can
define the PERCENT_GTR aggregate in the database. Figure 15-23 shows the
CREATE AGGREGATE statement that defines the X_PERCENTILE user-defined
aggregate. This statement specifies the registered SQL names of the required
aggregate support functions. It also includes the HANDLESNULLS modifier to
indicate that the PERCENT_GTR aggregate does process NULL values as aggregate
arguments. By default, the database server does not pass a NULL value to an
aggregate.

Suppose that the INIT, ITER, COMBINE, and FINAL aggregate support functions
for the X_PERCENTILE aggregate are compiled and linked into a shared-object
module named percent.

UNIX/Linux Only

On UNIX or Linux, the executable code for the X_PERCENTILE aggregate support
functions would be in a shared library named percent.so.

End of UNIX/Linux Only

CREATE AGGREGATE x_percentile
WITH (INIT = init_x_prcntile,

ITER = iter_x_prcntile,
COMBINE = combine_x_prcntile,
FINAL = final_x_prcntile,
HANDLESNULLS);

Figure 15-23. Registering the X_PERCENTILE User-Defined Aggregate

Chapter 15. Creating Special-Purpose UDRs 15-51

The following CREATE FUNCTION statements register the X_PERCENTILE
aggregate support functions for an aggregate argument of the INTEGER data type:
CREATE FUNCTION init_x_prcntile(dummy INTEGER, x_percent INTEGER)

RETURNING POINTER
WITH (HANDLESNULLS)
EXTERNAL NAME

'/usr/udrs/aggs/percent/percent.so(init_xprcnt)'
LANGUAGE C;

CREATE FUNCTION iter_x_prcntile(agg_state POINTER,
one_value INTEGER)

RETURNS POINTER
WITH (HANDLESNULLS)
EXTERNAL NAME

'/usr/udrs/aggs/percent/percent.so(iter_xprcnt)'
LANGUAGE C;

CREATE FUNCTION combine_x_prcntile(agg_state1 POINTER,
agg_state2 POINTER)

RETURNS POINTER
WITH (HANDLESNULLS)
EXTERNAL NAME
'/usr/udrs/aggs/percent/percent.so(combine_xprcnt)'
LANGUAGE C;

CREATE FUNCTION final_x_prcntile(agg_state POINTER)
RETURNS INTEGER
WITH (HANDLESNULLS)
EXTERNAL NAME

'/usr/udrs/aggs/percent/percent.so(final_xprcnt)'
LANGUAGE C;

These CREATE FUNCTION statements use the SQL data type, POINTER, to
indicate that the aggregate support functions accept a generic C pointer and
perform their own memory management. They must all include the
HANDLESNULLS routine modifier because the X_PERCENTILE aggregate handles
NULL values.

The following query uses the X_PERCENTILE aggregate function on the INTEGER
column, col3, to determine the quartile (the 25th percentile) for the values in col3:
SELECT X_PERCENTILE(col3, 25) FROM tab1;

For the tab1 rows that Figure 15-7 on page 15-16 has inserted, X_PERCENTILE
creates the following sorted list for the col3 values:
5, 9, 13, 19, 24, 31

Because 25 percent of 6 values is 1.5, X_PERCENTILE obtains the list item that has
2 values (1.5 rounded up to the nearest integer) below it. The preceding query
returns 13 as the quartile for col3.

Suppose you add the following row to the tab1 table:
INSERT INTO tab1 (7, NULL:complexnum_t, NULL);

This INSERT statement adds a NULL value to the col3 column. Because
X_PERCENTILE handles NULLs, the database server calls the X_PERCENTILE
aggregate on this new row as well. After this seventh row is inserted,
X_PERCENTILE would generate the following sorted list for col3:
(NULL), 5, 9, 13, 19, 24, 31

15-52 IBM Informix DataBlade API Programmer’s Guide

Twenty-five percent of 7 values is 1.75, so X_PERCENTILE obtains the list item
that has 2 (1.75 truncated to the nearest integer) values below it. Now the quartile
for col3 would be 9. If X_PERCENTILE was not registered with the
HANDLESNULLS modifier, however, the database server would not call
X_PERCENTILE for this newest row and the quartile for col3 would have been 13
(the quartile for 6 rows, even though col3 actually has 7 rows).

If you called the X_PERCENTILE aggregate with an x-percentile that would return
the first value in the list (the NULL value), the FINAL support function uses the
DataBlade API function mi_fp_setreturnisnull() to set the aggregate result to
NULL. For example, suppose you execute the following query on the col3:
SELECT X_PERCENTILE(col3, 5) FROM tab1;

This query asks for the 5th percentile for the seven values in col3. Because 5
percent of 7 values is 0.35, X_PERCENTILE obtains the list item that has zero
values (0.35 truncated to the nearest integer) below it. The preceding query returns
NULL as the quartile for col3. The ITER function has stored NULL values as zeros
in the sorted value_array. For the FINAL support function to determine when a
value of zero indicates a NULL and when it indicates zero, it checks the
value_is_null array. If the zero indicates a NULL value, FINAL calls the DataBlade
API function mi_fp_setreturnisnull() to set the aggregate result to NULL.

Providing UDR-Optimization Functions
The DataBlade API provides support for you to create the following kinds of
special-purpose UDRs to optimize UDR performance:
v Tasks that optimize execution of UDRs

When you write a UDR, you can provide the query optimizer with the following
information to help it determine the best query path for queries that contain the
UDR.

Filter Optimization More Information

Parallel Execution “Creating Parallelizable UDRs” on page 15-61

Cost-of-execution “Query Cost” on page 15-55
v UDRs that optimize query filters

If your UDR returns a BOOLEAN value (mi_boolean), it is called a Boolean
function. Table 15-5 shows the kinds of Boolean functions that are useful as filters in
a query.

Table 15-5. Boolean Functions Useful as Query Filters

Comparison Condition Operator Symbol Associated User-Defined Function

Relational operator =, !=, <>

<, <=

>, >=

equal(), notequal(), notequal()

lessthan(), lessthanorequal()

greaterthan(), greaterthanorequal()

LIKE, MATCHES None like(), matches()

Boolean function None Name of a user-defined function that
returns a BOOLEAN value

Chapter 15. Creating Special-Purpose UDRs 15-53

When you write one of the Boolean functions in Table 15-5, you can also provide
the query optimizer with information about how to best evaluate a filter that
consists of the Boolean function. You can define the following UDR-optimization
functions for Boolean functions.

Filter Optimization More Information

Negator function “Creating Negator Functions” on page 15-60

Selectivity “Query Selectivity” on page 15-54

Writing Selectivity and Cost Functions
The query optimizer uses the selectivity and cost of a query to help select the best
query plan. To help the optimizer select the best query plan, you can provide the
query optimizer with information about the selectivity and cost of your UDR.

This information is extremely useful for an expensive UDR, a UDR that requires a
lot of execution time or resources to execute. When the query optimizer can obtain
the selectivity and cost for an expensive UDR, it can better determine when to
execute the UDR in the query plan.

When you write an expensive UDR, you can indicate the following
performance-related characteristics of the UDR to assist the query optimizer in
developing a query plan:
v The cost of the UDR is a measurement of how expensive the UDR is to run.
v The selectivity of the UDR is a percentage of the number of rows that you expect

it to return.

This section describes how to create selectivity and cost functions for an expensive
UDR. For a general description of how the query optimizer uses cost and
selectivity for UDRs, see the IBM Informix User-Defined Routines and Data Types
Developer’s Guide.

Tip: The IBM Informix BladeSmith development tool automatically generates C
source code for selectivity and cost functions as well as the SQL statements to
register these functions. For more information, see the IBM Informix DataBlade
Developers Kit User’s Guide.

Query Selectivity
If your UDR is a Boolean function, it can be used as a filter in a query. (For a list of
Boolean functions that are useful as query filters, see Table 15-5 on page 15-53.) The
query optimizer uses the selectivity of a query to estimate the number of rows that
the query will return. The selectivity is a floating-point value between zero (0) and
one (1) that represents the percentage of rows for which the query (and each filter
in the query) is expected to return a true value.

For a Boolean function likely to be used as a query filter, you can use the following
routine modifiers to specify a selectivity for the function.

Selectivity Routine Modifier

Selectivity is constant for every invocation
of the Boolean function.

SELCONST = selectivity_value

selectivity_value is a floating-point value between
0 and 1.

15-54 IBM Informix DataBlade API Programmer’s Guide

Selectivity Routine Modifier

Selectivity varies according to some
execution conditions.

SELFUNC = selectivity_func

selectivity_func is the name of a selectivity
function that returns a floating-point value
between 0 and 1 to indicate the selectivity of the
Boolean function.

When the query optimizer needs to determine the selectivity of the Boolean
function, it either uses the constant selectivity value or calls the selectivity function,
depending whether the Boolean function was registered with the SELCONST or
SELFUNC routine modifier.

If you need to calculate the selectivity for a Boolean function at runtime, create a
selectivity function.

To create a selectivity function:

1. Write a C user-defined function to implement the selectivity function.
The selectivity function has the following coding requirements:
v The selectivity function must take the same number of arguments as its

companion Boolean function.
v Each argument of the selectivity function must be declared of type

MI_FUNCARG.
v The selectivity function must return the selectivity as a floating-point value

(mi_real or mi_double_precision) that is between zero and one.
2. Register the selectivity function with the CREATE FUNCTION statement.

The SQL selectivity function has the following registration requirements:
v The selectivity function must take the same number of arguments as its

companion Boolean function.
v Each argument of the selectivity function must be declared of type

SELFUNCARG.
v The selectivity function must return the selectivity as a FLOAT value.

3. Associate the selectivity function with its companion UDR with the SELFUNC
routine modifier when you register the companion UDR.

Query Cost
If your UDR requires a lot of system resources (such as a large number of disk
accesses or network accesses), you can define a cost-of-execution for the UDR. The
query optimizer uses the cost value to determine the total cost of executing a
query.

Tip: You can define a cost for either a user-defined procedure or a user-defined
function. However, user-defined functions can appear in queries because they
return a value. Because user-defined procedures do not appear in queries, the
query optimizer is not usually concerned with their cost.

When you register a UDR, you can specify its cost with one of the following
routine modifiers.

Chapter 15. Creating Special-Purpose UDRs 15-55

Cost Routine Modifier

Cost is constant for every
invocation of the UDR.

PERCALL_COST = cost_value

cost_value is a floating-point value between 0 and 1.

Cost varies according to some
execution conditions.

COSTFUNC = cost_func

cost_func is the name of a cost UDR that returns a
floating-point value between 0 and 1 to indicate the cost
of the UDR.

When the query optimizer needs to determine the cost of the UDR, it either uses
the constant cost value or calls the cost function, depending whether the UDR was
registered with the PERCALL_COST or COSTFUNC routine modifier.

If you need to calculate the cost for a UDR at runtime, create a cost function.

To create a cost function:

1. Write a C user-defined function to implement the cost function.
The cost function has the following coding requirements:
v The cost function must take the same number of arguments as its companion

UDR.
v Each argument of the cost function must be declared of type MI_FUNCARG.

For more information, see “MI_FUNCARG Data Type” on page 15-56.
v The cost function must return the cost as an integer value (mi_integer or

mi_smallint).
2. Register the cost function with the CREATE FUNCTION statement.

The SQL cost function has the following registration requirements:
v The cost function must take the same number of arguments as its companion

UDR.
v Each argument of the cost function must be declared of type SELFUNCARG.
v The cost function must return the cost as an INTEGER or SMALLINT value.

3. Associate the cost function with its companion UDR with the COSTFUNC
routine modifier when you register the companion UDR.

MI_FUNCARG Data Type
The MI_FUNCARG data type is an Informix-defined opaque type that contains
information about the companion UDR of a selectivity or cost function. Selectivity
and cost functions both have the same number of arguments as their companion
UDRs. To calculate selectivity or cost effectively, however, your user-defined
function might need to know additional information about the context in which
the UDR was called. The DataBlade API provides this contextual information in
the MI_FUNCARG structure.

Each argument of a cost or selectivity function is of type MI_FUNCARG. The
DataBlade API provides accessor functions for the MI_FUNCARG structure. You
can use any of these functions to extract information about the companion-UDR
arguments from the selectivity or cost function. Table 15-6 lists the DataBlade API
accessor functions that obtain information from the MI_FUNCARG structure.

15-56 IBM Informix DataBlade API Programmer’s Guide

Table 15-6. Argument Information in the MI_FUNCARG Structure

MI_FUNCARG Information DataBlade API Function

Information about the companion UDR:

The identifier of the companion UDR mi_funcarg_get_routine_id()

The name of the companion UDR mi_funcarg_get_routine_name()

General companion-UDR argument information:

Whether the companion-UDR argument is a column, constant, or
parameter

mi_funcarg_get_argtype()

The data type of companion-UDR argument mi_funcarg_get_datatype()

The length of the companion-UDR argument mi_funcarg_get_datalen()

Constant argument (MI_FUNCARG_CONSTANT):

The constant value of the companion-UDR argument mi_funcarg_get_constant()

Whether the value of the companion-UDR argument is the SQL
NULL value

mi_funcarg_isnull()

Column-value argument (MI_FUNCARG_COLUMN):

The column number of the column associated with the
companion-UDR argument

mi_funcarg_get_colno()

The table identifier of the table that contains the column associated
with the companion-UDR argument

mi_funcarg_get_tabid()

The distribution information for the column associated with the
companion-UDR argument

mi_funcarg_get_distrib()

Table 15-7 lists the DataBlade API accessor functions that obtain general
information about a companion UDR from the MI_FUNCARG structure.

Table 15-7. General Companion-UDR Information in the MI_FUNCARG Structure

MI_FUNCARG Information DataBlade API Function

Information about the companion UDR:

The identifier of the companion UDR mi_funcarg_get_routine_id()

The name of the companion UDR mi_funcarg_get_routine_name()

General companion-UDR argument information:

Whether the companion-UDR argument is a column, constant, or
parameter

mi_funcarg_get_argtype()

The data type of companion-UDR argument mi_funcarg_get_datatype()

The length of the companion-UDR argument mi_funcarg_get_datalen()

Important: To a DataBlade API module, the MI_FUNCARG data type is an
opaque data type. Do not access its internal fields directly. The internal
structure of this opaque data type may change in future releases.
Therefore, to create portable code, always use the accessor functions in
Table 15-6 to obtain values in this data type.

The MI_FUNCARG structure categorizes each argument of the companion UDR
arguments. The MI_FUNCARG data type identifies the following kinds of
arguments in the companion UDR.

Chapter 15. Creating Special-Purpose UDRs 15-57

Companion-UDR Argument Type Argument-Type Constant

Argument is a constant value MI_FUNCARG_CONSTANT

Argument is a column value MI_FUNCARG_COLUMN

Argument is a parameter MI_FUNCARG_PARAM

In addition to the general companion-UDR information that the functions in
Table 15-7 obtain, you can also obtain information about the arguments themselves.
The information that you can obtain depends on the particular category of the
companion-UDR argument. Table 15-8 lists the DataBlade API accessor functions
that obtain argument information from the MI_FUNCARG structure.

Table 15-8. Argument Information in the MI_FUNCARG Structure

MI_FUNCARG Information DataBlade API Function

Constant argument (MI_FUNCARG_CONSTANT):

The constant value of the companion-UDR argument mi_funcarg_get_constant()

Determines if the value of the companion-UDR argument is the SQL NULL
value

mi_funcarg_isnull()

Column-value argument (MI_FUNCARG_COLUMN):

The column number of the column associated with the companion-UDR
argument

mi_funcarg_get_colno()

The table identifier of the table that contains the column associated with
the companion-UDR argument

mi_funcarg_get_tabid()

The distribution information for the column associated with the
companion-UDR argument

mi_funcarg_get_distrib()

For example, you can write the following query:
SELECT * FROM tab1 WHERE meets_cost(tab1.int_col, 20) ...;

Suppose you register the meets_cost() function with a selectivity function named
meets_cost_selfunc(), as follows:
CREATE FUNCTION meets_cost(col INTEGER, value INTEGER)

RETURNS BOOLEAN
WITH (....SELFUNC=meets_cost_selfunc....)
EXTERNAL NAME '......'
LANGUAGE C;

Because the meets_cost() function returns a BOOLEAN value, you can write a
selectivity function for the function. You write meets_cost_selfunc() so that it
expects two arguments of the data type MI_FUNCARG. The following table shows
what different MI_FUNCARG accessor functions return when you invoke them for
each of the arguments of the meets_cost() function.

DataBlade API Function Argument 1 Argument 2

mi_funcarg_get_argtype() MI_FUNCARG_COLUMN MI_FUNCARG_CONSTANT

mi_funcarg_get_datatype() Type identifier for data type of
tab1.int_col

Type identifier for INTEGER data type

mi_funcarg_get_datalen() Length of tab1.int_col Length of INTEGER

mi_funcarg_get_tabid() Table identifier of tab1 Undefined

mi_funcarg_get_colno() Column number of int_col Undefined

15-58 IBM Informix DataBlade API Programmer’s Guide

DataBlade API Function Argument 1 Argument 2

mi_funcarg_isnull() FALSE FALSE

mi_funcarg_get_constant() Undefined An MI_DATUM structure that holds the
value of 20

Obtaining Information About Constant Arguments
When the companion UDR receives an argument that is a constant, you can obtain
the following information about this constant from within the cost or selectivity
function.

MI_FUNCARG Information DataBlade API Function

The constant value of the companion-UDR
argument

mi_funcarg_get_constant()

Determines if the value of the companion-UDR
argument is the SQL NULL value

mi_funcarg_isnull()

Obtaining Information About Column Arguments
When the companion UDR receives an argument that is a column, you can obtain
the following information about this column from the associated MI_FUNCARG
argument of the cost or selectivity function.

MI_FUNCARG Information DataBlade API Function

The column number of the column associated
with the companion-UDR argument

mi_funcarg_get_colno()

The table identifier of the table that contains the
column associated with the companion-UDR
argument

mi_funcarg_get_tabid()

The data-distribution information for the column
associated with the companion-UDR argument

mi_funcarg_get_distrib()

The column number and table identifier are useful in a selectivity or cost function
to obtain additional information about the column argument from the syscolumns
or systables system catalog tables. The data distribution is useful if the
determination of selectivity or cost depends on how the column values are
distributed; that is, how many values in each range of values. Data distributions
only make sense for data types that can be ordered.

The mi_funcarg_get_distrib() function obtains the contents of the encdat column
of the sysdistrib system catalog table. The encdat column stores the data
distribution for the column associated with the companion-UDR argument, as
follows:
v For columns of built-in data types, the data distribution is stored as an ASCII

histogram, with a predetermined number of ordered bins that hold the sorted
column values.

v For columns of user-defined data types, this data distribution is in a
user-defined statistics structure.

The mi_funcarg_get_distrib() function returns the data distribution in an
mi_bitvarying structure as an mi_statret structure. The mi_statret structure can
store the data distribution either directly in the structure (in the statdata.buffer
field) or in a smart large object (in the statdata.mr field).

Chapter 15. Creating Special-Purpose UDRs 15-59

For more information about user-defined statistics, see “Providing Statistics Data
for a Column” on page 16-40.

Creating Negator Functions
A negator function is a special UDR that is associated with a Boolean user-defined
function. It evaluates the Boolean NOT condition for its associated user-defined
function. For example, if an expression in a WHERE clause invokes a Boolean
user-defined function (UDR-Boolfunc), the SQL optimizer can decide whether it is
more efficient to replace occurrences of the expression

NOT (UDR-Boolfunc)

with a call to the negator function (UDR-func-negator).

To implement a negator function with a C user-defined function:

1. Declare the negator function so that its parameters are exactly the same as its
associated user-defined function and its return value is BOOLEAN
(mi_boolean).

2. Within the negator function, perform the tasks to evaluate the NOT condition
of the associated Boolean user-defined function.

3. Register the negator function as a user-defined function with the CREATE
FUNCTION statement.

4. Associate the Boolean user-defined function and its negator function when you
register the user-defined function.
Specify the name of the negator function with the NEGATOR routine modifier
in the CREATE FUNCTION statement that registers the user-defined function.

For more information about Boolean user-defined functions and negator functions,
see the IBM Informix User-Defined Routines and Data Types Developer’s Guide. For
information on how to determine if a user-defined function has a negator function,
see “Checking for a Negator Function” on page 9-26.

Creating Commutator Functions
A commutator function is a special UDR that is associated with a user-defined
function. A UDR is commutator of another user-defined function if either of the
following statements is true:
v The UDR takes the same arguments as its associated user-defined function but

in opposite order.
v The UDR returns the same result as the associated user-defined function.

For example, the lessthan() and greaterthanorequal() functions are commutators
of one another because the following two expressions yield the same result:
a < b

b >= a

In the following SELECT statement, the optimizer can choose whether it is more
cost effective to execute lessthan(a, b) or greaterthanorequal(b, a) in the WHERE
clause:
SELECT * FROM tab1 WHERE lessthan(a, b);

The optimizer can choose to invoke the function greaterthanorequal(b, a) if there
is no index on lessthan() and there exists an index on greaterthanorequal().

15-60 IBM Informix DataBlade API Programmer’s Guide

To implement a commutator function with a C user-defined function:

1. Declare the commutator function so that its parameters are in the reverse order
as its associated user-defined function and its return value is the same as its
user-defined function.

2. Within the commutator function, perform the tasks to evaluate the commutable
operation of the associated Boolean user-defined function.

3. Register the commutator function as a user-defined function with the CREATE
FUNCTION statement.

4. Associate the user-defined function and its commutator function when you
register the user-defined function.
Specify the name of the commutator function with the COMMUTATOR routine
modifier in the CREATE FUNCTION statement that registers the user-defined
function.

The following CREATE FUNCTION statements register the commute_func1() and
func1() user-defined functions:
CREATE FUNCTION commute_func1(b CHAR(20), a INTEGER)
RETURNS INTEGER
EXTERNAL NAME '/usr/local/lib/udrs/udrs.so'
LANGUAGE C;

CREATE FUNCTION func1(a INTEGER, b CHAR(20))
RETURNS INTEGER
WITH (COMMUTATOR = commute_func1)
EXTERNAL NAME '/usr/local/lib/udrs/udrs.so'
LANGUAGE C;

Important: The generic B-tree secondary-access method does not check for
commutator functions registered with the COMMUTATOR routine
modifier. Instead, it performs its own internal optimization for
commutable operations. However, commutator functions registered
with COMMUTATOR are used by the R-tree secondary-access method
when UDRs occur in fragmentation expressions.

For more information about commutator functions, see the IBM Informix
User-Defined Routines and Data Types Developer’s Guide. For information on how to
determine if a user-defined function has a commutator function, see “Checking for
a Commutator Function” on page 9-26.

Creating Parallelizable UDRs
The Parallel Database Query (PDQ) feature allows the database server to run a
single SQL statement in parallel. When you send a query to the database server, it
breaks your request into a set of discrete subqueries, each of which can be assigned
to a different CPU virtual processor. A parallelizable query is a query that can be
executed in parallel. PDQ is especially effective when your tables are fragmented
and your server computer has more than one CPU.

A parallelizable UDR is a C UDR that can be executed in parallel when it is invoked
within a parallelizable query. If you write your C UDR to be parallelizable, it can
be executed in parallel when the query that invokes it is executed in parallel. That
is, the C UDR can execute on subsets of table data just as the query itself can. A
query that invokes a nonparallelizable UDR can still run in parallel. However, the
calls to the UDR do not run in parallel. Similarly, prepared queries that invoke a
parallelizable query do not run the UDR in parallel.

To create a parallelizable C UDR:

Chapter 15. Creating Special-Purpose UDRs 15-61

1. Write the C UDR so that it does not call any DataBlade API functions that are
non-PDQ-threadsafe.

2. Register the C UDR with the PARALLELIZABLE routine modifier.
3. Execute the parallelized C UDR, once in each scan thread of the parallelized

query.
4. Debug the parallelized C UDR.

The following subsections describe these steps in detail.

Writing the Parallelizable UDR
To write a parallelizable C UDR, you must ensure that the UDR does not include
any calls to the non-PDQ-threadsafe DataBlade API functions that Table 15-9 lists.

Table 15-9. Non-PDQ-Threadsafe DataBlade API Functions

Category of Non-PDQ-Threadsafe Function DataBlade API Function

Statement processing:

Statement execution

A parallelizable UDR cannot parse an SQL statement.

mi_exec(), mi_prepare()

Current-statement processing

No current statement exists in a parallelizable UDR.
Therefore, these functions are not useful.

mi_binary_query(), mi_command_is_finished(),
mi_get_result(), mi_get_row_desc_without_row(),
mi_next_row(), mi_query_finish(),
mi_query_interrupt(),
mi_result_command_name(),
mi_result_row_count(), mi_value(),
mi_value_by_name()

Prepared statements

No prepared statement exists because you cannot
prepare one in a parallelizable UDR. Therefore, these
functions are not useful.

mi_close_statement(),
mi_drop_prepared_statement(),
mi_exec_prepared_statement(),
mi_fetch_statement(),
mi_get_statement_row_desc(),
mi_open_prepared_statement(),
mi_statement_command_name()

All input-parameter accessor functions:
mi_parameter_*
(see Table 8-5 on page 8-15)

Transfer of data

Even though these type-transfer functions are
PDQ-threadsafe, they are usually called within the send
and receive support functions of an opaque type and
are likely to be called during statement processing.

All type-transfer functions: mi_get_*, mi_put_*
(see Table 16-4 on page 16-21)

Other mi_current_command_name()

Save-set handling All save-set functions: mi_save_set_*
(see Table 8-8 on page 8-60)

Complex-type (collections and row types) handling:

15-62 IBM Informix DataBlade API Programmer’s Guide

Table 15-9. Non-PDQ-Threadsafe DataBlade API Functions (continued)

Category of Non-PDQ-Threadsafe Function DataBlade API Function

Collection processing All collection functions: mi_collection_*
(see “Collections” on page 5-2)

Row-type processing mi_get_row_desc(),
mi_get_row_desc_from_type_desc(),
mi_get_row_desc_without_row(),
mi_get_statement_row_desc()

mi_row_create(), mi_row_free(),
mi_row_desc_create(), mi_row_desc_free()

Complex-type processing Type-descriptor accessor functions if they access a
complex type: mi_type_*
(see Table 2-1 on page 2-3)

Column functions if they access a complex type:
mi_column_*
(see Table 5-3 on page 5-30)

Operating-system file access All file-access functions: mi_file_*
(see Table 13-7 on page 13-52)

Tracing:

Even though the files listed here are not
PDQ-threadsafe, you can include most statements that
generate trace output in a parallelizable UDR.

mi_tracefile_set(), mi_tracelevel_set()GL_DPRINTF

Miscellaneous mi_get_connection_option(),
mi_get_database_info(),
mi_get_session_connection(),
mi_get_type_source_type()

A parallelizable C UDR cannot call (either explicitly or implicitly) any of the
DataBlade API functions in Table 15-9. If you attempt to run a UDR that contains a
non-PDQ-threadsafe function in parallel, the database server generates an error. If
your UDR must call one of the functions in Table 15-9, it cannot be parallelizable.

Keep in mind the following considerations when you write a UDR to be
parallelizable:
v For a UDR that operates on an opaque type to be parallelizable, all support

functions of the opaque type must be parallelizable.
v A UDR that operates on complex data types cannot be parallelizable.
v A UDR can be parallelizable whether it runs in the CPU VP or a user-defined

VP.
v A UDR that acts as a functional index cannot be parallelizable.
v A UDR that is parallelizable cannot call a UDR that is not parallelizable (either

explicitly or with the Fastpath interface).

Registering the Parallelizable UDR
When you register a UDR with the PARALLELIZABLE routine modifier, you tell
the database server that the UDR was written according to the guidelines in
“Writing the Parallelizable UDR” on page 15-62. That is, the UDR does not call any
DataBlade API functions that are non-PDQ-threadsafe. However, registering the
UDR with the PARALLELIZABLE modifier does not guarantee that every

Chapter 15. Creating Special-Purpose UDRs 15-63

invocation of the UDR executes in parallel. The decision whether to parallelize a
query and any accompanying UDRs is made when the query is parsed and
optimized.

Executing the Parallelizable UDR
When a query with a parallelizable UDR executes in parallel, each routine instance
might have more than one routine sequence. For a parallelized UDR, the routine
manager creates a routine sequence for each scan thread of the query.

For example, suppose you have the following query:
SELECT a_func(x)
FROM table1
WHERE a_func(y) > 7;

Suppose also that the table1 table in the preceding query is fragmented into four
fragments and the a_func() user-defined function was registered with the
PARALLELIZABLE routine modifier. When this query executes in serial, it contains
two routine instances (one in the select list and one in the WHERE clause) and two
routine sequences. However, when this query executes in parallel over table1, it
still contains two routine instances but it now has six routine sequences:
v One routine sequence for the primary thread to execute a_func() in the select

list.
v Five routine sequences for a_func() in the WHERE clause:

– One routine sequence for the primary thread
– Four routine sequences for secondary PDQ threads, one for each fragment in

the table

The MI_FPARAM structure holds the information of the routine sequence.
Therefore, the routine manager allocates an MI_FPARAM structure for each scan
thread of the parallelized query. All invocations of the UDR that execute in the
scan thread can share the information in an MI_FPARAM structure. However,
UDRs in different scan threads cannot share MI_FPARAM information across scan
threads.

Tip: The DataBlade API also supports memory locking for a parallelizable UDR
that shares data with other UDRs or with multiple instances of the same
routine. Memory locking allows the UDR to implement concurrency control
on its data; however, the memory-locking feature is an advanced feature of
the DataBlade API. For more information on the memory-locking feature, see
“Handling Concurrency Issues” on page 14-27.

For more information about how the routine manager creates a routine sequence,
see “Creating the Routine Sequence” on page 12-22.

Debugging the Parallelizable UDR
You can use the SQL statement SET EXPLAIN to determine whether a
parallelizable query is actually being executed in parallel. The SET EXPLAIN
statement executes when the database server optimizes a statement. It creates a file
that contains:
v A copy of the SQL statement
v The plan of execution that the optimizer has chosen
v An estimate of the amount of work

For more information on SET EXPLAIN, see its description in the IBM Informix
Guide to SQL: Syntax and your IBM Informix Performance Guide.

15-64 IBM Informix DataBlade API Programmer’s Guide

The following onstat options are useful to track execution of parallel activities:
v The -g ath option shows the session thread and any additional scan threads for

each fragment that is scanned for a statement that is running in parallel. You can
use the -g ses option to help find the relationship between the threads.

v The -g stk option dumps the stack of a specified thread. This option can be
helpful in tracing exactly what the thread is doing.

For more information on the onstat utility, see the IBM Informix Administrator’s
Reference.

Chapter 15. Creating Special-Purpose UDRs 15-65

15-66 IBM Informix DataBlade API Programmer’s Guide

Chapter 16. Extending Data Types

In This Chapter . 16-1
Creating an Opaque Data Type . 16-1

Designing an Opaque Data Type. 16-2
Determining External Representation . 16-2
Determining Internal Representation . 16-3

Writing Opaque-Type Support Functions . 16-8
Support Functions as Casts . 16-8
Stream Support Functions . 16-34
Disk-Storage Support Functions . 16-37
Handling Locale-Specific Opaque-Type Data (GLS) 16-39

Registering an Opaque Data Type . 16-39
Registering an Opaque Type in a Database . 16-39
Registering Opaque-Type Support Functions . 16-39
Registering the Opaque-Type Casts . 16-40

Providing Statistics Data for a Column . 16-40
Collecting Statistics Data . 16-40

Designing the User-Defined Statistics . 16-41
Defining the Statistics-Collection Function . 16-41
Collecting the Statistics . 16-43
Registering the statcollect() Function . 16-46
Executing the UPDATE STATISTICS Statement . 16-47

Using User-Defined Statistics . 16-48
Displaying Statistics Data. 16-48
Using User-Defined Statistics in a Query . 16-49

Optimizing Queries. 16-50
Query Plans . 16-51
Selectivity Functions . 16-51

In This Chapter
This chapter describes the following ways to extend data types with C
user-defined routines (UDRs):
v Create an opaque data type with the C language
v Create a distinct data type
v Write operator-class support functions
v Write optimization functions, including selectivity functions, cost functions,

negator functions, and user-defined statistics functions

Tip: For general information about the creation of an opaque type and its support
routines, see the IBM Informix User-Defined Routines and Data Types Developer’s
Guide.

Creating an Opaque Data Type
This section describes how to design and write an opaque data type.

To create an opaque data type:

1. Design the opaque data type, including its external and internal
representations.

2. Write the opaque-type support functions.
3. Take special measures if the opaque type is for multirepresentational data.

© Copyright IBM Corp. 1996, 2009 16-1

Tip: The IBM Informix BladeSmith development tool, which is part of the Informix
DataBlade Developers Kit, automatically generates C source code for the
support routines of an opaque type as well as the SQL statements to register
the opaque type. For more information, see the IBM Informix DataBlade
Developers Kit User’s Guide.

Designing an Opaque Data Type
As with most data types, an opaque data type can have two representations for its
data:
v The external representation, which is a text or binary representation of the

opaque-type data
v The internal representation, which is the internal structure stored on disk

To design an opaque data type, you must determine these representations for the
opaque-type data.

Determining External Representation
The external representation of an opaque data type is a character string. This string
is the literal value for the opaque-type data. A literal value can appear in SQL
statements most anywhere that the binary value can appear. For your opaque-type
data to be valid as a literal value in SQL statements, you must define its external
representation. It is important that the external representation be reasonably
intuitive and easy to enter.

Tip: The external representation of an opaque data type is its ASCII representation.

Suppose you need to create an opaque type that holds information about a circle.
You could create the external representation that Figure 16-1 shows for this circle.

With the external representation in Figure 16-1, an INSERT statement can specify a
literal value for a column of type circle with the following format:
INSERT INTO tab1 (id_col, circle_col) VALUES (1, "(2, 3, 9)");

Similarly, when an opaque type has an external representation, a client application
such as DB–Access (which displays results as character data) can display a
retrieved opaque-type value as part of the output of the following query:
SELECT circle_col FROM tab1 WHERE id_col = 1;

In DB–Access, the results of this query would display as follows:
(2, 3, 9)

Tip: The external representation of an opaque data type is handled by its input
and output support functions. For more information, see “Input and Output
Support Functions” on page 16-11.

Figure 16-1. External Representation of the circle Opaque Data Type

16-2 IBM Informix DataBlade API Programmer’s Guide

Determining Internal Representation
The internal representation of an opaque data type is a C data structure that holds
the information that the opaque type needs. The internal representation of an
opaque type that is stored in a database is called its server internal representation.
Inside this internal C structure, use the platform-independent DataBlade API data
types (such as mi_integer and mi_real) to improve the portability of the opaque
data type.

Tip: The internal representation of an opaque data type is a binary format that
might not match the external binary format surfaced to the client.

For example, Figure 16-2 shows the circle_t data structure, which holds the values
for the circle opaque data type.

The CREATE OPAQUE TYPE statement uniquely names the opaque data type. It is
recommended that you develop a unique prefix for the name of an opaque data
type. If your DataBlade module uses a prefix, such as USR, you could begin the
names of opaque types with this prefix. For example, you might use the prefix
USR on all database objects that your DataBlade module creates. The preceding
circle_t opaque type could be named USR_circle_t to ensure that it does not
conflict with opaque types that other DataBlade modules might create.

You register the opaque data type with the CREATE OPAQUE TYPE statement,
which stores information about the opaque type in the sysxtdtypes system catalog
table. When you register an opaque data type, you provide the following
information about the internal representation of an opaque type:
v The final size of the new opaque data type
v How the opaque data type should be aligned in memory
v How the opaque data type should be passed in an MI_DATUM structure

Determining the Size of an Opaque Type: To save space in the database, you
should lay out the internal representation of the opaque type as compactly as
possible. The database server stores values in its internal representation, so any
C-language structure with padding between entries consumes unnecessary space.
You must also decide whether your opaque data type is to be of fixed length or
varying length. The following sections briefly describe each of these kinds of
opaque types.

Fixed-Length Opaque Data Type: If the C structure that holds your opaque type is
always the same size, regardless of the data it holds, you can declare the opaque
type as a fixed-length opaque type. You tell the database server that an opaque type
is fixed length when you register the opaque type. In the CREATE OPAQUE TYPE

typedef struct
{
mi_double_precision x;
mi_double_precision y;
} point_t;

typedef struct
{
point_t center;
mi_double_precision radius;
} circle_t;

Figure 16-2. Internal Representation of the circle Opaque Data Type

Chapter 16. Extending Data Types 16-3

statement, you must include the INTERNALLENGTH modifier to specify the fixed
size of the C structure. The database server stores the value of the
INTERNALLENGTH modifier in the length column of the sysxtdtypes system
catalog table.

The circle_t C structure (which Figure 16-2 on page 16-3 defines) is a fixed-length
structure because all of its member fields have a constant size. Therefore, the
following CREATE OPAQUE TYPE statement registers a fixed-length opaque type
named circle for the circle_t structure:
CREATE OPAQUE TYPE circle (INTERNALLENGTH = 24);

The size of a fixed-length opaque data type must match the value that the
C-language sizeof directive returns for the C structure. On most compilers, the
sizeof() directive performs cast promotion to the nearest four-byte size to ensure
that the pointer match on arrays of structures works correctly. However, you do
not need to round up for the size of a fixed-length opaque data type. Instead you
can specify alignment for the opaque data type with the ALIGNMENT modifier.
For more information, see “Specifying the Memory Alignment of an Opaque Type”
on page 16-6.

Important: The routine manager does perform cast promotion on argument values
smaller than the size of the MI_DATUM data type when it pushes
routine arguments onto the stack. On some platforms, small values can
create problems with pointer matching. For more information, see
“Pushing Arguments Onto the Stack” on page 12-22.

The size of the fixed-length opaque type determines the passing mechanism for the
opaque type. For more information, see “Determining the Passing Mechanism for
an Opaque Type” on page 16-7.

You can obtain information about support functions for the circle fixed-length
opaque type in “Writing Opaque-Type Support Functions” on page 16-8. The
following table lists the circle support functions that this section declares.

Support Function for
circle Opaque Type Where to Find Declaration

Input Figure 16-6 on page 16-13

Output Figure 16-9 on page 16-14

Receive Figure 16-12 on page 16-18

Send Figure 16-15 on page 16-20

Import Figure 16-18 on page 16-24

Export Figure 16-21 on page 16-27

Importbin Figure 16-24 on page 16-30

Exportbin Figure 16-27 on page 16-32

Varying-Length Opaque Data Type: If the C structure that holds your opaque type
can vary in size depending on the data it holds, you must declare the opaque type
as a varying-length opaque type. The opaque type can contain character strings. Each
instance of the opaque type can contain a character string with a different size.
When you define the internal representation of a varying-length opaque, make sure
that only the last member of the C structure is of varying size.

16-4 IBM Informix DataBlade API Programmer’s Guide

Figure 16-3 shows the internal representation for a varying-length opaque data
type named image.

You tell the database server that an opaque type is varying length when you
register the opaque type. In the CREATE OPAQUE TYPE statement, you must
include the INTERNALLENGTH modifier with the VARIABLE keyword.

The CREATE OPAQUE TYPE statement in Figure 16-4 registers the image opaque
type (which Figure 16-3 on page 16-5 defines) as a varying-length opaque type.

The database server stores the value of the INTERNALLENGTH modifier in the
length column of the sysxtdtypes system catalog table. For varying-length opaque
types, this column holds a value of zero (0).

You can obtain information about support functions for the image varying-length
opaque type in “Writing Opaque-Type Support Functions” on page 16-8. The
following table lists the image support functions that this section declares.

Support Function for
image Opaque Type Where to Find Declaration

Input Figure 16-8 on page 16-13

Output Figure 16-11 on page 16-15

Receive Figure 16-14 on page 16-18

Send Figure 16-17 on page 16-20

Import Figure 16-20 on page 16-25

Export Figure 16-23 on page 16-27

Importbin Figure 16-26 on page 16-31

Exportbin Figure 16-29 on page 16-33

The database server requires you to store the C data structure for a varying-length
opaque type in an mi_lvarchar structure. To store varying-length data in the
mi_lvarchar structure, you need to code support functions. The size limitations of
a varying-length structure apply to a varying-length opaque type as follows:
v By default, the maximum size for a varying-length opaque type is two kilobytes.
v You specify a different maximum size for a varying-length opaque type when

you register the opaque type.

typedef struct
{
mi_integer img_id;
mi_integer img_thresh_trck;
mi_integer img_thresh;
mi_date img_date;
mi_integer img_flags;
mi_lvarchar img_data;
} image_t;

Figure 16-3. Internal Representation for the image Opaque Data Type

CREATE OPAQUE TYPE image
(INTERNALLENGTH = VARIABLE);

Figure 16-4. Registration of the image Opaque Data Type

Chapter 16. Extending Data Types 16-5

In the CREATE OPAQUE TYPE statement, use the MAXLEN modifier. You can
specify a maximum length of up to 32 kilobytes. The database server stores the
value of the MAXLEN modifier in the maxlen column of the sysxtdtypes system
catalog table.

For example, the following CREATE OPAQUE TYPE statement defines a
varying-length opaque type named var_type whose maximum size is four
kilobytes:
CREATE OPAQUE TYPE var_type

(INTERNALLENGTH=VARIABLE, MAXLEN=4096);

Because the database server uses mi_lvarchar to transfer varying-length data, the
passing mechanism for a varying-length opaque type is always by reference. For
more information, see “Determining the Passing Mechanism for an Opaque Type”
on page 16-7.

Specifying the Memory Alignment of an Opaque Type: When the database
server passes an opaque data type to a UDR, it aligns the data on a certain byte
boundary. By default, the database server uses a four-byte alignment for the
internal representation of an opaque type. Four bytes is the standard alignment for
32-bit platforms.

64-bit

On 64-bit platforms, alignment should usually be eight bytes.

End of 64-bit

You can specify a different memory-alignment requirement for your opaque type
with the ALIGNMENT modifier of the CREATE OPAQUE TYPE statement. The
database server stores the value of the ALIGNMENT modifier in the align column
of the sysxtdtypes system catalog table.

Actual alignment requirements depend on the C definition of the opaque type and
on the system (hardware and compiler) on which the opaque data type is
compiled. The following table summarizes valid alignment values for some C data
types.

Value for
ALIGNMENT
Modifier Meaning Purpose

1 Align structure on one-byte
boundary

Structures that begin with one-byte
quantities

2 Align structure on two-byte
boundary

Structures that begin with two-byte
quantities, such as
mi_unsigned_smallint

4 (default) Align structure on four-byte
boundary

Structures that begin with four-byte
quantities, such as mi_real or
mi_unsigned_integer

8 Align structure on eight-byte
boundary

Structures that contain members of
the mi_double_precision data type

Arrays of a data type must follow the same alignment restrictions as the data type
itself. However, structures that begin with single-byte characters (such as
mi_boolean or mi_char) can be aligned anywhere.

16-6 IBM Informix DataBlade API Programmer’s Guide

When you obtain aligned data for an opaque data type from a varying-length
structure, use the mi_get_vardata_align() function. Make sure that the align
argument of mi_get_vardata_align() matches the value of the align column in the
sysxtdtypes system catalog table for the opaque type. For example, the
mi_double_precision data type is aligned on an eight-byte boundary. If an opaque
type contains an array of mi_double_precision values, use
mi_get_vardata_align() with an align value of 8 to access the data portion of the
mi_double_precision array.

The following call to mi_get_vardata_align() obtains data that is aligned on
eight-byte boundaries from the var_struc varying-length structure:
opaque_type_t *buff;
mi_lvarchar *var_struc;
...
buff = (opaque_type_t *)mi_get_vardata_align(var_struc, 8);

Determining the Passing Mechanism for an Opaque Type: The way that the
DataBlade API passes the internal representation of an opaque type in an
MI_DATUM structure depends on the kind of opaque type, as follows:
v For fixed-length opaque types, the contents of the MI_DATUM structure

depends on the size of the internal representation for the opaque type:
– Most fixed-length opaque types have an internal representation that cannot fit

into an MI_DATUM structure. These fixed-length opaque types must be
passed by reference. The MI_DATUM structure contains a pointer to the
internal C structure of the opaque type.

– If your fixed-length opaque type is always smaller than the size of the
MI_DATUM data type, the opaque type can be passed by value. The
MI_DATUM structure contains the actual internal representing of the opaque
type.
For such fixed-length opaque types, you must include the PASSEDBYVALUE
modifier in the CREATE OPAQUE TYPE statement when you register the
opaque type. The database server stores the value of the PASSEDBYVALUE
modifier in the byvalue column of the sysxtdtypes system catalog table.

v For varying-length opaque types, the MI_DATUM structure always contains a
pointer to an mi_lvarchar structure.
Varying-length opaque types must be passed by reference. The actual
varying-length data is in the data portion of this mi_lvarchar structure.

If the internal representation of a fixed-length opaque type can fit into an
MI_DATUM structure, the routine manager can pass the internal representation by
value. Suppose you have the declaration in Figure 16-5 for a fixed-length opaque
type named two_bytes.

The following CREATE OPAQUE TYPE statement specifies that the two_bytes
fixed-length opaque type can be passed by value:
CREATE OPAQUE TYPE two_bytes (INTERNALLENGTH=2,

ALIGNMENT=2, PASSEDBYVALUE);

Figure 16-10 on page 16-15 declares the output support function for the two_bytes
fixed-length opaque type. The intrnl_format parameter in this declaration is

typedef two_bytes_t mi_smallint;

Figure 16-5. Internal Representation for the two_bytes Opaque Data Type

Chapter 16. Extending Data Types 16-7

passed by value. In contrast, the circle fixed-length opaque type (which Figure 16-2
on page 16-3 declares) cannot fit into an MI_DATUM structure. Therefore, its
output support function must declare its intrnl_format parameter as passed by
reference, as Figure 16-9 on page 16-14 shows.

When the routine manager receives data from a varying-length opaque type, it
passes the data to the C UDR in an mi_lvarchar varying-length structure that the
UDR allocates. The routine manager also passes a pointer to this mi_lvarchar
structure as the MI_DATUM structure for the UDR argument. Therefore, a C UDR
must have its parameter declared as a pointer to an mi_lvarchar structure when
the parameter accepts data from varying-length opaque types. Figure 16-11 on page
16-15 shows the declaration of the output support function for the image
varying-length opaque type.

Writing Opaque-Type Support Functions
The database server does not know the internal representation of an opaque type.
To handle the internal representation, you write opaque-type support functions. These
support functions tell the database server how to interact with the opaque type.
The following table summarizes the opaque-type support functions.

Category of
Support Function

Opaque-Type
Support Functions More Information

Support functions
as casts

input, output
receive, send
import, export
importbin, exportbin

“Support Functions as Casts” on page
16-8

Stream support
functions

streamwrite(),
streamread()

“Stream Support Functions” on page
16-34

Disk-storage support
functions

assign(),
destroy()

“Disk-Storage Support Functions” on
page 16-37

Other support functions compare(),
deepcopy(),
update()

The IBM Informix User-Defined Routines
and Data Types Developer’s Guide

Tip: The IBM Informix BladeSmith development tool, which is part of the Informix
DataBlade Developers Kit, automatically generates some of the C source code
for the support routines of an opaque type. For more information, see the
IBM Informix DataBlade Developers Kit User’s Guide.

The following sections provide information specific to the development of the
opaque-type support functions as C UDRs. For a general discussion of opaque-type
support functions, see the IBM Informix User-Defined Routines and Data Types
Developer’s Guide.

Support Functions as Casts
The internal (binary) representation of an opaque type is a C structure that
encapsulates the opaque-type information. The database server does not know
about the structure of this internal representation. To be able to transfer
opaque-type data to various locations, the database server assumes that cast
functions exist between the internal representation of the opaque type (which the
database server does not know) and some known representation of the
opaque-type data.

16-8 IBM Informix DataBlade API Programmer’s Guide

Many of the opaque-type support functions serve as casts between some known
representation of opaque-type data and the internal representation of the opaque
type. Each known representation of an opaque type has an associated SQL data
type, which you use when you register the support function. Each of these SQL
data types has a corresponding DataBlade API data type, which you use when you
declare the C function that implements the support function. Table 16-1 shows the
opaque-type representations and the corresponding SQL and DataBlade API data
types that implement them.

Table 16-1. SQL and DataBlade API Data Types for Opaque-Type Representations

Opaque-Type Representation SQL Data Type
DataBlade API
Data Type

Opaque-Type
Support Functions

External (text) representation LVARCHAR mi_lvarchar input, output

External binary representation
on the client

SENDRECV mi_sendrecv receive, send

Text load file representation IMPEXP mi_impexp import, export

Binary load file representation IMPEXPBIN mi_impexpbin importbin, exportbin

When the database server receives some known representation of the opaque type,
it receives it in one of the SQL data types that Table 16-1 lists. To locate the
appropriate opaque-type support function, the database server looks in the
syscasts system catalog table for a cast function that performs a cast from one of
these SQL data types to the opaque type. Table 16-2 shows the opaque-type
support functions cast from each of the SQL data types in Table 16-1 to the internal
representation of the opaque type.

Table 16-2. Opaque-Type Support Functions That Cast from SQL to Opaque Data Types

Cast Opaque-Type
Support FunctionFrom To

LVARCHAR opaque data type input

SENDRECV opaque data type receive

IMPEXP opaque data type import

IMPEXPBIN opaque data type importbinary

For example, when the database server receives from a client application an
LVARCHAR value for a column of type circle, it looks for a cast function that casts
this value to the internal representation of the circle opaque type. This cast
function is the input support function for circle, which takes as an argument an
mi_lvarchar value and returns the circle_t structure (which contains the internal
representation of circle):
circle_t *circle_input(external_rep)

mi_lvarchar *external_rep;

The database server then saves the return value of the circle_input() support
function in the column whose data type is circle. In this way, the database server
does not need to know about the internal representation of circle. The
circle_input() support function handles the details of filling the C structure.

Tip: All of the opaque-type support functions in Table 16-2 must be registered as
implicit casts in the database. For more information, see “Registering an
Opaque Data Type” on page 16-39.

Chapter 16. Extending Data Types 16-9

Similarly, when the database server sends some known representation of the
opaque type, it sends it in one of the SQL data types that Table 16-1 on page 16-9
lists. To locate the appropriate opaque-type support function, the database server
looks for a cast function that performs a cast from the opaque type to one of these
SQL data types. Table 16-3 shows the opaque-type support functions that cast from
the internal representation of the opaque type to each of the SQL data types in
Table 16-1.

Table 16-3. Opaque-Type Support Functions That Cast from Opaque to SQL Data Types

Cast Opaque-Type
Support FunctionFrom To

opaque data type LVARCHAR output

opaque data type SENDRECV send

opaque data type IMPEXP export

opaque data type IMPEXPBIN exportbin

All the opaque-type support functions in Table 16-3 must be registered as explicit
casts in the database. For more information, see “Registering an Opaque Data
Type” on page 16-39.

Important: For the database server to locate one of the opaque-type support
functions in Table 16-1, you must register these support functions as
cast functions with the CREATE CAST statement. Otherwise, the
database server will not find the function to perform the cast when it
checks the syscasts system catalog table. For more information, see the
description of how to create casts for support functions in the IBM
Informix User-Defined Routines and Data Types Developer’s Guide.

The DataBlade API data types in Table 16-1 on page 16-9 are all implemented as
varying-length structures. Therefore, all these data types have the same internal
format. Any DataBlade API function that is declared to handle the mi_lvarchar
data type can also handle these other varying-length data types. However, you
might need to cast between these types to avoid compilation warnings. If you are
using a varying-length data type other than mi_lvarchar, you can cast between the
varying-length type you are using and mi_lvarchar.

For example, the mi_string_to_lvarchar() function converts a null-terminated
string to an mi_lvarchar varying-length data type. You can use casting to have this
function convert a null-terminated string to an mi_impexp varying-length data
type, as follows:
mi_impexp *new_impexp;
...
new_impexp = (mi_impexp *)mi_string_to_lvarchar(strng);

This casting is not strictly required, but many compilers recommend it and it does
improve clarity of purpose.

Any size of data can fit into a varying-length structure. When a varying-length
data type holds a value for an opaque-type column, this two-kilobyte size
restriction for LVARCHAR columns does not apply. You can write the appropriate
support functions of the opaque data type to handle more than two kilobytes. For
more information on how to manage these varying-length structures, see
“Varying-Length Data Type Structures” on page 2-13.

16-10 IBM Informix DataBlade API Programmer’s Guide

Subsequent sections describe each of the opaque-type support functions, grouped
by the opaque-type representation that they handle, as the following table shows.

Opaque-Type
Support Functions Description More Information

input, output v Convert the opaque-type data between its
external and internal representation.

v Serve as casts between the LVARCHAR
and opaque data types.

“Input and Output
Support Functions” on
page 16-11

send, receive v Convert the opaque-type data between its
internal representations on the client and
server computers.

v Serve as casts between the SENDRECV
and opaque data types.

“Send and Receive
Support Functions” on
page 16-17

import, export v Convert the opaque-type data between its
external unload representation and its
server internal representation.

v Serve as casts between the IMPEXP and
opaque data types.

“External Unload
Representation” on
page 16-22

importbin,
exportbin

v Convert the opaque-type data between its
internal unload representation and its
server internal representation.

v Serve as casts between the IMPEXPBIN
and opaque data types.

“Internal Unload
Representation” on
page 16-29

Input and Output Support Functions: To handle opaque-type data in its external
text representation, the database server calls the input and output support
functions for the opaque type. The external representation is the text version of the
opaque-type data. (For more information, see “Determining External
Representation” on page 16-2.) The external representation is often what end users
enter for the opaque-type value. When a client application sends or receives
opaque-type data in its external representation, the database server must find a
support function to handle the conversion of this data between its server internal
representation (in the database) and the external representation. The input and
output support functions are the cast functions for an opaque type between its
external (text) representation and its internal (binary) representation (on the server
computer). The server internal representation is the C structure that holds the
opaque-type data in the database. For more information, see “Determining Internal
Representation” on page 16-3.

The database server stores the external representation of an opaque type in an
mi_lvarchar structure. The mi_lvarchar structure is a varying-length structure that
encapsulates the external representation of the opaque type. The mi_lvarchar
structure is always passed by reference. Therefore, the input and output support
routines cast the data as follows.

Opaque-Type
Support Function Cast From Cast To

Input mi_lvarchar * Server internal representation of
the opaque data type

Output Server internal representation of
the opaque data type

mi_lvarchar *

Chapter 16. Extending Data Types 16-11

There is no limitation on the size of an mi_lvarchar structure. The DataBlade API
can transport mi_lvarchar data to and from the database server. However, to
conform to the storage limit of a database table (32 kilobytes for a table, two
kilobytes for an LVARCHAR column), the input support function might need to
handle extra data and the output support function might need to generate the
extra data.

The two-kilobyte restriction does not apply to an mi_lvarchar structure that holds
the external representation of an opaque-type column. If the input and output
support functions of the opaque data type can handle more than two kilobytes, the
mi_lvarchar structure can hold more than two kilobytes. For more information, see
“The mi_lvarchar Data Type” on page 2-9.

Global Language Support

For your opaque data type to accept an external representation in non-default
locales, you must internationalize the input and output support functions. For
more information, see “Internationalization of DataBlade API Modules (GLS)” on
page 1-19.

End of Global Language Support

Input Support Function: When an application performs some operation that passes
the external representation of an opaque type to the database server (such as
INSERT or UPDATE with an opaque-type value as a literal string), the database
server calls the input support function. The input support function accepts the
external representation of the opaque type, which is encapsulated in an
mi_lvarchar structure, and returns the appropriate server internal representation
for that type, as the following signature shows:
srvr_internal_rep input(external_rep)

mi_lvarchar *external_rep;

external_rep is a pointer to an mi_lvarchar structure that holds the external
representation of the opaque type.

An mi_lvarchar is always passed by reference. Therefore, the
external_rep argument must always be a pointer to the mi_lvarchar
data type. For information on how to obtain information from this
varying-length structure, see “Information About Varying-Length
Data” on page 2-24.

input is the name of the C-language function that implements the input
support function for the opaque type. It is recommended that you
include the name of the opaque type in its input function.

srvr_internal_rep
is the appropriate format for the server internal representation of
the opaque data type. The passing mechanism of this return value
depends on the kind of opaque type, as Figures 16-6 through 16-13
show. Most opaque types are passed by reference.

Figure 16-6 declares a sample input support function for a fixed-length opaque
type named circle (which Figure 16-2 on page 16-3 declares).

16-12 IBM Informix DataBlade API Programmer’s Guide

The circle_input() function is a cast function from the mi_lvarchar data type
(which contains the external representation for the circle opaque type) to the
circle_t internal representation (on the server computer). The database server
executes circle_input() when it needs a cast function to convert from the SQL
data type LVARCHAR to the server internal representation of the circle opaque
type. For more information, see “Support Functions as Casts” on page 16-8.

The circle_input() function returns a pointer to the circle_t data type. Because
circle cannot fit into an MI_DATUM structure, it must be passed by reference. If
your fixed-length opaque type can fit into an MI_DATUM structure, the input
support function can return the internal representation by value. Figure 16-7
declares a sample input function for a fixed-length opaque type named two_bytes
(which Figure 16-5 on page 16-7 declares).

The two_bytes opaque type must be registered as PASSEDBYVALUE to tell the
database server that it can be passed by value.

Figure 16-8 declares a sample input support function for a varying-length opaque
type named image (which Figure 16-3 on page 16-5 declares).

The image opaque type stores its data inside an mi_lvarchar structure, which must
be passed by reference. The image_input() function is a cast function from the
external representation of image to the server internal representation of image.

The input support function performs the following tasks:
v Accepts as an argument a pointer to the external representation of the opaque

type
The external representation is in the data portion of an mi_lvarchar structure,
which is passed by reference.

v Allocates enough space to hold the server internal representation of the opaque
type
The input function can use the mi_alloc() DataBlade API function to allocate
the space for the internal representation, or the mi_new_var() function if the
opaque type is varying length. For more information on memory management,
see “Managing User Memory” on page 14-20.

v Parses the input string of the external representation

/* Input support function: circle */
circle_t *circle_input(extrnl_rep)

mi_lvarchar *extrnl_rep;

Figure 16-6. Input Support Function for circle Opaque Type

/* Input support function: two_bytes */
two_bytes_t two_bytes_input(extrnl_rep)

mi_lvarchar *extrnl_rep;

Figure 16-7. Input Support Function for two_bytes Opaque Type

/* Input support function: image */
mi_lvarchar *image_input(extrnl_rep)

mi_lvarchar *extrnl_rep;

Figure 16-8. Input Support Function for image Opaque Type

Chapter 16. Extending Data Types 16-13

The input function must obtain the individual members from the input string
and store them into the appropriate fields of the server internal representation.
The DataBlade API provides functions to convert various DataBlade API data
types from their external to internal representations. For example, to convert a
date string in an external representation to its internal representation (the
mi_date value in the image_t structure), the image_input() function can call the
mi_string_to_date() function. For a list of these DataBlade API functions, see
“Conversion of Opaque-Type Data Between Text and Binary Representations” on
page 16-16.

v Returns the appropriate server internal representation for the opaque type
If the opaque data type is passed by reference, the input function returns a
pointer to the server internal representation. If the opaque data type is passed by
value, the input function returns the actual value of the server internal
representation instead of a pointer to this representation. For more information,
see “Determining the Passing Mechanism for an Opaque Type” on page 16-7.

Output Support Function: When an application performs some operation that
requests the external representation of an opaque type (such as a SELECT
operation that requests data in its text representation), the database server calls the
output support function. The output support function accepts the appropriate
server internal representation of the opaque type and returns the external
representation of that type, which is encapsulated in an mi_lvarchar structure, as
the following signature shows:
mi_lvarchar *output(srvr_internal_rep)

output is the name of the C-language function that implements the output
support function for the opaque type. It is recommended that you
include the name of the opaque type in the name of its output
function. For example, if the UDT name is image, the name of the
output function would be image_output().

srvr_internal_rep
is the appropriate format for the server internal representation of
the opaque data type. The passing mechanism of this argument
value depends on the kind of opaque type, as Figures 16-9 through
16-11 show. Most opaque types are passed by reference.

An mi_lvarchar value is always passed by reference. Therefore, the return value of
the output support function must always be a pointer to the mi_lvarchar data
type. For information on how to obtain information from this varying-length
structure, see “Information About Varying-Length Data” on page 2-24.

Figure 16-9 declares a sample output support function for a fixed-length opaque
type named circle (which Figure 16-2 on page 16-3 declares).

The circle_output() function is a cast function from the circle_t internal
representation (on the server computer) to the mi_lvarchar data type (which
contains the external representation for circle). The database server executes
circle_output() when it needs a cast function to convert from the server internal

/* Output support function: circle */
mi_lvarchar *circle_output(srvr_intrnl_rep)

circle_t *srvr_intrnl_rep;

Figure 16-9. Output Support Function for circle Opaque Type

16-14 IBM Informix DataBlade API Programmer’s Guide

representation of the circle opaque type to the SQL data type LVARCHAR. For
more information, see “Support Functions as Casts” on page 16-8.

The circle_output() function accepts as an argument a pointer to the circle_t data
type. Because circle cannot fit into an MI_DATUM structure, it must be passed by
reference. If your fixed-length opaque type can fit into an MI_DATUM structure,
the output support function can pass the server internal representation by value.
Figure 16-10 declares a sample output function for a fixed-length opaque type
named two_bytes (which Figure 16-5 on page 16-7 declares).

The two_bytes opaque type must be registered as PASSEDBYVALUE to tell the
database server that it can be passed by value.

Figure 16-11 declares a sample output support function for a varying-length
opaque type named image (which Figure 16-3 on page 16-5 declares).

The image opaque type stores its data inside an mi_lvarchar structure, which must
be passed by reference. The image_output() function is a cast function from the
internal representation of image to the external representation of image.

The output support function performs the following tasks:
v Accepts as an argument a pointer to the appropriate server internal

representation of the opaque type
If the opaque data type is passed by reference, the output support function
accepts a pointer to the server internal representation. If the opaque data type is
passed by value, the output function returns the actual value of the internal
representation instead of a pointer to this representation. For more information,
see “Determining the Passing Mechanism for an Opaque Type” on page 16-7.

v Allocates enough space to hold the external representation of the opaque type
The output function can use the mi_alloc() DataBlade API function to allocate
the space for the character string. For more information on memory
management, see “Managing User Memory” on page 14-20.

v Creates the output string of the external representation from the individual
members of the server internal representation
The DataBlade API provides functions to convert various DataBlade API data
types from their internal to external representations. For example, to convert the
mi_date value in the image_t structure to its appropriate external representation,
the image_output() function can call the mi_date_to_string() function. For a
list of these DataBlade API functions, see “Conversion of Opaque-Type Data
Between Text and Binary Representations” on page 16-16.

v Copies the external representation into an mi_lvarchar structure

/* Output support function: two_bytes */
mi_lvarchar *two_bytes_output(srvr_intrnl_rep)

two_bytes_t srvr_intrnl_rep;

Figure 16-10. Output Support Function for two_bytes Opaque Type

/* Output support function: image */
mi_lvarchar *image_output(srvr_intrnl_rep)

mi_lvarchar *srvr_intrnl_rep;

Figure 16-11. Output Support Function for image Opaque Type

Chapter 16. Extending Data Types 16-15

You must use the mi_new_var() function to create a new mi_lvarchar structure.
You can use mi_set_vardata() to copy data into the mi_lvarchar structure or
mi_set_varptr() to store a pointer to storage allocated by mi_alloc().

v Returns a pointer to the external representation for the opaque type
This character string must reside in the data portion of an mi_lvarchar structure.
Therefore, the output support function returns a pointer to this mi_lvarchar
structure.

Conversion of Opaque-Type Data Between Text and Binary Representations: The input
and output support functions can call the following DataBlade API functions to
convert the atomic C data types within the server internal representation of the
opaque data type between their external (text) and internal (binary)
representations.

Type of Data

DataBlade API Function

In Input Support Function In Output Support Function

Date and Date/time data

DATE data mi_string_to_date() mi_date_to_string()

DATETIME data mi_string_to_datetime() mi_datetime_to_string()

INTERVAL data mi_string_to_interval() mi_interval_to_string()

Integer data

SMALLINT data
(two-byte integers)

rstoi(), atoi()

INTEGER data
(four-byte integers)

rstol(), atol()

INT8 data
(eight-byte integers)

ifx_int8cvasc() ifx_int8toasc()

Fixed-point and Floating-point data

DECIMAL data
(fixed-point and
floating-point)

mi_string_to_decimal() mi_decimal_to_string()

MONEY data mi_string_to_money() mi_money_to_string()

SMALLFLOAT data atof()

FLOAT data rstod()

Other data

Character data,
Varying-length data

mi_string_to_lvarchar() mi_lvarchar_to_string()

LO handle
(smart large objects)

mi_lo_from_string() mi_lo_to_string()

Global Language Support

Most DataBlade API functions that convert between text and binary representations
recognize the end-user formats for data in a locale-specific format. For more
information about how to internationalize a C UDR, see “Internationalization of
DataBlade API Modules (GLS)” on page 1-19.

End of Global Language Support

16-16 IBM Informix DataBlade API Programmer’s Guide

Send and Receive Support Functions: To handle opaque-type data in its external
binary representation, the database server calls the send and receive support
functions for the opaque type. When a client application sends or receives
opaque-type data in its internal representation, the database server must find a
support function to handle the possibility that the client computer uses a different
byte ordering than the server computer. The send and receive support functions
are the cast functions for an opaque type between its internal representation on a
client computer and its internal representation on the server computer.

The database server stores the client internal representation of an opaque type in
an mi_sendrecv structure. The mi_sendrecv structure is a varying-length structure
that encapsulates the client internal representation. Its ability to store
varying-length data enables it to handle any possible changes in the size of the
opaque-type data when it is converted between these two internal representations.
For example, the client and server computers might have different packing rules
for structures. Because the mi_sendrecv data type is a varying-length structure
(like mi_lvarchar), it is always passed by reference. Therefore, the send and receive
support routines cast the data as follows.

Opaque-Type
Support Function Cast From Cast To

Send Server internal representation of
the opaque data type

mi_sendrecv *

Receive mi_sendrecv * Server internal representation of
the opaque data type

The database server receives a description of the client computer when the client
application establishes a connection. The DataBlade API provides several functions
that access this information for use in send and receive functions. For more
information, see “Conversion of Opaque-Type Data with Computer-Specific Data
Types” on page 16-21.

Receive Support Function: When an application executes a query, such as INSERT
or UPDATE, and specifies binary transfer of data, the database server calls the
receive support function. The way to specify binary transfer (for fetch or send)
depends on the client API:
v ODBC uses an SQLBindCol() call.
v The DataBlade API mi_exec_prepared_statement() call takes a

PARAMS_ARE_BINARY flag.
v Informix ESQL/C uses the host-variable data type to specify if the transfer is

binary or text.

The receive support function accepts the client internal representation of the
opaque type, which is encapsulated in an mi_sendrecv structure, and returns the
appropriate server internal representation of that type, as the following signature
shows:
srvr_internal_rep receive(client_internal_rep)

mi_sendrecv *client_internal_rep;

client_internal_rep
is a pointer to an mi_sendrecv structure that holds the client
internal representation of the opaque type.

An mi_sendrecv is always passed by reference. Therefore, the
client_internal_rep argument must always be a pointer to the

Chapter 16. Extending Data Types 16-17

mi_sendrecv data type. For more information, see “Information
About Varying-Length Data” on page 2-24.

receive is the name of the C-language function that implements the receive
support function for the opaque type. It is recommended that you
include the name of the opaque type in its receive function.

srvr_internal_rep
is the appropriate format for the server internal representation of
the opaque data type. The passing mechanism of this return value
depends on the kind of opaque type, as Figures 16-12 through
16-14 show. Most opaque types are passed by reference.

Figure 16-12 declares a sample receive support function for a fixed-length opaque
type named circle (which Figure 16-2 on page 16-3 declares).

The circle_recv() function is a cast function from the mi_sendrecv data type
(which contains the client internal representation for the circle opaque type) to the
circle_t internal representation (on the server computer). The database server
executes circle_recv() when it needs a cast function to convert from the SQL data
type SENDRECV to the server internal representation of the circle opaque type.
For more information, see “Support Functions as Casts” on page 16-8.

The circle_recv() function returns a pointer to the circle_t data type. Because
circle cannot fit into an MI_DATUM structure, it must be passed by reference. If
your fixed-length opaque type can fit into an MI_DATUM structure, the receive
support function can return the server internal representation by value.
Figure 16-13 declares a sample receive function for a fixed-length opaque type
named two_bytes (which Figure 16-5 on page 16-7 declares).

The two_bytes opaque type must be registered as PASSEDBYVALUE to tell the
database server that it can be passed by value.

Figure 16-14 declares a sample receive support function for a varying-length
opaque type named image (which Figure 16-3 on page 16-5 declares).

The image opaque type stores its data inside an mi_lvarchar structure, which must
be passed by reference. The image_recv() function is a cast function from the

/* Receive support function: circle */
circle_t *circle_recv(client_intrnl_rep)

mi_sendrecv *client_intrnl_rep;

Figure 16-12. Receive Support Function for circle Opaque Type

/* Receive support function: two_bytes */
two_bytes_t two_bytes_recv(client_intrnl_rep)

mi_sendrecv *client_intrnl_rep;

Figure 16-13. Receive Support Function for two_bytes Opaque Type

/* Receive support function: image */
mi_lvarchar *image_recv(client_intrnl_rep)

mi_sendrecv *client_intrnl_rep;

Figure 16-14. Receive Support Function for image Opaque Type

16-18 IBM Informix DataBlade API Programmer’s Guide

mi_sendrecv data type (which contains the client internal representation of image)
to the mi_lvarchar data type (which contains the server internal representation of
image).

The receive support function performs the following tasks:
v Accepts as an argument a pointer to the client internal representation of the

opaque type
The client internal representation is in the data portion of an mi_sendrecv
structure, which is passed by reference.

v Allocates enough space to hold the server internal representation of the opaque
type
The receive function can use the mi_alloc() DataBlade API function to allocate
the space for the internal representation, or the mi_new_var() function if the
opaque type is varying length. For more information on memory management,
see “Managing User Memory” on page 14-20.

v Creates the server internal representation from the individual members of the
client internal representation
The DataBlade API provides functions to convert simple C data types from their
client to server binary representations. For example, to convert the
double-precision values in the circle_t structure to their binary representation on
the server computer, the circle_recv() function can call the
mi_get_double_precision() function. For a list of these DataBlade API
functions, see “Conversion of Opaque-Type Data with Computer-Specific Data
Types” on page 16-21.

v Returns the appropriate server internal representation for the opaque type
If the opaque data type is passed by reference, the receive function returns a
pointer to the server internal representation. If the opaque data type is passed by
value, the receive function returns the actual value of the internal representation
instead of a pointer to this representation. For more information, see
“Determining the Passing Mechanism for an Opaque Type” on page 16-7.

Send Support Function: When an application performs some operation that requests
the binary representation of an opaque type (such as a SELECT that requests data
in its binary representation), the database server calls the send support function.
The send support function takes the appropriate server internal representation of
the opaque data type and returns the client internal representation of that type,
encapsulated in an mi_sendrecv structure, as the following signature shows:
mi_sendrecv *send(srvr_internal_rep)

send is the name of the C-language function that implements the send
support function for the opaque type. It is recommended that you
include the name of the opaque type in its send function.

srvr_internal_rep
is the appropriate format for the server internal representation of
the opaque data type. The passing mechanism of this argument
value depends on the kind of opaque type, as Figures 16-15
through 16-17 show. Most opaque types are passed by reference.

An mi_sendrecv is always passed by reference. Therefore, the return value of the
send support function must always be a pointer to the mi_sendrecv data type. For
information on how to obtain information from this varying-length structure, see
“Information About Varying-Length Data” on page 2-24.

Chapter 16. Extending Data Types 16-19

Figure 16-15 declares a sample send support function for a fixed-length opaque
type named circle (which Figure 16-2 on page 16-3 declares).

The circle_send() function is a cast function from the circle_t internal
representation (on the server computer) to the mi_sendrecv data type (which
contains the client internal representation for circle). The database server executes
circle_send() when it needs a cast function to convert from the internal
representation of the circle opaque type to the SQL data type SENDRECV. For
more information, see “Support Functions as Casts” on page 16-8.

The circle_send() function accepts as an argument a pointer to the circle_t data
type. Because circle cannot fit into an MI_DATUM structure, it must be passed by
reference. If your fixed-length opaque type can fit into an MI_DATUM structure,
the send support function can pass the server internal representation by value.
Figure 16-16 declares a sample send function for a fixed-length opaque type named
two_bytes (which Figure 16-5 on page 16-7 declares)

The two_bytes opaque type must be registered as PASSEDBYVALUE to tell the
database server that it can be passed by value.

Figure 16-17 declares a sample send support function for a varying-length opaque
type named image (which Figure 16-3 on page 16-5 declares)

The image opaque type stores its data inside an mi_lvarchar structure, which must
be passed by reference. The image_send() function is a cast function from the
mi_lvarchar data type (which contains the server internal representation of image)
to the mi_sendrecv data type (which contains the client internal representation of
image).

The send support function performs the following tasks:
v Accepts as an argument a pointer to the appropriate server internal

representation of the opaque type
If the opaque data type is passed by reference, the send function accepts a
pointer to the server internal representation. If the opaque data type is passed by
value, the send function accepts the actual value of the internal representation
instead of a pointer to this representation. For more information, see
“Determining the Passing Mechanism for an Opaque Type” on page 16-7.

/* Send support function: circle */
mi_sendrecv *circle_send(srvr_intrnl_rep)

circle_t *srvr_intrnl_rep;

Figure 16-15. Send Support Function for circle Opaque Type

/* Send support function: two_bytes */
mi_sendrecv *two_bytes_send(srvr_intrnl_rep)

two_bytes_t srvr_intrnl_rep;

Figure 16-16. Send Support Function for two_bytes Opaque Type

/* Send support function: image */
mi_sendrecv *image_send(srvr_intrnl_rep)

mi_lvarchar *srvr_intrnl_rep;

Figure 16-17. Send Support Function for image Opaque Type

16-20 IBM Informix DataBlade API Programmer’s Guide

v Allocates enough space to hold the client internal representation
The send function can use the mi_alloc() DataBlade API function to allocate the
space for the internal representation. For more information on memory
management, see “Managing User Memory” on page 14-20.

v Creates the client internal representation from the individual members of the
server internal representation
The DataBlade API provides functions to convert simple C data types from
server to client binary representations. For example, to convert the
double-precision values in the circle_t structure to their binary representation on
the client computer, the circle_send() function can call the
mi_put_double_precision() function. For a list of these DataBlade API
functions, see “Conversion of Opaque-Type Data with Computer-Specific Data
Types” on page 16-21.

v Copies the client internal representation into an mi_sendrecv structure
You must use the mi_new_var() function to create a new mi_sendrecv
structure. You can use mi_set_vardata() to copy the data into the mi_sendrecv
structure or mi_set_varptr() to store the pointer to storage allocated by
mi_alloc().

v Returns a pointer to the client internal representation for the opaque type
This client internal representation must reside in the data portion of an
mi_sendrecv structure. Therefore, the send support function returns a pointer to
this mi_sendrecv structure.

Conversion of Opaque-Type Data with Computer-Specific Data Types: The send and
receive support functions can call DataBlade API functions to convert data of the
atomic C data types within the internal (binary) representation of an opaque data
type. Table 16-4 shows the DataBlade API functions that can convert a difference in
alignment or byte order between the client computer and the server computer.

Table 16-4. Type-Transfer Functions of the DataBlade API

Type of Data

DataBlade API Function

In Send Support Function In Receive Support Function

Byte data mi_put_bytes() mi_get_bytes()

Date and Date/time data

DATE data mi_put_date() mi_get_date()

DATETIME data mi_put_datetime() mi_get_datetime()

INTERVAL data mi_put_interval() mi_get_interval()

Integer data

SMALLINT data
(two-byte integers)

mi_put_smallint(),
mi_fix_smallint()

mi_get_smallint(),
mi_fix_smallint()

INTEGER data
(four-byte integers)

mi_put_integer(),
mi_fix_integer()

mi_get_integer(),
mi_fix_integer()

INT8 data
(eight-byte integers)

mi_put_int8() mi_get_int8()

Fixed-point and Floating-point data

DECIMAL data
(fixed-point and
floating-point)

mi_put_decimal() mi_get_decimal()

MONEY data mi_put_money() mi_get_money()

SMALLFLOAT data mi_put_real() mi_get_real()

Chapter 16. Extending Data Types 16-21

Table 16-4. Type-Transfer Functions of the DataBlade API (continued)

Type of Data

DataBlade API Function

In Send Support Function In Receive Support Function

FLOAT data mi_put_double_precision() mi_get_double_precision()

Other data

Character data mi_put_string() mi_get_string()

LO handle
(smart large objects)

mi_put_lo_handle() mi_get_lo_handle()

Global Language Support

Characters have the same binary representation on all architectures, so they do not
need to be converted. However, if the code sets of the server-processing locale (in
which the UDR executes) and the client locale differ, the mi_get_string() and
mi_put_string() functions automatically perform the appropriate code-set
conversion (provided that the two code sets are compatible). For more information
about how to internationalize a C UDR, see “Internationalization of DataBlade API
Modules (GLS)” on page 1-19.

End of Global Language Support

Bulk-Copy Support Functions: The database server can copy data in and out of a
database with a bulk copy operation. In a bulk copy, the database server reads or
sends large numbers of column values in a copy file, rather than handling each
column value individually. IBM Informix utilities such as DB–Access, the dbimport
and dbexport utilities, and the High Performance Loader (HPL) can perform bulk
copies.

The format of the opaque-type data in the copy file is called its unload
representation. This unload representation might be different from the server
internal representation of the opaque-type data (which is stored in the database).
You can create the following opaque-type support functions to handle the unload
representations of the opaque-type data.

Unload
Representation Description

Opaque-Type
Support Functions

External unload
representation

The text format of the opaque type, as it
resides in a copy file

import, export

Internal unload
representation

The binary format of the opaque type, as
it resides in a copy file

importbin, exportbin

External Unload Representation: To handle opaque-type data in its external
unload representation, the database server calls the import and export support
functions of the opaque type. The external unload representation is the text version
of the opaque-type data when it resides in a copy file. Usually, the external unload
and external representations of an opaque type are the same. When a bulk-copy
utility sends or receives opaque-type data in its external unload representation, the
database server must find a support function to handle any conversion between
this text in the copy file and the individual field values of the server internal
representation. The import and export support functions are the cast functions for
an opaque type between its external unload representation (its text format in a
copy file) and its server internal (binary) representation.

16-22 IBM Informix DataBlade API Programmer’s Guide

Important: An opaque data type only requires import and export support
functions if its external unload representation is different from its
external representation (which the input and output support functions
handle). For most opaque data types, the database server can use the
input and output support functions for import and export, respectively,
to handle bulk copies of the opaque-type columns to and from their
text representation.

The database server stores the external unload representation of an opaque type in
an mi_impexp structure. The mi_impexp structure is a varying-length structure
that encapsulates the external unload representation. Its ability to store
varying-length data enables it to handle any possible changes in the size of the
opaque-type data when it is converted between its server internal and its external
unload representations. For example, opaque data types that contain smart large
objects might have a filename in their external unload representation rather than
storing all the smart-large-object data in the copy file.

Because the mi_impexp data type is a varying-length structure (like mi_lvarchar),
it is always passed by reference. Therefore, the import and export support routines
have the following basic signatures.

Opaque-Type
Support Function Cast From Cast To

Import mi_impexp * Server internal representation of
the opaque data type

Export Server internal representation of
the opaque data type

mi_impexp *

Global Language Support

For your opaque data type to accept an external representation in nondefault
locales, you must internationalize the import and export support functions. For
more information, see “Internationalization of DataBlade API Modules (GLS)” on
page 1-19.

End of Global Language Support

For most opaque types, the import support function can be the same as the input
support function because the external representation and the external unload
representation are usually the same. For such opaque types, you can handle the
import support function in either of the following ways:
v Call the input function inside the import function.

The import functions for the circle opaque type (Figure 16-18 on page 16-24) and
the two_bytes opaque type (Figure 16-19 on page 16-25) use this method.

v Omit the import function from the definition of the opaque type.
You must still create the implicit cast from the IMPBIN data type to the opaque
data type with the CREATE CAST statement. However, instead of listing an
import support function as the cast function, list the input support function. The
database server would then automatically call the appropriate input support
function to load the opaque type when it is in its external unload representation.

Import Support Function: When a bulk-copy utility performs a load of opaque-type
data in its external unload representation, the database server calls the import
support function. For example, when DB–Access performs a bulk load of an

Chapter 16. Extending Data Types 16-23

opaque-type column with the LOAD statement, the database server calls the
import support function for the opaque type.

The import support function takes the external unload representation of the
opaque type, which is encapsulated in an mi_impexp structure, and returns the
appropriate server internal representation of that type, as the following signature
shows:
srvr_internal_rep import(external_unload_rep)

mi_impexp *external_unload_rep;

external_unload_rep
is a pointer to an mi_impexp structure that holds the external
unload representation of the opaque type.

An mi_impexp is always passed by reference. Therefore, the
external_unload_rep argument must always be a pointer to the
mi_impexp data type. For information on how to obtain
information from this varying-length structure, see “Information
About Varying-Length Data” on page 2-24.

import is the name of the C-language function that implements the import
support function for the opaque type. It is recommended that you
include the name of the opaque type in its import function.

srvr_internal_rep
is the appropriate format for the server internal representation of
the opaque data type. The passing mechanism of this return value
depends on the kind of opaque type, as Figures 16-18 through
16-20 show. Most opaque types are passed by reference.

Figure 16-18 declares a sample import support function for a fixed-length opaque
type named circle (which Figure 16-2 on page 16-3 declares).

The circle_imp() function is a cast function from the mi_impexp data type (which
contains the external unload representation for the circle opaque type) to the
circle_t internal representation (on the server computer). The database server
executes circle_imp() when it needs a cast function to convert from the SQL data
type IMPEXP to the server internal representation of the circle opaque type. For
more information, see “Support Functions as Casts” on page 16-8.

The circle_imp() function returns a pointer to the circle_t data type. Because
circle cannot fit into an MI_DATUM structure, it must be passed by reference. If
your fixed-length opaque type can fit into an MI_DATUM structure, the import
support function can return the server internal representation by value.
Figure 16-19 declares a sample import function for a fixed-length opaque type
named two_bytes (which Figure 16-5 on page 16-7 declares).

/* Import support function: circle */
circle_t *circle_imp(extrnl_unload_rep)

mi_impexp *extrnl_unload_rep;
{

return (circle_input((mi_lvarchar *)extrnl_unload_rep));
}

Figure 16-18. Import Support Function for circle Opaque Type

16-24 IBM Informix DataBlade API Programmer’s Guide

The two_bytes opaque type must be registered as PASSEDBYVALUE to tell the
database server that it can be passed by value.

Figure 16-20 declares a sample import support function for a varying-length
opaque type named image (which Figure 16-3 on page 16-5 declares).

The image opaque type stores its data inside an mi_lvarchar structure, which must
be passed by reference. The image_imp() function is a cast function from the
mi_impexp data type (which contains the external unload representation of image)
to the mi_lvarchar data type (which contains the server internal representation of
image).

Typically, only opaque data types that contain smart large objects have import and
export functions defined. The external unload representation can include a client
filename (which contains the smart-large-object data), a length, and an offset. The
import support function can use the mi_lo_from_file() function (with the
MI_O_CLIENT_FILE file-mode constant) to:
v Open the specified client file.
v Load the data from the client file into a new smart large object, starting at the

specified offset, and ending when the specified length is reached.

Finally, the import function must save the LO handle for the new smart large
object in the server internal representation of the opaque type.

Tip: For opaque types with smart large objects, you can choose whether to provide
support for an external representation (a client filename, length, and offset) in
the input and output support functions or the import and export support
functions. When you define the input and output support functions to handle
this external representation, applications can use this representation as a
literal value for opaque-type data.

For an opaque type that does require an import support function, the import
function performs the following tasks:
v Accepts as an argument a pointer to the external unload representation of the

opaque type
The external unload representation is in the data portion of an mi_impbin
structure, which is passed by reference.

v Allocates enough space to hold the server internal representation of the opaque
type

/* Import support function: two_bytes */
two_bytes_t two_bytes_imp(extrnl_unload_rep)

mi_impexp *extrnl_unload_rep;
{

return (two_bytes_input((mi_lvarchar *)extrnl_unload_rep));
}

Figure 16-19. Import Support Function for two_bytes Opaque Type

/* Import support function: image */
mi_lvarchar *image_imp(extrnl_unload_rep)

mi_impexp *extrnl_unload_rep;

Figure 16-20. Import Support Function for image Opaque Type

Chapter 16. Extending Data Types 16-25

The import function can use the mi_alloc() DataBlade API function to allocate
the space for the internal representation. For more information on memory
management, see “Managing User Memory” on page 14-20.

v Parses the input string of the external unload representation
Obtain the individual members from the input string and store them into the
appropriate fields of the server internal representation. The DataBlade API
provides functions to convert various DataBlade API data types from their
external to internal representations. For example, to convert a date string in an
external unload representation to its internal representation (the mi_date value
in the image_t structure), the image_imp() function can call the
mi_string_to_date() function. For a list of these DataBlade API functions, see
“Conversion of Opaque-Type Data Between Text and Binary Representations” on
page 16-16.

v Returns the appropriate server internal representation for the opaque type
If the opaque data type is passed by reference, the import function returns a
pointer to the server internal representation. If the opaque data type is passed by
value, the import function returns the actual value of the internal representation
instead of a pointer to this representation. For more information, see
“Determining the Passing Mechanism for an Opaque Type” on page 16-7.

Because the image opaque type contains a smart large object, it would require an
import function. From the external unload representation that is read from the
copy file, the import function could obtain the name of the client file that contains
the smart-large-object data.

Export Support Function: When a bulk-copy utility performs an unload of
opaque-type data to its external unload representation, the database server calls the
export support function. For example, when DB–Access performs a bulk unload of
an opaque-type column with the UNLOAD statement, the database server calls the
export support function for the opaque type.

The export support function takes the appropriate server internal representation of
the opaque data type and returns the external unload representation of that type,
encapsulated in an mi_impexp structure, as the following signature shows:
mi_impexp *export(srvr_internal_rep)

export is the name of the C-language function that implements the export
support function for the opaque type. It is recommended that you
include the name of the opaque type in its export function.

srvr_internal_rep
is the appropriate format for the server internal representation of
the opaque data type. The passing mechanism of this argument
value depends on the kind of opaque type, as Figures 16-15
through 16-17 show. Most opaque types are passed by reference.

An mi_impexp is always passed by reference. Therefore, the return value of the
export support function must always be a pointer to the mi_impexp data type. For
information on how to obtain information from this varying-length structure, see
“Information About Varying-Length Data” on page 2-24.

Figure 16-21 declares a sample export support function for a fixed-length opaque
type named circle (which Figure 16-2 on page 16-3 declares).

16-26 IBM Informix DataBlade API Programmer’s Guide

The circle_exp() function is a cast function from the circle_t internal
representation (on the server computer) to the mi_impexp data type (which
contains the external unload representation for circle). The database server
executes circle_exp() when it needs a cast function to convert from the server
internal representation of the circle opaque type to the SQL data type IMPEXP. For
more information, see “Support Functions as Casts” on page 16-8.

The circle_exp() function accepts as an argument a pointer to the circle_t data
type. Because circle cannot fit into an MI_DATUM structure, it must be passed by
reference. If your fixed-length opaque type can fit into an MI_DATUM structure,
the export support function can pass the server internal representation by value.
Figure 16-22 declares a sample export function for a fixed-length opaque type
named two_bytes (which Figure 16-5 on page 16-7 declares).

The two_bytes opaque type must be registered as PASSEDBYVALUE to tell the
database server that it can be passed by value.

Figure 16-23 declares a sample export support function for a varying-length opaque
type named image (which Figure 16-3 on page 16-5 declares).

The image opaque type stores its data inside an mi_lvarchar structure, which must
be passed by reference. The image_exp() function is a cast function from the
mi_lvarchar data type (which contains the server internal representation of image)
to the mi_impexp data type (which contains the external unload representation of
image).

In most cases, the export support function can be the same as the output support
function, because the external representation and the external unload
representation are usually the same. For such opaque types, you can handle the
export functions in either of the following ways:
v Call the output function inside the export function.

/* Export support function: circle */
mi_impexp *circle_exp(srvr_intrnl_rep)

circle_t *srvr_intrnl_rep;
{

return ((mi_impexp *)circle_output(srvr_intrnl_rep));
}

Figure 16-21. Export Support Function for circle Opaque Type

/* Export support function: two_bytes */
mi_impexp *two_bytes_exp(srvr_intrnl_rep)

two_bytes_t srvr_intrnl_rep;
{

return ((mi_impexp *)two_bytes_output(srvr_intrnl_rep));
}

Figure 16-22. Export Support Function for two_bytes Opaque Type

/* Export support function: image */
mi_impexp *image_exp(srvr_intrnl_rep)

mi_lvarchar *srvr_intrnl_rep;

Figure 16-23. Export Support Function for image Opaque Type

Chapter 16. Extending Data Types 16-27

The export functions for the circle opaque type (Figure 16-21 on page 16-27) and
the two_bytes opaque type (Figure 16-22 on page 16-27) use this method.

v Omit the export function from the definition of the opaque type.
You must still create the explicit cast from the opaque data type to the IMPBIN
data type with the CREATE CAST statement. However, instead of listing an
export support function as the cast function, list the output support function.
The database server would then automatically call the appropriate output
support function to unload the opaque type to its external unload
representation.

Typically, only opaque data types that contain smart large objects have import and
export functions defined. The external unload representation can include a client
filename (which contains the smart-large-object data), a length, and an offset. The
export support function can obtain the LO handle of the smart large object from
the server internal representation of the opaque type. With this LO handle, export
can use the mi_lo_to_file() function (with the MI_O_CLIENT_FILE file-mode
constant) to:
v Create the specified file on the client computer.
v Write the smart-large-object data into this file at the specified offset and for the

number of bytes that the length specifies.

Finally, the export function can put the client filename, length of data, and starting
offset into the external unload representation that is to be written to the copy file.

Tip: For opaque types with smart large objects, you can choose whether to provide
support for an external representation (a client filename, length, and offset) in
the input and output support functions or the import and export support
functions. When you define the input and output support functions to handle
this external representation, applications can use this representation as a
literal value for opaque-type data.

For an opaque type that does require an export support function, the export
function performs the following tasks:
v Accepts as an argument a pointer to the appropriate server internal

representation of the opaque type
If the opaque data type is passed by reference, the export function accepts a
pointer to the server internal representation. If the opaque data type is passed by
value, the export function accepts the actual value of the internal representation
instead of a pointer to this representation. For more information, see
“Determining the Passing Mechanism for an Opaque Type” on page 16-7.

v Allocates enough space to hold the external unload representation of the opaque
type
The export function can use the mi_alloc() DataBlade API function to allocate
the space for the character string. For more information on memory
management, see “Managing User Memory” on page 14-20.

v Creates the external unload representation from the individual members of the
server internal representation
The DataBlade API provides functions to convert various DataBlade API data
types from their internal to external representations. For example, to convert the
mi_date value in the image_t structure to its appropriate external representation,
the image_exp() function can call the mi_date_to_string() function. For a list
of these DataBlade API functions, see “Conversion of Opaque-Type Data
Between Text and Binary Representations” on page 16-16.

16-28 IBM Informix DataBlade API Programmer’s Guide

v Copies the external unload representation into an mi_impexp structure
You can use the mi_new_var() function to create a new mi_impexp structure
and the mi_get_vardata() or mi_get_vardata_align() function to obtain a
pointer to the data portion of this structure.

v Returns a pointer to the external unload representation for the opaque type
This character string must reside in the data portion of an mi_impexp structure.
Therefore, the export support function returns a pointer to this mi_impexp
structure.

Because the image opaque type contains a smart large object, it would require an
export function, which could save in the external unload representation that is
written to the copy file the name of the client file that contains the
smart-large-object data.

Internal Unload Representation: To handle opaque-type data in its internal
unload representation, the database server calls the importbin and exportbin
support functions of the opaque type. The internal unload representation is the
binary version of the opaque-type data when it resides in a copy file. Usually, the
internal unload and server internal representations of an opaque type are the same.
When a bulk-copy utility sends or receives opaque-type data in its internal unload
representation, the database server must find a support function to handle the
possibility that the client computer uses a different byte ordering than the server
computer. The importbin and exportbin support functions are the cast functions for
an opaque type between its internal (binary) unload representation (its binary
format in a copy file) and its server internal (binary) representation.

Important: An opaque data type only requires importbin and exportbin support
functions if its internal unload representation is different from its
server internal representation (which the send and receive support
functions handle). For most opaque data types, the database server can
use the send and receive support functions for importbin and
exportbin, respectively, to handle bulk copies of the opaque-type
columns to and from their binary representation.

The database server stores the internal unload representation of an opaque type in
an mi_impexpbin structure, which is a varying-length structure. Its ability to store
varying-length data enables it to handle any possible changes in the size of the
opaque-type data when it is converted between these two internal representations.
For example, the client and server computers might have different packing rules
for structures.

Because the mi_impexpbin data type is a varying-length structure (like
mi_lvarchar), it is always passed by reference. Therefore, the importbin and
exportbin support routines have the following basic signatures.

Opaque-Type
Support Function Cast From Cast To

Importbin mi_impexpbin * Server internal representation of
the opaque data type

Exportbin Server internal representation of
the opaque data type

mi_impexpbin *

Importbin Support Function: When a bulk-copy utility performs a load of
opaque-type data in its internal unload representation, the database server calls the

Chapter 16. Extending Data Types 16-29

importbin support function. The importbin support function takes the internal
unload representation of the opaque type, which is encapsulated in an
mi_impexpbin structure, and returns the appropriate server internal representation
of that type, as the following signature shows:
srvr_internal_rep importbin(internal_unload_rep)

mi_impexpbin *internal_unload_rep;

importbin is the name of the C-language function that implements the
importbin support function for the opaque type. It is recommended
that you include the name of the opaque type in its importbin
function.

internal_unload_rep
is a pointer to an mi_impexpbin structure that holds the internal
unload representation of the opaque type.

An mi_impexpbin is always passed by reference. Therefore, the
internal_unload_rep argument must always be a pointer to the
mi_impexpbin data type. For information on how to obtain
information from this varying-length structure, see “Information
About Varying-Length Data” on page 2-24.

srvr_internal_rep
is the appropriate format for the server internal representation of
the opaque data type. The passing mechanism of this return value
depends on the kind of opaque type, as Figures 16-24 through
16-26 show. Most opaque types are passed by reference.

Figure 16-24 declares a sample importbin support function for a fixed-length
opaque type named circle (which Figure 16-2 on page 16-3 declares).

The circle_impbin() function is a cast function from the mi_impexpbin data type
(which contains the internal unload representation for the circle opaque type) to
the circle_t internal representation (on the server computer). The database server
executes circle_impbin() when it needs a cast function to convert from the SQL
data type IMPEXPBIN to the server internal representation of the circle opaque
type. For more information, see “Support Functions as Casts” on page 16-8.

The circle_impbin() function returns a pointer to the circle_t data type. Because
circle cannot fit into an MI_DATUM structure, it must be passed by reference. If
your fixed-length opaque type can fit into an MI_DATUM structure, the importbin
support function can return the server internal representation by value.
Figure 16-25 declares a sample importbin function for a fixed-length opaque type
named two_bytes (which Figure 16-5 on page 16-7 declares).

/* Importbin support function: circle */
circle_t *circle_impbin(intrnl_unload_rep)

mi_impexpbin *intrnl_unload_rep;
{

return (circle_recv((mi_sendrecv *)intrnl_unload_rep));
}

Figure 16-24. Importbin Support Function for circle Opaque Type

16-30 IBM Informix DataBlade API Programmer’s Guide

The two_bytes opaque type must be registered as PASSEDBYVALUE to tell the
database server that it can be passed by value.

Figure 16-26 declares a sample importbin support function for a varying-length
opaque type named image (which Figure 16-3 on page 16-5 declares).

The image opaque type stores its data inside an mi_lvarchar structure, which must
be passed by reference. The image_impbin() function is a cast function from the
mi_impexpbin data type (which contains the internal unload representation of
image) to the mi_lvarchar data type (which contains the server internal
representation of image).

For most opaque types, the importbin support function can be the same as the
receive support function, because the client internal representation and the internal
unload representation are the same. For such opaque types, you can handle the
importbin function in either of the following ways:
v Call the receive function inside the importbin function

The importbin functions for the circle opaque type (Figure 16-24 on page 16-30),
the two_bytes opaque type (Figure 16-25 on page 16-31), and the image opaque
type (Figure 16-26 on page 16-31) use this method.

v Omit the importbin function from the definition of the opaque type
You must still create the implicit cast from the IMPEXPBIN data type to the
opaque data type with the CREATE CAST statement. However, instead of listing
an importbin support function as the cast function, list the receive support
function. The database server would then automatically call the appropriate
receive support function to load the opaque type when it is in its internal
unload representation.

For an opaque type that does require an importbin support function, the importbin
function performs the following tasks:
v Accepts as an argument a pointer to the internal unload representation of the

opaque type
The internal unload representation is in the data portion of an mi_impexpbin
structure, which is passed by reference.

v Allocates enough space to hold the server internal representation of the opaque
type

/* Importbin support function: two_bytes */
two_bytes_t two_bytes_impbin(intrnl_unload_rep)

mi_impexpbin *intrnl_unload_rep;
{

return (two_bytes_recv((mi_sendrecv *)intrnl_unload_rep));
}

Figure 16-25. Importbin Support Function for two_bytes Opaque Type

/* Importbin support function: image */
mi_lvarchar *image_impbin(intrnl_unload_rep)

mi_impexpbin *intrnl_unload_rep;
{

return (image_recv((mi_sendrecv *)intrnl_unload_rep));
}

Figure 16-26. Importbin Support Function for image Opaque Type

Chapter 16. Extending Data Types 16-31

The importbin function can use the mi_alloc() DataBlade API function to
allocate the space for the internal representation. For more information on
memory management, see “Managing User Memory” on page 14-20.

v Creates the server internal representation from the individual members of the
internal unload representation
The DataBlade API provides functions to convert simple C data types from their
client to server binary representations. For example, to convert the
double-precision values in the circle_t structure to their binary representation on
the server computer, the circle_impbin() function can call the
mi_get_double_precision() function. For a list of these DataBlade API
functions, see “Conversion of Opaque-Type Data with Computer-Specific Data
Types” on page 16-21.

v Returns the appropriate server internal representation for the opaque type
If the opaque data type is passed by reference, the importbin function returns a
pointer to the server internal representation. If the opaque data type is passed by
value, the importbin function returns the actual value of the internal
representation instead of a pointer to this representation. For more information,
see “Determining the Passing Mechanism for an Opaque Type” on page 16-7.

Exportbin Support Function: When a bulk-copy utility performs an unload of
opaque-type data to its internal unload representation, the database server calls the
exportbin support function. The exportbin support function takes the appropriate
server internal representation of the opaque data type and returns the internal
unload representation of that type, encapsulated in an mi_impexpbin structure, as
the following signature shows:
mi_impexpbin *exportbin(srvr_internal_rep)

exportbin is the name of the C-language function that implements the
exportbin support function for the opaque type. It is recommended
that you include the name of the opaque type in its exportbin
function.

srvr_internal_rep
is the appropriate format for the server internal representation of
the opaque data type. The passing mechanism of this argument
value depends on the kind of opaque type, as Figures 16-27
through 16-29 show. Most opaque types are passed by reference.

An mi_impexpbin is always passed by reference. Therefore, the return value of the
exportbin support function must always be a pointer to the mi_impexpbin data
type. For information on how to obtain information from this varying-length
structure, see “Information About Varying-Length Data” on page 2-24.

Figure 16-27 declares a sample exportbin support function for a fixed-length
opaque type named circle (which Figure 16-2 on page 16-3 declares).

/* Exportbin support function: circle */
mi_impexpbin *circle_expbin(srvr_intrnl_rep)

circle_t *srvr_intrnl_rep;
{

return ((mi_impexpbin *)circle_send(srvr_intrnl_rep));
}

Figure 16-27. Exportbin Support Function for circle Opaque Type

16-32 IBM Informix DataBlade API Programmer’s Guide

The circle_expbin() function is a cast function from the circle_t internal
representation (on the server computer) to the mi_impexpbin data type (which
contains the internal unload representation for circle). The database server executes
circle_expbin() when it needs a cast function to convert from the server internal
representation of the circle opaque type to the SQL data type IMPEXPBIN. For
more information, see “Support Functions as Casts” on page 16-8.

The circle_expbin() function accepts as an argument a pointer to the circle_t data
type. Because circle cannot fit into an MI_DATUM structure, it must be passed by
reference. If your fixed-length opaque type can fit into an MI_DATUM structure,
the exportbin support function can pass the server internal representation by value.
Figure 16-28 declares a sample exportbin function for a fixed-length opaque type
named two_bytes (which Figure 16-5 on page 16-7 declares).

The two_bytes opaque type must be registered as PASSEDBYVALUE to tell the
database server that it can be passed by value.

Figure 16-29 declares a sample exportbin support function for a varying-length
opaque type named image (which Figure 16-3 on page 16-5 declares).

The image opaque type stores its data inside an mi_lvarchar structure, which must
be passed by reference. The image_expbin() function is a cast function from the
mi_lvarchar data type (which contains the server internal representation of image)
to the mi_impexpbin data type (which contains the internal unload representation
of image).

For most opaque types, the exportbin function can be the same as the send support
function, because the client internal representation and the internal unload
representation are the same. For such opaque types, you can handle the exportbin
support function in either of the following ways:
v Call the send function inside the exportbin function.

The circle opaque type (Figure 16-27 on page 16-32), the two_bytes opaque type
(Figure 16-28 on page 16-33), and the image opaque type (Figure 16-29 on page
16-33) use this method.

v Omit the exportbin function from the definition of the opaque type.
You must still create the explicit cast from the opaque data type to the
IMPEXPBIN data type with the CREATE CAST statement. However, instead of
listing an exportbin support function as the cast function, list the send support

/* Exportbin support function: two_bytes */
mi_impexpbin *two_bytes_expbin(srvr_intrnl_rep)

two_bytes_t srvr_intrnl_rep;
{

return ((mi_impexpbin *)two_bytes_send(srvr_intrnl_rep));
}

Figure 16-28. Exportbin Support Function for two_bytes Opaque Type

/* Exportbin support function: image */
mi_impexpbin *image_expbin(srvr_intrnl_rep)

mi_lvarchar *srvr_intrnl_rep;
{

return ((mi_impexpbin *)image_send(srvr_intrnl_rep));
}

Figure 16-29. Exportbin Support Function for image Opaque Type

Chapter 16. Extending Data Types 16-33

function. The database server would then automatically call the appropriate
send support function to unload the opaque type to its internal unload
representation.

For an opaque type that does require an exportbin support function, the exportbin
function performs the following tasks:
v Accepts as an argument a pointer to the appropriate server internal

representation of the opaque type
If the opaque data type is passed by reference, the exportbin function accepts a
pointer to the server internal representation. If the opaque data type is passed by
value, the exportbin function returns the actual value of the internal
representation instead of a pointer to this representation. For more information,
see “Determining the Passing Mechanism for an Opaque Type” on page 16-7.

v Allocates enough space to hold the internal unload representation of the opaque
type
The exportbin function can use the mi_alloc() DataBlade API function to
allocate the space for the internal representation. For more information on
memory management, see “Managing User Memory” on page 14-20.

v Creates the internal unload representation from the individual members of the
server internal representation
The DataBlade API provides functions to convert simple C data types from
server to client binary representations. For example, to convert the
double-precision values in the circle_t structure to their binary representation on
the client computer, the circle_expbin() function can call the
mi_put_double_precision() function. For a list of these DataBlade API
functions, see “Conversion of Opaque-Type Data with Computer-Specific Data
Types” on page 16-21.

v Copies the internal unload representation into an mi_impexpbin structure
You can use the mi_new_var() function to create a new mi_impexpbin
structure and the mi_get_vardata() or mi_get_vardata_align() function to
obtain a pointer to the data portion of this structure.

v Returns a pointer to the internal unload representation for the opaque type
This internal unload representation must reside in the data portion of an
mi_impexpbin structure. Therefore, the exportbin support function returns a
pointer to this mi_impexpbin structure.

Stream Support Functions
The following support functions convert a UDT to or from a stream representation
while reading the UDT from a stream or writing the UDT to a stream.

Support Function Purpose

streamwrite() Conversion of opaque-type data from its binary
representation to its stream representation

streamread() Conversion of opaque-type data from its stream
representation to its binary representation

The stream representation is self-contained and includes enough information to
enable the streamread() function to re-create the UDT instance.

Important: If the UDT includes out-of-row data, the stream representation should
normally include that data.

16-34 IBM Informix DataBlade API Programmer’s Guide

Enterprise Replication invokes the streamwrite() and streamread() support
functions when replicating UDT columns. The streams it passes to these functions
are Enterprise Replication streams, a write-only stream for streamwrite() and a
read-only stream for streamread(). You cannot open or close an Enterprise
Replication stream or use the mi_stream_setpos() or mi_stream_seek() function
on it. For more information about Enterprise Replication, see the IBM Informix
Dynamic Server Enterprise Replication Guide.

Important: If a column that includes out-of-row data is to be replicated, avoid
placing a NOT NULL constraint on the column. Enterprise Replication
collects out-of-row data for transmission after the user transaction has
committed. Due to activity on the replicated row, the data might not
exist at the time Enterprise Replication collects it for replication. In
such cases, Enterprise Replication normally applies a NULL on the
target system.

The streamwrite() Support Function: On a destination database server, the
streamwrite() support function converts opaque-type data from its binary
representation to its stream representation. The streamwrite() support function
accepts a stream descriptor and the address of opaque-type data to write, as the
following signature shows:
mi_integer streamwrite(strm_desc, binary_rep)

MI_STREAM *strm_desc;
my_opq_type *binary_rep;

strm_desc is a pointer to a stream descriptor for an open stream. For more
information, see “Access to a Stream (Server)” on page 13-42.

binary_rep is a pointer to the binary representation of the opaque-type data,
which is written to the stream.

The binary representation is the appropriate format for the
opaque-type data. The passing mechanism for this data depends
on the kind of opaque type, as Figures 16-6 through 16-8 show.
Most opaque-type values are passed by reference to the
streamwrite() function as single pointers.

The streamwrite() function returns the number of bytes written to the stream or
MI_ERROR. This function can also return the errors that mi_stream_write()
returns. To convert the individual fields of the opaque-type internal representation
to their stream representation, streamwrite() can call the stream-write functions of
the DataBlade API (see Table 16-5 on page 16-36).

A sample SQL declaration for the streamwrite() function follows:
CREATE FUNCTION streamwrite(STREAM, MyUdt)
RETURNS INTEGER
EXTERNAL NAME '/usr/local/udrs/stream/myudt.so(MyUdtStreamWrite)'
LANGUAGE C;

Tip: Unlike most opaque-type support functions, the streamwrite() function for
an opaque type must have the explicit name “streamwrite” when you register
it with the CREATE FUNCTION statement. It is recommended that you
include the name of the opaque type in the C-language version of its
streamwrite() function.

The streamread() Support Function: On a target database server, the
streamread() support function converts opaque-type data from its stream
representation to its binary representation, which is stored in the target database.

Chapter 16. Extending Data Types 16-35

The streamread() support function accepts a stream descriptor and the address of
a buffer into which to read the opaque-type data, as the following signature shows:
mi_integer streamread(strm_desc, binary_rep)

MI_STREAM *strm_desc;
my_opq_type **binary_rep;

strm_desc is a pointer to a stream descriptor for an open stream. For more
information, see “Access to a Stream (Server)” on page 13-42.

binary_rep is a pointer to the buffer into which the function is to copy the
binary representation of the opaque-type data.

The stream buffer is declared with the appropriate format for the
binary representation of the opaque-type data. The passing
mechanism for this buffer depends on the kind of opaque type, as
Figures 16-6 through 16-8 show. Most buffers for opaque-type data
are passed by reference to streamread() as double pointers.

The streamread() function returns the number of bytes read from the stream or
MI_ERROR. This function can also return the errors that mi_stream_read()
returns. To convert the individual fields of the opaque-type internal representation
to their binary representation, streamwrite() can call the stream-read functions of
the DataBlade API (see Table 16-5).

A sample SQL declaration for the streamread() function follows:
CREATE FUNCTION streamread(STREAM, OUT MyUdt)
RETURNS INTEGER
EXTERNAL NAME '/usr/local/udrs/stream/myudt.so(MyUdtStreamRead)'
LANGUAGE C;

Tip: Unlike most opaque-type support functions, the streamread() function for an
opaque type must have the explicit name “streamread” when you register it
with the CREATE FUNCTION statement. It is recommended that you include
the name of the opaque type in the C-language version of its streamread()
function.

Converting Opaque-Type Data Between Stream and Binary Representations:
The DataBlade API provides several functions to convert built-in data types
between binary and stream representations. The streamwrite() and streamread()
support functions can use these DataBlade API functions to convert a UDT
between its binary representation and its stream representation.

Important: Writing a collection or row to a stream opened for Enterprise
Replication is not supported. Likewise, reading a collection or row
from a stream opened for Enterprise Replication is not supported.

Table 16-5 shows the DataBlade API stream-conversion functions.

Table 16-5. Stream-Conversion Functions of the DataBlade API

Type of Data

DataBlade API Function

The streamwrite()
Support Function

The streamread()
Support Function

Byte data mi_stream_write() mi_stream_read()

Date and Date/time data

DATE data mi_streamwrite_date() mi_streamread_date()

DATETIME data mi_streamwrite_datetime() mi_streamread_datetime()

16-36 IBM Informix DataBlade API Programmer’s Guide

Table 16-5. Stream-Conversion Functions of the DataBlade API (continued)

Type of Data

DataBlade API Function

The streamwrite()
Support Function

The streamread()
Support Function

INTERVAL data mi_streamwrite_interval() mi_streamread_interval()

Integer data

SMALLINT data
(two-byte integers)

mi_streamwrite_smallint() mi_streamread_smallint()

INTEGER data
(four-byte
integers)

mi_streamwrite_integer() mi_streamread_integer()

INT8 data
(eight-byte
integers)

mi_streamwrite_int8() mi_streamread_int8()

Fixed-point and Floating-point data

DECIMAL data
(fixed- and
floating-point)

mi_streamwrite_decimal() mi_streamread_decimal()

MONEY data mi_streamwrite_money() mi_streamread_money()

SMALLFLOAT
data

mi_streamwrite_real() mi_streamread_real()

FLOAT data mi_streamwrite_double() mi_streamread_double()

Other data

Character data mi_streamwrite_string() mi_streamread_string()

Smart large objects mi_streamwrite_lo() mi_streamread_lo()
mi_streamread_lo_by_lofd()

Boolean data mi_streamwrite_boolean() mi_streamread_boolean()

Collection
structures

mi_streamwrite_collection() mi_streamread_collection()

Row structures mi_streamwrite_row() mi_streamread_row()

Varying-length
structures

mi_streamwrite_lvarchar() mi_streamread_lvarchar()

The DataBlade API function converts the corresponding data type to a
machine-independent stream representation.

Important: The mistrmutil.h header file declares the stream-conversion functions
of the DataBlade API; however, the mi.h header file does not include
mistrmutil.h. You must explicitly include mistrmutil.h in files that use
these stream-conversion functions.

Disk-Storage Support Functions
To provide the ability to perform special processing on the internal representation
of an opaque type that it is stored on disk, you can define the following
disk-storage support functions for an opaque type.

Support Function Purpose

assign() Special processing required just before a row that
contains the opaque-type column is inserted into
the table (written to disk)

Chapter 16. Extending Data Types 16-37

destroy() Special processing required just before a row that
contains the opaque-type column is deleted from a
table (removed from disk)

The disk internal representation is the contents of the C structure that is actually
written to disk for the opaque-type column. The assign() and destroy() support
functions are useful for opaque types that contain smart large objects. For such
data types, assign() and destroy() can provide management of the associated
smart large object as well as any necessary modification of the internal
representation.

Important: An opaque data type requires assign() and destroy() support
functions only if its disk internal representation is different from its
server internal representation. For most opaque types, these two
representations are the same.

The assign() Support Function: The database server calls the assign() support
function for an opaque type when a value is ready to be inserted into an
opaque-type column (INSERT, UPDATE, or LOAD). The assign() support function
accepts the server internal representation of the opaque type and returns the
appropriate disk internal representation for that type, as the following signature
shows:
disk_internal_rep assign(internal_rep);

disk_internal_rep
is the appropriate format for the disk internal representation of the
opaque data type. The passing mechanism of this return value
depends on the kind of opaque type. For more information, see
“Determining the Passing Mechanism for an Opaque Type” on
page 16-7. The disk internal representation is the internal format as
modified by the assign() support function. This format is what
the database server writes to the database table.

internal_rep is the appropriate format for the server internal representation of
the opaque data type. The passing mechanism of this return value
depends on the kind of opaque type. For more information, see
“Determining the Passing Mechanism for an Opaque Type” on
page 16-7. The server internal representation is the representation
that the input support function returns.

Tip: Unlike most opaque-type support functions, the assign()
function for an opaque type must have the explicit name
“assign” when you register it with the CREATE FUNCTION
statement. No implicit casting occurs when the database
server resolves this function. However, it is recommended
that you include the name of the opaque type in the
C-language version of its assign() function.

The destroy() Support Function: The database server calls the destroy()
support function for an opaque type when a value is ready to be deleted from an
opaque-type column (DELETE or DROP TABLE). The destroy() support function
accepts the disk internal representation of the opaque data type and does not
return a value, as the following signature shows:
void destroy(disk_internal_rep);

disk_internal_rep
is the appropriate format for the disk internal representation of the

16-38 IBM Informix DataBlade API Programmer’s Guide

opaque data type. The passing mechanism of this return value
depends on the kind of opaque type. For more information, see
“Determining the Passing Mechanism for an Opaque Type” on
page 16-7.

Tip: Unlike most opaque-type support functions, the destroy()
function for an opaque type must have the explicit name
“destroy” when you register it with the CREATE FUNCTION
statement. No implicit casting occurs when the database
server resolves this function. However, it is recommended
that you include the name of the opaque type in the
C-language version of its destroy() function.

Handling Locale-Specific Opaque-Type Data (GLS)
To internationalize your opaque type, you must ensure that the following support
functions handle data in a nondefault locale:
v The input and output support functions provide the ability to transfer the

external representation of the opaque type.
v The send and receive support functions provide the ability to transfer the binary

representation of the opaque type.

For a description of the internationalization support that the DataBlade API
provides, see “Internationalization of DataBlade API Modules (GLS)” on page 1-19.
For general information on internationalized support that the opaque-type can
provide, see the chapter on support functions in the IBM Informix User-Defined
Routines and Data Types Developer’s Guide.

Registering an Opaque Data Type
This section explains how to register an opaque data type.

To register an opaque type in a database:

1. Register the opaque type as an extended data type.
2. Register the opaque-type support functions.
3. Register the opaque-type casts.

For more information on how to register an opaque type and grant the associated
privileges, see the IBM Informix User-Defined Routines and Data Types Developer’s
Guide.

Registering an Opaque Type in a Database
Use the CREATE OPAQUE TYPE statement to register an opaque data type in a
database. For more information, see “Determining Internal Representation” on
page 16-3. You can assign privileges to the opaque type with the GRANT USAGE
ON TYPE statement. Type privileges for user-defined types (including opaque
types) are stored in the sysxtdtypeauth system catalog table. By default, Usage
privilege is granted to the person who registered the user-defined type. For more
information on the syntax of the GRANT statement, see the IBM Informix Guide to
SQL: Syntax.

Registering Opaque-Type Support Functions
To have the database server able to locate the opaque-type support functions, you
must register them with the following actions:
v Use the CREATE FUNCTION statement to register the opaque-type support

functions as C UDRs.

Chapter 16. Extending Data Types 16-39

For more information, see “Registering a C UDR” on page 12-14.
v Use the GRANT EXECUTE ON statement to grant the Execute privilege to the

opaque-type support functions.
For more information, see “Privileges for the UDR” on page 12-18.

v Use the GRANT USAGE ON LANGUAGE statement to ensure that users have
the Usage privilege in the C language for UDRs.
For more information, see “The UDR Language” on page 12-16.

Registering the Opaque-Type Casts
Use the CREATE CAST statement to register the input, output, receive, send,
import, export, importbin, and exportbin support functions as cast functions in the
syscasts system catalog table. The input, receive, import, and importbin support
functions must be registered as implicit casts. The output, send, export, and
exportbin support functions must be registered as explicit casts. For more
information, see “Support Functions as Casts” on page 16-8.

Providing Statistics Data for a Column
The database server can provide statistics data for the columns of a table. This
statistics data describes the distribution of the values within a column. The query
optimizer uses this statistics data to determine the best path for an SQL statement.
With this information, the optimizer can estimate the effect of a WHERE clause by
examining, for each column included in the WHERE clause, the proportionate
occurrence of data values contained in the column. (For more information about
statistics data and the optimizer, see your IBM Informix Performance Guide.)

The database server provides the following support for column statistics data:
v The UPDATE STATISTICS statement collects statistics data for the columns of a

table.
v The dbschema -hd command displays statistics data for columns in a table.

However, the database server can only provide this support for columns with
built-in data types. For the database server to support statistics data for a column
with a user-defined data type, you must write special UDRs that collect and print
the statistics data.

DBDK

BladeSmith can automatically generate user-defined statistics for an opaque data
type in a statistics.c file. This file contains the following user-defined functions.

Statistics Function Purpose

OpaqueStatCollect() The statcollect() function for the Opaque data type

OpaqueStatPrint() The statprint() function for the Opaque data type

These functions are not complete. You must add code to handle the statistics data
to these functions for them to compile and execute.

End of DBDK

Collecting Statistics Data
The UPDATE STATISTICS statement collects statistics about the tables in your
database. It automatically collects statistics for all columns with built-in data types

16-40 IBM Informix DataBlade API Programmer’s Guide

(except TEXT and BYTE). However, it cannot automatically collect statistics for
columns with user-defined data types because it does not know the structure of
these data types.

For UPDATE STATISTICS to collect statistics for a column with a user-defined data
type, you must write a user-defined function named statcollect() that collects
statistics data for your user-defined data type. The UPDATE STATISTICS statement
takes the following steps for columns of user-defined data types:
v Calls the statcollect() function that handles the user-defined data type

This statcollect() function gathers the statistics data for the column and stores it
as the stat opaque data type.

v Stores this stat data type in the sysdistrib system catalog table, where the
statistics data can be accessed by the query optimizer
UPDATE STATISTICS stores the following information in the row of the
sysdistrib table that corresponds to the user-defined-type column:
– In the encdat column of the sysdistrib row: the stat data type that

statcollect() returns
– In the type column of the sysdistrib row: an ’S’ to indicate that the encdat

column contains user-defined statistics

To have the UPDATE STATISTICS statement collect statistics for your user-defined
data type, you must:
v Design the statistics information that is appropriate for your user-defined data

type.
v Define a C statistics-collection function to implement the statistics collection.
v Collect the statistics for the column within this statistics-collection function.
v Register this C function as a statcollect() user-defined function.

If a statcollect() function does not exist for your user-defined data type, UPDATE
STATISTICS does not collect statistics data for any column of that type.

Designing the User-Defined Statistics
Before you begin to code a statcollect() function for a particular user-defined data
type, you need to decide what it means to collect statistics on this data type. For
example, consider the following issues:
v Do the values of the user-defined type have some ordering?

To be able to group the values into bins of related values, the data must have
some kind of implied sequence. A common use of statistics information is within
a selectivity function for a query filter such as “less than” or “greater than”. If
the values of the user-defined data type do not have ordering, they would not
logically be used in such filters. For more info, see “Query Selectivity” on page
15-54.

v How does the distribution handle SQL NULL values?
For example, the distribution can ignore NULL values or it could aggregate
them. However, the handling of the NULL values should make sense to the
user-defined data type.

Defining the Statistics-Collection Function
When you declare your statistics-collection function, it must have the following C
signature:

Chapter 16. Extending Data Types 16-41

mi_statret *statcollect(udt_arg, num_rows, resolution,
fparam_ptr)

udt_type *udt_arg;
mi_double_precision *num_rows;
mi_double_precision *resolution;
MI_FPARAM *fparam_ptr;

udt_arg is a pointer to the internal structure of the user-defined data type.
The database server uses this argument to resolve the function and
to pass in column values.

num_rows is a pointer to a floating-point value that indicates the number of
rows that the database server must scan to gather the statistics.

resolution is a pointer to a floating-point value that is the resolution specified
by the UPDATE STATISTICS statement. The resolution value
specifies the bucket size for the distribution. However, you might
choose to ignore this parameter if it does not make sense for your
user-defined data type.

fparam_ptr is a pointer to the MI_FPARAM structure that holds the
iterator-status constant for each iteration of the statcollect()
function.

Tip: The statistics-collection function can have any name. It does
not have to be named statcollect(). It is recommended that
you include the name of your user-defined data type in the
name of the statistics-collection function to help distinguish
the function from the statistics-collection functions of other
user-defined data type.

Figure 16-30 shows a C declaration of the statistics-collection function for the
longlong opaque type.

DBDK

BladeSmith automatically generates an OpaqueStatCollect() function (in which
Opaque is the name of your opaque data type) with the following declaration:
mi_lvarchar *OpaqueStatCollect(Gen_pColValue,

Gen_Resolution, Gen_RowCount, Gen_fparam)
Opaque *Gen_pColValue;
mi_double_precision *Gen_Resolution;
mi_double_precision *Gen_RowCount;
MI_FPARAM *Gen_fparam;

If this declaration is not appropriate for your opaque type, you must customize the
OpaqueStatCollect() function.

End of DBDK

mi_statret *statcollect_ll(ll_arg, num_rows, resolution, fparam_ptr)
longlong_t *ll_arg;
mi_double_precision *num_rows;
mi_double_precision *resolution;
MI_FPARAM *fparam_ptr;

Figure 16-30. Sample Declaration of a Statistics-Collection Function

16-42 IBM Informix DataBlade API Programmer’s Guide

Collecting the Statistics
The statcollect() user-defined function is an iterator function; that is, the database
server calls statcollect() for each of the rows on whose column of a user-defined
data type UPDATE STATISTICS is collecting statistics. As with other iterator
functions, the database server uses an iterator-status constant to indicate when the
statistics-collection function is called.

Important: The database server passes the value of the iterator-status constant
within the MI_FPARAM structure. Therefore, your statistics-collection
function must declare an MI_FPARAM structure as its last parameter.
Otherwise, it cannot access the value of the iterator-status constant
with the mi_fp_request() function.

The following table summarizes the values of the iterator-status constant for the
statcollect() function.

When Is the statcollect()
Function Called? What Does statcollect() Need To Do?

Iterator-Status
Constant in
MI_FPARAM

The first time that
statcollect() is called

Perform any initialization operations, such
as allocating memory for a
statistics-collection structure and
initializing values

First argument (udt_arg) is a NULL value.

SET_INIT

Once for each row for
which statistics are being
collected

Return one item of the active set

Read the column value from the first
argument (udt_arg) and place it in your
statistics-collection structure.

SET_RETONE

After all rows have been
processed

Release iteration resources

Put the statistics in the stat data type and
perform any memory deallocation

SET_END

To obtain the iterator-status constant in each iteration, your statcollect() function
can use a switch statement on the return value of the mi_fp_request() function,
as follows:
switch (mi_fp_request(fparam_ptr))
{

case SET_INIT:
...

case SET_RETONE:
...

case SET_END:
...

}

If statcollect() raises an error, UPDATE STATISTICS terminates the statistics
collection for that column.

The following sections summarize the steps that statcollect() must take for each of
these iterator-status constants. For general information about iterator-status
constants, see Table 15-1 on page 15-3.

SET_INIT in statcollect(): When the iterator-status constant is SET_INIT, the
database server has invoked the initial call to statcollect(). Usually, in this initial

Chapter 16. Extending Data Types 16-43

call, your statcollect() function allocates and initializes an internal C structure,
called a statistics-collection structure. The statistics-collection structure is a holding
area for the statistics data that statcollect() gathers on a row-by-row basis.

DBDK

BladeSmith generates the OpaqueStatCollect() function (in which Opaque is the
name of your opaque data type), which allocates a statistics-collection structure
Opaque_stat_t (declared in a file with the .h extension). This structure contains the
following information.

Element of
Statistics-Collection
Structure Description Data Type

count Current number of rows mi_integer

max Maximum value mi_integer

min Minimum value mi_integer

distribution[] An array to hold the
“in-progress” statistics
data

An array of mi_integer values whose
size is the number of elements that can
fit into the text distribution area
(usually 256 bytes)

BladeSmith generates statistics code under the assumption that the minimum,
maximum, and distribution of values are appropriate for your opaque data type.
The SET_INIT case in the OpaqueStatCollect() function calls the
Opaque_SetMaxValue() and Opaque_SetMaxValue() functions (which you must
implement) to initialize maximum and minimum values, respectively. It initializes
the current row count and the elements of the distribution array to zero (0).

If this statistics data is not appropriate for your opaque type, take the following
actions:
v Define your own statistics-collection structure to hold statistics data.
v Allocate and initialize this statistics-collection structure within the SET_INIT case

of your statcollect() function.

End of DBDK

Your statcollect() function can use the MI_FPARAM structure to store this
statistics-collection structure (and any other state information) between iterations of
statcollect(). Allocate any memory used across multiple iterations of statcollect()
from the PER_COMMAND pool and free it as soon as possible. Allocate any
memory not used across multiple invocations of statcollect() from the
PER_ROUTINE memory pool.

Use the mi_fp_setfuncstate() function to save a pointer to the user-state memory
in the MI_FPARAM structure of your statcollect() function. For more information,
see “Saving a User State” on page 9-8.

SET_RETONE in statcollect(): For each row of a table, the statcollect() function
collects the statistics data for the column that has the user-defined data type. When
the iterator-status constant is SET_RETONE, the database server has invoked the
statcollect() function on a single row of the table on which statistics is being

16-44 IBM Informix DataBlade API Programmer’s Guide

gathered. At this point, statcollect() reads the column value from the first
argument and places it into the statistics-collection structure.

The statcollect() function processes the statistics on a row-by-row basis; that is, for
each iterator status of SET_RETONE, statcollect() merges the current column
value into the statistics data in the internal statistics-collection structure. Therefore,
the statcollect() function must perform the following tasks:
v Obtain the address of the statistics-collection structure from the user state of the

MI_FPARAM structure with the mi_fp_funcstate() function.
v Compare the current column value with the current maximum and minimum

values (if maximum and minimum are desired).
v Merge the current column value into the distribution data in the

statistics-collection structure.
v Handle a NULL column value as appropriate for your distribution.

DBDK

The SET_RETONE case in the OpaqueStatCollect() function (where Opaque is the
name of your opaque data type) that BladeSmith generates automatically calls the
Opaque_SetMinValue() and Opaque_SetMinValue() functions to compare the
current column value with the existing minimum and maximum. It then calls the
Opaque_Histogram() function to merge the column value into the distribution
array of the Opaque_stat_t statistics-collection structure. However, you must
provide this code within the Opaque_SetMinValue() and Opaque_Histogram()
functions to perform the actual comparisons and distribution for your Opaque data
type.

End of DBDK

SET_END in statcollect(): After all rows are processed, statcollect() must
transfer the statistics data from its statistics-collection structure into the predefined
opaque type, stat. It is stat data that the UPDATE STATISTICS statement stores in
the encdat column of the sysdistrib system catalog table.

The stat data type is a multirepresentational opaque data type; that is, it holds
statistics data within its internal structure until the data reaches a predefined
threshold. If the statistics data exceeds this threshold, the stat data type stores the
data in a smart large object. In support of the multirepresentational data, the stat
data type provides the following functions:
v An assign() support function, which is responsible for determining whether or

not the statistics data is to be stored in a smart large object
If the data exceeds the predefined threshold, this assign() function creates the
smart large object and increments its reference count. The database server calls
this assign() function just before it inserts the mi_statret structure into the
encdat column of the sysdistrib table.

v A destroy() support function, which is responsible for deleting any smart large
object that might exist to hold the statistics data
The database server calls this destroy() function just before it deletes a row
from the sysdistrib system catalog table in response to the DROP
DISTRIBUTION clause of the UPDATE STATISTICS statement.

For UPDATE STATISTICS to be able to store the distribution data in the encdat
column, the statcollect() function must copy its statistics-collection structure into
the stat data type.

Chapter 16. Extending Data Types 16-45

The internal structure of the stat opaque type is a C language structure named
mi_statret. The stat support functions handle most of the interaction with the
mi_statret structure; however, your statcollect() function must fill in the
mi_statret multirepresentational fields.

For an exact declaration of mi_statret, see the milo.h header file. This header file
also provides the following useful declarations.

Declaration Purpose

mi_stat_buf #define for the statdata.buffer field

mi_stat_mr #define for the statdata.mr field

MI_STATMAXLEN Constant for the size of the statdata.buffer field

mi_stat_hdrsize Size of the information in the mi_statret structure
that is not holding the statistics data (size of all
fields except the statdata field)

The assign() and destroy() support functions of the stat opaque type determine
whether to store the distribution data directly in the encdat column or in a smart
large object. In the latter case, the encdat column stores the LO handle of the smart
large object. Your statcollect() function can use the MI_STATMAXLEN constant to
determine whether it needs to handle multirepresentational data.

The MI_STATMAXLEN constant is the maximum size that the encdat column of
sysdistrib can hold. Therefore, it is the maximum size of the statdata.buffer array.
If your distribution data has a size less than MI_STATMAXLEN, you can take the
following actions:
v Copy the data from the statistics-collection structure directly into the

statdata.buffer field.
v Set the statdata.szind field to MI_MULTIREP_SMALL to indicate that the

multirepresentational data is not stored in a smart large object but is in the
mi_statret structure.

The assign() and destroy() support functions of the stat opaque type take care of
determining whether to store the distribution data directly in the encdat column or
in a smart large object whose LO handle is stored in the encdat column.

If your distribution data exceeds MI_STATMAXLEN, your statcollect() function
must handle the multirepresentational data itself, with the following steps:
1. Create a new smart large object.
2. Copy the data from the statistics-collection structure into the new smart large

object.
3. Copy the LO handle of this smart large object into the

statdata.mr.mr_lo_struct.mr_s_lo field.
4. Set the statdata.szind field to MI_MULTIREP_LARGE to indicate that the

multirepresentational data is stored in a smart large object.

Registering the statcollect() Function
As with any user-defined function, you register the statistics-collection function
with the CREATE FUNCTION statement. The registration of this function has the
following requirements:
v You must name this user-defined function statcollect.

16-46 IBM Informix DataBlade API Programmer’s Guide

The database server handles routine resolution based on the data type of the
first argument to statcollect(). If the name of your C statistics-collection
function is not statcollect(), specify the C function name in the EXTERNAL
NAME clause.

v You must declare the statcollect() function with HANDLESNULLS routine
modifier.
Your statistics-collection function can choose whether to include the NULL value
in the statistics data that it generates.

v The data types of the parameters must be as follows.

Parameter Number Parameter Data Type

1 SQL name for the user-defined data type

2 FLOAT

3 FLOAT
v Do not include the declaration of the

MI_FPARAM structure in the SQL registration.
v The function must return a value of type stat.

The following CREATE FUNCTION statement registers the statistics-collection
function that Figure 16-30 on page 16-42 declares:
CREATE FUNCTION statcollect(ll_arg longlong, num_rows FLOAT,

resolution FLOAT)
RETURNING stat
WITH (HANDLESNULLS)
EXTERNAL NAME '/usr/udrs/bin/longlong.so(stat_collect_ll)'
LANGUAGE C;

After you register the statcollect() function, make sure those with the DBA
privilege or the table owner has the Execute privilege on the function.

Executing the UPDATE STATISTICS Statement
To collect user-defined statistics, run the UPDATE STATISTICS statement in HIGH
or MEDIUM mode. The syntax of UPDATE STATISTICS is the same for
user-defined data types as for built-in data types. However, when UPDATE
STATISTICS collects statistics for a user-defined type, it does not automatically
determine the minimum and maximum column values (stored in the colmin and
colmax columns of the syscolumns system catalog table). Your statcollect()
function can explicitly calculate these values if desired.

The statcollect() function executes once for every row that the database server
scans during UPDATE STATISTICS. Therefore, a database table must contain more
than one row before the database server calls any statcollect() functions.

The number of rows that the database server scans depends on the mode and the
confidence level. Executing UPDATE STATISTICS in HIGH mode causes the
database server to scan all rows in the table. In MEDIUM mode the database
server chooses the number of rows to scan based on the confidence level. The
higher the confidence level, the higher the number of rows that the database server
scans. For general information about UPDATE STATISTICS, see the IBM Informix
Guide to SQL: Syntax.

For example, if the mytable table contains a column of type Box, the following
UPDATE STATISTICS statement collects user-defined statistics for all columns of
mytable, including any columns with user-defined statistics defined:

Chapter 16. Extending Data Types 16-47

UPDATE STATISTICS HIGH FOR TABLE mytable;

If the mytable table contains columns with any data types that require
user-defined statistics and you do not define this statistics collection, the UPDATE
STATISTICS statement does not collect statistics for the column.

Important: The statistics that the database server collects might require a smart
large object for storage. For the database server to use user-defined
statistics, the configuration parameter SYSSBSPACENAME must be set
in the ONCONFIG file before the database server is initialized. This
configuration parameter must specify the name of an existing sbspace.
If SBSSPACENAME is not set, the database server might not be able to
collect the specified statistics.

Using User-Defined Statistics
The user-defined statistics information in sysdistrib system catalog table is used in
the following ways:
v The dbschema utility with its -hd option uses these statistics to display statistics

data for tables.
v The query optimizer uses statistics to obtain a best guess for queries on the

user-defined data type column.

Displaying Statistics Data
The dbschema utility with its -hd option displays statistics data for tables in your
database. It can automatically display statistics for all columns with built-in data
types (except TEXT and BYTE). It cannot automatically collect statistics for
columns with user-defined data types because it does not know the structure of
these data types.

For dbschema -hd to display statistics for a column with a user-defined data type,
you must write a user-defined function named statprint() that generates text
output of the statistics collected for your user-defined data type. The dbschema
-hd command obtains the user-defined statistics from the encdat column of the
sysdistrib system catalog table. The encdat column stores the statistics data in the
stat opaque type. Therefore, dbschema must call the statprint() function for your
user-defined data type to convert the statistics data from the stat data type to an
LVARCHAR value that can be displayed.

To provide display statistics for your user-defined data type, you must:
v Define a C statistics-display function to implement the statistics display.
v Convert the user-defined statistics for the column to text output within

statistics-display function.
v Register this C function as a statprint() user-defined function.

Defining a Statistics-Display Function: When you declare your statistics-display
function, it must have the following signature:
mi_lvarchar *statprint(udt_arg, stat_arg)

udt_type *udt_arg;
mi_statret *stat_arg;

udt_arg is a pointer to a dummy argument. The database server uses this
argument to resolve the function and to pass in column values.

stat_arg is a pointer to the mi_statret structure that contains the statistics
information for the user-defined data type.

16-48 IBM Informix DataBlade API Programmer’s Guide

DBDK

BladeSmith automatically generates an OpaqueStatPrint() function (in which
Opaque is the name of your opaque data type) with the following declaration:
mi_lvarchar *OpaqueStatCollect(Gen_dummy, Gen_bvin)

void *Gen_dummy;
mi_lvarchar *Gen_bvin;

If this declaration is not appropriate for your opaque type, you must customize the
OpaqueStatPrint() function.

End of DBDK

Creating the ASCII Histogram: The statprint() function converts the statistics
data stored in the stat data type to an LVARCHAR value that the database server
can use to display information. The stat data type is a multirepresentational data
type that the database server uses to store statistics data in the encdat column of
the sysdistrib system catalog table.

Registering the statprint() Function: As with any user-defined function, you
register the statistics-display function with the CREATE FUNCTION statement.
The registration of this function has the following requirements:
v You must name this user-defined function statprint.

The database server handles routine resolution based on the data type of the
first argument to statprint(). If the name of your C statistics-collection function
is not statprint(), specify the C function name in the EXTERNAL NAME clause.

v The data types of the parameters must be as follows.

Parameter Number Parameter Data Type

1 SQL name for the user-defined data type

2 stat
v The function must return a value of type LVARCHAR.

The following CREATE FUNCTION statement registers a statistics-display
function:
CREATE FUNCTION statprint(ll_arg longlong, num_rows stat)
RETURNING LVARCHAR
EXTERNAL NAME '/usr/udrs/bin/longlong.so(stat_print_ll)'
LANGUAGE C;

After you register the statprint() function, make sure those with the DBA
privilege and the table owner have the Execute privilege for the function.

Using User-Defined Statistics in a Query
For SQL statements that use user-defined data types, the optimizer can call custom
selectivity and cost functions. Selectivity and cost functions might need to use
statistics about the nature of the data in a column. When you create the
statcollect() function that collects statistics for a UDT, the database server executes
this function automatically when a user runs the UPDATE STATISTICS statement
with the MEDIUM or HIGH keyword.

The statistics that the database server collects might require a smart large object for
storage. The configuration parameter SBSSPACENAME specifies an sbspace for
storing this information. If SBSSPACENAME is not set, the database server might
not be able to collect the specified statistics.

Chapter 16. Extending Data Types 16-49

The query optimizer can use data distributions when it assesses the selectivity of a
query filter. The selectivity is the number of rows that the filter will return. For
queries that involve columns with built-in data types, the database server uses
data distributions to automatically determine selectivity for the following kinds of
filters:
v Relational-operator functions (lessthan(), ...)
v Boolean built-in operator functions: like(), matches()

Important: The query optimizer can only use data distributions if the UPDATE
STATISTICS statement has collected these distributions in the
sysdistrib system catalog table.

However, if the query involves columns with user-defined data types, you must
provide the following information for the query optimizer to be able to determine
the filter selectivity:
1. Write a user-defined function to implement the appropriate operator function.

For user-defined types, these built-in operator functions do not automatically
exist. You must write versions of these functions that handle your user-defined
type.

2. Write a selectivity function for the operator function to provide the optimizer
with a selectivity value.
Selectivity and cost functions might need to use statistics about the nature of
the data in a column. If you want these selectivity functions to use data
distributions, take the following actions:
v Provide user-defined statistics so that the UPDATE STATISTICS statement

saves the data distributions in the sysdistrib system catalog table.
v Access the sysdistrib table from within the selectivity function to obtain the

data distributions for the column.
For more information on how to write and register selectivity functions, see
“Writing Selectivity and Cost Functions” on page 15-54.

Optimizing Queries
The WHERE clause of the SELECT statement controls the amount of information
that the query evaluates. This clause can consist of a comparison condition, which
evaluates to a BOOLEAN value. Therefore, a comparison condition can contain a
Boolean function; that is, it can contain a user-defined function that returns a
BOOLEAN value. Boolean functions can act as filters in queries, as Table 16-6
shows.

Table 16-6. Boolean Functions Valid in a Comparison Condition

Comparison Condition Operator Symbol Associated User-Defined Function

Relational operator =, !=, <>
<, <=
>, >=

equal(), notequal(), notequal()
lessthan(), lessthanorequal()
greaterthan(), greaterthanorequal()

LIKE, MATCHES None like(), matches()

Boolean function None Name of a user-defined function that
returns a BOOLEAN value

The Boolean functions in Table 16-6 can act as filters in queries. To optimize
queries that use these functions as filters, you can define the following
UDR-optimization functions.

16-50 IBM Informix DataBlade API Programmer’s Guide

Type of Optimization Description

Negator function Calculate the NOT condition of the Boolean expression

Selectivity and cost functions Provide an estimate of the number of rows that the
filter will return

Tip: A WHERE clause can also consist of a condition with a subquery. However,
conditions with subqueries do not evaluate to a Boolean function. Therefore,
they do not require UDR-optimization functions. For more information on
conditions with subqueries, see your IBM Informix Performance Guide and the
Condition segment of the IBM Informix Guide to SQL: Syntax.

Query Plans
The optimizer uses the cost and selectivity information to help determine the best
query plan for a query. In particular, the optimizer uses this information to obtain
the following query and cost estimates:
v Number of rows to retrieve from a table

This estimated number of rows is based on the selectivity of each filter within the
WHERE clause of the query.

v Amount of resources that the query requires
The cost is an estimate of the total cost of resource usage for executing the query
filter.

The following kinds of user-defined functions are Boolean expressions:
v Built-in operator functions:

– relational-operator functions, such as lessthan()
– Boolean built-in operator functions, such as like() and matches()

v End-user functions that return a BOOLEAN value

Because these user-defined functions are Boolean expressions, they can act as filters
in queries. You can optimize these Boolean-expression functions as follows.

Type of Optimization Description

Negator function Calculate the NOT condition of the Boolean expression

Selectivity and cost
functions

Provide an estimate of the number of rows that the filter will
return

Both the cost and selectivity of a UDR can dramatically affect the performance of a
particular query plan. For example, in a join between tables, it is often
advantageous to have the tables with the most selective filters as the outer tables
to reduce the number of rows that flow through the intermediate parts of the
query plan.

Selectivity Functions
The optimizer bases query-cost estimates on the number of rows to be retrieved
from each table. In turn, the estimated number of rows is based on the selectivity of
each conditional expression that is used within the WHERE clause. A conditional
expression that is used to select rows is termed a filter.

The optimizer can use data distributions to calculate selectivities for the filters in a
query. However, in the absence of data distributions, the database server calculates

Chapter 16. Extending Data Types 16-51

selectivities for filters of different types based on table indexes. The following table
lists some of the selectivities that the optimizer assigns to filters of different types.

Filter Expression Selectivity (F)

any-col IS NULL F = 1/10

any-col = any-expression F = 1/10

any-col > any-expression F = 1/3

any-col < any-expression F = 1/3

any-col MATCHES any-expression F = 1/5

any-col LIKE any-expression F = 1/5

...

Selectivities calculated using data distributions are even more accurate than the
ones that the preceding table shows, as follows:
v Your IBM Informix Performance Guide describes the filter expressions that can

appear in WHERE clauses with their selectivities when no data distributions exist
for a column (any-col). These selectivities are those that the database server
calculates by default.

v The UPDATE STATISTICS statement can generate statistics (data distributions)
for columns of built-in data types. However, it cannot generate data
distributions for columns of user-defined data types.

v Columns of user-defined types require implementation of user-defined statistics
for UPDATE STATISTICS to generate statistics (for example, for it to store data
distributions in sysdistrib).

Query filters can include user-defined functions. You can improve selectivity of
filters that include user-defined functions with the following features:
v Functional indexes

You can create a functional index on the resulting values of a user-defined
function on one or more columns. The function can be a built-in function or a
user-defined function. When you create a functional index, the database server
computes the return values of the function and stores them in the index. The
database server can locate the return value of the function in an appropriate
index without executing the function for each qualifying column.

v User-defined selectivity functions
You can write a user-defined selectivity function that calculates the expected
fraction of rows that qualify for a particular user-defined function that acts as a
filter.

v An end-user function
For queries that use an end-user function as a filter, you can improve
performance by writing a selectivity function for this end-user function.

v An operator function
For queries that use relational operators (<,>, ...) as filters, you can improve
performance by writing a selectivity function for the associated operator
function (lessthan(), greaterthan(), ...). For built-in types, the relational-operator
functions are built-in functions. They have selectivity functions that can use data
distributions, which the UPDATE STATISTICS statement can automatically
generate.
For user-defined types, relational-operator functions do not automatically exist.
You must write versions of these functions that handle your user-defined type.

16-52 IBM Informix DataBlade API Programmer’s Guide

In addition, you must write any selectivity functions. If you want these
selectivity functions to use data distributions, you must take the following
actions:
– Provide user-defined statistics so that UPDATE STATISTICS saves the data

distributions in the sysdistrib system catalog table.
– Access the sysdistrib system catalog table from within the selectivity function

to obtain the data distributions for the column.

Chapter 16. Extending Data Types 16-53

16-54 IBM Informix DataBlade API Programmer’s Guide

Part 5. Appendixes

© Copyright IBM Corp. 1996, 2009

IBM Informix DataBlade API Programmer’s Guide

Appendix A. Writing a Client LIBMI Application

This appendix outlines the following implementation issues for writing a client
LIBMI application:
v How to manage memory with DataBlade API memory-management functions
v How to access operating-system files

Server Only

This appendix covers topics specific to the creation of a client LIBMI application.
This material does not necessarily apply to the creation of C user-defined routines
(UDRs). For information specific to the creation of C UDRs, see Chapter 13,
“Writing a User-Defined Routine,” on page 13-1.

End of Server Only

Managing Memory in Client LIBMI Applications
When a DataBlade API module needs to perform dynamic memory allocation, it
must do so from user memory. The following table shows the
memory-management functions that the DataBlade API provides for memory
operations for user memory.

Memory Duration Memory Operation Function Name

Not applicable Constructor mi_alloc(),
mi_dalloc(),
mi_realloc(),
mi_zalloc()

Destructor mi_free()

A client LIBMI application allocates user memory from the process of the client
LIBMI application. In a client LIBMI application, the DataBlade API
memory-management functions perform the same type of allocation as
operating-system memory functions such as malloc() and free(). Therefore, use
of the DataBlade API memory-management functions is optional in a client LIBMI
application. However, use of the DataBlade API memory-management functions to
ensure consistency and portability of code between client and server DataBlade
API modules is recommended.

Tip: To use these DataBlade API memory-management functions, be sure to
include the mi.h header file in the appropriate source files of your client
LIBMI application.

Allocating User Memory
To handle dynamic memory allocation of user memory, use one of the following
DataBlade API memory-management functions.

Memory-Allocation Task DataBlade API Function

To allocate user memory mi_alloc()

© Copyright IBM Corp. 1996, 2009 A-1

Memory-Allocation Task DataBlade API Function

To allocate user memory with a specified memory
duration (memory duration is ignored)

mi_dalloc()

To allocate user memory that is filled with zeros mi_zalloc()

To change the size of existing memory or allocate new
user memory

mi_realloc()

In client LIBMI applications, mi_dalloc() works exactly like malloc(): storage is
allocated on the heap of the client process. However, this memory has no memory
duration associated with it; that is, the database server does not automatically free
this memory. Therefore, the client LIBMI application must use mi_free to free
explicitly all allocations that mi_dalloc() makes.

The mi_alloc() and mi_zalloc() functions return a pointer to the newly allocated
memory. Cast this pointer to match the structure of the user-defined buffer or
structure that you allocate. For example, the following call to mi_dalloc() casts the
pointer to the allocated memory as a pointer to a structure named func_info and
uses this pointer to access the count_fld of the func_info structure:
#include mitypes.h
...
struct func_info *fi_ptr;
mi_integer count;
...
fi_ptr = (func_info *)mi_dalloc(sizeof(func_info),

PER_COMMAND);
fi_ptr->count_fld = 3;

The mi_realloc() function accepts a pointer to existing memory and a parameter
specifying the number of bytes reallocate to that memory. The function returns a
pointer to the reallocated memory. If the pointer to existing memory is NULL, then
mi_realloc() allocates new memory in the same way as mi_alloc().

The mi_switch_mem_duration() function has no effect when it is invoked in a
client LIBMI application. Client LIBMI applications ignore memory duration.

Deallocating User Memory
The database server does not perform any automatic reclamation of user memory
in a client LIBMI application. Therefore, the client LIBMI application must use
mi_free to explicitly free all allocations that mi_alloc() makes.

User memory remains valid until whichever of the following events occurs first:
v The mi_free() function frees the memory.
v The mi_close() function closes the current connection.
v The client LIBMI application ends.

To conserve resources, use the mi_free() function to explicitly deallocate the user
memory once your DataBlade API module no longer needs it. The mi_free()
function is the destructor function for user memory.

Important: Use mi_free() only for user memory that you have explicitly allocated
with mi_alloc(), mi_dalloc(), or mi_zalloc(). Do not use this
function to free structures that other DataBlade API functions allocate.

Keep the following restrictions in mind about memory deallocation:

A-2 IBM Informix DataBlade API Programmer’s Guide

v Do not free user memory that you allocate for the return value of a UDR.
v Do not free memory until you are finished accessing the memory.
v Do not use mi_free() to deallocate memory that you have not explicitly

allocated.
v Do not use mi_free() for data type structures that other DataBlade API

constructor functions allocate.
v Do not attempt to free user memory after its memory duration expires.
v Reuse memory whenever possible. Do not repeat calls to allocation functions if

you can reuse the memory for another task.

Accessing Operating-System Files in Client LIBMI Applications
In a client LIBMI application, the DataBlade API file-access functions perform the
same type of task as operating-system file-management functions such as open()
and close(). Table 13-7 on page 13-52 shows the basic file operations with the
DataBlade API file-access functions that perform them and the analogous
operating-system calls for these file operations.

Use of the DataBlade API file-access functions is optional in a client LIBMI
application. However, use of the DataBlade API file-access functions to ensure
consistency and portability of code between client and server DataBlade API
modules is recommended.

Tip: To use these DataBlade API file-access functions, be sure to include the mi.h
header file in the appropriate source files of your client LIBMI application.

For DataBlade API modules that you design to run in both client LIBMI
applications and UDRs, use the DataBlade API file-access functions. The behavior
of these functions in client LIBMI applications is basically the same as in C UDRs.
For a description of these files, see “Access to Operating-System Files” on page
13-52.

The main difference in behavior of the DataBlade API file-access functions is that
the mi_open() function opens files on the client computer, not the server
computer. The filename that you specify to mi_open() is relative to the client
computer.

Handling Transactions
For databases that use logging, a client LIBMI application specifies the start and
end of each transaction. For these databases, an SQL statement is always part of a
transaction. The type of transaction that the SQL statement is part of is based on
the type of database and whether it uses transaction logging, as Table 12-1 on page
12-7 shows.

Appendix A. Writing a Client LIBMI Application A-3

A-4 IBM Informix DataBlade API Programmer’s Guide

Appendix B. Accessibility

IBM strives to provide products with usable access for everyone, regardless of age
or ability.

Accessibility features for IBM Informix Dynamic Server
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility Features
The following list includes the major accessibility features in IBM Informix
Dynamic Server. These features support:
v Keyboard-only operation.
v Interfaces that are commonly used by screen readers.
v The attachment of alternative input and output devices.

Tip: The IBM Informix Dynamic Server Information Center and its related
publications are accessibility-enabled for the IBM Home Page Reader. You can
operate all features using the keyboard instead of the mouse.

Keyboard Navigation
This product uses standard Microsoft Windows navigation keys.

Related Accessibility Information
IBM is committed to making our documentation accessible to persons with
disabilities. Our publications are available in HTML format so that they can be
accessed with assistive technology such as screen reader software. The syntax
diagrams in our publications are available in dotted decimal format.

You can view the publications for IBM Informix Dynamic Server in Adobe®

Portable Document Format (PDF) using the Adobe Acrobat Reader.

IBM and Accessibility
See the IBM Accessibility Center at http://www.ibm.com/able for more information
about the commitment that IBM has to accessibility.

© Copyright IBM Corp. 1996, 2009 B-1

http://www.ibm.com/able

B-2 IBM Informix DataBlade API Programmer’s Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
all countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1996, 2009 C-1

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not

C-2 IBM Informix DataBlade API Programmer’s Guide

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided ″AS IS″, without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM
Corp. Sample Programs. © Copyright IBM Corp. (enter the year or years). All
rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, and PostScript® are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other
countries.

Intel®, Itanium®, and Pentium® are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Java™ and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both.

Linux® is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, and Windows NT® are trademarks of Microsoft Corporation
in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Notices C-3

http://www.ibm.com/legal/copytrade.shtml

C-4 IBM Informix DataBlade API Programmer’s Guide

Index

Special characters
__myErrors__ trace class 12-30
_open(Windows) system call 13-54
-, (hyphen), as formatting character 3-21
, (comma symbol) 3-2, 3-9, 3-17, 3-21
; (semicolon symbol) 8-7, 8-32
? (question mark), input-parameter indicator 8-12
. (period symbol) 3-9, 3-17, 3-21
.bld file extension 12-11
.dll file extension 12-13
.dsw file extension 12-11
.mak file extension 12-11
.o file extension 12-13
.so file extension 12-12
.trc file extension 12-34
$ (dollar sign) 3-9, 3-22
* (asterisk symbol), as formatting character 3-21
& (ampersand symbol) 3-21
(pound sign) 3-21
+ (plus sign) 3-21

A
accept() system call 13-21
Accessibility B-1

keyboard B-1
shortcut keys B-1

Account name.
See User account.

Aggregate algorithm 15-16
Aggregate functions

See also Built-in aggregate function; User-defined aggregate.
built-in 15-12
creating 15-11
overloaded 15-12
user-defined 15-16

Aggregate state
See also User-defined aggregate.
allocating a new 15-33
deallocating 15-33
defined 15-16, 15-17
determining 15-17
nonsimple 15-28, 15-29
opaque-type 15-31
simple 15-27, 15-28
single-valued 15-30

Aggregate support function
defined 15-16, 15-18
determining required 15-25
summary of 15-18
writing 15-18

AIO VP.
See Asynchronous I/O virtual-processor (AIO VP) class.

alarm() system call 13-27
ALIGNMENT opaque-type modifier 16-6
Alignment.

See Type alignment.
All-events callback 10-25, 10-56
Allocation extent size 6-36
ALTER FUNCTION statement 12-36

ALTER PROCEDURE statement 12-36
ALTER ROUTINE statement 12-36
ALTER TABLE statement 6-51, 8-35
Ampersand symbol (&) 3-21
ANSI SQL standards

ANSI-compliant database 8-23
date and/or time-string format 4-13
interval-string format 4-13
runtime-error values 10-23
SQLSTATE class values 10-22
warning values 10-23

Arithmetic operations
See also Nonarithmetic operations.
date and/or time values 4-15
decimal values 3-16
fixed-point values 2-12
INT8 values 3-8

assign() support function
defined 16-37, 16-38
incrementing the reference count 6-43, 6-57

Asterisk symbol (*), as formatting character 3-21
Asynchronous I/O virtual-processor (AIO VP) class 13-16,

13-19, 13-21
Availability 13-17
ax_reg() function 11-12
ax_unreg() function 11-13

B
BEGIN WORK statement 6-12, 12-7, 12-8, 14-15
BIGINT data type

corresponding DataBlade API data type 3-6
format of 3-6

BIGSERIAL data type
corresponding DataBlade API data type 3-6
getting last value 8-59

Binary operator 15-29, 15-40
Binary representation

BIGINT (mi_bigint) 3-6
Boolean data 2-30, 8-9
character data 2-9, 2-11, 8-8
collection 5-2, 8-10, 8-53
column values in 8-44, 8-49, 8-50, 8-52
date and/or time data 4-7, 4-13, 8-9
date data 4-2, 4-3, 8-9
decimal data 3-10, 3-12, 3-14, 8-9
defined 8-8
distinct data type 8-10
fixed-length opaque type 8-10
fixed-point data 3-10
floating-point data 3-17, 8-9
input parameters 8-28
INT8 (mi_int8) 3-6, 3-7, 8-9
INTEGER (mi_integer) 3-4, 8-9
integer data 3-2, 8-9
interval data 4-8, 4-13, 8-9
LO handle 6-4, 6-60, 8-9, 8-48
mi_exec_prepared_statement() results 8-30
mi_exec() results 8-10
mi_open_prepared_statement() results 8-30
monetary data 3-11, 3-12, 3-14, 8-9

© Copyright IBM Corp. 1996, 2009 X-1

Binary representation (continued)
opaque type 16-3, 16-11, 16-16, 16-17, 16-21, 16-22, 16-29,

16-36
row type 5-29, 8-9
SMALLINT (mi_smallint) 3-3, 8-9
varying-length opaque type 8-10

bind() system call 13-21
BITVARYING data type 1-10, 2-28

corresponding DataBlade API data type 2-13
BLOB data type

See also Smart-large-object data type.
column-level storage characteristics 6-33
corresponding DataBlade API data type 1-10, 2-28
defined 2-29, 6-13
deleting 6-56, 6-57
format of 6-13, 8-9
inserting 6-15, 6-42, 6-57
obtaining column value for 8-44
reference count of 6-56
selecting 6-14, 6-47, 8-48
updating 6-15, 6-42, 6-50

Blocking I/O call 13-18, 13-20, 13-31
Boolean data

binary representation 2-30, 8-9
in opaque type 16-37
support for 2-30
text representation 2-30, 8-9

BOOLEAN data type 1-10
See also mi_boolean data type.
corresponding DataBlade API data type 2-31
format of 2-30, 8-9
obtaining column value for 8-44
returned from a user-defined function 15-60
valid values 2-30

Boolean function
defined 15-53, 15-54
selectivity of 15-54
uses for 15-53, 15-54

Boolean string 2-30
BOOLEAN value, passing mechanism for 2-33
Buffered I/O 6-10, 6-38
Built-in aggregate function 15-12
Built-in cast 9-30
Built-in data types 2-2, 8-44
Bulk copy 16-22
bycmpr() function 2-29
bycopy() function 2-29
byfill() function 2-29
byleng() function 2-29
BYTE data

byte order 2-30
copying 2-30
data conversion of 2-30
data types for 2-28
ESQL/C functions for 1-17, 2-29
in opaque type 16-21, 16-36
manipulating 2-29
operations on 2-29
portability of 2-30
processing 2-29
receiving from client 2-30
sending to client 2-30
transferring between computers 2-30
type alignment 2-30

BYTE data type 2-32
See Simple large object.

Byte order
byte data 2-30
converting 16-21
LO handle 6-61
mi_date values 4-3
mi_datetime values 4-12
mi_decimal values 3-14, 3-19
mi_double_precision values 3-19
mi_int8 values 3-7
mi_integer values 3-5
mi_interval values 4-12
mi_money values 3-14
mi_real values 3-19
mi_smallint values 3-4
on client computer 7-3

Byte-range lock.
See Smart-large-object lock, byte-range.

C
C compiler 12-11, 12-12, 12-23, 12-26
C data type

char 1-8, 1-10, 2-7
character conversion 2-12
DECIMAL conversions 3-15
double 1-9, 2-12, 3-19, 3-21
float 1-9, 3-19
INT8 conversions 3-7
signed eight-byte integer 1-9, 3-5
signed four-byte integer 1-9, 2-12, 3-4
signed one-byte integer 1-9, 3-2
signed two-byte integer 1-9, 2-12, 3-3
unsigned eight-byte integer 1-9, 3-5
unsigned four-byte integer 1-9, 3-4
unsigned one-byte integer 1-9, 3-2
unsigned two-byte integer 1-9, 3-3
void * 1-9, 1-10, 2-31, 2-32

C function.
See User-defined routine (UDR).

C UDR.
See User-defined routine (UDR).

Callback function
all-events 10-25, 10-56
arguments 10-15
client LIBMI 10-5, 10-56
clntexcpt_callback() 10-36
continuing exception handling after 10-30
creating 10-12
defined 10-3, 10-12
deleting 10-7
disabling 7-8, 10-8
enabling 7-8, 10-8
end-of-session 10-5
end-of-statement 10-5
end-of-transaction 10-5
endxact_callback() 10-53
exception 10-5, 10-25, 10-27, 10-29
excpt_callback() 10-30
excpt_callback2() 10-34
excpt_callback3() 10-39
handle 10-7
initializing 10-16
invoking 10-3
memory management in 10-52
MI_PROC_CALLBACK modifier 10-15
obtaining event information in 10-17
parameters 10-15

X-2 IBM Informix DataBlade API Programmer’s Guide

Callback function (continued)
pointer to 10-7
providing all exception handling 10-29
providing arguments to 10-16
registering 10-3, 10-4, 10-16, 10-53
restrictions on content 10-16
retrieving 10-8
return value 10-13
returning information 10-32
sample 10-6, 10-53
sample declaration 10-13
state-change 10-5, 10-50
state-transition 10-5, 10-50
system-default 10-12
types of 10-5
unregistering 7-18, 10-7
user data in 10-5, 10-15, 10-32
where registration is stored 7-3
writing 10-16

Callback handle 10-7, 10-8
Callback-function pointer 10-7, 10-8
calloc() system call 13-22, 14-3
Cast function

creating 15-2
defined 15-2
executing with Fastpath 9-27
looking up with Fastpath 9-20
opaque-type support functions as 16-8

Cast functiondefined 12-4
Casts

built-in 9-30
explicit 9-21, 15-2, 16-10, 16-40
implicit 9-20, 9-21, 15-2, 16-9, 16-40
opaque-type support function as 16-8
registering 15-2
system 9-30
system-defined 9-20, 9-21
types of 15-2
ways to call 9-20

char (C) data type
See also Character data; mi_char data type; mi_char1 data

type; mi_string data type.
corresponding DataBlade API data type 1-8, 1-10, 2-7
mi_date conversion 4-4
mi_datetime conversion 4-13
mi_decimal conversion 3-15
mi_int8 conversion 3-7, 3-8
mi_interval conversion 4-14

CHAR data type
See also Character data
as return value 13-13
as routine argument 13-6
corresponding DataBlade API data type 1-8, 1-9, 2-7, 2-8,

13-6
DataBlade API functions for 2-11
ESQL/C functions for 2-12
functions for 2-10
obtaining column value for 8-44
operations 2-12
precision of 2-12

CHAR value, passing mechanism for 2-33
Character data

See also char (C) data type; mi_char data type; mi_char1
data type; mi_lvarchar data type; mi_string data type.

binary representation 2-9, 2-11, 8-8
converting from varying-length structure 2-11
converting to varying-length structure 2-11

Character data (continued)
copying 2-11
data conversion of 2-11
data types for 2-7
date value.

See Date string.
date/time value.

See Date/time string.
decimal value.

See Decimal string.
in opaque type 2-11, 16-16, 16-22, 16-37
interval value.

See Interval string.
length of 13-46
monetary value.

See Monetary string.
multibyte 1-17, 2-8, 2-10
obtaining type information 2-12
operations 2-12
portability of 2-11
processing 1-17, 2-10
receiving from client 2-11
routine argument as 13-6
routine return-value as 13-13
sending to client 2-11
text representation 2-11, 8-8
transferring 2-11
type alignment 2-11, 16-6
varying-length 2-7

circle sample opaque type
export function 16-26
Exportbin support function 16-32
external representation 16-2
import function 16-24
importbin function 16-30
input function 16-12
internal representation 16-3
output function 16-14
receive function 16-18
registering 16-4
send function 16-20
support functions 16-4

CLASS routine modifier 12-17, 12-24, 13-35, 13-36, 13-38
Client application

See also Client LIBMI application.
as calling module 10-11, 10-26
converting date and/or time data 4-13
converting date data 4-3
converting fixed-point data 3-15
converting LO handles 6-60
converting mi_lvarchar values 2-11
end-user formats 3-2, 3-9, 3-10, 3-17, 4-2, 4-7
session thread 13-17
transferring byte data 2-30
transferring character data 2-11
transferring date data 4-3
transferring date/time data 4-13
transferring fixed-point data 3-14
transferring floating-point data 3-20
transferring integer data 3-4, 3-5, 3-7
transferring LO handle 6-61

Client connection 7-2, 7-14, 7-19
See Connection.

Client LIBMI application
See also Client application; DataBlade API module.
aborting statement in 10-12
callback return value 10-14

Index X-3

Client LIBMI application (continued)
client LIBMI errors 10-55
column values in 8-48
connection descriptor in registration 10-6
defined 1-4
event handling in 10-3, 10-11
exception handling in 10-12, 10-31
file management A-3
handling events

See Event handling; Exception handling.
heap space 7-9, A-2
mi_dalloc() and A-2
passing mechanism 2-35
session management in 7-2, 7-19
state-transition event 10-12, 10-50, 10-55
transaction management in 10-50, A-3
user-memory management A-1
using Fastpath 9-16

Client LIBMI callback 10-5, 10-56
Client LIBMI error, defined 10-55
Client LIBMI event, error levels 10-55
Client locale 10-45, 13-59, 16-22
Client session.

See Session.
CLIENT_LOCALE environment variable 10-49, 13-59
CLOB data type

See also Smart large-object data type.
column-level storage characteristics 6-33
corresponding DataBlade API data type 1-10, 2-7
defined 2-10, 6-13
deleting 6-56, 6-57
format of 6-13, 8-9
inserting 6-15, 6-42, 6-57
obtaining column value for 8-44
reference count of 6-56
selecting 6-14, 6-47, 8-48
updating 6-15, 6-42, 6-50

CLOSE DATABASE statement 12-7
close() system call 6-20, 13-53
Code-set conversion

functions for 1-19
opaque data types 16-22

Collection cursor
See also Collection descriptor; Cursor.
characteristics of 5-5
closing 5-15
cursor position 5-4, 5-6
default 5-4
defined 5-4
deleting element from 5-14
freeing 5-15
inserting element into 5-8
open mode 5-4
opening 5-4
retrieving element from 5-9
scope of 5-15
updating element in 5-14
where stored 5-3

Collection descriptor
constructor for 5-3, 5-4, 14-21
defined 1-12, 5-3
destructor for 5-3, 5-15, 14-21
freeing 5-15
memory duration of 5-3, 14-21

Collection string 5-2
Collection structure

constructor for 5-3, 14-21

Collection structure (continued)
corresponding SQL data type 1-10
defined 1-12, 5-3
destructor for 5-3, 5-16
format of 8-10
freeing 5-16
in opaque type 16-37
memory duration of 5-3, 14-21
scope of 5-16

Collection subquery 5-5, 8-53
Collections

accessing elements of 5-6
binary representation 5-2, 8-10, 8-53
cardinality of 5-15
checking type identifier for 2-2
closing 5-15
collection subquery 5-5, 8-53
creating 5-3
data structures for 5-2
defined 5-2
deleting element from 5-14
element 5-2
element type of 2-4
fetching element from 5-9
inserting element into 5-7
kinds of 5-2
MI_DATUM element 2-36, 5-8, 5-11, 5-13
obtaining column value for 8-53
open mode 5-4
opening 5-4
parallelizable UDR and 15-62
releasing resources 5-15
text representation 5-2, 8-10, 8-53
updating 5-13

Column identifier
column number and 5-31
defined 5-31
for column information 5-31
for column value 8-42
obtaining 5-30

Column number 5-31, 15-57, 15-58, 15-59
Column type descriptor 2-5
Column value

binary representation of 8-44, 8-49, 8-50, 8-52
collection 8-52
MI_DATUM data type 2-36, 8-43, 8-44, 8-49, 8-50, 8-52
normal 8-44
obtaining 8-42, 12-10
providing 5-34
row type 8-50
SQL NULL value 8-49
text representation of 8-44, 8-49, 8-50, 8-52
value buffer for 8-43

Columns
accessor functions 5-30, 15-63
constraint.

See Constraints.
data distribution of 15-59
distribution information 15-57, 15-58
functions for 5-30, 8-42
handling NULL value 5-34
identifier for.

See Column identifier; Column number.
name of 5-30, 8-42, 10-21
NOT NULL constraint 5-30, 5-31, 8-15, 8-16
NULL value in 2-36
number of 5-30

X-4 IBM Informix DataBlade API Programmer’s Guide

Columns (continued)
obtaining information about 8-41
precision of 2-13, 3-16, 3-20, 4-16, 4-17, 5-30, 5-31
scale of 2-13, 3-16, 3-20, 4-16, 4-17, 5-30, 5-31
type descriptor for 2-5
type descriptor of 5-30
type identifier of 5-30
value of.

See Column value.
COMBINE aggregate support function 15-18, 15-21, 15-28,

15-35
Comma symbol (,) 3-2, 3-9, 3-17, 3-21
Command.

See SQL command.
COMMIT WORK statement 6-12, 12-7, 12-8, 14-15
Commutator function 9-26, 15-60
COMMUTATOR routine modifier 9-26, 15-61
Companion UDR

argument data type 15-57
argument length 15-57
argument type 15-57
column number 15-57, 15-58, 15-59
column-argument information 15-59
constant argument value 15-58, 15-59
constant value 15-57
constant-argument information 15-59
data-distribution information 15-59
determining if argument is NULL 15-57, 15-58, 15-59
distribution information 15-57, 15-58
information about 15-56
routine identifier 15-57
routine name 15-57
table identifier 15-57, 15-58, 15-59

Complex data type 2-2, 5-1
Concurrency 13-18, 14-27
Configuration parameters

as part of server environment 13-59
MSGPATH 12-27
obtaining value of 13-59
SINGLE_CPU_VP 13-35
STACKSIZE 14-35
SYSSBSPACENAME 16-48
VPCLASS 13-34

Connection descriptor
See also Session-duration connection descriptor.
caching 7-12, 9-31, 10-28
constructor for 7-11, 7-12, 7-14, 14-13
defined 1-12, 7-3, 7-14
destructor for 7-12, 7-14, 7-18, 14-13
for a client LIBMI application 7-14
for a UDR 7-11
freeing 7-18
information in 7-3
invalid 10-21
memory duration of 7-12, 7-14, 7-18, 14-13, 14-16
NULL-valued 6-62, 7-12, 10-6, 10-40
obtaining 7-12, 7-13
raising an exception 10-40
registering a callback 10-6
user data in 7-3, 7-16, 7-18

Connection parameter
current 7-6
default 7-5
obtaining 7-6, 13-58
setting 7-6
system-default 7-5
user-defined 7-5

Connection parameter (continued)
using 7-4

Connection-information descriptor
defined 7-4
fields of 7-4
mi_server_connect() usage 7-16
populating 7-6
purpose 1-12
setting 7-6

Connections
See also Session management.
account password 7-15
client 7-2, 7-14, 7-19
closing 7-18
connection parameters for 7-4
current 10-41
database name 7-6, 7-7, 7-15, 12-7, 13-58
database parameters for 7-6
database server name 7-4, 7-5, 13-58
default 7-14
defined 7-2
descriptor for.

See Connection descriptor.
establishing 7-2, 7-11
initializing 7-2, 7-4
obtaining connection information 13-58
parent 10-40
raising exceptions on 10-40
server port 7-4, 7-5, 13-58
session context 7-2, 7-3, 7-18, 12-6
UDRs 7-2, 7-11, 12-6
user data associated with 7-3, 7-16, 7-18
user-account name 7-6, 7-7, 7-15, 13-58
user-account password 7-7, 13-58

Constant
access-method 6-38
access-mode 6-38
argument-type 15-58
buffering-mode 6-38
cursor-action 8-24
date, time, or date and time qualifier 4-9, 4-16
file-mode 6-59
for smart large objects 6-37, 6-38
iterator-status 15-3, 16-43
lock-mode 6-38
NULL 2-36
open-mode 6-38
statement-status 8-34

Constraints
checking 12-7
NOT NULL 5-30, 5-31, 8-15, 8-16
restrictions in UDR 12-7

Constructors
collection descriptor 5-3, 5-4, 14-21
collection structure 5-3, 14-21
connection descriptor 7-11, 7-12, 7-14, 14-13
current memory duration 14-21
defined 1-13
error descriptor 10-17, 14-21
file descriptor 13-53, 14-16
function descriptor 9-17, 14-8
LO file descriptor 6-18
LO handle 6-17, 14-16, 14-21
LO-specification structure 6-17, 6-25, 14-21
LO-status structure 6-19, 6-53, 14-21
memory allocation in 14-19
MI_FPARAM 9-2, 9-36, 14-8

Index X-5

Constructors (continued)
MI_LO_LIST 14-21
named memory 14-25
PER_COMMAND duration 14-8
PER_ROUTINE duration 14-6
PER_SESSION duration 14-16
PER_STMT_EXEC duration 14-13
PER_STMT_PREP duration 14-13
PER_SYSTEM duration 14-17
PER_TRANSACTION duration 14-15
routine argument 14-6
routine return value 14-6
row descriptor 5-29, 5-33, 14-21
row structure 5-32, 5-33, 14-21
save-set structure 8-60, 14-13
session-duration connection descriptor 7-13, 14-16
session-duration function descriptor 9-33, 14-16
statement descriptor 8-7, 8-14
stream descriptor 13-42, 14-21
user memory 14-20, 14-21, A-1
varying-length structure 2-14, 14-21

Control mode
binary representation 8-8
determining 8-10
for basic SQL statement 8-10
for prepared statement 8-30
text representation 8-8
types of 8-8

Copy file 16-22
Cost functions

argument functions for 15-56
argument information 15-56
defined 12-4, 15-56

COSTFUNC routine modifier 12-17, 15-56
CPU virtual-processor (CPU VP) class

See also Virtual-processor (VP) class.
adding VPs 13-37
availability of 13-17
blocking 13-19
concurrency of 13-18
defined 13-16, 13-17
dropping VPs 13-37
monitoring 13-37
parallelizable UDR and 15-63
PDQ and 15-61
thread yielding 13-19
using 12-11, 12-24, 13-17, 13-38
yielding 13-19

CPU VP.
See CPU virtual-processor (CPU VP) class.

CREATE AGGREGATE statement 15-19, 15-23
CREATE CAST statement 8-35, 15-2, 16-10, 16-23, 16-28,

16-31, 16-33, 16-40
CREATE DISTINCT TYPE statement 8-35
CREATE FUNCTION statement

See also CREATE PROCEDURE statement; Routine
modifier.

commutator functions 9-26, 15-61
EXTERNAL NAME clause 12-13, 12-15
handling multiple rows 15-4
handling NULL values 9-5, 9-24
iterator functions 15-5, 15-9
LANGUAGE clause 12-16
negator functions 9-26, 15-60
OUT parameter 13-15
parallelizable functions 9-10
registering aggregate support functions 15-23

CREATE FUNCTION statement (continued)
RETURNS clause 12-17
routine arguments 12-17
routine modifiers.

See Routine modifier.
routine return value 12-17
specifying VP class 13-35, 13-36
stack size 14-36
use 12-14, 16-39
variant functions 8-2, 9-25
WITH clause 12-17
with Fastpath interface 9-16

CREATE OPAQUE TYPE statement
ALIGNMENT modifier 16-6
INTERNALLENGTH modifier 16-3, 16-5
MAXLEN modifier 16-6
opaque-type modifiers.

See Opaque-type modifier.
PASSEDBYVALUE modifier 2-34, 16-7
use 16-3, 16-39

CREATE PROCEDURE statement
See also CREATE FUNCTION statement; Routine modifier.
EXTERNAL NAME clause 12-13, 12-15
handling NULL values 9-5, 9-24
LANGUAGE clause 12-16
routine arguments 12-17
routine modifiers.

See Routine modifier.
routine return value 12-17
specifying VP class 13-35, 13-36
stack size 14-36
use 12-14
variant procedures 9-25
WITH clause 12-17
with Fastpath interface 9-16

CREATE TABLE statement 5-29, 6-33, 6-34, 12-7
CREATE XADATASOURCE statement 11-11
CREATE XADATASOURCE TYPE statement 11-9
Currency symbol 3-9
Current processing locale 10-44, 10-45
Current statement

control mode of 8-10
current row 8-43
cursor for 8-8, 8-41, 8-43
data structures for row 7-3, 8-40
DDL statement as 8-34
defined 8-7, 8-33
determining if completed 8-57
DML statement as 8-34, 8-36
error in 8-34, 8-57
finishing execution of 8-57, 8-58
freeing 7-18
generating 8-7, 8-17
implicit statement descriptor for 8-7, 8-57
interrupting 8-58
name of SQL statement 8-7, 8-34, 8-36, 8-39
no more results 8-34, 8-38
number of rows affected by 8-36, 8-39
parallelizable UDR and 15-62
processing complete 8-38
query 8-34, 8-38
releasing resources for 8-57, 8-58
results of 8-36
row descriptor for 8-8, 8-40, 8-58
row structure for 8-58
status of 8-8, 8-11, 8-17, 8-33, 8-34

X-6 IBM Informix DataBlade API Programmer’s Guide

Cursor
characteristics of 8-5, 8-22
closing 5-15, 8-31, 8-57, 14-8, 14-10, 14-15
collection.

See Collection cursor.
defined 8-5
explicit.

See Explicit cursor.
fetch absolute 8-25
fetch first 8-24
fetch last 8-24
fetch next 8-24
fetch previous 8-24
fetch relative 8-25
fetching rows into 8-23
freeing 7-18
hold 8-23, 14-15, 14-16
implicit.

See Implicit cursor.
iterator function with 15-10
lifespan of 8-5, 8-23
memory duration for 14-10, 14-14
mode of 8-5, 8-22
name 8-12, 8-21
opening 14-10
read-only 5-5, 8-5, 8-22, 8-23, 8-24
retrieving row from 8-41
routine invocation and 12-6
row 8-5
scope of 12-6
scroll 5-4, 8-22, 8-23
sequential 5-5, 8-5, 8-22, 8-23
session and 12-6
SQL statements for 14-8, 14-10, 14-12
transaction and 8-23, 12-7
types of 8-5, 8-22
update 5-4, 8-12, 8-21, 8-22, 8-23, 8-24
where stored 7-3, 8-8
with hold.

See Cursor, hold.
Cursor function 15-3
Cursor mode 8-5, 8-22

D
Data alignment.

See Type alignment.
Data and/or time data

binary representation 4-13
obtaining type information 4-15

Data conversion
byte order 2-30, 3-4, 3-5, 3-7, 3-14, 3-19, 4-3, 4-12, 6-61
ESQL/C library functions for 1-17
functions for 2-11, 3-7, 3-14, 4-3, 4-13, 6-60
LO handles 6-60
mi_char values 2-11
mi_date to mi_datetime 4-14
mi_date values 4-3
mi_datetime extension 4-11
mi_datetime to mi_date 4-14
mi_datetime values 4-13
mi_decimal values 3-14
mi_int8 values 3-7
mi_interval extension 4-11
mi_interval values 4-13
mi_money values 3-14
mi_string values 2-11

Data conversion (continued)
portability and 12-4
type alignment 2-11, 2-30, 3-4, 3-5, 3-7, 3-14, 3-19, 4-3,

4-12, 6-61
Data integrity 6-7
Data pointer.

See Varying-length structure, data pointer.
Data portion.

See Varying-length structure, data portion.
Data sources

XA-compliant 11-1, 11-2
Data type descriptor 2-5
Data type.

See DataBlade API data type; SQL data type.
Database locale 7-4, 7-5, 12-33, 13-59
Database parameter

current 7-8
default 7-7
obtaining 7-8, 13-58
setting 7-8
system-default 7-7
user-defined 7-7
using 7-6

Database server exception
See also Runtime error; Exception handling; MI_Exception

event; Warning.
callback for 10-25
defined 10-20
exception levels 10-21
handling 10-20
in callbacks 10-16
memory duration and 14-23
raising 10-40
runtime errors 10-20
status variables for 10-21
tracing 12-30
warnings 10-20

Database server instance
defined 13-58, 14-16
memory duration for 14-16
server environment.

See Server environment.
Database server session.

See Session.
Database servers

See also DATABASE statement
connecting to.

See Connection.
default 7-4
environment of.

See Server environment.
initializing 13-58
instance of.

See Database server instance.
obtaining name of 7-4, 7-5, 13-58
port name 7-5, 13-58
remote 12-6
shared memory of 14-19
specifying 7-4
virtual-processor classes 13-16

DATABASE statement 13-58
Database utility

dbexport 16-22
dbimport 16-22
dbschema 16-48

Database-information descriptor
defined 1-12, 7-6

Index X-7

Database-information descriptor (continued)
fields of 7-6
populating 7-8
setting 7-8

Databases
determining if ANSI compliant 13-58
dropping 12-36
obtaining name of 7-6, 7-7, 13-58
opening in exclusive mode 13-58
options 13-58
restrictions in UDR 12-6
smart large objects in 6-13
specifying for connection 7-6, 7-7, 7-15
using transactions 13-58

DataBlade API
advanced features 1-18
client-side 1-4
data types 1-8
defined 1-1, 1-5
for client LIBMI applications 1-4
for UDRs 1-2
functions 1-14
header files 1-5
IBM Informix GLS functions 1-8
initializing 7-17, 10-21
library errors 10-26
portability of 1-1, 5-12, 5-34, 8-45
server-side 1-2
types of programs 1-1
uses of 1-1

DataBlade API data structure
See also DataBlade API data type; Structure.
current memory duration 14-21
list of 1-12
MI_COLL_DESC 1-12, 5-3
MI_COLLECTION 1-12, 5-3
MI_CONNECTION 1-12, 7-3
MI_CONNECTION_INFO 1-12, 7-4
MI_DATABASE_INFO 1-12, 7-6
MI_ERROR_DESC 1-12, 10-17
MI_FPARAM 1-12, 9-2
MI_FUNC_DESC 1-12, 9-17
MI_FUNCARG 1-12, 15-56
MI_LO_FD 1-12
MI_LO_HANDLE 1-12, 2-7
MI_LO_SPEC 1-13, 6-16
MI_LO_STAT 1-13, 6-16, 6-19
MI_PARAMETER_INFO 1-13, 7-8
MI_ROW 1-13, 5-32
MI_ROW_DESC 1-13, 5-29, 8-40
MI_SAVE_SET 1-13, 8-60
MI_STATEMENT 1-13, 8-14
mi_statret 1-13
mi_stream 13-50
MI_STREAM 1-13, 13-42
MI_TRANSITION_DESC 1-13, 10-19
MI_TYPE_DESC 1-13, 2-3
MI_TYPEID 1-13, 2-2
PER_COMMAND memory duration 14-8
PER_ROUTINE memory duration 14-6
PER_SESSION memory duration 14-16
PER_STMT_EXEC memory duration 14-13
PER_SYSTEM memory duration 14-17
PER_TRANSACTION memory duration 14-13, 14-15
stream-operations 13-48

DataBlade API data types
See also DataBlade API data structure.

DataBlade API data types (continued)
See also SQL data type; DataBlade API data structure.
alignment of 2-3
byte data types 2-28
C data type correspondence 1-8
character data types 2-7
data structures 1-12
eight-byte integer 3-5
fixed-point 3-10
floating-point 3-16
four-byte integer 3-4
generic 2-32
header file for 2-2
integer 3-2
length of 2-4
list of 1-8
locale-specific 1-8, 1-17, 1-18, 1-19, 2-7, 2-8, 13-6, 13-13
maximum length of 2-4
mi_bigint 1-9, 3-2, 3-5
mi_bitvarying 1-10, 2-13, 2-28
mi_boolean 1-10, 2-30
mi_char 1-8, 2-7
mi_char1 1-8, 2-7
MI_COLLECTION 1-10, 5-2
mi_date 1-9, 4-1, 4-2
mi_datetime 1-9, 4-1, 4-7
MI_DATUM 1-12, 2-32
mi_decimal 1-9, 3-10, 3-17
mi_double_precision 1-9, 3-17, 3-19
mi_impexp 1-10, 2-13, 16-9, 16-23
mi_impexpbin 1-10, 2-13, 16-9, 16-29
mi_int1 1-9, 3-2
mi_int8 1-9, 3-2, 3-5
mi_integer 1-9, 3-2, 3-4, 16-3
mi_interval 1-9, 4-1, 4-7, 4-8
mi_lvarchar 1-9, 2-7, 2-13
mi_money 1-9, 3-10, 3-11
mi_numeric 1-9, 3-10
mi_pointer 1-10, 2-31, 15-32
mi_real 1-9, 3-17, 3-18, 16-3
MI_ROW 1-10, 5-29, 5-32
mi_sendrecv 1-9, 2-13, 16-9, 16-17
mi_sint1 1-9, 3-2
mi_smallint 1-9, 3-2, 3-3
mi_string 1-8, 2-7
mi_unsigned_bigint 1-9, 3-2, 3-5
mi_unsigned_char1 1-8, 2-7, 3-2
mi_unsigned_int8 1-9, 3-2, 3-5
mi_unsigned_integer 1-9, 3-2, 3-4, 16-6
mi_unsigned_smallint 1-9, 3-2, 3-3, 16-6
mi_wchar 1-8
name of 2-4
NULL-valued pointer 2-37
obtaining information about 2-2
one-byte integer 3-2
owner of 2-4
passing by reference.

See Pass-by-reference passing mechanism.
passing by value.

See Pass-by-value passing mechanism.
passing mechanism.

See Passing mechanism.
portability of 1-10, 2-7, 3-3, 3-5, 3-19, 12-4
precision of 2-4, 2-13, 3-16, 3-20, 4-15, 4-17
public 1-8
qualifier of 2-4, 4-16
scale of 2-4

X-8 IBM Informix DataBlade API Programmer’s Guide

DataBlade API data types (continued)
smart-large-object 1-10, 6-16
SQL data type correspondence 1-8
support 1-11
transferring between computers 2-11, 2-30, 3-7, 3-14, 3-19,

4-3, 4-12, 6-61, 16-16, 16-21, 16-36
two-byte integer 3-3
type descriptor.

See Type descriptor.
type identifier.

See Type identifier.
DataBlade API function library

See also ESQL/C function library; Informix GLS library;
and individual function names.

byte functions 2-30
callback-function functions 10-3, 10-7
categories of functions 1-14
character-transfer functions 2-11
code-set-conversion functions 1-19
collection functions 15-63
column-information functions 5-30, 15-63
column-value functions 8-42
connection functions 7-11
connection-parameter functions 7-5
connection-user-data functions 7-17
data-conversion functions 2-11, 3-14, 4-3, 4-13, 6-60
database-parameter functions 7-7
date- and/or time-conversion functions 4-13
date-conversion functions 4-3
decimal-conversion functions 3-14
error-descriptor functions 10-18, 10-38
exception handling for 10-20, 10-26, 10-31
executable-statement functions 8-7
Fastpath-interface functions 9-16
file-access functions 13-20, 13-21, 13-31, 13-52, 15-63, A-3
freeing memory 14-23
function-descriptor functions 9-23
indicating default values 2-37
indicating errors 1-16, 2-37, 10-21, 10-26
initialization functions 7-17
input-parameter functions 8-15, 15-62
LO-handle functions 6-21
LO-specification functions 6-22, 6-35, 6-37, 6-38
memory duration and 14-23
memory management for 14-19
memory-management functions 13-22, 14-20, 14-24, 14-25,

A-1
MI_FPARAM accessor functions 9-3, 9-6, 9-8, 9-12
MI_FPARAM allocation functions 9-36
MI_FUNCARG accessor functions 15-56, 15-57, 15-58
non-PDQ-threadsafe functions 15-62
NULL-value functions 2-37
prepared-statement functions 8-11, 8-18, 8-20
result-information functions 8-36
return values 10-26, 10-31
row-structure functions 5-32
save-set functions 8-60, 15-62
serial functions 8-59
session-parameter functions 7-9
smart-large-object creation functions 6-19, 6-40
smart-large-object file-conversion functions 6-24
smart-large-object I/O functions 6-42, 6-48
smart-large-object status functions 6-23, 6-54
state-change function 10-19
statement-execution functions 8-2, 8-3, 14-9
statement-information functions 8-7, 8-14
stream I/O functions 13-43

DataBlade API function library (continued)
stream-transfer functions 16-36
string-conversion functions 2-11
thread-management functions 13-28
thread-yielding functions 13-19
tracing functions 12-31, 12-33, 12-34
type-descriptor accessor functions 2-3, 15-63
type-identifier accessor functions 2-2
type-transfer functions 2-11, 2-30, 3-4, 3-5, 3-7, 3-14, 3-19,

4-3, 4-12, 6-61, 15-62, 16-21
VP-environment functions 13-38

DataBlade API module
See also Client LIBMI application; User-defined routine

(UDR).
calling UDRs within 9-12
defined 1-1
event handling 10-3
including mi.h 1-6, 1-7, 12-12
including minmmem.h 1-7
internationalization of 1-19

DataBlade API support data type
list of 1-11
MI_CALLBACK_STATUS 1-11, 10-13
MI_CURSOR_ACTION 1-11, 5-6, 8-24
MI_EVENT_TYPE 1-11, 10-2
MI_FUNCARG 1-11, 15-57
mi_funcid 1-11, 12-20
MI_ID 1-11
MI_MEMORY_DURATION 1-6, 14-6, 14-14
MI_SETREQUEST 1-12, 15-3
MI_TRANSITION_TYPE 1-12, 10-19
MI_UDR_TYPE 1-12

DataBlade modules
creating 9-16
defined 12-3
extending 9-16
UDRs with 9-15, 12-2

DataBlade UDR.
See User-defined routine (UDR).

Date and/or time data
arithmetic operations on 4-15
binary representation 4-7, 8-9
byte order 4-12
data conversion of 4-12
in opaque type 4-13, 16-16, 16-21, 16-36
macros for 4-9, 4-16
support for 4-5
text representation 4-6, 4-13, 8-9
transferring 4-12
type alignment 4-12

Date and/or time string
converting from mi_datetime 4-13, 4-14
converting to mi_datetime 4-13, 4-14
data conversion of 4-13
defined 4-7
end-user format 4-7
format of 4-6

Date data
See also DATE data type.
binary representation 4-2, 4-3, 8-9
byte order 4-3
data conversion of 4-3
end-user format for 4-2
in opaque type 4-3, 16-16, 16-21, 16-36
operations on 4-5
support for 4-1
text representation 4-1, 4-3, 8-9

Index X-9

Date data (continued)
transferring 4-3
type alignment 4-3

DATE data type
See also mi_date data type.
corresponding DataBlade API data type 1-9, 4-1, 4-2
data conversion of 4-3
DataBlade API functions for 4-3
ESQL/C functions for 1-17, 4-4, 4-5
format of 4-2, 8-9
functions for 4-3
GLS library functions for 1-17
operations on 4-5

date data type (ESQL/C).
See mi_date data type.

Date string
converting from mi_date 4-3, 4-4
converting to mi_date 4-3, 4-4
data conversion of 4-3
defined 4-2
format of 4-1

DATE value, passing mechanism for 2-33
Date-formatting string 4-4
Date/time data

See also DATETIME data type; INTERVAL data type.
data conversion of 4-13

Date/time string
ANSI SQL standards format 4-13
converting from mi_datetime 4-14
converting to mi_datetime 4-14

DATETIME data type
See also mi_datetime data type.
ANSI SQL standards format 4-12, 4-13, 4-14
arithmetic operations on 4-15
corresponding DataBlade API data type 1-9, 4-1, 4-7
data conversion of 4-11, 4-12, 4-13
DataBlade API functions for 4-13
ESQL/C functions for 1-17, 4-13
extending 4-11
format of 4-7, 8-9
functions for 4-8, 4-12, 4-13
GLS library functions for 1-17
inserting 4-11, 4-12
macros 4-9
precision of 4-17
qualifiers 2-4, 4-7, 4-9, 4-16
role of datetime.h 1-7
scale of 4-17
selecting 4-11, 4-12

datetime data type (ESQL/C).
See mi_datetime data type.

datetime.h header file 1-5, 1-7, 4-9
Datum 2-32

See MI_DATUM data type.
DB_LOCALE environment variable 7-4, 7-5, 10-49, 13-59
DBDATE environment variable 4-2, 4-4, 4-5
dbexport utility 16-22
dbimport utility 16-22
DBMONEY environment variable 3-9, 3-21, 3-22
dbschema utility 16-48
DBTIME environment variable 4-14, 4-15
Debugger

hints for 12-27
running session of 12-27
setting breakpoints 12-27
starting 12-25
using 12-25

dec_t structure 3-12, 8-9
decadd() function 3-16
deccmp() function 3-16
deccopy() function 3-16
deccvasc() function 3-15
deccvdbl() function 3-15
deccvint() function 3-15
deccvlong() function 3-15
decdiv() function 3-16
dececvt() function 3-15
decfvct() function 3-15
Decimal data

arithmetic operations on 3-16
binary representation 3-10, 3-12, 3-14, 8-9
end-user format for 3-9
in opaque type 3-14, 3-15, 16-16, 16-21, 16-37
text representation 3-9, 3-14, 3-17, 8-9

DECIMAL data type
See also mi_decimal data type; Precision; Scale.
arithmetic operations on 3-16
corresponding DataBlade API data type 1-9, 3-10, 3-17
data conversion of 3-14
DataBlade API functions for 3-14, 3-19
declaring variables for 3-17
ESQL/C functions for 1-17, 3-14, 3-15
format of 3-10, 3-12, 8-9
formatting 3-21
functions for 3-14, 3-19
getting column value for 8-44
GLS library functions for 1-17
macros 3-13
precision of 3-10, 3-16, 3-17, 3-20
role of decimal.h 1-7, 3-11
scale of 3-10, 3-16

decimal data type (ESQL/C).
See mi_decimal data type.

Decimal separator 3-9, 3-17
Decimal string

converting from mi_decimal 3-15
converting to mi_decimal 3-15
creating formatted 3-20
data conversion of 3-14
defined 3-9
format of 3-9

decimal.h header file 1-5, 1-7, 3-11
DECLEN decimal macro 3-13
decmul() function 3-16
DECPREC decimal macro 3-13
decround() function 3-16
decsub() function 3-16
dectoasc() function 3-15
dectodbl() function 3-15
dectoint() function 3-15
dectolong() function 3-15
dectrunc() function 3-16
Default connection 7-14
DELETE statements

calling a UDR 12-8, 12-18, 12-24
obtaining results of 8-38
opaque types 16-38
sending to database server 8-36
smart large object and 6-56
WHERE CURRENT OF clause 8-12, 8-21, 14-8

destroy() support function
decrementing the reference count 6-57
defined 16-38
deleting a smart large object 6-56

X-10 IBM Informix DataBlade API Programmer’s Guide

Destructor
collection descriptor 5-3, 5-15, 14-21
collection structure 5-3, 5-16
connection descriptor 7-12, 7-14, 7-18, 14-13
current memory duration 14-21
defined 1-14
error descriptor 10-17, 14-21
file descriptor 13-53, 14-16
function descriptor 9-17, 9-38, 14-8
LO file descriptor 6-18
LO handle 6-17, 14-16, 14-21
LO-specification structure 6-17, 6-43, 14-21
LO-status structure 6-19, 6-55, 14-21
MI_FPARAM 9-2, 9-38, 14-8
named memory 14-25, 14-32
PER_COMMAND duration 14-8
PER_ROUTINE duration 14-6
PER_SESSION duration 14-16
PER_STMT_EXEC duration 14-13
routine argument 14-6
routine return value 14-6
row descriptor 5-29, 5-39, 14-21
row structure 5-32, 5-38, 14-21
save-set structure 8-60, 8-64, 14-13
session-duration connection descriptor 7-13, 14-16
session-duration function descriptor 9-33, 14-16
statement descriptor 8-7, 8-14, 8-31, 8-32, 8-58
stream descriptor 13-42, 13-52, 14-21
user memory 14-20, 14-21, 14-23, A-1, A-2
varying-length structure 2-14, 2-16, 14-21

Directory.
See Working directory.

Disability B-1
Distinct data types

binary representation 8-10
checking type identifier for 2-2
obtaining column value for 8-44
obtaining source type 2-4
text representation 8-10

dlclose() system call 13-27
dlerror() system call 13-27
DLL.

See Dynamic link library.
dlopen() system call 13-27
dlsym() system call 13-27
Dollar ($) sign 3-9, 3-22
double (C) data type

See also mi_double_precision data type.
character conversion 3-21
corresponding DataBlade API data type 1-9, 3-19
mi_decimal conversion 3-15
mi_int8 conversion 3-7, 3-8

DOUBLE PRECISION data type.
See FLOAT data type.

DPRINTF tracing function 12-31
DROP DATABASE statement 12-36, 12-37, 13-42
DROP FUNCTION statement 12-36, 12-37, 13-42
DROP PROCEDURE statement 12-36, 12-37, 13-42
DROP ROUTINE statement 12-36, 12-37, 13-42
DROP TABLE statement 8-35, 16-38
DROP XADATASOURCE statement 11-11
DROP XADATASOURCE TYPE statement 11-11
dtaddinv() function 4-15
dtcurrent() function 4-15
dtcvasc() function 4-14
dtcvfmtasc() function 4-14
dtextend() function 4-11, 4-14

dtime_t structure 4-7, 4-9, 4-11
dtime_t typedef 8-9
dtsub() function 4-15
dtsubinv() function 4-15
dttoasc() function 4-14
dttofmtasc() function 4-14
Dynamic link library 12-13, 13-26

See Shared-object file.

E
End-of-session callback 10-5, 10-6, 10-8, 10-19, 10-51, 14-16

See also MI_EVENT_END_SESSION event type.
PER_SESSION memory and 10-52

End-of-statement callback 10-5, 10-6, 10-7, 10-16, 10-19, 10-51,
10-52

See also MI_EVENT_END_STMT event type.
PER_STMT_EXEC memory and 10-52, 14-12

End-of-transaction callback 10-5, 10-6, 10-8, 10-16, 10-19,
10-51, 10-52, 10-53, 14-15

See also MI_EVENT_END_XACT event type.
PER_TRANSACTION memory and 10-52

End-user format
date 4-2
date and/or time 4-7
monetary 3-10
numeric 3-2, 3-9, 3-17

End-user routine 1-2, 12-4, 15-2
Environment variables

as part of server environment 13-59
CLIENT_LOCALE 13-59
DB_LOCALE 7-4, 7-5, 13-59
DBDATE 4-2, 4-4, 4-5
DBMONEY 3-9, 3-21, 3-22
DBTIME 4-14, 4-15
GL_DATE 4-2, 4-4, 4-5, 4-7
in file pathname 6-59, 13-53
in UDR pathname 12-16
INFORMIXDIR 12-12
INFORMIXSERVER 7-4, 7-5, 7-14
obtaining value of 13-59
SERVER_LOCALE 7-4, 7-5, 13-59

errno system variable 13-45
Error descriptor

accessing 10-18
constructor for 10-17, 14-21
copying 10-18
defined 1-12, 10-17
destructor for 10-17, 14-21
error level 10-18
exception level 10-18
functions for 10-18, 10-38
information in 10-18
memory duration of 10-17, 14-21
message text 10-18
SQLCODE status value 10-18
SQLSTATE status value 10-18
types of errors 10-17
types of events 10-17

Error handling (client) 10-12, 10-55
See Event handling; Warning.

Error level 10-55
Error messages, internationalizing 10-48
Errors

See also Exception; Runtime error.
client LIBMI 10-55

Index X-11

ESQL/C function library
See also DataBlade API function library; Informix GLS

library; and individual function names.
byte functions 1-17, 2-29
categories of functions 1-17
character-type functions 1-17, 2-12
data-conversion functions 2-12, 3-15, 4-4, 4-13
date- and/or time-conversion functions 4-13
date- and/or time-operation functions 4-15
date-conversion functions 4-4
date-operation functions 4-5
DATE-type functions 1-17, 4-4, 4-5
DATETIME-type functions 1-17, 4-10, 4-13, 4-15
decimal-conversion functions 3-15
decimal-operation functions 3-16
DECIMAL-type functions 1-17, 3-14, 3-15, 3-16
INT8-conversion functions 3-7
INT8-type functions 1-17, 3-7
INTERVAL-type functions 1-17, 4-14, 4-15
MONEY-type functions.

See ESQL/C function library, DECIMAL-type functions.
numeric-formatting functions 3-20
string-conversion functions 2-12

ESQL/C header files 1-7
Event handling

See also Error handling (client); Exception handling.
default behavior 10-11
defined 10-3
in C UDRs 10-3, 10-11, 12-11
in client LIBMI applications 10-3, 10-11
invoking a callback 10-3

Event type
groups of 10-2
list of 10-2
MI_All_Events deprecated 10-2
MI_Client_Library_Error 10-2, 10-55
MI_EVENT_COMMIT_ABORT 10-2, 10-3, 10-5, 10-6, 10-7,

10-17, 10-19, 10-50, 10-51, 10-52
MI_EVENT_END_SESSION 10-2, 10-6, 10-8, 10-17, 10-19,

10-50, 10-51
MI_EVENT_END_STMT 10-2, 10-6, 10-7, 10-17, 10-19,

10-50, 10-51, 10-52
MI_EVENT_END_XACT 10-2, 10-6, 10-8, 10-17, 10-19,

10-50, 10-51, 10-52
MI_EVENT_POST_XACT 10-2, 10-3, 10-5, 10-6, 10-7,

10-17, 10-19, 10-50, 10-51
MI_EVENT_SAVEPOINT 10-2, 10-3, 10-5, 10-6, 10-7,

10-17, 10-19, 10-50, 10-51, 10-52
MI_Exception 10-2, 10-20
MI_Xact_State_Change 10-2

Events
See also Client LIBMI error; Database server exception;

State-transition event.
catching 10-3
client LIBMI error 10-55
database server exception 10-20
defined 10-2
handling of.

See Event handling.
information about 10-17
state-transition event 10-49
structures for 10-17
throwing 10-3
types of.

See Event type.
EVP.

See User-defined virtual processor.

Exception callback 10-5, 10-25, 10-27, 10-29
Exception handling

See also Event handling; NOT FOUND condition; Runtime
error; Warning.

continuing with 10-30
determining how exception is processed 10-29
handling in a callback 10-29
in C UDRs 10-11, 10-25
in client LIBMI applications 10-12, 10-31
in DataBlade API functions 10-20, 10-26, 10-31
multiple 10-38
NOT FOUND condition 8-38, 10-24
providing 10-25
raising an exception 10-40
returning error information 10-32
runtime errors 10-23, 10-24
status variables for 10-21
user-defined error structure 10-32
using 10-20
warning conditions 10-23, 10-24
with SQLCODE 10-24
with SQLSTATE 10-22

Exception level 10-21
See MI_EXCEPTION exception level; MI_MESSAGE

exception level.
Exception message

adding 10-49
custom 10-43, 10-44
internationalized 1-19
literal 10-42
parameters in 10-46
specifying 10-42

Exception.
See Database server exception; Error; Warning.

exec() system call 13-27, 13-41
EXECUTE FUNCTION statement

See also Cursor; Query; User-defined function.
associated with a cursor 8-3
calling a UDR 12-8, 12-18, 12-24
obtaining results of 8-38
sending to database server 8-36, 8-38, 9-13

EXECUTE PROCEDURE statement 8-36, 12-8, 12-18, 12-24
See User-defined procedure.

exit() system call 13-27
EXP VP.

See User-defined virtual processor.
Expensive UDR

cost 15-55
defined 15-54

Explicit cast 9-21, 15-2, 16-10, 16-40
Explicit cursor

See also Cursor; Implicit cursor.
characteristics of 8-5, 8-22
closing 8-31
defining 8-21, 8-22
fetching rows into 8-23
freeing 7-18, 8-32
opening 8-21
where stored 7-3

Explicit transaction 12-7, 14-15
Export support function

as cast function 16-10
defined 16-22, 16-26
internationalizing 16-23

Exportbin support function
as cast function 16-10
defined 16-29, 16-32

X-12 IBM Informix DataBlade API Programmer’s Guide

Extension VP.
See User-defined virtual processor.

External function.
See User-defined function.

External procedure.
See User-defined procedure.

External routines 1-2
See User-defined routine (UDR).

External-library routines
avoidance of 13-28
unsafe use of 13-28

F
Failure.

See Error; Runtime error.
Fastpath interface

checking for commutator function 9-26
checking for negator function 9-26
checking for NULL arguments 9-27
checking for variant function 9-25
determining if UDR handles NULLs 9-24
executing cast functions 9-27
executing UDRs 9-27
functions of 9-16
look-up functions 9-18, 9-21, 9-31, 9-33, 9-36
looking up cast functions 9-20
looking up UDRs 9-18
obtaining a function descriptor 9-17
obtaining MI_FPARAM 9-23
obtaining routine identifier 9-24
releasing resources 9-38
user-allocated MI_FPARAM 9-36
uses of 9-14, 12-19
using 9-14

fcntl.h header file 13-54
File descriptor

See also LO file descriptor; Operating-system file.
constructor for 13-53, 14-16
defined 13-53
destructor for 13-53, 14-16
freeing 13-55
memory duration of 13-53, 13-56, 14-16

File extensions
.bld 12-11
.c 12-11
.dll 12-13
.dsw 12-11
.mak 12-11
.o 12-11, 12-13
.so 12-12
.trc 12-34

File management
See also Operating-system file.
file-access functions 13-52
filenames 13-53
in C UDRs 9-25, 13-21, 13-52
parallelizable UDR and 15-63
sharing files 13-55
smart large objects and 6-24, 6-59

File stream
closing 13-45
data length 13-45
defined 13-45
getting

seek position of 13-45
opening 13-45

File stream (continued)
reading from 13-45
setting

seek position of 13-45
stream I/O functions for 13-45
writing to 13-45

Files
copy 16-22
makefile 12-11
message log.

See Message log file.
online.log.

See Message log file.
operating-system A-3

See Operating-system file.
seek position

obtaining 13-45, 13-52
setting 13-45, 13-52

shared-object.
See Shared-object file.

trace-output 12-34
FINAL aggregate support function 15-18, 15-22, 15-27, 15-29
fixchar data type (ESQL/C).

See mi_string data type.
Fixed-length data.

See DECIMAL data type; MONEY data type.
Fixed-length opaque data type

See also Opaque data type; Varying-length opaque data
type.

as routine argument 13-9
as routine return value 13-14
binary representation 8-10
defining 16-3
passing mechanism 16-7
registering 16-3
text representation 8-10

Fixed-point data
binary representation 3-10
byte order 3-14
data conversion of 3-14
decimal data 3-10
formatting 3-20
in opaque type 3-14, 16-21, 16-37
macros for 3-13
monetary data 3-11
obtaining type information 3-16
portability of 3-14
support for 3-8
text representation 3-9
transferring 3-14
type alignment 3-14

float (C) data type
See also mi_real data type.
corresponding DataBlade API data type 1-9, 3-19
mi_int8 conversion 3-7, 3-8

FLOAT data type
See also mi_double_precision data type.
corresponding DataBlade API data type 1-9, 3-17
DataBlade API functions for 3-19
declaring variables for 3-19
format of 8-9
functions for 3-19
obtaining column value for 8-44

Floating-point data
See also DECIMAL data type; FLOAT data type;

SMALLFLOAT data type.
binary representation 3-17, 8-9

Index X-13

Floating-point data (continued)
byte order 3-19
data conversion of 3-19, 3-20
formatting 3-20
in opaque type 3-20, 16-21, 16-37
obtaining type information 3-20
portability of 3-19
support for 3-16
text representation 3-17, 8-9
transferring 3-19
type alignment 3-19

fopen() system call 13-21
fork() system call 13-27, 13-41
Formatting string 3-21, 4-4
free() system call 13-22, 13-23
Function descriptor

accessor functions 9-23
caching 9-30
constructor for 9-17, 14-8
defined 1-12, 9-17
destructor for 9-17, 9-38, 14-8
determining commutator function 9-26
determining negator function 9-26
determining variant function 9-25
executing a UDR 9-27
for cast function 9-21
for UDR 9-18
freeing 7-18, 9-38
memory duration of 9-17, 9-31, 9-33, 9-38, 14-8, 14-16
MI_FPARAM structure 9-19, 9-21, 9-23
obtaining 9-17
obtaining information in 9-23
releasing resources for 9-38
reusing 9-30
routine identifier 9-24
routine NULL arguments 9-24
routine sequence and 9-17, 9-18, 9-21
session-duration.

See Session-duration function descriptor.
where stored 7-3, 9-17

Function identifier.
See Routine identifier.

Function return value.
See Routine return value.

Function-parameter structure.
See MI_FPARAM structure.

G
getmsg() system call 13-21
GL_DATE environment variable 4-2, 4-4, 4-5, 4-7
GL_DPRINTF tracing DataBlade API function 1-19
GL_DPRINTF tracing function 12-31
gl_tprintf() tracing function 1-19, 12-33
Global Language Support (GLS)

See also Code-set conversion; Locale.
character data types for routine arguments 13-6
character data types for variables 2-7, 2-8, 13-13
code-set conversion for opaque types 16-16
custom messages 10-45, 10-49
session environment and 13-58
wide-character support 1-8

Global transaction ID 11-3
Global variable 9-9, 13-23, 13-32, 13-33
GLS.

See Global Language Support.
GRANT statement 8-34, 12-16, 16-39, 16-40

H
HANDLESNULLS routine modifier 9-5, 9-24, 12-17, 12-24,

13-8
statcollect() function 16-47

HDR.
See High-Availability Data Replication.

Header file
See also individual header filenames.
advanced 1-6
datetime.h 1-7, 4-9
decimal.h 1-7, 3-11
ESQL/C 1-7, 12-12
fcntl.h 13-54
int8.h 1-7, 3-6
list of 1-5
location of 1-7
memdur.h 1-6, 14-6
mi.h 1-5, A-1
miconv.h 1-6
milib.h 1-5
milo.h 1-5, 6-16
minmdur.h 1-6, 14-14
minmmem.h 1-6, 7-13, 14-14, 14-25
minmprot.h 1-7, 7-13, 14-25
mistream.h 1-6, 13-45, 13-48, 13-50, 13-51
mistrmtype.h 1-6, 13-44
mistrmutil.h 1-6, 16-37
mitrace.h 1-6, 1-14, 12-29
mitypes.h 1-5, 12-4
private 1-8
sqlca.h 1-7
sqlda.h 1-7
sqlhdr.h 1-7
sqlstype.h 1-7
sqltypes.h 1-7
sqlxtype.h 1-7
stddef.h 2-37
varchar.h 1-7

Heap space 7-9, 13-22, 14-2, 14-3, A-2
High-Availability Data Replication

determining status 9-40
Hyphen (-), as formatting character 3-21

I
IBM Informix GLS library 1-8, 1-17
IDSSECURITYLABEL data type

as return value 13-13
as routine argument 13-6
corresponding DataBlade API data type 2-8, 13-6
precision of 2-12

ifx_dececvt() function 13-29
ifx_decfcvt() function 13-29
ifx_int8_t structure 3-6, 8-9
ifx_int8add() function 3-8
ifx_int8cmp() function 3-8
ifx_int8copy() function 3-8
ifx_int8cvasc() function 3-7
ifx_int8cvdbl() function 3-7
ifx_int8cvdec() function 3-7
ifx_int8cvflt() function 3-7
ifx_int8cvint() function 3-8
ifx_int8cvlong() function 3-8
ifx_int8div() function 3-8
ifx_int8mul() function 3-8
ifx_int8sub() function 3-8

X-14 IBM Informix DataBlade API Programmer’s Guide

ifx_int8toasc() function 3-8
ifx_int8todbl() function 3-8
ifx_int8todec() function 3-8
ifx_int8toflt() function 3-8
ifx_int8toint() function 3-8
ifx_int8tolong() function 3-8
ifx_replace_module() SQL function 12-37
ifx_unload_module() SQL procedure 12-37
Ill-behaved routine 12-17, 13-17, 13-18

See Well-behaved routine.
image sample opaque type

export function 16-27, 16-33
import function 16-25
importbin function 16-31
input function 16-13
internal representation 16-5
output function 16-15
receive function 16-18
registering 16-5
send function 16-20
support functions 16-5

IMPEXP data type
See also mi_impexp data type.
casting from 16-9
casting from opaque type 16-10
corresponding DataBlade API data type 1-10
defined 2-13, 16-9

IMPEXPBIN data type
See also mi_impexpbin data type.
casting from 16-9
casting from opaque type 16-10
corresponding DataBlade API data type 1-10
defined 2-13, 16-9

Implicit cast 9-20, 9-21, 15-2, 16-9, 16-40
Implicit cursor

See also Cursor; Explicit cursor.
characteristics of 8-5
closing 8-32, 8-57
defined 8-8
freeing 7-18, 8-32
opening 8-18
processing results of 8-57
where stored 7-3

Implicit transaction 12-8
Import support function

as cast function 16-9
defined 16-22, 16-23
internationalizing 16-23

Importbin support function
defined 16-29

Importbinary support function
as cast function 16-9

incvasc() function 4-14
incvfmtasc() function 4-14
informix user account 12-13, 12-16
Informix-ESQL/C.

See ESQL/C.
INFORMIXDIR environment variable 12-12
INFORMIXSERVER environment variable 7-4, 7-5, 7-14
INIT aggregate support function 15-18, 15-26, 15-28, 15-34
Input parameter

accessor functions 8-15
assigning value to 8-12, 8-27, 12-10
control mode 8-28
data type of value 8-30
defined 8-4
handling NULL value 8-30

Input parameter (continued)
length of value 8-30
MI_DATUM value 2-36, 8-28
NOT NULL constraint 5-31, 8-15, 8-16
number of 8-15
obtaining information for 8-15
parameter identifier 8-16
precision of 2-13, 3-16, 3-20, 4-16, 4-17, 8-15, 8-16
restrictions on use 8-12
scale of 2-13, 3-16, 3-20, 4-16, 4-17, 8-15, 8-16
specifying in SQL statement 8-12
type identifier of 8-15
type name of 8-15, 8-16
value of 8-28

Input support function
as cast function 16-9
conversion functions in 16-16
defined 16-11, 16-12
external format in 2-10
handling character data 2-11, 16-16
handling date and/or time data 4-13, 16-16
handling date data 4-3, 16-16
handling decimal data 3-15, 16-16
handling smart large object 6-60, 16-16
internationalizing 16-12

INSERT statements
calling a UDR 12-8, 12-18
obtaining results of 8-38
opaque types 16-12, 16-17, 16-38
parameter information for 8-15
sending to database server 8-36, 8-59
smart large object 6-15, 6-42

Instance.
See Routine instance.

int (2-byte) data types
corresponding DataBlade API data type 1-9, 3-3
mi_decimal conversion 3-15
mi_int8 conversion 3-8

int (4-byte) data types
corresponding DataBlade API data type 1-9, 3-5
mi_decimal conversion 3-15
mi_int8 conversion 3-8

int (C) data type 3-3, 3-4, 3-21
See mi_integer data type.

INT8 data type
See also mi_int8 data type; SERIAL8 data type.
arithmetic operations on 3-8
corresponding DataBlade API data type 1-9, 3-2, 3-6
data conversion of 3-7
ESQL/C functions for 1-17, 3-7
format of 3-6, 8-9
functions for 3-7, 3-8
obtaining column value for 8-44
role of int8.h 1-7, 3-6

int8 data type (ESQL/C).
See mi_int8 data type.

int8.h header file 1-5, 1-7, 3-6
Integer data

arithmetic operations on 3-8
binary representation 3-2, 3-7, 8-9
byte order 3-4, 3-5, 3-7
data conversion of 3-4, 3-5, 3-7
eight-byte 3-5
end-user format for 3-2
four-byte 3-4, 16-6
in opaque type 3-4, 3-5, 3-7, 16-16, 16-21, 16-37
one-byte 3-2

Index X-15

Integer data (continued)
portability of 3-4, 3-5, 3-7
support for 3-1
text representation 3-2, 8-9
transferring 3-4, 3-5, 3-7
two-byte 3-3, 16-6
type alignment 3-4, 3-5, 3-7

INTEGER data type
See also mi_integer data type; SERIAL data type.
corresponding DataBlade API data type 1-9, 3-2, 3-4
format of 3-4, 8-9
obtaining column value for 8-44

Integer string 3-2
INTEGER value, passing mechanism for 2-33
Internal format.

See Binary representation.
INTERNAL routine modifier 12-17
INTERNALLENGTH opaque-type modifier 16-3, 16-5
Internationalization

DataBlade API modules and 1-19
IBM Informix GLS library 1-8, 1-17
of error messages 10-48

Interval data
binary representation 4-8, 4-13, 8-9
byte order 4-12
data conversion of 4-12, 4-13
in opaque type 4-13, 16-16, 16-21, 16-37
support for 4-5
text representation 4-13, 8-9
transferring 4-12
type alignment 4-12

INTERVAL data type
See also mi_ interval data type.
ANSI SQL standards format 4-12, 4-13, 4-15
arithmetic operations on 4-15
classes of 4-11, 4-15
corresponding DataBlade API data type 1-9, 4-1, 4-7
data conversion of 4-11, 4-12, 4-13
DataBlade API functions for 4-13
ESQL/C functions for 1-17, 4-14
extending 4-11
format of 4-8, 8-9
functions for 4-9, 4-12, 4-13
inserting 4-11, 4-12
macros 4-9
precision of 4-17
qualifiers 2-4, 4-9, 4-16
role of datetime.h 1-7
scale of 4-17
selecting 4-11, 4-12

interval data type (ESQL/C).
See mi_interval data type.

Interval string
ANSI SQL standards format 4-13
converting from mi_interval 4-13, 4-14, 4-15
converting to mi_interval 4-13, 4-14
data conversion of 4-13
end-user format 4-7
format of 4-6

intoasc() function 4-14
intofmtasc() function 4-15
intrvl_t structure 4-8, 4-9, 4-11
intrvl_t typedef 8-9
invdivdbl() function 4-15
invdivinv() function 4-15
invextend() function 4-11, 4-15
invmuldbl() function 4-15

Invocation.
See Routine invocation.

ISAM error code 10-38
ITER aggregate support function 15-18, 15-19, 15-26
Iterator function

iterator status 9-12
Iterator functions

calling 15-9
changing global information 13-33
creating 15-3
defined 12-4, 12-17, 15-3
end condition 15-6
executing 12-24, 15-10
initializing 15-6
invocations 12-19
iterator status 15-3, 15-4
iterator-completion flag 9-12, 15-6, 15-9
limitations 9-14
registering 15-9
releasing resources 15-9
restriction with Fastpath 9-27
returning one item 15-8
routine-state information 9-9
statcollect() as 16-43

ITERATOR routine modifier 12-17, 15-4, 15-5, 15-9
Iterator status 9-12, 15-3, 15-4, 16-43
Iterator-completion flag 9-12, 15-6, 15-9

J
Jagged rows 8-40, 8-41, 8-50, 8-51

L
Large object.

See Simple large object; Smart large object.
ldchar() function 2-12
Less than (<) 3-21
Lightweight I/O 6-10, 6-38
Linux operating system, safe system calls 13-26, 13-27
LIST data type

See also SQL data type.
checking type identifier for 2-2
corresponding DataBlade API data type 1-10
format of 8-10
obtaining column value for 8-53

Literal value.
See Text representation.

LO
seek position

defined 6-18
initial 6-18
obtaining 6-42, 6-48
read operations and 6-39, 6-48
setting 6-42, 6-48
write operations and 6-39, 6-42

LO file descriptor
constructor for 6-18
declaring 6-18
defined 1-12, 6-16, 6-18
destructor for 6-18
freeing 6-49, 6-58
functions for 6-20
memory duration of.

See LO file descriptor, scope of.
obtaining 6-40, 6-41, 6-52

X-16 IBM Informix DataBlade API Programmer’s Guide

LO file descriptor (continued)
scope of 6-18

LO handle
allocating 6-40, 6-41
binary representation 6-60, 8-48
byte order 6-61
character conversion 6-60
constructor for 6-17, 14-16, 14-21
copying 6-61
creating 6-19
declaring 6-17
defined 1-10, 1-12, 6-4, 6-16, 6-17
deleting from a database 6-56, 6-57
destructor for 6-17, 14-16, 14-21
format of 6-4, 8-9, 8-48
freeing 6-43
functions for 6-21
in BLOB column 2-28, 2-29, 6-13
in CLOB column 2-7, 2-10, 6-13
in INSERT 6-15, 6-42
in opaque data type 6-14
in UPDATE 6-15, 6-42, 6-50
invalidating 6-56
memory duration of 6-17, 6-41, 6-43, 6-58, 14-21
obtaining 6-40
portability of 6-61
receiving from client 6-61
reference count and 6-13, 6-56
representations of 6-47, 6-60
selecting from a database 6-14, 6-47, 8-48
sending to client 6-61
storing in a database 6-15, 6-42, 6-50, 6-57
text representation 6-60, 8-9, 8-48
transferring between computers 6-61
type alignment 6-61
valid 6-47
validating 6-47

LO-specification structure
accessor functions 6-22, 6-35, 6-37, 6-38
allocating 6-26
allocation extent size 6-36
attributes flag 6-36
constructor for 6-17, 6-25, 14-21
contents of 6-16
creating 6-25
declaring 6-17, 6-19
default-open-mode flag 6-38
defined 1-13, 6-16
destructor for 6-17, 6-43, 14-21
disk-storage information 6-35
estimated size 6-35
freeing 6-43
initializing 6-25, 6-27
maximum size 6-35
memory duration of 6-17, 6-26, 6-43, 14-21
obtaining 6-25
sbspace name 6-36
storage characteristics 6-28

LO-status structure
accessor functions 6-23, 6-54
allocating 6-53
constructor for 6-19, 6-53, 14-21
contents of 6-19
creating 6-53
defined 1-13, 6-16, 6-19
destructor for 6-19, 6-55, 14-21
freeing 6-55

LO-status structure (continued)
initializing 6-53, 6-54, 6-55
last-access time 6-54
last-change time 6-54
last-modification time 6-54
memory duration of 6-19, 6-53, 6-55, 14-21
obtaining 6-53
reference count 6-54
size 6-54
storage characteristics 6-54

LOAD statement 16-23, 16-38
LoadLibrary() system call 13-27
Local variable 13-12, 13-25, 14-35, 14-36
Locales

client 10-45, 13-59
current processing 10-44, 10-45
database 7-4, 7-5, 13-59
in custom messages 10-44
name of 10-45
server 7-4, 7-5, 13-58, 13-59
server-processing 7-2, 10-45, 13-58, 13-59

Lock
row 6-11
smart large object.

See Smart-large-object lock.
table 12-9

Lock-all lock.
See Smart-large-object lock, lock-all.

lock() system call 6-20
Login name.

See User account name.
lohandles() support function 6-57
LVARCHAR data type

See also Character data; mi_lvarchar data type.
as return value 13-13
as routine argument 13-6
casting from 16-9
casting from opaque type 16-10
corresponding DataBlade API data type 1-9, 2-7, 2-9, 2-13,

13-6
data conversion of 2-11
size restriction 2-9, 2-28, 16-10
with opaque types 16-9

lvarchar data type (ESQL/C).
See mi_lvarchar data type.

M
Macro

for date and/or time qualifiers 4-9, 4-16
for fixed-length data 3-13
for fixed-point data 3-13
for tracing 12-31

Makefile 12-11
malloc() system call 13-22, 13-23, 13-28, 14-3
memdur.h header file 1-6, 14-6
Memory context 14-4, 14-6, 14-7, 14-10, 14-13, 14-14, 14-15
Memory duration

See also individual memory durations.
advanced 14-5, 14-13, 14-14
changing 14-22
choosing 14-4, 14-17
collection descriptor 5-3, 14-21
collection structure 5-3, 14-21
connection descriptor 7-12, 7-14, 7-18, 14-13, 14-16
constants for 14-6, 14-14
current 14-6, 14-21, 14-22, 14-25

Index X-17

Memory duration (continued)
deallocation and 14-23, 14-32
default 13-23, 14-6, 14-21
defined 13-22, 14-4
error descriptor 10-17, 14-21
file descriptor 13-53, 13-56, 14-16
function descriptor 9-17, 9-31, 9-33, 9-38, 14-8, 14-16
groups of 14-5
LO file descriptor.

See LO file descriptor, scope of.
LO handle 6-17, 6-41, 6-43, 6-58, 14-21
LO-specification structure 6-17, 6-26, 6-43, 14-21
LO-status structure 6-19, 6-53, 6-55, 14-21
memory pools for 14-4, 14-34
MI_FPARAM structure 9-2, 9-10, 9-38, 12-22, 14-8, 15-64
MI_LO_LIST structure 14-21
named memory 14-25
PER_COMMAND 14-5, 14-7
PER_CURSOR 14-14
PER_ROUTINE 13-23, 14-5, 14-6
PER_SESSION 14-5, 14-14, 14-15
PER_STATEMENT, deprecated 14-5, 14-9
PER_STMT_EXEC 14-5, 14-9
PER_STMT_PREP 14-5, 14-6, 14-13
PER_SYSTEM 14-5, 14-14, 14-16
PER_TRANSACTION 14-5, 14-14
public 14-5, 14-18
restoring 14-22
routine argument 12-23, 14-6
routine return value 12-24
row descriptor 5-29, 5-38, 14-21
row structure 5-32, 5-38, 14-21
save-set structure 8-60, 8-64, 14-13
session-duration connection descriptor 7-13, 7-19, 14-16
session-duration function descriptor 9-33, 14-16
specifying 14-22, 14-25
statement descriptor.

See Statement descriptor, scope of.
stream descriptor 13-42, 13-50, 13-52, 14-21
switching 14-22
too large 14-17
too small 14-17
type descriptor 2-2
type identifier 2-2
user memory 14-20, 14-21, A-1
user-defined error structure 10-33, 10-35
varying-length structure 2-14, 2-16, 14-21

Memory management
See also Named memory; Thread stack; User memory.
accessing shared memory 14-2
caching memory 15-6
choosing memory duration 14-4, 14-17
constructors.

See Constructor.
DataBlade API data structures 1-13
destructors.

See Destructor.
heap space 7-9, 13-22, 14-2, 14-3, A-2
in C UDRs 14-1, 14-19
in callback functions 10-52
in client LIBMI applications A-1
in DataBlade API functions 14-19
memory context 14-4, 14-6, 14-7, 14-10, 14-13, 14-14, 14-15
memory duration.

See Memory duration.
memory leaks 13-22, 14-5, 14-17, 14-33
memory pools 13-22, 14-4, 14-33

Memory management (continued)
named memory 14-24
possible errors 12-28
saving memory address 14-18
shared memory 14-2, 14-19
smart large objects 6-43
stack space 14-35
user memory 13-22, 14-20
varying-length structures 2-14

Memory pool.
See Memory management, memory pools.

Message log file 10-11, 12-21, 12-27, 12-37, 14-17, 14-36
MI_ABORT_END transition type 10-50, 10-51, 10-53
MI_All_Events event type, deprecated 10-2
mi_alloc() function 10-27, 14-1, 14-19, 14-20, 14-21, 14-25, A-1
MI_BEGIN transition type 10-49
mi_bigint data type 1-9

corresponding SQL data type 3-2
format of 3-5

MI_BINARY control-flag constant 8-31
mi_binary_query() function 8-10, 15-62
mi_bitvarying data type

See also Byte data; Varying-length structure.
as routine argument 13-10
as routine return value 13-14
corresponding SQL data type 1-10, 2-13, 2-28
defined 2-28
passing mechanism for 2-14
varying-length opaque type and 13-10, 13-14

mi_boolean data type
See also BOOLEAN data type.
corresponding SQL data type 1-10, 2-31
format of 2-31, 8-9
passing mechanism for 2-31, 2-33
portability of 1-10
type alignment 16-6

mi_call_on_vp() function 13-40
mi_call() function 14-36
MI_CALLBACK_FUNC data type 10-7
MI_CALLBACK_HANDLE data type 10-7
MI_CALLBACK_STATUS data type 1-11, 10-13
mi_cast_get() function 2-3, 9-17, 9-18, 9-21, 9-33
MI_CB_CONTINUE callback-return constant 10-14, 10-30
MI_CB_EXC_HANDLED callback-return constant 10-13,

10-29
mi_char data type

See also Character data.
corresponding SQL data type 1-8, 2-7
defined 2-8
functions for 2-10
portability of 2-11
transferring between computers 2-11
type alignment 2-11

mi_char data type; mi_lvarchar data type; mi_string data
type. xi

mi_char1 data type 1-8, 2-7, 2-8, 2-33
See Character data.

mi_class_id() function 13-40
mi_class_maxvps() function 13-40
mi_class_name() function 13-40
mi_class_numvp() function 13-40
MI_Client_Library_Error event type

callback type for 10-5
connection descriptor for 10-6
default handling in client LIBMI 10-12
defined 10-2, 10-55
in error descriptor 10-17

X-18 IBM Informix DataBlade API Programmer’s Guide

mi_client_locale() DataBlade API function 1-20
mi_client_locale() function 7-17
mi_client() function 1-2, 1-4
mi_close_statement() function 8-20, 8-31, 15-62
mi_close() function

as destructor function 7-12, 7-14
callback and 10-16
connection descriptor and 7-14, 7-18
current statement and 8-58
cursor and 5-15, 5-16, 8-31
function descriptor and 9-38
row descriptor and 5-39
row structure and 5-38
save set and 8-64
statement descriptor and 8-14, 8-32
user memory and 14-23, A-2

MI_COLL_DESC structure.
See Collection descriptor.

MI_COLLECTION structure.
See Collection structure.

mi_collection_card() function 5-15
mi_collection_close() function 5-3, 5-15
mi_collection_copy() function 5-3, 5-6
mi_collection_create() function 2-3, 5-3
mi_collection_delete() function 5-6, 5-14
mi_collection_fetch() function 2-36, 5-6, 5-9
mi_collection_free() function 5-3, 5-15, 5-16
mi_collection_insert() function 2-36, 5-6, 5-7
mi_collection_open_with_options () function 5-3, 5-4, 5-5
mi_collection_open() function 5-3, 5-4
mi_collection_update() function 5-6, 5-13
MI_COLLECTION_VALUE value constant 5-3, 8-52
mi_column_count() function 5-31, 8-41, 8-55
mi_column_id() function 5-30
mi_column_name() function 5-30, 8-55
mi_column_nullable() function 2-37, 5-30
mi_column_precision() function 2-13, 3-16, 3-20, 4-16, 5-30
mi_column_scale() function 3-16, 4-16, 5-30
mi_column_type_id() function 2-3, 2-13, 5-30
mi_column_typedesc() function 2-4, 2-13, 5-30
mi_command_is_finished() function 8-57, 15-62
MI_CONNECTION structure.

See Connection descriptor.
MI_CONNECTION_INFO structure.

See Connection-information descriptor.
MI_CONTINUE return constant 14-38
mi_current_command_name() function 12-19, 14-7, 15-62
MI_CURSOR_ABSOLUTE cursor-action constant 5-6, 8-25
MI_CURSOR_ACTION data type 1-11, 5-6, 8-24
MI_CURSOR_CURRENT cursor-action constant 5-7
MI_CURSOR_FIRST cursor-action constant 5-6, 8-24
MI_CURSOR_LAST cursor-action constant 5-6, 8-24
MI_CURSOR_NEXT cursor-action constant 5-6, 8-24
MI_CURSOR_PRIOR cursor-action constant 5-6, 8-24
MI_CURSOR_RELATIVE cursor-action constant 5-7, 8-25
mi_dalloc() function 10-27, 14-1, 14-19, 14-20, 14-22, 15-6, A-1,

A-2
MI_DATABASE_INFO structure.

See Database-information descriptor.
mi_date data type

See also DATE data type.
byte order 4-3
character conversion 4-3
copying 4-3
corresponding SQL data type 1-9, 4-1, 4-2
data conversion of 4-3
format of 4-2, 8-9

mi_date data type (continued)
functions for 4-3
operations on 4-5
passing mechanism for 2-33, 4-2
portability of 4-3
receiving from client 4-3
sending to client 4-3
transferring between computers 4-3
type alignment 4-3

mi_date_to_string() DataBlade API function 1-19
mi_date_to_string() function 4-3
mi_datetime data type

See also DATETIME data type; dtime_t typedef.
arithmetic operations on 4-15
byte order 4-12
character conversion 4-13
copying 4-12
corresponding SQL data type 1-9, 4-1, 4-7
data conversion of 4-12, 4-13
extending 4-11
format of 4-8, 8-9
functions for 4-12, 4-13
inserting from 4-11, 4-12
macros 4-9
passing mechanism for 4-8
portability of 4-12
qualifiers 2-4, 4-9
receiving from client 4-12
selecting into 4-11, 4-12
sending to client 4-12
transferring between computers 4-12
type alignment 4-12

mi_datetime_to_string() function 4-13
MI_DATUM data type

collection element as 2-36
column value as 2-36
defined 1-12, 2-32
input-parameter value as 2-36, 8-28
mi_call() and 14-36
opaque-type value in 16-7
OUT parameter as 2-36, 13-15
promotion of 2-34, 12-23
routine argument as 2-35, 2-36, 9-27, 12-22, 13-3
routine return value as 2-36, 9-27, 9-29, 9-30, 12-24, 13-12
size of 2-32

MI_DATUM structure
Boolean values in 2-31, 2-33
characters in 2-8, 2-14, 2-33
contents of 2-33
date and time values in 4-8
date values in 2-33, 4-2
decimal values in 3-10, 3-11, 3-18
eight-byte integers in 3-6
floating-point values in 3-18, 3-19
four-byte integers in 2-33
holding generic data value 2-32
interval values in 4-9
one-byte integers in 3-3
opaque-type value in 2-34
pointer values in 2-32, 2-33
two-byte integers in 2-33
uses of 2-35
varying-length structures in 2-14

MI_DATUM value
calculations with 2-35
collection element as 5-8, 5-11, 5-13
column value as 5-34, 8-43, 8-44, 8-49, 8-50, 8-52

Index X-19

MI_DATUM value (continued)
LO handle as 6-47, 8-48
passed by reference 2-33
passed by value 2-33

mi_db_error_raise() DataBlade API function
internationalization and 1-19

mi_db_error_raise() function
connection descriptor and 10-40
exception message and 10-42
internationalization and 10-45
named-memory locks and 14-32
purpose of 10-20, 10-40

MI_DDL statement-status constant 8-34
mi_decimal data type

See also DECIMAL data type; MONEY data type; dec_t
typedef.

arithmetic operations on 3-16
byte order 3-14, 3-19
character conversion 3-14, 3-15, 3-21
copying 3-14, 3-19, 3-20
corresponding SQL data type 1-9, 3-10, 3-17
data conversion of 3-14
declaring 3-17
double (C) conversion 3-15
format of 3-10, 3-12, 3-13, 8-9
formatting 3-21
functions for 3-14, 3-19
integer (2-byte) conversion 3-15
integer (4-byte) conversion 3-15
integer (four-byte) conversion 3-15
integer (two-byte) conversion 3-15
macros 3-13
mi_int8 conversion 3-7, 3-8
passing mechanism for 3-10
portability of 3-14, 3-19
receiving from client 3-14, 3-19
role of decimal.h 3-11
sending to client 3-14, 3-20
transferring between computers 3-14, 3-19
type alignment 3-14, 3-19

mi_decimal_to_string() DataBlade API function 1-19
mi_decimal_to_string() function 3-15
mi_default_callback() function 10-12
mi_disable_callback() function 10-8
MI_DML statement-status constant 8-25, 8-34, 8-36
MI_DONE return constant 14-38
mi_double_precision data type

byte order 3-19
copying 3-20
corresponding SQL data type 1-9, 3-17
declaring 3-19
format of 8-9
functions for 3-19
mi_call() and 14-36
passing mechanism for 3-19
portability of 1-10, 3-19
receiving from client 3-20
sending to client 3-20
transferring between computers 3-19
type alignment 3-19, 16-6

mi_drop_prepared_statement() function
purpose of 8-11, 8-14, 8-18, 8-20
releasing resources 8-31, 8-32, 14-13
restrictions on use 15-62

mi_enable_callback() function 10-8
mi_errmsg() function 10-18, 10-25, 10-56
MI_ERROR return code 1-16, 10-27, 10-32

MI_ERROR_DESC structure.
See Error descriptor.

mi_error_desc_copy() function 10-17, 10-18
mi_error_desc_destroy() function 10-17, 10-19
mi_error_desc_finish() function 10-38
mi_error_desc_is_copy() function 10-18
mi_error_desc_next() function 10-38
mi_error_level() function 10-18, 10-21, 10-25, 10-56
mi_error_sql_state() function 10-18, 10-25, 10-56
mi_error_sqlcode() function 10-18, 10-25, 10-56
MI_EVENT_COMMIT_ABORT event type 10-6, 10-7, 10-19,

10-51, 10-52
defined 10-2, 10-3, 10-5, 10-17, 10-50

MI_EVENT_END_SESSION event type 10-6, 10-8, 10-19,
10-51

See also End-of-session callback.
as state transition 10-50
callback type for 10-5
defined 10-2, 10-17, 10-50, 10-51, 12-11
event-type structure for 10-19

MI_EVENT_END_STMT event type 10-6, 10-7, 10-19, 10-51,
10-52

See also End-of-statement callback.
as state transition 10-50
callback type for 10-5
defined 10-2, 10-17, 10-50, 12-11
event-type structure for 10-19

MI_EVENT_END_XACT event type 10-6, 10-8, 10-19, 10-51,
10-52

See also End-of-transaction callback.
as state transition 10-50
callback type for 10-5
defined 10-2, 10-17, 10-50, 12-11
event-type structure for 10-19

MI_EVENT_POST_XACT event type 10-6, 10-7, 10-19, 10-51
defined 10-2, 10-3, 10-5, 10-17, 10-50

MI_EVENT_SAVEPOINT event type 10-6, 10-7, 10-19, 10-51,
10-52

defined 10-2, 10-3, 10-5, 10-17, 10-50
MI_EVENT_TYPE data type 1-11, 10-2, 10-4, 10-8, 10-15,

10-21
MI_Exception event type

callback type for 10-5, 10-25
connection descriptor for 10-6
default handling in client LIBMI 10-12
default handling in UDR 10-11
defined 10-2, 10-20, 12-11
in error descriptor 10-17

MI_EXCEPTION exception level 10-11, 10-12, 10-21, 10-23,
10-24, 10-41, 10-42, 10-44

mi_exec_prepared_statement() function
as an SQL command 12-18, 14-9
as parent connection 10-40
control mode and 8-30
database server exceptions and 10-20
executing iterator function 15-10
input parameter and 2-36
input parameters and 8-27
purpose of 8-11, 8-18
restrictions on use 15-62
smart large object and 6-42, 6-47
when to use 8-3

mi_exec() function
as an SQL command 12-18, 14-9
as constructor 8-7
as parent connection 10-40
control mode and 8-10

X-20 IBM Informix DataBlade API Programmer’s Guide

mi_exec() function (continued)
database server exceptions and 10-20
purpose of 8-6, 8-7
restrictions on use 15-62
smart large object and 6-42, 6-47
when to use 8-3

mi_fetch_statement() function 8-20, 15-62
mi_file_allocate() function 10-27
mi_file_close() function 10-27, 13-53, 13-55
mi_file_errno() function 10-27, 13-53
mi_file_open() function 10-27, 13-20, 13-52, 13-53
mi_file_read() function 10-27, 13-20, 13-53
mi_file_seek() function 10-27, 13-52
mi_file_sync() function 10-27, 13-53
mi_file_tell() function 10-27, 13-52
mi_file_to_file() function 6-24, 10-27, 13-53, 13-56
mi_file_unlink() function 10-27, 13-53
mi_file_write() function 10-27, 13-20, 13-53
mi_fix_integer() function 3-5
mi_fix_smallint() function 3-4
mi_fp_argisnull() function 2-37, 9-3, 9-5, 13-8
mi_fp_arglen() function 9-3
mi_fp_argprec() function 2-13, 3-16, 3-20, 4-16, 9-3
mi_fp_argscale() function 3-16, 4-16, 9-3
mi_fp_argtype() function 2-3, 2-13, 9-3
mi_fp_funcname() function 9-12
mi_fp_funcstate() function 9-9, 9-10, 15-6, 15-9, 16-45
mi_fp_getcolid() function 9-12
mi_fp_getfuncid() function 9-12
mi_fp_getrow() function 9-12
mi_fp_nargs() function 9-3, 9-4
mi_fp_nrets() function 9-6, 9-19
mi_fp_request() function 9-12, 15-4, 16-43
mi_fp_retlen() function 9-6
mi_fp_retprec() function 2-13, 3-16, 3-20, 4-16, 9-6
mi_fp_retscale() function 3-16, 4-16, 9-6
mi_fp_rettype() function 2-3, 2-13, 9-6
mi_fp_returnisnull() function 2-37, 9-6, 9-8
mi_fp_setargisnull() function 2-37, 9-3, 9-5, 9-25, 13-15
mi_fp_setarglen() function 9-3
mi_fp_setargprec() function 2-13, 3-16, 3-20, 4-16
mi_fp_setargscale() function 3-16, 4-16, 9-3
mi_fp_setargtype() function 2-3, 2-13, 9-3
mi_fp_setcolid() function 9-12
mi_fp_setfuncid() function 9-12
mi_fp_setfuncstate() function 9-9, 16-44
mi_fp_setisdone() function 9-12, 15-6
mi_fp_setnargs() function 9-3, 9-4
mi_fp_setnrets() function 9-6
mi_fp_setretlen() function 9-6
mi_fp_setretprec() function 2-13, 3-16, 3-20, 4-16, 9-6
mi_fp_setretscale() function 3-16, 4-16, 9-6
mi_fp_setrettype() function 2-3, 2-13, 9-6
mi_fp_setreturnisnull() function 2-37, 9-6, 9-8, 13-13
mi_fp_setrow() function 9-12
mi_fp_usr_fparam() function 9-36
MI_FPARAM structure

absence of 9-13, 13-4
accessor functions 9-3, 9-6, 9-8, 9-12
allocating 9-27, 9-36, 12-22, 14-35, 15-64
argument length 9-3
argument precision 2-13, 3-16, 3-20, 4-16, 4-17, 9-3
argument scale 4-17, 9-3
argument type identifier 9-3
caching a connection descriptor in 7-12, 9-31, 10-28
caching a function descriptor in 9-31
checking arguments in 9-3

MI_FPARAM structure (continued)
checking return-value data types in 9-6
constructor for 9-2, 9-36, 14-8
copying 9-36
creating 9-2, 9-36, 12-22
declaring 9-2, 13-4
defined 1-12, 9-2, 13-25
destructor for 9-2, 9-38, 14-8
determining who allocated 9-36
freeing 9-36, 9-38, 12-25
from function descriptor 9-23
handling NULL arguments 9-3, 9-5
handling NULL return value 9-6, 9-8
in function descriptor 9-19, 9-21
iterator status 9-12, 15-3
iterator-completion flag 9-12, 15-6, 15-9
memory duration of 9-2, 9-10, 9-38, 12-22, 14-8, 15-64
number of arguments 9-3
number of return values 9-6
obtaining pointer to 13-5
return-value length 9-6, 9-7
return-value precision 2-13, 3-16, 3-20, 4-16, 4-17, 9-6, 9-7
return-value scale 4-17, 9-6, 9-7
return-value type identifier 9-6, 9-7
routine identifier 9-12
routine invocation and 9-37
routine name 9-12
routine sequence and 9-10
user-allocated 9-7, 9-27, 9-36, 9-37
user-state pointer 9-8
using 9-2, 12-10, 12-22

mi_fparam_allocate() function 9-2, 9-36
mi_fparam_copy() function 9-2, 9-36
mi_fparam_free() function 9-2, 9-36, 9-38
mi_fparam_get_current() function 9-12, 13-5
mi_fparam_get() function 9-19, 9-23, 9-25
mi_free() function

as destructor function 14-19, 14-20, 14-23
callback and 10-16
LO handle and 6-44
user memory and 14-23, 15-9, A-1, A-2

mi_func_commutator() function 9-23, 9-26
MI_FUNC_DESC structure.

See Function descriptor.
mi_func_desc_by_typeid() function 9-17, 9-18, 9-33
mi_func_handlesnulls() function 2-37, 9-23, 9-24
mi_func_isvariant() function 9-23, 9-25
mi_func_negator() function 9-23, 9-26
MI_FUNCARG data type 1-11, 15-57
MI_FUNCARG structure

accessor functions 15-56, 15-57, 15-58
argument data type 15-57
argument length 15-57
argument type 15-57
column number 15-57, 15-58, 15-59
defined 1-12, 15-56
determining NULL argument 15-57, 15-58, 15-59
routine identifier 15-57
routine name 15-57
table identifier 15-57, 15-58, 15-59

MI_FUNCARG_COLUMN argument-type constant 15-58
MI_FUNCARG_CONSTANT argument-type constant 15-58
mi_funcarg_get_argtype() function 15-57
mi_funcarg_get_colno() function 15-57, 15-58, 15-59
mi_funcarg_get_constant() function 15-57, 15-58, 15-59
mi_funcarg_get_datalen() function 15-57
mi_funcarg_get_datatype() function 15-57

Index X-21

mi_funcarg_get_distrib() function 15-57, 15-58, 15-59
mi_funcarg_get_routine_id() function 15-57
mi_funcarg_get_routine_name() function 15-57
mi_funcarg_get_tabid() function 15-57, 15-58, 15-59
mi_funcarg_isnull() function 2-37, 15-57, 15-58, 15-59
MI_FUNCARG_PARAM argument-type constant 15-58
mi_funcid data type 1-11, 12-20
mi_get_bigint function 3-7
mi_get_bytes() function 2-30
mi_get_connection_info() DataBlade API function 1-20
mi_get_connection_info() function 7-5, 7-6, 13-58
mi_get_connection_option() function 13-58, 15-63
mi_get_connection_user_data() function 7-17, 10-36
mi_get_database_info() function 7-7, 7-8, 13-58, 15-63
mi_get_date() function 4-3
mi_get_datetime() function 4-12
mi_get_db_locale() function 13-59
mi_get_decimal() function 3-14, 3-19
mi_get_default_connection_info() function 7-5, 7-6, 7-17,

13-58
mi_get_default_database_info() function 7-7, 7-8, 7-17, 13-58
mi_get_double_precision() function 3-20
mi_get_id() function 8-14, 13-58
mi_get_int8() function 3-7
mi_get_integer() function 3-5
mi_get_interval() function 4-12
mi_get_lo_handle() function 6-17, 6-21, 6-61
mi_get_money() function 3-14
mi_get_next_sysname() function 7-17
mi_get_parameter_info() function 7-9, 7-17
mi_get_real() function 3-20
mi_get_result() function 8-8, 8-18, 8-23, 8-24, 8-25, 8-32, 8-34,

8-39, 8-61, 15-62
mi_get_row_desc_from_type_desc () function 2-4, 8-41, 15-63
mi_get_row_desc_without_row() function 8-8, 8-40, 8-55,

8-58, 15-62, 15-63
mi_get_row_desc() function 8-41, 8-52, 15-63
mi_get_serverenv() function 13-59
mi_get_session_connection() function 7-13, 9-33

restrictions on use 15-63
mi_get_smallint() function 3-4
mi_get_statement_row_desc() function 8-11, 8-14, 8-18, 8-20,

8-40, 15-62, 15-63
mi_get_string() DataBlade API function 1-19
mi_get_string() function 2-11
mi_get_type_source_type() function 2-4, 15-63
mi_get_vardata_align() function 2-17, 2-19, 2-24, 16-7
mi_get_vardata() function 2-17, 2-19, 2-24
mi_get_varlen() function 2-17, 2-24
mi_hdr_status() function 9-40
MI_ID data type 1-11
mi_impexp data type

See also IMPEXP data type; Varying-length structure.
contents of 16-23
corresponding SQL data type 1-10, 2-13
defined 16-9
passing mechanism for 2-14

mi_impexpbin data type
See also IMPEXPBIN data type; Varying-length structure.
contents of 16-29
corresponding SQL data type 1-10, 2-13
defined 16-9
passing mechanism for 2-14

mi_init_library() function 7-17
mi_int1 data type 1-9, 3-2
mi_int8 data type

See also INT8 data type; SERIAL8 data type.

mi_int8 data type (continued)
arithmetic operations on 3-8
byte order 3-7
character conversion 3-7, 3-8
copying 3-7
corresponding SQL data type 1-9, 3-2, 3-6
data conversion of 3-7
double (C) conversion 3-7, 3-8
float (C) conversion 3-7, 3-8
format of 3-5, 3-6, 8-9
functions for 3-7, 3-8
integer (2-byte) conversion 3-8
integer (4-byte) conversion 3-8
integer (four-byte) conversion 3-8
integer (two-byte) conversion 3-8
mi_decimal conversion 3-7, 3-8
portability of 3-7
receiving from client 3-7
role of int8.h 3-6
sending to client 3-7
transferring between computers 3-7
type alignment 3-7

mi_integer data type
See also INTEGER data type; SERIAL data type.
byte order 3-5
copying 3-5
corresponding SQL data type 1-9, 3-2, 3-4
format of 3-4, 8-9
passing mechanism for 2-33, 3-5
portability of 1-10, 3-5
receiving from client 3-5
sending to client 3-5
transferring between computers 3-5
type alignment 3-5

mi_interval data type
See also INTERVAL data type; intrvl_t typedef.
arithmetic operations on 4-15
byte order 4-12
character conversion 4-13
copying 4-12
corresponding SQL data type 1-9, 4-1, 4-7
data conversion of 4-12, 4-13
extending 4-11
format of 4-9, 8-9
functions for 4-12, 4-13
inserting from 4-11, 4-12
macros 4-9
passing mechanism for 4-9
portability of 4-12
qualifiers 2-4, 4-9
receiving from client 4-12
selecting into 4-11, 4-12
sending to client 4-12
transferring between computers 4-12
type alignment 4-12

mi_interval_to_string() DataBlade API function 1-19
mi_interval_to_string() function 4-13
mi_last_bigserial() function 8-59
mi_last_serial() function 8-59
mi_last_serial8() function 8-59
MI_LIB_BADARG client-library error 10-55
MI_LIB_BADSERV client-library error 10-56
MI_LIB_DROPCONN client-library error 10-56
MI_LIB_INTERR client-library error 10-56
MI_LIB_NOIMP client-library error 10-56
MI_LIB_USAGE client-library error 10-56
mi_lo_alter() function 6-21, 6-22, 6-51, 6-62

X-22 IBM Informix DataBlade API Programmer’s Guide

MI_LO_APPEND access-mode constant 6-38, 6-39
MI_LO_ATTR_HIGH_INTEG create-time constant 6-37
MI_LO_ATTR_KEEP_ LASTACCESS_TIME create-time

constant 6-36, 6-54
MI_LO_ATTR_LOG create-time constant 6-36
MI_LO_ATTR_MODERATE_ INTEG create-time

constant 6-37
MI_LO_ATTR_NO_LOG create-time constant 6-36
MI_LO_ATTR_NOKEEP_ LASTACCESS_TIME create-time

constant 6-36
MI_LO_BUFFER buffering-mode constant 6-38, 6-39
mi_lo_close() function 6-18, 6-20, 6-49, 6-58, 6-62
mi_lo_colinfo_by_ids() function 6-22, 6-34, 6-62
mi_lo_colinfo_by_name() function 6-22, 6-34, 6-62
mi_lo_copy() function 6-17, 6-18, 6-20, 6-21, 6-22, 6-29, 6-48,

6-57, 6-62
mi_lo_create() function 6-17, 6-18, 6-20, 6-21, 6-22, 6-29, 6-48,

6-57, 6-62
mi_lo_decrefcount() function 6-21, 6-57, 6-62
mi_lo_delete_immediate() function 6-17, 6-44, 6-56, 6-58, 6-62
MI_LO_DIRTY_READ access-mode constant 6-38
mi_lo_expand() function 6-17, 6-18, 6-20, 6-21, 6-22, 6-29,

6-48, 6-57, 6-62
MI_LO_FD data type.

See LO file descriptor.
mi_lo_filename() function 6-21, 6-59, 6-62
MI_LO_FORWARD access constant 6-38
mi_lo_from_buffer() function 6-17, 6-21, 6-59, 6-62
mi_lo_from_file_by_lofd() function 6-24, 6-59, 6-62
mi_lo_from_file() function 6-18, 6-20, 6-21, 6-22, 6-24, 6-29,

6-48, 6-57, 6-59, 6-62, 16-25
mi_lo_from_string() function 6-17, 6-19, 6-21, 6-47, 6-60
MI_LO_HANDLE data type.

See LO handle.
mi_lo_increfcount() function 6-21, 6-57, 6-62
mi_lo_invalidate() function 6-21, 6-48, 6-56, 6-62
MI_LO_LIST structure 14-21
mi_lo_lock() function 6-20, 6-62
MI_LO_LOCKALL lock-mode constant 6-38, 6-39
MI_LO_LOCKRANGE lock-mode constant 6-38
mi_lo_lolist_create() function 6-21, 6-62
MI_LO_NOBUFFER buffering-mode constant 6-38
mi_lo_open() function 6-18, 6-20, 6-21, 6-48, 6-62, 13-20
mi_lo_ptr_cmp() function 6-21, 6-62
MI_LO_RANDOM access-method constant 6-38, 6-39
MI_LO_RDONLY access-mode constant 6-38, 6-39
MI_LO_RDWR access-mode constant 6-38, 6-39
mi_lo_read() function 6-20, 6-48, 6-62, 13-20
mi_lo_readwithseek() function 6-20, 6-48, 6-62
mi_lo_release() function 6-17, 6-21, 6-44, 6-58, 6-62
MI_LO_REVERSE access constant 6-38
mi_lo_seek() function 6-20, 6-42, 6-48, 6-62
MI_LO_SEQUENTIAL access-method constant 6-38
MI_LO_SIZE constant 6-60
MI_LO_SPEC structure.

See LO-specification structure.
mi_lo_spec_free() function 6-17, 6-22, 6-43, 6-62, 10-16
mi_lo_spec_init() function 6-17, 6-22, 6-25, 6-27, 6-28, 6-62
mi_lo_specget_def_open_flags() function 6-22, 6-39
mi_lo_specget_estbytes() function 6-22, 6-35
mi_lo_specget_extsz() function 6-22, 6-36
mi_lo_specget_flags() function 6-23, 6-37
mi_lo_specget_maxbytes() function 6-23, 6-35
mi_lo_specget_sbspace() function 6-23, 6-36
mi_lo_specset_def_open_flags() function 6-23, 6-39
mi_lo_specset_estbytes() function 6-23, 6-35
mi_lo_specset_extsz() function 6-23, 6-36

mi_lo_specset_flags() function 6-23, 6-37
mi_lo_specset_maxbytes() function 6-23, 6-35
mi_lo_specset_sbspace() function 6-23, 6-36
MI_LO_STAT structure.

See LO-status structure.
mi_lo_stat_atime() function 6-23, 6-54
mi_lo_stat_cspec() function 6-23, 6-27, 6-54
mi_lo_stat_ctime() function 6-23, 6-54
mi_lo_stat_free() function 6-19, 6-23, 6-55, 6-62
mi_lo_stat_mtime_sec() function 6-23, 6-54
mi_lo_stat_mtime_usec() function 6-23, 6-54
mi_lo_stat_refcnt() function 6-23, 6-54, 6-56
mi_lo_stat_size() function 6-24, 6-54
mi_lo_stat() function 6-19, 6-20, 6-23, 6-53, 6-55, 6-62
mi_lo_tell() function 6-20, 6-42, 6-48, 6-62
mi_lo_to_buffer() function 6-21, 6-59, 6-62
mi_lo_to_file() function 6-21, 6-24, 6-59, 6-62, 16-28
mi_lo_to_string() function 6-22, 6-60
MI_LO_TRUNC access-mode constant 6-38
mi_lo_truncate() function 6-20, 6-62
mi_lo_unlock() function 6-20, 6-62
mi_lo_utimes() function 6-62
mi_lo_validate() function 6-22, 6-47, 6-48, 6-62
mi_lo_write() function 6-20, 6-42, 6-62, 13-20
mi_lo_writewithseek() function 6-20, 6-42, 6-62
MI_LO_WRONLY access-mode constant 6-38, 6-39
mi_lock_memory() function 14-19, 14-28
mi_lvarchar data type

See also LVARCHAR data type; Varying-length structure.
as internal format for character data 2-9
as opaque-type storage 2-10, 16-9, 16-11
as routine argument 2-10, 13-6, 16-8
character conversion 2-11
contents of 2-9
converting between stream and internal 2-14
corresponding SQL data type 1-9, 2-7, 2-13
data conversion of 2-11
declaring 2-9
defined 2-9
passing mechanism for 2-14
reading from stream 2-14
uses of 2-9
varying-length opaque type and 16-5

mi_lvarchar_to_string() function 2-11, 2-24
MI_MEMORY_DURATION data type 1-6, 14-6, 14-14
MI_MESSAGE exception level 10-11, 10-12, 10-21, 10-23,

10-24, 10-41, 10-42, 10-44
mi_module_lock() function 13-41, 13-42
mi_money data type

See also mi_decimal data type; MONEY data type.
arithmetic operations on 3-16
byte order 3-14
character conversion 3-14
copying 3-14
corresponding SQL data type 1-9, 3-10
data conversion of 3-14
format of 3-11, 3-12, 3-13, 8-9
functions for 3-14
macros 3-13
passing mechanism for 3-11
portability of 3-14
receiving from client 3-14
role of decimal.h 3-11
sending to client 3-14
transferring between computers 3-14
type alignment 3-14

mi_money_to_string() DataBlade API function 1-19

Index X-23

mi_money_to_string() function 3-15
mi_named_alloc() function 9-33, 14-19, 14-25
mi_named_free() function

as destructor function 14-25, 14-32
PER_SESSION memory and 14-16
PER_SYSTEM memory and 14-17
PER_TRANSACTION memory and 14-15
purpose of 14-19, 14-32
session-duration function descriptors and 9-35

mi_named_get() function 14-19, 14-26
mi_named_zalloc() function 9-33, 14-19, 14-25
mi_new_var() function 2-14
mi_next_row() function 5-36, 15-62

in a loop 8-56, 8-61
overwriting buffer 8-44
purpose of 8-8, 8-19, 8-25, 8-41
releasing resources 8-58

MI_NO_MORE_RESULTS statement-status constant 8-23,
8-34, 8-36, 8-38, 8-57, 10-24

MI_NO_SUCH_NAME return constant 14-32
MI_NOMEM return constant 14-38
MI_NORMAL_END transition type 10-49, 10-51, 10-52, 10-53
MI_NORMAL_VALUE value constant 8-44
MI_NULL_VALUE value constant 8-49
mi_numeric data type.

See mi_decimal data type.
MI_O_APPEND file-mode constant 6-59
MI_O_CLIENT_FILE file-mode constant 6-59
MI_O_EXCL file-mode constant 6-59
MI_O_RDONLY file-mode constant 6-59
MI_O_RDWR file-mode constant 6-59
MI_O_SERVER_FILE file-mode constant 6-59
MI_O_TEXT file-mode constant 6-59
MI_O_TRUNC file-mode constant 6-59
MI_O_WRONLY file-mode constant 6-59
mi_open_prepared_statement() function 8-20, 14-9

as an SQL command 12-18
control mode and 8-30
cursor name in 8-13
input parameter and 2-36
input parameters and 8-27
purpose of 8-11, 8-20
restrictions on use 15-62
when to use 8-3

mi_open() function 7-12, 7-13, 7-14, 7-18, 10-28
mi_parameter_count() function 8-15, 8-17
MI_PARAMETER_INFO structure.

See Parameter-information descriptor.
mi_parameter_nullable() function 2-37, 8-15
mi_parameter_precision() function 2-13, 3-16, 3-20, 4-16, 8-15
mi_parameter_scale() function 3-16, 4-16, 8-15
mi_parameter_type_id() function 2-3, 2-13, 8-15
mi_parameter_type_name() function 2-13, 8-15
mi_pointer data type 1-10, 2-31, 2-33, 15-32

See POINTER data type.
mi_prepare() function 14-13, 15-62

as constructor 8-14
assembling statement for 8-11
assigning a name 8-12
purpose of 8-11, 8-18, 8-20
usage 8-11

MI_PROC_CALLBACK constant 10-15
mi_process_exec() function 13-40, 13-41
mi_put_bigint function 3-7
mi_put_bytes() function 2-30
mi_put_date() function 4-3
mi_put_datetime() function 4-12

mi_put_decimal() function 3-14, 3-20
mi_put_double_precision() function 3-20
mi_put_int8() function 3-7
mi_put_integer() function 3-5
mi_put_interval() function 4-12
mi_put_lo_handle() function 6-22, 6-61
mi_put_money() function 3-14
mi_put_real() function 3-20
mi_put_smallint() function 3-4
mi_put_string() DataBlade API function 1-19, 2-11
mi_query_finish() function 8-7, 8-57, 8-58, 15-62
mi_query_interrupt() function 8-7, 8-57, 8-58, 15-62
mi_real data type

See also SMALLFLOAT data type.
byte order 3-19
copying 3-20
corresponding SQL data type 1-9, 3-17
declaring 3-18
format of 8-9
functions for 3-19
portability of 1-10, 3-19
receiving from client 3-20
sending to client 3-20
transferring between computers 3-19
type alignment 3-19, 16-6

mi_realloc() function 10-27, 14-1, 14-19, 14-20, A-1, A-2
mi_register_callback() function 7-18, 10-4
mi_result_command_name() function 8-7, 8-34, 8-36, 8-39,

15-62
mi_result_row_count() function 8-26, 8-36, 8-39, 15-62
mi_retrieve_callback() function 10-8
mi_routine_end() function 9-17, 9-33, 9-35, 9-38
mi_routine_exec() function 2-36, 9-27, 10-20, 10-40
mi_routine_get_by_typeid() function 2-3, 9-17, 9-18, 9-33
mi_routine_get() function 9-17, 9-18, 9-29, 9-33
mi_routine_id_get() function 9-23, 9-24
MI_ROW structure.

See Row structure.
mi_row_create() function 2-36, 5-32, 8-44, 15-63
MI_ROW_DESC structure.

See Row descriptor.
mi_row_desc_create() function 5-29, 5-33, 15-63
mi_row_desc_free() function 5-29, 5-38, 8-44, 15-63
mi_row_free() function 5-32, 5-38, 8-44, 15-63
MI_ROW_VALUE value constant 5-32, 8-50
MI_ROWS statement-status constant 8-8, 8-18, 8-24, 8-34,

8-36, 8-38, 8-39
MI_SAVE_SET structure.

See Save set; Save-set structure.
mi_save_set_count() function 8-60
mi_save_set_create() function 8-60, 8-61
mi_save_set_delete() function 8-60
mi_save_set_destroy() function 8-60, 8-64
mi_save_set_get_first() function 8-60, 8-62
mi_save_set_get_last() function 8-60
mi_save_set_get_next() function 8-60, 8-62
mi_save_set_get_previous() function 8-60, 8-62
mi_save_set_insert() function 8-60, 8-61
mi_save_set_member() function 8-60
MI_SEND_HOLD control-flag constant 8-23
MI_SEND_READ control-flag constant 8-23
MI_SEND_SCROLL control-flag constant 8-23
mi_sendrecv data type

See also SENDRECV data type; Varying-length structure.
contents of 16-17
corresponding SQL data type 1-9, 2-13
defined 16-9

X-24 IBM Informix DataBlade API Programmer’s Guide

mi_sendrecv data type (continued)
passing mechanism for 2-14

mi_server_connect() function 7-14, 7-16, 7-18
mi_set_connection_user_data() function 7-17, 10-36
mi_set_default_connection_info() function 7-5, 7-6, 7-18
mi_set_default_database_info() function 7-7, 7-8, 7-18
mi_set_parameter_info() function 7-9, 7-18
mi_set_vardata_align() function 2-17, 2-18, 2-19, 2-26
mi_set_vardata() function 2-17, 2-18, 2-26
mi_set_varlen() function 2-17, 2-23
mi_set_varptr() function 2-17, 2-22
MI_SETREQUEST data type 1-12, 15-3
mi_sint1 data type 1-9, 3-2
mi_smallint data type

byte order 3-4
copying 3-4
corresponding SQL data type 1-9, 3-2, 3-3
format of 3-3, 8-9
passing mechanism for 2-33, 3-3
portability of 1-10, 3-3, 3-4
receiving from client 3-4
sending to client 3-4
transferring between computers 3-4
type alignment 3-4

MI_SQL message-type constant 10-43
mi_stack_limit() function 14-36
MI_STATEMENT structure.

See Statement descriptor.
mi_statement_command_name() function 8-11, 8-14, 8-18,

8-20, 15-62
mi_statret DataBlade API Data Type Structure 1-13
mi_stream_close() function 13-42, 13-43, 13-45, 13-46, 13-52
mi_stream_eof() function 13-43
mi_stream_get_error() function 13-43
mi_stream_getpos() function 13-43, 13-45, 13-46
mi_stream_init() function 13-44, 13-48
mi_stream_length() function 13-43, 13-45, 13-46
mi_stream_open_fio() function 13-42, 13-44, 13-45
mi_stream_open_mi_lvarchar() function 13-42, 13-44, 13-46
mi_stream_open_str() function 13-42, 13-44, 13-45
mi_stream_read() function 13-43, 13-45, 13-46
mi_stream_seek() function 13-43, 13-45, 13-46
mi_stream_set_error() function 13-43
mi_stream_setpos() function 13-43, 13-45, 13-46
mi_stream_tell() function 13-43, 13-45, 13-46
mi_stream_write() function 13-43, 13-45, 13-46
mi_streamread_boolean() function 16-37
mi_streamread_collection() function 5-3, 16-37
mi_streamread_lo_by_lofd() function 16-37
mi_streamread_lo() function 6-17, 16-37
mi_streamread_lvarchar() function 2-14, 16-37
mi_streamread_row() function 5-32, 16-37
mi_streamread_string() function 16-37
mi_streamwrite_boolean() function 16-37
mi_streamwrite_collection() function 16-37
mi_streamwrite_lo() function 16-37
mi_streamwrite_lvarchar() function 16-37
mi_streamwrite_row() function 16-37
mi_streamwrite_string() function 16-37
mi_string data type

See also Character data.
corresponding SQL data type 1-8, 2-7
defined 2-8
functions for 2-10
mi_date conversion 4-3
mi_datetime conversion 4-13
mi_decimal conversion 3-15

mi_string data type (continued)
mi_interval conversion 4-13
mi_lvarchar conversion 2-11
mi_money conversion 3-15
portability of 2-11
transferring between computers 2-11
type alignment 2-11

mi_string_to_date() DataBlade API function 1-19
mi_string_to_date() DataBlade API Function 4-3
mi_string_to_datetime() function 4-13
mi_string_to_decimal() DataBlade API function 1-19, 3-15
mi_string_to_interval() DataBlade API function 1-19
mi_string_to_interval() function 4-13
mi_string_to_lvarchar() function 2-11, 2-14, 2-20, 16-10
mi_string_to_money() DataBlade API function 1-19
mi_string_to_money() function 3-15
mi_switch_mem_duration() function 13-50, 14-19, 14-20, 14-22
mi_sysname() function 7-18
MI_SYSTEM_CAST 9-30
mi_td_cast_get() function 2-4, 2-5, 9-17, 9-18, 9-21, 9-33
MI_TOOMANY return constant 14-38
mi_tracefile_set() function 12-34, 15-63
mi_tracelevel_set() function 12-30, 12-33, 15-63
MI_TRANSITION_DESC structure

See Transition descriptor.
MI_TRANSITION_TYPE data type 1-12, 10-19, 10-49
mi_transition_type() function 10-19, 10-51
mi_trigger_event() function 9-39
mi_trigger_get_new_row() function 9-39
mi_trigger_get_old_row() function 9-39
mi_trigger_level() function 9-39
mi_trigger_name() function 9-39
mi_trigger_tabname() function 9-39
mi_try_lock_memory() function 14-19, 14-28
mi_type_align() function 2-3
mi_type_byvalue() function 2-4, 2-34, 8-47, 12-23, 12-25
MI_TYPE_DESC structure.

See Type descriptor.
mi_type_element_typedesc() function 2-4, 5-30
mi_type_full_name() function 2-4
mi_type_length() function 2-4
mi_type_maxlength() function 2-4
mi_type_owner() function 2-4
mi_type_precision() function 2-4, 2-7, 2-13, 3-16, 3-20, 4-15,

4-17
mi_type_qualifier() function 2-4, 2-6, 4-15, 4-16
mi_type_scale() function 2-4, 2-7, 3-16, 4-15, 4-17
mi_type_typedesc() function 2-4, 2-13
mi_type_typename() function 2-4, 2-6, 2-13, 8-30
mi_typedesc_to_id() function 2-5
mi_typedesc_typeid() function 2-4
MI_TYPEID data type.

See Type identifier.
mi_typeid_equals() function 2-2
mi_typeid_is_builtin() function 2-2
mi_typeid_is_collection() function 2-2
mi_typeid_is_complex() function 2-2
mi_typeid_is_distinct() function 2-2
mi_typeid_is_list() function 2-2
mi_typeid_is_multiset() function 2-3
mi_typeid_is_row() function 2-3
mi_typeid_is_set() function 2-3
mi_typename_to_id() function 2-5
mi_typename_to_typedesc() function 2-5
mi_typestring_to_id() function 2-5
mi_typestring_to_typedesc() function 2-5
mi_udr_lock() function 13-41

Index X-25

MI_UDR_TYPE data type 1-12
mi_unlock_memory() function 14-19, 14-28, 14-32
mi_unregister_callback() function 10-8
mi_unsigned_bigint data type 1-9, 3-5

corresponding SQL data type 3-2
mi_unsigned_char1 data type 1-8, 2-7, 2-8, 2-33, 3-2
mi_unsigned_int8 data type 1-9, 3-2, 3-5
mi_unsigned_integer data type 1-9, 2-33, 3-2, 3-4, 16-6
mi_unsigned_smallint data type 1-9, 2-33, 3-2, 3-3, 16-6
mi_value_by_name() function 2-36, 5-3, 5-32, 5-36, 6-47, 8-42,

15-62
mi_value() function 2-36, 5-3, 5-32, 5-36, 6-47, 8-42, 8-56,

15-62
mi_var_copy() function 2-14, 2-15, 2-24, 2-25
mi_var_free() function 2-14, 2-16
mi_var_to_buffer() function 2-24, 2-25
mi_vpinfo_classid() function 13-40
mi_vpinfo_isnoyield() function 13-40
mi_wchar data type 1-8
mi_xa_get_current_xid() function 11-16
mi_xa_get_xadatasource_rmid() function 11-13, 11-16
mi_xa_register_xadatasource() function 11-14
mi_xa_unregister_xadatasource() function 11-15
MI_Xact_State_Change event type

See also State-change callback.
as state transition 10-50
callback type for 10-5, 10-50
connection descriptor for 10-6
default handling in client LIBMI 10-12
default handling in UDR 10-11
defined 10-2
event-type structure for 10-17, 10-19

mi_yield() function 13-20, 13-31
mi_zalloc() function 10-27, 14-1, 14-19, 14-20, 14-21, 14-25,

A-1, A-2
mi.h header file

advanced memory-management functions 14-14, 14-25
client LIBMI applications and A-1
DataBlade API data types 2-2
DataBlade API functions 1-14
defined 1-5
IBM Informix GLS library and 1-18
including in modules 1-6, 1-7, 12-12
tracing 12-29
with restricted session-duration connections 7-13
with smart large objects 6-16

miconv.h header file 1-6
milib.h header file 1-5
milo.h header file

access-method constants 6-38
access-mode constants 6-38
buffering-mode constants 6-38
create-time constants 6-37, 6-38
defined 1-5, 6-16
LO file descriptor 6-18
LO handle 6-18
LO-specification structure 6-17
LO-status structure 6-19
lock-mode constants 6-38

minmdur.h header file 1-6, 14-14
minmmem.h header file 1-6, 1-7, 7-13, 14-14, 14-25
minmprot.h header file 1-7, 7-13, 14-25
mistream.h header file 1-6, 13-45, 13-48, 13-50, 13-51
mistrmtype.h header file 1-6, 13-44
mistrmutil.h header file 1-6, 16-37
mitrace.h header file 1-6, 1-14, 12-29
mitypes.h header file 1-5, 12-4

mmap() system call 13-22
Module.

See DataBlade API module.
Monetary data

binary representation 3-11, 3-12, 3-14, 8-9
end-user format for 3-10
text representation 3-9, 3-14, 8-9

Monetary string
converting from mi_money 3-15
converting to mi_money 3-15
data conversion of 3-14
defined 3-9
format of 3-9

MONEY data type
See also mi_decimal data type; mi_money data type;

Precision; Scale.
arithmetic operations on 3-16
corresponding DataBlade API data type 1-9, 3-10
data conversion of 3-14
DataBlade API functions for 3-14
ESQL/C functions for 1-17, 3-14, 3-15
format of 3-11, 3-12, 8-9
functions for 3-14
GLS library functions for 1-17
international money formats 3-11
macros 3-13
obtaining column value for 8-44
precision of 3-16
role of decimal.h 1-7, 3-11
scale of 3-16

msgget() system call 13-21
MSGPATH configuration parameter 12-27
MULTISET data type

See also SQL data type.
checking type identifier for 2-3
corresponding DataBlade API data type 1-10
format of 8-10
obtaining column value for 8-53

N
Named memory

advantages 14-19, 14-24
allocating 14-25
caching a function descriptor in 9-33
concurrency issues 14-27
constructor for 14-25
deallocating 14-32
defined 14-19, 14-24
destructor for 14-25, 14-32
locking 14-28
managing 14-24
memory duration of 14-25
monitoring use of 14-33
obtaining address of 14-26
PER_SESSION memory duration and 14-15, 14-16
PER_SYSTEM duration 14-17
unlocking 14-32

Named parameters
and UDRs 9-14

Named row type 1-10, 5-28, 8-9
See Row type (SQL); Unnamed row type.

Named VP.
See User-defined virtual processor.

NCHAR data type
See also CHAR data type; Character data; Global Language

Support (GLS).

X-26 IBM Informix DataBlade API Programmer’s Guide

NCHAR data type (continued)
as return value 13-13
as routine argument 13-6, 13-13
corresponding DataBlade API data type 1-8, 2-7, 2-8, 13-6,

13-13
corresponding ESQL/C data type 13-13
functions for 2-10
GLS library functions for 1-17
obtaining column value for 8-44

Negator functions 9-26, 12-4, 12-17, 15-60
NEGATOR routine modifier 9-26, 12-17, 15-60
Nonarithmetic operations

See also Arithmetic operations.
byte data 2-29
date data 4-5

Nonsimple state.
See Aggregate state, nonsimple.

Nonstack memory.
See User memory.

Nonvariant function 9-25
Nonyielding user-defined VP class 13-31, 13-32
NOT condition 9-26, 15-60
NOT FOUND condition 8-38, 10-24
NOT VARIANT routine modifier 8-2, 9-25
NULL constant 2-36
Null termination 2-17
NULL-valued pointer 2-37, 6-62, 10-27, 10-32

See SQL NULL value.
NUMERIC data type.

See DECIMAL data type.
Numeric expressions 3-20
NVARCHAR data type

See also Character data; Global Language Support (GLS);
VARCHAR data type.

as return value 13-13
as routine argument 13-6, 13-13
corresponding DataBlade API data type 1-8, 2-7, 2-8, 13-6,

13-13
corresponding ESQL/C data type 13-13
functions for 2-10
GLS library functions for 1-17
obtaining column value for 8-44

O
ONCONFIG file.

See Configuration parameter.
oninit utility 13-35, 13-39, 13-58, 14-16
online.log file.

See Message log file.
onmode utility 13-37
onspaces utility 6-32
onstat utility

-g ath 15-65
-g dll 12-21, 12-38
-g glo 12-27, 13-37, 13-39
-g mem 14-14, 14-33
-g rea 13-37
-g sch 12-27, 13-37
-g ses 14-33, 15-65
-g stk 15-65
-g sts 14-35
-g ufr 14-34
-r 14-33

Opaque data types
See also Fixed-length opaque data type; Varying-length

opaque data type.

Opaque data types (continued)
as parameter 16-7
binary load file representation 16-9
binary representation.

See Opaque data type, internal representation.
bulk copy of 16-22
casting to IMPEXP 16-10
casting to IMPEXPBIN 16-10
casting to LVARCHAR 16-10
casting to SENDRECV 16-10
client external binary representation 16-9
client internal representation 16-17
code-set conversion of 16-22
contents of 6-14
corresponding DataBlade API data type 1-9
creating 16-1
defined 6-14
designing 16-2
determining size of 16-3
external representation 2-10, 16-2, 16-9, 16-11, 16-16
external unload representation 16-22
fixed-length 16-3
granting Usage privilege 16-39
inserting 6-15
internal representation 16-3, 16-11, 16-17, 16-21
internal unload representation 16-22, 16-29
memory alignment of 16-6
naming 16-3
obtaining column value for 8-44
pass by reference 16-6, 16-7, 16-14, 16-15, 16-19, 16-20,

16-26, 16-28, 16-32, 16-34
pass by value 16-7, 16-14, 16-15, 16-19, 16-20, 16-26, 16-28,

16-32, 16-34
passing mechanism for 16-7
portability of 16-3
predefined 2-10, 2-28, 2-29, 2-30, 2-31
providing statistics for 16-40
registering 16-3, 16-39
representations of 16-2, 16-9
routine argument as 13-9
routine return value as 13-14
selecting 6-14
server internal representation 16-3, 16-11, 16-16, 16-17,

16-22, 16-29, 16-36
smart large object in 6-14, 6-56, 16-25, 16-28
smart large objects and 6-57
stat 16-41, 16-45
stream 13-51
stream representation 16-36
support functions.

See Opaque-type support function.
text load file representation 16-9
text representation.

See Opaque data type, external representation.
transferring 16-8
unload representation 16-22
updating 6-15
varying-length 16-4
varying-length data types 16-10

Opaque-type modifier
ALIGNMENT 16-6
INTERNALLENGTH 16-3, 16-5
PASSEDBYVALUE 2-34, 16-7

Opaque-type support function
as cast function 16-8
assign() 16-37, 16-38
defined 12-4, 16-8

Index X-27

Opaque-type support function (continued)
destroy() 16-38
disk-storage processing 16-37
export 16-22, 16-26
exportbin 16-29, 16-32
exporting binary representation 16-29
for bulk copies 16-22
for external representation 16-11
for external unload representation 16-22
for internal representations 16-17
for internal unload representation 16-29
import 16-22, 16-23
importbin 16-29
importing binary representation 16-29
input 2-10, 16-11, 16-12
lohandles() 6-57
output 2-10, 16-11, 16-14
receive 16-17
registering 16-39
send 16-17, 16-19
stream processing 16-34
streamread() 16-34, 16-35
streamwrite() 16-34, 16-35
writing 16-8

Opaque-type value, passing mechanism for 2-34
open() system call 6-20, 13-21, 13-52, 13-54
Operating-system call.

See System call.
Operating-system file

See also File descriptor; File management.
access functions A-3
accessing 13-52, A-3
closing 13-55
copying 13-56
copying from smart large object 6-59
copying to smart large object 6-59
file modes for 6-59
filename of 13-53
length of 13-45
location of 13-54
open flags of 13-54
opening 13-53
ownership of 13-55
restrictions in UDR 9-25, 13-21, 13-52
scope of 7-19, 13-53, 13-55, 14-16
Seek position in.

See File seek position.
sharing 13-55

Operations.
See Arithmetic operations; Nonarithmetic operations.

Operator function 1-2, 15-12
Operator-class function 12-4
OUT parameter 2-36, 12-23, 13-11, 13-14
Output support function

as cast function 16-10
conversion functions in 16-16
defined 16-11, 16-14
external format in 2-10
handling character data 2-11, 16-16
handling date and/or time data 4-13, 16-16
handling date data 4-3, 16-16
handling decimal data 3-15, 16-16
handling smart large object 6-60, 16-16
internationalizing 16-12

Overloaded routine.
See Routine overloading.

P
Parallel Database Query (PDQ) 15-61
PARALLELIZABLE routine modifier 9-10, 12-17, 12-22, 15-63,

15-64
Parallelizable UDR

creating 15-61
defined 12-4, 15-61
executing 15-64
non-PDQ-safe functions 15-62
registering 12-17, 15-63
routine sequence of 9-10, 12-22, 15-64
user-defined VPs and 13-34
writing 15-62

Parameter identifier 8-16
Parameter marker 10-46
Parameter-information descriptor

defined 1-13, 7-8
fields of 7-8
pointer_checks_enabled field 10-21
populating 7-10
setting 7-9

Parameter.
See Input parameter; Parameter marker; Routine parameter.

Parameters named
and UDRs 9-14

Parent connection 10-40
Parenthesis symbol 3-22
Pass-by-reference mechanism

See also Passing mechanism.
column value 5-8, 5-12, 5-13, 8-45, 12-10
defined 2-33
opaque type 16-7, 16-14, 16-19, 16-26, 16-32
routine argument 9-27, 12-22, 13-3
routine return value 9-27, 12-24, 13-12
with Fastpath interface 9-27

Pass-by-value mechanism
See also Passing mechanism.
column value 8-45, 12-10
defined 2-33
opaque type 16-7
promoting type 12-23
routine argument 9-27, 12-23, 13-4
routine return value 9-27, 12-24, 13-12
with Fastpath interface 9-27

PASSEDBYVALUE opaque-type modifier 2-34, 16-7
Passing mechanism

See also Pass-by-reference mechanism; Pass-by-value
mechanism.

C UDRs 2-33
column value 5-8, 5-12, 5-13, 8-44
determining 2-4, 12-23, 12-25
Fastpath arguments 9-27
Fastpath return value 9-27
for client LIBMI applications 2-35
input-parameter values 5-34, 8-28
mi_bigint 3-6
mi_boolean 2-31, 2-33
mi_call() and 14-37
mi_char 2-8
mi_char1 2-8, 2-33
mi_date 2-33, 4-2
mi_datetime 4-8
mi_decimal 3-10, 3-18
mi_double_precision 3-19
mi_impexp 2-14
mi_impexpbin 2-14
mi_int1 3-3

X-28 IBM Informix DataBlade API Programmer’s Guide

Passing mechanism (continued)
mi_int8 3-6
mi_integer 2-33, 3-5
mi_interval 4-9
mi_lvarchar 2-14
mi_money 3-11, 3-18
mi_pointer 2-32, 2-33
mi_sendrecv 2-14
mi_sint1 3-3
mi_smallint 2-33, 3-3
mi_string 2-8
mi_unsigned_bigint 3-6
mi_unsigned_char1 2-8, 2-33
mi_unsigned_int8 3-6
mi_unsigned_integer 2-33, 3-5
mi_unsigned_smallint 2-33, 3-3
opaque types 16-7
opaque-type value 2-34
pass by reference.

See Pass-by-reference mechanism.
pass by value.

See Pass-by-value mechanism.
routine argument 9-27, 12-22, 13-3
routine return value 9-27, 12-24, 13-12

pause() system call 13-21
PER_COMMAND memory duration

defined 14-5, 14-7
iterator functions with 15-6
memory pool for 14-7, 14-34
saving address of 14-18
scope of 14-7
user-state information with 9-9
uses of 14-8

PER_CURSOR memory duration
memory pool for 14-34

PER_FUNCTION memory duration.
See PER_ROUTINE memory duration.

PER_ROUTINE memory duration
changing 14-22
default memory duration 13-23, 14-6, 14-21
defined 14-5, 14-6
memory pool for 14-6, 14-34
saving address of 14-18
scope of 14-6
uses of 14-6
with Fastpath 9-36

PER_SESSION memory duration
defined 14-5, 14-14, 14-15
end-of-session callback and 10-52
memory pool for 14-15, 14-34
scope of 14-15
uses of 14-15

PER_STATEMENT memory duration
defined 14-5, 14-9
deprecated 14-5
memory pool for 14-9, 14-34
scope of 14-9

PER_STMT_EXEC memory duration
defined 14-5, 14-9
end-of-statement callback and 10-52
memory pool for 14-9, 14-34
saving address of 14-18
scope of 14-9
uses of 14-10, 14-12

PER_STMT_PREP memory duration
defined 14-5, 14-6, 14-13
memory pool for 14-13, 14-34

PER_STMT_PREP memory duration (continued)
scope of 14-13

PER_SYSTEM memory duration
defined 14-5, 14-14, 14-16
memory pool for 14-16, 14-34
scope of 14-16
uses of 14-17

PER_TRANSACTION memory duration
defined 14-5, 14-14
end-of-transaction callback and 10-52
memory pool for 14-14, 14-34
scope of 14-14
uses of 14-15

PERCALL_COST routine modifier 12-17, 15-56
Period symbol (.) 3-9, 3-17, 3-21
Plus sign (+) 3-21
POINTER data type

See also mi_pointer data type.
corresponding DataBlade API data type 1-10
defined 2-31
in UDR registration 12-18
with user-defined aggregates 15-32

POINTER value, passing mechanism for 2-33
poll() system call 13-21
popen() system call 13-27
Portability

byte data 2-30
character data 2-11
data conversion and 12-4
DataBlade API 1-1, 5-12, 5-34, 8-45
DataBlade API data types 12-4
LO handle 6-61
mi_boolean data type 1-10
mi_char1 data type 2-7
mi_date data type 4-3
mi_datetime data type 4-12
mi_decimal data type 3-14, 3-19
mi_double_precision data type 1-10, 3-19
mi_int8 data type 3-7
mi_integer data type 1-10, 3-5
mi_interval data type 4-12
mi_money data type 3-14
mi_real data type 1-10, 3-19
mi_smallint data type 1-10, 3-3, 3-4
opaque type 16-3

Pound sign (#) 3-21
PRECDEC decimal macro 3-13
Precision

for column 5-31
for input parameter 8-16
for routine argument 9-3
for routine return value 9-7
from MI_FPARAM 2-13, 3-16, 3-20, 4-16, 4-17, 9-3, 9-6
from row descriptor 2-13, 3-16, 3-20, 4-16, 4-17, 5-30
from statement descriptor 2-13, 3-16, 3-20, 4-16, 4-17, 8-15
from type descriptor 2-4, 2-13, 3-16, 3-20, 4-15, 4-17
obtaining 3-13
of character value 2-13
of DATETIME value 4-17
of DECIMAL value 3-10, 3-16, 3-17, 3-20
of fixed-point value 3-8
of INTERVAL value 4-17
of MONEY value 3-11, 3-16

PRECMAKE decimal macro 3-13
PRECTOT decimal macro 3-13
Prepared statement

See also Statement descriptor.

Index X-29

Prepared statement (continued)
assembling the statement string 8-11
closing 8-31
control mode 8-30
creating 8-11
defined 8-4, 8-11, 14-13
dropping 7-18, 8-32
functions for 8-7, 8-11, 8-18, 8-20
input parameters in 8-11, 8-15
memory duration for 14-13
name of 8-14
name of SQL statement 8-14
number of input parameters in 8-15
obtaining input-parameter information 8-14
parallelizable UDR and 15-62
reasons for 8-4
releasing resources 8-31
row descriptor for 8-14, 8-40
sending to database server 8-17
statement identifier 8-14
where stored 7-3

Process
forking 13-41
global resources 13-23, 13-26, 13-41
local resources 13-26
server-initialization 13-58
single-instance 13-33
state information of 13-26
static resources 13-23
suspending 13-26
virtual processor as 12-27, 13-26, 13-37, 14-2

Public connection descriptor.
See Connection descriptor.

putmsg() system call 13-21

Q
Qualifier 2-4, 4-7, 4-9, 4-15, 4-16
Query

See also EXECUTE FUNCTION statement; SELECT
statement.

control mode 2-10, 8-8, 8-30
current statement as 8-38
cursor for.

See Cursor.
cursors used 8-5
defined 8-3
executing 8-7, 8-8, 8-18, 8-20
finishing 8-57
interrupting 8-58
memory duration and 14-8, 14-10
obtaining query row 8-41
parallelizable 15-61
retrieving data from 8-39
selectivity of 15-54
SQL statements for 8-3
subquery of 14-7, 14-8, 14-10

Query optimizer 9-14, 12-19, 12-24, 15-54
Query parser 9-13, 12-19
Question mark (?), input-parameter indicator 8-12

R
rdatestr() function 4-4
rdayofweek() function 4-5
rdefmtdate() function 4-4, 4-14

rdownshift() function 2-12
read() system call 6-20, 13-21, 13-53
REAL data type.

See SMALLFLOAT data type.
realloc() system call 13-22
Receive support function

as cast function 16-9
conversion functions in 16-21
defined 16-17
handling byte data 2-30, 16-21
handling character data 2-11, 16-22
handling date and/or time data 4-13, 16-21
handling date data 4-3, 16-21
handling decimal data 3-14, 16-21
handling floating-point data 3-20, 16-21
handling integer data 3-4, 3-5, 3-7, 16-21
handling smart large objects 6-61, 16-22

Reference count
decrementing 6-56, 6-57
defined 6-13, 6-56
for BLOB column 6-56
for CLOB column 6-56
for opaque-type column 6-57
for temporary smart large object 6-57
incrementing 6-43, 6-57
managing 6-56
obtaining 6-54
storage location of 6-56

Resource managers 11-1
Return value.

See Routine return value.
rfmtdate() function 4-4, 4-14
rfmtdec() function 3-21
rfmtdouble() function 3-21
rfmtlong() function 3-21
rjuldmy() function 4-5
rleapyear() function 4-5
rmdyjul() function 4-5
ROLLBACK WORK statement 6-12, 12-7, 12-8
Routine argument

See also Routine parameter.
checking 9-3
constructor for 14-6
data type 9-3
declaring 13-3
default value 9-27
destructor for 14-6
determining if NULL 9-5, 9-24, 13-8
determining number of 9-3
for companion UDR 15-57
handling character data 2-9, 2-10, 13-6
handling NULL 9-3, 9-4, 9-24, 9-27
handling opaque-type data 2-29, 13-9
in routine signature 12-19
length of 9-3
memory duration of 12-23, 13-3, 14-6
memory for 14-35
mi_call() and 14-36
MI_FPARAM structure 9-2, 13-4
modifying 13-11
obtaining value of 13-5
omitting 13-2, 13-5
OUT parameter 13-14
passing 2-35, 2-36
passing by reference 13-3, 13-14, 14-37
passing by value 12-23, 13-4
passing mechanism for 12-22, 13-3

X-30 IBM Informix DataBlade API Programmer’s Guide

Routine argument (continued)
passing to Fastpath 9-27
precision of 2-13, 3-16, 3-20, 4-16, 4-17, 9-3
promoting type 12-23
pushing onto stack 12-22
scale of 2-13, 3-16, 3-20, 4-16, 4-17, 9-3
setting number of 9-3
setting to NULL 9-5
specifying at registration 12-17
type identifier of 9-3

Routine identifier
data type for 12-20
defined 12-20
for companion UDR 15-57
for current UDR 9-12
for Fastpath UDR 9-24
in function descriptor 9-24
in MI_FPARAM 9-12
in MI_FUNCARG 15-57
in routine sequence 12-22
obtaining function descriptor by 9-18

Routine instance
concurrency and 13-32
connection descriptor and 7-12
defined 12-19
end of 12-25
execution of 12-20
explicit 12-18
global resources and 13-26, 13-32
implicit 12-18, 12-20, 12-22
in nonyielding VP class 13-32
locking to a VP 13-41
of parallel UDR 15-64
PER_COMMAND memory and 14-7, 14-8
PER_ROUTINE memory and 14-6
PER_SESSION memory and 14-15
PER_STATEMENT memory and 14-9
PER_STMT memory and 14-9
PER_STMT_PREP memory and 14-13
PER_SYSTEM memory and 14-16
PER_TRANSACTION memory and 14-14
routine sequence and 12-22
session context and 7-3
single-instance VP class and 13-33

Routine invocation
concurrency and 13-32
connection descriptor and 7-12
cursors and 12-6
defined 12-19, 14-6
execution of 12-20
global resources and 13-25, 13-32
in nonyielding VP class 13-32
memory duration for 14-6, 14-8
MI_FPARAM and 9-8, 9-37, 15-64
routine sequence and 9-8
session context and 7-3

Routine manager
calling conventions 12-23
creating routine sequence 12-22
defined 12-20
Fastpath execution and 9-27
handling programming errors 10-11
loading a shared-object file 12-20, 12-26, 13-23
managing UDR execution 12-23, 13-38
passing a return value 2-36, 9-6
passing an OUT parameter 2-36
passing routine argument 2-35, 12-22, 13-3, 13-11, 14-6

Routine manager (continued)
providing routine-state information 9-2, 12-10, 12-22, 13-4
providing user-state information 9-8
pushing arguments onto stack 12-22
returning a value 12-24, 13-12, 14-6
unloading a shared-object file 12-36, 13-42

Routine modifier
CLASS 12-17, 12-24, 13-35, 13-36, 13-38
COMMUTATOR 9-26, 15-61
COSTFUNC 12-17, 15-56
HANDLESNULLS 9-5, 9-24, 12-17, 12-24, 13-8
INTERNAL 12-17
ITERATOR 12-17, 15-4, 15-5, 15-9
NEGATOR 9-26, 12-17, 15-60
NOT VARIANT 8-2, 9-25
PARALLELIZABLE 9-10, 12-17, 12-22, 15-63, 15-64
PERCALL_COST 12-17, 15-56
SELCONST 12-17, 15-54
SELFUNC 12-17, 15-55
STACK 12-17, 14-36
VARIANT 8-2, 9-25

Routine name
See also Routine signature.
different from C-function name 12-16
for companion UDR 15-57
for UDR 9-12
in MI_FUNCARG 15-57
in routine signature 12-19
overloading 12-19
uniqueness of 12-12, 12-13

Routine overloading 9-13, 12-19
See Routine resolution.

Routine parameter 13-2
See Routine argument.

Routine resolution 9-13, 9-18, 12-19
See Routine overloading.

Routine return value
constructor for 14-6
data type 9-6
declaring 13-12
defining 13-11
destructor for 14-6
determining if NULL 9-8
determining number of 9-6
handling character data 2-10, 13-13
handling NULL 9-7
handling opaque-type data 2-29, 13-14
length 9-7
memory duration of 12-24
memory for 14-35
multiple 13-14
OUT parameter 13-14
passing 2-36
passing back 12-24
passing by reference 13-12
passing by value 13-12
passing mechanism for 12-24, 13-12
precision of 2-13, 3-16, 3-20, 4-16, 4-17, 9-6, 9-7
receiving from Fastpath 9-27
scale of 2-13, 3-16, 3-20, 4-16, 4-17, 9-7
setting number of 9-6
setting to NULL 9-8, 13-13
setting value of 13-12
specifying at registration 12-17
type identifier 9-7
variant 9-25

Index X-31

Routine sequence
creating 12-22
defined 12-22
function descriptor and 9-17, 9-18, 9-21
MI_FPARAM and 9-8, 9-10
of parallel UDR 9-10, 15-64
releasing 12-20, 12-25
routine instance and 12-22

Routine signature 9-14, 9-18, 12-19
Routine.

See DataBlade API function; User-defined routine (UDR).
Row cursor.

See Cursor.
ROW data types

See also Row; Row structure.
accessing 5-36
as column value 8-50
binary representation 5-29, 8-9
checking type identifier for 2-3
column identifier 5-30
copying 5-36
creating 5-33
data structures for 5-29
defined 5-28
field 5-28
field information 5-30
field name 5-30
field NOT NULL constraint 5-30
field precision 5-30
field scale 5-30
field-type descriptor 5-30
field-type identifier 5-30
kinds of 5-29
number of fields in 5-30
obtaining column value for 8-50
parallelizable UDR and 15-62
releasing resources for 5-37
retrieving field values from 5-32
text representation 5-28, 8-9

ROW data types.
See Unnamed row type.

Row descriptor
accessor functions 5-30, 15-63
column identifier 5-30, 5-31, 8-42
column name 5-30
column NULL constraints 5-30
column precision 2-13, 3-16, 3-20, 4-16, 4-17, 5-30, 5-31
column scale 4-17, 5-30, 5-31
column type descriptor 5-30
column type identifier 5-30
constructor for 5-29, 5-33, 14-21
creating 5-33
defined 1-13, 5-29, 8-40
destructor for 5-29, 5-39, 14-21
determining column NULL constraints 5-31
for current statement 8-40
for prepared statement 8-40
for row structure 8-41
for type descriptor 8-41
freeing 5-38, 5-39, 7-18, 8-58
functions for 5-30
invalid 10-21
jagged rows with 8-40
memory duration of 5-29, 5-38, 14-21
number of columns in 5-30
obtaining 8-40

Row structure
See also Row; Row type (SQL).
checking pointers to 7-9
column values in 8-42
constructor for 5-32, 5-33, 14-21
copying 5-36
corresponding SQL data type 1-10
creating 5-33
defined 1-13, 5-32, 8-40, 8-41
destructor for 5-32, 5-38, 14-21
format of 5-32, 8-9, 8-41
freeing 5-38, 5-39, 7-18, 8-58
from a query 8-41
functions for 5-32
in opaque type 16-37
invalid 10-21
memory duration of 5-32, 5-38, 14-21
obtaining 8-41
row descriptor for 8-41
scope of 5-38

Row-type string 5-28
Rows

See also Row structure; Row type (SQL).
current 8-41, 8-42, 8-43
fetching 8-24
jagged 8-40, 8-41, 8-50, 8-51
obtaining column values 8-42, 12-10
obtaining information about 8-40
parts of 8-40
processing remaining 8-57
releasing resources for 5-37
retrieving 8-41
row descriptor for 8-41

rstod() function 2-12
rstoi() function 2-12
rstol() function 2-12
rstrdate() function 4-4
rtoday() function 4-5
Runtime error

See also Database server exception; Error handling;
Warning.

ANSI errors 10-23
custom 10-23, 10-43, 10-48
defined 10-20
exception level for 10-21
Informix-specific 10-22, 10-23
ISAM 10-38
literal 10-23, 10-42
obtaining text of 10-18
raising 10-42, 10-44
SQLCODE values 10-24
SQLSTATE values 10-23, 10-24
tracing 12-30
X/Open errors 10-23

rupshift() function 2-12

S
Save set

getting next row 8-62
obtaining first row 8-62

Save sets
building 8-61
creating 8-60
defined 1-13
destroying 7-18
freeing 7-18, 8-64

X-32 IBM Informix DataBlade API Programmer’s Guide

Save sets (continued)
inserting row into 8-60
invalid 10-21
obtaining previous row 8-62
obtaining rows from 8-62
parallelizable UDR and 15-62
using 8-60
where stored 7-3

Save-set structure
constructor for 8-60, 14-13
defined 1-13, 8-60
destructor for 8-60, 8-64, 14-13
memory duration of 8-60, 8-64, 14-13
obtaining 8-60

SBSPACENAME configuration parameter 6-31, 6-33
sbspaces

defined 6-3
metadata area 6-3, 6-4, 6-6, 6-13
name of 6-5, 6-31, 6-36
status information 6-12
storage characteristics for 6-32
temporary 6-58
user-data area 6-3, 6-6

Scale
for column 5-31
for data type 4-17
for input parameter 8-16
for routine argument 9-3
for routine return value 9-7
from MI_FPARAM 4-17, 9-3
from row descriptor 4-17, 5-30
from statement descriptor 4-17, 8-15
from type descriptor 2-4
obtaining 3-13
of DATETIME value 4-17
of DECIMAL value 3-10, 3-16
of fixed-point value 3-8
of INTERVAL value 4-17
of MONEY value 3-11, 3-16

SELCONST routine modifier 12-17, 15-54
SELECT statements

See also Cursor; Query.
associated with a cursor 8-3
calling a UDR 12-8, 12-18, 12-24
DATETIME data 4-11
FOR READ ONLY clause 8-22
FOR UPDATE clause 8-22
INTERVAL data 4-11
obtaining results of 8-38
opaque types in 16-14, 16-19
sending to database server 8-36, 8-38
smart large object 6-14, 6-47, 8-48
WHERE clause 12-24

select() system call 13-21
Selectivity functions

argument functions for 15-56
argument information 15-56
defined 12-4, 15-55

SELFUNC routine modifier 12-17, 15-55
Semicolon symbol (;) 8-7, 8-32
semop() system call 13-21
Send support function

as cast function 16-10
conversion functions in 16-21
defined 16-17, 16-19
handling byte data 2-30, 16-21
handling character data 2-11, 16-22

Send support function (continued)
handling date and/or time data 4-13, 16-21
handling date data 4-3, 16-21
handling decimal data 3-14, 16-21
handling floating-point data 3-20, 16-21
handling integer data 3-4, 3-5, 3-7, 16-21
handling smart large objects 6-61, 16-22

SENDRECV data type
See also mi_sendrecv data type.
casting from 16-9
casting from opaque type 16-10
corresponding DataBlade API data type 1-9
defined 2-13, 16-9

SERIAL data type
See also INTEGER data type; mi_integer data type.
corresponding DataBlade API data type 1-9, 3-2, 3-4
obtaining last value 8-59

SERIAL8 data type
See also INT8 data type; mi_int8 data type.
corresponding DataBlade API data type 1-9, 3-2, 3-6
getting last value 8-59

Server environment
accessing 13-58
configuration parameters 13-59
environment variables 6-59, 12-16, 13-53, 15-10
file-access permissions 13-59
information in 13-59
working directory 13-59

Server exception.
See Database server exception.

Server locale 7-4, 7-5, 13-58, 13-59
SERVER_LOCALE environment variable 7-4, 7-5, 13-59
Server-initialization process 13-58
Server-processing locale 7-2, 10-45, 13-58, 13-59, 16-22
Session

See also Connection; Session management.
beginning 7-2, 7-14
callback for 14-16
context of.

See Session context.
defined 7-1, 10-51, 14-15
ending 7-19, 10-51, 13-55, 14-32
environment of.

See Session environment.
function descriptors and 9-33
identifier for 13-58, 14-33
memory duration for 14-15
restrictions in UDR 12-6

Session context 7-2, 7-3, 7-18, 12-6
Session control block 7-2
Session environment 13-58
Session identifier 13-58
Session management

See also Connection; Session.
caching function descriptors 9-33
cursors and 12-6
defined 7-1
in C UDRs 7-2, 12-6
in client LIBMI applications 7-2, 7-19
MI_EVENT_END_SESSION event and 10-51
session-duration connection descriptor and 7-13, 9-33
session-duration function descriptor and 9-33
smart large objects and 6-49, 6-56, 6-58

Session parameter
obtaining 7-9
setting 7-9
system-default 7-9

Index X-33

Session parameter (continued)
user-defined 7-9
using 7-8

Session thread 7-2, 13-17, 14-35
Session-duration connection descriptor

See also Connection descriptor.
constructor for 7-13, 14-16
defined 7-13
destructor for 7-13, 14-16
memory duration of 7-13, 7-19, 14-16
obtaining 7-13
restrictions on 7-14
uses for 7-13, 9-33

Session-duration function descriptor
See also Function descriptor.
caching 9-33
constructor for 9-33, 14-16
creating 9-33
defined 7-13, 9-33
destructor for 9-33, 14-16
freeing 9-35, 9-38
memory duration of 9-33, 14-16
obtaining 9-34
releasing resources for 9-35
reusing 9-34

SET CONSTRAINTS statement 8-35, 12-7
SET data type

See also SQL data type.
checking type identifier for 2-3
corresponding DataBlade API data type 1-10
format of 8-10
obtaining column value for 8-53

SET EXPLAIN statement 15-64
SET_END iterator-status constant 9-12, 15-3, 15-9, 16-43
SET_INIT iterator-status constant 9-12, 15-3, 15-6, 16-43
SET_RETONE iterator-status constant 9-12, 15-3, 15-8, 16-43
setegid() system call 13-27
seteuid() system call 13-27
setgid() system call 13-27
setrgid() system call 13-27
setruid() system call 13-27
setuid() system call 13-27
Shared libraries 13-26

See Shared-object file.
Shared memory

See also Memory management; Named memory; User
memory.

accessing 14-2
advantages of 14-2
allocating 14-20, 14-25
deallocating 14-23, 14-32
managing 14-19
monitoring use of 14-33
types of 14-19
understanding 14-2

Shared-memory virtual-processor (SHM VP) class 13-16
Shared-object files

See also Dynamic link library; Shared library.
creating 12-12
executing UDRs in 9-13
loading 9-13, 9-15, 12-13, 12-15, 12-20, 12-26, 13-23
locking in memory 13-42
monitoring 12-21, 12-38
permissions of 12-13
symbols in 12-28
unloading 12-21, 12-36, 13-42
unused 12-37

Shared-object files (continued)
variables in 13-23

SHM VP.
See Shared-memory virtual processor (SHM VP).

shmat() system call 13-22, 13-27
Shortcut keys

keyboard B-1
Signal 13-27, 13-28
signal() system call 13-27
Signatures

routine 9-14
Simple binary operator 15-29, 15-40
Simple large objects 2-32
Simple state.

See Aggregate state, simple.
Simple-large-object data type.

See BYTE data type; Simple large object; TEXT data type.
SINGLE_CPU_VP configuration parameter 13-35
Single-instance VP class 13-26, 13-33, 13-41
Single-statement transaction 12-7
sleep() system call 13-27
SLV.

See Statement local variable (SLV).
SMALLFLOAT data type

See also mi_real data type.
corresponding DataBlade API data type 1-9, 3-17
DataBlade API functions for 3-19
declaring variables for 3-18
format of 8-9
functions for 3-19
obtaining column value for 8-44

SMALLINT data type
See also mi_smallint data type.
corresponding DataBlade API data type 1-9, 3-2, 3-3
format of 3-3, 8-9
obtaining column value for 8-44

SMALLINT value, passing mechanism for 2-33
Smart large objects

See also BLOB data type; CLOB data type;
Smart-large-object interface.

access method 6-9, 6-38
access mode 6-8, 6-11, 6-38
accessing 6-14, 6-46
altering 6-51
attributes 6-5, 6-36
binary representation 8-9
buffered I/O 6-10, 6-38
buffering mode 6-9, 6-31, 6-38
buffering recommendation 6-10
buffers and 6-59
byte data in 2-29, 6-13
character data in 2-10, 6-13
closing 6-12, 6-19, 6-49, 6-58
converting 6-59
creating 6-19, 6-24
creation functions 6-19, 6-40
data conversion of 6-60
data integrity 6-7, 6-37
defined 6-2
deleting 6-56
estimated size 6-30, 6-35
extent size 6-5, 6-30, 6-36, 6-51
files and 6-24, 6-59
I/O functions 6-42, 6-48
in a database 6-13
in opaque data type 6-14, 6-60, 6-61, 16-16, 16-22, 16-37
in operating-system file 6-59

X-34 IBM Informix DataBlade API Programmer’s Guide

Smart large objects (continued)
information about 6-4
inserting 6-15, 6-42
interface.

See Smart-large-object interface.
last-access time 6-7, 6-12, 6-31, 6-36, 6-51, 6-54
last-change time 6-12, 6-54
last-modification time 6-13, 6-54
length of.

See Smart large object, size of.
lightweight I/O 6-10, 6-38
LO file descriptor.

See LO file descriptor.
LO handle.

See LO handle.
LO-specification structure.

See LO-specification structure.
LO-status structure.

See LO-status structure.
location of.

See Smart large object, sbspace.
locking 6-11, 6-31, 6-38, 6-61
logging of 6-5, 6-31, 6-36, 6-51
maximum I/O block size 6-30
maximum size 6-35
metadata 6-6, 6-7, 6-12
minimum extent size 6-30
modifying 6-50
next-extent size 6-5, 6-30
obtaining column value for 8-44
obtaining status of 6-52
open mode 6-8, 6-18, 6-38, 6-48
opening 6-48
optimizer 6-5
permanent 6-56, 6-58
reading from 6-48
reference count 6-13, 6-54
sample program 6-44, 6-49
sbspaces 6-3, 6-5, 6-31, 6-36
scope of 6-19, 6-49, 7-19, 14-16
seek position in.

See LO seek position.
selecting 6-14, 6-47, 8-48
size of 6-5, 6-13, 6-30, 6-31, 6-54
status information 6-12
storage characteristics.

See Storage characteristics.
storing 6-15, 6-42
text representation 8-9
transactions with 6-5, 6-11, 6-12, 6-57
transferring 6-61
transient 6-43, 6-44, 6-56, 6-57, 6-58, 14-16
unlocking 6-12
updating 6-15, 6-42, 6-50
user data 6-7, 6-12, 6-13
valid data types 6-13
writing to 6-42

Smart-large-object data type.
See BLOB data type; CLOB data type; Smart large object.

Smart-large-object interface
data structures 6-16
defined 6-14, 6-15
functions in 6-19
NULL connections and 6-62
using 6-15

Smart-large-object lock
byte-range 6-12, 6-38, 6-61

Smart-large-object lock (continued)
exclusive 6-11, 6-12, 6-49, 6-61
lock mode 6-11
lock-all 6-12, 6-38
releasing 6-12, 6-49
share-mode 6-11, 6-12, 6-49
update 6-12
update mode 6-11, 6-49

Smart-large-object optimizer 6-5
SMI tables, sysvpprof 13-38
Source data type.

See Distinct data type.
Special-purpose function

aggregate function 15-11
cast function 15-2
end-user routine 15-2
iteration function 15-3

SPL routines
multiple return values 9-19, 13-14
OUT parameter 13-14
restriction with Fastpath 9-27

SQL client application.
See Client application.

SQL command
See also SQL statements.
defined 14-7
function descriptors and 9-31
memory duration for 14-7
SQL statement and 14-7, 14-9, 14-10

SQL data types
See also individual data type names.
alignment of 2-3
BIGINT 3-6
BIGSERIAL 3-6
BITVARYING 1-10, 2-13, 2-28
BLOB 1-10, 2-28, 6-13
BOOLEAN 1-10, 2-30
BYTE 1-10, 2-32
CHAR 1-8, 1-9, 1-10, 2-7
CLOB 1-10, 2-7, 6-13
collections 1-10, 5-2
complex 5-1
DataBlade API representation of 2-2
DATE 1-9, 1-10, 4-1, 4-2
DATETIME 1-9, 1-10, 4-1, 4-7
DECIMAL 1-9, 1-10, 3-10, 3-17
distinct 1-11
fixed-point 3-10
FLOAT 1-9, 1-11, 3-17, 3-19
floating-point 3-16
generic 2-32
IDSSECURITYLABEL 1-8, 2-7
IMPEXP 1-10, 2-13, 16-9
IMPEXPBIN 1-10, 2-13, 16-9
in registration 12-17
INT8 1-9, 1-11, 3-2, 3-6
integer 3-2
INTEGER 1-9, 1-11, 3-2, 3-4
INTERVAL 1-9, 1-11, 4-1, 4-7, 4-8
length of 2-4
LIST 1-10, 1-11, 5-2
literal value 8-8
locale-specific 1-8, 1-17, 1-18, 1-19, 2-7, 2-8, 13-6, 13-13
LVARCHAR 1-9, 1-11, 2-7, 2-13, 16-9
maximum length of 2-4
MONEY 1-9, 1-11, 3-10, 3-11
MULTISET 1-10, 1-11, 5-2

Index X-35

SQL data types (continued)
name of 2-4
named row type 1-10, 5-29
NCHAR 1-8, 1-11, 2-7, 2-8, 13-13
NULL value 2-36
NVARCHAR 1-8, 1-11, 2-7, 2-8, 13-13
obtaining information about 2-2
opaque 1-9, 1-11, 6-14
owner of 2-4
passing by reference.

See Pass-by-reference mechanism.
passing by value.

See Pass-by-value mechanism.
passing mechanism.

See Passing mechanism.
POINTER 1-10, 1-11, 2-31, 12-18, 15-32
precision of 2-4, 2-13, 3-16, 3-20, 4-15, 4-17
predefined opaque 2-10, 2-28, 2-29, 2-30, 2-31
qualifier of 2-4, 4-16
ROW 1-10, 1-11, 5-29
row types 1-10, 5-28, 5-29
scale of 2-4
SENDRECV 1-9, 2-13, 16-9
SERIAL 1-9, 1-11, 3-2, 3-4
SERIAL8 1-9, 1-11, 3-2, 3-6
SET 1-10, 1-11, 5-2
SMALLFLOAT 1-9, 1-11, 3-17, 3-18
SMALLINT 1-9, 1-11, 3-2, 3-3
support for 1-8, 2-2, 4-1
TEXT 1-9, 1-11, 2-32
transferring between computers 2-11, 2-30, 3-7, 3-14, 3-19,

4-3, 4-12, 6-61, 16-16, 16-21, 16-36
transporting 2-33
type descriptor.

See Type descriptor.
type identifier.

See Type identifier.
unnamed row type 1-10, 5-29
VARCHAR 1-8, 1-9, 1-11, 2-7
varying-length 2-13

SQL identifier 8-12
See Delimited identifier.

SQL NULL value
See also NULL-valued pointer.
as argument value 9-5, 9-24, 9-27, 13-8
as column value 5-30, 5-34, 8-49
as companion-UDR argument value 15-57, 15-58, 15-59
as input-parameter value 8-15, 8-30
as return value 9-8, 9-28, 13-13
defined 2-36
distinct from NULL pointer 2-36
functions for 2-37
in data distribution 16-41
in statcollect() function 16-43, 16-47

SQL request 13-16, 13-17
SQL routine 9-14
SQL statements

See also SQL command; Statement execution.
ALTER FUNCTION 12-36
ALTER PROCEDURE 12-36
ALTER ROUTINE 12-36
basic 8-6, 8-7
callback for 10-52, 14-12
calling iterator function 15-9
CREATE FUNCTION.

See CREATE FUNCTION.

SQL statements (continued)
CREATE PROCEDURE.

See CREATE PROCEDURE.
current.

See Current statement.
cursor 14-8, 14-10, 14-12
DDL 8-3, 8-34
defined 14-9
DELETE.

See DELETE statement.
DML 8-3, 8-36
ending 10-51
EXECUTE FUNCTION.

See EXECUTE FUNCTION statement.
EXECUTE PROCEDURE 12-8, 12-18
executing.

See Statement execution.
identifier for.

See Statement identifier.
INSERT.

See INSERT statement.
interrupting 8-58
invoking a UDR 9-13
memory duration for 14-7, 14-9, 14-13, 14-15
multiple errors 10-38
parameterized 8-4, 8-12
parsing 8-4
prepared.

See Prepared statement.
processing results from 8-33
releasing resources for 8-31, 8-57
routine instance and 12-19
runtime errors in 10-20
SELECT.

See SELECT statement.
sending to the database server 8-7, 8-17
statement string 8-6, 8-11, 8-32, 8-59
transaction and 12-7, 12-8, 14-15
type of 8-3
unparameterized 8-11
unsuccessful 8-34
UPDATE.

See UPDATE statement.
warnings in 10-20
where invalid in a UDR 9-25

SQL status condition.
See Status condition.

SQL-invoked routine 15-2
sqlca.h header file 1-7
SQLCODE status value

See also ISAM error code; SQLSTATE status value.
after DML statement 8-34
defined 10-24
obtaining 10-18
runtime errors 10-24
status conditions in 10-24
using 10-24
warning values 10-24

sqlda.h header file 1-7
sqlhdr.h header file 1-7
SQLSTATE status value

See also SQLCODE status value.
after DML statement 8-34
choosing custom codes 10-48
class and subclass codes 10-22
defined 10-22
in syserrors table 10-43

X-36 IBM Informix DataBlade API Programmer’s Guide

SQLSTATE status value (continued)
obtaining 10-18
runtime errors 10-23
status conditions in 10-22
using 10-22
warning values 10-23

sqlstype.h header file 1-7
sqltypes.h header file 1-7
sqlxtype.h header file 1-7
Stack pointer 13-21
STACK routine modifier 12-17, 14-36
Stack.

See Thread stack.
STACKSIZE configuration parameter 14-35
stat opaque data type 16-41, 16-45, 16-47
stat() system call 6-20
statcollect() statistics function

defined 16-43
defining 16-41
registering 16-46
SET_END in 16-45
SET_INIT in 16-43
SET_RETONE in 16-44

statcollect() support function 16-41, 16-48
State-change callback 10-5, 10-50

See MI_Xact_State_Change event type.
State-transition callback 10-5, 10-50

See End-of-session callback; End-of-statement callback;
End-of-transaction callback; State-change callback.

State-transition event
beginning a transaction 10-50
callback for 10-50
defined 10-49
ending a session 10-51
ending a statement 10-51
handling 10-49
transition types 10-49

State-transition handling
in client LIBMI application 10-12, 10-55
in UDR 10-51
providing 10-51
using 10-49

Statement descriptor
See also Prepared statement.
accessor functions 8-7, 8-14, 8-15
constructor for 8-7, 8-14
creating 8-14
defined 1-13, 8-14
destructor for 8-7, 8-14, 8-31, 8-32, 8-58
determining input-parameter NULL constraints 8-16
explicit 7-18, 8-14
freeing 7-18, 8-7, 8-14, 8-32
implicit 7-18, 8-7, 8-57
input-parameter information 8-14, 8-15
input-parameter NULL constraints 8-15
input-parameter precision 2-13, 3-16, 3-20, 4-16, 4-17, 8-15,

8-16
input-parameter scale 4-17, 8-15, 8-16
input-parameter type identifier 8-15
input-parameter type name 8-15, 8-16
memory duration of.

See Statement descriptor, scope of.
number of input parameters in 8-15
parameter identifier 8-16
row descriptor 8-8, 8-14, 8-40
scope of 8-7, 8-14, 8-32
statement identifier 8-14

Statement descriptor (continued)
statement name 8-7, 8-14
where stored 7-3

Statement execution
basic SQL statements 8-6
C UDRs and 8-28, 8-45, 12-10
client LIBMI applications and 8-28, 8-48
column-value loop 8-43
completing 8-57
control modes 8-8, 8-30
DataBlade API functions for 8-2, 8-3
DDL statements 8-34
defined 8-2
DML statements 8-36
handling query rows 8-38
in callbacks 10-16
interpreting column-value status 8-44
interpreting statement status 8-34
mi_get_result() loop 8-34
mi_next_row() loop 8-42
multiple statements 8-32
obtaining column values 8-42, 12-10
parallelizable UDR and 15-62
performing 8-2
prepared statements 8-11
processing complete 8-38
processing results 8-33
retrieving data 8-39
sending statement 8-7, 8-17
unsuccessful 8-34
with mi_exec_prepared_ statement() 8-18
with mi_exec() 8-7
with mi_open_prepared_ statement() 8-20

Statement identifier 8-14
Statement Local Variables 13-15
Statement string 8-6, 8-11, 8-32
Statement.

See SQL statements.
Static variable 9-9, 13-23, 13-32, 13-33
Statistics-return structure.

See mi_statret DataBlade API Data Type Structure.
statprint() statistics function

ASCII histogram for 16-49
defining 16-48
registering 16-49

Status condition 10-20, 10-21, 10-22, 10-24
Status information

See also Storage characteristics.
data structure for 6-16, 6-19
defined 6-12
last-access time 6-12, 6-54
last-change time 6-12, 6-54
last-modification time 6-13, 6-54
obtaining 6-54
reference count 6-13, 6-54
size 6-13, 6-54
storage characteristics 6-12, 6-54
storage location of 6-4

stcat() function 2-12
stchar() function 2-12
stcmpr() function 2-12
stcopy() function 2-12
stddef.h header file 2-37
stleng() function 2-12
Storage characteristics

See also Status information.
altering 6-51

Index X-37

Storage characteristics (continued)
attribute information 6-5, 6-36
choosing 6-28
column-level 6-30, 6-31, 6-32, 6-33
data structure for 6-16
default-open information 6-38
defined 6-4
disk-storage information 6-5, 6-35
hierarchy of 6-29
obtaining from LO-specification structure 6-35
obtaining from LO-status structure 6-12, 6-54
open-mode information 6-8
specifying 6-35
storage location of 6-4
system default 6-30, 6-31, 6-32
system-specified 6-27, 6-30, 6-31, 6-32
user-specified 6-30, 6-31, 6-32, 6-35

Stream
accessing 13-42
closing 13-43
data length 13-43, 13-50
data of 13-49, 13-52
defined 13-42
end-of-stream condition 13-43
Enterprise Replication 16-34
error status on 13-43
initializing 13-50
mode of 13-50
opening 13-42, 13-44, 13-47
providing access to 13-50
reading from 13-43
registering UDR that accesses 13-51
releasing resources for 13-52
seek position

at end-of-stream 13-43
defined 13-42, 13-50
initial 13-42
obtaining 13-43
read operations and 13-43
setting 13-43
write operations and 13-43

stream-operations structure 13-48
user-defined 13-47
writing to 13-43

Stream descriptor
allocating 13-50
constructor for 13-42, 14-21
deallocating 13-51, 13-52
defined 1-13, 13-42, 13-49, 13-50
destructor for 13-42, 13-52, 14-21
format of 13-50
initializing 13-50
memory duration of 13-42, 13-50, 13-52, 14-21
opaque type for 13-51
scope of 13-52

stream opaque data type 13-51
Stream-operations structure 13-48
streamread() support function

conversion functions in 16-36
defined 16-34, 16-35
handling boolean data 16-37
handling byte data 16-36
handling character data 16-37
handling collection structures 16-37
handling date and/or time data 16-36
handling date data 16-36
handling decimal data 16-37

streamread() support function (continued)
handling floating-point data 16-37
handling integer data 16-37
handling row structures 16-37
handling smart large objects 16-37
handling varying-length structures 16-37

streamwrite() support function
conversion functions in 16-36
defined 16-34, 16-35
handling boolean data 16-37
handling byte data 16-36
handling character data 16-37
handling collection structures 16-37
handling date and/or time data 16-36
handling date data 16-36
handling decimal data 16-37
handling floating-point data 16-37
handling integer data 16-37
handling row structures 16-37
handling smart large objects 16-37
handling varying-length structures 16-37

string data type (ESQL/C).
See mi_string data type.

String stream
closing 13-46
data length 13-46
defined 13-45
getting

seek position of 13-46
opening 13-45
reading from 13-46
setting

seek position of 13-46
stream I/O functions for 13-45
writing to 13-46

String.
See Character data.

Structure
See also DataBlade API data structure.
dec_t 3-12, 8-9
dtime_t 4-7, 8-9
event-type 10-15, 10-17
ifx_int8_t 3-6, 8-9
intrvl_t 4-8, 8-9
varying-length 2-13

Subquery 14-7, 14-8, 14-10
Supertable 8-51
Support functions

aggregate.
See Aggregate support function.

opaque-type.
See Opaque-type support function.

sync() system call 13-53
syscasts system catalog table 9-21, 15-2, 16-9
syscolattribs system catalog table 6-33
syscolumns system catalog table 2-3, 4-16
sysdistrib system catalog table 16-41, 16-45, 16-48, 16-49
syserrors system catalog table 10-43, 10-48
syslangauth system catalog table 12-17
sysprocauth system catalog table 12-18
sysprocedures system catalog table

commutator column 9-26
contents of 12-14
externalname column 12-13, 12-15, 12-20
Fastpath look-up 9-18, 9-21
handlesnulls column 9-24
langid column 12-16

X-38 IBM Informix DataBlade API Programmer’s Guide

sysprocedures system catalog table (continued)
negator column 9-26
routine identifier 9-24, 12-20
structure for 9-17
variant column 9-25

sysroutinelangs system catalog table 12-16
SYSSBSPACENAME configuration parameter 16-48
System call

accept() 13-21
alarm() 13-27
bind() 13-21
blocking-I/O 13-18, 13-20
calloc() 13-22, 14-3
close() 6-20, 13-53
dlclose() 13-27
dlerror() 13-27
dlopen() 13-27
dlsym() 13-27
exec() 13-27, 13-41
exit() 13-27
file-management routines 13-52
fopen() 13-21
fork() 13-27, 13-41
free() 13-22, 13-23
getmsg() 13-21
LoadLibrary() 13-27
lock() 6-20
malloc() 13-22, 13-23, 13-28, 14-3
memory-management routines 13-22, 14-3
mmap() 13-22
msgget() 13-21
open() 6-20, 13-21, 13-52, 13-54
pause() 13-21
poll() 13-21
popen() 13-27
putmsg() 13-21
read() 6-20, 13-21, 13-53
realloc() 13-22
safe 13-28
seek() 6-20, 13-52
select() 13-21
semop() 13-21
setegid() 13-27
seteuid() 13-27
setgid() 13-27
setrgid() 13-27
setruid() 13-27
setuid() 13-27
shmat() 13-22, 13-27
signal() 13-27
sleep() 13-27
stat() 6-20
sync() 13-53
system() 13-27
tell() 6-20, 13-52
truncate() 6-20
unlink() 13-53
unlock() 6-20
unsafe 13-27
valloc() 13-22
wait() 13-21
write() 6-20, 13-21, 13-53

System cast 9-30
System catalog table

syscasts 9-21
System catalog tables

See also Individual table names.

System catalog tables (continued)
syscasts 15-2, 16-9
syscolattribs 6-33
syscolumns 2-3, 4-16
sysdistrib 16-41, 16-45, 16-48, 16-49
syserrors 10-43
syslangauth 12-17
sysprocauth 12-18
sysprocedures 12-14
sysroutinelangs 12-16
systraceclasses 12-30, 12-31
sysxtdtypeauth 16-39
sysxtdtypes 16-3

System-defined cast 9-20, 9-21
System-specified storage characteristics 6-32
system() system call 13-27
systraceclasses system catalog table 12-30, 12-31
sysvpprof SMI table 13-38
sysxtdtypeauth system catalog table 16-39
sysxtdtypes system catalog table

accessing 2-3
align column 16-6, 16-7
byvalue column 16-7
initialized by 16-3
length column 16-3, 16-5
maxlen column 16-6

T
Table

identifier 15-57, 15-58, 15-59
inserting into 12-5
locks on 12-9
restrictions in UDR 12-7
temporary 8-22, 12-7
updating 12-5
violation temporary 12-7

Target data type.
See Distinct data type.

TCB.
See Thread-control block (TCB).

tell() system call 6-20, 13-52
Temporary tables 12-7
TEXT data type

See also Character data; Simple large object.
as routine argument 13-6, 13-13
corresponding DataBlade API data type 1-9, 2-32
in C UDR 13-6, 13-13

Text data.
See Character data.

Text representation
Boolean data 2-30, 8-9
character data 2-11, 8-8
collection 5-2, 8-53
column values in 8-44, 8-49, 8-50, 8-52
date and/or time data 4-6, 4-13, 8-9
date data 4-1, 4-3, 8-9
decimal data 3-9, 3-14, 3-17, 8-9
defined 8-8
distinct data type 8-10
fixed-length opaque type 8-10
fixed-point data 3-9
floating-point data 3-17, 8-9
input parameters 8-28
INT8 (mi_int8) 8-9
INTEGER (mi_integer) 8-9
integer data 3-2, 8-9

Index X-39

Text representation (continued)
interval data 4-13, 8-9
LO handle 6-60, 8-9, 8-48
mi_exec_prepared_statement() results 8-30
mi_exec() results 8-10
mi_open_prepared_statement() 8-30
monetary data 3-9, 3-14, 8-9
opaque type 2-10, 16-2, 16-11, 16-16
row type 5-28
SMALLINT (mi_smallint) 8-9
varying-length opaque type 8-10

tf() tracing function 12-32
Thousands separator 3-2, 3-9, 3-17
Thread migration 13-19, 13-20, 13-41
Thread stack

avoiding overflow of 14-35
default size 14-35
defined 14-35
dynamically managing 14-36
location of 14-2
managing usage of 14-35
monitoring 14-35
pushing arguments onto 12-22, 12-23
stack pointer 13-21

Thread-control block (TCB) 7-2, 13-21
Threads

defined 12-20, 13-17
migration of 13-19, 13-20, 13-41
program counter 13-21
session 7-2, 13-17, 14-35
stack.

See Thread stack.
state information 13-21
switching VP of 13-41
system registers 13-21
threadsafe UDRs 13-21
yielding 13-19

tprintf() tracing function 12-33
Trace block 12-32
Trace class

__myErrors__ 12-30
built-in 12-30
choosing 12-29
creating 12-30
defined 12-28, 12-29
identifier 12-30, 12-31
setting trace level of 12-33
specifying in tracepoint 12-31

Trace level 12-33, 12-34
Trace message 12-29, 12-30, 12-31
Trace-class identifier 12-30, 12-31
Trace-output file 12-34
Tracepoint threshold 12-29, 12-31
Tracepoints

adding 12-29
defined 12-28
threshold 12-32
user-defined 12-29

Tracing
defined 12-28
DPRINTF macro 12-31
functions for 12-33, 12-34
GL_DPRINTF macro 12-31
gl_tprintf() macro 12-33
internationalized 12-33
output 12-35
parallelizable UDR and 15-63

Tracing (continued)
specifying trace-output file 12-34
trace blocks 12-32
trace-output file 12-34
tracepoint threshold 12-32
turning off 12-33
turning on 12-33
using a trace class 12-29

Tracing function
DPRINTF 12-31
GL_DPRINTF 1-19, 12-31
gl_tprintf() 1-19, 12-33
tf() 12-32
tflev() 12-32
time stamps with 12-35
tprintf() 12-33

Transaction management
See also Transaction.
constraint checking and 12-7
cursors and 8-23, 12-7
determining type of 12-7, 13-58
external objects and 10-52
in C UDRs 7-3, 10-51, 10-52, 12-7, 14-23
shared-object file and 12-36, 13-42
smart large objects and 6-5, 6-11, 6-12, 6-57

Transactions
aborting.

See Transaction, rolling back.
beginning 6-12, 10-49, 10-50, 10-55, 12-8, 14-15
callback for 14-15
client LIBMI application and A-3
committing 6-12, 10-49, 10-52, 12-8, 12-9, 14-15
ending 8-23, 10-55, 14-14
explicit 12-7, 14-15
implicit 12-8
memory duration for 14-14
rolling back 6-12, 10-14, 10-50, 12-8, 12-9
single-statement 12-7
statements within a UDR 12-9
types of 12-7

Transition descriptor
accessing 10-19
defined 1-13, 10-19
transition types 10-49
types of transition events 10-17, 10-19
where defined 10-19

Transition type
MI_ABORT_END 10-50, 10-51, 10-53
MI_BEGIN 10-49
MI_NORMAL_END 10-49, 10-51, 10-52, 10-53
where defined 10-50

Trigger introspection
See Trigger executions;Trigger executions.

truncate() system call 6-20
TU_DAY qualifier constant 4-10
TU_DTENCODE qualifier macro 2-6, 4-10, 4-14
TU_ENCODE qualifier macro 4-10
TU_END qualifier macro 4-10, 4-17
TU_FLEN qualifier macro 4-10
TU_Fn qualifier constant 4-10
TU_FRAC qualifier constant 4-10
TU_HOUR qualifier constant 4-10
TU_IENCODE qualifier macro 4-10
TU_LEN qualifier macro 4-10
TU_MINUTE qualifier constant 4-10
TU_MONTH qualifier constant 4-10
TU_SECOND qualifier constant 4-10, 4-17

X-40 IBM Informix DataBlade API Programmer’s Guide

TU_START qualifier macro 4-10, 4-16
TU_YEAR qualifier constant 4-9, 4-17
two_bytes sample opaque type

export function 16-27
Exportbin support function 16-33
import function 16-24
importbin function 16-30
input function 16-13
internal representation 16-7
output function 16-15
receive function 16-18
registering 16-7
send function 16-20

Type alignment
arrays and 16-6
byte data 2-30
character data 2-11
converting 16-21
determining 2-3
LO handle 6-61
mi_date values 4-3
mi_datetime values 4-12
mi_decimal values 3-14, 3-19
mi_double_precision values 3-19
mi_int8 values 3-7
mi_integer values 3-5
mi_interval values 4-12
mi_money values 3-14
mi_real values 3-19
mi_smallint values 3-4
specifying 16-6
varying-length data 2-19, 2-27

Type descriptor
See also Type identifier.
accessor functions 2-3, 2-5, 15-63
collection element type 2-4
converting 2-4
defined 1-13, 2-3
for column 2-5, 5-30
for data type 2-5
for source of distinct type 2-4
from LVARCHAR type name 2-5
from string type name 2-5
from type identifier 2-4
maximum type length 2-4
memory duration of 2-2
row descriptor for 8-41
short type name 2-4
specifying source and target data types 9-21
type alignment 2-3
type full name 2-4
type identifier 2-4, 2-5
type length 2-4
type name 2-4
type owner 2-4
type passing mechanism 2-4
type precision 2-4, 2-13, 3-16, 3-20, 4-15, 4-17
type qualifier 2-4, 4-16
type scale 2-4

Type hierarchy 9-3, 9-6, 9-37
Type identifier

See also Type descriptor.
checking for built-in type 2-2
checking for collection type 2-2
checking for complex type 2-2
checking for distinct type 2-2
checking for LIST 2-2

Type identifier (continued)
checking for MULTISET 2-3
checking for row type 2-3
checking for SET 2-3
converting 2-4
defined 1-13, 2-2
for column 2-3, 5-30
for input parameter 2-3, 8-15
for routine argument 2-3, 9-3
for routine return value 2-3, 9-6, 9-7
from LVARCHAR type name 2-5
from row descriptor 2-3
from string type name 2-5
from type descriptor 2-4, 2-5
memory duration of 2-2
specifying source and target data types 9-21
to type descriptor 2-4

typedef
dec_t 3-12
ifx_int8_t 3-6

U
UDR connection 7-2, 7-11, 12-6

See Connection.
UDR.

See User-defined routine (UDR).
UNIX operating system, safe system calls 13-26, 13-27
unlink() system call 13-53
UNLOAD statement 16-26
unlock() system call 6-20
Unnamed memory.

See User memory.
Unnamed row type 1-10, 5-28, 8-9

See Named row type; Row type (SQL).
UPDATE statements

calling a UDR 12-8, 12-18, 12-24
obtaining results of 8-38
opaque types 16-12, 16-17, 16-38
parameter information for 8-15
sending to database server 8-36
smart large object 6-15, 6-42, 6-50
WHERE CURRENT OF clause 8-12, 8-15, 8-21, 14-8

UPDATE STATISTICS statement 16-40, 16-45
User accounts

account name 7-6, 7-7, 7-15, 13-58
account password 7-15
current 7-7
informix 12-13, 12-16
password 7-7, 13-58

User data
callback.

See Callback function, user data in.
connection.

See Connection descriptor, user data in.
User informix.

See informix user account.
User memory

advantages 14-19
allocating 14-20, A-1
changing duration of 14-22
constructor for 14-20, 14-21, A-1
current memory duration 14-21
deallocating 14-23, A-2
defined 14-19
destructor for 14-20, 14-21, 14-23, A-1, A-2
disadvantage 14-24

Index X-41

User memory (continued)
in a C UDR 14-2, 14-20
in a client LIBMI application 14-20, A-1
managing 14-20
memory duration of 14-20, 14-21, A-1
monitoring use of 14-33
well-behaved routines 13-22, 13-25

User state 9-8, 12-22
User-defined aggregates

See also Aggregate state; Aggregate support function.
aggregate algorithm 15-16
aggregate state 15-17
changing global information 13-33
defined 12-4, 15-16
defining 15-23
registering 15-23
sample 15-37
set-up argument 15-34
support functions.

See Aggregate support function.
User-defined error structure

allocating 10-33
defined 10-32
defining 10-33
memory duration of 10-33, 10-35
sample 10-33

User-defined function
See also Noncursor function; Routine return value;

Special-purpose function; User-defined routine (UDR).
Boolean 15-53, 15-60
cast function.

See Cast function.
commutator 15-60
cost 15-54
defined 1-2
defining a return value 13-11
handling NULL return value 13-13
iterator function.

See Iterator function.
multiple return values 13-14
negator 15-60
nonvariant 9-25
obtaining return-value data 9-6
registering 12-14, 13-15
return value.

See Routine return value.
routine identifier.

See Routine identifier.
selectivity 15-54
variant 8-2, 9-25

User-defined procedure 1-2, 12-14, 13-14
See User-defined routine (UDR).

User-defined routine (UDR)
See also DataBlade API module; Routine argument; Routine

identifier; Routine return value; User-defined function;
User-defined procedure.

aborting 10-11, 10-14, 10-26, 10-31, 10-43
altering 12-36
argument.

See Routine argument.
as calling module 10-11, 10-26
callback return value 10-13
calling 9-14
calling directly 9-13, 12-18, 14-36
calling implicitly 12-18, 12-20
calling sequence of 10-14, 10-30, 10-31
changing 12-36

User-defined routine (UDR) (continued)
character data handling 2-10, 13-6, 13-13
choosing a virtual-processor class 12-24, 13-16, 13-38
coding considerations 12-5, 13-2
column values in 8-45
commutator 15-60
compiling 12-11, 12-26
connection descriptor in registration 10-6
cost 15-54
current VP 13-40
debugging 12-25, 15-64
defined 1-2
defining a return value 13-11
determining stack space of 14-35
developing 1-4
development process 12-2
development tools 12-2
dropping 12-36
entry point in shared-object file 12-16
event handling in 10-3, 10-11, 12-11
exception handling in 10-11, 10-25
executing 12-18, 12-23, 13-17, 14-36, 15-64
executing with Fastpath 9-14, 9-27
expensive.

See Expensive UDR.
file management in 9-25, 13-21, 13-52
foreign 9-15, 9-16
function descriptor for 9-17
generic 9-37
global variable 13-23
granting Execute privilege 12-18, 16-40
granting language privilege 12-16, 16-40
handling events.

See Event handling; Exception handling.
handling NULL argument 9-5, 9-24, 9-27, 12-24, 13-8
handling NULL return value 9-8, 13-13
identifier for.

See Routine identifier.
ill-behaved 13-17, 13-18
information about 9-12
instance.

See Routine instance.
invocation.

See Routine invocation.
invoking through SQL 9-13
iterator function.

See Iterator function.
local variable 14-35, 14-36
locking 13-41
locking in memory 13-42
locking to VP 13-41
looking up with Fastpath 9-18
memory context 14-4
memory management in 14-1, 14-19, 14-23
migrating to another VP 14-2
multiple return values 13-14
name of.

See Routine name.
negator 15-60
nonvariant 9-25
obtaining argument data type 9-3
obtaining argument values 13-5
obtaining return-value data type 9-6
opaque-type data handling 2-29, 13-9, 13-14
optimizing 15-53
OUT parameters with 13-14

X-42 IBM Informix DataBlade API Programmer’s Guide

User-defined routine (UDR) (continued)
overloaded routine.

See Routine overloading.
parallelizable 9-10, 15-61
passing mechanisms for.

See Passing mechanism.
programming rules 13-31, 13-32
re-executing 9-31
recursive 14-36
registering 12-14, 15-63, 16-39
resource-intensive 13-20
return value.

See Routine return value.
routine argument.

See Routine argument.
routine identifier.

See Routine identifier.
routine modifiers 12-17
routine name.

See Routine name.
routine resolution 12-19
routine return value.

See Routine return value.
routine signature 12-19
routine state 9-2, 12-10, 12-22, 13-4
runtime errors 10-23
safe-code requirements 13-18
saving user state 9-8
selectivity 15-54
server environment.

See Server environment.
session environment 13-58
session management in 7-2, 12-6
shared-object entry point 12-13, 12-15
specifying language of 12-16
specifying location of 12-13, 12-15
SQL-invoked 15-2
stack-space allocation 14-35
state-transition events 10-50, 10-51
static variable 13-23
threadsafe 13-18, 13-21
tracing in 12-28
transaction management in 7-3, 10-51, 10-52, 12-7, 14-23
type of 12-19
unregistering.

See User-defined routine (UDR), dropping.
use of signals 13-27, 13-28
user state 12-22
user-memory allocation 14-2, 14-20
uses of 12-3, 12-17
variables.

See Variable.
variant 8-2, 9-25
VP environment 13-38
VP of.

See User-defined routine (UDR), current VP.
warning messages 10-23, 10-48
well-behaved 12-11, 13-17, 13-18
with no arguments 13-5
yielding 14-35

User-defined statistics
collecting 16-40, 16-43
designing 16-41
displaying 16-48
statcollect() function 16-40
using 16-48

User-defined tracepoint 12-29

User-defined virtual-processor (VP) class
See also Virtual-processor (VP) class.
adding VPs 13-37
choosing 13-30
choosing type of 13-30, 13-34
defined 13-16, 13-17
dropping VPs 13-37
monitoring 13-37
naming 13-35
nonyielding 13-20, 13-25, 13-31, 13-35, 13-40
parallelizable UDR and 15-63
single-instance 13-26, 13-33, 13-36
using 12-11, 12-24
VP-class identifier 13-40
yielding 13-20, 13-31, 13-35

Users, types of xi

V
valloc() system call 13-22
VARCHAR data type

See also Character data; mi_lvarchar data type.
as return value 13-13
as routine argument 13-6
corresponding DataBlade API data type 1-8, 1-9, 2-7, 2-8,

13-6
DataBlade API functions for 2-11
ESQL/C functions for 2-12
functions for 2-10
obtaining column value for 8-44
operations 2-12
precision of 2-12
role of varchar.h 1-7

varchar data type (ESQL/C).
See mi_lvarchar data type.

varchar.h header file 1-7
Variables

data types 1-8
declaring 2-2, 12-6
global 13-23, 13-32, 13-33
local 13-12, 13-25, 14-35, 14-36
stack.

See Variable, local.
Statement Local 13-15
static 13-23, 13-32, 13-33

Variant function 8-2, 9-25
VARIANT routine modifier 8-2, 9-25
Varying-length descriptor.

See Varying-length structure, descriptor.
Varying-length opaque data type

See also Fixed-length opaque data type; Opaque data type.
as routine argument 13-10
as routine return value 13-14
binary representation 8-10
defining 16-4
maximum size 16-5
passing mechanism 16-7
registering 16-5
text representation 8-10

Varying-length structure
See also mi_impexp data type; mi_impexpbin data type;

mi_lvarchar data type; mi_sendrecv data type.
accessing 2-17
accessor functions 2-17
constructor for 2-14, 14-21
converting between stream and internal 2-14
converting from string 2-11

Index X-43

Varying-length structure (continued)
converting to string 2-11
creating 2-14
data length 2-15, 2-17, 2-24, 13-46
data pointer 2-15, 2-17, 2-22, 2-24, 2-26
data portion 2-15, 2-16, 2-24
defined 2-13
descriptor 2-15, 2-16
destructor for 2-14, 2-16, 14-21
empty 2-22, 2-23
freeing 2-16
in opaque type 16-37
managing memory 2-14
memory duration of 2-14, 2-16, 14-21
null termination and 2-17
obtaining data from 2-24
opaque types and 16-10
parts of 2-15, 2-16
reading from stream 2-14
storing data in 2-18
type alignment 2-19, 2-27
using 2-13

Varying-length-data stream
closing 13-46
data length 13-46
defined 13-46
getting

seek position of 13-46
opening 13-46
reading from 13-46
setting

seek position of 13-46
stream I/O functions for 13-46
writing to 13-46

Virtual processor (VP)
active 13-38, 13-39, 13-40
adding 13-37
current 13-38, 13-39
dropping 13-37
environment of.

See VP environment.
heap space 13-22, 14-2, 14-3
identifier for.

See VP identifier.
identifying 13-39
locking UDR instance to 13-41
memory space of 14-2, 14-3
monitoring 13-37
schematic representation of 12-20, 14-2, 14-3
stack space 14-2, 14-35
switching 13-40
VP identifier 13-39, 13-40

Virtual-processor (VP) class
See also CPU virtual-processor (CPU VP) class;

User-defined virtual-processor (VP) class.
AIO 13-16, 13-19, 13-21
availability 13-17
choosing 12-24, 13-16, 13-38
concurrency 13-18
CPU 12-11, 13-16, 13-17
defined 12-20, 13-16
global process state 13-26
identifier for.

See VP-class identifier.
identifying 13-40
maximum number of VPs in 13-40
migrating among VPs in 14-2, 14-3

Virtual-processor (VP) class (continued)
migrating to 9-9, 13-25, 13-41
monitoring 13-37
name of 13-34, 13-40
number of active VPs in 13-40
routine executed with Fastpath 9-27
SHM 13-16
system 13-16, 13-40
system registers 13-21
user-defined 13-16, 13-17
VP-class identifier 13-40

void * (C) data type 1-9, 1-10, 2-31, 2-32
VP environment

changing 13-40
controlling 13-38
defined 13-38
functions for 13-38
obtaining information about 13-39

VP identifier 13-39, 13-40
VP-class identifier 13-40
VP.

See Virtual-processor (VP) class.
VPCLASS configuration parameter

naming a VP class 13-34
nonyielding user-defined VP 13-35, 13-36
noyield option 13-35
num option 13-34, 13-35, 13-36
purpose of 13-34, 13-40
yielding user-defined VP 13-35

W
wait() system call 13-21
Warnings

See also Database server exception; Error handling;
Exception handling.

ANSI messages 10-23
custom 10-23, 10-43, 10-48
defined 10-20
exception level for 10-21
Informix-specific 10-23
literal 10-23, 10-42
obtaining text of 10-18
raising 10-42, 10-44
SQLCODE values 10-24
SQLSTATE values 10-23
tracing 12-30
X/Open messages 10-23

Well-behaved routine 13-18
See also Ill-behaved routine.
avoiding blocking I/O 13-18, 13-20
avoiding global and static variables 13-18, 13-23
avoiding process-state changes 13-18, 13-26
avoiding unsafe system calls 13-26
being process safe 13-18
being threadsafe 13-21
creating 12-11, 13-17
defined 13-17
not changing the working directory 13-18
omitting unsafe system calls 13-18
preserving concurrency 13-18
restricting dynamic allocation 13-18, 13-22
safe-code requirements 13-18
yielding the CPU VP 13-18, 13-19

Windows operating system
safe actions in UDR 13-30
safe system calls 13-26, 13-27

X-44 IBM Informix DataBlade API Programmer’s Guide

Working directory 13-59
write() system call 6-20, 13-21, 13-53

X
X/Open

XA interface standards 11-1
XA specifications 11-2

X/Open standards
runtime-error values 10-23
SQLSTATE class values 10-22
warning values 10-23

XA data-source types 11-1, 11-2
xa_close() function 11-4
xa_commit() function 11-7
xa_complete() function 11-9
xa_end() function 11-5
xa_forget() function 11-8
xa_open() function 11-4
xa_prepare() function 11-6
xa_recover() function 11-8
xa_rollback() function 11-7
xa_start() function 11-5
XA-compliant external data sources 11-1
XA-support routines 11-3
xa.h file 11-3
XID 11-6
XID structure 11-3

Y
Yielding user-defined VP class 13-31

Index X-45

X-46 IBM Informix DataBlade API Programmer’s Guide

����

Printed in USA

SC23-9429-03

Sp
in
e
in
fo
rm
at
io
n:

IB
M

In
fo

rm
ix

Ve
rs

io
n

11
.5

0
IB

M
In

fo
rm

ix
Da

ta
Bl

ad
e

AP
IP

ro
gr

am
m

er
’s

Gu
id

e
�
�

�

	Contents
	Introduction
	In This Introduction
	About This Publication
	Types of Users
	Software Dependencies
	Assumptions About Your Locale
	Demonstration Databases

	Function Syntax Conventions
	DataBlade API Module Code Conventions
	Documentation Conventions
	Technical Changes
	Feature, Product, and Platform Markup
	Example Code Conventions

	Additional Documentation
	Compliance with Industry Standards
	How to Provide Documentation Feedback

	Part 1. DataBlade API Overview
	Chapter 1. Using the DataBlade API
	In This Chapter
	DataBlade API Module
	User-Defined Routine (Server)
	Types of UDRs
	Differences between C UDRs and UDRs Written in SPL
	Using UDRs

	Client LIBMI Application
	Compatibility of Client and Server DataBlade API Modules

	DataBlade API Components
	Header Files
	DataBlade API Header Files
	ESQL/C Header Files
	IBM Informix GLS Header File
	Private Header Files

	Public Data Types
	DataBlade API Data Types
	DataBlade API Support Data Types
	DataBlade API Data Type Structures

	Regular Public Functions
	DataBlade API Functions
	IBM Informix ESQL/C Functions
	IBM Informix GLS Functions

	Advanced Features (Server)

	Internationalization of DataBlade API Modules (GLS)

	Chapter 2. Accessing SQL Data Types
	In This Chapter
	Type Identifiers
	Type Descriptors
	Type-Structure Conversion
	Data Type Descriptors and Column Type Descriptors

	Character Data Types
	The mi_char1 and mi_unsigned_char1 Data Types
	The mi_char and mi_string Data Types
	The mi_lvarchar Data Type
	The SQL LVARCHAR Data Type
	Character Data in Binary Mode of a Query
	Character Data in C UDRs (Server)
	External Representation of an Opaque Data Type (Server)

	Character Data in a Smart Large Object
	Character Processing
	Transferring Character Data (Server)
	Converting Character Data
	Operations on Character Values
	Character Type Information

	Varying-Length Data Type Structures
	Using a Varying-Length Structure
	Managing Memory for a Varying-Length Structure
	Creating a Varying-Length Structure
	Deallocating a Varying-Length Structure

	Accessing a Varying-Length Structure
	Varying-Length Data and Null Termination
	Storage of Varying-Length Data
	Information About Varying-Length Data

	Byte Data Types
	The mi_bitvarying Data Type
	Byte Data in a Smart Large Object
	Byte Processing
	Manipulating Byte Data
	Transferring Byte Data (Server)

	Boolean Data Types
	Boolean Text Representation
	Boolean Binary Representation
	Pointer Data Types (Server)

	Simple Large Objects
	The MI_DATUM Data Type
	Contents of an MI_DATUM Structure
	MI_DATUM in a C UDR (Server)
	MI_DATUM in a Client LIBMI Application

	Address Calculations with MI_DATUM Values
	Uses of MI_DATUM Structures

	The NULL Constant
	SQL NULL Value
	NULL-Valued Pointer

	Part 2. Data Manipulation
	Chapter 3. Using Numeric Data Types
	In This Chapter
	Integer Data
	Integer Text Representation
	Integer Binary Representations
	One-Byte Integers
	Two-Byte Integers
	Four-Byte Integers
	Eight-Byte Integers

	Fixed-Point Data
	Fixed-Point Text Representations
	Decimal Text Representation
	Monetary Text Representation

	Fixed-Point Binary Representations
	DECIMAL Data Type: Fixed-Point Data
	MONEY Data Type
	The decimal.h Header File

	Transferring Fixed-Point Data (Server)
	Converting Decimal Data
	DataBlade API Functions for Decimal Conversion
	ESQL/C Functions for Decimal Conversion

	Performing Operations on Decimal Data
	Obtaining Fixed-Point Type Information

	Floating-Point Data
	Floating-Point Text Representation
	Floating-Point Binary Representations
	DECIMAL Data Type: Floating-Point Data
	SMALLFLOAT Data Type
	The FLOAT Data Type

	Transferring Floating-Point Data (Server)
	Converting Floating-Point Decimal Data
	Obtaining Floating-Point Type Information

	Formatting Numeric Strings

	Chapter 4. Using Date and Time Data Types
	In This Chapter
	Date Data
	Date Text Representation
	Date Binary Representation
	Transfers of Date Data (Server)
	Conversion of Date Representations
	DataBlade API Functions for Date Conversion
	ESQL/C Functions for Date Conversion

	Operations on Date Data

	Date-Time or Interval Data
	Date-Time or Interval Text Representation
	Date-Time or Interval Binary Representation
	The DATETIME Data Type
	The INTERVAL Data Type

	The datetime.h Header File
	Retrieval and Insertion of DATETIME and INTERVAL Values
	Fetch or Insert into an mi_datetime Variable
	Fetch or Insert into an mi_interval Variable
	Implicit Data Conversion

	Transfers of Date-Time or Interval Data (Server)
	Conversion of Date-Time or Interval Representations
	DataBlade API Functions for Date-Time or Interval Conversion
	ESQL/C Functions for Date, Time, and Interval Conversion

	Operations on Date and Time Data
	Functions to Obtain Information on Date and Time Data
	Qualifier of a Date-Time or Interval Data Type
	Precision of a Date-Time or Interval Data Type
	Scale of a Date-Time or Interval Data Type

	Chapter 5. Using Complex Data Types
	In This Chapter
	Collections
	Collection Text Representation
	Collection Binary Representation
	Using a Collection Structure
	Using a Collection Descriptor

	Creating a Collection
	Opening a Collection
	Using mi_collection_open()
	Using mi_collection_open_with_options()

	Accessing Elements of a Collection
	Positioning the Cursor
	Inserting an Element
	Fetching an Element
	Updating a Collection
	Deleting an Element
	Determining the Cardinality of a Collection

	Releasing Collection Resources
	Closing a Collection
	Freeing the Collection Structure

	The listpos() UDR
	SQL Statements
	C-Language Implementation
	Sample listpos() Trace Output

	Row Types
	Row-Type Text Representation
	Row-Type Binary Representation
	Using a Row Descriptor
	Using a Row Structure

	Creating a Row Type
	Creating the Row Descriptor
	Assigning the Field Values
	Example: Creating a Row Type

	Accessing a Row Type
	Copying a Row Structure
	Releasing Row Resources
	Freeing a Row Structure
	Freeing a Row Descriptor

	Chapter 6. Using Smart Large Objects
	In This Chapter
	Understanding Smart Large Objects
	Parts of a Smart Large Object
	The Sbspace
	The LO Handle

	Information About a Smart Large Object
	Storage Characteristics
	Status Information

	Storing a Smart Large Object in a Database
	Valid Data Types
	CLOB and BLOB Data Types
	Opaque Data Type

	Access to a Smart Large Object
	Selecting a Smart Large Object
	Storing a Smart Large Object

	Using the Smart-Large-Object Interface
	Smart-Large-Object Data Type Structures
	LO-Specification Structure
	LO Handle
	LO File Descriptor
	LO-Status Structure

	Smart-Large-Object Functions
	Functions That Create a Smart Large Object
	Functions That Perform Input and Output on a Smart Large Object
	Functions That Manipulate an LO Handle
	Functions That Access an LO-Specification Structure
	Functions That Access an LO-Status Structure
	Functions That Move Smart Large Objects to and from Operating-System Files

	Creating a Smart Large Object
	Obtaining the LO-Specification Structure
	Specifying New Storage Characteristics
	Copying Storage Characteristics from an Existing Smart Large Object

	Choosing Storage Characteristics
	Obtaining Storage Characteristics
	Using the Storage-Characteristics Hierarchy

	Initializing an LO Handle and an LO File Descriptor
	Obtaining an LO Handle
	Obtaining an LO File Descriptor

	Writing Data to a Smart Large Object
	Storing an LO Handle
	Freeing Resources
	Freeing an LO-Specification Structure
	Freeing an LO Handle

	Sample Code to Create a New Smart Large Object

	Accessing a Smart Large Object
	Selecting the LO Handle
	Validating an LO Handle

	Opening a Smart Large Object
	Reading Data from a Smart Large Object
	Freeing a Smart Large Object
	Sample Code to Select an Existing Smart Large Object

	Modifying a Smart Large Object
	Updating a Smart Large Object
	Altering Storage Characteristics

	Obtaining Status Information for a Smart Large Object
	Obtaining a Valid LO File Descriptor
	Initializing an LO-Status Structure
	Obtaining a Valid LO-Status Structure
	Filling the LO-Status Structure

	Obtaining Status Information
	Freeing an LO-Status Structure

	Deleting a Smart Large Object
	Managing the Reference Count
	Reference Counts for CLOB and BLOB Columns
	Reference Counts for Opaque-Type Columns
	Reference Counts for Transient Smart Large Objects

	Freeing LO File Descriptors

	Converting a Smart Large Object to a File or Buffer
	Using Operating-System Files
	Using User-Defined Buffers

	Converting an LO Handle Between Binary and Text
	Binary and Text Representations of an LO Handle
	DataBlade API Functions for LO-Handle Conversion

	Transferring an LO Handle Between Computers (Server)
	Using Byte-Range Locking
	Passing a NULL Connection (Server)

	Part 3. Database Access
	Chapter 7. Handling Connections
	In This Chapter
	Understanding Session Management
	Client Connection
	UDR Connection (Server)
	Connection Descriptor

	Initializing a Client Connection
	Using Connection Parameters
	Establishing Default Connection Parameters
	Obtaining Current Connection Parameters

	Using Database Parameters
	Establishing Default Database Parameters
	Obtaining Current Database Parameters

	Using Session Parameters
	Using System-Default Session Parameters
	Using User-Defined Session Parameters

	Setting Connection Parameters for a Client Connection

	Establishing a Connection
	Establishing a UDR Connection (Server)
	Obtaining a Connection Descriptor
	Obtaining a Session-Duration Connection Descriptor

	Establishing a Client Connection
	Connections with mi_open()
	Connections with mi_server_connect()

	Associating User Data with a Connection
	Initializing the DataBlade API
	Closing a Connection

	Chapter 8. Executing SQL Statements
	In This Chapter
	Executing SQL Statements
	Choosing a DataBlade API Function
	Type of Statement
	Prepared Statements and Input Parameters
	Queries and Implicit Cursors

	Executing Basic SQL Statements
	Assembling a Statement String
	Sending an SQL Statement

	Executing Prepared SQL Statements
	Preparing an SQL Statement
	Obtaining Input-Parameter Information
	Sending the Prepared Statement
	Releasing Prepared-Statement Resources

	Executing Multiple SQL Statements

	Processing Statement Results
	Executing the mi_get_result() Loop
	Handling Unsuccessful Statements
	Handling a DDL Statement
	Handling a DML Statement
	Handling Query Rows
	Handling No More Results Status

	Example: The get_results() Function

	Retrieving Query Data
	Obtaining Row Information
	Obtaining Column Information
	Retrieving Rows
	Accessing the Current Row
	Executing the mi_next_row() Loop

	Obtaining Column Values
	Executing the Column-Value Loop
	Accessing the Columns
	Obtaining Normal Values
	Obtaining NULL Values
	Obtaining Row Values
	Obtaining Collection Values
	Example: The get_data() Function

	Completing Execution
	Finishing Execution
	Processing Remaining Rows
	Releasing Statement Resources

	Interrupting Execution

	Inserting Data into the Database
	Assembling an Insert String
	Sending the Insert Statement
	Processing Insert Results

	Using Save Sets
	Creating a Save Set
	Inserting Rows into a Save Set
	Building a Save Set
	Freeing a Save Set

	Chapter 9. Executing User-Defined Routines
	In This Chapter
	Accessing MI_FPARAM Routine-State Information
	Checking Routine Arguments
	Determining the Data Type of UDR Arguments
	Handling NULL Arguments with MI_FPARAM

	Accessing Return-Value Information
	Determining the Data Type of UDR Return Values
	Returning a NULL Value

	Saving a User State
	Obtaining Other Routine Information

	Calling UDRs Within a DataBlade API Module
	Invoking a UDR Through an SQL Statement
	Calling a UDR Directly (Server)
	Named Parameters and UDRs

	Calling UDRs with the Fastpath Interface
	Obtaining a Function Descriptor
	Looking Up UDRs
	Looking Up Cast Functions

	Obtaining Information from a Function Descriptor
	Obtaining the MI_FPARAM Structure
	Obtaining a Routine Identifier
	Determining If a UDR Handles NULL Arguments
	Checking for a Variant Function
	Checking for a Negator Function
	Checking for a Commutator Function

	Executing the Routine
	Passing in Argument Values
	Receiving the Return Value
	Sample mi_routine_exec() Calls
	Executing a Built-in Cast Function
	Reusing a Function Descriptor

	Using a User-Allocated MI_FPARAM Structure
	Creating a User-Allocated MI_FPARAM Structure
	Using a User-Allocated MI_FPARAM Structure (Server)
	Passing a User-Allocated MI_FPARAM Structure
	Freeing a User-Allocated MI_FPARAM

	Releasing Routine Resources

	Obtaining Trigger Execution Information and HDR Database Server Status
	Trigger Information
	HDR Status Information

	Chapter 10. Handling Exceptions and Events
	In This Chapter
	DataBlade API Event Types
	Event-Handling Mechanisms
	Invoking a Callback
	Registering a Callback
	Enabling and Disabling a Callback
	Retrieving a Callback Function

	Using Default Behavior
	Default Behavior in a C UDR (Server)
	Default Behavior in Client LIBMI Applications

	Callback Functions
	Declaring a Callback Function
	Return Value of a Callback Function
	MI_PROC_CALLBACK Modifier (Windows)
	Callback-Function Parameters

	Writing a Callback Function
	Restrictions on Content
	Event Information

	Database Server Exceptions
	Understanding Database Server Exceptions
	Warnings and Errors
	Status Variables

	Providing Exception Handling
	Exceptions in a C UDR (Server)
	Exceptions in a Client LIBMI Application (Client)

	Returning Error Information to the Caller
	Defining a User-Defined Error Structure
	Implementing the Callback

	Handling Multiple Exceptions
	Raising an Exception
	Specifying the Connection
	Specifying the Message

	State-Transition Events
	Understanding State-Transition Events
	Beginning a Transaction
	Ending a Session (Server)

	Providing State-Transition Handling
	State Transitions in a C UDR (Server)
	State Transitions in a Client LIBMI Application

	Client LIBMI Errors

	Chapter 11. Working with XA-Compliant External Data Sources
	Overview of Integrating XA-Compliant Data Sources in Transactions
	Support for the Two-Phase Commit Protocol
	XA-Compliant Data Sources and Data Source Types
	Infrastructure for Creating Support Routines for XA Routines
	Global Transaction IDs
	System Catalog Tables
	Files Containing Necessary Components

	Creating User-Defined XA-Support Routines
	The xa_open() function
	The xa_close() function
	The xa_start() function
	The xa_end() function
	The xa_prepare() function
	The xa_rollback() function
	The xa_commit() function
	The xa_recover() function
	The xa_forget() function
	The xa_complete() function
	Dropping an XA Support User-Defined Routine

	Managing XA Data Sources and Data Source Types
	Creating an XA Data Source Type
	Dropping an XA Data Source Type
	Creating an XA Data Source
	Dropping an XA Data Source

	Registering and Unregistering XA-Compliant Data Sources
	Using ax_reg()
	Using ax_unreg()
	Using mi_xa_register_xadatasource()
	Using mi_xa_unregister_xadatasource()
	Getting the XID Structure
	Getting the Resource Manager ID

	Monitoring Integrated Transactions

	Part 4. Creating User-Defined Routines
	Chapter 12. Developing a User-Defined Routine
	In This Chapter
	Designing a UDR
	Development Tools
	Uses of a C UDR
	Portability
	DataBlade API Data Types
	Data Conversion

	Insert and Update Operations

	Creating UDR Code
	Variable Declaration
	Session Management
	Session Restrictions
	Transaction Management

	SQL Statement Execution
	Setting Input Parameters
	Retrieving Column Values

	Routine-State Information
	Event Handling
	Well-Behaved Routines

	Compiling a C UDR
	Compiling Options
	Creating a Shared-Object File

	Registering a C UDR
	EXTEND Role Required to Register a C UDR
	The External Name
	Specifying the Entry Point
	Using Environment Variables

	The UDR Language
	Routine Modifiers
	Parameters and Return Values
	Privileges for the UDR

	Executing a UDR
	Routine Resolution
	The Routine Manager
	Loading a Shared-Object File
	Creating the Routine Sequence
	Pushing Arguments Onto the Stack
	Managing UDR Execution
	Returning the Value
	Releasing the Routine Sequence

	Debugging a UDR
	Using a Debugger
	Creating a Debugging Version
	Connecting to the Database Server from a Client
	Loading the Shared-Object File for Debugging
	Identifying the VP Process

	Running a Debugging Session
	Breakpoints
	Debugging Hints
	Possible Memory Errors
	Symbols in Shared-Object Files

	Using Tracing
	Adding a Tracepoint in Code
	Using Tracing at Runtime
	Understanding Tracing Output

	Changing a UDR
	Altering a Routine
	Unloading a Shared-Object File

	Chapter 13. Writing a User-Defined Routine
	In This Chapter
	Coding a C UDR
	Defining Routine Parameters
	Routines with No Arguments
	MI_DATUM Arguments
	MI_FPARAM Argument

	Obtaining Argument Values
	Handling Character Arguments
	Handling NULL Arguments
	Handling Opaque-Type Arguments
	Modifying Argument Values

	Defining a Return Value
	Returning a Value
	Returning Multiple Values

	Coding the Routine Body

	Using Virtual Processors
	Creating a Well-Behaved Routine
	Preserving Availability of the CPU VP
	Writing Threadsafe Code
	Avoiding Restricted System Calls
	Choosing the User-Defined VP Class
	Defining a User-Defined VP
	Assigning a C UDR to a User-Defined VP Class

	Managing Virtual Processors
	Initializing a VP Class
	Adding and Dropping VPs
	Monitoring Virtual Processors

	Controlling the VP Environment
	Obtaining VP-Environment Information
	Identifying the Current VP
	Identifying a VP Class

	Changing the VP Environment
	Executing on Another VP
	Forking and Executing a Process

	Locking a UDR
	Locking a Routine Instance to a VP
	Locking a Shared-Object File in Memory

	Performing Input and Output
	Access to a Stream (Server)
	Using Predefined Stream Classes
	Creating a User-Defined Stream Class
	Registering a UDR That Accesses a Stream
	Releasing Stream Resources

	Access to Operating-System Files
	Opening a File
	Closing a File
	Copying a File

	Sample File-Access UDR

	Accessing the UDR Execution Environment
	Accessing the Session Environment
	Accessing the Server Environment

	Chapter 14. Managing Memory
	In This Chapter
	Understanding Shared Memory
	Accessing Shared Memory
	Choosing the Memory Duration
	Public Memory Durations
	Advanced Memory Durations
	Memory-Duration Considerations

	Managing Shared Memory
	Managing User Memory
	Allocating User Memory (Server)
	Managing the Memory Duration
	Deallocating User Memory

	Managing Named Memory
	Allocating Named Memory
	Obtaining a Block of Allocated Named Memory
	Handling Concurrency Issues
	Deallocating Named Memory

	Monitoring Shared Memory

	Managing Stack Space
	Managing Stack Usage
	Increasing Stack Space

	Chapter 15. Creating Special-Purpose UDRs
	In This Chapter
	Writing an End-User Routine
	Writing a Cast Function
	Writing an Iterator Function
	Initializing the Iterations
	Returning One Active-Set Item
	Releasing Iteration Resources
	Calling an Iterator Function from an SQL Statement
	Registering the Iterator Function
	Executing the Iterator Function

	Writing an Aggregate Function
	Extending a Built-In Aggregate
	Choosing the Operator Function
	Writing the Operator Function
	Registering the Overloaded Operator Function
	Using the Extended Aggregate

	Creating a User-Defined Aggregate
	Determining the Aggregate State
	Writing the Aggregate Support Functions
	Defining the User-Defined Aggregate
	Using the User-Defined Aggregate
	Determining Required Aggregate Support Functions
	Sample User-Defined Aggregates

	Providing UDR-Optimization Functions
	Writing Selectivity and Cost Functions
	Query Selectivity
	Query Cost
	MI_FUNCARG Data Type
	Obtaining Information About Constant Arguments
	Obtaining Information About Column Arguments

	Creating Negator Functions
	Creating Commutator Functions
	Creating Parallelizable UDRs
	Writing the Parallelizable UDR
	Registering the Parallelizable UDR
	Executing the Parallelizable UDR
	Debugging the Parallelizable UDR

	Chapter 16. Extending Data Types
	In This Chapter
	Creating an Opaque Data Type
	Designing an Opaque Data Type
	Determining External Representation
	Determining Internal Representation

	Writing Opaque-Type Support Functions
	Support Functions as Casts
	Stream Support Functions
	Disk-Storage Support Functions
	Handling Locale-Specific Opaque-Type Data (GLS)

	Registering an Opaque Data Type
	Registering an Opaque Type in a Database
	Registering Opaque-Type Support Functions
	Registering the Opaque-Type Casts

	Providing Statistics Data for a Column
	Collecting Statistics Data
	Designing the User-Defined Statistics
	Defining the Statistics-Collection Function
	Collecting the Statistics
	Registering the statcollect() Function
	Executing the UPDATE STATISTICS Statement

	Using User-Defined Statistics
	Displaying Statistics Data
	Using User-Defined Statistics in a Query

	Optimizing Queries
	Query Plans
	Selectivity Functions

	Part 5. Appendixes
	Appendix A. Writing a Client LIBMI Application
	Managing Memory in Client LIBMI Applications
	Allocating User Memory
	Deallocating User Memory

	Accessing Operating-System Files in Client LIBMI Applications
	Handling Transactions

	Appendix B. Accessibility
	Accessibility features for IBM Informix Dynamic Server
	Accessibility Features
	Keyboard Navigation
	Related Accessibility Information
	IBM and Accessibility

	Notices
	Trademarks

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

