
IBM Informix
Version 3.50

IBM Informix
ESQL/C Programmer’s Manual

SC23-9420-05

���

IBM Informix
Version 3.50

IBM Informix
ESQL/C Programmer’s Manual

SC23-9420-05

���

Note:
Before using this information and the product it supports, read the information in “Notices” on page E-1.

This edition replaces SC23-9420-04.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1996, 2010.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Introduction . xiii
About this publication . xiii

Types of users . xiii
Software dependencies . xiii
Assumptions About Your Locale . xiv
Demonstration Databases . xiv

What's new in ESQL/C for Client SDK, Version 3.50 . xv
Example Code Conventions . xv
Additional Documentation . xvi
Compliance with Industry Standards . xvi
Syntax Diagrams . xvii

How to Read a Command-Line Syntax Diagram . xviii
Keywords and Punctuation . xix
Identifiers and Names . xix

How to Provide Documentation Feedback . xix

Part 1. What Is IBM Informix ESQL/C

Chapter 1. Programming with IBM Informix ESQL/C 1-1
What Is IBM Informix ESQL/C? . 1-2

ESQL/C Components. 1-2
Creating an ESQL/C Program . 1-3

Embedding SQL Statements. 1-4
Handling Case Sensitivity in Embedded SQL Statements 1-5
Using Quotation Marks and Escape Characters . 1-6
Adding Comments . 1-8
Specifying Host Variables . 1-8

Declaring and Using Host Variables . 1-9
Declaring a Host Variable . 1-9
Assigning a Value to a Host Variable . 1-12
Using Host Variables in Data Structures . 1-16
Using Host Variables in Windows Environments . 1-20
Using Indicator Variables . 1-21

Using ESQL/C Header Files . 1-25
Declaring Function Prototypes . 1-27
Including Header Files . 1-27

Using ESQL/C Preprocessor Directives . 1-28
The include Directive . 1-29
The define and undef Directives . 1-30
The ifdef, ifndef, elif, else, and endif Directives . 1-30

Setting and Retrieving Environment Variables in Windows Environments 1-31
InetLogin structure . 1-33

Using Global ESQL/C Variables in a Windows Environment 1-38
A Sample IBM Informix ESQL/C Program . 1-39

Compiling the demo1 Program . 1-39
Guide to demo1.ec File . 1-39

Chapter 2. Compiling programs. 2-1
Compiling an IBM Informix ESQL/C program . 2-2

ESQL/C Preprocessor. 2-2
C Preprocessor and Compiler . 2-3
Default Compilation Order . 2-3
Running the C Preprocessor First . 2-4

Using the esql Command . 2-4

© Copyright IBM Corp. 1996, 2010 iii

Requirements for Using esql . 2-5
Syntax of the esql command . 2-5
Options That Affect Preprocessing . 2-11
Running the C Preprocessor Before the ESQL/C Preprocessor 2-17
Preprocessor Options Specific to Windows Environments 2-22

Compiling and Linking Options of the esql Command . 2-23
Naming the Executable . 2-23
Setting the Type of Executable Created (Windows). 2-23
Pass options to the C compiler . 2-23
Specify a particular C compiler (Windows) . 2-23
Compile without linking . 2-24
Special Compile Options for Windows Environments . 2-24
Linking Options . 2-27

Accessing the ESQL Client-Interface DLL in Windows Environments 2-30
Accessing the Import Library . 2-30
Locating a DLL . 2-31
Building an Application DLL . 2-31

Chapter 3. Informix ESQL/C data types . 3-1
Choosing data types for host variables . 3-1

Data Type Constants . 3-3
Header Files for Data Types . 3-7

Data Conversion . 3-8
Fetching and Inserting with Host Variables . 3-8
Performing Arithmetic Operations . 3-10

Data-Type Alignment Library Functions . 3-13

Chapter 4. Working with character and string data types 4-1
Character data types . 4-1

The char Data Type . 4-2
The fixchar Data Type . 4-2
The string Data Type . 4-3
The varchar Data Type . 4-3
The lvarchar Data Type . 4-5

Fetching and Inserting Character Data Types . 4-7
Fetching and Inserting CHAR Data . 4-7
Fetching and Inserting VARCHAR Data . 4-8
Fetching and Inserting lvarchar Data . 4-11
Fetching and Inserting with an ANSI-Compliant Database 4-12

Character and string library functions . 4-12

Chapter 5. Working with numeric data types 5-1
The integer data types . 5-1

The Integer Host Variable Types . 5-2
The INT8 and SERIAL8 SQL Data Types . 5-2
The int8 Data Type . 5-2
The int8 Library Functions . 5-3

The BOOLEAN data type . 5-4
The decimal data type . 5-5

The decimal structure . 5-5
The decimal Library Functions. 5-7

The Floating-Point Data Types . 5-8
Declaring float Host Variables . 5-8
Implicit Data Conversion . 5-8

Formatting Numeric Strings . 5-9
Numeric-Formatting Functions . 5-13

Chapter 6. Working with time data types . 6-1
The SQL DATE data type . 6-1

Formatting date strings . 6-1

iv IBM Informix ESQL/C Programmer’s Manual

DATE Library Functions . 6-2
The SQL DATETIME and INTERVAL Data Types . 6-2

The datetime Data Type . 6-3
The interval Data Type . 6-4
Macros for datetime and interval Data Types . 6-5
Fetching and Inserting DATETIME and INTERVAL Values 6-6
ANSI SQL standards for DATETIME and INTERVAL values 6-7
Data conversion for datetime and interval values . 6-8

Support of Non-ANSI DATETIME Formats . 6-8
The USE_DTENV environment variable. 6-8

DATETIME and INTERVAL Library Functions . 6-9

Chapter 7. Working with simple large objects 7-1
Choosing a large-object data type . 7-2
Programming with Simple Large Objects . 7-3

Declaring a Host Variable for a Simple Large Object . 7-3
Accessing the Locator Structure . 7-4

Locating Simple Large Objects in Memory . 7-7
Allocating the Memory Buffer . 7-8
Selecting a simple large object into memory . 7-9
Inserting a Simple Large Object from Memory . 7-11

Locating Simple Large Objects in Files . 7-13
File-Open Mode Flags . 7-13
Error Returns in loc_status. 7-14
Locating Simple Large Objects in Open Files. 7-14
Locating Simple Large Objects in Named Files . 7-18

Using User-Defined Simple-Large-Object Locations . 7-22
Selecting a Simple Large Object into a User-Defined Location 7-23
Inserting a Simple Large Object into a User-Defined Location 7-23
Creating the User-Defined Simple-Large-Object Functions 7-24

Reading and Writing Simple Large Objects to an Optical Disc (UNIX) 7-28
The dispcat_pic Program . 7-31

Loading the Simple-Large-Object Images . 7-32
Guide to the dispcat_pic.ec File . 7-33
Guide to the prdesc.c File . 7-41
Guide to the inpfuncs.c File . 7-42

Chapter 8. Working with smart large objects 8-1
Data structures for Smart Large Objects. 8-2

Declaring a Host Variable . 8-2
The LO-specification structure . 8-3
The LO-Pointer Structure . 8-9
The LO file descriptor . 8-11

Creating a Smart Large Object . 8-12
Accessing a Smart Large Object . 8-12

Selecting a Smart Large Object . 8-12
Opening a Smart Large Object . 8-13
Deleting a Smart Large Object . 8-17
Modifying a Smart Large Object . 8-17
Closing a Smart Large Object . 8-18

Obtaining the Status of a Smart Large Object . 8-18
Obtaining a Valid LO-Pointer Structure . 8-18
Allocating and Accessing an LO-Status Structure . 8-18
Deallocating the LO-Status Structure . 8-19

Altering a Smart-Large-Object Column . 8-20
Migrating Simple Large Objects . 8-20
Reading and Writing Smart Large Objects on an Optical Disc (UNIX) 8-21
The ESQL/C API for Smart Large Objects . 8-21

Chapter 9. Working with complex data types 9-1

Contents v

Accessing a collection. 9-2
Accessing a Collection Derived Table . 9-2
Declaring Collection Variables . 9-4
Managing Memory for Collections . 9-9
Operating on a Collection Variable . 9-10
Operating on a Collection Column . 9-28

Accessing Row Types . 9-30
Declaring Row Variables . 9-31
Managing Memory for Rows . 9-35
Operating on a Row Variable . 9-36
Accessing a Typed Table . 9-44
Operating on a Row-Type Column . 9-44

Chapter 10. Working with opaque data types 10-1
The SQL opaque Data Type . 10-1
Accessing the External Format of an Opaque Type. 10-3

Declaring lvarchar Host Variables . 10-4
Using lvarchar Host Variables . 10-7

Accessing the Internal Format of an Opaque Type . 10-11
Accessing a Fixed-Length Opaque Type . 10-12
Accessing a Varying-Length Opaque Type . 10-15

The lvarchar pointer and var binary library functions . 10-22
Accessing Predefined Opaque Data Types . 10-22

Part 2. Database server communication

Chapter 11. Exception handling . 11-1
Obtain diagnostic information after an SQL statement . 11-2

Types of Diagnostic Information . 11-2
Types of Status Variables . 11-3

Exception Handling with SQLSTATE . 11-3
Using GET DIAGNOSTICS . 11-4
Using the SQLSTATE Variable . 11-7
Checking for Exceptions with SQLSTATE . 11-11

Exception Handling with the sqlca Structure . 11-17
Fields of the sqlca structure . 11-17
Using the SQLCODE Variable . 11-19
Checking for Exceptions with sqlca . 11-20
Displaying Error Text (Windows) . 11-25

Choosing an Exception-Handling Strategy . 11-25
Checking After Each SQL Statement . 11-25
The WHENEVER Statement . 11-28

Library Functions for Retrieving Error Messages . 11-29
Displaying Error Text in a Windows Environment . 11-30

A Program That Uses Exception Handling . 11-30
Compiling the Program . 11-30
Guide to the getdiag.ec File . 11-30
Guide to the exp_chk.ec File . 11-32

Chapter 12. Working with the database server 12-1
The client-server architecture of ESQL/C applications . 12-2
The Client-Server Connection . 12-3

Sources of Connection information about a UNIX Operating System. 12-4
Sources of connection information in a Windows environment. 12-5
Connecting to a Database Server . 12-10
Identifying the Database Server. 12-16

Interacting with the Database Server . 12-17
Determining Features of the Database Server . 12-18
Switching Between Multiple Database Connections . 12-18
Identifying an Explicit Connection. 12-20

vi IBM Informix ESQL/C Programmer’s Manual

Obtaining Available Databases . 12-21
Checking the Status of the Database Server . 12-21
Detaching from a Connection . 12-21
Interrupting an SQL Request . 12-22
Error Checking During Data Transfer . 12-26
Terminating a connection . 12-27

Optimized Message Transfers . 12-27
Restrictions on Optimized Message Transfers . 12-27
Enabling Optimized Message Transfers . 12-28
Error Handling with Optimized Message Transfers . 12-29

Using Database Server Control Functions . 12-30
The Timeout Program . 12-31

Compiling the Program . 12-31
Guide to the timeout.ec File . 12-31
Example Output . 12-43

Using ESQL/C Connection Library Functions in a Windows Environment 12-46

Chapter 13. Using Informix libraries . 13-1
Choosing a version of the Informix general libraries . 13-2

The Informix general libraries . 13-2
The esql command . 13-3
Link static Informix general libraries . 13-3
Link shared Informix general libraries . 13-4
Choosing Between Shared and Static Library Versions 13-5

Compatibility of Preexisting ESQL/C Applications with Current Library Versions 13-6
Using the ifx_getversion Utility (UNIX) . 13-7
Checking the API Version of a Library . 13-8

Create thread-safe ESQL/C applications . 13-9
Characteristics of thread-safe ESQL/C code . 13-9
Programming a Thread-Safe ESQL/C Application . 13-10
Linking Thread-Safe Libraries . 13-16

Using ESQL/C Thread-Safe Decimal Functions . 13-18
Context Threaded Optimization . 13-18
A Sample Thread-Safe Program. 13-19

Source Listing . 13-19
Output . 13-24

Creating a Dynamic Thread Library on UNIX Operating Systems 13-24
Data Types . 13-26
Registering the Dynamic Thread Functions . 13-29
Setting the $THREADLIB Environment Variable . 13-31
Creating the Shared Library . 13-31
Compiling with the -thread and -l Preprocessor Options 13-32

Part 3. Dynamic SQL

Chapter 14. Using Dynamic SQL . 14-1
Using Dynamic SQL . 14-2

Assembling and Preparing the SQL Statement . 14-2
Executing the SQL Statement . 14-6
Freeing Resources . 14-7

Using a Database Cursor . 14-8
Receiving More Than One Row . 14-8
Sending More Than One Row . 14-10
Naming the Cursor . 14-10
Optimizing Cursor Execution . 14-11

The collect.ec Program. 14-21
Optimizing OPEN, FETCH, and CLOSE . 14-22

Restrictions on OPTOFC . 14-22
Enabling the OPTOFC Feature . 14-23

Using OPTOFC and Deferred-PREPARE Together . 14-24

Contents vii

SQL Statements That Are Known at Compile Time . 14-25
Executing Non-SELECT Statements . 14-25
Executing SELECT Statements . 14-26
The lvarptr.ec Program . 14-29
Executing User-Defined Routines in IBM Informix . 14-30
Execute statements with input parameters . 14-33

SQL Statements That Are Not Known at Compile Time. 14-38

Chapter 15. Determining SQL statements . 15-1
Using Dynamic-Management Structure . 15-1

A System-Descriptor Area . 15-2
An sqlda Structure . 15-5

Using the DESCRIBE Statement . 15-8
Determining the Statement Type . 15-9
Determining the Data Type of a Column . 15-13
Determining Input Parameters . 15-15
Checking for a WHERE Clause . 15-15

Determining Statement Information at Runtime . 15-16
Handling an Unknown Select List . 15-16
Handling an Unknown Column List . 15-17
Determining Unknown Input Parameters . 15-17
Determining Return Values Dynamically . 15-18
Handling Statements That Contain User-Defined Data Types 15-19

Using a Fetch Array . 15-22
Allocating Memory for the Fetch Arrays . 15-30
Obtaining Values from Fetch Arrays . 15-34
Freeing Memory for a Fetch Array. 15-35

Chapter 16. Using a system-descriptor area 16-1
Managing a System-Descriptor Area . 16-3

Allocating Memory for a System-Descriptor Area . 16-3
Initializing the System-Descriptor Area . 16-4
Assigning and Obtaining Values from a System-Descriptor Area 16-5
Specifying Input Parameter Values . 16-7
Putting Column Values into a System-Descriptor Area 16-7
Freeing Memory Allocated to a System-Descriptor Area 16-8

Using a System-Descriptor Area . 16-8
Handling an Unknown Select List . 16-9

Executing a SELECT That Returns Multiple Rows . 16-9
Executing a Singleton SELECT . 16-13

Handling Unknown Return Values . 16-13
Executing a noncursor function . 16-14
Executing a Cursor Function. 16-17

Handling an unknown column list . 16-18
Executing a Simple Insert. 16-18
Executing an INSERT That Is Associated with a Cursor. 16-22

Handling a Parameterized SELECT Statement . 16-22
Executing a parameterized SELECT that returns multiple rows 16-23
Executing a Parameterized Singleton SELECT . 16-27

Handling a parameterized user-defined routine . 16-27
Executing a parameterized function . 16-27
Executing a parameterized procedure. 16-27

Handling a Parameterized UPDATE or DELETE Statement 16-28
The dyn_sql Program . 16-28

Compiling the Program . 16-28
Guide to the dyn_sql.ec File . 16-28

Chapter 17. Using an sqlda structure . 17-1
Managing an sqlda structure . 17-2

Defining an sqlda Structure . 17-3

viii IBM Informix ESQL/C Programmer’s Manual

Allocating Memory for the sqlda Structure . 17-3
Initializing the sqlda Structure . 17-4
Allocating Memory for Column Data . 17-6
Assigning and Obtaining Values from an sqlda Structure 17-8
Specifying Input Parameter Values . 17-8
Putting Column Values into an sqlda Structure . 17-9
Freeing Memory Allocated to an sqlda Structure . 17-10

Using an sqlda Structure . 17-10
Handling an Unknown Select List . 17-11

Executing a SELECT That Returns Multiple Rows . 17-11
Executing a Singleton SELECT . 17-16

Handling Unknown Return Values . 17-16
Executing a Noncursor Function . 17-17
Executing a Cursor Function. 17-17

Handling an unknown column list . 17-18
Executing a Simple Insert. 17-19
Executing an INSERT That Is Associated with a Cursor. 17-19

Handling a Parameterized SELECT Statement . 17-20
Executing a Parameterized SELECT That Returns Multiple Rows 17-21
Executing a Parameterized Singleton SELECT . 17-25

Handling a Parameterized User-Defined Routine . 17-26
Executing a Parameterized Function . 17-26
Executing a Parameterized Procedure. 17-26

Handling a Parameterized UPDATE or DELETE Statement 17-27

Appendix A. The ESQL/C example programs A-1

Appendix B. ESQL/C function library . B-1
IBM Informix ESQL/C library functions . B-1
The bigintcvasc() function . B-5
The bigintcvdbl() function . B-6
The bigintcvdec() function . B-6
The bigintcvflt() function . B-6
The bigintcvifx_int8() function . B-7
The bigintcvint2() function . B-7
The bigintcvint4() function . B-7
The biginttoasc() function . B-8
The biginttodbl() function . B-8
The biginttodec() function . B-8
The biginttoflt() function. B-9
The biginttoifx_int8() function . B-9
The biginttoint2() function . B-9
The biginttoint4() function. B-10
The bycmpr() function . B-10
The bycopy() function . B-12
The byfill() function . B-13
The byleng() fucntion . B-14
The decadd() function . B-15
The deccmp() function . B-17
The deccopy() function . B-18
The deccvasc() function. B-19
The deccvdbl() function . B-21
The deccvflt() function . B-23
The deccvint() function . B-24
The deccvlong() function . B-25
The decdiv() function . B-27
The dececvt() and decfcvt() functions . B-28
The decmul() function . B-32
The decround() function . B-34
The decsub() function . B-35

Contents ix

The dectoasc() function . B-36
The dectodbl() function. B-39
The dectoint() function . B-40
The dectolong() function . B-42
The dectrunc() function. B-43
The dtaddinv() function . B-45
The dtcurrent() function . B-46
The dtcvasc() function . B-47
The dtcvfmtasc() function . B-49
The dtextend() function. B-52
The dtsub() function. B-53
The dtsubinv() function . B-55
The dttoasc() function . B-56
The dttofmtasc() function . B-58
The GetConnect() function (Windows) . B-60
The ifx_cl_card() function . B-62
The ifx_dececvt() and ifx_decfcvt() function . B-63
The ifx_defmtdate() function . B-64
The ifx_dtcvasc() function . B-66
The ifx_dtcvfmtasc() function. B-67
The ifx_dttofmtasc() function . B-69
The ifx_getenv() function . B-71
The ifx_getcur_conn_name() function . B-72
The ifx_getserial8() function . B-72
The ifx_int8add() function . B-73
The ifx_int8cmp() function . B-75
The ifx_int8copy() function . B-76
The ifx_int8cvasc() function . B-78
The ifx_int8cvdbl() function . B-80
The ifx_int8cvdec() function . B-81
The ifx_int8cvflt() function . B-83
The ifx_int8cvint() function . B-84
The ifx_int8cvlong() function . B-86
The ifx_int8div() function . B-87
The ifx_int8mul() function . B-89
The ifx_int8sub() function . B-90
The ifx_int8toasc() function . B-92
The ifx_int8todbl() function . B-94
The ifx_int8todec() function . B-96
The ifx_int8toflt() function. B-99
The ifx_int8toint() function . B-101
The ifx_int8tolong() function . B-103
The ifx_lo_alter() function . B-106
The ifx_lo_close() function . B-107
The ifx_lo_col_info() function . B-107
The ifx_lo_copy_to_file() function . B-108
The ifx_lo_copy_to_lo() function . B-110
The ifx_lo_create() function . B-111
The ifx_lo_def_create_spec() function . B-112
The ifx_lo_filename() function . B-113
The ifx_lo_from_buffer() function . B-114
The ifx_lo_lock() function. B-115
The ifx_lo_open() function . B-116
The ifx_lo_read() function . B-118
The ifx_lo_readwithseek() function . B-119
The ifx_lo_release() function. B-120
The ifx_lo_seek() function . B-121
The ifx_lo_spec_free() function . B-122
The ifx_lo_specget_def_open_flags() function . B-123
The ifx_lo_specget_estbytes() function . B-123
The ifx_lo_specget_extsz() function . B-124

x IBM Informix ESQL/C Programmer’s Manual

The ifx_lo_specget_flags() function . B-125
The ifx_lo_specget_maxbytes() function . B-126
The ifx_lo_specget_sbspace() function . B-127
The ifx_lo_specset_def_open_flags() function . B-128
The ifx_lo_specset_estbytes() function . B-129
The ifx_lo_specset_extsz() function . B-130
The ifx_lo_specset_flags() function. B-131
The ifx_lo_specset_maxbytes() function . B-132
The ifx_lo_specset_sbspace() function. B-132
The ifx_lo_stat() function . B-133
The ifx_lo_stat_atime() function . B-134
The ifx_lo_stat_cspec() function . B-135
The ifx_lo_stat_ctime() function . B-136
The ifx_lo_stat_free() function . B-137
The ifx_lo_stat_mtime_sec() function . B-138
The ifx_lo_stat_refcnt() function . B-138
The ifx_lo_stat_size() function . B-139
The ifx_lo_tell() function . B-140
The ifx_lo_to_buffer() function . B-141
The ifx_lo_truncate() function . B-142
The ifx_lo_unlock() function. B-142
The ifx_lo_write() function . B-143
The ifx_lo_writewithseek() function . B-144
The ifx_lvar_alloc() function . B-146
The ifx_putenv() function . B-146
The ifx_strdate() function. B-147
The ifx_var_alloc() function . B-148
The ifx_var_dealloc() function . B-149
The ifx_var_flag() function . B-150
The ifx_var_freevar() function . B-151
The ifx_var_getdata() function . B-151
The ifx_var_getlen() function . B-152
The ifx_var_isnull() function. B-153
The ifx_var_setdata() function . B-154
The ifx_var_setlen() function . B-154
The ifx_var_setnull() function . B-155
The incvasc() function . B-156
The incvfmtasc() function . B-158
The intoasc() function . B-160
The intofmtasc() function. B-161
The invdivdbl() function . B-163
The invdivinv() function . B-165
The invextend() function . B-167
The invmuldbl() function. B-168
The ldchar() function . B-170
The rdatestr() function . B-171
The rdayofweek() function . B-172
The rdefmtdate() function . B-174
The rdownshift() function . B-176
The ReleaseConnect() function (Windows) . B-177
The rfmtdate() function . B-178
The rfmtdec() function . B-181
The rfmtdouble() function . B-183
The rfmtlong() function . B-185
The rgetlmsg() function . B-188
The rgetmsg() function . B-189
The risnull() function . B-191
The rjulmdy() function . B-193
The rleapyear() function . B-195
The rmdyjul() function . B-196
The rsetnull() function. B-197

Contents xi

The rstod() function . B-200
The rstoi() function . B-201
The rstol() function . B-202
The rstrdate() function . B-204
The rtoday() function . B-205
The rtypalign() function . B-206
The rtypmsize() function . B-209
The rtypname() function . B-211
The rtypwidth() function . B-213
The rupshift() function . B-215
The SetConnect() function (Windows) . B-216
The sqgetdbs() function . B-217
The sqlbreak() function . B-220
The sqlbreakcallback() function. B-221
The sqldetach() function . B-223
The sqldone() function . B-228
The sqlexit() function . B-228
The SqlFreeMem() function . B-229
The sqlsignal() function . B-229
The sqlstart() function . B-231
The stcat() function. B-232
The stchar() function . B-233
The stcmpr() function . B-234
The stcopy() function . B-235
The stleng() function . B-235

Appendix C. Examples for Smart-Large-Object Functions C-1
Prerequisites . C-1
The create_clob.ec program. C-2

Storage characteristics for the example . C-2
The get_lo_info.ec program. C-5
The upd_lo_descr.ec program . C-8

Appendix D. Accessibility . D-1
Accessibility features for IBM Informix . D-1

Accessibility Features . D-1
Keyboard Navigation . D-1
Related Accessibility Information. D-1
IBM and Accessibility . D-1

Dotted Decimal Syntax Diagrams . D-1

Notices . E-1
Trademarks . E-3

Index . X-1

xii IBM Informix ESQL/C Programmer’s Manual

Introduction

This introduction provides an overview of the information in this publication and
describes the conventions it uses.

About this publication
This publication explains how to use IBM® Informix® ESQL/C, the Informix
implementation of embedded Structured Query Language (SQL) for C (ESQL/C),
to create client applications with database-management capabilities. This
publication is a complete guide to the features of Informix ESQL/C that enable
you to interact with the database server, access databases, manipulate the data in
your program, and check for errors. However, certain operating systems do not
support every documented ESQL/C feature. Check the IBM Informix Client
Software Development Kit (Client SDK) Machine Notes for your operating system
to determine exactly which features do not operate in your environment.

This publication progresses from general topics to more advanced programming
techniques and examples.

Types of users
This publication is written primarily for C programmers who want to embed SQL
statements in their programs to access IBM Informix databases.

This publication assumes that you have the following background:
v A working knowledge of your computer, your operating system, and the utilities

that your operating system provides
v Some experience working with relational or object-relational databases, or

exposure to relational database concepts
v C language programming

The following users might also be interested in some of the topics in this book:
v Database server administrators
v Performance engineers

If you have limited experience with relational databases, SQL, or your operating
system, see the IBM Informix Getting Started Guide for your database server for a
list of supplementary titles.

Software dependencies
In places where this publication presents database server-specific information, this
information applies to one of the following database servers:
v IBM Informix Version 11.50
v IBM Informix Extended Parallel Server (XPS)
v IBM Informix SE

If you are using a database server that is not listed here, see your release notes for
information about client behavior on your database server.

© Copyright IBM Corp. 1996, 2010 xiii

Note: All versions of IBM Informix ESQL/C support IPv6. For more information
about using IPv6 see the IBM Informix Administrator's Guide.

Assumptions About Your Locale
IBM Informix products can support many languages, cultures, and code sets. All
culture-specific information is brought together in a single environment, called a
GLS (Global Language Support) locale.

The examples in this publication are written with the assumption that you are
using the default locale, en_us.8859-1. This locale supports U.S. English format
conventions for dates, times, and currency. In addition, this locale supports the ISO
8859-1 code set, which includes the ASCII code set plus many 8-bit characters such
as é, è, and ñ.

If you plan to use nondefault characters in your data or your SQL identifiers, or if
you want to conform to the nondefault collation rules of character data, you need
to specify the appropriate nondefault locale.

For instructions on how to specify a nondefault locale, additional syntax, and other
considerations related to GLS locales, see the IBM Informix GLS User's Guide.

Demonstration Databases
The DB-Access utility, which is provided with your IBM Informix database server
products, includes one or more demonstration databases that contain information
about a fictitious wholesale sporting-goods distributor. You can create and
populate these demonstration databases with command files that are included with
the database server.

Many examples in IBM Informix publications are based on these databases. For a
complete explanation of how to create and populate the demonstration databases,
refer to your IBM Informix DB–Access User's Guide. For a description of the
demonstration databases and their contents, see your IBM Informix Guide to SQL:
Reference.

The scripts that you use to install the demonstration databases reside in the
$INFORMIXDIR/bin directory on UNIX and in the %INFORMIXDIR%\bin
directory on Windows.

For additional information about IBM Informix ESQL/C and the demonstration
database, see Appendix A, “The ESQL/C example programs,” on page A-1.

xiv IBM Informix ESQL/C Programmer’s Manual

What's new in ESQL/C for Client SDK, Version 3.50
This publication includes information about new features and changes in existing
functionality. The following changes and enhancements are relevant to this
publication.

Table 1. What's New in IBM Informix ESQL/C Programmer's Manual for Version 3.50.xC8

Overview Reference

New editions and product names

IBM Informix Dynamic Server editions were
withdrawn and new Informix editions are
available. Some products were also renamed.
The publications in the Informix library
pertain to the following products:

v IBM Informix database server, formerly
known as IBM Informix Dynamic Server
(IDS)

v IBM Informix OpenAdmin Tool for
Informix, formerly known as OpenAdmin
Tool for Informix Dynamic Server (IDS)

v IBM Informix SQL Warehousing Tool,
formerly known as Informix Warehouse
Feature

For more information about the Informix
product family, go to http://www.ibm.com/
software/data/informix/.

Table 2. What's New in IBM Informix ESQL/C Programmer's Manual for Version 3.50.xC4

Overview Reference

Error Checking During Data Transfer

With the IFX_LOB_XFERSIZE environment
variable, you can specify the number of
kilobytes in a CLOB or BLOB to transfer
from a client application to the database
server before checking whether an error has
occurred.

“Error Checking During Data Transfer” on
page 12-26

Table 3. What's New in IBM Informix ESQL/C Programmer's Manual for Version 3.50.xC1

Overview Reference

This release introduces two data types,
BIGINT and BIGSERIAL. These data types
have the same ranges as the existing INT8
and SERIAL8 data types, and have storage
and computational advantages.

“SQL Data Type Constants” on page 3-4

“Choosing data types for host variables” on
page 3-1

Example Code Conventions
Examples of SQL code occur throughout this publication. Except as noted, the code
is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by
semicolons. For instance, you might see the code in the following example:
CONNECT TO stores_demo
...

DELETE FROM customer

Introduction xv

++

++

+

+
+
+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+

http://www.ibm.com/software/data/informix
http://www.ibm.com/software/data/informix

WHERE customer_num = 121
...

COMMIT WORK
DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules for
that product. For example, if you are using an SQL API, you must use EXEC SQL
at the start of each statement and a semicolon (or other appropriate delimiter) at
the end of the statement. If you are using DB-Access, you must delimit multiple
statements with semicolons.

Tip: Ellipsis points in a code example indicate that more code would be added in
a full application, but it is not necessary to show it to describe the concept
being discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the documentation for your product.

Additional Documentation
Documentation about this release of IBM Informix products is available in various
formats.

All of the product documentation (including release notes, machine notes, and
documentation notes) is available from the information center on the Web at
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp. Alternatively,
you can access or install the product documentation from the Quick Start CD that
is shipped with the product.

Compliance with Industry Standards
IBM Informix products are compliant with various standards.

IBM Informix SQL-based products are fully compliant with SQL-92 Entry Level
(published as ANSI X3.135-1992), which is identical to ISO 9075:1992. In addition,
many features of IBM Informix database servers comply with the SQL-92
Intermediate and Full Level and X/Open SQL Common Applications Environment
(CAE) standards.

The IBM Informix Geodetic DataBlade Module supports a subset of the data types
from the Spatial Data Transfer Standard (SDTS)—Federal Information Processing
Standard 173, as referenced by the document Content Standard for Geospatial
Metadata, Federal Geographic Data Committee, June 8, 1994 (FGDC Metadata
Standard).

IBM Informix Dynamic Server (IDS) Enterprise Edition, Version 11.50 is certified
under the Common Criteria. For more information, see Common Criteria
Certification: Requirements for IBM Informix Dynamic Server, which is available at
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US
&FNC=SRX&PBL=SC23-7690-00.

xvi IBM Informix ESQL/C Programmer’s Manual

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=SC23-7690-00
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=SC23-7690-00

Syntax Diagrams
Syntax diagrams use special components to describe the syntax for statements and
commands.

Table 4. Syntax Diagram Components

Component represented in PDF Component represented in HTML Meaning

>>---------------------- Statement begins.

-----------------------> Statement continues on next
line.

>----------------------- Statement continues from
previous line.

----------------------->< Statement ends.

--------SELECT---------- Required item.

--+-----------------+---
’------LOCAL------’

Optional item.

---+-----ALL-------+---
+--DISTINCT-----+
’---UNIQUE------’

Required item with choice.
One and only one item must
be present.

---+------------------+---
+--FOR UPDATE-----+
’--FOR READ ONLY--’

Optional items with choice
are shown below the main
line, one of which you might
specify.

.---NEXT---------.
----+----------------+---

+---PRIOR--------+
’---PREVIOUS-----’

The values below the main
line are optional, one of
which you might specify. If
you do not specify an item,
the value above the line will
be used as the default.

.-------,-----------.
V |
---+-----------------+---

+---index_name---+
’---table_name---’

Optional items. Several items
are allowed; a comma must
precede each repetition.

>>-| Table Reference |->< Reference to a syntax
segment.

Table Reference

|--+-----view--------+--|
+------table------+
’----synonym------’

Syntax segment.

Introduction xvii

How to Read a Command-Line Syntax Diagram
Command-line syntax diagrams use similar elements to those of other syntax
diagrams.

Some of the elements are listed in the table in Syntax Diagrams.

Creating a No-Conversion Job

�� onpladm create job job
-p project

-n -d device -D database �

� -t table �

� �
(1)

Setting the Run Mode
-S server -T target

��

Notes:

1 See page Z-1

This diagram has a segment named “Setting the Run Mode,” which according to
the diagram footnote is on page Z-1. If this was an actual cross-reference, you
would find this segment in on the first page of Appendix Z. Instead, this segment
is shown in the following segment diagram. Notice that the diagram uses segment
start and end components.

Setting the Run Mode:

-f
d
p
a

l
c

u n N

To see how to construct a command correctly, start at the top left of the main
diagram. Follow the diagram to the right, including the elements that you want.
The elements in this diagram are case sensitive because they illustrate utility
syntax. Other types of syntax, such as SQL, are not case sensitive.

The Creating a No-Conversion Job diagram illustrates the following steps:
1. Type onpladm create job and then the name of the job.
2. Optionally, type -p and then the name of the project.
3. Type the following required elements:
v -n

v -d and the name of the device
v -D and the name of the database
v -t and the name of the table

xviii IBM Informix ESQL/C Programmer’s Manual

4. Optionally, you can choose one or more of the following elements and repeat
them an arbitrary number of times:
v -S and the server name
v -T and the target server name
v The run mode. To set the run mode, follow the Setting the Run Mode

segment diagram to type -f, optionally type d, p, or a, and then optionally
type l or u.

5. Follow the diagram to the terminator.

Keywords and Punctuation
Keywords are words reserved for statements and all commands except
system-level commands.

When a keyword appears in a syntax diagram, it is shown in uppercase letters.
When you use a keyword in a command, you can write it in uppercase or
lowercase letters, but you must spell the keyword exactly as it appears in the
syntax diagram.

You must also use any punctuation in your statements and commands exactly as
shown in the syntax diagrams.

Identifiers and Names
Variables serve as placeholders for identifiers and names in the syntax diagrams
and examples.

You can replace a variable with an arbitrary name, identifier, or literal, depending
on the context. Variables are also used to represent complex syntax elements that
are expanded in additional syntax diagrams. When a variable appears in a syntax
diagram, an example, or text, it is shown in lowercase italic.

The following syntax diagram uses variables to illustrate the general form of a
simple SELECT statement.

�� SELECT column_name FROM table_name ��

When you write a SELECT statement of this form, you replace the variables
column_name and table_name with the name of a specific column and table.

How to Provide Documentation Feedback
You are encouraged to send your comments about IBM Informix user
documentation.

Use one of the following methods:
v Send e-mail to docinf@us.ibm.com.
v Go to the information center at http://publib.boulder.ibm.com/infocenter/

idshelp/v115/index.jsp and open the topic that you want to comment on. Click
the feedback link at the bottom of the page, fill out the form, and submit your
feedback.

v Add comments to topics directly in the Informix information center and read
comments that were added by other users. Share information about the product
documentation, participate in discussions with other users, rate topics, and

Introduction xix

mailto:docinf@us.ibm.com
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp

more! Find out more at http://publib.boulder.ibm.com/infocenter/idshelp/
v115/topic/com.ibm.start.doc/contributing.htm.

Feedback from all methods is monitored by those who maintain the user
documentation. The feedback methods are reserved for reporting errors and
omissions in our documentation. For immediate help with a technical problem,
contact IBM Technical Support. For instructions, see the IBM Informix Technical
Support website at http://www.ibm.com/planetwide/.

We appreciate your suggestions.

xx IBM Informix ESQL/C Programmer’s Manual

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.start.doc/contributing.htm
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.start.doc/contributing.htm
http://www.ibm.com/planetwide/

Part 1. What Is IBM Informix ESQL/C

© Copyright IBM Corp. 1996, 2010

IBM Informix ESQL/C Programmer’s Manual

Chapter 1. Programming with IBM Informix ESQL/C

What Is IBM Informix ESQL/C? . 1-2
ESQL/C Components. 1-2

ESQL/C Files for Windows . 1-2
ESQL/C Library Functions . 1-3

Creating an ESQL/C Program . 1-3
Embedding SQL Statements. 1-4

Handling Case Sensitivity in Embedded SQL Statements 1-5
Using Quotation Marks and Escape Characters . 1-6

Including Newline in Quoted Strings . 1-7
Adding Comments . 1-8
Specifying Host Variables . 1-8

Declaring and Using Host Variables . 1-9
Declaring a Host Variable . 1-9

Host-Variable Names . 1-10
Host-Variable Data Types . 1-10
Initial Host-Variable Values . 1-10
Scope of Host Variables. 1-10
Sample Host-Variable Declarations . 1-11

Assigning a Value to a Host Variable . 1-12
SQL Identifiers . 1-12
Null values in host variables . 1-15

Using Host Variables in Data Structures . 1-16
Arrays of host variables . 1-16
C structures as host variables . 1-16
C typedef statements as host variables . 1-17
Pointers as host variables . 1-17
Function parameters as host variables . 1-18

Using Host Variables in Windows Environments . 1-20
Declaring Variables with Non-ANSI Storage-Class Modifiers 1-20

Using Indicator Variables . 1-21
Declaring Indicator Variables . 1-22
Associating an Indicator Variable with a Host Variable 1-22
Indicating Null Values . 1-23
Indicating truncated values . 1-23
An Example Using Indicator Variables . 1-24

Using ESQL/C Header Files . 1-25
Declaring Function Prototypes . 1-27
Including Header Files . 1-27

Using ESQL/C Preprocessor Directives . 1-28
The include Directive . 1-29
The define and undef Directives . 1-30
The ifdef, ifndef, elif, else, and endif Directives . 1-30

Setting and Retrieving Environment Variables in Windows Environments 1-31
InetLogin structure . 1-33

Fields of the InetLogin Structure . 1-33
InetLogin field values . 1-36
Precedence of Configuration Values. 1-37

Using Global ESQL/C Variables in a Windows Environment 1-38
A Sample IBM Informix ESQL/C Program . 1-39

Compiling the demo1 Program . 1-39
Guide to demo1.ec File . 1-39

Line 1 . 1-39
Lines 2 to 3 . 1-39
Lines 4 to 9 . 1-40
Lines 10 to 12 . 1-40

© Copyright IBM Corp. 1996, 2010 1-1

Lines 13 to 17 . 1-40
Line 18 . 1-40
Lines 19 to 25 . 1-40
Lines 26 to 27 . 1-41
Lines 28 to 29 . 1-41
Lines 30 to 32 . 1-41

These topics contain the following information:
v What is IBM Informix ESQL/C?
v Declaring and using host variables in SQL statements
v Embedding SQL statements in C programs
v Using Informix ESQL/C preprocessor directives
v Using Informix ESQL/C header files
v Setting and retrieving Informix ESQL/C environment variables in Windows

environments

The last section of these topics, “A Sample IBM Informix ESQL/C Program” on
page 1-39, presents the demo1 sample program, which is annotated. The demo1
program illustrates the basic concepts of Informix ESQL/C programming that these
topics introduce.

What Is IBM Informix ESQL/C?
IBM Informix ESQL/C is an SQL application programming interface (API) that
enables you to embed Structured Query Language (SQL) statements directly into a
C program. The Informix ESQL/C preprocessor, esql, converts each SQL statement
and all IBM Informix-specific code to C-language source code and starts the C
compiler to compile it.

ESQL/C Components
IBM Informix ESQL/C consists of the following software components:
v The Informix ESQL/C libraries of C functions, which provide access to the

database server.
v The Informix ESQL/C header files, which provide definitions for the data

structures, constants, and macros useful to the Informix ESQL/C program.
v The esql command, which processes the Informix ESQL/C source code to create

a C source file that it passes to the C compiler.
v The finderr utility on the UNIX system and the Informix Error Messages

Windows-based utility that enable you to obtain information about IBM
Informix-specific error messages.

v The IBM Informix GLS locale and code-set-conversion files, which provide
locale-specific information.
For more information about these files, see the IBM Informix GLS User's Guide.

ESQL/C Files for Windows
For Windows environments, the IBM Informix ESQL/C product contains the
following additional executable files:
v The Setnet32 utility is a Windows-based utility that enables you to set

configuration information.
For more information, see the IBM Informix Client Products Installation Guide.

1-2 IBM Informix ESQL/C Programmer’s Manual

v The ILOGIN utility is a demonstration program that opens a dialog box with
fields for the connection parameters, for testing a connection to the database
server (uses the stores7 database).
For more information, see the IBM Informix Client Products Installation Guide.

v The ESQLMF.EXE multibyte filter changes escape characters in multibyte strings
into hexadecimal literals.

These Informix ESQL/C executable files are located in the %INFORMIXDIR%\
bin, %INFORMIXDIR%\lib, and %INFORMIXDIR%\demo directories. The
%INFORMIXDIR% variable represents the value of the INFORMIXDIR
environment variable.

ESQL/C Library Functions
The IBM Informix ESQL/C library contains a set of C functions that you can use in
your application. The library functions are described in Appendix B, “ESQL/C
function library,” on page B-1. These functions fall into the following categories:
v Data type alignment library functions provide support for computer-

independent size and alignment information for different data types and assist
in working with null database values.

v Character and string library functions provide character-based manipulations
such as comparison and copying.

v DECIMAL library functions support access to DECIMAL values through the
decimal structure.

v Formatting functions enable you to specify display formats for different data
types.

v DATE library functions support access to DATE values.
v DATETIME and INTERVAL library functions support access to values of these

data types through the datetime and interval structures.
v Error message functions provide support for obtaining and formatting

Informix-specific error-message text.
v Database server control functions enable your application to implement such

features as canceling queries and terminating connections.
v INT8 library functions enable you to access INT8 values through the int8

structure.
v Smart-large-object library functions provide a file-like interface to the BLOB and

CLOB data types.

Creating an ESQL/C Program
You create an IBM Informix ESQL/C program with the following steps:
1. Embed Informix ESQL/C statements in a C-language source program to

perform the following tasks:
v Define host variables to store data for transfer between the Informix ESQL/C

program and the database server.
v Access the database server through SQL statements.
v Provide directives for the Informix ESQL/C preprocessor and the C compiler.

2. Preprocess the Informix ESQL/C source file with the esql command to create a
C-language source file and start the C compiler.

3. As necessary, correct errors reported by the preprocessor and the compiler and
repeat step 2.

4. Using the esql command, link the compiled object code into one or more
executable files.

Chapter 1. Programming with IBM Informix ESQL/C 1-3

An Informix ESQL/C source file can contain the following types of statements:
v Preprocessor directives

– Informix ESQL/C preprocessor directives to create simple macro definitions,
include Informix ESQL/C files, and perform conditional Informix ESQL/C
compilation.

– C preprocessor directives to create macro definitions, include system and C
source files, and perform conditional C compilation.

v Language statements
– Informix ESQL/C host variable definitions to store data for transfer between

the Informix ESQL/C program and the database server.
– Embedded SQL statements to communicate with the database server.
– C language statements to provide program logic.

For information about C preprocessor directives and C language statements, see a
C programming text. This chapter provides an overview of embedded SQL
statements (1-4), Informix ESQL/C host variables (1-9), Informix ESQL/C
preprocessor directives (1-28), and Informix ESQL/C header files (1-25).

Your Informix ESQL/C source code file name can have either of the following
forms:
v esqlc_source.ec

v esqlc_source.ecp

The particular suffix that your Informix ESQL/C source file has determines the
default order in which that source file gets compiled by the esql command. The .ec
suffix is the default suffix. For more information about the .ecp suffix and the
non-default order of compilation, see “Running the C Preprocessor Before the
ESQL/C Preprocessor” on page 2-17.

Embedding SQL Statements
An IBM Informix ESQL/C program can use SQL statements to communicate with
the database server. The program can use both static and dynamic SQL statements.
A static SQL statement is one in which all the components are known when you
compile the program. A dynamic SQL statement is one in which you do not know
all the components at compile time; the program receives all or part of the
statement at runtime. For a description of dynamic SQL, see Chapter 14, “Using
Dynamic SQL,” on page 14-1.

You can embed SQL statements in a C function with one of two formats:
v The EXEC SQL keywords:

EXEC SQL SQL_statement;

Using EXEC SQL keywords is the ANSI-compliant method to embed an SQL
statement.

v The dollar sign ($) notation:
$SQL_statement;

In either of these formats, replace SQL_statement with the complete text of a valid
statement. Informix ESQL/C statements can include host variables in most places
where you can use a constant. For any exceptions, see the syntax of individual
statements in the IBM Informix Guide to SQL: Syntax.

1-4 IBM Informix ESQL/C Programmer’s Manual

This section describes the following topics that are related to using embedded SQL
statements in an Informix ESQL/C program:
v Case sensitivity of identifiers
v Using quotation marks and escape characters
v Commenting statements
v Host variables
v Header files

Handling Case Sensitivity in Embedded SQL Statements
The following table describes how the IBM Informix ESQL/C preprocessor treats
uppercase and lowercase letters.

Table 1-1. Case Sensitivity in ESQL/C Files

ESQL/C Identifier
Case
Sensitive Example

Host variable Yes Informix ESQL/C treats the variables fname and Fname as distinct variables:

EXEC SQL BEGIN DECLARE SECTION;
char fname[16], lname[16];
char Fname[16];

EXEC SQL END DECLARE SECTION;

This sample does not generate a warning from the preprocessor. For more
information about host variables, see “Declaring and Using Host Variables” on
page 1-9.

Variable types Yes Both Informix ESQL/C and C treat the names of data types as case sensitive.
The CHAR type in the following example is considered distinct from the char
data type and it generates an error:

EXEC SQL BEGIN DECLARE SECTION;
char fname[16], lname[16];
CHAR Fname[16];

EXEC SQL END DECLARE SECTION;

The CHAR type does not generate an error, however, if you provide a typedef
statement for it. In the following example, the CHAR type does not generate
an error:

typedef char CHAR;

EXEC SQL BEGIN DECLARE SECTION;
char fname[16], lname[16];
CHAR Fname[16];

EXEC SQL END DECLARE SECTION;

SQL keyword No Both CONNECT statements are valid ways of establishing a connection to the
stores7 demonstration database:

EXEC SQL CONNECT TO ’stores7’;
or
EXEC SQL connect to ’stores7’;

In examples given in this publication, SQL keywords are displayed as
lowercase characters.

Chapter 1. Programming with IBM Informix ESQL/C 1-5

Table 1-1. Case Sensitivity in ESQL/C Files (continued)

ESQL/C Identifier
Case
Sensitive Example

Statement identifiers

Cursor names

No The following example shows the creation of statement IDs and cursor names:

EXEC SQL prepare st from
’select * from tab1’;

/* duplicate */
EXEC SQL prepare ST from

’insert into tab2
values (1,2)’;

EXEC SQL declare curname cursor
for st;

/* duplicate */
EXEC SQL declare CURNAME cursor

for ST;

This code produces errors because the statement IDs st and ST are duplicates,
as are the cursor names curname and CURNAME. For more information about
statement IDs and cursor names, see the IBM Informix Guide to SQL: Syntax.

Using Quotation Marks and Escape Characters
An escape character indicates to the Informix ESQL/C preprocessor that it should
print the following character as a literal character instead of interpreting it. You can
use the escape character with an interpreted character to make the compiler escape,
or ignore, the interpreted meaning.

In ANSI SQL, the backslash character (\) is the escape character. To search for data
that begins with the string \abc, the WHERE clause must use an escape character
as follows:
... where col1 = ’\\abc’;

However, ANSI standards specify that using the backslash character (\) to escape
single (' ') or double (" ") quotation marks is invalid. For example, the following
attempt to find a quotation mark does not conform to ANSI standards:
... where col1 = ’\’’;

In nonembedded tools such as DB-Access, you can escape a quotation mark with
either of the following methods:
v You can use the same quotation mark as an escape character, as follows:

... where col1 = ’’’’;

v You can use an alternative quotation mark. For example, to look for a double
quotation mark, you can enclose this double quotation mark with quotation
marks, as follows:
... where col1 = ’ "’;

The following figure shows a SELECT statement with a WHERE clause that
contains a double quotation mark enclosed with quotation marks.

For the WHERE clause in Table 1-2, the Informix ESQL/C preprocessor does not
process a double quotation mark; it passes it on to the C compiler. When the C

EXEC SQL select col1 from tab1 where col1 = ’ "’;

Figure 1-1. A SELECT Statement with an Invalid WHERE Clause

1-6 IBM Informix ESQL/C Programmer’s Manual

compiler receives the string ' " ' (double quotation mark enclosed with quotation
marks), it interprets the first quotation mark as the start of a string and the double
quotation mark as the end of a string. The compiler cannot match the quotation
mark that remains and therefore generates an error.

To cause the C compiler to interpret the double quotation mark as a character,
precede the double quotation mark with the C escape character, the backslash (\).
The following example illustrates the correct syntax for the query in Table 1-2:
EXEC SQL select col1 from tab1 where col1 = ’\"’;

Because both C and ANSI SQL use the backslash character as the escape character,
be careful when you search for the literal backslash in embedded queries. The
following query shows the correct syntax to search for the string "\" (where the
double quotation marks are part of the string):
EXEC SQL select col1 from tab1 where col1 = ’\"\\\\\"’;

This string requires five backslashes to obtain the correct interpretation. Three of
the backslashes are escape characters, one for each double quotation mark and one
for the backslash. Table 1-2 shows the string after it passes through each of the
processing steps.

Table 1-2. Escaped Query String As It Is Processed

Processor After Processing

ESQL/C preprocessor '\"\\\\\"'

C compiler '"\\"'

ANSI-compliant database server '"\"'

Informix ESQL/C supports strings in either quotation marks ('string') or double
quotation marks ("string"). However, the C language supports strings only in
double quotation marks. Therefore, the Informix ESQL/C preprocessor converts
every statement in an Informix ESQL/C source file into a double-quoted string.

Including Newline in Quoted Strings
IBM Informix ESQL/C does not allow a newline character (0x0A) in a quoted
string. The database server does allow a newline character in a quoted string,
however, if you specify that you want to allow it. Consequently, you can include
the newline character in a quoted string that is part of a dynamically prepared
SQL statement because the database server, rather than Informix ESQL/C,
processes the prepared statement. For more information about dynamic SQL
programs, see Chapter 14, “Using Dynamic SQL,” on page 14-1.

You can specify that you want the database server to allow the newline character
in a quoted string either on a per session basis or on an all session basis. A session is
the duration of the client connection to the database server.

To allow or disallow a newline character in a quoted string for a particular session,
you must execute the user-defined routine ifx_allow_newline(boolean). The
following example illustrates how to start the ifx_allow_newline() user-defined
routine to allow newlines in quoted strings:
EXEC SQL execute procedure ifx_allow_newline(’t’);

To disallow newline in quoted strings, change the argument to f as in the
following example:
EXEC SQL execute procedure ifx_allow_newline(’f’);

Chapter 1. Programming with IBM Informix ESQL/C 1-7

To allow or disallow a newline character in a quoted string for all sessions, set the
ALLOW_NEWLINE parameter in the ONCONFIG file. A value of 1 allows the
newline character. A value of 0 (zero) disallows the newline character. For more
information about the ALLOW_NEWLINE parameter, see your IBM Informix
Administrator's Guide.

Adding Comments
To add comments to an IBM Informix ESQL/C program, you can use either of the
following formats:
v You can use a double dash (--) comment indicator on any Informix ESQL/C

statement. The statement must begin with either EXEC SQL or $ and terminate
with a semicolon. The comment continues to the end of the line.
For example, the comment on the first of the following lines notes that the
Informix ESQL/C statement opens the stores7 demonstration database:
EXEC SQL database stores7; -- stores7 database is open now!
printf("\nDatabase opened\n"); /* This is not an ESQL/C */

/* line so it needs a */
/* regular C notation */
/* for a comment */

v You can use a standard C comment on an Informix ESQL/C line, as the
following example shows:
EXEC SQL begin work; /* You can also use a C comment here */

Specifying Host Variables
Host variables are IBM Informix ESQL/C or C variables that you use in embedded
SQL statements to transfer data between database columns and the Informix
ESQL/C program. When you use a host variable in an SQL statement, you must
precede its name with a symbol to distinguish it as a host variable. You can use
either of the following symbols:
v A colon (:)

For example, to specify the host variable that is called hostvar as a connection
name, use the following syntax:
EXEC SQL connect to :hostvar;

v A dollar sign ($)
For example, to specify the host variable that is called hostvar as a connection
name, use the following syntax:
EXEC SQL connect to $hostvar;

Important: Using the colon (:) as a host-variable prefix conforms to ANSI SQL
standards.

When you list more than one host variable within an SQL statement, separate the
host variables with commas (,). For example, the esql command interprets the
following line as two host variables, host1 and host2:
EXEC SQL select fname, lname into :host1, :host2 from customer;

If you omit the comma, esql interprets the second variable as an indicator variable
for the first host variable. The esql command interprets the following line as one
host variable, host1, and one indicator variable, host2, for the host1 host variable:
EXEC SQL select fname, lname into :host1 :host2 from customer;

For more information about the syntax of indicator variables, see “Using Indicator
Variables” on page 1-21.

1-8 IBM Informix ESQL/C Programmer’s Manual

Outside an SQL statement, treat a host variable as you would a regular C variable.
For more information about how to declare and use host variables, see “Declaring
and Using Host Variables” on page 1-9.

Declaring and Using Host Variables
In an IBM Informix ESQL/C application, the SQL statements can refer to the
contents of host variables. A host variable is an Informix ESQL/C program variable
that you use to transfer information between the Informix ESQL/C program and
the database.

You can use host variables in Informix ESQL/C expressions in the same way that
you use literal values except that they cannot be used:
v In prepared statements
v In stored procedures
v In check constraints
v In views
v In triggers
v As part of a string concatenation operation

To use a host variable in an SQL statement:
1. Declare the host variable in the C program.
2. Assign a value to the host variable.
3. Specify the host variable in an embedded SQL statement.

Declaring a Host Variable
You must define the data storage that a host variable needs before you can use that
variable in an IBM Informix ESQL/C program. To assign an identifier to the
variable and associate it with a data type, you declare the variable.

You declare host variables within the Informix ESQL/C program as C variables,
with the same basic syntax as C variables. To identify the variable as a host
variable, you must declare it in either of the following ways:
v Put the declarations in an ESQL declare section:

EXEC SQL BEGIN DECLARE SECTION;
-- put host variable declarations here

EXEC SQL END DECLARE SECTION;

Make sure you terminate the statements EXEC SQL BEGIN DECLARE SECTION
and EXEC SQL END DECLARE SECTION with semicolons.

v Preface each declaration with a dollar sign ($).

Important: Using the EXEC SQL BEGIN DECLARE SECTION and EXEC SQL
END DECLARE SECTION keywords conforms to ANSI standards.

Within the declaration itself, you must specify the following information:
v The name of the host variable
v The data type of the host variable
v The initial value of the host variable (optional)
v The scope of the host variable (which the placement of the declaration within

the program determines)

Chapter 1. Programming with IBM Informix ESQL/C 1-9

For examples of the EXEC SQL and dollar sign ($) formats for host-variable
declarations, see “Sample Host-Variable Declarations” on page 1-11.

Host-Variable Names
The name of the host variable must conform to the naming conventions of the C
language. In addition, you must follow any limitations that your C compiler
imposes. In general, a C variable must begin with a letter or an underscore (_) and
can include letters and digits and underscores.

Warning: Many variable names used in the implementation of the IBM Informix
ESQL/C product begin with an underscore. To avoid conflicting with
internal Informix ESQL/C variable names, avoid using an underscore for
the first character of a variable name.

C variable names are case-sensitive, so the variables hostvar and HostVar are
distinct. (For more information, see “Handling Case Sensitivity in Embedded SQL
Statements” on page 1-5.)

You can use non-ASCII (non-English) characters in Informix ESQL/C host-variable
names if your client locale supports these non-ASCII characters. For more
information about how the client locale affects host-variable names, see the IBM
Informix GLS User's Guide.

Tip: Good programming practice requires that you create a naming convention for
host-variable names.

Host-Variable Data Types
Because a host variable is a C variable, you must assign a C data type to the
variable when you declare it. Likewise, when you use a host variable in an SQL
statement, you also associate it with an SQL data type.

For more information about the relationship between SQL data types and C data
types, see Chapter 3, “Informix ESQL/C data types,” on page 3-1. In addition, the
IBM Informix Guide to SQL: Reference contains information about the SQL data
types.

You can also declare host variables as many of the more complex C data types,
such as pointers, structures, typedef expressions, and function parameters. For
more information, see “Using Host Variables in Data Structures” on page 1-16.

Initial Host-Variable Values
IBM Informix ESQL/C allows you to declare host variables with normal C
initializer expressions. Some valid examples of C initializers follow:
EXEC SQL BEGIN DECLARE SECTION;

int varname = 12;
long cust_nos[8] = {0,0,0,0,0,0,0,9999};
char descr[100] = "Steel eyelets; Nylon cording.";

EXEC SQL END DECLARE SECTION;

The Informix ESQL/C preprocessor does not check initializer expressions for valid
C syntax; it copies them to the C source file. The C compiler diagnoses any errors.

Scope of Host Variables
The scope of reference, or the scope, of a host variable is that portion of the program
in which the host variable can be accessed. The placement of the IBM Informix
ESQL/C declaration statement determines the scope of the variable as follows:

1-10 IBM Informix ESQL/C Programmer’s Manual

v If the declaration statement is inside a program block, the variable is local to that
program block.
Only statements within that program block can access the variable.

v If the declaration statement is outside a program block, the variable is modular.
All program blocks that occur after the declaration can access the variable.

Host variables that you declare within a block of code are local to that block. You
define a block of code with a pair of curly braces ({ }).

For example, the host variable blk_int in the following figure is valid only in the
block of code between the curly braces, whereas p_int is valid both inside and
outside the block.

You can nest blocks up to 16 levels. The global level counts as level one.

The following C rules govern the scope of Informix ESQL/C host variables as well:
v A host variable is an automatic variable unless you explicitly define it as an

external or static variable or unless it is defined outside of any function.
v A host variable that a function declares is local to that function and masks a

definition with the same name outside the function.
v You cannot define a host variable more than once in the same block of code.

Sample Host-Variable Declarations
The following figure shows an example of how to use the EXEC SQL syntax to
declare host variables.

EXEC SQL BEGIN DECLARE SECTION;
int p_int;

EXEC SQL END DECLARE SECTION;...
EXEC SQL select customer_num into :p_int from customer

where lname = "Miller";...
{

EXEC SQL BEGIN DECLARE SECTION;
int blk_int;

EXEC SQL END DECLARE SECTION;

blk_int = p_int;

...
EXEC SQL select customer_num into :blk_int from customer

where lname = "Miller";...
}

Figure 1-2. Declaring Host Variables Inside and Outside a Code Block

Chapter 1. Programming with IBM Informix ESQL/C 1-11

The following figure shows an example of how to use the dollar sign ($) notation
to declare host variables.

For information about how to use a host variable in an SQL statement, see
“Specifying Host Variables” on page 1-8.

Assigning a Value to a Host Variable
You can use host variables to contain the following types of information:

SQL identifiers
SQL identifiers include names of parts of the database such as tables,
columns, indexes, and views.

Data Data is information that the database server fetches from or stores in the
database. This information can include null values. A null value indicates
that the value of the column or variable is unknown.

Host variables can be displayed within an SQL statement as syntax allows. (For
information about the syntax of SQL statements, see the IBM Informix Guide to SQL:
Syntax.) However, you must precede the host-variable name with a symbol to
distinguish it from regular C variables. For more information, see “Specifying Host
Variables” on page 1-8.

SQL Identifiers
An SQL identifier is the name of a database object. The following objects are
examples of SQL identifiers:
v Parts of the database schema such as tables, columns, views, indexes, synonyms,

and stored procedure names

EXEC SQL BEGIN DECLARE SECTION;
char *hostvar; /* pointer to a character */
int hostint; /* integer */
double hostdbl; /* double */
char hostarr[80]; /* character array */
struct {

int svar1;
int svar2;

...

} hoststruct; /* structure */
EXEC SQL END DECLARE SECTION;

Figure 1-3. Declaring Host Variables with the EXEC SQL Syntax

$char *hostvar;
$int hostint;
$double hostdbl;
$char hostarr[80];

$struct {
int svar1;
int svar2;

...

} hoststruct;

Figure 1-4. Declaring Host Variables with the Dollar Sign ($) Notation

1-12 IBM Informix ESQL/C Programmer’s Manual

v Dynamic IBM Informix ESQL/C structures such as cursors and statement IDs

As syntax allows, you can use a host variable within an embedded SQL statement
to hold the name of an SQL identifier.

For information about the sizes and naming conventions for SQL identifiers, see
the Identifier segment in the IBM Informix Guide to SQL: Syntax.

Using Long Identifiers: IBM Informix allows identifiers of up to 128 characters in
length, and user names up to 32 characters in length. Other versions of Informix
database servers support an identifier length of 18 characters and a user name
length of 8 characters.

The database server uses the following two criteria to determine whether the client
program can receive long identifiers:
v The internal version number of the client program
v The setting of the IFX_LONGID environment variable

If the IFX_LONGID environment variable is set to 0 (zero) the database server
treats the client as if it cannot handle long identifiers. If IFX_LONGID is set to 1
(one) and the client version is recent enough, then the database server treats the
client as if it is able to receive long identifiers. If IFX_LONGID is not set it is
treated as if it is set to 1 (one).

Important: If you set IFX_LONGID in the environment of the client it will take
effect only for that client. If you set the IFX_LONGID environment
variable in the environment of the database server, it takes effect for all
client programs.

For more information about the IFX_LONGID environment variable, see the IBM
Informix Guide to SQL: Reference.

Client programs that meet the following conditions can use long identifiers and
long user names without recompiling:
v It was compiled with a version of ESQL/C that was released later than version

9.20
v It uses shared libraries (that is, program was compiled without the -static

option)

For more information about how to use shared libraries, see “Specifying Versions
of Informix General Libraries” on page 2-28.

If the database server truncates a long identifier or long user name, it sets the
SQLSTATE variable to '01004' and sets the sqlwarn1 flag to 'W' in the SQL
Communications Area (sqlca). For more information, see Chapter 11, “Exception
handling,” on page 11-1.

Delimited Identifiers: If an identifier name does not conform to naming
conventions, you must use a delimited identifier. A delimited identifier is an SQL
identifier that is enclosed in double quotation marks (" ").

Important: When you use double quotation marks (" ") to delimit identifiers, you
conform to ANSI standards; quotation marks (' ') delimit strings.

Chapter 1. Programming with IBM Informix ESQL/C 1-13

Use delimited identifiers when your program must specify some identifier name
that would otherwise be syntactically invalid. Examples of possible invalid
identifiers include:
v An identifier that is the same as an SQL reserved word.

(For a list of SQL reserved words, see the description of identifiers in the IBM
Informix Guide to SQL: Syntax.)

v An identifier that contains nonalphabetic characters.

To use delimited identifiers, you must compile and run your IBM Informix
ESQL/C program with the DELIMIDENT environment variable set. You can set
DELIMIDENT at either of the following phases:
v At compile time, the Informix ESQL/C preprocessor allows quoted strings in

areas of the SQL syntax where identifiers are valid.
v At runtime, the database server accepts quoted strings in dynamic SQL

statements where identifiers are valid.
Database utilities such as dbexport and DB-Access also accept delimited
identifiers.

Important: When you use the DELIMIDENT environment variable, you can no
longer use double quotation marks (" ") to delimit strings. If you want
to indicate a quoted string, enclose the text with quotation marks (' ').

Delimited identifiers are case-sensitive. All database object names that you place
within quotation marks maintain their case. Keep in mind that Informix ESQL/C
restricts identifier names to a maximum of 128 characters.

Figure 1-5 shows a delimited identifier that specifies nonalphabetic characters in
both a cursor name and a statement ID.

In Figure 1-5, you can also list the cursor name or statement ID directly in the SQL
statement. For example, the following PREPARE statement is also valid (with
DELIMIDENT set):
EXEC SQL prepare "%#!" from

’select customer_num from customer’;

If you set DELIMIDENT, the SELECT string in the preceding PREPARE statement
must be enclosed in quotation marks for the preprocessor to treat it as a string. If
you enclose the statement in double quotation marks, the preprocessor treats it as
an identifier.

EXEC SQL BEGIN DECLARE SECTION;
char curname1[10];
char stmtname[10];

EXEC SQL END DECLARE SECTION;

stcopy("%#!", curname1);
stcopy("(_=", stmtname);
EXEC SQL prepare :stmtname from

’select customer_num from customer’;
EXEC SQL declare :curname1 cursor for $stmtname;
EXEC SQL open :curname;

Figure 1-5. Using Delimited Identifiers for a Cursor Name

1-14 IBM Informix ESQL/C Programmer’s Manual

To declare a cursor name that contains a double quotation mark, you must use
escape characters in the delimited identifier string. For example, to use the string
"abc" as a cursor name, you must escape the initial quotation mark in the cursor
name:
EXEC SQL BEGIN DECLARE SECTION;

char curname2[10];
char stmtname[10];

EXEC SQL END DECLARE SECTION;

stcopy("\"abc\"", curname2);
EXEC SQL declare :curname2 cursor for :stmtname;

In the preceding example, the cursor name requires several escape characters:
v The backslash (\) is the C escape character. You need it to escape the double

quotation mark.
Without the escape character, the C compiler would interpret the double
quotation mark as the end of the string.

v The cursor name must contain two double quotation marks.
The first double quotation mark escapes the double quotation mark and the
second double quotation mark is the literal double quotation mark. The ANSI
standard states that you cannot use a backslash to escape quotation marks.
Instead, you must escape the quotation mark in the cursor name with another
quotation mark.

The following table shows the string that contains the cursor name as it is
processed.

Table 1-3. Escaped Cursor Name String As It Is Processed

Processor After Processing

ESQL/C preprocessor \"\"abc

C Compiler ""abc

ANSI-compliant database server "abc

The following restrictions apply to delimited identifiers:
v You cannot use a delimited identifier for a database name.

This restriction prevents the creation of a database name such as " " and avoids
conflict with the syntax for IBM Informix SE database names.

v You cannot use a delimited identifier for a storage identifier, for instance, the
name of a dbspace.
The DELIMIDENT environment variable applies only to database identifiers.

Null values in host variables
A null value represents unknown or not applicable values. This value is distinct
from all legal values in any given data type. The representation of null values
depends on both the computer and the data type. Often, the representation does
not correspond to a legal value for the C data type. Do not attempt to perform
arithmetic or other operations on a host variable that contains a null value.

A program must, therefore, have some way to recognize a null value. To handle
null values, IBM Informix ESQL/C provides the following features:
v The risnull() and rsetnull() library functions enable you to test whether a host

variable contains a null value and to set a host variable to a null value.

Chapter 1. Programming with IBM Informix ESQL/C 1-15

For a description of these library functions, see Appendix B, “ESQL/C function
library,” on page B-1.

v Indicator variables are special Informix ESQL/C variables that you can associate
with host variables that hold values for database columns that allow null values.
The value of the indicator variable can show whether the associated host
variable contains a null value. For more information, see “Using Indicator
Variables” on page 1-21.

Null values in ANSI-compliant databases:

In an ANSI-compliant database, a host variable that is used in an INSERT
statement or in the WHERE clause of any SQL statement must be null terminated.

Using Host Variables in Data Structures
IBM Informix ESQL/C supports the use of host variables in the following data
structures:
v Arrays
v C structures (struct)
v C typedef statements
v Pointers
v Function parameters

Arrays of host variables
IBM Informix ESQL/C supports the declaration of arrays of host variables. You
must provide an integer value as the size of the array when you declare the array.
An array of host variables can be either one or two dimensional.

You can use elements of an array within Informix ESQL/C statements. For
example, if you provide the following declaration:
EXEC SQL BEGIN DECLARE SECTION;

long customer_nos[10];
EXEC SQL END DECLARE SECTION;

you can use the following syntax:
for (i=0; i<10; i++)
{

EXEC SQL fetch customer_cursor into :customer_nos[i];

...

}

You can also use the array name alone within some SQL statements if the array is
of type CHAR. For information about specific statements, see the IBM Informix
Guide to SQL: Syntax.

C structures as host variables
IBM Informix ESQL/C supports the declaration of a C structure (struct) as a host
variable. You can use the components of the structure within Informix ESQL/C
statements.

The following definition of the cust_rec variable serves as a host variable for the
first three columns of the customer table in the stores7 database:

1-16 IBM Informix ESQL/C Programmer’s Manual

EXEC SQL BEGIN DECLARE SECTION;
struct customer_t

{
int c_no;
char fname[32];
char lname[32];
} cust_rec;

EXEC SQL END DECLARE SECTION;

The following INSERT statement specifies the components of the cust_rec host
variable in its VALUES clause:
EXEC SQL insert into customer (customer_num, fname, lname)

values (:cust_rec.c_no, :cust_rec.fname,
:cust_rec.lname);

If an SQL statement requires a single host variable, you must use the structure
component name to specify the host variable. Informix requires structure
component names in the SET clause of an UPDATE statement.

In SQL statements that allow a list of host variables, you can specify the name of
the C structure and Informix ESQL/C expands the name of the structure variable
to each of its component elements. You can use this syntax with SQL statements
such as the FETCH statement with an INTO clause or the INSERT statement with
a VALUES clause.

The following INSERT statement specifies the entire cust_rec structure in its
VALUES clause:
EXEC SQL insert into customer (customer_num, fname, lname)

values (:cust_rec);

This insert performs the same task as the insert that specifies the individual
component names of the cust_rec structure.

C typedef statements as host variables
IBM Informix ESQL/C supports the C typedef statements and allows the use of
typedef names in declaring the types of host variables. For example, the following
code creates the smallint type as a short integer and the serial type as a long
integer. It then declares a row_nums variable as an array of serial variables and a
variable counter as a smallint.
EXEC SQL BEGIN DECLARE SECTION;

typedef short smallint;
typedef long serial;

serial row_nums [MAXROWS];
smallint counter;

EXEC SQL END DECLARE SECTION;

You cannot use a typedef statement that names a multidimensional array, or a
union, or a function pointer, as the type of a host variable.

Pointers as host variables
You can use a pointer as a host variable provided that your program uses the
pointer to input data to an SQL statement. For example, the following figure shows
how you can associate a cursor with a statement and insert values into a table.

Chapter 1. Programming with IBM Informix ESQL/C 1-17

The following figure shows how to use an integer pointer to input data to an
INSERT statement.

If you use a host variable that is a pointer to char to receive data from a SELECT
statement, you receive a compile-time warning and your results might be
truncated.

Function parameters as host variables
You can use host variables as parameters to functions. You must precede the name
of the host variable with the parameter keyword to declare it as a function
parameter. For example, the following figure shows a code fragment with a
Kernighan and Ritchie-style prototype declaration that expects three parameters,
two of which are host variables.

EXEC SQL BEGIN DECLARE SECTION;
char *s;
char *i;

EXEC SQL END DECLARE SECTION;

/* Code to allocate space for two pointers not shown */

s = "select * from cust_calls";
i = "NS";

...

EXEC SQL prepare x from :s;
EXEC SQL insert into state values (:i, ’New State’);

Figure 1-6. Declaring a character pointer to input data

EXEC SQL BEGIN DECLARE SECTION;
short *i;
int *o;
short *s;

EXEC SQL END DECLARE SECTION;

short i_num = 3;
int o_num = 1002;
short s_num = 8;

i = &i_num;
o = &o_num;
s = &s_num;

EXEC SQL connect to ’stores7’;
EXEC SQL insert into items values (:*i, :*o, :*s, ’ANZ’, 5, 125.00);
EXEC SQL disconnect current;

Figure 1-7. Declaring an integer pointer to input data

1-18 IBM Informix ESQL/C Programmer’s Manual

You can also declare parameter host variables with the dollar sign ($) notation. For
example, Figure 1-9 shows the function header in Figure 1-8, with the dollar sign
($) notation.

You can declare parameters in an ANSI-style prototype function declaration as host
variables as well. You can also put all parameters to a prototype function
declaration inside the EXEC SQL declare section, even if some of the parameters
cannot be used as host variables. Figure 1-10 on page 1-19 shows that the function
pointer f can be included in the EXEC SQL declare section, even though it is not a
valid host-variable type and cannot be used as a host variable.

The functionality that allows inclusion of function parameters inside of the EXEC
SQL declare section is in compliance with the requirement that any valid C
declaration syntax must be allowed inside the EXEC SQL declare sections to use
common header files for C and Informix ESQL/C source files. For more
information about how to use common header files between C and Informix
ESQL/C source files, see “Defining Host Variables Based on C #defines and
typedefs” on page 2-18.

f(s, id, s_size)
EXEC SQL BEGIN DECLARE SECTION;

PARAMETER char s[20];
PARAMETER int id;

EXEC SQL END DECLARE SECTION;
int s_size;
{

select fname into :s from customer
where customer_num = :id;...

}

Figure 1-8. Using EXEC SQL to declare host variables as parameters to a Kernighan and
Ritchie-Style function declaration

f(s, id, s_size)
$parameter char s[20];
$parameter int id;
int s_size;

Figure 1-9. Using the Dollar Sign ($) to Declare Host Variables as Parameters to a Function

int * foo(
EXEC SQL BEGIN DECLARE SECTION;

PARAMETER char s[20],
PARAMETER int id,
PARAMETER int (*f) (double)

EXEC SQL END DECLARE SECTION;
)
{

select fname into :s from customer
where customer_num = :id;...

}

Figure 1-10. Using EXEC SQL to Declare Host Variables as Parameters to ANSI-Style
Function Declaration

Chapter 1. Programming with IBM Informix ESQL/C 1-19

Important: If you want to define Informix ESQL/C host variables that are
ANSI-style parameters, you must use the EXEC SQL BEGIN DECLARE
SECTION and the EXEC SQL END DECLARE SECTION syntax. You
cannot use the $BEGIN DECLARE and $END DECLARE syntax. This
restriction is because SQL statements that begin with the dollar sign ($)
notion must end with a semicolon (;). However, ANSI syntax requires
that each parameter in a parameter list should not end with a
semicolon terminator, but with a comma (,) delimiter.

The following limitations apply to using host variables as function parameters:
v You cannot declare a parameter variable inside a block of C code.
v You cannot use the parameter keyword in declarations of host variables that are

not part of a function header. If you do, you receive unpredictable results.

Using Host Variables in Windows Environments
This section describes the following topics about IBM Informix ESQL/C host
variables that are unique to the Windows environments:
v How to declare host variables with non-ANSI storage-class modifiers
v How global Informix ESQL/C variables are declared

Declaring Variables with Non-ANSI Storage-Class Modifiers
The ANSI C standards define a set of storage-class specifiers for variable
declarations. C compilers in Windows environments often support non-ANSI
storage-class specifiers. To provide support for these non-ANSI storage-class
specifiers in IBM Informix ESQL/C host-variable declarations, the Informix
ESQL/C preprocessor supports the form of the ANSI syntax that the following
figure shows.

�� �

�

;

EXEC SQL BEGIN DECLARE SECTION; Declaration EXEC SQL END DECLARE SECTION;
;

$ Declaration

��

Declaration:

@
(“ modifier name “)

variable type
(“ modifier name “)

variable name

Figure 1-11. ESQL/C Syntax for Non-ANSI Storage-Class Specifiers

1-20 IBM Informix ESQL/C Programmer’s Manual

Element Purpose Restrictions Syntax

modifier
name

Text that you want to
pass to the C compiler
for translation.

This text is usually the
name of the storage-class
modifier.

The modifier must be
valid for your C
compiler or be a name
that you define in your
program.

See your C compiler
documentation.

variable
name

Identifier name of the
ESQL/C host variable

None. See “Declaring a Host
Variable” on page 1-9.

variable type Data type of the
ESQL/C host variable

The type must be a valid
C or ESQL/C data type.

See “Declaring a Host
Variable” on page 1-9.

For example, the Microsoft Visual C++ compiler supports the declspec compiler
directive to enable you to declare extended storage-class attributes. This compiler
directive has the following syntax:
__declspec(attribute) var_type var_name;

In this example, attribute is a supported keyword (such as thread, dllimport, or
dllexport), var_type is the data type of the variable, and var_name is the variable
name.

To enable you to declare Informix ESQL/C host variables as extended storage-class
variables, the Informix ESQL/C preprocessor supports the declspec directive with
the following syntax:
@("__declspec(attribute)") var_type var_name;

In this example, attribute, var_type, and var_name are the same as in the previous
example. You might find it convenient to declare a macro for the declspec syntax.
The following example declares threadCount as an instance-specific integer
variable of the thread-extended storage class:
#define DLLTHREAD __declspec(thread)...

EXEC SQL BEGIN DECLARE SECTION;
@("DLLTHREAD") int threadCount;

EXEC SQL END DECLARE SECTION;

This example creates the DLLTHREAD macro to simplify the declaration of
thread-extended storage-class attributes. You can declare similar macros to simplify
declaration of variables to be exported (or imported) to the dynamic link library
(DLL), as follows:
#define DLLEXPORT __declspec(dllexport);...

EXEC SQL BEGIN DECLARE SECTION;
@("DLLEXPORT") int winHdl;

EXEC SQL END DECLARE SECTION;

Using Indicator Variables
When an SQL statement returns a value, it returns it in the host variable for the
specified column. In some cases, you can associate an indicator variable with the
host variable to obtain additional information about the value that is returned. If
you specify an indicator variable, IBM Informix ESQL/C sets it in addition to
returning the value to the host variable.

Chapter 1. Programming with IBM Informix ESQL/C 1-21

The indicator variable provides additional information in the following situations:
v If the host variable is associated with a database column or an aggregate

function that allows null values, the indicator variable can specify whether the
value is null.

v If the host variable is a character array and the column value is truncated by the
transfer, the indicator variable can specify the size of the returned value.

The following sections describe how to declare an indicator variable and associate
it with a host variable, and also how Informix ESQL/C sets an indicator variable
to specify the two preceding conditions.

Declaring Indicator Variables
You declare indicator variables in the same way as host variables, between BEGIN
DECLARE SECTION and END DECLARE SECTION statements as the following
example shows:
EXEC SQL BEGIN DECLARE SECTION;

-- put indicator variable declarations here
EXEC SQL END DECLARE SECTION;

For more information, see “Declaring a Host Variable” on page 1-9.

Indicator variables can be any valid host-variable data type except DATETIME or
INTERVAL. Usually, you declare an indicator variable as an integer. For example,
suppose your program declares a host variable called name. You can declare a
short integer-indicator variable called nameind, as the following example shows:
EXEC SQL BEGIN DECLARE SECTION;

char name[16];
short nameind;

EXEC SQL END DECLARE SECTION;

You can use non-ASCII (non-English) characters in Informix ESQL/C
indicator-variable names if your client locale supports these non-ASCII characters.
For more information about how the client locale affects host-variable names, see
the IBM Informix GLS User's Guide.

Associating an Indicator Variable with a Host Variable
You associate an indicator variable with its host variable in one of the following
two ways:
v Prefix the indicator variable with a colon (:) and place the keyword INDICATOR

between the host variable name and the indicator variable name as follows:
:hostvar INDICATOR :indvar

v Place a separator symbol between the host variable name and the indicator
variable name. The following separator symbols are valid:
– A colon (:)

:hostvar:indvar
v A dollar sign ($)
$hostvar$indvar

You can use a dollar sign ($) instead of a colon (:), but the colon makes the code
easier to read.

You can have one or more white space characters between the host variable and
indicator variable. For example, both of the following formats are valid to specify
an indicator variable, hostvarind, on the hostvar host variable:

1-22 IBM Informix ESQL/C Programmer’s Manual

$hostvar:hostvarind
$hostvar :hostvarind

Indicating Null Values
When an IBM Informix ESQL/C statement returns a null value to a host variable,
the value might not be a meaningful C value. Your program can take one of the
following actions:
v If you have defined an indicator variable for this host variable, Informix

ESQL/C sets the indicator variable to -1.
Your program can check the indicator variable for a value of -1.

v If you did not define an indicator variable, the runtime behavior of Informix
ESQL/C depends on how you compiled the program:
– If you compile the program with the -icheck preprocessor option, Informix

ESQL/C generates an error and sets sqlca.sqlcode to a negative value when
the database server returns a null value. (See “Syntax of the esql command”
on page 2-5.)

– If you compile the program without the -icheck option, Informix ESQL/C
does not generate an error when the database server returns a null value. In
this case, you can use the risnull() function to test the host variable for a null
value.

If the value returned to the host variable is not null, Informix ESQL/C sets the
indicator variable to 0. If the SQL operation is not successful, the value of the
indicator variable is not meaningful. Therefore, you should check the outcome of
the SQL statement before you check for a null value in the host variable. For
information about exception handling, see Chapter 11, “Exception handling,” on
page 11-1.

The NULL keyword of an INSERT statement allows you to insert a null value into
a table row. As an alternative to the NULL keyword in an INSERT statement, you
can use a negative indicator variable with the host variable.

If you want to insert a variable while the indicator is set to NULL (-1), the
indicator value will take precedence over the variable value. The value inserted in
this case will NULL instead of the value of the host variable.

When you return aggregate function values into a host variable, keep in mind that
when the database server performs an aggregate function on an empty table, the
result of the aggregate operation is the null value. The only exception to this rule is
the COUNT(*) aggregate function, which returns a zero (0) in this case.

Important: If you activate the DATASKIP feature of the database server, an
aggregate function also returns null if all fragments are offline or if all
the fragments that are online are empty.

The DATASKIP feature is unavailable for IBM Informix SE.

Indicating truncated values
When an SQL statement returns a non-null value into a host-variable character
array, it might truncate the value to fit into the variable. If you define an indicator
variable for this host variable, IBM Informix ESQL/C:
v Sets the SQLSTATE variable to "01004" to signal the occurrence of truncation.

(For more information about SQLSTATE, see “List of SQLSTATE Class Codes”
on page 11-8.) Informix ESQL/C also sets sqlwarn1 of the sqlca.sqlwarn
structure to W.

Chapter 1. Programming with IBM Informix ESQL/C 1-23

v Sets the associated indicator variable equal to the size in bytes of the SQL host
variable before truncation.

If you do not define an indicator variable, Informix ESQL/C still sets SQLSTATE
and sqlca.sqlwarn to signal the truncation. However, your program has no way to
determine how much data was truncated.

If the database server returns a value that is neither truncated nor null, Informix
ESQL/C sets the indicator variable to 0.

An indicator variable shows nonzero values for all columns retrieved from a DB2®

database, even if only one of the columns was truncated.

An Example Using Indicator Variables
The code segments in Figure 1-12 and Figure 1-13 on page 1-25 show examples of
how to use indicator variables with host variables. Both examples use indicator
variables to perform the following tasks:
v Determine if truncation has occurred on a character array

If you define lname in the customer table with a length that is longer than 15
characters, nameind contains the actual length of the lname column. The name
host variable contains the first 15 characters of the lname value. (The string
name must be terminated with a null character.) If the surname of the company
representative with customer_num = 105 is shorter than 15 characters, Informix
ESQL/C truncates only the trailing blanks.

v Check for a null value
If company has a null value for this same customer, compind has a negative
value. The contents of the character array comp cannot be predicted.

The following figure shows an Informix ESQL/C program that uses the EXEC SQL
syntax for the SQL statements.

Figure 1-12 uses the INDICATOR keyword to associate the main and indicator
variables. This method complies with the ANSI standard.

The following figure shows an Informix ESQL/C program that uses the dollar sign
($) format for the SQL statements.

EXEC SQL BEGIN DECLARE SECTION;
char name[16];
char comp[20];
short nameind;
short compind;

EXEC SQL END DECLARE SECTION;...

EXEC SQL select lname, company
into :name INDICATOR :nameind, :comp INDICATOR :compind
from customer
where customer_num = 105;

Figure 1-12. Using Indicator Variables with EXEC SQL and the Colon (:) Symbol

1-24 IBM Informix ESQL/C Programmer’s Manual

Using ESQL/C Header Files
When you install IBM Informix ESQL/C, the installation script stores the header
files in the $INFORMIXDIR/incl/esql directory on a UNIX operating system and
in the %INFORMIXDIR%\incl\esql directory in a Windows environment.

The following table shows the header files provided with the Informix ESQL/C
product.

Table 1-4. ESQL/C Header Files

Header File Contains
Additional
Information

datetime.h Definitions of the Informix ESQL/C datetime and
interval structures, which are the host variables for
DATETIME and INTERVAL columns

Chapter 6

decimal.h Definition of the Informix ESQL/C decimal data type,
which is the host variable for DECIMAL and MONEY
data types

Chapter 5

gls.h Function prototypes and data structures for the GLS
functionality

IBM Informix GLS
User's Guide

ifxtypes.h Correctly maps the Informix data types int1, int2, int4,
mint, mlong, MSHORT, and MCHAR for 32-bit and
64-bit platforms.

“The Integer Host
Variable Types”
on page 5-2

locator.h Definition of the Informix ESQL/C locator structure
(ifx_loc_t or loc_t), which is the host variable for byte and
text columns

Chapter 7

sqlca.h Definition of the structure that ESQL/C uses to store
error-status codes.

The esql preprocessor automatically includes this file
when it preprocesses your program.

Chapter 11

sqlda.h Structure definition for value pointers and descriptions of
dynamically defined variables

Chapter 15

sqlhdr.h This file includes the sqlda.h header file, other header
files, and function prototypes.

The preprocessor automatically includes this file when it
preprocesses your program.

“Including
Header Files” on
page 1-27

sqliapi.h Function prototypes for internal library APIs. For internal
Informix ESQL/C use only.

None

$char name[16];
$char comp[20];
$short nameind;
$short compind;...

$select lname, company
into $name$nameind, $comp$compind
from customer
where customer_num = 105;

Figure 1-13. Using Indicator Variables with the Dollar Sign ($) Notation

Chapter 1. Programming with IBM Informix ESQL/C 1-25

Table 1-4. ESQL/C Header Files (continued)

Header File Contains
Additional
Information

sqlstype.h Definitions of constants for SQL statements.

The DESCRIBE statement uses these constants to describe
a dynamically prepared SQL statement.

Chapter 15

sqltypes.h Defines constants that correspond to ESQL/C and SQL
data types.

ESQL/C uses these constants when your program
contains a DESCRIBE statement.

“Data Type
Constants” on
page 3-3

sqlxtype.h Defines constants that correspond to Informix ESQL/C
and SQL data types when you are in X/Open mode

ESQL/C uses these constants when your program
contains a DESCRIBE statement.

“X/Open Data
Type Constants”
on page 3-6

value.h Value structures that Informix ESQL/C uses For internal
Informix ESQL/C use only.

None

varchar.h Macros that you can use with the VARCHAR data type Chapter 4

The following figure shows the Informix ESQL/C header files specific to IBM
Informix.

Table 1-5. ESQL/C Header Files for IBM Informix

Header File Contents
Additional
Information

collct.h Definitions of data structures for complex types in
Informix ESQL/C

Chapter 9

ifxgls.h Function prototypes for the GLS application programming
interface For internal Informix ESQL/C use only.

None

int8.h Definition of the structure that stores the INT8 data type “The int8 Data
Type” on page
5-2

The following table shows the Informix ESQL/C header files specific to Windows
environments.

1-26 IBM Informix ESQL/C Programmer’s Manual

Table 1-6. ESQL/C Header Files for Windows Environments

Header File Contents Additional Information

sqlproto.h Function prototypes of all ESQL/C library
functions for use with source that is not fully
ANSI C compliant

“Declaring Function
Prototypes” on page 1-27

infxcexp.c Contains the C code to export the addresses of
all C runtime routines that the ESQL
client-interface DLL uses

“Using the Same
Runtime Routines for
Version Independence”
on page 2-29

login.h The definition of the InetLogin and
HostInfoStruct structures, which enable you to
customize configuration information for the
application

Because this file does not contain ESQL
statements, you do not need to include it with
the ESQL include directive. Use instead the C
#include preprocessor directive.

“Fields of the InetLogin
Structure” on page 1-33

Declaring Function Prototypes
IBM Informix ESQL/C provides the sqlproto.h header file to declare function
prototypes for all Informix ESQL/C library functions. These function prototypes
are required in an Informix ESQL/C source file that you compile with an ANSI C
compiler. By default, the esql command processor does not include
function-prototype declarations. Having the processor include the ANSI-compliant
function prototypes for the Informix ESQL/C functions prevents an ANSI C
compiler from generating warnings.

Warning: Although you can use an ANSI C compiler, the Informix ESQL/C
preprocessor does not fully support ANSI C, so you might not be able to
preprocess all programs that follow the ANSI C standards.

Because the sqlproto.h file does not contain any Informix ESQL/C statements, you
can include this file in either of the following ways:
v With the Informix ESQL/C include preprocessor directive:

EXEC SQL include sqlproto;

v With the C #include preprocessor directive:
#include "sqlproto.h";

Including Header Files
The Informix ESQL/C preprocessor automatically includes the following Informix
ESQL/C header files in your program:
v The sqlhdr.h file provides cursor-related structures for your Informix ESQL/C

program.
This header file automatically includes the sqlda.h and ifx_types.h header files.

v The sqlca.h file, which allows your program to check the success or failure of
your Informix ESQL/C statements with the SQLSTATE or SQLCODE variable

Warning: Although you can now use an ANSI C compiler, the Informix ESQL/C
preprocessor does not fully support ANSI C, so you might not be able to
preprocess all programs that follow the ANSI C standards.

Chapter 1. Programming with IBM Informix ESQL/C 1-27

To include any of the other header files in your Informix ESQL/C program, you
must use the include preprocessor directive. However, you only need to include an
Informix ESQL/C header file if your program refers to the structures or the
definitions that the header file defines. For example, if your program accesses
datetime data, you must include the datetime.h header file, as follows:
EXEC SQL include datetime.h;

Make sure to terminate the line of code with a semicolon. Some additional
examples follow:
EXEC SQL include varchar.h;
EXEC SQL include sqlda;
$include sqlstype;

Tip: You do not have to enter the .h file extension for an Informix ESQL/C header
file; the esql preprocessor assumes a .h extension.

For information about the include directive, see “The include Directive” on page
1-29.

Using ESQL/C Preprocessor Directives
You can use the following capabilities of the Informix ESQL/C preprocessor when
you write Informix ESQL/C code:
v The include directive expands Informix ESQL/C include files within your

program.
v The define and undef directives create compile-time definitions.
v The ifdef, ifndef, else, elif, and endif directives specify conditional compilation.

As with embedded SQL statements, you can use either of two formats for Informix
ESQL/C preprocessor directives:
v The EXEC SQL keywords:

EXEC SQL preprocessor_directive;

v The dollar sign ($) notation:
$preprocessor_directive;

Important: The EXEC SQL keywords conform to ANSI standards.

In either of these formats, replace preprocessor_directive with one of the valid
preprocessor directives that the following sections describe. You must terminate
these directives with a semicolon (;).

The Informix ESQL/C preprocessor works in two stages. In stage 1, it acts as a
preprocessor for the Informix ESQL/C code. In stage 2, it converts all of the
embedded SQL code to C code.

In stage 1, the Informix ESQL/C preprocessor incorporates other files in the source
file by processing all include directives ($include and EXEC SQL include
statements). Also in stage 1, Informix ESQL/C creates or removes compile-time
definitions by processing all define ($define and EXEC SQL define) and undef
($undef and EXEC SQL undef) directives.

The remainder of this section describes each of the Informix ESQL/C preprocessor
directives in more detail.

1-28 IBM Informix ESQL/C Programmer’s Manual

The include Directive
The include directive allows you to specify a file to include within your Informix
ESQL/C program. The Informix ESQL/C preprocessor places the contents of the
specified file into the Informix ESQL/C source file. Stage 1 of the Informix
ESQL/C preprocessor reads the contents of filename into the current file at the
position of the include directive.

You can use the include preprocessor directive in either of the following two
formats:
v EXEC SQL include filename;
v $include filename;

Replace filename with the name of the file you want to include in your program.
You can specify filename with or without quotation marks. If you use a full path
name, however, you must enclose the path name in quotation marks.

The following example shows how to use full path names in a Windows
environment.
EXEC SQL include decimal.h;

EXEC SQL include "C:\apps\finances\credits.h";

Tip: If you specify the full path name, you must recompile the program if the
location of the file changes. Better programming practice specifies search
locations with the esql -I option and specifies only the file name with the
include directive.

If you omit the quotation marks around the file name, Informix ESQL/C changes
the file name to lowercase characters. If you omit the path name, the Informix
ESQL/C preprocessor checks the preprocessor search path for the file. For more
information about this search path, see “Naming the Location of Include Files” on
page 2-14.

You can use include for the following types of files:
v An Informix ESQL/C header file

You do not have to use the .h file extension for an Informix ESQL/C header file;
the compiler assumes that your program refers to a file with a .h extension. The
following examples show valid statements to include Informix ESQL/C header
files:
EXEC SQL include varchar.h;
$include sqlda;
EXEC SQL include sqlstype;

For a complete list of Informix ESQL/C header files, see “Using ESQL/C
Header Files” on page 1-25.

v Other user-defined files
You must specify the exact name of the file that you want to include. The
compiler does not assume the .h extension when you include a header file that
is not an Informix ESQL/C header file.
The following examples show valid statements to include the files constant_defs
and typedefs.h in a UNIX environment:
EXEC SQL include constant_defs;
EXEC SQL include "constant_defs";
$include typedefs.h;
EXEC SQL include "typedefs.h";

Chapter 1. Programming with IBM Informix ESQL/C 1-29

You must use the Informix ESQL/C include directive if the file you specify
contains embedded SQL statements, or other Informix ESQL/C statements.

Use the standard C #include directive to include system header files. The #include
of C includes a file after Informix ESQL/C preprocessing.

Attention: Embedded INCLUDE statements are not supported within declare
sections and can generate misleading errors. For correct usage, see
“Excluding Statements Inside C Header Files” on page 2-20.

The define and undef Directives
The IBM Informix ESQL/C preprocessor allows you to create simple variables that
are available only to the Informix ESQL/C preprocessor. Informix calls these
variables definitions. The Informix ESQL/C preprocessor manages these definitions
with two directives:

define creates a name-flag definition. The scope of this definition is from
the point where you define it to the end of the Informix ESQL/C
source file.

undef removes a name flag that EXEC SQL define or $define creates.

The Informix ESQL/C preprocessor rather than the C preprocessor (which
processes #define and #undef) processes these directives. The Informix ESQL/C
preprocessor creates (define) or removes (undef) these definitions in stage 1 of
preprocessing.

The Informix ESQL/C define directive can create definitions with the following
formats:
v The format for Boolean symbols is

define symbolname;

The following examples show the two ways to define a Boolean symbol that is
called TRANS:
EXEC SQL define TRANS;
$define TRANS;

v The format for integer constants is
define symbolname value;

The following examples show both formats for two integer constants,
MAXROWS (with a value of 25), and USETRANSACTIONS (with a value of 1):
EXEC SQL define MAXROWS 25;
$define MAXROWS 25;

EXEC SQL define USETRANSACTIONS 1;
$define USETRANSACTIONS 1;

Important: Unlike the C #define statement, the define directive does not support
string constants or macros of statements that receive values at runtime.

You can override define and undef statements in the source program with the esql
command line options, -ED and -EU. For more information about these options,
see “Defining and Undefining Definitions While Preprocessing” on page 2-13.

The ifdef, ifndef, elif, else, and endif Directives
The Informix ESQL/C preprocessor supports the following directives for
conditional compilation:

1-30 IBM Informix ESQL/C Programmer’s Manual

ifdef tests a name and executes subsequent statements if define has
created the name.

ifndef tests a name and executes subsequent statements if define has not
created the name.

elif Begins an alternative section to an ifdef or ifndef condition and
checks for the presence of another define. It is shorthand for “else
if define ”.

else Begins an alternative section to an ifdef or ifndef condition.

endif Closes an ifdef or ifndef condition.

In the following example, the BEGIN WORK statement only compiles if you
previously defined the name USETRANSACTIONS with a define directive:
EXEC SQL ifdef USETRANSACTIONS;
EXEC SQL begin work;
EXEC SQL endif;

The following example illustrates the use of the elif statement. This sample code
will print “USETRANSACTIONS defined”.
EXEC SQL define USETRANSACTIONS;

...

EXEC SQL ifndef USETRANSACTIONS;
printf(“USETRANSACTIONS not defined”);

EXEC SQL elif USETRANSACTIONS;
printf(“USETRANSACTIONS defined”);

EXEC SQL endif;

The Informix ESQL/C preprocessor does not support a general if directive; it
supports only the ifdef and ifndef statements that test whether a name was
defined with define.

The Informix ESQL/C preprocessor processes conditional compilation definitions
in stage 1 of the preprocessing.

Setting and Retrieving Environment Variables in Windows
Environments

You might change the settings of environment variables or create new variables to
increase the flexibility of an application. Instead of assuming a particular
environment configuration, you can define the environment at runtime. This option
can benefit your application in the following ways:
v The application becomes less dependent on a predefined environment.
v Users can enter their user name and password within an application.
v Users can run two applications with different network parameters on the same

client computer.
v The same application can run on client computers with different configurations.

The following Informix ESQL/C library functions are available for setting and
retrieving environment variables. The library functions are located in Appendix B,
“ESQL/C function library,” on page B-1.

Chapter 1. Programming with IBM Informix ESQL/C 1-31

Function Name Description See

ifx_putenv() Modifies or removes an existing environment variable or
creates a new variable

B-146

ifx_getenv() Retrieves the value of an environment variable B-71

Important: The ifx_putenv() function sets the value of an environment variable in
the InetLogin structure, and the ifx_getenv() function retrieves the
value of an environment variable from InetLogin. It is recommended
that you use these functions to set and retrieve InetLogin field values.

For more information about InetLogin fields, see “Fields of the InetLogin
Structure” on page 1-33.

These functions affect only the environment that is local to the current process. The
ifx_putenv() function cannot modify the command-level environment. The
functions operate only on data structures accessible to the Informix ESQL/C
runtime library and not on the environment segment that the operating system
creates for the process. When the current process terminates, the environment
reverts to the level of the calling process (in most cases, the operating-system
level).

The process cannot directly pass on the modified environment to any new
processes that _spawn(), _exec(), or system() creates. These new processes do not
receive any new variables that ifx_putenv() added. You can, however, pass on an
environment variable to a new process in the following way:
1. The current process creates an environment variable with the Informix ESQL/C

ifx_putenv() function.
2. The current process uses the C putenv() function to put the environment

variable into the operating-system environment segment.
3. The current process starts a new process.
4. The new process uses the C getenv() function to retrieve the environment

variable from the operating-system environment segment.
5. The new process uses the Informix ESQL/C ifx_getenv() function to retrieve

the variable into the runtime environment segment.

For environment variable entries, observe the following guidelines:
v If you plan to set any Informix environment variables with ifx_putenv(), have

the application set all of them before it calls any other Informix ESQL/C library
routine, including ifx_getenv(), or any SQL statement. The first call to any other
Informix ESQL/C library routine or SQL statement requires initialization of the
GLS locales. This initialization loads and freezes the values of
CLIENT_LOCALE, DB_LOCALE, and the DATE, TIME, and DATETIME
formatting values.

v If Setnet32 sets an Informix environment variable to a non-null value in the
Registry, the ifx_putenv() function cannot change the value of the variable to a
null string.
If you specify a null string for an environment variable in an ifx_putenv()
function call, Informix ESQL/C clears any value set for the environment variable
from the runtime environment segment. Then the Registry value for the
environment variable is available to the application.

1-32 IBM Informix ESQL/C Programmer’s Manual

v Do not change an environment variable with setenv in the command line or
with the C putenv() function because a change to the operating-system
environment segment has no effect on the ESQL client-interface DLL after
application execution begins.
Instead, use ifx_putenv() to change an environment variable in the runtime
environment segment.

v To modify the return value of ifx_getenv() without affecting the environment
table, use _strdup() or strcpy() to make a copy of the string.

Warning: Never free the pointer to an environment entry that ifx_getenv() returns.
Also, do not pass ifx_putenv() a pointer to a local variable and then exit
the function that declares the variable.

InetLogin structure

Important: IBM Informix supports the InetLogin structure for compatibility with
earlier versions only. For new development, it is recommended that
you use the ifx_getenv() and ifx_putenv() functions instead.

An Informix ESQL/C client application in a Windows environment can use the
InetLogin structure to set dynamically the configuration information that the
application needs.

This section provides the following information about InetLogin:
v A description of the InetLogin structure, its fields, and header file
v The precedence of configuration information that the client application sends

when it establishes a connection
v How to set the InetLogin fields directly

Fields of the InetLogin Structure
The InetLogin structure is a global C structure that the login.h header file declares.
To use this structure in your IBM Informix ESQL/C program, you must include
login.h in your source file (.ec). For more information about login.h, see Table 1-6
on page 1-27.

Tip: Because login.h does not contain Informix ESQL/C statements, you can
include the file with the C #include or the Informix ESQL/C include
directive.

The following table defines the fields in the InetLogin structure.

Table 1-7. Fields of the InetLogin structure

InetLogin Field Data Type Purpose

InfxServer char[19] Specifies the value for the INFORMIXSERVER environment variable
(the default database server)

DbPath char[129] Specifies the value for the DBPATH environment variable

DbDate char[6] Specifies the value for the DBDATE environment variable

Provides compatibility for client applications that are based on earlier
versions of IBM Informix products

DbMoney char[19] Specifies the value for the DBMONEY environment variable

Provides compatibility for client applications that are based on earlier
versions of IBM Informix products

Chapter 1. Programming with IBM Informix ESQL/C 1-33

Table 1-7. Fields of the InetLogin structure (continued)

InetLogin Field Data Type Purpose

DbTime char[81] Specifies the value for the DBTIME environment variable

Provides compatibility for client applications that are based on earlier
versions of IBM Informix products

DbTemp char[81] Specifies the value for the DBTEMP environment variable

DbLang char[19] Specifies the value for the DBLANG environment variable

DbAnsiWarn char[1] Specifies the value for the DBANSIWARN environment variable

InformixDir char[255] Specifies the value for the INFORMIXDIR environment variable

Client_Loc char * Specifies the value for the CLIENT_LOCALE environment variable

DB_Loc char * Specifies the value for the DB_LOCALE environment variable

CollChar char[3] Specifies the value for the COLLCHAR environment variable

Provides compatibility for client applications that are based on earlier
versions of IBM Informix NLS products

Lang char[81] Specifies the value for the LANG environment variable for the database
locale

Provides compatibility for client applications that are based on earlier
versions of IBM Informix NLS products

Lc_Collate char[81] Specifies the value for the LC_COLLATE environment variable for the
database locale

Provides compatibility for client applications that are based on earlier
versions of IBM Informix NLS products

Lc_CType char[81] Specifies the value of the LC_CTYPE environment variable for the
database locale

Provides compatibility for client applications that are based on earlier
versions of IBM Informix NLS products

Lc_Monetary char[81] Specifies the value of the LC_MONETARY environment variable for the
database locale

Provides compatibility for client applications that are based on earlier
versions of IBM Informix NLS products

Lc_Numeric char[81] Specifies the value of the LC_NUMERIC environment variable for the
database locale

Provides compatibility for client applications that are based on earlier
versions of IBM Informix NLS products

Lc_Time char[81] Specifies the value for the LC_TIME environment variable for the
database locale

Provides compatibility for client applications that are based on earlier
versions of IBM Informix NLS products

ConRetry char[4] Specifies the value of the environment variable INFORMIXCONRETRY

ConTime char[4] Specifies the value of the environment variable INFORMIXCONTIME

DelimIdent char[4] Specifies the value of the DELIMIDENT environment variable

Host char[19] Specifies the value for the HOST network parameter

User char[19] Specifies the value for the USER network parameter

Pass char[19] Specifies the value for the PASSWORD network parameter

1-34 IBM Informix ESQL/C Programmer’s Manual

Table 1-7. Fields of the InetLogin structure (continued)

InetLogin Field Data Type Purpose

AskPassAtConnect char[2] Indicates whether sqlauth() should request a password at connection
time; should contain the value for yes or no. AskPassAtConnect is set if
the first character is Y or y.

Service char[19] Specifies the value for the SERVICE network parameter

Protocol char[19] Specifies the value for the PROTOCOL network parameter

Options char[20] Reserved for future use

InformixSqlHosts char[255] Specifies the value for the INFORMIXSQLHOSTS environment
variable

FetBuffSize char[6] Specifies the value for the FET_BUF_SIZE environment variable

CC8BitLevel char[2] Specifies the value for the CC8BITLEVEL environment variable

EsqlMF char[2] Specifies the value for the ESQLMF environment variable

GlDate char[129] Specifies the value for the GL_DATE environment variable

GlDateTime char[129] Specifies the value for the GL_DATETIME environment variable

DbAlsBc char[2] Specifies the value for the DBALSBC environment variable

Provides compatibility for client applications that are based on earlier
versions of IBM Informix products

DbApiCode char[24] Specifies the value for the DBAPICODE environment variable

Provides compatibility for client applications that are based on earlier
versions of IBM Informix products

DbAsciiBc char[2] Specifies the value for the DBASCIIBC environment variable

Provides compatibility for client applications that are based on earlier
versions of IBM Informix products

DbCentury char[2] Specifies the value for the DBCENTURY environment variable

DbCodeset char[24] Specifies the value for the DBCODESET environment variable

Provides compatibility for client applications that are based on 4.x
versions of IBM Informix Asian Language Support (ALS) products

DbConnect char[2] Specifies the value for the DBCONNECT environment variable

Provides compatibility for client applications that are based on earlier
versions of IBM Informix products

DbCsConv char[9] Specifies the value for the DBCSCONV environment variable

Provides compatibility for client applications that are based on earlier
versions of IBM Informix products

DbCsOverride char[2] Specifies the value for the DBCSOVERRIDE environment variable

Provides compatibility for client applications that are based on earlier
versions of IBM Informix Asian Language Support (ALS) products

DbCsWidth char[12] Specifies the value for the DBCSWIDTH environment variable

Provides compatibility for client applications that are based on earlier
versions of IBM Informix products

DbFltMsk char[4] Specifies the value for the DBFLTMASK environment variable

Chapter 1. Programming with IBM Informix ESQL/C 1-35

Table 1-7. Fields of the InetLogin structure (continued)

InetLogin Field Data Type Purpose

DbMoneyScale char[6] Specifies the value for the DBMONEYSCALE environment variable

Provides compatibility for client applications that are based on earlier
versions of IBM Informix products

DbSS2 char[5] Specifies the value for the DBSS2 environment variable

Provides compatibility for client applications that are based on earlier
versions of IBM Informix products

DbSS3 char[5] Specifies the value for the DBSS3 environment variable

Provides compatibility for client applications that are based on earlier
versions of IBM Informix products

OptoFC char[2] Not used

OptMSG char[2] Not used

All fields in the InetLogin structure, except DbAnsiWarn, Client_Loc, and DB_Loc,
are of data type char and are null-terminated strings. The Client_Loc and DB_Loc
fields are character pointers whose data space your Informix ESQL/C program
must allocate.

InetLogin field values
Your application must set InetLogin values before it executes the SQL statement or
Informix ESQL/C library function that needs the configuration information. It is
recommended that you use the ifx_putenv() and ifx_getenv() functions to set and
retrieve InetLogin field values through environment variables, but you can set the
values of the InetLogin fields directly.

The following figure shows a dialog box that a client application might use to
obtain network parameters from an end user. This application takes the account
information that the user enters and sets the appropriate network values in the
InetLogin structure.

The following figure shows a code fragment that sets login values in the InetLogin
structure. The application can obtain these values from the end user through a
dialog box (such as the one in Figure 1-14).

Login Parameters

camp

sqlexec

maribeth

OK Cancel

Host Name

Service Name

User Name

Password

Figure 1-14. User dialog box for login parameters

1-36 IBM Informix ESQL/C Programmer’s Manual

In the previous figure, if the user enters host information, the fragment sets the
InetLogin.Host and InetLogin.User fields for the mainsrvr database server to the
user-specified names of the host name and user name. If the user does not enter
host information, Informix ESQL/C uses the HOST and USER Registry values
from the subkey for the mainsrvr database server.

Tip: For another example of how to set the InetLogin fields, see the ILOGIN
demonstration program in the %INFORMIXDIR%\demo\ilogin directory.

Precedence of Configuration Values
When a client application in a Windows environment requires configuration
information, IBM Informix ESQL/C obtains it from the following locations:
1. The InetLogin structure

If the application uses the InetLogin structure, Informix ESQL/C first checks
for configuration information in this structure. (To set the value of an
environment variable for the application process, the ifx_putenv() function
changes the value of an InetLogin field.)

2. The INFORMIX subkey of the Registry
If the application has not set the configuration information you want in
InetLogin, Informix ESQL/C checks for this information in its copy of the
Registry information. For more information about how to set the Registry, see
the IBM Informix Client Products Installation Guide.

You do not need to define all the values in the InetLogin structure. The application
uses the configuration information in the Registry for any values it cannot find in
InetLogin. If you do not set the corresponding Registry value, the application uses
its default value.

Important: The first time that the application requires configuration information,
Informix ESQL/C reads this information from the Registry and stores
it in memory. For subsequent references to Registry information,
Informix ESQL/C accesses this in-memory copy and does not reread
the Registry.

This hierarchy of configuration information is valuable if, for example, you want
the application user to provide a user name and password at runtime, or if an
application has some configuration information that differs from the general values
in the Registry. For example, suppose the application sets the ConRetry field of
InetLogin to 2 but does not set the ConTime field, as the following code fragment
shows:

strcpy(InetLogin.InfxServer, "mainsrvr");

...

case IDOK:
*szDlgString = ’\0’;
GetDlgItemText (hdlg, IDC_HOST, szDlgString, cbSzDlgMax);
strcpy(InetLogin.Host, szDlgString);

*szDlgString = ’\0’;
GetDlgItemText (hdlg, IDC_USER, szDlgString, cbSzDlgMax);
strcpy(InetLogin.User, szDlgString);

Figure 1-15. Code to Prompt the User for InetLogin Values

Chapter 1. Programming with IBM Informix ESQL/C 1-37

strcpy(InetLogin.ConRetry, "2");
EXEC SQL connect to ’accnts’;

When Informix ESQL/C establishes the connection to the accnts database, it tries
to establish the connection twice (instead of the default value of once) but it still
uses a connection time of 15 seconds (the default value from the in-memory copy
of the Registry information). If Setnet32 has modified the connection values,
Informix ESQL/C uses the modified Registry values instead of the default values.

Tip: Use the Setnet32 utility to define configuration information in the Registry.
For more information about Setnet32, see the IBM Informix Client Products
Installation Guide.

Using Global ESQL/C Variables in a Windows Environment
In earlier versions of the Informix ESQL/C product, Informix ESQL/C provided
several global variables to support different features. The following table describes
these global variables.

Table 1-8. Global ESQL/C Variables

Global Variable Description

SQLSTATE An ANSI-compliant status code as a five-character string (plus null
terminator)

For more information about SQLSTATE, see Chapter 11, “Exception
handling,” on page 11-1.

SQLCODE
sqlca.sqlcode

An Informix-specific status code as an integer value

For more information about SQLCODE, see Chapter 11, “Exception
handling,” on page 11-1.

sqlca structure Informix-specific diagnostic information

For more information about this structure, see Chapter 11, “Exception
handling,” on page 11-1.

FetBufSize and
BigFetBufSize

The size of the fetch buffer

BigFetBufSize is same as FetBufSize except for a higher upper limit
value of the cursor buffer

For more information about FetBufSize and BigFetBufSize, see
Chapter 14, “Using Dynamic SQL,” on page 14-1.

InetLogin
structure

Environment information for the client ESQL/C application

For more information, see “InetLogin structure” on page 1-33.

In environments, Informix ESQL/C implements the global variables in Table 1-8 as
functions, which the sqlhdr.h file defines. These functions return values that have
the same data types as their global-variable counterparts. Therefore, this change in
implementation does not require modification of existing Informix ESQL/C code.
You can still use these functions in the same context as their global-variable
counterparts.

1-38 IBM Informix ESQL/C Programmer’s Manual

A Sample IBM Informix ESQL/C Program
The demo1.ec program illustrates most of the concepts that this chapter presents,
such as include files, identifiers, host variables, and embedded SQL statements. It
demonstrates how to use header files, declare and use host variables, and embed
SQL statements.

Important: If you are using UNIX, you can find an online version of this and other
demonstration programs in the $INFORMIXDIR/demo/esqlc directory.
If you are using Windows, you can find the demonstration programs in
the %INFORMIXDIR%\demo\esqldemo directory.

Compiling the demo1 Program
The following command compiles the demo1 program:
esql demo1.ec

On UNIX, the name of the executable program defaults to a.out.

In Windows environments, the name of the executable program defaults to
demo.exe.

You can use the -o option to assign a different name to the executable program.
For more information about the esql command, see “Using the esql Command” on
page 2-4.

Guide to demo1.ec File
The sample IBM Informix ESQL/C program, demo1.ec, uses a static SELECT
statement. This means that at compile time the program can obtain all of the
information that it needs to run the SELECT statement.

The demo1.ec program reads from the customer table in the stores7 database the
first and surnames of customers whose surname begins with a value less than ’C’.
Two host variables (:fname and :lname) hold the data from the customer table. A
cursor manages the rows that the database server retrieves from the table. The
database server fetches the rows one at a time. The program then prints the names
to standard output.
1. #include <stdio.h>
2. EXEC SQL define FNAME_LEN 15;
3. EXEC SQL define LNAME_LEN 15;
4. main()
5. {
6. EXEC SQL BEGIN DECLARE SECTION;
7. char fname[FNAME_LEN + 1];
8. char lname[LNAME_LEN + 1];
9. EXEC SQL END DECLARE SECTION;

Line 1
The #include statement tells the C preprocessor to include the stdio.h system
header file from the /usr/include directory. The stdio.h file enables demo1 to use
the standard C language I/O library.

Lines 2 to 3
Informix ESQL/C processes the define directives in stage 1 of preprocessing. The
directives define the constants FNAME_LEN and LNAME_LEN, which the
program uses later in host-variable declarations.

Chapter 1. Programming with IBM Informix ESQL/C 1-39

Lines 4 to 9
Line 4 begins the main() function, the entry point for the program. The EXEC SQL
block declares host variables that are local to the main() function that receive data
from the fname and lname columns of the customer table. The length of each
array is 1 byte greater than the length of the character column from which it
receives data. The extra byte stores the null terminator.
10. printf("DEMO1 Sample ESQL Program running.\n\n");
11. EXEC SQL WHENEVER ERROR STOP;
12. EXEC SQL connect to ’stores7’;
13. EXEC SQL DECLARE democursor cursor for
14. select fname, lname
15. into :fname, :lname
16. from customer
17. where lname < ’C’;
18. EXEC SQL open democursor;

Lines 10 to 12
The printf() function shows text to identify the program and to notify the user
when the program begins to execute. The WHENEVER statement implements a
minimum of error handling, causing the program to display an error number and
terminate if the database server returns an error after processing an SQL statement.
The CONNECT statement initiates a connection to the default database server and
opens the stores7 demonstration database. You specify the default database server
in the INFORMIXSERVER environment variable, which you must set before an
application can connect to any database server.

Lines 13 to 17
The DECLARE statement creates a cursor that is called democursor to manage the
rows that the database server reads from the customer table. The SELECT
statement within the DECLARE statement determines the type of data that the
database server reads from the table. This SELECT statement reads the first and
surnames of those customers whose surname (lname) begins with a letter less than
’C’.

Line 18
The OPEN statement opens the democursor cursor and begins execution of the
SELECT statement.
19. for (;;)
20. {
21. EXEC SQL fetch democursor;
22. if (strncmp(SQLSTATE, "00", 2) != 0)
23. break;
24. printf("%s %s\n",fname, lname);
25. }
26. if (strncmp(SQLSTATE, "02", 2) != 0)
27. printf("SQLSTATE after fetch is %s\n", SQLSTATE);
28. EXEC SQL close democursor;
29. EXEC SQL free democursor;

Lines 19 to 25
This section of code executes a FETCH statement inside a loop that repeats until
SQLSTATE is not equal to "00". This condition indicates that either the end-of-data
condition or a runtime error has occurred. In each iteration of the loop, the FETCH
statement uses the cursor democursor to retrieve the next row that the SELECT
statement returns and to put the selected data into the host variables fname and
lname. The database server sets status variable SQLSTATE to "00" each time it

1-40 IBM Informix ESQL/C Programmer’s Manual

fetches a row successfully. If the end-of-data condition occurs, the database server
sets SQLSTATE to "02"; if an error occurs, it sets SQLSTATE to a value greater than
"02". For more information about error handling and the SQLSTATE status
variable, see Chapter 10, “Working with opaque data types,” on page 10-1.

Lines 26 to 27
If the class code in SQLSTATE is any value except "02", then the SQLSTATE value
for the user is displayed by this printf(). This output is useful in the event of a
runtime error.

Lines 28 to 29
The CLOSE and FREE statements free the resources that the database server had
allocated for the cursor. The cursor is no longer usable.
30. EXEC SQL disconnect current;
31. printf("\nDEMO1 Sample Program over.\n\n");
32. }

Lines 30 to 32
The DISCONNECT CURRENT statement closes the database and terminates the
current connection to a database server. The final printf() tells the user that the
program is over. The right brace (}) on the line 32 marks the end of the main()
function and of the program.

Chapter 1. Programming with IBM Informix ESQL/C 1-41

1-42 IBM Informix ESQL/C Programmer’s Manual

Chapter 2. Compiling programs

Compiling an IBM Informix ESQL/C program . 2-2
ESQL/C Preprocessor. 2-2
C Preprocessor and Compiler . 2-3
Default Compilation Order . 2-3
Running the C Preprocessor First . 2-4

Using the esql Command . 2-4
Requirements for Using esql . 2-5
Syntax of the esql command . 2-5
Options That Affect Preprocessing . 2-11

Checking the Version Number . 2-11
Associating Options with Files . 2-11
Preprocessing Without Compiling or Linking . 2-12
Generating Thread-Safe Code . 2-12
Checking for ANSI-Standard SQL Syntax . 2-12
Defining and Undefining Definitions While Preprocessing 2-13
Checking for Missing Indicator Variables . 2-14
Naming the Location of Include Files . 2-14
Numbering Lines . 2-15
Setting the Scope of Cursor Names and Statement IDs 2-15
Redirecting Errors and Warnings . 2-16
Suppressing Warnings . 2-16
Using the GLS for Unicode (GLU) Feature . 2-16
Using X/Open Standards . 2-16

Running the C Preprocessor Before the ESQL/C Preprocessor 2-17
Options for Running the C Preprocessor First . 2-17
CPFIRST Environment Variable (UNIX) . 2-18
Using the eprotect.exe Utility (Windows) . 2-18
The Order of Compilation When the C Preprocessor Runs First 2-18
Defining Host Variables Based on C #defines and typedefs 2-18
Allowing All Valid C Declaration Syntax Inside the EXEC SQL Declare Section 2-20
Excluding Statements Inside C Header Files . 2-20
SQL Keyword Protection . 2-21
SQL Keyword Protection and the Dollar Sign ($) Symbol 2-21

Preprocessor Options Specific to Windows Environments 2-22
Line Wrapping. 2-22
Changing Error and Warning Displays. 2-22
Setting Tab Stops . 2-23

Compiling and Linking Options of the esql Command . 2-23
Naming the Executable . 2-23
Setting the Type of Executable Created (Windows). 2-23
Pass options to the C compiler . 2-23
Specify a particular C compiler (Windows) . 2-23
Compile without linking . 2-24
Special Compile Options for Windows Environments . 2-24

Using a Project File . 2-24
Creating a Response File . 2-25
Implicit Options Invoked by the esql Preprocessor in Windows Environments 2-25

Linking Options . 2-27
General Linking Options . 2-27
Special Linking Options for Windows . 2-28

Accessing the ESQL Client-Interface DLL in Windows Environments 2-30
Accessing the Import Library . 2-30
Locating a DLL . 2-31

© Copyright IBM Corp. 1996, 2010 2-1

Building an Application DLL . 2-31

These topics contain the following information:
v Compiling an IBM Informix ESQL/C program
v Using the esql command
v Compiling and linking options of the esql command
v Windows environment system processor options available to the esql command
v Accessing the ESQL Client-Interface in Windows environments

Compiling an IBM Informix ESQL/C program
You use the esql command to compile your IBM Informix ESQL/C program. The
esql command passes your Informix ESQL/C source file to the Informix ESQL/C
preprocessor and to the C compiler. It passes along options that are specific to both
the Informix ESQL/C preprocessor and the C compiler to preprocess, compile, and
link your Informix ESQL/C program.

ESQL/C Preprocessor
To preprocess, compile, and link a program that contains IBM Informix ESQL/C
statements, you must pass it through the Informix ESQL/C preprocessor. You use
the esql command to run the preprocessor on your Informix ESQL/C source file
and create an executable file. The esql command follows these steps to carry out
the conversion:
v In stage one, the Informix ESQL/C preprocessor performs the following steps:

– Incorporates header files into the source file when it processes all include
directives ($include and EXEC SQL include statements)

– Creates or removes compile-time definitions when it processes all define
($define and EXEC SQL define) and undef ($undef and EXEC SQL undef)
directives

v In stage two, the Informix ESQL/C preprocessor processes any conditional
compilation directives (ifdef, ifndef, else, elif, endif) and translates embedded
SQL statements to Informix ESQL/C function calls and special data structures.
Stages one and two mirror the preprocessor and compiler stages of the C
compiler. Successful completion of the preprocessing step yields a C source file
(.c extension). For information about command-line options that affect the
preprocessing step, see “Options That Affect Preprocessing” on page 2-11.

The esql command processor is installed as part of the Informix ESQL/C product.
Before you use esql, make sure that:
v the file name of the Informix ESQL/C source file has the .ec or the .ecp.
v the INFORMIXDIR and PATH environment variables are set correctly.

If the INFORMIXDIR environment variable is not set in the command window
or in the Windows Registry, it will be set internally to the location of the IBM
Informix Client SDK dynamically-linked libraries.
If the INFORMIXDIR environment variable is not set in UNIX, an error is
returned when compiling any IBM Informix Client Software Development Kit
(Client SDK) application.
For information about how to set the INFORMIXDIR and PATH variables, see
the Client Products Installation Guide for your operating system.

2-2 IBM Informix ESQL/C Programmer’s Manual

For a detailed explanation of the syntax of the esql command, see “Using the esql
Command” on page 2-4.

Warning: Always link your Informix ESQL/C program with the esql program.
The lists of libraries that Informix uses can change between releases.
Linking with esql assures that your Informix ESQL/C program will link
correctly with Informix libraries.

The C code that the Informix ESQL/C preprocessor generates might
change from one release of the product to the next. Therefore, do not
design Informix ESQL/C programs that depend on how Informix
implements the functionality and features of the product in the C code
that the Informix ESQL/C preprocessor generates. Instead, develop your
programs with the functionality and features of the product that this
publication describes.

C Preprocessor and Compiler
The esql command does not itself compile and link the Informix ESQL/C
program. The esql command translates Informix ESQL/C code to C code and then
calls the C compiler to compile and link the C code. The C preprocessor
preprocesses the C language preprocessing directives. The C compiler performs the
compilation, and it also calls a link editor to link the C object files.

Your Informix ESQL/C source file contains commands for the C preprocessor
(directives of the form #directive). When you use the default order of compilation,
these C directives have no effect on Informix ESQL/C statements but take effect in
the usual way when the C compiler processes the source file.

If you choose to run the C preprocessor on the Informix ESQL/C source file before
the Informix ESQL/C preprocessor, you can use the C language #define and
typedef directives to define Informix ESQL/C host variables. For more
information, see “Running the C Preprocessor Before the ESQL/C Preprocessor” on
page 2-17.

The C compiler takes the following actions:
v Compiles the C language statements to object code
v Links to Informix ESQL/C libraries and any other files or libraries you specify
v Creates an executable file

Note:
If you use a compiler other than the local C compiler by setting the INFORMIXC
environment variable to a non-default value, you might need to override that
compiler's default options. For information about the INFORMIXC environment
variable, see theIBM Informix Guide to SQL: Reference.

For information about command-line options that affect the compilation and
linking steps, see “Compiling and Linking Options of the esql Command” on page
2-23.

Default Compilation Order
After you have created an IBM Informix ESQL/C program file, you run the esql
command on that file. By default, the Informix ESQL/C preprocessor runs first and
translates the embedded SQL statements in the program into Informix ESQL/C
function calls that communicate with the database server. The Informix ESQL/C

Chapter 2. Compiling programs 2-3

preprocessor produces a C source file and calls the C compiler. The C compiler
then preprocesses and compiles your source file and links any other C source file,
object file, or library file the same way as any other C program. If esql does not
encounter errors in one of these steps, it generates an executable file. You can run
the compiled Informix ESQL/C program as you would any C program. When the
program runs, it calls the Informix ESQL/C library procedures; the library
procedures set up communications with the database server to carry out the SQL
operations.

The following figure illustrates the process by which an Informix ESQL/C program
becomes an executable program.

Important: Keep in mind that with the default order of compilation, esql handles
Informix ESQL/C preprocessor directives before it calls the C compiler.
Therefore, the Informix ESQL/C directives take effect before the C
compiler performs any preprocessing. You cannot access Informix
ESQL/C definitions within C preprocessor directives, nor can you use
the C preprocessor to perform conditional compilation of Informix
ESQL/C statements.

Running the C Preprocessor First
With IBM Informix ESQL/C, you change the default order of processing when you
compile your Informix ESQL/C program. Informix ESQL/C allows you to run the
C preprocessor on the Informix ESQL/C source file first, and then pass that file to
the Informix ESQL/C preprocessor. This feature enables your Informix ESQL/C
program to access variables made available by C preprocessor directives. For more
information about this option, see “Running the C Preprocessor Before the
ESQL/C Preprocessor” on page 2-17.

Using the esql Command
To create an executable C program from an Informix ESQL/C source file, use the
esql command. The IBM Informix installation script installs the esql command as
part of the Informix ESQL/C product. This section describes what the esql
command can do and how you use it.

The esql command performs the following steps:
1. Converts the embedded SQL statements to C language code.
2. Converts your ESQL/C source files to C language source files.
3. Compiles the files that result with the C compiler to create an object file.
4. Creates the resource compiler and links any resource files (.res) that you specify

on the esql command line for Windows.
5. Links the object file with the Informix ESQL/C libraries and your own libraries.

Figure 2-1. Relationship Between IBM Informix ESQL/C and C

2-4 IBM Informix ESQL/C Programmer’s Manual

For details, see “Compiling an IBM Informix ESQL/C program” on page 2-2.

Requirements for Using esql
Before you use esql, make sure that:
v The file name of your Informix ESQL/C source files have the .ec extension. You

can also use the .ecp extension if you want the C preprocessor to run before the
Informix ESQL/C preprocessor.

v You have set the environment variable INFORMIXDIR correctly and the PATH
environment variable includes the path to the bin directory of the
INFORMIXDIR directory ($INFORMIXDIR/bin on the UNIX operating system
and %INFORMIXDIR%\bin in Windows environments).
For a complete description of INFORMIXDIR, see the IBM Informix Guide to
SQL: Reference or the IBM Informix Client Products Installation Guide for your
operating system.

Syntax of the esql command
The following topics describe the syntax of the esql command. This section
organizes the command-line options by the processing phase that they affect:
v Preprocessing options determine how esql translates the embedded SQL

statements.
v Compilation options affect the compilation phase, when the C compiler

translates the C source to object code.
v Linking options affect the linking phase, when the C compiler links the object

code to produce an executable file.

��
(1)

esql �

-ansi
-cc ccargs
-EDname

=value
-EUname

-g
-G
-nln

-Ipathname
-icheck
-local
-nowarn
source.ec
otherarg

-e -log logfile -libs
�

�
-o outfile -thread -static -V -version

�

Chapter 2. Compiling programs 2-5

�
(2)

UNIX-only arguments
(3)

Windows-only arguments

-xopen
��

Notes:

1 Order of the arguments that follow esql at this level does not matter. For
example -e can come before -local.

2 Allowed only if esql is running on a UNIX operating system.

3 Allowed only if esql is running on a Windows operating system.

-ansi Causes esql to warn you if the source file uses Informix extensions to
ANSI-standard SQL syntax. This argument only affects source files to the
right of it on the command line. See “Checking for ANSI-Standard SQL
Syntax” on page 2-12.

-cc ccargs
Passes ccargs to the C compiler without interpreting or changing them. The
variable ccargs represents all of the arguments between the -cc and the next
occurrence of any of these arguments:
v -l (Windows only)
v -r (Windows only)
v -f (Windows only)
v any file name except those that are arguments for an option

See “Pass options to the C compiler” on page 2-23.

-e Preprocesses only, no compiling or linking. The ESQL/C preprocessor
produces a C source file with a .c extension. See “Preprocessing Without
Compiling or Linking” on page 2-12.

-EDname
Creates a definition for name. The effect is the same as if the source file
contained an ESQL/C define directive for name. If =value is included, the
definition is set to value. For details, see “Defining and Undefining
Definitions While Preprocessing” on page 2-13..

-EUname
Undefines the Informix ESQL/C definition named name. The effect is as if
the source file included an Informix ESQL/C undef directive for that
name. For details, see “Defining and Undefining Definitions While
Preprocessing” on page 2-13..

-g Reverses the effects of the last -G option for source files to the right of this
option on the command line. See “Numbering Lines” on page 2-15.

-G Normally #line directives are added to the C source code so that the C
compiler can direct you to the correct line in the Informix ESQL/C file
when it detects an error in the C file. The -G option turns off this feature
for the Informix ESQL/C source files that follow it on the command line.
Use the -g argument to turn the feature back on. The -nln argument is a
synonym for -G. See “Numbering Lines” on page 2-15.

-Ipathname
Adds pathname to the search path for Informix ESQL/C and C include

2-6 IBM Informix ESQL/C Programmer’s Manual

files. The search path is used when searching for the files named in
include and #include directives. See “Naming the Location of Include
Files” on page 2-14.

-icheck
Tells esql to add code that generates an error if a null value is returned to
a host variable that does not have an indicator variable associated with it.
This argument only affects source files to the right of it on the command
line. See “Checking for Missing Indicator Variables” on page 2-14.

-local Specifies that the static cursor names and static statement IDs that you
declare in a source file are local to that file. If you do not use the -local
option, cursor names and statement IDs, by default, are global entities.
This argument only affects source files to the right of it on the command
line. See “Setting the Scope of Cursor Names and Statement IDs” on page
2-15.

-log logfile
Sends the error and warning messages generated by the Informix ESQL/C
preprocessor to the specified file instead of to standard output. This option
affects only preprocessor errors and warnings. See “Redirecting Errors and
Warnings” on page 2-16.

-libs Prevents all compiling and linking and instead shows the names of all the
libraries that would be linked based on the other options.

-nln Synonym for -G.

-nowarn
Suppresses warning messages from the preprocessor. Error messages are
still issued. This argument only affects the preprocessing of source files to
the right of it on the command line. See “Suppressing Warnings” on page
2-16.

-o outfile
Specifies the name of the output file that will be created by the compiler.
See “Naming the Executable” on page 2-23.

otherarg
Any argument that esql does not recognize or deal with directly is passed
to the C compiler. This allows you to include libraries, resource files, C
compiler options, and similar arguments on the command line. If an
argument that you want to pass to the C compiler conflicts with one of the
esql arguments, use the -cc option to protect it from esql. See “Pass
options to the C compiler” on page 2-23.

source.ec
An Informix ESQL/C source file with the default suffix .ec.

-thread
Tells the Informix ESQL/C preprocessor to create thread-safe code. See
“Specifying Versions of Informix General Libraries” on page 2-28.

-static Links Informix static libraries instead of the default Informix shared
libraries. See “Specifying Versions of Informix General Libraries” on page
2-28.

-V Prints the version information for your Informix ESQL/C preprocessor
then exits. If this argument is given then all other arguments are ignored.

Chapter 2. Compiling programs 2-7

-version
Prints the build and version information for your Informix ESQL/C
preprocessor then exits. If this argument is given then all other arguments
are ignored.

-xopen
Generates warning messages for SQL statements that use Informix
extensions to the X/Open standard. It also indicates that dynamic SQL
statements use the X/Open set of codes for data types (when using GET
DESCRIPTOR and SET DESCRIPTOR statements or an sqlda structure).
See “Using X/Open Standards” on page 2-16.

UNIX-only arguments:

�
(1)

source.ecp -cp -glu -np -nup -onlycp

Notes:

1 Order of the arguments at this level does not matter.

-cp Causes esql to run the C preprocessor before the Informix ESQL/C
preprocessor when processing source.ec files. The SQL keywords in the file
are protected from interpretation by the C preprocessor and the protection
is removed after the C preprocessor runs. This argument only affects
source files to the right of it on the command line. See “Running the C
Preprocessor Before the ESQL/C Preprocessor” on page 2-17.

-glu Compile such that your application can use GLU (GLS for Unicode). For
details see “Using the GLS for Unicode (GLU) Feature” on page 2-16.

-np Prevents the protecting of SQL statements in source files that are processed
by the C preprocessor before being processed by the Informix ESQL/C
preprocessor. This argument only affects source files to the right of it on
the command line. See “Running the C Preprocessor Before the ESQL/C
Preprocessor” on page 2-17.

-nup No unprotect mode. The SQL keyword protection is not removed after the
C preprocessor is run. The compilation stops after the C preprocessor and
the results are put in a file with the extension .icp. See “Running the C
Preprocessor Before the ESQL/C Preprocessor” on page 2-17.

-onlycp
This mode is like the -cp mode in that it forces the C preprocessor to run
first before the Informix ESQL/C preprocessor. However, the processing
stops after the C preprocessor runs, leaving the result in a .icp file. See
“Running the C Preprocessor Before the ESQL/C Preprocessor” on page
2-17.

source.ecp
An Informix ESQL/C source file with the special suffix .ecp. It is treated as
if it were a normal Informix ESQL/C file that was preceded with the -cp
option. See “Running the C Preprocessor Before the ESQL/C Preprocessor”
on page 2-17.

2-8 IBM Informix ESQL/C Programmer’s Manual

Windows-only arguments:

�

-l largs
-lw:width
-ts:width

@respfile -dcmdl -f filename -mserr
�

�
-n -p -mc (1)

-cpu: alpha
i386
mips

-pa
-pi
-pm

�

�
(1)

-runtime: libc
(1) s

-rt: libcmt
m
msvcrt
d

(1)
-target: dll

exe
-wd
-we

�

�
(1)

-subsystem: console
(1) c

-ss: windows
w

-Sc
-Sw

Notes:

1 There should be no space between this option and the part that follows.

@ respfile Specifies a file containing additional options. For details see
“Creating a Response File” on page 2-25

-bc Tells the preprocessor to use the Borland C compiler instead of the
Microsoft Visual C++ compiler. See “Specify a particular C
compiler (Windows)” on page 2-23.

-cpu: This argument has no effect if you are using Borland C to compile.
This argument tells esql what type of processor you would like the
executable to be optimized for. There are three possible values:

alpha For processors that are compatible with the Alpha
architecture.

i386 For processors that are compatible with the Intel386
architecture. This is the default.

Chapter 2. Compiling programs 2-9

mips For processors that use the MIPS32 or MIPS64 instructions
set architecture (ISA).

-dcmdl Shows the command line used to start the C compiler. This lets
you visually verify the options that are used.

-f filename Specifies the name of a file that contains the names of additional
Informix ESQL/C source files.

-l largs Passes largs to the linker without interpreting or changing them.
The largs is all of the arguments between the -cc and a -r option or
the end of the line. See “Passing Arguments to the Linker” on page
2-28.

-lw:width When an Informix ESQL/C source file is converted into a C source
file this argument causes lines in the C source file to be wrapped at
the column position that width indicates. This argument only
affects source files to the right of it on the command line. See “Line
Wrapping” on page 2-22.

-mc Tells the preprocessor to use the Microsoft Visual C++ compiler to
compile and link. See “Specify a particular C compiler (Windows)”
on page 2-23.

-mserr Provides Microsoft-style messages and warnings.

-n Prevents esql from printing a version message when it runs.

-p Synonym for -e.

-pa Synonym for -cpu:alpha.

-pi Synonym for -cpu:i386.

-pm Synonym for -cpu:mips.

-rt: Synonym for -runtime:.

-runtime: Determines what C runtime libraries will be linked with the
executable. An indicator of the library type must follow this option
with no space in between. The type must be one of the following:

d Links a multithreaded shared library. This is the default
library that is used if -runtime: is not given. You can also
use the library name in place of d. If you are using
Microsoft Visual C++ to compile, the library name is
msvcrt. If you are using Borland C, it is cw32mti.

m Links a static multithreaded shared library. You can also
use the library name in place of m. If you are using
Microsoft Visual C++ to compile, the library name is
libcmt. If you are using Borland C, it is cw32mt. Cannot be
used with the -static option.

s Links a static single-threaded library. You can also use the
library name in place of s. If you are using Microsoft
Visual C++ to compile, the library name is libc. If you are
using Borland C, it is cw32. Cannot be used with the
-static option.

t This option can be used only if you are using Borland C. It
links the static multithreaded library. You can also use the
library name cw32i in place of t. Cannot be used with the
-static option.

2-10 IBM Informix ESQL/C Programmer’s Manual

-Sc Synonym for -subsystem:console.

-ss: Synonym for -subsystem:

-Sw Synonym for -subsystem:windows.

-subsystem: Determines what subsystem will be linked into the executable. An
indicator of the subsystem type must follow this option with no
space in between. The type must be one of the following:

console
This is the default type. It creates a console application.
This indicator can be abbreviated as c.

windows
Creates a Windows application. This indicator can be
abbreviated as w.

The -subsystem: option can be abbreviated -ss:.

-target: Determines what type of file will be created. An indicator of the
target type must follow this option with no space in between. The
indicator must be one of the following:

dll A Dynamic Load Library (DLL) file will be created.

exe This is the default type. A regular executable file will be
created.

-ts:width Tells the preprocessor to define tab stops every width columns
when creating the C source file. By default, the preprocessor sets
tab stops every eighth column. See “Setting Tab Stops” on page
2-23.

-v Synonym for -V.

-wd Synonym for -target:dll.

-we Synonym for -target:exe.

Options That Affect Preprocessing
An Informix ESQL/C program must be preprocessed before a C compiler can
compile it. The Informix ESQL/C preprocessor converts the embedded SQL
statements to C language code.

You can use all the preprocessor options that the following sections describe for
preprocessing only or for preprocessing, compiling, and linking.

Checking the Version Number
Use the -V option to obtain the IBM Informix version number and serial number
for your Informix ESQL/C product, as the following example shows:
esql -V

The -version option provides more detailed version information that might be
needed when dealing with IBM Informix technical support.

Associating Options with Files
Many preprocessor options affect only files that are displayed to the right of the
option on the command line. For example in this command line:
esql -G source1.ec -ansi source2.ec

Chapter 2. Compiling programs 2-11

The -G option affects the source1.ec file, and both the -ansi and the -G options
affect the source2.ec file.

Preprocessing Without Compiling or Linking
By default, the esql command causes the IBM Informix ESQL/C program to be
preprocessed, compiled, and linked. The output of the esql command is an
executable file. You can specify the -e option to suppress the compilation and
linking of your Informix ESQL/C program. With this option, esql only causes
preprocessing of the code. The output of this command is a C source file (.c
extension).

For example, to preprocess the program that is in the file demo1.ec, you use the
following command:
esql -e demo1.ec

The preceding command would generate a C source file that is called demo1.c. The
following esql command preprocesses demo1.ec, checks for Informix extensions to
ANSI-standard syntax, and does not use line numbers:
esql -e -ansi -G demo1.ec

Generating Thread-Safe Code
You can use the -thread option to instruct the preprocessor to generate thread-safe
code.

You must use the THREADLIB environment variable with this option to specify
which thread package to use when you compile your application.

For Windows environments, the IBM Informix general libraries (libgen, libos,
libgls, libafs, and libsql) are shared, thread-safe DLLs. Therefore, the esql
command links the shared, thread-safe DLLs automatically. You do not set the
THREADLIB environment variable when you compile multithreaded applications
in a Windows environment.

Checking for ANSI-Standard SQL Syntax
When you compile an IBM Informix ESQL/C program, you can instruct the
preprocessor to check for Informix extensions to ANSI-standard SQL syntax in one
of two ways:
v You can set the DBANSIWARN environment variable.

After you set the DBANSIWARN environment variable, every time you compile
or run an Informix ESQL/C program, Informix ESQL/C checks for ANSI
compatibility. For information about how to set DBANSIWARN, see the IBM
Informix Guide to SQL: Reference. For details about how to check for runtime
warnings, see Chapter 10 of this publication. For details on how to set
environment variables, see the IBM Informix Client Products Installation Guide for
your operating system.

v You can specify the -ansi option at compile time whenever you want to check
for ANSI compatibility.
The -ansi option does not cause Informix ESQL/C to check for ANSI
compatibility at runtime.

With the -ansi option, the Informix ESQL/C preprocessor generates a warning
message when it encounters an Informix extension to ANSI SQL syntax. The
following esql command preprocesses, compiles, and links the demo1.ec program
and verifies that it does not contain any Informix extensions to the ANSI-standard
syntax:

2-12 IBM Informix ESQL/C Programmer’s Manual

esql -ansi demo1.ec

If you compile a program with both the -ansi and -xopen options, the Informix
ESQL/C preprocessor generates warning messages for Informix extensions to both
ANSI and X/Open SQL syntax.

Defining and Undefining Definitions While Preprocessing
You can use the -ED and -EU options to create or remove definitions during IBM
Informix ESQL/C preprocessing.

To create a global definition, use one of the following forms of the -ED option:
v Use the -EDname syntax to define a Boolean symbol, as follows:

esql -EDENABLE_CODE define_ex.ec

v Use the -EDname=value syntax to define an integer constant, as follows:
esql -EDMAXLENGTH=10 demo1.ec

The -EDname is equivalent to the define preprocessor directive ($define or EXEC
SQL define) with name at the top of your Informix ESQL/C program.

To remove or undefine a definition globally for the entire source file, use the
following syntax for the -EU option:
-EUname

The -EU option has a global effect over the whole file, regardless of other define
directives for name.

Important: Do not put a space between ED or EU and the symbol name.

As with the define and undef statements, the Informix ESQL/C preprocessor
processes the -ED and -EU options in stage 1 of preprocessing (before it
preprocesses the code in your source file). For more information about
preprocessor definitions, see “The define and undef Directives” on page 1-30.

Figure 2-2 shows a code fragment that uses conditional compilation (the ifdef and
ifndef directives).

Chapter 2. Compiling programs 2-13

For the code fragment shown in Figure 2-2, the following esql command line does
not generate code because the command line undefines the ENABLE_CODE
definition for the entire source file:
esql -EUENABLE_CODE define_ex.ec

Checking for Missing Indicator Variables
If you include the -icheck option, the Informix ESQL/C preprocessor generates
code in your program that returns a runtime error if an SQL statement returns a
null value to a host variable that does not have an associated indicator variable.
For example, the following command tells the preprocessor to insert code that
checks for null values into the demo1.ec program:
esql -icheck demo1.ec

If you do not use the -icheck option, Informix ESQL/C does not generate an error
if the database server passes a null value to a host variable without an indicator
variable. For more information about indicator variables, see “Using Indicator
Variables” on page 1-21.

Naming the Location of Include Files
The -I preprocessor option allows you to name a directory where the preprocessor
searches for IBM Informix ESQL/C and C include files. This option is valid for
both the Informix ESQL/C and the C preprocessors as follows:
v The Informix ESQL/C preprocessor (esql) processes only Informix ESQL/C

include files.
You specify these include files with the include preprocessor directive $include
or EXEC SQL include.

v The C preprocessor (cc) processes only the C include files.
You specify these files with the #include preprocessor statement. Because the C
preprocessing begins after the Informix ESQL/C compilation is completed, the C
include files are processed after the Informix ESQL/C include files.

/* define_ex.ec */
#include <stdio.h>
EXEC SQL include sqlca;
EXEC SQL define ENABLE_CODE;

main()
{...

EXEC SQL ifdef ENABLE_CODE;
printf("First block enabled");
EXEC SQL endif ENABLE_CODE;...

EXEC SQL ifndef ENABLE_CODE;
EXEC SQL define ENABLE_CODE;
EXEC SQL endif ENABLE_CODE;...

EXEC SQL ifdef ENABLE_CODE;
printf("Second block enabled");
EXEC SQL endif ENABLE_CODE;
}

Figure 2-2. ESQL/C Excerpt That Uses ifdef, ifndef, and endif

2-14 IBM Informix ESQL/C Programmer’s Manual

The preprocessor passes the -I option to the C compiler for processing of C include
files (those that a #include preprocessor statement specifies). The syntax for the -I
option is as follows:
esql -Idirectory esqlcprogram.ec

The directory can be on a mounted remote file system if the standard C library
functions fopen(), fread(), and fclose() can access them.

The following esql command names the UNIX directory /usr/johnd/incls as a
directory to search for Informix ESQL/C and C include files within the demo1
program:
esql -I/usr/johnd/incls demo1.ec

Each -I option lists a single directory. To list several directories, you must list
multiple -I options on the command line.

To search in both the C:\dorrie\incl and C:\johnd\incls directories in a Windows
environment, you would need to issue the following command:
esql -IC:dorrie\incl -IC:\johnd\incls demo1.ec

When the preprocessor reaches an include directive, it looks through a search path
for the file to include. It searches directories in this sequence:
1. The current directory
2. The directories that -I preprocessor options specify (in the order in which you

specify them on the command line)
3. The directory $INFORMIXDIR/incl/esql on a UNIX operating system and the

%INFORMIXDIR%\incl\esql in a Windows environment (where
$INFORMIXDIR and %INFORMIXDIR% represent the contents of the
environment variable of that name)

4. The directory /usr/include

For more information about Informix ESQL/C include files, see “The include
Directive” on page 1-29.

Numbering Lines
By default, the Informix ESQL/C preprocessor puts #line directives in the .c file so
that if an error is detected by the C compiler it will direct you to the line that
generated the problem C code in the Informix ESQL/C source file. If you instead
want to be directed to the problem line in the C file itself you can turn off line
numbering by using the -G option. The -G option prevents the generation of #line
directives in source code files that follow it on the command line. To turn line
numbers back on, use the -g option. Files that follow the -g option will have #line
directives generated.

Setting the Scope of Cursor Names and Statement IDs
By default, Informix ESQL/C defines cursor names and statement IDs as global
entities. If you use the -local option, static cursor names and static statement IDs
that you declare in a file are local to that file. To create the local name, Informix
ESQL/C adds a unique tag (two to nine characters long) to the cursor names and
statement IDs in an Informix ESQL/C program. If the combined length of the
cursor name (or statement ID) and the unique tag exceeds 128 characters, you
receive a warning message.

The -local option is provided primarily for compatibility with applications that
were created in previous versions of Informix ESQL/C. Do not use this option

Chapter 2. Compiling programs 2-15

when you compile new applications. Do not mix files compiled with and without
the -local flag. If you mix them, you might receive unpredictable results.

If you use the -local option, you must recompile the source files every time you
rename them.

Redirecting Errors and Warnings
By default, esql directs error and warning messages it generates to standard
output. If you want the errors and warnings to be put into a file, use the -log
option with the file name. For example, the following esql command compiles the
program demo1.ec and sends the errors to the err.out file:
esql -log err.out -o demorun demo1.ec

This option only affects the error warnings that the Informix ESQL/C preprocessor
generates. The warnings from the compile and link stages still go to the standard
error output, which is stderr on UNIX, for example.

Suppressing Warnings
By default, the preprocessor generates warning messages when it processes an
Informix ESQL/C file. To suppress these warning messages, use the -nowarn
option. This option has no effect on error messages.

Using the GLS for Unicode (GLU) Feature
GLS for Unicode (GLU) is a feature that allows your application to use the
International Components for Unicode (ICU) libraries instead of the usual GLS
libraries when handling Unicode. The main advantage of using the ICU libraries is
that they take the locale into account when collating Unicode characters, the GLS
libraries do not.

To enable GLU:
1. Compile your application using the -glu option to the esql command.
2. Set the GL_USEGLU environment variable to 1 (one) in the environment of

both client and database server.
3. Choose a locale that uses either Unicode or GB18030-2000 as a code set.

Using X/Open Standards
The -xopen option tells the IBM Informix ESQL/C preprocessor that your program
uses X/Open standards. When you specify this option, the preprocessor performs
the following two tasks:
v It checks for Informix extensions to X/Open-standard syntax.

If you include Informix extensions to X/Open-standard syntax in your code, the
preprocessor generates warning messages.

v It uses the X/Open set of codes for SQL data types.
Informix ESQL/C uses these codes in a dynamic management structure (a
system-descriptor area or an sqlda structure) to indicate column data types.
Informix defines these codes in the sqlxtype.h header file.

If you use X/Open SQL in an Informix ESQL/C program, you must recompile any
other source files in the same application with the -xopen option.

If you compile a program with both the -xopen and -ansi options, the Informix
ESQL/C preprocessor generates warning messages for Informix extensions to both
X/Open and ANSI SQL syntax.

2-16 IBM Informix ESQL/C Programmer’s Manual

Running the C Preprocessor Before the ESQL/C Preprocessor
The compilation of an IBM Informix ESQL/C source file can follow either the
default order, where the Informix ESQL/C preprocessor runs first on the source
file, or it can allow the C preprocessor to run on the source file before the Informix
ESQL/C preprocessor.

The default sequence of compilation for an Informix ESQL/C source file is as
follows:
1. The Informix ESQL/C preprocessor performs the following steps to create a .c

file from the Informix ESQL/C source file:
v Incorporates Informix ESQL/C header files into the source file when it

processes all include directives ($include and EXEC SQL include statements)
v Creates or removes compile-time definitions when it processes all define

($define and EXEC SQL define) and undef ($undef and EXEC SQL undef)
directives

v Processes any conditional compilation directives (ifdef, ifndef, else, elif,
endif) and translates embedded SQL statements to Informix ESQL/C
function calls and special data structures

2. The C preprocessor takes the following actions:
v Incorporates C header files into the source file when it processes all C

include directives (#include)
v Creates or removes compile-time definitions when it processes all C language

define (#define) and undef (#undef) directives
v Processes C conditional compilation directives (#ifdef, #ifndef, #else, #elif,

#endif)
3. The C compiler, assembler, and linker work in the usual way, as they do for a

C source file, translating the C code file into an executable program.

This default order of compilation is restrictive because you cannot use #defines or
typedefs defined in C system header files or custom C header files to define
Informix ESQL/C host variables and constants, nor can you use them for
conditional compilation of Informix ESQL/C code. With the default order of
compilation, C header files do not get included into the Informix ESQL/C source
code until after the Informix ESQL/C preprocessor has run, making these
definitions unavailable to the Informix ESQL/C preprocessor.

Options for Running the C Preprocessor First
You can make the C preprocessor run on an Informix ESQL/C source file first,
thus expanding any C-dependent typedefs or #defines inside the Informix
ESQL/C source file before the Informix ESQL/C preprocessor is run on that source
file. You can do this in any of the following ways:
v Pass the -cp or the -onlycp option to the esql command.

Both force the C preprocessor to run first, but in the case of the -cponly option,
the compilation stops after the C preprocessor is run, and the result is put in a
.icp file.

v Create the Informix ESQL/C source file with a .ecp extension.
This triggers the -cp option on the file automatically.

v Set the CPFIRST environment variables to TRUE (uppercase only).
v Use the eprotect.exe utility.

Chapter 2. Compiling programs 2-17

CPFIRST Environment Variable (UNIX)
The CPFIRST environment variable specifies whether the C preprocessor should
run before the IBM Informix ESQL/C preprocessor on all Informix ESQL/C source
files. Set the environment variable to TRUE (uppercase only) to run the C
preprocessor on all Informix ESQL/C source files, irrespective of whether the -cp
option is passed to the esql command, and irrespective of whether the source file
has the .ec or the .ecp extension.

Using the eprotect.exe Utility (Windows)
Windows users can use the eprotect.exe utility to run the preprocessor on an IBM
Informix ESQL/C source file. The eprotect.exe utility protects all of the SQL
keywords against interpretation by the C preprocessor. The eprotect.exe -u option
will remove SQL keyword protection.

To change the preprocessor order for an Informix ESQL/C source file on Windows:
1. Run the following command:

%INFORMIXDIR%\lib\eprotect.exe filename.ec filename.c

This protects all of the SQL keywords against interpretation by the C
Preprocessor and writes the result to the file filename.c.

2. Run the following command
cl /E filename.c > filename2.c

This runs the C Preprocessor on the source file filename.c and writes the result
to the file filename2.c

3. Run the following command:
%INFORMIXDIR%\lib\eprotect.exe -u filename2.c filename.ec

This removes SQL keyword protection and stores the result in filename.ec.
4. Run esql on the source file to compile it.

The Order of Compilation When the C Preprocessor Runs First
When a user chooses to run the C preprocessor on an IBM Informix ESQL/C
source file before the Informix ESQL/C preprocessor, the file undergoes the
following order of compilation.
1. The eprotect utility runs on the source file to protect all SQL keywords against

interpretation by the C preprocessor.
2. The C preprocessor runs on the source file.
3. The eprotect utility runs on the output of the C preprocessor with the -u mode

to remove SQL keyword protection.
4. The Informix ESQL/C preprocessor runs on the output of the C preprocessor,

which no longer has any SQL keyword protection.
5. The output of the Informix ESQL/C preprocessor undergoes compilation and

linking by the C compiler and linker to produce an executable file.

For details on the phases of SQL keyword protection and unprotection, see “SQL
Keyword Protection” on page 2-21.

Defining Host Variables Based on C #defines and typedefs
When the C preprocessor runs on a source file, it expands the contents of all C
header files where they are included within the source file. This expansion makes
it possible to use host variables in IBM Informix ESQL/C source files based on
types and #define and typedef statements in C header files. The examples given

2-18 IBM Informix ESQL/C Programmer’s Manual

here indicate some of the advantages of sharing header files. In the example in
Figure 2-3, the same C header file is used by both Informix ESQL/C and C source
files.

In the example in Figure 2-4, the Informix ESQL/C source file contains a host
variable based on a type defined in the time.h system-header file.

/*header file i.h*/
#define LEN 15
typedef struct customer_t{

int c_no;
char fname[LEN];
char lname[LEN];
} CUST_REC;...

/*cust.ec*/
#include <stdio.h>

EXEC SQL BEGIN DECLARE SECTION;
#include "i.h"
EXEC SQL END DECLARE SECTION;

int main()
{

EXEC SQL BEGIN DECLARE SECTION;
CUST_REC cust;

EXEC SQL END DECLARE SECTION;...

}

/*name.c*/
#include “i.h”
int main ()
{...

CUST_REC cust;...

}

Figure 2-3. ESQL/C and C Excerpt That Share a C Header File

/*time.ec*/

#include <time.h>

main ()
{...
EXEC SQL BEGIN DECLARE SECTION;

time_t time_hostvar;
EXEC SQL END DECLARE SECTION;...

}

Figure 2-4. ESQL/C Excerpt That Uses a Host Variable of the Type Defined in a C
System-Header File

Chapter 2. Compiling programs 2-19

A C header file can be included anywhere inside an Informix ESQL/C source file.
However, to define host variables in Informix ESQL/C files based on #defines and
typedefs defined in C header files, you must include the C header file within the
EXEC SQL declare section.

Contrast the example in Figure 2-5 on page 2-20, which leads to error -33051:
Syntax error on identifier or symbol 'name_hostvar with the example in
Figure 2-3 on page 2-19 which does not. The only difference is that in the example
in Figure 2-3, the C header file with the #define and the typedef that is used in the
EXEC SQL declare section is included within that declare section.

Allowing All Valid C Declaration Syntax Inside the EXEC SQL
Declare Section
When the IBM Informix ESQL/C preprocessor runs on a file, it expands all the
contents of header files inside the Informix ESQL/C source file where the header
file was included in the source file. Therefore, one consequence of including C
header files inside the EXEC SQL declare section is that all types of C declaration
syntax are included in the EXEC SQL declare section after the pass through the C
preprocessor. You can now include all valid C declaration syntax in the EXEC SQL
declare section in the EXEC SQL declare section. However, you can only declare
host variables based on certain types described in “Host-Variable Data Types” on
page 1-10.

Excluding Statements Inside C Header Files
If the Informix ESQL/C preprocessor has problems with certain statements in C
header files, you can exclude specific lines from the preprocessing that the
Informix ESQL/C preprocessor performs as shown in the example in Figure 2-6.

/*header file i.h*/
#define LEN 15
typedef struct customer_t{

int c_no;
char fname[LEN];
char lname[LEN];
} CUST_REC;...

/*cust.ec*/
#include "i.h"

int main()
{

EXEC SQL BEGIN DECLARE SECTION;
CUST_REC cust;...

}...

...Leads to error -33051...

Figure 2-5. ESQL/C Excerpt That Defines a Host Variable Based on a C Header File
Included Outside the Declare Section

2-20 IBM Informix ESQL/C Programmer’s Manual

SQL Keyword Protection
If the code in the IBM Informix ESQL/C files is passed unprotected to the C
preprocessor before it is passed to the Informix ESQL/C preprocessor, certain SQL
keywords might be analyzed by the C preprocessor, which causes unintended
results. In the following example, the SQL keyword NULL is replaced by the C
preprocessor with the value zero, which creates a valid SQL statement, but one
which inserts a value into the orders table other than the value that the
programmer intended:
EXEC SQL insert into orders (shipcharge) values (NULL);

When a user gives the option to run the C preprocessor before the Informix
ESQL/C preprocessor, the utility eprotect runs before the C preprocessor runs on
the Informix ESQL/C source file. The eprotect utility adds a prefix to any SQL
keyword that occurs in an SQL statement with the prefix SQLKEYWORD_. This
prefix is affixed on all SQL keywords inside SQL statements that begin with the
EXEC SQL directive and end with a semicolon. When the Informix ESQL/C source
file that contains the select statement mentioned earlier is passed to the C
preprocessor, the SELECT statement has the following form:
EXEC SQL SQLKEYWORD_insert SQLKEYWORD_into orders (order_num)
SQLKEYWORD_values (SQLKEYWORD_NULL);

After the C preprocessor runs on an Informix ESQL/C source file, the esql
command runs the eprotect utility with the -u mode, which removes all the
SQLKEYWORD_ prefixes before it runs the Informix ESQL/C preprocessor on the
output of the C preprocessor.

SQL Keyword Protection and the Dollar Sign ($) Symbol
All SQL statements within IBM Informix ESQL/C source files can either begin with
the EXEC SQL key words or with the $ prefix. All of the following pairs of
statements are equivalent:

/*header file i.h*/
#ifndef ESBDS /*define empty macros, if included by a C\

source*/
#define ESBDS
#define ESEDS
#endif...

ESEDS
statement that you do not want ESQL/C preprocessor to see
ESBDS

/*name.ec*/
#define ESBDS “EXEC SQL BEGIN DECLARE SECTION;”
#define ESEDS “EXEC SQL END DECLARE SECTION”
main ()
{...
EXEC SQL BEGIN DECLARE SECTION;

#include “i.h”
EXEC SQL END DECLARE SECTION;...

}

Figure 2-6. ESQL/C and C Excerpt That Uses a Common C Header File

Chapter 2. Compiling programs 2-21

EXEC SQL BEGIN DECLARE SECTION;
$BEGIN DECLARE SECTION;

EXEC SQL connect to 'database9';
$connect to 'database9';

EXEC SQL select fname into :hostvar1 from table1;
$ select fname into :hostvar1 from table1;

However, the $ symbol can also occur at the beginning of typedef definitions such
as in the following example:
$int *ip = NULL;

In cases such as the preceding typedef example, program logic might require that
the C preprocessor substitute the value zero in the place of the keyword NULL.
Not allowing the C preprocessor to make value substitutions in such cases would
lead to errors. Therefore the eprotect utility does not add a prefix to the
SQLKEYWORD_ prefix on SQL keywords that are displayed in SQL statements
that begin with the dollar sign ($) symbol.

Important: If you want to run the C preprocessor on your Informix ESQL/C
source file before the Informix ESQL/C preprocessor, and if you do not
want the C preprocessor to substitute values for the SQL keywords in
SQL statements that occur in your source file, you must begin each
SQL statement with the keywords EXEC SQL, and not with the dollar
sign ($) symbol.

Preprocessor Options Specific to Windows Environments
The following additional preprocessing options are available to you if you use IBM
Informix ESQL/C in a Windows environment.

Line Wrapping
The Informix ESQL/C preprocessor translates one embedded SQL statement as one
C line. Long lines can cause problems for some debuggers and editors. You can use
the -lw option to tell the preprocessor to wrap output lines at a specific column
position. For example, the following esql command tells the preprocessor to wrap
lines at column 75:
esql -lw:75 demo.ec

If you omit the -lw option, the preprocessor does not perform line wrapping.

Changing Error and Warning Displays
By default, the IBM Informix ESQL/C preprocessor generates error and warning
messages when it processes an Informix ESQL/C file. It displays these errors and
warnings in the console window. You can change the display of error and warning
messages with the following command-line options:
v Use the -nowarn option to suppress warning messages. This option has no effect

on error messages.
v Use the -mserr option to display error and warning messages in Microsoft Error

Message format. Some text editors understand this format and can use it to go
to the line in the Informix ESQL/C source file that caused the error or warning.

2-22 IBM Informix ESQL/C Programmer’s Manual

Setting Tab Stops
By default, the IBM Informix ESQL/C preprocessor formats the C source file with
tab stops at every eighth column position. You can use the -ts option to set
different tab stops. For example, the following esql command tells the preprocessor
to set tab stops every four characters:
esql -ts:4 demo.ec

Compiling and Linking Options of the esql Command
The following sections describe the compiling and linking options of the esql
command.

Naming the Executable
You can explicitly specify the name of the executable file with the -o option. For
example, the following esql command produces an executable file called inpt:
esql -o inpt custinpt.ec ordinpt.ec

If esql is running on a Windows operating system the name of the target file
defaults to the name of the first Informix ESQL/C source file on the esql command
line. The extension is changed to either .exe or .dll depending on the type of target
being generated.

If esql is running on a UNIX operating system the name of the target file defaults
to whatever is the default for your C compiler, usually a.out.

Setting the Type of Executable Created (Windows)
The esql command can be used to compile regular executables and also Dynamic
Link Libraries (DLLs). Use the -target: option to tell esql which type of output you
want. The -target: option only tells esql how to compile your application. If you
compile to a DLL, your source code must be written as a DLL or the compile will
fail.

Pass options to the C compiler
The esql command processor passes any unrecognized arguments in the command
line to the C compiler. For example, because esql does not recognize /Zi as an
option, the following esql command passes the /Zi option to the C compiler:
esql /Zi demo1.ec

If you want to pass C compiler options that have the same names as IBM Informix
ESQL/C processor options, precede them with the -cc option. The esql command
ignores any options between the -cc and the next occurrence of any of these
arguments:
v -l (Windows only)
v -r (Windows only)
v -f (Windows only)
v An Informix ESQL/C source file.

Specify a particular C compiler (Windows)
ESQL/C in Windows environments supports the following C compilers:
v Microsoft Visual C++, Version 2.x or later
v Borland C++, Version 5

Chapter 2. Compiling programs 2-23

Either the Microsoft C compiler or the Borland C compiler must be on your
computer before you can compile an Informix ESQL/C program. The default C
compiler option, -mc, starts the Microsoft compiler. To choose the Borland
compiler, use the -bc option.

Compile without linking
By default, the IBM Informix ESQL/C command processor preprocesses, compiles,
and links the Informix ESQL/C program and creates either an executable file or a
DLL. To suppress the linking of your Informix ESQL/C program specify the -c
option. With this option, esql only preprocesses and compiles the code. The output
of this command is a C object file (.obj extension) for each C source file (.c) or
Informix ESQL/C source file (.ec).

For example, to preprocess and compile the Informix ESQL/C source file
demo1.ec, use the following command:
esql -c demo1.ec

The preceding command generates a C object file called demo1.obj. The following
esql command preprocesses demo1.ec, checks for Informix extensions to
X/Open-standard syntax, and suppresses warning messages:
esql -c -xopen -nowarn demo1.ec

Important: If you specify the conflicting options -c and -o, the preprocessor
ignores the -o option and processes the -c option. The preprocessor
reports the conflict in an error message.

Special Compile Options for Windows Environments
You can give the following additional compile options to the esql command if you
are running IBM Informix ESQL/C in a Windows environments.

Using a Project File
The -f option enables you to specify the name of a project file at the esql command
line. The filename that follows -f is a project file that contains the names of the IBM
Informix ESQL/C source (.ec) files to compile.

For example, suppose the project file, project.txt, contains the following lines:
first.ec
second.ec
third.ec

In this example, first.ec, second.ec, and third.ec represent the names of Informix
ESQL/C source files that you want to compile.

The following esql command uses the project.txt project file to specify the three
source files to compile and link:
esql -f project.txt

The preceding esql command is the equivalent of the following esql command:
esql first.ec second.ec third.ec

You can accomplish the same task with a response file. For more information about
response files, see “Creating a Response File” on page 2-25.

2-24 IBM Informix ESQL/C Programmer’s Manual

Creating a Response File
You can specify the command-line arguments for the IBM Informix ESQL/C
command processor in a response file and specify the file name for the Informix
ESQL/C processor. The Informix ESQL/C response file is a text file with Informix
ESQL/C command-line options and file names, separated by a space, a new line, a
carriage return, a line feed, or a combination of these characters.

The following example shows the syntax that specifies a response file called
resp.esq:
esql @resp.esq

The response file, resp.esq, might contain the following lines:
-we
first.ec
second.ec
third.ec
-r foo.rc

Use of this response file is the equivalent of the following esql command:
esql -we -f project.txt -r foo.rc

In this example, project.txt is a project file that contains the file names first.ec,
second.ec, and third.ec on separate lines, as the previous shows.

You might use a response file for the following reasons:
v The command line is limited to 1,024 characters. If your esql options exceed this

length, you must use a response file.
v If you use one or more sets of esql options regularly, you can save yourself a

great deal of typing by putting each set in a different response file. Instead of
typing the options, you can list the appropriate response file in the esql
command.

Implicit Options Invoked by the esql Preprocessor in Windows
Environments
The Informix ESQL/C command processor implicitly passes compiler and linker
flags to the supported C compilers. Table 2-1 on page 2-26 lists the implicit options
that esql passes when you use the indicated esql options. If you choose to create
your own build file, use the indicated flags as appropriate for your application.

Important: The esql command does not implicitly pass any options to the resource
compiler.

Chapter 2. Compiling programs 2-25

Table 2-1. Implicitly Passed Compiler Options

Compiler
Module
Type esql Options

Implicit Options

Compiler Linker

Microsoft
Visual
C++,
Version
2.x or
later

executable -target:exe
-we

-c -I%INFORMIXDIR%\
incl\esql
/D_systype /D_proctype
/threadtype /DWIN32

-DEF:deffile -OUT:target -MAP
-SUBSYSTEM:systype
%INFORMIXDIR%\lib\isqlt09a.lib
%INFORMIXDIR%\lib\igl4g303.lib
%INFORMIXDIR%\lib\iglxg303.lib
%INFORMIXDIR%\lib\igo4g303.lib
libset

dll -target:dll
-wd

-c -I%INFORMIXDIR%\
incl\esql
/D_systype /D_proctype
/threadtype /DWIN32

-DLL -DEF:deffile -OUT:target -MAP
-SUBSYSTEM:systype
%INFORMIXDIR%\lib\isqlt09a.lib
%INFORMIXDIR%\lib\igl4g303.lib
%INFORMIXDIR%\lib\iglxg303.lib
%INFORMIXDIR%\lib\igo4g303.lib
libset

Borland
C++,
Version 5

executable -target:exe
-we

-c -I%INFORMIXDIR%\
incl\esql
-etarget -subtype
-libtlog -libtlg

-c -Tpe -M
-DEF:deffile -subsystem
%INFORMIXDIR%\lib\igl4b303.lib
%INFORMIXDIR%\lib\iglxb303.lib
%INFORMIXDIR%\lib\igo4b303.lib
c0t32.obj
libset

dll -target:dll
-wd

-c -I%INFORMIXDIR%\
incl\esql
-etarget -subtype
-libtlog -libtlg

-c -Tpd -M
-DEF:deffile -subsystem
%INFORMIXDIR%\lib\igl4b303.lib
%INFORMIXDIR%\lib\iglxb303.lib
%INFORMIXDIR%\lib\igo4b303.lib
c0d32.obj
libset

The italicized terms in the compiler and linker options represent the following
definitions.

Term Definition

deffile Name of a .def file (The -DEF option executes only if you specify a
.def file on the command line.)

libset Library set (depends on whether the application is WINDOWS or
CONSOLE).

libtlg -D_RTLDLL for a dynamic library or " " for a shared library

libtlog -WM for a multithread library or " " for a single-thread library

proctype Type of processor (X86)

subsystem ap for a console subsystem or aa for a Windows subsystem

subtype WC for a console executable, W for a Windows executable file,
WCD for a console DLL, or WD for a Windows DLL

systype Type of subsystem (WINDOWS or CONSOLE)

t X for a console subsystem and W for a Windows subsystem

target Name of the executable file (name of first .ec file or the name
specified by the -o command-line option)

2-26 IBM Informix ESQL/C Programmer’s Manual

threadtype Type of thread option (ML, MT, MD, depending on the value of
the -runtime command-line option)

For more information about the -target, -wd, and -we command-line options, see
“Syntax of the esql command” on page 2-5

The library set that the linker uses depends on whether you are creating a
Windows or console application. Table 2-2 lists the library sets that the indicated
esql options use.

Table 2-2. Library Sets That the Linker Uses

Compiler esql Options Library Sets That the Linker Uses

Microsoft Visual C++,
Version 2.x or later

-subsystem:windows
-Sw
-ss:w

advapi32.lib
wsock32.lib
user32.lib
winmm.lib
gdi32.lib
comdlg32.lib
winspool.lib

-subsystem:console
-Sc
-ss:c

netapi32.lib
wsock32.lib
user32.lib
winmm.lib

Borland C++,
Version 5

-subsystem:windows
-Sw
-ss:w

cw32mti.lib
import32.lib

-subsystem:console
-Sc
-ss:c

cw32mti.lib
import32.lib

Linking Options
The C compiler performs the linking phase of an IBM Informix ESQL/C compile.
This section describes the esql command-line arguments that affect how this
linking occurs.

General Linking Options
The following linking options affect both UNIX and Windows environments:
v Linking other C source and object files
v Specifying versions of IBM Informix general libraries

The following sections describe how to specify these options.

Linking Other C Source and Object Files: You can list the following types of
files on the esql command line to indicate that you want the link editor to link to
the resulting object file:
v C source files in the form otherCsrc.c

If you list files with the .c extensions, esql passes them through to the C
compiler, which compiles them to object files (.o extensions) and links these
object files.

v C object files in the form otherCobj.o on a UNIX operating system or
otherCobj.obj in a Windows environment

Chapter 2. Compiling programs 2-27

If you list files with .o or .obj extensions, esql passes them through to the C
compiler, which links these object files. The link editor links the C object files
with the appropriate IBM Informix ESQL/C library functions.

v Library files, either your own libraries or system libraries that are compatible
with the linker

v Module definitions (.def)
v Resource files, either compiled (.res) or uncompiled (.rc)

Tip: If you specify uncompiled resource files, esql passes them to the resource
compiler and links the resulting .res file to the Informix ESQL/C
application.

The Informix ESQL/C command preprocessor passes these files directly to the
linker. It also links the libraries it needs to support the Informix ESQL/C function
library. You can use the -libs option to determine which libraries esql
automatically links, as follows:
esql -libs

Specifying Versions of Informix General Libraries: By default, the esql
command links the shared libraries for the IBM Informix general libraries: libgen,
libos, libgls, libafs, and libsql. To use shared libraries, your computer must
support shared memory.

You can use the following command-line options to change which versions of the
Informix general libraries the preprocessor links with your program:
v The -thread option tells the preprocessor to link the thread-safe versions of the

Informix shared libraries.
v The -static option tells the preprocessor to link the static libraries for the

Informix general libraries in a UNIX environment. If you use the -static option,
you cannot set the IFX_LONGID environment variable. You must recompile
with libos.a.

You can combine these options to tell the preprocessor to link in the thread-safe
versions of the Informix static libraries. For more information about this topic, see
“The esql command” on page 13-3.

Special Linking Options for Windows
The following sections give linking options that you can only use in Windows
environments.

Passing Arguments to the Linker: On the esql command line, you can list linker
arguments by prefacing them with the -l processor option. The esql command
processor passes to the linker all arguments after the -l option, up to whichever of
the following items it encounters first:
v The -r option to specify resource compiler options
v The end of the command line

Passing Arguments to the Resource Compiler: On the esql command line, you
can list resource compiler arguments by prefacing them with the -r processor
option. The IBM Informix ESQL/C command processor passes to the resource
compiler all arguments after the -r, up to the end of the command line. The
processor then runs the resource compiler to create a .res file, which it then passes
to the linker. If you specify the -r option but do not specify an associated resfile.rc,
esql uses the name for the target and appends the .rc extension.

2-28 IBM Informix ESQL/C Programmer’s Manual

ESQL/C Dynamic Link Libraries: For Windows environments, the IBM Informix
ESQL/C product includes the following dynamic link libraries (DLLs):
v The ESQL client-interface DLL (isqlt09a.dll) contains the Informix ESQL/C

library functions that the Informix ESQL/C preprocessor needs to translate
embedded SQL statements and other internal functions that are needed at
runtime. For more information see “Accessing the ESQL Client-Interface DLL in
Windows Environments” on page 2-30.

v The esqlauth.dll DLL provides runtime verification of the connection
information that the client application sends to the database server. When your
application requests a connection, Informix ESQL/C calls the sqlauth() function,
which esqlauth.dll defines. For more information about sqlauth(), see
“Connection Authentication Functionality in a Windows Environment” on page
12-8.

v The Registry DLL, iregt07b.dll, is used by the Setnet32 utility and the IBM
Informix Connect library to set and access configuration information in the
Registry.

v The igl4b304.d ll, igo4g303.dll, and iglxg303.dll DLLs are required for Global
Language Support (GLS). For more information about code-set conversion, see
the IBM Informix GLS User's Guide.

Informix DLLs are located in the %INFORMIXDIR%\bin directory.
%INFORMIXDIR% is the value of the INFORMIXDIR environment variable.

Using the Same Runtime Routines for Version Independence: If your
application was compiled with a version of Microsoft Visual C++ earlier than 4.x,
you must export your C runtime library to the ESQL client-interface DLL
(isqlt09a.dll). The ESQL client-interface DLL uses your runtime routines to make
sure all the pieces of your application are compiled with the same runtime version.
Any application that is linked to your application and calls IBM Informix ESQL/C
library routines or SQL statements must also use your C runtime library.

To export a C runtime library, include the following line in your code before the
first call to an Informix ESQL/C library routine or SQL statement:
#include "infxcexp.c";

The infxcexp.c file contains the C code to export the addresses of all C runtime
routines that the ESQL client-interface DLL uses. This file is in the
%INFORMIXDIR%\incl\esql directory, which the esql command processor
automatically searches when it compiles a program. If you do not use the esql
command processor, add the %INFORMIXDIR%\incl\esql directory to the
compiler search path before you compile.

You must include the infxcexp.c file only once, in the main() routine (once per
process), before the first Informix ESQL/C library call or SQL statement in the
program. The code in this file exports your runtime library to the ESQL runtime
DLL (isqlt09a.dll) so that they use the same C runtime code. Exporting your
runtime routines enables the ESQL runtime routines to allocate memory (malloc()),
return the pointer to a C program, and let the program free the memory (free()). It
also enables a C program to open a file and to pass the handle (or file pointer) to
the ESQL runtime routines for read-write access.

Chapter 2. Compiling programs 2-29

Accessing the ESQL Client-Interface DLL in Windows Environments
A DLL is a collection of functions and resources that can be shared by applications.
It is similar to a runtime library in that it stores functions that many applications
need. It differs, however, from a runtime library in the way that it is linked to the
calling application.

Libraries that are linked at compile time are static-link libraries. The libraries such as
libc and libcmt (used with the Microsoft Visual C++, Version 2.x) are static-link
libraries. Whenever you link one of these Microsoft Visual C++ (Version 2.x)
libraries to your application, the linker copies the code from the appropriate
static-link library to the executable file (.exe) for your application. By contrast,
when you link dynamically, no code is copied to the executable file of your
application. Instead, your functions are linked at runtime.

Static-link libraries are effective in an environment where no multitasking is
required. However, they become inefficient when more than one application calls
the same functions. For example, if two applications that are running
simultaneously in a Windows environment call the same static-link function, two
copies of the function is in memory. This situation is inefficient.

But if a function is dynamically linked, the Windows system first checks memory
to see if a copy of the function already is there. If a copy exists, the Windows
system uses that copy rather than making another copy. If the function does not
yet exist in memory, the Windows system links or copies the function into memory
from the DLL.

The IBM Informix ESQL/C library functions, and other internal functions, are
contained in the ESQL client-interface DLL. To use these functions in your Informix
ESQL/C application, you must perform the following tasks:
v Access the import library for the ESQL client-interface DLL
v Locate the ESQL client-interface DLL

Accessing the Import Library
The import library of the DLL is provided to enable your IBM Informix ESQL/C
application to access the ESQL client-interface DLL. The linker uses an import
library to locate functions that are contained in the DLL. It contains references that
reconcile function names used in an application with the library module that
contains the function.

When you link a static library to your application, the linker copies program code
from your static-link libraries to the executable file. However, if you link an import
library to your application, the linker does not copy the program code when it
links the executable file. Instead, the linker stores the information needed to locate
the functions in the DLL. When you run your application, this location information
serves as a dynamic link to the DLL.

The ESQL client-interface library provides location information for the Informix
ESQL/C function calls. The esql command processor automatically links the
import and Windows libraries for the DLL whenever you use it to compile and
link your Informix ESQL/C program.

2-30 IBM Informix ESQL/C Programmer’s Manual

Locating a DLL
During the development of your application, the IBM Informix ESQL/C software
(such as the esql command processor) must be able to access object libraries and
import libraries. However, DLLs must be accessible when the application is
running. Consequently, Windows must be able to locate them on your hard disk.

Search directories for your DLL in the following order:
1. The directory from which you loaded the application
2. The Windows environment system directory, SYSTEM

3. The current directory (where the executable file exists or the working directory
that the Program Item Properties value for the icon specifies)

4. Directories that your PATH environment variable lists

Note: For the most recent information about your particular Windows operating
system, see the Dynamic-Link Library Search Order documentation at
www.microsoft.com.

Building an Application DLL
You can tell the IBM Informix ESQL/C processor to build an Informix ESQL/C
program as a DLL (.dll file) with the -target (or -wd) command-line option. Such
an Informix ESQL/C program is called an application DLL.

To build an Informix ESQL/C program as a DLL, follow the guidelines for
general-purpose DLLs. For more information, see your system documentation.
Compile the Informix ESQL/C source file with the -target:dll (or -wd) to create the
application DLL.

For an example of how to build an application DLL, see the WDEMO
demonstration program in the %INFORMIXDIR%\demo\wdemo directory. The
Informix ESQL/C source file for the sample application DLL is called wdll.ec. To
compile this DLL, use the following esql command:
esql -subsystem:windows -target:dll wdll.ec

The source code for the WDEMO executable file is in the wdemo.exe file.

Chapter 2. Compiling programs 2-31

http://www.microsoft.com

2-32 IBM Informix ESQL/C Programmer’s Manual

Chapter 3. Informix ESQL/C data types

Choosing data types for host variables . 3-1
Data Type Constants . 3-3

SQL Data Type Constants . 3-4
ESQL/C Data Type Constants . 3-5
X/Open Data Type Constants . 3-6

Header Files for Data Types . 3-7
Data Conversion . 3-8

Fetching and Inserting with Host Variables . 3-8
Converting Numbers and Strings . 3-9
Converting Floating-Point Numbers to Strings . 3-10
Converting BOOLEAN Values to Characters . 3-10
Converting DATETIME and INTERVAL Values . 3-10
Converting Between VARCHAR and Character Data Types 3-10

Performing Arithmetic Operations . 3-10
Converting Numbers to Numbers . 3-10
Using Operations That Involve a Decimal Value . 3-11

Data-Type Alignment Library Functions . 3-13

These topics contain information about the correspondence between SQL and C
data types and how to handle data types in an IBM Informix ESQL/C program.
These topics contain the following information:
v Choosing the appropriate data type for a host variable
v Converting from one data type to another
v Functions for working with nulls and different data types

Choosing data types for host variables
When you access a database column in your Informix ESQL/C program, you must
declare a host variable of the appropriate C or Informix ESQL/C data type to hold
the data. Table 3-1 on page 3-1 lists the SQL data types of the IBM Informix and
the corresponding Informix ESQL/C data types that you can declare for
host-variables. Table 3-2 on page 3-3 lists the additional SQL data types available
with IBM Informix and the Informix ESQL/C data types that you can use as host
variables for those types of columns. Both figures include a reference to the section
or chapter in this book where you can obtain more information about the
host-variable data type. For more information about the SQL data types that you
can assign to database columns, see the IBM Informix Guide to SQL: Reference.

Table 3-1. Corresponding SQL and Host Variable Data Types

SQL Data Type
ESQL/C Predefined
Data Type C Language Type See

BIGINT BIGINT 8-byte integer Chapter 5, “Working with numeric data types,”
on page 5-1

BIGSERIAL BIGINT 8-byte integer Chapter 5, “Working with numeric data types,”
on page 5-1

BOOLEAN boolean Table 3-8 on page 3-8

BYTE ifx_loc_t or loc_t Chapter 7, “Working with simple large objects,”
on page 7-1

© Copyright IBM Corp. 1996, 2010 3-1

Table 3-1. Corresponding SQL and Host Variable Data Types (continued)

SQL Data Type
ESQL/C Predefined
Data Type C Language Type See

CHAR(n)
CHARACTER(n)

fixchar [n] or
string [n+1]

char [n + 1] or char
*

Chapter 4, “Working with character and string
data types,” on page 4-1

DATE date 4-byte integer Chapter 6, “Working with time data types,” on
page 6-1

DATETIME datetime or dtime_t Chapter 6, “Working with time data types,” on
page 6-1

DECIMAL
DEC
NUMERIC
MONEY

decimal or dec_t Chapter 5, “Working with numeric data types,”
on page 5-1

FLOAT
DOUBLE PRECISION

double Chapter 6, “Working with time data types,” on
page 6-1

INT8 int8 or ifx_int8_t Chapter 5, “Working with numeric data types,”
on page 5-1

INTEGER
INT

4-byte integer Chapter 5, “Working with numeric data types,”
on page 5-1

INTERVAL interval or intrvl_t Chapter 6, “Working with time data types,” on
page 6-1

LVARCHAR lvarchar char [n + 1] or char
*

Chapter 4, “Working with character and string
data types,” on page 4-1

NCHAR(n) fixchar [n] or
string [n+1]

char [n + 1] or char
*

Chapter 4, “Working with character and string
data types,” on page 4-1

NVARCHAR(m) varchar[m+1] or
string [m+1]

char [m+1] Chapter 4, “Working with character and string
data types,” on page 4-1

SERIAL 4-byte integer Chapter 5, “Working with numeric data types,”
on page 5-1

SERIAL8 int8 or ifx_int8_t Chapter 5, “Working with numeric data types,”
on page 5-1

SMALLFLOAT
REAL

float Chapter 5, “Working with numeric data types,”
on page 5-1

SMALLINT 2-byte integer Chapter 5, “Working with numeric data types,”
on page 5-1

TEXT loc_t Chapter 7, “Working with simple large objects,”
on page 7-1

VARCHAR(m,x) varchar[m+1] or
string [m+1]

char d[m+1] Chapter 4, “Working with character and string
data types,” on page 4-1

3-2 IBM Informix ESQL/C Programmer’s Manual

Table 3-2. Corresponding SQL and Host Variable Data Types Specific to IBM Informix

SQL Data Type
ESQL/C Predefined
Data Type See

BLOB ifx_lo_t Chapter 8, “Working with smart large objects,”
on page 8-1

CLOB ifx_lo_t Chapter 8, “Working with smart large objects,”
on page 8-1

LIST(e) collection Chapter 8, “Working with smart large objects,”
on page 8-1

MULTISET(e) collection Chapter 9, “Working with complex data types,”
on page 9-1

Opaque data type lvarchar, fixed
binary, or var
binary

Chapter 10, “Working with opaque data types,”
on page 10-1

ROW(...) row Chapter 9, “Working with complex data types,”
on page 9-1

SET(e) collection Chapter 9, “Working with complex data types,”
on page 9-1

Data Type Constants
The IBM Informix ESQL/C sqltypes.h header file contains integer constants for
both SQL and Informix ESQL/C data types. Some Informix ESQL/C library
functions require data type constants as arguments. You can also compare these
data type constants in dynamic SQL programs to determine the type of column
that the DESCRIBE statement described. The Informix ESQL/C code excerpt in
Figure 3-1 compares the sqltype element of an sqlvar structure to a series of SQL
data type constants to determine what types of columns a DESCRIBE statement
returned.

Chapter 3. Informix ESQL/C data types 3-3

For more information about the use of data type constants with the DESCRIBE
statement, see Chapter 15, “Determining SQL statements,” on page 15-1.

SQL Data Type Constants
Table 3-3 shows the SQL data type constants for the IBM Informix. Table 3-4 on
page 3-5 shows the SQL data type constants for the additional data types that are
available with the IBM Informix.

for (col = udesc->sqlvar, i = 0; i < udesc->sqld; col++, i++)
{
switch(col->sqltype)

{
case SQLSMFLOAT:
col->sqltype = CFLOATTYPE;
break;

case SQLFLOAT:
col->sqltype = CDOUBLETYPE;
break;

case SQLMONEY:
case SQLDECIMAL:

col->sqltype = CDECIMALTYPE;
break;

case SQLCHAR:
col->sqltype = CCHARTYPE;
break;

default:
/* The program does not handle INTEGER,
* SMALL INTEGER, DATE, SERIAL or other
* data types. Do nothing if we see
* an unsupported type.
*/
return;
}

Figure 3-1. Code Excerpt Using SQL Data Type Constants

3-4 IBM Informix ESQL/C Programmer’s Manual

Table 3-3. Constants for Informix SQL Column Data Types

SQL Data Type Defined Constant Integer Value

CHAR SQLCHAR 0

SMALLINT SQLSMINT 1

INTEGER SQLINT 2

FLOAT SQLFLOAT 3

SMALLFLOAT SQLSMFLOAT 4

DECIMAL SQLDECIMAL 5

SERIAL SQLSERIAL 6

DATE SQLDATE 7

MONEY SQLMONEY 8

DATETIME SQLDTIME 10

BYTE SQLBYTES 11

TEXT SQLTEXT 12

VARCHAR SQLVCHAR 13

INTERVAL SQLINTERVAL 14

NCHAR SQLNCHAR 15

NVARCHAR SQLNVCHAR 16

INT8 SQLINT8 17

BIGSERIAL SQLBIGSERIAL 53

LVARCHAR SQLLVARCHAR 43

BOOLEAN SQLBOOL 45

BIGINT SQLINFXBIGINT 52

BIGSERIAL SQLBIGSERIAL 53

Table 3-4. Constants for Informix SQL Column Data Types That Are Specific to IBM Informix

SQL Data Type Defined Constant Integer Value

SET SQLSET 19

MULTISET SQLMULTISET 20

LIST SQLLIST 21

ROW SQLROW 22

Varying-length opaque type SQLUDTVAR 40

Fixed-length opaque type SQLUDTFIXED 41

SENDRECV
(client-side only)

SQLSENDRECV 44

Important: The SENDRECV data type has an SQL constant but can only be used
in an Informix ESQL/C program. You cannot define a database column
as type SENDRECV.

ESQL/C Data Type Constants
You assign an IBM Informix ESQL/C data type to a host variable in an Informix
ESQL/C program. The following table shows these constants.

Chapter 3. Informix ESQL/C data types 3-5

Table 3-5. Constants for ESQL/C Host-Variable Data Types

ESQL/C Data Type Constant Integer Value

char CCHARTYPE 100

short int CSHORTTYPE 101

int4 CINTTYPE 102

long CLONGTYPE 103

float CFLOATTYPE 104

double CDOUBLETYPE 105

dec_t or decimal CDECIMALTYPE 107

fixchar CFIXCHARTYPE 108

string CSTRINGTYPE 109

date CDATETYPE 110

dec_t or decimal CMONEYTYPE 111

datetime or dtime_t CDTIMETYPE 112

ifx_loc_t or loc_t CLOCATORTYPE 113

varchar CVCHARTYPE 114

intrvl_t or interval CINVTYPE 115

char CFILETYPE 116

int8 CINT8TYPE 117

collection CCOLTYPE 118

lvarchar CLVCHARTYPE 119

fixed binary CFIXBINTYPE 120

var binary CVARBINTYPE 121

boolean CBOOLTYPE 122

row CROWTYPE 123

You can use these Informix ESQL/C data types as arguments for some of the
functions in the Informix ESQL/C library. For example, both the rtypalign() and
rtypmsize() functions require data type values as arguments.

X/Open Data Type Constants
If your programs conform to the X/Open standards (compile with the -xopen
option), you must use the data type values that the following table shows. IBM
Informix defines the constants for these values in the sqlxtype.h header file.

Table 3-6. Constants for Informix SQL Column Data Types in an X/Open Environment

SQL Data Type Defined Constant X/Open Integer Value

CHAR XSQLCHAR 1

DECIMAL XSQLDECIMAL 3

INTEGER XSQLINT 4

SMALLINT XSQLSMINT 5

FLOAT XSQLFLOAT 6

3-6 IBM Informix ESQL/C Programmer’s Manual

Header Files for Data Types
To use an SQL data type, your program must include the appropriate IBM
Informix ESQL/C header file. Table 3-7 shows the relationship between
host-variable data types and Informix ESQL/C header files for all database servers.
Table 3-8 on page 3-8 shows the relationship between host-variable data types and
Informix ESQL/C header files that are specific to IBM Informix with Universal
Data Option.

Table 3-7. SQL Data Types and ESQL/C Header Files

SQL Data Type ESQL/C or C Data Type ESQL/C Header File

BLOB ifx_lo_t locator.h

BOOLEAN boolean Defined automatically

BYTE ifx_loc_t or loc_t locator.h

CHAR(n)
CHARACTER(n)

fixchar array[n] or
string array[n+1]

Defined automatically

DATE date Defined automatically

DATETIME datetime or dtime_t datetime.h

DECIMAL
DEC
NUMERIC
MONEY

decimal or dec_t decimal.h

FLOAT
DOUBLE PRECISION

double Defined automatically

INT8 int8 int8.h

INTEGER
INT

4-byte integer Defined automatically

INTERVAL interval or intrvl_t datetime.h

LVARCHAR lvarchar array[n + 1] where n
is the length of the longest
string that might be stored in
the LVARCHAR field.

Defined automatically

MULTISET(e) collection Defined automatically

NCHAR(n) fixchar array[n] or
string array[n+1]

Defined automatically

NVARCHAR(m) varchar[m+1] or
string array[m+1]

Defined automatically

SERIAL 4-byte integer Defined automatically

SERIAL8 int8 int8.h

BIGINT BIGINT Defined automatically

BIGSERIAL BIGINT Defined automatically

SMALLFLOAT
REAL

float Defined automatically

SMALLINT short int Defined automatically

TEXT loc_t locator.h

VARCHAR(m,x) varchar[m+1] or
string array[m+1]

Defined automatically

Chapter 3. Informix ESQL/C data types 3-7

Table 3-8. SQL Data Types and ESQL/C Header Files That Are Specific to IBM Informix

SQL Data Type ESQL/C or C Data Type ESQL/C Header File

BLOB ifx_lo_t locator.h

CLOB ifx_lo_t locator.h

LIST(e) collection Defined automatically

Opaque data type lvarchar or fixed binary or
var binary

User-defined header file that
contains definition of internal
structure for opaque type

ROW(...) row Defined automatically

SET(e) collection Defined automatically

Data Conversion
When a discrepancy exists between the data types of two values, IBM Informix
ESQL/C attempts to convert one of the data types. The process of converting a
value from one data type to another is called data conversion.

The following list names a few common situations in which data conversion can
occur:
v Comparison. Data conversion can occur if you use a condition that compares

two different types of values, such as comparing the contents of a zip-code
column to an integer value.
For example, to compare a CHAR value and a numeric value, Informix ESQL/C
converts the CHAR value to a numeric value before it performs the comparison.

v Fetching and inserting. Data conversion can occur if you fetch or insert values
with host variables and database columns of different data types.

v Arithmetic operations. Data conversion can occur if a numeric value of one data
type operates on a value of a different data type.

For more information about fetching and inserting, see “Fetching and Inserting
with Host Variables.” For more information about arithmetic operations, see
“Performing Arithmetic Operations” on page 3-10.

Fetching and Inserting with Host Variables
If you try to fetch a value from a database column into a host variable that you do
not declare according to the correspondence shown in Table 3-1 on page 3-1, IBM
Informix ESQL/C attempts to convert the data types. Similarly, if you try to insert
a value from a host variable into a database column, Informix ESQL/C might need
to convert data types if the host variable and database column do not use the
correspondences in Table 3-1. Informix ESQL/C converts the data types only if the
conversion is meaningful.

This section provides the following information about data conversion for fetching
and inserting values with host variables:
v How Informix ESQL/C converts between numeric and character data
v How Informix ESQL/C converts floating-point numbers to strings
v How Informix ESQL/C converts BOOLEAN values to characters
v How Informix ESQL/C converts DATETIME and INTERVAL values
v How Informix ESQL/C converts between VARCHAR columns and character

data

3-8 IBM Informix ESQL/C Programmer’s Manual

Converting Numbers and Strings
Before IBM Informix ESQL/C can convert a value from one data type to another, it
must determine whether the conversion is meaningful. Table 3-9 shows possible
conversions between numeric data types and character data types. In this figure, N
represents a value with a numeric data type (such as DECIMAL, FLOAT, or
SMALLINT) and C represents a value with a character data type (such as CHAR or
VARCHAR).

If conversion is not possible, either because it makes no sense or because the target
variable is too small to accept the converted value, Informix ESQL/C returns
values that the Results column in Table 3-9 describes.

Table 3-9. Data Conversion Problems and Results

Conversion Problem Results

C Æ C Does not fit Informix ESQL/C truncates the string, sets a warning
(sqlca.sqlwarn.sqlwarn1 to W and SQLSTATE to 01004),
and sets any indicator variable to the size of the original
string.

For more information, see “Fetching and Inserting
Character Data Types” on page 4-7.

NÆ C None Informix ESQL/C creates a string for the numeric value;
it uses an exponential format for very large or very
small numbers.

For more information, see “Converting Floating-Point
Numbers to Strings” on page 3-10.

NÆ C Does not fit Informix ESQL/C fills the string with asterisks, sets a
warning (sqlca.sqlwarn.sqlwarn1 to W and SQLSTATE
to 01004), and sets any indicator variable to a positive
integer.

When the fractional part of a number does not fit in a
character variable, Informix ESQL/C rounds the
number. Asterisks are displayed only when the integer
part does not fit.

CÆ N None Informix ESQL/C determines the numeric data type
based on the format of the character value; if the
character contains a decimal point, Informix ESQL/C
converts the value to a DECIMAL value.

CÆ N Not a number The number is undefined; Informix ESQL/C sets
sqlca.sqlcode and SQLSTATE to indicate a runtime
error.

CÆ N Overflow The number is undefined; Informix ESQL/C sets
sqlca.sqlcode and SQLSTATE to indicate a runtime
error.

N Æ N Does not fit Informix ESQL/C attempts to convert the number to the
new data type.

For information about possible errors, see the IBM
Informix Guide to SQL: Reference.

N Æ N Overflow The number is undefined; Informix ESQL/C sets
sqlca.sqlcode and SQLSTATE to indicate a runtime
error.

Chapter 3. Informix ESQL/C data types 3-9

In Table 3-9, the phrase Does not fit means that the size of the data from the source
variable or column exceeds the size of the target column or variable.

Converting Floating-Point Numbers to Strings
IBM Informix ESQL/C can automatically convert floating-point column values
(data type of DECIMAL(n), FLOAT, or SMALLFLOAT) between database columns
and host variables of character type char, varchar, string, or fixchar. When
Informix ESQL/C converts a floating-point value to a character string whose buffer
is not large enough to hold the full precision, Informix ESQL/C rounds the value
to fit it in the character buffer. For more information, see “Implicit Data
Conversion” on page 5-8.

Converting BOOLEAN Values to Characters
The database server can automatically convert BOOLEAN values between database
columns and host variables of the fixchar date type. The following table shows the
character representations for the BOOLEAN values.

BOOLEAN Value Character Representation

'\01' 'T'

'\00' 'F'

For more information about the BOOLEAN data type, see Chapter 5, “Working
with numeric data types,” on page 5-1.

Converting DATETIME and INTERVAL Values
IBM Informix ESQL/C can automatically convert DATETIME and INTERVAL
values between database columns and host variables of character type char, string,
or fixchar. Informix ESQL/C converts a DATETIME or INTERVAL value to a
character string and then stores it in a host variable. For more information, see
“Implicit Data Conversion” on page 6-7.

You can use Informix ESQL/C library functions to explicitly convert between
DATE and DATETIME values. For more information, see “Data conversion for
datetime and interval values” on page 6-8.

Converting Between VARCHAR and Character Data Types
IBM Informix ESQL/C can automatically convert VARCHAR values between
database columns and host variables of character type char, string, or fixchar. For
more information, see “Fetching and Inserting VARCHAR Data” on page 4-8.

Performing Arithmetic Operations
When IBM Informix ESQL/C performs an arithmetic operation on two values, it
might need to convert data types if the two values do not have data types that
match. This section provides the following information about data conversion for
arithmetic operations:
v How Informix ESQL/C converts numeric values
v How Informix ESQL/C handles operations that involve floating-point values

Converting Numbers to Numbers
If two values of different numeric data types operate on one another, Informix
ESQL/C converts the values to the data type that Table 3-10 indicates and then
performs the operation.

3-10 IBM Informix ESQL/C Programmer’s Manual

Table 3-10. Data Types for Which ESQL/C Carries Out Numeric Operations

Operands DEC FLOAT INT SERIAL SMALLFLOAT SMALLINT

DEC DEC DEC DEC DEC DEC DEC

FLOAT DEC FLOAT FLOAT FLOAT FLOAT FLOAT

INT DEC FLOAT INT INT FLOAT INT

SERIAL DEC FLOAT INT INT FLOAT INT

SMALLFLOAT DEC FLOAT FLOAT FLOAT FLOAT FLOAT

SMALLINT DEC FLOAT INT INT FLOAT INT

Table 3-10 shows that if Informix ESQL/C performs an operation between an
operand with a data type of FLOAT and a second operand with a data type of
DECIMAL (DEC), Informix ESQL/C generates a result that has a DECIMAL data
type. For more information about DECIMAL values, see the next section, “Using
Operations That Involve a Decimal Value.”

Using Operations That Involve a Decimal Value
The following table shows the numeric data types. Database columns use the SQL
data types, and Informix ESQL/C host variables use the corresponding Informix
ESQL/C data types.

SQL Data Type ESQL/C Data Type

INTEGER 4-byte integer

SMALLINT short integer

DECIMAL decimal

MONEY decimal

FLOAT double

SMALLFLOAT float

When Informix ESQL/C performs arithmetic operations on operands with numeric
data types and one of the operands has a decimal value (an SQL data type of
DECIMAL or an Informix ESQL/C data type of decimal), Informix ESQL/C
converts each operand and the result to a decimal value.

An SQL DECIMAL data type has the format DECIMAL(p,s), where p and s
represent the following parameters:
v The p parameter is the precision, which is the total number of significant digits in a

real number.
For example, the number 1237.354 has a precision of seven.

v The s parameter is the scale, which is the number of digits that represent the
fractional part of the real number.
For example, the number 1237.354 has a scale of three. If the DECIMAL data
type includes a scale parameter (DECIMAL(p,s)), it holds fixed-point decimal
numbers. If the DECIMAL data type omits a scale parameter (DECIMAL(p)), it
holds floating-point decimal numbers.

The Informix ESQL/C decimal data type keeps track of precision and scale
differently from the SQL DECIMAL data type. For simplicity, this section uses the
format of the SQL DECIMAL data type to describe how Informix ESQL/C
performs data conversion for arithmetic operations that involve a decimal value.

Chapter 3. Informix ESQL/C data types 3-11

However, this same data-conversion information applies to arithmetic operations
that involve an Informix ESQL/C decimal host variable.

For more information about how the decimal data type tracks precision and scale,
see “The decimal structure” on page 5-5.

Converting the Non-DECIMAL Numeric Operand: Informix ESQL/C converts
all operands that are not already DECIMAL (or decimal) to DECIMAL before it
performs the arithmetic operation. The following table shows the precision and
scale that Informix ESQL/C uses for the non-DECIMAL operand.

Operand Type Convert To

FLOAT DECIMAL(17)

SMALLFLOAT DECIMAL(9)

INTEGER DECIMAL(10,0)

SMALLINT DECIMAL(5,0)

Informix ESQL/C does not consider leading or trailing zeros as significant digits.
Leading or trailing zeros do not contribute to the determination of precision and
scale. If the operation is addition or subtraction, Informix ESQL/C adds trailing
zeros to the operand with the smaller scale until the scales are equal.

Obtaining the DECIMAL Data Type of the Arithmetic Result: The precision and
scale of the arithmetic result depend on the precision and scale of the operands
and on whether one of the operands is a floating-point decimal, as follows:
v When one of the operands is a floating-point decimal, the arithmetic result is a

floating-point decimal.
For example, for an arithmetic operation between a fixed-point decimal of
DECIMAL(8,3) and a FLOAT value, Informix ESQL/C converts the FLOAT
value to a floating-point decimal of DECIMAL(17). The arithmetic result has a
data type of DECIMAL(17).

v When both of the operands are fixed-point decimals, the arithmetic result is also
a fixed-point decimal.
Table 3-11 summarizes the rules for arithmetic operations on operands with
definite scale (fixed-point decimals). In Table 3-11, p1 and s1 are the precision and
scale of the first operand, and p2 and s2 are the precision and scale of the second
operand.

Table 3-11. Precision and Scale of Fixed-Decimal Arithmetic Results

Operation Precision and Scale of Result

Addition and
Subtraction

Precision:
Scale:

MIN(32, MAX(p1 - s1, p2 - s2) + MAX(s1, s2) + 1)
MAX(s1, s2)

Multiplication Precision:
Scale:

MIN(32, p1 + p2)

s1 + s2;

If (s1 + s2) > precision, the result is a floating-point
decimal number (no scale value).

Division Precision:
Scale:

32

Result is a floating-point decimal number.

The sum: 32 - p1 + s1 - s2 cannot be negative.

3-12 IBM Informix ESQL/C Programmer’s Manual

If the data type of the result of an arithmetic operation requires the loss of
significant digits, Informix ESQL/C reports an error.

Data-Type Alignment Library Functions
The following Informix ESQL/C library functions provide machine-independent
size and alignment information for different data types and help you work with
null database values.

Function Name Description See

The risnull()
function)

Checks whether a C variable is null B-191

The rsetnull()
function

Sets a C variable to null B-197

The rtypalign()
function

Aligns data on correct type boundaries B-206

The rtypmsize()
function

Gives the byte size of SQL data types B-209

The rtypname()
function

Returns the name of a specified SQL data type B-211

The rtypwidth()
function

Returns the minimum number of characters that a
character data type needs to avoid truncation

B-213

When you compile your Informix ESQL/C program with the esql command, esql
calls on the linker to link these functions to your program. The library functions
are located in Appendix B, “ESQL/C function library,” on page B-1.

Chapter 3. Informix ESQL/C data types 3-13

3-14 IBM Informix ESQL/C Programmer’s Manual

Chapter 4. Working with character and string data types

Character data types . 4-1
The char Data Type . 4-2
The fixchar Data Type . 4-2
The string Data Type . 4-3
The varchar Data Type . 4-3
The lvarchar Data Type . 4-5

A lvarchar Host Variable of a Fixed Size . 4-6
The lvarchar Pointer Host Variable . 4-7

Fetching and Inserting Character Data Types . 4-7
Fetching and Inserting CHAR Data . 4-7

Fetching CHAR Data . 4-7
Inserting CHAR Data . 4-8

Fetching and Inserting VARCHAR Data . 4-8
Fetching VARCHAR Data . 4-8
Inserting VARCHAR Data . 4-9

Fetching and Inserting lvarchar Data . 4-11
Fetching lvarchar Data . 4-11
Inserting LVARCHAR Data . 4-11

Fetching and Inserting with an ANSI-Compliant Database 4-12
Character and string library functions . 4-12

These topics explain how to use character data types in an IBM Informix ESQL/C
program. The topics contain the following information:
v An overview of the character data types
v Some issues to consider when you insert data from character host variables into

the database
v The syntax of Informix ESQL/C library functions that you can use to manipulate

the character data type

For information about all the data types available for use in an Informix ESQL/C
program, see Chapter 3, “Informix ESQL/C data types,” on page 3-1. For
information about SQL data types, see the IBM Informix Guide to SQL: Reference.

Character data types
Informix ESQL/C supports five data types that can hold character data that you
retrieve from and send to the database. If you use a character data type (such as
the SQL data types CHAR and VARCHAR) for your database column, you can
choose any of the following data types for your host variable:
v The C character data type: char

v One of the Informix ESQL/C predefined data types: fixchar, string, varchar

v The lvarchar data type

If you use locale-sensitive character data types (NCHAR or NVARCHAR), you
have the same choice of character data types for your associated host variables. For
more information about how to declare host variables for the NCHAR and
NVARCHAR data types, see the IBM Informix GLS User's Guide.

The following two conditions determine which character data type to use:

© Copyright IBM Corp. 1996, 2010 4-1

v Whether you want Informix ESQL/C to terminate the character data with the
null character

v Whether you want Informix ESQL/C to pad the character data with trailing
blanks

Table 4-1 summarizes the attributes of each of the character data types.

Table 4-1. ESQL/C Character Data Types

ESQL/C Character Data Type Null Terminated Contains Trailing Blanks

char Y Y

fixchar Y

string Y Returns a trailing blank only if
the column contains an empty
string.

varchar Y Y

lvarchar Y

This section describes the characteristics of these data types and the differences
among them.

The char Data Type
The char data type is the C data type that holds character data. When an
application reads a value from a CHAR column into a host variable of type char,
Informix ESQL/C pads this value with trailing blanks up to the size of the host
variable. It leaves just one place for the null character that terminates the host
array. The behavior is the same if an application reads a value from a VARCHAR
(or NVARCHAR) column into a host variable of the char data type.

Declare a char data type with a length of [n + 1] (where n is the size of the column
with values that you want read) to allow for the null terminator. Use the following
syntax to declare a host variable of the char data type:
EXEC SQL BEGIN DECLARE SECTION;

char ch_name[n + 1];
EXEC SQL END DECLARE SECTION;

The fixchar Data Type
The fixchar data type is an Informix ESQL/C data type that holds character data
that does not append a null terminator. When an application reads a value from a
CHAR column into a host variable of type fixchar, Informix ESQL/C pads this
value with trailing blanks up to the size of the host variable. Informix ESQL/C
does not append any null character. The behavior is the same if an application
reads a value from a VARCHAR (or NVARCHAR) column into a host variable of
the fixchar data type.

Important: Do not use the fixchar data type with VARCHAR, or NVARCHAR,
data. With a fixchar, even if the length of the data is shorter than the
size of the fixchar, the database server stores all n characters of the
fixchar, including any blanks at the end of the string. Unless the
blanks have significance, storing them defeats the space savings that
the VARCHAR data type provides.

4-2 IBM Informix ESQL/C Programmer’s Manual

Declare a fixchar host variable as an array with n components (where n is the size
of the column with values that you want read). Use the following syntax to declare
a host variable of the fixchar data type:
EXEC SQL BEGIN DECLARE SECTION;

fixchar fch_name[n];
EXEC SQL END DECLARE SECTION;

Important: You can copy a null-terminated C string into a fixchar variable if space
is available for the null character. However, this is not good practice.
When the database server inserts this value into a column, it also
inserts the null terminator. As a result, later searches of the table might
fail to find the value.

The string Data Type
The string data type is an Informix ESQL/C data type that holds character data
that is null terminated and does not contain trailing blanks. However, if a string of
blanks (that is, ‘ ’) is stored in a database field and selected into a host variable of
the string data type, the result is a single blank character.

When an application reads a value from a CHAR column into a host variable of
the string data type, it strips the value of any trailing blanks and appends a null
terminator. The behavior is the same if an application reads a value from a
VARCHAR column into a host variable of the string data type.

The one exception to this rule is that if the BLANK_STRINGS_NOT_NULL
environment variable is set to 1 or any other value, like 0 or 2, the string host
variable stores an empty string as a single blank followed by a null terminator. If
this environment variable is not set, string host variables store an empty string as a
null string.
EXEC SQL BEGIN DECLARE SECTION;

string buffer[16];
EXEC SQL END DECLARE SECTION;...

EXEC SQL select lname into :buffer from customer
where customer_num = 102;

Declare the string data type with a length of [n + 1] (where n is the size of the
column with values that you want read) to allow for the null terminator. In the
preceding code fragment, the lname column in the customer table is 15 bytes so
the buffer host variable is declared as 16 bytes. Use the following syntax to declare
a host variable of the string data type:
EXEC SQL BEGIN DECLARE SECTION;

string str_name[n + 1];
EXEC SQL END DECLARE SECTION;

The varchar Data Type
The varchar data type is an Informix ESQL/C data type that holds character data
of varying lengths. When an application reads a value from a CHAR column into a
host variable of type varchar, Informix ESQL/C preserves any trailing blanks and
terminates the array with a null character. The behavior is the same if an
application reads a value from a VARCHAR column into a host variable of the
varchar data type.

Chapter 4. Working with character and string data types 4-3

Declare the varchar data type with a length of [n +1] (where n is the maximum
size of the column with values that you want read) to allow for the null
terminator. Use the following syntax to declare a host variable of the varchar data
type:
EXEC SQL BEGIN DECLARE SECTION;

varchar varc_name[n + 1];
EXEC SQL END DECLARE SECTION;

Informix includes the varchar.h header file with the Informix ESQL/C libraries.
This file defines the names and macro functions shown in Table 4-2.

Table 4-2. VARCHAR Size Macros

Name of Macro Description

MAXVCLEN The maximum number of characters that you can store in a
VARCHAR column. This value is 255.

VCLENGTH(s) The length to declare the host variable.

VCMIN(s) The minimum number of characters that you can store in the
VARCHAR column. Can range from 1 to 255 bytes but must be
smaller than the maximum size of the VARCHAR.

VCMAX(s) The maximum number of characters that you can store in the
VARCHAR column. Can range from 1 to 255 bytes.

VCSIZ(min, max) The encoded size value, based on min and max, for the VARCHAR
column.

These macros are useful when your program uses dynamic SQL. After a
DESCRIBE statement, the macros can manipulate size information that the
database server stores in the LENGTH field of the system-descriptor area (or the
sqllen field of the sqlda structure). Your database server stores size information for
a VARCHAR column in the syscolumns system catalog table.

The varchar.ec demonstration program obtains collength from the syscolumns
system catalog table for the cat_advert column (of the stores7 database). It then
uses the macros from varchar.h to display size information about the column. This
sample program is in the varchar.ec file in the demo directory. Figure 4-1 shows
the main() function for the varchar.ec demonstration program.

4-4 IBM Informix ESQL/C Programmer’s Manual

When the IFX_PAD_VARCHAR environment variable is set to 1, the client sends
the VARCHAR data type with padded trailing spaces. When this environment is
not set (the default), the client sends the VARCHAR data type value without
trailing spaces. The IFX_PAD_VARCHAR environment variable must be set only at
the client side and is supported only with IBM Informix ESQL/C Version 9.53 and
2.90 or later and IBM Informix Version 9.40 or later.

The lvarchar Data Type
The lvarchar data type is an IBM Informix ESQL/C data type that holds character
data of varying lengths. The lvarchar data type is implemented as a variable
length user-defined type that is similar to the varchar data type except that it can
support strings of greater than 256 bytes and has the following two uses:
v To hold a value for an LVARCHAR column in the database.

When an application reads a value from an LVARCHAR column into a host
variable of the lvarchar data type, Informix ESQL/C preserves any trailing

/*
* varchar.ec *

The following program illustrates the use of VARCHAR macros to
obtain size information.

*/

EXEC SQL include varchar;

char errmsg[512];

main()
{

mint vc_code;
mint max, min;
mint hv_length;

EXEC SQL BEGIN DECLARE SECTION;
mint vc_size;

EXEC SQL END DECLARE SECTION;

printf("VARCHAR Sample ESQL Program running.\n\n");

EXEC SQL connect to ’stores7’;
chk_sqlcode("CONNECT");

printf("VARCHAR field ’cat_advert’:\n");
EXEC SQL select collength into $vc_size from syscolumns
where colname = "cat_advert";

chk_sqlcode("SELECT");
printf("\tEncoded size of VARCHAR (from syscolumns.collength) = %d\n",

vc_size);

max = VCMAX(vc_size);
printf("\tMaximum number of characters = %d\n", max);

min = VCMIN(vc_size);
printf("\tMinimum number of characters = %d\n", min);

hv_length = VCLENGTH(vc_size);
printf("\tLength to declare host variable = char(%d)\n", hv_length);

vc_code = VCSIZ(max, min);
printf("\tEncoded size of VARCHAR (from VCSIZ macro) = %d\n", vc_code);

printf("\nVARCHAR Sample Program over.\n\n");
}

Figure 4-1. The varchar.ec Demonstration Program

Chapter 4. Working with character and string data types 4-5

blanks and terminates the array with a null character. The behavior is the same
if an application reads a value from a VARCHAR column into a host variable of
the lvarchar data type.

v To represent the string or external format of opaque data types.
For more information, see “Accessing the External Format of an Opaque Type”
on page 10-3.

Important: You cannot retrieve or store smart large objects (CLOB or BLOB data
types) from or to an lvarchar host variable.

To declare an lvarchar host variable for a character column (CHAR, VARCHAR, or
LVARCHAR), use the lvarchar keyword as the variable data type, as the following
syntax shows.

��
(1)

lvarchar �

,

variable name [variable size]
* variable name

; ��

Notes:

1 Informix extension

Element Purpose Restrictions

variable name Name of an lvarchar variable of a
specified size

variable size Number of bytes to allocate for an
lvarchar variable of specified size

Integer value can be between 1 and 32,768 (32 KB).

*variable name Name of an lvarchar pointer variable
for data of unspecified length

Not equivalent to a C char pointer (char *). Points to an
internal ESQL/C representation for this type. You must use
the ifx_var() functions to manipulate data. For more
information, see “The lvarchar pointer and var binary
library functions” on page 10-22.

Figure 4-2 shows declarations for three lvarchar variables that hold values for
LVARCHAR columns.

Important: To declare a lvarchar host variable for the external format of an opaque
data type, use the syntax described in “Declaring lvarchar Host
Variables” on page 10-4.

A lvarchar Host Variable of a Fixed Size
If you do not specify the size of a lvarchar host variable, the size is equivalent to a
1-byte C-language char data type. If you specify a size, the lvarchar host variable
is equivalent to a C-language char data type of that size. When you specify a
fixed-size lvarchar host variable, any data beyond the specified size will be
truncated when the column is fetched. Use an indicator variable to check for
truncation.

EXEC SQL BEGIN DECLARE SECTION;
lvarchar *a_polygon;
lvarchar circle1[CIRCLESZ], circle2[CIRCLESZ];

EXEC SQL END DECLARE SECTION;

Figure 4-2. Sample lvarchar Host Variables

4-6 IBM Informix ESQL/C Programmer’s Manual

Because a lvarchar host variable of a known size is equivalent to a C-language char
data type, you can use C-language character string operations to manipulate them.

The lvarchar Pointer Host Variable
When the lvarchar host variable is a pointer, the size of the data that the pointer
references can range up to 2 gigabytes. The lvarchar pointer host variable is
designed to insert or select user-defined or opaque types that can be represented in
a character string format.

You must use the ifx_var() functions to manipulate a lvarchar pointer host
variable.

For more information about the ifx_var() functions, see Appendix B, “ESQL/C
function library,” on page B-1. For more information about how to use the
Informix ESQL/C lvarchar host variable with opaque data types, see Chapter 10,
“Working with opaque data types,” on page 10-1.

Fetching and Inserting Character Data Types
You can transfer character data between CHAR and VARCHAR columns and
character (char, string, fixchar, varchar, or lvarchar) host variables with either of
the following operations:
v A fetch operation transfers character data from a CHAR or VARCHAR column

to a character host variable.
v An insert or update operation transfers character data from a character host

variable to a CHAR, VARCHAR, or LVARCHAR column.

If you use locale-sensitive character data types (NCHAR or NVARCHAR), you can
also transfer character data between NCHAR or NVARCHAR columns and
character host variables. For more information about how to declare host variables
for the NCHAR and NVARCHAR data types, see the IBM Informix GLS User's
Guide.

Fetching and Inserting CHAR Data
When an application uses a character host variable to fetch or insert a CHAR
value, Informix ESQL/C must ensure that the character value fits into the host
variable or database column.

Fetching CHAR Data
An application can fetch data from a database column of type CHAR or
VARCHAR into a character (char, string, fixchar, varchar, or lvarchar) host
variable. If the column data does not fit into the character host variable, Informix
ESQL/C truncates the data. To notify the user of the truncation, Informix ESQL/C
performs the following actions:
v It sets the sqlca.sqlwarn.sqlwarn1 warning flag to W and the SQLSTATE variable

to 01004.
v It sets any indicator variable that is associated with the character host variable to

the size of the character data in the column.

For more information about indicator variables, see “Using Indicator Variables” on
page 1-21.

Chapter 4. Working with character and string data types 4-7

Inserting CHAR Data
An application can insert data from a character host variable (char, string, fixchar,
varchar, or lvarchar) into a database column of type CHAR. If the value is shorter
than the size of the database column then the database server pads the value with
blanks up to the size of the column.

If the value is longer than the size of the column the database server truncates the
value if the database is non-ANSI. No warning is generated when this truncation
occurs. If the database is ANSI and the value is longer than the column size then
the insert fails and this error is returned:
-1279: Value exceeds string column length.

Although char, varchar, lvarchar, and string host variables contain null
terminators, Informix ESQL/C never inserts these characters into a database
column. (Host variables of type fixchar should never contain null characters.)

If you use the locale-sensitive character data type, NCHAR, you can insert a value
from a character host variable into an NCHAR column. Insertion into NCHAR
columns follows the same behavior as insertion into CHAR columns. For more
information about how to declare host variables for the NCHAR data type, see the
IBM Informix GLS User's Guide.

Do not use the fixchar data type for host variables that insert character data into
ANSI-compliant databases. For more information, see “Fetching and Inserting with
an ANSI-Compliant Database” on page 4-12.

Fetching and Inserting VARCHAR Data
When an application uses a character host variable to fetch or insert a VARCHAR
value, Informix ESQL/C must ensure that the character value fits into the host
variable or database column. When Informix ESQL/C calculates the length of a
source item, it does not count trailing spaces. The following sections describe how
Informix ESQL/C performs the conversion of VARCHAR data to and from char,
fixchar, and string character data types.

These conversions also apply to NVARCHAR data. For more information about the
NVARCHAR data type, see the IBM Informix GLS User's Guide.

Fetching VARCHAR Data
Table 4-3 shows the conversion of VARCHAR data when an application fetches it
into host variables of char, fixchar, lvarchar, and string character data types.

4-8 IBM Informix ESQL/C Programmer’s Manual

Table 4-3. Converting the VARCHAR Data Type to ESQL/C Character Data Types

Source Type
Destination
Type Result

VARCHAR char If the source is longer, truncate and null terminate the
value, and set any indicator variable. If the destination is
longer, pad the value with trailing spaces and null
terminate it.

VARCHAR fixchar If the source is longer, truncate the value and set any
indicator variable. If the destination is longer, pad the
value with trailing spaces.

VARCHAR string If the source is longer, truncate and null terminate the
value, and set any indicator variable. If the destination is
longer, null terminate the value.

VARCHAR lvarchar If the source is longer, truncate and set any indicator
variable. If the destination is longer, null terminate it.

Table 4-4 shows examples of conversions from VARCHAR column data to character
host variables that Informix ESQL/C might perform during a fetch. In this figure,
a plus (+) symbol represents a space character and the value in the Length column
includes any null terminators.

Table 4-4. Examples of VARCHAR Conversion During a Fetch

Source Type Contents Length
Destination
Type Contents Indicator

VARCHAR(9) Fairfield 9 char(5) Fair\0 9

VARCHAR(9) Fairfield 9 char(12) Fairfield++\0 0

VARCHAR(12) Fairfield+++ 12 char(10) Fairfield\0 12

VARCHAR(10) Fairfield+ 10 char(4) Fai\0 10

VARCHAR(11) Fairfield++ 11 char(14) Fairfield++++\0 0

VARCHAR(9) Fairfield 9 fixchar(5) Fairf 9

VARCHAR(9) Fairfield 9 fixchar(10) Fairfield+ 0

VARCHAR(10) Fairfield+ 10 fixchar(9) Fairfield 10

VARCHAR(10) Fairfield+ 10 fixchar(6) Fairfi 10

VARCHAR(10) Fairfield+ 10 fixchar(11) Fairfield++ 0

VARCHAR(9) Fairfield 9 string(4) Fai\0 9

VARCHAR(9) Fairfield 9 string(12) Fairfield\0 0

VARCHAR(12) Fairfield+++ 12 string(10) Fairfield\0 12

VARCHAR(11) Fairfield++ 11 string(6) Fairf\0 11

VARCHAR(10) Fairfield++ 10 string(11) Fairfield\0 0

VARCHAR(10) Fairfield+ 10 lvarchar(11) Fairfield+ 0

VARCHAR(9) Fairfield 9 lvarchar(5) Fair\0 9

Inserting VARCHAR Data
When an application inserts a value from a char, varchar, lvarchar, or string host
variable into a VARCHAR column, Informix ESQL/C also inserts any trailing
blanks. Informix ESQL/C does not, however, add trailing blanks.

Chapter 4. Working with character and string data types 4-9

If the value is longer than the maximum size of the column, the database server
truncates the value if the database is non-ANSI. No warning is generated when
this truncation occurs. If the database is ANSI and the value is longer than the
maximum column size then the insert fails and this error is returned:
-1279: Value exceeds string column length.

Although char, varchar, lvarchar, and string host variables contain null
terminators, Informix ESQL/C never inserts these characters into a database
column. (Host variables of type fixchar should never contain null characters.) If an
application inserts a char, varchar, lvarchar, or string value into a VARCHAR
column, the database server keeps track of the end of the value internally.

Table 4-5 shows the conversion of VARCHAR data when an application inserts it
from host variables of char, fixchar, lvarchar, and string character data types.

Table 4-5. Converting ESQL/C Character Data Types to the VARCHAR Data Type

Source
Type

Destination
Type Result

char VARCHAR If the source is longer than the max VARCHAR, truncate the
value and set the indicator variable. If the max VARCHAR is
longer than the source, the length of the destination equals the
length of the source (not including the null terminator of the
source).

fixchar VARCHAR If the source is longer than the max VARCHAR, truncate the
value and set the indicator variable. If the max VARCHAR is
longer than the source, the length of the destination equals the
length of the source.

string VARCHAR If the source is longer than the max VARCHAR, truncate the
value and set the indicator variable. If the max VARCHAR is
longer than the source, the length of the destination equals the
length of the source (not including the null terminator of the
source).

lvarchar VARCHAR If the source is longer than the max VARCHAR, truncate the
value and set the indicator variable. If the max VARCHAR is
longer than the source, the length of the destination equals the
length of the source.

If you use the locale-sensitive character data type, NVARCHAR, you can insert a
value from a character host variable into an NVARCHAR column. Insertion into
NVARCHAR columns follows the same behavior as insertion into VARCHAR
columns. For more information about how to declare host variables for the
NVARCHAR data type, see the IBM Informix GLS User's Guide.

Table 4-6 shows examples of conversions from character host variables to
VARCHAR column data that Informix ESQL/C might perform during an insert. In
this figure, a plus (+) symbol represents a space character.

4-10 IBM Informix ESQL/C Programmer’s Manual

Table 4-6. Examples of VARCHAR Conversion During an Insert

Source Type Contents Length
Destination
Type Contents Length

char(10) Fairfield\0 10 VARCHAR(4) Fair 4

char(10) Fairfield\0 10 VARCHAR(11) Fairfield 9

char(12) Fairfield++\0 12 VARCHAR(9) Fairfield 9

char(13) Fairfield+++\0 13 VARCHAR(6) Fairfi 6

char(11) Fairfield+\0 11 VARCHAR(11) Fairfield+ 10

fixchar(9) Fairfield 9 VARCHAR(3) Fai 3

fixchar(9) Fairfield 9 VARCHAR(11) Fairfield 9

fixchar(11) Fairfield++ 11 VARCHAR(9) Fairfield 9

fixchar(13) Fairfield++++ 13 VARCHAR(7) Fairfie 7

fixchar(10) Fairfield+ 10 VARCHAR(12) Fairfield+ 10

string(9) Fairfield\0 9 VARCHAR(4) Fair 4

string(9) Fairfield\0 9 VARCHAR(11) Fairfield 9

Fetching and Inserting lvarchar Data
When an application uses a lvarchar host variable to fetch or insert a data value,
IBM Informix ESQL/C must ensure that the value fits into the host variable or
database column.

Fetching lvarchar Data
An application can fetch data from a database column of type LVARCHAR into a
character (char, string, fixchar, varchar, or lvarchar) host variable. If the column
data does not fit into the host variable, Informix ESQL/C truncates the data. To
notify the user of the truncation, Informix ESQL/C performs the following actions:
v It sets the sqlca.sqlwarn.sqlwarn1 warning flag to W and the SQLSTATE variable

to 01004.
v It sets any indicator variable that is associated with the character host variable to

the size of the character data in the column.

For more information about indicator variables, see “Using Indicator Variables” on
page 1-21.

Inserting LVARCHAR Data
An application can insert data from a character host variable (char, string, fixchar,
varchar, or lvarchar) into a database column of type LVARCHAR.

If the value is longer than the maximum size of the column the database server
truncates the value if the database is non-ANSI. No warning is generated when
this truncation occurs. If the database is ANSI and the value is longer than the
maximum column size then the insert fails and this error is returned:
-1279: Value exceeds string column length.

If the host variable you use for the insert is a char or varchar, the database server
casts the type to lvarchar.

When you write data to an LVARCHAR column, the database server imposes a
limit of 32 KB on the column. If the host variable is a lvarchar data type and the
data exceeds 32 KB, the database server returns an error. If the column has an

Chapter 4. Working with character and string data types 4-11

input support function, it must use any data beyond 32 KB, if necessary, to prevent
the database server from returning the error.

Fetching and Inserting with an ANSI-Compliant Database
For an ANSI-compliant database, when you use a character host variable in an
INSERT statement or in the WHERE clause of an SQL statement (SELECT,
UPDATE, or DELETE), the character value in the host variable must be null
terminated. Therefore, use the following data types for character host variables:
v char, string, or varchar

v lvarchar

For example, the following insertion is valid because the first and last host
variables are of type char, which is null terminated:
EXEC SQL BEGIN DECLARE SECTION;

char first[16], last[16];
EXEC SQL END DECLARE SECTION;...

stcopy("Dexter", first);
stcopy("Haven", last);
EXEC SQL insert into customer (fname, lname)

values (:first, :last);

The stcopy() function copies the null terminator into the host variable and the char
data type retains the null terminator.

Do not use the fixchar data type for host variables because it does not include a
null terminator on the string. For an ANSI-compliant database, the database server
generates an error under either of the following conditions:
v If you try to insert a string that is not null terminated.
v If you use a string that is not null terminated in a WHERE clause.

Character and string library functions
The IBM Informix ESQL/C library contains the following character-manipulation
functions. You can use these functions in your C programs to manipulate single
characters and strings of bytes and characters, including variable-length
expressions of the following data types:
v varchar

v fixed-size lvarchar

The internal structure referenced by the lvarchar pointer data type is different than
the character representation of a fixed-size lvarchar variable. You must use the
ifx_var() functions to manipulate lvarchar pointer variables. For more information
about the ifx_var() functions, see “The lvarchar pointer and var binary library
functions” on page 10-22.

The functions whose names begin with by act on and return fixed-length strings of
bytes. The functions whose names begin with rst and st (except stchar) operate on
and return null-terminated strings. The rdownshift() and rupshift functions also
operate on null-terminated strings but do not return values. When you compile
your Informix ESQL/C program with the esql preprocessor, it calls on the linker to
link these functions to your program. The following list provides brief descriptions
of the character and string library functions and refers you to the pages where
detailed information for each function is given.

4-12 IBM Informix ESQL/C Programmer’s Manual

Function Name Description See

bycmpr() Compares two groups of contiguous bytes B-10

bycopy() Copies bytes from one area to another B-12

byfill() Fills an area you specify with a character B-13

byleng() Counts the number of bytes in a string B-14

ldchar() Copies a fixed-length string to a null-terminated string B-170

rdownshift() Converts all letters to lowercase B-176

rstod() Converts a string to a double value B-200

rstoi() Converts a string to a short integer value B-201

rstol() Converts a string to a 4-byte integer value B-202

rupshift() Converts all letters to uppercase B-209

stcat() Concatenates one string to another B-232

stchar() Copies a null-terminated string to a fixed-length string B-233

stcmpr() Compares two strings B-234

stcopy() Copies one string to another string B-235

stleng() Counts the number of bytes in a string B-235

Chapter 4. Working with character and string data types 4-13

4-14 IBM Informix ESQL/C Programmer’s Manual

Chapter 5. Working with numeric data types

The integer data types . 5-1
The Integer Host Variable Types . 5-2
The INT8 and SERIAL8 SQL Data Types . 5-2
The int8 Data Type . 5-2
The int8 Library Functions . 5-3

The BOOLEAN data type . 5-4
The decimal data type . 5-5

The decimal structure . 5-5
The decimal Library Functions. 5-7

The Floating-Point Data Types . 5-8
Declaring float Host Variables . 5-8
Implicit Data Conversion . 5-8

Formatting Numeric Strings . 5-9
Numeric-Formatting Functions . 5-13

IBM Informix database servers support the following numeric data types:
v Integer data types: SMALLINT, INTEGER, INT8, SERIAL, SERIAL8
v The Boolean data type
v Fixed-point data types: DECIMAL and MONEY
v Floating-point data types: SMALLFLOAT and FLOAT

These topics contain information about working with numeric data types:
v Informix ESQL/C data types to use as host variables for SQL numeric data types
v Characteristics of Informix ESQL/C numeric data types
v Formatting masks, which you can use to format numeric data types
v Informix ESQL/C library functions that you can use to manipulate numeric data

types

For information about all the data types available for use in an Informix ESQL/C
program, see Chapter 3, “Informix ESQL/C data types,” on page 3-1.

The integer data types
The database server supports the following data types for integer values.

SQL Integer Data Type Number of Bytes Range of Values

SMALLINT 2 -32767 to 32767

INTEGER, INT, SERIAL 4 -2,147,483,647 to 2,147,483,647

INT8, BIGINT, SERIAL8,
BIGSERIAL

8 -9,223,372,036,854,775,807 to
9,223,372,036,854,775,807

The C language supports the short int and long int data types for integers. The
size of these C integer data types depends on the hardware and operating system
of the computer you use. For example, a long data type could be 4 bytes long on a
32-bit platform but 8 bytes long on a 64-bit platform.

Therefore, when you declare an integer host variable, you must ensure that this
host variable is large enough for all possible values of the SQL integer data type

© Copyright IBM Corp. 1996, 2010 5-1

with which the variable is associated. For more information about how to
implement integer data types on your system, check with your system
administrator or your C documentation.

The Integer Host Variable Types
The following data types are provided for specifying integer host variables of
specific lengths.

Data Type Length

int1 One-byte integer

int2 Two-byte integer

int4 Four byte integer

mint Native integer data type for the machine

mlong Native long integer data type for the machine, the size of which is
equal to that of the pointer for the machine. The mlong data type
is mapped to the long data type on Windows 32-bit and UNIX and
LINUX 32-bit and 64-bit platforms. It is mapped to the __int64
data type on Windows 64-bit platforms.

MSHORT Native short integer data type for the machine

MCHAR Native char data type for the machine

Warning: The preceding integer data types are reserved. Your
programs must not use typedef or $typedef statements
to define these data types.

The integer host variable data types are defined in the ifxtypes.h file, which is
automatically included in your program when you compile it with the esql script.

Important: Many of the Informix ESQL/C library functions have been changed to
declare the Informix integer data types rather than the machine specific
types such as int, short, and long. It is recommended that you use the
Informix integer types when you call Informix ESQL/C library
functions.

The INT8 and SERIAL8 SQL Data Types
Informix ESQL/C supports the SQL INT8 and SERIAL8 data types with the int8
data type. The int8 data type is a machine-independent method that represents
numbers in the range -(263 -1) to 263-1.

For a complete description of the INT8 and SERIAL8 SQL data types, see the IBM
Informix Guide to SQL: Reference. This section describes how to manipulate the
Informix ESQL/C data type, int8.

The int8 Data Type
Use the Informix ESQL/C int8 data type to declare host variables for database
values of type INT8 and SERIAL8. Table 5-1 shows the fields of the structure
ifx_int8_t, which represents an INT8 or SERIAL8 value.

5-2 IBM Informix ESQL/C Programmer’s Manual

Table 5-1. Fields of the ifx_int8_t Structure

Field Name Field Type Purpose

data unsigned 4-byte
integer[INT8SIZE]

An array of integer values that make up the 8-byte
integer value. When the INT8SIZE constant is defined
as 2, this array contains two unsigned 4-byte integers.
The actual data type of an unsigned 4-byte integer can be
machine specific.

sign short integer A short integer to hold the sign (null, negative, or
positive) of the 8-byte integer. The actual data type of
a 2-byte integer can be machine specific.

The int8.h header file contains the ifx_int8 structure and a typedef called
ifx_int8_t. Include this file in all C source files that use any int8 host variables as
shown in the following example:
EXEC SQL include int8;

You can declare an int8 host variable in either of the following ways:
EXEC SQL BEGIN DECLARE SECTION;

int8 int8_var1;
ifx_int8_t int8_var2;

EXEC SQL BEGIN DECLARE SECTION;

The int8 Library Functions
You must perform all operations on int8 type numbers through the Informix
ESQL/C library functions for the int8 data type. Any other operations,
modifications, or analyses can produce unpredictable results. The Informix
ESQL/C library provides functions that allow you to manipulate int8 numbers and
convert int8 type numbers to and from other data types. The following table
describes these functions.

Function Name Description See

Manipulation Functions

ifx_getserial8() Returns an inserted SERIAL8 value B-73

ifx_int8add() Adds two int8 numbers B-75

ifx_int8cmp() Compares two int8 numbers B-76

ifx_int8copy() Copies an int8 number B-78

ifx_int8div() Divides two int8 numbers B-87

ifx_int8mul() Multiplies two int8 numbers B-89

ifx_int8sub() Subtracts two int8 numbers B-90

Type Conversion Functions

ifx_int8cvasc() Converts a C char type value to an int8 type
value

B-80

ifx_int8cvdbl() Converts a C double type value to an int8 type
value

B-80

ifx_int8cvdec() Converts a C decimal type value to a int8 type
value

B-81

ifx_int8cvflt() Converts a C float type value to an int8 type
value

B-83

ifx_int8cvint() Converts a C int type value to an int8 type
value

B-84

Chapter 5. Working with numeric data types 5-3

Function Name Description See

ifx_int8cvlong() Converts a C 4-byte integer type value to an
int8 type value

B-86

ifx_int8toasc() Converts an int8 type value to a text string B-92

ifx_int8todbl() Converts an int8 type value to a C double type
value

B-94

ifx_int8todec() Converts aint8 type value to a decimal type
value

B-96

ifx_int8toflt() Converts an int8 type value to a C float type
value

B-99

ifx_int8toint() Converts an int8 type value to a C int type
value

B-101

ifx_int8tolong() Converts an int8 type value to a C 4-byte
integer type value

B-103

For information about the syntax and behavior of these library functions, see
Appendix B, “ESQL/C function library,” on page B-1.

The BOOLEAN data type
Informix ESQL/C uses the boolean data type to support the SQL BOOLEAN data
type. For a complete description of the SQL BOOLEAN data type, see the IBM
Informix Guide to SQL: Reference. This section describes how to manipulate the
Informix ESQL/C boolean data type.

You can declare a boolean host variable as follows:
EXEC SQL BEGIN DECLARE SECTION;

boolean flag;
EXEC SQL BEGIN DECLARE SECTION;

In an Informix ESQL/C program, the following values are the only valid values
that you can assign to boolean host variables:

TRUE '\1'

FALSE '\0'

NULL Use the rsetnull() function with the CBOOLTYPE as the first
argument

If you want to assign the character representations of 'T' or 'F' to a BOOLEAN
column, you must declare a fixchar host variable and initialize it to the desired
character value. Use this host variable in an SQL statement such as the INSERT or
UPDATE statement. The database server converts the fixchar value to the
appropriate BOOLEAN value.

The following code fragment inserts two values into a BOOLEAN column called
bool_col in the table2 table:
EXEC SQL BEGIN DECLARE SECTION;

boolean flag;
fixchar my_boolflag;
int id;

EXEC SQL END DECLARE SECTION;

id = 1;

5-4 IBM Informix ESQL/C Programmer’s Manual

flag = ’\0’; /* valid boolean assignment to FALSE */
EXEC SQL insert into table2 values (:id, :flag); /* inserts FALSE */

id = 2;
rsetnull(CBOOLTYPE, (char *) &flag); /* valid BOOLEAN assignment

* to NULL */
EXEC SQL insert into table2 values (:id, :flag); /* inserts NULL */

id = 3;
my_boolflag = ’T’ /* valid character assignment to TRUE */
EXEC SQL insert into table2 values (:id, :my_boolflag); /* inserts TRUE

*/

The decimal data type
Informix ESQL/C supports the SQL DECIMAL and MONEY data types with the
decimal data type. The decimal data type is a machine-independent method that
represents numbers of up to 32 significant digits, with valid values in the range
10-129 to 10+125.

The DECIMAL data type can take the following two forms:
v DECIMAL(p) floating point

When you define a column with the DECIMAL(p) data type, it has a total of p
(< = 32) significant digits. DECIMAL(p) has an absolute value range between
10-130 and 10124.

v DECIMAL(p,s) fixed point
When you define a column with the DECIMAL(p,s) data type, it has a total of p
(< = 32) significant digits (the precision) and s (< = p) digits to the right of the
decimal point (the scale).

For a complete description of the DECIMAL data type, see the IBM Informix Guide
to SQL: Reference.

The decimal structure
Use the decimal data type to declare host variables for database values of type
DECIMAL. A structure of type decimal represents a value in a decimal host
variable, as follows:
#define DECSIZE 16

struct decimal
{
short dec_exp;
short dec_pos;
short dec_ndgts;
char dec_dgts[DECSIZE];
};

typedef struct decimal dec_t;

The decimal.h header file contains the decimal structure and the typedef dec_t.
Include this file in all C source files that use any decimal host variables with the
following include directive:
EXEC SQL include decimal;

The decimal structure stores the number in pairs of digits. Each pair is a number in
the range 00 to 99. (Therefore, you can think of a pair as a base-100 digit.) Table 5-2
shows the four parts of the decimal structure.

Chapter 5. Working with numeric data types 5-5

Table 5-2. Fields in the decimal Structure

Field Description

dec_exp The exponent of the normalized decimal type number. The normalized
form of this number has the decimal point at the left of the left-most
digit. This exponent represents the number of digit pairs to count from
the left to position the decimal point (or as a power of 100 for the
number of base-100 numbers).

dec_pos The sign of the decimal type number. The dec_pos field can assume
any one of the following three values:

1: when the number is zero or greater
0: when the number is less than zero
–1: when the value is null

dec_ndgts The number of digit pairs (number of base-100 significant digits) in the
decimal type number. This value is also the number of entries in the
dec_dgts array.

dec_dgts[] A character array that holds the significant digits of the normalized
decimal type number, assuming dec_dgts[0] ! = 0.

Each byte in the array contains the next significant base-100 digit in the
decimal type number, proceeding from dec_dgts[0] to
dec_dgts[dec_ndgts].

Table 5-3 shows some sample decimal values.

Table 5-3. Sample decimal Values

Value

decimal Structure Field Values

dec_exp dec_pos dec_ndgts dec_dgts[]

-12345.6789 3 0 5 dec_dgts[0] = 01
dec_dgts[1] = 23
dec_dgts[2] = 45
dec_dgts[3] = 67
dec_dgts[4] = 89

1234.567 2 1 4 dec_dgts[0] = 12
dec_dgts[1] = 34
dec_dgts[2] = 56
dec_dgts[3] = 70

-123.456 2 0 4 dec_dgts[0] = 01
dec_dgts[1] = 23
dec_dgts[2] = 45
dec_dgts[3] = 60

480 2 1 2 dec_dgts[0] = 04
dec_dgts[1] = 80

.152 0 1 2 dec_dgts[0] = 15
dec_dgts[1] = 20

-6 1 0 1 dec_dgts[0] = 06

You can use the deccvasc demonstration program to experiment with how
Informix ESQL/C stores decimal numbers.

5-6 IBM Informix ESQL/C Programmer’s Manual

The decimal Library Functions
You must perform all operations on decimal type numbers through the following
Informix ESQL/C library functions for the decimal data type. Any other
operations, modifications, or analyses can produce unpredictable results. For more
information about the syntax and behavior of these functions, see the referenced
pages.

Function Name Description See

Manipulation Functions

decadd() Adds two decimal numbers B-15

deccmp() Compares two decimal numbers B-17

deccopy() Copies a decimal number B-18

decdiv() Divides two decimal numbers B-27

decmul() Multiplies two decimal numbers B-32

decround() Rounds a decimal number B-34

decsub() Subtracts two decimal numbers B-35

dectrunc() Truncates a decimal number B-43

Type Conversion Functions

deccvasc() Converts a C char type value to a decimal type
value

B-19

deccvdbl() Converts a C double type value to a decimal
type value

B-21

deccvint() Converts a C int type value to a decimal type
value

B-24

deccvlong() Converts a C 4-byte integer type value to a
decimal type value

B-25

dececvt() Converts a decimal value to an ASCII string B-28

decfcvt() Converts a decimal value to an ASCII string B-28

dectoasc() Converts a decimal type value to an ASCII
string

B-36

dectodbl() Converts a decimal type value to a C double
type value

B-39

dectoint() Converts a decimal type value to a C int type
value

B-40

dectolong() Converts a decimal type value to a C 4-byte
integer type value

B-42

For information about the function rfmtdec(), which allows you to format a
decimal number, see “Numeric-Formatting Functions” on page 5-13. For additional
information about decimal values, see “Using Operations That Involve a Decimal
Value” on page 3-11

Chapter 5. Working with numeric data types 5-7

The Floating-Point Data Types
The database server supports the following data types for floating-point values.

SQL Floating-Point
Data Type

ESQL/C or C
Language Type Range of Values

SMALLFLOAT, REAL float Single-precision values with up to 9
significant digits

FLOAT, DOUBLE
PRECISION

double Double-precision values with up to 17
significant digits

DECIMAL(p) decimal Absolute value range between 10-130

and 10124

Declaring float Host Variables
When you use the C float data type (for SMALLFLOAT values), be aware that
most C compilers pass float to a function as the double data type. If you declare
the function argument as a float, you might receive an incorrect result. For
example, in the following excerpt, :hostvar might produce an incorrect value in
tab1, depending on how your C compiler handles the float data type when your
program passes it as an argument.
main()
{

double dbl_val;

EXEC SQL connect to ’mydb’;
ins_tab(dbl_val);...

}

ins_tab(hostvar)
EXEC SQL BEGIN DECLARE SECTION;

PARAMETER double hostvar;
EXEC SQL END DECLARE SECTION;
{

EXEC SQL insert into tab1 values (:hostvar, ...);
}

For more information about the SQL floating point data types, see the IBM Informix
Guide to SQL: Reference

Implicit Data Conversion
When an Informix ESQL/C program fetches a floating-point column value into a
character host variable (char, fixchar, varchar, or string), it includes only the
number of decimal digits that can fit into the character buffer. If the host variable
is too small for the full precision of the floating-point number, Informix ESQL/C
rounds the number to the precision that the host variable can hold.

In the following code fragment, an Informix ESQL/C program retrieves the value
1234.8763512 from a FLOAT column that is called principal into the prncpl_strng
character host variable:
EXEC SQL BEGIN DECLARE SECTION;

char prncpl_strng[15]; /* character host variable */
EXEC SQL END DECLARE SECTION;...

5-8 IBM Informix ESQL/C Programmer’s Manual

EXEC SQL select principal into :prncpl_strng from loan
where customer_id = 1098;

printf("Value of principal=%s\n", prncpl_strng);

Because the prncpl_strng host variable is a buffer of 15 characters, Informix
ESQL/C is able to put all decimal digits into the host variable and this code
fragment produces the following output:
Value of principal=1234.876351200

However, if the preceding code fragment declares the prncpl_strng host variable as
a buffer of 10 characters, Informix ESQL/C rounds the FLOAT value to fit into
prncpl_strng and the code fragment produces the following output:
Value of principal=1234.8764

Informix ESQL/C assumes a precision of 17 decimal digits for FLOAT or
SMALLFLOAT values. For DECIMAL(n,m), Informix ESQL/C assumes m decimal
digits.

Formatting Numeric Strings
A numeric-formatting mask specifies a format to apply to some numeric value. This
mask is a combination of the following formatting characters:

* This character fills with asterisks any positions in the display field
that would otherwise be blank.

& This character fills with zeros any positions in the display field that
would otherwise be blank.

This character changes leading zeros to blanks. Use this character
to specify the maximum leftward extent of a field.

< This character left-justifies the numbers in the display field. It
changes leading zeros to a null string.

, This character indicates the symbol that separates groups of three
digits (counting leftward from the units position) in the
whole-number part of the value. By default, this symbol is a
comma. You can set the symbol with the DBMONEY environment
variable. In a formatted number, this symbol appears only if the
whole-number part of the value has four or more digits.

. This character indicates the symbol that separates the
whole-number part of a money value from the fractional part. By
default, this symbol is a period. You can set the symbol with the
DBMONEY environment variable. You can have only one period
in a format string.

- This character is a literal. It appears as a minus sign when expr1 is
less than zero. When you group several minus signs in a row, a
single minus sign floats to the rightmost position that it can
occupy; it does not interfere with the number and its currency
symbol.

+ This character is a literal. It appears as a plus sign when expr1 is
greater than or equal to zero and as a minus sign when expr1 is
less than zero. When you group several plus signs in a row, a
single plus or minus sign floats to the rightmost position that it can
occupy; it does not interfere with the number and its currency
symbol.

Chapter 5. Working with numeric data types 5-9

(This character is a literal. It appears as a left parenthesis to the left
of a negative number. It is one of the pair of accounting
parentheses that replace a minus sign for a negative number. When
you group several in a row, a single left parenthesis floats to the
rightmost position that it can occupy; it does not interfere with the
number and its currency symbol.

) This is one of the pair of accounting parentheses that replace a
minus sign for a negative value.

$ This character displays the currency symbol that appears at the
front of the numeric value. By default, the currency symbol is the
dollar sign ($). You can set the currency symbol with the
DBMONEY environment variable. When you group several dollar
signs in a row, a single currency symbol floats to the rightmost
position that it can occupy; it does not interfere with the number.

Any other characters in the formatting mask are reproduced literally in the result.

When you use the following characters within a formatting mask, the characters
float; that is, multiple occurrences of the character at the left of the pattern in the
mask appear as a single character as far to the right as possible in the formatted
number (without removing significant digits):
-
+
(
)
$

For example, if you apply the mask $$$,$$$.## to the number 1234.56, the result is
$1,234.56.

When you use The rfmtdec() function, The rfmtdouble() function, or The
rfmtlong() function to format MONEY values, the function uses the currency
symbols that the DBMONEY environment variable specifies. If you do not set this
environment variable, the numeric-formatting functions use the currency symbols
that the client locale defines. The default local, U.S. English, defines currency
symbols as if you set DBMONEY to “$,.”. For a discussion of DBMONEY, see
the IBM Informix Guide to SQL: Reference. For more information about locales, see
the IBM Informix GLS User's Guide.

Table 5-4 on page 5-10 shows sample format strings for numeric expressions. The
character b represents a blank or space.

Table 5-4. Sample Format Patterns and Their Results

Formatting Mask Numeric Value Formatted Result

"#####"
"&&&&&"
"$$$$$"
"*****"
"<<<<<"

0
0
0
0
0

bbbbb 00000 bbbb$ *****
(null string)

5-10 IBM Informix ESQL/C Programmer’s Manual

Table 5-4. Sample Format Patterns and Their Results (continued)

Formatting Mask Numeric Value Formatted Result

“##,###”
"##,###"
"##,###"
"##,###"
"##,###"
"##,###"
"##,###"

12345
1234
123
12
1
-1
0

12,345 b1,234 bbb123 bbbb12
bbbbb1 bbbbb1 bbbbbb

"&&,&&&"
"&&,&&&"
"&&,&&&"
"&&,&&&"
"&&,&&&"
"&&,&&&"
"&&,&&&"

12345
1234
123
12
1
-1
0

12,345
01,234
000123
000012
000001
000001
000000

"$$,$$$"
"$$,$$$"
"$$,$$$"
"$$,$$$"
"$$,$$$"
"$$,$$$"
"$$,$$$"
"$$,$$$"
(DBMONEY set to DM)

12345
1234
123
12
1
-1
0
1234

***** (overflow)
$1,234 bb$123 bbb$12 bbbb$1
bbbb$1 bbbbb$ DM1,234

"**,***"
"**,***"
"**,***"
"**,***"
"**,***"
"**,***"

12345
1234
123
12
1
0

12,345
*1,234
***123
****12
*****1

"##,###.##"
"##,###.##"
"##,###.##"
"##,###.##"
"##,###.##"
"##,###.##"
"##,###.##"
"##,###.##"
"##,###.##"

12345.67
1234.56
123.45
12.34
1.23
0.12
0.01
-0.01
-1

12,345.67
b1,234.56
bbb123.45
bbbb12.34
bbbbb1.23
bbbbbb.12
bbbbbb.01
bbbbbb.01
bbbbb1.00

"&&,&&&.&&"
"&&,&&&.&&"
"&&,&&&.&&"
"&&,&&&.&&"

.67
1234.56
123.45
0.01

000000.67
01,234.56
000123.45
000000.01

"$$,$$$.$$"
"$$,$$$.$$"
"$$,$$$.##"
"$$,$$$.##"
"$$,$$$.&&"
"$$,$$$.&&"

12345.67
1234.56
0.00
1234.00
0.00
1234.00

********* (overflow)
$1,234.56 bbbbb$.00
$1,234.00 bbbbb$.00
$1,234.00

Chapter 5. Working with numeric data types 5-11

Table 5-4. Sample Format Patterns and Their Results (continued)

Formatting Mask Numeric Value Formatted Result

"-##,###.##"
"-##,###.##"
"-##,###.##"
"--#,###.##"
"---,###.##"
"---,-##.##"
"---,--#.##"
"--#,###.##"
"---,--#.##"

-12345.67
-123.45
-12.34
-12.34
-12.34
-12.34
-12.34
-1.00
-1.00

-12,345.67
-bbb123.45
-bbbb12.34
b-bbb12.34
bb-bb12.34
bbbb-12.34
bbbb-12.34
b-bbbb1.00
bbbbb-1.00

"-##,###.##"
"-##,###.##"
"-##,###.##"
"-##,###.##"
"--#,###.##"
"---,###.##"
"---,-##.##"
"---,---.##"
"---,---.--"
"---,---.&&"

12345.67
1234.56
123.45
12.34
12.34
12.34
12.34
1.00
-.01
-.01

b12,345.67
bb1,234.56
bbbb123.45
bbbbb12.34
bbbbb12.34
bbbbb12.34
bbbbb12.34
bbbbbb1.00
bbbbbb-.01
bbbbbb-.01

"-$$$,$$$.&&"
"-$$$,$$$.&&"
"-$$$,$$$.&&"
"--$$,$$$.&&"
"--$$,$$$.&&"
"--$$,$$$.&&"
"--$$,$$$.&&"
"--$$,$$$.&&"

-12345.67
-1234.56
-123.45
-12345.67
-1234.56
-123.45
-12.34
-1.23

-$12,345.67
-b$1,234.56
-bbb$123.45
-$12,345.67
b-$1,234.56
b-bb$123.45
b-bbb$12.34
b-bbbb$1.23

"----,--$.&&"
"----,--$.&&"
"----,--$.&&"
"----,--$.&&"
"----,--$.&&"
"----,--$.&&"

-12345.67
-1234.56
-123.45
-12.34
-1.23
-.12

-$12,345.67
b-$1,234.56
bbb-$123.45
bbbb-$12.34
bbbbb-$1.23
bbbbbb-$.12

"$***,***.&&"
"$***,***.&&"
"$***,***.&&"
"$***,***.&&"
"$***,***.&&"
"$***,***.&&"

12345.67
1234.56
123.45
12.34
1.23
.12

$*12,345.67
$**1,234.56
$****123.45
$*****12.34
$******1.23
$*******.12

"($$$,$$$.&&)"
"($$$,$$$.&&)"
"($$$,$$$.&&)"

-12345.67
-1234.56
-123.45

($12,345.67)
(b$1,234.56)
(bbb$123.45)

"(($$,$$$.&&)"
"(($$,$$$.&&)"
"(($$,$$$.&&)"
"(($$,$$$.&&)"
"(($$,$$$.&&)"
"((((,(($.&&)"
"((((,(($.&&)"
"((((,(($.&&)"
"((((,(($.&&)"
"((((,(($.&&)"
"((((,(($.&&)"

-12345.67
-1234.56
-123.45
-12.34
-1.23
-12345.67
-1234.56
-123.45
-12.34
-1.23
-.12

($12,345.67)
b($1,234.56)
b(bb$123.45)
b(bbb$12.34)
b(bbbb$1.23)
($12,345.67)
b($1,234.56)
bbb($123.45)
bbbb($12.34)
bbbbb($1.23)
bbbbbb($.12)

5-12 IBM Informix ESQL/C Programmer’s Manual

Table 5-4. Sample Format Patterns and Their Results (continued)

Formatting Mask Numeric Value Formatted Result

"($$$,$$$.&&)"
"($$$,$$$.&&)"
"($$$,$$$.&&)"

12345.67
1234.56
123.45

b$12,345.67
bb$1,234.56
bbbb$123.45

“(($$,$$$.&&)”
"(($$,$$$.&&)"
"(($$,$$$.&&)"
"(($$,$$$.&&)"
"(($$,$$$.&&)"

12345.67
1234.56
123.45
12.34
1.23

b$12,345.67
bb$1,234.56
bbbb$123.45
bbbbb$12.34
bbbbbb$1.23

"((((,(($.&&)"
"((((,(($.&&)"
"((((,(($.&&)"
"((((,(($.&&)"
"((((,(($.&&)"
"((((,(($.&&)"

12345.67
1234.56
123.45
12.34
1.23
.12

b$12,345.67
bb$1,234.56
bbbb$123.45
bbbbb$12.34
bbbbbb$1.23
bbbbbbb$.12

"<<<,<<<"
"<<<,<<<"
"<<<,<<<"
"<<<,<<<"

12345
1234
123
12

12,345
1,234
123
12

Numeric-Formatting Functions
Special functions are provided that allow you to format numeric expressions for
display. These formatting functions apply a given formatting mask to a numeric
value to allow you to line up decimal points, right- or left-justify the number,
enclose a negative number in parentheses, and so on. The Informix ESQL/C
library includes the following functions that support formatting masks for numeric
values.

Function Name Description See

rfmtdec() Converts a decimal value to a string B-181

rfmtdouble() Converts a double value to a string B-183

rfmtlong() Converts a 4-byte integer value to a string B-185

For information about the syntax and behavior of these library functions, see
Appendix B, “ESQL/C function library,” on page B-1.

Chapter 5. Working with numeric data types 5-13

5-14 IBM Informix ESQL/C Programmer’s Manual

Chapter 6. Working with time data types

The SQL DATE data type . 6-1
Formatting date strings . 6-1

DATE Library Functions . 6-2
The SQL DATETIME and INTERVAL Data Types . 6-2

The datetime Data Type . 6-3
The interval Data Type . 6-4
Macros for datetime and interval Data Types . 6-5
Fetching and Inserting DATETIME and INTERVAL Values 6-6

Fetching and Inserting into datetime Host Variables 6-6
Fetching and Inserting into interval Host Variables . 6-6
Implicit Data Conversion . 6-7

ANSI SQL standards for DATETIME and INTERVAL values 6-7
Data conversion for datetime and interval values . 6-8

Support of Non-ANSI DATETIME Formats . 6-8
The USE_DTENV environment variable. 6-8

DATETIME and INTERVAL Library Functions . 6-9

These topics explain how to use date, datetime, and interval data types in an IBM
Informix ESQL/C program. It contains the following information:
v An overview of the Informix ESQL/C date data type
v The syntax of the Informix ESQL/C library functions that you can use to

manipulate the date data type
v An overview of the Informix ESQL/C datetime and interval data types and

how to use them
v The syntax of Informix ESQL/C library functions that you can use to manipulate

the datetime and interval data types

For information about all the data types that are available for use in an Informix
ESQL/C program, see Chapter 3, “Informix ESQL/C data types,” on page 3-1. For
information about SQL data types, see the IBM Informix Guide to SQL: Reference.

The SQL DATE data type
Informix ESQL/C supports the SQL DATE data type with the Informix ESQL/C
date data type for host variables. The date data type stores internal DATE values.
It is implemented as a 4-byte integer whose value is the number of days since
December 31, 1899. Dates before December 31, 1899, are negative numbers, while
dates after December 31, 1899, are positive numbers. For a complete description of
the SQL DATE data type, see the IBM Informix Guide to SQL: Reference.

Formatting date strings
A date-formatting mask specifies a format to apply to some date value. This mask is
a combination of the following formats.

dd Day of the month as a two-digit number (01 through 31)

ddd Day of the week as a three-letter abbreviation (Sun through Sat)

mm Month as a two-digit number (01 through 12)

mmm Month as a three-letter abbreviation (Jan through Dec)

yy Year as a two-digit number (00 through 99)

© Copyright IBM Corp. 1996, 2010 6-1

yyyy Year as a four-digit number (0001 through 9999)

ww Day of the week as a two-digit number (00 for Sunday, 01 for
Monday, 02 for Tuesday ... 06 for Saturday)

Any other characters in the formatting mask are reproduced literally in the result.

When you use a nondefault locale whose dates contain eras, you can use
extended-format strings in a numeric-formatting mask. For more information, see
the IBM Informix GLS User's Guide.

When you use The rfmtdate() function or The rdefmtdate() function to format
DATE values, the function uses the date end-user formats that the GL DATE or
DB DATE environment variable specifies. If neither of these environment variables
is set, these date-formatting functions use the date end-user formats for the locale.
The default locale, U.S. English, uses the format mm/dd/yyyy. For a discussion of
GL DATE and DB DATE, see the IBM Informix GLS User's Guide.

DATE Library Functions
The following date-manipulation functions are in the Informix ESQL/C library.
They convert dates between a string format and the internal DATE format.

Function Name Description See

rdatestr() Converts an internal DATE to a character string format B-171

rdayofweek() Returns the day of the week of a date in internal format B-172

rdefmtdate() Converts a specified string format to an internal DATE B-174

rfmtdate() Converts an internal DATE to a specified string format B-178

rjulmdy() Returns month, day, and year from a specified DATE B-193

rleapyear() Determines whether specified year is a leap year B-195

rmdyjul() Returns an internal DATE from month, day, and year B-196

rstrdate() Converts a character string format to an internal DATE B-204

rtoday() Returns a system date as an internal DATE B-205

When you compile your Informix ESQL/C program with the esql command, esql
automatically links these functions into your program.

The SQL DATETIME and INTERVAL Data Types
Informix ESQL/C supports two data types that can hold information about time
values:
v The datetime data type, which encodes an instant in time as a calendar date and

a time of day.
v The interval data type, which encodes a span of time.

Table 6-1 summarizes these two time data types.

6-2 IBM Informix ESQL/C Programmer’s Manual

Table 6-1. ESQL/C Time Data Types

SQL Data Type
ESQL/C
Data Type

C typedef
Name Sample Declaration

DATETIME datetime dtime_t EXEC SQL BEGIN DECLARE SECTION;

datetime year to day sale;

EXEC SQL END DECLARE SECTION;

INTERVAL interval intrvl_t EXEC SQL BEGIN DECLARE SECTION;

interval hour to second test_num;

EXEC SQL END DECLARE SECTION;

The header file datetime.h contains the dtime_t and intrvl_t structures, along with
a number of macro definitions that you can use to compose qualifier values.
Include this file in all C source files that use any datetime or interval host
variables:
EXEC SQL include datetime;

The decimal.h header file defines the type dec_t, which is a component of the
dtime_t and intrvl_t structures.

Because of the multiword nature of these data types, it is not possible to declare an
uninitialized datetime or interval host variable named year, month, day, hour,
minute, second, or fraction. Avoid the following declarations:
EXEC SQL BEGIN DECLARE SECTION;

datetime year; /* will cause an error */
datetime year to day year, today; /* ambiguous */

EXEC SQL END DECLARE SECTION;

A datetime or interval data type is stored as a decimal number with a scale factor
of zero and a precision equal to the number of digits that its qualifier implies.
Once you know the precision and scale, you know the storage format. For
example, if you define a table column as DATETIME YEAR TO DAY, it contains
four digits for year, two digits for month, and two digits for day, for a total of
eight digits. It is thus stored as if it were decimal(8,0).

If the default precision of the underlying decimal value is not appropriate, you can
specify a different precision. For example, if you have a host variable of type
interval, with the qualifier day to day, the default precision of the underlying
decimal value is two digits. If you have intervals of one hundred or more days,
this precision is not adequate. You can specify a precision of three digits as follows:
interval day(3) to day;

For more information about the DATETIME and INTERVAL data types, see the
IBM Informix Guide to SQL: Reference.

The datetime Data Type
Use the datetime data type to declare host variables for database values of type
DATETIME. You specify the accuracy of the datetime data type with a qualifier. For
example, the qualifier in the following declaration is year to day:
datetime year to day sale;

As a host variable, a dtime_t. structure represents a datetime value:

Chapter 6. Working with time data types 6-3

typedef struct dtime {
short dt_qual;
dec_t dt_dec;

} dtime_t;

The dtime structure and dtime_t typedef have two parts. Table 6-2 lists these parts.

Table 6-2. Fields in the dtime Structure

Field Description

dt_qual Qualifier of the datetime value

dt_dec Digits of the fields of the datetime value This field is a decimal value.

Declare a host variable for a DATETIME column with the datetime data type
followed by an optional qualifier, as the following example shows:
EXEC SQL include datetime;...

EXEC SQL BEGIN DECLARE SECTION;
datetime year to day holidays[10];
datetime hour to second wins, places, shows;
datetime column6;

EXEC SQL END DECLARE SECTION;

If you omit the qualifier from the declaration of the datetime host variable, as in
the last example, your program must explicitly initialize the qualifier with the
macros shown in Table 6-4 on page 6-5.

The interval Data Type
Use the interval data type to declare host variables for database values of type
INTERVAL. You specify the accuracy of the interval data type with a qualifier. The
qualifier in the following declaration is hour to second:
interval hour to second test_run;

As a host variable, an intrvl_t. represents an interval value:
typedef struct intrvl {

short in_qual;
dec_t in_dec;

} intrvl_t;

The intrvl structure and intrvl_t typedef have two parts. Table 6-3 lists these parts.

Table 6-3. Fields in the intrvl Structure

Field Description

in_qual Qualifier of the interval value

in_dec Digits of the fields of the interval value This field is a decimal value.

To declare a host variable for an INTERVAL column, use the interval data type
followed by an optional qualifier, as shown in the following example:
EXEC SQL BEGIN DECLARE SECTION;

interval day(3) to day accrued_leave, leave_taken;
interval hour to second race_length;
interval scheduled;

EXEC SQL END DECLARE SECTION;

6-4 IBM Informix ESQL/C Programmer’s Manual

If you omit the qualifier from the declaration of the interval host variable, as in the
last example, your program must explicitly initialize the qualifier with the macros
described in the following section.

Macros for datetime and interval Data Types
In addition to the datetime and interval data structures, the datetime.h file defines
the macro functions shown in Table 6-4 for working directly with qualifiers in
binary form.

Table 6-4. Qualifier Macros for datetime and interval Data Types

Name of Macro Description

TU_YEAR Time unit for the YEAR qualifier field

TU_MONTH Time unit for the MONTH qualifier field

TU_DAY Time unit for the DAY qualifier field

TU_HOUR Time unit for the HOUR qualifier field

TU_MINUTE Time unit for the MINUTE qualifier field

TU_SECOND Time unit for the SECOND qualifier field

TU_FRAC Time unit for the leading qualifier field of FRACTION

TU_Fn Names for datetime ending fields of FRACTION(n), for n from 1
to 5

TU_START(q) Returns the leading field number from qualifier q

TU_END(q) Returns the trailing field number from qualifier q

TU_LEN(q) Returns the length in digits of the qualifier q

TU_FLEN(f) Returns the length in digits of the first field, f, of an interval
qualifier

TU_ENCODE(p,f,t) Creates a qualifier from the first field number f with precision p
and trailing field number t

TU_DTENCODE(f,t) Creates a datetime qualifier from the first field number f and
trailing field number t

TU_IENCODE(p,f,t) Creates an interval qualifier from the first field number f with
precision p and trailing field number t

For example, if your program does not provide an interval qualifier in the
host-variable declaration, you need to use the interval qualifier macros to initialize
and set the interval host variable. In the following example, the interval variable
gets a day to second qualifier. The precision of the largest field in the qualifier,
day, is set to 2:
/* declare a host variable without a qualifier */
EXEC SQL BEGIN DECLARE SECTION;

interval inv1;
EXEC SQL END DECLARE SECTION;...

/* set the interval qualifier for the host variable */
inv1.in_qual = TU_IENCODE(2, TU_DAY, TU_SECOND);...

/* assign values to the host variable */
incvasc ("5 2:10:02", &inv1);

Chapter 6. Working with time data types 6-5

Fetching and Inserting DATETIME and INTERVAL Values
When an application fetches or inserts a DATETIME or INTERVAL value, Informix
ESQL/C must ensure that the qualifier field of the host variable is valid:
v When an application fetches a DATETIME value into a datetime host variable or

inserts a DATETIME value from a datetime host variable, it must ensure that the
dt_qual field of the dtime_t structure is valid.

v When an application fetches an INTERVAL value into an interval host variable
or inserts an INTERVAL value from an interval host variable, it must ensure that
the in_qual field of the intrvl_t structure is valid.

Fetching and Inserting into datetime Host Variables
When an application uses a datetime host variable to fetch or insert a DATETIME
value, Informix ESQL/C must find a valid qualifier in the datetime host variable.
Informix ESQL/C takes one of the following actions, based on the value of the
dt_qual field in the dtime_t structure that is associated with the host variable:
v When the dt_qual field contains a valid qualifier, Informix ESQL/C extends the

column value to match the dt_qual qualifier.
Extending is the operation of adding or dropping fields of a DATETIME value to
make it match a given qualifier. You can explicitly extend DATETIME values
with the SQL EXTEND function and the Informix ESQL/C The dtextend()
function function.

v When the dt_qual field does not contain a valid qualifier, Informix ESQL/C
takes different actions for a fetch and an insert:
– For a fetch, Informix ESQL/C uses the DATETIME column value and its

qualifier to initialize the datetime host variable.
Zero (0) is an invalid qualifier. Therefore, if you set the dt_qual field to zero,
you can ensure that Informix ESQL/C uses the qualifier of the DATETIME
column.

– For an insert, Informix ESQL/C cannot perform the insert or update
operation.
Informix ESQL/C sets the SQLSTATE status variable to an error-class code
(and SQLCODE to a negative value) and the update or insert operation on
the DATETIME column fails.

Fetching and Inserting into interval Host Variables
When an application uses an interval host variable to fetch or insert an INTERVAL
value, Informix ESQL/C must find a valid qualifier in the interval host variable.
Informix ESQL/C takes one of the following actions, based on the value of the
in_qual field of the intrvl_t structure that is associated with the host variable:
v When the in_qual field contains a valid qualifier, Informix ESQL/C checks it for

compatibility with the qualifier from the INTERVAL column value.
The two qualifiers are compatible if they belong to the same interval class: either
year to month or day to fraction. If the qualifiers are incompatible, Informix
ESQL/C sets the SQLSTATE status variable to an error-class code (and
SQLCODE is set to a negative value) and the select, update, or insert operation
fails.
If the qualifiers are compatible but not the same, Informix ESQL/C extends the
column value to match the in_qual qualifier. Extending is the operation of
adding or dropping fields within one of the interval classes of an INTERVAL
value to make it match a given qualifier. You can explicitly extend INTERVAL
values with the Informix ESQL/C The invextend() function function.

6-6 IBM Informix ESQL/C Programmer’s Manual

v When the in_qual field does not contain a valid qualifier, Informix ESQL/C
takes different actions for a fetch and an insert:
– For a fetch, if the in_qual field contains zero or is not a valid qualifier,

Informix ESQL/C uses the INTERVAL column value and its qualifier to
initialize the interval host variable.

– For an insert, if the in_qual field is not compatible with the INTERVAL
column or if it does not contain a valid value, Informix ESQL/C cannot
perform the insert or update operation.
Informix ESQL/C sets the SQLSTATE status variable to an error-class code
(and SQLCODE is set to a negative value) and the update or insert operation
on the INTERVAL column fails.

Implicit Data Conversion
You can fetch a DATETIME or INTERVAL column value into a character (char,
string, or fixchar) host variable. Informix ESQL/C converts the DATETIME or
INTERVAL column value to a character string before it stores it in the character
host variable. This character string conforms to the ANSI SQL standards for
DATETIME and INTERVAL values. If the host variable is too short, Informix
ESQL/C sets sqlca.sqlwarn.sqlwarn1 to W, fills the host variable with asterisk (*)
characters, and sets any indicator variable to the length of the untruncated
character string.

You can also insert a DATETIME or INTERVAL column value from a character
(char, string, fixchar, or varchar) host variable. Informix ESQL/C uses the data
type and qualifiers of the column value to convert the character value to a
DATETIME or INTERVAL value. It expects the character string to contain a
DATETIME or INTERVAL value that conforms to ANSI SQL standards.

If the conversion fails, Informix ESQL/C sets the SQLSTATE status variable to an
error-class code (and SQLCODE status variable to a negative value) and the update
or insert operation fails.

For more information, see “ANSI SQL standards for DATETIME and INTERVAL
values” on page 6-7.

Important: IBM Informix products do not support automatic data conversion from
DATETIME and INTERVAL column values to numeric (double, int,
and so on) host variables. Nor do IBM Informix products support
automatic data conversion from numeric (double, int, and so on) or
date host variables to DATETIME and INTERVAL column values.

ANSI SQL standards for DATETIME and INTERVAL values
The ANSI SQL standards specify qualifiers and formats for character
representations of DATETIME and INTERVAL values. The standard qualifier for a
DATETIME value is YEAR TO SECOND, and the standard format is as follows:
YYYY-MM-DD HH:MM:SS

The standards for an INTERVAL value specify the following two classes of
intervals:
v The YEAR TO MONTH class has the format: YYYY-MM

A subset of this format is also valid: for example, just a month interval.
v The DAY TO FRACTION class has the format: DD HH:MM:SS.F

Any subset of contiguous fields is also valid: for example, MINUTE TO
FRACTION.

Chapter 6. Working with time data types 6-7

Data conversion for datetime and interval values
You can use the Informix ESQL/C library functions dtcvasc(), dtcvfmtasc(),
dttoasc(), and dttofmtasc() to explicitly convert between DATETIME column values
and character strings. To explicitly convert between INTERVAL column values and
character strings, you can use the Informix ESQL/C library functions incvasc(),
incvfmtasc(), intoasc(), and intofmtasc().

For example, you can perform conversions between the DATETIME and DATE
data types with Informix ESQL/C library functions and intermediate strings.

To convert a DATETIME value to a DATE value:

1. Use the dtextend() function to adjust the DATETIME qualifier to year to day.
2. Apply the dttoasc() function to create a character string in the form yyyy-mm-dd.
3. Use The rdefmtdate() function with a pattern argument of yyyy-mm-dd to

convert the string to a DATE value.

To convert a DATE value to a DATETIME value:

1. Declare a host variable with a qualifier of year to day (or initialize the qualifier
with the value that the TU_DTENCODE(TU_YEAR,TU_DAY) macro returns).

2. Use the rfmtdate() function with a pattern of yyyy-mm-dd to convert the DATE
value to a character string.

3. Use the dtcvasc() function to convert the character string to a value in the
prepared DATETIME variable.

4. If necessary, use the dtextend() function to adjust the DATETIME qualifier.

Support of Non-ANSI DATETIME Formats
ESQL/C supports conversions from a data-time string in a non-ANSI format to the
DATETIME data type. This makes it easier to upgrade from Asian Language
Support (ALS) client/server products to Global Language Support (GLS)
client/server products.

The USE_DTENV environment variable
To support compatibility with earlier versions, ESQL/C uses the USE_DTENV
environment variable to activate support for non-ANSI date-time formats.

When the USE_DTENV environment variable is enabled, the following order or
precedence is used:
1. DBTIME
2. GL_DATETIME
3. CLIENT_LOCALE
4. LC_TIME
5. LANG (if LC_TIME is not set)
6. ANSI format

When enabled, the USE_DTENV environment variable is passed from the ESQL/C
program to the database server. Enabling it for the database server only will have
no effect. You must set it for the ESQL/C client program, which then passes it to
the database server.

If the database server does not support non-ANSI date-time formats, you should
not set the USE_DTENV for the ESQL/C client program.

6-8 IBM Informix ESQL/C Programmer’s Manual

You must set this environment variable to display localized DATETIME values
correctly in a database that uses a non-default locale, and for which the
GL_DATETIME environment variable has a non-default setting.

DATETIME and INTERVAL Library Functions
You must use the following IBM Informix ESQL/C library functions for the
datetime and interval data types to perform all operations on those types of
values. The following C functions are available in Informix ESQL/C to handle
datetime and interval host variables.

Function Name Description See

dtaddinv() Adds an interval value to a datetime value B-45

dtcurrent() Gets the current date and time B-46

dtcvasc() Converts an ANSI-compliant character string to a
datetime value

B-47

dtcvfmtasc() Converts a character string with a specified format to a
datetime value

B-49

dtextend() Changes the qualifier of a datetime value B-52

dtsub() Subtracts one datetime value from another B-53

dtsubinv() Subtracts an interval value from a datetime value B-55

dttoasc() Converts a datetime value to an ANSI-compliant
character string

B-56

dttofmtasc() Converts a datetime value to a character string with a
specified format

B-58

incvasc() Converts an ANSI-compliant character string to an
interval value

B-156

incvfmtasc() Converts a character string with a specified format to
an interval value

B-158

intoasc() Converts an interval value to an ANSI-compliant
character string

B-160

intofmtasc() Converts an interval value to a character string with a
specified format

B-160

invdivdbl() Divides an interval value by a numeric value B-161

invdivinv() Divides an interval value by another interval value B-163

invextend() Extends an interval value to a different interval
qualifier

B-165

invmuldbl() Multiplies an interval value by a numeric value B-167

For more information about operations on the SQL DATETIME and INTERVAL
data types, see the IBM Informix Guide to SQL: Reference.

Chapter 6. Working with time data types 6-9

6-10 IBM Informix ESQL/C Programmer’s Manual

Chapter 7. Working with simple large objects

Choosing a large-object data type . 7-2
Programming with Simple Large Objects . 7-3

Declaring a Host Variable for a Simple Large Object . 7-3
Accessing the Locator Structure . 7-4

The Fields of the Locator Structure . 7-5
Locations for Simple-Large-Object Data . 7-6

Locating Simple Large Objects in Memory . 7-7
Allocating the Memory Buffer . 7-8

A memory buffer that the ESQL/C libraries allocate 7-8
A memory buffer that the program allocates . 7-9

Selecting a simple large object into memory . 7-9
Inserting a Simple Large Object from Memory . 7-11

Locating Simple Large Objects in Files . 7-13
File-Open Mode Flags . 7-13
Error Returns in loc_status. 7-14
Locating Simple Large Objects in Open Files. 7-14

Selecting a Simple Large Object into an Open File . 7-14
Inserting a Simple Large Object from an Open File 7-16

Locating Simple Large Objects in Named Files . 7-18
Selecting a Simple Large Object into a Named File. 7-18
Inserting a Simple Large Object from a Named File 7-20

Using User-Defined Simple-Large-Object Locations . 7-22
Selecting a Simple Large Object into a User-Defined Location 7-23
Inserting a Simple Large Object into a User-Defined Location 7-23
Creating the User-Defined Simple-Large-Object Functions 7-24

The User-Defined Open Function . 7-24
The User-Defined Read Function . 7-25
The User-Defined Write Function . 7-26
The User-Defined Close Function . 7-27

Reading and Writing Simple Large Objects to an Optical Disc (UNIX) 7-28
The dispcat_pic Program . 7-31

Loading the Simple-Large-Object Images . 7-32
Choosing the Image Files . 7-32
Using the blobload Utility . 7-33

Guide to the dispcat_pic.ec File . 7-33
Lines 8 to 11 . 7-34
Lines 12 to 16 . 7-34
Lines 17 to 21 . 7-34
Line 22 . 7-34
Lines 23 to 26 . 7-35
Lines 27 to 29 . 7-35
Lines 30 to 33 . 7-35
Lines 34 to 51 . 7-36
Lines 52 to 60 . 7-36
Lines 61 to 74 . 7-37
Lines 75 to 81 . 7-37
Lines 82 to 88 . 7-38
Lines 89 to 95 . 7-38
Lines 96 to 104 . 7-39
Lines 105 to 110 . 7-39
Lines 111 to 113 . 7-39
Lines 114 to 122 . 7-39
Lines 123 to 130 . 7-39
Line 131 to 133 . 7-39
Lines 134 and 135. 7-40

© Copyright IBM Corp. 1996, 2010 7-1

Lines 136 and 145. 7-40
Line 146 to 153 . 7-40

Guide to the prdesc.c File . 7-41
Lines 1 to 20 . 7-41

Guide to the inpfuncs.c File . 7-42
Lines 1 to 7 . 7-42
Lines 8 to 32 . 7-42
Lines 33 to 45 . 7-43

A simple large object is a large object that is stored in a blobspace on disk and is
not recoverable. Simple large objects include the TEXT and BYTE data types. The
TEXT data type stores any kind of text data. The BYTE data type can store any
kind of binary data in an undifferentiated byte stream.

These topics describe the following information about simple large objects:
v Choosing whether to use a simple large object or a smart large object in your

IBM Informix ESQL/C application
v Programming with simple large objects, including how to declare host variables

and how to use the locator structure
v Locating simple large objects in memory
v Locating simple large objects in files, both open files and named files
v Locating simple large objects at a user-defined location
v Reading and writing simple large objects to optical disc

The end of this chapter presents an annotated example program called dispcat_pic.
The dispcat_pic sample program demonstrates how to read and display the
cat_descr and cat_picture simple-large-object columns from the catalog table of the
stores7 demonstration database.

For information about the data types available in an IBM Informix ESQL/C
program, see Chapter 3, “Informix ESQL/C data types,” on page 3-1. For
information about the TEXT and BYTE data types, as well as other SQL data types,
see the IBM Informix Guide to SQL: Reference.

Choosing a large-object data type
If you use IBM Informix as your database server, you can choose between using
simple large objects or smart large objects.

IBM Informix supports simple large objects primarily for compatibility with earlier
versions of IBM Informix applications. When you write new applications that need
to access large objects, use smart large objects to hold character (CLOB) and binary
(BLOB) data.

The following table summarizes the advantages that smart large objects present
over simple large objects:

7-2 IBM Informix ESQL/C Programmer’s Manual

Large-Object Feature Simple Large Objects Smart Large Objects

Maximum size of data 2 gigabytes 4 terabytes

Data accessibility No random access to data Random access to data

Reading the large object The database server reads a
simple large object on an all or
nothing basis.

Library functions provide access
that is similar to accessing an
operating-system file. You can
access specified portions of the
smart large object.

Writing the large object The database server updates a
simple large object on an all or
nothing basis.

The database server can rewrite
only a portion of a smart large
object.

Data logging Data logging is always on. Data logging can be turned on
and off.

For more information about how to use smart large objects, see Chapter 8,
“Working with smart large objects,” on page 8-1. The remainder of this chapter
discusses how to use simple large objects.

Programming with Simple Large Objects
Informix ESQL/C supports SQL simple large objects and the data types TEXT and
BYTE with the loc_t data type.

Tip: You cannot use literal values in an INSERT or UPDATE statement to put
simple-large-object data into a TEXT or BYTE column. To insert values into a
simple large object, you can use the LOAD statement from DB-Access or loc_t
host variables from an Informix ESQL/C client application.

Because of the potentially huge size of simple-large-object data, the Informix
ESQL/C program does not store the data directly in a loc_t host variable. Instead,
the loc_t structure is a locator structure. It does not contain the actual data; it
contains information about the size and location of the simple-large-object data.
You choose whether to store the data in memory, an operating-system file, or even
user-defined locations.

To use simple-large-object variables in an Informix ESQL/C program, take the
following actions:
v Declare a host variable with the loc_t data type
v Access the fields of the loc_t locator structure

Declaring a Host Variable for a Simple Large Object
Use the loc_t data type to declare host variables for database values of type TEXT
or BYTE. You declare a host variable for a simple-large-object column with the data
type loc_t, as shown in the following example:
EXEC SQL include locator;...

EXEC SQL BEGIN DECLARE SECTION;
loc_t text_lob;
loc_t byte_lob;

EXEC SQL END DECLARE SECTION;

Chapter 7. Working with simple large objects 7-3

A locator variable with a TEXT data type has the loc_type field of the locator
structure set to SQLTEXT. For a BYTE variable, loc_type is SQLBYTE. For more
information about the fields of the locator structure, see “The Fields of the Locator
Structure” on page 7-5.

Tip: The sqltypes.h header file defines both SQLTEXT and SQLBYTE. Therefore,
make sure you include sqltypes.h before you use these constants.

From an Informix ESQL/C program, you can both select and insert
simple-large-object data into loc_t host variables. You can also select only portions
of a simple-large-object variable with subscripts on the simple-large-object column
name. These subscripts can be coded into the statement as shown in the following
example:
EXEC SQL declare catcurs cursor for

select catalog_num, cat_descr[1,10]
from catalog
where manu_code = ’HSK’;

EXEC SQL open catcurs;
while (1)

{
EXEC SQL fetch catcurs into :cat_num, :cat_descr;

...

}

Subscripts can also be passed as input parameters as the following code fragment
shows:
EXEC SQL prepare slct_id from

’select catalog_num, cat_descr[?,?] from catalog \
where catalog_num = ?’

EXEC SQL execute slct_id into :cat_num, :cat_descr
using :n, :x, :cat_num;

Accessing the Locator Structure
In an Informix ESQL/C program, you use a locator structure to access
simple-large-object values. The locator structure is the host variable for TEXT and
BYTE columns when they are stored in or retrieved from the database. This
structure describes the location of a simple-large-object value for the following two
database operations:
v When the program inserts the simple large object into the database, the locator

structure identifies the source of the simple-large-object data to insert.
It is recommended that you initialize the data structure before using it, as in the
following example
byfill(&blob1, sizeof(loc_t), 0);
where blob1 is declared as --
EXEC SQL BEGIN DECLARE SECTION;
loc_t blob1;
EXEC SQL END DECLARE SECTION;

This ensures that all variables of the data structure have been initialized and will
avoid inconsistencies

v When the program selects the simple large object from the database, the locator
structure identifies the destination of the simple-large-object data.

The locator.h header file defines the locator structure, called loc_t. Figure 7-1
shows the definition of the loc_t locator structure from the locator.h file.

7-4 IBM Informix ESQL/C Programmer’s Manual

In Figure 7-1 on page 7-5, the following comments in the locator.h file indicate
how the fields are used in the locator structure.

Comment Description

USER The Informix ESQL/C program sets the field, and the Informix
ESQL/C libraries inspect the field.

SYSTEM The Informix ESQL/C libraries set the field, and the Informix
ESQL/C program inspects the field.

INTERNAL The field is a work area for the Informix ESQL/C libraries, and the
Informix ESQL/C program does not need to examine the field.

Informix ESQL/C does not automatically include the locator.h header file in an
Informix ESQL/C program. You must include the locator.h header file in any
Informix ESQL/C program that defines simple-large-object variables.
EXEC SQL include locator;

The Fields of the Locator Structure
The locator structure has the following parts:
v The loc_loctype field identifies the location of the simple-large-object data. It

also indicates the variant type of the lc_union structure.

typedef struct tag_loc_t
{
int2 loc_loctype; /* USER: type of locator - see below */
union /* variant on ’loc’ */

{
struct /* case LOCMEMORY */

{
int4 lc_bufsize; /* USER: buffer size */
char *lc_buffer; /* USER: memory buffer to use */
char *lc_currdata_p; /* INTERNAL: current memory buffer */
mint lc_mflags; /* USER/INTERNAL: memory flags */

/* (see below) */
} lc_mem;

struct /* cases L0CFNAME & LOCFILE */
{
char *lc_fname; /* USER: file name */
mint lc_mode; /* USER: perm. bits used if creating */
mint lc_fd; /* USER: os file descriptior */
int4 lc_position; /* INTERNAL: seek position */
} lc_file;

} lc_union;

int4 loc_indicator; /* USER/SYSTEM: indicator */
int4 loc_type; /* SYSTEM: type of blob */
int4 loc_size; /* USER/SYSTEM: num bytes in blob or -1 */
mint loc_status; /* SYSTEM: status return of locator ops */
char *loc_user_env; /* USER: for the user’s PRIVATE use */
int4 loc_xfercount; /* INTERNAL/SYSTEM: Transfer count */

/* USER: open function */
mint (*loc_open)(struct tag_loc_t *loc, mint flag, mint bsize);

; /* USER: close function */
mint (*loc_close)(struct tag_loc_t *loc)

; /* USER: read function */
mint (*loc_read)(struct tag_loc_t *loc, char *buffer, mint buflen)

; /* USER: write function */
mint (*loc_write)(struct tag_loc_t *loc, char *buffer, mint buflen)

/* USER/INTERNAL: see flag definitions below */
mint loc_oflags;
} loc_t;

Figure 7-1. Declaration of loc_t in the locator.h Header File

Chapter 7. Working with simple large objects 7-5

For more information about loc_loctype, see “Locations for Simple-Large-Object
Data” on page 7-6.

v The lc_union structure is a union (overlapping variant structures) structure.
The variant in use depends on where Informix ESQL/C can expect to find the
simple large object at runtime. For more information about this structure, see
“Locating Simple Large Objects in Memory” on page 7-7 and “Locating Simple
Large Objects in Files” on page 7-13.

v Several fields are common to all types of simple-large-object variables.

Table 7-1 lists the fields in the locator structure common to all simple-large-object
locations.

Table 7-1. Fields in Locator Structure Common to all Simple-Large-Object Data Locations

Field Data Type Description

loc_indicator 4-byte
integer

A value of -1 in the loc_indicator field indicates a null
simple-large-object value. The Informix ESQL/C program
can set the field to indicate insertion of a null value;
Informix ESQL/C libraries set it on a select or fetch.

For consistent behavior on various platforms, it is advised
to set the value of the indicator to 0 or -1. If indicator is
not set you can experience inconsistent behavior. The
value set in the indicator field takes the higher
precedence when set.

You can also use the loc_indicator field to indicate an
error when your program selects into memory. If the
simple large object to be retrieved does not fit in the
space provided, the loc_indicator field contains the actual
size of the simple large object.

loc_size 4-byte
integer

Contains the size of the simple-large-object data in bytes.
This field indicates the amount of simple-large-object data
that the Informix ESQL/C libraries read or write. The
Informix ESQL/C program sets loc_size when it inserts a
simple large object in the database; the Informix ESQL/C
libraries set loc_size after it selects or fetches a simple
large object.

loc_status mint Indicates the status of the last locator operation. The
Informix ESQL/C libraries set loc_status to zero when a
locator operation is successful and to a negative value
when an error occurs. The SQLCODE variable also
contains this status value.

loc_type 4-byte
integer

Specifies whether the data type of the variable is TEXT
(SQLTEXT) or BYTE (SQLBYTES). The sqltypes.h header
file defines SQLTEXT and SQLBYTES.

Locations for Simple-Large-Object Data
Before your Informix ESQL/C program accesses a simple-large-object column, it
must determine where the simple-large-object data is located. To specify whether
the simple large object is located in memory or in a file, specify the contents of the
loc_loctype field of the locator structure. Table 7-2 shows the possible locations for
simple-large-object data.

7-6 IBM Informix ESQL/C Programmer’s Manual

Table 7-2. Possible Locations for Simple-Large-Object Data

Value of loc_loctype Field Location of Simple-Large-Object DataS See

LOCMEMORY In memory 7-7

LOCFILE In an open file 7-14

LOCFNAME In a named file 7-18

LOCUSER At a user-defined location 7-22

Set loc_loctype after you declare the locator variable and before this declared
variable receives a simple-large-object value.

The locator.h header file defines the LOCMEMORY, LOCFILE, LOCFNAME, and
LOCUSER location constants. In your Informix ESQL/C program, use these
constant names rather than their constant values when you assign values to
loc_loctype.

In a client-server environment, Informix ESQL/C locates the simple large object on
the client computer (the computer on which the application runs).

Locating Simple Large Objects in Memory
To have IBM Informix ESQL/C locate the TEXT or BYTE data in primary memory,
set the loc_loctype field of the locator structure to LOCMEMORY as follows:
EXEC SQL BEGIN DECLARE SECTION;

loc_t my_simple_lo;
EXEC SQL END DECLARE SECTION;...

my_simole_lo.loc_loctype = LOCMEMORY;

When you use memory as a simple-large-object location, a locator structure uses
the lc_mem structure of the lc_union structure. Table 7-3 summarizes the
lc_union.lc_mem fields.

Table 7-3. Fields in lc_union.lc_mem Structure Used for Simple Large Objects Located in
Memory

Field Data Type Description

lc_bufsize 4-byte
integer

The size, in bytes, of the buffer to which the lc_buffer
field points. For more information, see “Allocating the
Memory Buffer” on page 7-8.

lc_buffer char * The address of the buffer to hold the simple large-object
value. Your Informix ESQL/C program must allocate the
space for this buffer and store its address here in
lc_buffer. For more information, see “Allocating the
Memory Buffer” on page 7-8.

lc_currdata_p char * The address of the system buffer. This is an internal field
and must not be modified by the Informix ESQL/C program.

lc_mflags mint The flags to use when you allocate memory.

The locator.h file provides the following macro shortcuts to use when you access
fields in lc_union.lc_mem:

Chapter 7. Working with simple large objects 7-7

#define loc_bufsize lc_union.lc_mem.lc_bufsize
#define loc_buffer lc_union.lc_mem.lc_buffer
#define loc_currdata_p lc_union.lc_mem.lc_currdata_p
#define loc_mflags lc_union.lc_mem.lc_mflags

Tip: It is recommended that you use these shortcut names when you access the
locator structure. The shortcut names improve code readability and reduce
coding errors. This publication uses these shortcut names when it refers to the
lc_bufsize, lc_buffer, lc_currdata_p, and lc_mflags fields of the
lc_union.lc_mem structure.

The demo directory contains the following two sample Informix ESQL/C
programs that demonstrate how to handle simple-large-object data located in
memory:
v The getcd_me.ec program selects a simple large object into memory.
v The updcd_me.ec program inserts a simple large object from memory.

These programs assume the stores7 database as the default database for the
simple-large-object data. The user can specify another database (on the default
database server) as a command-line argument.
getcd_me mystores

The getcd_me and updcd_me programs are briefly explained in 7-9 and 7-11.

Allocating the Memory Buffer
When your program selects simple-large-object data into memory, Informix
ESQL/C uses a memory buffer. Before your program fetches TEXT or BYTE data,
you must set the loc_bufsize (lc_union.lc_mem.lc_bufsize) field as follows to
indicate how Informix ESQL/C allocates this memory buffer:
v If you set the loc_bufsize to -1, Informix ESQL/C allocates the memory buffer

to hold the simple-large-object data.
v If you set the loc_bufsize to a value that is not -1, Informix ESQL/C assumes

that the program handles memory-buffer allocation and deallocation.

Warning: When you locate simple large objects in memory, you must always set
loc_mflags (lc_union.lc_mem.lc_mflags) and loc_oflags to 0 (zero)
initially.

A memory buffer that the ESQL/C libraries allocate
When you set loc_bufsize to -1, Informix ESQL/C allocates the memory buffer on
a fetch or select. Informix ESQL/C uses the malloc() system call to allocate the
memory buffer to hold a single simple-large-object value. (If it cannot allocate the
buffer, Informix ESQL/C sets the loc_status field to -465 to indicate an error.)
When the select (or the first fetch) completes, Informix ESQL/C sets loc_buffer to
the address of the buffer and both loc_bufsize and loc_size to the size of the
fetched simple large object to update the locator structure.

To fetch subsequent simple-large-objects whose data is of larger or smaller size, set
loc_mflags to the LOC_ALLOC constant (that locator.h defines) to request that
Informix ESQL/C reallocate a new memory buffer. Leave loc_bufsize to the size of
the currently allocated buffer.

Warning: If you do not set loc_mflags to LOC_ALLOC after the initial fetch,
Informix ESQL/C does not release the memory it has allocated for the
loc_buffer buffer. Instead, it allocates a new buffer for subsequent

7-8 IBM Informix ESQL/C Programmer’s Manual

fetches. This situation can cause your program size to grow for each
fetch unless you explicitly free the memory allocated to each loc_buffer
buffer. If your application runs on a Windows operating system and uses
the mutli-threaded library then use the SqlFreeMem() Informix ESQL/C
function to free it. Otherwise use the free() system call.

When you set loc_mflags to LOC_ALLOC, Informix ESQL/C handles memory
allocation as follows:
v If the size of the simple-large-object data increases, Informix ESQL/C frees the

existing buffer and allocates the necessary memory.
If this reallocation occurs, Informix ESQL/C alters the memory address at which
it stores simple-large-object data. Therefore, if you reference the address in your
programs, your program logic must account for the address change. Informix
ESQL/C also updates the loc_bufsize and loc_size field to the size of the
fetched simple large object.

v If the size of the data decreases, Informix ESQL/C does not need to reallocate
the buffer.
After the fetch, the loc_size field indicates the size of the fetched simple large
object while the loc_bufsize field still contains the size of the allocated buffer.

Informix ESQL/C frees the allocated memory when it fetches the next
simple-large-object value. Therefore, Informix ESQL/C does not explicitly free the
last simple-large-object value fetched until your program disconnects from the
database server.

For an example in which loc_bufsize is set to -1, see “Selecting a simple large
object into memory” on page 7-9.

A memory buffer that the program allocates
If you wish to handle your own memory allocation for simple large objects, use the
malloc() system call to allocate the memory and then set the following fields in the
locator structure:
v Before a select or fetch of a TEXT or BYTE column, set the loc_buffer field to the

address of the allocated memory buffer, and set the loc_bufsize field to the size
of the memory buffer.

v Before an insert of a TEXT or BYTE column, set the same fields as for a select or
fetch. In addition, set loc_size to the size of the data to be inserted in the
database.

If the fetched data does not fit in the allocated buffer, the Informix ESQL/C
libraries set loc_status (and SQLCODE) to a negative value (-451) and put the
actual size of the data in loc_indicator. If the fetched data does fit, Informix
ESQL/C sets loc_size to the size of the fetched data.

Important: When you allocate your own memory buffer, also free the memory
when you are finished selecting or inserting simple large objects.
Informix ESQL/C does not free this memory because it has no way to
determine when you are finished with the memory. Because you have
allocated the memory with malloc(), you can use the free() system call
to free the memory.

Selecting a simple large object into memory
The getcd_me sample program from the demo directory shows how to select a
simple large object from the database into memory. Figure 7-2 shows a code

Chapter 7. Working with simple large objects 7-9

excerpt that selects the cat_descr TEXT column of the catalog table into memory
and then displays it.

The program sets the cat_descr locator structure fields as follows:
v The loc_loctype field is set to LOCMEMORY so that Informix ESQL/C returns

the cat_descr text in a memory buffer.
v The loc_bufsize field is set to -1 to have Informix ESQL/C allocate the memory

for the buffer. For more information, see “A memory buffer that the ESQL/C
libraries allocate” on page 7-8.

v The loc_oflags field is set to 0 because the program does not use a file for the
simple large object.

v You must always set the loc_mflags field to 0 when you locate a simple large
object in memory.

After the SELECT or FETCH statement, the locator structure contains the following
information:
v The loc_buffer field contains the address of the memory buffer.
v The loc_bufsize field contains the size of the loc_buffer buffer. This is the total

amount of memory allocated for simple-large-object storage.
v The loc_size field contains the number of bytes of simple-large-object data in

loc_buffer.
v The loc_indicator field contains -1 if the selected simple-large-object value is

null.
v The loc_status field contains the status of the operation: 0 for success and a

negative value if an error has occurred. For information about possible errors,
see “Allocating the Memory Buffer” on page 7-8.

The program excerpt in Figure 7-2 on page 7-10 calls prdesc() to display the text
that the SELECT statement returned. For a description of the prdesc() function, see
“Guide to the prdesc.c File” on page 7-41. If this program were to select a second
simple large object, it would need to set the loc_mflags to the LOC_ALLOC
constant before the second SELECT statement to prevent memory leaks.

cat_descr.loc_loctype = LOCMEMORY; /* set loctype for in memory */
cat_descr.loc_bufsize = -1; /* let db get buffer */
cat_descr.loc_oflags = 0; /* clear loc_oflags */
cat_descr.loc_mflags = 0; /* set loc_mflags to 0 */
EXEC SQL select catalog_num, cat_descr /* look up catalog number */

into :cat_num, :cat_descr from catalog
where catalog_num = :cat_num;

if((ret = exp_chk2("SELECT", WARNNOTIFY)) == 100) /* if not found */
{
printf("\nCatalog number %ld not found in catalog table\n",

cat_num);
if(!more_to_do()) /* More to do? */

break; /* no, terminate loop */
else

continue; /* yes */
}

if(ret < 0)
{
printf("\nSelect for catalog number %ld failed\n", cat_num);
EXEC SQL disconnect current;
printf("GETCD_ME Sample Program over.\n\n");
exit(1);
}

prdesc(); /* if found, print cat_descr */

Figure 7-2. Code Excerpt from the getcd_me Sample Program

7-10 IBM Informix ESQL/C Programmer’s Manual

The excerpt also displays the cat_descr column for a catalog number that the user
enters. Figure 7-3 shows the user input and the output from the cat_descr column
of the stores7 demonstration database.

Inserting a Simple Large Object from Memory
The updcd_me sample program from the demo directory shows how to insert a
simple large object from memory into the database. The program updates the
cat_descr TEXT column of the catalog table from a memory buffer that contains
text that the user enters. Figure 7-4 shows sample output as the user updates the
cat_descr column of the stores7 database.

Figure 7-5 shows a code excerpt that illustrates how the updcd_me program uses
the locator structure to update the cat_descr column from the text that is stored in
memory.

GETCD_ME Sample ESQL Program running.

Connected to stores7

This program requires you to enter a catalog number from the catalog
table. For example: ’10001’. It then displays the content of the
cat_descr column for that catalog row. The cat_descr value is stored
in memory.

Enter a catalog number: 10004
Description for 10004:

Jackie Robinson signature glove. Highest professional quality, used by National League.

**** More? (y/n) ...

Figure 7-3. Sample Output from the getcd_me Sample Program

Enter catalog number: 10004
Description for 10004:

Jackie Robinson signature ball. Highest professional quality, used by National League.

Update this description? (y/n) ...y

Enter description (max 255 chars):and press RETURN
Jackie Robinson home run ball, signed, 1955.

*** Update complete.
**** More?(y/n).... n

Figure 7-4. Sample Output from the updcd_me Sample Program

Chapter 7. Working with simple large objects 7-11

The program sets the cat_descr locator structure fields as follows:
v The loc_loctype field is set to LOCMEMORY so that Informix ESQL/C reads the

cat_descr text from a memory buffer.
v The loc_buffer field is set to ans, the address of the memory buffer that holds

the simple-large-object value to be inserted.
v The loc_bufsize field is set to BUFFSZ, the size of the allocated ans memory

buffer.
v The loc_size field is set to strlen(ans) + 1, the number of bytes in the memory

buffer that currently holds the new simple-large-object value.

If you insert a null simple-large-object value, your program also needs to set the
loc_indicator field to -1.

Figure 7-6 shows a code excerpt that illustrates how to use a locator structure in an
INSERT statement.

/* Update? */
ans[0] = ’ ’;
while((ans[0] = LCASE(ans[0])) != ’y’ && ans[0] != ’n’)

{
printf("\nUpdate this description? (y/n) ...");
getans(ans, 1);
}

if(ans[0] == ’y’) /* if yes */
{
printf("Enter description (max of %d chars) and press RETURN\n",

BUFFSZ - 1);
/* Enter description */
getans(ans, BUFFSZ - 1);
cat_descr.loc_loctype = LOCMEMORY; /* set loctype for in memory */
cat_descr.loc_buffer = ans; /* set buffer addr */
cat_descr.loc_bufsize = BUFFSZ; /* set buffer size */
/* set size of data *
cat_descr.loc_size = strlen(ans);
/* Update */
EXEC SQL update catalog

set cat_descr =:cat_descr
where catalog_num = :cat_num;

...

}

Figure 7-5. Code Excerpt from the updcd_me Sample Program

char photo_buf[BUFFSZ];

EXEC SQL BEGIN DECLARE SECTION;
char name[20];
loc_t photo;

EXEC SQL END DECLARE SECTION;

photo.loc_loctype = LOCMEMORY; /* Photo resides in memory */
photo.loc_buffer = photo_buf; /* pointer to where it is */
photo.loc_size = BUFFSZ - 1; /* length of image*/

EXEC SQL insert into employee (name, badge_pic)
values (:name, :photo);

Figure 7-6. Sample INSERT Operation from Primary Memory

7-12 IBM Informix ESQL/C Programmer’s Manual

After the UPDATE or INSERT statement, Informix ESQL/C updates the loc_size
field with the number of bytes read from the memory buffer and sent to the
database server. It also sets the loc_status field to indicate the status of the
operation: 0 for success and a negative value if an error has occurred. For
information about possible errors, see “Allocating the Memory Buffer” on page 7-8.

Locating Simple Large Objects in Files
You can locate simple-large-object data in the following types of files:
v An open file is one that has already been opened before the program accesses the

simple-large-object data. The program provides a file descriptor as the location
of the simple-large-object data.

v A named file is one that your program has not yet opened. The program provides
a file name as the location of the simple-large-object data.

When you use a file as a simple-large-object location, a locator structure uses the
lc_file structure for the lc_union structure. Table 7-4 summarizes the
lc_union.lc_file fields.

Table 7-4. Fields in lc_union.lc_file Structure Used for Simple Large Objects Located in Files

Field Data Type Description

lc_fname char * The address of the path name string that contains the file for
the simple-large-object data. The program sets this field when
it uses named files for simple-large-object locations.

lc_mode int The permission bits to use to create a new file. This value is
the third argument passed to the system open() function. For
valid values of lc_mode, see your system documentation.

lc_fd int The file descriptor of the file that contains the
simple-large-object data. The program sets this field when it
uses open files.

lc_position 4-byte
integer

The current seek position in the opened file. This is an internal
field and must not be modified by the ESQL/C program.

The locator.h file provides the following macro shortcuts to use when you access
simple large objects stored in files:
#define loc_fname lc_union.lc_file.lc_fname
#define loc_fd lc_union.lc_file.lc_fd
#define loc_position lc_union.lc_file.lc_position

Tip: It is recommended that you use these shortcut names when you access the
locator structure. The shortcut names improve code readability and reduce
coding errors. This publication uses these shortcut names when it refers to the
lc_fname, lc_fd, and lc_position fields of the lc_union.lc_file structure.

File-Open Mode Flags
When you use files for simple-large-object data, also set the loc_oflags field of the
locator structure. The loc_oflags field is of type integer and it contains the
host-system file-open mode flags. These flags determine how the file is to be
accessed once it is opened:
v LOC_RONLY is a mask for read-only mode. Use this value when you insert a

simple large object into a file.

Chapter 7. Working with simple large objects 7-13

v LOC_WONLY is a mask for write-only mode. Use this value when you select a
simple large object into a file and you want each selected simple large object to
write over any existing data.

v LOC_APPEND is a mask for write mode. Use this value when you select a
simple large object into a file and you want to append the value to the end of
the file.

Error Returns in loc_status
One of these flags is passed to the loc_open() function when Informix ESQL/C
opens the file. Informix ESQL/C reads the data and writes it to the current
location (which the loc_position field indicates) in the file. If Informix ESQL/C is
unable to read or write to a file, it sets the loc_status field of the locator structure
to -463 or -464. If Informix ESQL/C is unable to close a file, it sets loc_status to
-462. Informix ESQL/C updates the SQLCODE variable with this same value.

Locating Simple Large Objects in Open Files
To have Informix ESQL/C locate the TEXT or BYTE data in an open file, set the
loc_loctype field of the locator structure to LOCFILE.
EXEC SQL BEGIN DECLARE SECTION;

loc_t my_simple_lo;
EXEC SQL END DECLARE SECTION;...

my_simple_lo.loc_loctype = LOCFILE;

To use an open file as a simple-large-object location, your Informix ESQL/C
program must open the desired file before it accesses the simple-large-object data. It
must then store its file descriptor in the loc_fd field of the locator structure to
specify this file as the simple-large-object location. The loc_oflags field should also
contain a file-open mode flag to tell Informix ESQL/C how to access the file when
it opens it. For a list of file-open mode flags, see “File-Open Mode Flags” on page
7-13.

The demo directory contains the following two sample Informix ESQL/C
programs that demonstrate how to handle simple-large-object data located in an
open file:
v The getcd_of.ec program selects a simple large object into an open file.
v The updcd_of.ec program inserts a simple large object from an open file.

These programs assume the stores7 database as the default database for the
simple-large-object data. The user can specify another database (on the default
database server) as a command-line argument:
getcd_of mystores

Each of these programs is briefly explained in the following sections.

Selecting a Simple Large Object into an Open File
The getcd_of sample program from the demo directory shows how to select a
simple large object from the database into an open file. Figure 7-7 shows a code
excerpt that selects the cat_descr column into a file that the user specifies.

7-14 IBM Informix ESQL/C Programmer’s Manual

To prepare the locator structure for the SELECT statement, the getcd_of program
sets the cat_descr locator structure fields as follows:
v The loc_loctype field is set to LOCFILE to tell Informix ESQL/C to place the

text for the cat_descr column in the open file.
v The loc_fd field is set to the fd file descriptor to identify the open file.
v The loc_oflags field is set to LOC_APPEND to specify that the data is to be

appended to any data that already exists in the file.

To access the file descriptor (loc_fd) field of the locator structure, the getcd_of
program uses the name cat_descr.loc_fd. However, the actual name of this field in
the locator structure is as follows:
cat_descr.lc_union.lc_file.lc_fd

The shortcut name of loc_fd is defined as a macro in the locator.h file.

After Informix ESQL/C writes data to an open file, it sets the following fields of
the locator structure:
v The loc_size field contains the number of bytes written to the open file.
v The loc_indicator field contains -1 if the selected simple-large-object value is

null.
v The loc_status field contains the status of the operation: 0 for success and a

negative value if an error has occurred. For possible causes of the error, see
“Error Returns in loc_status” on page 7-14.

EXEC SQL BEGIN DECLARE SECTION;
char db_name[30];
mlong cat_num;
loc_t cat_descr;

EXEC SQL END DECLARE SECTION;...

if((fd = open(descfl, O_WRONLY)) < 0)
{
printf("\nCan’t open file: %s, errno: %d\n", descfl, errno);
EXEC SQL disconnect current;
printf("GETCD_OF Sample Program over.\n\n"):

exit(1);
}

/*
* Prepare locator structure for select of cat_descr
*/
cat_descr.loc_loctype = LOCFILE; /* set loctype for open file */
cat_descr.loc_fd = fd; /* load the file descriptor */
cat_descr.loc_oflags = LOC_APPEND; /* set loc_oflags to append */
EXEC SQL select catalog_num, cat_descr /* verify catalog number */

into :cat_num, :cat_descr from catalog
where catalog_num = :cat_num;

if(exp_chk2("SELECT", WARNNOTIFY) != 100) /* if not found */
printf("\nCatalog number %ld not found in catalog table\n",

cat_num);
else

{
if(ret < 0)

{

...

exit(1);
}

}

Figure 7-7. Code Excerpt from the getcd_of Sample Program

Chapter 7. Working with simple large objects 7-15

Inserting a Simple Large Object from an Open File
The updcd_of sample program from the demo directory shows how to insert a
simple large object from an open file into the database. The program updates the
cat_descr TEXT column of the catalog table from an open file that contains a series
of records; each consists of a catalog number and the text to update the
corresponding cat_descr column. The program assumes that this input file has the
following format:
\10001\
Dark brown leather first baseman’s mitt. Specify right-handed or
left-handed.

\10002\
Babe Ruth signature glove. Black leather. Infield/outfield style.
Specify right- or left-handed....

Figure 7-8 shows a code excerpt that illustrates how to use the locator structure to
update the cat_descr column of the catalog table from an open file.

7-16 IBM Informix ESQL/C Programmer’s Manual

The updcd_of program opens the input file (descfl) that the user specified in
response to a prompt, calls the getcat_num() function to read a catalog number
from the file, and then calls the getdesc_len() function to determine the length of
the text for the update to the cat_descr column. The program performs a SELECT
statement to verify that the catalog number exists in the catalog table.

If this number exists, the updcd_of program prepares the locator structure as
follows to update cat_descr from the text in the open file:
v The loc_loctype field is set to LOCFILE to tell Informix ESQL/C that the

cat_descr column is to be updated from an open file.
v The loc_fd field is set to fd, the file descriptor for the open-input file.
v The loc_oflags field is set to LOC_RONLY, the file-open mode flag for read-only

mode.

EXEC SQL BEGIN DECLARE SECTION;
mlong cat_num;
loc_t cat_descr;

EXEC SQL END DECLARE SECTION;...

if ((fd = open(descfl, O_RDONLY)) < 0) /* open input file */
{

...

}
while(getcat_num(fd, line, sizeof(line))) /* get cat_num line from file */

{

...

printf("\nReading catalog number %ld from file...\n", cat_num);
flpos = lseek(fd, 0L, 1);
length = getdesc_len(fd);
flpos = lseek(fd, flpos, 0);

/* lookup cat_num in catalog table */
EXEC SQL select catalog_num

into :cat_num from catalog
where catalog_num = :cat_num;

if((ret = exp_chk2("SELECT", WARNNOTIFY)) == 100) /* if not found */
{
printf("\nCatalog number %ld not found in catalog table.",

cat_num);

...

}
/*if found */
cat_descr.loc_loctype = LOCFILE; /* update from open file */
cat_descr.loc_fd = fd; /* load file descriptor */
cat_descr.loc_oflags = LOC_RONLY; /* set file-open mode (read) */
cat_descr.loc_size = length; /* set size of simple large obj */

/* update cat_descr column of catalog table */
EXEC SQL update catalog set cat_descr = :cat_descr

where catalog_num = :cat_num;
if(exp_chk2("UPDATE", WARNNOTIFY) < 0)

{
EXEC SQL disconnect current;
printf("UPDCD_OF Sample Program over.\n\n");
exit(1);
}

printf("Update complete.\n");
}

Figure 7-8. Code Excerpt from the updcd_of Sample Program

Chapter 7. Working with simple large objects 7-17

v The loc_size field is set to length, the length of the incoming text for cat_descr.

If you insert a null simple-large-object value, your program also needs to set the
loc_indicator field to -1.

The updcd_of program is then able to perform the database update. After Informix
ESQL/C reads data from the open file and sends it to the database server, Informix
ESQL/C updates the loc_size field with the number of bytes read from the open
file and sent to the database server. Informix ESQL/C also sets the loc_status field
to indicate the status of the operation: 0 for success and a negative value if an
error has occurred. For possible causes of the error, see “Error Returns in
loc_status” on page 7-14.

Locating Simple Large Objects in Named Files
To have Informix ESQL/C locate the TEXT or BYTE data in a named file, set the
loc_loctype field of the locator structure to LOCFNAME, as shown in the
following example:
EXEC SQL BEGIN DECLARE SECTION;

loc_t my_simple_lo;
EXEC SQL END DECLARE SECTION;...

my_simple_lo.loc_loctype = LOCFNAME;

To use a named file as a simple-large-object location, your Informix ESQL/C
program must specify a pointer to the file name in the loc_fname field of the
locator structure. You must also set the loc_oflags field with a file-open mode flag
to tell Informix ESQL/C how to access the file when it opens it. For a list of
file-open mode flags, see “File-Open Mode Flags” on page 7-13.

To open a named file, Informix ESQL/C opens the file named in the loc_fname
field with the mode flags that the loc_oflags field specifies. If this file does not
exist, Informix ESQL/C creates it. Informix ESQL/C then puts the file descriptor of
the open file in the loc_fd field and proceeds as if your program opened the file. If
Informix ESQL/C cannot open this file, it sets the loc_status field (and SQLCODE)
to -461. When the transfer is complete, Informix ESQL/C closes the file, which
releases the file descriptor in the loc_fd field.

The demo directory contains the following two sample Informix ESQL/C
programs that demonstrate how to handle simple-large-object data located in a
named file:
v The getcd_nf.ec program selects a simple large object into a named file.
v The updcd_nf.ec program inserts a simple large object from a named file.

These programs assume the stores7 database as the default database for the
simple-large-object data. The user can specify another database (on the default
database server) as a command-line argument as follows:
getcd_of mystores

Each of these programs is briefly explained in the following sections.

Selecting a Simple Large Object into a Named File
The getcd_nf sample program from the demo directory shows how to select a
simple large object from the database into a named file. The following code excerpt
prompts the user to enter a catalog number for the catalog table and the name of

7-18 IBM Informix ESQL/C Programmer’s Manual

the file to which the program writes the contents of the cat_descr column for that
row. The program stores the name of the file in the descfl array. It then executes a
SELECT statement to read the cat_descr TEXT column from the catalog table and
write it to a file that the user specifies in response to a prompt.

Figure 7-9 shows a code excerpt from the getcd_nf sample program.

The program sets the cat_descr locator structure fields as follows:
v The loc_loctype field contains LOCFNAME to tell Informix ESQL/C to place the

text for the cat_descr column in a named file.
v The loc_fname field is the address of the descfl array to tell Informix ESQL/C

to write the contents of the cat_descr column to the file named in descfl.
v The loc_oflags field, the file-open mode flags, is set to LOC_APPEND to tell

Informix ESQL/C to append selected data to the existing file.

The getcd_nf program then executes the SELECT statement to retrieve the row.
After Informix ESQL/C writes data to the named file, it sets the following fields of
the locator structure:
v The loc_size field contains the number of bytes written to the file. If the

Informix ESQL/C program fetches a null (or empty) simple-large-object column
into a named file that already exists, it truncates the file.

EXEC SQL BEGIN DECLARE SECTION;
char db_name[30];
mlong cat_num;
loc_t cat_descr;

EXEC SQL END DECLARE SECTION;...

printf("\nEnter a catalog number: "); /* prompt for catalog number */
getans(ans, 6);
if(rstol(ans, &cat_num)) /* cat_num string too long */

{
printf("\tCannot convert catalog number ’%s’ to integer\n", ans);
continue;
}

while(1)
{
printf("Enter the name of the file to receive the description: ");
if(!getans(ans, 15))

continue;
break;
}

strcpy(descfl, ans);
break;
}

/*
* Prepare locator structure for select of cat_descr
*/
cat_descr.loc_loctype = LOCFNAME; /* set loctype for in memory */
cat_descr.loc_fname = descfl; /* load the addr of file name */
cat_descr.loc_oflags = LOC_APPEND; /* set loc_oflags to append */
EXEC SQL select catalog_num, cat_descr /* verify catalog number */

into :cat_num, :cat_descr from catalog
where catalog_num = :cat_num;

if(exp_chk2("SELECT", WARNNOTIFY) != 0) /* if error, display and quit */
printf("\nSelect for catalog number %ld failed\n", cat_num);

EXEC SQL disconnect current;
printf("\nGETCD_NF Sample Program over.\n\n");

}

Figure 7-9. Code Excerpt from the getcd_nf Sample Program

Chapter 7. Working with simple large objects 7-19

v The loc_indicator field contains -1 if the selected simple-large-object value is
null.

v The loc_status field contains the status of the operation: 0 for success and a
negative value if an error has occurred. For possible causes of the error, see
“Error Returns in loc_status” on page 7-14.

Inserting a Simple Large Object from a Named File
The updcd_nf sample program from the demo directory shows how to insert a
simple large object from a named file into the database. The program updates the
cat_descr TEXT column from a named input file. The program assumes this input
file has the following format:
Babe Ruth signature glove. Black leather. Infield/outfield

style. Specify right- or left-handed.

Figure 7-10 shows a code excerpt that updates the cat_descr column in the catalog
table from text in a named file.

7-20 IBM Informix ESQL/C Programmer’s Manual

The updcd_nf program in Figure 7-10 on page 7-21 first performs a SELECT
statement on the catalog table for a catalog number that the user enters in response
to a prompt. The SELECT statement returns the catalog_num and cat_descr
columns. The prdesc() function (7-41) displays the current content of cat_descr.

The program then asks whether the user wants to update this description. If the
user answers yes (ans[0] = = ’y’), the updcd_nf program prepares the locator
structure as follows to update the cat_descr column from text in a file that the user
has specified:
v The cat_descr.loc_loctype field is set to LOCFNAME to indicate that the source

of the update text is a named file.

EXEC SQL BEGIN DECLARE SECTION;
mlong cat_num;
loc_t cat_descr;

EXEC SQL END DECLARE SECTION;...

cat_descr.loc_loctype = LOCMEMORY; /* set loctype for in memory */
cat_descr.loc_bufsize = -1; /* let server get memory */
EXEC SQL select catalog_num, cat_descr /* verify catalog number */

into :cat_num, :cat_descr from catalog
where catalog_num = :cat_num;

/* if error,display and quit */
if ((ret = exp_chk2("SELECT", WARNNOTIFY)) == 100)

{
printf("\nCatalog number %ld not found in catalog table\n",

cat_num);
EXEC SQL disconnect current;
printf("UPDCD_NF Sample Program over.\n\n");
exit(1);
}

if(ret<0)
{
EXEC SQL disconnect current;
printf("UPDCD_NF Sample Program over.\n\n");
exit(1);
}

prdesc(); /* print current cat_descr */

/* Update? */
ans[0] = ’ ’;
while((ans[0] = LCASE(ans[0])) != ’y’ && ans[0] != ’n’)

{
printf("Update this description? (y/n) ...");
scanf("%1s", ans);
}

if(ans[0] == ’y’)
{
cat_descr.loc_loctype = LOCFNAME; /* set type to named file */
cat_descr.loc_fname = descfl; /* supply file name */
cat_descr.loc_oflags = LOC_RONLY; /* set file-open mode (read) */
cat_descr.loc_size = -1; /* set size to size of file */
EXEC SQL update catalog

set cat_descr = :cat_descr /* update cat_descr column */
where catalog_num = :cat_num;

if(exp_chk2("UPDATE", WARNNOTIFY) < 0) /* check status */
{
EXEC SQL disconnect current;
printf("UPDCD_NF Sample Program over.\n\n");
exit(1);
}

printf("Update complete.\n");
}

Figure 7-10. Code Excerpt from the updcd_nf Sample Program

Chapter 7. Working with simple large objects 7-21

v The cat_descr.loc_fname field is set to descfl, the name of the file that contains
the simple-large-object data.

v The cat_descr.loc_oflags field is set to LOC_RONLY to tell Informix ESQL/C to
open the file in read-only mode.

v The cat_descr.loc_size field is set to -1 to tell Informix ESQL/C to transfer the
simple large object all at once, not to transfer it in smaller pieces, one piece at a
time. You can also set the loc_oflags field to the LOC_USEALL mask to perform
this operation.

If you insert a null simple-large-object value, your program also needs to set the
loc_indicator field to -1.

After Informix ESQL/C reads data from the named file and sends it to the
database server, Informix ESQL/C updates the loc_size field with the number of
bytes read from the named file and sent to the database server. Informix ESQL/C
also sets the loc_status field to indicate the status of the operation: 0 for success
and a negative value if an error has occurred. For possible causes of the error, see
“Error Returns in loc_status” on page 7-14.

Using User-Defined Simple-Large-Object Locations
You can create your own versions of the loc_open(), loc_read(), loc_write(), and
loc_close() functions to define your own location for simple-large-object data. A
typical use for user-defined location functions is when the data needs to be
translated in some manner before the application can use it. For example, if the
data is compressed, the application must uncompress it before this data can be sent
to the database. The application might even have a number of different translation
functions that you can choose at runtime; it simply sets the appropriate function
pointer to the desired translation function.

To have Informix ESQL/C use your own C functions to define the TEXT or BYTE
data location, set the loc_loctype field of the locator structure to LOCUSER as
follows:
EXEC SQL BEGIN DECLARE SECTION;

ifx_loc_t my_simple_lo;
EXEC SQL END DECLARE SECTION;...

my_simple_lo.loc_loctype = LOCUSER;

With a user-defined simple-large-object location, a locator structure uses the fields
that Table 7-5 summarizes.

7-22 IBM Informix ESQL/C Programmer’s Manual

Table 7-5. Fields in the Locator Structure Used to Create User-Defined Location Functions

Field Data Type Description

loc_open mint (*)() A pointer to a user-defined open function that returns an
integer value. For more information, see “The
User-Defined Open Function” on page 7-24.

loc_read mint (*)() A pointer to a user-defined read function that returns an
integer value. For more information, see “The
User-Defined Read Function” on page 7-25.

loc_write mint (*)() A pointer to a user-defined write function that returns an
integer value. For more information, see “The
User-Defined Write Function” on page 7-26.

loc_close mint (*)() A pointer to a user-defined close function that returns an
integer value. For more information, see “The
User-Defined Close Function” on page 7-27.

loc_user_env char * The address of the buffer to hold data that a user-defined
location function needs. For example, you can set
loc_user_env to the address of a common work area.

loc_xfercount 4-byte
integer

The number of bytes that the last transfer operation for
the simple large object transferred.

With a user-defined simple-large-object location, a locator structure can use either
the lc_mem structure or the lc_file structure of the lc_union structure. Table 7-3 on
page 7-7 and Table 7-4 on page 7-13 summarize fields of the lc_union.lc_mem
structure and lc_union.lc_file structure.

Selecting a Simple Large Object into a User-Defined Location
When your program selects a simple-large-object value, the Informix ESQL/C
libraries must receive the data from the database server and transfer it to the
Informix ESQL/C program. To do this, Informix ESQL/C performs the following
steps:
1. Before the transfer, Informix ESQL/C calls the user-defined open function to

initialize the user-defined location. The oflags argument of this open function is
set to LOC_WONLY.

2. Informix ESQL/C receives the simple-large-object value from the database
server and puts it into a program buffer.

3. Informix ESQL/C calls the user-defined write function to transfer the
simple-large-object data from the program buffer to the user-defined location.
Informix ESQL/C repeats steps 2 and 3 as many times as needed to transfer
the entire simple-large-object value from the database server to the user-defined
location.

4. After the transfer, Informix ESQL/C performs the clean-up operations that the
user-defined close function specifies.

To select a simple large object into a user-defined location, set loc_loctype to
LOCUSER and set the loc_open, loc_write, and loc_close fields so they contain the
addresses of appropriate user-defined open, write, and close functions.

Inserting a Simple Large Object into a User-Defined Location
When your program inserts a simple-large-object value, the Informix ESQL/C
libraries must transfer the data from the Informix ESQL/C program to the
database server. To do this, Informix ESQL/C performs the following steps:

Chapter 7. Working with simple large objects 7-23

1. Before the transfer, Informix ESQL/C calls the user-defined open function to
initialize the user-defined location. The oflags argument of this open function is
set to LOC_RONLY.

2. Informix ESQL/C calls the user-defined read function to transfer the
simple-large-object data from the user-defined location to the program buffer.

3. Informix ESQL/C sends the value in the program buffer to the database server.
Informix ESQL/C repeats steps 2 and 3 as many times as needed to transfer
the entire simple-large-object value from the user-defined location to the
database server.

4. After the transfer, Informix ESQL/C performs the clean-up operations specified
in the user-defined close function.

To insert a simple large object that is stored in a user-defined location, set
loc_loctype to LOCUSER and set the loc_open, loc_read, and loc_close fields so
that they contain the addresses of appropriate user-defined open, read, and close
functions. If the simple large object to be inserted is null, set the loc_indicator field
to -1.

Set the loc_size field to the length of the simple-large-object data that you insert. A
loc_size value of -1 tells Informix ESQL/C to send the entire user-defined
simple-large-object data in a single operation. If the program sets loc_size to -1,
the database server reads in data until the read function returns an end-of-file
(EOF) signal. When the count is not equal to the number of bytes requested, the
database server assumes an EOF signal.

Creating the User-Defined Simple-Large-Object Functions
Informix ESQL/C provides four transfer functions that you can redefine to handle
a user-defined simple-large-object location. The loc_open, loc_read, loc_write, and
loc_close fields contain pointers to these user-defined location functions. Each of
the functions receives the address of the ifx_loc_t structure as its first (or only)
parameter. You can use the loc_user_env field to hold data that a user-defined
location function needs. In addition, the loc_xfercount and all the fields of the
lc_union substructure are available for these functions.

The User-Defined Open Function
To define how to prepare the user-defined location for a transfer operation (read or
write), you create a C function called a user-defined open function. Before you begin
a transfer of simple-large-object data to or from the database server, Informix
ESQL/C calls the open function supplied in the loc_open field of the locator
structure.

This user-defined open function must receive the following two arguments:
v The address of the locator structure, ifx_loc_t *loc_struc, where loc_struc is the

name of a locator structure that your user-defined open function declares
v The open-mode flags, int oflags, where oflags is a variable that contains the

open-mode flag
This flag contains LOC_RONLY if Informix ESQL/C calls the open function to
send the simple large object to the database, or LOC_WONLY if Informix
ESQL/C calls the function to receive data from the database.

The user-defined open function must return the success code for the open
operations as follows:

0 The initialization was successful.

7-24 IBM Informix ESQL/C Programmer’s Manual

-1 The initialization failed. This return code generates a loc_status
(and SQLCODE) error of -452.

Figure 7-11 shows a skeleton function of a user-defined open function.

The User-Defined Read Function
To define how to read the user-defined location, you create a C function called a
user-defined read function. When Informix ESQL/C sends data to the database
server, it reads this data from a character buffer. To transfer the data from a
user-defined location to the buffer, Informix ESQL/C calls the user-defined read
function. Your Informix ESQL/C program must supply the address of your
user-defined read function in the loc_read field of the locator structure.

This user-defined read function must receive the following three arguments:
v The address of the locator structure, ifx_loc_t *loc_struc, where loc_struc is a

locator structure that your user-defined read function uses
v The address of the buffer to send data to the database server, char *buffer, where

buffer is the buffer that your program allocates
v The number of bytes to be read from the user-defined location, int nread, where

nread is a variable that contains the number of bytes

This function must transfer the data from the user-defined location to the character
buffer that buffer indicates. Informix ESQL/C might call the function more than
once to read a single simple-large-object value from the user-defined location. Each
call receives the address and length of a segment of data. Keep track of the current
seek position of the user-defined location in your user-defined read function. You
might want to use the loc_position or loc_currdata_p fields for this purpose. You
can also use the loc_xfercount field to keep track of the amount of data that was
read.

The user-defined read function must return the success code for the read operation
as follows:

>0 The read operation was successful. The return value indicates the
number of bytes actually read from the locator structure.

-1 The read operation failed. This return code generates a loc_status
(and SQLCODE) error of -454.

Figure 7-12 shows a skeleton function of a user-defined read function.

open_simple_lo(adloc, oflags)
ifx_loc_t *adloc;
int oflags;
{

adloc->loc_status = 0;
adloc->loc_xfercount = 0L;
if (0 == (oflags & adloc->loc_oflags))

return(-1);
if (oflags & LOC_RONLY)

/*** prepare for store to db ***/
else

/*** prepare for fetch to program ***/
return(0);

}

Figure 7-11. A Sample User-Defined Open Function

Chapter 7. Working with simple large objects 7-25

The User-Defined Write Function
To define how to write to the user-defined location, you create a C function called
a user-defined write function. When Informix ESQL/C receives data from the
database server, it stores this data in a character buffer. To transfer the data from
the buffer to a user-defined location, Informix ESQL/C calls the user-defined write
function. Your Informix ESQL/C program must supply the address of your
user-defined write function in the loc_write field of the locator structure.

This user-defined write function must receive the following three arguments:
v The address of the locator structure, ifx_loc_t *loc_struc, where loc_struc is a

locator structure that your user-defined write function uses
v The address of the buffer to receive the data from the database server, char

*buffer, where buffer is the buffer that your program allocates
v The number of bytes to be written to the user-defined location, int nwrite, where

nwrite is a variable that contains the number of bytes

The user-defined write function must transfer the data from the character buffer
that buffer indicates to the user-defined location. Informix ESQL/C might call the
function more than once to write a single simple-large-object value to the
user-defined location. Each call receives the address and length of a segment of
data. Keep track of the current seek position of the user-defined location in your
user-defined write function. You might want to use the loc_position or
loc_currdata_p field for this purpose. You can also use the loc_xfercount field to
keep track of the amount of data that was written.

The user-defined write function must return the success code for the write
operation as follows:

>0 The write operation was successful. The return value indicates the
number of bytes actually written to the user-defined location

-1 The write operation failed. This return code generates a loc_status
(and SQLCODE) error of -455.

Figure 7-13 shows a skeleton function of a user-defined write function.

read_simple_lo(adloc, bufp, ntoread)
ifx_loc_t *adloc;
char *bufp;
int ntoread;
{

int ntoxfer;

ntoxfer = ntoread;
if (adloc->loc_size != -1)

ntoxfer = min(ntoread,
adloc->loc_size - adloc->loc_xfercount);

/*** transfer "ntoread" bytes to *bufp ***/

adloc->loc_xfercount += ntoxfer;
return(ntoxfer);

}

Figure 7-12. A Sample User-Defined Read Function

7-26 IBM Informix ESQL/C Programmer’s Manual

The User-Defined Close Function
To define how to perform clean-up tasks for the user-defined location, you create a
C function called a user-defined close function. When a transfer to or from the
database server is complete, Informix ESQL/C calls the close function that the
loc_close field of the locator structure supplies. Cleanup tasks include closing files
or deallocating memory that the user-defined location uses.

This function must receive one argument: the address of the locator structure,
ifx_loc_t *loc_struc, where loc_struc is a locator structure that your user-defined
close function uses. The user-defined close function must return the success code
for the close operation as follows:

0 The cleanup was successful.

-1 The cleanup failed. This return code generates a loc_status (and
SQLCODE) error of -453.

Figure 7-14 shows a skeleton function of a user-defined close function.

write_simple_lo(adloc, bufp, ntowrite)
ifx_loc_t *adloc;
char *bufp;
int ntowrite;
{

int xtoxfer;

ntoxfer = ntowrite;
if (adloc->loc_size != -1)

ntoxfer = min(ntowrite,
(adloc->loc_size) - (adloc->loc_xfercount));

/*** transfer "ntowrite" bytes from *bufp ***/

adloc->loc_xfercount += ntoxfer;
return(ntoxfer);

}

Figure 7-13. A Sample User-Defined Write Function

close_simple_lo (adloc)
ifx_loc_t *adloc;
{

adloc->loc_status = 0;
if (adloc->loc_oflags & LOC_WONLY) /* if fetching */

{
adloc->loc_indicator = 0; /* clear indicator */
adloc->loc_size = adloc->loc_xfercount;
}

return(0);
}

Figure 7-14. A Sample User-Defined Close Function

Chapter 7. Working with simple large objects 7-27

Reading and Writing Simple Large Objects to an Optical Disc (UNIX)
In a table, columns of type simple-large-object do not include the
simple-large-object data in the table itself. Instead, the simple-large-object column
contains a 56-byte simple-large-object descriptor that includes a forward pointer
(rowid) to the location where the first segment of simple-large-object data is stored.
The descriptor can point to a dbspace blobpage, a blobspace blobpage, or a platter
in an optical storage subsystem. For details, see your IBM Informix Administrator's
Guide and the IBM Informix Optical Subsystem Guide.

When a simple large object is stored on a write-once-read-many (WORM)
optical-storage subsystem, you can have a single physical simple large object reside
in more than one table to conserve storage space on the WORM optical disc. The
LOC_DESCRIPTOR flag enables you to migrate a simple-large-object descriptor,
rather than the simple large object itself, from one table to another.

When you read or write a simple-large-object column that is stored on a WORM
optical disc, you can manipulate only the simple-large-object descriptor if you set
the loc_oflags field of the locator structure to LOC_DESCRIPTOR.

Important: Only use LOC_DESCRIPTOR with simple large objects that are stored
on WORM optical media.

Figure 7-15 on page 7-29 shows a code fragment that selects the stock_num,
manu_code, cat_descr, and cat_picture columns from the catalog table of the
named database. The program uses the DESCR() SQL function expression to
retrieve the simple-large-object descriptor, rather than to retrieve the simple large
object itself, for the cat_picture column. The program then sets the loc_oflags field
of the cat_picture locator structure to LOC_DESCRIPTOR to signal that the
simple-large-object descriptor, rather than the simple large object, is to be inserted
into the cat_picture column of the pictures table. The result is that the cat_picture
columns in both the catalog and pictures tables refer to a single set of physical
simple large objects.

7-28 IBM Informix ESQL/C Programmer’s Manual

#include <stdio.h>
EXEC SQL include locator;

char errmsg[400];

EXEC SQL BEGIN DECLARE SECTION;
mlong cat_num;
int2 stock_num;
char manu_code[4];
ifx_loc_t cat_descr;
ifx_loc_t cat_picture;

EXEC SQL END DECLARE SECTION;

main(argc, argv)
mint argc;
char *argv[];
{

EXEC SQL BEGIN DECLARE SECTION;
char db_name[250];

EXEC SQL END DECLARE SECTION;

if (argc > 2) /* correct no. of args? */
{

printf("\nUsage: %s [database]\nIncorrect no. of argument(s)\n",
argv[0]);

exit(1);
}
strcpy(db_name, "stores7");
if(argc == 2)

strcpy(db_name, argv[1]);
EXEC SQL connect to :db_name;
sprintf(db_msg, "CONNECT TO %s",db_name);
err_chk(db_msg);

Figure 7-15. Code Fragment to Retrieve the Simple-Large-Object Descriptor (Part 1 of 3)

Chapter 7. Working with simple large objects 7-29

EXEC SQL declare catcurs cursor for /* setup cursor for select */
select stock_num, manu_code, cat_descr, DESCR(cat_picture)
from catalog
where cat_picture is not null;

/*
* Prepare locator structures cat_descr(TEXT) and
* cat_picture (BYTE that is the simple-large-object descriptor).
*/
cat_descr.loc_loctype = LOCMEMORY; /* set loctype for in memory */
cat_picture.loc_loctype = LOCMEMORY; /* set loctype for in memory */
while(1)

{
/*
* Let server get buffers and set loc_buffer (buffer for
* simple-large-object descriptor) and loc_bufsize (size of buffer)
*/
cat_descr.loc_bufsize = -1;
cat_picture.loc_bufsize = -1;
/*
* Select row from catalog table (descr() returns TEXT descriptor
* for cat_picture. For cat_descr, the actual simple LO is returned.
*/
EXEC SQL fetch catcurs into :stock_num, :manu_code, :cat_descr,

:cat_picture;
if(err_chk("FETCH") == SQLNOTFOUND) /* end of data */

break;
/*
* Set LOC_DESCRIPTOR in loc_oflags to indicate simple-large-object
* descriptor is being inserted rather than simple-large-object data.
*/
cat_picture.loc_oflags |= LOC_DESCRIPTOR;
/*
* Insert
*/
EXEC SQL insert into pictures values (:stock_num, :manu_code,

:cat_descr, :cat_picture);
if(err_chk("INSERT") < 0)

printf("Insert failed for stock_num %d, manu_code %s", stock_num,
manu_code);

}

Figure 7-15. Code Fragment to Retrieve the Simple-Large-Object Descriptor (Part 2 of 3)

7-30 IBM Informix ESQL/C Programmer’s Manual

You can also use the SQL DESCR() function to achieve the same result without a
loc_oflags value of LOC_DESCRIPTOR. The SQL statement shown in Figure 7-16
accomplishes the same task as the locator structure in the preceding example.

The dispcat_pic Program
The dispcat_pic program, annotated on the following pages, uses the Informix
ESQL/C ifx_loc_t locator structure to retrieve two simple-large-object columns.
The program retrieves the cat_descr TEXT simple-large-object column and the
cat_picture BYTE column from the catalog table of the stores7 demonstration
database. For information about how to create the demonstration database, see
“Demonstration Databases” on page xiv of the Introduction.

/* Clean up db resources */
EXEC SQL close catcurs;
EXEC SQL free catcurs;

/* Deallocate memory buffers */
free(cat_descr.loc_buffer);
free(cat_picture.loc_buffer);

EXEC SQL disconnect current;
}

/*
* err_chk() checks sqlca.sqlcode and if an error has occurred, it uses
* rgetlmsg() to display to stderr the message for the error number in
* sqlca.sqlcode.
*/

int err_chk(stmt)
char *stmt;
{

char buffer[512];

if(sqlca.sqlcode < 0)
{
fprintf(stderr, "Error: %s\n", stmt);
rgetlmsg(sqlca.sqlcode, buffer, sizeof(buffer));
fprintf(stderr, "SQL %d: ", sqlca.sqlcode);
fprintf(stderr, buffer sqlca.sqlerrm);
if (sqlca.sqlerrd[1] != 0)

{
rgetlmsg(sqlca.sqlerrd[1], buffer, sizeof(buffer));
fprintf(stderr, "ISAM %d: ", sqlca.sqlerrd[1]);
fprintf(stderr, buffer, sqlca.sqlerrm);
}

exit(1);
}

return(sqlca.sqlcode);
}

Figure 7-15. Code Fragment to Retrieve the Simple-Large-Object Descriptor (Part 3 of 3)

EXEC SQL insert into pictures (stock_num, manu_code, cat_descr, cat_picture)
select stock_num, manu_code, cat_descr, DESCR(cat_picture)
from catalog
where cat_picture is not null;

Figure 7-16. Using DESCR() to Access a Simple- Large-Object Descriptor

Chapter 7. Working with simple large objects 7-31

The dispcat_pic program allows you to select a database from the command line
in case you created the stores7 database under a different name. If no database
name is given, dispcat_pic opens the stores7 database. For example, the following
command runs the dispcat_pic executable and specifies the mystores database:
dispcat_pic mystores

The program prompts the user for a catalog_num value and performs a SELECT
statement to read the description column from the stock table and the
catalog_num, cat_descr, and cat_picture columns from the catalog table. If the
database server finds the catalog number and the cat_picture column is not null, it
writes the cat_picture column to a .gif file.

If the SELECT statement succeeds, the program displays the catalog_num,
cat_descr, and description columns. Since these columns store text, they can be
displayed on any Informix ESQL/C platform. The program also allows the user to
enter another catalog_num value or terminate the program.

To prepare to run the dispcat_pic program:

1. Load the simple-large-object images into the catalog table with the blobload
utility.

2. Compile the dispcat_pic.ec file into an executable program.

Loading the Simple-Large-Object Images
When the catalog table is created as part of the stores7 demonstration database,
the cat_picture column for all rows is set to null. The Informix ESQL/C
demonstration directory provides five graphic images. Use the blobload utility to
load simple-large-object images into the cat_picture column of the catalog table.

To display these simple-large-object images from the dispcat_pic program, you
must load the images to the catalog table.

Choosing the Image Files
The five cat_picture images are provided in the Graphics Interchange Format files,
which have the .gif file extension.

Informix ESQL/C provides the images in .gif files to provide them in a standard
format that can be displayed on all platforms or translated into other formats with
filter programs that other vendors supply. The right column of Table 7-6 shows the
names of the .gif files for the simple-large-object images.

Table 7-6. Image Files for Simple-Large-Object Demo

Image Graphics Interchange Format (.gif Files)

Baseball glove cn_10001.gif

Bicycle crankset cn_10027.gif

Bicycle helmet cn_10031.gif

Golf balls cn_10046.gif

Running shoe cn_10049.gif

The numeric portion of the image file name is the catalog_num value for the row
of the catalog table to which the image is to be updated. For example, cn_10027.gif
should be updated to the cat_picture column of the row where 10027 is the value
of catalog_num.

7-32 IBM Informix ESQL/C Programmer’s Manual

Using the blobload Utility
The blobload utility is an Informix ESQL/C program that is provided as part of
the Informix ESQL/C demonstration files. It uses a command-line syntax to load a
byte image into a specified table and column of a database.

To load the simple-large-object images with blobload:

1. Compile the blobload.ec program with the following command:
esql -o blobload blobload.ec

2. Enter blobload on the UNIX command line without any arguments, as follows:
blobload

Figure 7-17 shows the output of this command that describes the command-line
arguments that blobload expects.

3. Run the blobload program to load each image to its proper cat_picture
column.
The -u option of blobload updates a specified column with a
simple-large-object image. To identify which column to update, you must also
use the -f, -d, -t, -b, and -k options of blobload.

You must run the blobload program once for each image file that you want to
update. For example, the following command loads the contents of the
cn_10027.gif file into the cat_picture column of the row for catalog_num 10027.
The catalog_num column is the key column in the catalog table.
blobload -u -f cn_10027.gif -d stores7 -t catalog -b cat_picture -k

catalog_num 10027

Use the same command to update each of the four remaining image files,
substituting the file name (-f option) and corresponding catalog_num value (-k
option) of the image file that you want to load.

Guide to the dispcat_pic.ec File
===
1. /*
2. * dispcat_pic.ec *
3. The following program prompts the user for a catalog number,
4. selects the cat_picture column, if it is not null, from the
5. catalog table of the demonstration database and saves the
6. image into a .gif file.

Sorry, you left out a required parameter.

Usage: blobload {-i | -u} -- choose insert or update
-f filename -- file containing the blob data

-d database_name -- database to open
-t table_name -- table to modify
-b blob_column -- name of target column

-k key_column key_value -- name of key column and a value
-v -- verbose documentary output

All parameters except -v are required.

Parameters may be given in any order.

As many as 8 -k parameter pairs may be specified.

Figure 7-17. Sample Output from the blobload Utility

Chapter 7. Working with simple large objects 7-33

7. */
8. #include <stdio.h>
9. #include <ctype.h>

10. EXEC SQL include sqltypes;
11. EXEC SQL include locator;
12. #define WARNNOTIFY 1
13. #define NOWARNNOTIFY 0
14. #define LCASE(c) (isupper(c) ? tolower(c) : (c))
15. #define BUFFSZ 256
16. extern errno;
17. EXEC SQL BEGIN DECLARE SECTION;
18. mlong cat_num;
19. ifx_loc_t cat_descr;
20. ifx_loc_t cat_picture;
21. EXEC SQL END DECLARE SECTION;
22. char cpfl[18]; /* file to which the .gif will be copied */

===

Lines 8 to 11
The #include <stdio.h> statement includes the stdio.h header file from the
/usr/include directory on UNIX and from the include subdirectory for Microsoft
Visual C++ on Windows. The stdio.h file enables dispcat_pic to use the standard C
I/O library. The program also includes the Informix ESQL/C header files
sqltypes.h and locator.h (lines 10 and 11). The locator.h file contains the definition
of the locator structure and the constants that you need to work with this
structure.

Lines 12 to 16
Use the WARNNOTIFY and NOWARNNOTIFY constants (lines 12 and 13) with
the exp_chk2() exception-handling function. Calls to exp_chk2() specify one of
these constants as the second argument to indicate whether or not to display
SQLSTATE and SQLCODE information for warnings (WARNNOTIFY or
NOWARNNOTIFY). See lines 171 to 177 for more information about the
exp_chk2() function.

The program uses BUFFSZ (line 15) to specify the size of arrays that store input
from the user. Line 16 defines errno, an external integer where system calls store
an error number.

Lines 17 to 21
These lines define global host variables needed for the program. The cat_num
variable holds the catalog_num column value of the catalog table. Lines 19 and 20
specify the locator structure as the data type for host variables that receive data for
the cat_descr and cat_picture simple-large-object columns of the catalog table. The
locator structure is the host variable for a simple-large-object column that is
retrieved from or stored to the database. The locator structure has a ifx_loc_t
typedef. The program uses the locator structure to specify simple-large-object size
and location.

Line 22
Line 22 defines a single global C variable. The cpfl character array stores the name
of a file. This named file is the location for the simple-large-object .gif image of
cat_picture that the database server writes.
===
23. main(argc, argv)
24. mint argc;

7-34 IBM Informix ESQL/C Programmer’s Manual

25. char *argv[];
26. {
27. char ans[BUFFSZ];
28. int4 ret, exp_chk2();
29. char db_msg[BUFFSZ + 1];
30. EXEC SQL BEGIN DECLARE SECTION;
31. char db_name[20];
32. char description[16];
33. EXEC SQL END DECLARE SECTION;

===

Lines 23 to 26
The main() function is the point at which program execution begins. The first
argument, argc, is an integer that gives the number of arguments submitted on the
command line. The second argument, argv[], is a pointer to an array of character
strings that contain the command-line arguments. The dispcat_pic program expects
only the argv[1] argument, which is optional, to specify the name of the database
to access. If argv[1] is not present, the program opens the stores7 database.

Lines 27 to 29
Lines 27 to 29 define the C variables that are local in scope to the main() function.
The ans[BUFFSZ] array is the buffer that receives input from the user, namely the
catalog number for the associated cat_picture column. Line 28 defines a 4-byte
integer (ret) for the value that exp_chk2() returns and declares exp_chk2() as a
function that returns a long. The db_msg[BUFFSZ + 1] character array holds the
form of the CONNECT statement used to open the database. If an error occurs
while the CONNECT executes, the string in db_msg is passed into the exp_chk2()
function to identify the cause of the error.

Lines 30 to 33
Lines 30 to 33 define the Informix ESQL/C host variables that are local to the
main() function. A host variable receives data that is fetched from a table and
supplies data that is written to a table. The db_name[20] character array is a host
variable that stores the database name if the user specifies one on the command
line. The description variable holds the value that the user entered, which is to be
stored in the column of the stock table.
===
34. printf("DISPCAT_PIC Sample ESQL Program running.\n\n");
35. if (argc > 2) /* correct no. of args? */
36. {
37. printf("\nUsage: %s [database]\nIncorrect no. of

argument(s)\n",
38. argv[0]);
39. printf("DISPCAT_PIC Sample Program over.\n\n");
40. exit(1);
41. }
42. strcpy(db_name, "stores7");
43. if(argc == 2)
44. strcpy(db_name, argv[1]);
45. EXEC SQL connect to :db_name;
46. sprintf(db_msg,"CONNECT TO %s",db_name);
47. if(exp_chk2(db_msg, NOWARNNOTIFY) < 0)
48. {
49. printf("DISPCAT_PIC Sample Program over.\n\n");
50. exit(1);
51. }

Chapter 7. Working with simple large objects 7-35

52. if(sqlca.sqlwarn.sqlwarn3 != ’W’)
53. {
54. printf("\nThis program does not work with Informix SE. ");
55. EXEC SQL disconnect current;
56. printf("\nDISPCAT_PIC Sample Program over.\n\n");
57. exit(1);
58. }
59. printf("Connected to %s\n", db_name);
60. ++argv;

===

Lines 34 to 51
These lines interpret the command-line arguments and open the database. Line 35
checks whether more than two arguments are entered on the command line. If so,
dispcat_pic displays a message to show the arguments that it expects and then it
terminates. Line 42 assigns the default database name of stores7 to the db_name
host variable. The program opens this database if the user does not enter a
command-line argument.

The program then tests whether the number of command-line arguments is equal
to 2. If so, dispcat_pic assumes that the second argument, argv[1], is the name of
the database that the user wants to open. Line 44 uses the strcpy() function to copy
the name of the database from the argv[1] command line into the db_name host
variable. The program then executes the CONNECT statement (line 45) to establish
a connection to the default database server and open the specified database (in
db_name).

The program reproduces the CONNECT statement in the db_msg[] array (line 46).
It does so for the sake of the exp_chk2() call on line 47, which takes as its
argument the name of a statement. Line 47 calls the exp_chk2() function to check
on the outcome. This call to exp_chk2() specifies the NOWARNNOTIFY argument
to prevent the display of warnings that CONNECT generates.

Lines 52 to 60
After CONNECT successfully opens the database, it stores information about the
database server in the sqlca.sqlwarn array. Because the dispcat_pic program
handles simple-large-object data types that are not supported on IBM Informix SE,
line 52 checks the type of database server. If the sqlwarn3 element of
sqlca.sqlwarn is set to W, the database server is any server other than IBM Informix
SE. Otherwise, the program notifies the user that it cannot continue and exits. The
program has established the validity of the database server and now displays the
name of the database that is opened (line 59).
===
61. while(1)
62. {
63. printf("\nEnter catalog number: "); /* prompt for cat.

* number */
64. if(!getans(ans, 6))
65. continue;
66. printf("\n");
67. if(rstol(ans, &cat_num)) /* cat_num string to long */
68. {
69. printf("** Cannot convert catalog number ’%s’ to long

integer\n",
ans);

70. EXEC SQL disconnect current;

7-36 IBM Informix ESQL/C Programmer’s Manual

71. printf("\nDISPCAT_PIC Sample Program over.\n\n");
72. exit(1);
73. }
74. ret=sprintf(cpfl, "pic_%s.gif", ans);
75. /*
76. * Prepare locator structure for select of cat_descr
77. */
78. cat_descr.loc_loctype = LOCMEMORY; /* set for ’in memory’ */
79. cat_descr.loc_bufsize = -1; /* let db get buffer */
80. cat_descr.loc_mflags = 0; /* clear memory-deallocation

* feature */
81. cat_descr.loc_oflags = 0; /* clear loc_oflags */
82. /*
83. * Prepare locator structure for select of cat_picture
84. */
85. cat_picture.loc_loctype = LOCFNAME; /* type = named file */
86. cat_picture.loc_fname = cpfl; /* supply file name */
87. cat_picture.loc_oflags = LOC_WONLY; /* file-open mode = write

*/
88. cat_picture.loc_size = -1; /* size = size of file */

===

Lines 61 to 74
The while(1) on line 61 begins the main processing loop in dispcat_pic. Line 63
prompts the user to enter a catalog number for the cat_picture column that the
user wants to see. Line 64 calls getans() to receive the catalog number that the user
inputs. The arguments for getans() are the address in which the input is stored,
ans[], and the maximum length of the input that is expected, including the null
terminator. If the input is unacceptable, getans() returns 0 and line 65 returns
control to the while at the top of the loop in line 61, which causes the prompt for
the catalog number to be redisplayed. For a more detailed explanation of getans(),
see “Guide to the inpfuncs.c File” on page 7-42.Line 67 calls the Informix ESQL/C
library function rstol() to convert the character input string to a long data type to
match the data type of the catalog_num column. If rstol() returns a nonzero value,
the conversion fails and lines 69 to 72 display a message to the user, close the
connection, and exit. Line 74 creates the name of the .gif file to which the program
writes the simple-large-object image. The file name consists of the constant pic_,
the catalog number that the user entered, and the extension .gif. The file is created
in the directory from which the program is run.

Lines 75 to 81
These lines define the simple-large-object location for the TEXT cat_descr column
of the catalog table, as follows:
v Line 78 sets loc_loctype in the cat_descr locator structure to LOCMEMORY to

tell Informix ESQL/C to select the data for cat_descr into memory.
v Line 79 sets loc_bufsize to -1 so that Informix ESQL/C allocates a memory

buffer to receive the data for cat_descr.
v Line 80 sets loc_mflags to 0 to disable the memory-deallocation feature (see Line

149) of Informix ESQL/C.

If the select is successful, Informix ESQL/C returns the address of the allocated
buffer in loc_buffer. Line 81 sets the loc_oflags file-open mode flags to 0 because
the program retrieves the simple-large-object information into memory rather than
a file.

Chapter 7. Working with simple large objects 7-37

Lines 82 to 88
These lines prepare the locator structure to retrieve the BYTE column cat_picture
of the catalog table. Line 85 moves LOCFNAME to loc_loctype to tell Informix
ESQL/C to locate the data for cat_descr in a named file. Line 86 moves the
address of the cpfl file name into loc_fname. Line 87 moves the LOC_WONLY
value into the loc_oflags file-open mode flags to tell Informix ESQL/C to open the
file in write-only mode. Finally, line 88 sets loc_size to -1 to tell Informix ESQL/C
to send the BYTE data in a single transfer rather than break the value into smaller
pieces and use multiple transfers.
===
89. /* Look up catalog number */
90. EXEC SQL select description, catalog_num, cat_descr, cat_picture
91. into :description, :cat_num, :cat_descr, :cat_picture
92. from stock, catalog
93. where catalog_num = :cat_num and
94. catalog.stock_num = stock.stock_num and
95. catalog.manu_code = stock.manu_code;
96. if((ret = exp_chk2("SELECT", WARNNOTIFY)) == 100) /* if not

* found */
97. {
98. printf("** Catalog number %ld not found in ", cat_num);
99. printf("catalog table.\n");
100. printf("\t OR item not found in stock table.\n");
101. if(!more_to_do())
102. break;
103. continue;
104. }
105. if (ret < 0)
106. {
107. EXEC SQL disconnect current;
108. printf("\nDISPCAT_PIC Sample Program over.\n\n");
109. exit(1);
110. }
111. if(cat_picture.loc_indicator == -1)
112. printf("\tNo picture available for catalog number %ld\n\n",
113. cat_num);
114. else
115. {
116. printf("Stock Item for %ld: %s\n", cat_num, description);
117. printf("\nThe cat_picture column has been written to the

file:
118. %s\n", cpfl);
119. printf("Use an image display tool or a Web browser ");
120. printf("to open %s for viewing.\n\n", cpfl);
121. }
122. prdesc(); /* display catalog.cat_descr */

===

Lines 89 to 95
These lines define a SELECT statement to retrieve the catalog_num, cat_descr, and
cat_picture columns from the catalog table and the description column from the
stock table for the catalog number that the user entered. The INTO clause of the
SELECT statement identifies the host variables that contain the selected values. The
two ifx_loc_t host variables, cat_descr and cat_picture, are listed in this clause for
the TEXT and BYTE values.

7-38 IBM Informix ESQL/C Programmer’s Manual

Lines 96 to 104
The exp_chk2() function checks whether the SELECT statement was able to find
the stock_num and manu_code for the selected row in the catalog table and in the
stock table. The catalog table should not contain a row that does not have a
corresponding row in the stock table. Lines 98 to 103 handle a NOT FOUND
condition. If the exp_chk2() function returns 100, the row was not found; lines 98
to 100 display a message to that effect. The more_to_do() function (line 101) asks
whether the user wants to continue. If the user answers n for no, a break
terminates the main processing loop and control transfers to line 131 to close the
database before the program terminates.

Lines 105 to 110
If a runtime error occurs during the select, the program closes the current
connection, notifies the user, and exits with a status of 1.

Lines 111 to 113
If cat_picture.loc_indicator contains-1 (line 111), the cat_picture column contains a
null and the program informs the user (line 112). Execution then continues to line
113 to display the other returned column values.

Lines 114 to 122
These lines display the other columns that the SELECT statement returned. Line
116 displays the catalog number that is being processed and the description
column from the stock table. Line 122 calls prdesc() to display the cat_descr
column. For a detailed description of prdesc(), see “Guide to the prdesc.c File” on
page 7-41.
===
123. if(!more_to_do()) /* More to do? */
124. break; /* no, terminate loop */
125. /* If user chooses to display more catalog rows, enable the
126. * memory-deallocation feature so that ESQL/C deallocates old
127. * cat_desc buffer before it allocates a new one.
128. */
129. cat_descr.loc_mflags = 0; /* clear memory-deallocation feature

*/
130. }
131. EXEC SQL disconnect current;
132. printf("\nDISPCAT_PIC Sample Program over.\n\n");
133. } /* end main */
134. /* prdesc() prints cat_desc for a row in the catalog table */
135. #include "prdesc.c"

===

Lines 123 to 130
The more_to_do() function then asks whether the user wants to enter more catalog
numbers. If not, more_to_do() returns 0 and the program performs a break to
terminate the main processing loop, close the database, and terminate the program.

The closing brace on line 130 terminates the main processing loop, which began
with the while(1) on line 61. If the user wants to enter another catalog number,
control returns to line 61.

Line 131 to 133
When a break statement (line 124) terminates the main processing loop that the
while(1) on line 61 began, control transfers to line 131, which closes the database

Chapter 7. Working with simple large objects 7-39

and the connection to the default database server. The closing brace on line 133
terminates the main() function on line 23 and terminates the program.

Lines 134 and 135
Several of the Informix ESQL/C simple-large-object demonstration programs call
the prdesc() function. To avoid having the function in each program, the function
is put in its own source file. Each program that calls prdesc() includes the prdesc.c
source file. Since prdesc() does not contain any Informix ESQL/C statements, the
program can include it with the C #include preprocessor statement (instead of the
Informix ESQL/C include directive). For a description of this function, see “Guide
to the prdesc.c File” on page 7-41.
===
136. /*
137. * The inpfuncs.c file contains the following functions used in this
138. * program:
139. * more_to_do() - asks the user to enter ’y’ or ’n’ to indicate
140. * whether to run the main program loop again.
141. *
142. * getans(ans, len) - accepts user input, up to ’len’ number of
143. * characters and puts it in ’ans’
144. */
145. #include "inpfuncs.c"
146. /*
147. * The exp_chk.ec file contains the exception handling functions to
148. * check the SQLSTATE status variable to see if an error has

occurred
149. * following an SQL statement. If a warning or an error has
150. * occurred, exp_chk2() executes the GET DIAGNOSTICS statement and
151. * displays the detail for each exception that is returned.
152. */
153. EXEC SQL include exp_chk.ec;

===

Lines 136 and 145
Several of the Informix ESQL/C demonstration programs also call the
more_to_do() and getans() functions. These functions are also broken out into a
separate C source file and included in the appropriate demonstration program.
Neither of these functions contain Informix ESQL/C, so the program can use the C
#include preprocessor statement to include the files. For a description of these
functions, see “Guide to the inpfuncs.c File” on page 7-42.

Line 146 to 153
The exp_chk2() function examines the SQLSTATE status variable to determine the
outcome of an SQL statement. Because many demonstration programs use
exception checking, the exp_chk2() function and its supporting functions are
broken out into a separate exp_chk.ec source file. The dispcat_pic program must
use the Informix ESQL/C include directive to include this file because the
exception-handling functions use Informix ESQL/C statements. For a description
of the exp_chk.ec source file, see “Guide to the exp_chk.ec File” on page 11-32.

Tip: In a production environment, functions such as prdesc(), more_to_do(),
getans(), and exp_chk2() would be put into C libraries and included on the
command line of the Informix ESQL/C program at compile time.

7-40 IBM Informix ESQL/C Programmer’s Manual

Guide to the prdesc.c File
The prdesc.c file contains the prdesc() function. This function sets the pointer p to
the address that is provided in the loc_buffer field of the locator structure to
access the simple large object. The function then reads the text from the buffer 80
bytes at a time up to the size specified in loc_size. This function is used in several
of the simple-large-object demonstration programs so it is in a separate file and
included in the appropriate source files.
===
1. /* prdesc() prints cat_desc for a row in the catalog table */
2. prdesc()
3. {
4. int4 size;
5. char shdesc[81], *p;
6. size = cat_descr.loc_size; /* get size of data */
7. printf("Description for %ld:\n", cat_num);
8. p = cat_descr.loc_buffer; /* set p to buffer addr */
9. /* print buffer 80 characters at a time */

10. while(size >= 80)
11. {
12. ldchar(p, 80, shdesc); /* mv from buffer to shdesc */
13. printf("\n%80s", shdesc); /* display it */
14. size -= 80; /* decrement length */
15. p += 80; /* bump p by 80 */
16. }
17. strncpy(shdesc, p, size);
18. shdesc[size] = ’\0’;
19. printf("%-s\n", shdesc); /* display last segment */
20. }

===

Lines 1 to 20
Lines 2 to 20 make up the prdesc() function, which displays the cat_descr column
of the catalog table. Line 4 defines size, a long integer that prdesc() initializes with
the value in cat_descr.loc_size. Line 5 defines shdesc[81], an array into which
prdesc() temporarily moves 80-byte chunks of the cat_descr text for output. Line 5
also defines *p, a pointer that marks the current position in the buffer as it is being
displayed.

In loc_size, the database server returns the size of the buffer that it allocates for a
simple large object. Line 6 moves cat_descr.loc_size to size. Line 7 displays the
string "Description for:" as a header for the cat_descr text. Line 8 sets the p
pointer to the buffer address that the database server returned in
cat_descr.loc_size.

Line 10 begins the loop that displays the cat_descr text to the user. The while()
repeats the loop until size is less than 80. Line 11 begins the body of the loop. The
Informix ESQL/C ldchar() library function copies 80 bytes from the current
position in the buffer, which p addresses, to shdesc[] and removes any trailing
blanks. Line 13 prints the contents of shdesc[]. Line 14 subtracts 80 from size to
account for the portion of the buffer that was just printed. Line 15, the last in the
loop, adds 80 to p to move it past the portion of the buffer that was just displayed.

The process of displaying cat_descr.loc_size 80 bytes at a time continues until
fewer than 80 characters are left to be displayed (size < 80). Line 17 copies the

Chapter 7. Working with simple large objects 7-41

remainder of the buffer into shdesc[] for the length of size. Line 18 appends a null
to shdesc[size] to mark the end of the array and line 19 displays shdesc[].

Guide to the inpfuncs.c File
The inpfuncs.c file contains the following two functions:
v The getans() function
v The more_to_do() function

Because these functions are used in several Informix ESQL/C demonstration
programs, they are in a separate file and included in the appropriate
demonstration source files.
===
1. /* The inpfuncs.c file contains functions useful in character-based
2. input for a C program.
3. */
4. #include <ctype.h>
5. #ifndef LCASE
6. #define LCASE(c) (isupper(c) ? tolower(c) : (c))
7. #endif
8. /*
9. Accepts user input, up to ’len’ number of characters and returns

10. it in ’ans’
11. */
12. #define BUFSIZE 512
13. getans(ans, len)
14. char *ans;
15. mint len;
16. {
17. char buf[BUFSIZE + 1];
18. mint c, n = 0;
19. while((c = getchar()) != ’;’ && n < BUFSIZE)
20. buf[n++] = c;
21. buf[n] = ’\0’;
22. if(n > 1 && n >= len)
23. {
24. printf("Input exceeds maximum length");
25. return 0;
26. }
27. if(len <= 1)
28. *ans = buf[0];
29. else
30. strncpy(ans, buf, len);
31. return 1;
32. }

===

Lines 1 to 7
Line 4 includes the UNIX ctype.h header file. This header file provides the
definitions of the islower() and tolower() macros used in the definition of the
LCASE() macro (defined on line 6). The program only defines the LCASE macro if
it has not yet been defined in the program.

Lines 8 to 32
The BUFSIZE constant (line 12) defines the size of the character buffer used in the
getans() function. Lines 13 to 32 constitute the getans() function. The getans()

7-42 IBM Informix ESQL/C Programmer’s Manual

function uses the getchar() standard library function to accept input from the user.
Lines 14 and 15 define the arguments for getans(), the address of the buffer (ans)
where it copies the input, and the maximum number of characters (len) that the
calling function expects. Line 17 defines buf[], an input buffer array. The int
variable c (line 18) receives the character that getchar() returned. The second
integer defined on line 18, n, is used to subscript the buf[] input buffer.

Line 19 calls getchar() to receive input from the user until a \n newline character is
encountered or until the maximum input is received; that is, n is not less than
BUFFSZ. Line 20 moves the input character c into the current position in buf[].
Line 21 places a null terminator at the end of the input, buf[n].

Lines 22 to 26 check whether the number of characters received, n, is less than the
number of characters expected, len. If not, line 24 displays a message to the user
and line 25 returns 0 to the calling function to indicate that an error occurred. Line
27 checks whether one or more characters were entered. If the expected number of
characters, len, is less than or equal to 1, line 28 moves only a single character to
the address that the ans calling function gives. If only one character is expected,
getans() does not append a null terminator to the input. If the length of the input
is greater than 1, line 30 copies the user’s input to the address that the calling
function (ans) supplies. Line 31 returns 1 to the calling function to indicate
successful completion.
===
33. /*
34. * Ask user if there is more to do
35. */
36. more_to_do()
37. {
38. char ans;
39. do
40. {
41. printf("\n**** More? (y/n) ...");
42. getans(&ans, 1);
43. } while((ans = LCASE(ans)) != ’y’ && ans != ’n’);
44. return (ans == ’n’) ? 0 : 1;
45. }

===

Lines 33 to 45
The more_to_do () function displays "More? (y/n)..." to ask whether the user
wants to continue program execution. The more_to_do() function does not have
any input arguments. Line 38 defines a one-character field, ans, to receive the
user’s response. The condition expressed on line 43 causes the question to be
redisplayed until the user answers y(yes) or n(no). The LCASE macro converts the
user’s answer to lowercase letters for the comparison. Line 42 calls getans() to
accept the user’s input. Once the user answers yes or no, control passes to line 44,
which returns 1 for yes and 0 for no to the calling function.

Chapter 7. Working with simple large objects 7-43

7-44 IBM Informix ESQL/C Programmer’s Manual

Chapter 8. Working with smart large objects

Data structures for Smart Large Objects. 8-2
Declaring a Host Variable . 8-2
The LO-specification structure . 8-3

The ifx_lo_create_spec_t structure. 8-3
ESQL/C functions that use the LO-specification structure. 8-5
Obtain storage characteristics . 8-6
Deallocating the LO-Specification Structure . 8-9

The LO-Pointer Structure . 8-9
Storing a Smart Large Object . 8-9
The ifx_lo_t Structure . 8-10
ESQL/C functions that use the LO-pointer structure 8-11

The LO file descriptor . 8-11
ESQL/C library functions that use an LO file descriptor 8-11

Creating a Smart Large Object . 8-12
Accessing a Smart Large Object . 8-12

Selecting a Smart Large Object . 8-12
Opening a Smart Large Object . 8-13

Access Modes . 8-13
Smart-Large-Object Locks . 8-16
Duration of an Open on a Smart Large Object . 8-17

Deleting a Smart Large Object . 8-17
Modifying a Smart Large Object . 8-17

Reading Data From a Smart Large Object . 8-17
Writing Data to a Smart Large Object . 8-17

Closing a Smart Large Object . 8-18
Obtaining the Status of a Smart Large Object . 8-18

Obtaining a Valid LO-Pointer Structure . 8-18
Allocating and Accessing an LO-Status Structure . 8-18

Allocating an LO-Status Structure . 8-18
Accessing the LO-Status Structure . 8-19

Deallocating the LO-Status Structure . 8-19
Altering a Smart-Large-Object Column . 8-20
Migrating Simple Large Objects . 8-20
Reading and Writing Smart Large Objects on an Optical Disc (UNIX) 8-21
The ESQL/C API for Smart Large Objects . 8-21

The information in these topics apply only if you are using IBM Informix as your
database server.

A smart large object is a data type that stores large, non-relational data objects such
as images, sound clips, documents, graphics, maps and other large objects, and
allows you to perform read, write, and seek operations on those objects. Smart
large objects consist of the CLOB (character large object) and BLOB (binary large
object) data types. The CLOB data type stores large objects of text data. The BLOB
data type stores large objects of binary data in an undifferentiated byte stream. A
smart large object is stored in a particular type of database space called an sbspace.
For information about creating and administering sbspaces, see your IBM Informix
Administrator's Guide.

These topics describe the following information about programming with smart
large objects:
v Data structures for smart large objects
v Creating a smart large object

© Copyright IBM Corp. 1996, 2010 8-1

v Accessing a smart large object
v Obtaining the status of a smart large object
v Altering a smart-large-object column
v Reading and writing smart large objects on an optical disc
v The Informix ESQL/C API for smart large objects

The end of this chapter presents an example program called create_clob. The
create_clob sample program demonstrates how to create a new smart large object
from an Informix ESQL/C program, insert data into a CLOB column of the stores7
database, and then select the smart-large-object data back from this column.

For more information about the CLOB and BLOB data types, as well as other SQL
data types, see the IBM Informix Guide to SQL: Reference.

Data structures for Smart Large Objects
Informix ESQL/C supports the SQL data types CLOB and BLOB with the ifx_lo_t
data type. Because of the potentially huge size of smart-large-object data, the
Informix ESQL/C program does not store the data directly in a host variable.
Instead, the client application accesses the data as a file-like structure. To use
smart-large-object variables in an Informix ESQL/C program, take the following
actions:
v Declare a host variable with the ifx_lo_t data type.

For more information, see “Declaring a Host Variable” on page 8-2.
v Access the smart large object with a combination of the following three data

structures:
– The LO-specification structure, ifx_lo_create_spec_t

For more information, see “The LO-specification structure” on page 8-3 and
“Obtain storage characteristics” on page 8-6.

– The LO-pointer structure, ifx_lo_t

For more information, see “Deallocating the LO-Specification Structure” on
page 8-9.

– An integer LO file descriptor
For more information, see “Opening a Smart Large Object” on page 8-13.

Important: The structures that ESQL/C uses to access smart large objects begin
with the LO prefix. This prefix is an acronym for large object.
Currently, the database server uses large object to refer to both smart
large objects and simple large objects. However, use of this prefix in
the ESQL/C structures that access smart large objects is retained for
legacy purposes.

Declaring a Host Variable
Declare Informix ESQL/C host variables for database columns of type CLOB or
BLOB as a fixed binary host variable with the ifx_lo_t structure (called an ifx_lo_t
data type) as follows:
EXEC SQL include locator;...

EXEC SQL BEGIN DECLARE SECTION;
fixed binary ’clob’ ifx_lo_t clob_loptr;
fixed binary ’blob’ ifx_lo_t blob_loptr;

EXEC SQL END DECLARE SECTION;

8-2 IBM Informix ESQL/C Programmer’s Manual

...

EXEC SQL select blobcol into :blob_loptr from tab1;

The ifx_lo_t data type stores an LO-pointer structure. For more information, see
“The ifx_lo_t Structure” on page 8-10.

Tip:: For more information about the fixed binary Informix ESQL/C data type, see
“Accessing a Fixed-Length Opaque Type” on page 10-12.

To access smart large objects, you must include the locator.h header file in your
Informix ESQL/C program. This header file contains definitions of data structures
and constants that your program needs to work with smart large objects.

The LO-specification structure
Before you create a new smart large object, you must allocate an LO-specification
structure with the ifx_lo_def_create_spec() function. The ifx_lo_def_create_spec()
function performs the following tasks:
1. It allocates a new LO-specification structure, whose pointer you provide as an

argument.
2. It initializes all fields of the LO-specification structure: disk-storage information

and create-time flags to the appropriate null values.

For more information about the ifx_lo_def_create_spec() function, see B-112.

The ifx_lo_create_spec_t structure
The LO-specification structure, ifx_lo_create_spec_t, stores the storage
characteristics for a smart large object in an Informix ESQL/C program. The
locator.h header file defines the LO-specification structure, so you must include the
locator.h file in your Informix ESQL/C programs that access this structure.

Important: The LO-specification structure, ifx_lo_create_spec_t, is an opaque
structure to Informix ESQL/C programs. Do not access its internal
structure directly. The internal structure of ifx_lo_create_spec_t may
change in future releases. Therefore, to create portable code, always use
the Informix ESQL/C access functions for this structure to obtain and
store values in the LO-specification structure.

For a list of these access functions, see Table 8-1 on page 8-4 and Table 8-2 on page
8-5.

The LO-specification structure stores the following storage characteristics for a
smart large object:
v Disk-storage information
v Create-time flags

Disk-storage information: The LO-specification structure stores disk-storage
information, which helps the database sever determine how to store the smart
large object most efficiently on disk. The following table shows the disk-storage
information along with the corresponding Informix ESQL/C access functions.

Chapter 8. Working with smart large objects 8-3

Table 8-1. Disk-storage information in the LO-specification structure

Disk-storage information Description ESQL/C accessor functions

Estimated number of bytes An estimate of the final size, in bytes, of the smart
large object. The database Server uses this value
to determine the extents in which to store the
smart large object. This value provides
optimization information. If the value is grossly
incorrect, it does not cause incorrect behavior.
However, it does mean that the database server
might not necessarily choose optimal extent sizes
for the smart large object.

ifx_lo_specget_estbytes()

ifx_lo_specset_estbytes()

Maximum number of bytes The maximum size, in bytes, for the smart large
object. The database server does not allow the
smart large object to grow beyond this size.

ifx_lo_specget_maxbytes()

ifx_lo_specset_maxbytes()

Allocation extent size The allocation extent size is specified in kilobytes.
Optimally, the allocation extent is the single extent
in a chunk that holds all the data for the smart
large object.

The database server performs storage allocations
for smart large objects in increments of the
allocation extent size. It tries to allocate an
allocation extent as a single extent in a chunk.
However, if no single extent is large enough, the
database server must use multiple extents as
necessary to satisfy the request.

ifx_lo_sepcget_extsz(),

ifx_lo_specset_extsz()

Name of the sbspace The name of the sbspace that contains the smart
large object. The sbspace name can be at most 18
characters long. This name must be null
terminated.

ifx_lo_specget_sbspace(),

ifx_lo_specset_sbspace()

For most applications, it is recommended that you use the values for the
disk-storage information that the database server determines. For more information
about each of the accessor functions, see its description in Appendix B, “ESQL/C
function library,” on page B-1.

Create-time flags: The LO-specification structure stores create-time flags, which
tell the database server what options to assign to the smart large object. The
following table shows the create-time flags along with the corresponding Informix
ESQL/C access functions.

8-4 IBM Informix ESQL/C Programmer’s Manual

Table 8-2. Create-time flags in the LO-specification structure

Type of indicator Create-time flag Description

Logging LO_LOG Tells the database server to log changes to the smart
large object in the system log file.

Consider carefully whether to use the LO_LOG flag
value. The database server incurs considerable
overhead to log smart large objects. You must also
ensure that the system log file is large enough to
hold the value of the smart large object. For more
information, see your IBM Informix Administrator's
Guide.

LO_NOLOG Tells the database server to turn off logging for all
operations that involve the associated smart large
object.

Last access-time LO_KEEP_LASTACCESS_TIME Tells the database server to save the last access time
for the smart large object. This access time is the
time of the last read or write operation.

Consider carefully whether to use the
LO_KEEP_LASTACCESS_TIME flag value. The
database server incurs considerable overhead to
maintain last access times for smart large objects.

LO_NOKEEP_LASTACCESS_TIME Tells the database server not to maintain the last
access time for the smart large object.

The locator.h header file defines the LO_LOG, LO_NOLOG,
LO_KEEP_LASTACCESS_TIME, and LO_NOKEEP_LASTACCESS_TIME
create-time constants. The two groups of create-time flags, logging indicators and
the last access-time indicators, are stored in the LO-specification structure as a
single flag value. To set a flag from each group, use the C-language OR operator to
mask the two flag values together. However, masking mutually exclusive flags
results in an error.

The ifx_lo_specset_flags() function sets the create-time flags to a new value. The
ifx_lo_specget_flags() function retrieves the current value of the create-time flag.

If you do not specify a value for one of the flag groups, the database server uses
the inheritance hierarchy to determine this information. For more information
about the inheritance hierarchy, see “Obtain storage characteristics” on page 8-6.

For more information about the create-time flags, see the descriptions of the
ifx_lo_specset_flags() and ifx_lo_specget_flags() functions in Appendix B,
“ESQL/C function library,” on page B-1.

ESQL/C functions that use the LO-specification structure
The following table shows the Informix ESQL/C library functions that access the
LO-specification structure.

ESQL/C Library Function Purpose See

ifx_lo_col_info() Updates the LO-specification structure with
the column-level storage characteristics

B-107

ifx_lo_create() Reads an LO-specification structure to obtain
storage characteristics for a new smart large
object that it creates

B-111

Chapter 8. Working with smart large objects 8-5

ESQL/C Library Function Purpose See

ifx_lo_def_create_spec() Allocates and initializes an LO-specification
structure

B-112

ifx_lo_spec_free() Frees the resources of the LO-specification
structure

B-122

ifx_lo_specget_estbytes() Gets the estimated number of bytes from the
LO-specification structure

B-123

ifx_lo_specget_extsz() Gets the allocation extent size from the
LO-specification structure

B-124

ifx_lo_specget_flags() Gets the create-time flags from the
LO-specification structure

B-125

ifx_lo_specget_maxbytes() Gets the maximum number of bytes from the
LO-specification structure

B-126

ifx_lo_specget_sbspace() Gets the name of the sbspace from the
LO-specification structure

B-127

ifx_lo_specset_estbytes() Sets the estimated number of bytes from the
LO-specification structure

B-129

ifx_lo_specset_extsz() Sets the allocation extent size in the
LO-specification structure

B-130

ifx_lo_specset_flags() Sets the create-time flags in the
LO-specification structure

B-131

ifx_lo_specset_maxbytes() Sets the maximum number of bytes in the
LO-specification structure

B-132

ifx_lo_specset_sbspace() Sets the name of the sbspace in the
LO-specification structure

B-132

ifx_lo_stat_cspec() Returns the storage characteristics into the
LO-specification structure for a specified
smart large object

B-135

Obtain storage characteristics
Once you have allocated an LO-specification structure with the
ifx_lo_def_create_spec() function, you must ensure that this structure contains the
appropriate storage characteristics when you create a smart large object.

IBM Informix uses an inheritance hierarchy to obtain storage characteristics. The
following figure shows the inheritance hierarchy for smart-large-object storage
characteristics.

8-6 IBM Informix ESQL/C Programmer’s Manual

The system-specified storage characteristics: IBM Informix uses one of the
following sets of storage characteristics as the system-specified storage
characteristics:
v If the sbspace in which the smart large object is stored has specified a value for

a particular storage characteristic, the database server uses the sbspace value as
the system-specified storage characteristic.
The database administrator (DBA) defines storage characteristics for an sbspace
with the onspaces utility.

v If the sbspace in which the smart large object is stored has not specified a value
for a particular storage characteristic, the database server uses the system default
as the system-specified storage characteristic.
The database server defines the system defaults for storage characteristics
internally. However, you can specify a default sbspace name with the
SBSPACENAME configuration parameter of the ONCONFIG file. Also, an
application call to ifx_lo_col_info() or ifx_lo_specset_sbspace() can supply the
target sbspace in the LO-specification structure.

Warning: An error occurs if you do not specify the sbspacename configuration
parameter and the lo-specification structure does not contain the name
of the target sbspace.

It is recommended that you use the values for the system-specified disk-storage
information. Most applications do not need to change these system-specified
storage characteristics. For more information about database server and sbspace
storage characteristics, see the description of the onspaces utility in your IBM
Informix Administrator's Guide.

To use the system-specified storage characteristics for a new smart large object,
follow these steps:
1. Use the ifx_lo_def_create_spec() function to allocate an LO-specification

structure and to initialize this structure to null values.
2. Pass this LO-specification structure to the ifx_lo_create_function function to

create the instance of the smart large object.

The ifx_lo_create() function creates a smart-large-object instance with the storage
characteristics in the LO-specification structure that it receives as an argument.

Figure 8-1. Inheritance hierarchy for storage characteristics

Chapter 8. Working with smart large objects 8-7

Because the previous call to ifx_lo_def_create_spec() stored null values in this
structure, the database server assigns the system-specified characteristics to the
new instance of the smart large object.

The column-level storage characteristics: The database administrator (DBA)
assigns column-level storage characteristics with the CREATE TABLE statement.
The PUT clause of CREATE TABLE specifies storage characteristics for a particular
smart-large-object (CLOB or BLOB) column. (For more information, see the
description of the CREATE TABLE statement in the IBM Informix Guide to SQL:
Syntax.) The syscolattribs system catalog table stores column-level storage
characteristics.

The ifx_lo_col_info() function obtains column-level storage characteristics for a
smart-large-object column. To use the column-level storage characteristics for a
new smart-large-object instance, follow these steps:
1. Use the ifx_lo_def_create_spec() function to allocate an LO-specification

structure and initialize this structure to null values.
2. Pass this LO-specification structure to the ifx_lo_col_info() function and specify

the desired column and table name as arguments.
The function stores the column-level storage characteristics into the specified
LO-specification structure.

3. Pass this same LO-specification structure to the ifx_lo_create() function to
create the instance of the smart large object.

When the ifx_lo_create() function receives the LO-specification structure as an
argument, this structure contains the column-level storage characteristics that the
previous call to ifx_lo_col_info() stored. Therefore, the database server assigns
these column-level characteristics to the new instance of the smart large object.

When you use the column-level storage characteristics, you do not usually need to
provide the name of the sbspace for the smart large object. The sbspace name is
specified in the PUT clause of the CREATE TABLE statement or by the
SBSPACENAME parameter in the ONCONFIG file.

The User-Defined Storage Characteristics: An Informix ESQL/C application
program can define a unique set of storage characteristics for a new smart large
object, as follows:
v For smart large objects that are to be stored in a column, you can override some

storage characteristics for the column when it creates an instance of a smart
large object.
If the application does not override some or all of these characteristics, the smart
large object uses the column-level storage characteristics. For information about
how to obtain column-level storage characteristics, see “The column-level storage
characteristics” on page 8-8.

v You can specify a wider set of characteristics for each smart large object since the
smart large object is not constrained by table column properties.
If the application programmer does not override some or all of these
characteristics, the smart large object inherits the system-specified storage
characteristics. For more information, see “The system-specified storage
characteristics” on page 8-7.

8-8 IBM Informix ESQL/C Programmer’s Manual

To specify user-defined storage characteristics, use the appropriate Informix
ESQL/C accessor functions for the LO-specification structure. For more
information about these accessor functions, see “The LO-specification structure” on
page 8-3.

Deallocating the LO-Specification Structure
Once you are finished with an LO-specification structure, deallocate the resources
assigned to it with the ifx_lo_spec_free() function. When the resources are freed,
they can be reallocated to other structures that your program needs. For more
information about the ifx_lo_spec_free() function, see B-122.

The LO-Pointer Structure
To open a smart large object for read and write operations, an IBM Informix
ESQL/C program must have an LO-pointer structure for the smart large object. This
structure contains the disk address and a unique hexadecimal identifier for a smart
large object. For more information about the unique identifier, see the description
of the ifx_lo_copy_to_file() function in B-108.

To create an LO-pointer structure for a new smart large object, use the
ifx_lo_copy_to_file() function. The ifx_lo_copy_to_file() function performs the
following tasks:
1. It initializes an LO-pointer structure, whose pointer you provide as an

argument, for the new smart large object.
This new smart large object has the storage characteristics that the
LO-specification structure you provide specifies. For more information about
the LO-specification structure, see “The ifx_lo_create_spec_t structure” on page
8-3.

2. It opens the new smart large object in the specified access mode and returns an
LO file descriptor that is needed for subsequent operations on the smart large
object.
For more information about an LO file descriptor, see “Duration of an Open on
a Smart Large Object” on page 8-17.

You must call ifx_lo_def_create_spec() before you call the ifx_lo_create() function
to create a new smart large object. For more information about the
ifx_lo_def_create_spec() function, see B-112.

Storing a Smart Large Object
An IBM Informix ESQL/C program accesses a smart large object through an
LO-pointer structure. The Informix ESQL/C library functions in the table from 8-11
accept an LO-pointer structure as an argument. Through the LO-pointer structure,
these functions allow you to create and manipulate a smart large object without
binding it to a database row.

An INSERT or UPDATE statement does not perform the actual input of the
smart-large-object data. It does, however, provide a means for the application
program to identify which smart-large-object data to associate with the column. A
CLOB or BLOB column in a database table stores the LO-pointer structure for a
smart large object. Therefore, when you store a CLOB or BLOB column, you
provide an LO-pointer structure for the column in an ifx_lo_t host variable to the
INSERT or UPDATE statement. For this reason, you declare host variables for
CLOB and BLOB values as LO-pointer structures. (For more information, see
“Declaring a Host Variable” on page 8-2.)

Chapter 8. Working with smart large objects 8-9

Figure 8-2 shows how the Informix ESQL/C client application transfers the data of
a smart large object to the database server.

The smart large object that an LO-pointer structure identifies exists as long as its
LO-pointer structure exists. When you store an LO-pointer structure in the
database, the database server can ensure that the smart large objects are
deallocated when appropriate.

When you retrieve a row and then update a smart large object which that row
contains, the database server exclusively locks the row for the time that it updates
the smart large object. Moreover, long updates for smart large objects (whether or
not logging is enabled and whether or not they are associated with a table row)
create the potential for a long transaction condition if the smart large object takes a
long time to update or create.

For an example of code that stores a new smart large object into a database
column, see “The create_clob.ec program” on page C-2. For information about how
to select a smart large object from the database, see “Selecting a Smart Large
Object” on page 8-12.

The ifx_lo_t Structure
The LO-pointer structure, ifx_lo_t, serves as a reference to a smart large object. It
provides security-related information and holds information about the actual disk
location of the smart large object. The locator.h header file defines the LO-pointer
structure so you must include the locator.h file in your IBM Informix ESQL/C
programs that access this structure.

Important: The LO-pointer structure, ifx_lo_t, is an opaque structure to Informix
ESQL/C programs. That is, you should not access its internal structure
directly. The internal structure of ifx_lo_t may change. Therefore, to
create portable code, use the appropriate Informix ESQL/C library
function (see 8-11) to use this structure.

The LO-pointer structure, not the CLOB or BLOB data itself, is stored in a CLOB or
BLOB column in the database. Therefore, SQL statements such as INSERT and
SELECT accept an LO-pointer structure as the column value for a
smart-large-object column. You declare an Informix ESQL/C host variable to hold

Figure 8-2. Transferring Smart- Large-Object Data from Client Application to Database Server

8-10 IBM Informix ESQL/C Programmer’s Manual

the value of a smart large object as an ifx_lo_t structure. For more information
about how to declare a host variable for a smart large object, see “Declaring a Host
Variable” on page 8-2.

ESQL/C functions that use the LO-pointer structure
The following table shows the IBM Informix ESQL/C library functions that access
the LO-pointer structure and how they access it.

ESQL/C library function Purpose See

ifx_lo_copy_to_file() Copies the smart large object that the LO-pointer
structure identifies to an operating-system file.

B-108

ifx_lo_create() Initializes an LO-pointer structure for a new smart
large object that it creates and returns an LO file
descriptor for this smart large object.

B-111

ifx_lo_filename() Returns the name of the file where the
ifx_lo_copy_to_file() function would store the
smart large object that the LO-pointer structure
identifies.

B-113

ifx_lo_from_buffer() Copies a specified number of bytes from a
user-defined buffer into the smart large object that
the LO-pointer structure references.

B-114

ifx_lo_release() Tells the database server to release the resources
associated with the temporary smart large object
that the LO-pointer structure references.

B-114

ifx_lo_to_buffer() Copies a specified number of bytes from the smart
large object referenced by the LO-pointer structure
into a user-defined buffer.

B-141

The LO file descriptor
The LO file descriptor is an integer value that identifies an open smart large object.
An LO file descriptor is very similar to the file descriptors for operating-system
files. It serves as an I/O handle to the data of the smart large object in the server.
LO file descriptors start with a seek position of zero (0). Use the LO file descriptor
in one of the Informix ESQL/C library functions that accepts LO file descriptors.

ESQL/C library functions that use an LO file descriptor
The following table shows the IBM Informix ESQL/C library functions that access
the LO file descriptor.

ESQL/C library function Purpose See

ifx_lo_close() Closes the smart large object that the LO file
descriptor identifies and deallocates the LO file
descriptor

B-107

ifx_lo_copy_to_lo() Copies an operating-system file to an open smart
large object that the LO file descriptor identifies

B-110

ifx_lo_create() Creates and opens a new smart large object and
returns an LO file descriptor

B-111

ifx_lo_open() Opens a smart large object and returns an LO file
descriptor

B-116

ifx_lo_read() Reads data from the open smart large object that
the LO file descriptor identifies

B-118

Chapter 8. Working with smart large objects 8-11

ESQL/C library function Purpose See

ifx_lo_readwithseek() Seeks a specified file position in the open smart
large object that the LO file descriptor identifies
and then reads data from this position

B-119

ifx_lo_seek() Moves the file position in the open smart large
object that the LO file descriptor identifies

B-121

ifx_lo_stat() Obtains status information for the open smart
large object that the LO file descriptor identifies

B-133

ifx_lo_tell() Determines the current file position in the open
smart large object that the LO file descriptor
identifies

B-140

ifx_lo_truncate() Truncates at a specified offset the open smart
large object that the LO file descriptor identifies

B-142

ifx_lo_write() Writes data to the open smart large object that the
LO file descriptor identifies

B-143

ifx_lo_writewithseek() Seeks a specified file position in the open smart
large object that the LO file descriptor identifies
and then writes data to this position

B-144

Creating a Smart Large Object
Perform the following steps to create a smart large object:
1. Allocate an LO-specification structure with the ifx_lo_def_create_spec()

function.
2. Ensure that the LO-specification structure contains the desired storage

characteristics for the new smart large object.
3. Create an LO-pointer structure for the new smart large object and open the

smart large object with the ifx_lo_create() function.
4. Write the data for the new smart large object to the open smart large object

with the ifx_lo_write() or ifx_lo_writewithseek() function. For more
information, see “Writing Data to a Smart Large Object” on page 8-17.

5. Save the new smart large object in a column of the database.
6. Deallocate the LO-specification structure with the ifx_lo_spec_free() function.

For more information about how to create a smart large object, see “The
LO-specification structure” on page 8-3.

Accessing a Smart Large Object
To access a smart large object, take the following steps:
1. Select the smart large object from the database into an ifx_lo_t host variable

with the SELECT statement.
2. Open the smart large object with the ifx_lo_open() function.
3. Perform the appropriate read or write operations to update the data of the

smart large object.
4. Close the smart large object with the ifx_lo_close() function.

Selecting a Smart Large Object
A SELECT statement does not perform the actual output for the smart-large-object
data. It does, however, establish a means for the application program to identify a

8-12 IBM Informix ESQL/C Programmer’s Manual

smart large object so that it can then issue Informix ESQL/C library functions to
open, read, write, or perform other operations on the smart large object.

A CLOB or BLOB column in a database table contains the LO-pointer structure for
a smart large object. Therefore, when you select a CLOB or BLOB column into an
ifx_lo_t host variable, the SELECT statement returns an LO-pointer structure. For
this reason, you declare host variables for CLOB and BLOB values as LO-pointer
structures. For more information, see “Declaring a Host Variable” on page 8-2.

Figure 8-3 shows how the database server transfers the data of a smart large object
to the Informix ESQL/C client application.

For an example of code that selects a smart large object from a database column,
see “The create_clob.ec program” on page C-2. For information about how to store
a smart large object in the database, see “Storing a Smart Large Object” on page
8-9.

Opening a Smart Large Object
When you open a smart large object, you obtain an LO file descriptor for the smart
large object. Through the LO file descriptor you can access the data of a smart
large object as if it were in an operating-system file.

Access Modes
When you open a smart large object, you specify the access mode for the data. The
access mode determines which read and write operations are valid on the open
smart large object. You specify an access mode with one of the access-mode
constants that the locator.h file defines.

Table 8-3 shows the access modes and their corresponding defined constants that
the ifx_lo_open() and ifx_lo_create() functions support.

Figure 8-3. Transferring Smart- Large-Object Data from Database Server to Client Application

Chapter 8. Working with smart large objects 8-13

Table 8-3. Access-Mode Flags for Smart Large Objects

Access Mode Purpose
Access-Mode
Constant

Read-only mode Only read operations are valid on the data. LO_RDONLY

Dirty-read mode For ifx_open() only, allows you to read uncommitted data pages for
the smart large object. You cannot write to a smart large object after
you set the mode to LO_DIRTY_READ. When you set this flag, you
reset the current transaction isolation mode to dirty read for the
smart large object.

Do not base updates on data that you obtain from a smart large
object in dirty-read mode.

LO_DIRTY_READ

Write-only mode Only write operations are valid on the data. LO_WRONLY

Append mode Intended for use in conjunction with LO_WRONLY or LO_RDWR.
Sets the location pointer to the end of the object immediately prior to
each write. Appends any data you write to the end of the smart large
object. If LO_APPEND is used alone, the object is opened for reading
only.

LO_APPEND

Read/write mode Both read and write operations are valid on the data. LO_RDWR

Buffered access Use standard database server buffer pool. LO_BUFFER

Lightweight I/O Use private buffers from the session pool of the database server. LO_NOBUFFER

Lock all Specify that locking will occur for an entire smart large object. LO_LOCKALL

Lock byte range Specify that locking will occur for a range of bytes, which will be
specified through the ifx_lo_lock() function when the lock is placed.

LO_LOCKRANGE

Tip: These access-mode flags for a smart large object are patterned after the UNIX
System V access modes.

Setting Dirty Read Access Mode: To set dirty read isolation mode for a smart
large object, set it for the transaction with the SET ISOLATION statement, or set
the LO_DIRTY_READ access mode when you open the smart large object. Setting
the LO_DIRTY_READ access mode when you open the smart large object affects
the read mode only for the smart large object and not for the entire transaction. In
other words, if your transaction is executing in committed-read mode, you can use
the LO_DIRTY_READ access mode to open the smart large object in dirty-read
mode, without changing the isolation mode for the transaction.

For more information about dirty read isolation mode, see the SET ISOLATION
statement in the IBM Informix Guide to SQL: Syntax.

Using LO_APPEND: When you open a smart large object with LO_APPEND
only, the smart large object is opened as read-only. Seek operations move the file
pointer but write operations to the smart large object fail and the file pointer is not
moved from its position just before the write. Read operations occur from where
the file pointer is positioned and then the file pointer is moved.

You can mask the LO_APPEND flag with another access mode. In any of these OR
combinations, the seek operation remains unaffected. The following table shows
the effect on the read and write operations that each of the OR combinations has.

8-14 IBM Informix ESQL/C Programmer’s Manual

OR Operation Read Operations Write Operations

LO_RDONLY |
LO_APPEND

Occur at the file position and
then move the file position to
the end of the data that was read

Fail and do not move the file
position.

LO_WRONLY |
LO_APPEND

Fail and do not move the file
position

Move the file position to the end of
the smart large object and then write
the data; file position is at the end of
the data after the write.

LO_RDWR |
LO_APPEND

Occur at the file position and
then move the file position to
the end of the data that was read

Move the file position to the end of
the smart large object and then write
the data; file position is at the end of
the data after the write.

Lightweight I/O: When the database server accesses smart large objects, it uses
buffers from the buffer pool for buffered access. Unbuffered access is called
lightweight I/O. Lightweight I/O uses private buffers instead of the buffer pool to
hold smart large objects. These private buffers are allocated out of the database
server session pool.

Lightweight I/O allows you to bypass the overhead of the least-recently-used
(LRU) queues that the database server uses to manage the buffer pool. For more
information about LRUs, see your IBM Informix Performance Guide.

You can specify lightweight I/O by setting the flags parameter to LO_NOBUFFER
when you create a smart large object with the ifx_lo_create() function or when you
open a particular smart large object with the ifx_lo_open() function. To specify
buffered access, which is the default, use the LO_BUFFER flag.

Important: Keep the following issues in mind when you use lightweight I/O:
v Close smart large objects with ifx_lo_close() when you are finished

with them to free memory allocated to the private buffers.
v All opens that use lightweight I/O for a particular smart large object

share the same private buffers. Consequently, one operation can
cause the pages in the buffer to be flushed while other operations
expect the object to be present in the buffer.

The database server imposes the following restrictions on switching from
lightweight I/O to buffered I/O:
v You can use the ifx_lo_alter() function to switch a smart large object from

lightweight I/O (LO_NOBUFFER) to buffered I/O (LO_BUFFER) if the smart
large object is not open. However, ifx_lo_alter() generates an error if you try to
change a smart large object that uses buffered I/O to one that uses lightweight
I/O.

v Unless you first use ifx_lo_alter() to change the access mode to buffered access
(LO_BUFFER), you can only open a smart large object that was created with
lightweight I/O with the LO_NOBUFFER access-mode flag. If an open specifies
LO_BUFFER, the database server ignores the flag.

v You can open a smart large object that was created with buffered access
(LO_BUFFER) with the LO_NOBUFFER flag only if you open the object in
read-only mode. If you attempt to write to the object, the database server returns
an error. To write to the smart large object, you must close it then reopen it with
the LO_BUFFER flag and an access flag that allows write operations.

Chapter 8. Working with smart large objects 8-15

You can use the database server utility onspaces to specify lightweight I/O for all
smart large objects in an sbspace. For more information about the onspaces utility,
see your IBM Informix Administrator's Guide.

Smart-Large-Object Locks
When you open a smart large object the database server locks either the entire
smart large object or a range of bytes that you specify to prevent simultaneous
access to smart-large-object data, Locks on smart large objects are different than
row locks. If you retrieve a smart large object from a row, the database server
might hold a row lock as well as a smart-large-object lock. The database server
locks smart-large-object data because many columns can contain the same
smart-large-object data.You use the access-mode flags, LO_RDONLY,
LO_DIRTY_READ, LO_APPEND, LO_WRONLY, LO_RDWR, and LO_TRUNC to
specify the lock mode of a smart large object. You pass these flags to the
ifx_lo_open() and ifx_lo_create() functions. When you specify LO_RDONLY, the
database server places a share lock on the smart large object. When you specify
LO_DIRTY_READ, the database server does not place a lock on the smart large
object. If you specify any other access-mode flag, the database server obtains an
update lock, which it promotes to an exclusive lock on first write or other update
operation.

Share and update locks (read-only mode, or write mode before an update
operation occurs) are held until your program takes one of the following actions:
v Closes the smart large object
v Commits the transaction or rolls it back

Exclusive locks are held until the end of a transaction even if you close the smart
large object.

Important: You lose the lock at the end of a transaction, even if the smart large
object remains open. When the database server detects that a smart
large object has no active lock, it automatically obtains a new lock
when the first access occurs to the smart large object. The lock it
obtains is based on the original open mode of the smart large object.

Range of a Lock: When you place a lock on a smart large object you can lock
either the entire smart large object or you can lock a byte range. A byte range lock
allows you to lock only the range of bytes that you will affect within the smart
large object.

Two access-mode flags, LO_LoCKALL and LO_LOCKRANGE, enable you to
designate the default type of lock that will be used for the smart large object. You
can set them with ifx_lo_specset_flags() and retrieve them with
ifx_specget_flags(). The LO_LOCKALL flag specifies that the entire smart large
object will be locked; the LO_LOCKRANGE flag specifies that you will use
byte-range locks for the smart large object. For more information, see “The
ifx_lo_specget_flags() function” on page B-125 and “The ifx_lo_specset_flags()
function” on page B-131.

You can use the ifx_lo_alter() function to change the default range from one type
to the other. You can also override the default range by setting either the
LO_LOCKALL or the LO_LOCKRANGE flag in the access-mode flags for
ifx_lo_open(). For more information, see “Opening a Smart Large Object” on page
8-13 and “The ifx_lo_open() function” on page B-116.

8-16 IBM Informix ESQL/C Programmer’s Manual

The ifx_lo_lock() function allows you to lock a range of bytes that you want to
access for a smart large object and the ifx_lo_unlock() function allows you to
unlock the bytes when you are finished. For more information, see “The
ifx_lo_lock() function” on page B-115 and “The ifx_lo_unlock() function” on page
B-142.

Duration of an Open on a Smart Large Object
Once you open a smart large object with the ifx_lo_create() function or the
ifx_lo_open() function, it remains open until one of the following events occurs:
v The ifx_lo_close() function closes the smart large object.
v The session ends.

Warning: The end of the current transaction does not close a smart large object. It
does, however, release any lock on a smart large object.

Have your applications close smart large objects as soon as they finish
with them. Leaving smart large objects open unnecessarily consumes
system memory. Leaving a sufficient number of smart large objects open
can eventually produce an out-of-memory condition.

Deleting a Smart Large Object
A smart large object is not deleted until both of the following conditions are met:
v The current transaction commits.
v The smart large object is closed, if the application opened the smart large object.

Modifying a Smart Large Object
You modify the data of the smart large object with the following steps:
1. Read and write the data in the open smart large object until the data is ready

to save.
2. Store the LO-pointer for the smart large object in the database with the

UPDATE or INSERT statement.

For information about how to save the smart large object, see “Storing a Smart
Large Object” on page 8-9.

Reading Data From a Smart Large Object
The ifx_lo_read() and ifx_lo_readwithseek() Informix ESQL/C library functions
read data from an open smart large object. They both read a specified number of
bytes from the open smart large object into the user-defined character buffer. The
ifx_lo_read() function begins the read operation at the current file position. You
can specify the starting file position of the read with the ifx_lo_seek() function,
and you can obtain the current file position with the ifx_lo_tell() function. The
ifx_lo_readwithseek() function performs the seek and read operations with a
single function call.

The ifx_lo_read() and ifx_lo_readwithseek() functions require a valid LO file
descriptor to identify the smart large object to be read. You obtain an LO file
descriptor with the ifx_lo_open() or ifx_lo_create() function. For more information,
see the descriptions of the ifx_lo_read() function in B-118 and the
ifx_lo_readwithseek() function in B-119.

Writing Data to a Smart Large Object
The ifx_lo_write() and ifx_lo_writewithseek() Informix ESQL/C library functions
write data to an open smart large object. They both write a specified number of

Chapter 8. Working with smart large objects 8-17

bytes from a user-defined character buffer to the open smart large object. The
ifx_lo_write() function begins the write operation at the current file position. You
can specify the starting file position of the write with the ifx_lo_seek() function,
and you can obtain the current file position with the ifx_lo_tell() function. The
ifx_lo_writewithseek() function performs the seek and write operations with a
single function call.

The ifx_lo_write() and ifx_lo_writewithseek() functions require a valid LO file
descriptor to identify the smart large object to write. You obtain an LO file
descriptor with the ifx_lo_open() or ifx_lo_create() function. For more information,
see the descriptions of the ifx_lo_write() function in B-143 and the
ifx_lo_writewithseek() function in B-144.

Closing a Smart Large Object
Once you have finished the read and write operations on the smart large object,
deallocate the resources assigned to it with the ifx_lo_close() function. When the
resources are freed, they can be reallocated to other structures that your program
needs. In addition, the LO file descriptor can be reallocated to other smart large
objects. For more information about the ifx_lo_close() function, see B-107.

Obtaining the Status of a Smart Large Object
To obtain status information for a smart large object, take the following steps:
1. Obtain a valid LO-pointer structure to the smart large object for which you

want status.
2. Allocate and fill an LO-status structure with the ifx_lo_stat() function
3. Use the appropriate IBM Informix ESQL/C accessor function to obtain the

status information you need.
4. Deallocate the LO-status structure.

Obtaining a Valid LO-Pointer Structure
You can obtain status information for any smart large object for which you have a
valid LO-pointer structure. You can perform either of the following steps to obtain
an LO-pointer structure:
v Select a CLOB or BLOB column from a database table.

For more information, see “Selecting a Smart Large Object” on page 8-12.
v Create a new smart large object.

For more information, see “The LO-Pointer Structure” on page 8-9.

Allocating and Accessing an LO-Status Structure
The LO-status structure stores status information for a smart large object. This
section describes how to allocate and access an LO-status structure.

Allocating an LO-Status Structure
The ifx_lo_stat() function performs the following tasks:
v It allocates a new LO-status structure, whose pointer you provide as an

argument.
v It initializes the LO-status structure with all status information for the smart

large object that the LO file descriptor, which you provide, identifies.

For more information about the ifx_lo_stat() function, see B-133.

8-18 IBM Informix ESQL/C Programmer’s Manual

Accessing the LO-Status Structure
The LO-status structure, ifx_lo_stat_t, stores the status information for a smart
large object in an IBM Informix ESQL/C program. The locator.h header file defines
the LO-status structure so you must include the locator.h file in your Informix
ESQL/C programs that access this structure.

Important: The LO-status structure, ifx_lo_stat_t, is opaque to Informix ESQL/C
programs. Do not access its internal structure directly. The internal
structure of ifx_lo_stat_t may change in future releases. Therefore, to
create portable code, always use the Informix ESQL/C accessor
functions for this structure to obtain and store values in the LO-status
structure.

The following table shows the status information along with the corresponding
Informix ESQL/C accessor functions.

Table 8-4. Status Information in the LO-Status Structure

Disk-Storage Information Description ESQL/C Accessor Functions

Last access time The time, in seconds, that the smart large object was last
accessed.

This value is available only if the
LO_KEEP_LASTACCESS_TIME flag is set for this smart
large object.

ifx_lo_stat_atime()

Storage characteristics The storage characteristics for the smart large object.

These characteristics are stored in an LO-specification
structure (see 8-3). Use the Informix ESQL/C accessor
functions for an LO-specification structure (see Table 8-1
on page 8-4 and Table 8-2 on page 8-5) to obtain this
information.

ifx_lo_stat_cspec()

Last change in status The time, in seconds, of the last status change for the
smart large object.

A change in status includes updates, changes in
ownership, and changes to the number of references.

ifx_lo_stat_ctime()

Last modification time
(seconds)

The time, in seconds, that the smart large object was last
modified.

ifx_lo_stat_mtime_sec()

Reference count A count of the number of references to the smart large
object.

ifx_lo_stat_refcnt()

Size The size, in bytes, of the smart large object. ifx_lo_stat_size()

The time values (such as last access time and last change time) might differ slightly
from the system time. This difference is due to the algorithm that the database
server uses to obtain the time from the operating system.

Deallocating the LO-Status Structure
Once you have finished with an LO-status structure, deallocate the resources
assigned to it with the ifx_lo_stat_free() function. When the resources are freed,
they can be reallocated to other structures that your program needs. For more
information about the ifx_lo_stat_free() function, see B-137.

Chapter 8. Working with smart large objects 8-19

Altering a Smart-Large-Object Column
You can use the PUT clause of the ALTER TABLE statement to change the storage
location and the storage characteristics of a CLOB or BLOB column. You can
change the sbspace where the column is stored and also implement round-robin
fragmentation, which causes the smart large objects in the CLOB or BLOB column
to be distributed among a series of specified sbspaces. For example, the ALTER
TABLE statement in the following example changes the original storage location of
the advert.picture column from s9_sbspc to the sbspaces s10_sbspc and s11_sbspc.
The ALTER TaBLE statement also changes the characteristics of the column:
advert ROW (picture BLOB, caption VARCHAR(255, 65)),

...

PUT advert IN (s9_sbspc)
(EXTENT SIZE 100)

ALTER TABLE catalog
PUT advert IN (s10_sbspc, s11_sbspc)
(extent size 50, NO KEEP ACCESS TIME);

When you change the storage location or storage characteristics of a
smart-large-object column, the changes apply only to new instances created for the
column. The storage location and storage characteristics of existing smart large
objects for the column are not affected.

For a description of the catalog table that the preceding example references, see the
Appendix C, “Examples for Smart-Large-Object Functions,” on page C-1.

For more information about the ALTER TABLE statement, see the IBM Informix
Guide to SQL: Syntax.

Migrating Simple Large Objects
To migrate simple large objects to smart large objects, cast TEXT data to CLOB
data and BYTE data to BLOB data. You can use the cast syntax (bytecolblobcol,
for example) to migrate a simple large object to a smart large object. The following
example migrates the BYTE column cat_picture from the catalog table in the
stores7 database to the BLOB field picture in the advert row type in the alternate
catalog table that is described in Appendix C, “Examples for Smart-Large-Object
Functions,” on page C-1:
update catalog set advert = ROW ((SELECT cat_picture::blob

FROM stores7:catalog WHERE catalog_num = 10027), pwd
advert.caption)
WHERE catalog_num = 10027

For a description of the stores7 table, see IBM Informix Guide to SQL: Reference.

You can also use the MODIFY clause of the ALTER TABLE statement to change a
TEXT or BYTE column to a CLOB or BLOB column. When you use the MODIFY
clause of the ALTER TABLe statement, the database server implicitly casts the old
data type to the new data type to create the ClOB or BLOB column.

For example, if you want to change the cat_descr column from a TEXT column to
a BYTE column in the catalog table of the stores7 database, you can use a
construction similar to the following statement:

8-20 IBM Informix ESQL/C Programmer’s Manual

ALTER TABLE catalog modify cat_descr CLOB,
PUT cat_descr in (sbspc);

For more information about the ALTER TABLE statement, see the IBM Informix
Guide to SQL: Syntax

For more information about casting, see the IBM Informix Guide to SQL: Syntax and
the IBM Informix Guide to SQL: Tutorial.

Reading and Writing Smart Large Objects on an Optical Disc (UNIX)
Within a table, rows that include smart-large-object data do not include the
smart-large-object data in the row itself. Instead, the smart-large-object column
contains the LO-pointer structure (see “The LO-specification structure” on page
8-3). The LO-pointer structure can point to an sbpage in an sbspace or to a platter
in an optical storage subsystem.

However, you can store smart large objects on optical disc only if this media is
mounted as a UNIX file system and is write many (WMRM). The optical disc must
contain the sbspaces for the smart large objects. Your application can use the
Informix ESQL/C API for smart large objects (which this chapter describes) to
access the smart large objects on the mounted optical disc.

The database server does not provide support for a write-once-read-many (WORM)
optical-storage subsystem as a location for smart large objects. However, it does
support access to simple large objects (BYTE and TEXT) on WORM media. For
more information, see “Reading and Writing Simple Large Objects to an Optical
Disc (UNIX)” on page 7-28.

For details about the optical subsystem, see your IBM Informix Administrator's
Guide and the IBM Informix Optical Subsystem Guide.

The ESQL/C API for Smart Large Objects
The IBM Informix ESQL/C API for smart large objects allows an application
program to access a smart large object much like an operating-system file. A smart
large object that does not fit into memory does not have to be read into a file and
then accessed from a file; it can be accessed one piece at a time. An Informix
ESQL/C application program accesses smart large objects through the Informix
ESQL/C library functions in the following table. The library functions are located
in Appendix B, “ESQL/C function library,” on page B-1.

ESQL/C Function Description See

ifx_lo_alter() Alters the storage characteristics of an
existing smart large object

B-106

ifx_lo_close() Closes an open smart large object B-107

ifx_lo_col_info() Retrieves column-level storage characteristics
in an LO-specification structure

B-107

ifx_lo_copy_to_file() Copies a smart large object into an
operating-system file

B-108

ifx_lo_copy_to_lo() Copies an operating-system file into an open
smart large object

B-110

ifx_lo_create() Creates an LO-pointer structure for a smart
large object

B-111

Chapter 8. Working with smart large objects 8-21

ESQL/C Function Description See

ifx_lo_def_create_spec() Allocates an LO-specification structure and
initializes its fields to null values

B-112

ifx_lo_filename() Returns the generated file name, given an
LO-pointer structure and a file specification

B-113

ifx_lo_from_buffer() Copies a specified number of bytes from a
user-defined buffer into a smart large object

B-114

ifx_lo_open() Opens an existing smart large object B-116

ifx_lo_read() Reads a specified number of bytes from an
open smart large object

B-118

ifx_lo_readwithseek() Seeks to a specified position in an open
smart large object and reads a specified
number of bytes

B-119

ifx_lo_release() Releases resources committed to a temporary
smart large object

B-120

ifx_lo_seek() Sets the seek position for the next read or
write on an open smart large object

B-121

ifx_lo_spec_free() Frees the resources allocated to an
LO-specification structure

B-122

ifx_lo_specget_estbytes() Gets the estimated size, in bytes, of the smart
large object

B-123

ifx_lo_specget_extsz() Gets the allocation extent size for the smart
large object

B-124

ifx_lo_specget_flags() Gets the create-time flags for the smart large
object

B-125

ifx_lo_specget_maxbytes() Gets the maximum size for the smart large
object

B-126

ifx_lo_specset_sbspace() Gets the sbspace name for the smart large
object

B-127

ifx_lo_specset_estbytes() Sets the estimated size, in bytes, of the smart
large object

B-129

ifx_lo_specset_extsz() Sets the allocation extent size for the smart
large object

B-130

ifx_lo_specset_flags() Sets the create-time flags for the smart large
object

B-131

ifx_lo_specset_maxbytes() Sets the maximum size for the smart large
object

B-132

ifx_lo_specset_sbspace() Sets the sbspace name for the smart large
object

B-132

ifx_lo_stat() Obtains status information for an open smart
large object

B-133

ifx_lo_stat_atime() Returns the last access time for a smart large
object

B-134

ifx_lo_stat_cspec() Returns the storage characteristics for a smart
large object

B-135

ifx_lo_stat_ctime() Returns the last change-in-status time for the
smart large object

B-136

ifx_lo_stat_free() Frees the resources allocated to an LO-status
structure

B-137

8-22 IBM Informix ESQL/C Programmer’s Manual

ESQL/C Function Description See

ifx_lo_stat_mtime_sec() Returns the last modification time, in
seconds, for the smart large object

B-138

ifx_lo_stat_refcnt() Returns the reference count for the smart
large object

B-138

ifx_lo_stat_size() Returns the size of the smart large object B-139

ifx_lo_tell() Returns the current seek position of an open
smart large object

B-140

ifx_lo_to_buffer() Copies a specified number of bytes from a
smart large object into a user-defined buffer

B-141

ifx_lo_truncate() Truncates a smart large object to a specific
offset

B-142

ifx_lo_write() Writes a specified number of bytes to an
open smart large object

B-143

ifx_lo_writewithseek() Seeks to a specified position in an open
smart large object and writes a specified
number of bytes

B-144

Chapter 8. Working with smart large objects 8-23

8-24 IBM Informix ESQL/C Programmer’s Manual

Chapter 9. Working with complex data types

Accessing a collection. 9-2
Accessing a Collection Derived Table . 9-2

Advantage of a Collection Derived Table . 9-3
Restrictions on a Collection Derived Table . 9-3

Declaring Collection Variables . 9-4
Typed and Untyped Collection Variables . 9-5
Client Collections . 9-8

Managing Memory for Collections . 9-9
Operating on a Collection Variable . 9-10

Using the Collection-Derived Table Clause on Collections 9-10
Initializing a Collection Variable . 9-12
Inserting into a Collection Variable . 9-13
Selecting from a Collection Variable. 9-17
Updating a Collection Variable . 9-20
Specifying Element Values . 9-22
Deleting Elements from a Collection Variable . 9-24
Accessing a Nested Collection . 9-25

Operating on a Collection Column . 9-28
Selecting from a Collection Column. 9-28
Inserting into and Updating a Collection Column . 9-28

Accessing Row Types . 9-30
Declaring Row Variables . 9-31

Typed and Untyped Row Variables . 9-31
Using Named Row Types . 9-33
Client-Side Rows . 9-35

Managing Memory for Rows . 9-35
Operating on a Row Variable . 9-36

Using the Collection-Derived Table Clause on Row Types 9-37
Initializing a Row Variable. 9-38
Inserting into a Row Variable . 9-39
Selecting from a Row Variable . 9-39
Updating a Row Variable . 9-41
Deleting from a Row Variable . 9-41
Specifying Field Names. 9-41
Specifying Field Values . 9-42

Accessing a Typed Table . 9-44
Operating on a Row-Type Column . 9-44

Selecting from a Row-Type Column . 9-45
Inserting into and Updating Row-Type Columns . 9-45
Deleting an Entire Row Type . 9-47

The information in these topics apply only if you are using IBM Informix as your
database server.

These topics explain how to use collection and row data types in an IBM Informix
ESQL/C program. These Informix ESQL/C data types access the complex data
types, as the following table shows.

Data Type ESQL/C Host Variable

Collection types: LIST, MULTISET, SET Typed collection host variable

Untyped collection host variable

© Copyright IBM Corp. 1996, 2010 9-1

Data Type ESQL/C Host Variable

Row types: named and unnamed Typed row host variable

Untyped row host variable

For information about all the data types that are available for use in an Informix
ESQL/C program, see Chapter 3, “Informix ESQL/C data types,” on page 3-1. For
information about SQL complex data types, see the IBM Informix Guide to SQL:
Reference.

Accessing a collection
IBM Informix supports the following kinds of collections:
v The SET data type stores a collection of elements that are unique values and

have no ordered positions.
v The MULTISET data type stores a collection of elements that can be duplicate

values and have no ordered positions.
v The LIST data type stores a collection of elements that can be duplicate values

and have ordered positions.

Both SQL and Informix ESQL/C enable you to use the SQL collection derived table
clause to access the elements of a collection as if they were rows in a table. In
Informix ESQL/C, the collection derived table takes the form of a collection variable.
The collection variable is a host variable into which you retrieve the collection.
Once you have retrieved the collection into a collection variable, you can perform
select, insert, update, and delete operations on it, with restrictions. For more
information about how to access a collection with an Informix ESQL/C collection
variable, see “Declaring Collection Variables” on page 9-4, and more specifically,
“Operating on a Collection Variable” on page 9-10.

Important: When the SQL statement references a collection variable, Informix
ESQL/C and not the database server, processes the statement.

SQL allows you to perform read-only (SELECT) operations on a collection by
implementing the collection derived table as a virtual table.

Accessing a Collection Derived Table
When the SELECT statement for a collection does not reference an Informix
ESQL/C collection variable, the database server performs the query.

Consider, for example, the following schema:
create row type person(name char(255), id int);
create table parents(name char(255), id int,

children list(person not null));

You can select the children’s names and IDs from the table parent using the
following SELECT statement:
select name, id from table(select children from parents

where parents.id = 1001) c_table(name, id);

To execute the query, the database server creates a virtual table (c_table) from the
list children in the row of the parents table where parents.id equals 1001.

9-2 IBM Informix ESQL/C Programmer’s Manual

Advantage of a Collection Derived Table
The advantage of querying a collection as a virtual table as opposed to querying it
through a collection variable is that the virtual table provides more efficient access.
By contrast, if you were to use collection variables, you might be required to
allocate multiple variables and multiple cursors. For example, consider the
following schema:
EXEC SQL create row type parent_type(name char(255), id int,

children list(person not null));
EXEC SQL create grade12_parents(class_id int,

parents set(parent_type not null));

You can query the collection derived table as a virtual table as shown in the
following SELECT statement:
EXEC SQL select name into :host_var1

from table((select children from table((select parents
from grade12_parents where class_id = 1))
p_table where p_table.id = 1001)) c_table
where c_table.name like 'Mer%';

To perform the same query using collection variables you need to execute the
following statements:
EXEC SQL client collection hv1;
EXEC SQL client collection hv2;
EXEC SQL int parent_id;

EXEC SQL char host_var1[256];...

EXEC SQL allocate collection hv1;
EXEC SQL allocate collection hv2;

EXEC SQL select parents into :hv1 from grade12_parents
where class_id = 1;

EXEC SQL declare cur1 cursor for select id, children
from table(:hv1);

EXEC SQL open cur1;
for(;;)
{

EXEC SQL fetch cur1 into :parent_id, :hv2;
if(parent_id = 1001)

break;
}
EXEC SQL declare cur2 cursor for select name from

table(:hv2));
EXEC SQL open cur2;
for(;;)
{

EXEC SQL fetch cur2 into :host_var1;
/* user needs to implement 'like' function */
if(like_function(host_var1, "Mer%"))

break;
}

Restrictions on a Collection Derived Table
The following restrictions apply to querying a collection derived table that is a
virtual table:
v It cannot be the target of INSERT, DELETE, or UPDATE statements.
v It cannot be the underlying table of any cursors or views that can be updated.
v It does not support ordinality. For example, it does not support the following

statement:

Chapter 9. Working with complex data types 9-3

select name, order_in_list from table(select children
from parents where parents.id = 1001)
with ordinality(order_in_list);

v It is an error if the underlying collection expression of the collection derived
table evaluates to a null value.

v It cannot reference columns of tables that are referenced in the same FROM
clause. For example, it does not support the following statement because the
collection derived table table(parents.children) refers to the table parents, which
is referenced in the FROM clause:
select count(distinct c_id) from parents,

table(parents.children) c_table(c_name, c_id)
where parents.id = 1001

v The database server must be able to statically determine the type of the
underlying collection expression. For example, the database server cannot
support:
TABLE(?)

v The database server cannot support a reference to a host variable without
casting it to a known collection type. For example, rather than specifying
TABLE(:hostvar), you must cast the host variable:
TABLE(CAST(:hostvar AS type))
TABLE(CAST(? AS type))

v It will not preserve the order of rows in the list if the underlying collection is a
list.

Declaring Collection Variables
To access the elements of a column that has a collection type (LIST, MULTISET, or
SET) as its data type, perform the following steps:
1. Declare a collection host variable, either typed or untyped.
2. Allocate memory for the collection host variable.
3. Perform any select, insert, update, or delete operations on the collection host

variable.
4. Save the contents of the collection host variable into the collection column.

Use the collection data type to declare host variables for columns of collection data
types (SET, MULTISET, or LIST). As the following syntax diagram illustrates, you
must use the collection keyword as the data type for a collection host variable.

��
(1)

client collection
set (element type not null)
multiset
list

�

� �

,

variable name ; ��

Notes:

1 Informix extension

9-4 IBM Informix ESQL/C Programmer’s Manual

Element Purpose Restrictions SQL Syntax

element type Data type of the elements in the
collection variable

Can be any data type except
SERIAL, SERIAL8, BIGSERIAL,
TEXT, or BYTE

Data Type segment in the
IBM Informix Guide to
SQL: Syntax

variable name Name of the Informix ESQL/C
variable to declare as a collection
variable

Name must conform to
language-specific rules
for variable names.

A collection variable can be any SQL collection type: LIST, MULTISET, or SET.

Important: You must specify the client keyword when you declare collection
variables.

Typed and Untyped Collection Variables
Informix ESQL/C supports the following two collection variables:
v A typed collection variable specifies the data type of the elements in the

collection and the collection itself.
v An untyped collection variable specifies neither the collection type nor the

element type.

The Typed Collection Variable: A typed collection variable provides an exact
description of the collection. This declaration specifies the data type of the
collection (SET, MULTISET, or LIST) and the element type for the collection
variable.

Figure 9-1 shows declarations for three typed collection variables.

Typed collection variables can contain elements with the following data types:
v Any built-in data type (such as INTEGER, CHAR, BOOLEAN, and FLOAT)

except BYTE, TEXT, SERIAL, or SERIAL8.
v Collection data types, such as SET and LIST, to create a nested collection
v Unnamed row types (named row types are not valid)
v Opaque data types

When you specify the element type of the collection variable, use the SQL data
types, not the Informix ESQL/C data types. For example, as the declaration for the
list1 variable in Figure 9-1 on page 9-5 illustrates, use the SQL SMALLINT data
type, not the Informix ESQL/C short data type, to declare a LIST variable whose

EXEC SQL BEGIN DECLARE SECTION;
client collection list(smallint not null)

list1;
client collection set(row(

x char(20),
y set(integer not null),
z decimal(10,2)) not null) row_set;

client collection multiset(set(smallint
not null)

not null) collection3;
EXEC SQL END DECLARE SECTION;

Figure 9-1. Sample Typed Collection Variables

Chapter 9. Working with complex data types 9-5

elements are small integers. Similarly, use the SQL syntax for a CHAR column to
declare a SET variable whose elements are character strings, as the following
example illustrates:
client collection set(char(20) not null) set_var;

Important: You must specify the not-null constraint on the element type of a
collection variable.

A named row type is not valid as the element type of a collection variable.
However, you can specify an element type of unnamed row type, whose fields
match those of the named row type.

For example, suppose your database has the named row type, myrow, and the
database table, mytable, that are defined as follows:
CREATE ROW TYPE myrow
(

a int,
b float

);
CREATE TABLE mytable
(

col1 int8,
col2 set(myrow not null)

);

You can define a collection variable for the col2 column of mytable as follows:
EXEC SQL BEGIN DECLARE SECTION;

client collection set(row(a int, b float) not null)
my_collection;

EXEC SQL END DECLARE SECTION;

You can declare a typed collection variable whose element type is different from
that of the collection column as long as the two data types are compatible. If the
database server is able to convert between the two element types, it automatically
performs this conversion when it returns the fetched collection.

Suppose you create the tab1 table as follows:
CREATE TABLE tab1 (col1 SET(INTEGER NOT NULL))

You can declare a typed collection variable whose element type matches (set_int)
or one whose element type is compatible (set_float), as follows:
EXEC SQL BEGIN DECLARE SECTION;

client collection set(float not null) set_float;
client collection set(integer not null) set_int;

EXEC SQL END DECLARE SECTION;

EXEC SQL declare cur1 cursor for select * from tab1;
EXEC SQL open cur1;
EXEC SQL fetch cur1 into:set_float;
EXEC SQL fetch cur1 into :set_int;

When it executes the first FETCH statement, the Informix ESQL/C client program
automatically converts the integer elements in the column to the float values in the
set_float host variable. The Informix ESQL/C program only generates a
type-mismatch error if you change the host variable after the first fetch. In the
preceding code fragment, the second FETCH statement generates a type-mismatch
error because the initial fetch has already defined the element type as float.

9-6 IBM Informix ESQL/C Programmer’s Manual

Use a typed collection variable in the following cases:
v When you insert into a derived table (Informix ESQL/C needs to know what the

type is)
v When you update an element in a derived table (Informix ESQL/C needs to

know what the type is)
v When you want the server to perform a cast. (The Informix ESQL/C client sends

the type information to the database server, which attempts to perform the
requested cast operation. If it is not possible, the database server returns an
error.)

Match the declaration of a typed collection variable exactly with the data type of
the collection column. You can then use this collection variable directly in SQL
statements such as INSERT, DELETE, or UPDATE, or in the collection-derived
table clause. (For more information about the collection-derived table clause, see
“Using the Collection-Derived Table Clause on Collections” on page 9-10.)

Tip: If you do not know the exact data type of the collection column you want to
access, use an untyped collection variable.

For more information, see “The Untyped Collection Variable” on page 9-7.

In a single declaration line, you can declare several collection variables for the
same typed collection, as the following declaration shows:
EXEC SQL BEGIN DECLARE SECTION;

client collection multiset(integer not null) mset1, mset2;
EXEC SQL END DECLARE SECTION;

You cannot declare collection variables for different collection types in a single
declaration line.

The Untyped Collection Variable: An untyped collection variable provides a
general description of a collection. This declaration includes only the collection
keyword and the variable name. The following lines declare three untyped
collection variables:
EXEC SQL BEGIN DECLARE SECTION;

client collection collection1, collection2;
client collection grades;

EXEC SQL END DECLARE SECTION;

The advantage of an untyped collection host variable is that it provides more
flexibility in collection definition. For an untyped collection variable, you do not
have to know the definition of the collection column at compile time. Instead, you
obtain, at runtime, a description of the collection from a collection column with the
SELECT statement.

Tip: If you know the exact data type of the collection column you want to access,
use a typed collection variable.

For more information, see 9-5.

To obtain the description of a collection column, execute a SELECT statement to
retrieve the column into the untyped collection variable. The database server
returns the column description (the collection type and the element type) with the
column data. Informix ESQL/C assigns this definition of the collection column to
the untyped collection variable.

Chapter 9. Working with complex data types 9-7

For example, suppose the a_coll host variable is declared as an untyped collection
variable, as follows:
EXEC SQL BEGIN DECLARE SECTION;

client collection a_coll;
EXEC SQL END DECLARE SECTION;

The following code fragment uses a SELECT statement to initialize the a_coll
variable with the definition of the list_col collection column (which Figure 9-2 on
page 9-12 defines) before it uses the collection variable in an INSERT statement:
EXEC SQL allocate collection :a_coll;

/* select LIST column into the untyped collection variable
* to obtain the data-type information */
EXEC SQL select list_col into :a_coll from tab_list;

/* Insert an element at the end of the LIST in the untyped
* collection variable */
EXEC SQL insert into table(:a_coll) values (7);

For more information about the ALLOCATE COLLECTION statement, see
“Managing Memory for Collections” on page 9-9. For more information about how
to insert into a collection variable, see “Inserting into a Collection Variable” on
page 9-13.

To obtain the description of a collection column, your application must verify that
a collection column has data in it before it selects the column. If the table has no
rows in it, the SELECT statement returns neither column data nor the column
description and Informix ESQL/C cannot assign the column description to the
untyped collection variable.

You can use an untyped collection variable to store collections with different
column definitions, as long as you select the associated collection column
description into the collection variable before you use the variable in an SQL
statement.

Important: You must obtain the definition of a collection column for an untyped
collection variable before you use the variable in an SQL statement.
Before the collection variable can hold any values, you must use a
SELECT statement to obtain a description of the collection data type
from a collection column in the database. Therefore, you cannot insert
or select values directly into an untyped collection variable.

Client Collections
The Informix ESQL/C application declares the collection variable name, allocates
the memory for it with the ALLOCATE COLLECTION statement, and performs
operations on the collection data.

To access the elements of a collection variable, specify the variable in the Collection
Derived Table clause of a SELECT, INSERT, UPDATE, or DELETE statement.
Informix ESQL/C will perform the select, insert, update, or delete operation.
Informix ESQL/C does not send these statements to the database server when they
include a client collection variable in the collection-derived table clause.

For example, Informix ESQL/C performs the following INSERT operation on the
a_multiset collection variable:

9-8 IBM Informix ESQL/C Programmer’s Manual

EXEC SQL BEGIN DECLARE SECTION;
client collection multiset(integer not null) a_multiset;

EXEC SQL END DECLARE SECTION;
EXEC SQL insert into table(:a_multiset) values (6);

When an SQL statement includes a collection variable, it has the following syntax
restrictions:
v You can only access elements of a client-side collection with the

collection-derived table clause and a SELECT, INSERT, UPDATE, or DELETE
statement.

v An INSERT statement cannot have a SELECT, an EXECUTE FUNCTION, or an
EXECUTE PROCEDURE statement in the VALUES clause.

v You cannot include a WHERE clause
v You cannot include an expression
v You cannot use scroll cursors

For more information about how to insert into a collection variable, see “Inserting
into a Collection Variable” on page 9-13. For more information about a
collection-derived table, see “Operating on a Collection Variable” on page 9-10.

Managing Memory for Collections
Informix ESQL/C does not automatically allocate or deallocate memory for
collection variables. You must explicitly manage the memory that is allocated to a
collection variable.

Use the following SQL statements to manage memory for both typed and untyped
collection host variables:
v The ALLOCATE COLLECTION statement allocates memory for the specified

collection variable.
This collection variable can be a typed or untyped collection. The ALLOCATE
COLLECTION statement sets SQLCODE (sqlca.sqlcode) to zero if the memory
allocation was successful and a negative error code if the allocation failed.

v The DEALLOCATE COLLECTION statement deallocates memory for a specified
collection variable.
Once you free the collection variable with the DEALLOCATE COLLECTION
statement, you can reuse the collection variable.

Important: You must explicitly deallocate memory allocated to a collection
variable. Use the DEALLOCATE COLLECTION statement to deallocate
the memory.

The following code fragment declares the a_set host variable as a typed collection,
allocates memory for this variable, then deallocates memory for this variable:
EXEC SQL BEGIN DECLARE SECTION;

client collection set(integer not null) a_set;
EXEC SQL END DECLARE SECTION;...

EXEC SQL allocate collection :a_set;...

EXEC SQL deallocate collection :a_set;

The ALLOCATE COLLECTION statement allocates memory for the collection
variable and the collection data.

Chapter 9. Working with complex data types 9-9

Note: When DEALLOCATE COLLECTION fails because a cursor on the collection
is still open, an error message will be returned. Prior to this, the error is not
trapped.

For syntax information for the ALLOCATE COLLECTION and DEALLOCATE
COLLECTION statements, see their descriptions in the IBM Informix Guide to SQL:
Syntax.

Operating on a Collection Variable
IBM Informix supports access to a collection column as a whole through the
SELECT, UPDATE, INSERT, and DELETE statements. For example, the SELECT
statement can retrieve all elements of a collection, and the UPDATE statement can
update all elements in a collection to a single value. (For more information, see
“Operating on a Collection Column” on page 9-28.)

Tip: IBM Informix can only access the contents of collection columns directly with
the IN predicate in the WHERE clause of a SELECT statement and this IN
predicate works only with simple collections (collections whose element types
are not complex types).

The SELECT, INSERT, UPDATE, and DELETE statements cannot access elements of
a collection column in a table. To access elements in a collection column, an
Informix ESQL/C application constructs a subtable, called a collection-derived table,
in the collection host variable. From collection-derived table, the Informix ESQL/C
application to access the elements of the collection variable as rows of a table.

This section discusses the following topics on how to use a collection-derived table
in an Informix ESQL/C application to access a collection column:
v Using the collection-derived table clause in SQL statements to access a collection

host variable
v Initializing a collection host variable with a collection column
v Inserting elements into a collection host variable
v Selecting elements from a collection host variable
v Updating elements in a collection host variable
v Specifying element values for a collection host variable
v Deleting elements from a collection host variable
v Accessing a nested collection with collection host variables

Using the Collection-Derived Table Clause on Collections
The collection-derived table clause allows you to specify a collection host variable
as a table name. This clause has the following syntax:
TABLE(:coll_var)

In this example, coll_var is a collection host variable. It can be either a typed or
untyped collection host variable, but it must be declared and have memory
allocated in the Informix ESQL/C application before it appears in a
collection-derived table clause.

For more information about the syntax of the collection-derived table clause, see
the description of the collection-derived table segment in the IBM Informix Guide to
SQL: Syntax.

9-10 IBM Informix ESQL/C Programmer’s Manual

Accessing a Collection Variable: In SQL statements, the Informix ESQL/C
application specifies a collection-derived table in place of a table name to perform
the following operations on the collection host variable:
v You can insert an element into the collection host variable with the

collection-derived table clause after the INTO keyword of an INSERT, or with
the PUT statement.
For more information, see “Inserting into a Collection Variable” on page 9-13.

v You can select an element from a collection host variable with the
collection-derived table clause in the FROM clause of the SELECT statement.
For more information, see “Selecting from a Collection Variable” on page 9-17.

v You can update all or some elements in the collection host variable with the
collection-derived table clause (instead of a table name) after the UPDATE
keyword in an UPDATE statement.
For more information, see “Updating a Collection Variable” on page 9-20.

v You can delete all or some elements from the collection host variable with the
collection-derived table clause after the FROM keyword in the DELETE
statement.
For more information, see “Deleting Elements from a Collection Variable” on
page 9-24.

Tip: If you only need to insert or update a collection column with literal values,
you do not need to use a collection host variable. Instead, you can explicitly
list the literal-collection value in either the INTO clause of the INSERT
statement or the SET clause of the UPDATE statement.

For more information, see “Inserting into and Updating a Collection Column” on
page 9-28.

Once the collection host variable contains valid elements, you update the
collection column with the contents of the host variable. For more information, see
“Operating on a Collection Column” on page 9-28. For more information about the
syntax of the collection-derived table clause, see the description of the
collection-derived table segment in the IBM Informix Guide to SQL: Syntax.

Distinguishing Between Columns and Collection Variables: When you use the
collection-derived table clause with a collection host variable in an SQL statement
(such as SELECT, INSERT, or UPDATE), the statement is not sent to the database
server for processing. Instead, Informix ESQL/C processes the statement.
Consequently, some of the syntax checking that the database server performs is not
done on SQL statements that include the collection-derived table clause.

In particular, the Informix ESQL/C preprocessor cannot distinguish between
column names and host variables. Therefore, when you use the collection-derived
table clause with an UPDATE or INSERT statement, you must use valid
host-variable syntax in:
v The SET clause of an UPDATE statement
v The VALUES clause of an INSERT statement

For more information, see “Distinguishing Between Columns and Row Variables”
on page 9-37.

Chapter 9. Working with complex data types 9-11

Initializing a Collection Variable
You must always initialize an untyped collection variable by selecting a collection
column into it. You must execute a SELECT statement, regardless of the operation
you wish to perform on the untyped collection variable.

Important: Selecting the collection column into the untyped collection variable
provides Informix ESQL/C with a description of the collection
declaration.

For more information, see “The Untyped Collection Variable” on page 9-7.

You can initialize a collection variable by selecting a collection column into the
collection variable, constructing the SELECT statement as follows:
v Specify the name of the collection column in the select list.
v Specify the collection host variable in the INTO clause.
v Specify the table or view name (not the collection-derived table clause) in the

FROM clause.

You can initialize a typed collection variable by executing an INSERT statement that
uses the collection derived table syntax. You do not need to initialize a typed
collection variable before an INSERT or UPDATE because Informix ESQL/C has a
description of the collection variable.

Suppose, for example, that you create the tab_list and tab_set tables with the
statements in Figure 9-2.

The following code fragment accesses the set_col column with a typed collection
host variable called a_set:
EXEC SQL BEGIN DECLARE SECTION;

client collection set(integer not null) a_set;
EXEC SQL END DECLARE SECTION;

EXEC SQL allocate collection :a_set;
EXEC SQL select set_col into :a_set from tab_set

where id_col = 1234;

When you use a typed collection host variable, the description of the collection
column (the collection type and the element type) should be compatible with the
corresponding description of the typed collection host variable. If the data types
don’t match, the database server will do a cast if it can. The SELECT statement in
the preceding code fragment successfully retrieves the set_col column because the
a_set host variable has the same collection type (SET) and element type (INTEGER)
as the set_col column.

The following SELECT statement succeeds because the database server casts list_col
column to a set in a_set host variable and discards any duplicates:

EXEC SQL create table tab_list
(list_col list(smallint not null));

EXEC SQL create table tab_set
(

id_col integer,
set_col set(integer not null)

);

Figure 9-2. Sample Tables with Collection Columns

9-12 IBM Informix ESQL/C Programmer’s Manual

/* This SELECT generates an error */
EXEC SQL select list_col into :a_set from tab_list;

You can select any type of collection into an untyped collection host variable. The
following code fragment uses an untyped collection host variable to access the
list_col and set_col columns that Figure 9-2 on page 9-12 defines:
EXEC SQL BEGIN DECLARE SECTION;

client collection a_collection;
EXEC SQL END DECLARE SECTION;

EXEC SQL allocate collection :a_collection;
EXEC SQL select set_col into :a_collection

from tab_set
where id_col = 1234;...

EXEC SQL select list_col into :a_collection
from tab_list
where list{6} in (list_col);

Both SELECT statements in this code fragment can successfully retrieve collection
columns into the a_collection host variable.

Once you have initialized the collection host variable, you can use the
collection-derived table clause to select, update, or delete existing elements in the
collection or to insert additional elements into the collection. For more information,
see the following sections.

Inserting into a Collection Variable
To insert one or more elements into a collection variable, use the INSERT
statement with the collection-derived table clause after the INTO keyword. The
collection- derived table clause identifies the collection variable in which to insert
the elements. Associate the INSERT statement and the collection-derived table
clause with a cursor to insert more than one element into a collection variable.

Important: You cannot use expressions in the VALUES clause and you cannot use
a WHERE clause.

For information about the types of values you can insert into a collection variable,
see “Specifying Element Values” on page 9-22.

Inserting One Element: The INSERT statement and the collection-derived table
clause allow you to insert one element into a collection. Informix ESQL/C inserts
the values that the VALUES clause specifies into the collection variable that the
collection-derived table clause specifies.

Tip: When you insert elements into a client-side collection variable, you cannot
specify a SELECT, an EXECUTE FUNCTION, or an EXECUTE PROCEDURE
statement in the VALUES clause of the INSERT.

Inserting into SET and MULTISET Collections: For SET and MULTISET collections,
the position of the new element is undefined, because the elements of these
collections do not have ordered positions. Suppose the table readings has the
following declaration:
CREATE TABLE readings
(

dataset_id INT8,
time_dataset MULTISET(INT8 NOT NULL)

);

Chapter 9. Working with complex data types 9-13

To access the time_dataset column, the typed Informix ESQL/C host variable
time_vals has the following declaration:
EXEC SQL BEGIN DECLARE SECTION;

client collection multiset(int8 not null) time_vals;
ifx_int8_t an_int8;

EXEC SQL END DECLARE SECTION;

The following INSERT statement adds a new MULTISET element of 1,423,231 to
time_vals:
EXEC SQL allocate collection :time_vals;
EXEC SQL select time_dataset into :time_vals

from readings
where dataset_id = 1356;

ifx_int8cvint(1423231, &an_int8);
EXEC SQL insert into table(:time_vals) values (:an_int8);

For more information about the ifx_int8cvint() function and the INT8 data type,
see Chapter 5, “Working with numeric data types,” on page 5-1.

Inserting into LIST Collections: LIST collections have elements that have ordered
positions. If the collection is of type LIST, you can use the AT clause of the INSERT
statement to specify the position in the list at which you want to add the new
element. Suppose the table rankings has the following declaration:
CREATE TABLE rankings
(

item_id INT8,
item_rankings LIST(INTEGER NOT NULL)

);

To access the item_rankings column, the typed Informix ESQL/C host variable
rankings has the following declaration:
EXEC SQL BEGIN DECLARE SECTION;

client collection list(integer not null) rankings;
int an_int;

EXEC SQL END DECLARE SECTION;

The following INSERT statement adds a new list element of 9 as the new third
element of rankings:
EXEC SQL allocate collection :rankings;
EXEC SQL select rank_col into :rankings from results;
an_int = 9;
EXEC SQL insert at 3 into table(:rankings) values (:an_int);

Suppose that before this insert, rankings contained the elements {1,8,4,5,2}. After
this insert, this variable contains the elements {1,8,9,4,5,2}.

If you do not specify the AT clause, INSERT adds new elements at the end of a
LIST collection. For more information about the AT clause, see the description of
the INSERT statement in the IBM Informix Guide to SQL: Syntax.

Inserting More Than One Element: An insert cursor that includes an INSERT
statement with the collection-derived table clause allows you to insert many
elements into a collection variable. To insert elements, follow these steps:
1. Create a client collection variable in your Informix ESQL/C program.

For more information, see “Declaring Collection Variables” on page 9-4 and
“Managing Memory for Collections” on page 9-9.

2. Declare the insert cursor for the collection variable with the DECLARE
statement and open the cursor with the OPEN statement.

9-14 IBM Informix ESQL/C Programmer’s Manual

3. Put the element(s) into the collection variable with the PUT statement and the
FROM clause.

4. Close the insert cursor with the CLOSE statement, and if you no longer need
the cursor, free it with the FREE statement.

5. Once the collection variable contains all the elements, you then use the
UPDATE statement or the INSERT statement on a table name to save the
contents of the collection variable in a collection column (SET, MULTISET, or
LIST).
For more information, see “Operating on a Collection Column” on page 9-28.

Tip: Instead of an insert cursor, you can use an INSERT statement to insert
elements one at a time into a collection variable. However, an insert cursor is
more efficient for large insertions.

For more information, see “Inserting One Element” on page 9-13.

The following sections provide information about how to declare an insert cursor
for a collection variable, put elements into this cursor, and save the insert cursor
into the collection variable. For sample code that inserts several elements into a
collection variable, see Figure 9-3 on page 9-17.

Declaring an Insert Cursor for a Collection Variable: An insert cursor allows you to
insert one or more elements in the collection. To declare an insert cursor for a
collection variable, include the collection-derived table clause in the INSERT
statement that you associate with the cursor. The insert cursor for a collection
variable has the following restrictions:
v It must be a sequential cursor; the DECLARE statement cannot specify the

SCROLL keyword.
v It cannot be a hold cursor; the DECLARE statement cannot specify the WITH

HOLD cursor characteristic.

If you need to use input parameters, you must prepare the INSERT statement and
specify the prepared statement identifier in the DECLARE statement.

You can use input parameters to specify the values in the VALUES clause of the
INSERT statement.

The following DECLARE statement declares the list_curs insert cursor for the
a_list variable:
EXEC SQL prepare ins_stmt from

’insert into table values’;
EXEC SQL declare list_curs cursor for ins_stmt;
EXEC SQL open list_curs using :a_list;

You can then use the PUT statement to specify the values to insert. For a code
fragment that includes this statement, see Figure 9-3 on page 9-17.

Important: Whenever you use a question mark (?) in a PREPARE statement for a
collection host variable in a collection-derived table, if you execute a
DESCRIBE statement you must execute it after an OPEN statement.
Until the OPEN statement, Informix ESQL/C does not know what the
collection row looks like.

v The name of the collection variable in the collection-derived table clause
The following DECLARE statement declares the list_curs2 insert cursor for the
a_list variable:

Chapter 9. Working with complex data types 9-15

EXEC SQL prepare ins_stmt2 from
’insert into table values’;

EXEC SQL declare list_curs2 cursor for ins_stmt2;
EXEC SQL open list_curs2 using :a_list;
while (1)

{
EXEC SQL put list_curs2 from :an_element;

...

}

The USING clause of the OPEN statement specifies the name of the collection
variable. You can then use the PUT statement to specify the values to insert. For
information about how to use the PUT statement, see “Putting Elements into the
Insert Cursor.”

After you declare the insert cursor, you can open it with the OPEN statement. You
can insert elements into the collection variable once the associated insert cursor is
open.

Putting Elements into the Insert Cursor: To put elements, one at a time, into the
insert cursor, use the PUT statement and the FROM clause. The PUT statement
identifies the insert cursor that is associated with the collection variable. The
FROM clause identifies the element value to be inserted into the cursor. The data
type of any host variable in the FROM clause must be compatible with the element
type of the collection.

To indicate that the collection element is to be provided later by the FROM clause
of the PUT statement, use an input parameter in the VALUES clause of the INSERT
statement. You can use the PUT statement with an insert cursor following either a
static DECLARE statement or the PREPARE statement. The following example uses
a PUT following a static DECLARE statement.
EXEC SQL DECLARE list_curs cursor FOR INSERT INTO table

(:alist);
EXEC SQL open list_curs;
EXEC SQL PUT list_curs from :asmint;

No input parameters can appear in the DECLARE statement.

Figure 9-3 contains a code fragment that demonstrates how to insert elements into
the collection variable a_list and then to update the list_col column of the tab_list
table (which Figure 9-2 on page 9-12 defines) with this new collection.

9-16 IBM Informix ESQL/C Programmer’s Manual

In Figure 9-3, the first statement that accesses the a_list variable is the OPEN
statement. Therefore, at this point in the code, Informix ESQL/C must be able to
determine the data type of the a_list variable. Because the a_list host variable is a
typed collection variable, Informix ESQL/C can determine the data type from the
variable declaration. However, if a_list was declared an untyped collection variable,
you would need a SELECT statement before the DECLARE statement executes to
return the definition of the associated collection column.

Informix ESQL/C automatically saves the contents of the insert cursor into the
collection variable when you put them into the insert cursor with the PUT
statement.

Freeing Cursor Resources: The CLOSE statement explicitly frees resources assigned
to the insert cursor. However, the cursor ID still exists, so you can reopen the
cursor with the OPEN statement. The FREE statement explicitly frees the cursor
ID. To reuse the cursor, you must redeclare it with the DECLARE statement.

The FLUSH statement does not have an effect on an insert cursor that is associated
with a collection variable. For the syntax of the CLOSE statement, see the IBM
Informix Guide to SQL: Syntax.

Selecting from a Collection Variable
The SELECT statement with the collection-derived table clause allows you to select
elements from a collection variable. The collection-derived table clause identifies
the collection variable from which to select the elements. The SELECT statement
on a client collection variable (one that has the collection-derived table clause) has
the following restrictions:
v The select list of the SELECT cannot contain expressions.
v The select list must be an asterisk (*).
v Column names in the select list must be simple column names.

EXEC SQL BEGIN DECLARE SECTION;
client collection list(smallint not null) a_list;
int a_smint;

EXEC SQL END DECLARE SECTION;...

EXEC SQL allocate collection :a_list;

/* Step 1: declare the insert cursor on the collection variable */
EXEC SQL prepare ins_stmt from

’insert into table values’;
EXEC SQL declare list_curs cursor for ins_stmt;
EXEC SQL open list_curs using :a_list;

/* Step 2: put the LIST elements into the insert cursor */
for (a_smint=0; a_smint<10; a_smint++)
{

EXEC SQL put list_curs from :a_smint;
};
/* Step 3: save the insert cursor into the collection variable
EXEC SQL close list_curs;

/* Step 4: save the collection variable into the LIST column */
EXEC SQL insert into tab_list values (:a_list);

/* Step 5: clean up */
EXEC SQL deallocate collection :a_list;
EXEC SQL free ins_stmt;
EXEC SQL free list_curs;

Figure 9-3. Insertion of Many Elements Into a Collection Host Variable

Chapter 9. Working with complex data types 9-17

These columns cannot use the database@server:table.column syntax.
v The following SELECT clauses and options are not allowed: GROUP BY,

HAVING, INTO TEMP, ORDER BY, WHERE, WITH REOPTIMIZATION.
v The FROM clause has no provisions to do a join.

The SELECT statement and the collection-derived table clause allow you to
perform the following operations on a collection variable:
v Select one element from the collection

Use the SELECT statement with the collection-derived table clause.
v Select one row element from the collection.

Use the SELECT statement with the collection-derived table clause and a row
variable.

v Select one or more elements into the collection
Associate the SELECT statement and the collection-derived table clause with a
cursor to declare a select cursor for the collection variable.

Selecting One Element: The SELECT statement and the collection-derived table
clause allow you to select one element into a collection. The INTO clause identifies
the variable in which to store the element value that is selected from the collection
variable. The data type of the host variable in the INTO clause must be compatible
with the element type of the collection.

The following code fragment selects only one element from the set_col column (see
Figure 9-2 on page 9-12) with a typed collection host variable called a_set:
EXEC SQL BEGIN DECLARE SECTION;

client collection set(integer not null) a_set;
int an_element, set_size;

EXEC SQL END DECLARE SECTION;

EXEC SQL allocate collection :a_set;
EXEC SQL select set_col, cardinality(set_col)

into :a_set, :set_size from tab_set
where id_col = 3;

if (set_size == 1)
EXEC SQL select * into :an_element from table(:a_set);

Important: Use this form of the SELECT statement when you are sure that the
SELECT returns only one element. Informix ESQL/C returns an error if
the SELECT returns more than one element. If you do not know the
number of elements in the set or if you know that the set contains
more than one element, use a select cursor to access the elements.

For more information about how to use a select cursor, see “Selecting More Than
One Element” on page 9-19.

If the element of the collection is itself a complex type (collection or row type), the
collection is a nested collection. For information about how to use a cursor to select
elements from a nested collection, see “Selecting Values from a Nested Collection”
on page 9-26. The following section describes how to use a row variable to select a
row element from a collection.

Selecting One Row Element: You can select an entire row element from a
collection into a row type host variable. The INTO clause identifies a row variable
in which to store the row element that is selected from the collection variable.

9-18 IBM Informix ESQL/C Programmer’s Manual

The following code fragment selects one row from the set_col column into the row
type host variable a_row:
EXEC SQL BEGIN DECLARE SECTION;

client collection set(row(a integer) not null) a_set;
row (a integer) a_row;

EXEC SQL END DECLARE SECTION;

EXEC SQL select set_col into :a_set from tab1
where id_col = 17;

EXEC SQL select * into :a_row from table(:a_set);

Selecting More Than One Element: A select cursor that includes a SELECT
statement with the collection-derived table clause allows you to select many
elements from a collection variable. To select elements, follow these steps:
1. Create a client collection variable in your Informix ESQL/C program.

For more information, see “Declaring Collection Variables” on page 9-4 and
“Managing Memory for Collections” on page 9-9.

2. Declare the select cursor for the collection variable with the DECLARE
statement and open this cursor with the OPEN statement.

3. Fetch the element(s) from the collection variable with the FETCH statement
and the INTO clause.

4. If necessary, perform any updates or deletes on the fetched data and save the
modified collection variable in the collection column.
For more information, see “Operating on a Collection Column” on page 9-28.

5. Close the select cursor with the CLOSE statement, and if you no longer need
the cursor, free it with the FREE statement.

Declaring a Select Cursor for a Collection Variable: To declare a select cursor for a
collection variable, include the collection-derived table clause with the SELECT
statement that you associate with the cursor. The DECLARE for this select cursor
has the following restrictions:
v The select cursor is an update cursor.

The DECLARE statement cannot include the FOR READ ONLY clause that
specifies the read-only cursor mode.

v The select cursor must be a sequential cursor.
The DECLARE statement cannot specify the SCROLL or WITH HOLD cursor
characteristics.

When you declare a select cursor for a collection variable, the collection-derived
table clause of the SELECT statement must contain the name of the collection
variable. For example, the following DECLARE statement declares a select cursor
for the collection variable, a_set:
EXEC SQL BEGIN DECLARE SECTION;

client collection set(integer not null) a_set;
EXEC SQL END DECLARE SECTION;...

EXEC SQL declare set_curs cursor for
select * from table(:a_set);

To select the element(s) from the collection variable, use the FETCH statement
with the INTO clause. For more information, see “Fetching Elements from the
Select Cursor” on page 9-20.

Chapter 9. Working with complex data types 9-19

If you want to modify the elements of the collection variable, declare the select
cursor as an update cursor with the FOR UPDATE keywords. You can then use the
WHERE CURRENT OF clause of the DELETE and UPDATE statements to delete or
update elements of the collection. For more information, see “Deleting One
Element” on page 9-24 and “Updating One Element” on page 9-21.

Fetching Elements from the Select Cursor: To fetch elements, one at a time, from a
collection variable, use the FETCH statement and the INTO clause. The FETCH
statement identifies the select cursor that is associated with the collection variable.
The INTO clause identifies the host variable for the element value that is fetched
from the collection variable. The data type of the host variable in the INTO clause
must be compatible with the element type of the collection.

Figure 9-4 contains a code fragment that selects all elements from the set_col
column (see Figure 9-2 on page 9-12) into the typed collection host variable called
a_set then fetches these elements, one at a time, from the a_set collection variable.

Updating a Collection Variable
Once you have initialized a collection host variable with a collection column (see
9-12), you can use the UPDATE statement with the collection-derived table clause
to update the elements in the collection. The collection-derived table clause
identifies the collection variable whose elements are to be updated. The UPDATE
statement and the collection-derived table clause allow you to perform the
following operations on a collection variable:
v Update all elements in the collection to the same value.

Use the UPDATE statement (without the WHERE CURRENT OF clause) and
specify a derived column name in the SET clause.

EXEC SQL BEGIN DECLARE SECTION;
client collection set(integer not null) a_set;
int an_element, set_size;

EXEC SQL END DECLARE SECTION;
int an_int...

EXEC SQL allocate collection :a_set;
EXEC SQL select set_col, cardinality(set_col)

into :a_set from tab_set
from tab_set where id_col = 3;

/* Step 1: declare the select cursor on the host variable */
EXEC SQL declare set_curs cursor for

select * from table(:a_set);
EXEC SQL open set_curs;

/* Step 2: fetch the SET elements from the select cursor */
for (an_int=0; an_int<set_size; an_int++)
{

EXEC SQL fetch set_curs into :an_element;

...

};
EXEC SQL close set_curs;

/* Step 3: update the SET column with the host variable */
EXEC SQL update tab_list SET set_col = :a_set

where id_col = 3

EXEC SQL deallocate collection :a_set;
EXEC SQL free set_curs;

Figure 9-4. Selection of Many Elements From a Collection Host Variable

9-20 IBM Informix ESQL/C Programmer’s Manual

v Update a particular element in the collection.
You must declare an update cursor for the collection variable and use UPDATE
with the WHERE CURRENT OF clause.

Neither form of the UPDATE statement can include a WHERE clause. For
information about the types of values you can specify when you update a
collection variable, see “Specifying Element Values” on page 9-22.

Updating All Elements: You cannot include a WHERE clause on an UPDATE
statement with a collection-derived table clause. Therefore, an UPDATE statement
on a collection variable sets all elements in the collection to the value you specify
in the SET clause. No update cursor is required to update all elements of a
collection.

For example, the following UPDATE changes all elements in the a_list Informix
ESQL/C collection variable to a value of 16:
EXEC SQL BEGIN DECLARE SECTION;

client collection list(smallint not null) a_list;
int an_int;

EXEC SQL END DECLARE SECTION;...

EXEC SQL update table(:a_list) (list_elmt)
set list_elmt = 16;

In this example, the derived column list_elmt provides an alias to identify an
element of the collection in the SET clause.

Updating One Element: To update a particular element in a collection, declare an
update cursor for the collection host variable. An update cursor for a collection
variable is a select cursor that was declared with the FOR UPDATE keywords. The
update cursor allows you to sequentially scroll through the elements of the
collection and update the current element with the UPDATE...WHERE CURRENT
OF statement.

To update elements, follow these steps:
1. Create a client collection variable in your IBM Informix ESQL/C program.

For more information, see “Declaring Collection Variables” on page 9-4 and
“Managing Memory for Collections” on page 9-9.

2. Declare the update cursor for the collection variable with the DECLARE
statement and the FOR UPDATE clause; open this cursor with the OPEN
statement.
By default, a select cursor on a collection variable supports updates. For more
information about how to declare a select cursor, see 9-19.

3. Fetch the element(s) from the collection variable with the FETCH statement
and the INTO clause.
For more information, see “Selecting More Than One Element” on page 9-19.

4. Update the fetched data with the UPDATE statement and the WHERE
CURRENT OF clause.

5. Save the modified collection variable in the collection column.
For more information, see “Operating on a Collection Column” on page 9-28.

6. Close the update cursor with the CLOSE statement, and if you no longer need
the cursor, free it with the FREE statement.

Chapter 9. Working with complex data types 9-21

The application must position the update cursor on the element to be updated and
then use UPDATE...WHERE CURRENT OF to update this value.

The Informix ESQL/C program in Figure 9-5 uses an update cursor to update an
element in the collection variable, a_set, and then to update the set_col column of
the tab_set table (see Figure 9-2 on page 9-12).

Specifying Element Values
You can specify any of the following values as elements in a collection variable:
v A literal value

You can also specify literal values directly for a collection column without first
using a collection variable. For more information, see “Inserting into and
Updating a Collection Column” on page 9-28.

v An Informix ESQL/C host variable
The host variable must contain a value whose data type is compatible with the
element type of the collection.

You cannot include complex expressions directly to specify values.

For information about how to insert elements into a collection variable, see
“Inserting into a Collection Variable” on page 9-13. For information about how to
update elements in a collection variable, see “Updating a Collection Variable” on
page 9-20. The following sections describe the values you can assign to an element
in a collection variable.

EXEC SQL BEGIN DECLARE SECTION;
int an_element;
client collection set(integer not null) a_set;

EXEC SQL END DECLARE SECTION;

EXEC SQL allocate collection :a_set;
EXEC SQL select set_col into :a_set from tab_set

where id_col = 6;

EXEC SQL declare set_curs cursor for
select * from table(:a_set)
for update;

EXEC SQL open set_curs;
while (SQLCODE != SQLNOTFOUND)

{
EXEC SQL fetch set_curs into :an_element;
if (an_element = 4)

{
EXEC SQL update table(:a_set)(x)

set x = 10
where current of set_curs;

break;
}

}

EXEC SQL close set_curs;

EXEC SQL update tab_set set set_col = :a_set
where id_col = 6;

EXEC SQL deallocate collection :a_set;
EXEC SQL free set_curs;

Figure 9-5. Updating One Element in a Collection Host Variable

9-22 IBM Informix ESQL/C Programmer’s Manual

Literal Values as Elements: You can use a literal value to specify an element of a
collection variable. The literal values must have a data type that is compatible
with the element type of the collection. For example, the following INSERT
statement inserts a literal integer into a SET(INTEGER NOT NULL) host variable
called a_set:
EXEC SQL insert into table(:a_set) values (6);

The following UPDATE statement uses a derived column name (an_element) to
update all elements of the a_set collection variable with the literal value of 19:
EXEC SQL update table(:a_set) (an_element)

set an_element = 19;

The following INSERT statement inserts a quoted string into a LIST(CHAR(5)) host
variable called a_set2:
EXEC SQL insert into table(:a_set2) values (’abcde’);

The following INSERT statement inserts a literal collection into a
SET(LIST(INTEGER NOT NULL) host variable called nested_coll:
EXEC SQL insert into table(:nested_coll)

values (list{1,2,3});

Tip: The syntax of a literal collection for a collection variable is different from the
syntax of a literal collection for a collection column. A collection variable does
not need to be a quoted string.

For more information about literal-collection values for a collection column, see
“Inserting into and Updating a Collection Column” on page 9-28.

The following UPDATE statement updates the nested_coll collection variable with
a new literal collection value:
EXEC SQL update table(:nested_coll) (a_list)

set a_list = list{1,2,3};

Tip: If you only need to insert or update the collection column with literal values,
you do not need to use a collection host variable. Instead, you can explicitly
list the literal values as a literal collection in either the INTO clause of the
INSERT statement or the SET clause of the UPDATE statement.

For more information, see “Inserting into and Updating a Collection Column” on
page 9-28.

ESQL/C Host Variables as Elements: You can use an Informix ESQL/C host
variable to specify an element of a collection variable. The host variable must be
declared with a data type that is compatible with the element type of the collection
and must contain a value that is also compatible. For example, the following
INSERT statement uses a host variable to insert a single value into the same a_set
variable as in the preceding example:
an_int = 6;
EXEC SQL insert into table(:a_set) values (:an_int);

To insert multiple values into a collection variable, you can use an INSERT
statement for each value or you can declare an insert cursor and use the PUT
statement. For more information, see “Inserting More Than One Element” on page
9-14.

Chapter 9. Working with complex data types 9-23

The following UPDATE statement uses a host variable to update all elements in
the a_set collection to a value of 4:
an_int = 4;
EXEC SQL update table(:a_set) (an_element)

set an_element = :an_int;

To update multiple values into a collection variable, you can declare an update
cursor and use the WHERE CURRENT OF clause of the UPDATE statement. For
more information, see “Updating One Element” on page 9-21.

Deleting Elements from a Collection Variable
Once you have initialized a collection host variable with a collection column (see
9-12), you can use the DELETE statement and the collection-derived table clause to
delete an element of a collection variable. The collection-derived table clause
identifies the collection variable in which to delete the elements.

The DELETE statement and the collection-derived table clause allow you to
perform the following operations on a collection variable:
v Delete all elements in the collection.

Use the DELETE statement (without the WHERE CURRENT OF clause).
v Delete a particular element in the collection.

You must declare an update cursor for the collection variable and use DELETE
with the WHERE CURRENT OF clause.

Neither form of the DELETE statement can include a WHERE clause.

Deleting All Elements: You cannot include a WHERE clause on a DELETE
statement with a collection-derived table clause. Therefore, a DELETE statement on
a collection variable deletes all elements from the collection. No update cursor is
required to delete all elements of a collection.

For example, the following DELETE removes all elements in the a_list Informix
ESQL/C collection variable:
EXEC SQL BEGIN DECLARE SECTION;

client collection list(smallint not null) a_list;
EXEC SQL END DECLARE SECTION;...

EXEC SQL delete from table(:a_list);

Deleting One Element: To delete a particular element in a collection, declare an
update cursor for the collection host variable. An update cursor for a collection
variable is a select cursor that was declared with the FOR UPDATE keywords. The
update cursor allows you to sequentially scroll through the elements of the
collection and delete the current element with the DELETE...WHERE CURRENT
OF statement.

To delete particular elements, follow the same steps for how to update particular
elements (see “Updating One Element” on page 9-21). In these steps, you replace
the use of the UPDATE...WHERE CURRENT OF statement with the
DELETE...WHERE CURRENT OF statement.

The application must position the update cursor on the element to be deleted and
then use DELETE...WHERE CURRENT OF to delete this value. The following
Informix ESQL/C code fragment uses an update cursor and a DELETE statement

9-24 IBM Informix ESQL/C Programmer’s Manual

with a WHERE CURRENT OF clause to delete the element from the set_col
column of tab_set (see Figure 9-2 on page 9-12).
EXEC SQL BEGIN DECLARE SECTION;

client collection set(integer not null) a_set;
int an_int, set_size;

EXEC SQL END DECLARE SECTION;...

EXEC SQL allocate collection :a_set;
EXEC SQL select set_col, cardinality(set_col)

into :a_set, :set_size
from tab_set
where id_col = 6;

EXEC SQL declare set_curs cursor for
select * from table(:a_set)
for update;

EXEC SQL open set_curs;
while (i < set_size)
{

EXEC SQL fetch set_curs into :an_int;
if (an_int == 4)
{

EXEC SQL delete from table(:a_set)
where current of set_curs;

break;
}
i++;

}
EXEC SQL close set_curs;
EXEC SQL free set_curs;

EXEC SQL update tab_set set set_col = :a_set
where id_col = 6;

EXEC SQL deallocate collection :a_set;

Suppose that in the row with an id_col value of 6, the set_col column contains the
values {1,8,4,5,2} before this code fragment executes. After the DELETE...WHERE
CURRENT OF statement, this collection variable contains the elements {1,8,5,2}.
The UPDATE statement at the end of this code fragment saves the modified
collection into the set_col column of the database. Without this UPDATE statement,
the collection column never has element 4 deleted.

Accessing a Nested Collection
IBM Informix supports nested collections as a column type. A nested collection is a
collection column whose element type is another collection. For example, the code
fragment in Figure 9-6 creates the tab_setlist table whose column is a nested
collection.

The setlist_col column is a set, each element of which is a list. This nested
collection resembles a two-dimensional array with a y-axis of set elements and an
x-axis of list elements.

EXEC SQL create table tab_setlist
(setlist_col set(list(integer not null));

Figure 9-6. Sample Column with Nested Collection

Chapter 9. Working with complex data types 9-25

Selecting Values from a Nested Collection: To select values from a nested
collection, you must declare a collection variable and a select cursor for each level
of collection. The following code fragment uses the nested collection variable,
nested_coll and the collection variable list_coll to select the lowest-level elements
in the nested-collection column, setlist_col.
EXEC SQL BEGIN DECLARE SECTION;

client collection set(list(integer not null) not null) nested_coll;
client collection list(integer not null) list_coll;
int an_element;

EXEC SQL END DECLARE SECTION;
int num_elements = 1;
int an_int;
int keep_fetching = 1;...

EXEC SQL allocate collection :nested_coll;
EXEC SQL allocate collection :list_coll;

/* Step 1: declare the select cursor on the SET collection variable */
EXEC SQL declare set_curs2 cursor for

select * from table(:nested_coll);

/* Step 2: declare the select cursor on the LIST collection variable */
EXEC SQL declare list_curs2 cursor for

select * from table(:list_coll);

/* Step 3: open the SET cursor */
EXEC SQL open set_curs2;

while (keep_fetching)
{

/* Step 4: fetch the SET elements into the SET insert cursor */
EXEC SQL fetch set_curs2 into :list_coll;

/* Open the LIST cursor */
EXEC SQL open list_curs2;

/* Step 5: put the LIST elements into the LIST insert cursor */
for (an_int=0; an_int<10; an_int++)

{
EXEC SQL fetch list_curs2 into :an_element;

...

};
EXEC SQL close list_curs2;
num_elements++;

if (done_fetching(num_elements))
{
EXEC SQL close set_curs2;
keep_fetching = 0;
}

};
EXEC SQL free set_curs2;
EXEC SQL free list_curs2;

EXEC SQL deallocate collection :nested_coll;
EXEC SQL deallocate collection :list_coll;:

9-26 IBM Informix ESQL/C Programmer’s Manual

Inserting Values into a Nested Collection: To insert literal values into a
collection variable for a nested column, you specify the literal collection for the
element type. You do not need to specify the constructor keyword for the actual
collection type. The following typed collection host variable can access the
setlist_col column of the tab_setlist table:
EXEC SQL BEGIN DECLARE SECTION;

client collection set(list(integer not null) not null)
nested_coll;

EXEC SQL END DECLARE SECTION;

EXEC SQL allocate collection nested_coll;

The following code fragment inserts literal values into the nested_coll collection
variable and then updates the setlist_col column (which Figure 9-6 on page 9-25
defines):
EXEC SQL insert into table(:nested_coll)

values (list{1,2,3,4});
EXEC SQL insert into tab_setlist values (:nested_coll);

To insert nonliteral values into a nested collection, you must declare a collection
variable and an insert cursor for each level of collection. For example, the
following code fragment uses the nested collection variable, nested_coll, to insert
new elements into the nested-collection column, setlist_col.
EXEC SQL BEGIN DECLARE SECTION;

client collection set(list(integer not null) not null) nested_coll;
client collection list(integer not null) list_coll;
int an_element;

EXEC SQL END DECLARE SECTION;
int num_elements = 1;
int keep_adding = 1;
int an_int;...

EXEC SQL allocate collection :nested_coll;
EXEC SQL allocate collection :list_coll;

/* Step 1: declare the insert cursor on the SET collection variable */
EXEC SQL declare set_curs cursor for

insert into table(:nested_coll) values;

/* Step 2: declare the insert cursor on the LIST collection variable */
EXEC SQL declare list_curs cursor for

insert into table(:list_coll) values;

/* Step 3: open the SET cursor */
EXEC SQL open set_curs;

while (keep_adding)
{

/* Step 4: open the LIST cursor */
SQL open list_curs;

/* Step 5: put the LIST elements into the LIST insert cursor */
for (an_int=0; an_int<10; an_int++)

{
an_element = an_int * num_elements;
EXEC SQL put list_curs from :an_element;

...

Chapter 9. Working with complex data types 9-27

};
EXEC SQL close list_curs;
num_elements++;

/* Step 6: put the SET elements into the SET insert cursor */
EXEC SQL put set_curs from :list_coll;
if (done_adding(num_elements)

{
EXEC SQL close set_curs;
keep_adding = 0;
}

};
EXEC SQL free set_curs;
EXEC SQL free list_curs;

/* Step 7: insert the nested SET column with the host variable */
EXEC SQL insert into tab_setlist values (:nested_coll);

EXEC SQL deallocate collection :nested_coll;
EXEC SQL deallocate collection :list_coll;

Operating on a Collection Column
The collection variable stores the elements of the collection. However, it has no
intrinsic connection with a database column. You must use an INSERT or UPDATE
statement to explicitly save the contents of the collection variable into the collection
column.

You can use the SELECT, UPDATE, INSERT, and DELETE statements to access a
collection column (SET, MULTISET, or LIST), as follows:
v The SELECT statement fetches all elements from a collection column.
v The INSERT statement inserts a new collection into a collection column.

Use the INSERT statement on a table or view name and specify the collection
variable in the VALUES clause.
Figure 9-3 on page 9-17 shows an INSERT statement that saves the contents of a
collection variable in a collection column.

v The UPDATE statement updates the entire collection in a collection column with
new values.
Use an UPDATE statement on a table or view name and specify the collection
variable in the SET clause.
Figure 9-5 on page 9-22 shows an UPDATE statement that saves the contents of
a collection variable in a collection column.

The following sections summarize these SQL statements with collection columns.
For more information about how to use these statements with collection columns,
see the IBM Informix Guide to SQL: Tutorial.

Selecting from a Collection Column
To select all elements in a collection column, specify the collection column in the
select list of the SELECT statement. If you put a collection host variable in the
INTO clause of the SELECT statement, you can access these elements from an
Informix ESQL/C application. For more information, see “Initializing a Collection
Variable” on page 9-12. For an example that uses a collection variable to select and
display the elements of a collection, see “The collect.ec Program” on page 14-21.

Inserting into and Updating a Collection Column
The INSERT and UPDATE statements support collection columns as follows:

9-28 IBM Informix ESQL/C Programmer’s Manual

v To insert a collection of elements into an empty collection column, specify the
new elements in the VALUES clause of the INSERT statement.

v To update the entire collection in a collection column, specify the new elements in
the SET clause of the UPDATE statement. The UPDATE statement must also
specify a derived column name to create an identifier for the element. You then use
this derived column name in the SET clause to identify where to assign the new
element values.

In the VALUES clause of an INSERT statement or the SET clause of an UPDATE
statement, the element values can be in any of the following formats:
v An Informix ESQL/C collection host variable
v A literal collection value

To represent literal values for a collection column, you specify a literal-collection
value. You create a literal-collection value, introduce the value with the SET,
MULTISET, or LIST keyword and provide the field values in a comma-separated
list that is enclosed in braces. You surround the entire literal-collection value with
quotes (double or single). The following INSERT statement inserts the literal
collection of SET {7, 12, 59, 4} into the set_col column in the tab_set table (that
Figure 9-2 on page 9-12 defines):
EXEC SQL insert into tab_set values
(

5, ’set{7, 12, 59, 4}’
);

The UPDATE statement in Figure 9-7 overwrites the SET values that the previous
INSERT added to the tab_set table.

Important: If you omit the WHERE clause, the UPDATE statement in Figure 9-7
updates the set_col column in all rows of the tab_set table.

If any character value appears in this literal-collection value, it too must be
enclosed in quotes; this condition creates nested quotes. For example, for column
col1 of type SET(CHAR(5), a literal value can be expressed as follows:
’SET{"abcde"}’

To specify nested quotes in an SQL statement in an Informix ESQL/C program,
you must escape every double quote when it appears in a single-quote string. The
following INSERT statement shows how to use escape characters for inner double
quotes:
EXEC SQL insert into (col1) tab1

values (’SET{\"abcde\"}’);

When you embed a double-quoted string inside another double-quoted string, you
do not need to escape the inner-most quotation marks, as the following INSERT
statement shows:
EXEC SQL insert into tabx

values (1, "set{""row(12345)""}");

EXEC SQL update tab_set
set set_col = ("list{1,2,3,4}")
where id_col = 5;

Figure 9-7. Updating a Collection Column

Chapter 9. Working with complex data types 9-29

For more information about the syntax of literal values for collection variables, see
“Literal Values as Elements” on page 9-23. For more information about the syntax
of literal-collection values for collection columns, see the Literal Collection segment
in the IBM Informix Guide to SQL: Syntax.

If the collection or row type is nested, that is, if it contains another collection or
row type as a member, the inner collection or row does not need to be enclosed in
quotes. For example, for column col2 whose data type is LIST(ROW(a INTEGER, b
SMALLINT) NOT NULL), you can express the literal value as follows:
’LIST{ROW(80, 3)}’

Deleting an Entire Collection: To delete the entire collection in a collection
column you can use the UPDATE statement to set the collection to empty. The
UPDATE statement in the following example effectively deletes the entire
collection in the set_col column of the tab_set table for the row in which id_col
equals 5.
EXEC SQL create table tab_set
(

id_col integer,
set_col set(integer not null)

);
EXEC SQL update tab_set set set_col = set{}

where id_col = 5;

The same UPDATE statement without the WHERE clause, as shown in the
following example, would set the set_col column to empty for all rows in the
tab_set table.
EXEC SQL update tab_set set set_col = set{};

Accessing Row Types
Informix ESQL/C supports the SQL row types with the Informix ESQL/C row
type host variable. A row type is a complex data type that contains one or more
members called fields. Each field has a name and a data type associated with it.

IBM Informix supports the following two kinds of row types:
v A named row type has a unique name that identifies to a group of fields.

The named row type is a template for a row definition. You create a named row
type with the CREATE ROW TYPE statement. You can then use a named row
type as follows:
– In a column definition of a CREATE TABLE statement to assign the data type

for a column in the database
– In the OF TYPE clause of the CREATE TABLE statement to create a typed

table
v An unnamed row type uses the ROW constructor to define fields.

You can use a particular unnamed row type as the data type of one column in
the database. You create an unnamed row type with the ROW constructor in the
column definition of a CREATE TABLE statement.

For more information about row types, see the CREATE ROW TYPE statement in
the IBM Informix Guide to SQL: Syntax and the IBM Informix Guide to SQL: Reference.

To access a column in a table that has a row type as its data type, perform the
following steps:
1. Declare a row host variable.

9-30 IBM Informix ESQL/C Programmer’s Manual

2. Allocate memory for the row host variable with the ALLOCATE ROW
statement.

3. Perform any select or update operations on the row host variable.
4. Save the contents of the row host variable in the row-type column.

The following sections describe each of these steps in more detail.

Declaring Row Variables
To declare a row host variable, use the following syntax.

��
(1)

row
’ named row type ’

�

,

(field name field type)

�

� �

,

variable name ; ��

Notes:

1 Informix extension

Element Purpose Restrictions SQL Syntax

field name Name of a field in the row
variable

Must match the corresponding
field name in any associated
row-type column.

Identifier segment in the IBM
Informix Guide to SQL: Syntax

field type Data type of the field name
field in the row variable

Can be any data type except
SERIAL, SERIAL8, BIGSERIAL,
TEXT, or BYTE.

Data Type segment in the IBM
Informix Guide to SQL: Syntax

named row type Name of the named row type
to assign to the row variable

Named row type must be
defined in the database.

Identifier segment in the IBM
Informix Guide to SQL: Syntax

variable name Name of the ESQL/C variable
to declare as a row variable

Name must conform to
language-specific rules for
variable names.

Typed and Untyped Row Variables
Informix ESQL/C supports the following two row variables:
v A typed row variable specifies the names and data types of the fields in the row.
v An untyped row variable specifies neither the field names nor the field types for

the row.

Informix ESQL/C handles row variables as client-side collection variables.

The Typed Row Variable: A typed row variable specifies a field list, which
contains the name and data type of each field in the row. Figure 9-8 shows
declarations for three typed row variables.

Chapter 9. Working with complex data types 9-31

Typed row variables can contain fields with the following data types:
v Any built-in data type (such as INTEGER, CHAR, BOOLEAN, and FLOAT)

except BYTE, TEXT, SERIAL, or SERIAL8.
v Collection data types, such as SET and LIST
v Row types, named or unnamed
v Opaque data types

When you specify the type of a field in the row variable, use SQL data types, not
Informix ESQL/C data types. For example, to declare a row variable with a field
that holds small integers, use the SQL SMALLINT data type, not the Informix
ESQL/C int data type. Similarly, to declare a field whose values are character
strings, use the SQL syntax for a CHAR column, not the C syntax for char
variables. For example, the following declaration of the row_var host variable
contains a field of small integers and a character field:
row (

smint_fld smallint,
char_fld char(20)
) row_var;

Use a typed row variable when you know the exact data type of the row-type
column that you store in the row variable. Match the declaration of a typed row
variable exactly with the data type of the row-type column. You can use this row
variable directly in SQL statements such as INSERT, DELETE, or UPDATE. You can
also use it in the collection-derived table clause.

You can declare several row variables in a single declaration line. However, all
variables must have the same field types, as the following declaration shows:
EXEC SQL BEGIN DECLARE SECTION;

row (x integer, y integer) typed_row1, typed_row2;
EXEC SQL END DECLARE SECTION;

If you do not know the exact data type of the row-type column you want to
access, use an untyped row variable.

The Untyped Row Variable: The definition of an untyped row variable specifies
only the row keyword and a name. The following lines declare three untyped row
variables:
EXEC SQL BEGIN DECLARE SECTION;

row row1, row2;
row rectangle1;

EXEC SQL END DECLARE SECTION;

The advantage of an untyped row host variable is that it provides more flexibility
in row definition. For an untyped row variable, you do not have to know the

EXEC SQL BEGIN DECLARE SECTION;
row (circle_vals circle_t, circle_id integer) mycircle;
row (a char(20),

b set(integer not null),
c decimal(10,2)) row2;

row (x integer,
y integer,
length integer,
width integer) myrect;

EXEC SQL END DECLARE SECTION;

Figure 9-8. Sample Typed Row Variables

9-32 IBM Informix ESQL/C Programmer’s Manual

definition of the row-type column at compile time. Instead, you obtain, at runtime,
a description of the row from a row-type column.

To obtain this description at runtime, execute a SELECT statement that retrieves
the row-type column into the untyped row variable. When the database server
executes the SELECT statement, it returns the data-type information for the
row-type column (the types of the fields in the row) to the client application.

For example, suppose the a_row host variable is declared as an untyped row
variable, as follows:
EXEC SQL BEGIN DECLARE SECTION;

row a_row;
EXEC SQL END DECLARE SECTION;

The following code fragment uses a SELECT statement to initialize the a_row
variable with data-type information before it uses the row variable in an UPDATE
statement:
EXEC SQL allocate row :a_row;

/* obtain the data-type information */
EXEC SQL select row_col into :a_row from tab_row;

/* update row values in the untyped row variable */
EXEC SQL update table(:a_row) set fld1 = 3;

The field name fld1, which refers to a field of :a_row, comes from the definition of
the row column in the tab_row table.

For more information about the ALLOCATE ROW statement, see “Managing
Memory for Rows” on page 9-35.

You can use the same untyped row variable to successively store different row
types, but you must select the associated row-type column into the row variable
for each new row type.

Using Named Row Types
A named row type associates a name with the row structure. For a database you
create a named row type with the CREATE ROW TYPE statement. If the database
contains more than one row type with the same structure but with distinctly
different names, the database server cannot properly enforce structural equivalence
when it compares named row types. To resolve this ambiguity, specify a row-type
name in the declaration of the row variable.

A named Informix ESQL/C row variable can be typed or untyped.

The Informix ESQL/C preprocessor does not check the validity of a row-type name
and Informix ESQL/C does not use this name at runtime. Informix ESQL/C just
sends this name to the database server to provide information for type resolution.
Therefore, Informix ESQL/C treats the a_row variable in the following declaration
as an untyped row variable even though a row-type name is specified:
EXEC SQL BEGIN DECLARE SECTION;

row ’address_t’ a_row;
EXEC SQL END DECLARE SECTION;

Chapter 9. Working with complex data types 9-33

If you specify both the row-type name and a row structure in the declaration (a
typed named row variable), the row-type name overrides the structure. For
example, suppose the database contains the following definition of the address_t
named row type:
CREATE ROW TYPE address_t
(

line1 char(20),
line2 char(20),
city char(20),
state char(2),
zipcode integer

);

In the following declaration, the another_row host variable has line1 and line2
fields of type CHAR(20) (from the address_t row type:), not CHAR(10) as the
declaration specifies:
EXEC SQL BEGIN DECLARE SECTION;

row ’address_t’ (line1 char(10), line2 char(10),
city char(20), state char(2), zipcode integer) another_row;

EXEC SQL END DECLARE SECTION;

In a Collection-Derived Table: You cannot specify a named row type to declare a
row variable that you use in a collection-derived table. Informix ESQL/C does not
have information about the named row type, only the database server does. For
example, suppose your database has a named row type, r1, and a table, tab1, that
are defined as follows:
CREATE ROW TYPE r1 (i integer);

CREATE TABLE tab1
(

nt_col INTEGER,
row_col r1

);

To access this column, suppose you declare two row variables, as follows:
EXEC SQL BEGIN DECLARE SECTION;
row (i integer) row1;
row (j r1) row2;
EXEC SQL END DECLARE SECTION;

With these declarations, the following statement succeeds because Informix
ESQL/C has the information it needs about the structure of row1:
EXEC SQL update table(:row1) set i = 31;
checksql("UPDATE Collection Derived Table 1");

The following statement fails; however, because Informix ESQL/C does not have
the necessary information to determine the correct storage structure of the row2
row variable.
EXEC SQL update table(:row2) set j = :row1;
checksql("UPDATE Collection Derived Table 2");

Similarly, the following statement also fails. In this case, Informix ESQL/C treats r1
as a user-defined type instead of a named row type.
EXEC SQL insert into tab1 values (:row2);
checksql("INSERT row variable");

You can get around this restriction in either of the following ways:

9-34 IBM Informix ESQL/C Programmer’s Manual

v Use the actual data types in the row-variable declarations, as the following
example shows:
EXEC SQL BEGIN DECLARE SECTION;
row (i integer) row1;
row (j row(i integer)) row2;
EXEC SQL END DECLARE SECTION;

v Declare an untyped row variable and perform a select so that Informix ESQL/C
obtains the data-type information from the database server.
EXEC SQL BEGIN DECLARE SECTION;
row (i integer) row1;
row row2_untyped;
EXEC SQL END DECLARE SECTION;...

EXEC SQL select row_col into :row2_untyped from tab1;

For this method to work, at least one row must exist in table tab1.

An UPDATE statement that uses either the row2 or row2_untyped row variable in
its collection-derived table clause can now execute successfully.

Client-Side Rows
A row variable is sometimes called a client-side row. When you declare a row
variable, you must declare the row variable name, allocate memory, and perform
operations on the row.

To access the elements of a row variable, you specify the variable in the
collection-derived table clause of a SELECT or UPDATE statement. When either of
these statements contains a collection-derived table clause, Informix ESQL/C
performs the select or update operation on the row variable; it does not send these
statements to the database server for execution. For example, Informix ESQL/C
executes the update operation on the row variable, a_row, that the following
UPDATE statement specifies:
EXEC SQL update table(:a_row) set fld1 = 6;

To access fields of a row type, you must use the SELECT or UPDATE statements
with the collection-derived table clause.

For more information about the collection-derived table clause, see “Accessing a
collection” on page 9-2.

Managing Memory for Rows
Once you declare a row variable, Informix ESQL/C recognizes the variable name.
For typed row variables, Informix ESQL/C also recognizes the associated data
type. However, Informix ESQL/C does not automatically allocate or deallocate
memory for row variables. You must explicitly manage memory that is allocated to
a row variable. To manage memory for both typed and untyped row host
variables, use the following SQL statements:
v The ALLOCATE ROW statement allocates memory for the specified row

variable.
This row variable can be a typed or untyped row. The ALLOCATE ROW
statement sets SQLCODE (sqlca.sqlcode) to zero if the memory allocation was
successful and a negative error code if the allocation failed.

v The DEALLOCATE ROW statement deallocates or frees memory for a specified
row variable.

Chapter 9. Working with complex data types 9-35

Once you free the row variable with the DEALLOCATE ROW statement, you
can reuse the row variable but you must allocate memory for it again. You
might, for example, use an untyped row variable to store different row types in
succession.

Important: Informix ESQL/C does not implicitly deallocate memory that you
allocate with the ALLOCATE ROW statement. You must explicitly
perform memory deallocation with the DEALLOCATE ROW statement.

The following code fragment declares the a_name host variable as a typed row,
allocates memory for this variable, then deallocates memory for this variable:
EXEC SQL BEGIN DECLARE SECTION;

row (
fname char(15),
mi char(2)
lname char(15)
) a_name;

EXEC SQL END DECLARE SECTION;...

EXEC SQL allocate row :a_name;...

EXEC SQL deallocate row :a_name;

For syntax information for the ALLOCATE ROW and DEALLOCATE ROW
statements, see their descriptions in the IBM Informix Guide to SQL: Syntax.

Operating on a Row Variable
The SELECT, and UPDATE statements allow you to access a row-type column as a
whole.

An Informix ESQL/C client application can access individual fields as follows:
v Use SQL statements and dot notation to directly select, insert, update, or delete

fields in row-type columns of the database with SQL statements, as long as these
operations involve literal values.
Unlike collection columns, the SELECT statement can access individual members
of row-type columns. Therefore, an Informix ESQL/C client application can
directly select or update fields in row-type columns of the database. For more
information, see “Operating on a Row-Type Column” on page 9-44.

v Use a row host variable to perform operations on the row as a whole or on
individual fields.

Important: You cannot use dot notation in a SELECT statement to access the fields
of a nested row in a row variable.

With a row host variable, you access a row-type column as a collection-derived table.
The collection-derived table contains a single row in which each column is a field.
A collection-derived table allows you to decompose a row into its fields and then
access the fields individually.

The application first performs the operations on the fields through the row host
variable. Once modifications are complete, the application can save the contents of
the row variable into a row-type column of the database.

9-36 IBM Informix ESQL/C Programmer’s Manual

This section discusses the following topics on how to use a collection-derived table
in an Informix ESQL/C application to access a row-type column:
v How to use the collection-derived table clause in SQL statements to access a row

host variable
v How to initialize a row host variable with a row-type column
v How to select fields from a row host variable
v How to update field values in a row host variable

Using the Collection-Derived Table Clause on Row Types
The collection-derived table clause allows you to create a collection-derived table
from a row-type column. This clause has the following syntax:
TABLE(:row_var)

The variable row_var is a row host variable. It can be either a typed or untyped
row host variable but you must declare it beforehand.

For more information about the syntax of the collection-derived table clause, see
the description of the collection-derived table segment in the IBM Informix Guide to
SQL: Syntax.

Accessing a Row Variable: You can perform the following operations on the row
host variable with the collection-derived table clause:
v You can select a field or fields from a row host variable with the

collection-derived table clause in the FROM clause of SELECT statement.
For more information, see “Selecting from a Row Variable” on page 9-39.

v You can update all or some fields in the row host variable collection-derived
table clause after the UPDATE keyword in an UPDATE statement.
For more information, see “Updating a Row Variable” on page 9-41.

The insert and delete operations are not supported on row variables. For more
information, see 9-39 and 9-41.

Tip: If you only need to insert or update a row-type column with literal values,
you do not need to use a row host variable. Instead, you can explicitly list the
literal-row value in either the INTO clause of the INSERT statement or the
SET clause of the UPDATE statement.

For more information, see “Inserting into and Updating Row-Type Columns” on
page 9-45.

Once the row host variable contains the values you want, update the row-type
column with the contents of the host variable. For more information, see
“Accessing a Typed Table” on page 9-44. For more information about the syntax of
the collection-derived table clause, see the description of the collection-derived
table segment in the IBM Informix Guide to SQL: Syntax.

Distinguishing Between Columns and Row Variables: When you use the
collection-derived table clause with a SELECT or UPDATE statement, Informix
ESQL/C processes the statement. It does not send it to the database server.
Therefore, some of the syntax checking that the database server performs is not
done on SQL statements that include the collection-derived table clause.

In particular, the Informix ESQL/C preprocessor cannot distinguish between
column names and host variables. Therefore, when you use the collection-derived

Chapter 9. Working with complex data types 9-37

table clause with an UPDATE statement to modify a row host variable, the
preprocessor does not check that you correctly specify host variables. You must
ensure that you use valid host-variable syntax.

If you omit the host-variable symbol (colon (:) or dollar sign ($)), the preprocessor
assumes that the name is a column name. For example, the following UPDATE
statement omits the colon for the clob_ins host variable in the SET clause:
EXEC SQL update table(:named_row1)

set (int_fld, clob_fld, dollar_fld) =
(10000000, clob_ins, 110.02);

Initializing a Row Variable
To perform operations on existing fields in a row-type column, you must first
initialize the row variable with the field values. To perform this initialization, select
the existing fields of the row-type column into a row variable with the SELECT
statement, as follows:
v Specify the row-column name in the select list of the SELECT statement.
v Specify the row host variable in the INTO clause of the SELECT statement.
v Specify the table or view name, not the collection-derived table clause, in the

FROM clause of the SELECT statement.

Suppose you create the tab_unmrow and tab_nmrow tables with the statements in
Figure 9-9.

The following code fragment initializes a typed row host variable called a_rect
with the contents of the rectangle column in the row whose area column is 1234:
EXEC SQL BEGIN DECLARE SECTION;

row (
x integer,
y integer,
length integer,
width integer

) a_rect;
EXEC SQL END DECLARE SECTION;

EXEC SQL create table tab_unmrow
(

area integer,
rectangle row(

x integer,
y integer,
length integer,
width integer)

);

EXEC SQL create row type full_name
(

fname char(15),
mi char(2),
lname char(15)

);
EXEC SQL create table tab_nmrow
(

emp_num integer,
emp_name full_name

);

Figure 9-9. Sample Tables with Row-Type Columns

9-38 IBM Informix ESQL/C Programmer’s Manual

EXEC SQL allocate row :a_rect;
EXEC SQL select rectangle into :a_rect from tab_unmrow

where area = 1234;

When you use a typed row host variable, the data types of the row-type column
(the field types) must be compatible with the corresponding data types of the
typed row host variable. The SELECT statement in the preceding code fragment
successfully retrieves the rectangle column because the a_rect host variable has the
same field types as the rectangle column.

The following SELECT statement fails because the data types of the fields in the
emp_name column and the a_rect host variable do not match:
/* This SELECT generates an error */
EXEC SQL select emp_name into :a_rect from tab_nmrow;

You can select any row into an untyped row host variable. The following code
fragment uses an untyped row host variable to access the emp_name and
rectangle columns that Figure 9-9 on page 9-38 defines:
EXEC SQL BEGIN DECLARE SECTION;

row an_untyped_row;
EXEC SQL END DECLARE SECTION;

EXEC SQL allocate row :an_untyped_row;
EXEC SQL select rectangle into :an_untyped row

from tab_unmrow
where area = 64;...

EXEC SQL select emp_name into :an_untyped_row
from tab_nmrow
where row{’Tashi’} in (emp_name.fname);

Both SELECT statements in this code fragment can successfully retrieve row-type
columns into the an_untyped_row host variable. However, Informix ESQL/C does
not perform type checking on an untyped row host variable because its elements
do not have a predefined data type.

Once you have initialized the row host variable, you can use the collection-derived
table clause to select or update existing fields in the row. For more information, see
the following sections.

Inserting into a Row Variable
You cannot insert to a row variable using an INSERT statement. The row variable
represents a single table row in the form of a collection-derived table. Each field in
the row type is like a column in this virtual table. Informix ESQL/C returns an
error if you attempt to insert to a row variable.

You can, however, use the UPDATE statement to insert new field values into a row
variable. For more information, see “Updating a Row Variable” on page 9-41.

Selecting from a Row Variable
The SELECT statement and the collection-derived table clause allow you to select a
particular field or group of fields in the row variable. The INTO clause identifies
the host variables that holds the field values selected from the row-type variable.
The data type of the host variable in the INTO clause must be compatible with the
field type.

Chapter 9. Working with complex data types 9-39

For example, Figure 9-10 contains a code fragment that puts the value of the width
field (in the row variable myrect) into the rect_width host variable.

The SELECT statement on a row variable (one that contains a collection-derived
table clause) has the following restrictions:
v No expressions are allowed in the select list.
v The select list must be an asterisk (*) if the row contains elements of opaque,

distinct, or built-in data types.
v Column names in the select list must be simple column names.

These columns cannot use the database@server:table.column syntax.
v The select list cannot use dot notation to access fields of the row.
v The following SELECT clauses are not allowed: GROUP BY, HAVING, INTO

TEMP, ORDER BY, and WHERE.
v The FROM clause has no provisions to do a join.
v Row-type columns cannot be specified in a comparison condition in a WHERE

clause.

If the row variable is a nested row, a SELECT statement cannot use dot notation to
access the fields of the inner row. Instead, you must declare a row variable for each
row type. The code fragment in Figure 9-11 shows how to access the fields of the
inner row in the nested_row host variable.

The following SELECT statement is not valid to access the x and y fields of the
nested_row variable because it uses dot notation:
EXEC SQL select row_col into :nested_row from tab_row
EXEC SQL select b.x, b.y /* invalid syntax */

into :x_var, :y_var from table(:nested_row);

EXEC SQL BEGIN DECLARE SECTION;
row (x int, y int, length float, width float) myrect;
double rect_width;

EXEC SQL END DECLARE SECTION;...

EXEC SQL select rect into :myrect from rectangles
where area = 200;

EXEC SQL select width into :rect_width
from table(:myrect);

Figure 9-10. Selecting from a Row Variable

EXEC SQL BEGIN DECLARE SECTION;
row (a int, b row(x int, y int)) nested_row;
row (x int, y int) inner_row;
integer x_var, y_var;

EXEC SQL END DECLARE SECTION;

EXEC SQL select row_col into :nested_row from tab_row
where a = 7;

EXEC SQL select b into :inner_row
from table(:nested_row);

EXEC SQL select x, y into :x_var, :y_var
from table(:inner_row);

Figure 9-11. Sample Nested- Row Variable

9-40 IBM Informix ESQL/C Programmer’s Manual

An Informix ESQL/C application can use dot notation to access fields of a nested
row when a SELECT statement accesses a database column. For more information,
see “Selecting Fields of a Row Column” on page 9-45.

Updating a Row Variable
The UPDATE statement and the collection-derived table clause allow you to
update a particular field or group of fields in the row variable. You specify the
new field values in the SET clause. An UPDATE of a field or fields in a row
variable cannot include a WHERE clause.

For example, the following UPDATE changes the x and y fields in the myrect
Informix ESQL/C row variable:
EXEC SQL BEGIN DECLARE SECTION;

row (x int, y int, length float, width float) myrect;
int new_y;

EXEC SQL END DECLARE SECTION;...

new_y = 4;
EXEC SQL update table(:myrect)

set x=3, y=:new_y;

You cannot use a row variable in the collection-derived table clause of an INSERT
statement. However, you can use the UPDATE statement and the
collection-derived table clause to insert new field values into a row host variable,
as long as you specify a value for every field in the row. For example, the
following code fragment inserts new field values into the row variable myrect and
then inserts this row variable into the database:
EXEC SQL update table(:myrect)

set x=3, y=4, length=12, width=6;
EXEC SQL insert into rectangles

values (72, :myrect);

Deleting from a Row Variable
A delete operation does not apply to a row variable because a delete normally
removes a row from a table. The row variable represents the row-type value as a
single table row in the collection-derived table. Each field in the row type is a
column in this table. You cannot remove this single table row from the
collection-derived table. Therefore, the DELETE statement does not support a row
variable in the collection-derived table clause. Informix ESQL/C returns an error if
you attempt to perform a DELETE operation on a row variable.

However, you can use the UPDATE statement to delete existing field values in a
row variable. For more information, see “Deleting an Entire Row Type” on page
9-47.

Specifying Field Names
Informix ESQL/C is case insensitive with regard to the field names of a row
variable. In a SELECT or UPDATE statement, Informix ESQL/C always interprets
field names of a row variable as lowercase. For example, in the following SELECT
statement, Informix ESQL/C interprets the fields to select as x and y, even though
the SELECT statement specifies them in uppercase:
EXEC SQL select X, Y from table(:myrect);

This behavior is consistent with how the database server handles identifier names
in SQL statements. To maintain the case of a field name, specify the field name as

Chapter 9. Working with complex data types 9-41

a delimited identifier. That is, surround the field name in double quotes and enable
the DELIMIDENT environment variable before you compile the program.

Informix ESQL/C interprets the fields to select as X and Y (uppercase) in the
following SELECT statement (assuming the DELIMIDENT environment variable is
enabled):
EXEC SQL select "X", "Y" from table(:myrect);

For more information about delimited identifiers and the DELIMIDENT
environment variable, see “SQL Identifiers” on page 1-12.

Use Host Variable Field Names: If the field names of the row column and the
row variable are different, you must specify the field names of the row host
variable. For example, if the last SELECT statement in the following example
referenced field names x and y instead of the field names of a_row, it would
generate a runtime error.
EXEC SQL BEGIN DECLARE SECTION;

row (a integer, b float) a_row;
int i;
double f;

EXEC SQL END DECLARE SECTION;

EXEC SQL create table tab (row_fld(x integer, y float));
EXEC SQL insert into tab values ('row(9, 3.34e7)');
EXEC SQL select * into a_row from tab;
EXEC SQL select a, b into :i, :f from table(:a_row);

Specifying Field Values
You can specify any of the following values for fields in a row variable:
v A literal value

You can also specify literal values directly for a row-type column without first
using a row variable. For more information, see “Inserting into and Updating
Row-Type Columns” on page 9-45.

v A constructed row
You cannot include complex expressions directly to specify field values.
However, a constructed row provides support for expressions as field values.

v An Informix ESQL/C host variable

For information about how to update field values into a row variable, see
“Updating a Row Variable” on page 9-41. The following sections describe the
values you can assign to a field in a row variable.

Literal Values as Field Values: You can use a literal value to specify a field value
for a row variable. The literal values must have a data type that is compatible with
the field type. For example, the following UPDATE statement specifies a literal
integer as a field value for the length field of the myrect variable. See “Updating a
Row Variable” on page 9-41 for a description of myrect.
EXEC SQL update table(:myrect) set length = 6;

The following UPDATE statement updates the x- and y-coordinate fields of the
myrect variable:
EXEC SQL update table(:myrect)

set (x = 14, y = 6);

The following UPDATE statement updates a ROW(a INTEGER, b CHAR(5)) host
variable called a_row2 with a quoted string:

9-42 IBM Informix ESQL/C Programmer’s Manual

EXEC SQL update table(:a_row2) set b = ’abcde’;

The following UPDATE statement updates the nested_row host variable (which
Figure 9-11 on page 9-40 defines) with a literal row:
EXEC SQL insert into table(:nested_row)

values (1, row(2,3));

Important: The syntax of a literal row for a row variable is different from the
syntax of a literal row for a row-type column. A row variable does not
need to be a quoted string.

If you only need to insert or update the row-type column with literal values, you
can list the literal values as a literal-row value in the INTO clause of the INSERT
statement or the SET clause of the UPDATE statement.

For more information, see “Inserting into and Updating Row-Type Columns” on
page 9-45.

Constructed Rows: You can use a constructed row to specify an expression as a
field value for a row variable. The constructed expression must use a row
constructor and evaluate to a data type that is compatible with the field type of the
field. Suppose you have a nested-row variable that is declared as follows:
EXEC SQL BEGIN DECLARE SECTION;

row (fld1 integer, fld2 row(x smallint, y char(5))) a_nested_row;
EXEC SQL END DECLARE SECTION;

The following UPDATE statement uses the ROW constructor to specify expressions
in the value for the fld2 field of the a_nested_row variable:
EXEC SQL update table(:a_nested_row)

set fld2 = row(:an_int, a_func(:a_strng));

For more information about the syntax of a row constructor, see the Expression
segment in the IBM Informix Guide to SQL: Syntax.

ESQL/C Host Variables as Field Values: You can use an Informix ESQL/C host
variable to specify a field value for a row variable. The host variable must be
declared with a data type that is compatible with the data type of the field and
must contain a value that is also compatible. For example, the following UPDATE
statement uses a host variable to update a single value into the a_row variable.
an_int = 6;
EXEC SQL update table(:a_row) set fld1 = :an_int;

To insert multiple values into a row variable, you can use an UPDATE statement
for each value or you can specify all field values in a single UPDATE statement:
one_fld = 469;
second_fld = ’dog’;
EXEC SQL update table(:a_row)

set fld1 = :one_fld, fld2 = :second_fld;

The following variation of the UPDATE statement performs the same task as the
preceding UPDATE statement:
EXEC SQL update table(:a_row) set (fld1, fld2) =

(:one_fld, :second_fld);

The following UPDATE statement updates the nested_row variable with a literal
field value and a host variable:

Chapter 9. Working with complex data types 9-43

EXEC SQL update table(:nested_row)
set b = row(7, :i);

Accessing a Typed Table
You can use a row variable to access the columns of a typed table. A typed table is a
table that was created with the OF TYPE clause of the CREATE TABLE statement.
This table obtains the information for its columns from a named row type.

Suppose you create a typed table called names from the full_name named row
type that Figure 9-9 on page 9-38 defines:
EXEC SQL create table names of type full_name;

You can access a row of the names typed table with a row variable. The following
code fragment declares a_name as a typed row variable and selects a row of the
names table into this row variable:
EXEC SQL BEGIN DECLARE SECTION;

row (
fname char(15),
mi char(2)
lname char(15)
) a_name;

char last_name[16];
EXEC SQL END DECLARE SECTION;...

EXEC SQL allocate row :a_name;
EXEC SQL select name_row into :a_name

from names name_row
where lname = ’Haven’
and fname = ’C. K.’
and mi = ’D’;

EXEC SQL select lname into :last_name from table(:a_name);

The last SELECT statement accesses the lname field value of the :a_name row
variable. For more information about typed tables, see the CREATE TABLE
statement in the IBM Informix Guide to SQL: Syntax and the IBM Informix Guide to
SQL: Tutorial.

The following example illustrates how you can also use an untyped row variable
to access a row of an untyped table:
EXEC SQL BEGIN DECLARE SECTION;
row untyped_row;
int i;
char s[21];
EXEC SQL END DECLARE SECTION;

EXEC SQL create table tab_untyped(a integer, b char(20));
EXEC SQL insert into tab_untyped(1, "junk");
EXEC SQL select tab_untyped into :untyped_row

from tab_untyped;
EXEC SQL select a, b into :i, :s from table(:untyped);

Operating on a Row-Type Column
The row variable stores the fields of the row type. The row variable, however, has
no intrinsic connection with a database column. You must use an INSERT or
UPDATE statement to explicitly save the contents of the variable into the row type
column.

9-44 IBM Informix ESQL/C Programmer’s Manual

You can use the SELECT, UPDATE, INSERT, and DELETE statements to access a
row-type column (named or unnamed), as follows:
v The SELECT statement fetches all fields or a particular field from a row-type

column.
v The INSERT statement inserts a new row into a row-type column.
v The UPDATE statement updates the entire row in a row-type column with new

values.
Use an UPDATE statement on a table or view name and specify the row name
in the values clause.

v The DELETE statement deletes from a table a row that contains a row-type
column, thereby deleting all field values from the row-type column.

For more information about how to use these statements with row-type columns,
see the IBM Informix Guide to SQL: Tutorial.

Selecting from a Row-Type Column
The SELECT statement allows you to access a row-type column in the following
ways:
v Selecting all fields in the row-type column
v Selecting particular fields in the row-type column

Selecting the Entire Row-Type Column: To select all fields in a row-type column,
specify the row-type column in the select list of the SELECT statement. To access
these fields from an Informix ESQL/C application, specify a row host variable in
the INTO clause of the SELECT statement. For more information, see “Initializing a
Row Variable” on page 9-38.

Selecting Fields of a Row Column: You can access an individual field in a
row-type column with dot notation. Dot notation allows you to qualify an SQL
identifier with another SQL identifier. You separate the identifiers with the period
(.) symbol. The following SELECT statement performs the same task as the two
SELECT statements in Figure 9-10 on page 9-40:
EXEC SQL select rect.width into :rect_width from rectangles;

For more information about dot notation, see the Column Expression section of the
Expression segment in the IBM Informix Guide to SQL: Syntax.

Inserting into and Updating Row-Type Columns
The INSERT and UPDATE statements support row-type columns as follows:
v To insert a new row into a row-type column, specify the new values in the

VALUES clause of the INSERT statement.
v To update the entire row-type column, specify the new field values in the SET

clause of the UPDATE statement.

In the VALUES clause of an INSERT statement or the SET clause of an UPDATE
statement, the field values can be in any of the following formats:
v An Informix ESQL/C row host variable

For more information, see “Accessing a Typed Table” on page 9-44.
v A constructed row

Constructed rows are described with respect to row variables in “Constructed
Rows” on page 9-43. For information about the syntax of a constructed row, see
the Constructed Row segment in the IBM Informix Guide to SQL: Syntax.

v A literal-row value

Chapter 9. Working with complex data types 9-45

For more information about the syntax of a literal-row value, see the Literal Row
segment in the IBM Informix Guide to SQL: Syntax.

To represent literal values for a row-type column, you specify a literal-row value.
You create a literal-row value or a named or unnamed row type, introduce the
value with the ROW keyword and provide the field values in a comma-separated
list that is enclosed in parentheses. You surround the entire literal-row value with
quotes (double or single). The following INSERT statement inserts the literal row
of ROW(0, 0, 4, 5) into the rectangle column in the tab_unmrow table (that
Figure 9-9 on page 9-38 defines):
EXEC SQL insert into tab_unmrow values
(

20, "row(0, 0, 4, 5)"
);

The UPDATE statement in Figure 9-12 overwrites the SET values that the previous
INSERT added to the tab_unmrow table.

Important: If you omit the WHERE clause, the preceding UPDATE statement
updates the rectangle column in all rows of the tab_unmrow table.

If any character value appears in this literal-row value, it too must be enclosed in
quotes; this condition creates nested quotes. For example, a literal value for column
row1 of row type ROW(id INTEGER, name CHAR(5), would be:
’ROW(6, "dexter")’

To specify nested quotes in an SQL statement in an Informix ESQL/C program,
you must escape every double quote when it appears in a single-quote string. The
following two INSERT statements show how to use escape characters for inner
quotes:
EXEC SQL insert into (row1) tab1

values (’ROW(6, \"dexter\")’);

EXEC SQL insert into (row2) tab1
values (’ROW(1, \"SET{80, 81, 82, 83}\")’);

When you embed a double-quoted string inside another double-quoted string, you
do not need to escape the inner-most quotation marks:
EXEC SQL insert into tabx

values (1, "row(""row(12345)"")");

For more information about the syntax of literal values for row variables, see
“Literal Values as Field Values” on page 9-42. For more information about the
syntax of literal-row values, see the Literal Row segment in the IBM Informix Guide
to SQL: Syntax.

If the row type contains a row type or a collection as a member, the inner row
does not need quotes. For example, for column col2 whose data type is ROW(a
INTEGER, b SET (INTEGER)), a literal value would be:
’ROW(1, SET{80, 81, 82, 83})’

EXEC SQL update tab_unmrow
set rectangle = ("row(1, 3, 4, 5)")
where area = 20;

Figure 9-12. Updating a Row-Type Column

9-46 IBM Informix ESQL/C Programmer’s Manual

Deleting an Entire Row Type
To delete all fields in a row-type column, specify the table, view, or synonym name
after the FROM keyword of the DELETE statement and use the WHERE clause to
identify the table row(s) that you want to delete.

The following DELETE statement deletes the row in the tab_unmrow table that
contains the row type that the UPDATE statement in Figure 9-12 on page 9-46
saves:
EXEC SQL delete from tab_unmrow

where area = 20;

Chapter 9. Working with complex data types 9-47

9-48 IBM Informix ESQL/C Programmer’s Manual

Chapter 10. Working with opaque data types

The SQL opaque Data Type . 10-1
Accessing the External Format of an Opaque Type. 10-3

Declaring lvarchar Host Variables . 10-4
An lvarchar Host Variable of a Fixed Size. 10-5
The lvarchar Pointer Host Variable . 10-6
The Opaque Type Name . 10-7

Using lvarchar Host Variables . 10-7
Using Fixed-Size lvarchar Host Variables . 10-7
Using lvarchar Pointer Variables . 10-9

Accessing the Internal Format of an Opaque Type . 10-11
Accessing a Fixed-Length Opaque Type . 10-12

Declaring fixed binary Host Variables . 10-12
Using fixed binary Host Variables . 10-14

Accessing a Varying-Length Opaque Type . 10-15
Declaring var binary Host Variables . 10-16
Using var binary Host Variables . 10-17

The lvarchar pointer and var binary library functions . 10-22
Accessing Predefined Opaque Data Types . 10-22

The information in these topics apply only if you are using IBM Informix as your
database server.

These topics explain how to use the lvarchar, fixed binary, and var binary data
types to access an opaque data type from an IBM Informix ESQL/C program. Use
these Informix ESQL/C data types to represent an opaque data type as it is
transferred to and from IBM Informix.

For information about all the data types that are available for use in an Informix
ESQL/C program, see Chapter 3, “Informix ESQL/C data types,” on page 3-1. For
information about SQL complex data types, see the IBM Informix Guide to SQL:
Reference.

The SQL opaque Data Type
An opaque data type is a user-defined data type that can be used in the same way as
the Informix built-in data types. The opaque data type allows you to define new
data types for your database applications.

An opaque data type is fully encapsulated; the database server does not know
about the internal format of an opaque data type. Therefore, the database server
cannot make assumptions about how to access a column having an opaque data
type. The database developer defines a data structure that holds the opaque-type
information and support functions that tell the database server how to access this
data structure.

For more information about how to create an opaque data type, see the description
of the CREATE OPAQUE TYPE statement in the IBM Informix Guide to SQL: Syntax
and in IBM Informix User-Defined Routines and Data Types Developer's Guide.

You can access the value of an opaque data type from an Informix ESQL/C
application in one of two ways:
v In the external format, as a character string

© Copyright IBM Corp. 1996, 2010 10-1

Transfer of the external format between the client application and database
server is supported by the database server through the input and output support
functions of the opaque data type.

v In the internal format, as a data structure in an external programming language
(such as C)
Transfer of the internal format between the client application and database
server is supported by the database server through the receive and send support
functions of the opaque data type.

The following table shows the Informix ESQL/C data types you can use to access
an opaque data type.

Informix Data Type ESQL/C Host Variable

External format of an opaque data type
lvarchar host variable

Internal format of an opaque data type
fixed binary host variable

var binary host variable

This chapter uses an opaque data type called circle to demonstrate how Informix
ESQL/C lvarchar and fixed binary host variables access an opaque data type. This
data type includes an x,y coordinate, to represent the center of the circle, and a
radius value. Figure 10-1 shows the internal data structures for the circle data type.

Figure 10-2 shows the SQL statements that register the circle data type and its
input, output, send, and receive support functions in the database.

typedef struct
{
double x;
double y;
} point_t;

typedef struct
{
point_t center;
double radius;
} circle_t;

Figure 10-1. Internal Data Structures for the circle Opaque Data Type

10-2 IBM Informix ESQL/C Programmer’s Manual

Suppose the input and output functions of the circle data type define the following
external format that Figure 10-3 shows.

Figure 10-4 shows the SQL statements that create and insert several rows into a
table called circle_tab, which has a column of type circle.

Accessing the External Format of an Opaque Type
Use the lvarchar data type for operations on an opaque-type column that has an
external representation of a character string.

To use the external format of an opaque type in an SQL statement, the opaque data
type must have input and output support functions defined. When the client
application uses an lvarchar host variable to transfer data to or from an
opaque-type column, the database server invokes the following support functions
of the opaque data type:

CREATE OPAQUE TYPE circle (INTERNALLENGTH = 24,
ALIGNMENT = 4);

CREATE FUNCTION circle_in(c_in lvarchar) RETURNS circle
EXTERNAL NAME ’/usr/lib/circle.so(circle_input)’
LANGUAGE C;

CREATE IMPLICIT CAST (lvarchar AS circle WITH circle_in);

CREATE FUNCTION circle_out(c_out circle) RETURNS lvarchar
EXTERNAL NAME ’/usr/lib/circle.so(circle_output)’
LANGUAGE C;

CREATE IMPLICIT CAST (circle AS lvarchar WITH circle_out);

CREATE FUNCTION circle_rcv(c_rcv sendrcv) RETURNS circle
EXTERNAL NAME ’/usr/lib/circle.so(circle_receive)’
LANGUAGE C;

CREATE IMPLICIT CAST (sendrcv AS circle WITH circle_rcv);

CREATE FUNCTION circle_snd(c_snd circle) RETURNS sendrcv
EXTERNAL NAME ’/usr/lib/circle.so(circle_send)’
LANGUAGE C;

CREATE IMPLICIT CAST (circle AS sendrcv WITH circle_snd);

CREATE FUNCTION radius(circle) RETURNS FLOAT
EXTERNAL NAME ’/usr/lib/circle.so’
LANGUAGE C;

Figure 10-2. Registering the circle Opaque Data Type

Figure 10-3. External Format of the circle Opaque Data Type

CREATE TABLE circle_tab (circle_col circle);
INSERT INTO circle_tab VALUES (’(12.00, 16.00, 13.00)’);
INSERT INTO circle_tab VALUES (’(6.5, 8.0, 9.0)’);

Figure 10-4. Creating a Column of the circle Opaque Data Type

Chapter 10. Working with opaque data types 10-3

v The input support function describes how to transfer the opaque-type data from
the lvarchar host variable into the opaque-type column.
The database server invokes the input support function for operations such as
INSERT and UPDATE statements that send the external format of an opaque
type to the database server.

v The output support function describes how to transfer the opaque-type data from
the opaque-type column to the lvarchar host variable.
The database server invokes the output support function for operations such as
SELECT and FETCH statements that send the external format of an opaque type
to the client application.

Important: If the CREATE OPAQUE TYPE statement specifies a maxlength limit,
that value is the maximum length the database server will store for the
column, regardless of the size of the data sent by the client application.
If the length of the data is more than the maxlength limit, the database
server truncates the data and notifies the application.

Follow these steps to transfer the external format of an opaque-type column
between the database server and the Informix ESQL/C application:
1. Declare an lvarchar host variable
2. Use the lvarchar host variable in an SQL statement to perform any select,

insert, update or delete operations on the external format of the opaque-type
column.

The following sections describe each of these steps in more detail.

Declaring lvarchar Host Variables
Use the lvarchar data type to declare a host variable for the external format of an
opaque data type. The following diagram illustrates the syntax to declare an
lvarchar host variable. To declare, use the lvarchar keyword as the variable data
type, as the following syntax shows.

��
(1)

lvarchar
’ opaque type ’

�

� �

,

variable name [variable size]
* variable name

; ��

Notes:

1 Informix extension

10-4 IBM Informix ESQL/C Programmer’s Manual

Element Purpose Restrictions SQL Syntax

opaque type Name of the opaque data type
whose external format is to be
stored in the lvarchar variable

Must already be defined in the
database

Identifier segment in the IBM
Informix Guide to SQL: Syntax

variable name Name of the Informix ESQL/C
variable to declare as an
lvarchar variable

Name must conform to
language-specific rules for
variable names.

*variable name Name of an lvarchar pointer
variable for data of unspecified
length

Not equivalent to a C char
pointer (char *). Points to an
internal ESQL/C representation
for this type. You must use the
ifx_var() functions to
manipulate data. For more
information, see “The lvarchar
pointer and var binary library
functions” on page 10-22.

Name must conform to
language-specific rules for
variable names.

variable size Number of bytes to allocate for
the lvarchar variable

Integer value can be between 1
and 32,000 bytes (32 kilobytes).

Tip: To declare an lvarchar host variable for an LVARCHAR column, use the
syntax that “The lvarchar Data Type” on page 4-5 shows.

Figure 10-5 shows declarations for four lvarchar variables that hold the external
formats of opaque-type columns.

You can declare several lvarchar variables in a single declaration line. However, all
variables must have the same opaque type, as the declarations for circle1 and
circle2 in Figure 10-5 show. Figure 10-5 also shows the declaration of an lvarchar
pointer for the a_crcl_ptr host variable.

An lvarchar Host Variable of a Fixed Size
If you do not specify the size of an lvarchar host variable, the size is equivalent to
a 1-byte C-language char data type. If you specify a size, the lvarchar host variable
is equivalent to a C-language char data type of that size. When you specify a
fixed-size lvarchar host variable, any data beyond the specified size is truncated
when the column is fetched. Use an indicator variable to check for truncation.

Because an lvarchar host variable of a fixed size is equivalent to a C-language char
data type, you can use C-language character string operations to manipulate them.

For more information about how to use an lvarchar host variable of a fixed size,
see “A lvarchar Host Variable of a Fixed Size” on page 4-6.

#define CIRCLESZ 20

EXEC SQL BEGIN DECLARE SECTION;
lvarchar ’shape’ a_polygon[100];
lvarchar ’circle’ circle1[CIRCLESZ],

circle2[CIRCLESZ];
lvarchar ’circle’ *a_crcl_ptr;

EXEC SQL END DECLARE SECTION;

Figure 10-5. Sample lvarchar Host Variables for Opaque Data Type

Chapter 10. Working with opaque data types 10-5

The lvarchar Pointer Host Variable
The lvarchar pointer host variable is designed for inserting or selecting user-defined
or opaque types that can be represented in a character-string format. The size of
the character-string representation for opaque type columns can vary for each row
so that the size of the data is unknown until the column is fetched into a host
variable. The size of the data that an lvarchar pointer host variable references can
range up to 2 gigabytes.

The lvarchar pointer type is not equivalent to a C-language char pointer. Informix
ESQL/C maintains its own internal representation for the lvarchar pointer type.
This representation is identical to the representation of a var binary host variable,
except that it supports ASCII data as opposed to binary data. You must use the
ifx_var() functions to manipulate an lvarchar pointer host variable. The ifx_var()
functions can only be used for lvarchar variables declared as pointers and for var
binary variables, but not for lvarchar variables of a fixed size. For a list of the
functions that you can use with lvarchar and var binary variables, see “The
lvarchar pointer and var binary library functions” on page 10-22.

Because the size of the data in opaque type columns can vary from one row in the
table to another, you cannot know the maximum size of the data that the database
server will return. When you use an lvarchar pointer host variable, you can either
let Informix ESQL/C allocate memory to hold the data, based on the size of the
data coming from the database server, or you can allocate the memory yourself.
Use the ifx_var_flag() function to specify which method you will use. In either
case you must explicitly free the memory, using the ifx_var_dealloc() function.

To Allocate Memory Yourself: To specify that you are allocating the memory to
store data for an lvarchar host variable you must first call ifx_var_flag(), giving the
address of the lvarchar pointer and setting the flag value to zero (0), as the
following example shows:
ifx_var_flag(&mypoly, 0);

Next you must fetch the data into sqlda or a system descriptor structure. You can
then use the ifx_var_getllen() function to obtain the length of the data and use the
ifx_var_alloc() function to allocate memory of that size.
#include <stdio.h>
exec sql include “polyvar.h” /* includes udt - polygon_type */

main()
{

exec sql begin declare section;
lvarchar 'polygon_type' *mypoly1
char *buffer;
int size, p_id, len;

exec sql end declare section;

ifx_var_flag(&mypoly1, 0); /* specifies that appl. will allocate
memory */

exec sql select poly into :mypoly1 from polygon_tab where p_id = 1;
if (ifx_var_getlen(&mypoly1) > 0) { /* If select returns valid data

*/
buffer = (char *)ifx_var_getdata(&mypoly1); /*Access data in

* mypoly1*/
printf(“Length of data : %ld \n”, (int)ifx_var_getlen(&mypoly));
ifx_var_dealloc(&mypoly1); /* Always users responsibility to free */

}

10-6 IBM Informix ESQL/C Programmer’s Manual

The Opaque Type Name
This opaque type name is optional; its presence affects the declaration as follows:
v When you omit opaque type from the lvarchar declaration, the database server

attempts to identify the appropriate support and casting functions to use when it
converts between lvarchar and the opaque data type.
You can use the lvarchar host variable to hold data for several different opaque
types (as long as the database server is able to find the appropriate support
functions).

v When you specify opaque type in the lvarchar declaration, the database server
knows precisely which support and casting functions to use when it converts
between lvarchar and the opaque data type.
Using opaque type can make data conversion more efficient. In this case, however,
the lvarchar host variable can hold data only for the specified opaque type.

In the declaration of an lvarchar host variable, the name of the opaque type must be
a quoted string.

Important: Both the single quote (') and the double quote (") are valid quote
characters in lvarchar declarations. However, the beginning quote and
ending quote characters must match.

Using lvarchar Host Variables
Your Informix ESQL/C program must manipulate the external data for an lvarchar
host variable. If the length of the data that come from an opaque type column does
not vary, or if you know the maximum length of the data in an opaque type
column, you can use a fixed-size lvarchar host variable. If the size of the data
varies from one table row to another, however, use an lvarchar pointer variable
and manipulate the data with the ifx_var() functions.

The following sections describe how to use both an lvarchar variable of a fixed
size and an lvarchar pointer variable.

Using Fixed-Size lvarchar Host Variables
Figure 10-6 shows how to use a fixed-size lvarchar host variable to insert and
select data in the circle_col column of the circle_tab table (see Figure 10-4 on page
10-3).

Chapter 10. Working with opaque data types 10-7

Inserting from a Fixed-Size lvarchar Host Variable: To insert the data from a
fixed-size lvarchar host variable into an opaque-type column, take the following
steps, which are illustrated in Figure 10-6:
1. Define the fixed-size lvarchar host variable.

The example explicitly reserves 30 bytes for the lv_circle host variable.
2. Put the character string that corresponds to the external format of the opaque

data type into the lvarchar host variable.
When you put data into an lvarchar host variable, you must know the external
format of the opaque type. For the INSERT statement to succeed, the data in
the lvarchar host variable lv_circle must conform to the external format of the
opaque data type (which Figure 10-3 on page 10-3 shows).

3. Insert the data that the lvarchar host variable contains into the opaque-type
column.
When the database server executes the INSERT statement, it calls the input
support function for the circle data type (circle_in) to translate the external
format of the data that the Informix ESQL/C client application sent to the
internal format that it stores on disk.

Figure 10-6 on page 10-8 also shows an INSERT of literal values into the circle_col
column. Literal values in an INSERT (or UPDATE) statement must also conform to
the external format of the opaque data type.

You can use a fixed-size lvarchar host variable to insert a null value into an
opaque-type column with the following steps:
v Set the lvarchar host variable to an empty string.
v Set an indicator variable for the lvarchar host variable to -1.

The following code fragment inserts a null value into the circle_col column with
the lv_circle host variable:
EXEC SQL BEGIN DECLARE SECTION;

lvarchar lv_circle[30];
int circle_ind;

EXEC SQL END DECLARE SECTION;...

EXEC SQL BEGIN DECLARE SECTION;
lvarchar ’circle’ lv_circle[30];
char *x_coord;

EXEC SQL END DECLARE SECTION;

/* Insert a new circle_tab row with a literal opaque
* value */
EXEC SQL insert into circle_tab

values (’(3.00, 2.00, 11.5)’);

/* Insert data into column circle of table circle_tab using an lvarchar host
* variable */
strcpy(lv_circle, "(1.00, 17.00, 15.25)");
EXEC SQL insert into circle_tab values (:lv_circle);

/* Select column circle in circle_tab from into an lvarchar host variable
*/
EXEC SQL select circle_col into :lv_circle

from circle_tab
where radius(circle_col) = 15.25;

Figure 10-6. Accessing the External Format of the circle Opaque Data Type

10-8 IBM Informix ESQL/C Programmer’s Manual

strcpy(lv_circle, "");
circle_ind = -1;
EXEC SQL insert into circle_tab

values (:lv_circle:circle_ind)l;

For more information about indicator variables, see “Using Indicator Variables” on
page 1-21.

Selecting into a Fixed-Size lvarchar Host Variable: To select data from an opaque
type column into a fixed-size lvarchar host variable, the code fragment in
Figure 10-6 on page 10-8 takes the following steps:
1. Selects the data that the circle_col opaque-type column contains into the

lv_circle host variable.
When the database server executes the SELECT statement, it calls the output
support function for the circle data type (circle_out) to translate the internal
format that it retrieved from disk to the external format that the Informix
ESQL/C application requests. This SELECT statement also uses a user-defined
function called radius (see Figure 10-2 on page 10-3) to extract the radius value
from the opaque-type column. This function must be registered with the
database server for this SELECT statement to execute successfully.

2. Accesses the circle data from the lvarchar host variable.
After the SELECT statement, the lv_circle host variable contains data in the
external format of the circle data type.

When you select a null value from an opaque-type column into an lvarchar host
variable, Informix ESQL/C sets any accompanying indicator variable to -1.

Using lvarchar Pointer Variables
The following sections illustrate how to insert to and select from an opaque type
column with an lvarchar pointer host variable. The structural representation of the
opaque type column that the examples use is referred to as polygon_ type, and is
defined in the following lines:
struct {
int no_of_edges; /* No of sides in the polygon */
int length[100]; /* Maximum number of edges in this polygon

is 100 */
int center_x; /* Center x co-ordinate of the polygon */
int center_y; /* Center y co-ordinate of the polygon */
}

The following line illustrates the string representation of this column:
"no_of_edges, length_of_edge 1, . . . length_of_edge n, -1, center_x,
center_y”

For information about a using an lvarchar pointer host variable with a FETCH or
PUT statement that uses a dynamic SQL descriptor, see “Using an lvarchar Pointer
Host Variable with a Descriptor” on page 16-6.

Inserting from an lvarchar Pointer Host Variable: The following example code
illustrates the steps to insert data from an lvarchar pointer host variable to an
opaque type column. To simplify the example, the code does not check returned
values for errors.
#include <stdio.h>
exec sql include “polyvar.h” /* includes udt - polygon_type */

main()
{

Chapter 10. Working with opaque data types 10-9

exec sql begin declare section;
lvarchar 'polygon_type' *mypoly1
char *buffer;
int size, p_id, len;

exec sql end declare section;

exec sql create table polygon_tab (p_id int, poly polygon_type);
ifx_var_flag(&mypoly1, 0); /* User does allocation */
buffer = malloc(50);

/* String representation of mypoly1 copied into buffer*/
strcpy(buffer, “5, 10, 20 15, 10, 5, -1, 0, 0”);
size = strlen(buffer);
ifx_var_alloc(&myploy1, size+1); /* Allocate memory for data in

* mypoly1 */
ifx_var_setlen(&myploy1, size); /* Set length of data bufferin

* mypoly1 */
ifx_var_setdata(&mypoly1, buffer, size); /* Store data inside mypoly1

*/
exec sql insert into polygon_tab values (1, :mypoly1);
ifx_var_setnull(&mypoly1, 1); /* Set data buffer in mypoly1 to NULL

*/
ifx_var_dealloc(&mypoly1); /* Deallocate the data buffer in mypoly1

*/
free (buffer);

}

The example code performs the following steps:
1. It declares the lvarchar pointer host variable, *mypoly1.
2. It creates a table that consists of an integer ID column, p_id, and a column of

polygons, polygon_type.
3. It calls the ifx_var_flag() function to specify that it will allocate memory for the

data buffer (flag equals 0).
4. It creates a buffer, copies the string representation of the polygon to it, and sets

the size variable to the size of the buffer.
5. It calls ifx_var_alloc(), ifx_var_setlen(), and ifx_var_setdata() to allocate the

data transfer buffer, set the length of the buffer, and copy the data from the
application buffer to the data transfer buffer.

6. It inserts an ID value of 1 and mypoly1 to the polygon_tab table.

Selecting into an lvarchar Pointer Host Variable: The following example code
illustrates the steps to select data from an opaque type column into an lvarchar
pointer host variable. To simplify the example, the code does not check returned
values for errors.
#include <stdio.h>
exec sql include “polyvar.h” /* includes udt - polygon_type */

main()
{

exec sql begin declare section;
lvarchar 'polygon_type' *mypoly1
char *buffer;
int size, p_id, len;

exec sql end declare section;

ifx_var_flag(&mypoly1, 1); /* ESQL/C run time will do the allocation
*/

exec sql select poly into :mypoly1 from polygon_tab where p_id = 1;

10-10 IBM Informix ESQL/C Programmer’s Manual

if (ifx_var_getlen(&mypoly1) > 0) { /* If select returns valid data
*/

buffer = (char *)ifx_var_getdata(&mypoly1); /*Access data in
* mypoly1*/

printf(“Length of data : %ld \n”, (int)ifx_var_getlen(&mypoly));
printf("Data: %s \n", buffer);
ifx_var_dealloc(&mypoly1); /* Always users responsibility to free */

}

The example code performs the following steps:
1. It declares the lvarchar pointer host variable, *mypoly1.
2. It calls the ifx_var_flag() function to specify that it will let Informix ESQL/C

allocate memory for the data buffer (flag equals 1). Informix ESQL/C allocates
the memory by default if you do not call ifx_var_flag().

3. It selects the column poly into the *mypoly host variable.
4. It calls ifx_var_getdata() to obtain the address of the data buffer, casting the

return value to char * and storing the address in buffer.
5. It calls ifx_var_getlen() to illustrate how to obtain the length of the data that

was retrieved.
6. It deallocates the memory that Informix ESQL/C allocated for *mypoly1.

For an example that uses lvarchar pointers as host variables for selecting from
collection columns, see “The lvarptr.ec Program” on page 14-29.

Accessing the Internal Format of an Opaque Type
You can access the internal or binary format of an opaque data type with an
Informix ESQL/C host variable in two ways:
v Use the fixed binary data type to access a fixed-length opaque data type for

which you have the C-language data structure that represents the opaque data
type.
A fixed-length opaque data type has a predefined size for its data. This size is
equal to the size of the internal data structure for the opaque data type.

v Use the var binary data type to access a varying-length opaque data type or to
access a fixed-length opaque data type for which you do not have the
C-language data structure.
A varying-length data type holds data whose size might vary from row to row
or instance to instance.

Both the fixed binary and var binary data types have a one-to-one mapping
between their declaration and the internal data structure of the opaque data type.
The database server invokes the following support functions of the opaque data
type when the application transfers data in the fixed binary or var binary host
variables:
v The receive support function describes how to transfer the opaque-type data from

the fixed binary or var binary host variable into the opaque-type column.
The database server invokes the receive support function for operations such as
INSERT and UPDATE statements that send the internal format of an opaque
type to the database server.

v The send support function describes how to transfer the opaque-type data from
the opaque-type column to the fixed binary or var binary host variable.

Chapter 10. Working with opaque data types 10-11

The database server invokes the send support function for operations such as
SELECT and FETCH statements that send the internal format of an opaque type
to the client application.

The following sections describe the fixed binary and var binary data types.

Accessing a Fixed-Length Opaque Type
The fixed binary data type allows you to access a fixed-length opaque-type
column in its internal format. Follow these steps to transfer the internal format of a
fixed-length opaque-type column between the database server and the Informix
ESQL/C application:
1. Declare a fixed binary host variable
2. Use the fixed binary host variable in an SQL statement to perform any select,

insert, update, or delete operations on the internal format of the fixed-length
opaque-type column.

The following sections describe each of these steps in more detail.

Declaring fixed binary Host Variables
Use the fixed binary data type to declare host variables that access the internal
format of a fixed-length opaque data type. To declare a fixed binary host variable,
use the following syntax.

��
(1)

fixed binary
’ opaque type ’

structure name �

� �

,

variable name ; ��

Notes:

1 Informix extension

Element Purpose Restrictions SQL Syntax

opaque type Name of the fixed-length opaque
data type whose internal format is
to be stored in the fixed binary
variable

Must already be defined in the
database.

Identifier segment in
the IBM Informix Guide
to SQL: Syntax

structure name Name of the C data structure that
represents the internal format of the
opaque data type

Must be defined in a header (.h) file
that the source file includes. Must
also match the data structure that
the database server uses to
represent the internal format of the
opaque type.

Name must conform to
language-specific rules
for structure names.

variable name Name of the ESQL/C variable to
declare as a fixed binary variable

Name must conform to
language-specific rules
for variable names.

Important: A fixed binary host variable is only valid for a column of a
fixed-length opaque data type. If the opaque data type is of varying
length, use a var binary host variable. If you do not know the internal

10-12 IBM Informix ESQL/C Programmer’s Manual

data structure of a fixed-length opaque data type, you must also use a
var binary host variable to access it.

For more information, see “Accessing a Varying-Length Opaque Type” on page
10-15.

To use a fixed binary host variable, you must reference a C data structure that
maps the internal data structure of the opaque data type. You specify this C data
structure as the structure name in the fixed binary declaration.

It is suggested that you create a C header file (.h file) for the C data structure that
defines a fixed-length opaque data type. You can then include this header file in
each Informix ESQL/C source file that uses fixed binary host variables to access
the opaque data type.

For example, the following code fragment declares a fixed binary host variable
called my_circle for the circle opaque data type:
#include <circle.h> /* contains definition of circle_t */

EXEC SQL BEGIN DECLARE SECTION;
fixed binary ’circle’ circle_t my_circle;

EXEC SQL END DECLARE SECTION;

In this example, the circle.h header file contains the declaration for the circle_t
structure (see Figure 10-1 on page 10-2), which is the internal data structure for the
circle opaque type. The declaration for the my_circle host variable specifies both
the name of the opaque data type, circle, and the name of its internal data
structure, circle_t.

The Opaque Type: When you declare a fixed binary host variable, you must
specify the opaque type as a quoted string.

Important: Both the single quote (') and the double quote (") are valid quote
characters. However, the beginning quote and ending quote characters
must match.

The opaque type name is optional; it affects the declaration as follows:
v When you omit opaque type from the fixed binary declaration, the database

server attempts to identify the appropriate support functions to use when it
sends the host variable to the database server for storage in the opaque-type
column.
You can use the fixed binary host variable to hold data for several different
opaque types (as long as the database server is able to find the appropriate
support functions).

v When you specify opaque type in the fixed binary declaration, the database
server knows precisely which support functions to use to read and write to the
opaque-type column.
Using opaque type can make data conversion more efficient. In this case, however,
the fixed binary host variable can hold data only for the specified opaque type
data type.

You can declare several fixed binary variables in a single declaration. However, all
variables must have the same opaque type, as the following declaration shows:

Chapter 10. Working with opaque data types 10-13

#include <shape.h>;

EXEC SQL BEGIN DECLARE SECTION;
fixed binary ’shape’ shape_t square1, square2;

EXEC SQL END DECLARE SECTION;

Using fixed binary Host Variables
Your Informix ESQL/C program must handle all manipulation of the internal data
structure for the fixed binary host variable; it must explicitly allocate memory and
assign field values.

Figure 10-7 shows how to use a fixed binary host variable to insert and select data
in the circle_col column of the circle_tab table (see Figure 10-4 on page 10-3).

Inserting from a fixed binary Host Variable: To insert the data that a fixed
binary host variable contains into an opaque-type column, the code fragment in
Figure 10-7 on page 10-14 takes the following steps:
1. Includes the definition of the internal structure of the circle opaque data type.

The definition of the circle_t internal data structure, which Figure 10-1 on page
10-2 shows, must be available to your Informix ESQL/C program. Therefore,
the code fragment includes the circle.h header file, which contains the
definition of the circle_t structure.

2. Stores the data for the fixed binary host variable into the internal data
structure, circle_t.
The declaration of the fixed binary host variable associates the circle_t internal
data structure with the fbin_circle host variable. The code fragment assigns a
value to each member of the circle_t data structure.

3. Inserts the data that the fbin_circle host variable contains into the circle_col
opaque-type column.

/* Include declaration for circle_t structure */
#include <circle.h>;

EXEC SQL BEGIN DECLARE SECTION;
fixed binary ’circle’ circle_t fbin_circle;

EXEC SQL END DECLARE SECTION;

/* Assign data to members of internal data structure */
fbin_circle.center.x = 1.00;
fbin_circle.center.y = 17.00;
fbin_circle.radius = 15.25;

/* Insert a new circle_tab row with a fixed binary host
* variable */
EXEC SQL insert into circle_tab values (:fbin_circle);

/* Select a circle_tab row from into a fixed binary
* host variable */
EXEC SQL select circle_col into :fbin_circle

from circle_tab
where radius(circle_col) = 15.25;

if ((fbin_circle.center.x == 1.00) &&
(fbin_circle.center.y == 17.00))

printf("coordinates = (%d, %d)\n",
fbin_circle.center.x, fbin_circle.center.y);

Figure 10-7. Accessing the Internal Format of the circle Opaque Data Type With a fixed
binary Host Variable

10-14 IBM Informix ESQL/C Programmer’s Manual

When the database server executes the INSERT statement, it calls the receive
support function for the circle data type (circle_rcv) to perform any translation
necessary between the internal format of the data that the Informix ESQL/C
client application has sent (circle_t) and the internal format of the circle data
type on disk.

To insert a null value into an opaque-type column with a fixed binary host
variable, set an indicator variable to -1. The following code fragment inserts a null
value into the circle_col column with the fbin_circle host variable:
#include <circle.h>;

EXEC SQL BEGIN DECLARE SECTION;
fixed binary ’circle’ circle_t fbin_circle;
int circle_ind;

EXEC SQL END DECLARE SECTION;...

circle_ind = -1;
EXEC SQL insert into circle_tab

values (:fbin_circle:circle_ind);

For more information about indicator variables, see “Using Indicator Variables” on
page 1-21.

Selecting into a fixed binary Host Variable: To select the data that an
opaque-type column contains into a fixed binary host variable, the code fragment
in Figure 10-7 on page 10-14 takes the following steps:
1. Selects the data that the circle_col opaque-type column contains into the

fbin_circle host variable.
When the database server executes the SELECT statement, it calls the send
support function for circle (circle_snd) to perform any translation necessary
between the internal format that it retrieved from disk and the internal format
that the Informix ESQL/C application uses. This SELECT statement also uses a
user-defined function called radius (see Figure 10-2 on page 10-3) to extract the
radius value from the opaque-type column.

2. Accesses the circle data from the fixed binary host variable.
After the SELECT statement, the fbin_circle host variable contains data in the
internal format of the circle data type. The code fragment obtains the value of
the (x,y) coordinate from the members of the circle_t data structure.

When you select a null value from an opaque-type column into a fixed binary host
variable, Informix ESQL/C sets any accompanying indicator variable to -1.

Accessing a Varying-Length Opaque Type
The var binary data type allows you to access the internal format of either of the
following opaque data types:
v A fixed-length opaque-type column for which you do not have access to the

C-structure of the internal format
v A varying-length opaque-type column

Follow these steps to transfer the internal format of either of these opaque data
type columns between the database server and the Informix ESQL/C application:
1. Declare a var binary host variable

Chapter 10. Working with opaque data types 10-15

2. Use the var binary host variable in an SQL statement to perform any select,
insert, update, or delete operations on the internal format of the opaque-type
column.

The following sections describe each of these steps in more detail.

Declaring var binary Host Variables
To declare a var binary host variable, use the following syntax.

��
(1)

var binary
’ opaque type ’

structure name �

,

variable name �

� ; ��

Notes:

1 Informix extension

Element Purpose Restrictions SQL Syntax

opaque type Name of the opaque data type
whose internal format is to be
stored in the var binary
variable.

Must already be defined in the
database

Identifier segment in the IBM
Informix Guide to SQL: Syntax

variable name Name of the ESQL/C variable
to declare as a var binary
variable

Name must conform to
language-specific rules for
variable names.

Figure 10-8 shows declarations for three var binary variables.

In the declaration of a var binary host variable, the name of the opaque type must
be a quoted string.

Important: Both the single quote (') and the double quote (") are valid quote
characters. However, the beginning quote and ending quote characters
must match.

The opaque type name is optional; it affects the declaration as follows:
v When you omit opaque type from the var binary declaration, the database server

attempts to identify the appropriate support functions to use when the
application receives the internal data structure from the opaque-type column in
a database.

#include <shape.h>;
#include <image.h>;

EXEC SQL BEGIN DECLARE SECTION;
var binary polygon1;
var binary ’shape’ polygon2, a_circle;
var binary ’image’ an_image;

EXEC SQL END DECLARE SECTION;

Figure 10-8. Sample var binary Host Variables

10-16 IBM Informix ESQL/C Programmer’s Manual

The advantage of the omission of opaque type is that you can use the var binary
host variable to hold data that was selected from several different opaque types
(as long as the database server is able to find the appropriate support functions).
The disadvantage of the omission of opaque type is that host variables declared in
this way cannot be used as parameters to user defined routines (UDRs).

v When you specify opaque type in the var binary declaration, the database server
knows precisely which support functions to use when it sends the internal data
structure to the database server for storage in the opaque-type column.
The loss of ambiguity that the opaque type name provides can make data
conversion more efficient. However, in this case, the var binary host variable can
only hold data from the specified opaque type data type.

You can declare several var binary variables in a single declaration line. However,
all variables must have the same opaque type, as Figure 10-8 on page 10-16 shows.

Using var binary Host Variables
In an Informix ESQL/C program, the varying-length C structure, ifx_varlena_t,
stores a binary value for a var binary host variable. This data structure allows you
to transfer binary data without knowing the exact structure of the internal format
for the opaque data type. It provides a data buffer to hold the data for the
associated var binary host variable.

Important: The ifx_varlena_t structure is an opaque structure to Informix ESQL/C
programs. That is, you should not access its internal structure directly.
The internal structure of ifx_varlena_t may change in future releases.
Therefore, to create portable code, always use the Informix ESQL/C
accessor functions for this structure to obtain and store values in the
ifx_varlena_t structure. For a list of these Informix ESQL/C access
functions, see “The lvarchar pointer and var binary library functions”
on page 10-22.

This section uses a varying-length opaque data type called image to demonstrate
how an Informix ESQL/C var binary host variable accesses an opaque data type.
The image data type encapsulates an image such as a JPEG, GIF, or PPM file. If the
image is less than 2 kilobytes, the data structure for the data type stores the image
directly. However, if the image is greater than 2 kilobytes, the data structure stores
a reference (an LO-pointer structure) to a smart large object that contains the image
data. Figure 10-9 shows the internal data structure for the image data type in the
database.

Chapter 10. Working with opaque data types 10-17

Figure 10-10 shows the CREATE TABLE statement that creates a table called
image_tab that has a column of type image and an image identifier.

Figure 10-11 shows how to use a var binary host variable to insert and select data
in the image_col column of the image_tab table (see Figure 10-10 on page 10-18).

typedef struct
{
int img_len;
int img_thresh;
int img_flags;
union

{
ifx_lop_t img_lobhandle;
char img_data[4];
}

} image_t;

typedef struct
{
point_t center;
double radius;
} circle_t;

Figure 10-9. Internal Data Structures for the image Opaque Data Type

CREATE TABLE image_tab
(

image_id integer not null primary key),
image_col image

);

Figure 10-10. Creating a Column of the image Opaque Data Type

10-18 IBM Informix ESQL/C Programmer’s Manual

For more information about the ifx_var_flag(), ifx_var_alloc(), ifx_var_setdata(),
ifx_var_getdata(), and ifx_var_dealloc() functions, see “The lvarchar pointer and
var binary library functions” on page 10-22.

Inserting from a var binary Host Variable: To insert the data that a var binary
host variable contains into an opaque-type column, the code fragment in
Figure 10-11 on page 10-19 takes the following steps:
1. Loads the image data from an external JPEG, GIF, or PPM file into the image_t

internal data structure.
The load_image() C routine loads the user_image structure from an external
file. The definition of the image_t internal data structure, which Figure 10-9 on
page 10-18 shows, must be available to your Informix ESQL/C program.
Therefore, the code fragment includes the image.h header file, which defines
the image_t structure.
The getsize() C function is provided as part of the Informix ESQL/C support
for the image opaque type; it returns the size of the image_t structure.

2. Allocates memory for the data buffer of the var binary host variable,
vbin_image.

#include <image.h>;

EXEC SQL BEGIN DECLARE SECTION;
var binary ’image’ vbin_image;

EXEC SQL END DECLARE SECTION;

struct image_t user_image, *image_ptr;
int imgsz;

/* Load data into members of internal data structure
load_image(&user_image);
imgsz = getsize(&user_image);

/* Allocate memory for var binary data buffer */
ifx_var_flag(&vbin_image, 0);
ifx_var_alloc(&vbin_image, imgsz);

/* Assign data to data buffer of var binary host
* variable */
ifx_var_setdata(&vbin_image, &user_image, imgsz);

/* Insert a new image_tab row with a var binary host
* variable */
EXEC SQL insert into image_tab values (1, :vbin_image);

/* Deallocate image data buffer */
ifx_var_dealloc(&vbin_image);

/* Select an image_tab row from into a var binary
* host variable */
ifx_var_flag(&vbin_image, 1);
EXEC SQL select image_col into :vbin_image

from image_tab
where image_id = 1;

image_ptr = (image_t *)ifx_var_getdata(&vbin_image);
unload_image(&user_image);
ifx_var_dealloc(&vbin_image);

Figure 10-11. Accessing the Internal Format of the image Opaque Data Type With a var
binary Host Variable

Chapter 10. Working with opaque data types 10-19

The ifx_var_flag() function with a flag value of 0 notifies Informix ESQL/C
that the application will perform memory allocation for the vbin_image host
variable. The ifx_var_alloc() function then allocates for the data buffer the
number of bytes that the image data requires (imgsz).

3. Stores the image_t structure in the data buffer of the vbin_image host variable.
The ifx_var_setdata() function saves the data that the user_image structure
contains into the vbin_image data buffer. This function also requires the size of
the data buffer, which the getsize() function has returned.

4. Inserts the data that the vbin_image data buffer contains into the image_col
opaque-type column.
When the database server executes the INSERT statement, it calls the receive
support function for the image data type to perform any translation necessary
between the internal format of the data that the Informix ESQL/C client
application has sent (image_t) and the internal format of the image data type
on disk.

5. Deallocates the data buffer of the vbin_image host variable.
The ifx_var_dealloc() function deallocates the vbin_image data buffer.

To insert a null value into an opaque-type column with a var binary host variable,
you can use either of the following methods:
v Set an indicator variable that is associated with a var binary host variable to -1.

The following code fragment uses the image_ind indicator variable and the
vbin_image host variable to insert a null value into the circle_col column:
#include <image.h>;

EXEC SQL BEGIN DECLARE SECTION;
var binary ’image’ vbin_image;
int image_ind;

EXEC SQL END DECLARE SECTION;

image_ind = -1;
EXEC SQL insert into image_tab

values (:vbin_image:image_ind);

For more information about indicator variables, see “Using Indicator Variables”
on page 1-21.

v Use the ifx_var_setnull() function to set the data buffer of the var binary host
variable to a null value.
For the same vbin_image host variable, the following lines use the
ifx_var_setnull() function to insert a null value into the circle_col column:
ifx_var_setnull(&vbin_image, 1);
EXEC SQL insert into image_tab values (:vbin_image);

For more information about the ifx_var_setnull() function, see B-155.

Selecting into a var binary Host Variable: To select the data that an opaque-type
column contains into a var binary host variable, the code fragment in Figure 10-11
on page 10-19 takes the following steps:
1. Allocates memory for the data buffer of the var binary host variable,

vbin_image.
The ifx_var_flag() function with a flag value of 1 notifies Informix ESQL/C
that it is to allocate a new data buffer for the vbin_image host variable. (This
data buffer had been deallocated after the INSERT statement completed.)
Informix ESQL/C performs this allocation when it receives the data from the
SELECT statement.

10-20 IBM Informix ESQL/C Programmer’s Manual

2. Selects the data that the image_col opaque-type column contains into the
vbin_image data buffer.
When the database server executes the SELECT statement, it calls the send
support function for image to perform any translation necessary between the
internal format of the image data type on disk and the internal format that the
Informix ESQL/C client application has sent (image_t).

3. Stores the data that the data buffer of the vbin_image host variable contains in
an image_t structure.
After the SELECT statement, the data buffer of the vbin_image host variable
contains data in the internal format of the image data type. The
ifx_var_getdata() function returns the contents of this data buffer into an
image_t data structure. Because the ifx_var_getdata() function returns the data
buffer as a “void *” value, this call to ifx_var_getdata() casts this return value
as a pointer to an image_t structure before it assigns it to the image_ptr
variable.

4. Unloads the image data from the image_t internal data structure to an external
JPEG, GIF, or PPM file.
The unload_image() routine unloads the user_image structure to an external
file.

5. Deallocates the data buffer of the vbin_image host variable.
The ifx_var_dealloc() function deallocates the vbin_image data buffer. You
must explicitly deallocate the data buffer even when Informix ESQL/C
allocated it for you.

To check for a null value from an opaque-type column with a var binary host
variable, you can use either of the following methods:
v Check an indicator variable that is associated with a var binary host variable for

a value of -1.
The following code fragment uses the image_ind indicator variable and the
vbin_image host variable to check for a null value from the circle_col column:
#include <image.h>;

EXEC SQL BEGIN DECLARE SECTION;
var binary ’image’ vbin_image;
int image_ind;

EXEC SQL END DECLARE SECTION;

EXEC SQL select image_col into :vbin_image:image_ind
from image_tab
where image_id = 1;

if (image_ind == -1)...

For more information about indicator variables, see “Using Indicator Variables”
on page 1-21.

v Use the ifx_var_isnull() function to check the data buffer of the var binary host
variable for a null value.
For the same vbin_image host variable, the following lines use the
ifx_var_isnull() function to check for a null value in the image_col column:
EXEC SQL select image_col into :vbin_image

from image_tab
where image_id = 1;

if (ifx_var_isnull(&vbin_image) == 1)...

For more information about the ifx_var_isnull() function, see B-153.

Chapter 10. Working with opaque data types 10-21

The lvarchar pointer and var binary library functions
The following library functions are available in Informix ESQL/C to access the
data buffer of an lvarchar pointer or var binary host variable.

Function Name Purpose See

ifx_var_alloc() Allocates memory for the data buffer. B-148

ifx_var_dealloc() Deallocates memory for the data buffer. B-149

ifx_var_flag() Determines whether ESQL/C or the application handles
memory allocation for the data buffer.

B-150

ifx_var_getdata() Returns the contents of the data buffer. B-151

ifx_var_getlen() Returns the length of the data buffer. B-152

ifx_var_isnull() Checks whether the data in the data buffer is null. B-153

ifx_var_setdata() Sets the data for the data buffer. B-154

ifx_var_setlen() Sets the length of the data buffer. B-154

ifx_var_setnull() Sets the data in the data buffer to a null value. B-155

These lvarchar pointer and var binary functions are defined in the sqlhdr.h header
file so you do not need to include a special header file in your Informix ESQL/C
programs that use them.

Accessing Predefined Opaque Data Types
IBM Informix implements several built-in data types as predefined opaque data types.
These data types are opaque data types for which support functions and the
database definition are provided. For example, the smart-large-object data types,
CLOB and BLOB, as an opaque data type called clob and blob are implemented.
Informix ESQL/C uses the ifx_lo_t structure, called an LO-pointer, to access the
smart large objects. This structure is defined in the locator.h header file.

Therefore, you declare Informix ESQL/C host variables for database columns of
type CLOB or BLOB as a fixed binary host variable, as follows:
EXEC SQL include locator;...

EXEC SQL BEGIN DECLARE SECTION;
fixed binary ’clob’ ifx_lo_t clob_loptr;
fixed binary ’blob’ ifx_lo_t blob_loptr;

EXEC SQL END DECLARE SECTION;...

EXEC SQL select blobcol into :blob_loptr from tab1;

For more information about how to access smart large objects, see Chapter 8,
“Working with smart large objects,” on page 8-1.

10-22 IBM Informix ESQL/C Programmer’s Manual

Part 2. Database server communication

© Copyright IBM Corp. 1996, 2010

IBM Informix ESQL/C Programmer’s Manual

Chapter 11. Exception handling

Obtain diagnostic information after an SQL statement . 11-2
Types of Diagnostic Information . 11-2

Types of Database Exceptions . 11-2
Descriptive Information. 11-3

Types of Status Variables . 11-3
Exception Handling with SQLSTATE . 11-3

Using GET DIAGNOSTICS . 11-4
Statement Information . 11-4
Exception Information . 11-5

Using the SQLSTATE Variable . 11-7
Class and Subclass Codes . 11-8
List of SQLSTATE Class Codes . 11-8

Checking for Exceptions with SQLSTATE . 11-11
Success in SQLSTATE . 11-12
NOT FOUND in SQLSTATE . 11-12
Warnings in SQLSTATE . 11-13
Runtime Errors in SQLSTATE . 11-15
Multiple Exceptions . 11-15

Exception Handling with the sqlca Structure . 11-17
Fields of the sqlca structure . 11-17
Using the SQLCODE Variable . 11-19

SQLCODE in Pure C Modules . 11-20
SQLCODE and the exit() Call . 11-20
SQLCODE After a DESCRIBE Statement . 11-20

Checking for Exceptions with sqlca . 11-20
Success in sqlca . 11-21
NOT FOUND in SQLCODE . 11-21
Warnings in sqlca.sqlwarn . 11-22
Runtime Errors in SQLCODE . 11-23

Displaying Error Text (Windows) . 11-25
Choosing an Exception-Handling Strategy . 11-25

Checking After Each SQL Statement . 11-25
The WHENEVER Statement . 11-28

Library Functions for Retrieving Error Messages . 11-29
Displaying Error Text in a Windows Environment . 11-30

A Program That Uses Exception Handling . 11-30
Compiling the Program . 11-30
Guide to the getdiag.ec File . 11-30

Line 4 . 11-31
Lines 12 and 13 . 11-31
Line 15 . 11-31
Lines 17, 23, 25, and 33 . 11-31
Lines 35 and 37 . 11-32
Line 41 . 11-32

Guide to the exp_chk.ec File . 11-32
Lines 1 to 4 . 11-33
Line 5 . 11-33
Lines 6 to 31 . 11-33
Lines 32 to 80. 11-35
Lines 81 to 87. 11-36
Lines 88 to 94. 11-36
Lines 95 to 117 . 11-36
Lines 118 to 144 . 11-37
Lines 145 to 168 . 11-38

© Copyright IBM Corp. 1996, 2010 11-1

Lines 169 to 213 . 11-40

Proper database management requires that you know whether the database server
successfully processes your SQL statements as you intend. If a query fails and you
do not know it, you might display meaningless data to the user. A more serious
consequence might be that you update a customer account to show a payment of
$100, and the update fails without your knowledge. The account is now incorrect.

To handle such error situations, your Informix ESQL/C program must check that
every SQL statement executes as you intend. These topics describe the following
exception-handling information:
v How to interpret the diagnostic information that the database server presents

after it executes an SQL statement
v How to use the SQLSTATE variable and the GET DIAGNOSTICS statement to

check for runtime errors and warnings that your Informix ESQL/C program
might generate

v How to use the SQLCODE variable and the SQL Communications Area (sqlca)
to check for runtime errors and warnings that your Informix ESQL/C program
might generate

v How to choose an exception-handling strategy that consistently handles errors
and warnings in your Informix ESQL/C programs

v How to use the rgetlmsg() and rgetmsg() library functions to retrieve the
message text that is associated with a given Informix error number

The end of these topics present an annotated example program that is called
getdiag. The getdiag sample program demonstrates how to handle exceptions with
the SQLSTATE variable and the GET DIAGNOSTICS statement.

Obtain diagnostic information after an SQL statement
After your Informix ESQL/C program executes an SQL statement, the database
server returns information about the success of the statement. This section
summarizes the following information:
v The types of diagnostic information that are available to an Informix ESQL/C

program
v The two methods that your Informix ESQL/C program can use to obtain

diagnostic information

Types of Diagnostic Information
The database server can return the following types of diagnostic information:
v Database exceptions are conditions that the database server returns to describe

how successful the execution of the SQL statement was.
v Descriptive information, such as the DESCRIBE and GET DIAGNOSTICS

statements can provide about certain SQL statements.

Types of Database Exceptions
When the database server executes an SQL statement, it can return one of four
types of database exceptions to the application program:
v Success

11-2 IBM Informix ESQL/C Programmer’s Manual

The SQL statement executed successfully. When a statement that might return
data into host variables executes, a success condition means that the statement
has returned the data and that the program can access it through the host
variables.

v Success, but warning generated
A warning is a condition that does not prevent successful execution of an SQL
statement; however, the effect of the statement is limited and the statement
might not produce the expected results. A warning can also provide additional
information about the executed statement.

v Success, but no rows found
The SQL statement executed without errors, with the following exceptions:
– No rows matched the search criteria (the NOT FOUND condition).
– The statement did not operate on a row (the END OF DATA condition).

v Error
The SQL statement did not execute successfully and made no change to the
database. Runtime errors can occur at the following levels:
– Hardware errors include controller failure, bad sector on disk, and so on.
– Kernel errors include file-table overflow, insufficient semaphores, and so on.
– Access-method errors include duplicated index keys, SQL null inserted into

non-null columns, and so on.
– Parser errors include invalid syntax, unknown objects, invalid statements, and

so on.
– Application errors include user or lock-table overflow, and so on.

Descriptive Information
The following SQL statements can return information about SQL statements:
v A DESCRIBE statement returns information about a prepared SQL statement.

This information is useful when you execute dynamic SQL. For more
information, see “SQLCODE After a DESCRIBE Statement” on page 11-20.

v A GET DIAGNOSTICS statement, when you call it after you have established a
connection to a database environment, can return the name of the database
server and the connection. For more information, see “Using GET
DIAGNOSTICS” on page 11-4.

The IBM Informix Guide to SQL: Syntax fully describes these two statements.

Types of Status Variables
The following methods obtain diagnostic information about the outcome of an SQL
statement:
v Access the SQLSTATE variable, a five-character string that contains status

values that conform to the ANSI and X/Open standards
v Access the SQLCODE variable, an int4 integer that contains Informix-specific

status values

When you create applications that must conform to either the ANSI or X/Open
standard, use the SQLSTATE variable as your primary exception-handling method.

Exception Handling with SQLSTATE
It is recommended that you obtain diagnostic information about SQL statements
with the SQLSTATE variable and the GET DIAGNOSTICS statement.

Chapter 11. Exception handling 11-3

Important: SQLSTATE is a more effective way to detect and handle error
messages than the SQLCODE variable because SQLSTATE supports
multiple exceptions. SQLSTATE is also more portable because it
conforms to ANSI and X/Open standards. Informix ESQL/C supports
the sqlca structure and SQLCODE for compatibility with earlier
versions and for Informix-specific exceptions. For more information
about the sqlca structure, see “Exception Handling with the sqlca
Structure” on page 11-17

After the database server executes an SQL statement, it sets SQLSTATE with a
value that indicates the success or failure of the statement. From this value, your
program can determine if it needs to perform further diagnostics. If SQLSTATE
indicates a problem, you can use the GET DIAGNOSTICS statement to obtain more
information.

This section describes how to use the SQLSTATE variable and the GET
DIAGNOSTICS statement to perform exception handling. It describes the following
topics:
v Using the GET DIAGNOSTICS statement to access fields of the diagnostics area
v Understanding the format of the SQLSTATE values
v Using SQLSTATE to check for the different types of exceptions

Using GET DIAGNOSTICS
This section briefly summarizes how to use the GET DIAGNOSTICS statement
within an Informix ESQL/C program. For a full description of the GET
DIAGNOSTICS statement, see the IBM Informix Guide to SQL: Syntax.

The GET DIAGNOSTICS statement returns information that is held in the fields of
the diagnostics area. The diagnostics area is an internal structure that the database
server updates after it executes an SQL statement. Each application has one
diagnostics area. Although GET DIAGNOSTICS accesses the diagnostics area, it
never changes the contents of this area.

To access a field in the diagnostics area, supply a host variable to hold the value
and the field keyword to specify the field that you want to access:
:host_var = FIELD_NAME

Make sure that the data types of the host variable and the diagnostics field are
compatible.

The fields of the diagnostics area fall into two categories:
v Statement information describes the overall result of the SQL statement, in

particular the number of rows that it has modified and the number of exceptions
that result.

v Exception information describes individual exceptions that result from the SQL
statement.

Statement Information
The GET DIAGNOSTICS statement returns information about the most-recently
executed SQL statement. This form of the GET DIAGNOSTICS statement has the
following general syntax:
EXEC SQL get diagnostics statement_fields;

Table 11-1 summarizes the statement_fields of the diagnostics area.

11-4 IBM Informix ESQL/C Programmer’s Manual

Table 11-1. Statement Information from the GET DIAGNOSTICS Statement

Field-Name
Keyword

ESQL/C
Data Type Description

NUMBER mint This field holds the number of exceptions that the
diagnostics area contains for the most-recently executed
SQL statement. NUMBER is in the range of 1 to 35,000.
Even when an SQL statement is successful, the diagnostics
area contains one exception.

MORE char[2] This field holds either an N or a Y (plus a null terminator).
An N character indicates that the diagnostics area contains
all of the available exception information. A Y character
indicates that the database server has detected more
exceptions than it can store in the diagnostics area. At
present, the database server always returns an N because
the database server can store all exceptions.

ROW_COUNT mint When the SQL statement is an INSERT, UPDATE, or
DELETE, this field holds a numeric value that specifies the
number of rows that the statement has inserted, updated,
or deleted. ROW_COUNT is in the range of 0 to
999,999,999.

For any other SQL statement, the value of ROW_COUNT
is undefined.

Figure 11-1 shows a GET DIAGNOSTICS statement that retrieves statement
information for a CREATE TABLE statement into the host variables
:exception_count and :overflow.

Use the statement information to determine how many exceptions the
most-recently executed SQL statement has generated. For more information, see
“Multiple Exceptions” on page 11-15.

For more information about the statement fields of the diagnostics area, see “The
Statement Clause” in the GET DIAGNOSTICS statement in the IBM Informix Guide
to SQL: Syntax.

Exception Information
The GET DIAGNOSTICS statement also returns information about the exceptions
that the most-recently executed SQL statement has generated. Each exception has
an exception number. To obtain information about a particular exception, use the
EXCEPTION clause of the GET DIAGNOSTICS statement, as follows:
EXEC SQL get diagnostics exception except_num exception_fields;

EXEC SQL BEGIN DECLARE SECTION;
mint exception_count;
char overflow[2];

EXEC SQL END DECLARE SECTION;...

EXEC SQL create database db;

EXEC SQL create table tab1 (col1 integer);
EXEC SQL get diagnostics :exception_count = NUMBER,

:overflow = MORE;

Figure 11-1. Using GET DIAGNOSTICS to Return Statement Information

Chapter 11. Exception handling 11-5

The except_num argument can be a literal number or a host variable. An except_num
of one (1) corresponds to the SQLSTATE value that the most-recently executed
SQL statement sets. After this first exception, the order in which the database
server fills the diagnostics area with exception values is not predetermined. For
more information, see “Multiple Exceptions” on page 11-15.

Table 11-2 summarizes the exception_fields information of the diagnostics area.

Table 11-2. Exception Information from the GET DIAGNOSTICS Statement

Field Name Keyword
ESQL/C
Data Type Description

RETURNED_SQLSTATE char[6] This field holds the SQLSTATE value that describes the current
exception. For information about the values of this field, see “Using
the SQLSTATE Variable” on page 11-7.

INFORMIX_SQLCODE int4 This field holds the Informix-specific status code. This code is also
available in the global SQLCODE variable. For more information, see
“Using the SQLCODE Variable” on page 11-19.

CLASS_ORIGIN char[255] This field holds a variable-length character string that defines the
source of the class portion of SQLSTATE. If Informix defines the class
code, the value is "IX000". If the International Standards Organization
(ISO) defines the class code, the value of CLASS_ORIGIN is "ISO
9075". If a user-defined routine has defined the message text of the
exception, the value of CLASS_ORIGIN is "U0001".

SUBCLASS_ORIGIN char[255] This field holds a variable-length character string that contains the
source of the subclass portion of SQLSTATE. If ISO defines the
subclass, the value of SUBCLASS_ORIGIN is "ISO 9075". If Informix
defines the subclass, the value is "IX000". If a user-defined routine has
defined the message text of the exception, the value is "U0001".

MESSAGE_TEXT char[8191] This field holds a variable-length character string that contains the
message text to describe this exception. This field can also contain the
message text for any ISAM exceptions or a user-defined message
from a user-defined routine.

MESSAGE_LENGTH mint This field holds the number of characters that are in the text of the
MESSAGE_TEXT string.

SERVER_NAME char[255] This field holds a variable-length character string that holds the name
of the database server that is associated with the actions of a
CONNECT or DATABASE statement. This field is blank when no
current connection exists.

For more information about the SERVER_NAME field, see
“Identifying an Explicit Connection” on page 12-20.

CONNECTION_NAME char[255] This field holds a variable-length character string that holds the name
of the connection that is associated with the actions of a CONNECT
or SET CONNECTION statement. This field is blank when no current
connection or no explicit connection exists. Otherwise, it contains the
name of the last successfully established connection.

For more information about the CONNECTION_NAME field, see
“Identifying an Explicit Connection” on page 12-20.

Use the exception information to save detailed information about an exception. The
code fragment in Figure 11-2 retrieves exception information about the first
exception of a CREATE TABLE statement.

11-6 IBM Informix ESQL/C Programmer’s Manual

For more information about the exception fields, see the GET DIAGNOSTICS
statement in the IBM Informix Guide to SQL: Syntax.

Using the SQLSTATE Variable
SQLSTATE is a five-character string that the database server sets after it executes
each SQL statement. The Informix ESQL/C header file, sqlca.h, declares
SQLSTATE as a global variable. Since the Informix ESQL/C preprocessor
automatically includes sqlca.h in an Informix ESQL/C program, you do not need
to declare SQLSTATE.

After the database server executes an SQL statement, the database server
automatically updates the SQLSTATE variable as follows:
v The database server stores the exception value in the RETURNED_SQLSTATE

field of the diagnostics area.
v Informix ESQL/C copies the value of the RETURNED_SQLSTATE field to the

global SQLSTATE variable.

These updates to the SQLSTATE variable are equivalent to the execution of the
following GET DIAGNOSTICS statement immediately after an SQL statement:
EXEC SQL get diagnostics exception 1 :SQLSTATE = RETURNED_SQLSTATE;

Tip: At runtime, Informix ESQL/C automatically copies the value of the
RETURNED_SQLSTATE field into the global SQLSTATE variable. Therefore,
you do not usually need to access the RETURNED_SQLSTATE field directly.
For more information, see “Multiple Exceptions” on page 11-15.

The value in SQLSTATE is the status of the most-recently executed SQL statement
before the GET DIAGNOSTICS statement executed. If the database server
encounters an error when it executes the GET DIAGNOSTICS statement, it sets
SQLSTATE to "IX001" and sets SQLCODE (and sqlca.sqlcode) to the value of the
error number that corresponds to the error; the contents of the diagnostics area are
undefined.

The SQLSTATE variable holds the ANSI-defined value for the exception. Each
SQLSTATE value has an associated Informix-specific status code. You can obtain
the value of this Informix-specific status code from either of the following items:
v The INFORMIX_SQLCODE field of the diagnostics area
v The SQLCODE variable (“Using the SQLCODE Variable” on page 11-19)

EXEC SQL BEGIN DECLARE SECTION;
char class_origin_val[255];
char subclass_origin_val[255];
char message_text_val[8191];
mint messlength_val;

EXEC SQL END DECLARE SECTION;

EXEC SQL create database db;

EXEC SQL create table tab1 (col1 integer);
EXEC SQL get diagnostics exception 1

:class_origin_val = CLASS_ORIGIN,
:subclass_origin_val = SUBCLASS_ORIGIN,
:message_text_val = MESSAGE_TEXT,
:messlength_val = MESSAGE_LENGTH;

Figure 11-2. Example of Using GET DIAGNOSTICS to Return Exception Information

Chapter 11. Exception handling 11-7

The next two sections provide the following information about the format of the
SQLSTATE value:
v How to use the class and subclass portions of the SQLSTATE value
v The list of exception values that SQLSTATE can store

Class and Subclass Codes
To determine the success of an SQL statement, your Informix ESQL/C program
must be able to interpret the value in the SQLSTATE variable. SQLSTATE consists
of a two-character class code and a three-character subclass code. In Figure 11-3, IX
is the class code and 000 is the subclass code. The value "IX000" indicates an
Informix-specific error.

SQLSTATE can contain only digits and capital letters. The class code is unique but
the subclass code is not. The meaning of the subclass code depends on the
associated class code. The initial character of the class code indicates the source of
the exception code, which Table 11-3 summarizes.

Table 11-3. Initial SQLSTATE Class-Code Values

Initial Class-
Code Value Source of Exception Code Notes

0 to 4
A to H

X/Open and
ANSI/ISO

The associated subclass codes also begin in the range 0 to 4 or A
to H.

5 to 9 Defined by the
implementation

Subclass codes are also defined by the implementation.

I to Z IBM Informix
INFORMIX-ESQL/C

Any of the Informix-specific error messages (those that the
X/Open or ANSI/ISO reserved range does not support) have an
SQLSTATE value of "IX000".

If a user-defined routine returns an error message was defined by
the routine, the SQLSTATE value is "U0001".

List of SQLSTATE Class Codes
Table 11-4 lists the valid SQLSTATE class and subclass values. This figure lists the
first entry for each class code in bold.

Table 11-4. Class and Subclass Codes for SQLSTATE

Class Subclass Meaning

00 000 Success

Figure 11-3. The Structure of the SQLSTATE Code with the Value IX000

11-8 IBM Informix ESQL/C Programmer’s Manual

Table 11-4. Class and Subclass Codes for SQLSTATE (continued)

Class Subclass Meaning

01

01

01

01

01

01

01

000

002

003

004

005

006

007

Success with warning

Disconnect error—transaction rolled back

Null value eliminated in set function

String data, right truncation

Insufficient item descriptor areas

Privilege not revoked

Privilege not granted

01

01

01

01

01

01

01

01

01

01

01

I01

I03

I04

I05

I06

I07

I08

I09

I10

I11

U01

Database has transactions

ANSI-compliant database selected

Database on any database server other than IBM Informix SE
selected

Float to decimal conversion used

Informix extension to ANSI-compliant standard syntax

After a DESCRIBE, a prepared UPDATE/DELETE statement does
not have a WHERE clause

An ANSI keyword was used as cursor name

Number of items in select list is not equal to number of items in
INTO list

Database server is running in secondary mode

DATASKIP feature is turned on

User-defined warning returned by a user-defined routine

02 000 No data found or End of data reached

07

07

07

07

07

07

07

07

07

000

001

002

003

004

005

006

008

009

Dynamic SQL error

USING clause does not match dynamic parameters

USING clause does not match target specifications

Cursor specification cannot be executed

USING clause is required for dynamic parameters

Prepared statement is not a cursor specification

Restricted data type attribute violation

Invalid descriptor count

Invalid descriptor index

Chapter 11. Exception handling 11-9

Table 11-4. Class and Subclass Codes for SQLSTATE (continued)

Class Subclass Meaning

08

08

08

08

08

08

08

08

000

001

002

003

004

006

007

S01

Connection exception

Database server rejected the connection

Connection name in use

Connection does not exist

Client unable to establish connection

Transaction rolled back

Transaction state unknown

Communication failure

0A

0A

000

001

Feature not supported

Multiple database server transactions

21

21

21

000

S01

S02

Cardinality violation

Insert value list does not match column list

Degree of derived table does not match column list

22

22

22

22

22

22

22

22

22

22

000

001

002

003

005

012

019

024

025

027

Data exception

String data, right truncation

Null value, no indicator parameter

Numeric value out of range

Error in assignment

Division by zero

Invalid escape character

Unterminated string

Invalid escape sequence

Data exception trim error

23 000 Integrity-constraint violation

24 000 Invalid cursor state

25 000 Invalid transaction state

2B 000 Dependent privilege descriptors still exist

2D 000 Invalid transaction termination

26 000 Invalid SQL statement identifier

2E 000 Invalid connection name

28 000 Invalid user-authorization specification

33 000 Invalid SQL descriptor name

34 000 Invalid cursor name

35 000 Invalid exception number

11-10 IBM Informix ESQL/C Programmer’s Manual

Table 11-4. Class and Subclass Codes for SQLSTATE (continued)

Class Subclass Meaning

37 000 Syntax error or access violation in PREPARE or EXECUTE
IMMEDIATE

3C 000 Duplicate cursor name

4040 000 003 Transaction rollbackStatement completion unknown

42 000 Syntax error or access violation

S0

S0

S0

S0

S0

000

001

002

011

021

Invalid name

Base table or view table already exists

Base table not found

Index already exists

Column already exists

S1 001 Memory-allocation error message

IX 000 Informix reserved error message

IX 001 GET DIAGNOSTICS statement failed

U0 001 User-defined error returned by a user-defined routine

The ANSI or X/Open standards define all SQLSTATE values except the following:
v A "IX000" runtime error indicates an Informix-specific error message.
v A "IX001" runtime error indicates the GET DIAGNOSTiCS statement failed.
v A "U0001" runtime error indicates a user-defined error message.
v The "01Ixx" warnings indicate Informix-specific warnings.
v The "01U01" warning indicates a user-defined warning message.

For more information about non-standard error values, see “Runtime Errors in
SQLSTATE” on page 11-15. For more information about non-standard warning
values, see “Warnings in SQLSTATE” on page 11-13.

Checking for Exceptions with SQLSTATE
After an SQL statement executes, the SQLSTATE value can indicate one of the four
conditions that Table 11-5 shows.

Chapter 11. Exception handling 11-11

Table 11-5. Exceptions That SQLSTATE Returns

Exception Condition SQLSTATE Value

Success "00000"

Success, but no rows found "02000"

Success, but warnings generated Class code = "01"

Subclass code = "000" to "006"
(for ANSI and X/Open warnings)

Subclass code = "I01" to "I11"
(for Informix-specific warnings)

Subclass code = "U01"
(for user-defined warnings)

Failure, runtime error generated Class code > "02"
(for ANSI and X/Open errors)

Class code = "IX"
(for Informix-specific errors)

Class code = "U0"
(for user-defined errors)

For a general introduction to these four conditions, see “Types of Database
Exceptions” on page 11-2. To determine the cause of an exception in SQLSTATE,
use the GET DIAGNOSTICS statement.

To determine the cause of an exception in SQLSTATE:

1. Use GET DIAGNOSTICS to obtain the statement information such as the
number of exceptions that the database server has generated.

2. For each exception, use the EXCEPTION clause of GET DIAGNOSTICS to
obtain detailed information about the exception.

The following sections discuss how SQLSTATE indicates each condition.

Success in SQLSTATE
When the database server executes an SQL statement successfully, it sets
SQLSTATE to "00000" (class = "00", subclass = "000"). To check for successful
execution, your code needs to verify only the first two characters of SQLSTATE.

Tip: After a CONNECT, SET CONNECTION, DATABASE, CREATE DATABASE,
or START DATABASE statement, the SQLSTATE variable has a class value of
"01" and an Informix-specific subclass value to provide information about the
database and connection. For more information, see Table 11-7 on page 11-14.

The getdiag sample program in 11-30 uses the sqlstate_err() function to compare
the first two characters of SQLSTATE with the string "00" to check for successful
execution of an SQL statement. The sqlstate_exception() function shown in
Figure 11-8 on page 11-27 checks for a success in SQLSTATE with the system
strncmp() function.

NOT FOUND in SQLSTATE
When a SELECT or FETCH statement encounters NOT FOUND (or END OF
DATA), the database server sets SQLSTATE to "02000" (class = "02"). Table 11-6
lists the conditions that cause SQL statements to yield NOT FOUND.

11-12 IBM Informix ESQL/C Programmer’s Manual

Table 11-6. SQLSTATE Values That Are Set When SQL Statements Do Not Return Any Rows

SQL Statement That Generates the
Indicated SQLSTATE Result

Result for
ANSI-Compliant
Database

Result for
non-ANSI-Compliant
Database

FETCH statement: the last qualifying row
has already been returned (the end of data
was reached).

"02000" "02000"

SELECT statement: no rows match the
SELECT criteria.

"02000" "02000"

DELETE and DELETE...WHERE statement
(not part of multistatement PREPARE): no
rows match the DELETE criteria.

"02000" "00000"

INSERT INTO tablename SELECT statement
(not part of multistatement PREPARE): no
rows match the SELECT criteria.

"02000" "00000"

SELECT... INTO TEMP statement (not part
of multistatement PREPARE): no rows
match the SELECT criteria.

"02000" "00000"

UPDATE and UPDATE...WHERE statement
(not part of multistatement PREPARE): no
rows match the UPDATE criteria.

"02000" "00000"

Table 11-6 on page 11-13 shows that the value that the NOT FOUND condition
generates depends, in some cases, on whether the database is ANSI compliant.

To check for the NOT FOUND condition, your code needs to verify only the class
code of SQLSTATE. The subclass code is always "000". The getdiag sample
program in 11-30 uses the sqlstate_err() function to perform exception handling. To
check for a warning in an SQL statement, sqlstate_err() compares the first two
characters of SQLSTATE with the string "02".

Warnings in SQLSTATE
When the database server executes an SQL statement successfully, but encounters a
warning condition, it sets the class code of SQLSTATE to "01". The subclass code
then indicates the cause of the warning. This warning can be either of the
following types:
v An ANSI or X/Open warning message has a subclass code in the range "000" to

"006".
The CLASS_ORIGIN and SUBCLASS_ORIGIN exception fields of the
diagnostics area have a value of "ISO 9075" to indicate ANSI or X/Open as the
source of the warning.

v An Informix-specific warning message has a subclass code in the range "I01" to
"I11" (see Table 11-7).
The CLASS_ORIGIN and SUBCLASS_ORIGIN exception fields of the
diagnostics area have a value of "IX000" to indicate an Informix-specific
exception as the source of the warning.

v A user-defined warning message from a user-defined routine has a subclass code
of "U01".
The CLASS_ORIGIN and SUBCLASS_ORIGIN exception fields of the
diagnostics area have a value of "U0001" to indicate a user-defined routine as
the source of the warning.

Chapter 11. Exception handling 11-13

Table 11-7 lists the Informix-specific warning messages and the SQL statements and
conditions that generate the warning.

Table 11-7. SQL Statements That Set an Informix-Specific Warning for a Given Condition

Warning
Value SQL Statement Warning Condition

"01I01" CONNECT
CREATE DATABASE
DATABASE
SET CONNECTION

Your application opened a database that uses
transactions.

"01I03" CONNECT
CREATE DATABASE
DATABASE
SET CONNECTION

Your application opened an ANSI-compliant
database.

"01I04" CONNECT
CREATE DATABASE
DATABASE
SET CONNECTION

Your application opened a database that the IBM
Informix manages.

"01I05" CONNECT
CREATE DATABASE
DATABASE
SET CONNECTION

Your application opened a database that is on a
host database server that requires
float-to-decimal conversion for FLOAT columns
(or smallfloat-to-decimal conversions for
SMALLFLOAT columns).

"01I06" All statements The statement just executed contains an Informix
extension to SQL (only when the DBANSIWARN
environment variable is set).

"01I07" PREPARE
DESCRIBE

A prepared UPDATE or DELETE statement has
no WHERE clause. The operation will affect all
rows of the table.

"01I09" FETCH
SELECT...INTO
EXECUTE...INTO

The number of items in the select list does not
equal the number of host variables in the INTO
clause.

"01I10" CONNECT
CREATE DATABASE
DATABASE
SET CONNECTION

The database server is currently running in
secondary mode. The database server is a
secondary server in a data-replication pair;
therefore, the database server is available only
for read operations.

"01I11" Other statements

(when your application
activates the DATASKIP
feature)

A data fragment (a dbspace) was skipped during
query processing.

For a list of the ANSI and X/Open warning messages, see “List of SQLSTATE
Class Codes” on page 11-8.

To check for a warning, your code only needs to verify the first two characters of
SQLSTATE. However, to identify the particular warning, you need to examine the
subclass code. You might also want to use the GET DIAGNOSTICS statement to
obtain the warning message from the MESSAGE_TEXT field.

For example, the block of code in Figure 11-4 determines what kind of database a
CONNECT statement has opened.

11-14 IBM Informix ESQL/C Programmer’s Manual

The code fragment in Figure 11-4 checks SQLSTATE with the system strncmp()
function. The getdiag sample program (11-30) uses the sqlstate_err() function to
check the success of an SQL statement by comparing the first two characters of
SQLSTATE with the string "01". For more information about the values of
SQLSTATE that the CONNECT, CREATE DATABASE, DATABASE, and SET
CONNECTION statements set, see “Determining Features of the Database Server”
on page 12-18.

Runtime Errors in SQLSTATE
When an SQL statement results in a runtime error, the database server stores a
value in SQLSTATE whose class code is greater than "02". The actual class and
subclass codes identify the particular error. Table 11-4 on page 11-8 lists the class
and subclass codes for SQLSTATE. To retrieve the error message text, use the
MESSAGE_TEXT field of the GET DIAGNOSTICS statement. The
CLASS_ORIGIN and SUBCLASS_ORIGIN exception fields have a value of "ISO
9075" to indicate the source of the error.

If the SQL statement generates an error that the ANSI or X/Open standards do not
support, SQLSTATE might contain either of the following values:
v An SQLSTATE value of "IX000" indicates an Informix-specific error.

The SQLCODE variable contains the Informix-specific error code, and the
MESSAGE_TEXT field contains the error message text and any ISAM message
text. The CLASS_ORIGIN and SUBCLASS_ORIGIN exception fields have a
value of "IX000" to indicate the source of the error.

v An SQLSTATE value of "U0001" indicates a user-defined error message from a
user-defined routine.
The MESSAGE_TEXT field contains the error message text. The
CLASS_ORIGIN and SUBCLASS_ORIGIN exception fields have a value of
"U0001" to indicate the source of the error.

GET DIAGNOSTICS Failure: If the GET Diagnostics statement fails, SQLState
contains a value of ix001. No other failure returns this value. The sqlcode indicates
the specific error that caused the failure.

Multiple Exceptions
The database server can generate multiple exceptions for a single SQL statement. A
significant advantage of the GET DIAGNOSTICS statement is its ability to report
multiple exception conditions.

int trans_db, ansi_db, online_db = 0;...

msg = "CONNECT stmt";
EXEC SQL connect to ’stores7’;
if(!strncmp(SQLSTATE, "02", 2)) /* < 0 is an error */

err_chk(msg);
if (!strncmp(SQLSTATE, "01", 2))

{
if (!strncmp(SQLSTATE[2], "I01", 3))

trans_db = 1;
if (!strncmp(SQLSTATE[2], "I03", 3))

ansi_db = 1;
if (!strncmp(SQLSTATE[2], "I04", 3))

online_db = 1;
}

Figure 11-4. Using SQLSTATE to Check for Informix-Specific Warnings

Chapter 11. Exception handling 11-15

To find out how many exceptions the database server has reported for an SQL
statement, retrieve the value of the NUMBER field from the statement information
of the diagnostics area. The following GET DIAGNOSTICS statement retrieves the
number of exceptions that the database server generated and stores the number in
the :exception_num host variable.
EXEC SQL get diagnostics :exception_num = NUMBER;

Once you know the number of exceptions that occurred, you can initiate a loop to
report each of them. Execute GET DIAGNOSTICS within this loop and use the
number of exceptions to control the loop. Figure 11-5 illustrates one way to retrieve
and report multiple exception conditions after an SQL statement.

Do not confuse the RETURNED_SQLSTATE value with the SQLSTATE global
variable. The SQLSTATE variable provides a general status value for the
most-recently executed SQL statement. The RETURNED_SQLSTATE value is
associated with one particular exception that the database server has encountered.
For the first exception, SQLSTATE and RETURNED_SQLSTATE have the same
value. However, for multiple exceptions, you must access RETURNED_SQLSTATE
for each exception.

To define a host variable in your application that receives the
RETURNED_SQLSTATE value, you must define it as a character array with a
length of six (five for the field plus one for the null terminator). You can assign
this variable whatever name you wish.

The following statements define such a host variable and assign it the name
sql_state:
EXEC SQL BEGIN DECLARE SECTION;

char sql_state[6];
EXEC SQL END DECLARE SECTION;

A database system that is compliant with X/Open standards must report any
X/Open exceptions before it reports any Informix-specific errors or warnings.
Beyond this, however, the database server does not report the exceptions in any
particular order. The getdiag sample program (11-30) includes the
disp_sqlstate_err() function to display multiple exceptions.

EXEC SQL get diagnostics :exception_count = NUMBER,
:overflow = MORE;

printf("NUMBER: %d\n", exception_count);
printf("MORE : %s\n", overflow);
for (i = 1; i <= exception_count; i++)

{
EXEC SQL get diagnostics exception :i

:sqlstate = RETURNED_SQLSTATE,
:class = CLASS_ORIGIN, :subclass = SUBCLASS_ORIGIN,
:message = MESSAGE_TEXT, :messlen = MESSAGE_LENGTH;

printf("SQLSTATE: %s\n",sqlstate);
printf("CLASS ORIGIN: %s\n",class);
printf("SUBCLASS ORIGIN: %s\n",subclass);
message[messlen] ='\0'; /* terminate the string. */
printf("TEXT: %s\n",message);
printf("MESSAGE LENGTH: %d\n",messlen);

}

Figure 11-5. Reporting Multiple Exception Conditions

11-16 IBM Informix ESQL/C Programmer’s Manual

Exception Handling with the sqlca Structure
An alternative way to obtain diagnostic information is through the SQL
Communications Area. When an SQL statement executes, the database server
automatically returns information about the success or failure of the statement in a
C structure that is called sqlca. To obtain exception information, your Informix
ESQL/C program can access the sqlca structure or the SQLCODE variable as
follows:
v The sqlca structure. You can use C statements to obtain additional exception

information. You can also obtain information relevant to performance or the
nature of the data that is handled. For some statements, the sqlca structure
contains warnings.

v The SQLCODE variable directly. You can obtain the status code of the
most-recently executed SQL statement. SQLCODE holds an Informix-specific
error code, which is copied from the sqlca.sqlcode field.

Important: Informix ESQL/C supports the sqlca structure for compatibility with
earlier versions. It is recommended, however, that new applications use
the SQLSTATE variable with the GET DIAGNOSTICS statement to
perform exception checking. This method conforms to X/Open and
ANSI SQL standards and supports multiple exceptions.

The next three sections describe how to use the SQLCODE variable and the sqlca
structure to perform exception handling. These sections cover the following topics:
v Understanding the sqlca structure
v Using the SQLCODE variable to obtain error codes
v Checking for the different types of exceptions with the sqlca structure

Fields of the sqlca structure
The sqlca structure is defined in the sqlca.h header file. The IBM Informix
ESQL/C preprocessor automatically includes the sqlca.h header file in an Informix
ESQL/C program.

The following table illustrates the fields of the sqlca structure.

Table 11-8. Fields of the sqlca structure

Field Type Value Value description

sqlcode int4 0 Indicates success.

>=0, < 100 After a DESCRIBE statement, represents the type of SQL statement
that is described.

100 After a successful query that returns no rows, indicates the NOT
FOUND condition. NOT FOUND can also occur in an
ANSI-compliant database after an INSERT INTO/SELECT, UPDATE,
DELETE, or SELECT... INTO TEMP statement fails to access any rows.
For more information, see “NOT FOUND in SQLSTATE” on page
11-12.

<0 Error code.

sqlerrm character (72) or
character (600)

When working with IBM Informix database servers this field is 72
characters long and contains the error message parameter. This
parameter is used to replace a %s token in the actual error message. If
an error message requires no parameter, this field is blank.

sqlerrp character (8) Internal use only.

Chapter 11. Exception handling 11-17

Table 11-8. Fields of the sqlca structure (continued)

Field Type Value Value description

sqlerrd array of 6 int4s [0] After a successful PREPARE statement for a SELECT, UPDATE,
INSERT, or DELETE statement, or after a select cursor is opened, this
field contains the estimated number of rows affected.

[1] When SQLCODE contains an error code, this field contains either
zero or an additional error code, called the ISAM error code, that
explains the cause of the main error.

After a successful insert operation of a single row, this field contains
the value of any SERIAL value generated for t hat row.

[2] After a successful multirow insert, update, or delete operation, this
field contains the number of rows that were processed.

After a multirow insert, update, or delete operation that ends with an
error, this field contains the number of rows that were successfully
processed before the error was detected.

[3] After a successful PREPARE statement for a SELECT, UPDATE,
INSERT, or DELETE statement, or after a select cursor was opened,
this field contains the estimated weighted sum of disk accesses and
total rows processed.

[4] After a syntax error in a PREPARE, EXECUTE IMMEDIATE,
DECLARE, or static SQL statement, this field contains the offset in the
statement text where the error was detected.

[5] After a successful fetch of a selected row, or a successful insert,
update, or delete operation, this field contains the rowid (physical
address) of the last row that was processed. Whether this rowid value
corresponds to a row that the database server returns to the user
depends on how the database server processes a query, particularly
for SELECT statements.

sqlwarn array of 8
characters

When Opening a Database:

sqlwarn0 Set to W when any other warning field is set to W. If blank, others
need not be checked.

sqlwarn1 Set to W when the database now open uses a transaction log.

sqlwarn2 Set to W when the database now open is ANSI compliant.

sqlwarn3 Set to W when the database server is any server other than IBM
Informix SE.

sqlwarn4 Set to W when the database server stores the FLOAT data type in
DECIMAL form (done when the host system lacks support for FLOAT
data types).

sqlwarn5 Reserved.

sqlwarn6 Set to W when the application is connected to a database server that is
running in secondary mode. The database server is a secondary server
in a data-replication pair (the database server is available only for
read operations).

sqlwarn7 Set to W when client DB_LOCALE does not match the database
locale. For more information, see the chapter on Informix ESQL/C in
the IBM Informix GLS User's Guide.

11-18 IBM Informix ESQL/C Programmer’s Manual

Table 11-8. Fields of the sqlca structure (continued)

Field Type Value Value description

sqlwarn array of 8
characters

All Other Operations:

sqlwarn0 Set to W when any other warning field is set to W. If blank, other
fields in sqlwarn need not be checked.

sqlwarn1 Set to W if a column value is truncated when it is fetched into a host
variable using a FETCH or a SELECT...INTO statement. On a
REVOKE ALL statement, set to W when not all seven table-level
privileges are revoked.

sqlwarn2 Set to W when a FETCH or SELECT statement returns an aggregate
function (SUM, AVG, MIN, MAX) value that is null.

sqlwarn3 On a SELECT...INTO, FETCH...INTO, or EXECUTE...INTO statement,
set to W when the number of items in the select list is not the same as
the number of host variables given in the INTO clause to receive
them. On a GRANT ALL statement, set to W when not all seven
table-level privileges are granted.

sqlwarn4 Set to W after a DESCRIBE statement if the prepared statement
contains a DELETE statement or an UPDATE statement without a
WHERE clause.

sqlwarn5 Set to W following execution of a statement that does not use
ANSI-standard SQL syntax (provided the DBANSIWARN
environment variable is set).

sqlwarn6 Set to W when a data fragment (a dbspace) has been skipped during
query processing (when the DATASKIP feature is on).

sqlwarn7 Reserved.

Using the SQLCODE Variable
The SQLCODE variable is an int4 that indicates whether the SQL statement
succeeded or failed. The Informix ESQL/C header file, sqlca.h, declares SQLCODE
as a global variable. Since the Informix ESQL/C preprocessor automatically
includes sqlca.h in an Informix ESQL/C program, you do not need to declare
SQLCODE.

When the database server executes an SQL statement, the database server
automatically updates the SQLCODE variable as follows:
1. The database server stores the exception value in the sqlcode field of the sqlca

structure.
2. Informix ESQL/C copies the value of sqlca.sqlcode to the global SQLCODE

variable.

Tip: For readability and brevity, use SQLCODE in your Informix ESQL/C
program in place of sqlca.sqlcode.

The SQLCODE value can indicate the following types of exceptions:

SQLCODE = 0
Success

SQLCODE = 100
NOT FOUND condition

SQLCODE < 0
Runtime error

Chapter 11. Exception handling 11-19

For information about the values of SQLCODE (and sqlca.sqlcode) and their
corrective actions, use the finderr or Informix Error Messages utility or view IBM
Informix Error Messages at the IBM Informix Information Center at
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp. For information
about how to handle these exceptions, see “Checking for Exceptions with sqlca” on
page 11-20.

The following sections provide additional information about SQLCODE.

SQLCODE in Pure C Modules
To return the same values that the SQLCODE status variable in Informix ESQL/C
modules returns, you can use SQLCODE in pure C modules (modules with the .c
extension) that you link to an Informix ESQL/C program. To use SQLCODE in a
pure C module, declare SQLCODE as an external variable, as follows:
extern int4 SQLCODE;

SQLCODE and the exit() Call
To return an error code to a parent process, do not attempt to use the SQLCODE
value as an argument to the exit() system call. When Informix ESQL/C passes
back the argument of exit() to the parent, it passes only the lower eight bits of the
value. Since SQLCODE is a four-byte (long) integer, the value that Informix
ESQL/C returns to the parent process might not be what you expect.

To pass error information between processes, use the exit value as an indication
that some type of error has occurred. To obtain information about the actual error,
use a temporary file, a database table, or some form of interprocess
communication.

SQLCODE After a DESCRIBE Statement
The DESCRIBE statement returns information about a prepared statement before
the statement executes. It operates on a statement ID that a PREPARE statement
has previously assigned to a dynamic SQL statement.

After a successful DESCRIBE statement, the database server sets SQLCODE (and
sqlca.sqlcode) to a nonnegative integer value that represents the type of SQL
statement that DESCRIBE has examined. The sqlstype.h header file declares
constant names for each of these return values. For a list of possible SQLCODE
values after a DESCRIBE statement, see “Determining the Statement Type” on page
15-9.

Because the DESCRIBE statement uses the SQLCODE field differently than any
other statement, you might want to revise your exception-handling routines to
accommodate this difference.

Checking for Exceptions with sqlca
After an SQL statement executes, the sqlca structure can indicate one of the four
possible conditions that Table 11-9 shows.

11-20 IBM Informix ESQL/C Programmer’s Manual

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp

Table 11-9. Exceptions That the sqlca Structure Returns

Exception Condition sqlca Value

Success SQLCODE (and sqlca.sqlcode) = 0

Success, but no rows found SQLCODE (and sqlca.sqlcode) = 100

Success, but warnings generated sqlca.sqlwarn.sqlwarn0 = 'W'

To indicate specific warning:

v One of sqlwarn1 to sqlwarn7 in the
sqlca.sqlwarn structure is also set to W

Failure, runtime error generated SQLCODE (and sqlca.sqlcode) < 0

For a general introduction to these four conditions, see “Types of Database
Exceptions” on page 11-2. The following sections discuss how sqlca indicates each
condition.

Success in sqlca
When the database server executes an SQL statement successfully, it sets
SQLCODE (sqlca.sqlcode) to zero (0). The database server might also set one or
more of the following informational fields in sqlca after a successful SQL
statement:
v After a PREPARE for a SELECT, DELETE, INSERT, or UPDATE:

– sqlca.sqlerrd[0] indicates an estimated number of rows affected.
– sqlca.sqlerrd[3] contains the estimated weighted sum of disk accesses and

total rows processed.
v After an INSERT, sqlca.sqlerrd[1] contains the value that the database server has

generated for a SERIAL column.
v After a SELECT, INSERT, DELETE, or UPDATE:

– sqlca.sqlerrd[2] contains the number of rows that the database server
processed.

– sqlca.sqlerrd[5] contains the rowid (physical address) of the last row that was
processed. Whether this rowid value corresponds to a row that the database
server returns to the user depends on how the database server processes a
query, particularly for SELECT statements.

v After a CONNECT, SET CONNECTION, DATABASE, CREATE DATABASE, or
START DATABASE, the sqlca.sqlwarn.sqlwarn0 field is set to W and other fields
of sqlca.sqlwarn provide information about the database and connection. For
more information, see “Warnings in sqlca.sqlwarn” on page 11-22.

For more information about these additional fields, see “Fields of the sqlca
structure” on page 11-17. In addition, the SQLCODE value for some SQL
statements has special meaning. For more information, see “Using the SQLCODE
Variable” on page 11-19.

NOT FOUND in SQLCODE
When a SELECT or FETCH statement encounters NOT FOUND (or END OF
DATA), the database server sets SQLCODE (sqlca.sqlcode) to 100. Table 11-10 lists
conditions that cause SQL statements to yield NOT FOUND.

Chapter 11. Exception handling 11-21

Table 11-10. SQLCODE Values That Are Set When SQL Statements Do Not Return Any
Rows

SQL Statement Where SQLCODE Gets the
Indicated Result

Result for
ANSI-Compliant
Database

Result for
Non-ANSI-Compliant
Database

FETCH statement: the last qualifying row
has already been returned (the end of data
was reached).

100 100

SELECT statement: no rows match the
SELECT criteria.

100 100

DELETE and DELETE...WHERE statement
(not part of multistatement PREPARE): no
rows match the DELETE criteria.

100 0

INSERT INTO tablename SELECT statement
(not part of multistatement PREPARE): no
rows match the SELECT criteria.

100 0

SELECT... INTO TEMP statement (not part
of multistatement PREPARE): no rows
match the SELECT criteria.

100 0

UPDATE...WHERE statement (not part of
multistatement PREPARE): no rows match
the UPDATE criteria.

100 0

Table 11-10 on page 11-22 shows that what the NOT FOUND condition generates
depends, in some cases, on whether the database is ANSI compliant.

In the following example, the INSERT statement inserts into the hot_items table
any stock item that has an order quantity greater than 10,000. If no items have an
order quantity that great, the SELECT part of the statement fails to insert any rows.
The database server returns 100 in an ANSI-compliant database and 0 if the
database is not ANSI compliant.
EXEC SQL insert into hot_items

select distinct stock.stock_num,
stock.manu_code,description

from items, stock
where stock.stock_num = items.stock_num

and stock.manu_code = items.manu_code
and quantity > 10000;

For readability, use the constant SQLNOTFOUND for the END OF DATA value of
100. The sqlca.h header file defines the SQLNOTFOUND constant. The following
comparison checks for the NOT FOUND and END OF DATA conditions:
if(SQLCODE == SQLNOTFOUND)

Warnings in sqlca.sqlwarn
When the database server executes an SQL statement successfully, but encounters a
warning condition, it updates the following two fields in the sqlca.sqlwarn
structure:
v It sets the sqlca.sqlwarn.sqlwarn0 field to the letter W.
v It sets one other field within the sqlwarn structure (sqlwarn1 to sqlwarn7) to

the letter W to indicate the specific warning condition.

These warnings are Informix specific. Table 11-8 on page 11-17 contains two sets of
warning conditions that can occur in the fields of the sqlca.sqlwarn structure. The

11-22 IBM Informix ESQL/C Programmer’s Manual

first set of warnings, shown in Table 11-8, occur after the database server opens a
database or establishes a connection. For more information about these conditions,
see “Determining Features of the Database Server” on page 12-18. The second set
of warnings are for conditions that can occur as a result of other SQL statements.

To test for warnings, check whether the first warning field (sqlwarn0) is set to W.
Once you determine that the database server has generated a warning, you can
check the values of the other fields in sqlca.sqlwarn to identify the specific
condition. For example, if you want to find out what kind of database a
CONNECT statement has opened, you can use the code that Figure 11-6 shows.

Runtime Errors in SQLCODE
When an SQL statement results in a runtime error, the database server sets
SQLCODE (and sqlca.sqlcode) to a negative value. The actual number identifies
the particular error. The error message documentation lists the Informix-specific
error codes and their corrective actions. To see the error-message documentation,
use the finderr or Informix Error Messages utility or view IBM Informix Error
Messages at the IBM Informix Information Center at http://
publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp.

From within your Informix ESQL/C program, you can retrieve error message text
that is associated with a negative SQLCODE (sqlca.sqlcode) value with the
rgetlmsg() or rgetmsg() library function. See “Library Functions for Retrieving
Error Messages” on page 11-29.

When the database server encounters a runtime error, it might also set the
following other fields in the sqlca structure:
v sqlca.sqlerrd[1] to hold the additional ISAM error return code. You can also use

the rgetlmsg() and rgetmsg() library functions to obtain ISAM error message
text.

v sqlca.sqlerrd[2] to indicate the number of rows processed before the error
occurred in a multirow INSERT, UPDATE, or DELETE statement.

v sqlca.sqlerrm is used differently depending on what type of database server is
using it.
If the server is an Informix database server this is set to an error message
parameter. This value is used to replace a %s token in the error message.

int trans_db, ansi_db, us_db = 0;...

msg = "CONNECT stmt";
EXEC SQL connect to ’stores7’;
if(SQLCODE < 0) /* < 0 is an error */

err_chk(msg);
if (sqlca.sqlwarn.sqlwarn0 == ’W’)

{
if (sqlca.sqlwarn.sqlwarn1 == ’W’)

trans_db = 1;
if (sqlca.sqlwarn.sqlwarn2 == ’W’)

ansi_db = 1;
if (sqlca.sqlwarn.sqlwarn3 == ’W’)

us_db = 1;
}

Figure 11-6. Code Fragment That Checks for Warnings After a CONNECT Statement

Chapter 11. Exception handling 11-23

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp

For example, in the following error message, the name of the table (sam.xyz) is
saved in sqlca.sqlerrm:
310: Table (sam.xyz) already exists in database.

If the server is a DB2 database server this field is set to the complete error
message.

v sqlca.sqlerrd[4] after a PREPARE, EXECUTE IMMEDIATE, or DECLARE
statement that encountered an error. For more information, see “Errors After a
PREPARE Statement” on page 11-24.

Tip: You can also test for errors with the WHENEVER SQLERROR statement. For
more information, see “The WHENEVER Statement” on page 11-28.

Errors After a PREPARE Statement: When the database server returns an error
for a PREPARE statement, this error is usually because of a syntax error in the
prepared text. When this occurs, the database server returns the following
information:
v The SQLCODE variable indicates the cause of the error.
v The sqlca.sqlerrd[4] field contains the offset into the prepared statement text at

which the error occurs. Your program can use the value in sqlca.sqlerrd[4] to
indicate where the syntax of the dynamically prepared text is incorrect.

If you prepare multiple statements with a single PREPARE statement, the database
server returns an error status on the first error in the text, even if it encounters
several errors.

Important: The sqlerrd[4] field, which is the offset of the error into the SQL
statement, might not always be correct because the Informix ESQL/C
preprocessor converts the embedded SQL statements into
host-language format. In so doing, the preprocessor might change the
relative positions of the elements within the embedded statement.

For example, consider the following statement, which contains an invalid WHERE
clause:
EXEC SQL INSERT INTO tab VALUES (:x, :y, :z)

WHERE i = 2;

The preprocessor converts this statement to a string like the following string:
" insert into tab values (? , ? , ?) where i = 2 "

This string does not have the EXEC SQL keywords. Also, the characters ?, ?, ?
have replaced :x, :y, :z (five characters instead of eight). The Informix ESQL/C
preprocessor has also dropped a newline character between the left parenthesis
(“)”) and the WHERE keyword. Thus, the offset of error in the SQL statement that
the database server sees is different than the offset of the error in the embedded
SQL statement.

The sqlca.sqlerrd[4] field also reports statement-offset values for errors in the
EXECUTE IMMEDIATE and DECLARE statements.

SQLCODE After an EXECUTE Statement: After an EXECUTE statement, the
database server sets SQLCODE to indicate the success of the prepared statement
as follows:
v If the database server cannot execute a prepared statement successfully, it sets

SQLCODE to a value less than 0. The SQLCODE variable holds the error that
the database server returns from the statement that failed.

11-24 IBM Informix ESQL/C Programmer’s Manual

v If the database server can successfully execute the prepared statement in the
block, it sets SQLCODE to 0; if the prepared block includes multiple statements,
all of the statements succeeded.

Displaying Error Text (Windows)
Your Informix ESQL/C application can use the Informix ERRMESS.HLP file to
display text that describes an error and its corrective action. You can call the
Windows API WinHelp() with the following WinHelp parameters.

WinHelp Parameter Data

HELP_CONTEXT Error number from SQLCODE or sqlca.sqlcode

HELP_CONTEXTPOPUP Error number from SQLCODE or sqlca.sqlcode

HELP_KEY Pointer to string that contains error number from
SQLCODE or sqlca.sqlcode and is converted to
ASCII with sprintf() or wsprintf()

HELP_PARTIALKEY Pointer to string that contains error number from
SQLCODE or sqlca.sqlcode and is converted to
ASCII with sprintf() or wsprintf()

Choosing an Exception-Handling Strategy
By default, an Informix ESQL/C application does not perform any exception
handling for SQL statements. Therefore, unless you explicitly provide such code,
execution continues when an exception occurs. While this behavior might not be
too serious for successful execution, warnings, and NOT FOUND conditions, it can
have very serious consequences in the event of a runtime error.

A runtime error might halt the program execution. Unless you check for and
handle these errors in the application code, this behavior can cause the end user
great confusion and annoyance. It also can leave the application in an inconsistent
state.

Within an Informix ESQL/C application, choose a consistent strategy for exception
handling. You can choose one of the following exception-handling strategies:
v You can check after each SQL statement, which means that you include code to

test the value of SQLSTATE (or SQLCODE) after each SQL statement.
v You can use the WHENEVER statement to associate a response to take each time

a particular type of exception occurs.

Important: Consider how to perform exception handling in an application before
you begin development so that you take a consistent and maintainable
approach.

Checking After Each SQL Statement
To check for an exception, you can include code to explicitly test the value of
SQLSTATE (or SQLCODE).

Tip: Decide whether to use SQLSTATE (and the diagnostics area) or SQLCODE
(and the sqlca structure) to determine exception values. Use the chosen
exception-handling variables consistently. If you mix these two variables
unnecessarily, you create code that is difficult to maintain. Keep in mind that
SQLSTATE is the more flexible and portable of these two options.

Chapter 11. Exception handling 11-25

For example, if you want to use SQLSTATE to check whether a CREATE
DATABASE statement has executed as expected, you can use the code that
Figure 11-7 shows.

As an alternative, you can write an exception-handling function that processes any
exception. Your program can then call this single exception-handling function after
each SQL statement.

The sqlstate_exception() function, which Figure 11-8 shows, is an example of an
exception-handling function that uses the SQLSTATE variable and the diagnostics
area to check for warnings, the NOT FOUND condition, and runtime errors. It is
designed to be called after each SQL statement.

EXEC SQL create database personnel with log;
if(strncmp(SQLSTATE, "02", 2) > 0) /* > 02 is an error */
{
EXEC SQL get diagnostics exception 1
:message = MESSAGE_TEXT, :messlen = MESSAGE_LENGTH;
message[messlen] ='\0'; /* terminate the string. */

printf("SQLSTATE: %s, %s\n", SQLSTATE, message);
exit(1);
}

Figure 11-7. Using SQLSTATE to Test Whether an Error Occurred During an SQL Statement

11-26 IBM Informix ESQL/C Programmer’s Manual

The sqlstate_exception() function, which Figure 11-8 on page 11-27 shows, handles
exceptions as follows:
v If the statement was successful, sqlstate_exception() returns zero.
v If a NOT FOUND condition occurs after a SELECT or a FETCH statement,

sqlstate_exception() returns a value of 2.
v If a warning or a runtime error occurs—that is, if the first two bytes of

SQLSTATE are "01" (warning) or are greater than "02" (error)—the
sqlstate_exception() function calls the disp_sqlstate_err() function to display
exception information. (For the code of the disp_sqlstate_err() function, see
11-34.)

v If SQLSTATE indicates an error, the sqlstate_exception() function uses the exit()
system call to exit the program. Without this call to exit(), execution would
continue at the next SQL statement after the one that had generated the error.

To handle errors, the sqlstate_exception() function can alternatively omit the exit()
call and allow execution to continue. In this case, the function must return the
SQLSTATE or SQLCODE (for Informix-specific errors) value so the calling
program can determine what action to take for a runtime error.

EXEC SQL select * from customer where fname not like "%y";
sqlstate_exception("select");...

int4 sqlstate_exception(s)
char *s;
{

int err = 0;

if(!strncmp(SQLSTATE, "00", 2) ||
!strncmp(SQLSTATE,"02",2))

return(SQLSTATE[1]);

if(!strncmp(SQLSTATE, "01", 2))
printf("\n********Warning encountered in %s********\n",

statement);
else /* SQLSTATE class > "02" */

{
printf("\n********Error encountered in %s********\n",

statement);
err = 1;
}

disp_sqlstate_err(); /* See the getdiag sample program */
if(err)

{
printf("********Program terminated*******\n\n");
exit(1);
}

/*
* Return the SQLCODE
*/
return(SQLCODE);
}

Figure 11-8. Example of an Exception-Handling Function That Uses SQLSTATE

Chapter 11. Exception handling 11-27

The WHENEVER Statement
You can use the WHENEVER statement to trap for exceptions that occur during
the execution of SQL statements. The WHENEVER statement provides the
following information:
v What condition to check for:

– SQLERROR checks whether an SQL statement has failed. The application
performs the specified action when the database server sets SQLCODE
(sqlca.sqlcode) to a negative value and the class code of SQLSTATE to a
value greater than "02".

– NOT FOUND checks whether specified data has not been found. The
application performs the specified action when the database server sets
SQLCODE (sqlca.sqlcode) to SQLNOTFOUND and the class code of
SQLSTATE to "02".

– SQLWARNING checks whether the SQL statement has generated a warning.
The application performs the specified action when the database server sets
sqlca.sqlwarn.sqlwarn0 (and some other field of sqlca.sqlwarn) to W and sets
the class code of SQLSTATE to "01".

In a Windows environment, do not use the WHENEVER ERROR STOP
construction in an Informix ESQL/C program that you want to compile as a
DLL.

v What action to take when the specified condition occurs:
– CONTINUE ignores the exception and continues execution at the next

statement after the SQL statement.
– GO TO label transfers execution to the section of code that the specified label

introduces.
– STOP stops program execution immediately.
– CALL function name transfers execution to the specified function name.

If no WHENEVER statement exists for a given condition, the Informix ESQL/C
preprocessor uses CONTINUE as the default action. To execute the
sqlstate_exception() function (shown in Figure 11-8 on page 11-27) every time an
error occurs, you can use the GOTO action of the WHENEVER SQLERROR
statement. If you specify the SQLERROR condition of WHENEVER, you obtain the
same behavior as if you check the SQLCODE or SQLSTATE variable for an error
after each SQL statement.

The WHENEVER statement for the GOTO action can take the following two forms:
v The ANSI-standard form uses the keywords GOTO (one word) and introduces

the label name with a colon (:):
EXEC SQL whenever goto :error_label;

v The Informix extension uses the keywords GO TO (two words) and specifies just
the label name:
EXEC SQL whenever go to error_label;

With the GOTO action, your program automatically transfers control to the
error_label label when the SQL statement generates an exception. When you use
the GOTO label action of the WHENEVER statement, your code must contain the
label and appropriate logic to handle the error condition. In the following example,
the logic at label is simply a call to the sqlstate_exception() function:
error_label:

sqlstate_exception (msg);

11-28 IBM Informix ESQL/C Programmer’s Manual

You must define this error_label label in each program block that contains SQL
statements. If your program contains more than one function, you might need to
include the error_label label and code in each function. Otherwise, the preprocessor
generates an error when it reaches the function that does not contain the
error_label. It tries to insert the code that the WHENEVER...GOTO statement has
requested, but the function has not defined the error_label label.

To remove the preprocessor error, you can put the labeled statement with the same
label name in each function, you can issue another action for the WHENEVER
statement to reset the error condition, or you can replace the GOTO action with the
CALL action to call a separate function.

You can also use the CALL keyword in the WHENEVER statement to call the
sqlstate_exception() function when errors occur. (The CALL option is an Informix
extension to the ANSI standard.)

If you want to call the sqlstate_exception() function every time an SQL error
occurs in the program, take the following steps:
v Modify the sqlstate_exception() function so that it does not need any arguments.

Functions that the CALL action specifies cannot take arguments. To pass
information, use global variables instead.

v Put the following WHENEVER statement in the early part of your program,
before any SQL statements:
EXEC SQL whenever sqlerror call sqlstate_exception;

Tip: In the preceding code fragment, you do not include the parentheses after the
sqlstate_exception() function.

Make sure, however, that all functions that the WHENEVER...CALL affects can
find a declaration of the sqlstate_exception() function. For details of the syntax
and how to use the WHENEVER statement, see the IBM Informix Guide to SQL:
Syntax.

Library Functions for Retrieving Error Messages
Each SQLCODE value has an associated message. Error message files in the
$INFORMIXDIR/msg directory store the message number and its text. For more
information about error messages, use the finderr or Informix Error Messages
utility or view IBM Informix Error Messages at the IBM Informix Information Center
at http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp.

When you use SQLCODE and the sqlca structure, you can retrieve error message
text with the rgetlmsg() and rgetmsg() functions. Both of these functions take the
SQLCODE error code as input and return the associated error message.

Tip: When you use SQLSTATE and the GET DIAGNOSTICS statement, you can
access information in the MESSAGE_TEXT field of the diagnostics area to
retrieve the message text that is associated with an exception. For more
information, see “Exception Information” on page 11-5.

The following pages describe the rgetlmsg() and rgetmsg() functions.

Important: Use rgetlmsg() in any new Informix ESQL/C code that you write.
Informix ESQL/C provides the rgetmsg() function primarily for
compatibility with earlier versions.

Chapter 11. Exception handling 11-29

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp

Displaying Error Text in a Windows Environment
Your Informix ESQL/C application can use the Informix ERRMESS.HLP file to
display text that describes an error and its corrective action. You can call the
Windows API WinHelp() with the following WinHelp parameters.

WinHelp Parameter Data

HELP_CONTEXT Error number from SQLCODE or sqlca.sqlcode

HELP_CONTEXTPOPUP Error number from SQLCODE or sqlca.sqlcode

HELP_KEY Pointer to string that contains error number from
SQLCODE or sqlca.sqlcode and is converted to
ASCII with sprintf() or wsprintf()

HELP_PARTIALKEY Pointer to string that contains error number from
SQLCODE or sqlca.sqlcode and is converted to
ASCII with sprintf() or wsprintf()

A Program That Uses Exception Handling
The getdiag.ec program contains exception handling on each of the SQL statements
that the program executes. This program is a modified version of the demo1.ec
program, which Chapter 1 of this publication explains. The version that this section
lists and describes uses the following exception-handling methods:
v The SQLSTATE variable and the GET DIAGNOSTICS statement to obtain

exception information.
v The SQLWARNING and SQLERROR keywords of the WHENEVER statement to

call the whenexp_chk() function for warnings and errors.

The whenexp_chk() function displays the error number and the accompanying
ISAM error, if one exists. The exp_chk.ec source file contains this function and its
exception-handling functions. The getdiag.ec source file (11-30) includes the
exp_chk.ec file (11-32).

Compiling the Program
Use the following command to compile the getdiag program:
esql -o getdiag getdiag.ec

The -o getdiag option tells esql to name the executable program getdiag. Without
the -o option, the name of the executable program defaults to a.out. For more
information about the esql preprocessor command, see “Using the esql Command”
on page 2-4.

Guide to the getdiag.ec File
The annotations in this section primarily describe the exception-handling
statements.
===
1. #include <stdio.h>
2. EXEC SQL define FNAME_LEN 15;
3. EXEC SQL define LNAME_LEN 15;
4. int4 sqlstate_err();
5. extern char statement[20];
6. main()
7. {
8. EXEC SQL BEGIN DECLARE SECTION;

11-30 IBM Informix ESQL/C Programmer’s Manual

9. char fname[FNAME_LEN + 1];
10. char lname[LNAME_LEN + 1];
11. EXEC SQL END DECLARE SECTION;
12. EXEC SQL whenever sqlerror CALL whenexp_chk;
13. EXEC SQL whenever sqlwarning CALL whenexp_chk;
14. printf("GETDIAG Sample ESQL program running.\n\n");
15. strcpy (statement, "CONNECT stmt");
16. EXEC SQL connect to ’stores7’;
17. strcpy (statement, "DECLARE stmt");
18. EXEC SQL declare democursor cursor for
19. select fname, lname
20. into :fname, :lname;
21. from customer
22. where lname < ’C’;
23. strcpy (statement, "OPEN stmt");
24. EXEC SQL open democursor;
25. strcpy (statement, "FETCH stmt");
26. for (;;)
27. {
28. EXEC SQL fetch democursor;
29. if(sqlstate_err() == 100)
30. break;
31. printf("%s %s\n", fname, lname);
32. }
33. strcpy (statement, "CLOSE stmt");
34. EXEC SQL close democursor;

===

Line 4
Line 4 declares an external global variable to hold the name of the most-recently
executed SQL statement. The exception-handling functions use this information
(see “Lines 169 to 213” on page 11-40).

Lines 12 and 13
The WHENEVER SQLERROR statement tells the Informix ESQL/C preprocessor to
add code to the program to call the whenexp_chk() function whenever an SQL
statement generates an error. The WHENEVER SQLWARNING statement tells the
Informix ESQL/C preprocessor to add code to the program to call the
whenexp_chk() function whenever an SQL statement generates a warning. The
whenexp_chk() function is in the exp_chk.ec file, which line 40 includes.

Line 15
The strcpy() function copies the string "CONNECT stmt" to the global statement
variable. If an error occurs, the whenexp_chk() function uses this variable to print
the name of the statement that caused the failure.

Lines 17, 23, 25, and 33
These lines copy the name of the current SQL statement into the statement variable
before the DECLARE, OPEN, FETCH, and CLOSE statements execute. This action
enables the whenexp_chk() function to identify the statement that failed if an error
occurs.
===
35. strcpy (statement, "FREE stmt");
36. EXEC SQL free democursor;
37. strcpy (statement, "DISCONNECT stmt");
38. EXEC SQL disconnect current;

Chapter 11. Exception handling 11-31

39. printf("\nGETDIAG Sample Program Over.\n");
40. } /* End of main routine */
41. EXEC SQL include exp_chk.ec;

===

Lines 35 and 37
These lines copy the name of the current SQL statement into the statement variable
before the FREE and DISCONNECT statements execute. The whenexp_chk()
function uses the statement variable to identify the statement that failed if an error
occurs.

Line 41
The whenexp_chk() function examines the SQLSTATE status variable to determine
the outcome of an SQL statement. Because several demonstration programs use the
whenexp_chk() function with the WHENEVER statement for exception handling,
the whenexp_chk() function and its supporting functions are placed in a separate
source file, exp_chk.ec. The getdiag program must include this file with the
Informix ESQL/C include directive because the exception-handling functions use
Informix ESQL/C statements.

Tip: You should consider putting functions such as whenexp_chk() into a library
and include this library on the command line when you compile the Informix
ESQL/C program.

Note: The following section describes the exp_chk.ec source file.

Guide to the exp_chk.ec File
The exp_chk.ec file contains exception-handling functions for the Informix
ESQL/C demonstration programs. These functions support the following two
types of exception handling:
v A function that a WHENEVER SQLERROR CALL statement specifies performs

exception handling.
Functions to support this type of exception handling include whenexp_chk(),
sqlstate_err(), and disp_sqlstate_err(). The getdiag sample program in this
chapter uses this form of exception handling.

v A function that an Informix ESQL/C program calls explicitly after each SQL
statement performs exception handling.
Functions to support this type of exception handling include exp_chk(),
exp_chk2(), sqlstate_err(), disp_sqlstate_err(), and disp_exception(). The
dispcat_pic sample program (Chapter 7) uses exp_chk2() while the dyn_sql
sample program (Chapter 16) uses exp_chk() to perform exception handling.

To obtain exception information, the preceding functions use the SQLSTATE
variable and the GET DIAGNOSTICS statement. They use SQLCODE only when
they need Informix-specific information.
===
1. EXEC SQL define SUCCESS 0;
2. EXEC SQL define WARNING 1;
3. EXEC SQL define NODATA 100;
4. EXEC SQL define RTERROR -1;
5. char statement[80];
6. /*
7. * The sqlstate_err() function checks the SQLSTATE status variable

* to see

11-32 IBM Informix ESQL/C Programmer’s Manual

8. * if an error or warning has occurred following an SQL statement.
9. */

10. int4 sqlstate_err()
11. {
12. int4 err_code = RTERROR;
13. if(SQLSTATE[0] == ’0’) /* trap ’00’, ’01’, ’02’ */
14. {
15. switch(SQLSTATE[1])
16. {
17. case ’0’: /* success - return 0 */
18. err_code = SUCCESS;
19. break;
20. case ’1’: /* warning - return 1 */
21. err_code = WARNING;
22. break;
23. case ’2’: /* end of data - return 100 */
24. err_code = NODATA;
25. break;
26. default: /* error - return -1*/
27. break;
28. }
29. }
30. return(err_code);
31. }

===

Lines 1 to 4
These Informix ESQL/C define directives create definitions for the success,
warning, NOT FOUND, and runtime error exceptions. Several functions in this file
use these definitions instead of constants to determine actions to take for a given
type of exception.

Line 5
The statement variable is a global variable that the calling program (which
declares it as extern) sets to the name of the most-recent SQL statement.

The whenexp_chk() function displays the SQL statement name as part of the error
information (see lines 85 and 92).

Lines 6 to 31
The sqlstate_err() function returns a status of 0, 1, 100, or -1 to indicate if the
current exception in SQLSTATE is a success, warning, NOT FOUND, or runtime
error. The sqlstate_err() function checks the first two characters of the global
SQLSTATE variable. Because Informix ESQL/C automatically declares the
SQLSTATE variable, the function does not need to declare it.

Line 13 checks the first character of the global SQLSTATE variable. This character
determines whether the most-recently executed SQL statement has generated a
nonerror condition. Nonerror conditions include the NOT FOUND condition (or
END OF DATA), success, and warnings. Line 15 checks the second character of the
global SQLSTATE variable (SQLSTATE[1]) to determine the type of nonerror
condition generated.

The sqlstate_err() function sets err_code to indicate the exception status as follows:

Chapter 11. Exception handling 11-33

v Lines 17 to 19: If SQLSTATE has a class code of "00", the most-recently executed
SQL statement was successful. The sqlstate_err() function returns 0 (which line 1
defines as SUCCESS).

v Lines 20 to 22: If SQLSTATE has a class code of "01", the most-recently executed
SQL statement generated a warning. The sqlstate_err() function returns 1 (which
line 2 defines as WARNING).

v Lines 23 to 25: If SQLSTATE has a class code of "02", the most-recently executed
SQL statement generated the NOT FOUND (or END OF DATA) condition. The
sqlstate_err() function returns 100 (which line 3 defines as NODATA).

If SQLSTATE[1] contains any character other than ’0’, ’1’, or ’2’, then the
most-recently executed SQL statement generated a runtime error. SQLSTATE also
indicates a runtime error if SQLSTATE[0] contains some character other than ’0’.
In either case, line 30 returns a negative one (-1) (which line 4 defines as
RTERROR).
===
32. /*
33. * The disp_sqlstate_err() function executes the GET DIAGNOSTICS
34. * statement and prints the detail for each exception that is
35. * returned.
36. */
37. void disp_sqlstate_err()
38. {
39. mint j;
40. EXEC SQL BEGIN DECLARE SECTION;
41. mint exception_count;
42. char overflow[2];
43. int exception_num=1;
44. char class_id[255];
45. char subclass_id[255];
46. char message[8191];
47. mint messlen;
48. char sqlstate_code[6];
49. mint i;
50. EXEC SQL END DECLARE SECTION;
51. printf("---------------------------------");
52. printf("-------------------------\n");
53. printf("SQLSTATE: %s\n",SQLSTATE);
54. printf("SQLCODE: %d\n", SQLCODE);
55. printf("\n");
56. EXEC SQL get diagnostics :exception_count = NUMBER,
57. :overflow = MORE;
58. printf("EXCEPTIONS: Number=%d\t", exception_count);
59. printf("More? %s\n", overflow);
60. for (i = 1; i <= exception_count; i++)
61. {
62. EXEC SQL get diagnostics exception :i
63. :sqlstate_code = RETURNED_SQLSTATE,
64. :class_id = CLASS_ORIGIN, :subclass_id = SUBCLASS_ORIGIN,
65. :message = MESSAGE_TEXT, :messlen = MESSAGE_LENGTH;
66. printf("- - - - - - - - - - - - - - - - - - - -\n");
67. printf("EXCEPTION %d: SQLSTATE=%s\n", i,
68. sqlstate_code);
69. message[messlen-1] = ’\0’;
70. printf("MESSAGE TEXT: %s\n", message);

11-34 IBM Informix ESQL/C Programmer’s Manual

71. j = byleng(class_id, stleng(class_id));
72. class_id[j] = ’\0’;
73. printf("CLASS ORIGIN: %s\n",class_id);
74. j = byleng(subclass_id, stleng(subclass_id));
75. subclass_id[j] = ’\0’;
76. printf("SUBCLASS ORIGIN: %s\n",subclass_id);
77. }
78. printf("---------------------------------");
79. printf("-------------------------\n");
80. }

===

Lines 32 to 80
The disp_sqlstate_err() function uses the GET DIAGNOSTICS statement to obtain
diagnostic information about the most-recently executed SQL statement.

Lines 40 to 50 declare the host variables that receive the diagnostic information.
The GET DIAGNOSTICS statement copies information from the diagnostics area
into these host variables. Line 48 includes a declaration for the SQLSTATE value
(called sqlstate_code) because the disp_sqlstate_err() function handles multiple
exceptions. The sqlstate_code variable holds the SQLSTATE value for each
exception.

Lines 53 to 55 display the values of the SQLSTATE and SQLCODE variables. If
SQLSTATE contains "IX000" (an Informix-specific error), SQLCODE contains the
Informix-specific error code.

The first GET DIAGNOSTICS statement (lines 56 and 57) stores the statement
information in the :exception_count and :overflow host variables. Lines 58 and 59
then display this information.

The for loop (lines 60 to 77) executes for each exception that the most-recently
executed SQL statement has generated. The :exception_count host variable, which
holds the number of exceptions, determines the number of iterations that this loop
performs.

The second GET DIAGNOSTICS statement (lines 62 to 65) obtains the exception
information for a single exception. Lines 67 to 70 print out the SQLSTATE value
(sqlstate_code) and its corresponding message text. In addition to SQL error
messages, disp_sqlstate_err() can display ISAM error messages because the
MESSAGE_TEXT field of the diagnostics area also contains these messages. The
function uses the MESSAGE_LENGTH value to determine where to place a null
terminator in the message string. This action causes only the portion of the
message variable that contains text to be output (rather than the full 255-character
buffer).

Declare both the class- and the subclass-origin host variables as character buffers of
size 255. However, often the text for these variables fills only a small portion of the
buffer. Rather than display the full buffer, lines 71 to 73 use the Informix ESQL/C
byleng() and stleng() library functions to display only that portion of :class_id that
contains text; lines 74 to 76 perform this same task for :subclass_id.
===
81. void disp_error(stmt)
82. char *stmt;
83. {
84. printf("\n********Error encountered in %s********\n",

Chapter 11. Exception handling 11-35

85. stmt);
86. disp_sqlstate_err();
87. }
88. void disp_warning(stmt)
89. char *stmt;
90. {
91. printf("\n********Warning encountered in %s********\n",
92. stmt);
93. disp_sqlstate_err();
94. }
95. void disp_exception(stmt, sqlerr_code, warn_flg)
96. char *stmt;
97. int4 sqlerr_code;
98. mint warn_flg;
99. {
100. switch(sqlerr_code)
101. {
102. case SUCCESS:
103. case NODATA:
104. break;
105. case WARNING:
106. if(warn_flg)
107. disp_warning(stmt);
108. break;
109. case RTERROR:
110. disp_error(stmt);
111. break;
112. default:
113. printf("\n********INVALID EXCEPTION STATE for

%s********\n",
114. stmt);
115. /* break;
116. }
117. }

===

Lines 81 to 87
The disp_error() function notifies the user of a runtime error. It calls the
disp_sqlstate_err() function (line 86) to display the diagnostic information.

Lines 88 to 94
The disp_warning() function notifies the user of a warning. It calls the
disp_sqlstate_err() function (line 93) to display the diagnostic information.

Lines 95 to 117
The disp_exception() function handles the display of the exception information. It
expects the following three arguments:

stmt is the name of the most-recently executed SQL statement.

sqlerr_code is the code that sqlstate_err() returns to indicate the type of
exception encountered.

warn_flg is a flag to indicate whether to display the diagnostic information
for a warning.

Lines 102 to 104 handle the SUCCESS and NOData conditions. For either of these
cases, the function displays no diagnostic information. Lines 105 to 108 notify the

11-36 IBM Informix ESQL/C Programmer’s Manual

user that a warning has occurred. The function checks the warn_flg argument to
determine whether to call the disp_warning() function to display warning
information for the most-recently executed SQL statement (lines 137 to 142). Lines
109 to 111 notify the user that a runtime error has occurred. The disp_err() function
actually handles display of the diagnostic information.
===
118. * The exp_chk() function calls sqlstate_err() to check the SQLSTATE
119. * status variable to see if an error or warning has occurred

* following
120. * an SQL statement. If either condition has occurred, exp_chk()
121. * calls disp_sqlstate_err() to print the detailed error

* information.
122. *
123. * This function handles exceptions as follows:
124. * runtime errors - call exit()
125. * warnings - continue execution, returning "1"
126. * success - continue execution, returning "0"
127. * Not Found - continue execution, returning "100"
128. */
129. long exp_chk(stmt, warn_flg)
130. char *stmt;
131. int warn_flg;
132. {
133. int4 sqlerr_code = SUCCESS;
134. sqlerr_code = sqlstate_err();
135. disp_exception(stmt, sqlerr_code, warn_flg);
136. if(sqlerr_code == RTERROR) /* Exception is a runtime error */
137. {
138. /* Exit the program after examining the error */
139. printf("********Program terminated********\n\n");
140. exit(1);
141. }
142. /* else /* Exception is "success", "Not Found", */
143. return(sqlerr_code); /* or "warning" */
144. }

===

Lines 118 to 144
The exp_chk() function is one of three wrapper functions that handle exceptions. It
analyzes the SQLSTATE value to determine the success or failure of the
most-recent SQL statement. This function is designed to be called explicitly after
each SQL statement. This design requires the following features:
v The exp_chk() function passes as an argument the name of the SQL statement

that generated the exception.
Because the WHENEVER statement does not invoke the function, the function is
not restricted to using a global variable.

v The exp_chk() function returns a value in the event of a successful execution of
the SQL statement (0), the NOT FOUND condition (100), or a warning (1).
Because the calling program explicitly calls exp_chk(), the calling program can
handle the return value.

v The exp_chk() function uses a flag argument (warn_flg) to indicate whether to
display warning information to the user.
Because warnings can indicate non-serious errors and, after a CONNECT, can be
informational, displaying warning information can be both distracting and

Chapter 11. Exception handling 11-37

unnecessary to the user. The warn_flg argument allows the calling program to
determine whether to display warning information that SQL statements might
generate.

The sqlstate_err() function (line 134) determines the type of exception that
SQLSTATE contains. The function then calls disp_exception() (line 135) and passes
the warn_flg argument to indicate whether to display warning information. To
handle a runtime error, the sqlstate_err() function calls the exit() system function
(lines 136 to 141) to terminate the program. This behavior is the same as what the
whenexp_chk() function (see lines 170 to 214) provides for runtime errors.

The dyn_sql sample program (see “The dyn_sql Program” on page 16-28) also uses
exp_chk() to handle exceptions.
===
145. * The exp_chk2() function calls sqlstate_err() to check the

* SQLSTATE
146. * status variable to see if an error or warning has occurred

* following
147. * an SQL statement. If either condition has occurred, exp_chk2()
148. * calls disp_sqlstate_err() to print the detailed error

* information.
149. *
150. * This function handles exceptions as follows:
151. * runtime errors - continue execution, returning SQLCODE (<0)
152. * warnings - continue execution, returning one (1)
153. * success - continue execution, returning zero (0)
154. * Not Found - continue execution, returning 100
155. */
156. int4 exp_chk2(stmt, warn_flg)
157. char *stmt;
158. mint warn_flg;
159. {
160. int4 sqlerr_code = SUCCESS;
161. int4 sqlcode;
162. sqlcode = SQLCODE; /* save SQLCODE in case of error */
163. sqlerr_code = sqlstate_err();
164. disp_exception(stmt, sqlerr_code, warn_flg);
165. if(sqlerr_code == RTERROR)
166. /* sqlerr_code = sqlcode;
167. return(sqlerr_code);
168. }

===

Lines 145 to 168
The exp_chk2() function is the second of the three exception-handling wrapper
functions in the exp_chk.ec file. It performs the same basic task as the exp_chk()
function. Both functions are designed to be called after each SQL statement and
both return a status code. The only difference between the two is in the way they
respond to runtime errors. The exp_chk() function calls exit() to terminate the
program (line 140), while the exp_chk2() function returns the SQLCODE value to
the calling program (lines 165 to 166).

The exp_chk2() function returns SQLCODE rather than SQLSTATE to allow the
program to check for particular Informix-specific error codes. A possible
enhancement might be to return both the SQLSTATE and SQLCODE values.

11-38 IBM Informix ESQL/C Programmer’s Manual

The dyn_sql sample program, described in 16-28, also uses exp_chk2() to handle
exceptions.
===
169. *
170. * The whenexp_chk() function calls sqlstate_err() to check the

* SQLSTATE
171. * status variable to see if an error or warning has occurred

* following
172. * an SQL statement. If either condition has occurred, whenerr_chk()
173. * calls disp_sqlstate_err() to print the detailed error

* information.
174. *
175. * This function is expected to be used with the WHENEVER SQLERROR
176. * statement: it executes an exit(1) when it encounters a negative
177. * error code. It also assumes the presence of the "statement"

* global
178. * variable, set by the calling program to the name of the statement
179. * encountering the error.
180. */
181. whenexp_chk()
182. {
183. int4 sqlerr_code = SUCCESS;
184. mint disp = 0;
185. sqlerr_code = sqlstate_err();
186. if(sqlerr_code == WARNING)
187. {
188. disp = 1;
189. printf("\n********Warning encountered in %s********\n",
190. statement);
191. }
192. else
193. if(sqlerr_code == RTERROR)
194. {
195. printf("\n********Error encountered in %s********\n",
196. statement);
197. disp = 1;
198. }
199. if(disp)
200. disp_sqlstate_err();
201. if(sqlerr_code == RTERROR)
202. {
203. /* Exit the program after examining the error */
204. printf("********Program terminated*******\n\n");
205. exit(1);
206. }
207. else
208. {
209. if(sqlerr_code == WARNING)
210. printf("\n********Program execution

continues********\n\n");
211. return(sqlerr_code);
212. }
213. }

===

Chapter 11. Exception handling 11-39

Lines 169 to 213
The whenexp_chk() function is the third exception-handling wrapper function in
the exp_chk.ec file. It too analyzes the SQLSTATE values and uses the GET
DIAGNOSTICS statement for exception handling. However, this function is
designed to be called with the following WHENEVER statements:
EXEC SQL whenever sqlerror call whenexp_chk;
EXEC SQL whenever sqlwarning call whenexp_chk;

The WHENEVER statement imposes the following restrictions on the design of the
whenexp_chk() function:
v The whenexp_chk() function cannot receive arguments; therefore, the function

uses a global variable, statement, to identify the SQL statement that generated
the exception (lines 190 and 196).
To use arguments with the whenexp_chk() function, you can use the GOTO
clause of the WHENEVER statement.
EXEC SQL whenever sqlerror goto :excpt_hndlng;

where the label :excpt_hndlng would have the following code:
:excpt_hndlng

whenexp_chk(statement);

v The whenexp_chk() function cannot return any value; therefore, it cannot return
the particular exception code to the main program.
For this reason, whenexp_chk() handles runtime errors instead of the main
program; whenexp_chk() calls the exit() function when it encounters a runtime
error. To have the main program access the error code, you can modify
whenexp_chk() to set a global variable.

The getdiag sample program, which this chapter describes, uses whenexp_chk() to
handle exceptions. See lines 11 and 12 of the getdiag.ec file in “Guide to the
getdiag.ec File” on page 11-30.

The sqlstate_err() function (line 185) returns an integer that indicates the success of
the most-recently executed SQL statement. This return value is based on the
SQLSTATE value.

Lines 186 to 198 display a special line to bring attention to the exception
information that was generated. The disp variable is a flag that indicates whether
to display exception information. The function displays exception information for
warnings (WARNING) and runtime errors (RTERROR) but not for other exception
conditions. The calls to the printf() function (lines 189 and 195) display the name
of the SQL statement that generated the warning or error. A global variable (called
statement) must store this statement name because the function cannot receive it as
an argument.

The disp_sqlstate_err() function (lines 199 and 200) displays the information that
the diagnostics area contains only if SQLSTATE indicates a warning or a runtime
error (disp = 1).

Lines 201 to 206 handle a runtime error. They notify the user of the program
termination and then use the exit() system call (line 205) to terminate the program.
The call to the disp_sqlstate_err() function (line 200) has already displayed
information about the cause of the runtime error.

11-40 IBM Informix ESQL/C Programmer’s Manual

Chapter 12. Working with the database server

The client-server architecture of ESQL/C applications . 12-2
The Client-Server Connection . 12-3

Sources of Connection information about a UNIX Operating System. 12-4
Accessing the sqlhosts File. 12-4
Specifying the Default Database Server . 12-5

Sources of connection information in a Windows environment. 12-5
Setting Environment Variables for Connection in a Windows Environment. 12-6
The sqlhosts information in a Windows environment 12-6
Using a Central Registry . 12-7
Connection Authentication Functionality in a Windows Environment 12-8

Connecting to a Database Server . 12-10
Establishing a Connection . 12-10
Establishing an Explicit Connection in a Windows Environment 12-12
Using Password Encryption . 12-14
Using Pluggable Authentication Modules (PAM) . 12-14
Using LDAP Authentication . 12-14
Using Multiplexed Connections. 12-15

Identifying the Database Server. 12-16
A Specific Database Server . 12-16
The Default Database Server. 12-16

Interacting with the Database Server . 12-17
Determining Features of the Database Server . 12-18
Switching Between Multiple Database Connections . 12-18

Making a Connection Current . 12-19
Handling Transactions . 12-19

Identifying an Explicit Connection. 12-20
Obtaining Available Databases . 12-21
Checking the Status of the Database Server . 12-21
Detaching from a Connection . 12-21
Interrupting an SQL Request . 12-22

Interruptible SQL Statements . 12-22
Allowing a User to Interrupt . 12-23
Setting Up a Timeout Interval . 12-24

Error Checking During Data Transfer . 12-26
Terminating a connection . 12-27

Optimized Message Transfers . 12-27
Restrictions on Optimized Message Transfers . 12-27
Enabling Optimized Message Transfers . 12-28

Setting the OPTMSG Environment Variable. 12-28
Setting the OptMsg Global Variable . 12-28

Error Handling with Optimized Message Transfers . 12-29
Using Database Server Control Functions . 12-30
The Timeout Program . 12-31

Compiling the Program . 12-31
Guide to the timeout.ec File . 12-31

Lines 4 to 9 . 12-32
Lines 10 to 20 . 12-32
Lines 24 and 25 . 12-32
Lines 29 to 33 . 12-32
Lines 43 to 50 . 12-33
Line 51 . 12-33
Lines 53 to 67 . 12-33
Lines 68 to 72 . 12-34
Lines 73 to 83 . 12-34
Lines 84 to 97 . 12-35

© Copyright IBM Corp. 1996, 2010 12-1

Lines 98 to 101 . 12-35
Lines 108 to 120 . 12-35
Lines 121 to 132 . 12-35
Line 133 . 12-36
Lines 134 to 154 . 12-36
Lines 155 to 182 . 12-37
Lines 185 to 187 . 12-38
Lines 190 to 199 . 12-38
Lines 199 to 249 . 12-39
Lines 199 to 249 (continued) . 12-40
Lines 251 to 261 . 12-40
Lines 262 to 281 . 12-40
Lines 282 to 287 . 12-40
Lines 288 to 292 . 12-41
Lines 293 to 297 . 12-41
Lines 298 to 307 . 12-42
Lines 300 to 317 . 12-42
Lines 320 to 329 . 12-42
Lines 330 to 336 . 12-43
Lines 337 to 347 . 12-43
Lines 348 to 355 . 12-43

Example Output . 12-43
Lines 3 to 17 . 12-44
Lines 18 to 19 . 12-44
Line 20 . 12-44
Lines 21 to 30 . 12-44
Line 31 . 12-45
Line 32 . 12-45
Lines 36 to 41 . 12-45
Lines 45 to 52 . 12-45
Lines 54 and 55 . 12-46

Using ESQL/C Connection Library Functions in a Windows Environment 12-46

These topics explain how an IBM Informix ESQL/C program can interact with a
database server. It contains the following information:
v A description of the client-server architecture of an Informix ESQL/C application
v An overview of the ways an Informix ESQL/C program can interact with the

database server
v The syntax of the Informix ESQL/C library functions that control the database

server

The end of these topics present an annotated example program that is called
timeout. The timeout sample program demonstrates how to interrupt an SQL
request.

The client-server architecture of ESQL/C applications
When an Informix ESQL/C program executes an SQL statement, it effectively
passes the statement to a database server. The database server receives SQL
statements from the database application, parses them, optimizes the approach to
data retrieval, retrieves the data from the database, and returns the data and status
information to the application.

The Informix ESQL/C program and the database server communicate with each
other through an interprocess-communication mechanism. The Informix ESQL/C
program is the client process in the dialogue because it requests information from
the database server. The database server is the server process because it provides

12-2 IBM Informix ESQL/C Programmer’s Manual

information in response to requests from the client. The division of labor between
the client and server processes is particularly advantageous in networks where
data might not reside on the same computer as the client program that needs it.

When you compile an Informix ESQL/C program, it is automatically equipped to
communicate with database servers that reside either on the same computer (local)
or over a network on other computers (remote). Figure 12-1 shows a connection
between an Informix ESQL/C application and local database servers.

Figure 12-2 illustrates an Informix ESQL/C application that connects across a
network to a remote database server.

To establish a connection to a database server, your application must take the
following actions:
v Identify database server connections that have been defined for the client-server

environment of the application
v Execute an SQL statement to connect to a database server

The Client-Server Connection
An Informix ESQL/C application can establish a connection to any valid database
environment. A database environment can be a database, a database server, or a
database and a database server. Every database must have a database server to
manage its information. To establish connections, the client application must be
able to locate information about the available database servers. This information is
in the sqlhosts file or registry. At runtime, the application must also be able to
access information about environment variables relevant for connection. The
following environment variables are accessed:
v INFORMIXCONTIME

Specifies that the client should try connection attempts for the minimum of
seconds specified

v INFORMIXCONRETRY
Defines the number of connection attempts made by the client during the time
specified by INFORMIXCONTIME

Figure 12-1. ESQL/C Application That Connects to a Local Database Server

Figure 12-2. ESQL/C Application That Connects to a Remote Database Server

Chapter 12. Working with the database server 12-3

v INFORMIXSQLHOSTS
Defines where to find the sqlhosts information. The sqlhosts information
contains a list of valid database servers that the client can connect to, the type of
connection to be used, and the server machine name on which each database
server resides. On a UNIX operating system, this is a path to a file. In a
Windows environment, this is the name of the machine on the network that
contains the central registry which is accessible to the client application.

v INFORMIXSERVER
Specifies the name of the default database server that the client should connect
to. This value identifies which entry in the sqlhosts file or registry to use to
establish the database connection.

Important: The client application connects to the default database server when the
application does not explicitly specify a database server for the
connection. You must set the INFORMIXSERVER environment variable
even if the application does not establish a connection to the default
database server. For more information, see “The Default Database
Server” on page 12-16.

The client also sends environment variables so that the database server can
determine the server-processing locale. For more information about how the
database server establishes the server-processing locale, see the IBM Informix GLS
User's Guide.

The database server uses appropriate environment information when it processes
the application requests. It ignores any information that is not relevant. For
example, if the application sends environment variables for a database with Asian
Language Support (ALS), but it connects to a non-ALS database, the database
server ignores the ALS information.

For information about how to set environment variables, see the IBM Informix
Guide to SQL: Reference for your operating system.

Sources of Connection information about a UNIX Operating
System

v The sqlhosts file, which contains definitions for all valid database servers in the
network environment

v The INFORMIXSERVER environment variable, which specifies the default
database server for the application

Many other environment variables can customize the database environment. For
more information, see the IBM Informix Guide to SQL: Reference and to your IBM
Informix Administrator's Guide.

Accessing the sqlhosts File
To establish a connection to a database server, the application process must be able
to locate an entry for the database server in the sqlhosts file. The sqlhosts file
defines database server connections that are valid for the client-server
environment. For each database server, this file defines the following information:
v The name of the database server
v The type of connection to make between the client application and the database

server
v The name of the host computer where the database server resides

12-4 IBM Informix ESQL/C Programmer’s Manual

v The name of a system file or program to use to establish a connection

The application expects to find the sqlhosts file in the $INFORMIXDIR/etc
directory; however, you can change this location or the name of the file with the
INFORMIXSQLHOSTS environment variable. If the database server does not
reside on the computer where the client program runs, an sqlhosts file must reside
on the host computers of both the Informix ESQL/C client program and the
database server.

The client application can connect to any database server that the sqlhosts file
defines. If your application needs to connect to a database server that sqlhosts
does not define, you might need assistance from your database administrator
(DBA) to create the necessary entries in this file. In addition to the sqlhosts file,
you might also need to configure system network files to support connections.
Your IBM Informix Administrator's Guide describes how to create a database server
entry in the sqlhosts file.

If you are enabling single-sign on (SSO), additional steps are in "Configuring
ESQL/C and ODBC Drivers for SSO" in IBM Informix Security Guide.

Specifying the Default Database Server
For your Informix ESQL/C application to communicate with any database server,
you must set the INFORMIXSERVER environment variable to specify the name of
the default database server. Therefore, the name of the default database server
must exist in the sqlhosts file and sqlhosts must exist on the computer that runs
the application. For more information about sqlhosts, see “Accessing the sqlhosts
File” on page 12-4.

Sources of connection information in a Windows environment
To establish a connection to a database server, an IBM Informix ESQL/C
application in a Windows environment performs the following tasks:
v Provide information about the connection with the registry, the ifx_putenv()

function, or the InetLogin structure
v Use a central registry for connection information
v Perform connection authentication for the application user

In Windows environments, Informix ESQL/C obtains the configuration information
from the InetLogin structure or the in-memory copy of the registry.

If the application has initialized a field in InetLogin, Informix ESQL/C sends this
value to the database server. For any field the application has not set in the
InetLogin structure, Informix ESQL/C uses the corresponding information in the
Informix subkey of the registry. For more information, see “Setting and Retrieving
Environment Variables in Windows Environments” on page 1-31 and “Precedence
of Configuration Values” on page 1-37.

Important: Because the application needs configuration information to establish a
connection, you must set any InetLogin configuration values before the
SQL statement that establishes the connection.

In Windows environments, the registry contains the following configuration
information:
v The values of the Informix environment variables

Chapter 12. Working with the database server 12-5

v Connection information (the sqlhosts and .netrc files define this information
about UNIX operating systems)

When a client Informix ESQL/C application establishes a connection to a database
server (see “Connecting to a Database Server” on page 12-10), it sends the
configuration information to the database server.

Setting Environment Variables for Connection in a Windows
Environment
The registry provides default values for most environment variables. For a
description of environment variables and their default values, see the IBM Informix
Guide to SQL: Reference and the IBM Informix GLS User's Guide. To change the value
of an environment variable in the Registry, use the Environment tab of the
Setnet32 utility, which the IBM Informix Client Products Installation Guide describes.

For more information about how to change the environment variable for the
current process, see “Setting and Retrieving Environment Variables in Windows
Environments” on page 1-31. For more information about InetLogin, see
“InetLogin structure” on page 1-33.

The sqlhosts information in a Windows environment
The registry contains the following connection information:
v The sqlhosts information defines a connection to an established database server.

This information includes the name of the host computer, the type of protocol to
use, and the name of the connection. The Registry stores the sqlhosts
information in the SqlHosts subkey of the Informix key. To store sqlhosts
information in the Registry, use the Server Information tab of the Setnet32
utility.

v The .netrc information defines a valid user for a remote connection.
On UNIX operating systems, this file resides in the home directory of the user
and specifies the name and password for the user account. In Windows
environments, the NETRC subkey of the Informix key in the Registry stores the
same account information. To store .netrc information in the Registry, use the
Host Information tab of the Setnet32 utility.

The client sends network parameters to establish a connection to a database server.
The first step in establishing a connection is to log onto the correct host computer.
The protocol software uses the network parameters for the current database server.
The client locates the network parameters for the current database server in either
of the following ways:
1. If the SQL statement that requests the connection (such as a CONNECT or

DATABASE) specifies the name of a database server, the client sends the
network parameters for this specified database server.
If the InfxServer field of InetLogin contains the name of the specified database
server, the client checks InetLogin for the network parameters. Otherwise, the
client obtains network parameters for that database server from the in-memory
copy of the Registry.

2. If the SQL statement does not specify a database server, the client sends the
network parameters for the default database server.
If the InfxServer field of InetLogin contains the name of a database server, the
client checks InetLogin for the network parameters. Otherwise, the client
determines the default database server from the INFORMIXSERVER value in
the in-memory copy of the Registry. It then sends network parameter values
from the Registry for that database server.

12-6 IBM Informix ESQL/C Programmer’s Manual

Informix ESQL/C checks the network parameter fields of InetLogin for any of
these network parameters that the application has currently set. For any fields
(including the name of the default database server) that are not set, Informix
ESQL/C obtains the values from the in-memory copy of the Registry. (For more
information, see “Precedence of Configuration Values” on page 1-37.)

For example, the code fragment in the following figure initializes the InetLogin
structure with information for the mainsrvr database server; mainsrvr is the
default database server.

When execution reaches the first CONNECT statement in Figure 12-3, the client
application requests a connection to the accounts database on the mainsrvr
database server. The CONNECT statement does not specify a database server, so
the client sends the following network parameters for default database server:
v The default database server is mainsrvr because InfxServer is set in InetLogin.
v The User and Password values are finance and in2money because the

application sets them in InetLogin.
v The Host, Service, Protocol, and AskPassAtConnect values are from the

mainsrvr subkey of the Registry values, because the application does not set
them in InetLogin.

The second CONNECT statement in Figure 12-3 requests a connection to the
custhist database on the bcksrvr database server. For this connection, the client
sends the network parameters for the specified database server, bcksrvr. Because
the InetLogin structure currently contains network parameters for mainsrvr, the
client must obtain all these parameters from the in-memory copy of the Registry.
Therefore, the application does not use the finance user account for this second
connection (unless the Registry specifies User and Password values of finance and
in2money for the bcksrvr database server).

If you are enabling single-sign on (SSO), the process differs. Details and additional
steps for configuration are in "Configuring ESQL/C and ODBC Drivers for SSO" in
IBM Informix Security Guide.

Using a Central Registry
You can specify the sqlhosts information in one of the following locations:
v The local registry is the registry that resides on the same Windows computer as

your Informix ESQL/C application.
v The central registry is a registry that two or more Informix ESQL/C applications

can access to obtain sqlhosts information.

void *cnctHndl;...

strcpy(InetLogin.InfxServer, "mainsrvr");
strcpy(InetLogin.User, "finance");
strcpy(InetLogin.Password, "in2money");
EXEC SQL connect to ’accounts’;...

QL connect to ’custhist@bcksrvr’;

Figure 12-3. Code fragment that shows precedence of network parameters

Chapter 12. Working with the database server 12-7

The central registry can be on the Domain Server or on any Windows workstation
on the Microsoft network. It might be local to one application and remote to all
others. A central registry enables you to maintain a single copy of the sqlhosts
information for use by all Informix ESQL/C applications in Windows
environments.

To use a central registry, you must set the INFORMIXSQLHOSTS environment
variable on your computer. This environment variable specifies the name of the
computer on which the central registry resides. To set this environment variable,
you can use Setnet32, the ifx_putenv() function (“Setting and Retrieving
Environment Variables in Windows Environments” on page 1-31), or the InetLogin
structure (“InetLogin structure” on page 1-33).

In a Windows environment, an Informix ESQL/C application uses the following
precedence to locate sqlhosts information when it requests a connection:
1. The sqlhosts information in the central registry, on computer that the

INFORMIXSQLHOSTS environment variable indicates (if
INFORMIXSQLHOSTS is set)

2. The sqlhosts information in the local registry

Connection Authentication Functionality in a Windows
Environment
Once an Informix ESQL/C application has obtained the information about the
connection (from either the registry or the InetLogin structure), the ESQL
client-interface DLL performs the following steps:
1. It copies connection information from the InetLogin structure (or from the

registry for undefined InetLogin fields) into a HostInfoStruct structure (see
Table 12-1).

2. It passes a pointer to the HostInfoStruct to the sqlauth() function in the
esqlauth.dll to verify connection authentication.

If sqlauth() returns TRUE, the connection is verified and the user can access the
server computer. However, if sqlauth() returns FALSE, the connection is refused
and access denied. By default, the sqlauth() function returns a value of TRUE.

The parameter passed to sqlauth() is a pointer to a HostInfoStruct structure,
which the login.h header file defines. This structure contains the subset of the
InetLogin fields that Table 12-1 shows.

12-8 IBM Informix ESQL/C Programmer’s Manual

Table 12-1. Fields of the HostInfoStruct Structure

HostInfoStruct Field Data Type Purpose

InfxServer char[19] Specifies the value for the INFORMIXSERVER
network parameter

Host char[19] Specifies the value for the HOST network parameter

User char[19] Specifies the value for the USER network parameter
passed into the sqlauth() function

Pass char[19] Specifies the value for the PASSWORD network
parameter passed into the sqlauth() function

AskPassAtConnect char[2] Indicates whether sqlauth() should request a
password at connection time passed into the sqlauth()
function

Service char[19] Specifies the value for the SERVICE network
parameter passed into the sqlauth() function

Protocol char[19] Specifies the value for the PROTOCOL network
parameter passed into the sqlauth() function

Options char[20] Reserved for future use

Within sqlauth(), you can access the fields of HostInfoStruct with the pHostInfo
pointer, as follows:
if (pHostInfo->AskPassAtConnect)

You can edit all the HostInfoStruct field values. ESQL/C, however, checks only
the User and Pass fields of HostInfoStruct.

Figure 12-4 shows the default sqlauth() function, which the esqlauth.c file contains.

This default action of sqlauth() means that Informix ESQL/C performs no
authentication verification when it establishes a connection. To provide verification,
you can customize the sqlauth() function. You might want to customize sqlauth()
to perform one of the following verification tasks:
v Validation of the user name

The function can compare the current user name against a list of valid or invalid
user names.

v Prompt for a password
The function can check the value of the AskPassAtConnect field in the
HostInfoStruct structure when this field is set to Y or y. You can code sqlauth()
to display a window that prompts the user to enter a password.

The following steps describe how to create a customized sqlauth() function:
1. Bring up the esqlauth.c source file in your system editor. This file is located in

the %INFORMIXDIR%\demo\esqlauth directory.
2. Add to the body of the sqlauth() function the code that performs the desired

connection verification. Of the fields in Table 12-1 on page 12-9, the sqlauth()

BOOL __declspec(dllexport) sqlauth (HostInfoStruct *pHostInfo)
{

return TRUE;
}

Figure 12-4. Default Code for sqlauth() Function

Chapter 12. Working with the database server 12-9

function can modify only the User and Pass fields. Make sure that sqlauth()
returns TRUE or FALSE to indicate whether to continue with the connection
request. Do not modify other code in this file.

Create a new version of the esqlauth.dll by compiling the esqlauth.c file and
specifying the -target:dll (or -wd) command-line option of the esql command
processor.For an example of how to define the sqlauth() function, see the
esqlauth.c file in the %INFORMIXDIR%\demo\esqlauth directory.

Connecting to a Database Server
When an Informix ESQL/C application begins execution, it has no connections to
any database server. For SQL statements to execute, however, such a connection
must exist. To establish a connection to a database server, the Informix ESQL/C
program must take the following actions:
v Use an SQL statement to establish a connection to the database server
v Specify, in the SQL statement, the name of the database server to which to

connect

Establishing a Connection
The following two groups of SQL statements can establish connections to a
database environment:
v The SQL connection statements are CONNECT, SET CONNECTION, and

DISCONNECT. These statements conform to ANSI SQL and X/Open standards
for the creation of connections.

v The SQL database statements include DATABASE, CREATE DATABASE, CLOSE
DATABASE, and START DATABASE. These statements are an Informix-specific
way to establish connections.

Important: It is recommended that you use the CONNECT, DISCONNECT, and
SET CONNECTION connection statements for new applications of
Version 6.0 and later. For pre-6.0 versions, the SQL database statements
(such as DATABASE, START DATABASE, and CLOSE DATABASE)
remain valid for compatibility with earlier versions.

The type of connection that the application establishes depends on which of these
types of statements executes first in the application:
v If the first SQL statement is a connection statement (CONNECT, SET

CONNECT) statement, the application establishes an explicit connection.
v If the first statement is an SQL database statement (DATABASE, CREATE

DATABASE, START DATABASE), the application establishes an implicit
connection.

The following sections briefly describe explicit and implicit connections. For more
information, see the entries for the CONNECT and DISCONNECT statements in
the IBM Informix Guide to SQL: Syntax.

The Explicit Connection: When you use the CONNECT statement to connect to a
database environment, you establish an explicit connection. The application connects
directly to the database server that you specify. If you do not specify the name of a
database server in the CONNECT statement, the application establishes an explicit
connection to the default database server (that the INFORMIXSERVER
environment variable identifies).

12-10 IBM Informix ESQL/C Programmer’s Manual

An explicit connection enables an application to support multiple connections to one
or more database environments. Although the application can connect to several
database environments during its execution, only one connection can be current at
a time. Dormant connections are connections that the application has established
but is not currently using. The application must have a current connection to
execute SQL statements.

The following SQL connection statements establish and manage explicit
connections:
v The CONNECT statement establishes an explicit connection between a database

environment and the application.
v The SET CONNECTION statement switches between explicit connections. It

makes a dormant connection the current connection.
v The DISCONNECT statement terminates a connection to a database

environment.

These connection statements provide the following benefits, which allow you to
create more portable applications:
v Compliance with ANSI and X/Open standards for database connections
v A uniform syntax for local and remote data access for use in a distributed

client-server environment
v Support for multiple connections within a single application

Because the CONNECT, DISCONNECT, and SET CONNECTION statements
include Informix extensions to ANSI-standard syntax, these statements generate
ANSI-extension warning messages at the following times:
v At runtime, if you have set the DBANSIWARN environment variable
v At compile time, if you have compiled the Informix ESQL/C source file with the

-ansi preprocessor option

The Informix ESQL/C application, not the database server, processes these
connection statements. Therefore, the application cannot use them in a PREPARE
or an EXECUTE IMMEDIATE statement.

Important: Use of the DATABASE, CREATE DATABASE, START DATABASE,
CLOSE DATABASE, and DROP DATABASE statements is still valid
with an explicit connection. However, in this context, refer only to
databases that are local to the current connection in these statements;
do not use the @server or //server syntax.

The Implicit Connection: When one of the following SQL statements is the first
SQL statement that the application executes, the statement establishes an implicit
connection:
v The DATABASE statement creates an implicit connection to a database

environment and opens the specified database.
v The CREATE DATABASE statement creates an implicit connection and creates a

new database.
v The DROP DATABASE statement creates an implicit connection and drops

(removes) the specified database.
v A single-statement PREPARE of one of the preceding statements also establishes

an implicit connection.

Chapter 12. Working with the database server 12-11

When you execute one of the preceding statements, the application first connects to
the default database server (that the INFORMIXSERVER environment variable
indicates). The default database server parses the database statement. If the
statement specifies the name of a database server, the application then connects to
the specified database server. To establish an implicit connection to a specified
database server, an application must therefore connect to two database servers. An
explicit connection only requires a connection to a single database server, and
therefore involves less overhead.

If an implicit connection already exists, these database statements close it before
they establish the new connection. The new implicit connection remains open after
the SQL statement completes. This behavior contrasts with explicit connections
(12-10), which allow multiple connections to the same or to a different database
environment.

The CLOSE DATABASE statement closes the database and, in pre-Version 6.0
applications, also closes the implicit connection to the database. If you precede
these statements with a CONNECT, each can also operate in the context of the
current explicit connection.

Use of an implicit connection provides a smooth migration path for older
applications into the connection-oriented environment that CONNECT,
DISCONNECT, and SET CONNECTION statements support. For more information
about implicit connections, see the CONNECT statement in the IBM Informix Guide
to SQL: Syntax.

Summary of Connection Types: Table 12-2 summarizes the methods that Informix
ESQL/C supports to connect to a database server.

Table 12-2. Statements and Functions That Start the Database Server

SQL Statement or
ESQL/C Function

Type of Connection
Effect on a Connection to
the Database Server

Implicit Explicit
Establishes a
Connection

Opens a
Database

If first SQL statement in the program
is:

DATABASE Y Y Y

CREATE DATABASE Y Y Y

START DATABASE Y Y Y

DROP DATABASE Y Y

sqlstart() Y Y

CONNECT TO DEFAULT Y Y

CONNECT TO '@servername' Y Y

CONNECT TO 'dbname' Y Y Y

CONNECT TO 'dbname@servername' Y Y Y

For information about the sqlstart() library function, see B-231.

Establishing an Explicit Connection in a Windows Environment
This section provides the following information specific to Windows environments:
v A brief explanation of the uses of an explicit connection in the Windows

environment

12-12 IBM Informix ESQL/C Programmer’s Manual

v A description of the Informix ESQL/C connection library functions that support
explicit connections

When to Use an Explicit Connection in a Windows Environment: With an
implicit connection, one connection to the database server can exist for each
Informix ESQL/C module and this connection cannot be shared. An explicit
connection allows multiple connections within a client application. You might want
to design an application that needs to perform multiple connections for one of the
following reasons:
v When you want multiple Informix ESQL/C modules (either .exe or .dll) to use

the same connection to manipulate database data
Figure 12-5 shows scenarios in which multiple applications use the same
connection to a database server.

v When you want one Informix ESQL/C module to create two or more
connections to one or more databases, which includes sharing an ESQL DLL
between two C applications
Figure 12-6 shows a single application that establishes connections to multiple
database servers.

Figure 12-5 shows the following two scenarios in which multiple applications share
a single connection to the database server:
v The scenario on the left requires that APP1.EXE establish an explicit connection

to the dbserverA database server. Once this connection is established, APP1 can
pass the connection information required to set the connection in the APP2 DLL.

v The scenario on the right requires that APP3.EXE establish an explicit connection
to the dbserverB database server. Both the APP4 and APP5 DLLs can share this
connection when APP3 passes the appropriate connection information.

You can also use explicit connections if you want one application to establish
connections to two separate database servers at the same time, as Figure 12-6
shows.

Figure 12-5. Two Scenarios in Which Multiple Applications Use a Single Connection to a
Database Server

Chapter 12. Working with the database server 12-13

Using Password Encryption
When a client application sends a password to the database server for
authentication the password is not encrypted unless you request password
encryption through the simple password communications support module (SPWDCSM).
You activate password encryption by specifying it on the configuration for the
database server name, or an alias, in the sqlhosts file or registry. To activate
password encryption, specify the following value in the Options field of the
sqlhosts entry:
csm=(SPWDCSM)

The client or the database server uses the string "SPWDCSM" as a key to look up
the entry that describes the CSM in the CSS/CSM configuration file.

Once activated, the SPWDCSM requires a password, effectively overriding any
trusted host mechanisms. It is contradictory to specify a password encryption
mechanism if a trusted host policy is in place.

For more information about implementing password encryption and for
information about communication support services (CSS), see your IBM Informix
Administrator's Guide.

Using Pluggable Authentication Modules (PAM)
To use a Pluggable Authentication Module (PAM) service for client-server
authentication you must re-write your client application so that it registers a
callback function. The callback function must support any challenge-response
mechanisms of the PAM service you intend to use. For the details of how to use
PAM, see the IBM Informix Security Guide.

The demonstration program pamdemo.ec is provided as an example of the use of a
callback function.

Using LDAP Authentication
You can use Lightweight Directory Access Protocol (LDAP) authentication on
Windows with Informix ESQL/C. Use the LDAP Authentication Support module
when you want to use an LDAP server to authenticate your system users. The
module contains source code that you can modify for your specific situation. For
information about installing and customizing the LDAP Authentication Support
module, see the IBM Informix Security Guide.

Figure 12-6. One Application That Uses Connections to More Than One Database Server at
the Same Time

12-14 IBM Informix ESQL/C Programmer’s Manual

Using Multiplexed Connections
A multiplexed connection enables an Informix ESQL/C application to establish
multiple connections to different databases on the same database server, using a
minimum amount of communications resources. When you initiate a multiplexed
connection, the database server uses a single connection to the client for multiple
SQL connections (CONNECT statement). Without multiplexing, each SQL
connection creates a new database-server connection.

Client Requirements for Execution: To implement a multiplexed connection, set
the multiplexing option, in the client sqlhosts file or registry, on the dbservername
parameter of the database server to which you will connect. To specify
multiplexing, set the m option to 1. The following dbservername parameter
specifies a multiplexed connection to the personnel database server:

Servername nettype hostname servicename options

personnel onsoctcp corp prsnl_ol m=1

Setting the multiplexing option to zero (m = 0), which is the default, disables
multiplexing for the specified database server.

To use multiplexed connections for any application that was compiled prior to
version 9.13 of Informix ESQL/C for UNIX or version 9.21 of Informix ESQL/C for
Windows, you must relink it. Applications that you compiled prior to these
versions of Informix ESQL/C can connect to a multiplexing database server,
however. The database server establishes a non-multiplexed connection in this case.

On Windows platforms, in addition to setting the multiplexing option in the
sqlhosts registry you must also define the ifx_session_mux environment variable.
If you do not define the ifx_session_mux environment variable, the database
server will ignore the multiplexing option and will not multiplex connections.

Warning: On Windows, a multithreaded application must not use the
multiplexed-connection feature. If a multithreaded application enables
the multiplexing option in the sqlhosts registry entry and also defines
the IFX_SESSION_MUX environment variable, it can produce disastrous
results, including crashing and data corruption.

If a multithreaded application and a single-threaded application are running on the
same Windows computer, the single-threaded application can use a multiplexed
connection in the following two ways:
v Use a different sqlhosts file or registry
v Use a dbserver alias in the sqlhosts file that does not specify the multiplexing

option
For example, you could use the following configuration.

Servername Nettype Host Name Servicename Options

personnel onsoctcp corp prsnl_01 m=1

personnel_nomux onsoctcp corp prsnl_02

Any multithreaded application connecting to the personnel server should use the
servername personnel_nomux while single-threaded applications can continue to
use the servername personnel.

Chapter 12. Working with the database server 12-15

For information about the requirements to implement multiplexed connections on
the database server, see your IBM Informix Administrator's Guide.

Limitations for Multiplexed Connections: Informix ESQL/C imposes the
following limitations on multiplexed connections:
v Shared memory connections are not supported.
v Multithreaded applications are not supported.
v The database server ignores the sqlbreak() function on a multiplexed connection.

If you call it, the database server does not interrupt the connection and does not
return an error.

Identifying the Database Server
To connect to a database environment (with, for example, a CONNECT statement),
the Informix ESQL/C application can identify the database server in one of two
ways:
v The application can specify the name of the database server in the SQL

statement. Such a database server is a specific database server.
v The application can omit the name of the database server in the SQL statement.

Such a database server is the default database server. The INFORMIXSERVER
environment variable specifies the name of the default database server.

A Specific Database Server
An Informix ESQL/C application can establish a connection to a specific database
server when it lists the database server name, and optionally the database name, in
an SQL statement, as follows:
v The CONNECT statement establishes an explicit connection to the database server.

Each of the following CONNECT statements establishes an explicit connection to
a database server that is called valley:
EXEC SQL connect to ’stores7@valley’;
EXEC SQL connect to ’@valley’;

v When one of the SQL database statements (such as DATABASE or START
DATABASE) is the first SQL statement of the application, it can establish an
implicit connection.
Each of the following SQL statements establishes an implicit connection to the
stores7 database in a specific database server that is called valley:
EXEC SQL database ’//valley/stores7’;
EXEC SQL database stores7@valley;

For the UNIX operating system, use the following statement:
EXEC SQL database ’/usr/dbapps/stores7@valley’;

For a Windows environment, use the following statement:
EXEC SQL database 'C:\usr\dbapps\stores@valley';

For more information about connections to a specific database server, see the
CONNECT and DATABASE statements in the IBM Informix Guide to SQL: Syntax.

The Default Database Server
An Informix ESQL/C application can establish a connection to a default database
server when it omits the database server name from the database environment in
an SQL statement, as follows:
v The CONNECT statement can establish an explicit default connection with the

keyword DEFAULT or when it omits the database server name.

12-16 IBM Informix ESQL/C Programmer’s Manual

Each of the following CONNECT statements establishes an explicit default
connection:
EXEC SQL connect to ’stores7’;
EXEC SQL connect to default;

In a UNIX operating system, use the following statement:
EXEC SQL connect to ’/usr/dbapps/stores7’;

In a Windows environment, use the following statement:
EXEC SQL connect to 'C:\usr\dbapps\stores7';

v When one of the SQL database statements (such as DATABASE or START
DATABASE) is the first SQL statement of the application, it can establish an
implicit default connection.
Each of the following SQL statements establishes an implicit default connection
to a database that is called stores7 on the default database server:
EXEC SQL database stores7;
EXEC SQL start database stores7 with no log;

The INFORMIXSERVER environment variable determines the name of the
database server. For more information, see “Specifying the Default Database
Server” on page 12-5.

Important: You must set the INFORMIXSERVER environment variable even if the
application does not establish a default connection.

You can also use the DBPATH environment variable to specify a list of database
server names to use as default database servers. The application searches for these
database servers after it searches for the database server that INFORMIXSERVER
specifies. For instructions on how to set the INFORMIXSERVER or DBPATH
environment variable with the name of the default database server, see the IBM
Informix Guide to SQL: Reference.

Interacting with the Database Server
Within your Informix ESQL/C program, you can interact with the database server
in the following ways:
v Start a new database server process. This process does not exist when an

application begins execution.
v Switch between multiple connections. An application can establish several

connections.
v Identify an explicit connection. An application can obtain the name of the

database server and connection.
v Identify the databases that the database server of the current connection can

access.
v Check on the status of the database server process. For some actions the

database server must be busy, for others the database server must be idle.
v Detaching from the current connection. An application must detach a child

process from the current connection.
v Interrupt the database server process. If an SQL request executes for a long time,

the application can interrupt it.
v Terminate the database server process. The application can close an unused

connection to free resources.

Chapter 12. Working with the database server 12-17

Informix ESQL/C supports Secure Sockets Layer (SSL) connections. For
information about using the SSL protocol, see the "Secure Sockets Layer
Communication Protocol" section of the IBM Informix Security Guide.

Determining Features of the Database Server
You can check on features of the database server after you execute one of the
following SQL statements.

CONNECT DATABASE

CREATE DATABASE SET CONNECTION

When the database server establishes a connection with one of these statements, it
can obtain the following information about the database server:
v Is a long identifier or long user name truncated?
v Does the open database use a transaction log?
v Is the open database an ANSI-compliant database?
v What is the database server name?
v Does the database store the FLOAT data type in DECIMAL form (done when the

host system lacks support for FLOAT types)?
v Is the database server in secondary mode? (If the database server is in secondary

mode, it is a secondary server in a data-replication pair and is available only for
read operations.)

Does the value of the DB_LOCALE environment variable set by the client
application match the value of the database locale of the open database? The
following table summarizes the values that the SQLSTATE variable and the sqlca
structure take to indicate these conditions.

Database Feature
SQLSTATE
Value sqlca Value

Long identifier or long username has
truncated

"01004" sqlca.sqlwarn.sqlwarn1 is 'W'

Database has transactions "01I01" sqlca.sqlwarn.sqlwarn1 is 'W'

Database is ANSI compliant "01I03" sqlca.sqlwarn.sqlwarn2 is 'W'

Database server is not IBM Informix SE "01I04" sqlca.sqlwarn.sqlwarn3 is 'W'

FLOAT represented as DECIMAL "01I05" sqlca.sqlwarn.sqlwarn4 is 'W'

Database server in secondary mode "01I06" sqlca.sqlwarn.sqlwarn6 is 'W'

Mismatched database locales undefined sqlca.sqlwarn.sqlwarn7 is 'W'

The SQLSTATE variable might return multiple exceptions after these connection
statements. For more information about the SQLSTATE variable and the sqlca
structure, see Chapter 11, “Exception handling,” on page 11-1.

Switching Between Multiple Database Connections
An Informix ESQL/C application can make a number of simultaneous database
connections with a CONNECT statement. These connections can be to several
database environments or can be multiple connections to the same database
environment. To switch between connections, the Informix ESQL/C application
must follow these steps:

12-18 IBM Informix ESQL/C Programmer’s Manual

1. Establish a connection with the CONNECT STATEMENT
2. Handle any active transactions

If the current connection has an active transaction, you can switch connections
only if the CONNECT statement with the WITH CONCURRENT
TRANSACTION clause establishes the current connection.

3. Make a connection current with the SET CONNECTION or CONNECT
statement

Making a Connection Current®

When multiple connections exist, the application can only communicate with one
connection at a time. This connection is the current connection. All other
established connections are dormant. Your application can make another connection
current with either of the following connection statements:
v The CONNECT statement establishes a new connection and makes the

connection current.
v The SET CONNECTION statement switches to a dormant connection and makes

the connection current.

When you make a connection dormant and then current again, you perform an
action similar to when you disconnect and then reconnect to the database
environment. However, if you make a connection dormant you can typically avoid
the need for the database server to perform authentication again, and thereby save
the cost and use of resources that are associated with the connection.

Tip: A thread-safe Informix ESQL/C application can have multiple current
connections, one current connection per thread. However, only one current
connection is active at a time.

For more information about thread-safe applications, see Chapter 13, “Using
Informix libraries,” on page 13-1.

For more information, see the entries for CONNECT and SET CONNECTION in
the IBM Informix Guide to SQL: Syntax.

Handling Transactions
If the CONNECT statement with the WITH CONCURRENT TRANSACTION
clause has established the connection, the application can switch to another
connection even if the current connection contains an active transaction.

For an example of an Informix ESQL/C program that uses the WITH
CONCURRENT TRANSACTION clause, see the CONNECT statement in the IBM
Informix Guide to SQL: Syntax.

For connections that are not established with the CONNECT...WITH
CONCURRENT TRANSACTION statement, the application must end the active
transaction before it switches to another connection. Any attempt to switch while a
transaction is active causes the CONNECT or SET CONNECTION statement to fail
(error number -1801). The transaction in the current connection remains active.

To maintain the integrity of database information, explicitly end the active
transaction in one of the following ways:
v Commit the transaction with the COMMIT WORK statement to ensure that the

database server saves any changes that have been made to the database within
the transaction.

Chapter 12. Working with the database server 12-19

v Roll back the transaction with the ROLLBACK WORK statement to ensure that
the database server backs out any changes that have been made to the database
within the transaction.

The COMMIT WORK or ROLLBACK WORK statement applies only to the
transaction that is within the current connection, not to transactions that are in any
dormant connection. For more information about how to handle transactions, see
the COMMIT WORK and ROLLBACK WORK statements. For more information
about the WITH CONCURRENT TRANSACTION clause of CONNECT, see the
CONNECT and SET CONNECTION statements. Entries for these SQL statements
can be found in the IBM Informix Guide to SQL: Syntax.

Identifying an Explicit Connection
From within an Informix ESQL/C application, you can obtain the name of the
database server and the name of the explicit connection with the GET
DIAGNOSTICS statement. When you use GET DIAGNOSTICS after an SQL
connection statement (CONNECT, SET CONNECTION, and DISCONNECT), GET
DIAGNOSTICS puts this database server information in the diagnostics area in the
SERVER_NAME and CONNECTION_NAME fields.

Figure 12-7 shows a code fragment that saves connection information in the
srvrname and cnctname host variables.

For more information, see the entry for GET DIAGNOSTICS in the IBM Informix
Guide to SQL: Syntax.

From within an Informix ESQL/C application, you can obtain the name of the
current connection with the ifx_getcur_conn_name() function. This function
returns the name of the current connection into a user-defined character buffer. The
function is useful to determine the current connection among a group of active
connections in a Informix ESQL/C application that has multiple threads.

For example, the following code consists of a callback function, cb(), that two
sqlbreakcallback() calls use in two different threads:
void
cb(mint status)
{

mint res;
char *curr_conn = ifx_getcur_conn_name();

if (curr_conn && strcmp(curr_conn, "con2") == 0)
{
res = sqlbreak();
printf("Return status of sqlbreak(): %d\n", res);
}

}

void
thread_1()

EXEC SQL connect to :dbname;
if(!strncmp(SQLSTATE, "00", 2)

{
EXEC SQL get diagnostics exception 1

:srvrname = SERVER_NAME, :cnctname = CONNECTION_NAME;
printf("The name of the server is ’%s’\n", srvrname);
}

Figure 12-7. Code Fragment That Saves Connection Information

12-20 IBM Informix ESQL/C Programmer’s Manual

{
EXEC SQL BEGIN DECLARE SECTION;

mint res;
EXEC SQL END DECLARE SECTION;

EXEC SQL connect to ’db’ as ’con1’ ;
sqlbreakcallback(100, cb);
EXEC SQL SELECT count(*) INTO :res FROM x, y;
if (sqlca.sqlcode == -213)

printf("Connection con1 fired an sqlbreak().\n");
printf("con1: Result of count(*) = %d\n", res);
EXEC SQL set connection ’con1’ dormant ;

}

void
thread_2()
{
EXEC SQL BEGIN DECLARE SECTION;

mint res;
EXEC SQL END DECLARE SECTION;

EXEC SQL connect to ’db’ as ’con2’ ;
sqlbreakcallback(100, cb);
EXEC SQL SELECT count(*) INTO :res FROM x, y;
if (sqlca.sqlcode == -213)

printf("Connection con2 fired an sqlbreak().\n");
printf("con2: Result of count(*) = %d\n", res);
EXEC SQL set connection ’con2’ dormant ;

}

The cb() callback function uses the ifx_getcur_conn_name() to check which
connection is current. For the syntax of ifx_getcur_conn_name(), see B-72. For
more information about current and active connections, see “Concurrent active
connections” on page 13-10.

Obtaining Available Databases
From within an Informix ESQL/C application, you can obtain the name of the
databases that are available from a specified database server with the sqgetdbs()
function. This function returns the names of the databases that are available in the
database server of the current connection. For more information about sqgetdbs(),
see 12-31.

Checking the Status of the Database Server
Some interactions with the database server cannot execute unless the database
server is idle. Other actions assume that the database server is busy processing a
request. You can check whether the database server is currently processing an SQL
request with the sqldone() function. This function returns zero (0) if the database
server is idle and a negative value if it is busy. For more information about
sqldone(), see B-228.

Detaching from a Connection
When your application forks a process, the child process inherits the database
connections of the parent. If you leave these connections open, both parent and
child processes use the same connection to communicate with the same database
server. Therefore, the child process needs to establish a separate database
connection.

To establish a separate database connection for the child process:

Chapter 12. Working with the database server 12-21

1. Call sqldetach() to detach the child process from the database server connection
in the parent process.

2. Establish a new connection in the child process (if one is needed).

For more information about the sqldetach() library function, see B-228.

Interrupting an SQL Request
Sometimes you might need to cancel an SQL request. If, for example, you
inadvertently provide the wrong search criteria for a long query, you want to
cancel the SELECT statement rather than wait for unneeded data. While the
database server executes an SQL request, the Informix ESQL/C application is
blocked. To regain control, the application must interrupt the SQL request.

To interrupt the database server, you can use the sqlbreak() library function. You
might want to interrupt an SQL request for some of the following reasons:
v The application end user wants to terminate the current SQL request.
v The current SQL request has exceeded some timeout interval.

Important: The application must handle any open transactions, cursors, and
databases after it interrupts an SQL request.

The following sections summarize how to handle each of these types of interrupt.
For more information about the sqlbreak() function, see 12-30.

Interruptible SQL Statements
You cannot cancel all SQL statements. Some types of database operations are not
interruptible and others cannot be interrupted at certain points. An Informix
ESQL/C application can interrupt the following SQL statements.

SELECT OPEN ALTER TABLE
UPDATE EXECUTE FUNCTION ALTER INDEX
DELETE CREATE TABLE EXECUTE PROCEDURE
INSERT CREATE INDEX

In addition to the preceding statements, you can also cancel the operation of a loop
as it executes within a SPL routine.

The Informix ESQL/C application and the database server communicate through
message requests. A message request is the full round trip of the message that
initiates an SQL task. It can consist of the message that the application sends to the
database server as well as the message that the database server sends back in
reply. Alternatively, a message request can consist of the message that the database
server sends to the application as well as the message that the application sends in
acknowledgment.

Most SQL statements require only one message request to execute. The application
sends the SQL statement to the database server and the database server executes it.
However, an SQL statement that transfers large amounts of data (such as a
SELECT, an INSERT, or a PUT), can require more than one message request to
execute, as follows:
v In the first message request, the application sends the SQL statement to the

database server to execute.

12-22 IBM Informix ESQL/C Programmer’s Manual

v In subsequent message requests, the database server fills a buffer with data and
then sends this data to the application. The size of the buffer determines the
amount of data that the database server sends in a single message request.

In addition, the OPEN statement always requires two message requests.

The database server decides when to check for an interrupt request. Therefore, the
database server might not immediately terminate execution of an SQL statement
and your application might not regain control as soon as it sends the interrupt
request.

Allowing a User to Interrupt
When the database server processes a large query, you might want to allow the
user to interrupt the query request with the Interrupt key (usually CTRL-C). To do
this, you must set up a signal-handler function. The signal-handler function is a
user-defined function that the application process calls when it receives a specific
signal.

To allow the user to interrupt an SQL request, you define a signal-handler function
for the SIGINT signal. This function must have the following declaration:
void sigfunc_ptr();

The user-defined signal-handler function can contain the Informix ESQL/C control
functions sqlbreak() and sqldone(). For more information about the sqlbreak() and
sqldone() functions, see B-220 and B-228. If you use any other Informix ESQL/C
control function or any SQL statement in the signal handler while the database
server is processing, Informix ESQL/C generates an error (-439).

The Informix ESQL/C application must determine how to continue execution after
the signal handler completes. One possible method is to set up a nonlocal go to
with the setjmp() and longjmp() system functions. These functions work together
to support low-level interrupts, as follows:
v The setjmp() function saves the current execution environment and establishes a

return point for execution after the longjmp() call.
v The longjmp() call resides in the signal-handler function. Use longjmp() in a

signal-handling function only if sqldone() returns 0 (the database server is idle).

See your UNIX operating system documentation for more information about the
setjmp() and longjmp() system functions.

To associate the user-defined signal handler with a system signal, use the signal()
system function, as follows:
signal(SIGINT, sigfunc_ptr);

When the Informix ESQL/C application receives the SIGINT signal, it calls the
function that sigfunc_ptr indicates. For more information about the signal() system
function, see your UNIX operating system documentation.

To disassociate the signal-handler function from the SIGINT signal, call signal()
with SIG_DFL as the function pointer, as follows:
signal(SIGINT, SIG_DFL);

SIG_DFL is the default signal-handling action. For the SIGINT signal, the default
action is to stop the process and to generate a core dump. You might instead want
to specify the SIG_IGN action to cause the application to ignore the signal.

Chapter 12. Working with the database server 12-23

Important: On most systems, the signal handler remains in effect after the
application catches the signal. On these systems, you need to
disassociate the signal handler explicitly if you do not want it to
execute the next time the same signal is caught.

On a few (mostly older) systems, however, when a signal handler
catches a signal, the system reinstates the SIG_DFL action as the
handling mechanism. On these systems, it is up to the signal handler
to reinstate itself if you want it to handle the same signal the next time
the signal is caught. For information about how your system handles
signals, check your system documentation.

Setting Up a Timeout Interval
When the database server processes a large query, you might want to prompt the
user periodically to determine whether to continue the request. To do this, you can
use the sqlbreakcallback() function to provide the following information:
v A timeout interval is the period of time to wait for an SQL request to execute

before the application regains control.
v A callback function is the user-defined function to call each time the timeout

interval has elapsed.

Warning: Do not use the sqlbreakcallback() function if your Informix ESQL/C
application uses shared memory (olipcshm) as the nettype in a
connection to an instance of the database server. Shared memory is not a
true network protocol and does not handle the nonblocking I/O that
support for a callback function requires. When you use
sqlbreakcallback() with shared memory, the function call appears to
register the callback function successfully (it returns zero), but during
SQL requests, the application never calls the callback function.

The Timeout Interval: With the sqlbreakcallback() function, you specify a timeout
interval. A timeout interval is the amount of time (in milliseconds) for which the
database server can process an SQL request before the application regains control.
The application then calls the callback function that you specify and executes it to
completion.

Once the callback function completes, the application resumes its wait until one of
the following actions take place:
v The database server returns control to the application under one of the following

conditions:
– It has completed the SQL request. The database server returns the status of

the request in the SQLCODE and SQLSTATE variables.
– It has discontinued processing of the SQL request because it has received an

interrupt request from the sqlbreak() function in the callback function. For
more information about how the database server responds to sqlbreak(), see
12-30.

v The next timeout interval elapses. When the application resumes execution, it
calls the callback function again.
The application calls the callback function each time the timeout interval elapses
until the database server completes the request or is interrupted.

The Callback Function: With the sqlbreakcallback() function, you also specify a
callback function to be called at several points in the execution of an SQL request. A

12-24 IBM Informix ESQL/C Programmer’s Manual

callback function is a user-defined Informix ESQL/C function that specifies actions
to take during execution of an SQL request. This function must have the following
declaration:
void callbackfunc(status)
mint status;

The integer status variable identifies at what point in the execution of the SQL
request the callback function was called. Within the callback function, you can
check this status variable to determine at which point the function was called.
Table 12-3 summarizes the valid status values.

Table 12-3. Status Values of a Callback Function

Point at Which Callback Is Called
Callback Argument
Value

After the database server has completed the SQL request 0

Immediately after the application sends an SQL request to the database
server

1

While the database server is processing an SQL request, after the
timeout interval has elapsed

2

Within the callback function, you might want to check the value of the status
argument to determine what actions the function takes.

Tip: When you register a callback function with sqlbreakcallback(), the
application calls the callback function each time it sends a message request.
Therefore, SQL statements that require more than one message request cause
the application to call the callback function more than once.

For more information about message requests, see “Interruptible SQL Statements”
on page 12-22.

The callback function, and any of its subroutines, can contain only the following
Informix ESQL/C control functions:
v The sqldone() library function determines whether the database server is still

busy.
If sqldone() returns error -439, the database server is still busy and you can
proceed with the interrupt. For more information about the sqldone() function,
see B-228.

v The sqlbreakcallback() library function disassociates the callback function from
the timeout interval.
Call sqlbreakcallback() with the following arguments:
sqlbreakcallback(-1L, (void *)NULL);

This step is not necessary if you want the callback function to remain for the
duration of the current connection. When you close the current connection, you
also disassociate the callback function.

v The sqlbreak() library function interrupts the execution of the database server.

If you use any Informix ESQL/C control function other than those in the preceding
list, or if you use any SQL statement while the database server is processing,
Informix ESQL/C generates an error (-439).

Chapter 12. Working with the database server 12-25

If the application calls a callback function because a timeout interval has elapsed,
the function can prompt the user for whether to continue or cancel the SQL
request, as follows:
v To continue execution of the SQL request, the callback function skips the call to

sqlbreak().
While the callback function executes, the database server continues processing its
SQL request. Once the callback function completes, the application waits for
another timeout interval before it calls the callback function again. During this
interval, the database server continues execution of the SQL request.

v To cancel the SQL request, the callback function calls the sqlbreak() function,
which sends an interrupt request to the database server.
Execution of the callback function continues immediately after sqlbreak() sends
the request. The application does not wait for the database server to respond
until it completes execution of the callback function.

When the database server receives the interrupt request signal, it determines if the
current SQL request is interruptible (see 12-22). If so, the database server
discontinues processing and returns control to the application. The application is
responsible for the graceful termination of the program; it must release resources
and roll back the current transaction. For more information about how the
database server responds to an interrupt request, see the description of sqlbreak()
in 12-30.

Use the sqlbreakcallback() function to set the timeout interval (in milliseconds)
and to register a callback function, as follows:
sqlbreakcallback(timeout, callbackfunc_ptr);

This callbackfunc_ptr must point to a callback function that you already defined (see
12-24). Within the calling program, you must also declare this function, as follows:
void callbackfunc_ptr();

Important: You must register the callback function after you establish the
connection and before you execute the first embedded SQL statement
that you want to cancel. Once you close the connection, the callback
function is no longer registered.

For information about the sqlbreakcallback() function, see B-221. The timeout
demonstration program, which 12-30 describes, uses the sqlbreakcallback()
function to establish a timeout interval for a database query.

Error Checking During Data Transfer
The IFX_LOB_XFERSIZE environment variable is used to specify the number of
kilobytes in a CLOB or BLOB to transfer from a client application to the database
server before checking whether an error has occurred. The error check occurs each
time the specified number of kilobytes is transferred. If an error occurs, the
remaining data is not sent and an error is reported. If no error occurs, the file
transfer will continue until it finishes.

The valid range for IFX_LOB_XFERSIZE is from 1 to 9223372036854775808
kilobytes. The IFX_LOB_XFERSIZE environment variable is set on the client.

For more information about IFX_LOB_XFERSIZE, see the IBM Informix Guide to
SQL: Reference.

12-26 IBM Informix ESQL/C Programmer’s Manual

Terminating a connection
An Informix ESQL/C program can use the following statements and functions to
close a connection:
v The CLOSE DATABASE statement closes a database. For pre-Version 6.0

applications, it also closes the connection. For applications of Version 6.0 and
later, the connection remains open after the CLOSE DATABASE statement
executes.

v The sqlexit() library function closes all current connections, implicit and explicit.
If you call sqlexit() when any databases are still open, the function causes any
open transactions to be rolled back.

v The sqldetach() library function closes the database server connection of the
child process. It does not affect the database server connection of the parent
process.

v The DISCONNECT statement closes a specified connection. If a database is
open, DISCONNECT closes it before it closes the connection. If transactions are
open, the DISCONNECT statement fails.

For more information about the CLOSE DATABASE and DISCONNECT
statements, see of the IBM Informix Guide to SQL: Syntax. For information about the
sqldetach() and sqlexit() library functions, see B-223 and B-228.

Optimized Message Transfers
Informix ESQL/C provides a feature called optimized message transfers, which allow
you to minimize message transfers with the database server for most Informix
ESQL/C statements. Informix ESQL/C accomplishes optimized message transfers
by chaining messages together and even eliminating some small message packets.
When the optimized message transfer feature is enabled, Informix ESQL/C expects
that SQL statements will succeed. Consequently, Informix ESQL/C chains, and in
some cases eliminates, confirmation messages from the database server.

Restrictions on Optimized Message Transfers
Informix ESQL/C does not chain the following SQL statements even when you
enable optimized message transfers:
v COMMIT WORK
v DESCRIBE
v EXECUTE
v FETCH
v FLUSH
v PREPARE
v PUT
v ROLLBACK WORK
v SELECT INTO (singleton SELECT)

When Informix ESQL/C reaches one of the preceding statements, it flushes the
message out to the database server. Informix ESQL/C then continues message
chaining for subsequent SQL statements. Only SQL statements that require
network traffic cause Informix ESQL/C to flush the message queue.

SQL statements that do not require network traffic, such as the DECLARE
statement, do not cause Informix ESQL/C to send the message queue to the
database server.

Chapter 12. Working with the database server 12-27

Enabling Optimized Message Transfers
To enable optimized message transfers, or message chaining, you must set the
following variables in the client environment:
1. Set the OPTMSG environment variable at run time to enable optimized

message transfers for all qualifying SQL statements.
2. Set the OptMsg global variable within an Informix ESQL/C application to

control which SQL statements use message chaining.

Setting the OPTMSG Environment Variable
The OPTMSG environment variable enables the optimized message transfers for
all SQL statements in the application. You can assign the following values to the
OPTMSG environment variable:

1 This value enables optimized message transfers, implementing the
feature for any connection that is subsequently.

0 This value disables optimized message transfers. (Default)

The default value of the OPTOMSG environment variable is 0 (zero). Setting
OPTMSG to 0 (zero) explicitly disables message chaining. You might want to
disable optimized message transfers for statements that require immediate replies,
or for debugging purposes.

To enable optimized message transfers, you must set OPTMSG before you start
the Informix ESQL/C application.

On UNIX operating systems, you can set OPTMSG within the application with the
putenv() system call (as long as your system supports the putenv() function). The
following call to putenv(), for example, enables optimized message transfers:
putenv("OPTMSG=1");

In Windows environments, you can set OPTMSG within the application with the
ifx_putenv() function. The following call to ifx_putenv(), for example, enables
optimized message transfers:
ifx_putenv("OPTMSG=1");

When you set OPTMSG within an application, you can activate or deactivate
optimized message transfers for each connection or within each thread. To enable
optimized message transfers, you must set OPTMSG before you establish a
connection.

Setting the OptMsg Global Variable
The OptMsg global variable is defined in the Informix ESQL/C sqlhdr.h header
file.

After you set the OPTMSG environment variable to 1, you must set the OptMsg
global variable to specify whether message chaining takes effect for each
subsequent SQL statement. You can assign the following values to OptMsg:

1 This value enables message chaining for every subsequent SQL
statement.

0 This value disables message chaining for every subsequent SQL
statement.

12-28 IBM Informix ESQL/C Programmer’s Manual

With the OPTMSG environment variable set to 1, you must still set the OptMsg
global variable to 1 to enable the message chaining. If you omit the following
statement from your program, Informix ESQL/C does not perform message
chaining:
OptMsg = 1;

When you have set the OPTMSG environment variable to 1, you might want to
disable message chaining for the following reasons:
v Some SQL statements require immediate replies.

See “Restrictions on Optimized Message Transfers” on page 12-27 for more
information about these SQL statements. Re-enable the OPTMSG feature once
the restricted SQL statement completes.

v For debugging purposes
You can disable the OPTMSG feature when you are trying to determine how
each SQL statement responds.

v Before the last SQL statement in the program to ensure that the database server
processes all messages before the application exits. If OPTMSG is enabled, the
message is queued up for the database server but it is not sent for processing.

To avoid unintended chaining, reset the OptMsg global variable immediately after
the SQL statement that requires it. The following code fragment enables message
chaining for the DELETE statement:
OptMsg = 1;
EXEC SQL delete from customer;
OptMsg = 0;
EXEC SQL create index ix1 on customer (zipcode);

This example enables message chaining because the execution of the DELETE
statement is not likely to fail. Therefore, it can be safely chained to the next SQL
statement. Informix ESQL/C delays sending the message for the DELETE
statement. The example disables message chaining after the DELETE statement so
that Informix ESQL/C flushes all messages that have been queued up when the
next SQL statement executes. By disabling the message chaining after the DELETE,
the code fragment avoids unintended message chaining. When unintended
chaining occurs, it can be difficult to determine which of the chained statements
has failed.

At the CREATE INDEX statement, Informix ESQL/C sends both the DELETE and
the CREATE INDEX statements to the database server.

Error Handling with Optimized Message Transfers
When the OPTMSG feature is enabled, your Informix ESQL/C application cannot
perform error handling on any chained statement. If you are not sure whether a
particular statement might generate an error, include error-handling code and do
not enable message chaining for that statement.

Once an error occurs in a chained statement, the database server stops execution.
Any SQL statements that follow the error are not executed. For example, the
following code fragment intends to chain five INSERT statements (this fragment
assumes that the OPTMSG environment variable is set to 1):
EXEC SQL create table tab1 (col1 INTEGER);

/* enable message chaining */
OptMsg = 1;

Chapter 12. Working with the database server 12-29

/* these two INSERT statements execute successfully */
EXEC SQL insert into tab1 values (1);
EXEC SQL insert into tab1 values (2);

/* this INSERT statement generates an error because the data
* in the VALUES clause is not compatible with the column type */
EXEC SQL insert into tab1 values (’a’);

/* these two INSERT statements never execute */
EXEC SQL insert into tab1 values (3);
EXEC SQL insert into tab1 values (4);

/* disable message chaining */
OptMsg = 0;

/* update one of the tab1 rows */
EXEC SQL update tab1 set col1 = 5 where col1 = 2;
if (SQLCODE < 0)...

In this code fragment, Informix ESQL/C flushes the message queue when it
reaches the UPDATE statement, sending the five INSERT statements and the
UPDATE statement to the database server for execution. Because the third INSERT
statement generates an error, the database server executes neither the remaining
INSERT statements nor the UPDATE statement. The UPDATE statement, which is
the last statement in the chained statements, returns the error from the failed
INSERT statement. The tab1 table contains the rows with col1 values of 1 and 2.

Using Database Server Control Functions
The following section describes the IBM Informix ESQL/C library functions that
you can use to control the database server sessions. The library functions are
located in Appendix B, “ESQL/C function library,” on page B-1.

Function Name Description See

ifx_getcur_conn_name() Returns the name of the current connection. B-72

sqgetdbs() Returns the names of databases that a
database server can access.

B-217

sqlbreak() Sends the database server a request to stop
processing.

B-220

sqlbreakcallback() Establishes a timeout interval and a callback
function for interrupting an SQL request.

B-220

sqldetach() Detaches a child process from a database
server connection.

B-223

sqldone() Determines whether the database server is
currently processing an SQL request.

B-228

sqlexit() Terminates a database server connection. B-228

sqlsignal() Performs signal handling and cleanup of child
processes.

B-229

sqlstart() Starts a database server connection. B-231

12-30 IBM Informix ESQL/C Programmer’s Manual

The Timeout Program
The timeout program demonstrates how to set up a timeout interval. This program
uses the sqlbreakcallback() function to perform the following actions:
v To specify a timeout interval of 200 milliseconds for execution of an SQL request
v To register the on_timeout() callback function to be called when an SQL request

begins and ends as well as when the timeout interval elapses

If execution of an SQL request exceeds the timeout interval, the callback function
uses the sqldone() function to ensure that the database server is still busy, prompts
the user for confirmation of the interrupt, and then uses the sqlbreak() function to
send an interrupt request to the database server.

Compiling the Program
Use the following command to compile the timeout program:
esql -o timeout timeout.ec

The -o timeout option causes the executable program to be named timeout.
Without the -o option, the name of the executable program defaults to a.out. See
“Using the esql Command” on page 2-4 for more information about the esql
command.

Guide to the timeout.ec File
===
1. /*
2. * timeout.ec *
3. */
4. #include <stdio.h>
5. #include <string.h>
6. #include <ctype.h>
7. #include <decimal.h>
8. #include <errno.h>
9. EXEC SQL include sqltypes;

10. #define LCASE(c) (isupper(c) ? tolower(c) : (c))
11. /* Defines for callback mechanism */
12. #define DB_TIMEOUT 200 /* number of milliseconds in timeout */
13. #define SQL_INTERRUPT -213 /* SQLCODE value for interrupted stmt

*/
14. /* These constants are used for the canceltst table, created by
15. * this program.
16. */
17. #define MAX_ROWS 10000 /* number of rows added to table */
18. EXEC SQL define CHARFLDSIZE 20; /* size of character columns in

* table */
19. /* Define for sqldone() return values */
20. #define SERVER_BUSY -439
21. /* These constants used by the exp_chk2() function to determine
22. * whether to display warnings.
23. */
24. #define WARNNOTIFY 1
25. #define NOWARNNOTIFY 0
26. int4 dspquery();
27. extern int4 exp_chk2();
28. void on_timeout();
29. main()

Chapter 12. Working with the database server 12-31

30. {
31. char ques[80], prompt_ans();
32. int4 ret;
33. mint create_tbl(), drop_tbl();
34. printf("TIMEOUT Sample ESQL Program running.\n\n");
35. /*
36. * Establish an explicit connection to the stores7 database
37. * on the default database server.
38. */
39. EXEC SQL connect to ’stores7’;

===

Lines 4 to 9
Lines 4 to 8 include the UNIX header files from the /usr/include directory. The
Informix ESQL/C sqltypes.h header file (line 9) defines names for integer values
that identify SQL and C data types.

Lines 10 to 20
Line 10 defines LCASE, a macro that converts an uppercase character to a
lowercase character. The DB_TIMEOUT (line 12) constant defines the number of
milliseconds in the timeout interval. The SQL_INTERRUPT constant (line 13)
defines the SQLCODE value that the database server returns when it interrupts an
SQL statement.

Lines 17 and 18 define constants that the create_tbl() function uses to create the
canceltst table. This table holds the test data needed for the large query (lines 125
to 132). MAX_ROWS is the number of rows that create_tbl() inserts into canceltst.
You can change this number if you find that the query does not run long enough
for you to interrupt it. CHARFLDSIZE is the number of characters in the character
fields (char_fld1 and char_fld2) of canceltst.

Line 20 defines the SERVER_BUSY constant to hold the sqldone() return value that
indicates that the database server is busy processing an SQL request. Use of this
constant makes code more readable and removes the explicit return value from the
code.

Lines 24 and 25
The exp_chk2() exception-handling function uses the WARNNOTIFY and
NOWARNNOTIFY constants (lines 24 and 25). Calls to exp_chk2() specify one of
these as the second argument to indicate whether the function displays SQLSTATE
and SQLCODE information for warnings (WARNNOTIFY) or does not display this
information for warnings (NOWARNNOTIFY). For more information about the
exp_chk2() function, see “Lines 348 to 355” on page 12-43.

Lines 29 to 33
The main() program block begins on line 29. Lines 31 to 33 declare variables local
to the main() program block.
===
40. if (exp_chk2("CONNECT to stores7", NOWARNNOTIFY) < 0)
41. exit(1);
42. printf("Connected to ’stores7’ on default server\n");
43. /*
44. * Create the canceltst table to hold MAX_ROWS (10,000) rows.
45. */
46. if (!create_tbl())
47. {

12-32 IBM Informix ESQL/C Programmer’s Manual

48. printf("\nTIMEOUT Sample Program over.\n\n");
49. exit(1);
50. }
51. while(1)
52. {
53. /*
54. * Establish on_timeout() as callback function. The callback
55. * function is called with an argument value of 2 when the
56. * database server has executed a single SQL request for number
57. * of milliseconds specified by the DB_TIMEOUT constant
58. * (0.00333333 minutes by default). Call to sqlbreakcallback()
59. * must come after server connection is established and before
60. * the first SQL statement that can be interrupted.
61. */
62. if (sqlbreakcallback(DB_TIMEOUT, on_timeout))
63. {
64. printf("\nUnable to establish callback function.\n");
65. printf("TIMEOUT Sample Program over.\n\n");
66. exit(1);
67. }
68. /*
69. * Notify end user of timeout interval.
70. */
71. printf("Timeout interval for SQL requests is: ");
72. printf("%0.8f minutes\n", DB_TIMEOUT/60000.00);
73. stcopy("Are you ready to begin execution of the query?",
74. ques);
75. if (prompt_ans(ques) == ’n’)
76. {
77. /*
78. * Unregister callback function so table cleanup will not
79. * be interrupted.
80. */
81. sqlbreakcallback(-1L, (void *)NULL);
82. break;
83. }

===

Lines 43 to 50
The create_tbl() function creates the canceltst table in the stores7 database. It
inserts MAX_ROWS number of rows into this table. If create_tbl() encounters some
error while it creates canceltst, execution of the timeout program cannot continue.
The program exits with a status value of 1 (line 49).

Line 51
This while loop (which ends on line 97), controls the execution of the query on the
canceltst table. It allows the user to run this query multiple times to test various
interrupt scenarios.

Lines 53 to 67
The first task of the while loop is to use sqlbreakcallback() to specify a timeout
interval of DB_TIMEOUT (200) milliseconds and to register on_timeout() as the
callback function. If this call to sqlbreakcallback() fails, the program exits with a
status value of 1. To test different timeout intervals, you can change the
DB_TIMEOUT constant value and recompile the timeout.ec source file.

Chapter 12. Working with the database server 12-33

Lines 68 to 72
These printf() functions notify the user of the timeout interval. Notice that the
message displays this interval in minutes, not milliseconds. It divides the
DB_TIMEOUT value by 60,000 (number of milliseconds in a minute).

Lines 73 to 83
The prompt_ans() function asks the user to indicate when to begin execution of the
canceltst query. If the user enters n (no), the program calls the sqlbreakcallback()
function to unregister the callback function. This call prevents the SQL statements
in the drop_tbl() function (lines 322 to 329) from initiating the callback function.
For a description of the prompt_ans() function, see “Lines 337 to 347” on page
12-43.
===
84. /*
85. * Start display of query output
86. */
87. printf("\nBeginning execution of query...\n\n");
88. if ((ret = dspquery()) == 0)
89. {
90. if (prompt_ans("Try another run?") == ’y’)
91. continue;
92. else
93. break;
94. }
95. else /* dspquery() encountered an error */
96. exit(1);
97. } /* end while */
98. /*
99. * Drop the table created for this program
100. */
101. drop_tbl();
102. EXEC SQL disconnect current;
103. if (exp_chk2("DISCONNECT for stores7", WARNNOTIFY) != 0)
104. exit(1);
105. printf("\nDisconnected stores7 connection\n");
106. printf("\nTIMEOUT Sample Program over.\n\n");
107. }
108. /* This function performs the query on the canceltst table. */
109. int4 dspquery()
110. {
111. mint cnt = 0;
112. int4 ret = 0;
113. int4 sqlcode = 0;
114. int4 sqlerr_code, sqlstate_err();
115. void disp_exception(), disp_error(), disp_warning();
116. EXEC SQL BEGIN DECLARE SECTION;
117. char fld1_val[CHARFLDSIZE + 1];
118. char fld2_val[CHARFLDSIZE + 1];
119. int4 int_val;
120. EXEC SQL END DECLARE SECTION;
121. /* This query contains an artificially complex WHERE clause to
122. * keep the database server busy long enough for an interrupt
123. * to occur.
124. */
125. EXEC SQL declare cancel_curs cursor for
126. select sum(int_fld), char_fld1, char_fld2

12-34 IBM Informix ESQL/C Programmer’s Manual

127. from canceltst
128. where char_fld1 matches "*f*"
129. or char_fld1 matches "*h*"
130. or char_fld2 matches "*w*"
131. or char_fld2 matches "*l*"
132. group by char_fld1, char_fld2;

===

Lines 84 to 97
If the user chooses to continue the query, the program calls the dspquery()
function (line 88) to run the canceltst query. The prompt_ans() function displays a
prompt so the user can decide whether to run the program again.

Lines 98 to 101
The drop_tbl() function drops the canceltst table from the stores7 database to clean
up after the program.

Lines 108 to 120
The dspquery() function runs a query of the canceltst table and displays the
results. It returns zero (success) or the negative value of SQLCODE (failure) to
indicate the result of the canceltst query.

Lines 121 to 132
Line 125 declares the cancel_curs cursor for the query. The actual SELECT (lines
126 to 132) obtains the sum of the int_fld column and the values of the two
character columns (char_fld1 and char_fld2). The WHERE clause uses the
MATCHES operator to specify matching rows, as follows:
v All char_fld1 columns that contain an f or an h with the criteria:

char_fld1 matches "*f*"
or char_fld1 matches "*h*"

These criteria match rows with a char_fld1 value of Informix or “4100 Bohannon
Dr.”

v All char_fld2 columns that contain a w or an l with the criteria:
char_fl2 matches "*w*"
or char_fld2 matches "*l*"

These criteria match rows with a char_fld2 value of Software or “Menlo Park,
CA”.

This SELECT is artificially complex to ensure that the query takes a long time to
execute. Without a reasonably complex query, the database server finishes
execution before the user has a chance to interrupt it. In a production application,
only use the sqlbreakcallback() feature with queries that take a long time to
execute.
===
133. EXEC SQL open cancel_curs;
134. sqlcode = SQLCODE;
135. sqlerr_code = sqlstate_err(); /* check SQLSTATE for exception */
136. if (sqlerr_code != 0) /* if exception found */
137. {
138. if (sqlerr_code == -1) /* runtime error encountered */
139. {
140. if (sqlcode == SQL_INTERRUPT) /* user interrupt */
141. {
142. /* This is where you would clean up resources */
143. printf("\n TIMEOUT INTERRUPT PROCESSED\n\n");

Chapter 12. Working with the database server 12-35

144. sqlcode = 0;
145. }
146. else /* serious runtime error */
147. disp_error("OPEN cancel_curs");
148. EXEC SQL close cancel_curs;
149. EXEC SQL free cancel_curs;
150. return(sqlcode);
151. }
152. else if (sqlerr_code == 1) /* warning encountered */
153. disp_warning("OPEN cancel_curs");
154. }

===

Line 133
This OPEN statement causes the database server to execute the SELECT that is
associated with the cancel_curs cursor. Because the database server executes the
canceltst query at this point, this OPEN is the statement that the user would be
most likely to interrupt. When the FETCH executes, the database server just sends
matching rows to the application, an operation that is not usually time intensive.

Lines 134 to 154
This block of code checks the success of the OPEN. Since the OPEN can be
interrupted, this exception checking must include an explicit check for the
interrupt value of -213. The database server sets SQLCODE to -213 when it has
interrupted an SQL request. On line 140, the program uses the SQL_INTERRUPT
defined constant (which line 13 defines), for this SQLCODE value.

The sqlstate_err() function (line 135) uses the GET DIAGNOSTICS statement to
analyze the value of the SQLSTATE variable. If this function returns a non-zero
value, SQLSTATE indicates a warning, a runtime error, or the NOT FOUND
condition. Before the call to sqlstate_err(), line 134 saves the SQLCODE value so
that execution of any other SQL statements (such as GET DIAGNOSTICS in
sqlstate_err()) does not overwrite it. The function returns the value of SQLCODE if
the OPEN encounters a runtime error (line 150).

The first if statement (line 136) checks if the OPEN encounters any type of
exception (sqlstate_err() returns a nonzero value). The second if (line 138) checks if
the OPEN has generated a runtime error (return value of -1). However, if the
database server has interrupted the OPEN, sqlstate_err() also returns -1. Since
Informix ESQL/C does not handle an interrupted SQL statement as a runtime
error, the third if checks explicitly for the SQL_INTERRUPT value (line 140). If the
OPEN was interrupted, line 143 notifies the user that the interrupt request was
successful and then the function resets the saved SQLCODE value (in sqlcode) to
zero to indicate that the OPEN did not generate a runtime error.

Lines 146 and 147 execute only if the OPEN generates a runtime error other than
SQL_INTERRUPT (-213). The disp_error() function displays the exception
information in the diagnostics area and the SQLCODE value. Lines 148 to 150
clean up after the OPEN. They close and free the cancel_curs cursor and then
return the SQLCODE value. The dspquery() function does not continue with the
FETCH (line 158) if the OPEN was interrupted.

If sqlstate_err() returns one (1), the OPEN has generated a warning. Lines 152 and
153 call the disp_warning() function to display warning information from the
diagnostics area. For more informatio7n on the disp_error() and disp_warning()
functions, see Lines 341 to 348 in 12-43.

12-36 IBM Informix ESQL/C Programmer’s Manual

===
155. printf("Displaying data...\n");
156. while(1)
157. {
158. EXEC SQL fetch cancel_curs into :int_val, :fld1_val,

:fld2_val;
159. if ((ret = exp_chk2("FETCH from cancel_curs", NOWARNNOTIFY))

== 0)
160. {
161. printf(" sum(int_fld) = %d\n", int_val);
162. printf(" char_fld1 = %s\n", fld1_val);
163. printf(" char_fld2 = %s\n\n", fld2_val);
164. }
165. /*
166. * Will display warning messages (WARNNOTIFY) but continue
167. * execution when they occur (exp_chk2() == 1)
168. */
169. else
170. {
171. if (ret==100) /* NOT FOUND condition */
172. {
173. printf("\nNumber of rows found: %d\n\n", cnt);
174. break;
175. }
176. if (ret < 0) /* Runtime error */
177. {
178. EXEC SQL close cancel_curs;
179. EXEC SQL free cancel_curs;
180. return(ret);
181. }
182. }
183. cnt++;
184. } /* end while */
185. EXEC SQL close cancel_curs;
186. EXEC SQL free cancel_curs;
187. return(0);
188. }
189. /*
190. * The on_timeout() function is the callback function. If the user
191. * confirms the cancellation, this function uses sqlbreak() to
192. * send an interrupt request to the database server.
193. */
194. void on_timeout(when_called)
195. mint when_called;
196. {
197. mint ret;
198. static intr_sent;

===

Lines 155 to 182
This while loop executes for each row that the cancel_curs cursor contains. The
FETCH statement (line 158) retrieves one row from the cancel_curs cursor. If the
FETCH generates an error, the function releases the cursor resources and returns
the SQLCODE error value (lines 176 to 181). Otherwise, the function displays the
retrieved data to the user. On the last row (ret = 100), the function displays the
number of rows that it retrieved (line 173).

Chapter 12. Working with the database server 12-37

Lines 185 to 187
After the FETCH has retrieved the last row from the cursor, the function releases
resources allocated to the cancel_curs cursor and returns a success value of zero.

Lines 190 to 199
The on_timeout() function is the callback function for the timeout program. The
sqlbreakcallback() call on line 62 registers this callback function and establishes a
timeout interval of 200 milliseconds. This function is called every time the database
server begins and ends an SQL request. For long-running requests, the application
also calls on_timeout() each time the timeout interval elapses.
===
199. /* Determine when callback function has been called. */
200. switch(when_called)
201. {
202. case 0: /* Request to server completed */
203. printf("+------SQL Request ends");
204. printf("-------------------------------+\n\n");
205. /*
206. * Unregister callback function so no further SQL statements
207. * can be interrupted.
208. */
209. if (intr_sent)
210. sqlbreakcallback(-1L, (void *)NULL);
211. break;
212. case 1: /* Request to server begins */
213. printf("+------SQL Request begins");
214. printf("-----------------------------+\n");
215. printf("| ");
216. printf(" |\n");
217. intr_sent = 0;
218. break;
219. case 2: /* Timeout interval has expired */
220. /*
221. * Is the database server still processing the request?
222. */
223. if (sqldone() == SERVER_BUSY)
224. if (!intr_sent) /* has interrupt already been sent? */
225. {
226. printf("| An interrupt has been received ");
227. printf("by the application.|\n");
228. printf("| ");
229. printf(" |\n");
230. /*
231. * Ask user to confirm interrupt
232. */
233. if (cancel_request())
234. {
235. printf("| TIMEOUT INTERRUPT ");
236. printf("REQUESTED |\n");
237. /*
238. * Call sqlbreak() to issue an interrupt request for
239. * current SQL request to be cancelled.
240. */
241. sqlbreak();
242. }
243. intr_sent = 1;

12-38 IBM Informix ESQL/C Programmer’s Manual

244. }
245. break;

===

Lines 199 to 249
This switch statement uses the callback function argument, when_called, to
determine the actions of the callback function, as follows:
v Lines 202 to 211: If when_called is 0, the callback function was called after the

database server ends an SQL request. The function displays the bottom of the
message-request box to indicate the end of the SQL request, as follows:
+------SQL Request ends-------------------------------+

v Lines 212 to 218: If when_called is 1, the callback function was called when the
database server begins an SQL request. The display of the top of the
message-request box indicates this condition:
+------SQL Request begins-----------------------------+
| |

For more information about these message-request boxes, see “Lines 21 to 30”
on page 12-44. The function also initializes the intr_sent flag to 0 because the
user has not yet sent an interrupt for this SQL request.

v Lines 219 to 245: If when_called is 2, the callback function was called because
the timeout interval has elapsed.

To handle the elapsed timeout interval, the callback function first calls the Informix
ESQL/C sqldone() function (line 223) to determine whether the database server is
still busy processing the SQL request. If the database server is idle, the application
does not need to send an interrupt. If sqldone() returns SERVER_BUSY (-439), the
database server is still busy.

Line 224 checks if the user has already attempted to interrupt the SQL request that
is currently executing. If an interrupt was sent, intr_sent is 1, and the program
does not need to send another request. If an interrupt request has not yet been
sent, the callback function notifies the user that the timeout interval has elapsed
(lines 226 to 229). It then uses the cancel_request() function (line 233) to allow the
user to confirm the interrupt. For more information about cancel_request(), see
“Lines 251 to 261” on page 12-40.
===
246. default:
247. printf("Invalid status value in callback: %d\n", when_called);
248. break;
249. }
250. }
251. /* This function prompts the user to confirm the sending of an
252. * interrupt request for the current SQL request.
253. */
254. mint cancel_request()
255. {
256. char prompt_ans();
257. if (prompt_ans("Do you want to confirm this interrupt?") == ’n’)
258. return(0); /* don’t interrupt SQL request */
259. else
260. return(1); /* interrupt SQL request */
261. }
262. /* This function creates a new table in the current database. It
263. * populates this table with MAX_ROWS rows of data. */
264. mint create_tbl()

Chapter 12. Working with the database server 12-39

265. {
266. char st_msg[15];
267. int ret = 1;
268. EXEC SQL BEGIN DECLARE SECTION;
269. mint cnt;
270. mint pa;
271. mint i;
272. char fld1[CHARFLDSIZE + 1], fld2[CHARFLDSIZE + 1];
273. EXEC SQL END DECLARE SECTION;
274. /*
275. * Create canceltst table in current database
276. */
277. EXEC SQL create table canceltst (char_fld1 char(20),
278. char_fld2 char(20), int_fld integer);
279. if (exp_chk2("CREATE TABLE", WARNNOTIFY) < 0)
280. return(0);
281. printf("Created table ’canceltst’\n");
282. /*
283. * Insert MAX_ROWS of data into canceltst
284. */
285. printf("Inserting rows into ’canceltst’...\n");
286. for (i = 0; i < MAX_ROWS; i++)
287. {

===

Lines 199 to 249 (continued)
If the user confirms the interrupt, the callback function calls the sqlbreak()
function to send the interrupt request to the database server. The callback function
does not wait for the database server to respond to the interrupt request. Execution
continues to line 243 and sets the intr_sent flag to 1, to indicate that the interrupt
request was sent. If the callback function was called with an invalid argument
value (a value other than 0, 1, or 2), the function displays an error message (line
247).

Lines 251 to 261
The cancel_request() function asks the user to confirm the interrupt request. It
displays the prompt:
Do you want to confirm this interrupt?

If the user answers y (yes), cancel_request() returns 0. If the user answers n (no),
cancel_request() returns 1.

Lines 262 to 281
The create_tbl() function creates the canceltst table and inserts the test data into
this table. The CREATE TABLE statement (lines 277 and 278) creates the canceltst
table with three columns: int_fld, char_fld1, and char_fld2. If the CREATE TABLE
encounters an error, the exp_chk2() function (line 279) displays the diagnostics-area
information and create_tbl() returns zero (0) to indicate that an error has occurred.

Lines 282 to 287
This for loop controls the insertion of the canceltst rows. The MAX_ROWS
constant determines the number of iterations for the loop, and hence the number
of rows that the function inserts into the table. If you cannot interrupt the canceltst
query (lines 126 to 132) because it executes too quickly, increase the value of
MAX_ROWS and recompile the timeout.ec file.
===

12-40 IBM Informix ESQL/C Programmer’s Manual

288. if (i%2 == 1) /* odd-numbered rows */
289. {
290. stcopy("4100 Bohannan Dr", fld1);
291. stcopy("Menlo Park, CA", fld2);
292. }
293. else /* even-numbered rows */
294. {
295. stcopy("Informix", fld1);
296. stcopy("Software", fld2);
297. }
298. EXEC SQL insert into canceltst
299. values (:fld1, :fld2, :i);
300. if ((i+1)%1000 == 0) /* every 1000 rows */
301. printf(" Inserted %d rows\n", i+1);
302. sprintf(st_msg, "INSERT #%d", i);
303. if (exp_chk2(st_msg, WARNNOTIFY) < 0)
304. {
305. ret = 0;
306. break;
307. }
308. }
309. printf("Inserted %d rows into ’canceltst’.\n", MAX_ROWS);
310. /*
311. * Verify that MAX_ROWS rows have added to canceltst
312. */
313. printf("Counting number of rows in ’canceltst’ table...\n");
314. EXEC SQL select count(*) into :cnt from canceltst;
315. if (exp_chk2("SELECT count(*)", WARNNOTIFY) < 0)
316. return(0);
317. printf("Number of rows = %d\n\n", cnt);
318. return (ret);
319. }
320. /* This function drops the ’canceltst’ table */
321. mint drop_tbl()
322. {
323. printf("\nCleaning up...\n");
324. EXEC SQL drop table canceltst;
325. if (exp_chk2("DROP TABLE", WARNNOTIFY) < 0)
326. return(0);
327. printf("Dropped table ’canceltst’\n");
328. return(1);
329. }

===

Lines 288 to 292
This if statement generates the values for the char_fld1 and char_fld2 columns of
the canceltst table. Lines 290 and 291 execute for odd-numbered rows. They store
the strings “4100 Bohannon Dr” and “Menlo Park, CA” in the fld1 and fld2
variables.

Lines 293 to 297
Lines 295 and 296 execute for even-numbered rows. They store the strings
Informix and Software in the fld1 and fld2 variables.

Chapter 12. Working with the database server 12-41

Lines 298 to 307
The INSERT statement inserts a row into the canceltst table. It takes the value for
the int_fld column from the :i host variable (the row number), and the values for
the char_fld1 and char_fld2 columns from the :fld1 and :fld2 host variables. The
function notifies the user after it inserts every 1000 rows (lines 300 and 301). If the
INSERT encounters an error, the exp_chk2() function (line 303) displays the
diagnostics-area information and create_tbl() returns zero to indicate that an error
has occurred.

Lines 300 to 317
These lines verify that the program has added the rows to the canceltst table and
that it can access them. The program does a SELECT on the newly created
canceltst table and returns the number of rows found. The program checks
whether this number matches the number that the function has added, which line
309 displays. If the SELECT encounters an error, the exp_chk2() function (line 315)
displays the diagnostics-area information, and create_tbl() returns 0 to indicate that
an error has occurred.

Lines 320 to 329
The drop_tbl() function drops the canceltst table from the current database. If the
DROP TABLE statement (line 324) encounters an error, the exp_chk2() function
displays the diagnostics-area information and drop_tbl() returns 0 to indicate that
an error has occurred.
===
330. /*
331. * The inpfuncs.c file contains the following functions used in

this
332. * program:
333. * getans(ans, len) - accepts user input, up to ’len’ number of
334. * characters and puts it in ’ans’
335. */
336. #include "inpfuncs.c"
337. char prompt_ans(question)
338. char * question;
339. {
340. char ans = ' ';
341. while(ans != ’y’ && ans != ’n’)
342. {
343. printf("\n*** %s (y/n): ", question);
344. getans(&ans,1);
345. }
346. return ans;
347. }
348. /*
349. * The exp_chk() file contains the exception handling functions to
350. * check the SQLSTATE status variable to see if an error has

* occurred
351. * following an SQL statement. If a warning or an error has
352. * occurred, exp_chk2() executes the GET DIAGNOSTICS statement and
353. * displays the detail for each exception that is returned.
354. */
355. EXEC SQL include exp_chk.ec;

===

12-42 IBM Informix ESQL/C Programmer’s Manual

Lines 330 to 336
Several of the Informix ESQL/C demonstration programs also call the getans()
function. Therefore, this function is broken out into a separate C source file and
included in the appropriate demonstration program. Because this function does not
contain Informix ESQL/C, the program can use the C #include preprocessor
statement to include the file. For a description of this function, see “Guide to the
inpfuncs.c File” on page 7-42.

Lines 337 to 347
The prompt_ans() function displays the string in the question argument and waits
for the user to enter y (yes) or n (no) as a response. It returns the single-character
response.

Lines 348 to 355
The timeout program uses the exp_chk2(), sqlstate_err(), disp_error(), and
disp_warning() functions to perform its exception handling. Because several
demonstration programs use these functions, the exp_chk2() function and its
supporting functions have been placed in a separate exp_chk.ec source file. The
timeout program must include this file with the Informix ESQL/C include
directive because the exception-handling functions use Informix ESQL/C
statements. For a description of the exp_chk.ec file, see “Guide to the exp_chk.ec
File” on page 11-32.

Tip: In a production environment, you would put functions such as getans(),
exp_chk2(), sqlstate_err(), disp_error(), and disp_warning() into a library and
include this library on the command line of the Informix ESQL/C-program
compilation.

Example Output
This section includes a sample output of the timeout demonstration program. This
program performs two runs of the canceltst query, as follows:
v Lines 20 to 43: The first run confirms the interrupt request as soon as the

confirmation prompt appears. (The user enters y.)
v Lines 44 to 75: The second run does not confirm the interrupt request. (The user

enters n.)

The numbers that appear in the following output are for explanation only. They do
not appear in the actual program output.
===
1. TIMEOUT Sample ESQL Program running.
2. Connected to ’stores7’ on default server
3. Created table ’canceltst’
4. Inserting rows into ’canceltst’...
5. Inserted 1000 rows
6. Inserted 2000 rows
7. Inserted 3000 rows
8. Inserted 4000 rows
9. Inserted 5000 rows

10. Inserted 6000 rows
11. Inserted 7000 rows
12. Inserted 8000 rows
13. Inserted 9000 rows
14. Inserted 10000 rows
15. Inserted 10000 rows into ’canceltst’.
16. Counting number of rows in ’canceltst’ table...

Chapter 12. Working with the database server 12-43

17. Number of rows = 10000
18. Timeout interval for SQL requests is: 0.00333333 minutes
19. *** Are you ready to begin execution of the query? (y/n): y
20. Beginning execution of query...
21. +------SQL Request begins-----------------------------+
22. | |
23. +------SQL Request ends-------------------------------+
24. +------SQL Request begins-----------------------------+
25. | |
26. | An interrupt has been received by the application.|
27. | |
28. *** Do you want to confirm this interrupt? (y/n): y
29. | TIMEOUT INTERRUPT REQUESTED |
30. +------SQL Request ends-------------------------------+

===

Lines 3 to 17
The create_tbl() function generates these lines. They indicate that the function has
successfully created the canceltst table, inserted the MAX_ROWS number of rows
(1,000), and confirmed that a SELECT statement can access these rows. For a
description of the create_tbl() function, see the annotation beginning with “Lines
262 to 281” on page 12-40.

Lines 18 to 19
Line 18 displays the timeout interval to indicate that sqlbreakcallback() has
successfully registered the callback function and established the timeout interval of
200 milliseconds (0.00333333 minutes). Line 19 asks the user to indicate the
beginning of the query execution. This prompt prepares the user for the
confirmation prompt (lines 28 and 43), which must be answered quickly to send an
interrupt while the database server is still executing the query.

Line 20
This line indicates the beginning of the dspquery() function, the point at which the
database server begins the canceltst query.

Lines 21 to 30
The program output uses a message-request box to indicate client-server
communication:
+------SQL Request begins-----------------------------+
| |
+------SQL Request ends-------------------------------+

Each box represents a single message request sent between the client and the
server. The callback function displays the text for a message-request box. (For a
description of which parts of the function display the text, see “Lines 199 to 249”
on page 12-39.) To execute the OPEN statement, the client and server exchanged
two message requests, which the two message-request boxes in the output indicate.
For more information about message requests, see “Interruptible SQL Statements”
on page 12-22.

The first message-request box (lines 21 to 23) indicates that the first message
request completes before the timeout interval elapses. The second message-request
box (lines 29 to 30) indicates that execution of this message request exceeds the
timeout interval and calls the callback function with a status value of 2. The
callback function prompts the user to confirm the interrupt request (line 28).

12-44 IBM Informix ESQL/C Programmer’s Manual

Line 29 indicates that the sqlbreak() function has requested an interrupt. The
message request then completes (line 30).
===
31. TIMEOUT INTERRUPT PROCESSED
32. *** Try another run? (y/n): y
33. Timeout interval for SQL requests is: 0.00333333 minutes
34. *** Are you ready to begin execution of the query? (y/n): y
35. Beginning execution of query...
36. +------SQL Request begins-----------------------------+
37. | |
38. +------SQL Request ends-------------------------------+
39. +------SQL Request begins-----------------------------+
40. | |
41. | An interrupt has been received by the application.|
42. | |
43. *** Do you want to confirm this interrupt? (y/n): n
44. +------SQL Request ends-------------------------------+
45. Displaying data...
46. sum(int_fld) = 25000000
47. char_fld1 = 4100 Bohannan Dr
48. char_fld2 = Menlo Park, CA
49. sum(int_fld) = 24995000
50. char_fld1 = Informix
51. char_fld2 = Software
52. Number of rows found: 2
53. *** Try another run? (y/n): n
54. Cleaning up...
55. Dropped table ’canceltst’
56. Disconnected stores7 connection
57. TIMEOUT Sample Program over.

===

Line 31
When the database server actually processes the interrupt request, it sets
SQLCODE to -213. Line 31 indicates that the application program has responded
to this status.

Line 32
This prompt indicates the end of the first run of the canceltst query. The user
responds y to the prompt to run the query a second time.

Lines 36 to 41
The message-request box indicates that the first message request completes before
the timeout interval elapses. The second message-request box (lines 39 to 44)
indicates that execution of this message request again exceeds the timeout interval
and calls the callback function (with when_called = 2). The callback function
prompts the user to confirm the interrupt request (line 43). This time the user
answers n.

Lines 45 to 52
Because the user has not interrupted the canceltst query, the program displays the
row information that the query returns.

Chapter 12. Working with the database server 12-45

Lines 54 and 55
The drop_tbl() function generates these lines. They indicate that the function has
successfully dropped the canceltst table from the database. For a description of the
drop_tbl() function, see the annotation beginning with “Lines 320 to 329” on page
12-42.

Using ESQL/C Connection Library Functions in a Windows
Environment

To establish an explicit connection (sometimes called a direct connection), IBM
Informix ESQL/C supports the SQL connection statements. For a complete
description of the SQL connection statements, see the IBM Informix Guide to SQL:
Syntax. Informix ESQL/C also supports the connection library functions that
Table 12-4 lists for establishing an explicit connection from a Windows
environment.

Table 12-4. ESQL/C Connection Library Functions and Their SQL Equivalents

ESQL/C for
Windows Library
Function Description SQL Equivalent See

GetConnect() Requests an explicit connection
and returns a pointer to the
connection information

CONNECT TO
'@dbservername'
WITH
CONCURRENT
TRANSACTION

B-60

SetConnect() Switches the connection to an
established (dormant) explicit
connection

SET CONNECT TO
(without the
DEFAULT option)

B-216

ReleaseConnect() Closes an established explicit
connection

DISCONNECT
(without the
DEFAULT,
CURRENT, or ALL
options)

B-177

Important: Informix ESQL/C supports the connection library functions for
compatibility with Version 5.01 Informix ESQL/C for Windows
applications. When you write new Informix ESQL/C applications for
Windows environments, use the SQL connection statements
(CONNECT, DISCONNECT, and SET CONNECTION) instead of the
Informix ESQL/C connection library functions.

Informix ESQL/C uses an internal structure that contains the handle for the
connection and other connection information. The Informix ESQL/C connection
library functions use the connection handle, together with the information in the
internal structure, to pass connection information to and from the application. The
application can use the connection handle to identify an explicit connection.

If you use these connection functions to establish explicit connections, keep the
following restrictions in mind:
v If you open a cursor in one module (such as a shared DLL), and then use an

explicit connection to use that cursor in another module, you must use a host
variable for the name of the cursor when you declare the cursor.

v Make sure that your application uses the correct connection handle at all times.

12-46 IBM Informix ESQL/C Programmer’s Manual

Warning: If an application uses the wrong connection handle, the application can
modify the wrong database without the knowledge of the user.

When you compile your Informix ESQL/C program, the esql command processor
automatically links the Informix ESQL/C connection functions to your program.
The library functions are located in Appendix B, “ESQL/C function library,” on
page B-1.

Chapter 12. Working with the database server 12-47

12-48 IBM Informix ESQL/C Programmer’s Manual

Chapter 13. Using Informix libraries

Choosing a version of the Informix general libraries . 13-2
The Informix general libraries . 13-2
The esql command . 13-3
Link static Informix general libraries . 13-3

Link static Informix general libraries into an ESQL/C module 13-4
Link shared Informix general libraries . 13-4

Symbolic names of linked shared libraries (UNIX) . 13-4
Choosing Between Shared and Static Library Versions 13-5

Compatibility of Preexisting ESQL/C Applications with Current Library Versions 13-6
Using the ifx_getversion Utility (UNIX) . 13-7
Checking the API Version of a Library . 13-8

Create thread-safe ESQL/C applications . 13-9
Characteristics of thread-safe ESQL/C code . 13-9
Programming a Thread-Safe ESQL/C Application . 13-10

Concurrent active connections . 13-10
Connections across threads . 13-12
The DISCONNECT ALL Statement . 13-13
Prepared Statements Across Threads . 13-13
Cursors Across Threads . 13-14
Environment Variables Across Threads . 13-15
Message File Descriptors . 13-15
Decimal Functions . 13-15
DCE Restrictions (UNIX) . 13-15

Linking Thread-Safe Libraries . 13-16
Linking Thread-Safe Informix General Libraries to an ESQL/C Module on a UNIX Operating System 13-16
Defining Thread-Safe Variables (UNIX) . 13-17
Linking Shared or Static Versions . 13-17
Linking Thread-Safe Informix General Libraries to an ESQL/C Module in a Windows Environment . . . 13-17

Using ESQL/C Thread-Safe Decimal Functions . 13-18
Context Threaded Optimization . 13-18
A Sample Thread-Safe Program. 13-19

Source Listing . 13-19
Output . 13-24

Creating a Dynamic Thread Library on UNIX Operating Systems 13-24
Data Types . 13-26
Registering the Dynamic Thread Functions . 13-29
Setting the $THREADLIB Environment Variable . 13-31
Creating the Shared Library . 13-31
Compiling with the -thread and -l Preprocessor Options 13-32

These topics describe how to link the static, shared, and thread-safe Informix
general libraries with your Informix ESQL/C application.

IBM Informix products use the Informix general libraries for interactions between
the client SQL application programming interface (API) products (IBM Informix
ESQL/C and IBM Informix ESQL/COBOL) and the database server. You can
choose between the following types of Informix general libraries to link with your
Informix ESQL/C application:
v Static Informix general libraries

To link a static library, the linker copies the library functions to the executable
file of your Informix ESQL/C program. The static Informix general libraries
allow an Informix ESQL/C program on computers that do not support shared
memory to access the Informix general library functions.

© Copyright IBM Corp. 1996, 2010 13-1

v Shared Informix general libraries
To link a shared library, the linker copies information about the location of the
library to the executable file of your Informix ESQL/C program. The shared
Informix libraries allow several applications to share a single copy of these
libraries, which the operating system loads, just once, into shared memory.

v Thread-safe versions of static and shared Informix general libraries
The thread-safe versions of Informix general libraries allow an Informix ESQL/C
application that has several threads to call these library functions simultaneously.
The thread-safe versions of Informix libraries are available as both static libraries
and shared libraries.

Beginning with CSDK version 3.0, static versions of Informix general libraries are
available on Windows and UNIX operating systems. The following table shows the
available options.

Table 13-1. Different version of the ESQL/C general library available for UNIX and Windows

Thread-safe options

Linking options Thread-safe Default

Static Static, thread-safe general
libraries

Static, default general libraries

Shared Shared, thread-safe general
libraries

Shared, default general libraries.

Choosing a version of the Informix general libraries
This section provides information about the following topics:
v What are the IBM Informix general libraries?
v What command-line options of the esql command determine the version of the

Informix general libraries to link with your Informix ESQL/C program?
v How do you link the static Informix general libraries that are available on UNIX

and Windows operating systems with your Informix ESQL/C program?
v How do you link the shared Informix general libraries with your Informix

ESQL/C program?
v What are some factors that you need to consider to determine which type of

Informix general libraries to use?

The Informix general libraries
The following is a list of the IBM Informix general libraries for Informix ESQL/C
on a UNIX operating system.

libgen Contains functions for general tasks

libos Contains functions for tasks that are required from the operating
system

libsql Contains functions that send SQL statements between client
application and database server

libgls Contains functions that provide Global Language Support (GLS) to
IBM Informix products

libasf Contains functions that handle communication protocols between
client application and database server

13-2 IBM Informix ESQL/C Programmer’s Manual

Informix general libraries reside in the $INFORMIXDIR/lib/esql and
$INFORMIXDIR/lib directories on UNIX operating systems.

The Informix general library for Informix ESQL/C for Windows is just one DLL
named isqlt09a.dll. The file is in the %INFORMIXDIR%\lib directory.

The static library for Informix ESQL/C for Windows is named isqlt09s.lib. The file
is in the $INFORMIXDIR/lib directory.

On many platforms there is a system library named libgen.a. To avoid compilation
errors, it is recommended that you do not use the libgen.a Informix library.
Instead, use libifgen.a Informix library which contains a symbolic link to libgen.a.

The esql command
To determine which type of IBM Informix general libraries to link with your
Informix ESQL/C application, the esql command supports the command-line
options in the following table.

Table 13-2. The esql command-line options for Informix general libraries

Version of Informix
libraries to link

esql command- line
option Reference and comments

Shared libraries No option (default) “Link shared Informix general libraries” on
page 13-4

Static libraries -static “Link static Informix general libraries” on page
13-3.

Thread-safe shared
libraries

-thread “Linking Thread-Safe Informix General
Libraries to an ESQL/C Module on a UNIX
Operating System” on page 13-16
and
“Linking Thread-Safe Informix General
Libraries to an ESQL/C Module in a Windows
Environment” on page 13-17

Thread-safe static
libraries

-thread -static “Creating a Dynamic Thread Library on UNIX
Operating Systems” on page 13-24

For the complete syntax of the esql command, see “Using the esql Command” on
page 2-4.

Link static Informix general libraries
Beginning with CSDK version 3.0, static versions of IBM Informix general libraries
are available on Windows as well as UNIX operating systems.

The static Informix general libraries retain their pre-Version 7.2 names.
Static-library names have the following formats:
v A non-thread-safe static Informix general library has a name of the form

libxxx.a.
v A thread-safe static Informix general library has a name of the form libthxxx.a.

In these static-library names, xxx identifies the particular static Informix general
library. With Version 7.2 and later, the static and thread-safe static Informix general
libraries use names of this format as their actual names. The following sample
output shows the actual names for the libos static (libos.a) and thread-safe static
(libthos.a) libraries:

Chapter 13. Using Informix libraries 13-3

% cd $INFORMIXDIR/lib/esql
% ls -l lib*os.a
-rw-r--r-- 1 informix 145424 Nov 8 01:40 libos.a
-rw-r--r-- 1 informix 168422 Nov 8 01:40 libthos.a

The esql command links the code that is associated with the actual names of the
static Informix general libraries into the Informix ESQL/C application. At runtime,
your Informix ESQL/C program can access these Informix general-library
functions directly from its executable file.

Link static Informix general libraries into an ESQL/C module
To link static IBM Informix general libraries with an Informix ESQL/C module,
compile your program with the -static command-line option. The following
command links the static non-thread-safe Informix libraries with the file.exe
executable file:
esql -static file.ec -o file.exe

The esql command can also link the code for thread-safe shared Informix general
libraries with an Informix ESQL/C application. For more information, see “Linking
Thread-Safe Libraries” on page 13-16.

Tip: The esql command for pre-Version 7.2 Informix ESQL/C products linked
static versions of the Informix general libraries. Because the esql command
links shared versions of these libraries by default, you must specify the -static
option to link the static versions with your Informix ESQL/C application.

Link shared Informix general libraries
Informix ESQL/C can dynamically link a shared library, which places this library
in shared memory. Once the shared library is in shared memory, other Informix
ESQL/C applications can also use it. Shared libraries are most useful in multiuser
environments where only one copy of the library is required for all applications.

Important: To use shared libraries in your Informix ESQL/C application, your
operating system must support shared libraries. Operating systems that
support shared libraries include Sun and HP versions of UNIX and
Windows. You should be familiar with the creation of shared libraries
and with the compile options that your C compiler requires to build
them.

Symbolic names of linked shared libraries (UNIX)
When the esql command links shared or thread-safe shared IBM Informix libraries
with your Informix ESQL/C application, it uses the symbolic names of these
libraries. The symbolic names of the Informix shared libraries have the following
formats:
v A non-thread-safe shared Informix general library has a symbolic name of the

form libxxx.yyy.
v A thread-safe shared Informix general library has a symbolic name of the form

libthxxx.yyy.

In these static-library names, xxx identifies the particular library and yyy is a
platform-specific file extension that identifies shared library files.

Tip: To refer to a specific shared-library file, this publication often uses the file
extension for the Sun UNIX operating system, the .so file extension. For the
shared-library file extension that your UNIX operating system uses, see your
UNIX operating system documentation.

13-4 IBM Informix ESQL/C Programmer’s Manual

When you install the Informix ESQL/C product, the installation script makes a
symbolic link of the actual shared product library name to the file with the
symbolic name. Figure 13-1 shows the format for the actual names of shared and
thread-safe shared versions of Informix libraries.

The following sample output shows the symbolic and actual names for the libos.a
static library and the libos.so shared library (on a Sun platform):
%ls -l $INFORMIXDIR/esql/libos*
-rw-r--r-- 1 informix 145424 Nov 8 01:40 libos.a
lrwxrwxrwx 1 root 11 Nov 8 01:40 libos.so -> iosls07a.so*

The esql command links the symbolic shared-library names with the Informix
ESQL/C application. At runtime, Informix ESQL/C dynamically links the code for
the shared Informix general library when the program requires an Informix
general-library function.

To link shared Informix general libraries to an ESQL/C module:

1. Set the environment variable that specifies the library search path at runtime so
that it includes the $INFORMIXDIR/lib and $INFORMIXDIR/lib/esql paths
on a UNIX operating system; and %INFORMIXDIR%lib in a Windows
environment.
On many UNIX operating systems, the LD_LIBRARY_PATH environment
variable specifies the library search path. The following command sets
LD_LIBRARY_PATH in a C shell:
setenv LD_LIBRARY_PATH $INFORMIXDIR/lib:$INFORMIXDIR/
lib/esql:/usr/lib

In Windows environments, use the following command:
set LIB = %INFORMIXDIR%\lib\;%LIB%

2. Compile your program with the esql command.
To link shared Informix general libraries with an Informix ESQL/C module,
you do not need to specify a command-line option. Informix ESQL/C links
shared libraries by default. The following command compiles the file.ec source
file with shared Informix libraries:
esql file.ec -o file.exe

The esql command also uses the symbolic name when it links the thread-safe
shared Informix general libraries with an Informix ESQL/C application. For more
information, see “Linking Thread-Safe Libraries” on page 13-16.

Choosing Between Shared and Static Library Versions
Beginning with CSDK version 3.0, static versions of IBM Informix general libraries
are available on Windows as well as UNIX operating systems.

Pre-Version 7.2 Informix ESQL/C products use static versions of the libraries for
the Informix general libraries. While static libraries are effective in an environment

Figure 13-1. Format of an Informix Shared-Library Name

Chapter 13. Using Informix libraries 13-5

that does not require multitasking, they become inefficient when more than one
application calls the same functions. Version 7.2 and later of Informix ESQL/C also
supports shared versions of the Informix general libraries.

Shared libraries are most useful in multiuser environments where only one copy of
the library is required for all applications. Shared libraries bring the following
benefits to your Informix ESQL/C application:
v Shared libraries reduce the sizes of executable files because these library

functions are linked dynamically, on an as-needed basis.
v At runtime, a single copy of a shared library can be linked to several programs,

which results in less memory use.
v The effects of shared libraries in an Informix ESQL/C executable are transparent

to the end user.

Although shared libraries save both disk and memory space, when an Informix
ESQL/C application uses them it must perform the following overhead tasks:
v Dynamically load the shared library into memory for the first time
v Perform link-editing operations
v Execute library position-independent code

These overhead tasks can incur runtime penalties and are not necessary when you
use static libraries. However, these costs can be offset by the savings in
input/output (I/O) access time once the operating system has already loaded and
mapped an Informix shared library.

Important: You might experience a one-time negative effect on the performance of
the client side of the application when you load the shared libraries the
first time the application is executed. For more information, consult
your operating system documentation.

Because the real I/O time that the operating system needs to load a program and
its libraries usually does not exceed the I/O time saved, the apparent performance
of a program that uses shared libraries is as good as or better than one that uses
static libraries. However, if applications do not share, or if your processor is
saturated when your applications call shared-library routines, you might not
realize these savings.

You can also link thread-safe versions of the static and shared Informix general
libraries with an Informix ESQL/C application. For more information, see
“Creating a Dynamic Thread Library on UNIX Operating Systems” on page 13-24.

Compatibility of Preexisting ESQL/C Applications with Current Library
Versions

You specify the esql command-line options (in Table 13-2 on page 13-3) to tell the
esql command which version of the IBM Informix libraries to link with the
Informix ESQL/C application. Once the esql command successfully compiles and
links your application, the version of the Informix general libraries is fixed. When
you install a new version of Informix ESQL/C, you receive new copies of the
Informix general libraries. Whether you need to recompile and relink your existing
Informix ESQL/C applications to run with these new copies depends on the
factors that the following table describes.

13-6 IBM Informix ESQL/C Programmer’s Manual

Change to the Informix
General LIbrary

Version of the Informix
General Library Need to Recompile or Relink?

New release of the Informix
general libraries

Static

Thread-safe static

Only if the application needs to
take advantage of a new feature
in the new release

Informix general libraries in
new release have a new
major-version number

Shared

Thread-safe shared

Only if the application needs to
take advantage of a new feature
in the new release

Informix general libraries in
new release have a new
API-version number

Shared

Thread-safe shared

Must recompile and relink

On UNIX, you can use the ifx_getversion utility to determine the version of an
Informix library that is installed on your system. For more information, see “Using
the ifx_getversion Utility (UNIX)” on page 13-7.

In Windows environments, use the following find command to find the occurrence
of the string that contains the version number in the isqlt09A.dll. Note that the
command needs to be issued from the %INFORMIXDIR%\bin directory.
C: cd %INFORMIXDIR%\bin
C: find “INFORMIX-SQL” isqlt09a.dll

The output of the find command is shown below:
- - - - - - - - - ISQLT09A.DLL
INFORMIX-SQL Version 9.20T1N79

Using the ifx_getversion Utility (UNIX)
To obtain the complete version name of an IBM Informix library, use the
ifx_getversion utility. Before you run ifx_getversion, set the INFORMIXDIR
environment variable to the directory in which your IBM Informix product is
installed.

The ifx_getversion utility has the following syntax.

�� ifx_getversion libgen.xx
libthgen.x
libos.xx
libthos.x
libsql.xx
libthsql.x
libgls.xx
libasf.xx

��

Element Purpose Key Considerations

xx For static libraries, xx specifies the .a file
extension; for shared libraries, xx specifies the
platform-specific file extension.

Additional Information: For shared libraries, the Sun
platform uses the .so file extension and the
Hewlett-Packard (HP) platform uses the .sl file
extension.

The following example shows an example of output that the ifx_getversion utility
generates for the libgen Informix library:

Chapter 13. Using Informix libraries 13-7

IBM/Informix-Client SDK Version 3.00.UN191
IBM/Informix LIBGEN LIBRARY Version 3.00.UN191
Copyright (C) 1991-2007 IBM

Output of ifx_getversion depends on the version of Informix ESQL/C software
that is installed on your system.

Checking the API Version of a Library
When you invoke an Informix ESQL/C application that is linked with shared IBM
Informix general libraries, the release number of these shared libraries must be
compatible with that of the shared libraries in the $INFORMIXDIR/lib or the
%INFORMIXDIR%\lib directory.

In a Windows environment, a developer can easily verify the name of the shared
library DLL, namely isqltnnx.dll, where nn stand for the version number, and x
stand for the API version.

In the case of an Informix ESQL/C application on UNIX, however, given that the
linked libraries get symbolic names, it is not easy to find the version number of the
linked library. Therefore, Informix ESQL/C does this check for you. Informix
ESQL/C performs an internal check between the API version of the library that the
application uses and the API version of the library that is installed as part of your
Informix ESQL/C product. Figure 13-1 on page 13-5 shows where the API version
appears in the shared library name.

Informix ESQL/C uses an IBM Informix function that is called checkapi() to
perform this check. The checkapi() function is in the checkapi.o object file, which
is contained in the $INFORMIXDIR/lib/esql directory. The esql command
automatically links this checkapi.o object file with every executable that it creates.

To determine the API version of the library that the application uses, Informix
ESQL/C checks the values of special macro definitions in the executable file. When
the Informix ESQL/C preprocessor processes a source file, it copies the macro
definitions from the sqlhdr.h header file into the C source file (.c) that it generates.
The following example shows sample values for these macros:
#define CLIENT_GEN_VER 710
#define CLIENT_OS_VER 710
#define CLIENT_SQLI_VER 710
#define CLIENT_GLS_VER 710

Tip: The Informix ESQL/C preprocessor automatically includes the sqlhdr.h file in
all Informix ESQL/C executable files that it generates.

If the API version of the libraries in this executable file are not compatible,
Informix ESQL/C returns a runtime error that indicates which library is not
compatible. You must recompile your Informix ESQL/C application to link the
new release version of the shared library.

If you do not use esql to link one of the shared Informix general libraries with
your Informix ESQL/C application, you must explicitly link the checkapi.o file
with your application. Otherwise, Informix ESQL/C might generate an error at
link time of the form:
undefined ifx_checkAPI()

13-8 IBM Informix ESQL/C Programmer’s Manual

Create thread-safe ESQL/C applications
Informix ESQL/C provides shared and static thread-safe as well as shared and
static default versions of the Informix general libraries on both UNIX and
Windows operating systems. On Windows operating systems, Informix ESQL/C
provides a dll named isqlt09a.dll and a static thread-safe library named
isqlt09s.lib.

A thread-safe Informix ESQL/C application can have one active connection per
thread and many threads per application. The thread-safe libraries contain
thread-safe (or reentrant) functions. A thread-safe function is one that behaves
correctly when several threads call it simultaneously.

In the case of Informix ESQL/C on a UNIX operating system, the thread-safe
Informix general libraries use functions from the Distributed Computing
Environment (DCE) thread package. The DCE thread library, which the Open
Software Foundation (OSF) developed, creates a standard interface for thread-safe
applications.

If the DCE thread library is not available on your operating system, ESQL/C can
use POSIX thread libraries or Sun Solaris thread libraries.

If your operating system supports the DCE, POSIX, or Solaris thread packages, you
must install them on the same client computer as ESQL/C.

In Windows environments, the Informix general libraries use the Windows API to
ensure that they are thread safe.

With the thread-safe Informix general libraries, you can develop thread-safe
Informix ESQL/C applications. A thread-safe application can have many threads of
control. It separates a process into multiple execution threads, each of which runs
independently. While a non-threaded Informix ESQL/C application can establish
many connections to one or more databases, it can have only one active connection
at a time. An active connection is one that is ready to process SQL requests. A
thread-safe Informix ESQL/C application can have one active connection per
thread and many threads per application.

When you specify the -thread command-line option, the esql command passes this
option to the Informix ESQL/C preprocessor, esqlc. With the -thread option, the
Informix ESQL/C preprocessor generates thread-safe code that different threads
can execute concurrently.

Characteristics of thread-safe ESQL/C code
The thread-safe Informix ESQL/C code has the following characteristics that are
different from non-thread-safe code:
v The thread-safe code does not define any static data structures.

For example, Informix ESQL/C allocates sqlda structures dynamically and binds
host variables to these sqlda structures at runtime. For more information about
sqlda structures to perform dynamic SQL, see Chapter 12, “Working with the
database server,” on page 12-1.

v The thread-safe code declares cursor blocks dynamically instead of declaring
them statically.

v The thread-safe code uses macro definitions for status variables (SQLCODE,
SQLSTATE and the sqlca structure).

Chapter 13. Using Informix libraries 13-9

For more information, see “Defining Thread-Safe Variables (UNIX)” on page
13-17.

Because of the preceding differences, the thread-safe C source file (.c) that the
Informix ESQL/C preprocessor generates is different from the non-threaded C
source file. Therefore, you cannot link Informix ESQL/C applications that have
been compiled with the -thread option with applications that have not already
been compiled with -thread. To link such applications, you must compile both
applications with the -thread option.

Programming a Thread-Safe ESQL/C Application
This section provides useful hints for how to create thread-safe Informix ESQL/C
applications. It discusses the following programming techniques for a thread-safe
environment:
v Establishing concurrent active connections
v Using connections across threads
v Disconnecting all connections
v Using prepared statements across threads
v Using cursors across threads
v Accessing environment variables
v Handling decimal values
v Handling DCE restrictions (UNIX)

Concurrent active connections
In a thread-safe Informix ESQL/C application, a database server connection can be
in one of the following states:
v An active database server connection is ready to process SQL requests.

The major advantage of a thread-safe Informix ESQL/C application is that each
thread can have one active connection to a database server. Use the CONNECT
statement to establish a connection and make it active. Use the SET
CONNECTION statement (with no DORMANT clause) to make a dormant
connection active.

v A dormant database server connection was established but is not currently
associated with a thread.
When a thread makes an active connection dormant, that connection becomes
available to other threads. Conversely, when a thread makes a dormant
connection active, that connection becomes unavailable to other threads. Use the
SET CONNECTION...DORMANT statement to explicitly put a connection in a
dormant state.

The current connection is the active database server connection that is currently
sending SQL requests to, and possibly receiving data from, the database server. A
single-threaded application has only one current (or active) connection at a time. In
a multithreaded application, each thread can have a current connection. Thus a
multithreaded application can have multiple active connections simultaneously.

When you switch connections with the SET CONNECTION statement (with no
DORMANT clause), SET CONNECTION implicitly puts the current connection in
the dormant state. Once in a dormant state, a connection is available to other
threads. Any thread can access any dormant connection. However, a thread can
only have one active connection at a time.

13-10 IBM Informix ESQL/C Programmer’s Manual

The following figure shows a thread-safe Informix ESQL/C application that
establishes three concurrent connections, each of which is active.

In previous figure, the Informix ESQL/C application consists of the following
threads:
v The main thread (main function) starts connection con1 to database db1 on

Server_1.
v The main thread spawns Thread 2. Thread 2 establishes connection con2 to

database db1 on Server_1.
v The main thread spawns Thread 3. Thread 3 establishes connection con3 to

database db2 on Server_2.

All connections in Figure 13-2 are concurrently active and can execute SQL
statements. The following code fragment establishes the connections that
Figure 13-2 illustrates. It does not show DCE-related calls and code for the
start_threads() function.
main()
{

EXEC SQL connect to ’db1@Server_1’ as ’con1’;
start_threads(); /* start 2 threads */
EXEC SQL select a into :a from t1; /* table t1 resides in db1 */

...

}
thread_1()
{

EXEC SQL connect to ’db1@Server_1’ as ’con2’;
EXEC SQL insert into table t2 values (10); /* table t2 is in db1 */
EXEC SQL disconnect ’con2’;

}
thread_2()
{

EXEC SQL connect to ’db2@Server_2’ as ’con3’;
EXEC SQL insert into table t1 values(10); /* table t1 resides in db2

*/
EXEC SQL disconnect ’con3’;

}

You can use the ifx_getcur_conn_name() function to obtain the name of the current
connection. For more information, see “Identifying an Explicit Connection” on
page 12-20.

Figure 13-2. Concurrent connections in a thread-safe ESQL/C application

Chapter 13. Using Informix libraries 13-11

Connections across threads
If your application contains threads that need to use the same connection, one
thread might be using the connection when another thread needs to access it. To
avoid this type of contention, your Informix ESQL/C application must manage
access to the connections.

The simplest way to manage a connection that several threads must use is to put
the SET CONNECTION statement in a loop. (For more information about the SET
CONNECTION statement, see the IBM Informix Guide to SQL: Syntax.) The code
fragment in the following figure shows a simple SET CONNECTION loop.

The preceding algorithm waits for the connection that the host variable :con_name
names to become available. However, the disadvantage of this method is that it
consumes processor cycles.

The following code fragment uses the CONNECT statement to establish
connections and SET CONNECTION statements to make dormant connections
active within threads. It also uses SET CONNECTION...DORMANT to make active
connections dormant. This code fragment establishes the connections that
Figure 13-2 on page 13-11 illustrates. It does not show DCE-related calls and code
for the start_threads() function.
main()
{ EXEC SQL BEGIN DECLARE SECTION;

int a;
EXEC SQL END DECLARE SECTION;

start_threads(); /* start 2 threads */
wait for the threads to finish work.

/* Use con1 to update table t1; Con1 is dormant at this point.*/
EXEC SQL set connection ’con1’;
EXEC SQL update table t1 set a = 40 where a = 10;

/* disconnect all connections */
EXEC SQL disconnect all;

}
thread_1()
{

EXEC SQL connect to ’db1’ as ’con1';
EXEC SQL insert into table t1 values (10); /* table t1 is in db1*/

/* make con1 available to other threads */
EXEC SQL set connection ’con1’ dormant;

/* Wait for con2 to become available and then update t2 */
do {

EXEC SQL set connection ’con2’;
} while ((SQLCODE == -1802));

if (SQLCODE != 0)
return;

EXEC SQL update t2 set a = 12 where a = 10; /* table t2 is in db1 */

/* wait for connection: error -1802 indicates that the connection
is in use

*/
do {

EXEC SQL set connection :con_name;
} while (SQLCODE == -1802);

Figure 13-3. A SET CONNECTION loop to handle multithread access to a connection

13-12 IBM Informix ESQL/C Programmer’s Manual

EXEC SQL set connection ’con2’ dormant;
}

thread_2()
{ /* Make con2 an active connection */

EXEC SQL connect to ’db2’ as ’con2’;
EXEC SQL insert into table t2 values(10); /* table t2 is in db2*/
/* Make con2 available to other threads */
EXEC SQL set connection’con2’ dormant;

}

In this code fragment, thread_1() uses a SET CONNECTION statement loop (see
Figure 13-5 on page 13-17) to wait for con2 to become available. Once thread_2()
makes con2 dormant, other threads can use this connection. At this time, the SET
CONNECTION statement in thread_1() is successful and thread_1() can use the
con2 connection to update table t2.

The DISCONNECT ALL Statement
The DISCONNECT ALL statement serially disconnects all connections in an
application. In a thread-safe Informix ESQL/C application, only the thread that
issues the DISCONNECT ALL statement can be processing an SQL statement (in
this case, the DISCONNECT ALL statement). If any other thread is executing an
SQL statement, the DISCONNECT ALL statement fails when it tries to disconnect
that connection. This failure might leave the application in an inconsistent state.

For example, suppose a DISCONNECT ALL statement successfully disconnects
connection A and connection B but is unable to disconnect connection C because
this connection is processing an SQL statement. The DISCONNECT ALL statement
fails, with connections A and B disconnected but connection C open. It is
recommended that you issue the DISCONNECT ALL statement in the main
function of your application after all threads complete their work.

While the DISCONNECT ALL statement is serially disconnecting application
connections, Informix ESQL/C blocks other connection requests. If another thread
requests a connect while the DISCONNECT ALL statement executes, this thread
must wait until the DISCONNECT ALL statement completes before Informix
ESQL/C can send this new connection request to the database server.

Prepared Statements Across Threads
PREPARE statements are scoped at the connection level. That is, they are
associated with a connection. When a thread makes a connection active, it can
access any of the prepared statements that are associated with this connection. If
your thread-safe Informix ESQL/C application uses prepared statements, you
might want to isolate compilation of PREPARE statements so that they are
compiled only once in a program.

One possible way to structure your application is to execute the statements that
initialize the connection context as a group. The connection context includes the
name of the current user and the information that the database environment
associates with this name (including prepared statements).

For each connection, the application would perform the following steps:
1. Use the CONNECT statement to establish the connection that the thread

requires.
2. Use the PREPARE statement to compile any SQL statements that are associated

with the connection.

Chapter 13. Using Informix libraries 13-13

3. Use the SET CONNECTION...DORMANT statement to put the connection in
the dormant state.

Once the connection is dormant, any thread can access the dormant connection
through the SET CONNECTION statement. When the thread makes this
connection active, it can send the corresponding prepared statement(s) to the
database server for execution.

In Figure 13-4, the code fragment prepares SQL statements during the connection
initialization and executes them later in the program.

The code fragment in Figure 13-4 on page 13-14 performs the following actions:
1. The main thread calls start_con_threads(), which calls start_con_thread() to

start two threads:
v For Thread 1, the start_con_thread() function establishes connection con1,

prepares a statement that is called s1, and makes connection con1 dormant.
v For Thread 2, the start_con_thread() function establishes connection con2,

prepares a statement that is called s2, and makes connection con2 dormant.
2. The main thread calls start_execute_threads(), which calls

start_execute_thread() to execute the prepared statements for each of the two
threads:
v For Thread 1, the start_execute_thread() function makes connection con1

active, executes the s1 prepared statement associated with con1, and makes
connection con1 dormant.

v For Thread 2, the start_execute_thread() function makes connection con2
active, executes the s2 prepared statement associated with con2, and makes
connection con2 dormant.

3. The main thread disconnects all connections.

Cursors Across Threads
Like prepared statements, cursors are scoped at the connection level. That is, they
are associated with a connection. When a thread makes a connection active, it can
access any of the database cursors that are declared for this connection. If your
thread-safe Informix ESQL/C application uses database cursors, you might want to

Figure 13-4. Using Prepared SQL Statements Across Threads

13-14 IBM Informix ESQL/C Programmer’s Manual

isolate the declaration of cursors in much the same way that you can isolate
prepared statements (see “Prepared Statements Across Threads” on page 13-13).
The following code fragment shows a modified version of the start_con_thread()
function (in Figure 13-4 on page 13-14). This version prepares an SQL statement
and declares a cursor for that statement:
EXEC SQL connect to ’db1’ as ’con1’;
EXEC SQL prepare s1
EXEC SQL declare cursor cursor1 for s1;
EXEC SQL set connection ’con1’ dormant;

For a sample thread-safe program that uses cursors across threads, see “A Sample
Thread-Safe Program” on page 13-19.

Environment Variables Across Threads
Environment variables are not thread-scoped in a thread-safe Informix ESQL/C
application. That is, if a thread changes the value of a particular environment
variable, this change is visible in all other threads as well.

Message File Descriptors
By default ESQL/C frees all file descriptors for a message file when it closes the
message file. As a performance optimization, however, you can set the
environment variable IFX_FREE_FD to cause Informix ESQL/C to not free the file
descriptor if the message file being closed is open for another thread. If you set
IFX_FREE_FD to 1, Informix ESQL/C will free the message file descriptor only for
the thread that closes the file.

Decimal Functions
The dececvt() and decfcvt() functions of the Informix ESQL/C library return a
character string that can be overwritten if two threads simultaneously call these
functions. For this reason, use the thread-safe versions of these two functions,
ifx_dececvt() and ifx_decfcvt(). For more information, see “Using ESQL/C
Thread-Safe Decimal Functions” on page 13-18.

DCE Restrictions (UNIX)
A thread-safe Informix ESQL/C code is also subject to all restrictions that the DCE
thread package imposes. DCE requires that all applications that use the DCE
thread library be ANSI compliant. This section lists some of the restrictions to keep
in mind when you create a thread-safe Informix ESQL/C application. For more
information, see your DCE documentation.

Operating-System Calls: You must substitute DCE thread-jacket routines for all
operating-system calls within the thread-safe Informix ESQL/C application.
Thread-jacket routines take the name of a system call, but they call the DCE
pthread_lock_global_np() function to lock the global mutual exclusion lock
(mutex) before they call the actual system service. (Mutexes serialize thread
execution by ensuring that only one thread at a time executes a critical section of
code.) The DCE include file, pthread.h, defines the jacketed versions of system
calls.

The fork() Operating-System Call: In the DCE environment, restrict use of the
fork() operating-system call. In general, terminate all threads but one before you
call fork(). An exception to this rule is when a call to the exec() system call
immediately follows the fork() call. If your application uses fork(), it is
recommended that the child process call sqldetach() before it executes any
Informix ESQL/C statements. For more information about sqldetach(), see B-223.

Chapter 13. Using Informix libraries 13-15

Resource Allocation: It is recommended that you include the DCE
pthread_yield() call in tight loops to remind the scheduler to allocate resources as
necessary. The call to pthread_yield() instructs the DCE scheduler to try to
uniformly allocate resources in the event that a thread is caught in a tight loop,
waiting for a connection (thus preventing other threads from proceeding). The
following code fragment shows a call to the pthread_yield() routine:
/* loop until the connection is available*/
do

{
EXEC SQL set connection :con_name;
pthread_yield();
} while (SQLCODE == -1802);

Linking Thread-Safe Libraries
The esql command links the thread-safe versions of the static or shared Informix
general libraries when you specify the -thread command-line option.

Linking Thread-Safe Informix General Libraries to an ESQL/C
Module on a UNIX Operating System
Perform the following steps to link thread-safe Informix general libraries to an
Informix ESQL/C module on a UNIX operating system:
1. Install the DCE thread package on the same client computer as the Informix

ESQL/C product. For more information, see your DCE installation instructions.
If DCE is not available on your platform, ESQL/C can use POSIX thread
libraries or Sun Solaris thread libraries.

2. Set the THREADLIB environment variable to indicate which thread package to
use when you compile the application.
The following C-shell command sets THREADLIB to the DCE thread package:
setenv THREADLIB DCE

SOL and POSIX are also valid options for the THREADLIB environment
variable.

Important: This version of Informix ESQL/C supports only the DCE thread
package.

For more information about THREADLIB, see the IBM Informix Guide to SQL:
Reference.
1. Compile your program with the esql command, and specify the

-thread command-line option.
The -thread command-line option tells esql to generate thread-safe code and to
link in thread-safe libraries. The following command links thread-safe shared
libraries with the file.exe executable file:
esql -thread file.ec -o file.exe

The -thread command-line option instructs the esql command to perform the
following steps:
1. Pass the -thread option to the Informix ESQL/C preprocessor to generate

thread-safe code.
2. Call the C compiler with the -DIFX_THREAD command-line option.
3. Link the appropriate thread libraries (shared or static) to the executable file.

Tip: You must set the THREADLIB environment variable before you use the esql
command with the -thread command-line option.

13-16 IBM Informix ESQL/C Programmer’s Manual

If you specify the -thread option but do not set THREADLIB, or if you set
THREADLIB to some unsupported thread package, the esql command issues the
following message:
esql: When using -thread, the THREADLIB environment variable

must be set to a supported thread library. Currently
supporting: DCE, POSIX(Solaris 2.5 and higher only) and
SOL (Solaris Kernel Threads)

Defining Thread-Safe Variables (UNIX)
When you specify the -thread command-line option to esql, the Informix ESQL/C
preprocessor passes the IFX_THREAD definition to the C compiler. The
IFX_THREAD definition tells the C compiler to create thread-scoped variables for
variables that are global in non-thread-safe Informix ESQL/C code.

For example, when the C compiler includes the sqlca.h file with IFX_THREAD set,
it defines thread-scoped variables for the Informix ESQL/C status variables:
SQLCODE, SQLSTATE, and the sqlca structure. The thread-scoped versions of
status variables are macros that map the global status variables to thread-safe
function calls that obtain thread-specific status information.

Figure 13-5 shows an excerpt from the sqlca.h file with the thread-scoped
definitions for Informix ESQL/C status variables.

Linking Shared or Static Versions
To tell the esql command to link the thread-safe versions of the Informix libraries
into your application, use the -thread command-line option of esql, as follows:
v Thread-safe shared libraries require the -thread command-line option only.
v Thread-safe static libraries require the -thread and -static command-line options.

Linking Thread-Safe Informix General Libraries to an ESQL/C
Module in a Windows Environment
To create a thread-safe Informix ESQL/C application, you must perform the
following steps:
1. In your Informix ESQL/C source file, include the appropriate thread functions

and variables of the Windows API. For more information about threads, consult
your Microsoft or Borland programmer documentation.

2. When you compile the Informix ESQL/C source file, specify the -thread
command-line option of the esql command.

...

extern struct sqlca_s sqlca;

extern int4 SQLCODE;

extern char SQLSTATE[];
#else /* IFX_THREAD */
extern int4 * ifx_sqlcode();
extern struct sqlca_s * ifx_sqlca();
#define SQLCODE (*(ifx_sqlcode()))
#define SQLSTATE ((char *)(ifx_sqlstate()))
#define sqlca (*(ifx_sqlca()))
#endif /* IFX_THREAD */

Figure 13-5. Declaration of Thread-Scoped Status Variables

Chapter 13. Using Informix libraries 13-17

The -thread option tells the Informix ESQL/C preprocessor to generate
thread-safe C code when it translates SQL and Informix ESQL/C statements.
This thread-safe code includes calls to thread-safe functions in the Informix
DLLs.

If you are not creating an Informix ESQL/C application with threads, omit the
-thread option. Although the Informix DLLs are thread safe, your non-thread-safe
application does not use the thread-safe feature when you omit -thread.

Using ESQL/C Thread-Safe Decimal Functions
The dececvt() and decfcvt() functions of the Informix ESQL/C library return a
character string that can be overwritten if two threads simultaneously call these
functions. For this reason, use the following thread-safe versions of these two
functions.

Function Name Description See

ifx_dececvt() Thread-safe version of the dececvt() ESQL/C
function

B-63

ifx_decfcvt() Thread-safe version of the decfcvt() ESQL/C
function

B-63

Both of these functions convert a decimal value to an ASCII string and return it in
the user-defined buffer.

When you compile your Informix ESQL/C program with the -thread
command-line option of the esql command, esql automatically links these
functions to your program. These functions are described in Appendix A, “The
ESQL/C example programs,” on page A-1.

Context Threaded Optimization
IBM Informix ESQL/C allows developers to specify the runtime context that will
be used for a set of statements. A runtime context will hold all the thread-specific
data that Informix ESQL/C must maintain including connections and their current
states, cursors and their current states.

This feature allows Informix ESQL/C programmers to improve the performance of
their MESQL/C applications. By using the SQLCONTEXT definitions and
directives, the number of thread-specific data block lookups is reduced.

The following embedded SQL statements support the definition and usage of
runtime contexts:
SQLCONTEXT context_var;
PARAMETER SQLCONTEXT param_context_var;
BEGIN SQLCONTEXT OPTIMIZATION;
END SQLCONTEXT OPTIMIZATION;

The SQLCONTEXT definition and statements are only recognized when the
esql-thread option is used. If the -thread option is not specified, the statements are
ignored.

The use of the SQLCONTEXT statements will cause the ESQL/C preprocessor to
generate code in the .c file that differs from the generated code when no
SQLCONTEXT statements are present.

13-18 IBM Informix ESQL/C Programmer’s Manual

The following SQLCONTEXT definition will generate code to define and set the
value of the SQLCONTEXT to the handle of the runtime context:
SQLCONTEXT context_var;

The following SQLCONTEXT is used to generate code to define a parameter that
contains the handle of the runtime context:
PARAMETER SQLCONTEXT param_context_var;

The following BEGIN SQLCONTEXT directive will cause all statements
positionally following it in the source file to use the indicated runtime context until
the END CONTEXT directive is seen:
BEGIN SQLCONTEXT OPTIMIZATION;
...
END SQLCONTEXT OPTIMIZATION;

The END SQLCONTEXT directive should appear before the end of the scope of
the SQLTCONTEXT definition currently used, or compile time errors will occur for
“undefined symbol sql_context_var.”

A Sample Thread-Safe Program
The following sample program, thread_safe, shows how you can use a cursor
across threads. Sample output for this program follows the source listing.

Source Listing
The main thread starts a connection that is named con1 and declares a cursor on
table t. It then opens the cursor and makes connection con1 dormant. The main
thread then starts six threads (six instances of the threads_all() function) and waits
for the threads to complete their work with the pthread_join() DCE call.

Each thread uses the connection con1 and the opened cursor to perform a fetch
operation. After the fetch operation, the program makes the connection dormant.
Threads use connection con1 in a sequential manner because only one thread can
use the connection at a time. Each thread reads the next record from the t table.
/* **
* Program Name: thread_safe()
*
* purpose : If a server connection is initiated with the WITH
* CONCURRENT TRANSACTION clause, an ongoing transaction
* can be shared across threads that subsequently
* connect to that server.
* In addition, if an open cursor is associated with such
* connection, the cursor will remain open when the
* connection
* is made dormant. Therefore, multiple threads can share a
* cursor.
*
* Methods : - Create database db_con221 and table t1.
* - Insert 6 rows into table t1, i.e. values 1 through 6.
* - Connect to db_con221 as con1 with CONCURRENT
* TRANSACTION.
* The CONCURRENT TRANSACTION option is required since
* all
* threads use the cursor throughout the same
* connection.
* - Declare c1 cursor for "select a from t1 order by a".
* - Open the cursor.
* - Start 6 threads. Use DCE pthread_join() to determine if

Chapter 13. Using Informix libraries 13-19

* all threads complete & all threads do same thing as
* follows.
* For thread_1, thread_2, ..., thread_6:
* o SET CONNECTION con1
* o FETCH a record and display it.
* o SET CONNECTION con1 DORMANT
* - Disconnect all connections.
**
*/

#include <pthread.h>
#include <dce/dce_error.h>

/* global definitions */
#define num_threads 6

/* Function definitions */
static void thread_all();
static long dr_dbs();
static int checksql(char *str, long expected_err, char *con_name);
static void dce_err();

/* Host variables declaration */
EXEC SQL BEGIN DECLARE SECTION;

char con1[] = "con1";
EXEC SQL END DECLARE SECTION;

/* **
* Main Thread
**/
main()
{
/* create database */

EXEC SQL create database db_con221 with log;
if (! checksql("create database", 0, EMPTYSTR))

{
printf("MAIN:: create database returned status {%d}\n", SQLCODE);
exit(1);
}

EXEC SQL create table t1(sales int);
if (! checksql("create_table", 0, EMPTYSTR))

{
dr_dbs("db_con221");
printf("MAIN:: create table returned status {%d}\n", SQLCODE);
exit(1);
}

if (populate_tab() != FUNCSUCC)
{
dr_dbs("db_con221");
printf("MAIN:: returned status {%d}\n", SQLCODE);
exit(1);
}

EXEC SQL close database;
checksql("[main] <close database>", 0, EMPTYSTR);

/* Establish connection ’con1’ */
EXEC SQL connect to ’db_con221’ as ’con1’ WITH CONCURRENT TRANSACTION;
if (! checksql("MAIN:: <close database>", 0, EMPTYSTR))

{
dr_dbs("db_con221");

13-20 IBM Informix ESQL/C Programmer’s Manual

exit(1);
}

/* Declare cursor c1 associated with the connection con1 */
EXEC SQL prepare tabid from "select sales from t1 order by sales";
checksql("MAIN:: <prepare>", 0, EMPTYSTR);

EXEC SQL declare c1 cursor for tabid;
checksql("MAIN:: <declare c1 cursor for>", 0, EMPTYSTR);

/* Open cursor c1 and make the connection dormant */
EXEC SQL open c1;
checksql("MAIN:: <open c1>", 0, EMPTYSTR);
EXEC SQL set connection :con1 dormant;
checksql("MAIN:: <set connection con1 dormant>", 0, EMPTYSTR);

/* Start threads */
start_threads();

/* Close cursor and drop database */
EXEC SQL set connection :con1;
checksql("MAIN:: set connection", 0, EMPTYSTR);
EXEC SQL close c1;
checksql("MAIN:: <close cursor>", 0, EMPTYSTR);
EXEC SQL free c1;
checksql("MAIN:: <free cursor>", 0, EMPTYSTR);

EXEC SQL disconnect all;
checksql("MAIN:: disconnect all", 0, EMPTYSTR);
dr_dbs("db_con221");
} /* end of Main Thread */

/**
* Function: thread_all()
* Purpose : Uses connection con1 and fetches a row from table t1 using *

cursor c1.
* Returns : Nothing

**/
static void thread_all(thread_num)
int *thread_num;
{
EXEC SQL BEGIN DECLARE SECTION;

int val;
EXEC SQL END DECLARE SECTION;

/* Wait for the connection to become available */
do {

EXEC SQL set connection :con1;
} while (SQLCODE == -1802);

checksql("thread_all: set connection", 0, con1);

/* Fetch a row */
EXEC SQL fetch c1 into :val;
checksql("thread_all: fetch c1 into :val", 0, con1);

/* Free connection con1 */
EXEC SQL set connection :con1 dormant;
checksql("thread_all: set connection con1 dormant", 0, EMPTYSTR);
printf("Thread id %d fetched value %d from t1\n", *thread_num, val);
} /* thread_all() */

/**
* Function: start_threads()

Chapter 13. Using Informix libraries 13-21

* purpose : Create num_threads and passes a thread id number to each
* thread

**/

start_threads()
{

int thread_num[num_threads];
pthread_t thread_id[num_threads];
int i, ret, return_value;

for(i=0; i< num_threads; i++)
{
thread_num[i] = i;
if ((pthread_create(&thread_id[i], pthread_attr_default

(pthread_startroutine_t) thread_all, &thread_num[i])) == -1)
{
dce_err(__FILE__, "pthread_create failed", (unsigned long)-1);
dr_dbs("db_con221");
exit(1);
}

}

/* Wait for all the threads to complete their work */
for(i=0; i< num_threads; i++)

{
ret = pthread_join(thread_id[i], (pthread_addr_t *) &return_value);
if(ret == -1)

{
dce_err(__FILE__, "pthread_join", (unsigned long)-1);
dr_dbs("db_con221");
exit(1);
}

}
} /* start_threads() */

/**
* Function: populate_tab()
* Purpose : insert values in table t1.
* Returns : FUNCSUCC on success and FUNCFAIL when it fails.

**/
static int
populate_tab()
{
EXEC SQL BEGIN DECLARE SECTION;

int i;
EXEC SQL END DECLARE SECTION;

EXEC SQL begin work;
if (!checksql("begin work", 0,EMPTYSTR))

return FUNCFAIL;
for (i=1; i<=num_threads; i++)

{
EXEC SQL insert into t1 values (:i);
if(!checksql("insert", 0,EMPTYSTR))
return FUNCFAIL;

}
EXEC SQL commit work;
if (!checksql("commit work", 0,EMPTYSTR))

return FUNCFAIL;

return FUNCSUCC;
} /* populate_tab() */

13-22 IBM Informix ESQL/C Programmer’s Manual

/**
* Function: dr_dbs()
* Purpose : drops the database.

**/
long dr_dbs(db_name)
EXEC SQL BEGIN DECLARE SECTION;

char *db_name;
EXEC SQL END DECLARE SECTION;

{
EXEC SQL connect to DEFAULT;
checksql("dr_dbs: connect", 0, "DEFAULT");

EXEC SQL drop database :db_name;
checksql("dr_dbs: drop database", 0, EMPTYSTR);

EXEC SQL disconnect all;
checksql("dr_dbs: disconnect all", 0, EMPTYSTR);
} /*dr_dbs() */

/**
* Function: checksql()
* Purpose : To check the SQLCODE against the expected error
* (or the expected SQLCODE) and issue a proper message.
* Returns : FUNCSUCC on success & FUNCFAIL on FAILURE.

**/
int checksql(str, expected_err, con_name)
char *str;
long expected_err;
char *con_name;
{
if (SQLCODE != expected_err)

{
printf("%s %s Returned {%d}, Expected {%d}\n", str, con_name,

SQLCODE,
expected_err);

return(FUNCFAIL);
}

return (FUNCSUCC);
} /* checksql() */

/**
* Function: dce_err()
* purpose : prints error from dce lib routines
* return : nothing

**/

void dce_err(program, routine, status)
char *program, *routine;
unsigned long status;
{
int dce_err_status;
char dce_err_string[dce_c_error_string_len+1];

if(status == (unsigned long)-1)
{
dce_err_status = 0;
sprintf(dce_err_string, "returned FAILURE (errno is %d)", errno);
}

else
dce_error_inq_text(status, (unsigned char *)dce_err_string,

&dce_err_status);

if(!dce_err_status)

Chapter 13. Using Informix libraries 13-23

{
fprintf(stderr, "%s: error in %s:\n ==> %s (%lu) <==\n",
program, routine, dce_err_string, status);
}

else
fprintf(stderr, "%s: error in %s: %lu\n", program, routine, status);

} /* dce_err() */

Output
The sample output might appear different each time the sample program executes
because it depends on the execution order of the threads.
Thread id 0 fetched value 1 from t1
Thread id 2 fetched value 2 from t1
Thread id 3 fetched value 3 from t1
Thread id 4 fetched value 4 from t1
Thread id 5 fetched value 5 from t1
Thread id 1 fetched value 6 from t1

In this output, Thread 1 fetches the last record in the table.

Creating a Dynamic Thread Library on UNIX Operating Systems
To create a dynamic thread library, you must define routines for every threaded
operation that Informix ESQL/C performs and you must register those functions
with Informix ESQL/C. The following list shows all of the functions that a
multithreaded Informix ESQL/C application requires and describes what each
function must do.
v mint ifxOS_th_once(ifxOS_th_once_t *pblock, ifxOS_th_initroutine_t pfn, int

*init_data)

This routine executes the initialization routine pfn(). Execute the pfn() functions
only once, even if they are called simultaneously by multiple threads or multiple
times in the same thread. The pfn() routine is equivalent to the DCE
pthread_once(), or the POSIX pthread_once() routines.
The init_data variable is used for thread packages that do not have a
pthread_once() type routine, such as Solaris Kernel Threads. The routine can be
simulated as follows using init_data as a global variable initialized to 0.
if (!*init_data)
{

mutex_lock(pblock);
if (!*init_data)
{

(*pfn)();
*init_data = 1;

}
mutex_unlock(pblock);

}
return(0);

v mint ifxOS_th_mutexattr_create(ifxOS_th_mutexattr_t *mutex_attr)
This function creates a mutex attributes object that specifies the attributes of
mutexes when they are created. The mutex attributes object is initialized with
the default value for all of the attributes defined by the user's implementation.
This routine is equivalent to the DCE pthread_mutexattr_create(), or the POSIX
pthread_mutexattr_init() routines. If a thread package does not support mutex
attribute objects, the mutex attribute routines can be no-ops.

v mint ifxOS_th_mutexattr_setkind_np(ifxOS_th_mutexattr_t *mutex_attr, int
kind)

13-24 IBM Informix ESQL/C Programmer’s Manual

This routine sets the mutex type attribute that is used when a mutex is created.
The mutex attribute mutex_attr is set to type kind. For DCE, this routine is
pthread_mutexattr_setkind_np().

v mint ifxOS_th_mutexattr_delete(ifxOS_th_mutexattr_t *mutex_attr)

This routine deletes the mutex attribute object mutex_attr. This routine should
have the same functionality as the DCE pthread_mutexattr_delete(), or the
POSIX pthread_mutexattr_destroy() routines.

v mint ifxOS_th_mutex_init(ifxOS_th_mutex_t *mutexp, ifxOS_th_mutexattr_t
mutex_attr)

This routine creates a mutex and initializes it to the unlocked state. This routine
should have the same functionality as the DCE pthread_mutex_init(), or the
POSIX pthread_mutex_init() routines.

v mint ifxOS_th_mutex_destroy(ifxOS_th_mutex_t *mutexp)

This routine deletes a mutex. The mutex must be unlocked before it is deleted.
This routine should have the same functionality as the DCE
pthread_mutex_destroy(), or the POSIX pthread_mutex_destroy() routines.

v mint ifxOS_th_mutex_lock(ifxOS_th_mutex_t *mutexp)

This routine locks an unlocked mutex. If the mutex is already locked, the calling
thread should wait until the mutex becomes unlocked. This routine should have
the same functionality as the DCE pthread_mutex_lock(), or the POSIX
pthread_mutex_lock() routines.

v mint ifxOS_th_mutex_trylock(ifxOS_th_mutex_t *mutexp)

If the mutex is successfully locked, it returns the value 1, if the mutex is locked
by another thread, it returns the value 0.
This routine should have the same functionality as the DCE
pthread_mutex_trylock() routine.

v mint ifxOS_th_mutex_unlock(ifxOS_th_mutex_t *mutexp)

This routine unlocks the mutex mutexp. If threads are waiting to lock this
mutex, the implementation defines which thread receives the mutex. This
routine should have the same functionality as the DCE pthread_mutex_unlock(),
or the POSIX pthread_mutex_unlock() routines.

v mint ifxOS_th_condattr_create(ifxOS_th_condattr_t *cond_attr)

This routine creates an object that is used to specify the attributes of condition
variables when they are created. Initialize the object with the default value for
all of the attributes defined by the user's implementation. This routine should
have the same functionality as the DCE pthread_condattr_create(), or the POSIX
pthread_condattr_init() routines.

v mint ifxOS_th_cond_init(ifxOS_th_cond_t *condp, ifxOS_th_condattr_t
cond_attr)

This routine creates and initializes a condition variable. It should have the same
functionality as the DCE pthread_cond_init(), or the POSIX pthread_cond_init()
routines.

v mint ifxOS_th_condattr_delete(ifxOS_th_condattr_t *cond_attr)

This routine deletes the condition variable attribute object cond_attr. This routine
should have the same functionality as the DCE pthread_condattr_delete(), or
POSIX pthread_condattr_destroy() routines.

v mint ifxOS_th_cond_destroy(ifxOS_th_cond_t *condp)

This routine deletes the condition variable condp. The routine should have the
same functionality as the DCE pthread_cond_destroy(), or the POSIX
pthread_cond_destroy() routines.

Chapter 13. Using Informix libraries 13-25

v mint ifxOS_th_cond_timedwait(ifxOS_th_cond_t *sleep_cond,
ifxOS_th_mutex_t *sleep_mutex, ifxOS_th_timespec_t *t)

This routine causes a thread to wait until either the condition variable
sleep_cond is signaled or broadcast, or the current system clock time becomes
greater than or equal to the time specified in t. The routine should have the
same functionality as the DCE pthread_cond_timedwait(), or the POSIX
pthread_cond_timedwait() routines.

v mint ifxOS_th_keycreate(ifxOS_th_key_t *allkey, ifxOS_th_destructor_t
AllDestructor)

This routine generates a unique value that identifies a thread-specific data value.
This routine should have the same functionality as the DCE pthread_keycreate(),
or the POSIX pthread_key_create() routines.

v mint ifxOS_th_getspecific(ifxOS_th_key_t key, ifxOS_th_addr_t *tcb)

This routine obtains the thread-specific data associated with the key. This routine
should have the same functionality as the DCE pthread_getspecific(), or the
POSIX pthread_getspecific() routines.

v mint ifxOS_th_setspecific(ifxOS_th_key_t key, ifxOS_th_addr_t tcb)

This routine sets the thread-specific data in the tcb associated with the key for
the current thread. If a value is already defined for key in the current thread, the
new value is substituted for the existing value. This routine should have the
same functionality as the DCE pthread_setspecific(), or the POSIX
pthread_setspecific() routines.

Data Types
You can create typedefs for the data types in the preceding functions to the
equivalent data types in your thread package, or you can use the appropriate data
type from the thread package instead of the ifxOS_ version. The following list
includes all the data types that the preceding functions use:
v ifxOS_th_mutex_t

This structure defines a mutex object: pthread_mutex_t in DCE and POSIX.
v ifxOS_th_mutexattr_t

This structure defines a mutex attributes object called pthread_mutexattr_t in
DCE and POSIX. If mutex attribute objects are unsupported in your thread
package (for instance, Solaris Kernel Threads), you can assign them a data type
of mint.

v ifxOS_th_once_t

This structure allows client initialization operations to guarantee mutually
exclusive access to the initialization routine, and to guarantee that each
initialization is executed only once. This routine should have the same
functionality as the pthread_once_t structure in DCE and POSIX.

v ifxOS_th_condattr_t

This structure defines an object that specifies the attributes of a condition
variable: pthread_condattr_t in DCE and POSIX. If this object is unsupported in
your thread package (for instance, Solaris Kernel Threads), you can assign it a
data type of mint.

v ifxOS_th_cond_t

This structure defines a condition variable called pthread_cond_t in DCE and
POSIX.

v ifxOS_th_timespec_t

13-26 IBM Informix ESQL/C Programmer’s Manual

This structure defines an absolute time at which the ifxOS_th_cond_timedwait()
function should time out if a condition variable has not been signaled or
broadcast. This structure is timespec_t in DCE and POSIX.

v ifxOS_th_key_t

This structure defines a thread-specific data key used in the
ifxOS_th_keycreate(), ifxOS_th_setspecific() and ifxOS_getspecific() routines.
This structure is pthread_key_t in DCE and POSIX.

v ifxOS_th_addr_t

This structure defines an address that contains data to be associated with a
thread-specific data key of type ifxOS_th_key_t. The ifxOS_th_addr_t structure
is equivalent to pthread_addr_t in DCE. You can specify void * as an alternative
that can be used for thread packages (such as POSIX) that do not define such a
structure.

The following example uses the Solaris Kernel Threads package to demonstrate
how to set up a dynamic-thread library. The first task is to define the 17
dynamic-thread functions that the shared and/or static library needs. In this
example, the file is called dynthr.c:
/* Prototypes for the dynamic thread functions */

mint ifx_th_once(mutex_t *pblock, void (*pfn)(void), mint *init_data);
mint ifx_th_mutexattr_create(mint *mutex_attr);
mint ifx_th_mutexattr_setkind_np(mint *mutex_attr, mint kind);
mint ifx_th_mutexattr_delete(mint *mutex_attr);
mint ifx_th_mutex_init(mutex_t *mutexp, mint mutex_attr);
mint ifx_th_mutex_destroy(mutex_t *mutexp);
mint ifx_th_mutex_lock(mutex_t *mutexp);
mint ifx_th_mutex_trylock(mutex_t *mutexp);
mint ifx_th_mutex_unlock(mutex_t *mutexp);
mint ifx_th_condattr_create(mint *cond_attr);
mint ifx_th_cond_init(cond_t *condp, mint cond_attr);
mint ifx_th_condattr_delete(mint *cond_attr);
mint ifx_th_cond_destroy(cond_t *condp);
mint ifx_th_cond_timedwait(cond_t *sleep_cond, mutex_t *sleep_mutex,

timestruc_t *t);
mint ifx_th_keycreate(thread_key_t *allkey, void (*AllDestructor)

(void *));
mint ifx_th_getspecific(thread_key_t key, void **tcb);
mint ifx_th_setspecific(thread_key_t key, void *tcb);

/*
* The functions . . . *
* */

mint ifx_th_once(mutex_t *pblock, void (*pfn)(void), mint *init_data)
{

if (!*init_data)
{

mutex_lock(pblock);
if (!*init_data)
{

(*pfn)();
*init_data = 1;

}
mutex_unlock(pblock);

}
return(0);

}

/* Mutex attributes are not supported in solaris kernel threads *
* The functions must be defined anyway, to avoid accessing *
* a NULL function pointer. */

Chapter 13. Using Informix libraries 13-27

mint ifx_th_mutexattr_create(mint *mutex_attr)
{

*mutex_attr = 0;
return(0);

}

/* Mutex attributes are not supported in solaris kernel threads */
mint ifx_th_mutexattr_setkind_np(mint *mutex_attr, mint kind)
{

*mutex_attr = 0;
return(0);

}

/* Mutex attributes are not supported in solaris kernel threads */
mint ifx_th_mutexattr_delete(mint *mutex_attr)
{

return(0);
}

mint ifx_th_mutex_init(mutex_t *mutexp, mint mutex_attr)
{

return(mutex_init(mutexp, USYNC_THREAD, (void *)NULL));
}

mint ifx_th_mutex_destroy(mutex_t *mutexp)
{

return(mutex_destroy(mutexp));
}

mint ifx_th_mutex_lock(mutex_t *mutexp)
{

return(mutex_lock(mutexp));
}
/* Simulate mutex_trylock using mutex_lock */
mint ifx_th_mutex_trylock(mutex_t *mutexp)
{

mint ret;

ret = mutex_trylock(mutexp);
if (ret == 0)

return(1); /* as per the DCE call */
if (ret == EBUSY)

return(0); /* as per the DCE call */
return(ret);

}

mint ifx_th_mutex_unlock(mutex_t *mutexp)
{

return(mutex_unlock(mutexp));
}

/* Condition attributes are not supported in solaris kernel threads */
mint ifx_th_condattr_create(mint *cond_attr)
{

*cond_attr = 0;
return(0);

}

mint ifx_th_cond_init(cond_t *condp, mint cond_attr)
{

return(cond_init(condp, USYNC_THREAD, (void *)NULL));
}

mint ifx_th_condattr_delete(int *cond_attr)
{

return(0);

13-28 IBM Informix ESQL/C Programmer’s Manual

}

mint ifx_th_cond_destroy(cond_t *condp)
{

return(cond_destroy(condp));
}

mint ifx_th_cond_timedwait(cond_t *sleep_cond, mutex_t
*sleep_mutex,timestruc_t
*t)

{
return(cond_timedwait(sleep_cond, sleep_mutex, t));

}

mint ifx_th_keycreate(thread_key_t *allkey, void (*AllDestructor)
(void *))

{
return(thr_keycreate(allkey, AllDestructor));

}

mint ifx_th_getspecific(thread_key_t key, void **tcb)
{

return(thr_getspecific(key, tcb));
}

mint ifx_th_setspecific(thread_key_t key, void *tcb)
{

return(thr_setspecific(key, tcb));

Registering the Dynamic Thread Functions
Your Informix ESQL/C application must use the ifxOS_set_thrfunc() function to
register the dynamic thread functions with Informix ESQL/C. The following
declaration describes the ifxOS_set_thrfunc() function.
mint ifxOS_set_thrfunc(mint func, mulong (*funcptr)())

The first parameter, func, is a mint that indexes the function being registered. The
second parameter is the name of the function that is being registered.

You must call ifxOS_set_thrfunc() once for each of the 17 ifxOS functions listed in
“Creating a Dynamic Thread Library on UNIX Operating Systems” on page 13-24.

The ifxOS_set_thrfunc() function returns 0 if it successfully registers the function
and -1 if it fails to register the function. For example, to register the user-defined
function my_mutex_lock() as the ifxOS_th_mutex_lock routine, you use the
following call:
if (ifxOS_set_thrfunc(TH_MUTEX_LOCK, (mulong (*)())my_mutex_lock)
== -1)

TH_MUTEX_LOCK is defined in sqlhdr.h and tells the client to call
my_mutex_lock() whenever it needs to lock a mutex.

The following list shows the indexes and the functions they register.

Index Function

TH_ONCE ifxOS_th_once

TH_MUTEXATTR_CREATE ifxOS_th_mutexattr_create()

TH_MUTEXATTR_SETKIND ifxOS_th_mutexattr_setkind_np()

TH_MUTEXATTR_DELETE ifxOS_th_mutexattr_delete()

Chapter 13. Using Informix libraries 13-29

TH_MUTEX_INIT ifxOS_th_mutex_init()

TH_MUTEX_DESTROY ifxOS_th_mutex_destroy()

TH_MUTEX_LOCK ifxOS_th_mutex_lock()

TH_MUTEX_UNLOCK ifxOS_th_mutex_unlock()

TH_MUTEX_TRYLOCK ifxOS_th_mutex_trylock()

TH_CONDATTR_CREATE ifxOS_th_condattr_create()

TH_CONDATTR_DELETE ifxOS_th_condattr_delete()

TH_COND_INIT ifxOS_th_cond_init()

TH_COND_DESTROY ifxOS_th_cond_destroy()

TH_COND_TIMEDWAIT ifxOS_th_cond_timedwait()

TH_KEYCREATE ifxOS_th_keycreate()

TH_GETSPECIFIC ifxOS_th_getspecific()

TH_SETSPECIFIC ifxOS_th_setspecific()

The following function, dynthr_init(), which is also defined in dynthr.c, registers
the 17 functions defined in “Creating a Dynamic Thread Library on UNIX
Operating Systems” on page 13-24. FUNCFAIL is defined to be -1.
dynthr_init()
{

if (ifxOS_set_thrfunc(TH_ONCE, (mulong (*)())ifx_th_once)
== FUNCFAIL)

return FUNCFAIL;

if (ifxOS_set_thrfunc(TH_MUTEXATTR_CREATE,
(mulong (*)())ifx_th_mutexattr_create) == FUNCFAIL)

return FUNCFAIL;

if (ifxOS_set_thrfunc(TH_MUTEXATTR_SETKIND,
(mulong (*)())ifx_th_mutexattr_setkind_np) == FUNCFAIL)

return FUNCFAIL;

if (ifxOS_set_thrfunc(TH_MUTEXATTR_DELETE,
(mulong (*)())ifx_th_mutexattr_delete) == FUNCFAIL)

return FUNCFAIL;

if (ifxOS_set_thrfunc(TH_MUTEX_INIT,
(mulong (*)())ifx_th_mutex_init) == FUNCFAIL)

return FUNCFAIL;

if (ifxOS_set_thrfunc(TH_MUTEX_DESTROY,
(mulong (*)()) ifx_th_mutex_destroy) == FUNCFAIL)

return FUNCFAIL;

if (ifxOS_set_thrfunc(TH_MUTEX_LOCK,
(mulong (*)()) ifx_th_mutex_lock) == FUNCFAIL)

return FUNCFAIL;

if (ifxOS_set_thrfunc(TH_MUTEX_UNLOCK,
(mulong (*)())ifx_th_mutex_unlock) == FUNCFAIL)

return FUNCFAIL;

if (ifxOS_set_thrfunc(TH_MUTEX_TRYLOCK,
(mulong (*)())ifx_th_mutex_trylock) == FUNCFAIL)

return FUNCFAIL;
if (ifxOS_set_thrfunc(TH_CONDATTR_CREATE,

(mulong (*)())ifx_th_condattr_create) == FUNCFAIL)

13-30 IBM Informix ESQL/C Programmer’s Manual

return FUNCFAIL;

if (ifxOS_set_thrfunc(TH_CONDATTR_DELETE,
(mulong (*)())ifx_th_condattr_delete) == FUNCFAIL)

return FUNCFAIL;

if (ifxOS_set_thrfunc(TH_COND_INIT,
(mulong (*)())ifx_th_cond_init) == FUNCFAIL)

return FUNCFAIL;

if (ifxOS_set_thrfunc(TH_COND_DESTROY,
(mulong (*)())ifx_th_cond_destroy) == FUNCFAIL)

return FUNCFAIL;
if (ifxOS_set_thrfunc(TH_COND_TIMEDWAIT,

(mulong (*)())ifx_th_cond_timedwait) == FUNCFAIL)
return FUNCFAIL;

if (ifxOS_set_thrfunc(TH_KEYCREATE,
(mulong (*)())ifx_th_keycreate) == FUNCFAIL)

return FUNCFAIL;

if (ifxOS_set_thrfunc(TH_GETSPECIFIC,
(mulong (*)())ifx_th_getspecific) == FUNCFAIL)

return FUNCFAIL;

if (ifxOS_set_thrfunc(TH_SETSPECIFIC,
(mulong (*)())ifx_th_setspecific) == FUNCFAIL)

return FUNCFAIL;
return 0;

}

Setting the $THREADLIB Environment Variable
The following C-shell command sets THREADLIB to specify a user-defined thread
package:
setenv THREADLIB DYNAMIC

Creating the Shared Library
You must compile dynthr.c into a shared or static library. The following example
illustrates how to compile a shared or static library on a workstation running the
Solaris operating system:
% cc -c -DIFX_THREAD -I$INFORMIXDIR/incl/esql -D_REENTRANT -K pic
dynthr.c
% ld -G -o libdynthr.so dynthr.o
% cp libdynthr.so /usr/lib <== as root

You can also use the $LD_LIBRARY_PATH environment variable:
% cc -c -DIFX_THREAD -I$INFORMIXDIR/incl/esql -D_REENTRANT -K pic
dynthr.c
% cp dynthr.so <some directory>
% setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:<some directory>

To compile dynthr.c into a static library, perform the following tasks (on Solaris):
% cc -c -DIFX_THREAD -I$INFORMIXDIR/incl/esql -D_REENTRANT dynthr.c

% ar -cr dynthr.a dynthr.o

You must update your application, test.ec, to call the dynthr_init() routine first, or
none of the thread functions will be registered.

Chapter 13. Using Informix libraries 13-31

void main(argc , argv)
int argc;
char *argv[] ;
{ /* begin main */

/* First, set up the dynamic thread library */

dynthr_init();

/* Rest of program */

EXEC SQL database stores7;

...

}

Compiling with the -thread and -l Preprocessor Options
You must compile the application using the -thread and the -l preprocessor
options. The -thread option indicates that you are linking thread-safe libraries
instead of the default Informix shared libraries. The -l option allows you to specify
system libraries that you want to link. Finally, you compile your application, link
libdynthr.so and run it, as shown in the following example:
% setenv THREADLIB "dynamic"
% esql -thread -ldynthr test.ec -o test.exe
% test.exe

13-32 IBM Informix ESQL/C Programmer’s Manual

Part 3. Dynamic SQL

© Copyright IBM Corp. 1996, 2010

IBM Informix ESQL/C Programmer’s Manual

Chapter 14. Using Dynamic SQL

Using Dynamic SQL . 14-2
Assembling and Preparing the SQL Statement . 14-2

Assembling the Statement . 14-2
Preparing Statements That Have Collection Variables 14-5
Checking the Prepared Statement . 14-5

Executing the SQL Statement . 14-6
Freeing Resources . 14-7

Using a Database Cursor . 14-8
Receiving More Than One Row . 14-8

A Select Cursor . 14-9
A Function Cursor . 14-9

Sending More Than One Row . 14-10
Naming the Cursor . 14-10
Optimizing Cursor Execution . 14-11

Sizing the Cursor Buffer . 14-11
Automatically Freeing a Cursor. 14-13
Deferring Execution of the PREPARE Statement . 14-17

The collect.ec Program. 14-21
Optimizing OPEN, FETCH, and CLOSE . 14-22

Restrictions on OPTOFC . 14-22
Enabling the OPTOFC Feature . 14-23

Using OPTOFC and Deferred-PREPARE Together . 14-24
SQL Statements That Are Known at Compile Time . 14-25

Executing Non-SELECT Statements . 14-25
Using PREPARE and EXECUTE . 14-25
Using EXECUTE IMMEDIATE . 14-26

Executing SELECT Statements . 14-26
Using PREPARE and EXECUTE INTO . 14-27
Using a Select Cursor . 14-28

The lvarptr.ec Program . 14-29
Executing User-Defined Routines in IBM Informix . 14-30

A User-Defined Procedure . 14-31
A User-Defined Function . 14-31

Execute statements with input parameters . 14-33
Using an EXECUTE USING Statement . 14-34
Using an OPEN USING Statement. 14-35
Lines 9 and 10 . 14-36
Lines 14 to 21 . 14-36
Line 22 . 14-37
Lines 23 to 27 . 14-37
Line 28 . 14-37
Lines 29 to 38 . 14-37
Lines 39 and 40 . 14-37
Line 41 . 14-37
Lines 42 and 43 . 14-37

SQL Statements That Are Not Known at Compile Time. 14-38

A static SQL statement is one for which all the information is known at compile
time. For example, the following SELECT statement is a static SQL statement
because all information needed for its execution is present at compile time.
EXEC SQL select company into :cmp_name from customer where customer_num
= 101;

© Copyright IBM Corp. 1996, 2010 14-1

However, in some applications the programmer does not know the contents, or
possibly even the types, of SQL statements that the program needs to execute. For
example, a program may prompt the user to enter a select statement, so that the
programmer has no idea what columns will be accessed when the program is run.
Such applications require dynamic SQL. Dynamic SQL allows an IBM Informix
ESQL/C program to build an SQL statement at runtime, so that the contents of the
statement can be determined by user input.

These topics describe the following dynamic SQL information:
v How to execute a dynamic SQL statement, the SQL statements to use, and the

types of statements that you can execute dynamically
v How to execute SQL statements when you know most of the information about

the statement at compile time

For information about how to execute SQL statements when you do not know all
the information at compile time, see Chapter 15, “Determining SQL statements,” on
page 15-1.

Using Dynamic SQL
To execute an SQL statement, the database server must have the following
information about the statement:
v The type of statement, such as SELECT, DELETE, EXECUTE PROCEDURE, or

GRANT
v The names of any database objects, such as tables, columns, and indexes
v Any WHERE-clause conditions, such as column names and matching criteria
v Where to put any returned values, such as the column values from the select list

of a SELECT statement
v Values that need to be sent to the database server, such as the column values for

a new row for an INSERT statement

If information in an SQL statement varies according to some conditions in the
application, your Informix ESQL/C program can use dynamic SQL to build the
SQL statement at runtime. The basic process to dynamically execute SQL
statements consists of the following steps:
1. Assemble the text of an SQL statement in a character-string variable.
2. Use a PREPARE statement to have the database server examine the statement

text and prepare it for execution.
3. Execute the prepared statement with the EXECUTE or OPEN statement.
4. Free dynamic resources that are used to execute the prepared statement.

Assembling and Preparing the SQL Statement
Dynamic SQL allows you to assemble an SQL statement in a character string as the
user interacts with your program. A dynamic SQL statement is like any other SQL
statement that is embedded into a program, except that the statement string cannot
contain the names of any host variables. The PREPARE statement sends the
contents of an SQL statement string to the database server, which parses it and
creates a statement identifier structure (statement identifier).

Assembling the Statement
Assign the text for the SQL statement to a single host variable, which appears in
the PREPARE statement. The key to dynamically execute an SQL statement is to

14-2 IBM Informix ESQL/C Programmer’s Manual

assemble the text of the statement into a character string. You can assemble this
statement string in the following two ways:
v As a fixed string, if you know all the information at compile time
v As a series of string operations, if you do not have all the information at

compile time

If you know the whole statement structure, you can list it after the FROM keyword
of the PREPARE statement. Single quotes or double quotes around the statement
text are valid, although the ANSI SQL standard specifies single quotes.

For example:
EXEC SQL prepare slct_id from

’select company from customer where customer_num = 101’;

Tip: Although Informix ESQL/C does not allow newline characters in quoted
strings, you can include newline characters in the quoted string of a
PREPARE statement. The quoted string is passed to the database server with
the PREPARE statement and, if you specify that it should, the database server
will allow newline characters in quoted strings. Therefore, you can allow a
user to enter the preceding SQL statement from the command line as follows:

select lname from customer
where customer_num = 101

For more information about allowing newlines in quoted strings, see “Including
Newline in Quoted Strings” on page 1-7.

Alternatively, you can copy the statement into a char variable as shown in
Figure 14-1.

Both of these methods have the same restriction as a static SQL statement. They
assume that you know the entire statement structure at compile time. The
disadvantage of these dynamic forms over the static one is that any syntax errors
encountered in the statement will not be discovered until runtime (by the
PREPARE statement). If you statically execute the statement, the Informix ESQL/C
preprocessor can uncover syntactic errors at compile time (semantic errors might
remain undiagnosed until runtime). You can improve performance when you
dynamically execute an SQL statement that is to be executed more than once. The
statement is parsed only once.

In Figure 14-1, the stmt_txt variable is a host variable because it is used in an
embedded SQL statement (the PREPARE statement). Also the INTO clause of the
SELECT statement was removed because host variables cannot appear in a
statement string. Instead, you specify the host variables in the INTO clause of an
EXECUTE or FETCH statement (see 14-6). Other SQL statements like DESCRIBE,
EXECUTE, and FREE can access the prepared statement when they specify the
slct_id statement identifier.

stcopy("select company from customer where customer_num = 101", stmt_txt);
EXEC SQL prepare slct_id from :stmt_txt;

Figure 14-1. Preparing a SELECT Statement from a Character String

Chapter 14. Using Dynamic SQL 14-3

Important: By default, the scope of a statement identifier is global. If you create a
multifile application and you want to restrict the scope of a statement
identifier to a single file, preprocess the file with the -local
preprocessor option.

For more information about -local, see Chapter 1, “Programming with IBM
Informix ESQL/C,” on page 1-1.

If you do not know all the information about the statement at compile time, you
can use the following features to assemble the statement string:
v The char host variables can hold the identifiers in the SQL statement (column

names or table names) or parts of the statement like the WHERE clause. They
can also contain keywords of the statement.

v If you know what column values the statement specifies, you can declare host
variables to provide column values that are needed in a WHERE clause or to
hold column values that are returned by the database server.

v Input-parameter placeholders, represented by a question mark (?), in a WHERE
clause indicate a column value to be provided, usually in a host variable at time
of execution. Host variables used in this way are called input parameters. For
more information, see “Execute statements with input parameters” on page
14-33.

v You can use Informix ESQL/C string library functions like stcopy() and stcat().
For more information, see Chapter 4, “Working with character and string data
types,” on page 4-1.

Figure 14-2 shows the SELECT statement of Figure 14-1 changed so that it uses a
host variable to determine the customer number dynamically.

Figure 14-3 shows how you can use an input parameter to program this same
SELECT statement so that the user can enter the customer number.

You can prepare almost any SQL statement dynamically. The only statements that
you cannot prepare dynamically are those directly concerned with dynamic SQL
and cursor management (such as FETCH and OPEN), and the SQL connection
statements. For a complete list of statements, see the PREPARE statement in the
IBM Informix Guide to SQL: Syntax.

Tip: You can use the Deferred-PREPARE feature to defer execution of a prepared
SELECT, INSERT, or EXECUTE FUNCTION statement until the OPEN
statement.

For more information, see “Deferring Execution of the PREPARE Statement” on
page 14-17.

stcopy("select company from customer where customer_num = ", stmt_txt);
stcat(cust_num, stmt_txt);
EXEC SQL prepare slct_id from :stmt_txt;

Figure 14-2. Using a Host Variable to Assemble a SELECT Statement

EXEC SQL prepare slct_id from
’select company from customer where customer_num = ?’;

Figure 14-3. Using an Input Parameter to Assemble a SELECT Statement

14-4 IBM Informix ESQL/C Programmer’s Manual

Preparing Statements That Have Collection Variables
You use the Collection Derived Table clause with an INSERT or SELECT statement
to access an Informix ESQL/C collection variable. (For more information about
how to use the Collection Derived Table clause and collection variables, see
Chapter 9 of this publication.)

When you prepare a statement that manipulates an Informix ESQL/C collection
variable, the following restrictions apply:
v You must specify the statement text as a quoted string in the PREPARE

statement.
For collection variables, Informix ESQL/C does not support statement text that
is stored in a program variable.

v The quoted string for the statement text cannot contain any collection host
variables.
To manipulate a collection variable, you must use the question mark (?) symbol
to indicate an input parameter and then provide the collection variable when
you execute the statement.

v You cannot perform multi-statement prepares if a statement contains a collection
variable.

For example, the following Informix ESQL/C code fragment prepares an INSERT
on the a_set client collection variable:
EXEC SQL BEGIN DECLARE SECTION;

client collection set(integer not null) a_set;
EXEC SQL END DECLARE SECTION;

EXEC SQL prepare coll_stmt from
’insert into table values (1, 2, 3)’;

EXEC SQL execute coll_stmt using :a_set;

Important: You must declare an Informix ESQL/C collection variable as a client
collection variable (a collection variable that is stored on the client
computer).

Checking the Prepared Statement
When PREPARE sends the statement string to the database server, the database
server parses it to analyze it for errors. The database server indicates the success of
the parse in the sqlca structure, as follows:
v If the syntax is correct, the database server sets the following sqlca fields:

– The sqlca.sqlcode field (SQLCODE) contains zero (0).
– The sqlca.sqlerrd[0] field contains an estimate of the number of rows affected

if the parsed statement was a SELECT, UPDATE, INSERT, or DELETE.
– The sqlca.sqlerrd[3] field contains an estimated cost of execution if the parsed

statement was a SELECT, UPDATE, INSERT, or DELETE. This execution cost
is a weighted sum of disk accesses and total number of rows processed.

v If the statement string contains a syntax error, or if some other error was
encountered during the PREPARE, the database server sets the following sqlca
fields:
– The sqlca.sqlcode field (SQLCODE) is set to a negative number (<0). The

database server also sets the SQLSTATE variable to an error code.
– The sqlca.sqlerrd[4] field contains the offset into the statement text where the

error was detected.

Chapter 14. Using Dynamic SQL 14-5

Executing the SQL Statement
Once an SQL statement was prepared, the database server can execute it. The way
to execute a prepared statement depends on:
v How many rows (groups of values) the SQL statement returns:

– Statements that return one row of data include a singleton SELECT and an
EXECUTE FUNCTION statement.

– Statements that can return more than one row of data require a cursor to
execute; they include a non-singleton SELECT and an EXECUTE FUNCTION
statement.

– All other SQL statements, including EXECUTE PROCEDURE, return no rows
of data.

For more information about how to execute statements that require cursors, see
“Using a Database Cursor” on page 14-8.

v Whether the statement has input parameters
If so, the statement must be executed with the USING clause:
– For SELECT and INSERT statements, use the OPEN...USING statement.
– For non-SELECT statements, use the EXECUTE...USING statement.

v Whether you know the data types of statement columns at compile time:
– When you know the number and data types of the columns at compile time,

you can use host variables to hold the column values.
For more information, see “SQL Statements That Are Known at Compile
Time” on page 14-25.

– When you do not know the number and data types of columns at compile
time, you must use the DESCRIBE statement to define the column and a
dynamic-management structure to hold the column values.
For more information, see Chapter 15, “Determining SQL statements,” on
page 15-1.

Table 14-1 summarizes how to execute the different types of prepared SQL
statements.

Table 14-1. Executing a Prepared SQL Statement

Type of SQL Statement
Input
Parameters Statement to Execute See

Statements that do not return rows (except INSERT that is associated with a cursor)

With no input parameters No EXECUTE 14-25

When number and data types of
input parameters are known

Yes EXECUTE...USING 14-34

When number and data types of
input parameters are not known

Yes EXECUTE...USING
SQL DESCRIPTOR

EXECUTE...USING
DESCRIPTOR

16-28
17-27

INSERT that is associated with a cursor

With no input parameters No OPEN 14-28

When number and data types of
input parameters (insert columns)
are known

Yes OPEN...USING 14-35, 15-17

14-6 IBM Informix ESQL/C Programmer’s Manual

Table 14-1. Executing a Prepared SQL Statement (continued)

Type of SQL Statement
Input
Parameters Statement to Execute See

When number and data types of
input parameters are not known

Yes OPEN...USING
SQL DESCRIPTOR

OPEN...USING
DESCRIPTOR

16-18
17-18

Statements that can return more than one row: non-singleton SELECT, SPL
function

With no input parameters No OPEN 14-28

When number and data types of
select-list columns are not known

No OPEN 16-9,
17-11

When number and data types of
return values are not known

No OPEN 16-17,
17-17

When number and data types of
input parameters are known

Yes OPEN...USING 14-35

When number and data types of
input parameters are not known

Yes OPEN...USING
SQL DESCRIPTOR

OPEN...USING
DESCRIPTOR

16-23
17-21

Statements that return only one row: singleton SELECT, any external function or an SPL
function that returns only one group of values

With no input parameters No EXECUTE...INTO 14-27

When number and data types of
returned values are not known

No EXECUTE...INTO
DESCRIPTOR

EXECUTE...INTO
SQL DESCRIPTOR

16-9,
16-1417-11,
17-17

When number and data types of
input parameters are known

Yes EXECUTE...INTO
...USING

14-34

When number and data types of
input parameters are not known

Yes EXECUTE...INTO
...USING SQL
DESCRIPTOR

EXECUTE...INTO
...USING
DESCRIPTOR

16-27
17-25

Freeing Resources
Sometimes you can ignore the cost of resources allocated to prepared statements
and cursors. However, the number of prepared objects that the application can
create is limited. Free resources that IBM Informix ESQL/C uses to execute a
prepared statement, as follows:
v If the statement is associated with a cursor, use CLOSE to close the cursor after

all the rows are fetched (or inserted).
v Use the FREE statement to release the resources allocated for the prepared

statement and any associated cursor. Once you have freed a prepared statement,
you can no longer use it in your program until you reprepare or redeclare it.
However, once you declare the cursor, you can free the associated statement
identifier but not affect the cursor.

Chapter 14. Using Dynamic SQL 14-7

You can use the AUTOFREE feature to have the database server automatically free
resources for a cursor and its prepared statement. For more information, see
“Automatically Freeing a Cursor” on page 14-13.

If your program uses a dynamic-management structure to describe an SQL
statement at runtime, also deallocate the resources of this structure once the
structure is no longer needed. For information about how to deallocate a
system-descriptor area, see “Freeing Memory Allocated to a System-Descriptor
Area” on page 16-8. For information about how to deallocate an sqlda structure,
see “Freeing Memory Allocated to an sqlda Structure” on page 17-10.

Using a Database Cursor
A database cursor is an identifier associated with a group of rows. It is, in a sense, a
pointer to the current row in a buffer. You must use a cursor in the following cases:
v Statements that return more than one row of data from the database server:

– A SELECT statement requires a select cursor.
– An EXECUTE FUNCTION statement requires a function cursor.

v An INSERT statement that sends more than one row of data to the database
server requires an insert cursor.

The following sections summarize how to use cursors in an Informix ESQL/C
application. For more information about how to use cursors, see the IBM Informix
Guide to SQL: Tutorial.

Receiving More Than One Row
Statements that return one row of data include a singleton SELECT and an
EXECUTE FUNCTION statement whose user-defined function returns only one
row of data. Statements that can return more than one row of data include:
v a non-singleton SELECT.

When a SELECT statement returns more than one row, define a select cursor with
the DECLARE statement.

v an EXECUTE FUNCTION statement whose user-defined function returns more
than one row.
When an EXECUTE FUNCTION statement executes a user-defined function that
returns more than one row, define a function cursor with the DECLARE
statement.

For the select or function cursor, you can use a sequential, scroll, hold, or update
cursor. Table 14-2 summarizes the SQL statements that manage a select or function
cursor.

Table 14-2. SQL Statements That Manage a Select or Function Cursor

Task Select Cursor Function Cursor

Declare the cursor identifier DECLARE associated with a
SELECT statement

DECLARE associated with an
EXECUTE FUNCTION
statement

Execute the statement OPEN OPEN

Access a single row from the
fetch buffer into the program

FETCH FETCH

Close the cursor CLOSE CLOSE

Free cursor resources FREE FREE

14-8 IBM Informix ESQL/C Programmer’s Manual

For more information about any of these statements, see their entries in the IBM
Informix Guide to SQL: Syntax. You can change the size of the select or fetch buffer
with the Fetch-Buffer-Size feature. For more information, see “Sizing the Cursor
Buffer” on page 14-11.

A Select Cursor
A select cursor enables you to scan multiple rows of data that a SELECT statement
returns. The DECLARE statement associates the SELECT statement with the select
cursor. In the DECLARE statement, the SELECT statement can be in either of the
following formats:
v A literal SELECT statement in the DECLARE statement

The following DECLARE statement associates a literal SELECT statement with
the slct1_curs cursor:
EXEC SQL declare slct1_curs cursor for select * from customer;

v A prepared SELECT statement in the DECLARE statement
The following DECLARE statement associates a prepared SELECT statement
with the slct2_curs cursor:
EXEC SQL prepare slct_stmt cursor from

’select * from customer’;
EXEC SQL declare slct2_curs for slct_stmt;

If the SELECT returns only one row, it is called a singleton SELECT and it does not
require a select cursor to execute.

A Function Cursor
A function cursor enables you to scan multiple rows of data that the user-defined
function returns. The following user-defined functions can return more than one
row:
v An SPL function that contains the WITH RESUME keywords in its RETURN

statement
For information about how to write this type of SPL function, see the chapter on
SPL in the IBM Informix Guide to SQL: Tutorial.

v An external function that is an iterator function
For information about how to write an iterator function, see the IBM Informix
DataBlade® API Programmer's Guide.

You execute a user-defined function with the EXECUTE FUNCTION statement.
The DECLARE statement associates the EXECUTE FUNCTION with the function
cursor. In the DECLARE statement, the EXECUTE FUNCTION statement can be in
either of the following formats:
v A literal EXECUTE FUNCTION statement in the DECLARE statement

The following DECLARE statement associates a literal EXECUTE FUNCTION
statement with the func1_curs cursor:
EXEC SQL declare func1_curs cursor for execute function

func1();

v A prepared EXECUTE FUNCTION statement in the DECLARE statement
The following DECLARE statement associates a prepared EXECUTE FUNCTION
statement with the func2_curs cursor:
EXEC SQL prepare func_stmt from

’execute function func1()’;
EXEC SQL declare func2_curs cursor for func_stmt;

Chapter 14. Using Dynamic SQL 14-9

If the external or SPL function returns only one row, it does not require a function
cursor to execute.

Sending More Than One Row
When you execute the INSERT statement, the statement sends one row of data to
the database server. When an INSERT statement sends more than one row, define
an insert cursor with the DECLARE statement. An insert cursor enables you to
buffer multiple rows of data for insertion at one time. The DECLARE statement
associates the INSERT statement with the insert cursor. In the DECLARE
statement, the INSERT statement can be in either of the following formats:
v A literal INSERT statement in the DECLARE statement

The following DECLARE statement associates a literal INSERT statement with
the ins1_curs cursor:
EXEC SQL declare ins1_curs cursor for

insert into customer values;

v A prepared INSERT statement in the DECLARE statement
The following DECLARE statement associates a prepared INSERT statement
with the ins2_curs cursor:
EXEC SQL prepare ins_stmt from

’insert into customer values’;
EXEC SQL declare ins2_curs cursor for ins_stmt;

If you use an insert cursor it can be much more efficient than if you insert rows
one at a time, because the application process does not need to send new rows to
the database as often. You can use a sequential or hold cursor for the insert cursor.
Table 14-3 summarizes the SQL statements that manage an insert cursor.

Table 14-3. SQL Statements That Manage an Insert Cursor

Task Insert Cursor

Declare the cursor ID DECLARE associated with an INSERT
statement

Execute the statement OPEN

Send a single row from the program
into the insert buffer

PUT

Clear the insert buffer and send the contents
to the database server

FLUSH

Close the cursor CLOSE

Free cursor resources FREE

For more information about any of these statements, see their entries in the IBM
Informix Guide to SQL: Syntax. You can change the size of the insert buffer with the
Fetch-Buffer-Size feature. For more information, see “Sizing the Cursor Buffer” on
page 14-11.

Naming the Cursor
In an Informix ESQL/C program, you can specify a cursor name with any of the
following items:
v A literal name must follow the rules for identifier names. See the Identifier

segment in the IBM Informix Guide to SQL: Syntax.

14-10 IBM Informix ESQL/C Programmer’s Manual

v A delimited identifier is an identifier name that contains characters that do not
conform to identifier-naming rules. For more information, see “SQL Identifiers”
on page 1-12.

v A dynamic cursor is a character host variable that contains the name of the cursor.
This type of cursor specification means that the cursor name is specified
dynamically by the value of the host variable. You can use a dynamic cursor in
any SQL statement that allows a cursor name except the WHERE CURRENT OF
clause of the DELETE or UPDATE statement.
Dynamic cursors are particularly useful to create generic functions to perform
cursor-management tasks. You can pass in the name of the cursor as an
argument to the function. If the cursor name is to be used in an Informix
ESQL/C statement within the function, make sure you declare the argument as a
host variable with the PARAMETER keyword. Figure 14-4 on page 14-11 shows
a generic cursor deallocation function called remove_curs().

Optimizing Cursor Execution
IBM Informix ESQL/C supports the following features that allow you to minimize
network traffic when an Informix ESQL/C application fetches rows from a
database server:
v Change the size of the fetch and insert buffers
v Automatically free the cursor
v Defer the PREPARE statement until the OPEN statement

Sizing the Cursor Buffer
The cursor buffer is the buffer that an Informix ESQL/C application uses to hold the
data (except simple large-object data) in a cursor. Informix ESQL/C has the
following uses for the cursor buffer:
v The fetch buffer holds data from a select or function cursor.

When the database server returns rows from the active set of a query, Informix
ESQL/C stores these rows in the fetch buffer.

v The insert buffer holds data for an insert cursor.
Informix ESQL/C stores the rows to be inserted in the insert buffer then sends
this buffer as a whole to the database server for insertion.

With a fetch buffer, the client application performs the following tasks:
1. Sends the size of the buffer to the database server and requests rows when it

executes the first FETCH statement.
The database server sends as many rows as will fit in the fetch buffer to the
application.

2. Retrieves the rows from the database server and puts them in the fetch buffer.

void remove_curs(cursname)
EXEC SQL BEGIN DECLARE SECTION;

PARAMETER char *cursname;
EXEC SQL END DECLARE SECTION;
{

EXEC SQL close :cursname;
EXEC SQL free :cursname;

}

Figure 14-4. A Sample ESQL/C Function That Uses a Dynamic Cursor

Chapter 14. Using Dynamic SQL 14-11

3. Takes the first row out of the fetch buffer and puts the data in the host
variables that the user has provided.

For subsequent FETCH statements, the application checks whether more rows exist
in the fetch buffer. If they do, it takes the next row out of the fetch buffer. If no
more rows are in the fetch buffer, the application requests more rows from the
database server, sending the fetch-buffer size.

The client application uses an insert buffer to perform the following tasks:
1. Put the data from the first PUT statement into the insert buffer.
2. Check whether more room exists in the insert buffer for subsequent PUT

statements.
If more rows can fit, the application puts the next row into the insert buffer. If
no more rows can fit into the insert buffer, the application sends the contents of
the insert buffer to the database server.

The application continues this procedure until no more rows are put into the insert
buffer. It sends the contents of the insert buffer to the database server when:
v The insert buffer is full
v It executes the FLUSH statement on the insert cursor
v It executes the CLOSE statement on the insert cursor

Default Buffer Size: The client application sends the prepared statement that is
associated with the cursor to the database server and requests DESCRIBE
information about the statement. If the cursor has an associated prepared
statement, Informix ESQL/C makes this request when the PREPARE statement
executes. If the cursor does not have an associated statement, Informix ESQL/C
makes the request when the DECLARE statement executes.

When it receives this request, the database server sends the DESCRIBE information
about each column in the projection list to the application. With this information,
Informix ESQL/C can determine the size of a row of data. By default, Informix
ESQL/C sizes this cursor buffer to hold one row of data. It uses the following
algorithm to determine the default size of the cursor buffer:
1. If one row fits in a 4096-byte buffer, the default buffer size is 4096 bytes (4

kilobytes).
2. If the size of one row exceeds 4096 bytes, the default buffer size is the size of

that row.

Once it has the buffer size, Informix ESQL/C allocates the cursor buffer.

Changing Size of Cursor Buffer: If your application routinely sends or receives
large amounts of data then you can increase performance by increasing the size of
the cursor buffer. The cursor buffer is used both as a fetch buffer and as an insert
buffer.

Note: Larger cursor buffers are currently only supported in cursors for which the
database server is IBM Informix Extended Parallel Server Version 8.40 or
higher.

Setting the size of the cursor buffer is an Informix extension to ANSI-standard
syntax.

14-12 IBM Informix ESQL/C Programmer’s Manual

To increase the size of the cursor buffer, you can set either of the following
variables in the client environment:
v You can set the BIG_FET_BUF_SIZE environment variable in the environment

your client application runs in. Set it to the size you want all cursor buffers in
the application to be.
For example, the following command sets the BIG_FET_BUF_SIZE environment
variable in the C-shell environment to 40,000 bytes:
setenv BIG_FET_BUF_SIZE 40000

v Inside your application you can set the BigFetBufSize global variable to change
the size of the cursor buffer from cursor to cursor.
Each time Informix ESQL/C creates a cursor buffer the buffer will be the size
currently given in BigFetBufSize if it is set.
The following C code, for example, sets BigFetBufSize to 40000 bytes:
FetBufSize = 40000;

After this line, every cursor that is created will have a size of 40000 bytes until
the value of BigFetBufSize is changed.
The BigFetBufSize global variable overrides any value in the
BIG_FET_BUF_SIZE environment variable.
The BigFetBufSize global variable is defined in the Informix ESQL/C sqlhdr.h
header file which is included automatically in all Informix ESQL/C programs.

The maximum value to which you can set BIG_FET_BUF_SIZE or BigFetBufSize
is 4194303. If you specify a buffer size that is less than the default size or greater
than the system maximum, the new size is ignored. If you do not specify a buffer
size, the database server uses the default size.

Note: The BIG_FET_BUF_SIZE environment variable and the BigFetBufSize
global variable replace the older FET_BUF_SIZE and FetBufSize variables.
The old variables are still supported for compatibility with earlier versions
but only allow a maximum value of 32767. If both the old and new version
of a variable are set then whichever is set to the largest value is used.

Automatically Freeing a Cursor
When an IBM Informix ESQL/C application uses a cursor, it usually sends a FREE
statement to the database server to deallocate memory assigned to a select cursor
once it no longer needs that cursor. Execution of this statement involves a round
trip of message requests between the application and the database server. The
Automatic-FREE feature (AUTOFREE) reduces the number of round trips by one.

When the AUTOFREE feature is enabled, Informix ESQL/C saves a round trip of
message requests because it does not need to execute the FREE statement. When
the database server closes a select cursor, it automatically frees the memory that it
has allocated for it. Suppose you enable the AUTOFREE feature for the following
select cursor:
/* Select cursor associated with a SELECT statement */
EXEC SQL declare sel_curs cursor for

select * from customer;

When the database server closes the sel_curs cursor, it automatically performs the
equivalent of the following FREE statement:
FREE sel_curs

Chapter 14. Using Dynamic SQL 14-13

If the cursor had an associated prepared statement, the database server also frees
memory allocated to the prepared statement. Suppose you enable the AUTOFREE
feature for the following select cursor:
/* Select cursor associated with a prepared statement */
EXEC SQL prepare sel_stmt ’select * from customer’;
EXEC SQL declare sel_curs2 cursor for sel_stmt;

When the database server closes the sel_curs2 cursor, it automatically performs the
equivalent of the following FREE statements:
FREE sel_curs2;
FREE sel_stmt

You must enable the AUTOFREE feature before you open or reopen the cursor.

Enabling the AUTOFREE Feature: You can enable the AUTOFREE feature for an
Informix ESQL/C application in either of the following ways:
v Set the IFX_AUTOFREE environment variable to 1 (one).

When you use the IFX_AUTOFREE environment variable to enable the
AUTOFREE feature, you automatically free cursor memory when cursors in any
thread of the program are closed.

v Execute the SQL statement, SET AUTOFREE.
With the SET AUTOFREE statement, you can enable the AUTOFREE feature for
a particular cursor. You can also enable or disable the feature in a particular
connection or thread.

Warning: Be careful when you enable the AUTOFREE feature in legacy Informix
ESQL/C applications. If a legacy application uses the same cursor twice,
it generates an error when it tries to open the cursor for the second time.
When the AUTOFREE feature is enabled, the database server
automatically frees the cursor when it closes it. Therefore, the cursor
does not exist when the legacy application attempts to open it a second
time, even though the application does not explicitly execute the FREE
statement.

For more information about the syntax and use of the SET AUTOFREE statement,
see “Using the SET AUTOFREE Statement” on page 14-14. For more information
about the IFX_AUTOFREE environment variable, see the IBM Informix Guide to
SQL: Reference.

Using the SET AUTOFREE Statement: You can use the SQL statement, SET
AUTOFREE, to enable and disable the AUTOFREE feature. The SET AUTOFREE
statement allows you to take the following actions in an Informix ESQL/C
program:
v Enable the AUTOFREE feature for all cursors:

EXEC SQL set autofree;
EXEC SQL set autofree enabled;

These statements are equivalent because the default action of the SET
AUTOFREE statement is to enable all cursors.

v Disable the AUTOFREE feature for all cursors:
EXEC SQL set autofree disabled;

v Enable the AUTOFREE feature for a specified cursor identifier or cursor variable:
EXEC SQL set autofree for cursor_id;
EXEC SQL set autofree for :cursor_var;

14-14 IBM Informix ESQL/C Programmer’s Manual

The SET AUTOFREE statement overrides any value of the IFX_AUTOFREE
environment variable.

The following code fragment uses the FOR clause of the SET AUTOFREE
statement to enable the AUTOFREE feature for the curs1 cursor only. After the
database server executes the CLOSE statement for curs1, it automatically frees the
cursor and the prepared statement. The curs2 cursor and its prepared statement are
not automatically freed.
EXEC SQL BEGIN DECLARE SECTION;

int a_value;
EXEC SQL END DECLARE SECTION;

EXEC SQL create database tst_autofree;
EXEC SQL connect to ’tst_autofree’;
EXEC SQL create table tab1 (a_col int);
EXEC SQL insert into tab1 values (1);

/* Declare the curs1 cursor for the slct1 prepared
* statement */
EXEC SQL prepare slct1 from ’select a_col from tab1’;
EXEC SQL declare curs1 cursor for slct1;

/* Enable AUTOFREE for cursor curs1 */
EXEC SQL set autofree for curs1;

/* Open the curs1 cursor and fetch the contents */
EXEC SQL open curs1;
while (SQLCODE == 0)

{
EXEC SQL fetch curs1 into :a_value;
printf("Value is: %d\n", a_value);
}

/* Once the CLOSE completes, the curs1 cursor is freed and
* cannot be used again. */
EXEC SQL close curs1;

/* Declare the curs2 cursor for the slct2 prepared
* statement */
EXEC SQL prepare slct2 from ’select a_col from tab1’;
EXEC SQL declare curs2 cursor for slct2;

/* Open the curs2 cursor and fetch the contents */
EXEC SQL open curs2;
while (SQLCODE == 0)

{
EXEC SQL fetch curs2 into :a_value;
printf("Value is: %d\n", a_value);
}

/* Once this CLOSE completes, the curs2 cursor is still
* available for use. It has not been automatically freed. */
EXEC SQL close curs2;

/* You must explicitly free the curs2 cursor and slct2
* prepared statement. */
EXEC SQL free curs2;
EXEC SQL free slct2;

When you use the AUTOFREE feature, make sure you do not cause a prepared
statement to become detached. This situation can occur if you declare more than one
cursor on the same prepared statement. A prepared statement is associated or
attached to the first cursor that specifies it in a DECLARE statement. If the

Chapter 14. Using Dynamic SQL 14-15

AUTOFREE feature is enabled for this cursor, then the database server frees the
cursor and its associated prepared statement when it executes the CLOSE
statement on the cursor.

A prepared statement becomes detached when either of the following events occur:
v If the prepared statement was not associated with any declared cursor
v If the cursor with the prepared statement was freed but the prepared statement

was not.

This second condition can occur if the AUTOFREE feature is not enabled for a
cursor and you free only the cursor, not the prepared statement. The prepared
statement becomes detached. To reattach the prepared statement, declare a new
cursor for the prepared statement. Once a prepared statement was freed, it cannot
be used to declare any new cursor.

The following code fragment declares the following cursors on the slct1 prepared
statement:
v The curs1 cursor, with which the slct1 prepared statement is first associated
v The curs2 cursor, which executes slct1 but with which slct1 is not associated
v The curs3 cursor, with which slct1 is associated

The following code fragment shows how a detached prepared statement can occur:
/**
* Declare curs1 and curs2. The slct1 prepared statement is *
* associated curs1 because curs1 is declared first. */

EXEC SQL prepare slct1 ’select a_col from tab1’;
EXEC SQL declare curs1 cursor for slct1;
EXEC SQL declare curs2 cursor for slct1;

/**
* Enable the AUTOFREE feature for curs2 */

EXEC SQL set autofree for curs2;

/***
* Open the curs1 cursor and fetch the contents */

EXEC SQL open curs1;
{
EXEC SQL fetch curs1 into :a_value;
printf("Value is: %d\n", a_value);
}

EXEC SQL close curs1;

/* Because AUTOFREE is enabled only for the curs2 cursor, this *
* CLOSE statement frees neither the curs1 cursor nor the slct1 *
* prepared statement. The curs1 cursor is still defined so the *
* slct1 prepared statement does not become detached. *
**/

/***
* Open the curs2 cursor and fetch the contents */

EXEC SQL open curs2;
while (SQLCODE == 0)

{
EXEC SQL fetch curs2 into :a_value;
printf("Value is: %d\n", a_value);
}

EXEC SQL close curs2;

14-16 IBM Informix ESQL/C Programmer’s Manual

/* This CLOSE statement frees the curs2 cursor but does not free *
* slct1 prepared statement because the prepared statement is not*
* associated with curs2. *
**/

/***
* Reopen the curs1 cursor. This open is possible because the *
* AUTOFREE feature has not been enabled on curs1. Therefore, the*
* database server did not automatically free curs1 when it closed it.*/

EXEC SQL open curs1;
while (SQLCODE == 0)

{
EXEC SQL fetch curs1 into :a_value;
printf("Value is: %d\n", a_value);
}

EXEC SQL close curs1;
EXEC SQL free curs1;

/* Explicitly freeing the curs1 cursor, with which the slct1 *
* statement is associated, causes slct1 to become detached. It *
* is no longer associated with a cursor. *

**/

/***
* This DECLARE statement causes the slct1 prepared statement *
* to become reassociated with a cursor. Therefore, the slct1 *
* statement is no longer detached. */

EXEC SQL declare curs3 cursor for slct1;
EXEC SQL open curs3;

/* Enable the AUTOFREE feature for curs */
EXEC SQL set autofree for curs3;

/* Open the curs3 cursor and fetch the content */
EXEC SQL open curs3;
while (SQLCODE == 0)

{
EXEC SQL fetch curs3 into :a_value;
printf("Value is: %d\n", a_value);
}

EXEC SQL close curs3;

/* Because AUTOFREE is enabled for the curs3 cursor, this CLOSE*
* statement frees the curs3 cursor and the slct1 PREPARE stmt.*
**/

/***
* This DECLARE statement would generate a run time error *
* because the slct1 prepared statement has been freed. */

EXEC SQL declare x4 cursor for slct1;
/***/

For more information about the syntax and use of the SET AUTOFREE statement,
see the IBM Informix Guide to SQL: Syntax.

Deferring Execution of the PREPARE Statement
When an IBM Informix ESQL/C application uses a PREPARE/DECLARE/OPEN
statement block to execute a cursor, each statement involves a round trip of
message requests between the application and the database server. The
Deferred-PREPARE feature reduces the number of round trips by one. When the

Chapter 14. Using Dynamic SQL 14-17

Deferred-PREPARE feature is enabled, Informix ESQL/C saves a round trip of
message requests because it does not need to send a separate command to execute
the PREPARE statement. Instead, the database server automatically executes the
PREPARE statement when it receives the OPEN statement.

Suppose you enable the Deferred-PREPARE feature for the following select cursor:
/* Select cursor associated with a SELECT statement */
EXEC SQL prepare slct_stmt FOR

’select * from customer’;
EXEC SQL declare sel_curs cursor for slct_stmt;
EXEC SQL open sel_curs;

The Informix ESQL/C application does not send the PREPARE statement to the
database server when it encounters the PREPARE before the DECLARE statement.
Instead, it sends the PREPARE and the OPEN to the database server together when
it executes the OPEN statement.

You can use the Deferred-PREPARE feature in Informix ESQL/C applications that
contain dynamic SQL statements that use statement blocks of PREPARE,
DECLARE, and OPEN to execute the following statements:
v SELECT statements (select cursors)
v EXECUTE FUNCTION statements (function cursors)
v INSERT statement (insert cursors)

For example, the Deferred-PREPARE feature reduces network round trips for the
following select cursor:
/* Valid select cursor for Deferred-PREPARE optimization */
EXEC SQL prepare sel_stmt ’select * from customer’;
EXEC SQL declare sel_curs cursor for sel_stmt;
EXEC SQL open sel_curs;

Restrictions on Deferred-PREPARE: When you enable the deferred-PREPARE
feature, the client application does not send PREPARE statements to the database
server when it encounters them. The database server receives a description of the
prepared statement when it executes the OPEN statement.

The database server generates an error if you execute a DESCRIBE statement on a
prepared statement before the first OPEN of the cursor. The error occurs because
the database server has not executed the PREPARE statement that the DESCRIBE
statement specifies. When the deferred-PREPARE feature is enabled, you must
execute the DESCRIBE statement after the first OPEN of a cursor.

Important: The deferred-PREPARE feature eliminates execution of the PREPARE
statement as a separate step. Therefore, the application does not receive
any error conditions that might exist in the prepared statement until
after the initial OPEN.

For more information, see “Using the SET DEFERRED_PREPARE Statement” on
page 14-19.

Enabling the Deferred-PREPARE Feature: You can enable the Deferred-PREPARE
feature for an Informix ESQL/C application in either of the following ways:
v Set the IFX_DEFERRED_PREPARE environment variable to 1 (one).

When you use the IFX_DEFERRED_PREPARE environment variable to enable
the Deferred-PREPARE feature, you automatically defer execution of the

14-18 IBM Informix ESQL/C Programmer’s Manual

PREPARE statement until just before the OPEN statement executes for every
PREPARE statement in any thread of the application.
The default value of the IFX_DEFERRED_PREPARE environment variable is 0
(zero). If you set this environment variable from the shell, make sure you set it
before you start the Informix ESQL/C application.

v Execute the SQL statement, SET DEFERRED_PREPARE.
With the SET DEFERRED_PREPARE statement, you can enable the
Deferred-PREPARE feature for a particular PREPARE statement. You can also
enable or disable the feature in a particular connection or thread.

For more information about the syntax and use of the SET DEFERRED PREPARE
statement, see “Using the SET DEFERRED_PREPARE Statement.” For more
information about the IFX_DEFERRED_PREPARE environment variable, see the
IBM Informix Guide to SQL: Reference.

Using the SET DEFERRED_PREPARE Statement: In an Informix ESQL/C
application you can use the SQL statement, SET DEFERRED_PREPARE, to enable
and disable the Deferred-PREPARE feature. The SET DEFERRED_PREPARE
statement allows you to take the following actions in an Informix ESQL/C
program:
v Enable the Deferred-PREPARE feature:

EXEC SQL set deferred_prepare;

EXEC SQL set deferred_prepare enabled;

v Disable the Deferred-PREPARE feature:
EXEC SQL set deferred_prepare disabled;

The SET DEFERRED_PREPARE statement overrides any value of the
IFX_DEFERRED_PREPARE environment variable.

The following code fragment shows how to enable the Deferred-PREPARE feature
for the ins_curs insert cursor:
EXEC SQL BEGIN DECLARE SECTION;

int a;
EXEC SQL END DECLARE SECTION;

EXEC SQL create database test;
EXEC SQL create table table_x (col1 integer);

/*************************************
* Enable Deferred-Prepare feature
*************************************/
EXEC SQL set deferred_prepare enabled;

/*************************************
* Prepare an INSERT statement
*************************************/
EXEC SQL prepare ins_stmt from

’insert into table_x values(?)’;

/*************************************
* Declare the insert cursor for the
* prepared INSERT.
*************************************/
EXEC SQL declare ins_curs cursor for ins_stmt;
/***
* OPEN the insert cursor. Because the Deferred-PREPARE feature
* is enabled, the PREPARE is executed at this time
**/
EXEC SQL open ins_curs;

Chapter 14. Using Dynamic SQL 14-19

a = 2;
while (a<100)

{
EXEC SQL put ins_curs from :a;
a++;
}

To execute a DESCRIBE statement on a prepared statement, you must execute the
DESCRIBE after the initial OPEN statement for the cursor. In the following code
fragment the first DESCRIBE statement fails because it executes before the first
OPEN statement on the cursor. The second DESCRIBE statement succeeds because
it follows an OPEN statement.
EXEC SQL BEGIN DECLARE SECTION;

int a, a_type;
EXEC SQL END DECLARE SECTION;
EXEC SQL allocate descriptor ’desc’;
EXEC SQL create database test;
EXEC SQL create table table_x (col1 integer);

/**
* Enable Deferred-Prepare feature
**/

EXEC SQL set deferred_prepare enabled;

/**
* Prepare an INSERT statement
**/

EXEC SQL prepare ins_stmt from ’insert into table_x values (?)’;

/**
* The DESCRIBE results in an error, because the description of the
* statement is not determined until after the OPEN. The OPEN is what
* actually sends the PREPARE statement to the database server and
* requests a description for it.
**/

EXEC SQL describe ins_stmt using sql descriptor ’desc’; /* fails */
if (SQLCODE)

printf("DESCRIBE : SQLCODE is %d\n", SQLCODE);

/***
* Now DECLARE a cursor for the PREPARE statement and OPEN it.
**/

EXEC SQL declare ins_cursor cursor for ins_stmt;
EXEC SQL open ins_cursor;

/***
* Now the DESCRIBE returns the information about the columns to the
* system-descriptor area.
**/

EXEC SQL describe ins_stmt using sql descriptor ’desc’; /* succeeds */
if (SQLCODE)

printf("DESCRIBE : SQLCODE is %d\n", SQLCODE);
a = 2;
a_type = SQLINT;
while (a<100)

{
EXEC SQL set descriptor ’desc’ values 1

type = :a_type, data = :a;
EXEC SQL put ins_curs using sql descriptor ’desc’;
a++;
}

14-20 IBM Informix ESQL/C Programmer’s Manual

The collect.ec Program
The collect.ec example program, which follows, illustrates the use of collection
variables to access LIST, SET, and MULTISET columns. The SELECT statement is
considered static because the columns that it accesses are determined when the
program is written.
/*
**
** Sample use of collections in ESQL/C.
**
** Statically determined LIST, SET, and MULTISET collection types.
*/

#include <stdio.h>

static void print_collection(
const char *tag,
EXEC SQL BEGIN DECLARE SECTION;
parameter client collection c
EXEC SQL END DECLARE SECTION;
)
{

EXEC SQL BEGIN DECLARE SECTION;
int4 value;
EXEC SQL END DECLARE SECTION;
mint item = 0;

EXEC SQL WHENEVER ERROR STOP;
printf("COLLECTION: %s\n", tag);
EXEC SQL DECLARE c_collection CURSOR FOR

SELECT * FROM TABLE(:c);
EXEC SQL OPEN c_collection;
while (sqlca.sqlcode == 0)
{

EXEC SQL FETCH c_collection INTO :value;
if (sqlca.sqlcode != 0)

break;
printf("\tItem %d, value = %d\n", ++item, value);

}
EXEC SQL CLOSE c_collection;
EXEC SQL FREE c_collection;

}

mint main(int argc, char **argv)
{

EXEC SQL BEGIN DECLARE SECTION;
client collection list (integer not null) lc1;
client collection set (integer not null) sc1;
client collection multiset (integer not null) mc1;
char *dbase = "stores7";
mint seq;
char *stmt1 =

"INSERT INTO t_collections VALUES(0, "
"’LIST{-1,0,-2,3,0,0,32767,249}’, ’SET{-1,0,-2,3}’, "
"’MULTISET{-1,0,0,-2,3,0}’) ";

EXEC SQL END DECLARE SECTION;

if (argc > 1)
dbase = argv[1];

EXEC SQL WHENEVER ERROR STOP;
printf("Connect to %s\n", dbase);
EXEC SQL connect to :dbase;

EXEC SQL CREATE TEMP TABLE t_collections
(

seq serial not null,

Chapter 14. Using Dynamic SQL 14-21

l1 list (integer not null),
s1 set (integer not null),
m1 multiset(integer not null)

);
EXEC SQL EXECUTE IMMEDIATE :stmt1;

EXEC SQL ALLOCATE COLLECTION :lc1;
EXEC SQL ALLOCATE COLLECTION :mc1;
EXEC SQL ALLOCATE COLLECTION :sc1;

EXEC SQL DECLARE c_collect CURSOR FOR
SELECT seq, l1, s1, m1 FROM t_collections;

EXEC SQL OPEN c_collect;

EXEC SQL FETCH c_collect INTO :seq, :lc1, :sc1, :mc1;
EXEC SQL CLOSE c_collect;
EXEC SQL FREE c_collect;

print_collection("list/integer", lc1);
print_collection("set/integer", sc1);
print_collection("multiset/integer", mc1);

EXEC SQL DEALLOCATE COLLECTION :lc1;
EXEC SQL DEALLOCATE COLLECTION :mc1;
EXEC SQL DEALLOCATE COLLECTION :sc1;

puts("OK");
return 0;

}

Optimizing OPEN, FETCH, and CLOSE
When an Informix ESQL/C application uses DECLARE and OPEN statements to
execute a cursor, each statement involves a round trip of message requests between
the application and the database server. The optimize-OPEN-FETCH-CLOSE
feature (OPTOFC) reduces the number of round trips by two, as follows:
v Informix ESQL/C saves one round trip because it does not send the OPEN

statement as a separate command.
When Informix ESQL/C executes the OPEN statement, it does not open the
cursor. Instead, it saves any input value that was supplied in the USING clause
of the OPEN statement. When Informix ESQL/C executes the initial FETCH
statement, it sends this input value along with the FETCH statement. The
database server opens the cursor and returns the first value in this cursor.

v Informix ESQL/C saves a second round trip because it does not send the CLOSE
statement as a separate command.
When the database server reaches the last value of an open cursor, it
automatically closes the cursor after it sends the last value to the client
application. Therefore, Informix ESQL/C does not need to send the CLOSE
statement to the database server.

Important: Informix ESQL/C does not send the CLOSE statement to the database
server. However, if you include the CLOSE statement, no error is
generated.

Restrictions on OPTOFC
With the OPTOFC feature enabled, the following restrictions exist:
v You can only use the OPTOFC feature on select cursors whose SELECT

statement was prepared. For example, the OPTOFC feature reduces network
round trips for the following select cursor:

14-22 IBM Informix ESQL/C Programmer’s Manual

/* Valid select cursor for OPTOFC optimization */
EXEC SQL prepare sel_stmt ’select * from customer’;
EXEC SQL declare sel_curs cursor for sel_stmt;

v The OPTOFC feature eliminates execution of the OPEN statement as a separate
step. Therefore, any error conditions that opening the cursor might generate are
not returned until after the initial FETCH.

v Static cursors are not freed when they are closed.
With the OPTOFC feature enabled, neither static nor dynamic cursors are freed
when they are closed. Because Informix ESQL/C does not actually send the
CLOSE statement to the database server, a cursor is not implicitly freed. A
subsequent OPEN and FETCH on a cursor actually opens the same cursor. Only
at this time would the database server notice if the table was modified (if it was
dropped, altered, or renamed), in which case it generates an error (-710).
With the OPTOFC feature disabled, a static cursor is freed when it is closed.
When ESQL/C reaches a CLOSE statement for a static cursor, it actually sends a
message to close the cursor and free memory associated with this cursor.
However, dynamic cursors are not implicitly freed when they are closed.

v The GET DIAGNOSTICS statement does not work for SQL statements that are
delayed on the way to the database server. For example, in the following
sequence of SQL statements, GET DIAGNOSTICS returns 0, indicating success,
even though the OPEN is delayed until the first fetch:
EXEC SQL declare curs1 ...
EXEC SQL open curs1
EXEC SQL get diagnostic
EXEC SQL fetch curs1

Enabling the OPTOFC Feature
The OPTOFC environment variable enables the OPTOFC feature. You can assign
the following values to the OPTOFC environment variable.

Value Description

1 This value enables the OPTOFC feature. When you specify this
value, you enable the OPTOFC feature for every cursor in every
thread of the application.

0 This value disables the OPTOFC feature for all threads of the
application.

The default value of the OPTOFC environment variable is 0 (zero). If you set this
environment variable from the shell, make sure you set it before you start the
ESQL/C application.

On UNIX operating systems, you can set OPTOFC in the application with the
putenv() system call (as long as your system supports the putenv() function). For
example, the following call to putenv() enables the OPTOFC feature:
putenv("OPTOFC=1");

In Windows environments, you can use the ifx_putenv() function.

With putenv() or ifx_putenv(), you can activate or deactivate the OPTOFC feature
for each connection or within each thread. You must call the putenv() or
ifx_putenv() function before you establish a connection.

Chapter 14. Using Dynamic SQL 14-23

Important: Informix utilities do not support the IFX_AUTOFREE, OPTOFC, and
IFX_DEFERRED_PREPARE environment variables. Use these
environment variables only with IBM Informix ESQL/C client
applications.

Using OPTOFC and Deferred-PREPARE Together
To achieve the most optimized number of messages between the client application
and the database server, use the Optimize OPEN, FETCH, CLOSE feature and the
Deferred-PREPARE feature together. However, keep the following requirements in
mind when you use these two optimization features together:
v If syntax errors exist in the statement text, the database server does not return

the error to the application until it executes the FETCH.
Informix ESQL/C does not send the PREPARE, DECLARE, and OPEN
statements to the database server until it executes the FETCH statement.
Therefore, any errors that any of these statements generate are not available until
the database server executes the FETCH statement.

v You must use a special case of the GET DESCRIPTOR statement to obtain
DESCRIBE information for a prepared statement.
Typical use of the DESCRIBE statement is to execute it after the PREPARE to
determine information about the prepared statement. However, with both the
OPTOFC and Deferred-PREPARE features enabled, Informix ESQL/C does not
send the DESCRIBE statement to the database until it reaches the FETCH
statement. To allow you to obtain information about the prepared statement,
Informix ESQL/C executes a statement similar to the SET DESCRIPTOR
statement to obtain data type, length, and other system-descriptor fields for the
prepared statement. You can then use the GET DESCRIPTOR statement after the
FETCH to obtain this information.
Also, Informix ESQL/C can only perform data conversions on the host variables
in the GET DESCRIPTOR statement when the data types are built-in data types.
For opaque data types and complex data types (collections and row types), the
database server always returns the data to the client application in its native
format. You can then perform data conversions on this data after the GET
DESCRIPTOR statement.
For example, the database server returns data from an opaque-type column in its
internal (binary) format. Therefore, your Informix ESQL/C program must put
column data into a var binary (or fixed binary) host variable when it executes
the GET DESCRIPTOR statement. The var binary and fixed binary data types
hold opaque-type data in its internal format. You cannot use an lvarchar host
variable to hold the data because Informix ESQL/C cannot convert the
opaque-type data from its internal format (which it receives from the database
server) to its external (lvarchar) format.

v The FetArrSize feature does not work when both the Deferred-PREPARE and
OPTOFC features are enabled. When these two features are enabled, Informix
ESQL/C does not know the size of a row until after the FETCH completes. By
this time, it is too late for the fetch buffer to be adjusted with the FetArrSize
value.

Tip: To obtain the maximum optimization, use the OPTOFC, deferred-PREPARE
and AUTOFREE features together. For more information about the
AUTOFREE feature, see “Automatically Freeing a Cursor” on page 14-13.

14-24 IBM Informix ESQL/C Programmer’s Manual

SQL Statements That Are Known at Compile Time
The simplest type of dynamic SQL to execute is one for which you know both of
the following items:
v The structure of the SQL statement to be executed, including information like

the statement type and the syntax of the statement
v The number and data types of any data that passes between the Informix

ESQL/C program and the database server

The following sections describe how to execute both non-SELECT statements and
SELECT statements whose structure and data are known at compile time.

Executing Non-SELECT Statements
In this chapter, the term non-SELECT statement refers to any SQL statement that can
be prepared, except SELECT and EXECUTE FUNCTION. This term includes the
EXECUTE PROCEDURE statement.

Important: The INSERT statement is an exception to the rules for non-SELECT
statements. If the INSERT inserts a single row, use PREPARE and
EXECUTE to execute it. However, if the INSERT is associated with an
insert cursor, you must declare the insert cursor.

For more information, see “Sending More Than One Row” on page 14-10.

For a list of SQL statements that cannot be prepared, see the entry for the
PREPARE statement in the IBM Informix Guide to SQL: Syntax.

You can execute a non-SELECT statement in the following ways:
v If the statement is to be executed more than once, use the PREPARE and

EXECUTE statements.
v If the statement is to be executed only once, use the EXECUTE IMMEDIATE

statement. This statement does have some restrictions on the statements it can
execute.

Using PREPARE and EXECUTE
The PREPARE and EXECUTE statements allow you to separate the execution of a
non-SELECT statement into two steps:
1. PREPARE sends the statement string to the database server, which parses the

statement and assigns it a statement identifier.
2. EXECUTE executes the prepared statement indicated by a statement identifier.

This two-step process is useful for statements that need to be executed more than
once. You reduce the traffic between the client application and the database server
when you parse the statement only once.

For example, you can write a general-purpose deletion program that works on any
table. This program would take the following steps:
1. Prompt the user for the name of the table and the text of the WHERE clause

and put the information into C variables such as tabname and
search_condition. The tabname and search_condition variables do not need to
be host variables because they do not appear in the actual SQL statement.

Chapter 14. Using Dynamic SQL 14-25

2. Create a text string by concatenating the following four components: DELETE
FROM, tabname, WHERE, and search_condition. In this example, the string is
in a host variable called stmt_buf:
sprintf(stmt_buf, "DELETE FROM %s WHERE %s",

tabname, search_condition);

3. Prepare the entire statement. The following PREPARE statement operates on
the string in stmt_buf and creates a statement identifier called d_id:
EXEC SQL prepare d_id from :stmt_buf;

4. Execute the statement. The following EXECUTE statement executes the
DELETE:
EXEC SQL execute d_id;

5. If you do not need to execute the statement again, free the resources used by
the statement identifier structure. This example would use the following FREE
statement:
EXEC SQL free d_id;

If the non-SELECT statement contains input parameters, you must use the USING
clause of the EXECUTE statement. For more information, see “Using an EXECUTE
USING Statement” on page 14-34.

The EXECUTE statement is generally used to execute non-SELECT statements. You
can use EXECUTE with the INTO clause for a SELECT or an EXECUTE
FUNCTION statement as long as these statements return only one group of values
(one row). For more information, see “Using PREPARE and EXECUTE INTO” on
page 14-27. However, do not use the EXECUTE statement for:
v an INSERT...VALUES statement that is associated with an insert cursor.

See “Sending More Than One Row” on page 14-10.
v an EXECUTE FUNCTION statement for a cursor function (a user-defined function

that returns more than one group of values).
See “Determining Return Values Dynamically” on page 15-18.

Using EXECUTE IMMEDIATE
Rather than prepare the statement and then execute it, you can prepare and
execute the statement in the same step with the EXECUTE IMMEDIATE statement.
The EXECUTE IMMEDIATE statement also frees statement-identifier resources
upon completion.

For example, for the DELETE statement used in the previous section, you can
replace the PREPARE-EXECUTE statement sequence with the following statement:
EXEC SQL execute immediate :stmt_buf;

You cannot use EXECUTE IMMEDIATE if the statement string contains input
parameters. (For information, see “Using an EXECUTE USING Statement” on page
14-34.) The SQL statements also have restrictions that you can execute with
EXECUTE IMMEDIATE. For a complete list of SQL statement restrictions, see the
entry for EXECUTE IMMEDIATE in the IBM Informix Guide to SQL: Syntax.

Executing SELECT Statements
You can execute a SELECT statement in the following two ways:
v If the SELECT statement returns only one row, use PREPARE and EXECUTE

INTO. This type of SELECT is often called a singleton SELECT.
v If the SELECT statement returns more than one row, you must use

cursor-management statements.

14-26 IBM Informix ESQL/C Programmer’s Manual

Using PREPARE and EXECUTE INTO
The only prepared SELECT statement that you can execute with the EXECUTE
statement is a singleton SELECT. Your Informix ESQL/C program must take the
following actions:
1. Declare host variables to receive the values that the database server returns.

For a prepared SELECT statement, these values are the select-list columns.
2. Assemble and prepare the statement.

A prepared SELECT statement can contain input parameters in the WHERE
clause. For more information, see “Assembling and Preparing the SQL
Statement” on page 14-2.

3. Execute the prepared selection with the EXECUTE...INTO statement, with the
host variables after the INTO keyword.
If the SELECT statement contains input parameters, include the USING clause
of EXECUTE.

Tip: To execute a singleton SELECT, using EXECUTE...INTO is usually more
efficient than using the DECLARE, OPEN, and FETCH statements.

With the INTO clause of the EXECUTE statement, you can still use the following
features:
v You can associate indicator variables with the host variables that receive the

select-list column values.
Use the INDICATOR keyword followed by the name of the indicator host
variable, as follows:
EXEC SQL prepare sel1 from

’select fname, lname from customer where customer_num = 123’;
EXEC SQL execute sel1 into :fname INDICATOR :fname_ind,

:lname INDICATOR :lname_ind;

v You can specify input parameter values.
Include the USING clause of EXECUTE, as follows:
EXEC SQL prepare sel2 from

’select fname, lname from customer where customer_num = ?’;
EXEC SQL execute sel2 into :fname, :lname using :cust_num;

For more information, see “Using an EXECUTE USING Statement” on page
14-34.

Warning: When you use the EXECUTE INTO statement, make sure that the
SELECT statement is a singleton SELECT. If the SELECT returns more
than one row, you receive a runtime error. An error is also generated if
you attempt to execute a prepared statement that was declared (with
DECLARE).

You are not required to prepare a singleton SELECT. If you do not need the
benefits of a prepared statement, you can embed a singleton SELECT statement
directly in your Informix ESQL/C program, as shown in the following example:
EXEC SQL select order_date from orders where order_num = 1004;

Figure 14-5 shows how to execute the items_pct() SPL function (which Figure 16-1
on page 16-15 shows). Because this function returns a single decimal value, the
EXECUTE...INTO statement can execute it.

Chapter 14. Using Dynamic SQL 14-27

You can use host variables for routine arguments but not the routine name. For
example, if the manu_code variable holds the value "HSK", the following EXECUTE
statement replaces the input parameter in the prepared statement to perform the
same task as the EXECUTE in Figure 14-5 on page 14-28.
EXEC SQL prepare exfunc_id from

’execute function items_pict(?)’;
EXEC SQL execute exfunc_id into :manuf_dec using :manu_code;

If you do not know the number or data types of the select-list columns or function
return values, you must use a dynamic-management structure instead of host
variables with the EXECUTE...INTO statement. The dynamic-management
structure defines the select-list columns at runtime. For more information, see
“Handling an Unknown Select List” on page 15-16.

Using a Select Cursor
To execute a SELECT statement that returns more than one row, you must declare
a select cursor. The select cursor enables the Informix ESQL/C application to handle
multiple rows that a query returns.

Your Informix ESQL/C program must take the following actions to use a select
cursor:
1. Declare host variables to receive the values that the database server returns.

For a prepared SELECT statement, these values are the select-list columns. For
a prepared EXECUTE FUNCTION statement, these values are the return values
of the user-defined function.

2. Assemble and prepare the statement.
A prepared SELECT statement can contain input parameters in the WHERE
clause. A prepared EXECUTE FUNCTION statement can contain input
parameters as function arguments. For more information, see “Assembling and
Preparing the SQL Statement” on page 14-2.

3. Declare the select cursor.
The DECLARE statement associates the prepared SELECT statement with the
select cursor.

4. Execute the query.
The OPEN statement sends any input parameters that its USING clause
specifies to the database server and tells the database server to execute the
SELECT statement.

5. Retrieve the rows of values from the select cursor.
The FETCH statement retrieves one row of data that matches the query criteria.

For more information about cursors and cursor-management statements, see
“Using a Database Cursor” on page 14-8.

Warning: Do not use the INTO clause in both a SELECT statement that is
associated with a cursor and in a FETCH statement that retrieves data
from the cursor. Neither the Informix ESQL/C preprocessor nor the

EXEC SQL prepare exfunc_id from
’execute function items_pct(\"HSK\")’;

EXEC SQL execute exfunc_id into :manuf_dec;

Figure 14-5. Executing the items_pct SPL Function

14-28 IBM Informix ESQL/C Programmer’s Manual

executable program generate an error for this condition. Using the INTO
clause in both statements, however, can generate unexpected results.

The lvarptr.ec Program
The lvarptr.ec example program, which follows, uses lvarchar pointers
/*
**
** Sample use of LVARCHAR to fetch collections in ESQL/C.
**
** Statically determined collection types.
*/

#include <stdio.h>

static void print_lvarchar_ptr(
const char *tag,
EXEC SQL BEGIN DECLARE SECTION;
parameter lvarchar **lv
EXEC SQL END DECLARE SECTION;
)
{

char *data;

data = ifx_var_getdata(lv);
if (data == 0)

data = "<<NO DATA>>";
printf("%s: %s\n", tag, data);

}

static void process_stmt(char *stmt)
{

EXEC SQL BEGIN DECLARE SECTION;
lvarchar *lv1;
lvarchar *lv2;
lvarchar *lv3;
mint seq;
char *stmt1 = stmt;
EXEC SQL END DECLARE SECTION;

printf("SQL: %s\n", stmt);

EXEC SQL WHENEVER ERROR STOP;
EXEC SQL PREPARE p_collect FROM :stmt1;
EXEC SQL DECLARE c_collect CURSOR FOR p_collect;
EXEC SQL OPEN c_collect;

ifx_var_flag(&lv1, 1);
ifx_var_flag(&lv2, 1);
ifx_var_flag(&lv3, 1);

while (sqlca.sqlcode == 0)
{

EXEC SQL FETCH c_collect INTO :seq, :lv1, :lv2, :lv3;
if (sqlca.sqlcode == 0)
{

printf("Sequence: %d\n", seq);
print_lvarchar_ptr("LVARCHAR 1", &lv1);
print_lvarchar_ptr("LVARCHAR 2", &lv2);
print_lvarchar_ptr("LVARCHAR 3", &lv3);
ifx_var_dealloc(&lv1);
ifx_var_dealloc(&lv2);
ifx_var_dealloc(&lv3);

Chapter 14. Using Dynamic SQL 14-29

}
}

EXEC SQL CLOSE c_collect;
EXEC SQL FREE c_collect;
EXEC SQL FREE p_collect;

}

mint main(int argc, char **argv)
{

EXEC SQL BEGIN DECLARE SECTION;
char *dbase = "stores7";
char *stmt1 =

"INSERT INTO t_collections VALUES(0, "
"’LIST{-1,0,-2,3,0,0,32767,249}’, ’SET{-1,0,-2,3}’, "
"’MULTISET{-1,0,0,-2,3,0}’) ";

char *data;
EXEC SQL END DECLARE SECTION;

if (argc > 1)
dbase = argv[1];

EXEC SQL WHENEVER ERROR STOP;
printf("Connect to %s\n", dbase);
EXEC SQL CONNECT TO :dbase;

EXEC SQL CREATE TEMP TABLE t_collections
(

seq serial not null,
l1 list (integer not null),
s1 set (integer not null),
m1 multiset(integer not null)

);

EXEC SQL EXECUTE IMMEDIATE :stmt1;
EXEC SQL EXECUTE IMMEDIATE :stmt1;
EXEC SQL EXECUTE IMMEDIATE :stmt1;

process_stmt("SELECT seq, l1, s1, m1 FROM t_collections");

puts("OK");
return 0;

}

Executing User-Defined Routines in IBM Informix
In IBM Informix, a user-defined routine is a collection of statements that performs a
user-defined task. A procedure is a routine that can accept arguments but does not
return any values. A function is a routine that can accept arguments and returns
values. The following table summarizes the SQL statements for user-defined
routines.

Task

SQL Statement for User Defined Routines

Procedure Function

Create and register a routine CREATE PROCEDURE CREATE FUNCTION

Execute a routine EXECUTE PROCEDURE EXECUTE FUNCTION

Drop a routine DROP PROCEDURE DROP FUNCTION

For more information about these statements, see the IBM Informix Guide to SQL:
Syntax.

14-30 IBM Informix ESQL/C Programmer’s Manual

IBM Informix supports several languages for user-defined routines:
v External routines are written in external languages such as C.

An external function can return one value while an external procedure does not
return a value. For information about how to write an external routine in C, see
IBM Informix User-Defined Routines and Data Types Developer's Guide .

v SPL routines are written in Stored Procedure Language (SPL).
An SPL function can return one or more values while an SPL procedure does not
return any values. For information about how to write a stored routine, see the
IBM Informix Guide to SQL: Tutorial.

Tip: In earlier versions of IBM Informix products, the term “stored procedure” was
used for both SPL procedures and SPL functions. That is, a stored procedure
can include the RETURN statement to return values. For compatibility with
earlier products, IBM Informix continues to support the execution of SPL
functions with the EXECUTE PROCEDURE statement. However, for new SPL
routines, it is recommended that you use EXECUTE PROCEDURE only for
procedures and EXECUTE FUNCTION only for functions.

A user-defined routine can use input parameters for its arguments. However, it
cannot use an input parameter for its routine name. For more information, see
“Execute statements with input parameters” on page 14-33.

A User-Defined Procedure
If you know the name of the user-defined procedure (external or SPL) at compile
time, execute the user-defined procedure with the EXECUTE PROCEDURE
statement. The following EXECUTE PROCEDURE statement executes a
user-defined procedure called revise_stats():
EXEC SQL execute procedure revise_stats("customer");

For more information about the syntax of the EXECUTE PROCEDURE statement,
see the IBM Informix Guide to SQL: Syntax.

If you do not know the name of the user-defined procedure until runtime, you
must dynamically execute the procedure. To dynamically execute a user-defined
procedure, you can use:
v the PREPARE and EXECUTE statements (14-25)
v the EXECUTE IMMEDIATE statement (14-26)

A User-Defined Function
If you know the name of the user-defined function at compile time, execute the
user-defined function (external or SPL) with the EXECUTE FUNCTION statement.
In the INTO clause of EXECUTE FUNCTION, you list the host variables that hold
the return value(s). The following EXECUTE FUNCTION statement executes a
user-defined function called items_pct() (which Figure 16-1 on page 16-15 defines):
EXEC SQL execute function items_pct(\"HSK\")

into :manuf_percent;

For more information about the syntax of the EXECUTE FUNCTION statement, see
the IBM Informix Guide to SQL: Syntax.

If you do not know the name of the user-defined function until runtime, you must
dynamically execute the function. Dynamic execution of a user-defined function is
a similar dynamic execution of a SELECT statement (15-16). Both the SELECT and
the user-defined function return values to the IBM Informix ESQL/C program.

Chapter 14. Using Dynamic SQL 14-31

Execute a user-defined function with the EXECUTE FUNCTION statement. You
can execute an EXECUTE FUNCTION statement in the following two ways:
v If the user-defined function returns only one row, use PREPARE and EXECUTE

INTO to execute the EXECUTE FUNCTION statement. This type of user-defined
function is often called a noncursor function.

v If the user-defined function returns more than one row, you must declare a
function cursor to execute the EXECUTE FUNCTION statement.
This type of user-defined function is often called a cursor function. A cursor
function that is written in SPL (an SPL function) has the WITH RESUME clause
in its RETURN statement. A cursor function that is written in an external
language such as C is an iterator function.

Tip: If you do not know the data type of the return value, you must use a
dynamic-management structure to hold the value. For more information, see
“Determining Return Values Dynamically” on page 15-18.

A Noncursor Function: You can also use the PREPARE and EXECUTE statement
to execute a noncursor user-defined function. A noncursor function returns only one
row of values.

Your Informix ESQL/C program must take the following actions:
1. Declare host variables to receive the values that the database server returns.

For a prepared EXECUTE FUNCTION statement, these values are the return
values of the user-defined function.

2. Assemble and prepare the statement.
A prepared EXECUTE FUNCTION statement can contain input parameters as
function arguments. For more information, see “Assembling and Preparing the
SQL Statement” on page 14-2.

3. Execute the prepared user-defined function with the EXECUTE...INTO
statement, with the host variables after the INTO keyword.
If the EXECUTE FUNCTION contains input parameters, include the USING
clause of EXECUTE.

Important: To execute a noncursor function, EXECUTE...INTO is usually more
efficient than the DECLARE, OPEN, and FETCH statements. However,
you often do not know the number of returned rows. When you do not
use a cursor to execute a cursor function that returns multiple rows,
Informix ESQL/C generates a runtime error. Therefore, it is a good
practice to always associate a user-defined function with a cursor.

For more information, see “A cursor function” on page 14-33.

Most external functions can return only one row of data and only a single value. For
example, the following code fragment executes an external function called
stnd_dev():
strcpy(func_name, "stnd_dev(ship_date)");
sprintf(exfunc_stmt, "%s %s %s",

"execute function",
func_name);

EXEC SQL prepare exfunc_id from :exfunc_stmt;
EXEC SQL execute exfunc_id into :ret_val;

14-32 IBM Informix ESQL/C Programmer’s Manual

To return more than one value, the external function must return a complex data
type, such as a collection or a row type. (For more information about these data
types, see Chapter 9, “Working with complex data types,” on page 9-1.)

An SPL function can return one or more values. If the RETURN statement of the
SPL function does not contain the WITH RESUME keywords, then the function
returns only one row. To execute the SPL function dynamically, prepare the
EXECUTE FUNCTION and execute it with the EXECUTE...INTO statement.

For more information, see “Using PREPARE and EXECUTE INTO” on page 14-27.

A cursor function: To execute an EXECUTE FUNCTION statement whose
user-defined function returns more than one row, you must declare a function
cursor. The function cursor enables the Informix ESQL/C application to handle the
multiple rows that a user-defined function returns. Your Informix ESQL/C
program must take the following actions to use a function cursor:
1. Declare host variables to receive the values that the user-defined function

returns.
2. Assemble and prepare the statement.

A prepared EXECUTE FUNCTION statement can contain input parameters as
function arguments. For more information, see “Assembling and Preparing the
SQL Statement” on page 14-2.

3. Declare the function cursor.
The DECLARE statement associates the prepared EXECUTE FUNCTION
statement with the function cursor.

4. Execute the user-defined function.
The OPEN statement sends any input parameters that its USING clause
specifies to the database server and tells the database server to execute the
EXECUTE FUNCTION statement.

5. Retrieve the rows of values from the function cursor.
The FETCH statement retrieves one row of values that the user-defined
function returns.

Only an external function that is an iterator function can return more than one row
of data. For information about how to write an iterator function, see the IBM
Informix DataBlade API Programmer's Guide.

If the RETURN statement of the SPL function contains the WITH RESUME
keywords, then the function can return more than one row. You must associate
such an SPL function with a function cursor. To execute the SPL function
dynamically, associate the EXECUTE FUNCTION statement with a cursor, use the
OPEN statement to execute the function, and use the FETCH...INTO statement to
retrieve the rows from the cursor into host variables.

For more information about cursors and cursor-management statements, see
“Using a Database Cursor” on page 14-8.

Execute statements with input parameters
An input parameter is a placeholder in an SQL statement that indicates that the
actual value is provided at runtime. You cannot list a host-variable name in the
text of a dynamic SQL statement because the database server knows nothing about
variables declared in the application. Instead, you can indicate an input parameter
with a question mark (?), which serves as a placeholder, anywhere within a

Chapter 14. Using Dynamic SQL 14-33

statement where an expression is valid. You cannot use an input parameter to
represent an identifier such as a database name, a table name, or a column name.

An SQL statement that contains input parameters is called a parameterized statement.
For a parameterized SQL statement, your program must provide the following
information to the database server about its input parameters:
v Your program must use a question mark (?) as a placeholder in the text of the

statement to indicate where to expect an input parameter. For example, the
following DELETE statement contains two input parameters:
EXEC SQL prepare dlt_stmt from

’delete from orders where customer_num = ? \
and order_date > ?’;

The first input parameter is defined for the value of the customer_num column
and the second for the value of the order_date column.

v Your program must specify the value for the input parameter when the
statement executes with the USING clause. To execute the DELETE statement in
the previous step, you can use the following statement:
EXEC SQL execute dlt_stmt using :cust_num, :ord_date;

The statement that you use to provide an input parameter with a value at runtime
depends on the type of SQL statement that you execute, as follows:
v For a non-SELECT statement (such as UPDATE, INSERT, DELETE, or EXECUTE

PROCEDURE) with input parameters, the EXECUTE...USING statement executes
the statement and provides input parameter values.

v For a SELECT statement associated with a cursor or for a cursor function
(EXECUTE FUNCTION), the OPEN...USING statement executes the statement
and provides input parameter values.

v For a singleton SELECT statement or for a noncursor function (EXECUTE
FUNCTION), the EXECUTE...INTO...USING statement executes the statement
and provides input parameter values.

When the statement executes, you can list host variables or literal values to
substitute for each input parameter in the USING clause. The values must be
compatible in number and data type with the associated input parameters. A host
variable must also be large enough to hold the data.

Important: To use host variables with the USING clause, you must know the
number of parameters in the SQL statement and their data types. If
you do not know the number and data types of the input parameters
at runtime, you must use a dynamic-management structure with the
USING clause. For more information, see “Determining Unknown
Input Parameters” on page 15-17.

The following sections show how to use host variables with the OPEN...USING
and the EXECUTE...USING statements.

Using an EXECUTE USING Statement
You can execute a parameterized non-SELECT statement (a non-SELECT that contains
input parameters) with the EXECUTE...USING statement. The following statements
are parameterized non-SELECT statements:
v A DELETE or UPDATE statement with input parameters in the WHERE clause
v An UPDATE statement with input parameters in the SET clause
v An INSERT statement with input parameters in the VALUES clause

14-34 IBM Informix ESQL/C Programmer’s Manual

v An EXECUTE PROCEDURE statement with input parameters for its function
arguments

Tip: You cannot use an input parameter as the procedure name for a user-defined
procedure.

For example, the following UPDATE statement requires two parameters in its
WHERE clause:
EXEC SQL prepare upd_id from

’update orders set paid_date = NULL \
where order_date > ? and customer_num = ?’;

The USING clause lists the names of the host variables that hold the parameter
data. If the input parameter values are stored in hvar1 and hvar2, your program
can execute this UPDATE with the following statement:
EXEC SQL execute upd_id using :hvar1, :hvar2;

The following steps describe how to handle a parameterized UPDATE or DELETE
statement when the type and number of parameters are known at compile time:
1. Declare a host variable for each input parameter that is in the prepared

statement.
2. Assemble the character string for the statement, with a question mark (?)

placeholder for each input parameter. Once you have assembled the string,
prepare it. For more information about these steps, see “Assembling and
Preparing the SQL Statement” on page 14-2.

3. Assign a value to the host variable that is associated with each input parameter.
(The application might obtain these values interactively.)

4. Execute the UPDATE or DELETE statement with the EXECUTE...USING
statement. You must list the host variables that contain the input parameter
values in the USING clause.

5. Optionally, use the FREE statement to release the resources that were allocated
with the prepared statement.

Important: If you do not know the number and data types of the input parameters
in the prepared statement at compile time, do not use host variables
with the USING clause. Instead, use a dynamic-management structure
to specify input parameter values.

For more information about determining the number and types of input
parameters, see “Determining Unknown Input Parameters” on page 15-17.

For more information about the USING clause, see the entry for EXECUTE in the
IBM Informix Guide to SQL: Syntax.

Using an OPEN USING Statement
You can execute the following statements with the OPEN...USING statement:
v A parameterized SELECT statement (a SELECT statement that contains input

parameters in its WHERE clause) that returns one or more rows
v A parameterized EXECUTE FUNCTION statement (a cursor function that contains

input parameters for its arguments)

Tip: You cannot use an input parameter as the function name for a user-defined
function.

Chapter 14. Using Dynamic SQL 14-35

For example, the following SELECT statement is a parameterized SELECT that
requires two parameters in its WHERE clause:
EXEC SQL prepare slct_id from

’select from orders where customer_num = ? and order_date > ?’;
EXEC SQL declare slct_cursor cursor for slct_id;

If the cust_num and ord_date host variables contain the input parameter values,
the following OPEN statement executes the SELECT with these input parameters:
EXEC SQL open slct_id using :cust_num, :ord_date;

Use the USING host_var clause only when you know, at compile time, the type and
number of input parameters in the WHERE clause of the SELECT statement. For
more information about the USING clause, see the entry for OPEN in the IBM
Informix Guide to SQL: Syntax.

The demo2.ec sample program shows how to handle a dynamic SELECT statement
that has input parameters in its WHERE clause. The demo2.ec program uses a host
variable to hold the value of the input parameter for a SELECT statement. It also
uses host variables to hold the column values that are returned from the database.
1. #include <stdio.h>
2. EXEC SQL define FNAME_LEN 15;
3. EXEC SQL define LNAME_LEN 15;
4. main()
5. {
6. EXEC SQL BEGIN DECLARE SECTION;
7. char demoquery[80];
8. char queryvalue[2];
9. char fname[FNAME_LEN + 1];

10. char lname[LNAME_LEN + 1];
11. EXEC SQL END DECLARE SECTION;
12. printf("DEMO2 Sample ESQL program running.\n\n");
13. EXEC SQL connect to’stores7’;
14. /* The next three lines have hard-wired the query. This
15. * information could have been entered from the terminal
16. * and placed into the demoquery string
17. */
18. sprintf(demoquery, "%s %s",
19. "select fname, lname from customer",
20. "where lname > ? ");
21. EXEC SQL prepare demo2id from :demoquery;

Lines 9 and 10
These lines declare a host variable (fname) for the parameter in the WHERE clause
of the SELECT statement and declare host variables (fname and lname) for values
that the SELECT statement returns.

Lines 14 to 21
These lines assemble the character string for the statement (in demoquery) and
prepare it as the demo2id statement identifier. The question mark (?) indicates the
input parameter in the WHERE clause. For more information about these steps, see
“Assembling and Preparing the SQL Statement” on page 14-2.
22. EXEC SQL declare demo2cursor cursor for demo2id;
23. /* The next line has hard-wired the value for the parameter.
24. * This information could also have been entered from the

* terminal
25. * and placed into the queryvalue string.

14-36 IBM Informix ESQL/C Programmer’s Manual

26. */
27. sprintf(queryvalue, "C");
28. EXEC SQL open demo2cursor using :queryvalue;
29. for (;;)
30. {
31. EXEC SQL fetch demo2cursor into :fname, :lname;
32. if (strncmp(SQLSTATE, "00", 2) != 0)
33. break;
34. /* Print out the returned values */
35. printf("Column: fname\tValue: %s\n", fname);
36. printf("Column: lname\tValue: %s\n", lname);
37. printf("\n");
38. }

Line 22
This line declares the demo2cursor cursor for the prepared statement identifier,
demo2id. All nonsingleton SELECT statements must have a declared cursor.

Lines 23 to 27
The queryvalue host variable is the input parameter for the SELECT statement. It
contains the value "C". In an interactive application, this value probably would be
obtained from the user.

Line 28
The database server executes the SELECT statement when it opens the
demo2cursor cursor. Because the WHERE clause of the SELECT statement contains
input parameters (lines 20 and 21), the OPEN statement includes the USING clause
to specify the input parameter value in queryvalue.

Lines 29 to 38
This for loop executes for each row fetched from the database. The FETCH
statement (line 31) includes the INTO clause to specify the fname and lname host
variables for the column values. After this FETCH statement executes, the column
values are stored in these host variables.
39. if (strncmp(SQLSTATE, "02", 2) != 0)
40. printf("SQLSTATE after fetch is %s\n", SQLSTATE);
41. EXEC SQL close demo2cursor;
42. EXEC SQL free demo2cursor;
43. EXEC SQL free demo2id;
44. EXEC SQL disconnect current;
45. printf("\nProgram Over.\n");
46. }

Lines 39 and 40
Outside the for loop, the program tests the SQLSTATE variable again so it can
notify the user in the event of successful execution, a runtime error, or a warning
(class code not equal to "02").

Line 41
After all the rows are fetched, the CLOSE statement closes the demo2cursor cursor.

Lines 42 and 43
These FREE statements release the resources allocated for the prepared statement
(line 42) and the database cursor (line 43). Once a cursor or prepared statement has
been freed, it cannot be used again in the program.

Chapter 14. Using Dynamic SQL 14-37

SQL Statements That Are Not Known at Compile Time
An SQL statement that is not known at compile time is usually one that the user
enters in an interactive application. When you write an interactive database-query
application like DB-Access, you do not know in advance which databases, tables,
or columns the user wants to access, or what conditions the user might apply in a
WHERE clause. If an Informix ESQL/C application interprets and runs SQL
statements that the end user enters, this application does not know what type of
information is to be stored in host variables until after the user enters the
statement at runtime.

For example, if a program contains the following DELETE statement, you know
the number of values and the data types that you will receive, based on the
affected columns:
DELETE FROM customer WHERE city = ? AND lname > ?

You can define host variables whose data types are compatible with the data they
receive. However, suppose your program provides a prompt for the user such as:
Enter a DELETE statement for the stores7 database:

In this case, you do not know until runtime either the name of the table on which
the DELETE will take place or the columns that will be listed in the WHERE
clause. Therefore, you cannot declare the necessary host variables.

You can dynamically determine a prepared SQL statement as well as information
about the tables and columns it accesses with the DESCRIBE statement and the
dynamic-management structures. For more information, see Chapter 15,
“Determining SQL statements,” on page 15-1.

14-38 IBM Informix ESQL/C Programmer’s Manual

Chapter 15. Determining SQL statements

Using Dynamic-Management Structure . 15-1
A System-Descriptor Area . 15-2

Fixed-Length Portion . 15-3
An Item Descriptor . 15-3

An sqlda Structure . 15-5
Fixed-Length Portion . 15-6
An sqlvar_struct Structure . 15-6
Descriptive Information. 15-8

Using the DESCRIBE Statement . 15-8
Determining the Statement Type . 15-9
Determining the Data Type of a Column . 15-13

Informix-Specific SQL Data Types . 15-14
X/Open SQL Data Types . 15-14
Constants for ESQL/C Data Types. 15-14

Determining Input Parameters . 15-15
Checking for a WHERE Clause . 15-15

Determining Statement Information at Runtime . 15-16
Handling an Unknown Select List . 15-16
Handling an Unknown Column List . 15-17
Determining Unknown Input Parameters . 15-17
Determining Return Values Dynamically . 15-18
Handling Statements That Contain User-Defined Data Types 15-19

SQL Statements with Opaque-Type Columns . 15-19
SQL Statements with Distinct-Type Columns . 15-21

Using a Fetch Array . 15-22
Allocating Memory for the Fetch Arrays . 15-30
Obtaining Values from Fetch Arrays . 15-34
Freeing Memory for a Fetch Array. 15-35

If you do not know until runtime what SQL statement to execute, you can
dynamically determine that statement with the DESCRIBE statement and use a
dynamic-management structure to hold any values that the statement sends to or
receives from the database server.

These topics contain the following information about how to dynamically
determine an SQL statement:
v What dynamic-management structures exist and which SQL statements access

them.
v How to use the DESCRIBE statement with a dynamic-management structure.

Using Dynamic-Management Structure
If you do not know the number or data types of values sent to or received from
the database server, use a dynamic-management structure. A dynamic-management
structure allows you to pass a variable-length list of data to the database server, or
receive a variable-length list of data from it.

To execute dynamic SQL statements with unknown columns, you can use either of
the following dynamic-management structures in your Informix ESQL/C program:

© Copyright IBM Corp. 1996, 2010 15-1

v A system-descriptor area is a language-independent data structure that is the
X/Open standard. You allocate and manipulate it with the SQL statements
ALLOCATE DESCRIPTOR, GET DESCRIPTOR, SET DESCRIPTOR, and
DEALLOCATE DESCRIPTOR.

v The sqlda structure is a C-language data structure that you manipulate with the
same types of C-language statements that you would use to allocate and
manipulate other C structures (areas that have the struct data type).
Because this method uses a C-language structure within SQL statements, it is
language-dependent and does not conform to X/Open standards.

For a given dynamic SQL statement, the dynamic-management structure can hold
any of the following information:
v The number of unknown columns in the statement
v For each unknown value, the data type and length, space for the data, and

information about any associated indicator variable (its data type, length, and
data)

The Informix ESQL/C program can then use this information to determine a host
variable of appropriate length and type to hold the value.

A System-Descriptor Area
A system-descriptor area is an area of memory declared by Informix ESQL/C to hold
data either returned from or sent by a prepared statement. It is the
dynamic-management structure that conforms to the X/Open standards.

A system-descriptor area has two parts:
v A fixed-size portion is made up of the COUNT field. This field contains the

number of columns described in the system-descriptor area.
v A variable-length portion contains an item descriptor for each value in the

system-descriptor area. Each item descriptor is a fixed-size structure.

The following figure shows what a system-descriptor area looks like for two
values.

15-2 IBM Informix ESQL/C Programmer’s Manual

Fixed-Length Portion
The fixed-size portion of the system-descriptor area consists of the single field,
which Table 15-1 shows.

Table 15-1. Field in the Fixed-Size Portion of a System-Descriptor Area

Field Data Type Description

COUNT short The number of column values or occurrences in
the system-descriptor area. This is the number of
item descriptors, one for each column. The
DESCRIBE...USING SQL DESCRIPTOR statement
sets COUNT to the number of described columns.
You must use SET DESCRIPTOR to initialize the
field before you send column values to the
database server.

An Item Descriptor
Each item descriptor in the system-descriptor area holds information about a data
value that can be sent to or received from the database server. Each item descriptor
consists of the fields that Table 15-2 summarizes.

Table 15-2. Fields in Each Item Descriptor of the System-Descriptor Area

Field Data Type Description

DATA char * A pointer to the column data that is to be sent
to or received from the database server.

Figure 15-1. Schematic That Shows System-Descriptor Area for Two Values

Chapter 15. Determining SQL statements 15-3

Table 15-2. Fields in Each Item Descriptor of the System-Descriptor Area (continued)

Field Data Type Description

TYPE short An integer that identifies the data type of the
column that is being transferred. These values
are defined in the sqltypes.h and sqlxtype.h
header files (see 15-13).

LENGTH short The length, in bytes, of CHAR type data, the
encoded qualifiers of DATETIME or INTERVAL
data, or the size of a DECIMAL or MONEY
value.

NAME char * A pointer to the character array that contains
the column name or display label that is being
transferred.

INDICATOR short An indicator variable that can contain one of
two values:

0: Requires the DATA field to contain non-null
data.

-1: Inserts a NULL when no DATA field value
is specified.

SCALE short Contains the scale of the column that is in the
DATA field; defined only for the DECIMAL or
MONEY data type.

PRECISION short Contains the precision of the column that is in
the DATA field; defined only for the DECIMAL
or MONEY data type.

NULLABLE short Specifies whether the column can contain a null
value (after a DESCRIBE statement):

1: The column allows null values

0: The column does not allow null values.

Before an EXECUTE statement or a dynamic
OPEN statement is executed, it must be set to 1
to indicate that an indicator value is specified in
the INDICATOR field, and to 0 if it is not
specified. (When you execute a dynamic FETCH
statement, the NULLABLE field is ignored.)

IDATA char * User-defined indicator data or the name of a
host variable that contains indicator data for the
DATA field. The IDATA field is not a standard
X/Open field.

ITYPE short The data type for a user-defined indicator
variable. These values are defined in the
sqltypes.h and sqlxtype.h header files. (See
15-13.) The ITYPE field is not a standard
X/Open field.

ILENGTH short The length, in bytes, of the user-defined
indicator. The ILENGTH field is not a standard
X/Open field.

15-4 IBM Informix ESQL/C Programmer’s Manual

Table 15-2. Fields in Each Item Descriptor of the System-Descriptor Area (continued)

Field Data Type Description

EXTYPEID int4 The extended identifier for the user-defined
(opaque or distinct) or complex (collection or
row) data type. See the IBM Informix Guide to
SQL: Reference for a description of the
extended_id column of the sysxtdtypes system
catalog table.

EXTYPENAME char * The name of the user-defined (opaque or
distinct) or complex (collection or row) data
type. See the IBM Informix Guide to SQL:
Reference for a description of the name column
of the sysxtdtypes system catalog table.

EXTYPELENGTH short The length, in bytes, of the string in the
EXTYPENAME field.

EXTYPEOWNERNAME char * The name of the owner (for ANSI databases) of
the user-defined (opaque or distinct) or complex
(collection or row) data type. See the IBM
Informix Guide to SQL: Reference for a description
of the owner column of the sysxtdtypes system
catalog.

EXTYPEOWNERLENGTH short The length, in bytes, of the string in the
EXTYPEOWNERNAME field.

SOURCETYPE short The data-type constant (from sqltypes.h) of the
source data type for a distinct-type column. See
the IBM Informix Guide to SQL: Reference for a
description of the type column of the
sysxtdtypes system catalog.

SOURCEID int4 The extended identifier of the source data type
for a distinct-type column. See the IBM Informix
Guide to SQL: Reference for a description of the
source column of the sysxtdtypes system
catalog.

For information about how to use a system-descriptor area to dynamically execute
SQL statements, see Chapter 16, “Using a system-descriptor area,” on page 16-1.

An sqlda Structure
The sqlda structure is a C structure (defined in the sqlda.h header file) that holds
data returned from a prepared statement. Each sqlda structure has three parts:
v A fixed-size portion is made up of the sqld field, which contains the number of

columns described in the sqlda structure.
v A variable-length portion contains an sqlvar_struct structure for each column

value. Each sqlvar_struct structure is a fixed-size structure.
v Descriptive information is included about the sqlda structure itself. For more

information, see Table 15-6 on page 15-8.

The following figure shows what an sqlda structure looks like for two values.

Chapter 15. Determining SQL statements 15-5

Figure 15-2 shows the column data in the sqldata fields in a single data buffer.
This data can also be stored in separate buffers. For more information, see
“Allocating Memory for Column Data” on page 17-6.

Fixed-Length Portion
The following table describes the fixed-size portion of the sqlda structure, which
consists of a single field.

Table 15-3. Field in the Fixed-Size Portion of an sqlda Structure

Field Data Type Description

sqld short The number of column values or occurrences in the sqlda
structure. This is the number of sqlvar_struct structures, one
for each column. The DESCRIBE...INTO statement sets sqld
to the number of described columns. You must set sqld to
initialize the field before you send column values to the
database server.

An sqlvar_struct Structure
When all of its components are fully defined, the sqlda structure points to the
initial address of a sequence of sqlvar_struct structures that contain the necessary
information for each variable in the set. Each sqlvar_struct structure holds a data
value that can be sent to or received from the database server. Your program
accesses these sqlvar_struct structures through the sqlvar field of sqlda. Table 15-4
and Table 15-5 on page 15-7 summarize the variable-sized structure of sqlda.

Figure 15-2. Schematic That Shows sqlda Structure for Two Values

15-6 IBM Informix ESQL/C Programmer’s Manual

Table 15-4. Field to Access the Variable-Sized Portion of an sqlda Structure

Field Data Type Description

sqlvar struct
sqlvar_struct *

A pointer to the variable-sized portion of an sqlda structure.
There is one sqlvar_struct for each column value returned
from or sent to the database server. The sqlvar field points to
the first of the sqlvar_struct structures.

Table 15-5 shows the fields in the sqlvar_struct structure.

Table 15-5. Fields in the sqlvar_struct Structure

Field Data Type Description

sqltype short An integer that identifies the data type of the column
that the database server sends or receives. These values
are defined in the sqltypes.h andsqlxtype.h header files.
(See 15-13.)

sqllen short The length, in bytes, of CHAR type data, or the encoded
qualifier of a DATETIME or INTERVAL value.

sqldata char * A pointer to the column data that the database server
sends or receives. (See 17-6.)

sqlind short * A pointer to an indicator variable for the column that
can contain one of two values:

0: The sqldata field contains non-null data.

-1: The sqldata field contains null data.

sqlname char * A pointer to a character array that contains the column
name or display label that the database server sends or
receives.

sqlformat char * Reserved for future use.

sqlitype short An integer that specifies the data type of a user-defined
indicator variable. These values are defined in the
sqltypes.h and sqlxtype.h header files. (See 15-13.)

sqlilen int4 The length, in bytes, of a user-defined indicator
variable.

sqlidata char * A pointer to the data of the user-defined indicator
variable.

sqlxid int4 The extended identifier for the user-defined (opaque or
distinct) or complex (collection or row) data type. See
the IBM Informix Guide to SQL: Reference for a
description of the extended_id column of the
sysxtdtypes system catalog table.

sqltypename char * The name of the user-defined (opaque or distinct) or
complex (collection or row) data type. See the IBM
Informix Guide to SQL: Reference for a description of the
name column of the sysxtdtypes system catalog table.

sqltypelen short The length, in bytes, of the string in the sqltypename
field.

sqlownername char * The name of the owner (for ANSI databases) of the
user-defined (opaque or distinct) or complex (collection
or row) data type. See the IBM Informix Guide to SQL:
Reference for a description of the owner column of the
sysxtdtypes system catalog.

Chapter 15. Determining SQL statements 15-7

Table 15-5. Fields in the sqlvar_struct Structure (continued)

Field Data Type Description

sqlownerlen short The length, in bytes, of the string in the sqlownername
field.

sqlsourcetype short The data-type constant (from sqltypes.h) of the source
data type for a distinct-type column. See the IBM
Informix Guide to SQL: Reference for a description of the
type column of the sysxtdtypes system catalog.

sqlsourceid int4 The extended identifier of the source data type for a
distinct-type column. See the IBM Informix Guide to SQL:
Reference for a description of the source column of the
sysxtdtypes system catalog.

sqlflags int4 This field is usually for internal use. However, if the
sqlda structure has been initialized by a DESCRIBE
statement you can determine if the column accepts nulls
by using the ISCOLUMNULLABLE() macro on this
field. If it returns 1 then the column accepts nulls.

The ISCOLUMNULLABLE() macro is defined in
sqltypes.h.

Descriptive Information
Table 15-6 summarizes the sqlda fields that describe the sqlda structure itself.

Table 15-6. Descriptive Fields in the sqlda Structure

Field Data Type Description

desc_name char[19] The name of the descriptor; maximum of 18 characters

desc_occ short The size of the sqlda structure

desc_next struct sqlda * A pointer to the next sqlda structure

For information about how to use an sqlda structure to dynamically execute SQL
statements, see Chapter 17, “Using an sqlda structure,” on page 17-1.

Using the DESCRIBE Statement
This section provides a brief introduction to the DESCRIBE statement. For more
information about the DESCRIBE statement, see its entry in the IBM Informix Guide
to SQL: Syntax.

The DESCRIBE statement obtains information about database columns or
expressions in a prepared statement. It can put this information in one of the
following dynamic-management structures:
v DESCRIBE...USING SQL DESCRIPTOR stores information in a system-descriptor

area.
Each item descriptor describes a column. The COUNT field is set to the number
of item descriptors (the number of columns in the column list). You can access
this information with the GET DESCRIPTOR statement. For more information
about the fields of a system-descriptor area, see Figures 15-1 through 15-2.

v DESCRIBE...INTO sqlda_ptr stores information in an sqlda structure whose
address is stored in sqlda_ptr.
Each sqlvar_struct structure describes a column. The sqld field is set to the
number of sqlvar_struct structures (the number of columns in the column list).

15-8 IBM Informix ESQL/C Programmer’s Manual

You can access this information through the fields in the sqlvar_struct structures.
For more information about the fields of an sqlda structure, see Figures 15-2
through 15-6.

Important: If the Deferred-PREPARE feature is enabled, you cannot use the
DESCRIBE statement before an OPEN statement executes.

For more information, see “Deferring Execution of the PREPARE Statement” on
page 14-17.

If the DESCRIBE is successful, it obtains the following information about a
prepared statement:
v The SQLCODE value indicates the type of statement that was prepared. For

more information, see “Determining the Statement Type” on page 15-9.
v A dynamic-management structure contains information about the number and

data types of the columns in a column list of a SELECT, INSERT, or EXECUTE
FUNCTION statement.
For information about the column descriptions returned by DESCRIBE, see
Handling an Unknown Select List and Handling an Unknown Column List on
15-16 and 15-17. For information about the data type values returned by
DESCRIBE, see “Determining the Data Type of a Column” on page 15-13.

v When the DESCRIBE statement describes a DELETE or UPDATE statement, it
can indicate whether the statement includes a WHERE clause. For more
information, see “Checking for a WHERE Clause” on page 15-15.

Determining the Statement Type
The sqlstype.h file contains the defined integer constants for the SQL statements
that can be prepared. The DESCRIBE statement returns one of these values in the
SQLCODE (sqlca.sqlcode) variable to identify a prepared statement. That is,
SQLCODE indicates whether the statement was an INSERT, SELECT, CREATE
TABLE, or any other SQL statement.

Within an Informix ESQL/C program that uses dynamic SQL statements, you can
use the constants that Table 15-7 shows to determine which SQL statement was
prepared.

Table 15-7. The Constants for SQL Statement Types That the sqlstype.h File Defines

SQL Statement Defined sqlstype.h Constant Value

SELECT (no INTO TEMP clause) None 0

DATABASE SQ_DATABASE 1

Internal use only 2

SELECT INTO TEMP SQ_SELINTO 3

UPDATE...WHERE SQ_UPDATE 4

DELETE...WHERE SQ_DELETE 5

INSERT SQ_INSERT 6

UPDATE WHERE CURRENT OF SQ_UPDCURR 7

DELETE WHERE CURRENT OF SQ_DELCURR 8

Internal use only 9

LOCK TABLE SQ_LOCK 10

UNLOCK TABLE SQ_UNLOCK 11

Chapter 15. Determining SQL statements 15-9

Table 15-7. The Constants for SQL Statement Types That the sqlstype.h File
Defines (continued)

SQL Statement Defined sqlstype.h Constant Value

CREATE DATABASE SQ_CREADB 12

DROP DATABASE SQ_DROPDB 13

CREATE TABLE SQ_CRETAB 14

DROP TABLE SQ_DRPTAB 15

CREATE INDEX SQ_CREIDX 16

DROP INDEX SQ_DRPIDX 17

GRANT SQ_GRANT 18

REVOKE SQ_REVOKE 19

RENAME TABLE SQ_RENTAB 20

RENAME COLUMN SQ_RENCOL 21

CREATE AUDIT SQ_CREAUD 22

Internal use only 23–28

ALTER TABLE SQ_ALTER 29

UPDATE STATISTICS SQ_STATS 30

CLOSE DATABASE SQ_CLSDB 31

DELETE (no WHERE clause) SQ_DELALL 32

UPDATE (no WHERE clause) SQ_UPDALL 33

BEGIN WORK SQ_BEGWORK 34

COMMIT WORK SQ_COMMIT 35

ROLLBACK WORK SQ_ROLLBACK 36

Internal use only 37–39

CREATE VIEW SQ_CREVIEW 40

DROP VIEW SQ_DROPVIEW 41

Internal use only 42

CREATE SYNONYM SQ_CREASYN 43

DROP SYNONYM SQ_DROPSYN 44

CREATE TEMP TABLE SQ_CTEMP 45

SET LOCK MODE SQ_WAITFOR 46

ALTER INDEX SQ_ALTIDX 47

SET ISOLATION, SET TRANSACTION SQ_ISOLATE 48

SET LOG SQ_SETLOG 49

SET EXPLAIN SQ_EXPLAIN 50

CREATE SCHEMA SQ_SCHEMA 51

SET OPTIMIZATION SQ_OPTIM 52

CREATE PROCEDURE SQ_CREPROC 53

DROP PROCEDURE SQ_DRPPROC 54

SET CONSTRAINTS SQ_CONSTRMODE 55

EXECUTE PROCEDURE, EXECUTE
FUNCTION

SQ_EXECPROC 56

15-10 IBM Informix ESQL/C Programmer’s Manual

Table 15-7. The Constants for SQL Statement Types That the sqlstype.h File
Defines (continued)

SQL Statement Defined sqlstype.h Constant Value

SET DEBUG FILE TO SQ_DBGFILE 57

CREATE OPTICAL CLUSTER SQ_CREOPCL 58

ALTER OPTICAL CLUSTER SQ_ALTOPCL 59

DROP OPTICAL CLUSTER SQ_DRPOPCL 60

RESERVE (Optical) SQ_OPRESERVE 61

RELEASE (Optical) SQ_OPRELEASE 62

SET MOUNTING TIMEOUT SQ_OPTIMEOUT 63

UPDATE STATS...for procedure SQ_PROCSTATS 64

Defined for Kanji version only 65 and 66

Reserved 67–69

CREATE TRIGGER SQ_CRETRIG 70

DROP TRIGGER SQ_DRPTRIG 71

SQ_UNKNOWN 72

SET DATASKIP SQ_SETDATASKIP 73

SET PDQPRIORITY SQ_PDQPRIORITY 74

ALTER FRAGMENT SQ_ALTFRAG 75

SET SQ_SETOBJMODE 76

START VIOLATIONS TABLE SQ_START 77

STOP VIOLATIONS TABLE SQ_STOP 78

Internal use only 79

SET SESSION AUTHORIZATION SQ_SETDAC 80

Internal use only 81-82

CREATE ROLE SQ_CREATEROLE 83

DROP ROLE SQ_DROPROLE 84

SET ROLE SQ_SETROLE 85

Internal use only 86–89

CREATE ROW TYPE SQ_CREANRT 90

DROP ROW TYPE SQ_DROPNRT 91

CREATE DISTINCT TYPE SQ_CREADT 92

CREATE CAST SQ_CREACT 93

DROP CAST SQ_DROPCT 94

CREATE OPAQUE TYPE SQ_CREABT 95

DROP TYPE SQ_DROPTYPE 96

Reserved 97

CREATE ACCESS_METHOD SQ_CREATEAM 98

DROP ACCESS_METHOD SQ_DROPAM 99

Reserved 100

CREATE OPCLASS SQ_CREATEOPC 101

DROP OPCLASS SQ_DROPOPC 102

Chapter 15. Determining SQL statements 15-11

Table 15-7. The Constants for SQL Statement Types That the sqlstype.h File
Defines (continued)

SQL Statement Defined sqlstype.h Constant Value

CREATE CONSTRUCTOR SQ_CREACST 103

SET (MEMORY/NON)_RESIDENT SQ_SETRES 104

CREATE AGGREGATE SQ_CREAGG 105

DROP AGGREGATE SQ_DRPAGG 106

pload log file command SQ_PLOADFILE 107

onutil check index command SQ_CHKIDX 108

set schedule SQ_SCHEDULE 109

"set environment..." SQ_SETENV 110

Reserved 111

Reserved 112

Reserved 113

Reserved 114

SET STMT_CACHE SQ_STMT_CACHE 115

RENAME INDEX SQ_RENIDX 116

CREATE SEQUENCE SQ_CRESEQ 124

DROP SEQUENCE SQ_DRPSEQ 125

ALTER SEQUENCE SQ_ALTERSEQ 126

RENAME SEQUENCE SQ_RENSEQ 127

SET COLLATION SQ_COLLATION 129

SET NO COLLATION SQ_NOCOLLATION 130

SET ROLE DEFAULT SQ_SETDEFROLE 131

SET ENCRYPTION SQ_ENCRYPTION 132

save external directives SQ_EXTD 133

CREATE XAdatasource TYPE SQ_CRXASRCTYPE 134

CREATE XAdatasource SQ_CRXADTSRC 135

DROP XAdatasource TYPE SQ_DROPXATYPE 136

DROP XAdatasource SQ_DROPXADTSRC 137

Truncate table SQ_TRUNCATE 138

CREATE SECURITY LABEL
COMPONENT

SQ_CRESECCMP 139

ALTER SECURITY LABEL COMPONENT SQ_ALTSECCMP 140

DROP SECURITY LABEL COMPONENT SQ_DRPSECCMP 141

RENAME SECURITY LABEL
COMPONENT

SQ_RENSECCMP 142

CREATE SECURITY POLICY SQ_CRESECPOL 143

DROP SECURITY POLICY SQ_DRPSECPOL 144

RENAME SECURITY POLICY SQ_RENSECPOL 145

CREATE SECURITY LABEL SQ_CRESECLAB 146

DROP SECURITY LABEL SQ_DRPSECLAB 147

RENAME SECURITY LABEL SQ_RENSECLAB 148

15-12 IBM Informix ESQL/C Programmer’s Manual

Table 15-7. The Constants for SQL Statement Types That the sqlstype.h File
Defines (continued)

SQL Statement Defined sqlstype.h Constant Value

GRANT DBSECADM SQ_GRTSECADM 149

REVOKE DBSECADM SQ_RVKSECADM 150

GRANT EXEMPTIONS SQ_GRTSECEXMP 151

REVOKE EXEMPTIONS SQ_RVKSECEXMP 152

GRANT SECURITY LABEL SQ_GRTSECLAB 153

REVOKE SECURITY LABEL SQ_RVKSECLAB 154

GRANT SETSESSIONAUTH SQ_GRTSESAUTH 155

REVOKE SETSESSIONAUTH SQ_RVKSESAUTH 156

Tip: Check the sqlstype.h header file on your system for the most updated list of
SQL statement-type values.

To determine the type of SQL statement that was prepared dynamically, your
Informix ESQL/C program must take the following actions:
v Use the include directive to include the sqlstype.h header file.
v Compare the value in the SQLCODE variable (sqlca.sqlcode) against the

constants defined in the sqlstype.h file.

The sample program that starts in 16-15 uses the SQ_EXECPROC constant to verify
that an EXECUTE FUNCTION statement has been prepared.

Determining the Data Type of a Column
The DESCRIBE statement identifies the data type of a column with an integer
value. After DESCRIBE analyzes a prepared statement, it stores this value in a
dynamic-management structure, as follows:
v In a system-descriptor area, in the TYPE field of the item descriptor for each

column described
v In an sqlda structure, in the sqltype field of the sqlvar_struct structure for each

column described

IBM Informix ESQL/C provides defined constants for these data types in the
following two header files:
v The sqltypes.h header file contains defined constants for the Informix-specific

SQL data types. These values are the default that the DESCRIBE statement uses.
v The sqlxtype.h header file contains defined constants for the X/Open SQL data

types. DESCRIBE uses these values when you compile your Informix ESQL/C
source file with the -xopen option of the preprocessor.

Use the SQL data type constants from sqltypes.h or sqlxtype.h to analyze the
information returned by a DESCRIBE statement or to set the data type of a column
before execution.

Tip: When you set the data type of a column in a system-descriptor area, you
assign a data-type constant to the TYPE field (and optionally the ITYPE field)
of an item descriptor with the SET DESCRIPTOR statement. For more
information, see “Assigning and Obtaining Values from a System-Descriptor
Area” on page 16-5. When you set the data type of a column in an sqlda

Chapter 15. Determining SQL statements 15-13

structure, you assign a data-type constant to the sqltype field (and optionally
the sqlitype field) of an sqlvar structure. For more information, see
“Assigning and Obtaining Values from an sqlda Structure” on page 17-8.

Informix-Specific SQL Data Types
The Informix-specific SQL data types are available to a column in an Informix
database. The IBM Informix Guide to SQL: Reference describes these data types. If
you do not include the -xopen option when you compile your Informix ESQL/C
program, the DESCRIBE statement uses these data types to specify the data type of
a column or the return value of a user-defined function. Constants for these
Informix SQL data types are defined in the Informix ESQL/C sqltypes.h header
file.

Figure 15-3 shows some of the SQL data-type entries in sqltypes.h.

For a complete list of constants for SQL data types, see Table 3-3 on page 3-5. The
integer values in Figure 15-3 are language-independent constants; they are the
same in all IBM Informix embedded products.

X/Open SQL Data Types
The X/Open standards support only a subset of the Informix-specific SQL data
types. To conform to the X/Open standards, you must use the X/Open SQL
data-type constants. The DESCRIBE statement uses these constants to specify the
data type of a column (or a return value) when you compile your Informix
ESQL/C program with the -xopen option.

The X/Open data type constants are defined in the sqlxtype.h header file. For
more information, see “X/Open Data Type Constants” on page 3-6.

Constants for ESQL/C Data Types
The sqltypes.h header file also contains defined constants for the Informix
ESQL/C data types. The Informix ESQL/C data types are assigned to host
variables in an Informix ESQL/C program. If your program initializes a column
description, it usually obtains the column value from an Informix ESQL/C host
variable. To set the column data type for this value, the program must use the
Informix ESQL/C data types.

Figure 15-4 shows only some of the Informix ESQL/C data type entries in the
sqltypes.h header file. For a complete list of constants for Informix ESQL/C data
types, see Table 3-3 on page 3-5.

#define SQLCHAR 0
#define SQLSMINT 1
#define SQLINT 2
#define SQLFLOAT 3
#define SQLSMFLOAT 4
#define SQLDECIMAL 5
#define SQLSERIAL 6
#define SQLDATE 7
#define SQLMONEY 8...

Figure 15-3. Some Informix SQL Data-Type Constants

15-14 IBM Informix ESQL/C Programmer’s Manual

Within an Informix ESQL/C program that uses dynamic SQL statements, you can
use the constants that are shown in Figure 15-4 to set the data types of the
associated host variables. Use the Informix ESQL/C data-type constants to set the
data types of host variables used as input parameters to a dynamically defined
SQL statement or as storage for column values that are returned by the database
server. The sample program in 16-19 stores a TEXT value into a database table.

Determining Input Parameters
You can use the DESCRIBE and DESCRIBE INPUT to return input parameter
information for a prepared statement before it is executed.

The DESCRIBE INPUT statement returns the number, data types, size of the
values, and the name of the column or expression that the query returns. The
DESCRIBE INPUT statement can return parameter information for the following
statements:
v INSERT using WHERE clause
v UPDATE using WHERE clause
v SELECT with IN, BETWEEN, HAVING, and ON clauses.
v SELECT subqueries
v SELECT INTO TEMP
v DELECT
v EXECUTE

For more information about using the DESCRIBE and DESCRIBE INPUT
statements, see the IBM Informix Guide to SQL: Syntax.

Checking for a WHERE Clause
When DESCRIBE analyzes a prepared DELETE or UPDATE statement, it indicates
if the statement includes a WHERE clause, as follows:
v It sets the sqlca.sqlwarn.sqlwarn0 and sqlca.sqlwarn.sqlwarn4 fields to W if the

prepared statement was an UPDATE or DELETE without a WHERE clause.
v It sets the SQLSTATE variable to an Informix-specific warning value of "01I07".

Your program can check for either of these conditions to determine the type of
DELETE or UPDATE statement that was executed. If the DELETE or UPDATE
does not contain a WHERE clause, the database server deletes or updates all rows
in the table. For more information about how to execute DELETE and UPDATE
statements dynamically with a system-descriptor area, see 16-28; for information
about how to use an sqlda structure, see 17-27.

#define CCHARTYPE 100
#define CSHORTTYPE 101
#define CINTTYPE 102
#define CLONGTYPE 103
#define CFLOATTYPE 104
#define CDOUBLETYPE 105...

Figure 15-4. Some ESQL/C Data-Type Constants from the sqltypes.h Header File

Chapter 15. Determining SQL statements 15-15

Determining Statement Information at Runtime
Consider a dynamic-management structure when you execute an SQL statement
under the following conditions:
v Something is not known about the structure of an SQL statement:

– The type of statement to execute is unknown.
– The table name is unknown and therefore the columns to be accessed are

unknown.
– The WHERE clause is missing.

v Something is not known about the number or type of values that passes between
the Informix ESQL/C program and the database server:
– The number and data types of columns in the select list of a SELECT or in a

column list of an INSERT
– The number and data types of input parameters in the statement are

unknown
– The number and data types of return values of a user-defined function

(executed with the EXECUTE FUNCTION statement) are unknown

The following sections briefly outline how to handle each of the categories of
unknown number and data types of values.

Handling an Unknown Select List
For a SELECT statement, the columns in the select list identify the column values
that are received from the database server. In the SELECT statement described and
illustrated in the demo1.ec example program (see 1-39), the values returned from
the query are placed into the host variables that are listed in an INTO host_var
clause of the SELECT statement.

However, when your program creates a SELECT statement at runtime, you cannot
use an INTO clause because you do not know at compile time what host variables
are needed. If the type and number of the values that your Informix ESQL/C
program receives are not known at compile time, your program must perform the
following tasks:
1. Declare a dynamic-management structure to serve as storage for the select-list

column definitions. This structure can be either a system-descriptor area or an
sqlda structure.
Use of the system-descriptor area conforms to X/Open standards.

2. Use the DESCRIBE statement to examine the select list of the prepared SELECT
statement and describes the columns.

3. Specify the dynamic-management structure as the location of the data fetched
from the database. From the dynamic-management structure, the program can
move the column values into host variables.

Important: Use a dynamic-management structure only if you do not know the
number and data types of the select-list columns at compile time.

For information about how to execute a SELECT if you do know the number and
data types of select-list columns, see “Executing SELECT Statements” on page
14-26. For information about how to identify columns in the select list of a SELECT
statement with a system-descriptor area, see 16-9. For more information about how
to use an sqlda structure, see 17-11.

15-16 IBM Informix ESQL/C Programmer’s Manual

Handling an Unknown Column List
For an INSERT statement, the values in the VALUES clause identify the column
values to be inserted into the new row. If the data types and number of the values
that the IBM Informix ESQL/C program inserts are not known at compile time,
you cannot simply use host variables to hold the data being inserted. Instead, your
program must perform the following tasks:
1. Define a dynamic-management structure to serve as storage for the unknown

column definitions. This structure can be either a system-descriptor area or an
sqlda structure.
Use of the system-descriptor area conforms to X/Open standards.

2. Use the DESCRIBE statement to examine the column list of the prepared
INSERT statement and describe the columns.

3. Specify the dynamic-management structure as the location of the data to be
inserted when the INSERT statement executes.

Important: Use a dynamic-management structure only if you do not know the
number and data types of the column-list columns at compile time. For
information about how to execute an INSERT if you do know the
number and data types of column-list columns, see “Executing
Non-SELECT Statements” on page 14-25.

For information about how to identify columns in the VALUES column list of an
INSERT statement with a system-descriptor area, see 16-18. To use an sqlda
structure, see 17-18.

Determining Unknown Input Parameters
If you know the data types and number of input parameters of an SQL statement,
use the USING host_var clause (see 14-33). However, if you do not know the data
types and number of these input parameters at compile time, you cannot use host
variables to provide the parameter values; you do not have enough information
about the parameters to declare the host variables.

Neither can you use the DESCRIBE statement to define the unknown parameters
because DESCRIBE does not examine:
v A WHERE clause (for a SELECT, UPDATE, or DELETE statement
v The arguments of a user-defined routine (for an EXECUTE FUNCTION or

EXECUTE PROCEDURE statement)

Your Informix ESQL/C program must follow these steps to define the input
parameters in any of the preceding statements:
1. Determine the number and data types of the input parameters. Unless you

write a general-purpose, interactive interpreter, you usually have this
information. If you do not have it, you must write C code that analyzes the
statement string and obtains the following information:
v The number of input parameters [question marks (?)] that appear in the

WHERE clause of the statement string or as arguments of a user-defined
routine

v The data type of each input parameter based on the column (for WHERE
clauses) or parameter (for arguments) to which it corresponds

2. Store the definitions and values of the input parameters in a
dynamic-management structure. This structure can be either a
system-descriptor area or an sqlda structure.

Chapter 15. Determining SQL statements 15-17

Use of the system-descriptor area conforms to X/Open standards.
3. Specify the dynamic-management structure as the location of the input

parameter values when the statement executes.

Important: Use a dynamic-management structure only if you do not know the
number and data types of the input parameters at compile time. For
information about how to execute a parameterized SQL statement if
you do know the number and data types of column-list columns, see
“Execute statements with input parameters” on page 14-33.

For information about how to handle input parameters in the WHERE clause of a
dynamic SELECT statement with a system-descriptor area, see “Handling a
Parameterized SELECT Statement” on page 16-22; to use an sqlda structure, see
“Handling a Parameterized SELECT Statement” on page 17-20. For information
about how to handle input parameters as arguments of a user-defined function
with a system-descriptor area, see “Handling a parameterized user-defined
routine” on page 16-27; to use an sqlda structure, see “Handling a Parameterized
User-Defined Routine” on page 17-26. For information about how to handle input
parameters in the WHERE clause of a dynamic UPDATE or DELETE statement
with a system-descriptor area, see “Handling a Parameterized UPDATE or
DELETE Statement” on page 16-28; to use an sqlda structure, see “Handling a
Parameterized UPDATE or DELETE Statement” on page 17-27.

Determining Return Values Dynamically
For an EXECUTE FUNCTION statement, the values in the INTO clause identify
where to store the return values of a user-defined function. If the data types and
number of the function return values are not known at compile time, you cannot
use host variables in the INTO clause of EXECUTE FUNCTION to hold the values.
Instead, your program must perform the following tasks:
1. Define a dynamic-management structure to serve as storage for the definitions

of the value(s) that the user-defined function returns.
You can use either a system-descriptor area or an sqlda structure to hold the
return value(s).
Use of the system-descriptor area conforms to X/Open standards.

2. Use the DESCRIBE statement to examine the prepared EXECUTE FUNCTION
statement and describe the return value(s).

3. Specify the dynamic-management structure as the location of the data returned
by the user-defined function.
From the dynamic-management structure, the program can move the return
values into host variables.

Important: Use a dynamic-management structure only if you do not know at
compile time the number and data types of the return values that the
user-defined function returns. If you know this information at compile
time, see “Executing User-Defined Routines in IBM Informix” on page
14-30 for more information.

For information about how to use a system-descriptor area to hold function return
values, see “Handling Unknown Return Values” on page 16-13. To use an sqlda
structure to hold return values, see “Handling Unknown Return Values” on page
17-16.

15-18 IBM Informix ESQL/C Programmer’s Manual

Handling Statements That Contain User-Defined Data Types
This section provides information about how to perform dynamic SQL on
statements that contain columns with the following user-defined data types:
v Opaque data types: an encapsulated data type that the user can define
v Distinct data types: a data type that has the same internal storage representation

as its source type, but has a different name

SQL Statements with Opaque-Type Columns
For dynamic execution of opaque-type columns, keep the following items in mind:
v You must ensure that the type and length fields of the dynamic-management

structure (system-descriptor area or sqlda structure) match the data type of the
data you insert into an opaque-type column.

v Informix ESQL/C truncates opaque-type data at 32 kilobytes if the host variable
is not large enough to hold the data.

Inserting Opaque-Type Data: When the DESCRIBE statement describes a
prepared INSERT statement, it sets the type and length fields of a
dynamic-management structure to the data type of the column. Table 15-8 shows
the type and length fields for the dynamic-management structures.

Table 15-8. Type and Length fields of Dynamic-Management Structures

Dynamic-Management
Structure Type Field Length Field

system-descriptor area TYPE field of an item
descriptor

LENGTH field of an item
descriptor

sqlda structure sqltype field of an
sqlvar_struct structure

sqllen field of an sqlvar_struct
structure

If the INSERT statement contains a column whose data type is an opaque data
type, the DESCRIBE statement identifies this column with one of the following
type-field values:
v The SQLUDTFIXED constant for fixed-length opaque types
v The SQLUDTVAR constant for varying-length opaque types

These data-type constants represent an opaque type in its internal format.

When you put opaque-type data into a dynamic-management structure, you must
ensure that the type field and length field are compatible with the data type of the
data that you provide for the INSERT, as follows:
v If you provide the opaque-type data in internal format, then the type and length

fields that DESCRIBE sets are correct.
v If you provide the data in external format (or any format other than the internal

format), you must change the type and length fields that DESCRIBE has set to
be compatible with the data type of the data.

The input and output support functions for the opaque type do not reside on the
client computer. Therefore, the client application cannot call them to convert the
opaque-type data in the dynamic-management structure from its external to its
internal format. To provide the opaque-type data in its external representation, set
the type-field value to a character data type. When the database server receives the
character data (the external representation of the opaque type), it calls the input
support function to convert the external representation of the opaque type to its

Chapter 15. Determining SQL statements 15-19

internal representation. If the data is some other type and valid support or casting
functions exist, the database server can call these functions instead to convert the
value.

For example, suppose you use a system-descriptor area to hold the insert values
and you want to send the opaque-type data to the database server in its external
representation. In the following code fragment, the SET DESCRIPTOR statement
resets the TYPE field to SQLCHAR, so that the TYPE field matches the data type
of the host variable (char) that it assigns to the DATA field:
EXEC SQL BEGIN DECLARE SECTION;

char extrn_value[100];
int extrn_lngth;
int extrn_type;

EXEC SQL END DECLARE SECTION;...

EXEC SQL allocate descriptor ’desc1’ with max 100;
EXEC SQL prepare ins_stmt from

’insert into tab1 (opaque_col) values(?)’;
EXEC SQL describe ins_stmt using sql descriptor ’desc1’;

/* At this point the TYPE field of the item descriptor is
* SQLUDTFIXED
*/

stcopy("(1, 2, 3, 4)", extrn_value);
extrn_lngth = stleng(extrn_value);
dtype = SQLCHAR;

/* This SET DESCRIPTOR statement assigns the external
* representation of the data to the item descriptor and
* resets the TYPE field to SQLCHAR.
*/
EXEC SQL set descriptor ’desc1’ value 1

data = :extrn_value, type = :extrn_type,
length = :extrn_lngth;

EXEC SQL execute ins_stmt using sql descriptor 'desc1';

Truncation of Opaque-Type Data: If you specify a host variable that is not large
enough to hold the full return value from the server, Informix ESQL/C normally
truncates the data to fit the host variable and puts the actual length in an indicator
variable. This indicator variable can be one that you explicitly provide or, for
dynamic SQL, one of the following fields of a dynamic-management structure.

Dynamic-Management Structure
Indicator Field

system-descriptor area INDICATOR field of an item descriptor

sqlda structure sqlind field of an sqlvar_struct structure

However, these indicator fields are defined as a short integer and therefore can
only store sizes up to 32 kilobytes.

This size limitation of the indicator field affects how Informix ESQL/C handles
truncation of opaque-type data that is larger than 32 kilobytes. When Informix
ESQL/C receives opaque-type data that is larger than 32 kilobytes and the host
variable is not large enough to hold the opaque-type data, Informix ESQL/C
truncates the data to 32 kilobytes. Informix ESQL/C performs this truncation at 32
kilobytes even if you program a host variable that is larger than 32 kilobytes (but
still not large enough for the data).

15-20 IBM Informix ESQL/C Programmer’s Manual

SQL Statements with Distinct-Type Columns
For dynamic execution of distinct-type columns, the dynamic-management
structures have been modified to hold the following information about a distinct
type:
v The data-type constant (from sqltypes.h) for the source type of the distinct-type

column
v The extended identifier for the source type of the distinct-type column

These values are in the following fields of a dynamic-management structure.

Dynamic-Management
Structure Source-Type Field Extended-Identifier Field

system-descriptor area SOURCETYPE field of an item
descriptor

SOURCEID field of an item
descriptor

sqlda structure sqlsourcetype field of an
sqlvar_struct structure

sqlsourceid field of an
sqlvar_struct structure

When the DESCRIBE statement describes a prepared statement, it stores
information about columns of the statement in a dynamic-management structure.
(For more information, see “Using the DESCRIBE Statement” on page 15-8.) There
is no special constant in the sqltypes.h file to indicate a distinct data type.
Therefore, the type field of the dynamic-management structure cannot directly
indicate a distinct type. (Table 15-8 on page 15-19 shows the type fields of the
dynamic-management structures.)

Instead, the type field in the dynamic-management structure has a special value to
indicate that a distinct bit is set for a distinct-type column. The type field indicates
the source type of the distinct data combined with the distinct bit. The sqltypes.h
header file provides the following data-type constants and macros to identify the
distinct bit for a distinct column.

Source Type Distinct-Bit Constant Distinct-Bit Macro

LVARCHAR SQLDLVARCHAR ISDISTINCTLVARCHAR(type_id)
BOOLEAN SQLDBOOLEAN ISDISTINCTBOOLEAN(type_id)
Any other data type SQLDISTINCT ISDISTINCTTYPE(type_id)

Use the following algorithm to determine if a column is a distinct type:
if (one of the distinct bits is set)

{
/* Have a distinct type, now find the source type */
if (ISDISTINCTLVARCHAR(sqltype))

{
/* Is a distinct of LVARCHAR:
* type field = SQLUDTVAR + SQLDLVARCHAR
* source-type field = 0
* source-id field = extended identifier of lvarchar
*/

}
else if (ISDISTINCTBOOLEAN(sqltype))

{
/* Is a distinct of BOOLEAN
* type field = SQLUDTFIXED + SQLDBOOLEAN
* source-type field = 0
* source-id field = extended id of boolean
*/

Chapter 15. Determining SQL statements 15-21

}
else

{
/* SQLDISTINCT is set */
if (ISUDTTYPE(sqltype))

{
/* Source type is either a built-in simple type or an
* opaque data type
*/

if (source-id field > 0)
/* Is a distinct of an opaque type.
* Pick up the xtended identifier of the source type
* from the source-id field
*/

else
/* Is a distinct of a built-in simple type.
* Pick up the type id of the source type from the
* source-type field
*/

}
else

{
/* Source type is a non-simple type, a complex type.
* Both the source-type and source-id fields should be 0,
* the source type is embedded in the type field:
* type = source type + SQLDISTINCT
*/

}
}

}

The following table summarizes the pseudo-code of the preceding algorithm.

Source Type Type Field Source-Type Field
Extended-Identifier
Field

Built-in data type SQLUDTVAR + SQLDISTINCT Data-type constant of
built-in data type

0

LVARCHAR SQLUDTVAR + SQLDLVARCHAR 0 Extended identifier of
LVARCHAR

BOOLEAN SQLUDTFIXED + SQLDBOOLEAN 0 Extended identifier of
BOOLEAN

All other data types source type + SQLDISTINCT 0 0

Using a Fetch Array
A fetch array enables you to increase the number of rows that a single FETCH
statement returns from the fetch buffer to an sqlda structure in your program. A
fetch array is especially useful when you fetch simple-large-object (TEXT or BYTE)
data. A fetch of simple-large-object data without a fetch array requires the
following two exchanges with the database server:
v When Informix ESQL/C fetches a TEXT or BYTE column, the database server

returns the descriptor for the column.
v Informix ESQL/C subsequently requests the database server to obtain the

column data.

15-22 IBM Informix ESQL/C Programmer’s Manual

When you use a fetch array, Informix ESQL/C sends a series of simple-large-object
descriptors to the database server and the database server returns the
corresponding column data all at one time.

To use a fetch array:

1. Declare an sqlda structure to hold the columns you want to fetch.
You cannot use host variables or system-descriptor areas in a FETCH statement
to hold fetch arrays for columns. You must use an sqlda structure and the
FETCH...USING DESCRIPTOR statement. For information about how to declare
and use sqlda structures, see “An sqlda Structure” on page 15-5.

2. Use the DESCRIBE...INTO statement to initialize the sqlda structure and obtain
information about the prepared query.
The DESCRIBE...INTO statement allocates memory for the sqlda structure and
the sqlvar_struct structures.

3. For the sqldata field, allocate a buffer that is large enough to hold the fetch
array for each column.
To allocate the memory for an sqldata field, you must set the FetArrSize global
variable to the size of the fetch array for the associated column. For more
information, see “Allocating Memory for the Fetch Arrays” on page 15-30.

4. Issue the FETCH...USING DESCRIPTOR statement to retrieve the column data
into the fetch arrays.
The FETCH statement puts the retrieved rows into the sqldata fields of the
sqlvar_struct structures in sqlda. Each FETCH statement returns into the
sqldata fields the number of values specified by FetArrSize.

5. Obtain the column values from the fetch arrays of each sqlvar_struct structure.
You must obtain these values from the fetch arrays before you perform the next
FETCH statement. You can check the sqlca.sqlerrd[2] field to determine the
number of valid rows that the FETCH has returned. The value in sqlerrd[2]
should be equal to or smaller than the value you set in FetArrSize. For
information about the sqlerrd array, see Chapter 11, “Exception handling,” on
page 11-1. For more information about obtaining the column values, see
“Obtaining Values from Fetch Arrays” on page 15-34.

6. Repeat steps 4 and 5 until all rows are fetched.
7. Free the memory that the sqlda structure uses.

As with other uses of the sqlda structure, Informix ESQL/C does not release
resources for this structure. Your application must free memory allocated to the
sqlda structure when it no longer needs it. For more information, see “Freeing
Memory for a Fetch Array” on page 15-35.

Important: The FetArrSize feature does not work when both the
Deferred-PREPARE and OPTOFC features are enabled. When these two
features are enabled, Informix ESQL/C does not know the size of a
row until after the FETCH statement completes. By this time, it is too
late for the fetch buffer to be adjusted with the FetArrSize value.

The sample program below shows how to perform the preceding steps. It uses
separate functions to initialize, print, and free the sqlda structure. These functions
are described in the following sections.
#include <windows.h>
#include
#include

EXEC SQL include sqlda.h;

Chapter 15. Determining SQL statements 15-23

EXEC SQL include locator.h;
EXEC SQL include sqltypes.h;

#define BLOBSIZE 32275 /* using a predetermined length for blob */

EXEC SQL begin declare section;
long blobsize; /* finding the maximum blob size at runtime */

EXEC SQL end declare section;

/***
* Function: init_sqlda()
* Purpose: With the sqlda pointer that was returned from the DESCRIBE
* statement, function allocates memory for the fetch arrays
* in the sqldata fields of each column. The function uses
* FetArrSize to determine the size to allocate.
* Returns: < 0 for error
* > 0 error with messagesize
***/
int init_sqlda(struct sqlda *in_da, int print)
{

int i, j,
row_size=0,
msglen=0,
num_to_alloc;
struct sqlvar_struct *col_ptr;
ifx_loc_t *temp_loc;
char *type;

if (print)
printf("columns: %d. \n", in_da->sqld);

/* Step 1: determine row size */
for (i = 0, col_ptr = in_da->sqlvar; i < in_da->sqld; i++, col_ptr++)
{

/* The msglen variable holds the sum of the column sizes in the
* database; these are the sizes that DESCRIBE returns. This
* sum is the amount of memory that ESQL/C needs to store
* one row from the database. This value is <= row_size. */

msglen += col_ptr->sqllen; /* get database sizes */

/* calculate size for C data: string columns get extra byte added
* to hold null terminator */

col_ptr->sqllen = rtypmsize(col_ptr->sqltype, col_ptr->sqllen);

/* The row_size variable holds the sum of the column sizes in
* the client application; these are the sizes that rtypmsize()
* returns. This sum is amount of memory that the client
* application needs to store one row. */

row_size += col_ptr->sqllen;
if(print)

printf("Column %d size: %d\n", i+1, col_ptr->sqllen);
}

if (print)
{

printf("Total message size = %d\n", msglen);
printf("Total row size = %d\n", row_size);
}

EXEC SQL select max(length(cat_descr)) into :blobsize from catalog;

15-24 IBM Informix ESQL/C Programmer’s Manual

/* Step 2: set FetArrSize global variable to number of elements
* in fetch array; this function calculates the FetArrSize
* value that can fit into the existing fetch buffer.
* If FetBufSize is not set (equals zero), the code assigns a
* default size of 4096 bytes (4 kilobytes). Alternatively, you
* could set FetArrSize to the number elements you wanted to
* have and let ESQL/C size the fetch buffer. See the text in
* "Allocating Memory for the Fetch Arrays" for more information.*/

if (FetArrSize <= 0) /* if FetArrSize not yet initialized */
{

if (FetBufSize == 0) /* if FetBufSize not set */
FetBufSize = 4096; /* default FetBufSize */

FetArrSize = FetBufSize/msglen;
}
num_to_alloc = (FetArrSize == 0)? 1: FetArrSize;
if (print)
{

printf("Fetch Buffer Size %d\n", FetBufSize);
printf("Fetch Array Size: %d\n", FetArrSize);
}

/* set type in sqlvar_struct structure to corresponding C type */
for (i = 0, col_ptr = in_da->sqlvar; i < in_da->sqld; i++,
col_ptr++)
{

switch(col_ptr->sqltype)
{

case SQLCHAR:
type = "char ";
col_ptr->sqltype = CCHARTYPE;
break;

case SQLINT:
case SQLSERIAL:

type = "int ";
col_ptr->sqltype = CINTTYPE;
break;

case SQLBYTES:
case SQLTEXT:

if (col_ptr->sqltype == SQLBYTES)
type = "blob ";
else

type = "text ";
col_ptr->sqltype = CLOCATORTYPE;

/* Step 3 (TEXT & BLOB only): allocate memory for sqldata
* that contains ifx_loc_t structures for TEXT or BYTE column */

temp_loc = (ifx_loc_t *)malloc(col_ptr->sqllen * num_to_alloc);
if (!temp_loc)
{

fprintf(stderr, "blob sqldata malloc failed\n");
return(-1);
}
col_ptr->sqldata = (char *)temp_loc;

/* Step 4 (TEXT & BLOB only): initialize ifx_loc_t structures to
hold blob values in a user-defined buffer in memory */
byfill((char *)temp_loc, col_ptr->sqllen*num_to_alloc ,0);
for (j = 0; j< num_to_alloc; j++, temp_loc++)
{

/* blob data to go in memory */
temp_loc->loc_loctype = LOCMEMORY;

/* assume none of the blobs are larger than BLOBSIZE */

Chapter 15. Determining SQL statements 15-25

temp_loc->loc_bufsize = blobsize;
temp_loc->loc_buffer = (char *)malloc(blobsize+1);
if (!temp_loc->loc_buffer)
{

fprintf(stderr, "loc_buffer malloc failed\n");
return(-1);
}
temp_loc->loc_oflags = 0; /* clear flag */

} /* end for */
break;

default: /* all other data types */
fprintf(stderr, "not yet handled(%d)!\n", col_ptr->sqltype);
return(-1);

} /* switch */

/* Step 5: allocate memory for the indicator variable */
col_ptr->sqlind = (short *)malloc(sizeof(short) * num_to_alloc);
if (!col_ptr->sqlind)

{
printf("indicator malloc failed\n");
return -1;
}

/* Step 6 (other data types): allocate memory for sqldata. This
* function
* casts the pointer to this memory as a (char *). Subsequent
* accesses to the data would need to cast it back to the data
* type that corresponds to the column type. See the print_sqlda()
* function for an example of this casting. */

if (col_ptr->sqltype != CLOCATORTYPE)
{

col_ptr->sqldata = (char *) malloc(col_ptr->sqllen *
num_to_alloc);

if (!col_ptr->sqldata)
{

printf("sqldata malloc failed\n");
return -1;

}
if (print)

printf("column %3d, type = %s(%3d), len=%d\n", i+1, type,
col_ptr->sqltype, col_ptr->sqllen);

}
} /* end for */
return msglen;

}

/**
* Function: print_sqlda
* Purpose: Prints contents of fetch arrays for each column that the
* sqlda structure contains. Current version only implements
* data types found in the blobtab table. Other data types
* would need to me implemented to make this function complete.
**/
void print_sqlda(struct sqlda *sqlda, int count)
{

void *data;
int i, j;

ifx_loc_t *temp_loc;
struct sqlvar_struct *col_ptr;
char *type;
char buffer[512];
int ind;
char i1, i2;

15-26 IBM Informix ESQL/C Programmer’s Manual

/* print number of columns (sqld) and number of fetch-array elements
*/
printf("\nsqld: %d, fetch-array elements: %d.\n", sqlda->sqld,
count);

/* Outer loop: loop through each element of a fetch array */
for (j = 0; j < count; j ++)
{

if (count > 1)
{

printf("record[%4d]:\n", j);
printf("col | type | id | len | ind | rin | data ");
printf("| value\n");
printf("--");
printf("------------------\n");
}

/* Inner loop: loop through each of the sqlvar_struct structures */
for (i = 0, col_ptr = sqlda->sqlvar; i < sqlda->sqld; i++, col_ptr++)

{
data = col_ptr->sqldata + (j*col_ptr->sqllen);
switch (col_ptr->sqltype)
{

case CFIXCHARTYPE:
case CCHARTYPE:

type = "char";
if (col_ptr->sqllen > 40)

sprintf(buffer, " %39.39s<..", data);
else

sprintf(buffer, "%*.*s", col_ptr->sqllen,
col_ptr->sqllen, data);

break;
case CINTTYPE:

type = "int";
sprintf(buffer, " %d", *(int *) data);
break;
case CLOCATORTYPE:
type = "byte";

temp_loc = (ifx_loc_t *)(col_ptr->sqldata +
(j * sizeof(ifx_loc_t)));

sprintf(buffer, " buf ptr: %p, buf sz: %d, blob sz: %d",
temp_loc->loc_buffer,

temp_loc->loc_bufsize, temp_loc->loc_size);
break;
default:

type = "??????";
sprintf(buffer, " type not implemented: ",

"can’t print %d", col_ptr->sqltype);
break;

} /* end switch */

i1 = (col_ptr->sqlind==NULL) ? ’X’ :
(((col_ptr->sqlind)[j] != 0) ? ’T’ : ’F’);

i2 = (risnull(col_ptr->sqltype, data)) ? ’T’ : ’F’;

printf("%3d | %-6.6s | %3d | %3d | %c | %c | ",
i, type, col_ptr->sqltype, col_ptr->sqllen, i1, i2);

printf("%8p |%s\n", data, buffer);
} /* end for (i=0...) */

} /* end for (j=0...) */
}

Chapter 15. Determining SQL statements 15-27

/**
* Function: free_sqlda
* Purpose: Frees memory used by sqlda. This memory includes:
* o loc_buffer memory (used by TEXT & BYTE)
* o sqldata memory
* o sqlda structure
**/
void free_sqlda(struct sqlda *sqlda)
{

int i,j, num_to_dealloc;
struct sqlvar_struct *col_ptr;
ifx_loc_t *temp_loc;

for (i = 0, col_ptr = sqlda->sqlvar; i < sqlda->sqld; i++,
col_ptr++)
{

if (col_ptr->sqltype == CLOCATORTYPE)
{

/* Free memory for blob buffer of each element in fetch array */
num_to_dealloc = (FetArrSize == 0)? 1: FetArrSize;
temp_loc = (ifx_loc_t *) col_ptr->sqldata;
for (j = 0; j< num_to_dealloc; j++, temp_loc++)
{

free(temp_loc->loc_buffer);
}
}

/* Free memory for sqldata (contains fetch array) */
free(col_ptr->sqldata);
}

/* Free memory for sqlda structure */
free(sqlda);

}

void main()
{

int i = 0;
int row_count, row_size;

EXEC SQL begin declare section;
char *db = "stores7";
char *uid = "odbc";
char *pwd = "odbc";
EXEC SQL end declare section;

/**
* Step 1: declare an sqlda structure to hold the retrieved column
* values
**/

struct sqlda *da_ptr;

EXEC SQL connect to :db user :uid using :pwd;
if (SQLCODE < 0)
{

printf("CONNECT failed: %d\n", SQLCODE);
exit(0);
}

/* Prepare the SELECT */
EXEC SQL prepare selct_id from ’select catalog_num, cat_descr from
catalog’;
if (SQLCODE < 0)

15-28 IBM Informix ESQL/C Programmer’s Manual

{
printf("prepare failed: %d\n", SQLCODE);
exit(0);
}

/**
* Step 2: describe the prepared SELECT statement to allocate memory
* for the sqlda structure and the sqlda.sqlvar structures
* (DESCRIBE can allocate sqlda.sqlvar structures because
* prepared statement is a SELECT)
**/

EXEC SQL describe selct_id into da_ptr;
if (SQLCODE < 0)
{

printf("describe failed: %d\n", SQLCODE);
exit(0);
}

/**
* Step 3: initialize the sqlda structure to hold fetch arrays for
* columns
**/

row_size = init_sqlda(da_ptr, 1);

/* declare and open a cursor for the prepared SELECT */
EXEC SQL declare curs cursor for selct_id;
if (SQLCODE < 0)
{

printf("declare failed: %d\n", SQLCODE);
exit(0);
}
EXEC SQL open curs;
if (SQLCODE < 0)
{

printf("open failed: %d\n", SQLCODE);
exit(0);
}
while (1)
{

/**
* Step 4: perform fetch to get "FetArrSize" array of rows from
* the database server into the sqlda structure
**/

EXEC SQL fetch curs using descriptor da_ptr;

/* Reached last set of matching rows? */
if (SQLCODE == SQLNOTFOUND)

break;

/**
* Step 5: obtain the values from the fetch arrays of the sqlda
* structure; use sqlca.sqlerrd[2] to determine number
* of array elements actually retrieved.
**/

printf("\n===============\n");
printf("FETCH %d\n", i++);
printf("===============");
print_sqlda(da_ptr, ((FetArrSize == 0) ? 1 : sqlca.sqlerrd[2]));

/**
* Step 6: repeat the FETCH until all rows have been fetched (SQLCODE
* is SQLNOTFOUND
**/

Chapter 15. Determining SQL statements 15-29

}

/**
* Step 7: Free resources:
* o statement id, selct_id
* o select cursor, curs
* o sqlda structure (with free_sqlda() function)
* o delete sample table and its rows from database
**/

EXEC SQL free selct_id;
EXEC SQL close curs;
EXEC SQL free curs;
free_sqlda(da_ptr);

}

Allocating Memory for the Fetch Arrays
The DESCRIBE...INTO statement allocates memory for the sqlda structure and its
sqlvar_struct structures. However, it does not allocate memory for the sqldata field
of the sqlvar_struct structures. The sqldata field holds the fetch array for a
retrieved column. Therefore, you must allocate sufficient memory to each sqldata
field to hold the elements of the fetch array.

A new global variable, FetArrSize, indicates the number of rows to be returned per
FETCH statement. This variable is defined as a C language short integer data type.
It has a default value of zero, which disables the fetch array feature. You can set
FetArrSize to any integer value in the following range:
0 <= FetArrSize <= MAXSMINT

The MAXSMINT value is the maximum amount of the data type that Informix
ESQL/C can retrieve. It's value is 32767 bytes (32 kilobytes). If the size of the fetch
array is greater than MAXSMINT, Informix ESQL/C automatically reduces its size
to 32 kilobytes.

You can use the following calculation to determine the appropriate size of the fetch
array:
(fetch-array size) = (fetch-buffer size) / (row size)

The preceding equation uses the following information:

fetch-array
size The size of the fetch array, which the FetArrSize global variable

indicates

fetch-buffer
size The size of the fetch buffer, which the FetBufSize and

BigFetBufSize global variables indicate. For information about the
size of the fetch buffer, see “Optimizing Cursor Execution” on page
14-11.

row size The size of the row to be fetched. To determine the size of the row
to be fetched, call the rtypmsize() function for each column of the
row. This function returns the number of bytes that are needed to
store the data type. For more information about the rtypmsize()
function, see Chapter 3, “Informix ESQL/C data types,” on page
3-1.

However, if you set FetArrSize so that the following relationship is true,

15-30 IBM Informix ESQL/C Programmer’s Manual

(FetArrSize * row size) > FetBufSize

Informix ESQL/C automatically adjusts the size of the fetch buffer (FetBufSize) as
follows to hold the size of the fetch array:
FetBufSize = FetArrSize * row size

If the result is greater than 32 kilobytes (MAXSMINT), Informix ESQL/C sets
FetBufSize to 32 kilobytes and FetArrSize as follows:
FetArrSize = MAXSMINT / (row size)

Important: The FetArrSize global variable can be used in thread-safe Informix
ESQL/C applications.

Follow these steps to allocate memory for a fetch array:
1. Determine the size of the row that you are retrieving from the database.
2. Determine the size of the fetch array and set the FetArrSize global variable to

this value.
3. For each simple-large-object column (TEXT or BYTE), allocate a fetch array of

ifx_loc_t structures.
4. For each simple-large-object column (TEXT or BYTE), initialize the ifx_loc_t

data structures as follows.
v Set the loc_loctype field to LOCMEMORY
v Set the loc_buffer field to the address of the buffer you allocated in Step 3

above.
v Set the loc_bufsize field to the size of the buffer you allocated.
Alternatively, you can set loc_bufsize to -1 to have Informix ESQL/C
automatically allocate memory for the simple-large-object columns. For more
information about how to initialize a ifx_loc_t structure to retrieve simple large
objects in memory, see “Selecting a simple large object into memory” on page
7-9.

5. Allocate memory for the indicator variable.
6. For all other columns, allocate a fetch array that holds the data type of that

column.

The following example code illustrates how you would allocate memory for fetch
arrays for the following prepared query:
SELECT * from blobtab;

The function is called init_sqlda():
/**
* Function: init_sqlda()
* Purpose: With the sqlda pointer that was returned from the DESCRIBE
* statement, function allocates memory for the fetch arrays
* in the sqldata fields of each column. The function uses
* FetArrSize to determine the size to allocate.
* Returns: < 0 for error
* > 0 error with messagesize
**/
int init_sqlda(struct sqlda *in_da, int print)
{

int i, j,
row_size=0,
msglen=0,
num_to_alloc;
struct sqlvar_struct *col_ptr;

Chapter 15. Determining SQL statements 15-31

ifx_loc_t *temp_loc;
char *type;

if (print)
printf("columns: %d. \n", in_da->sqld);

/* Step 1: determine row size */
for (i = 0, col_ptr = in_da->sqlvar; i < in_da->sqld; i++,
col_ptr++)
{

/* The msglen variable holds the sum of the column sizes in the
* database; these are the sizes that DESCRIBE returns. This
* sum is the amount of memory that ESQL/C needs to store
* one row from the database. This value is <= row_size. */

msglen += col_ptr->sqllen; /* get database sizes */

/* calculate size for C data: string columns get extra byte added
* to hold null terminator */

col_ptr->sqllen = rtypmsize(col_ptr->sqltype, col_ptr->sqllen);

/* The row_size variable holds the sum of the column sizes in
* the client application; these are the sizes that rtypmsize()
* returns. This sum is amount of memory that the client
* application needs to store one row. */

row_size += col_ptr->sqllen;
if(print)

printf("Column %d size: %d\n", i+1, col_ptr->sqllen);
}

if (print)
{

printf("Total message size = %d\n", msglen);
printf("Total row size = %d\n", row_size);
}

EXEC SQL select max(length(cat_descr)) into :blobsize from catalog;

/* Step 2: set FetArrSize global variable to number of elements
* in fetch array; this function calculates the FetArrSize
* value that can fit into the existing fetch buffer.
* If FetBufSize is not set (equals zero), the code assigns a
* default size of 4096 bytes (4 kilobytes). Alternatively, you
* could set FetArrSize to the number elements you wanted to
* have and let ESQL/C size the fetch buffer. See the text in
* "Allocating Memory for the Fetch Arrays" for more information.*/

if (FetArrSize <= 0) /* if FetArrSize not yet initialized */
{

if (FetBufSize == 0) /* if FetBufSize not set */
FetBufSize = 4096; /* default FetBufSize */

FetArrSize = FetBufSize/msglen;
}
num_to_alloc = (FetArrSize == 0)? 1: FetArrSize;
if (print)
{

printf("Fetch Buffer Size %d\n", FetBufSize);
printf("Fetch Array Size: %d\n", FetArrSize);
}

/* set type in sqlvar_struct structure to corresponding C type */
for (i = 0, col_ptr = in_da->sqlvar; i < in_da->sqld; i++,
col_ptr++)
{

15-32 IBM Informix ESQL/C Programmer’s Manual

switch(col_ptr->sqltype)
{

case SQLCHAR:
type = "char ";
col_ptr->sqltype = CCHARTYPE;
break;

case SQLINT:
case SQLSERIAL:

type = "int ";
col_ptr->sqltype = CINTTYPE;
break;

case SQLBYTES:
case SQLTEXT:

if (col_ptr->sqltype == SQLBYTES)
type = "blob ";
else

type = "text ";
col_ptr->sqltype = CLOCATORTYPE;

/* Step 3 (TEXT & BLOB only): allocate memory for sqldata
* that contains ifx_loc_t structures for TEXT or BYTE column */

temp_loc = (ifx_loc_t *)malloc(col_ptr->sqllen * num_to_alloc);
if (!temp_loc)
{

fprintf(stderr, "blob sqldata malloc failed\n");
return(-1);
}
col_ptr->sqldata = (char *)temp_loc;

/* Step 4 (TEXT & BLOB only): initialize ifx_loc_t structures to
hold blob values in a user-defined buffer in memory */
byfill((char *)temp_loc, col_ptr->sqllen*num_to_alloc ,0);
for (j = 0; j< num_to_alloc; j++, temp_loc++)
{

/* blob data to go in memory */
temp_loc->loc_loctype = LOCMEMORY;

/* assume none of the blobs are larger than BLOBSIZE */
temp_loc->loc_bufsize = blobsize;
temp_loc->loc_buffer = (char *)malloc(blobsize+1);
if (!temp_loc->loc_buffer)
{

fprintf(stderr, "loc_buffer malloc failed\n");
return(-1);
}
temp_loc->loc_oflags = 0; /* clear flag */

} /* end for */
break;

default: /* all other data types */
fprintf(stderr, "not yet handled(%d)!\n", col_ptr->sqltype);
return(-1);

} /* switch */

/* Step 5: allocate memory for the indicator variable */
col_ptr->sqlind = (short *)malloc(sizeof(short) * num_to_alloc);
if (!col_ptr->sqlind)

{
printf("indicator malloc failed\n");
return -1;
}

/* Step 6 (other data types): allocate memory for sqldata. This function
* casts the pointer to this memory as a (char *). Subsequent
* accesses to the data would need to cast it back to the data

Chapter 15. Determining SQL statements 15-33

* type that corresponds to the column type. See the print_sqlda()
* function for an example of this casting. */

if (col_ptr->sqltype != CLOCATORTYPE)
{

col_ptr->sqldata = (char *) malloc(col_ptr->sqllen *
num_to_alloc);

if (!col_ptr->sqldata)
{

printf("sqldata malloc failed\n");
return -1;

}
if (print)

printf("column %3d, type = %s(%3d), len=%d\n", i+1, type,
col_ptr->sqltype, col_ptr->sqllen);

}
} /* end for */
return msglen;

}

For more information about how to allocate memory for the sqldata field, see
“Allocating Memory for the sqlda Structure” on page 17-3.

Obtaining Values from Fetch Arrays
Each FETCH attempts to return FetArrSize number of values into the sqldata
fields of the sqlvar_struct structures of the sqlda structure. You can check the
sqlca.sqlerrd[2] value to determine the actual number of rows that the FETCH did
return.

Each fetch array holds the values for one column of the query. To obtain a row of
values, you must access the element at the same index of each the fetch arrays. For
example, to obtain the first row of values, access the first element of each of the
fetch arrays.

The sample program calls the print_sqlda() function to obtain values from the
fetch arrays for the following prepared query:
SELECT * from blobtab

/**
* Function: print_sqlda
* Purpose: Prints contents of fetch arrays for each column that the
* sqlda structure contains. Current version only implements
* data types found in the blobtab table. Other data types
* would need to me implemented to make this function complete.
**/
void print_sqlda(struct sqlda *sqlda, int count)
{

void *data;
int i, j;

ifx_loc_t *temp_loc;
struct sqlvar_struct *col_ptr;
char *type;
char buffer[512];
int ind;
char i1, i2;

/* print number of columns (sqld) and number of fetch-array elements
*/
printf("\nsqld: %d, fetch-array elements: %d.\n", sqlda->sqld,
count);

/* Outer loop: loop through each element of a fetch array */

15-34 IBM Informix ESQL/C Programmer’s Manual

for (j = 0; j < count; j ++)
{

if (count > 1)
{

printf("record[%4d]:\n", j);
printf("col | type | id | len | ind | rin | data ");
printf("| value\n");
printf("--");
printf("------------------\n");
}

/* Inner loop: loop through each of the sqlvar_struct structures */
for (i = 0, col_ptr = sqlda->sqlvar; i < sqlda->sqld; i++, col_ptr++)

{
data = col_ptr->sqldata + (j*col_ptr->sqllen);
switch (col_ptr->sqltype)
{

case CFIXCHARTYPE:
case CCHARTYPE:

type = "char";
if (col_ptr->sqllen > 40)

sprintf(buffer, " %39.39s<..", data);
else

sprintf(buffer, "%*.*s", col_ptr->sqllen,
col_ptr->sqllen, data);

break;
case CINTTYPE:

type = "int";
sprintf(buffer, " %d", *(int *) data);
break;
case CLOCATORTYPE:
type = "byte";

temp_loc = (ifx_loc_t *)(col_ptr->sqldata +
(j * sizeof(ifx_loc_t)));

sprintf(buffer, " buf ptr: %p, buf sz: %d, blob sz: %d",
temp_loc->loc_buffer,

temp_loc->loc_bufsize, temp_loc->loc_size);
break;
default:

type = "??????";
sprintf(buffer, " type not implemented: ",

"can’t print %d", col_ptr->sqltype);
break;

} /* end switch */

i1 = (col_ptr->sqlind==NULL) ? ’X’ :
(((col_ptr->sqlind)[j] != 0) ? ’T’ : ’F’);

i2 = (risnull(col_ptr->sqltype, data)) ? ’T’ : ’F’;

printf("%3d | %-6.6s | %3d | %3d | %c | %c | ",
i, type, col_ptr->sqltype, col_ptr->sqllen, i1, i2);

printf("%8p |%s\n", data, buffer);
} /* end for (i=0...) */

} /* end for (j=0...) */
}

Freeing Memory for a Fetch Array
Informix ESQL/C does not release resources for the sqlda structure. When your
application no longer needs the sqlda structure, it must free all memory that it
uses. For more information, see “Freeing Memory Allocated to an sqlda Structure”
on page 17-10.

Chapter 15. Determining SQL statements 15-35

The sample program calls the free_sqlda() function to free the memory that the
sqlda structure uses.
/**
* Function: free_sqlda
* Purpose: Frees memory used by sqlda. This memory includes:
* o loc_buffer memory (used by TEXT & BYTE)
* o sqldata memory
* o sqlda structure
**/
void free_sqlda(struct sqlda *sqlda)
{

int i,j, num_to_dealloc;
struct sqlvar_struct *col_ptr;
ifx_loc_t *temp_loc;

for (i = 0, col_ptr = sqlda->sqlvar; i < sqlda->sqld; i++,
col_ptr++)
{

if (col_ptr->sqltype == CLOCATORTYPE)
{

/* Free memory for blob buffer of each element in fetch array */
num_to_dealloc = (FetArrSize == 0)? 1: FetArrSize;
temp_loc = (ifx_loc_t *) col_ptr->sqldata;
for (j = 0; j< num_to_dealloc; j++, temp_loc++)
{

free(temp_loc->loc_buffer);
}
}

/* Free memory for sqldata (contains fetch array) */
free(col_ptr->sqldata);
}

/* Free memory for sqlda structure */
free(sqlda);

}

15-36 IBM Informix ESQL/C Programmer’s Manual

Chapter 16. Using a system-descriptor area

Managing a System-Descriptor Area . 16-3
Allocating Memory for a System-Descriptor Area . 16-3
Initializing the System-Descriptor Area . 16-4

The DESCRIBE Statement and Input Parameters . 16-4
The DESCRIBE Statement and Memory Allocation. 16-4

Assigning and Obtaining Values from a System-Descriptor Area 16-5
Using the SET DESCRIPTOR Statement . 16-5
Using the GET DESCRIPTOR Statement . 16-6

Specifying Input Parameter Values . 16-7
Putting Column Values into a System-Descriptor Area 16-7
Freeing Memory Allocated to a System-Descriptor Area 16-8

Using a System-Descriptor Area . 16-8
Handling an Unknown Select List . 16-9

Executing a SELECT That Returns Multiple Rows . 16-9
Lines 5 to 11 . 16-10
Lines 14 to 22 . 16-10
Line 23 . 16-11
Line 24 . 16-11
Line 25 . 16-11
Line 26 . 16-11
Lines 27 and 28 . 16-11
Lines 29 to 31. 16-11
Lines 33 to 46 . 16-12
Lines 47 and 48 . 16-12
Line 49 . 16-12
Lines 50 to 54 . 16-12
Lines 58 to 77 . 16-13

Executing a Singleton SELECT . 16-13
Handling Unknown Return Values . 16-13

Executing a noncursor function . 16-14
Lines 19 to 25 . 16-15
Line 26 . 16-16
Line 27 . 16-16
Lines 28 to 33 . 16-16
Lines 34 to 40 . 16-16
Lines 41 to 49 . 16-17
Lines 50 and 51 . 16-17

Executing a Cursor Function. 16-17
Handling an unknown column list . 16-18

Executing a Simple Insert. 16-18
Lines 5 to 10 . 16-19
Lines 15 to 17 . 16-19
Lines 18 and 19 . 16-20
Line 20 and 21 . 16-20
Lines 22 and 23 . 16-20
Lines 24 and 25 . 16-20
Lines 26 to 29 . 16-20
Lines 30 to 36 . 16-20
Lines 37 and 38 . 16-21
Lines 39 to 44 . 16-21
Lines 45 to 48 . 16-21
Lines 55 to 60 . 16-21

Executing an INSERT That Is Associated with a Cursor. 16-22
Handling a Parameterized SELECT Statement . 16-22

Executing a parameterized SELECT that returns multiple rows 16-23

© Copyright IBM Corp. 1996, 2010 16-1

Lines 8 to 14 . 16-24
Lines 17 to 25 . 16-24
Line 26 . 16-24
Line 27 . 16-24
Lines 28 to 38 . 16-25
Lines 39 to 43 . 16-25
Lines 44 and 45 . 16-25
Lines 47 to 49 . 16-25
Lines 50 and 51 . 16-26
Lines 52 to 59 . 16-26
Lines 60 to 70 . 16-26
Line 73 . 16-26
Lines 74 to 77 . 16-26

Executing a Parameterized Singleton SELECT . 16-27
Handling a parameterized user-defined routine . 16-27

Executing a parameterized function . 16-27
Executing a parameterized procedure. 16-27

Handling a Parameterized UPDATE or DELETE Statement 16-28
The dyn_sql Program . 16-28

Compiling the Program . 16-28
Guide to the dyn_sql.ec File . 16-28

Lines 7 to 13 . 16-29
Lines 14 to 17 . 16-29
Line 18 . 16-29
Lines 19 to 23 . 16-30
Lines 24 to 27 . 16-30
Lines 28 to 51 . 16-30
Lines 52 to 67 . 16-31
Lines 68 to 75 . 16-32
Lines 76 to 79 . 16-32
Lines 80 to 93 . 16-32
Lines 94 to 98 . 16-33
Lines 99 to 102 . 16-33
Lines 114 to 137 . 16-33
Lines 138 to 149 . 16-34
Line 152 . 16-34
Lines 153 to 156 . 16-34
Lines 157 to 167 . 16-34
Lines 168 to 380 . 16-38
Lines 381 to 387 . 16-40
Lines 388 to 397 . 16-40
Lines 398 to 405 . 16-40

A system-descriptor area is a dynamic-management structure that can hold data that
a prepared statement either returns from or sends to the database server.

A system-descriptor area is the dynamic-management structure that conforms to
X/Open standards.

These topics contain the following information about how to use a
system-descriptor area:
v Managing a system-descriptor area for dynamic SQL
v Using a system-descriptor area to handle unknown values in dynamic SQL

statements

For information about the fields of the system-descriptor area, see 15-2.

16-2 IBM Informix ESQL/C Programmer’s Manual

The end of this chapter presents an annotated example program called dyn_sql
that uses a system-descriptor area to process a SELECT statement entered at
runtime.

Managing a System-Descriptor Area
Your IBM Informix ESQL/C program can manipulate a system-descriptor area
with the SQL statements that Table 16-1 summarizes.

Table 16-1. SQL Statements That Can Be Used to Manipulate a System-Descriptor Area

SQL Statement Purpose See

ALLOCATE
DESCRIPTOR

Allocates memory for a system-descriptor area 16-3

DESCRIBE...USING
SQL DESCRIPTOR

Initializes the system-descriptor area with
information about column-list columns

16-4

GET DESCRIPTOR Obtains information from the fields of the
system-descriptor area

16-5

SET DESCRIPTOR Places information into a system- descriptor
area for the database server to access

16-5

For SELECT and EXECUTE FUNCTION statements that use cursors:

OPEN...USING
SQL DESCRIPTOR

FETCH...USING
SQL DESCRIPTOR

Takes any input parameters from the specified
system-descriptor area

Puts the contents of the row into the
system-descriptor area

16-7

16-7

For SELECT and EXECUTE FUNCTION statements that return only one row:

EXECUTE...INTO
SQL DESCRIPTOR

Puts the contents of the singleton row into the
system-descriptor area

16-7

For non-SELECT statements:

EXECUTE...USING
SQL DESCRIPTOR

Takes any input parameters from the specified
system-descriptor area

16-7

For an INSERT statement that uses an insert cursor:

PUT...USING
SQL DESCRIPTOR

Puts a row into the insert buffer, obtaining the
column values from the specified
system-descriptor area

16-18

DEALLOCATE
DESCRIPTOR

Frees memory allocated for the
system-descriptor area when your program is
finished with it

16-8

Allocating Memory for a System-Descriptor Area
To allocate memory for a system-descriptor area, use the ALLOCATE
DESCRIPTOR statement. This statement performs the following tasks:
v It assigns the specified descriptor name to identify this region of memory. This

name is an identifier that must be provided in all the SQL statements listed in
Table 16-1 on page 16-3 to designate the system descriptor on which to take
action.

v It allocates item descriptors. By default, it allocates 100 item descriptors in the
system-descriptor area. You can change this default with the WITH MAX clause.

v It initializes the COUNT field in the system-descriptor area to the number of
item descriptors allocated.

Chapter 16. Using a system-descriptor area 16-3

Important: ALLOCATE DESCRIPTOR does not allocate memory for column data
(DATA field). This memory is allocated by the DESCRIBE statement on
an as-needed basis. For more information, see the next section.

Initializing the System-Descriptor Area
The DESCRIBE...USING SQL DESCRIPTOR statement initializes the
system-descriptor area with information about the prepared statement. This
statement takes the following actions:
v It sets the COUNT field, which contains the number of item descriptors

initialized with data.
This value is the number of columns and expressions in the column list (SELECT
and INSERT) or the number of returned values (EXECUTE FUNCTION).

v It describes each unknown column in a prepared SELECT statement (without an
INTO TEMP), EXECUTE FUNCTION, or INSERT statement.
The DESCRIBE statement initializes the fields of the item descriptor for each
column, as follows:
– It allocates memory for the DATA field based on the TYPE and LENGTH

information.
– It initializes the TYPE, LENGTH, NAME, SCALE, PRECISION, and

NULLABLE fields to provide information from the database about a column.
For descriptions of these fields, see Table 15-2 on page 15-3.

v It returns the type of SQL statement prepared.
For more information, see “Determining the Data Type of a Column” on page
15-13.

As noted earlier, the DESCRIBE statement provides information about the columns
of a column list. Therefore, you usually use this statement after a SELECT (without
an INTO TEMP clause), INSERT, or EXECUTE FUNCTION statement was
prepared.

The DESCRIBE Statement and Input Parameters
When you use the system-descriptor area to hold an input parameter, you cannot
use DESCRIBE to initialize the system-descriptor area. Your code must define the
input parameters with the SET DESCRIPTOR statement to explicitly set the
appropriate fields of the system-descriptor area. For more information, see
“Specifying Input Parameter Values” on page 16-7.

The DESCRIBE Statement and Memory Allocation
When you use a system-descriptor area to hold columns of prepared SQL
statements, the ALLOCATE DESCRIPTOR statement allocates memory for the item
descriptors of each column and the DESCRIBE...USING SQL DESCRIPTOR
statement allocates memory for the DATA field of each item descriptor.

However, the DESCRIBE...USING SQL DESCRIPTOR statement does not allocate
memory for the DATA field of a system-descriptor area when you describe a
prepared SELECT statement that fetches data from a column into a host variable of
type lvarchar.

Before you fetch lvarchar data into the system-descriptor area, you must explicitly
assign memory to the DATA field to hold the column value, as follows:
1. Declare an lvarchar host variable of the appropriate size.

Make sure this variable is not just a pointer but has memory associated with it.

16-4 IBM Informix ESQL/C Programmer’s Manual

2. Assign this host variable to the DATA field with the SET DESCRIPTOR
statement.
This SET DESCRIPTOR statement should occur after the DESCRIBE...USING
SQL DESCRIPTOR statement but before the FETCH...USING SQL
DESCRIPTOR statement.

3. Execute the FETCH...USING SQL DESCRIPTOR statement to retrieve the
column data into the DATA field of the system-descriptor area.

The following code fragment shows the basic steps to allocate memory for an
LVARCHAR column called lvarch_col in the table1 table:
EXEC SQL BEGIN DECLARE SECTION;

lvarchar lvarch_val[50];
int i;

EXEC SQL END DECLARE SECTION;

EXEC SQL allocate descriptor ’desc’;
EXEC SQL prepare stmt1 from ’select opaque_col from table1’;
EXEC SQL describe stmt1 using sql descriptor ’desc’;
EXEC SQL declare cursor curs1 for stmt1;
EXEC SQL open curs1;
EXEC SQL set descriptor ’desc’ value 1

data = :lvarch_val, length = 50;

while (1)
{
EXEC SQL fetch curs1 using sql descriptor ’desc’;
EXEC SQL get descriptor ’desc’ value 1 :lvarch_val;
printf("Column value is %s\n", lvarch_val);

...

}

The preceding code fragment does not perform exception handling.

Assigning and Obtaining Values from a System-Descriptor
Area

The following SQL statements allow your program to access the fields of the
system-descriptor area:
v The SET DESCRIPTOR statement assigns values to the fields of the

system-descriptor area.
v The GET DESCRIPTOR statement obtains values from the fields of the

system-descriptor area.

Using the SET DESCRIPTOR Statement
To assign values to the system-descriptor-area fields, use the SET DESCRIPTOR
statement. You can use the SET DESCRIPTOR statement to:
v Set the COUNT field to match the number of items for which you provide

descriptions in the system-descriptor area. This value is typically the number of
input parameters in a WHERE clause.
EXEC SQL set descriptor sysdesc COUNT=:hostvar;

v Set the item-descriptor fields for each column value for which you provide a
description.
EXEC SQL set descriptor sysdesc VALUE :item_num

DESCRIP_FIELD=:hostvar;

Chapter 16. Using a system-descriptor area 16-5

In this example, item_num is the number of the item descriptor that corresponds
to the desired column, and DESCRIP_FIELD is one of the item-descriptor fields
that is listed in Table 15-2 on page 15-3.
Set field values to provide values for input parameters in a WHERE clause (16-7)
or to modify the contents of an item descriptor field after you use the
DESCRIBE...USING SQL DESCRIPTOR statement to fill the system-descriptor
area (16-7).

The database server provides data-type constants in the sqltypes.h header file to
identify the data type of a column in the TYPE field (and optionally the ITYPE
field) of a system-descriptor area. However, you cannot assign a data-type constant
directly in a SET DESCRIPTOR statement. Instead, assign the constant value to an
integer host variable and specify this variable in the SET DESCRIPTOR statement,
as follows:
EXEC SQL BEGIN DECLARE SECTION;

int i;

...

EXEC SQL END DECLARE SECTION;

...

i = SQLINT;
EXEC SQL set descriptor ’desc1’ VALUE 1

TYPE = :i;

For more information about the data-type constants, see “Determining the Data
Type of a Column” on page 15-13. For more information about how to set
individual system-descriptor fields, see the entry for the SET DESCRIPTOR
statement in the IBM Informix Guide to SQL: Syntax.

Using an lvarchar Pointer Host Variable with a Descriptor: If you use an
lvarchar pointer host variable with a FETCH or PUT statement that uses a system
descriptor area, you must explicitly set the type to 124 (CLVCHARPTRTYPE from
incl/esql/sqltypes.h) in the SET DESCRIPTOR statement. The following example
illustrates:
EXEC SQL BEGIN DECLARE SECTION;
lvarchar *lv;
EXEC SQL END DECLARE SECTION;

/* where tab has lvarchar * column */
EXEC SQL prepare stmt from “select col from tab”;
EXEC SQL allocate descriptor 'd';

/* The following describe will return SQLLVARCHAR for the
type of the column */

EXEC SQL describe stmt using sql descriptor 'd';
/* You must set type for *lv variable */

EXEC SQL set descriptor 'd' value 1 DATA = :lv, TYPE = 124;
EXEC SQL declare c cursor for stmt;
EXEC SQL open c;
EXEC SQL fetch c using sql descriptor 'd';

Using the GET DESCRIPTOR Statement
The GET DESCRIPTOR statement obtains values from the system-descriptor-area
fields. You can use the GET DESCRIPTOR statement to:
v Get the COUNT field to determine how many values are described in a

system-descriptor area.
EXEC SQL get descriptor sysdesc :hostvar=COUNT;

v Get the item-descriptor fields for each described column.

16-6 IBM Informix ESQL/C Programmer’s Manual

EXEC SQL get descriptor sysdesc VALUE :item_num
:hostvar=DESCRIP_FIELD;

In this example, item_num is the number of the item descriptor that corresponds
to the desired column, and DESCRIP_FIELD is one of the item-descriptor fields
listed in Table 15-2 on page 15-3.
These item-descriptor values are typically descriptions of columns in a SELECT,
INSERT, or EXECUTE FUNCTION statement. GET DESCRIPTOR is also used
after a FETCH...USING SQL DESCRIPTOR to copy a column value that is
returned by the database server from the system-descriptor area into a host
variable (16-7).

The data type of the host variable must be compatible with the type of the
associated system-descriptor area field. When you interpret the TYPE field, make
sure that you use the data type values that match your environment. For some
data types, X/Open values differ from Informix values. For more information, see
“Determining the Data Type of a Column” on page 15-13.

For more information about how to get individual system-descriptor fields, see the
entry for the GET DESCRIPTOR statement in the IBM Informix Guide to SQL:
Syntax.

Specifying Input Parameter Values
Because the DESCRIBE...USING SQL DESCRIPTOR statement does not analyze a
WHERE clause, your program must store the number, data types, and values of
the input parameters in the fields of the system-descriptor area to explicitly
describe these parameters. For general information about how to define input
parameters dynamically, see 15-17.

When you execute a parameterized statement, you must specify the
system-descriptor area as the location of input parameter values with the USING
SQL DESCRIPTOR clause, as follows:
v For input parameters in the WHERE clause of a SELECT, use the OPEN...USING

SQL DESCRIPTOR statement. This statement handles a sequential, scrolling,
hold, or update cursor. If you are certain that the SELECT will return only one
row, you can use the EXECUTE...INTO...USING SQL DESCRIPTOR statement
instead of a cursor. See “Handling an Unknown Select List” on page 16-9.

v For input parameters in the WHERE clause of a non-SELECT statement such as
DELETE or UPDATE, use the EXECUTE...USING SQL DESCRIPTOR statement.
See “Handling a Parameterized UPDATE or DELETE Statement” on page 16-28.

v For input parameters in the VALUES clause of an INSERT statement, use the
EXECUTE...USING SQL DESCRIPTOR statement. If the INSERT statement is
associated with an insert cursor, use the PUT...USING SQL DESCRIPTOR
statement instead. For more information, see “Handling an unknown column
list” on page 16-18.

Putting Column Values into a System-Descriptor Area
When you create a SELECT statement dynamically, you cannot use the INTO
host_var clause of FETCH because you cannot name the host variables in the
prepared statement. To fetch column values into a system-descriptor area, use the
USING SQL DESCRIPTOR clause of FETCH instead of the INTO clause. The
FETCH...USING SQL DESCRIPTOR statement puts each column value into the
DATA field of its item descriptor.

Chapter 16. Using a system-descriptor area 16-7

Use of the FETCH...USING SQL DESCRIPTOR statement assumes the existence of
a cursor associated with the prepared statement. You must always use a cursor for
SELECT statements and cursor functions (EXECUTE FUNCTION statements that
return multiple rows). However, if the SELECT (or EXECUTE FUNCTION) returns
only one row, you can omit the cursor and retrieve the column values into a
system-descriptor area with the EXECUTE...INTO SQL DESCRIPTOR statement.

Warning: If you execute a SELECT statement or user-defined function that returns
more than one row and do not associate the statement with a cursor,
your program generates a runtime error. When you associate a singleton
SELECT (or EXECUTE FUNCTION) statement with a cursor, Informix
ESQL/C does not generate an error. Therefore, it is a good practice to
always associate a dynamic SELECT or EXECUTE FUNCTION statement
with a cursor and to use a FETCH...USING SQL DESCRIPTOR statement
to retrieve the column values from this cursor into the system-descriptor
area.

Once the column values are in the system-descriptor area, you can use the GET
DESCRIPTOR statement to transfer these values from their DATA fields to the
appropriate host variables. You must use the LENGTH and TYPE fields to
determine, at runtime, the data types for these host variables. You might need to
perform data type or length conversions between the SQL data types in the TYPE
fields and the Informix ESQL/C data types that are needed for host variables that
hold the return value.

For more information about how to execute SELECT statements dynamically, see
“Handling an Unknown Select List” on page 16-9. For more information about
how to execute user-defined functions dynamically, see “Handling Unknown
Return Values” on page 16-13.

Freeing Memory Allocated to a System-Descriptor Area
The DEALLOCATE DESCRIPTOR statement deallocates, or frees, memory that the
specified system-descriptor area uses. The freed memory includes memory used by
the item descriptors to hold data (in the DATA fields). Make sure you deallocate a
system-descriptor area only after you no longer have need of it. A deallocated
system-descriptor area cannot be reused.

For information about how to free other program resources, see “Freeing
Resources” on page 14-7. For more information about DEALLOCATE
DESCRIPTOR, see the IBM Informix Guide to SQL: Syntax.

Using a System-Descriptor Area
Use a system-descriptor area to execute SQL statements that contain unknown
values. Table 16-2 summarizes the types of dynamic statements that the remaining
sections of this chapter cover.

Table 16-2. Using a System-Descriptor Area to Execute Dynamic SQL Statements

Purpose of a System-Descriptor Area See

Holds select-list column values retrieved by a SELECT statement 16-9

Holds returned values from user-defined functions 16-13

Describes unknown columns in an INSERT statement 16-18

Describes input parameters in the WHERE clause of a SELECT statement 16-22

16-8 IBM Informix ESQL/C Programmer’s Manual

Table 16-2. Using a System-Descriptor Area to Execute Dynamic SQL
Statements (continued)

Purpose of a System-Descriptor Area See

Describes input parameters in the WHERE clause of a DELETE or UPDATE
statement

16-28

Handling an Unknown Select List
For an introduction to how to handle unknown columns in an unknown select list,
see 15-16. This section describes how to use a system-descriptor area to handle a
SELECT statement.

To use a system-descriptor area to handle unknown select-list columns:

1. Prepare the SELECT statement (with the PREPARE statement) to give it a
statement identifier. The SELECT statement cannot include an INTO TEMP
clause. For more information, see “Assembling and Preparing the SQL
Statement” on page 14-2.

2. Allocate a system-descriptor area with the ALLOCATE DESCRIPTOR
statement. For more information, see “Allocating Memory for a
System-Descriptor Area” on page 16-3.

3. Determine the number and data types of the select-list columns with the
DESCRIBE...USING SQL DESCRIPTOR statement. DESCRIBE fills an item
descriptor for each column in the select list. For more information about
DESCRIBE, see “Initializing the System-Descriptor Area” on page 16-4.

4. Save the number of select-list columns in a host variable with the GET
DESCRIPTOR statement to obtain the value of the COUNT field.

5. Declare and open a cursor and then use the FETCH...USING SQL
DESCRIPTOR statement to fetch column values, one row at a time, into an
allocated system-descriptor area. See “Putting Column Values into a
System-Descriptor Area” on page 16-7.

6. Retrieve the row data from the system-descriptor area into host variables with
the GET DESCRIPTOR statement to access the DATA field. For more
information about GET DESCRIPTOR, see “Assigning and Obtaining Values
from a System-Descriptor Area” on page 16-5.

7. Deallocate the system-descriptor area with the DEALLOCATE DESCRIPTOR
statement. For more information, see “Freeing Memory Allocated to a
System-Descriptor Area” on page 16-8.

Important: If the SELECT statement has unknown input parameters in the
WHERE clause, your program must also handle these input parameters
with a system-descriptor area.

For more information, see “Handling a Parameterized SELECT Statement” on page
16-22.

The following sections demonstrate how to handle a SELECT statement that
returns many rows and one that returns only one row.

Executing a SELECT That Returns Multiple Rows
The demo4.ec sample program, shown in this section, shows how to execute a
dynamic SELECT statement with the following conditions:
v The SELECT returns more than one row.

Chapter 16. Using a system-descriptor area 16-9

The SELECT must be associated with a cursor, executed with the OPEN
statement, and have its return values retrieved with the FETCH...USING SQL
DESCRIPTOR statement.

v The SELECT has either no input parameters or no WHERE clause.
The OPEN statement does not need to include the USING clause.

v The SELECT has unknown columns in its select list.
The FETCH statement includes the USING SQL DESCRIPTOR clause to store the
return values in an sqlda structure.

This demo4 program is a version of the demo3 sample program (“Executing a
SELECT That Returns Multiple Rows” on page 17-11) that uses a system-descriptor
area to hold select-list columns. The demo4 program does not include exception
handling.
===
1. #include <stdio.h>
2. EXEC SQL define NAME_LEN 15;
3. main()
4. {
5. EXEC SQL BEGIN DECLARE SECTION;
6. mint i;
7. mint desc_count;
8. char demoquery[80];
9. char colname[19];

10. char result[NAME_LEN + 1];
11. EXEC SQL END DECLARE SECTION;

===

Lines 5 to 11
These lines declare host variables to hold the data that is obtained from the user
and the column values that are retrieved from the system-descriptor area.
===
12. printf("DEMO4 Sample ESQL program running.\n\n");
13. EXEC SQL connect to ’stores7’;
14. /* These next three lines have hard-wired both the query and
15. * the value for the parameter. This information could have been
16. * been entered from the terminal and placed into the strings
17. * demoquery and the query value string (queryvalue),

* respectively.
18. */
19. sprintf(demoquery, "%s %s",
20. "select fname, lname from customer",
21. "where lname < ’C’ ");
22. EXEC SQL prepare demo4id from :demoquery;
23. EXEC SQL declare demo4cursor cursor for demo4id;
24. EXEC SQL allocate descriptor ’demo4desc’ with max 4;
25. EXEC SQL open demo4cursor;

===

Lines 14 to 22
These lines assemble the character string for the statement (in demoquery) and
prepare it as the demo4id statement identifier. For more information about these
steps, see “Assembling and Preparing the SQL Statement” on page 14-2.

16-10 IBM Informix ESQL/C Programmer’s Manual

Line 23
This line declares the demo4cursor cursor for the prepared statement identifier,
demo4id. All non-singleton SELECT statements must have a declared cursor.

Line 24
To be able to use a system-descriptor area for the select-list columns, you must first
allocate it. This ALLOCATE DESCRIPTOR statement allocates the demo4desc
system-descriptor area with four item descriptors.

Line 25
The database server executes the SELECT statement when it opens the
demo4cursor cursor. If the WHERE clause of your SELECT statement contains
input parameters, you also need to specify the USING SQL DESCRIPTOR clause of
the OPEN statement. (See “Handling a Parameterized SELECT Statement” on page
16-22.)
===
26. EXEC SQL describe demo4id using sql descriptor ’demo4desc’;
27. EXEC SQL get descriptor ’demo4desc’ :desc_count = COUNT;
28. printf("There are %d returned columns:\n", desc_count);
29. /* Print out what DESCRIBE returns */
30. for (i = 1; i <= desc_count; i++)
31. prsysdesc(i);
32. printf("\n\n");

===

Line 26
The DESCRIBE statement describes the select-list columns for the prepared
statement in the demo4id statement identifier. For this reason, the DESCRIBE must
follow the PREPARE. This DESCRIBE includes the USING SQL DESCRIPTOR
clause to specify the demo4desc system-descriptor area as the location for these
column descriptions.

Lines 27 and 28
Line 27 uses the GET DESCRIPTOR statement to obtain the number of select-list
columns found by the DESCRIBE. This number is read from the COUNT field of
the demo4desc system-descriptor area and saved in the desc_count host variable.
Line 28 displays this information to the user.

Lines 29 to 31
This for loop goes through the item descriptors for the columns of the select list. It
uses the desc_count host variable to determine the number of item descriptors
initialized by the DESCRIBE statement. For each item descriptor, the for loop calls
the prsysdesc() function (line 31) to save information such as the data type, length,
and name of the column in host variables. See lines 58 to 77 for a description of
prsysdesc().
===
33. for (;;)
34. {
35. EXEC SQL fetch demo4cursor using sql descriptor ’demo4desc’;
36. if (strncmp(SQLSTATE, "00", 2) != 0)
37. break;
38. /* Print out the returned values */
39. for (i = 1; i <= desc_count; i++)
40. {
41. EXEC SQL get descriptor ’demo4desc’ VALUE :i
42. :colname=NAME, :result = DATA;

Chapter 16. Using a system-descriptor area 16-11

43. printf("Column: %s\tValue:%s\n ", colname, result);
44. }
45. printf("\n");
46. }

===

Lines 33 to 46
This inner for loop executes for each row fetched from the database. The FETCH
statement (line 35) includes the USING SQL DESCRIPTOR clause to specify the
demo4desc system-descriptor area as the location of the column values. After this
FETCH executes, the column values are stored in the specified system-descriptor
area.

The if statement (lines 36 and 37) tests the value of the SQLSTATE variable to
determine if the FETCH was successful. If SQLSTATE contains a class code other
than "00", then the FETCH generates a warning ("01"), the NOT FOUND
condition ("02"), or an error (> "02"). In any of these cases, line 37 ends the for
loop.

Lines 39 to 45 access the fields of the item descriptor for each column in the select
list. After each FETCH statement, the GET DESCRIPTOR statement (lines 41 and
42) loads the contents of the DATA field into a host variable of the appropriate
type and length. The second for loop (lines 39 to 44) ensures that GET
DESCRIPTOR is called for each column in the select list.

Important: In this GET DESCRIPTOR statement, the demo4 program assumes that
the returned columns are of the CHAR data type. If the program did
not make this assumption, it would need to check the TYPE and
LENGTH fields to determine the appropriate data type for the host
variable to hold the DATA value.

===
47. if(strncmp(SQLSTATE, "02", 2) != 0)
48. printf("SQLSTATE after fetch is %s\n", SQLSTATE);
49. EXEC SQL close demo4cursor;
50. /* free resources for prepared statement and cursor*/
51. EXEC SQL free demo4id;
52. EXEC SQL free demo4cursor;
53. /* free system-descriptor area */
54. EXEC SQL deallocate descriptor ’demo4desc’;
55. EXEC SQL disconnect current;
56. printf("\nDEMO4 Sample Program Over.\n\n");
57. }

===

Lines 47 and 48
Outside the for loop, the program tests the SQLSTATE variable again so that it can
notify the user in the event of successful execution, a runtime error, or a warning
(class code not equal to "02").

Line 49
After all the rows are fetched, the CLOSE statement closes the demo4cursor cursor.

Lines 50 to 54
These FREE statements release the resources that are allocated for the prepared
statement (line 51) and the database cursor (line 52).

16-12 IBM Informix ESQL/C Programmer’s Manual

The DEALLOCATE DESCRIPTOR statement (line 54) releases the memory
allocated to the demo4desc system-descriptor area. For more information, see
“Freeing Memory Allocated to a System-Descriptor Area” on page 16-8.
===
58. prsysdesc(index)
59. EXEC SQL BEGIN DECLARE SECTION;
60. PARAMETER mint index;
61. EXEC SQL END DECLARE SECTION;
62. {
63. EXEC SQL BEGIN DECLARE SECTION;
64. mint type;
65. mint len;
66. mint nullable;
67. char name[40];
68. EXEC SQL END DECLARE SECTION;
69. EXEC SQL get descriptor ’demo4desc’ VALUE :index
70. :type = TYPE,
71. :len = LENGTH,
72. :nullable = NULLABLE,
73. :name = NAME;
74. printf(" Column %d: type = %d, len = %d, nullable=%d, name =

%s\n",
75. index, type, len, nullable, name);
76. }

===

Lines 58 to 77
The prsysdesc() function displays information about a select-list column. It uses
the GET DESCRIPTOR statement to access one item descriptor from the
demo4desc system-descriptor area.

The GET DESCRIPTOR statement (lines 70 to 74) accesses the TYPE, LENGTH,
NULLABLE, and NAME fields from an item descriptor in demo4desc to provide
information about a column. It stores this information in host variables of
appropriate lengths and data types. The VALUE keyword indicates the number of
the item descriptor to access.

Executing a Singleton SELECT
The demo4 program, described in the previous section, assumes that the SELECT
statement returns more than one row and therefore the program associates the
statement with a cursor. If you know at the time that you write the program that
the dynamic SELECT always returns just one row, you can omit the cursor and use
the EXECUTE...INTO SQL DESCRIPTOR statement instead of the FETCH...USING
SQL DESCRIPTOR. You need to use the DESCRIBE statement to define the
select-list columns. For more information, see “Putting Column Values into a
System-Descriptor Area” on page 16-7.

Handling Unknown Return Values
For an introduction on how to handle unknown return values from a user-defined
function, see 15-18. This section describes how to use a system-descriptor area to
save values that a dynamically executed user-defined function returns.

To use a system-descriptor area to handle unknown function return values:

1. Assemble and prepare an EXECUTE FUNCTION statement.

Chapter 16. Using a system-descriptor area 16-13

The EXECUTE FUNCTION statement cannot include an INTO clause. For more
information, see “Assembling and Preparing the SQL Statement” on page 14-2.

2. Allocate a system-descriptor area with the ALLOCATE DESCRIPTOR
statement.
For more information, see “Allocating Memory for a System-Descriptor Area”
on page 16-3.

3. Determine the number and data type(s) of the return value(s) with the
DESCRIBE...USING SQL DESCRIPTOR statement.
The DESCRIBE...USING SQL DESCRIPTOR statement fills an item descriptor
for each value that the user-defined function returns. For more information
about DESCRIBE, see “Initializing the System-Descriptor Area” on page 16-4.

4. After the DESCRIBE statement, you can test the SQLCODE variable
(sqlca.sqlcode) for the SQ_EXECPROC defined constant to check for a prepared
EXECUTE FUNCTION statement.
This constant is defined in the sqlstype.h header file. For more information, see
“Determining the Statement Type” on page 15-9.

5. Execute the EXECUTE FUNCTION statement and store the return values in the
system-descriptor area.
The statement you use to execute a user-defined function depends on whether
the function is a noncursor function or a cursor function. The following sections
discuss how to execute each type of function.

6. Deallocate the system-descriptor area with the DEALLOCATE DESCRIPTOR
statement.
See “Freeing Memory Allocated to a System-Descriptor Area” on page 16-8.

Executing a noncursor function
A noncursor function returns only one row of return values to the application. Use
the EXECUTE...INTO SQL DESCRIPTOR statement to execute the function and
save the return value(s) in a system-descriptor area.

An external function that is not explicitly defined as an iterator function returns
only a single row of data. Therefore, you can use EXECUTE...INTO SQL
DESCRIPTOR to execute most external functions dynamically. This single row of
data consists of only one value because external function can only return a single
value. The system-descriptor area contains only one item descriptor with the single
return value.

An SPL function whose RETURN statement does not include the WITH RESUME
keywords returns only a single row of data. Therefore, you can use
EXECUTE...INTO SQL DESCRIPTOR to execute most SPL functions dynamically.
An SPL function can return one or more values at one time so the
system-descriptor area contains one or more item descriptors.

Warning: Because you usually do not know the number of returned rows that a
user-defined function returns, you cannot guarantee that only one row
will be returned. If you do not use a cursor to execute cursor function,
Informix ESQL/C generates a runtime error. Therefore, it is a good
practice to always associate a user-defined function with a function
cursor.

The following program fragment dynamically executes an SPL function called
items_pct. This SPL function calculates the percentage that the items of a given
manufacturer represent out of the total price of all items in the items table. It

16-14 IBM Informix ESQL/C Programmer’s Manual

accepts one argument, the manu_code value for the chosen manufacturer, and it
returns the percentage as a decimal value. The following figure shows the
items_pct SPL function.

The following program fragment uses a system-descriptor area to dynamically
execute an SPL function that returns more than one set of return values.
===
1. #include <stdio.h>
2. #include <ctype.h>
3. EXEC SQL include sqltypes;
4. EXEC SQL include sqlstype;
5. EXEC SQL include decimal;
6. EXEC SQL include datetime;
7. extern char statement[80];
8. main()
9. {

10. EXEC SQL BEGIN DECLARE SECTION;
11. int sp_cnt, desc_count;
12. char dyn_stmnt[80], rout_name[30];
13. EXEC SQL END DECLARE SECTION;
14. int whenexp_chk();
15. printf("Sample ESQL program to execute an SPL function

running.\n\n");
16. EXEC SQL whenever sqlerror call whenexp_chk;
17. EXEC SQL connect to ’stores7’;
18. printf("Connected to stores7 database.\n");
19. /* These next five lines hard-wire the execute function
20. * statement. This information could have been entered
21. * by the user and placed into the string dyn_stmnt.
22. */
23. stcopy("items_pct(\"HSK\")", rout_name);
24. sprintf(dyn_stmnt, "%s %s",
25. "execute function", rout_name);

===

Lines 19 to 25
The call to sprintf() (line 24) assembles the character string for the EXECUTE
FUNCTION statement that executes the items_pct() SPL function.
===
26. EXEC SQL prepare spid from :dyn_stmnt;
27. EXEC SQL allocate descriptor ’spdesc’;
28. EXEC SQL describe spid using sql descriptor ’spdesc’;
29. if(SQLCODE != SQ_EXECPROC)
30. {

create function items_pct(mac char(3)) returning decimal;
define tp money;
define mc_tot money;
define pct decimal;
let tp = (select sum(total_price) from items);
let mc_tot = (select sum(total_price) from items

where manu_code = mac);
let pct = mc_tot / tp;
return pct;

end function;

Figure 16-1. Code for items_pct SPL function

Chapter 16. Using a system-descriptor area 16-15

31. printf("\nPrepared statement is not EXECUTE FUNCTION.\n");
32. exit();
33. }

===

Line 26
The PREPARE statement then creates the spid statement identifier for the
EXECUTE FUNCTION statement. For more information about these steps, see
“Assembling and Preparing the SQL Statement” on page 14-2.

Line 27
The ALLOCATE DESCRIPTOR statement allocates the spdesc system-descriptor
area. For more information, see “Allocating Memory for a System-Descriptor Area”
on page 16-3.

Lines 28 to 33
The DESCRIBE statement determines the number and data types of values that the
items_pct SPL function returns. This DESCRIBE includes the USING SQL
DESCRIPTOR clause to specify the spdesc system-descriptor area as the location
for these descriptions.

On line 28, the program tests the value of the SQLCODE variable (sqlca.sqlcode)
against the constant values defined in the sqlstype.h file to verify that the
EXECUTE FUNCTION statement was prepared. (For more information, see
“Determining the Statement Type” on page 15-9.)
===
34. EXEC SQL get descriptor ’spdesc’ :sp_cnt = COUNT;
35. if(sp_cnt == 0)
36. {
37. sprintf(dyn_stmnt, "%s %s", "execute procedure", rout_name);
38. EXEC SQL prepare spid from :dyn_stmnt;
39. EXEC SQL execute spid;
40. }
41. else
42. {
43. EXEC SQL declare sp_curs cursor for spid;
44. EXEC SQL open sp_curs;
45. while(getrow("spdesc"))
46. disp_data(:sp_cnt, "spdesc");
47. EXEC SQL close sp_curs;
48. EXEC SQL free sp_curs;
49. }

===

Lines 34 to 40
To obtain the number of return values in a host variable, the GET DESCRIPTOR
statement retrieves the value of the COUNT field into a host variable. This value is
useful when you need to determine how many values the SPL routine returns. If
the SPL routine does not return values, that is, the value of COUNT is zero, the
SPL routine is a procedure, not a function. Therefore, the program prepares an
EXECUTE PROCEDURE statement (line 38) and then uses the EXECUTE statement
(line 39) to execute the procedure. The EXECUTE statement does not need to use
the system-descriptor area because the SPL procedure does not have any return
values.

16-16 IBM Informix ESQL/C Programmer’s Manual

Lines 41 to 49
If the SPL routine does return values, that is, if the value of COUNT is greater than
zero, the program declares and opens the sp_curs cursor for the prepared SPL
function.

A while loop (lines 45 and 46) executes for each set of values that is returned by
the SPL function. This loop calls the getrow() function to fetch one set of values
into the spdesc system-descriptor area. It then calls the disp_data() function to
display the returned values. For descriptions of the getrow() and disp_data()
functions, see “Guide to the dyn_sql.ec File” on page 16-28.

After all the sets of return values are returned, the CLOSE statement (line 47)
closes the sp_curs cursor and the FREE statement (line 48) releases the resources
allocated to the cursor.
===
50. EXEC SQL free spid;
51. EXEC SQL deallocate descriptor ’spdesc’;
52. EXEC SQL disconnect current;
53. }

===

Lines 50 and 51
This FREE statement releases the resources allocated for the prepared statement.
The DEALLOCATE DESCRIPTOR statement releases the memory allocated to the
spdesc system-descriptor area. For more information, see “Freeing Memory
Allocated to a System-Descriptor Area” on page 16-8.

Executing a Cursor Function
A cursor function can return one or more rows of return values to the application.
To execute a cursor function, you must associate the EXECUTE FUNCTION
statement with a function cursor and use the FETCH...INTO SQL DESCRIPTOR
statement to save the return value(s) in a system-descriptor area.

To use a system-descriptor area to hold cursor-function return values:

1. Declare a function cursor for the user-defined function.
Use the DECLARE statement to associate the EXECUTE FUNCTION statement
with a function cursor.

2. Use the OPEN statement to execute the function and open the cursor.
3. Use the FETCH...USING SQL DESCRIPTOR statement to retrieve the return

values from the cursor into the system-descriptor area.
For more information, see “Putting Column Values into a System-Descriptor
Area” on page 16-7.

4. Use the GET DESCRIPTOR statement to retrieve the return values from the
system-descriptor area into host variables
The DATA field of each item descriptor contains the return values. For more
information, see “Assigning and Obtaining Values from a System-Descriptor
Area” on page 16-5.

5. Deallocate the system-descriptor area with the DEALLOCATE DESCRIPTOR
statement.
For more information, see “Freeing Memory Allocated to a System-Descriptor
Area” on page 16-8.

Chapter 16. Using a system-descriptor area 16-17

Only an external function that is defined as an iterator function can return more
than one row of data. Therefore, you must define a function cursor to execute an
iterator function dynamically. Each row of data consists of only one value because
an external function can only return a single value. For each row, the
system-descriptor area contains only one item descriptor with the single return
value.

An SPL function whose RETURN statement includes the WITH RESUME
keywords can return one or more rows of data. Therefore, you must define a
function cursor to execute these SPL functions dynamically. Each row of data can
consists of one or more values because an SPL function can return one or more
values at one time. For each row, the system-descriptor area contains an item
descriptor for each return value.

Handling an unknown column list
For an introduction on how to handle columns in a VALUES clause of an INSERT,
see 15-17. This section describes how to use a system-descriptor area to handle the
INSERT...VALUES statement.

To use a system-descriptor area to handle input parameters in an INSERT:

1. Prepare the INSERT statement (with the PREPARE statement) to give it a
statement identifier. For more information, see “Assembling and Preparing the
SQL Statement” on page 14-2.

2. Allocate a system-descriptor area with the ALLOCATE DESCRIPTOR
statement. For more information, see “Allocating Memory for a
System-Descriptor Area” on page 16-3.

3. Determine the number and data types of the columns with the
DESCRIBE...USING SQL DESCRIPTOR statement. The DESCRIBE statement
fills an item descriptor for each column in the select list. For more information
about DESCRIBE, see “Initializing the System-Descriptor Area” on page 16-4.

4. Save the number of unknown columns in a host variable with the GET
DESCRIPTOR statement, which obtains the value of the COUNT field.

5. Set the columns to their values with the SET DESCRIPTOR statement, which
sets the appropriate DATA and VALUE fields. The column values must be
compatible with the data type of their associated column. If you want to insert
a NULL value, set the INDICATOR field to -1, and do not specify any DATA
field in the SET DESCRIPTOR statement. For more information about SET
DESCRIPTOR, see “Assigning and Obtaining Values from a System-Descriptor
Area” on page 16-5.

6. Execute the INSERT statement to insert the values into the database.
The following sections demonstrate how to execute a simple INSERT statement
that inserts only one row and one that uses an insert cursor to insert several
rows from an insert buffer.

7. Deallocate the system-descriptor area with the DEALLOCATE DESCRIPTOR
statement. See “Freeing Memory Allocated to a System-Descriptor Area” on
page 16-8.

Executing a Simple Insert
The following steps outline how to execute a simple INSERT statement with a
system-descriptor area:
1. Prepare the INSERT statement (with the PREPARE statement) and give it a

statement identifier.

16-18 IBM Informix ESQL/C Programmer’s Manual

2. Set the columns to their values with the SET DESCRIPTOR statement.
3. Execute the INSERT statement with the EXECUTE...USING SQL DESCRIPTOR

statement.

The sample program described on the following pages shows how to execute a
dynamic INSERT statement. The program inserts two TEXT values into the txt_a
table. It reads the text values from a named file called desc_ins.txt. The program
then selects columns from this table and stores the TEXT values in two named
files, txt_out1 and txt_out2. The program illustrates the use of a system-descriptor
area to handle the columns that are in the column list. This INSERT statement is
not associated with an insert cursor.
===
1. EXEC SQL include locator;
2. EXEC SQL include sqltypes;
3. main()
4. {
5. EXEC SQL BEGIN DECLARE SECTION;
6. int i;
7. int cnt;
8. ifx_loc_t loc1;
9. ifx_loc_t loc2;

10. EXEC SQL END DECLARE SECTION;
11. EXEC SQL create database txt_test;
12. chkerr("CREATE DATABASE txt_test");
13. EXEC SQL create table txt_a (t1 text not null, t2 text);
14. chkerr("CREATE TABLE t1");
15. /* The INSERT statement could have been created at runtime. */
16. EXEC SQL prepare sid from ’insert into txt_a values (?, ?)’;
17. chkerr("PREPARE sid");

===

Lines 5 to 10
These lines declare host variables to hold the column values to insert (obtained
from the user).

Lines 15 to 17
These lines assemble the character string for the statement and prepare it as the sid
statement identifier. The input parameter specifies the missing columns of the
INSERT statement. The INSERT statement is hard coded here, but it can be created
at runtime. For more information about these steps, see “Assembling and
Preparing the SQL Statement” on page 14-2.
===
18. EXEC SQL allocate descriptor ’desc’;
19. chkerr("ALLOCATE DESCRIPTOR desc");
20. EXEC SQL describe sid using sql descriptor ’desc’;
21. chkerr("DESCRIBE sid");
22. EXEC SQL get descriptor ’desc’ :cnt = COUNT;
23. chkerr("GET DESCRIPTOR desc");
24. for (i = 1; i <= cnt; i++)
25. prsysdesc(i);

===

Chapter 16. Using a system-descriptor area 16-19

Lines 18 and 19
To be able to use a system-descriptor area for the columns, you must first allocate
the system-descriptor area. This ALLOCATE DESCRIPTOR statement allocates a
system-descriptor area named desc.

Line 20 and 21
The DESCRIBE statement describes the columns for the prepared INSERT that sid
identifies. This DESCRIBE statement includes the USING SQL DESCRIPTOR clause
to specify the desc system-descriptor area as the location for these column
descriptions.

Lines 22 and 23
The GET DESCRIPTOR statement obtains the number of columns (COUNT field)
found by the DESCRIBE. This number is stored in the cnt host variable.

Lines 24 and 25
This for loop goes through the item descriptors for the columns of the INSERT
statement. It uses the cnt variable to determine the number of item descriptors that
are initialized by the DESCRIBE. For each item descriptor, the prsysdesc() function
saves information such as the data type, length, and name in host variables. For a
description of prsysdesc(), see lines 58 to 77 in 16-13.
===
26. loc1.loc_loctype = loc2.loc_loctype = LOCFNAME;
27. loc1.loc_fname = loc2.loc_fname = "desc_ins.txt";
28. loc1.loc_size = loc2.loc_size = -1;
29. loc1.loc_oflags = LOC_RONLY;
30. i = CLOCATORTYPE;
31. EXEC SQL set descriptor ’desc’ VALUE 1
32. TYPE = :i, DATA = :loc1;
33. chkerr("SET DESCRIPTOR 1");
34. EXEC SQL set descriptor ’desc’ VALUE 2
35. TYPE = :i, DATA = :loc2;
36. chkerr("SET DESCRIPTOR 2");
37. EXEC SQL execute sid using sql descriptor ’desc’;
38. chkerr("EXECUTE sid");

===

Lines 26 to 29
To insert a TEXT value, the program must first locate the value with an Informix
ESQL/C locator structure. The loc1 locator structure stores a TEXT value for the t1
column of the txt_a table; loc2 is the locator structure for the t2 column of txt_a.
(See line 13.) The program includes the Informix ESQL/C locator.h header file (line
1) to define the ifx_loc_t structure.

Both TEXT values are located in a named file (loc_loctype = LOCFNAME) called
desc_ins.txt. When you set the loc_size fields to -1, the locator structure tells
Informix ESQL/C to send the TEXT value to the database server in a single
operation. For more information about how to locate TEXT values in named files,
see “Inserting a Simple Large Object from a Named File” on page 7-20.

Lines 30 to 36
The first SET DESCRIPTOR statement sets the TYPE and DATA fields in the item
descriptor of the t1 column (VALUE 1). The data type is CLOCATORTYPE (defined
in the Informix ESQL/C sqltypes.h header file) to indicate that the column value is
stored in an Informix ESQL/C locator structure; the data is set to the loc1 locator

16-20 IBM Informix ESQL/C Programmer’s Manual

structure. The second SET DESCRIPTOR statement performs this same task for the
t2 column value; it sets its DATA field to the loc2 locator structure.

Lines 37 and 38
The database server executes the INSERT statement with the EXECUTE...USING
SQL DESCRIPTOR statement to obtain the new column values from the desc
system-descriptor area.
===
39. loc1.loc_loctype = loc2.loc_loctype = LOCFNAME;
40. loc1.loc_fname = "txt_out1";
41. loc2.loc_fname = "txt_out2";
42. loc1.loc_oflags = loc2.loc_oflags = LOC_WONLY;
43. EXEC SQL select * into :loc1, :loc2 from a;
44. chkerr("SELECT");
45. EXEC SQL free sid;
46. chkerr("FREE sid");
47. EXEC SQL deallocate descriptor ’desc’;
48. chkerr("DEALLOCATE DESCRIPTOR desc");
49. EXEC SQL close database;
50. chkerr("CLOSE DATABASE txt_test");
51. EXEC SQL drop database txt_test;
52. chkerr("DROP DATABASE txt_test");
53. EXEC SQL disconnect current;
54. }
55. chkerr(s)
56. char *s;
57. {
58. if (SQLCODE)
59. printf("%s error %d\n", s, SQLCODE);
60. }

===

Lines 39 to 44
The program uses the loc1 and loc2 locator structures to select the values just
inserted. These TEXT values are read into named files: the t1 column (in loc1) into
txt_out1 and the t2 column (in loc2) into txt_out2. The loc_oflags value of
LOC_WONLY means that this TEXT data will overwrite any existing data in these
output files.

Lines 45 to 48
The FREE statement (line 45) releases the resources allocated for the sid prepared
statement. Once a prepared statement was freed, it cannot be used again in the
program. The DEALLOCATE DESCRIPTOR statement (line 46) releases the
memory allocated to the desc system-descriptor area. For more information, see
“Freeing Memory Allocated to a System-Descriptor Area” on page 16-8.

Lines 55 to 60
The chkerr() function is a very simple exception-handling routine. It checks the
global SQLCODE variable for a nonzero value. Since zero indicates successful
execution of an SQL statement, the printf() (line 58) executes whenever a runtime
error occurs. For more detailed exception-handling routines, see Chapter 11,
“Exception handling,” on page 11-1.

Chapter 16. Using a system-descriptor area 16-21

Executing an INSERT That Is Associated with a Cursor
Your Informix ESQL/C program must still use the DESCRIBE and SET
DESCRIPTOR statements (“Handling an unknown column list” on page 16-18) to
use a system-descriptor area for column-list values of an INSERT statement that
inserts rows from an insert buffer. It must also use the PUT...USING SQL
DESCRIPTOR statement with an insert cursor, as follows:
1. Prepare the INSERT statement and associate it with an insert cursor with the

DECLARE statement. All multirow INSERT statements must have a declared
insert cursor.

2. Create the cursor for the INSERT statement with the OPEN statement.
3. Insert the first set of column values into the insert buffer with a PUT statement

and its USING SQL DESCRIPTOR clause. After this PUT statement, the column
values stored in the specified system-descriptor area are stored in the insert
buffer. Repeat the PUT statement within a loop until there are no more rows to
insert.

4. After all the rows are inserted, exit the loop and flush the insert buffer with the
FLUSH statement.

5. Close the insert cursor with the CLOSE statement.

You handle the insert cursor in much the same way as you handle the cursor
associated with a SELECT statement (“Handling an Unknown Select List” on page
16-9). For more information about how to use an insert cursor, see the PUT
statement in the IBM Informix Guide to SQL: Syntax.

Handling a Parameterized SELECT Statement
For an introduction on how to determine input parameters, see 15-17. This section
describes how to handle a parameterized SELECT statement with a
system-descriptor area. If a prepared SELECT statement has a WHERE clause with
input parameters of unknown number and data type, your IBM Informix ESQL/C
program must use a system-descriptor area to define the input parameters.

To use a system-descriptor area to define input parameters for a WHERE clause:

1. Determine the number and data types of the input parameters of the SELECT
statement. For more information, see “Determining Unknown Input
Parameters” on page 15-17.

2. Allocate a system-descriptor area and assign it a name with the ALLOCATE
DESCRIPTOR statement. For more information about ALLOCATE
DESCRIPTOR, see “Allocating Memory for a System-Descriptor Area” on page
16-3.

3. Indicate the number of input parameters in the WHERE clause with the SET
DESCRIPTOR statement, which sets the COUNT field.

4. Store the definition and value of each input parameter with the SET
DESCRIPTOR statement, which sets the DATA, TYPE, and LENGTH fields in
the appropriate item descriptor:
v The TYPE field must use the Informix ESQL/C data type constants defined

in the sqltypes.h header file to represent the data types of the input
parameters. For more information, see 15-13.

v For a CHAR or VARCHAR value, LENGTH is the size, in bytes, of the
character array; for a DATETIME or INTERVAL value, the LENGTH field
stores the encoded qualifiers.

16-22 IBM Informix ESQL/C Programmer’s Manual

Important: If you use X/Open code (and compile with the -xopen flag), you must
use the X/Open data type values for the TYPE and ITYPE fields. For
more information, see “Determining the Data Type of a Column” on
page 15-13.

If you use an indicator variable, you also need to set the INDICATOR field and
perhaps the IDATA, ILENGTH, and ITYPE fields (for non-X/Open applications
only). Use the VALUE keyword of SET DESCRIPTOR to identify the item
descriptor. For more information about SET DESCRIPTOR, see “Assigning and
Obtaining Values from a System-Descriptor Area” on page 16-5.
1. Pass the defined input parameters from the system-descriptor area to the

database server with the USING SQL DESCRIPTOR clause.
The statement that provides the input parameters depends on how many rows
that the SELECT statement returns. The following sections discuss how to
execute each type of SELECT statement.

2. Deallocate the system-descriptor area with the DEALLOCATE DESCRIPTOR
statement. For more information, see “Freeing Memory Allocated to a
System-Descriptor Area” on page 16-8.

Important: If the SELECT statement has unknown columns in the select list, your
program must also handle these columns with a system-descriptor
area. For more information, see “Handling an Unknown Select List” on
page 16-9.

The following sections demonstrate how to use a system-descriptor area to handle
a parameterized SELECT statement that returns many rows and one that returns
only a single row.

Executing a parameterized SELECT that returns multiple rows
The sample program described on the following pages shows how to use a
dynamic SELECT statement with the following conditions:
v The SELECT returns more than row.

The SELECT must be associated with a cursor, executed with the OPEN
statement, and have its return values retrieved with the FETCH...USING SQL
DESCRIPTOR statement.

v The SELECT has input parameters in its WHERE clause.
The OPEN statement includes the USING SQL DESCRIPTOR clause to provide
the parameter values in a system-descriptor area.

v The SELECT has unknown columns in the select list.
The FETCH statement includes the USING SQL DESCRIPTOR clause to store the
return values in a system-descriptor area.

This program is a version of the demo4.ec sample program; demo4 uses a
system-descriptor area for select-list columns while this modified version of demo4
uses a system-descriptor area for both select-list columns and input parameters of a
WHERE clause.
===
1. #include <stdio.h>
2. EXEC SQL include sqltypes;
3.
4. EXEC SQL define NAME_LEN 15;
5. EXEC SQL define MAX_IDESC 4;
6. main()

Chapter 16. Using a system-descriptor area 16-23

7. {
8. EXEC SQL BEGIN DECLARE SECTION;
9. int i;

10. int desc_count;
11. char demoquery[80];
12. char queryvalue[2];
13. char result[NAME_LEN + 1];
14. EXEC SQL END DECLARE SECTION;
15. printf("Modified DEMO4 Sample ESQL program running.\n\n");
16. EXEC SQL connect to ’stores7’;

===

Lines 8 to 14
These lines declare host variables to hold the data obtained from the user and the
column values retrieved from the system descriptor.
===
17. /* These next three lines have hard-wired both the query and
18. * the value for the parameter. This information could have
19. * been entered from the terminal and placed into the strings
20. * demoquery and queryvalue, respectively.
21. */
22. sprintf(demoquery, "%s %s",
23. "select fname, lname from customer",
24. "where lname < ? ");
25. EXEC SQL prepare demoid from :demoquery;
26. EXEC SQL declare democursor cursor for demoid;
27. EXEC SQL allocate descriptor ’demodesc’ with max MAX_IDESC;

===

Lines 17 to 25
The lines assemble the character string for the statement (in demoquery) and
prepare it as the demoid statement identifier. The question mark (?) indicates the
input parameter in the WHERE clause. For more information about these steps, see
“Assembling and Preparing the SQL Statement” on page 14-2.

Line 26
This line declares the democursor cursor for the prepared statement identifier
demoid. All nonsingleton SELECT statements must have a declared cursor.

Line 27
To be able to use a system-descriptor area for the input parameters, you must first
allocate the system-descriptor area. This ALLOCATE DESCRIPTOR statement
allocates the demodesc system-descriptor area. For more information about
ALLOCATE DESCRIPTOR, see “Allocating Memory for a System-Descriptor Area”
on page 16-3.
===
28. /* This section of the program must evaluate :demoquery
29. * to count how many question marks are in the where
30. * clause and what kind of data type is expected for each
31. * question mark.
32. * For this example, there is one parameter of type
33. * char(15). It would then obtain the value for
34. * :queryvalue. The value of queryvalue is hard-wired in
35. * the next line.
36. */
37. sprintf(queryvalue, "C");

16-24 IBM Informix ESQL/C Programmer’s Manual

38. desc_count = 1;
39. if(desc_count > MAX_IDESC)
40. {
41. EXEC SQL deallocate descriptor ’demodesc’;
42. EXEC SQL allocate descriptor ’demodesc’ with max :desc_count;
43. }
44. /* number of parameters to be held in descriptor is 1 */
45. EXEC SQL set descriptor ’demodesc’ COUNT = :desc_count;

===

Lines 28 to 38
These lines simulate the dynamic entry of the input parameter value. Although the
parameter value is hard-coded here (line 37), the program would more likely
obtain the value from user input. Line 38 simulates code that would determine
how many input parameters exist in the statement string. If you did not know this
value, you would need to include C code at this point to parse the statement string
for the question mark (?) character.

Lines 39 to 43
This if statement determines if the demodesc system-descriptor area contains
enough item descriptors for the parameterized SELECT statement. It compares the
number of input parameters in the statement string (desc_count) with the number
of item descriptors currently allocated (MAX_IDESC). If the program has not
allocated enough item descriptors, the program deallocates the existing
system-descriptor area (line 41) and allocates a new one (line 42); it uses the actual
number of input parameters in the WITH MAX clause to specify the number of
item descriptors to allocate.

Lines 44 and 45
This SET DESCRIPTOR statement stores the number of input parameters in the
COUNT field of the demodesc system-descriptor area.
===
46. /* Put the value of the parameter into the descriptor */
47. i = SQLCHAR;
48. EXEC SQL set descriptor ’demodesc’ VALUE 1
49. TYPE = :i, LENGTH = 15, DATA = :queryvalue;
50. /* Associate the cursor with the parameter value */
51. EXEC SQL open democursor using sql descriptor :demodesc;
52. /*Reuse the descriptor to determine the contents of the Select-

* list*/
53. EXEC SQL describe qid using sql descriptor ’demodesc’;
54. EXEC SQL get descriptor ’demodesc’ :desc_count = COUNT;
55. printf("There are %d returned columns:\n", desc_count);
56. /* Print out what DESCRIBE returns */
57. for (i = 1; i <= desc_count; i++)
58. prsysdesc(i);
59. printf("\n\n");

===

Lines 47 to 49
This SET DESCRIPTOR statement sets the TYPE, LENGTH (for a CHAR value),
and DATA fields for each of the parameters in the WHERE clause. The program
only calls SET DESCRIPTOR once because it assumes that the SELECT statement
has only one input parameter. If you do not know the number of input parameters
at compile time, put the SET DESCRIPTOR in a loop for which the desc_count
host variable controls the number of iterations.

Chapter 16. Using a system-descriptor area 16-25

Lines 50 and 51
The database server executes the SELECT statement when it opens the democursor
cursor. This OPEN statement includes the USING SQL DESCRIPTOR clause to
specify the demodesc system-descriptor area as the location of the input-parameter
values.

Lines 52 to 59
The program also uses the demodesc system-descriptor area to hold the columns
that are returned by the SELECT statement. The DESCRIBE statement (line 53)
examines the select list to determine the number and data types of these columns.
The GET DESCRIPTOR statement (line 54) then obtains the number of described
columns from the COUNT field of demodesc. Lines 55 to 58 then display the
column information for each returned column. For more information about how to
use a system-descriptor area to receive column values, see “Handling an Unknown
Select List” on page 16-9.
===
60. for (;;)
61. {
62. EXEC SQL fetch democursor using sql descriptor ’demodesc’;
63. if (sqlca.sqlcode != 0) break;
64. for (i = 1; i <= desc_count; i++)
65. {
66. EXEC SQL get descriptor ’demodesc’ VALUE :i :result = DATA;
67. printf("%s ", result);
68. }
69. printf("\n");
70. }
71. if(strncmp(SQLSTATE, "02", 2) != 0)
72. printf("SQLSTATE after fetch is %s\n", SQLSTATE);
73. EXEC SQL close democursor;
74. EXEC SQL free demoid; /* free resources for statement */
75. EXEC SQL free democursor; /* free resources for cursor */
76. /* free system-descriptor area */
77. EXEC SQL deallocate descriptor ’demodesc’;
78. EXEC SQL disconnect current;
79. printf("\nModified DEMO4 Program Over.\n\n");
80. }

===

Lines 60 to 70
These lines access the fields of the item descriptor for each column in the select
list. After each FETCH statement, the GET DESCRIPTOR statement loads the
contents of the DATA field into the result host variable.

Line 73
After all the rows are fetched, the CLOSE statement frees the resources allocated to
the active set of the democursor cursor.

Lines 74 to 77
The FREE statement on line 74 frees the resources allocated to the demoid
statement identifier while the FREE statement on line 75 frees the resources to the
democursor cursor. The DEALLOCATE DESCRIPTOR statement frees the resources
allocated to the demodesc system-descriptor area. For more information, see
“Freeing Memory Allocated to a System-Descriptor Area” on page 16-8.

16-26 IBM Informix ESQL/C Programmer’s Manual

Executing a Parameterized Singleton SELECT
The instructions in the preceding section assume that the parameterized SELECT
statement returns more than one row and, therefore, is associated with a cursor. If
you know at the time you write the program that the parameterized SELECT
statement will always return just one row, you can omit the cursor and use the
EXECUTE...USING SQL DESCRIPTOR...INTO statement instead of the
OPEN...USING SQL DESCRIPTOR statement to specify parameter values from a
system-descriptor area. For more information, see “Specifying Input Parameter
Values” on page 16-7.

Handling a parameterized user-defined routine
For an introduction on how to determine input parameters, see “Determining
Unknown Input Parameters” on page 15-17. This section describes how to handle a
parameterized user-defined routine with a system-descriptor area. The following
statements execute user-defined routines:
v The EXECUTE FUNCTION statement executes a user-defined function (external

and SPL).
v The EXECUTE PROCEDURE statement executes a user-defined procedure

(external and SPL).

If a prepared EXECUTE PROCEDURE or EXECUTE FUNCTION statement has
arguments specified as input parameters of unknown number and data type, your
Informix ESQL/C program can use a system-descriptor area to define the input
parameters.

Executing a parameterized function
You handle the input parameters of a user-defined function in the same way you
handle input parameters in the WHERE clause of a SELECT statement, as follows:
v Execute a noncursor function in the same way as a singleton SELECT statement.

If you know at the time that you write the program that the dynamic
user-defined function always returns just one row, you can use the
EXECUTE...USING SQL DESCRIPTOR...INTO statement to provide the
argument values from a system-descriptor area and to execute the function. For
more information, see “Executing a Parameterized Singleton SELECT” on page
16-27.

v Execute a cursor function in the same way as a SELECT statement that returns
one or more rows.
If you are not sure at the time that you write the program that the dynamic
user-defined function always returns just one row, define a function cursor and
use the OPEN...USING SQL DESCRIPTOR statement to provide the argument
values from a system-descriptor area. For more information, see “Executing a
parameterized SELECT that returns multiple rows” on page 16-23.

The only difference between the execution of these EXECUTE FUNCTION and
SELECT statements is that you prepare the EXECUTE FUNCTION statement for
the noncursor function, instead of the SELECT statement.

Executing a parameterized procedure
To execute a parameterized user-defined procedure, you can use the
EXECUTE...USING SQL DESCRIPTOR statement to provide the argument values
from a system-descriptor area and to execute the procedure. You handle the input
parameters of a user-defined procedure in the same way you handle input

Chapter 16. Using a system-descriptor area 16-27

parameters in a noncursor function. The only difference between the execution of
the EXECUTE PROCEDURE statement and the EXECUTE FUNCTION statement
(for a noncursor function) is that you do not need to specify the INTO clause of
the EXECUTE...USING SQL DESCRIPTOR statement for the user-defined
procedure. For more information, see “Executing a parameterized function” on
page 16-27.

Handling a Parameterized UPDATE or DELETE Statement
How you determine the input parameters in the WHERE clause of a DELETE or
UPDATE statement is very similar to how you determine them in the WHERE
clause of a SELECT statement. For more information, see “Handling a
Parameterized SELECT Statement” on page 16-22. The major differences between
these two types of dynamic parameterized statements are as follows:
v You do not need to use a cursor to handle a DELETE or UPDATE statement.

Therefore, you provide the parameter values from a system-descriptor area with
the USING SQL DESCRIPTOR clause of the EXECUTE statement instead of the
OPEN statement.

v You can use the DESCRIBE...USING SQL DESCRIPTOR statement to determine
if the DELETE or UPDATE statement has a WHERE clause. For more
information, see “Checking for a WHERE Clause” on page 15-15.

The dyn_sql Program
The dyn_sql.ec program is an Informix ESQL/C demonstration program that uses
dynamic SQL. The program prompts the user to enter a SELECT statement for the
stores7 demonstration database and then uses a system-descriptor area to execute
the SELECT dynamically.

By default, the program opens the stores7 database. If the demonstration database
was given a name other than stores7, however, you can specify the database name
on the command line. The following command runs the dyn_sql executable on the
mystores7 database:
dyn_sql mystores7

Compiling the Program
Use the following command to compile the dyn_sql program:
esql -o dyn_sql dyn_sql.ec

The -o dyn_sql option causes the executable program to be named dyn_sql.
Without the -o option, the name of the executable program defaults to a.out. For
more information about the esql preprocessor command, see “Using the esql
Command” on page 2-4.

Guide to the dyn_sql.ec File
===
1. /*
2. This program prompts the user to enter a SELECT statement
3. for the stores7 database. It processes the statement using

dynamic sql
4. and system descriptor areas and displays the rows returned by the
5. database server.
6. */
7. #include <stdio.h>

16-28 IBM Informix ESQL/C Programmer’s Manual

8. #include <stdlib.h>
9. #include <ctype.h>

10. EXEC SQL include sqltypes;
11. EXEC SQL include locator;
12. EXEC SQL include datetime;
13. EXEC SQL include decimal;
14. #define WARNNOTIFY 1
15. #define NOWARNNOTIFY 0
16. #define LCASE(c) (isupper(c) ? tolower(c) : (c))
17. #define BUFFSZ 256
18. extern char statement[80];

===

Lines 7 to 13
These lines specify C and Informix ESQL/C files to include in the program. The
stdio.h file enables dyn_sql to use the standard C I/O library. The stdlib.h file
contains string-to-number conversion functions, memory allocation functions, and
other miscellaneous standard library functions. The ctypes.h file contains macros
that check the attributes of a character. For example, one macro determines
whether a character is uppercase or lowercase.

The sqltypes.h header file contains symbolic constants that correspond to the data
types that are found in Informix databases. The program uses these constants to
determine the data types of columns that the dynamic SELECT statement returns.

The locator.h file contains the definition of the locator structure (ifx_loc_t), which
is the type of host variable needed for TEXT and BYTE columns. The datetime.h
file contains definitions of the datetime and interval structures, which are the data
types of host variables for DATETIME and INTERVAL columns. The decimal.h file
contains the definition of the dec_t structure, which is the type of host variable
needed for DECIMAL columns.

Lines 14 to 17
The exp_chk() exception-handling function uses the WARNNOTIFY and
NOWARNNOTIFY constants (lines 14 and 15). The second argument of exp_chk()
tells the function to display information in the SQLSTATE and SQLCODE variables
for warnings (WARNNOTIFY) or not to display information for warnings
(NOWARNNOTIFY). The exp_chk() function is in the exp_chk.ec source file. For a
description, see “Guide to the exp_chk.ec File” on page 11-32.

Line 16 defines LCASE, a macro that converts an uppercase character to a
lowercase character. Line 17 defines BUFFSZ to be the number 256. The program
uses BUFFSZ to specify the size of arrays that store input from the user.

Line 18
Line 18 declares statement as an external global variable to hold the name of the
last SQL statement that the program asked the database server to execute. The
exception-handling functions use this information. (See lines 399 to 406.)
===
19. EXEC SQL BEGIN DECLARE SECTION;
20. ifx_loc_t lcat_descr;
21. ifx_loc_t lcat_picture;
22. EXEC SQL END DECLARE SECTION;
23. mint whenexp_chk();
24. main(argc, argv)
25. mint argc;

Chapter 16. Using a system-descriptor area 16-29

26. char *argv[];
27. {
28. int4 ret, getrow();
29. short data_found = 0;
30. EXEC SQL BEGIN DECLARE SECTION;
31. char ans[BUFFSZ], db_name[30];
32. char name[40];
33. mint sel_cnt, i;
34. short type;
35. EXEC SQL END DECLARE SECTION;
36. printf("DYN_SQL Sample ESQL Program running.\n\n");
37. EXEC SQL whenever sqlerror call whenexp_chk;
38. if (argc > 2) /* correct no. of args? */
39. {
40. printf("\nUsage: %s [database]\nIncorrect no. of

argument(s)\n",
41. argv[0]);
42. printf("\nDYN_SQL Sample Program over.\n\n");
43. exit(1);
44. }
45. strcpy(db_name, "stores7");
46. if(argc == 2)
47. strcpy(db_name, argv[1]);
48. sprintf(statement,"CONNECT TO %s",db_name);
49. EXEC SQL connect to :db_name;
50. printf("Connected to %s\n", db_name);
51. ++argv;

===

Lines 19 to 23
Lines 19 to 23 define the global host variables that are used in SQL statements.
Lines 20 and 21 define the locator structures that are the host variables for the
cat_descr and cat_picture columns of the catalog table. Line 23 declares the
whenexp_chk() function, which the program calls when an error occurs on an SQL
statement.

Lines 24 to 27
The main() function is the point where the program begins to execute. The argc
parameter gives the number of arguments from the command line when the
program was invoked. The argv parameter is an array of pointers to command-line
arguments. This program expects only one argument (the name of the database to
be accessed), and it is optional.

Lines 28 to 51
Line 28 defines an int4 data type (ret) to receive a return value from the getrow()
function. Line 28 also declares that the getrow() function returns a int4 data type.
Lines 30 to 35 define the host variables that are local to the main() program block.
Line 37 executes the WHENEVER statement to transfer control to whenexp_chk()
if any errors occur in SQL statements. For more information about the
whenexp_chk() function, see “Guide to the exp_chk.ec File” on page 11-32.

Lines 38 to 51 establish a connection to a database. If argc equals 2, the program
assumes that the user entered a database name on the command line (by
convention the first argument is the name of the program), and the program opens
this database. If the user did not enter a database name on the command line, the
program opens the stores7 database (see line 45), which is the default. In both

16-30 IBM Informix ESQL/C Programmer’s Manual

cases, the program connects to the default database server that is specified by the
INFORMIXSERVER environment variable because no database server is specified.
===
52. while(1)
53. {
54. /* prompt for SELECT statement */
55. printf("\nEnter a SELECT statement for the %s database",
56. db_name);
57. printf("\n\t(e.g. select * from customer;)\n");
58. printf("\tOR a ’;’ to terminate program:\n>> ");
59. if(!getans(ans, BUFFSZ))
60. continue;
61. if (*ans == ’;’)
62. {
63. strcpy(statement, "DISCONNECT");
64. EXEC SQL disconnect current;
65. printf("\nDYN_SQL Sample Program over.\n\n");
66. exit(1);
67. }
68. /* prepare statement id */
69. printf("\nPreparing statement (%s)...\n", ans);
70. strcpy(statement, "PREPARE sel_id");
71. EXEC SQL prepare sel_id from :ans;
72. /* declare cursor */
73. printf("Declaring cursor ’sel_curs’ for SELECT...\n");
74. strcpy(statement, "DECLARE sel_curs");
75. EXEC SQL declare sel_curs cursor for sel_id;
76. /* allocate descriptor area */
77. printf("Allocating system-descriptor area...\n");
78. strcpy(statement, "ALLOCATE DESCRIPTOR selcat");
79. EXEC SQL allocate descriptor ’selcat’;
80. /* Ask the database server to describe the statement */
81. printf("Describing prepared SELECT...\n");
82. strcpy(statement,
83. "DESCRIBE sel_id USING SQL DESCRIPTOR selcat");
84. EXEC SQL describe sel_id using sql descriptor ’selcat’;
85. if (SQLCODE != 0)
86. {
87. printf("** Statement is not a SELECT.\n");
88. free_stuff();
89. strcpy(statement, "DISCONNECT");
90. EXEC SQL disconnect current;
91. printf("\nDYN_SQL Sample Program over.\n\n");
92. exit(1);
93. }

===

Lines 52 to 67
The while(1) on line 52 begins a loop that continues to the end of the main()
function. Lines 55 to 58 prompt the user to enter either a SELECT statement or, to
terminate the program, a semicolon. The getans() function receives the input from
the user. If the first character is not a semicolon, the program continues to process
the input.

Chapter 16. Using a system-descriptor area 16-31

Lines 68 to 75
The PREPARE statement prepares the SELECT statement (which the user enters)
from the array ans[] and assigns it the statement identifier sel_id. The PREPARE
statement enables the database server to parse, validate, and generate an execution
plan for the statement.

The DECLARE statement (lines 72 to 75) creates the sel_curs cursor for the set of
rows that the SELECT statement returns, in case it returns more than one row.

Lines 76 to 79
The ALLOCATE DESCRIPTOR statement allocates the selcat system-descriptor
area in memory. The statement does not include the WITH MAX clause and,
therefore, uses the default memory allocation, which is for 100 columns.

Lines 80 to 93
The DESCRIBE statement obtains information from the database server about the
statement that is in the sel_id statement identifier. The database server returns the
information in the selcat system-descriptor area, which the preceding ALLOCATE
DESCRIPTOR statement creates. The information that DESCRIBE puts into the
system-descriptor area includes the number, names, data types, and lengths of the
columns in the select list.

The DESCRIBE statement also sets the SQLCODE variable to a number that
indicates the type of statement that was described. To check whether the statement
type is SELECT, line 85 compares the value of SQLCODE to 0 (the value defined
in the sqlstypes.h file for a SELECT statement with no INTO TEMP clause). If the
statement is not a SELECT, line 87 displays a message to that effect and the
program frees the cursor and the resources that have been allocated. Then it closes
the connection and exits.
===
94. /* Determine the number of columns in the select list */
95. printf("Getting number of described values from ");
96. printf("system-descriptor area...\n");
97. strcpy(statement, "GET DESCRIPTOR selcat: COUNT field");
98. EXEC SQL get descriptor ’selcat’ :sel_cnt = COUNT;
99. /* open cursor; process select statement */
100. printf("Opening cursor ’sel_curs’...\n");
101. strcpy(statement, "OPEN sel_curs");
102. EXEC SQL open sel_curs;
103. /*
104. * The following loop checks whether the cat_picture or
105. * cat_descr columns are described in the system-descriptor area.
106. * If so, it initializes a locator structure to read the simple
107. * large-object data into memory and sets the address of the
108. * locator structure in the system-descriptor area.
109. */
110. for(i = 1; i <= sel_cnt; i++)
111. {
112. strcpy(statement,
113. "GET DESCRIPTOR selcat: TYPE, NAME fields");
114. EXEC SQL get descriptor ’selcat’ VALUE :i
115. :type = TYPE,
116. :name = NAME;
117. if (type == SQLTEXT && !strncmp(name, "cat_descr",
118. strlen("cat_descr")))
119. {

16-32 IBM Informix ESQL/C Programmer’s Manual

120. lcat_descr.loc_loctype = LOCMEMORY;
121. lcat_descr.loc_bufsize = -1;
122. lcat_descr.loc_oflags = 0;
123. strcpy(statement, "SET DESCRIPTOR selcat: DATA field");
124. EXEC SQL set descriptor ’selcat’ VALUE :i
125. DATA = :lcat_descr;
126. }
127. if (type == SQLBYTES && !strncmp(name, "cat_picture",
128. strlen("cat_picture")))
129. {
130. lcat_picture.loc_loctype = LOCMEMORY;
131. lcat_picture.loc_bufsize = -1;
132. lcat_picture.loc_oflags = 0;
133. strcpy(statement, "SET DESCRIPTOR selcat: DATA field");
134. EXEC SQL set descriptor ’selcat’ VALUE :i
135. DATA = :lcat_picture;
136. }
137. }

===

Lines 94 to 98
The GET DESCRIPTOR statement retrieves the COUNT value from the selcat
system-descriptor area. The COUNT value indicates how many columns are
described in the system-descriptor area.

Lines 99 to 102
The OPEN statement begins execution of the dynamic SELECT statement and
activates the sel_curs cursor for the set of rows that it returns.

Lines 114 to 137
This section of the code uses the GET DESCRIPTOR statement to determine
whether the simple large-object columns from the catalog table (cat_descr and
cat_picture) are included in the select list. If you dynamically select a simple
large-object column, you must set the address of a locator structure into the DATA
field of the item descriptor to tell the database server where to return the locator
structure.

First, however, the program initializes the locator structure, as follows:
v The data is returned in a memory buffer

(loc_loctype = LOCMEMORY).
v The database server allocates the memory buffer (loc_bufsize = -1).

(For more information about how to work with the TEXT and BYTE data types,
see Chapter 7, “Working with simple large objects,” on page 7-1.) Then the
program uses the SET DESCRIPTOR statement to load the address of the locator
structure into the DATA field of the descriptor area.
===
138. while(ret = getrow("selcat")) /* fetch a row */
139. {
140. data_found = 1;
141. if (ret < 0)
142. {
143. strcpy(statement, "DISCONNECT");
144. EXEC SQL disconnect current;
145. printf("\nDYN_SQL Sample Program over.\n\n");

Chapter 16. Using a system-descriptor area 16-33

146. exit(1);
147. }
148. disp_data(sel_cnt, "selcat"); /* display the data */
149. }
150. if (!data_found)
151. printf("** No matching rows found.\n");
152. free_stuff();
153. if (!more_to_do()) /* More to do? */
154. break; /* no, terminate loop */
155. }
156. }
157. /* fetch the next row for selected items */
158. int4 getrow(sysdesc)
159. EXEC SQL BEGIN DECLARE SECTION;
160. PARAMETER char *sysdesc;
161. EXEC SQL END DECLARE SECTION;
162. {
163. int4 exp_chk();
164. sprintf(statement, "FETCH %s", sysdesc);
165. EXEC SQL fetch sel_curs using sql descriptor :sysdesc;
166. return((exp_chk(statement)) == 100 ? 0 : 1);
167. }

===

Lines 138 to 149
The getrow() function retrieves the selected rows one by one. Each iteration of the
while loop retrieves one row, which the program then processes with the
disp_data() function (line 148). When all the rows are retrieved, getrow() returns a
0 (zero) and the while loop terminates. For more information about the getrow()
function, see “Lines 157 to 167.”

Line 152
The free_stuff() function frees resources that were allocated when the dynamic
SELECT statement was processed. See “Lines 381 to 387” on page 16-40.

Lines 153 to 156
When all the selected rows are processed, the program calls the more_to_do()
function, which asks whether the user would like to process more SELECT
statements. If the answer is no, more_to_do() returns 0 and the break statement
terminates the while loop that began on line 52. If the answer is yes, the program
begins the next iteration of the while statement on line 52 to accept and process
another SELECT statement.

Lines 157 to 167
The getrow() function moves the cursor to and then fetches the next row in the set
of rows that are returned by the dynamic SELECT statement. It fetches the row
values into the system-descriptor area that is specified in the sysdesc variable. If
there are no more rows to fetch (exp_chk() returns 100), getrow() returns 0. If the
FETCH encounters a runtime error, getrow() returns 1.
===
168. {/*
169. * This function loads a column into a host variable of the correct
170. * type and displays the name of the column and the value, unless

* the
171. * value is NULL.
172. */

16-34 IBM Informix ESQL/C Programmer’s Manual

173. disp_data(col_cnt, sysdesc)
174. mint col_cnt;
175. EXEC SQL BEGIN DECLARE SECTION;
176. PARAMETER char *sysdesc;
177. EXEC SQL END DECLARE SECTION;
178. EXEC SQL BEGIN DECLARE SECTION;
179. mint int_data, i;
180. char *char_data;
181. int4 date_data;
182. datetime dt_data;
183. interval intvl_data;
184. decimal dec_data;
185. short short_data;
186. char name[40];
187. short char_len, type, ind;
188. EXEC SQL END DECLARE SECTION;
189. int4 size;
190. unsigned amount;
191. mint x;
192. char shdesc[81], str[40], *p;
193. printf("\n\n");
194. /* For each column described in the system descriptor area,
195. * determine its data type. Then retrieve the column name and its
196. * value, storing the value in a host variable defined for the
197. * particular data type. If the column is not NULL, display the
198. * name and value.
199. */
200. for(i = 1; i <= col_cnt; i++)
201. {
202. strcpy(statement, "GET DESCRIPTOR: TYPE field");
203. EXEC SQL get descriptor :sysdesc VALUE :i
204. :type = TYPE;
205. switch(type)
206. {
207. case SQLSERIAL:
208. case SQLINT:
209. strcpy(statement,
210. "GET DESCRIPTOR: NAME, INDICATOR, DATA fields");
211. EXEC SQL get descriptor :sysdesc VALUE :i
212. :name = NAME,
213. ind = INDICATOR,
214. :int_data = DATA;
215. if(ind == -1)
216. printf("\n%.20s: NULL", name);
217. else
218. printf("\n%.20s: %d", name, int_data);
219. break;
220. case SQLSMINT:
221. strcpy(statement,
222. "GET DESCRIPTOR: NAME, INDICATOR, DATA fields");
223. EXEC SQL get descriptor :sysdesc VALUE :i
224. :name = NAME,
225. :ind = INDICATOR,
226. :short_data = DATA;
227. if(ind == -1)
228. printf("\n%.20s: NULL", name);

Chapter 16. Using a system-descriptor area 16-35

229. else
230. printf("\n%.20s: %d", name, short_data);
231. break;
232. case SQLDECIMAL:
233. case SQLMONEY:
234. strcpy(statement,
235. "GET DESCRIPTOR: NAME, INDICATOR, DATA fields");
236. EXEC SQL get descriptor :sysdesc VALUE :i
237. :name = NAME,
238. :ind = INDICATOR,
239. :dec_data = DATA;
240. if(ind == -1)
241. printf("\n%.20s: NULL", name);
242. else
243. {
244. if(type == SQLDECIMAL)
245. rfmtdec(&dec_data, "###,###,###.##", str);
246. else
247. rfmtdec(&dec_data, "$$$,$$$,$$$.$$", str);
248. printf("\n%.20s: %s", name, str);
249. }
250. break;
251. case SQLDATE:
252. strcpy(statement,
253. "GET DESCRIPTOR: NAME, INDICATOR, DATA fields");
254. EXEC SQL get descriptor :sysdesc VALUE :i
255. :name = NAME,
256. :ind = INDICATOR,
257. :date_data = DATA;
258. if(ind == -1)
259. printf("\n%.20s: NULL", name);
260. else
261. {
262. if((x = rfmtdate(date_data, "mmm. dd, yyyy",
263. str)) < 0)
264. printf("\ndisp_data() - DATE - fmt error");
265. else
266. printf("\n%.20s: %s", name, str);
267. }
268. break;
269. case SQLDTIME:
270. strcpy(statement,
271. "GET DESCRIPTOR: NAME, INDICATOR, DATA fields");
272. EXEC SQL get descriptor :sysdesc VALUE :i
273. :name = NAME,
274. :ind = INDICATOR,
275. :dt_data = DATA;
276. if(ind == -1)
277. printf("\n%.20s: NULL", name);
278. else
279. {
280. x = dttofmtasc(&dt_data, str, sizeof(str), 0);
281. printf("\n%.20s: %s", name, str);
282. }
283. break;
284. case SQLINTERVAL:

16-36 IBM Informix ESQL/C Programmer’s Manual

285. strcpy(statement,
286. "GET DESCRIPTOR: NAME, INDICATOR, DATA fields");
287. EXEC SQL get descriptor :sysdesc VALUE :i
288. :name = NAME,
289. :ind = INDICATOR,
290. :intvl_data = DATA;
291. if(ind == -1)
292. printf("\n%.20s: NULL", name);
293. else
294. {
295. if((x = intofmtasc(&intvl_data, str,
296. sizeof(str),
297. "%3d days, %2H hours, %2M minutes"))
298. < 0)
299. printf("\nINTRVL - fmt error %d", x);
300. else
301. printf("\n%.20s: %s", name, str);
302. }
303. break;
304. case SQLVCHAR:
305. case SQLCHAR:
306. strcpy(statement,
307. "GET DESCRIPTOR: LENGTH, NAME fields");
308. EXEC SQL get descriptor :sysdesc VALUE :i
309. :char_len = LENGTH,
310. :name = NAME;
311. amount = char_len;
312. if(char_data = (char *)(malloc(amount + 1)))
313. {
314. strcpy(statement,
315. "GET DESCRIPTOR: NAME, INDICATOR, DATA fields");
316. EXEC SQL get descriptor :sysdesc VALUE :i
317. :char_data = DATA,
318. :ind = INDICATOR;
319. if(ind == -1)
320. printf("\n%.20s: NULL", name);
321. else
322. printf("\n%.20s: %s", name, char_data);
323. }
324. else
325. {
326. printf("\n%.20s: ", name);
327. printf("Can’t display: out of memory");
328. }
329. break;
330. case SQLTEXT:
331. strcpy (statement,
332. "GET DESCRIPTOR: NAME, INDICATOR, DATA fields");
333. EXEC SQL get descriptor :sysdesc VALUE :i
334. :name = NAME,
335. :ind = INDICATOR,
336. :lcat_descr = DATA;
337. size = lcat_descr.loc_size; /* get size of data */
338. printf("\n%.20s: ", name);
339. if(ind == -1)
340. {

Chapter 16. Using a system-descriptor area 16-37

341. printf("NULL");
342. break;
343. }
344. p = lcat_descr.loc_buffer; /* set p to buf addr */
345. /* print buffer 80 characters at a time */
346. while(size >= 80)
347. {
348. /* mv from buffer to shdesc */
349. ldchar(p, 80, shdesc);
350. printf("\n%80s", shdesc); /* display it */
351. size -= 80; /* decrement length */
352. p += 80; /* bump p by 80 */
353. }
354. strncpy(shdesc, p, size);
355. shdesc[size] = ’\0’;
356. printf("%-s\n", shdesc); /* dsply last segment */
357. break;
358. case SQLBYTES:
359. strcpy (statement,
360. "GET DESCRIPTOR: NAME, INDICATOR fields");
361. EXEC SQL get descriptor :sysdesc VALUE :i
362. :name = NAME,
363. :ind = INDICATOR;
364. if(ind == -1)
365. printf("%.20s: NULL", name);
366. else
367. {
368. printf("%.20s: ", name);
369. printf("Can’t display BYTE type value");
370. }
371. break;
372. default:
373. printf("\nUnexpected data type: %d", type);
374. EXEC SQL disconnect current;
375. printf("\nDYN_SQL Sample Program over.\n\n");
376. exit(1);
377. }
378. }
379. printf("\n");
380. }

===

Lines 168 to 380
The disp_data() function displays the values that are stored in each row that the
SELECT statement returns. The function must be able to receive and process any
data type within the scope of the dynamic SELECT statement (in this case, any
column within the stores7 database). This function accepts two arguments: col_cnt
contains the number of columns that are contained in the system-descriptor area,
and sysdesc contains the name of the system-descriptor area that contains the
column information. This second argument must be declared with the
PARAMETER keyword because the argument is used in the FETCH statement.

The disp_data() function first defines host variables for each of the data types that
are found in the stores7 database (lines 178 to 188), except for the locator
structures that have been globally defined already for the cat_descr and
cat_picture columns of the catalog table (lines 19 to 22).

16-38 IBM Informix ESQL/C Programmer’s Manual

For each column that is described in the system-descriptor area, disp_data()
retrieves its data type with a GET DESCRIPTOR statement. Next, disp_data()
executes a switch on that data type and, for each type (column), it executes
another GET DESCRIPTOR statement to retrieve the name of the column, the
indicator flag, and the data. Unless the column is null, disp_data() moves the
column data from the DATA field of the system-descriptor area to a corresponding
host variable. Then it displays the column name and the content of the host
variable.

The disp_data() function uses the symbolic constants defined in sqltypes.h to
compare data types. It also uses the Informix ESQL/C library functions rfmtdec(),
rfmtdate(), dttofmtasc(), and intofmtosc() to format the DECIMAL and MONEY,
DATE, DATETIME, and INTERVAL data types for display.

For the TEXT and BYTE data types, you can retrieve the value of the column with
the following two-stage process, because the database server returns a locator
structure rather than the data:
v The GET DESCRIPTOR statement (lines 333 and 361) retrieves the locator

structure from the system-descriptor area and moves it to the ifx_loc_t host
variable.

v The disp_data() function obtains the address of the data buffer from the locator
structure, in loc_buffer, and retrieves the data from there.

In the case of the BYTE data type, for the sake of brevity disp_data() retrieves the
locator structure but does not display the data. For an example of the type of logic
required to display a BYTE column, see “Guide to the dispcat_pic.ec File” on page
7-33.
===
381. free_stuff()
382. {
383. EXEC SQL free sel_id; /* free resources for statement */
384. EXEC SQL free sel_curs; /* free resources for cursor */
385. /* free system descriptor area */
386. EXEC SQL deallocate descriptor ’selcat’;
387. }
388. /*
389. * The inpfuncs.c file contains the following functions used in

* this
390. * program:
391. * more_to_do() - asks the user to enter ’y’ or ’n’ to indicate
392. * whether to run the main program loop again.
393. *
394. * getans(ans, len) - accepts user input, up to ’len’ number of
395. * characters and puts it in ’ans’
396. */
397. #include "inpfuncs.c"
398. /*
399. * The exp_chk.ec file contains the exception handling functions to
400. * check the SQLSTATE status variable to see if an error has

* occurred
401. * following an SQL statement. If a warning or an error has
402. * occurred, exp_chk() executes the GET DIAGNOSTICS statement and
403. * displays the detail for each exception that is returned.
404. */
405. EXEC SQL include exp_chk.ec;

Chapter 16. Using a system-descriptor area 16-39

===

Lines 381 to 387
The free_stuff() function frees resources that were allocated to process the dynamic
statement. Line 383 frees resources that were allocated by the application when it
prepared the dynamic SELECT statement. Line 384 releases resources allocated by
the database server to process the sel_curs cursor. The DEALLOCATE
DESCRIPTOR statement releases the memory allocated for the selcat
system-descriptor area and its associated data areas.

Lines 388 to 397
Several of the Informix ESQL/C demonstration programs also call the
more_to_do() and getans() functions. Therefore, these functions are also broken out
into a separate C source file and included in the appropriate demonstration
program. Neither of these functions contain Informix ESQL/C, so the program can
use the C #include preprocessor statement to include the file. For a description of
these functions, see “Guide to the inpfuncs.c File” on page 7-42.

Lines 398 to 405
As a result of the WHENEVER statement on line 37, the whenexp_chk() function
is called if an error occurs during the execution of an SQL statement. The
whenexp_chk() function examines the SQLSTATE status variable to determine the
outcome of an SQL statement. Because several demonstration programs use this
function with the WHENEVER statement for exception handling, the
whenexp_chk() function and its supporting functions have been broken out into a
separate exp_chk.ec source file. The dyn_sql program must include this file with
the Informix ESQL/C include directive because the exception-handling functions
use Informix ESQL/C statements. The exp_chk.ec source file is described in
Chapter 11, “Exception handling,” on page 11-1.

Tip: In a production environment, you would put functions such as more_to_do(),
getans(), and whenexp_chk() into a library and include them on the
command line when you compile the Informix ESQL/C program.

16-40 IBM Informix ESQL/C Programmer’s Manual

Chapter 17. Using an sqlda structure

Managing an sqlda structure . 17-2
Defining an sqlda Structure . 17-3
Allocating Memory for the sqlda Structure . 17-3
Initializing the sqlda Structure . 17-4
Allocating Memory for Column Data . 17-6
Assigning and Obtaining Values from an sqlda Structure 17-8

Assigning Values . 17-8
Obtaining Values . 17-8

Specifying Input Parameter Values . 17-8
Putting Column Values into an sqlda Structure . 17-9
Freeing Memory Allocated to an sqlda Structure . 17-10

Using an sqlda Structure . 17-10
Handling an Unknown Select List . 17-11

Executing a SELECT That Returns Multiple Rows . 17-11
Line 2 . 17-12
Lines 6 to 13 . 17-12
Lines 16 to 24 . 17-13
Line 25 . 17-13
Line 26 . 17-13
Lines 27 and 28 . 17-13
Lines 29 to 32 . 17-13
Lines 33 to 48 . 17-14
Line 49 . 17-14
Lines 50 to 60 . 17-15
Lines 61 and 62 . 17-15
Line 63 . 17-15
Lines 64 and 65 . 17-15
Lines 66 to 71 . 17-16
Lines 75 to 81 . 17-16

Executing a Singleton SELECT . 17-16
Handling Unknown Return Values . 17-16

Executing a Noncursor Function . 17-17
Executing a Cursor Function. 17-17

Handling an unknown column list . 17-18
Executing a Simple Insert. 17-19
Executing an INSERT That Is Associated with a Cursor. 17-19

Handling a Parameterized SELECT Statement . 17-20
Executing a Parameterized SELECT That Returns Multiple Rows 17-21

Line 2 . 17-21
Lines 9 to 14 . 17-22
Lines 17 to 20 . 17-22
Line 21 . 17-22
Lines 22 and 23 . 17-22
Line 24 . 17-22
Lines 25 and 26 . 17-22
Line 27 . 17-23
Lines 28 . 17-23
Lines 29 to 31 . 17-23
Lines 32 to 36 . 17-23
Lines 37 to 59 . 17-24
Lines 60 to 62 . 17-24
Lines 63 and 64 . 17-24
Lines 69 to 77 . 17-24
Lines 78 to 84 . 17-25
Lines 85 to 102 . 17-25

© Copyright IBM Corp. 1996, 2010 17-1

Executing a Parameterized Singleton SELECT . 17-25
Handling a Parameterized User-Defined Routine . 17-26

Executing a Parameterized Function . 17-26
Executing a Parameterized Procedure. 17-26

Handling a Parameterized UPDATE or DELETE Statement 17-27

An sqlda structure is a dynamic-management structure that can hold data that is
either returned from or sent to the database server by a prepared statement. It is a
C structure defined in the sqlda.h header file.

Important: The sqlda structure does not conform to the X/Open standards. It is an
Informix extension to Informix ESQL/C.

These topics describe the following information about how to use an sqlda
structure:
v Using an sqlda structure to hold unknown values
v Managing an sqlda structure
v Using an sqlda structure to handle unknown values in dynamic SQL statements

For information about the fields of the sqlda structure, see “An sqlda Structure” on
page 15-5.

Managing an sqlda structure
Your Informix ESQL/C program can manipulate an sqlda structure with the SQL
statements that the following table summarizes.

Table 17-1. SQL Statements That Can Be Used to Manipulate an sqlda Structure

SQL Statement Purpose See

DESCRIBE...INTO Allocates an sqlda structure and initializes
this structure with information about
column-list columns

17-3
17-4

For SELECT and EXECUTE FUNCTION statements that use cursors:

OPEN...USING
DESCRIPTOR

FETCH...USING
DESCRIPTOR

Takes any input parameters from the
specified sqlda structure

Puts the contents of the row into the sqlda
structure

17-8
17-9

For SELECT and EXECUTE FUNCTION statements that return only one row:

EXECUTE...INTO
DESCRIPTOR

Puts the contents of the singleton row into
the sqlda structure

17-9

For non-SELECT statements:

EXECUTE...USING
DESCRIPTOR

Takes any input parameters from the
specified sqlda structure

17-8

For an INSERT statement that uses an insert cursor:

PUT...USING
DESCRIPTOR

Puts a row into the insert buffer after it
obtains the column values from the specified
sqlda structure

17-18

In addition, your Informix ESQL/C program can manage an sqlda structure in the
following ways:
v Declare a variable pointer to an sqlda structure.

17-2 IBM Informix ESQL/C Programmer’s Manual

v Assign values to the sqlda fields to provide the database server with missing
column information.

v Obtain information from the sqlda fields to access column information that is
received from the database server.

v Free the memory allocated to the sqlda structure when your program is finished
with it.

Defining an sqlda Structure
The Informix ESQL/C sqlda.h header file defines the sqlda structure. To define an
sqlda structure, the Informix ESQL/C program must take the following actions:
v Include the sqlda.h header file to provide the declaration for sqlda in your

program
The Informix ESQL/C preprocessor automatically includes the sqlhdr.h file,
which includes the sqlda.h header file.

v Declare a variable name as a pointer to the sqlda structure
The following line of code declares the da_ptr variable as an sqlda pointer:
struct sqlda *da_ptr;

Important: The pointer to an sqlda structure is not an Informix ESQL/C host
variable. Therefore, you do not need to precede the statement
declaration with either the keywords EXEC SQL or a dollar ($) symbol.
Furthermore, in the program blocks you do not precede any references
to the pointer with a colon (:) or a dollar ($) symbol.

Allocating Memory for the sqlda Structure
Once you define a host variable as a pointer to an sqlda structure, you must
ensure that memory is allocated for all parts of this structure, as follows:
v To allocate memory for the sqlda structure itself, use the DESCRIBE...INTO

statement.
The following DESCRIBE statement obtains information about the prepared
statement st_id, allocates memory for an sqlda structure, and puts the address
of the sqlda structure in the pointer da_ptr:
EXEC SQL describe st_id into da_ptr;

v To allocate memory for the sqlvar_struct structures, take the following actions:
– If the prepared statement is a SELECT (with no INTO TEMP clause), INSERT,

or EXECUTE FUNCTION statement, the DESCRIBE...INTO statement can
allocate space for sqlvar_struct structures.

– If some other SQL statement was prepared and you need to send or receive
columns in the database server, your program must allocate space for the
sqlvar_struct structures.

For more information, see “Initializing the sqlda Structure” on page 17-4.
v To allocate memory for the data of the sqldata fields, make sure you align the

data types with proper word boundaries. For more information, see “Allocating
Memory for Column Data” on page 17-6.

If you use the sqlda structure to define input parameters, you cannot use a
DESCRIBE statement. Therefore, your program must explicitly allocate memory for
both the sqlda structure and the sqlvar_struct structures. (See “Specifying Input
Parameter Values” on page 17-8.)

Chapter 17. Using an sqlda structure 17-3

Initializing the sqlda Structure
To send or receive column values in the database, your Informix ESQL/C program
must initialize the sqlda structure so that it describes the unknown columns of the
prepared statement. To initialize the sqlda structure, you must perform the
following steps:
v Set the sqlvar field to the address of the initialized sqlvar_struct structures.
v Set the sqld field to indicate the number of unknown columns (and associated

sqlvar_struct structures).

In addition to allocating memory for the sqlda structure (see “Allocating Memory
for the sqlda Structure” on page 17-3), the DESCRIBE...INTO statement also
initializes this structure with information about the prepared statement. The
information that DESCRIBE...INTO can provide depends on which SQL statement
it has described.

If the prepared statement is a SELECT (with no INTO TEMP clause), INSERT, or
EXECUTE FUNCTION statement, the DESCRIBE...INTO statement can determine
information about columns in the column list. Therefore, the DESCRIBE...INTO
statement takes the following actions to initialize an sqlda structure:
v It allocates memory for the sqlda structure. For more information, see

“Allocating Memory for the sqlda Structure” on page 17-3.
v It sets the sqlda.sqld field, which contains the number of sqlvar_struct

structures initialized with data. This value is the number of columns and
expressions in the column list (SELECT and INSERT) or the number of returned
values (EXECUTE FUNCTION).

v It allocates memory for component sqlvar_struct structures, one sqlvar_struct
structure for each column or expression in the column list (SELECT and
INSERT) or for each of the returned values (EXECUTE FUNCTION).

v It sets the sqlda.sqlvar field to the initial address of the memory that DESCRIBE
allocates for the sqlvar_struct structures.

v It describes each unknown column in the prepared SELECT (without an INTO
TEMP), EXECUTE FUNCTION, or INSERT statement. The DESCRIBE...INTO
statement initializes the fields of the sqlvar_struct structure for each column, as
follows:
– It initializes the sqltype, sqllen, and sqlname fields (for CHAR type data or

for the qualifier of DATETIME or INTERVAL data) to provide information
from the database about the column.
For most data types, the sqllen field holds the length, in bytes, of the column.
If the column is a collection type (SET, MULTISET, or LIST), a row type
(named or unnamed), or an opaque type, the sqllen field is zero.

– It initializes the sqldata and sqlind fields to null.
For descriptions of these fields, see Table 15-5 on page 15-7.

Important: Unlike with a system-descriptor area, DESCRIBE with an sqlda pointer
does not allocate memory for the column data (the sqldata fields).
Before your program receives column values from the database server,
it must allocate this data space.

For more information, see “Allocating Memory for Column Data” on page 17-6.

The DESCRIBE statement provides information about the columns of a column list.
Therefore, you usually use DESCRIBE...INTO after a SELECT (without an INTO
TEMP clause), INSERT, or EXECUTE FUNCTION statement was prepared. The

17-4 IBM Informix ESQL/C Programmer’s Manual

DESCRIBE...INTO statement not only initializes the sqlda structure, but also
returns the type of SQL statement prepared. For more information, see
“Determining the Statement Type” on page 15-9.

The following DESCRIBE statement also allocates memory for an sqlda structure
and for two sqlvar_struct data structures (one for the customer_num column and
another for the company column) and then initializes the pointer da_ptr->sqlvar
with the initial address of the memory that is allocated to the sqlvar_struct
structure:
EXEC SQL prepare st_id

’select customer_num, company from customer
where customer_num = ?’;

EXEC SQL describe st_id into da_ptr;

The preceding DESCRIBE...INTO statement returns an SQLCODE value of zero (0)
to indicate that the prepared statement was a SELECT statement.

Figure 17-1 shows a sample sqlda structure that this DESCRIBE...INTO statement
might initialize.

If some other SQL statement was prepared, the DESCRIBE...INTO statement cannot
initialize the sqlda structure. To send or receive column values in the database,
your program must perform this initialization explicitly, as follows:
v Allocate memory for component sqlvar_struct structures, one sqlvar_struct

structure for each column.
You can use system memory-allocation functions such as malloc() or calloc() and
assign the address to sqlvar, as follows:

Figure 17-1. Sample sqlda Structure for Two Columns

Chapter 17. Using an sqlda structure 17-5

da_ptr->sqlvar = (struct sqlvar_struct *)
calloc(count, sizeof(struct sqlvar_struct));

v Perform the following tasks to describe each unknown column:
– Set the sqlda.sqld field, which contains the number of sqlvar_struct

structures initialized with data. This value is the number of unknown
columns in the prepared statement.

– Initialize the fields of each sqlvar_struct structure.
Set the sqltype, sqllen, and sqlname fields (for CHAR type data or for the
qualifier for DATETIME or INTERVAL data) to provide information about a
column to the database server.

To provide the column data, your program must also allocate space for this data
and set the sqldata field of each sqlvar_struct structure to the appropriate
location within this space. For more information, see Allocating Memory for
Column Data. If you send column data to the database server, be sure to set the
sqlind field appropriately.

If you use the sqlda structure to define input parameters, you cannot use a
DESCRIBE statement to initialize the sqlda structure. Your code must explicitly set
the appropriate fields of the sqlda structure to define the input parameters. (See
“Specifying Input Parameter Values” on page 17-8.)

Allocating Memory for Column Data
The sqlda structure stores a pointer to the data for each column in the sqldata
field of an sqlvar_struct structure. Unlike the DESCRIBE...USING SQL
DESCRIPTOR statement, the DESCRIBE...INTO statement does not allocate
memory for this data. When the DESCRIBE...INTO statement allocates memory for
the sqlda pointer, it initializes the sqldata fields of each sqlvar_struct structure to
null.

To send or receive column data in the database, your IBM Informix ESQL/C
program must perform the following tasks:
v Allocate memory for the column data.
v Set the sqldata field for the sqlvar_struct structure associated with the column

to the address of the memory allocated for the column data.

To allocate memory for the sqldata fields, you can use a system memory-allocation
function such as malloc() or calloc(). As an alternative to the malloc() system
memory-allocation function, your program can declare a static character buffer for
the data buffer. Figure 17-2 shows a code fragment that allocates column data from
a static character buffer called data_buff.

17-6 IBM Informix ESQL/C Programmer’s Manual

You can replace the code fragment in Figure 17-2 with a series of system
memory-allocation calls within the for loop. However, system memory-allocation
calls can be expensive so it is often more efficient to have a single memory
allocation and then align pointers into that memory area.

When you allocate the column data, make sure that the allocated memory is
formatted for the column data type. This data type is one of the Informix ESQL/C
or SQL data types defined in the sqltypes.h header file. (See “Determining the
Data Type of a Column” on page 15-13.) Make the allocated memory large enough
to accommodate the maximum size of the data in the column.

You must also ensure that the data for each column begins on a proper word
boundary in memory. On many hardware platforms, integer and other numeric
data types must begin on a word boundary. The C language memory-allocation
routines allocate memory that is suitably aligned for any data type, including
structures, but the routines do not perform alignment for the constituent
components of the structure.

Using the proper word boundaries assures that data types are machine
independent. To assist you in this task, Informix ESQL/C provides the following
memory-management functions:
v The rtypalign() function returns the position of the next proper word boundary

for a specified data type.
This function accepts two arguments: the current position in the data buffer and
the integer Informix ESQL/C or SQL data type for which you want to allocate
space.

v The rtypmsize() function returns the number of bytes of memory that you must
allocate for the specified Informix ESQL/C or SQL data type.
This function accepts two arguments: the integer Informix ESQL/C or SQL data
type (in sqltype) and the length (in sqllen) for each column value.

These Informix ESQL/C library functions are described in more detail in
Chapter 3, “Informix ESQL/C data types,” on page 3-1.

When you allocate memory for the DATETIME or INTERVAL data types, you can
take any of the following actions to set the qualifiers in the dtime_t and intrvl_t
structures:
v Use the value that is in the associated sqllen field of sqlda.

static char data_buff[1024];
struct sqlda *sql_descp;
struct sqlvar_struct * col_ptr;
short cnt, pos;
int size;...

for(col_ptr=sql_descp->sqlvar, cnt=pos=0; cnt < sql_descp->sqld;
cnt++, col_ptr++)

{
pos = (short)rtypalign(pos, col_ptr->sqltype);
col_ptr->sqldata = &data_buf[pos];
size = rtypmsize(col_ptr->sqltype, col_ptr->sqllen);
pos += size;
}

Figure 17-2. Allocating Column Data from a Static Character Buffer

Chapter 17. Using an sqlda structure 17-7

v Compose a different qualifier with the values and macros that the datatime.h
header file defines.

v Set the data-type qualifier to zero (0) and have the database server set this
qualifier during the fetch. For DATETIME values, the data-type qualifier is the
dt_qual field of the dtime_t structure. For INTERVAL values, the data-type
qualifier is the in_qual field of the intrvl_t structure.

For examples that allocate memory for the sqldata fields, see the demo3.ec
(“Executing a SELECT That Returns Multiple Rows” on page 17-11) and unload.ec
demonstration programs that are supplied with Informix ESQL/C.

Assigning and Obtaining Values from an sqlda Structure
When you use the sqlda structure with dynamic SQL, you must transfer
information in and out of it with C-language statements.

Assigning Values
To assign values to fields in the sqlda and sqlvar_struct structures, use regular
C-language assignment to fields of the appropriate structure. For example:
da_ptr->sqld = 1;
da_ptr->sqlvar[0].sqldata = compny_data;
da_ptr->sqlvar[0].sqltype = SQLCHAR; /* CHAR data type */
da_ptr->sqlvar[0].sqllen = 21; /* column is CHAR(20) */

Set sqlda fields to provide values for input parameters in a WHERE clause
(“Specifying Input Parameter Values” on page 17-8) or to modify the contents of a
field after you use the DESCRIBE...INTO statement to fill the sqlda structure
(“Allocating Memory for Column Data” on page 17-6).

Obtaining Values
To obtain values from the sqlda fields, you must also use regular C-language
assignment from fields of the structure. For example:
count = da_ptr->sqld;
if(da_ptr->sqlvar[0].sqltype = SQLCHAR)

size = da_ptr->sqlvar[0].sqllen + 1;

Typically, you obtain sqlda field values to examine descriptions of columns in a
SELECT, INSERT, or EXECUTE FUNCTION statement. You might also need to
access these fields to copy a column value that is returned by the database server
from the sqlda structure into a host variable (“Putting Column Values into an
sqlda Structure” on page 17-9).

The data type of the host variable must be compatible with the type of the
associated field in the sqlda structure. When you interpret the sqltype field, make
sure you use the data-type values that match your environment. For some data
types, X/Open values differ from Informix values. For more information, see
“Determining the Data Type of a Column” on page 15-13.

Specifying Input Parameter Values
Since the DESCRIBE...INTO statement does not analyze the WHERE clause, your
program must explicitly allocate an sqlda structure and the sqlvar_struct structures
(see “Allocating Memory for the sqlda Structure” on page 17-3). To describe the
input parameters you must determine the number of input parameters and their
data types and store this information in the allocated sqlda structure. For general
information about how to define input parameters dynamically, see “Determining
Unknown Input Parameters” on page 15-17.

17-8 IBM Informix ESQL/C Programmer’s Manual

When you execute a parameterized statement, you must include the USING
DESCRIPTOR clause to specify the sqlda structure as the location of input
parameter values, as follows:
v For input parameters in the WHERE clause of a SELECT statement, use the

OPEN...USING DESCRIPTOR statement. This statement handles a sequential,
scrolling, hold, or update cursor. If you are certain that the SELECT will return
only one row, you can use the EXECUTE...INTO...USING SQL DESCRIPTOR
statement instead of a cursor. For more information, see “Handling a
Parameterized SELECT Statement” on page 17-20.

v For input parameters in the WHERE clause of a non-SELECT statement such as
DELETE or UPDATE, use the EXECUTE...USING DESCRIPTOR statement. For
more information, see “Handling a Parameterized UPDATE or DELETE
Statement” on page 17-27.

v For input parameters in the VALUES clause of an INSERT statement, use the
EXECUTE...USING SQL DESCRIPTOR statement. If the INSERT is associated
with an insert cursor, use the PUT...USING DESCRIPTOR statement. For more
information, see “Handling an unknown column list” on page 17-18.

Putting Column Values into an sqlda Structure
When you create a SELECT statement dynamically, you cannot use the INTO
host_var clause of FETCH because you cannot name the host variables in the
prepared statement. To fetch column values into an sqlda structure, use the USING
DESCRIPTOR clause of FETCH instead of the INTO clause. The FETCH...USING
DESCRIPTOR statement puts each column value into the sqldata field of its
sqlvar_struct structure.

Using the FETCH...USING DESCRIPTOR statement assumes that a cursor is
associated with the prepared statement. You must always use a cursor for SELECT
statements and cursor functions (EXECUTE FUNCTION statements that return
multiple rows). However, if either of these statements returns only one row, you
can omit the cursor and retrieve the column values into an sqlda structure with
the EXECUTE...INTO DESCRIPTOR statement.

Warning: If you execute a SELECT statement or user-defined function that returns
more than one row and do not associate the statement with a cursor,
your program generates a runtime error. When you associate a singleton
SELECT (or EXECUTE FUNCTION) statement with a cursor, Informix
ESQL/C does not generate an error. Therefore, it is a good practice
always to associate a dynamic SELECT or EXECUTE FUNCTION
statement with a cursor and to use a FETCH...USING DESCRIPTOR
statement to retrieve the column values from this cursor into the sqlda
structure.

Once the column values are in the sqlda structure, you can transfer the values
from the sqldata fields to the appropriate host variables. You must use the sqllen
and sqltype fields to determine, at runtime, the data types for the host variables.
You might need to perform data type or length conversions between the SQL data
types in the sqltype fields and the Informix ESQL/C data types that are needed
for host variables that hold the returned value.

For more information about how to execute SELECT statements dynamically, see
“Handling an Unknown Select List” on page 17-11. For more information about
how to execute a user-defined function dynamically, see 17-16.

Chapter 17. Using an sqlda structure 17-9

Freeing Memory Allocated to an sqlda Structure
Once you finish with an sqlda structure, free the associated memory. If you
execute multiple DESCRIBE statements and you neglect to free the memory
allocated by these statements, your application might run into memory constraints
and the database server might exit.

If your application runs on a Windows operating system and uses the
multi-threading library, use the Informix ESQL/C function The SqlFreeMem()
function to release the memory that the sqlda structure occupies as in this
example:
SqlFreeMem(sqlda_ptr, SQLDA_FREE);

Otherwise, use the standard C library free() function, as shown in this example:
free(sqlda_ptr);

If your Informix ESQL/C program executes a DESCRIBE statement multiple times
for the same prepared statement and allocates a separate sqlda structure for each
DESCRIBE, it must explicitly deallocate each sqlda structure. Figure 17-3 shows an
example.

If your program allocated space for column data (see “Allocating Memory for
Column Data” on page 17-6), you must also deallocate the memory allocated to the
sqldata fields. For information about how to free other program resources, see
“Freeing Resources” on page 14-7.

Using an sqlda Structure
Use an SQL descriptor-area (sqlda) structure to execute SQL statements that
contain unknown values. Table 17-2 summarizes the types of dynamic statements
that the remaining sections of this chapter cover.

Table 17-2. Using an sqlda Structure to Execute Dynamic SQL Statements

Purpose of the sqlda Structure See

Holds select-list column values retrieved by a SELECT 17-11

Holds returned values from user-defined functions 17-16

Describes unknown columns in an INSERT 17-18

Describes input parameters in the WHERE clause of a SELECT 17-20

Describes input parameters in the WHERE clause of a DELETE or UPDATE 17-27

EXEC SQL prepare qid from ’select * from customer’;
EXEC SQL describe qid into sqldaptr1;
EXEC SQL describe qid into sqldaptr2;
EXEC SQL describe qid into sqldaptr3;...
¹
free(sqldaptr1);
free(sqldaptr2);
free(sqldaptr3);

Figure 17-3. Deallocating Multiple sqlda Structures for the Same Prepared Statement

17-10 IBM Informix ESQL/C Programmer’s Manual

Handling an Unknown Select List
For an introduction on how to handle unknown columns in an unknown select list,
see 15-16. This section describes how to use an sqlda structure to handle a SELECT
statement.

To use an sqlda structure to handle unknown select-list columns:

1. Declare a variable to hold the address of an sqlda structure. For more
information, see “Defining an sqlda Structure” on page 17-3.

2. Prepare the SELECT statement (with the PREPARE statement) to give it a
statement identifier. The SELECT statement cannot include an INTO TEMP
clause. For more information, see “Assembling and Preparing the SQL
Statement” on page 14-2.

3. Use the DESCRIBE...INTO statement to perform two tasks:
a. Allocate an sqlda structure. The address of the allocated structure is stored

in the sqlda pointer that you declare. For more information, see “Allocating
Memory for the sqlda Structure” on page 17-3.

b. Determine the number and data types of select-list columns. The DESCRIBE
statement fills an sqlvar_struct structure for each column of the select list.
For more information, see “Initializing the sqlda Structure” on page 17-4.

4. Examine the sqltype and sqllen fields of sqlda for each select-list column to
determine the amount of memory that you need to allocate for the data. For
more information, see “Allocating Memory for Column Data” on page 17-6.

5. Save the number of select-list columns stored in the sqld field in a host
variable.

6. Declare and open a cursor and then use the FETCH...USING DESCRIPTOR
statement to fetch column values, one row at a time, into an allocated sqlda
structure. See “Putting Column Values into an sqlda Structure” on page 17-9.

7. Retrieve the row data from the sqlda structure into host variables with
C-language statements that access the sqldata field for each select-list column.
For more information, see “Assigning and Obtaining Values from an sqlda
Structure” on page 17-8.

8. Release memory allocated to the sqldata fields and the sqlda structure. For
more information, see “Freeing Memory Allocated to an sqlda Structure” on
page 17-10.

Important: If the SELECT statement has input parameters of an unknown number
and type in the WHERE clause, your program must also handle these
input parameters with an sqlda structure.

For more information, see “Handling a Parameterized SELECT Statement” on page
17-20.

The following sections demonstrate how to use an sqlda structure to handle a
SELECT statement that returns many rows and one that returns only one row.

Executing a SELECT That Returns Multiple Rows
The demo3.ec sample program, in this section, executes a dynamic SELECT
statement with the following conditions:
v The SELECT returns more than one row.

Chapter 17. Using an sqlda structure 17-11

The SELECT must be associated with a cursor, executed with the OPEN
statement, and have its return values retrieved with the FETCH...USING
DESCRIPTOR statement.

v The SELECT has either no input parameters or no WHERE clause.
The OPEN statement does not need to include the USING clause.

v The SELECT has unknown columns in its select list.
The FETCH statement includes the USING DESCRIPTOR clause to store the
return values in an sqlda structure.

The demo4 sample program (“Executing a SELECT That Returns Multiple Rows”
on page 16-9) assumes these same conditions. While demo4 uses a
system-descriptor area to define the select-list columns, demo3 uses an sqlda
structure. The demo3 program does not perform exception handling.
===
1. #include <stdio.h>
2. EXEC SQL include sqlda;
3. EXEC SQL include sqltypes;
4. main()
5. {
6. struct sqlda *demo3_ptr;
7. struct sqlvar_struct *col_ptr;
8. static char data_buff[1024];
9. int pos, cnt, size;

10. EXEC SQL BEGIN DECLARE SECTION;
11. int2 i, desc_count;
12. char demoquery[80];
13. EXEC SQL END DECLARE SECTION;
14. printf("DEMO3 Sample ESQL program running.\n\n");
15. EXEC SQL connect to ’stores7’;

===

Line 2
The program must include the Informix ESQL/C sqlda.h header file to provide a
definition for the sqlda structure.

Lines 6 to 13
Lines 6 and 7 declare sqlda variables that are needed by the program. The
demo3_ptr variable points to the sqlda structure that will hold the data that is
fetched from the database. The col_ptr variable points to an sqlvar_struct structure
so that the code can step through each of the sqlvar_struct structures in the
variable-length portion of sqlda. Neither of these variables is declared as an
Informix ESQL/C host variable. Lines 10 to 13 declare host variables to hold the
data that is obtained from the user and the data that is retrieved from the sqlda
structure.
===
16. /* These next four lines have hard-wired both the query and
17. * the value for the parameter. This information could have
18. * been entered from the terminal and placed into the strings
19. * demoquery and a query value string (queryvalue), respectively.
20. */
21. sprintf(demoquery, "%s %s",
22. "select fname, lname from customer",
23. "where lname < ’C’ ");
24. EXEC SQL prepare demo3id from :demoquery;
25. EXEC SQL declare demo3cursor cursor for demo3id;

17-12 IBM Informix ESQL/C Programmer’s Manual

26. EXEC SQL describe demo3id into demo3_ptr;

===

Lines 16 to 24
These lines assemble the character string for the SELECT statement (in demoquery)
and prepare it as the demo3id statement identifier. For more information about
these steps, see “Assembling and Preparing the SQL Statement” on page 14-2.

Line 25
This line declares the demo3cursor for the prepared statement identifier, demo3id.

Line 26
The DESCRIBE statement describes the select-list columns for the prepared
statement that is in the demo3id statement identifier. For this reason, you must
prepare the statement before you use DESCRIBE. This DESCRIBE includes the
INTO clause to specify the sqlda structure to which demo3_ptr points as the
location for these column descriptions. The DESCRIBE...INTO statement also
allocates memory for an sqlda structure and stores the address of this structure in
the demo3_ptr variable.

The demo3 program assumes that the following SELECT statement is assembled at
runtime and stored in the demoquery string:
SELECT fname, lname FROM customer WHERE lname < ’C’

After the DESCRIBE statement in line 26, the components of the sqlda structure
contain the following:
v The sqlda component, demo3_ptr->sqld, has the value 2, since two columns

were selected from the customer table.
v The component demo3_ptr->sqlvar[0], an sqlvar_struct structure, contains

information about the fname column of the customer table. The
demo3_ptr->sqlvar[0].sqlname component, for example, gives the name of the
first column (fname).

v The component demo3_ptr->sqlvar[1], an sqlvar_struct structure, contains
information about the lname column of the customer table.

===
27. desc_count = demo3_ptr->sqld;
28. printf("There are %d returned columns:\n", desc_count);
29. /* Print out what DESCRIBE returns */
30. for (i = 1; i <= desc_count; i++)
31. prsqlda(i, demo3_ptr->sqlvar[i-1]);
32. printf("\n\n");

===

Lines 27 and 28
Line 27 assigns the number of select-list columns that are found by the DESCRIBE
statement to the desc_count host variable. Line 28 displays this information to the
user.

Lines 29 to 32
This for loop goes through the sqlvar_struct structures for the columns of the
select list. It uses the desc_count host variable to determine the number of these
structures that are initialized by the DESCRIBE statement. For each sqlvar_struct
structure, the prsqlda() function (line 31) displays information such as the data
type, length, and name. For a description of prsqlda(), see the description of lines
75 to 81.

Chapter 17. Using an sqlda structure 17-13

===
33. for(col_ptr=demo3_ptr->sqlvar, cnt=pos=0; cnt < desc_count;
34. cnt++, col_ptr++)
35. {
36. /* Allow for the trailing null character in C
37. character arrays */
38. if(col_ptr->sqltype==SQLCHAR)
39. col_ptr->sqllen += 1;
40. /* Get next word boundary for column data and
41. assign buffer position to sqldata */
42. pos = (int)rtypalign(pos, col_ptr->sqltype);
43. col_ptr->sqldata = &data_buff[pos];
44. /* Determine size used by column data and increment
45. buffer position */
46. size = rtypmsize(col_ptr->sqltype, col_ptr->sqllen);
47. pos += size;
48. }

===

Lines 33 to 48
This second for loop allocates memory for the sqldata fields and sets the sqldata
fields to point to this memory.

Lines 40 to 47 examine the sqltype and sqllen fields of sqlda for each select-list
column to determine the amount of memory you need to allocate for the data. The
program does not use malloc() to allocate space dynamically. Instead, it uses a
static data buffer (the data_buff variable defined on line 8) to hold the column
data. The Informix ESQL/C rtypalign() function (line 42) returns the position of
the next word boundary for the column data type (in col_ptr->sqltype). Line 43
then assigns the address of this position within the data_buff data buffer to the
sqldata field (for columns that receive values returned by the query).

The Informix ESQL/C rtypmsize() function (line 46) returns the number of bytes
required for the SQL data type that is specified by the sqltype and sqllen fields.
Line 47 then increments the data buffer pointer (pos) by the size required for the
data. For more information, see “Allocating Memory for Column Data” on page
17-6.
===
49. EXEC SQL open demo3cursor;
50. for (;;)
51. {
52. EXEC SQL fetch demo3cursor using descriptor demo3_ptr;
53. if (strncmp(SQLSTATE, "00", 2) != 0)
54. break;
55. /* Print out the returned values */
56. for (i=0; i<desc_count; i++)
57. printf("Column: %s\tValue:%s\n", demo3_ptr-

>sqlvar[i].sqlname,
58. demo3_ptr->sqlvar[i].sqldata);
59. printf("\n");
60. }

===

Line 49
The database server executes the SELECT statement when it opens the
demo3cursor cursor. If the WHERE clause of your SELECT statement contains

17-14 IBM Informix ESQL/C Programmer’s Manual

input parameters, you also need to specify the USING DESCRIPTOR clause of
OPEN (see “Handling an unknown column list” on page 17-18).

Lines 50 to 60
This inner for loop executes for each row that is fetched from the database. The
FETCH statement (line 52) includes the USING DESCRIPTOR clause to specify the
sqlda structure to which demo3_ptr points as the location of the column values.
After this FETCH, the column values are stored in the specified sqlda structure.

The if statement (lines 53 and 54) tests the value of the SQLSTATE variable to
determine the success of the FETCH. If SQLSTATE indicates any status other than
success, line 54 executes and ends the for loop. Lines 56 to 60 display the contents
of the sqlname and sqldata fields for each column of the select list.

Important: The demo3 program assumes that the returned columns are of
character data type. If the program did not make this assumption, it
would need to check the sqltype and sqllen fields to determine the
appropriate data type for the host variable that holds the sqldata
value.

===
61. if (strncmp(SQLSTATE, "02", 2) != 0)
62. printf("SQLSTATE after fetch is %s\n", SQLSTATE);
63. EXEC SQL close demo3cursor;

===

Lines 61 and 62
Outside the for loop, the program tests the SQLSTATE variable again so that it can
notify the user in the event of a successful execution, a runtime error, or a warning
(class code not equal to "02").

Line 63
After all the rows are fetched, the CLOSE statement closes the demo3cursor cursor.
===
64. EXEC SQL free demo3id;
65. EXEC SQL free demo3cursor;
66. /* No need to explicitly free data buffer in this case because
67. * it wasn’t allocated with malloc(). Instead, it is a static char
68. * buffer
69. */
70. /* Free memory assigned to sqlda pointer. */
71. free(demo3_ptr);
72. EXEC SQL disconnect current;
73. printf("\nDEMO3 Sample Program Over.\n\n");
74. }
75. prsqlda(index, sp)
76. int2 index;
77. register struct sqlvar_struct *sp;
78. {
79. printf(" Column %d: type = %d, len = %d, data = %s\n",
80. index, sp->sqltype, sp->sqllen, sp->sqldata, sp->sqlname);
81. }

===

Lines 64 and 65
These FREE statements release the resources that are allocated for the demo3id
prepared statement and the demo3cursor database cursor.

Chapter 17. Using an sqlda structure 17-15

Lines 66 to 71
At the end of the program, free the memory allocated to the sqlda structure.
Because this program does not use malloc() to allocate the data buffer, it does not
use the free() system call to free the sqldata pointers. Although the allocation of
memory from a static buffer is straightforward, it has the disadvantage that this
buffer remains allocated until the program ends. For more information, see
“Freeing Memory Allocated to an sqlda Structure” on page 17-10.

The free() system call (line 71) frees the sqlda structure to which demo3_ptr
points.

Lines 75 to 81
The prsqlda() function displays information about a select-list column. It reads this
information from the sqlvar_struct structure whose address is passed into the
function (sp).

Tip: The Informix ESQL/C demonstration programs unload.ec and dyn_sql.ec
(described in “The dyn_sql Program” on page 16-28) also use sqlda to
describe columns of a select list. Also see the PREPARE statement in the IBM
Informix Guide to SQL: Syntax.

Executing a Singleton SELECT
The demo3 program, described in the previous section, assumes that the SELECT
statement returns more than one row and therefore the program associates the
statement with a cursor. If you know at the time that you write the program that
the dynamic SELECT always returns just one row, you can omit the cursor and use
the EXECUTE...INTO DESCRIPTOR statement instead of the FETCH...USING
DESCRIPTOR. You will still need to use the DESCRIBE statement to define the
select-list columns. For more information, see “Putting Column Values into an
sqlda Structure” on page 17-9.

Handling Unknown Return Values
For an introduction on how to handle unknown return values from a user-defined
function, see “Determining Return Values Dynamically” on page 15-18. This section
describes how to use an sqlda structure to save values that a dynamically executed
user-defined function returns.

To use an sqlda structure to handle unknown-function return values:

1. Declare a variable to hold the address of an sqlda structure.
For more information, see “Defining an sqlda Structure” on page 17-3.

2. Assemble and prepare an EXECUTE FUNCTION statement.
The EXECUTE FUNCTION statement cannot contain the INTO clause. For
more information, see “Assembling and Preparing the SQL Statement” on page
14-2.

3. Use the DESCRIBE...INTO statement to perform two tasks:
a. Allocate an sqlda structure. The address of the allocated structure is stored

in the sqlda pointer that you declare. For more information, see “Allocating
Memory for the sqlda Structure” on page 17-3.

b. Determine the number and data types of function return values. The
DESCRIBE statement fills an sqlvar_struct structure for each return value.
For more information, see “Initializing the sqlda Structure” on page 17-4.

17-16 IBM Informix ESQL/C Programmer’s Manual

4. After the DESCRIBE statement, you can test the SQLCODE variable
(sqlca.sqlcode) for the defined constant SQ_EXECPROC to check for a prepared
EXECUTE FUNCTION statement.
The SQ_EXECPROC constant is defined in the sqlstype.h header file. For more
information, see “Determining the Statement Type” on page 15-9.

5. Examine the sqltype and sqllen fields of sqlda for each return value to
determine the amount of memory that you need to allocate for the data. For
more information, see “Allocating Memory for Column Data” on page 17-6.

6. Execute the EXECUTE FUNCTION statement and store the return values in the
sqlda structure.
The statement you use to execute a user-defined function depends on whether
the function is a noncursor function or a cursor function. The following sections
discuss how to execute each type of function.

7. Deallocate any memory you allocated to the sqlda structure.
See “Freeing Memory Allocated to an sqlda Structure” on page 17-10.

Executing a Noncursor Function
A noncursor function returns only one row of return values to the application. Use
the EXECUTE...INTO DESCRIPTOR statement to execute the function and save the
return value(s) in an sqlda structure.

An external function that is not explicitly defined as an iterator function returns
only a single row of data. Therefore, you can use EXECUTE...INTO DESCRIPTOR
to execute most external functions dynamically and save their return values into an
sqlda structure. This single row of data consists of only one value because an
external function can only return a single value. The sqlda structure contains only
one item descriptor with the single return value.

An SPL function whose RETURN statement does not include the WITH RESUME
keywords returns only a single row of data. Therefore, you can use
EXECUTE...INTO DESCRIPTOR to execute most SPL functions dynamically and
save their return values into an sqlda structure. An SPL function can return one or
more values at one time so the sqlda structure contains one or more item
descriptors.

Warning: Because you usually do not know the number of returned rows that a
user-defined function returns, you cannot guarantee that only one row
will be returned. If you do not use a cursor to execute cursor function,
Informix ESQL/C generates a runtime error. Therefore, it is a good
practice to always associate a user-defined function with a function
cursor.

Executing a Cursor Function
A cursor function can return one or more rows of return values to the application.
To execute a cursor function, you must associate the EXECUTE FUNCTION
statement with a function cursor and use the FETCH...INTO DESCRIPTOR
statement to save the return value(s) in an sqlda structure.

To use an sqlda structure to hold cursor-function return values:

1. Declare a function cursor for the user-defined function.
Use the DECLARE statement to associate the EXECUTE FUNCTION statement
with a function cursor.

2. Use the OPEN statement to execute the function and open the cursor.

Chapter 17. Using an sqlda structure 17-17

3. Use the FETCH...USING DESCRIPTOR statement to retrieve the return values
from the cursor into the sqlda structure.
For more information, see “Putting Column Values into an sqlda Structure” on
page 17-9.

4. Retrieve the row data from the sqlda structure into host variables with
C-language statements that access the sqldata field for each select-list column.
For more information, see “Assigning and Obtaining Values from an sqlda
Structure” on page 17-8.

5. Release memory allocated to the sqldata fields and the sqlda structure.
For more information, see “Freeing Memory Allocated to an sqlda Structure”
on page 17-10.

Only an external function that is defined as an iterator function can return more
than one row of data. Therefore, you must define a function cursor to execute an
iterator function dynamically. Each row of data consists of only one value because
an external function can only return a single value. For each row, the sqlda
structure contains only one sqlvar_struct structure with the single return value.

An SPL function whose RETURN statement includes the WITH RESUME
keywords returns can return one or more row of data. Therefore, you must define
a function cursor to execute these SPL functions dynamically. Each row of data can
consist of one or more values because an SPL function can return one or more
values at one time. For each row, the sqlda structure contains an sqlvar_struct
structure for each return value.

Handling an unknown column list
For an introduction on how to handle columns in a VALUES clause of an INSERT,
see “Handling an Unknown Column List” on page 15-17. This section describes
how to use an sqlda structure to handle the INSERT...VALUES statement.

To use an sqlda structure to handle input parameters in an INSERT:

1. Declare a variable to hold the address of an sqlda structure. For more
information, see “Defining an sqlda Structure” on page 17-3.

2. Prepare the INSERT statement (with the PREPARE statement) and give it a
statement identifier. See “Assembling and Preparing the SQL Statement” on
page 14-2.

3. Use the DESCRIBE...INTO statement to perform two tasks:
a. Allocate an sqlda structure. The address of the allocated structure is stored

in the sqlda pointer that you declare. For more information, see “Allocating
Memory for the sqlda Structure” on page 17-3.

b. Determine the number and data types of columns in the table with the
DESCRIBE...INTO statement. The DESCRIBE statement fills an sqlvar_struct
structure for each item of the column list. For more information, see
“Initializing the sqlda Structure” on page 17-4.

4. Examine the sqltype and sqllen fields of sqlda for each column to determine
the amount of memory that you need to allocate for the data. For more
information, see “Allocating Memory for Column Data” on page 17-6.

5. Save the number of columns stored in the sqld field in a host variable.
6. Set the columns to their values with C-language statements that set the

appropriate sqldata fields in the sqlvar_struct structures of sqlda. A column
value must be compatible with the data type of its associated column. If you

17-18 IBM Informix ESQL/C Programmer’s Manual

insert a null value, make sure to set the appropriate sqlind field to the address
of an indicator variable that contains -1.

7. Execute the INSERT statement to insert the values into the database.
The following sections demonstrate how to execute a simple INSERT statement
that inserts only one row and an INSERT statement that uses an insert cursor
to insert several rows from an insert buffer.

8. Release the memory that is allocated to the sqldata fields and the sqlda
structure. For more information, see “Freeing Memory Allocated to an sqlda
Structure” on page 17-10.

Executing a Simple Insert
The following steps outline how to execute a simple INSERT statement with an
sqlda structure:
1. Prepare the INSERT statement (with the PREPARE statement) and give it a

statement identifier.
2. Set the columns to their values with C-language statements that set the

appropriate sqldata fields in the sqlvar_struct structures of sqlda.
3. Execute the INSERT statement with the EXECUTE...USING DESCRIPTOR

statement.

These steps are basically the same as those that handle an unknown select list of a
SELECT statement (“Executing a Singleton SELECT” on page 17-16). The major
difference is that because the statement is a not a SELECT statement, the INSERT
does not require a cursor.

Executing an INSERT That Is Associated with a Cursor
You can also use an sqlda structure to handle an INSERT that is associated with an
insert cursor. In this case, you do not execute the statement with the
EXECUTE...USING DESCRIPTOR statement. Instead, you must declare and open
an insert cursor and execute the insert cursor with the PUT...USING DESCRIPTOR
statement, as follows:
1. Prepare the INSERT statement and associate it with an insert cursor with the

DECLARE statement. All multirow INSERT statements must have a declared
insert cursor.

2. Create the cursor for the INSERT statement with the OPEN statement.
3. Insert the first set of column values into the insert buffer with a PUT statement

and its USING DESCRIPTOR clause. After this PUT statement, the column
values stored in the specified sqlda structure are stored in the insert buffer.
Repeat the PUT statement within a loop until there are no more rows to insert.

4. After all the rows are inserted, exit the loop and flush the insert buffer with the
FLUSH statement.

5. Close the insert cursor with the CLOSE statement.

You handle the insert cursor in much the same way as you handle the cursor
associated with a SELECT statement (“Executing a SELECT That Returns Multiple
Rows” on page 17-11). For more information about how to use an insert cursor, see
the PUT statement in the IBM Informix Guide to SQL: Syntax.

Chapter 17. Using an sqlda structure 17-19

Handling a Parameterized SELECT Statement
For an introduction on how to determine input parameters, see “Determining
Unknown Input Parameters” on page 15-17. This section describes how to handle a
parameterized SELECT statement with an sqlda structure. If a prepared SELECT
statement has a WHERE clause with input parameters of unknown number and
data type, your Informix ESQL/C program must use an sqlda structure to define
the input parameters.

To use an sqlda structure to define input parameters for a WHERE clause:

1. Declare a variable to hold the address of an sqlda structure. For more
information, see “Defining an sqlda Structure” on page 17-3.

2. Determine the number and data types of the input parameters of the SELECT
statement. For more information, see “Determining Unknown Input
Parameters” on page 15-17.

3. Allocate an sqlda structure with a system memory-allocation function such as
malloc(). For more information, see “Specifying Input Parameter Values” on
page 17-8 and “Allocating Memory for the sqlda Structure” on page 17-3.

4. Indicate the number of input parameters in the WHERE clause with
C-language statements that set the sqld field of the sqlda structure.

5. Store the definitions and values of each input parameter with C-language
statements that set the sqltype, sqllen, and sqldata fields in the appropriate
sqlvar_struct of the sqlda structure:
a. The sqltype field uses the Informix ESQL/C data-type constants, which the

sqltypes.h header file defines, to represent the data type of the input
parameter. For more information, see “Determining the Data Type of a
Column” on page 15-13.

b. For a CHAR or VARCHAR value, sqllen is the size, in bytes, of the
character array. For a DATETIME or INTERVAL value, this field stores the
encoded qualifiers.

c. The sqldata field of each sqlvar_struct structure contains the address of the
memory allocated for the input parameter value. You might need to use the
sqltype and sqllen fields for each input parameter to determine the amount
of memory you need to allocate. For more information, see “Allocating
Memory for Column Data” on page 17-6.

If you use an indicator variable, also set the sqlind field and perhaps the
sqlidata, sqlilen, and sqlitype fields (for non-X/Open applications only).
Use an index into the sqlda.sqlvar array to identify the sqlvar_struct structure.
For more information, see “Assigning and Obtaining Values from an sqlda
Structure” on page 17-8.

6. Pass the defined input parameters from the sqlda structure to the database
server with the USING DESCRIPTOR clause.
The statement that provides the input parameters depends on how many rows
the SELECT statement returns. The following sections discuss how to execute
each type of SELECT statement.

7. Release the memory that you allocated for the sqlvar_struct fields, the sqldata
fields, and the sqlda structure itself with the free() system call. For more
information, see “Freeing Memory Allocated to an sqlda Structure” on page
17-10.

17-20 IBM Informix ESQL/C Programmer’s Manual

Important: If the SELECT statement has unknown columns in the select list, your
program must also handle these columns with an sqlda structure. For
more information, see “Handling an Unknown Select List” on page
17-11.

The following sections demonstrate how to use an sqlda structure to handle a
parameterized SELECT statement that returns many rows and one that returns
only a single row.

Executing a Parameterized SELECT That Returns Multiple
Rows

The sample program described on the following pages is a modified version of the
demo4.ec example program. It shows how to use a dynamic SELECT statement
with the following conditions:
v The SELECT returns more than row.

The SELECT must be associated with a cursor, executed with the OPEN
statement, and have its return values retrieved with the FETCH...USING
DESCRIPTOR statement.

v The SELECT has input parameters in its WHERE clause.
The OPEN statement includes the USING DESCRIPTOR clause to provide the
parameter values in an sqlda structure.

v The SELECT has unknown columns in the select list.
The FETCH statement includes the USING DESCRIPTOR clause to store the
return values in an sqlda structure.

The program illustrates how to use an sqlda structure to handle both input
parameters of a WHERE clause and the columns in the select list.
===
1. #include <stdio.h>
2. EXEC SQL include sqlda;
3. EXEC SQL include sqltypes;
4. #define FNAME 15
5. #define LNAME 15
6. #define PHONE 18

===

Line 2
The program must include the Informix ESQL/C sqlda.h header file to use an
sqlda structure.
===
7. main()
8. {
9. char fname[FNAME + 1];

10. char lname[LNAME + 1];
11. char phone[PHONE + 1];
12. int count, customer_num, i;
13. struct sqlvar_struct *pos;
14. struct sqlda *sqlda_ptr;
15. printf("Sample ESQL program running.\n\n");
16. EXEC SQL connect to ’stores7’;
17. stcopy("Carole", fname);
18. stcopy("Sadler", lname);
19. EXEC SQL prepare sql_id from

Chapter 17. Using an sqlda structure 17-21

20. ’select * from customer where fname=? and lname=?’;
21. EXEC SQL declare slct_cursor cursor for sql_id;

===

Lines 9 to 14
Lines 9 to 11 declare variables to hold the data that is obtained from the user. The
sqlda_ptr variable (line 14) is the pointer to an sqlda structure. The pos variable
(line 13) points to an sqlvar_struct structure so that the code can proceed through
each of the sqlvar_struct structures in the variable-length portion of sqlda. Neither
of these variables is defined as an Informix ESQL/C host variable.

Lines 17 to 20
These lines assemble the character string for the SELECT statement and prepare
the SELECT string. This program assumes the number and data types of the input
parameters. Therefore, no C code needs to determine this information at runtime.
The question mark (?) indicates the input parameters in the WHERE clause. For
more information about these steps, see “Assembling and Preparing the SQL
Statement” on page 14-2.

Line 21
This line declares the slct_cursor cursor for the prepared statement identifier,
sql_id.
===
22. count=2;
23. whereClauseMem(&sqlda_ptr, count, fname, lname);
24. EXEC SQL open slct_cursor using descriptor sqlda_ptr;
25. free(sqlda_ptr->sqlvar);
26. free(sqlda_ptr);

===

Lines 22 and 23
These lines initialize the sqlda structure with the input parameter information. The
program assumes two input parameters (line 22). If the number of input
parameters is unknown, the program needs to parse the SELECT character string
(not the prepared version) and count the number of “?” characters that it contains.

The program then calls the whereClauseMem() function to allocate and initialize
the sqlda structure. For more information, see lines 69 to 77.

Line 24
The database server executes the SELECT statement when it opens the cursor. You
must include the USING DESCRIPTOR clause of OPEN to specify the sqlda
structure as the location of the input parameter values.

Lines 25 and 26
Once the OPEN...USING DESCRIPTOR statement has executed, these input
parameter values have been used. Deallocate this sqlda structure because it is no
longer needed and so that it does not conflict with the sqlda that contains the
retrieved values. Keep in mind that this second sqlda must have memory allocated
before it can be used.
===
27. EXEC SQL describe sql_id into sqlda_ptr;
28. selectListMem(sqlda_ptr);
29. while(1)
30. {
31. EXEC SQL fetch slct_cursor using descriptor sqlda_ptr;

17-22 IBM Informix ESQL/C Programmer’s Manual

32. if(SQLCODE != 0)
33. {
34. printf("fetch SQLCODE %d\n", SQLCODE);
35. break;
36. }

===

Line 27
For demonstration purposes, this program assumes that the number and data
types of the select-list columns are also unknown at compile time. It uses the
DESCRIBE...INTO statement (line 27) to allocate an sqlda structure, and puts
information about the select-list columns into the structure to which sqlda_ptr
points.

Lines 28
The selectListMem() function handles the allocation of memory for column values.
For more information about selectListMem(), see lines 85 to 102.

Lines 29 to 31
The while loop executes for each row fetched from the database. The FETCH
statement (line 31) includes the USING DESCRIPTOR clause to specify an sqlda
structure as the location for the returned column values. For more information
about how to handle unknown select-list columns, see “Handling an Unknown
Select List” on page 17-11.

Lines 32 to 36
These lines test the value of the SQLCODE variable to determine if the FETCH
was successful. If SQLCODE contains a nonzero value, then the FETCH generates
the NOT FOUND condition (100) or an error (< 0). In any of these cases, line 34
prints out the SQLCODE value. To determine if the FETCH statement generated
warnings, you need to examine the sqlca.sqlwarn structure.
===
37. for(i=0; i<sqlda_ptr->sqld; i++)
38. {
39. printf("\ni=%d\n", i);
40. prsqlda(sqlda_ptr->sqlvar[i]);
41. switch (i)
42. {
43. case 0:
44. customer_num = *(int *)(sqlda_ptr->sqlvar[i].sqldata);
45. break;
46. case 1:
47. stcopy(sqlda_ptr->sqlvar[i].sqldata, fname);
48. break;
49. case 2:
50. stcopy(sqlda_ptr->sqlvar[i].sqldata, lname);
51. break;
52. case 9:
53. stcopy(sqlda_ptr->sqlvar[i].sqldata, phone);
54. break;
55. }
56. }
57. printf("%d ==> |%s|, |%s|, |%s|\n",
58. customer_num, fname, lname, phone);
59. }
60. EXEC SQL close slct_cursor;

Chapter 17. Using an sqlda structure 17-23

61. EXEC SQL free slct_cursor;
62. EXEC SQL free sql_id;

===

Lines 37 to 59
These lines access the fields of the sqlvar_struct structure for each column in the
select list. The prsqlda() function (see lines 75 to 81) displays the column name
(from sqlvar_struct.sqlname) and its value (from the sqlvar_struct.sqldata field).
The switch (lines 41 to 55) transfers the column values from the sqlda structure
into host variables of the appropriate lengths and data types.

Lines 60 to 62
These lines free resources after all the rows are fetched. Line 60 closes the
slct_cursor cursor and line 61 frees it. Line 62 frees the sql_id statement ID.
===
63. free(sqlda_ptr->sqlvar);
64. free(sqlda_ptr);
65. EXEC SQL close database;
66. EXEC SQL disconnect current;
67. printf("\nProgram Over.\n");
68. }
69. whereClauseMem(descp, count, fname, lname)
70. struct sqlda **descp;
71. int count;
72. char *fname, *lname;
73. {
74. (*descp)=(struct sqlda *) malloc(sizeof(struct sqlda));
75. (*descp)->sqld=count;
76. (*descp)->sqlvar=(struct sqlvar_struct *)
77. calloc(count, sizeof(struct sqlvar_struct));

===

Lines 63 and 64
These free() system calls release the memory that is associated with the sqlda
structure. Line 63 releases the memory allocated to the sqlvar_struct structures.
Line 64 releases the memory allocated for the sqlda structure. The program does
not need to deallocate memory associated with the sqldata fields because these
fields have used space that is in a data buffer. For more information, see “Freeing
Memory Allocated to an sqlda Structure” on page 17-10.

Lines 69 to 77
The whereClauseMem() function initializes the sqlda structure with the
input-parameter definitions. Line 74 allocates memory for an sqlda structure to
hold the input parameters in the WHERE clause. Use of a DESCRIBE...INTO
statement to allocate an sqlda results in an sqlda that holds information about the
select-list columns of the SELECT. Because you want to describe the input
parameters in the WHERE clause, do not use DESCRIBE here.

Line 75 sets the sqld field of the sqlda structure to the value of count (2) to
indicate the number of parameters that are in the WHERE clause. Lines 76 and 77
use the calloc() system function to allocate the memory so that each input
parameter in the WHERE clause has an sqlvar_struct structure. These lines then
set the sqlvar field of the sqlda structure so that it points to this sqlvar_struct
memory.
===
78. (*descp)->sqlvar[0].sqltype = CCHARTYPE;

17-24 IBM Informix ESQL/C Programmer’s Manual

79. (*descp)->sqlvar[0].sqllen = FNAME + 1;
80. (*descp)->sqlvar[0].sqldata = fname;
81. (*descp)->sqlvar[1].sqltype = CCHARTYPE;
82. (*descp)->sqlvar[1].sqllen = LNAME + 1;
83. (*descp)->sqlvar[1].sqldata = lname;
84. }
85. selectListMem(descp)
86. struct sqlda *descp;
87. {
88. struct sqlvar_struct *col_ptr;
89. static char buf[1024];
90. int pos, cnt, size;
91. printf("\nWITHIN selectListMem: \n");
92. printf("number of parms: %d\n", descp->sqld);
93. for(col_ptr=descp->sqlvar, cnt=pos=0; cnt < descp->sqld;
94. cnt++, col_ptr++)
95. {
96. prsqlda(col_ptr);
97. pos = rtypalign(pos, col_ptr->sqltype);
98. col_ptr->sqldata = &buf[pos];
99. size = rtypmsize(col_ptr->sqltype, col_ptr->sqllen);
100. pos += size;
101. }
102. }

===

Lines 78 to 84
Lines 78 to 80 set the sqltype, sqllen, and sqldata fields of the sqlvar_struct
structure to describe the first input parameter: a character (CCHARTYPE) host
variable of length 16 (FNAME + 1) whose data is stored in the fname buffer. The
fname buffer is a character buffer declared in the main() program and passed as
an argument to whereClauseMem().

Lines 81 to 83 set the sqltype, sqllen, and sqldata fields of the sqlvar_struct
structure to describe the second input parameter. This parameter is for the lname
column. It is defined in the same way as the fname column (lines 78 to 80) but it
receives its data from the lname buffer [also passed from main() to
whereClauseMem()].

Lines 85 to 102
The selectListMem() function allocates the memory and initializes the sqlda
structure for the unknown select-list columns of the parameterized SELECT
statement. For more information about how to use an sqlda structure for select-list
columns, see “Handling a Parameterized SELECT Statement” on page 17-20.

Executing a Parameterized Singleton SELECT
The instructions in the previous section assume that the parameterized SELECT
statement returns more than one row and, therefore, is associated with a cursor. If
you know at the time that you write the program that the parameterized SELECT
statement always returns just one row, you can omit the cursor and use the
EXECUTE...USING DESCRIPTOR...INTO statement instead of the OPEN...USING
DESCRIPTOR statement to specify parameters values from an sqlda structure. For
more information, see “Specifying Input Parameter Values” on page 17-8.

Chapter 17. Using an sqlda structure 17-25

Handling a Parameterized User-Defined Routine
For an introduction on how to determine input parameters, see “Determining
Unknown Input Parameters” on page 15-17. This section describes how to handle a
parameterized user-defined routine with an sqlda structure. The following
statements execute user-defined routines:
v The EXECUTE FUNCTION statement executes a user-defined function (external

and SPL).
v The EXECUTE PROCEDURE statement executes a user-defined procedure

(external and SPL).

If a prepared EXECUTE PROCEDURE or EXECUTE FUNCTION statement has
arguments specified as input parameters of unknown number and data type, your
Informix ESQL/C program can use an sqlda structure to define the input
parameters.

Executing a Parameterized Function
You handle the input parameters of a user-defined function in the same way that
you handle input parameters in the WHERE clause of a SELECT statement, as
follows:
v Execute a noncursor function in the same way as a singleton SELECT statement.

If you know at the time that you write the program that the dynamic
user-defined function always returns just one row, you can use the
EXECUTE...USING DESCRIPTOR...INTO statement to provide the argument
values from an sqlda structure and to execute the function. For more
information, see “Executing a Parameterized Singleton SELECT” on page 17-25.

v Execute a cursor function in the same way as a SELECT statement that returns
one or more rows.
If you are not sure at the time that you write the program that the dynamic
user-defined function always returns just one row, define a function cursor and
use the OPEN...USING DESCRIPTOR statement to provide the argument values
from an sqlda structure. For more information, see “Executing a Parameterized
SELECT That Returns Multiple Rows” on page 17-21.

The only difference between the execution of these EXECUTE FUNCTION and
SELECT statements is that you prepare the EXECUTE FUNCTION statement for
the noncursor function, instead of the SELECT statement.

Executing a Parameterized Procedure
To execute a parameterized user-defined procedure, you can use the
EXECUTE...USING DESCRIPTOR statement to provide the argument values from
an sqlda structure and to execute the procedure. You handle the input parameters
of a user-defined procedure in the same way that you handle input parameters in
a noncursor function. The only difference between the execution of the EXECUTE
PROCEDURE statement and the EXECUTE FUNCTION statement (for a noncursor
function) is that you do not need to specify the INTO clause of the
EXECUTE...USING DESCRIPTOR statement for the user-defined procedure. For
more information, see “Executing a Parameterized Function.”

17-26 IBM Informix ESQL/C Programmer’s Manual

Handling a Parameterized UPDATE or DELETE Statement
The way to determine the input parameters in the WHERE clause of a DELETE or
UPDATE statement is very similar to the way to determine them in the WHERE
clause of a SELECT statement (“Handling a Parameterized SELECT Statement” on
page 17-20). The major differences between these two types of dynamic
parameterized statements are as follows:
v You do not need to use a cursor to handle a DELETE or UPDATE statement. You

provide the parameter values from an sqlda structure with the USING
DESCRIPTOR clause of the EXECUTE statement instead of with the OPEN
statement.

v You can use the DESCRIBE...INTO statement to determine if the DELETE or
UPDATE statement has a WHERE clause. For more information, see “Checking
for a WHERE Clause” on page 15-15.

Chapter 17. Using an sqlda structure 17-27

17-28 IBM Informix ESQL/C Programmer’s Manual

Appendix A. The ESQL/C example programs

Your IBM Informix software includes demonstration databases. IBM Informix
ESQL/C also includes source files for many of the demonstration programs and
examples in this publication, some of which access the demonstration databases.

In Windows environments, you can find the source files for Informix ESQL/C
example programs in the %INFORMIXDIR%\demo\esqldemo directory.

On UNIX operating systems, you can find the source files for Informix ESQL/C
example programs in the $INFORMIXDIR/demo/esqlc directory. The esqldemo
script, which is included with Informix ESQL/C, copies the source files from the
$INFORMIXDIR/demo/esqlc directory into the current directory.

For information about creating demonstration databases, see the IBM Informix
DB–Access User's Guide.

© Copyright IBM Corp. 1996, 2010 A-1

A-2 IBM Informix ESQL/C Programmer’s Manual

Appendix B. ESQL/C function library

These topics describe the syntax and behavior of all the library functions provided
with IBM Informix ESQL/C.

IBM Informix ESQL/C library functions
The following table lists the IBM Informix ESQL/C library functions in
alphabetical order.

Function Name Description See

bigintcvasc() Converts a C char type value to a BIGINT type number. B-5

bigintcvdbl() Converts a double type number to a BIGINT type number. B-6

bigintcvdec() Converts a decimal type number to a BIGINT type number. B-6

bigintcvflt() Converts a float type number to a BIGINT type number. B-6

bigintcvifx_int8() Converts and int8 type number to a BIGINT type number. B-7

bigintcvint2() Converts an int2 type number to a BIGINT type number. B-7

bigintcvint4() Converts an int4 type number to a BIGINT type number. B-7

biginttoasc() Converts a BIGINT type value to a C char type value. B-8

biginttodbl() Converts a BIGINT type number to a double type number. B-8

biginttodec() Converts a BIGINT type number to a decimal type number. B-8

biginttoflt() Converts a BIGINT type number to a float type number. B-9

biginttoifx_int8() Converts a BIGINT type number to an int8 type number. B-9

biginttoint2() Converts a BIGINT type number to an int2 type number. B-9

biginttoint4() Converts a BIGINT type number to an int4 type number. B-10

bycmpr() Compares two groups of contiguous bytes B-10

bycopy() Copies bytes from one area to another B-12

byfill() Fills the specified area with a character B-13

byleng() Counts the number of bytes in a string B-14

decadd() Adds two decimal numbers B-15

deccmp() Compares two decimal numbers B-17

deccopy() Copies a decimal number B-18

deccvasc() Converts a C char type to a decimal type B-19

deccvdbl() Converts a C double type to a decimal type B-21

deccvint() Converts a C int2 type to a decimal type B-24

deccvlong() Converts a C int4 type to a decimal type B-25

decdiv() Divides two decimal numbers B-27

dececvt() Converts a decimal value to an ASCII string B-28

decfcvt() Converts a decimal value to an ASCII string B-28

decmul() Multiplies two decimal numbers B-32

decround() Rounds a decimal number B-34

decsub() Subtracts two decimal numbers B-35

© Copyright IBM Corp. 1996, 2010 B-1

Function Name Description See

dectoasc() Converts a decimal type to an ASCII string B-36

dectodbl() Converts a decimal type to a C double type B-39

dectoint() Converts a decimal type to a C int type B-40

dectolong() Converts a decimal type to a C long type B-42

dectrunc() Truncates a decimal number B-43

dtaddinv() Adds an interval value to a datetime value B-45

dtcurrent() Gets current date and time B-46

dtcvasc() Converts an ANSI-compliant character string to datetime B-47

dtcvfmtasc() Converts a character string to a datetime value B-49

dtextend() Changes the qualifier of a datetime B-52

dtsub() Subtracts one datetime value from another B-53

dtsubinv() Subtracts an interval value from a datetime value B-55

dttoasc() Converts a datetime value to an ANSI-compliant character string B-56

dttofmtasc() Converts a datetime value to a character string B-58

GetConnect() Requests an explicit connection and returns a pointer to the connection
information

B-60

ifx_cl_card() Returns the cardinality of the specified collection type host variable B-62

ifx_dececvt() Converts a decimal value to an ASCII string (thread-safe version) B-63

ifx_decfcvt() Converts a decimal value to an ASCII string (thread-safe version) B-63

ifx_getcur_conn_name() Returns the name of the current connection B-72

ifx_getenv() Retrieves the value of an environment variable B-71

ifx_getserial8() Returns an inserted SERIAL8 value B-72

ifx_int8add() Adds two int8 numbers B-73

ifx_int8cmp() Compares two int8 numbers B-75

ifx_int8copy() Copies an int8 number B-76

ifx_int8cvasc() Converts a C char type value to an int8 type value B-78

ifx_int8cvdbl() Converts a C double type value to an int8 type value B-80

ifx_int8cvdec() Converts a C decimal type value to an int8 type value B-81

ifx_int8cvflt() Converts a C float type value to an int8 type value B-83

ifx_int8cvint() Converts a C int2 type value to an int8 type value B-84

ifx_int8cvlong() Converts a C int4 type value to an int8 type value B-86

ifx_int8div() Divides two int8 numbers B-87

ifx_int8mul() Multiplies two int8 numbers B-89

ifx_int8sub() Subtracts two int8 numbers B-90

ifx_int8toasc() Converts an int8 type value to a text string B-92

ifx_int8todbl() Converts an int8 type value to a C double type value B-94

ifx_int8todec() Converts an int8 type value to a decimal type value B-96

ifx_int8toflt() Converts an int8 type value to a C float type value B-99

ifx_int8toint() Converts an int8 type value to a C int2 type value B-101

ifx_int8tolong() Converts an int8 type value to a C int4 type value B-103

ifx_lo_alter() Alters the storage characteristics of an existing smart large object B-106

B-2 IBM Informix ESQL/C Programmer’s Manual

Function Name Description See

ifx_lo_close() Closes an open smart large object B-107

ifx_lo_col_info() Obtains column-level storage characteristics into an LO-specification
structure

B-107

ifx_lo_copy_to_file() Copies a smart large object to an operating-system file B-108

ifx_lo_copy_to_lo() Copies an operating-system file to an open smart large object B-110

ifx_lo_create() Creates an LO descriptor for a smart large object B-111

ifx_lo_def_create_spec() Allocates an LO-specification structure and initializes its fields to null
values

B-112

ifx_lo_filename() Returns the generated file name, given an LO descriptor and a file
specification

B-113

ifx_lo_from_buffer() Copies bytes from a user-defined buffer to a smart large object B-114

ifx_lo_open() Opens an existing smart large object B-116

ifx_lo_read() Reads a specified number of bytes from an open smart large object B-118

ifx_lo_readwithseek() Seeks to a specified position in an open smart large object and reads a
specified number of bytes

B-119

ifx_lo_release() Releases resources associated with a temporary smart large object B-120

ifx_lo_seek() Sets the seek position for the next read or write on an open smart large
object

B-121

ifx_lo_spec_free() Frees the resources allocated to an LO-specification structure B-122

ifx_lo_specget_estbytes() Gets the estimated number of bytes from the LO-specification structure B-123

ifx_lo_specget_extsz() Gets the allocation extent size from the LO-specification structure B-124

ifx_lo_specget_flags() Gets the create-time flags from the LO-specification structure B-125

ifx_lo_specget_maxbytes() Gets the maximum number of bytes from the LO-specification structure B-126

ifx_lo_specget_sbspace() Gets the name of the sbspace from the LO-specification structure B-127

ifx_lo_specset_estbytes() Sets the estimated number of bytes from the LO-specification structure B-129

ifx_lo_specset_extsz() Sets the allocation extent size in the LO-specification structure B-130

ifx_lo_specset_flags() Sets the create-time flags in the LO-specification structure B-131

ifx_lo_specset_maxbytes() Sets the maximum number of bytes in the LO-specification structure B-132

ifx_lo_specset_sbspace() Sets the name of the sbspace in the LO-specification structure B-132

ifx_lo_stat() Returns status information about an open smart large object B-133

ifx_lo_stat_atime() Returns the last access time for a smart large object B-134

ifx_lo_stat_cspec() Returns the storage characteristics into the LO-specification structure for
a specified smart large object

B-135

ifx_lo_stat_ctime() Returns the last change-in-status time for the smart large object B-136

ifx_lo_stat_free() Frees the resources allocated to an LO-status structure B-137

ifx_lo_stat_mtime_sec() Returns the last modification time, in seconds, for the smart large object B-138

ifx_lo_stat_refcnt() Returns the reference count for the smart large object B-138

ifx_lo_stat_size() Returns the size of the smart large object B-139

ifx_lo_tell() Returns the current seek position of an open smart large object B-140

ifx_lo_to_buffer Copies bytes from a smart large object into a user-defined buffer B-141

ifx_lo_truncate() Truncates a smart large object to a specific offset B-142

ifx_lo_write() Writes a specified number of bytes to an open smart large object B-143

Appendix B. ESQL/C function library B-3

Function Name Description See

ifx_lo_writewithseek() Seeks to a specified position in an open smart large object and writes a
specified number of bytes

B-144

ifx_lvar_alloc() Specifies whether to allocate memory when fetching lvarchar data B-146

ifx_putenv() Modifies or removes an existing environment variable or creates a new
one

B-146

ifx_var_alloc() Allocates memory for the data buffer B-148

ifx_var_dealloc() Deallocates memory for the data buffer B-149

ifx_var_flag() Determines whether Informix ESQL/C or the application handles
memory allocation for the data buffer

B-150

ifx_var_getdata() Returns the contents of the data buffer B-151

ifx_var_getlen() Returns the length of the data buffer B-152

ifx_var_isnull() Checks whether the data in the data buffer is null B-153

ifx_var_setdata() Sets the data for the data buffer B-154

ifx_var_setlen() Sets the length of the data buffer B-154

ifx_var_setnull() Sets the data in the data buffer to a null value B-155

incvasc() Converts an ANSI-compliant character string to an interval value B-156

incvfmtasc() Converts a character string to an interval value B-158

intoasc() Converts an interval value to an ANSI-compliant character string B-160

intofmtasc() Converts an interval value to a string B-161

invdivdbl() Divides an interval value by a numeric value B-163

invdivinv() Divides an interval value by an interval value B-165

invextend() Copies an interval value under a different qualifier B-167

invmuldbl() Multiplies an interval value by a numeric value B-168

ldchar() Copies a fixed-length string to a null-terminated string B-170

rdatestr() Converts an internal format to string B-171

rdayofweek() Returns the day of the week B-172

rdefmtdate() Converts a string to an internal format B-174

rdownshift() Converts all letters to lowercase B-176

ReleaseConnect() Closes an established explicit connection B-177

rfmtdate() Converts an internal format to a string B-178

rfmtdec() Converts a decimal type to a formatted string B-181

rfmtdouble() Converts a double type to a string B-183

rfmtlong() Converts an int4 to a formatted string B-185

rgetlmsg() Retrieves the error message for a large error number B-188

rgetmsg() Retrieves the error message for an error number B-189

risnull() Checks whether a C variable is null B-191

rjulmdy() Returns month, day, and year from an internal format B-193

rleapyear() Determines whether a specified year is a leap year B-195

rmdyjul() Returns an internal format from month, day, and year B-196

rsetnull() Sets a C variable to null B-197

rstod() Converts a string to a double type B-200

rstoi() Converts a null-terminated string to an int2 B-201

B-4 IBM Informix ESQL/C Programmer’s Manual

Function Name Description See

rstol() Converts a string to an int4 B-202

rstrdate() Converts a string to an internal format B-204

rtoday() Returns a system date in internal format B-205

rtypalign() Aligns data on a proper type boundary B-206

rtypmsize() Gives the byte size of SQL data types B-209

rtypname() Returns the name of a specified SQL type B-211

rtypwidth() Gives minimum conversion byte size B-213

rupshift() Converts all letters to uppercase B-209

SetConnect() Switches the connection to an established (dormant) explicit connection B-216

sqgetdbs() Returns the names of the databases that a database server can access B-217

sqlbreak() Sends the database server a request to stop processing B-220

sqlbreakcallback() Provides a method of returning control to the application while it is
waiting for the database server to process an SQL request

B-221

sqldetach() Detaches a child process from a parent process B-223

sqldone() Determines whether the database server is currently processing an SQL
request

B-228

sqlexit() Terminates a database server process B-228

SqlFreeMem() Used in some cases to free memory allocated by the Informix ESQL/C
libraries.

B-229

sqlsignal() Performs signal handling and child-processes cleanup B-229

sqlstart() Starts a database server process B-231

stcat() Concatenates one string to another B-232

stchar() Copies a null-terminated string to a fixed-length string B-233

stcmpr() Compares two strings B-234

stcopy() Copies one string to another string B-235

stleng() Counts the number of bytes in a string B-235

The bigintcvasc() function
The bigintcvasc() function converts a C char type value to a BIGINT type number.

Syntax:
mint bigintcvasc(strng_val, len, bigintp)
const char *strng_val
mint len
bigint *bigintp

strng_val A pointer to a string.

len The length of the strng_val string.

bigintp A pointer to a bigint variable to contain the result of the
conversion.

Return codes:

0 The conversion was successful.

<0 The conversion failed.

Appendix B. ESQL/C function library B-5

The bigintcvdbl() function
The bigintcvdbl() function converts a double type number to a BIGINT type
number.

Syntax:
mint bigintcvdbl(dbl, bigintp)
const double dbl
bigint *bigintp

dbl The double value to convert to bigint.

bigintp A pointer to a bigint variable to contain the result of the
conversion.

Return codes:

0 The conversion was successful.

<0 The conversion failed.

The bigintcvdec() function
The bigintcvdec() function converts a decimal type number to a BIGINT type
number.

Syntax:
mint bigintcvdec(decp, bigintp)
const dec_t *decp
bigint *bigintp

decp A pointer to the decimal structure that contains the value to
convert to a bigint value.

bigintp A pointer to a bigint variable to contain the result of the
conversion.

Return codes:

0 The conversion was successful.

<0 The conversion failed.

The bigintcvflt() function
The bigintcvflt() function converts a float type number to a BIGINT type number.

Syntax:
mint bigintcvflt(dbl, bigintp)
const double dbl
bigint *bigintp

dbl The float value to convert to bigint.

bigintp A pointer to a bigint value to contain the result of the conversion.

Return codes:

0 The conversion was successful.

<0 The conversion failed.

B-6 IBM Informix ESQL/C Programmer’s Manual

The bigintcvifx_int8() function
The bigintcvifx_int8() function converts and int8 type number to a BIGINT type
number.

Syntax:
mint bigintcvifx_int8(int8p, bigintp)
const ifx_int8_t *int8p
bigint *bigintp

int8p The int8 value to convert to a bigint value.

bigintp A pointer to a bigint variable to contain the result of the
conversion.

Return codes:

0 The conversion was successful.

<0 The conversion failed.

The bigintcvint2() function
The bigintcvint2() function converts an int2 type number to a BIGINT type
number.

Syntax:
mint bigintcvint2(int2v, bigintp)
const int2 int2v
bigint *bigintp

int2v The int2 value to convert to a bigint value.

bigintp A pointer to a bigint variable to contain the result of the
conversion.

Return codes:

0 The conversion was successful.

<0 The conversion failed.

The bigintcvint4() function
The bigintcvint4() function converts an int4 type number to a BIGINT type
number.

Syntax:
mint bigintcvint4(int4v, bigintp)
const int4 int4v
bigint *bigintp

int4v The int4 value to convert to a bigint value.

bigintp A pointer to a bigint variable to contain the result of the
conversion.

Return codes:

0 The conversion was successful.

<0 The conversion failed.

Appendix B. ESQL/C function library B-7

The biginttoasc() function
The biginttoasc() function converts a BIGINT type value to a C char type value.

Syntax:
mint biginttoasc(bigintv, strng_val, len, base)
const bigint bigintv
char *strng_val
mint len
mint base

bigintv A bigint value to convert to a text string.

strng_val A pointer to the first byte of the character buffer to contain the text
string.

len The size of strng_val, in bytes, minus 1 for the null terminator.

base The numeric base of the output. Base 10 and 16 are supported.
Other values result in base 10.

Return codes:

0 The conversion was successful.

<0 The conversion failed.

The biginttodbl() function
The biginttodbl() function converts a BIGINT type number to a double type
number.

Syntax:
mint biginttodbl(bigintv, dbl)
const bigint bigintv
double *dbl

bigintv A bigint value to convert to double.

dbl A pointer to a double variable to contain the result of the
conversion.

Return codes:

0 The conversion was successful.

<0 The conversion failed.

The biginttodec() function
The biginttodec() function converts a BIGINT type number to a decimal type
number.

Syntax:
mint biginttodec(bigintv, decp)
const bigint bigintv
dec_t *decp

bigintv A bigint value to convert to decimal.

decp A pointer to a decimal variable to contain the result of the
conversion.

B-8 IBM Informix ESQL/C Programmer’s Manual

Return codes:

0 The conversion was successful.

<0 The conversion failed.

The biginttoflt() function
The biginttoflt() function converts a BIGINT type number to a float type number.

Syntax:
mint biginttoflt(bigintv, fltp)
const bigint bigintv
float *fltp

bigintv is a bigint value to convert to float.

fltp is a pointer to a float variable to contain the result of the
conversion.

Return codes:

0 The conversion was successful.

<0 The conversion failed.

The biginttoifx_int8() function
The biginttoifx_int8() function converts a BIGINT type number to an int8 type
number.

Syntax:
void biginttoifx_int8(bigintv, int8p)
const bigint bigintv
ifx_int8_t *int8p

bigintv A bigint value to convert to int8.

int8p A pointer to an int8 structure to contain the result of the
conversion.

The biginttoint2() function
The biginttoint2() function converts a BIGINT type number to an int2 type
number.

Syntax:
mint biginttoint2(bigintv, int2p)
const bigint bigintv
int2 *int2p

bigintv A bigint value to convert to an int2 integer value.

int2p A pointer to an int variable to contain the result of the conversion.

Return codes:

0 The conversion was successful.

<0 The conversion failed.

Appendix B. ESQL/C function library B-9

The biginttoint4() function
The biginttoint4() function converts a BIGINT type number to an int4 type
number.

Syntax:
mint biginttoint4(bigintv, int4p)
const bigint bigintv
int4 *int4p

bigintv A bigint value to convert to an int4 integer value.

int4p A pointer to an int4 variable to contain the result of the conversion.

Return codes:

0 The conversion was successful.

<0 The conversion failed.

The bycmpr() function
The bycmpr() function compares two groups of contiguous bytes for a given
length. It returns the result of the comparison as its value.

Syntax:
mint bycmpr(byte1, byte2, length)

char *byte1;
char *byte2;
mint length;

byte1 A pointer to the location at which the first group of contiguous
bytes starts.

byte2 A pointer to the location at which the second group of contiguous
bytes starts.

length The number of bytes that you want bycmpr() to compare.

Usage:

The bycmpr() function performs a byte-by-byte comparison of the two groups of
contiguous bytes until it finds a difference or until it compares length number of
bytes. The bycmpr() function returns an integer whose value (0, -1, or +1) indicates
the result of the comparison between the two groups of bytes.

The bycmpr() function subtracts the bytes of the byte2 group from those of the
byte1 group to accomplish the comparison.

Return codes:

0 The two groups are identical.

-1 The byte1 group is less than the byte2 group.

+1 The byte1 group is greater than the byte2 group.

Examples:

This sample program is in the bycmpr.ec file in the demo directory.

B-10 IBM Informix ESQL/C Programmer’s Manual

/*
* bycmpr.ec *

The following program performs three different byte comparisons with
bycmpr() and displays the results.

*/

#include <stdio.h>

main()
{

mint x;

static char string1[] = "abcdef";
static char string2[] = "abcdeg";

static mint number1 = 12345;
static mint number2 = 12367;

static char string3[] = {0x00, 0x07, 0x45, 0x32, 0x00};
static char string4[] = {0x00, 0x07, 0x45, 0x31, 0x00};

printf("BYCMPR Sample ESQL Program running.\n\n");

/* strings */
printf("Comparing strings: String 1=%s\tString 2=%s\n", string1, string2);
printf(" Executing: bycmpr(string1, string2, sizeof(string1))\n");
x = bycmpr(string1, string2, sizeof(string1));
printf(" Result = %d\n", x);

/* ints */
printf("Comparing numbers: Number 1=%d\tNumber 2=%d\n", number1, number2);
printf(" Executing: bycmpr((char *) &number1, (char *) &number2, ");
printf("sizeof(number1))\n");
x = bycmpr((char *) &number1, (char *) &number2, sizeof(number1));
printf(" Result = %d\n", x);

/* non printable */
printf("Comparing strings with non-printable characters:\n");
printf(" Octal string 1=%o\tOctal string 2=%o\n", string3, string4);
printf(" Executing: bycmpr(string3, string4, sizeof(string3))\n");
x = bycmpr(string3, string4, sizeof(string3));
printf(" Result = %d\n", x);

/* bytes */
printf("Comparing bytes: Byte string 1=%c%c\tByte string 2=%c%c\n");
printf(" Executing: bycmpr(&string1[2], &string2[2], 2)\n");
x = bycmpr(&string1[2], &string2[2], 2);
printf(" Result = %d\n", x);

printf("\nBYCMPR Sample ESQL Program over.\n\n");
}

Output:
BYCMPR Sample ESQL Program running.

Comparing strings: String1=abcdef String 2=abcdeg
Executing: bycmpr(string1, string2, sizeof(string1))
Result = -1

Comparing numbers: Number 1=12345 Number 2=12367
Executing: bycmpr((char *) &number1, (char *) &number2, sizeof(number1)
Result = -1

Comparing strings with non-printable characters:

Appendix B. ESQL/C function library B-11

Octal string 1=40300 Octal string 2=40310
Executing: bycmpr(string3, string4, sizeof(string3))
Result = 1

Comparing bytes: Byte string 1=cd Byte string 2=cd
Executing: bycmpr(&string1[2], &string2[2], 2)
Result = 0

BYCMPR Sample ESQL Program over.

The bycopy() function
The bycopy() function copies a given number of bytes from one location to
another.

Syntax:
void bycopy(from, to, length)

char *from;
char *to;
mint length;

from A pointer to the first byte of the group of bytes that you want
bycopy() to copy.

to A pointer to the first byte of the destination group of bytes. The
memory area to which to points can overlap the area to which the
from argument points. In this case, Informix ESQL/C does not
preserve the value to which from points.

length The number of bytes that you want bycopy() to copy.

Important: Take care not to overwrite areas of memory adjacent to
the destination area.

Examples:

This sample program is in the bycopy.ec file in the demo directory.
/*

* bycopy.ec *

The following program shows the results of bycopy() for three copy
operations.

*/

#include <stdio.h>

char dest[20];

main()
{

mint number1 = 12345;
mint number2 = 0;
static char string1[] = "abcdef";
static char string2[] = "abcdefghijklmn";

printf("BYCOPY Sample ESQL Program running.\n\n");

printf("String 1=%s\tString 2=%s\n", string1, string2);
printf(" Copying String 1 to destination string:\n");
bycopy(string1, dest, strlen(string1));
printf(" Result = %s\n\n", dest);

printf(" Copying String 2 to destination string:\n");

B-12 IBM Informix ESQL/C Programmer’s Manual

bycopy(string2, dest, strlen(string2));
printf(" Result = %s\n\n", dest);

printf("Number 1=%d\tNumber 2=%d\n", number1, number2);
printf(" Copying Number 1 to Number 2:\n");
bycopy((char *) &number1, (char *) &number2, sizeof(int));
printf(" Result = number1(hex) %08x, number2(hex) %08x\n",

number1, number2);

printf("\nBYCOPY Sample Program over.\n\n");
}

Output:
BYCOPY Sample ESQL Program running.

String 1=abcdef String2=abcdefghijklmn
Copying String 1 to destination string:
Result = abcdef

Copying String 2 to destination string:
Result = abcdefghijklmn

Number 1=12345 Number2=0
Copying Number 1 to Number 2:
Result = number1(hex) 00003039, number2(hex) 00003039

BYCOPY Sample Program over.

The byfill() function
The byfill() function fills a specified area with one character.

Syntax:
void byfill(to, length, ch)

char *to;
mint length;
char ch;

to A pointer to the first byte of the memory area that you want
byfill() to fill.

length The number of times that you want byfill() to repeat the character
within the area.

ch The character that you want byfill() to use to fill the area.

Important: Take care not to overwrite areas of memory adjacent to
the area that you want byfill() to fill.

Examples:

This sample program is in the byfill.ec file in the demo directory.
/*

* byfill.ec *

The following program shows the results of three byfill() operations on
an area that is initialized to x’s.

*/

#include <stdio.h>

main()

Appendix B. ESQL/C function library B-13

{
static char area[20] = "xxxxxxxxxxxxxxxxxxx";

printf("BYFILL Sample ESQL Program running.\n\n");

printf("String = %s\n", area);

printf("\nFilling string with five ’s’ characters:\n");
byfill(area, 5, ’s’);
printf("Result = %s\n", area);

printf("\nFilling string with two ’s’ characters starting at ");
printf("position 16:\n");
byfill(&area[16], 2, ’s’);
printf("Result = %s\n", area);

printf("Filling entire string with ’b’ characters:\n");
byfill(area, sizeof(area)-1, ’b’);
printf("Result = %s\n", area);

printf("\nBYFILL Sample Program over.\n\n");
}

Output:
BYFILL Sample ESQL Program running.

String = xxxxxxxxxxxxxxxxxxx

Filling string with five ’s’ characters:
Result = sssssxxxxxxxxxxxxxx

Filling string with two ’s’ characters starting at position 16:
Result = sssssxxxxxxxxxxxssx

Filling entire string with ’b’ characters:
Result = bbbbbbbbbbbbbbbbbbb

BYFILL Sample Program over.

The byleng() fucntion
The byleng() function returns the number of significant characters in a string, not
counting trailing blanks.

Syntax:
mint byleng(from, count)

char *from;
mint count;

from A pointer to a fixed-length string (not null-terminated).

count The number of bytes in the fixed-length string. This does not
include trailing blanks.

Examples:

This sample program is in the byleng.ec file in the demo directory.
/*

* byleng.ec *

The following program uses byleng() to count the significant characters

B-14 IBM Informix ESQL/C Programmer’s Manual

in an area.
*/

#include <stdio.h>

main()
{

mint x;
static char area[20] = "xxxxxxxxxx ";

printf("BYLENG Sample Program running.\n\n");

/* initial length */
printf("Initial string:\n");
x = byleng(area, 15);
printf(" Length = %d, String = ’%s’\n", x, area);

/* after copy */
printf("\nAfter copying two ’s’ characters starting ");
printf("at position 16:\n");
bycopy("ss", &area[16], 2);
x = byleng(area, 19);
printf(" Length = %d, String = ’%s’\n", x, area);

printf("\nBYLENG Sample Program over.\n\n");
}

Output:
BYLENG Sample Program running.

Initial string:
Length = 10, String = ’xxxxxxxxxx ’

After copying two ’s’ characters starting at position 16:
Length = 18, String = ’xxxxxxxxxx ss ’

BYLENG Sample Program over.

The decadd() function
The decadd() function adds two decimal type values.

Syntax:
mint decadd(n1, n2, sum)

dec_t *n1;
dec_t *n2;
dec_t *sum;

n1 A pointer to the decimal structure of the first operand.

n2 A pointer to the decimal structure of the second operand.

sum A pointer to the decimal structure that contains the sum (n1 + n2).

Usage:

The sum can be the same as either n1 or n2.

Return codes:

0 The operation was successful.

Appendix B. ESQL/C function library B-15

-1200 The operation resulted in overflow.

-1201 The operation resulted in underflow.

Examples:

The file decadd.ec in the demo directory contains the following sample program.
/*

* decadd.ec *

The following program obtains the sum of two DECIMAL numbers.
*/

#include <stdio.h>

EXEC SQL include decimal;

char string1[] = " 1000.6789"; /* leading spaces will be ignored */
char string2[] = "80";
char result[41];

main()
{

mint x;
dec_t num1, num2, sum;

printf("DECADD Sample ESQL Program running.\n\n");

if (x = deccvasc(string1, strlen(string1), &num1))
{
printf("Error %d in converting string1 to DECIMAL\n", x);
exit(1);
}

if (x = deccvasc(string2, strlen(string2), &num2))
{
printf("Error %d in converting string2 to DECIMAL\n", x);
exit(1);
}

if (x = decadd(&num1, &num2, &sum))
{
printf("Error %d in adding DECIMALs\n", x);
exit(1);
}

if (x = dectoasc(&sum, result, sizeof(result), -1))
{
printf("Error %d in converting DECIMAL result to string\n", x);
exit(1);
}

result[40] = ’\0’;
printf("\t%s + %s = %s\n", string1, string2, result); /* display result */

printf("\nDECADD Sample Program over.\n\n");
exit(0);

}

Output:
DECADD Sample ESQL Program running.

1000.6789 + 80 = 1080.6789

DECADD Sample Program over.

B-16 IBM Informix ESQL/C Programmer’s Manual

The deccmp() function
The deccmp() function compares two decimal type numbers.

Syntax:
mint deccmp(n1, n2)

dec_t *n1;
dec_t *n2;

n1 A pointer to a decimal structure of the first number to compare.

n2 A pointer to a decimal structure of the second number to compare.

Return codes:

-1 The first value is less than the second value.

0 The two values are identical.

1 The first value is greater than the second value.

DECUNKNOWN
Either value is null.

Examples:

The file deccmp.ec in the demo directory contains the following sample program.
/*

* deccmp.ec *

The following program compares DECIMAL numbers and displays the results.
*/

#include <stdio.h>

EXEC SQL include decimal;

char string1[] = "-12345.6789"; /* leading spaces will be ignored */
char string2[] = "12345.6789";
char string3[] = "-12345.6789";
char string4[] = "-12345.6780";

main()
{

mint x;
dec_t num1, num2, num3, num4;

printf("DECCOPY Sample ESQL Program running.\n\n");

if (x = deccvasc(string1, strlen(string1), &num1))
{
printf("Error %d in converting string1 to DECIMAL\n", x);
exit(1);
}

if (x = deccvasc(string2, strlen(string2), &num2))
{
printf("Error %d in converting string2 to DECIMAL\n", x);
exit(1);
}

if (x = deccvasc(string3, strlen(string3), &num3))
{
printf("Error %d in converting string3 to DECIMAL\n", x);

Appendix B. ESQL/C function library B-17

exit(1);
}

if (x = deccvasc(string4, strlen(string4), &num4))
{
printf("Error %d in converting string4 to DECIMAL\n", x);
exit(1);
}

printf("Number 1 = %s\tNumber 2 = %s\n", string1, string2);
printf("Number 3 = %s\tNumber 4 = %s\n",string3, string4);
printf("\nExecuting: deccmp(&num1, &num2)\n");
printf(" Result = %d\n", deccmp(&num1, &num2));
printf("Executing: deccmp(&num2, &num3)\n");
printf(" Result = %d\n", deccmp(&num2, &num3));
printf("Executing: deccmp(&num1, &num3)\n");
printf(" Result = %d\n", deccmp(&num1, &num3));
printf("Executing: deccmp(&num3, &num4)\n");
printf(" Result = %d\n", deccmp(&num3, &num4));

printf("\nDECCMP Sample Program over.\n\n");
exit(0);

}

Output:
DECCMP Sample ESQL Program running.

Number 1 = -12345.6789 Number 2 = 12345.6789
Number 3 = -12345.6789 Number 4 = -12345.6780

Executing: deccmp(&num1, &num2)
Result = -1

Executing: deccmp(&num2, &num3)
Result = 1

Executing: deccmp(&num1, &num3)
Result = 0

Executing: deccmp(&num3, &num4)
Result = -1

DECCMP Sample Program over.

The deccopy() function
The deccopy() function copies one decimal structure to another.

Syntax:
void deccopy(source, target)

dec_t *source;
dec_t *target;

source A pointer to the value held in the source decimal structure.

target A pointer to the target decimal structure.

The deccopy() function does not return a status value. To determine the success of
the copy operation, look at the contents of the decimal structure to which the target
argument points.

Examples:

The file deccopy.ec in the demo directory contains the following sample program.

B-18 IBM Informix ESQL/C Programmer’s Manual

/*
* deccopy.ec *

The following program copies one DECIMAL number to another.
*/

#include <stdio.h>

EXEC SQL include decimal;

char string1[] = "12345.6789";
char result[41];

main()
{

int x;
dec_t num1, num2;

printf("DECCOPY Sample ESQL Program running.\n\n");

printf("String = %s\n", string1);
if (x = deccvasc(string1, strlen(string1), &num1))
{
printf("Error %d in converting string1 to DECIMAL\n", x);
exit(1);
}

printf("Executing: deccopy(&num1, &num2)\n");
deccopy(&num1, &num2);
if (x = dectoasc(&num2, result, sizeof(result), -1))
{
printf("Error %d in converting num2 to string\n", x);
exit(1);
}

result[40] = ’\0’;
printf("Destination = %s\n", result);

printf("\nDECCOPY Sample Program over.\n\n");
exit(0);

}

Output:
DECCOPY Sample ESQL Program running.

String = 12345.6789
Executing: deccopy(&num1, &num2)
Destination = 12345.6789

DECCOPY Sample Program over.

The deccvasc() function
The deccvasc() function converts a value held as printable characters in a C char
type into a decimal type number.

Syntax:
mint deccvasc(strng_val, len, dec_val)

char *strng_val;
mint len;
dec_t *dec_val;

strng_val A pointer to a string whose value deccvasc() converts to a decimal
value.

Appendix B. ESQL/C function library B-19

len The length of the strng_val string.

dec_val A pointer to the decimal structure where deccvasc() places the
result of the conversion.

Usage:

The character string, strng_val, can contain the following symbols:
v A leading sign, either a plus (+) or minus (-)
v A decimal point, and digits to the right of the decimal point
v An exponent that is preceded by either e or E. You can precede the exponent by

a sign, either a plus (+) or minus (-).

The deccvasc() function ignores leading spaces in the character string.

Return codes:

0 The conversion was successful.

-1200 The number is too large to fit into a decimal type structure
(overflow).

-1201 The number is too small to fit into a decimal type structure
(underflow).

-1213 The string has non-numeric characters.

-1216 The string has a bad exponent.

Examples:

The deccvasc.ec file in the demo directory contains the following sample program.
/*

* deccvasc.ec *

The following program converts two strings to DECIMAL numbers and displays
the values stored in each field of the decimal structures.

*/

#include <stdio.h>

EXEC SQL include decimal;

char string1[] = "-12345.6789";
char string2[] = "480";

main()
{

mint x;
dec_t num1, num2;

printf("DECCVASC Sample ESQL Program running.\n\n");

if (x = deccvasc(string1, strlen(string1), &num1))
{
printf("Error %d in converting string1 to DECIMAL\n", x);
exit(1);
}

if (x = deccvasc(string2, strlen(string2), &num2))
{
printf("Error %d in converting string2 to DECIMAL\n", x);
exit(1);

B-20 IBM Informix ESQL/C Programmer’s Manual

}
/*
* Display the exponent, sign value and number of digits in num1.
*/

printf("\tstring1 = %s\n", string1);
disp_dec("num1", &num1);

/*
* Display the exponent, sign value and number of digits in num2.
*/

printf("\tstring2 = %s\n", string2);
disp_dec("num2", &num2);

printf("\nDECCVASC Sample Program over.\n\n");
exit(0);

}

disp_dec(s, num)
char *s;
dec_t *num;
{

mint n;

printf("%s dec_t structure:\n", s);
printf("\tdec_exp = %d, dec_pos = %d, dec_ndgts = %d, dec_dgts: ",
num->dec_exp, num->dec_pos, num->dec_ndgts);

n = 0;
while(n < num->dec_ndgts)
printf("%02d ", num->dec_dgts[n++]);

printf("\n\n");
}

Output:
DECCVASC Sample ESQL Program running.

string1 = -12345.6789
num1 dec_t structure:

dec_exp = 3, dec_pos = 0, dec_ndgts = 5, dec_dgts: 01 23 45 67 89

string2 = 480
num2 dec_t structure:

dec_exp = 2, dec_pos = 1, dec_ndgts = 2, dec_dgts: 04 80

DECCVASC Sample Program over.

The deccvdbl() function
The deccvdbl() function converts a C double type number into a decimal type
number.

Syntax:
mint deccvdbl(dbl_val, np)

double dbl_val;
dec_t *dec_val;

dbl_val The double value that deccvdbl() converts to a decimal type value.

dec_val A pointer to a decimal structure where deccvdbl() places the result
of the conversion.

Return codes:

Appendix B. ESQL/C function library B-21

0 The conversion was successful.

<0 The conversion failed.

Examples:

The deccvdbl.ec file in the demo directory contains the following sample program.
/*

* deccvdbl.ec *

The following program converts two double type numbers to DECIMAL numbers
and displays the results.

*/

#include <stdio.h>

EXEC SQL include decimal;

char result[41];

main()
{

mint x;
dec_t num;
double d = 2147483647;

printf("DECCVDBL Sample ESQL Program running.\n\n");

printf("Number 1 (double) = 1234.5678901234\n");
if (x = deccvdbl((double)1234.5678901234, &num))
{
printf("Error %d in converting double1 to DECIMAL\n", x);
exit(1);
}

if (x = dectoasc(&num, result, sizeof(result), -1))
{
printf("Error %d in converting DECIMAL1 to string\n", x);
exit(1);
}

result[40] = ’\0’;
printf(" String Value = %s\n", result);

printf("Number 2 (double) = $.1f\n", d);
if (x = deccvdbl(d, &num))
{
printf("Error %d in converting double2 to DECIMAL\n", x);
exit(1);
}

if (x = dectoasc(&num, result, sizeof(result), -1))
{
printf("Error %d in converting DECIMAL2 to string\n", x);
exit(1);
}

result[40] = ’\0’;
printf(" String Value = %s\n", result);

printf("\nDECCVDBL Sample Program over.\n\n");
exit(0);

}

Output:

B-22 IBM Informix ESQL/C Programmer’s Manual

DECCVDBL Sample ESQL Program running.

Number 1 (double) = 1234.5678901234
String Value = 1234.5678901234

Number 2 (double) = 2147483647.0
String Value = 2147483647.0

DECCVDBL Sample Program over.

The deccvflt() function
The deccvflt() function converts a C float type number into an ESQL/C decimal
type number.

Syntax:
int deccvflt(flt_val, dec_val)

float flt_val;

dec_t *dec_val;

flt_val The float value that deccvflt() converts to a decimal type value.

dec_val A pointer to a decimal structure where deccvflt() places the result
of the conversion.

Return codes:

0 The conversion was successful.

<0 The conversion failed.

Examples:

The following example program converts two float type number to DECIMAL
numbers and displays the results.
#include <stdio.h>
EXEC SQL include decimal;
char result[41];
main()
{

int x;
dec_t num;
float f = 2147483674;
printf(“DECCVFLT Sample ESQL Program Running.\n\n);
if (x = deccvflt((float)1234.5678901234, &num))

{
printf(“Error %d in converting double1 to DECIMAL\n”, x);
exit(1);
}

if (x = dectoasc(&num, result, sizeof(result), -1))
{
printf(“Error %d in converting DECIMAL1 to string\n”, x);
exit(1);
}

result[40] = '\0';
printf(“ String Value = %s\n”, result);
printf(“ Number 2 (float) = %.1f\n”, f);
if (x = deccvflt(f, &num))

{
printf(“Error %d in converting float2 to DECIMAL\n”, x);
exit(1);
}

if (x = dectoasc(&num, result, sizeof(result), -1))

Appendix B. ESQL/C function library B-23

{
printf(“Error %d in converting DECIMAL2 to string\n”, x);
exit(1);
}

result[40] = '\0';
printf(“ String Value = %s\n”, result);
printf(“\n DECCVFLT Sample Program Over.\n\n”);
exit(0);
}

Output:
DECCVFLT Sample ESQL Program running.

Number 1 (float) = 1234.5678901234
String Value = 1234.56787

Number 2 (float) = 2147483647.0
String Value = 2147483647.0

DECCVFLT Sample Program over.

The deccvint() function
The deccvint() function converts a C int type number into a decimal type number.

Syntax:
mint deccvint(int_val, dec_val)

mint int_val;
dec_t *dec_val;

int_val The mint value that deccvint() converts to a decimal type value.

dec_val A pointer to a decimal structure where deccvint() places the result
of the conversion.

Return codes:

0 The conversion was successful.

<0 The conversion failed.

Examples:

The deccvint.ec file in the demo directory contains the following sample program.
/*

* deccvint.ec *

The following program converts two integers to DECIMAL numbers and displays
the results.

*/

#include <stdio.h>

EXEC SQL include decimal;

char result[41];

main()
{

mint x;
dec_t num;

printf("DECCVINT Sample ESQL Program running.\n\n");

B-24 IBM Informix ESQL/C Programmer’s Manual

printf("Integer 1 = 129449233\n");
if (x = deccvint(129449233, &num))
{
printf("Error %d in converting int1 to DECIMAL\n", x);
exit(1);
}

if (x = dectoasc(&num, result, sizeof(result), -1))
{
printf("Error %d in converting DECIMAL to string\n", x);
exit(1);
}

result[40] = ’\0’;
printf(" String for Decimal Value = %s\n", result);

printf("Integer 2 = 33\n");
if (x = deccvint(33, &num))

{
printf("Error %d in converting int2 to DECIMAL\n", x);
exit(1);
}

result[40] = ’\0’;
printf(" String for Decimal Value = %s\n", result);

printf("\nDECCVINT Sample Program over.\n\n");
exit(0);

}

Output:
DECCVINT Sample ESQL Program running.

Integer 1 = 129449233
String for Decimal Value = 129449233.0

Integer 2 = 33
String for Decimal Value = 33.0

DECCVINT Sample Program over.

The deccvlong() function
The deccvlong() function converts a C long type value into a decimal type value.

Syntax:
mint deccvlong(lng_val, dec_val)

int4 lng_val;
dec_t *dec_val;

lng_val The int4 value that deccvlong() converts to a decimal type value.

dec_val A pointer to a decimal structure where deccvint() places the result
of the conversion.

Return codes:

0 The conversion was successful.

<0 The conversion failed.

Examples:

The file deccvlong.ec in the demo directory contains the following sample
program.

Appendix B. ESQL/C function library B-25

/*
* deccvlong.ec *

The following program converts two longs to DECIMAL numbers and displays
the results.

*/

#include <stdio.h>

EXEC SQL include decimal;

char result[41];
main()
{

mint x;
dec_t num;

int4 n;

printf("DECCVLONG Sample ESQL Program running.\n\n");

printf("Long Integer 1 = 129449233\n");
if (x = deccvlong(129449233L, &num))

{
printf("Error %d in converting long to DECIMAL\n", x);
exit(1);
}

if (x = dectoasc(&num, result, sizeof(result), -1))
{
printf("Error %d in converting DECIMAL to string\n", x);
exit(1);
}

result[40] = ’\0’;
printf(" String for Decimal Value = %s\n", result);

n = 2147483646; /* set n */
printf("Long Integer 2 = %d\n", n);
if (x = deccvlong(n, &num))
{
printf("Error %d in converting long to DECIMAL\n", x);
exit(1);
}

if (x = dectoasc(&num, result, sizeof(result), -1))
{
printf("Error %d in converting DECIMAL to string\n", x);
exit(1);
}

result[40] = ’\0’;
printf(" String for Decimal Value = %s\n", result);

printf("\nDECCVLONG Sample Program over.\n\n");
exit(0);

}

Output:
DECCVLONG Sample ESQL Program running.

Long Integer 1 = 129449233
String for Decimal Value = 129449233.0

Long Integer 2 = 2147483646
String for Decimal Value = 2147483646.0

DECCVLONG Sample Program over.

B-26 IBM Informix ESQL/C Programmer’s Manual

The decdiv() function
The decdiv() function divides two decimal type values.

Syntax:
mint decdiv(n1, n2, result) /* result = n1 / n2 */

dec_t *n1;
dec_t *n2;
dec_t *result;

n1 A pointer to the decimal structure of the first operand.

n2 A pointer to the decimal structure of the second operand.

quotient A pointer to the decimal structure that contains the quotient of n1
divided by n2.

Usage:

The quotient can be the same as either n1 or n2.

Return codes:

0 The operation was successful.

-1200 The operation resulted in overflow.

-1201 The operation resulted in underflow.

-1202 The operation attempted to divide by zero.

Examples:

The file decdiv.ec in the demo directory contains the following sample program.
/*

* decdiv.ec *

The following program divides two DECIMAL numbers and displays the result.
*/

#include <stdio.h>

EXEC SQL include decimal;

char string1[] = "480";
char string2[] = "80";
char result[41];

main()
{

mint x;
dec_t num1, num2, dvd;

printf("DECDIV Sample ESQL Program running.\n\n");

if (x = deccvasc(string1, strlen(string1), &num1))
{
printf("Error %d in converting string1 to DECIMAL\n", x);
exit(1);

} if (x = deccvasc(string2, strlen(string2), &num2))
{
printf("Error %d in converting string2 to DECIMAL\n", x);

Appendix B. ESQL/C function library B-27

exit(1);
}

if (x = decdiv(&num1, &num2, &dvd))
{
printf("Error %d in converting divide num1 by num2\n", x);
exit(1);
}

if (x = dectoasc(&dvd, result, sizeof(result), -1))
{
printf("Error %d in converting dividend to string\n", x);
exit(1);
}

result[40] = ’\0’;
printf("\t%s / %s = %s\n", string1, string2, result);

printf("\nDECDIV Sample Program over.\n\n");
exit(0);

}

Output:
DECDIV Sample ESQL Program running.

480 / 80 = 6.0

DECDIV Sample Program over.

The dececvt() and decfcvt() functions
The dececvt() and decfcvt() functions are analogous to the subroutines under
ECVT(3) in section three of the UNIX Programmer’s Manual. The dececvt() function
works in the same fashion as the ecvt(3) function, and the decfcvt() function
works in the same fashion as the fcvt(3) function. They both convert a decimal
type number to a C char type value.

Syntax:
char *dececvt(dec_val, ndigit, decpt, sign)

dec_t *dec_val;
mint ndigit;
mint *decpt;
mint *sign;

char *decfcvt(dec_val, ndigit, decpt, sign)
dec_t *dec_val;
mint ndigit;
mint *decpt;
mint *sign;

dec_val A pointer to a decimal structure that contains the decimal value
you want these functions to convert.

ndigit The length of the ASCII string for dececvt(). It is the number of
digits to the right of the decimal point for decfcvt().

decpt A pointer to an integer that is the position of the decimal point
relative to the start of the string. A negative or zero value for
*decpt means to the left of the returned digits.

sign A pointer to the sign of the result. If the sign of the result is
negative, *sign is nonzero; otherwise, *sign is zero.

Usage:

B-28 IBM Informix ESQL/C Programmer’s Manual

The dececvt() function converts the decimal value to which np points into a
null-terminated string of ndigit ASCII digits and returns a pointer to the string. A
subsequent call to this function overwrites the string.

The dececvt() function rounds low-order digits.

The decfcvt() function is identical to dececvt(), except that ndigit specifies the
number of digits to the right of the decimal point instead of the total number of
digits.

Let dec_val point to a decimal value of 12345.67 and suppress all arguments except
ndigit. The following table shows the values that the dececvt() function returns for
four different ndigit values.

ndigit value Return string *decpt value *sign

4 "1235" 5 0
10 "1234567000" 5 0
1 "1" 5 0
3 "123" 5 0

For more examples of dec_val and ndigit values, see the sample output of the
dececvt.ec demonstration program on B-29.

Warning: When you write thread-safe Informix ESQL/C applications, do not use
the dececvt() or decfcvt() library functions. Instead, use their thread-safe
equivalents, “The ifx_dececvt() and ifx_decfcvt() function” on page B-63
For more information, see Chapter 13, “Using Informix libraries,” on
page 13-1

Example of dececvt():

The file dececvt.ec in the demo directory contains the following sample program.
/*

* dececvt.ec *

The following program converts a series of DECIMAL numbers to fixed
strings of 20 ASCII digits. For each conversion it displays the resulting
string, the decimal position from the beginning of the string and the
sign value.

*/

#include <stdio.h>

EXEC SQL include decimal;

char *strings[] =
{
"210203.204",
"4894",
"443.334899312",
"-12344455",
"12345.67",
".001234",
0
};

char result[40];

Appendix B. ESQL/C function library B-29

main()
{

mint x;
mint i = 0, f, sign;
dec_t num;
char *dp, *dececvt();

printf("DECECVT Sample ESQL Program running.\n\n");
while(strings[i])

{
if (x = deccvasc(strings[i], strlen(strings[i]), &num))

{
printf("Error %d in converting string [%s] to DECIMAL\n",

x, strings[i]);
break;
}

printf("\Input string[%d]: %s\n", i, strings[i]);

dp = dececvt(&num, 20, &f, &sign); /* to 20-char ASCII string */
printf(" Output of dececvt(&num, 20, ...): %c%s decpt: %d sign: %d\n",

(sign ? ’-’ : ’+’), dp, f, sign);

dp = dececvt(&num, 10, &f, &sign); /* to 10-char ASCII string */
/* display result */
printf(" Output of dececvt(&num, 10, ...): %c%s decpt: %d sign: %d\n",

(sign ? ’-’ : ’+’), dp, f, sign);

dp = dececvt(&num, 4, &f, &sign); /* to 4-char ASCII string */
/* display result */
printf(" Output of dececvt(&num, 4, ...): %c%s decpt: %d sign: %d\n",

(sign ? ’-’ : ’+’), dp, f, sign);

dp = dececvt(&num, 3, &f, &sign); /* to 3-char ASCII string */
/* display result */
printf(" Output of dececvt(&num, 3, ...): %c%s decpt: %d sign: %d\n",

(sign ? ’-’ : ’+’), dp, f, sign);
dp = dececvt(&num, 1, &f, &sign); /* to 1-char ASCII string */
/* display result */
printf(" Output of dececvt(&num, 1, ...): %c%s decpt: %d sign: %d\n",

(sign ? ’-’ : ’+’), dp, f, sign);

++i; /* next string */
}

printf("\nDECECVT Sample Program over.\n\n");
}

Output of dececvt():
DECECVT Sample ESQL Program running.

Input string[0]: 210203.204
Output of dececvt: +2102 decpt: 6 sign: 0
Output of dececvt: +2102032040 decpt: 6 sign: 0
Output of dececvt: +2 decpt: 6 sign: 0
Output of dececvt: +210 decpt: 6 sign: 0

Input string[1]: 4894
Output of dececvt: +4894 decpt: 4 sign: 0
Output of dececvt: +4894000000 decpt: 4 sign: 0
Output of dececvt: +5 decpt: 4 sign: 0
Output of dececvt: +489 decpt: 4 sign: 0

B-30 IBM Informix ESQL/C Programmer’s Manual

Input string[2]: 443.334899312
Output of dececvt: +4433 decpt: 3 sign: 0
Output of dececvt: +4433348993 decpt: 3 sign: 0
Output of dececvt: +4 decpt: 3 sign: 0
Output of dececvt: +443 decpt: 3 sign: 0

Input string[3]: -12344455
Output of dececvt: -1234 decpt: 8 sign: 1
Output of dececvt: -1234445500 decpt: 8 sign: 1
Output of dececvt: -1 decpt: 8 sign: 1
Output of dececvt: -123 decpt: 8 sign: 1

Input string[4]: 12345.67
Output of dececvt: +1235 decpt: 5 sign: 0
Output of dececvt: +1234567000 decpt: 5 sign: 0
Output of dececvt: +1 decpt: 5 sign: 0
Output of dececvt: +123 decpt: 5 sign: 0

Input string[5]: .001234
Output of dececvt: +1234 decpt: -2 sign: 0
Output of dececvt: +1234000000 decpt: -2 sign: 0
Output of dececvt: +1 decpt: -2 sign: 0
Output of dececvt: +123 decpt: -2 sign: 0

DECECVT Sample Program over.

Example of decfcvt():

The file decfcvt.ec in the demo directory contains the following sample program.
/*

* decfcvt.ec *

The following program converts a series of DECIMAL numbers to strings
of ASCII digits with 3 digits to the right of the decimal point. For
each conversion it displays the resulting string, the position of the
decimal point from the beginning of the string and the sign value.

*/

#include <stdio.h>

EXEC SQL include decimal;

char *strings[] =
{
"210203.204",
"4894",
"443.334899312",
"-12344455",
0
};

main()
{

mint x;
dec_t num;
mint i = 0, f, sign;
char *dp, *decfcvt();

printf("DECFCVT Sample ESQL Program running.\n\n");

while(strings[i])
{

Appendix B. ESQL/C function library B-31

if (x = deccvasc(strings[i], strlen(strings[i]), &num))
{
printf("Error %d in converting string [%s] to DECIMAL\n",

x, strings[i]);
break;
}

dp = decfcvt(&num, 3, &f, &sign); /* to ASCII string */

/* display result */
printf("Input string[%d]: %s\n", i, strings[i]);
printf(" Output of decfcvt: %c%*.*s.%s decpt: %d sign: %d\n\n",

(sign ? ’-’ : ’+’), f, f, dp, dp+f, f, sign);
++i; /* next string */
}

printf("\nDECFCVT Sample Program over.\n\n");
}

Output of decfcvt():
DECFCVT Sample ESQL Program running.

Input string[0]: 210203.204
Output of decfcvt: +210203.204 decpt: 6 sign: 0

Input string[1]: 4894
Output of decfcvt: +4894.000 decpt: 4 sign: 0

Input string[2]: 443.334899312
Output of decfcvt: +443.335 decpt: 3 sign: 0

Input string[3]: -12344455
Output of decfcvt: -12344455.000 decpt: 8 sign: 1

DECFCVT Sample Program over.

The decmul() function
The decmul() function multiplies two decimal type values.

Syntax:
mint decmul(n1, n2, product)

dec_t *n1;
dec_t *n2;
dec_t *product;

n1 A pointer to the decimal structure of the first operand.

n2 A pointer to the decimal structure of the second operand.

product A pointer to the decimal structure that contains the product of n1
times n2.

Usage:

The product can be the same as either n1 or n2.

Return codes:

0 The operation was successful.

-1200 The operation resulted in overflow.

-1201 The operation resulted in underflow.

B-32 IBM Informix ESQL/C Programmer’s Manual

Examples:

The file decmul.ec file in the demo directory contains the following sample
program.
/*

* decmul.ec *

This program multiplies two DECIMAL numbers and displays the result.
*/

#include <stdio.h>

EXEC SQL include decimal;

char string1[] = "80.2";
char string2[] = "6.0";
char result[41];

main()
{

mint x;
dec_t num1, num2, mpx;

printf("DECMUL Sample ESQL Program running.\n\n");

if (x = deccvasc(string1, strlen(string1), &num1))
{
printf("Error %d in converting string1 to DECIMAL\n", x);
exit(1);
}

if (x = deccvasc(string2, strlen(string2), &num2))
{
printf("Error %d in converting string2 to DECIMAL\n", x);
exit(1);
}

if (x = decmul(&num1, &num2, &mpx))
{
printf("Error %d in converting multiply\n", x);
exit(1);
}

if (x = dectoasc(&mpx, result, sizeof(result), -1))
{
printf("Error %d in converting mpx to display string\n", x);
exit(1);
}

result[40] = ’\0’;
printf("\t%s * %s = %s\n", string1, string2, result);

printf("\nDECMUL Sample Program over.\n\n");
exit(0);

}

Output:
DECMUL Sample ESQL Program running.

80.2 * 6.0 = 481.2

DECMUL Sample Program over.

Appendix B. ESQL/C function library B-33

The decround() function
The decround() function rounds a decimal type number to fractional digits.

Syntax:
void decround(d, s)

dec_t *d;
mint s;

d A pointer to a decimal structure whose value the decround()
function rounds.

s The number of fractional digits to which decround() rounds d. Use
a positive number for the s argument.

Usage:

The rounding factor is 5x10-s-1. To round a value, the decround() function adds the
rounding factor to a positive number or subtracts this factor from a negative
number. It then truncates to s digits, as the following table shows.

Value Before Round Value of s
Rounded
Value

1.4 0 1.0

1.5 0 2.0

1.684 2 1.68

1.685 2 1.69

1.685 1 1.7

1.685 0 2.0

Return codes:

The file decround.ec in the demo directory contains the following sample program.
/*

* decround.ec *

The following program rounds a DECIMAL type number six times and displays
the result of each operation.

*/

#include <stdio.h>

EXEC SQL include decimal;

char string[] = "-12345.038572";
char result[41];

main()
{

mint x;
mint i = 6; /* number of decimal places to start with */
dec_t num1;

printf("DECROUND Sample ESQL Program running.\n\n");

printf("String = %s\n", string);
while(i)

B-34 IBM Informix ESQL/C Programmer’s Manual

{
if (x = deccvasc(string, strlen(string), &num1))

{
printf("Error %d in converting string to DECIMAL\n", x);
break;
}

decround(&num1, i);
if (x = dectoasc(&num1, result, sizeof(result), -1))

{
printf("Error %d in converting result to string\n", x);
break;
}

result[40] = ’\0’;
printf(" Rounded to %d Fractional Digits: %s\n", i--, result);
}

printf("\nDECROUND Sample Program over.\n\n");
}

Output:
DECROUND Sample ESQL Program running.

String = -12345.038572
Rounded to 6 Fractional Digits: -12345.038572
Rounded to 5 Fractional Digits: -12345.03857
Rounded to 4 Fractional Digits: -12345.0386
Rounded to 3 Fractional Digits: -12345.039
Rounded to 2 Fractional Digits: -12345.04
Rounded to 1 Fractional Digits: -12345.

DECROUND Sample Program over.

The decsub() function
The decsub() function subtracts two decimal type values.

Syntax:
mint decsub(n1, n2, difference)

dec_t *n1;
dec_t *n2;
dec_t *difference;

n1 A pointer to the decimal structure of the first operand.

n2 A pointer to the decimal structure of the second operand.

difference A pointer to the decimal structure that contains the difference of n1
minus n2.

Usage:

The difference can be the same as either n1 or n2.

Return codes:

0 The operation was successful.

-1200 The operation resulted in overflow.

-1201 The operation resulted in underflow.

Examples:

The file decsub.ec in the demo directory contains the following sample program.

Appendix B. ESQL/C function library B-35

/*
* decsub.ec *

The following program subtracts two DECIMAL numbers and displays the result.
*/

#include <stdio.h>

EXEC SQL include decimal;

char string1[] = "1000.038782";
char string2[] = "480";
char result[41];

main()
{

mint x;
dec_t num1, num2, diff;

printf("DECSUB Sample ESQL Program running.\n\n");

if (x = deccvasc(string1, strlen(string1), &num1))
{
printf("Error %d in converting string1 to DECIMAL\n", x);
exit(1);
}

if (x = deccvasc(string2, strlen(string2), &num2))
{
printf("Error %d in converting string2 to DECIMAL\n", x);
exit(1);
}

if (x = decsub(&num1, &num2, &diff))
{
printf("Error %d in subtracting decimals\n", x);
exit(1);
}

if (x = dectoasc(&diff, result, sizeof(result), -1))
{
printf("Error %d in converting result to string\n", x);
exit(1);
}

result[40] = ’\0’;
printf("\t%s - %s = %s\n", string1, string2, result);

printf("\nDECSUB Sample Program over.\n\n");
exit(0);

}

Output:
DECSUB Sample ESQL Program running.

1000.038782 - 480 = 520.038782

DECSUB Sample Program over.

The dectoasc() function
The dectoasc() function converts a decimal type number to a C char type value.

Syntax:

B-36 IBM Informix ESQL/C Programmer’s Manual

mint dectoasc(dec_val, strng_val, len, right)
dec_t *dec_val;
char *strng_val;
mint len;
mint right;

dec_val A pointer to the decimal structure whose value dectoasc() converts
to a text string.

strng_val A pointer to the first byte of the character buffer where the
dectoasc() function places the text string.

len The size of strng_val, in bytes, minus 1 for the null terminator.

right An integer that indicates the number of decimal places to the right
of the decimal point.

Usage:

If right = -1, the decimal value of dec_val determines the number of decimal places.

If the decimal number does not fit into a character string of length len, dectoasc()
converts the number to an exponential notation. If the number still does not fit,
dectoasc() fills the string with asterisks. If the number is shorter than the string,
dectoasc() left-justifies the number and pads it on the right with blanks.

Because the character string that dectoasc() returns is not null terminated, your
program must add a null character to the string before you print it.

Return codes:

0 The conversion was successful.

-1 The conversion failed.

Examples:

The file dectoasc.ec in the demo directory contains the following sample program.
/*

* dectoasc.ec *

The following program converts DECIMAL numbers to strings of varying sizes.
*/

#include <stdio.h>

EXEC SQL include decimal;

#define END sizeof(result)

char string1[] = "-12345.038782";
char string2[] = "480";
char result[40];

main()
{

mint x;
dec_t num1, num2;

printf("DECTOASC Sample ESQL Program running.\n\n");

printf("String Decimal Value 1 = %s\n", string1);

Appendix B. ESQL/C function library B-37

if (x = deccvasc(string1, strlen(string1), &num1))
{
printf("Error %d in converting string1 to DECIMAL\n", x);
exit(1);
}

printf("String Decimal Value 2 = %s\n", string2);
if (x = deccvasc(string2, strlen(string2), &num2))
{
printf("Error %d in converting string2 to DECIMAL\n", x);
exit(1);
}

printf("\nConverting Decimal back to ASCII\n");
printf(" Executing: dectoasc(&num1, result, 5, -1)\n");
if (x = dectoasc(&num1, result, 5, -1))
printf("\tError %d in converting DECIMAL1 to string\n", x);

else
{
result[5] = ’\0’; /* null terminate */
printf("\tResult =’%s’\n", result);
}

printf("Executing: dectoasc(&num1, result, 10, -1)\n");
if (x = dectoasc(&num1, result, 10, -1))
printf("Error %d in converting DECIMAL1 to string\n", x);

else
{
result[10] = ’\0’; /* null terminate */
printf("\tResult = ’%s’\n", result);
}

printf("Executing: dectoasc(&num2, result, END, 3)\n");
if (x = dectoasc(&num2, result, END, 3))
printf("\tError %d in converting DECIMAL2 to string\n", x);

else
{
result[END-1] = ’\0’; /* null terminate */
printf("\tResult = ’%s’\n", result);
}

printf("\nDECTOASC Sample Program over.\n\n")
}

Output:
DECTOASC Sample ESQL Program running.

String Decimal Value 1 = -12345.038782
String Decimal Value 2 = 480

Converting Decimal back to ASCII
Executing: dectoasc(&num1, result, 5, -1)
Error -1 in converting decimal1 to string

Executing: dectoasc(&num1, result, 10, -1)
Result = ’-12345.039’

Executing: dectoasc(&num2, result, END, 3)
Result = ’480.000 ’

DECTOASC Sample Program over.

B-38 IBM Informix ESQL/C Programmer’s Manual

The dectodbl() function
The dectodbl() function converts a decimal type number into a C double type
number.

Syntax:
mint dectodbl(dec_val, dbl_val)

dec_t *dec_val;
double *dbl_val;

dec_val A pointer to a decimal structure whose value dectodbl() converts
to a double type value.

dbl_val A pointer to a double type where dectodbl() places the result of
the conversion.

Usage:

The floating-point format of the host computer can result in loss of precision in the
conversion of a decimal type number to a double type number.

Return codes:

0 The conversion was successful.

<0 The conversion failed.

Examples:

The file dectodbl.ec file in the demo directory contains the following sample
program.
/*

* dectodbl.ec *

The following program converts two DECIMAL numbers to doubles and displays
the results.

*/

#include <stdio.h>

EXEC SQL include decimal;

char string1[] = "2949.3829398204382";
char string2[] = "3238299493";
char result[40];

main()
{

mint x;
double d = 0;
dec_t num;

printf("DECTODBL Sample ESQL Program running.\n\n");

if (x = deccvasc(string1, strlen(string1), &num))
{
printf("Error %d in converting string1 to DECIMAL\n", x);
exit(1);
}

if (x = dectodbl(&num, &d))
{
printf("Error %d in converting DECIMAL1 to double\n", x);

Appendix B. ESQL/C function library B-39

exit(1);
}

printf("String 1 = %s\n", string1);
printf("Double value = %.15f\n", d);

if (x = deccvasc(string2, strlen(string2), &num))
{
printf("Error %d in converting string2 to DECIMAL\n", x);
exit(1);
}

if (x = dectodbl(&num, &d))
{
printf("Error %d in converting DECIMAL2 to double\n", x);
exit(1);
}

printf("String 2 = %s\n", string2);
printf("Double value = %f\n", d);

printf("\nDECTODBL Sample Program over.\n\n");
exit(0);

}

Output:
DECTODBL Sample ESQL Program running.

String 1 = 2949.3829398204382
Double value = 2949.382939820438423

String 2 = 3238299493
Double value = 3238299493.000000

DECTODBL Sample Program over.

The dectoint() function
The dectoint() function converts a decimal type number into a C int type number.

Syntax:
mint dectoint(dec_val, int_val)

dec_t *dec_val;
mint *int_val;

dec_val A pointer to a decimal structure whose value dectoint() converts to
a mint type value.

int_val A pointer to a mint value where dectoint() places the result of the
conversion.

Usage:

The dectoint() library function converts a decimal value to a C integer. The size of
a C integer depends on the hardware and operating system of the computer you
are using. Therefore, the dectoint() function equates an integer value with the SQL
SMALLINT data type. The valid range of a SMALLINT is between 32767 and
-32767. To convert larger decimal values to larger integers, use the dectolong()
library function.

Return codes:

0 The conversion was successful.

B-40 IBM Informix ESQL/C Programmer’s Manual

<0 The conversion failed.

-1200 The magnitude of the decimal type number is greater than 32767.

Examples:

The file dectoint.ec in the demo directory contains the following sample program.
/*

* dectoint.ec *

The following program converts two DECIMAL numbers to integers and
displays the result of each conversion.

*/

#include <stdio.h>

EXEC SQL include decimal;

char string1 [] = "32767";
char string2 [] = "32768";

main()
{

mint x;
mint n = 0;
dec_t num;

printf("DECTOINT Sample ESQL Program running.\n\n)";

printf("String 1 = %s\n", string1);
if (x = deccvasc(string1,strlen(string1), &num))
{
printf(" Error %d in converting string1 to decimal\n", x);
exit(1);
}

if (x = dectoint(&num, &n))
printf(" Error %d in converting decimal to int\n", x);

else
printf(" Result = %d\n", n);

printf("\nString 2 = %s\n", string2);
if (x = deccvasc(string2, strlen(string2), &num))
{
printf(" Error %d in converting string2 to decimal\n", x);
exit(1);
}

if (x = dectoint(&num, &n))
printf(" Error %d in converting decimal to int\n", x);

else
printf(" Result = %d\n", n);

printf("\nDECTOINT Sample Program over.\n\n");
exit(0);

}

Output:
DECTOINT Sample ESQL Program running.

String 1 = 32767
Result = 32767

Appendix B. ESQL/C function library B-41

String 2 = 32768
Error -1200 in converting decimal to int

DECTOINT Sample Program over.

The dectolong() function
The dectolong() function converts a decimal type number into an int4 type
number.

Syntax:
mint dectolong(dec_val, lng_val)

dec_t *dec_val;
int4 *lng_val;

dec_val A pointer to a decimal structure whose value dectolong() converts
to an int4 integer.

lng_val A pointer to an int4 integer where dectolong() places the result of
the conversion.

Return codes:

0 The conversion was successful.

-1200 The magnitude of the decimal type number is greater than
2,147,483,647.

Examples:

The file dectolong.ec in the demo directory contains the following sample
program.
/*

* dectolong.ec *

The following program converts two DECIMAL numbers to longs and displays
the return value and the result for each conversion.

*/

#include <stdio.h>

EXEC SQL include decimal;

char string1[] = "2147483647";
char string2[] = "2147483648";

main()
{

int x;
long n = 0;
dec_t num;

printf("DECTOLONG Sample ESQL Program running.\n\n");

printf("String 1 = %s\n", string1);
if (x = deccvasc(string1, strlen(string1), &num))
{
printf(" Error %d in converting string1 to DECIMAL\n", x);
exit(1);
}

if (x = dectolong(&num, &n))

B-42 IBM Informix ESQL/C Programmer’s Manual

printf(" Error %d in converting DECIMAL1 to long\n", x);
else

printf(" Result = %ld\n", n);

printf("\nString 2 = %s\n", string2);
if (x = deccvasc(string2, strlen(string2), &num))
{
printf(" Error %d in converting string2 to DECIMAL\n", x);
exit(1);
}

if (x = dectolong(&num, &n))
printf(" Error %d in converting DECIMAL2 to long\n", x);

else
printf(" Result = %ld\n", n);

printf("\nDECTOLONG Sample Program over.\n\n");
exit(0);

}

Output:
DECTOLONG Sample ESQL Program running.

String 1 = 2147483647
Result = 2147483647

String 2 = 2147483648
Error -1200 in converting DECIMAL2 to long

DECTOLONG Sample Program over.

The dectrunc() function
The dectrunc() function truncates a rounded decimal type number to fractional
digits.

Syntax:
void dectrunc(d, s)

dec_t *d;
mint s;

d A pointer to a decimal structure for a rounded number whose
value dectrunc() truncates.

s The number of fractional digits to which dectrunc() truncates the
number. Use a positive number or zero for this argument.

Usage:

The following table shows the sample output from dectrunc() with various inputs.

Value before truncation Value of s Truncated value

1.4 0 1.0
1.5 0 1.0
1.684 2 1.68
1.685 2 1.68
1.685 1 1.6
1.685 0 1.0

Examples:

Appendix B. ESQL/C function library B-43

The file dectrunc.ec in the demo directory contains the following sample program.
/*

* dectrunc.ec *

The following program truncates a DECIMAL number six times and displays
each result.

*/

#include <stdio.h>

EXEC SQL include decimal;

char string[] = "-12345.038572";
char result[41];

main()
{

mint x;
mint i = 6; /* number of decimal places to start with */
dec_t num1;

printf("DECTRUNC Sample ESQL Program running.\n\n");

printf("String = %s\n", string);
while(i)
{
if (x = deccvasc(string, strlen(string), &num1))

{
printf("Error %d in converting string to DECIMAL\n", x);
break;
}

dectrunc(&num1, i);
if (x = dectoasc(&num1, result, sizeof(result), -1))

{
printf("Error %d in converting result to string\n", x);
break;
}

result[40] = ’\0’;
printf(" Truncated to %d Fractional Digits: %s\n", i--, result);
}

printf("\nDECTRUNC Sample Program over.\n\n");
}

Output:
DECTRUNC Sample ESQL Program running.

String = -12345.038572
Truncated to 6 Fractional Digits: -12345.038572
Truncated to 5 Fractional Digits: -12345.03857
Truncated to 4 Fractional Digits: -12345.0385
Truncated to 3 Fractional Digits: -12345.038
Truncated to 2 Fractional Digits: -12345.03
Truncated to 1 Fractional Digits: -12345.0

DECTRUNC Sample Program over.

B-44 IBM Informix ESQL/C Programmer’s Manual

The dtaddinv() function
The dtaddinv() function adds an interval value to a datetime value. The result is a
datetime value.

Syntax:
mint dtaddinv(dt, inv, res)

dtime_t *dt;
intrvl_t *inv;
dtime_t *res;

dt A pointer to the initialized datetime host variable.

inv A pointer to the initialized interval host variable.

res A pointer to the datetime host variable that contains the result.

Usage:

The dtaddinv() function adds the interval value in inv to the datetime value in dt
and stores the datetime value in res. This result inherits the qualifier of dt.

The interval value must be in either the year to month or day to fraction(5)
ranges.

The datetime value must include all the fields present in the interval value.

If you do not initialize the variables dt and inv, the function might return an
unpredictable result.

Return codes:

0 The addition was successful.

<0 Error in addition.

Examples:

The demo directory contains this sample program in the dtaddinv.ec file.
/*

* dtaddinv.ec *

The following program adds an INTERVAL value to a DATETIME value and
displays the result.

*/

#include <stdio.h>

EXEC SQL include datetime;

main()
{

char out_str[16];

EXEC SQL BEGIN DECLARE SECTION;
datetime year to minute dt_var, result;
interval day to minute intvl;

EXEC SQL END DECLARE SECTION;

printf("DTADDINV Sample ESQL Program running.\n\n");

Appendix B. ESQL/C function library B-45

printf("datetime year to minute value=2006-11-28 11:40\n");
dtcvasc("2006-11-28 11:40", &dt_var);
printf("interval day to minute value = 50 10:20\n");
incvasc("50 10:20", &intvl);

dtaddinv(&dt_var, &intvl, &result);

/* Convert to ASCII for displaying */
dttoasc(&result, out_str);
printf("---\n");
printf(" Sum=%s\n", out_str);

printf("\nDTADDINV Sample Program over.\n\n");
}

Output:
DTADDINV Sample ESQL Program running.

datetime year to minute value=2006-11-28 11:40
interval day to minute value = 50 10:20

Sum=2007-01-17 22:00

DTADDINV Sample Program over.

The dtcurrent() function
The dtcurrent() function assigns the current date and time to a datetime variable.

Syntax:
void dtcurrent(d)

dtime_t *d;

d A pointer to the initialized datetime host variable.

Usage:

When the variable qualifier is set to zero (or any invalid qualifier), the dtcurrent()
function initializes it with the year to fraction(3) qualifier.

When the variable contains a valid qualifier, the dtcurrent() function extends the
current date and time to agree with the qualifier.

Example calls:

The following statements set the host variable timewarp to the current date:
EXEC SQL BEGIN DECLARE SECTION;

datetime year to day timewarp;
EXEC SQL END DECLARE SECTION;

dtcurrent(&timewarp);

The following statements set the variable now to the current time, to the nearest
millisecond:
now.dt_qual = TU_DTENCODE(TU_HOUR,TU_F3);
dtcurrent(&now);

Examples:

B-46 IBM Informix ESQL/C Programmer’s Manual

The demo directory contains this sample program in the dtcurrent.ec file.
/*

* dtcurrent.ec *

The following program obtains the current date from the system, converts
it to ASCII and prints it.

*/

#include <stdio.h>

EXEC SQL include datetime;

main()
{

mint x;
char out_str[20];

EXEC SQL BEGIN DECLARE SECTION;
datetime year to hour dt1;

EXEC SQL END DECLARE SECTION;

printf("DTCURRENT Sample ESQL Program running.\n\n");

/* Get today’s date */
dtcurrent(&dt1);

/* Convert to ASCII for displaying */
dttoasc(&dt1, out_str);
printf("\tToday’s datetime (year to minute) value is %s\n", out_str);

printf("\nDTCURRENT Sample Program over.\n\n");
}

Output:
DTCURRENT Sample ESQL Program running.

Today’s datetime (year to minute) value is 2007-09-16 14:49

DTCURRENT Sample Program over.

The dtcvasc() function
The dtcvasc() function converts a string that conforms to ANSI SQL standard for a
DATETIME value to a datetime value. For information about the ANSI SQL
DATETIME standard, see “ANSI SQL standards for DATETIME and INTERVAL
values” on page 6-7.

Syntax:
mint dtcvasc(inbuf, dtvalue)

char *inbuf;
dtime_t *dtvalue;

inbuf A pointer to the buffer that contains an ANSI-standard DATETIME
string.

dtvalue A pointer to an initialized datetime variable.

Usage:

You must initialize the datetime variable in dtvalue with the qualifier that you want
this variable to have.

Appendix B. ESQL/C function library B-47

The character string in inbuf must have values that conform to the year to second
qualifier in the ANSI SQL format. The inbuf string can have leading and trailing
spaces. However, from the first significant digit to the last, inbuf can only contain
characters that are digits and delimiters that conform to the ANSI SQL standard
for DATETIME values.

If you specify a year value as one or two digits, the dtcvasc() function assumes
that the year is in the present century. You can set the DBCENTURY environment
variable to determine which century dtcvasc() uses when you omit a century from
the date.

If the character string is an empty string, the dtcvasc() function sets to null the
value to which dtvalue points. If the character string is acceptable, the function sets
the value in the datetime variable and returns zero. Otherwise, the function leaves
the variable unchanged and returns a negative error code.

Return codes:

0 Conversion was successful.

-1260 It is not possible to convert between the specified types.

-1261 Too many digits in the first field of datetime or interval.

-1262 Non-numeric character in datetime or interval.

-1263 A field in a datetime or interval value is out of range or incorrect.

-1264 Extra characters exist at the end of a datetime or interval.

-1265 Overflow occurred on a datetime or interval operation.

-1266 A datetime or interval value is incompatible with the operation.

-1267 The result of a datetime computation is out of range.

-1268 A parameter contains an invalid datetime qualifier.

Examples:

The demo directory contains this sample program in the dtcvasc.ec file.
/*

* dtcvasc.ec *

The following program converts ASCII datetime strings in ANSI SQL format
into datetime (dtime_t) structure.

*/

#include <stdio.h>

EXEC SQL include datetime;

main()
{

mint x;

EXEC SQL BEGIN DECLARE SECTION;
datetime year to second dt1;

EXEC SQL END DECLARE SECTION;

printf("DTCVASC Sample ESQL Program running.\n\n");

printf("Datetime string #1 = 2007-02-11 3:10:35\n");

B-48 IBM Informix ESQL/C Programmer’s Manual

if (x = dtcvasc("2007-02-11 3:10:35", &dt1))
printf("Result = failed with conversion error: %d\n", x);

else
printf("Result = successful conversion\n");

/*
* Note that the following literal string has a 26 in the hours place
*/

printf("\nDatetime string #2 = 2007-02-04 26:10:35\n");
if (x = dtcvasc("2007-02-04 26:10:35", &dt1))
printf("Result = failed with conversion error: %d\n", x);

else
printf("Result = successful conversion\n");

printf("\nDTCVASC Sample Program over.\n\n");
}

Output:
DTCVASC Sample ESQL Program running.

Datetime string #1 = 2007-02-11 3:10:35
Result = successful conversion

Datetime string #2 = 2007-02-04 26:10:35
Result = failed with conversion error:-1263

DTCVASC Sample Program over.

The dtcvfmtasc() function
The dtcvfmtasc() function uses a formatting mask to convert a character string to a
datetime value.

Syntax:
mint dtcvfmtasc(inbuf, fmtstring, dtvalue)

char *inbuf;
char *fmtstring;
dtime_t *dtvalue;

inbuf A pointer to the buffer that contains the string to convert.

fmtstring A pointer to the buffer that contains the formatting mask to use for
the inbuf string. This time-formatting mask contains the same
formatting directives that the DBTIME environment variable
supports. (For a list of these directives, see the description of
DBTIME in the IBM Informix Guide to SQL: Reference).

dtvalue A pointer to the initialized datetime variable.

Usage:

You must initialize the datetime variable in dtvalue with the qualifier that you want
this variable to have. The datetime variable does not need to specify the same
qualifier that the formatting mask implies. When the datetime qualifier is different
from the implied formatting-mask qualifier, dtcvfmtasc() extends the datetime
value (as if it had called the dtextend function).

Appendix B. ESQL/C function library B-49

All qualifier fields in the character string in inbuf must be contiguous. In other
words, if the qualifier is hour to second, you must specify all values for hour,
minute, and second somewhere in the string, or the dtcvfmtasc() function returns
an error.

The inbuf character string can have leading and trailing spaces. However, from the
first significant digit to the last, inbuf can contain only digits and delimiters that
are appropriate for the qualifier fields that the formatting mask implies. For more
information about acceptable digits and delimiters for a DATETIME value, see the
“ANSI SQL standards for DATETIME and INTERVAL values” on page 6-7.

The dtcvfmtasc() function returns an error if the formatting mask, fmtstring, is an
empty string. If fmtstring is a null pointer, the dtcvfmtasc() function must
determine the format to use when it reads the character string in inbuf. When you
use the default locale, the function uses the following precedence:
1. The format that the DBTIME environment variable specifies (if DBTIME is

set). For more information about DBTIME, see the IBM Informix Guide to SQL:
Reference.

2. The format that the GL_DATETIME environment variable specifies (if
GL_DATETIME is set). For more information about GL_DATETIME, see the
IBM Informix GLS User's Guide.

3. The default date format conforms to the standard ANSI SQL format:
%iY-%m-%d %H:%M:%S

The ANSI SQL format specifies a qualifier of year to second for the output. You
can express the year as four digits (2007) or as two digits (07). When you use a
two-digit year (%y) in a formatting mask, the dtcvfmtasc() function uses the value
of the DBCENTURY environment variable to determine which century to use. If
you do not set DBCENTURY, dtcvfmtasc() assumes the present century for
two-digit years. For information about how to set DBCENTURY, see the IBM
Informix Guide to SQL: Reference.

When you use a nondefault locale (one other than U.S. English) and do not set the
DBTIME or GL_DATETIME environment variables, dtcvfmtasc() uses the default
DATETIME format that the locale defines. For more information, see the IBM
Informix GLS User's Guide.

When the character string and the formatting mask are acceptable, the dtcvfmtasc()
function sets the datetime variable in dtvalue and returns zero. Otherwise, it
returns an error code and the datetime variable contains an unpredictable value.

Return codes:

0 The conversion was successful.

<0 The conversion failed.

Examples:

The demo directory contains this sample program in the file dtcvfmtasc.ec. The
code initializes the variable birthday to a fictitious birthday.
/* *dtcvfmtasc.ec*
The following program illustrates the conversion of several ascii strings
into datetime values.

*/

B-50 IBM Informix ESQL/C Programmer’s Manual

#include <stdio.h>

EXEC SQL include datetime;

main()
{

char out_str[17], out_str2[17], out_str3[17]; mint x;

EXEC SQL BEGIN DECLARE SECTION;
datetime month to minute birthday;
datetime year to minute birthday2;
datetime year to minute birthday3;

EXEC SQL END DECLARE SECTION;

printf("DTCVFMTASC Sample ESQL Program running.\n\n");

/* Initialize birthday to "09-06 13:30" */
printf("Birthday #1 = September 6 at 01:30 pm\n");
x = dtcvfmtasc("September 6 at 01:30 pm", "%B %d at %I:%M %p",

&birthday);

/*Convert the internal format to ascii in ANSI format, for displaying. */
x = dttoasc(&birthday, out_str);
printf("Datetime (month to minute) value = %s\n\n", out_str);

/* Initialize birthday2 to "07-14-88 09:15" */
printf("Birthday #2 = July 14, 1988. Time: 9:15 am\n");
x = dtcvfmtasc("July 14, 1988. Time: 9:15am",

"%B %d, %Y. Time: %I:38p", &birthday2);

/*Convert the internal format to ascii in ANSI format, for displaying. */
x = dttoasc(&birthday2, out_str2);

printf("Datetime (year to minute) value = %s\n\n", out_str2);
/* Initialize birthday3 to "07-14-XX 09:15" where XX is current year.
* Note that birthday3 is year to minute but this initialization only
* provides month to minute. dtcvfmtasc provides current information
* for the missing year.

*/
printf("Birthday #3 = July 14. Time: 9:15 am\n");
x = dtcvfmtasc("July 14. Time: 9:15am", "%B %d. Time: %I:%M %p",

&birthday3);

/* Convert the internal format to ascii in ANSI format, for displaying. */
x = dttoasc(&birthday3, out_str3);
printf("Datetime (year to minute) value with current year = %s\n",

out_str3);

printf("\nDTCVFMTASC Sample Program over.\n\n");

}

Output:
DTCVFMTASC Sample ESQL Program running.

Birthday #1 = September 6 at 01:30 pm
Datetime (month to minute) value = 09-06 13:30

Birthday #2 = July 14, 1988 Time: 9:15 am
Datetime (year to minute) value = 2007-07-14 09:15

Birthday #3 = July 14. Time: 9:15 am
Datetime (year to minute) value with current year = 2007-07-14 09:15

DTCVFMTASC Sample Program over.

Appendix B. ESQL/C function library B-51

The dtextend() function
The dtextend() function extends a datetime value to a different qualifier. Extending
is the operation of adding or dropping fields of a DATETIME value to make it
match a given qualifier.

Syntax:
mint dtextend(in_dt, out_dt)

dtime_t *in_dt, *out_dt;

in_dt A pointer to the datetime variable to extend.

out_dt A pointer to the datetime variable with a valid qualifier to use for
the extension.

Usage:

The dtextend() function copies the qualifier-field digits of the in_dt datetime
variable to the out_dt datetime variable. The qualifier of the out_dt variable controls
the copy.

The function discards any fields in in_dt that the out_dt variable does not include.
The function fills in any fields in out_dt that are not present in in_dt, as follows:
v It fills in fields to the left of the most-significant field in in_dt from the current

time and date.
v It fills in fields to the right of the least-significant field in in_dt with zeros.

In the following example, a variable fiscal_start is set up with the first day of a
fiscal year that begins on June 1. The dtextend() function generates the current
year.
EXEC SQL BEGIN DECLARE SECTION;

datetime work, fiscal_start;
EXEC SQL END DECLARE SECTION;

work.dt_qual = TU_DTENCODE(TU_MONTH,TU_DAY);
dtcvasc("06-01",&work);
fiscal_start.dt_qual = TU_DTENCODE(TU_YEAR,TU_DAY);
dtextend(&work,&fiscal_start);

Return codes:

0 The operation was successful.

-1268 A parameter contains an invalid datetime qualifier.

Examples:

The demo directory contains this sample program in the file dtextend.ec.
/*

* dtextend.ec *

The following program illustrates the results of datetime extension.
The fields to the right are filled with zeros,
and the fields to the left are filled in from current date and time.

*/

#include <stdio.h>

EXEC SQL include datetime;

B-52 IBM Informix ESQL/C Programmer’s Manual

main()
{

mint x;
char year_str[20];

EXEC SQL BEGIN DECLARE SECTION;
datetime month to day month_dt;
datetime year to minute year_min;

EXEC SQL END DECLARE SECTION;

printf("DTEXTEND Sample ESQL Program running.\n\n");

/* Assign value to month_dt and extend */
printf("Datetime (month to day) value = 12-07\n");
if(x = dtcvasc("12-07", &month_dt))

printf("Result = Error %d in dtcvasc()\n", x);
else

{
if (x = dtextend(&month_dt, &year_min))
printf("Result = Error %d in dtextend()\n", x);

else
{
dttoasc(&year_min, year_str);

printf("Datetime (year to minute) extended value =%s\n",
year_str);

}
}

printf("\nDTEXTEND Sample Program over.\n\n");
}

Output:
DTEXTEND Sample ESQL Program running.

Datetime (month to day) value = 12-07
Datetime (year to minute) extended value = 2006-12-07 00:00

DTEXTEND Sample Program over.

The dtsub() function
The dtsub() function subtracts one datetime value from another. The result is an
interval value.

Syntax:
mint dtsub(d1, d2, inv)

dtime_t *d1, *d2;
intrvl_t *inv;

d1 A pointer to an initialized datetime host variable.

d2 A pointer to an initialized datetime host variable.

inv A pointer to the interval host variable that contains the result.

Usage:

The dtsub() function subtracts the datetime value d2 from d1 and stores the
interval result in inv. The result can be either a positive or a negative value. If
necessary, the function extends d2 to match the qualifier for d1, before the
subtraction.

Appendix B. ESQL/C function library B-53

Initialize the qualifier for inv with a value in either the year to month or day to
fraction(5) classes. When d1 contains fields in the day to fraction class, the interval
qualifier must also be in the day to fraction class.

Return codes:

0 The subtraction was successful.

<0 An error occurred while performing the subtraction.

Examples:

The demo directory contains this sample program in the file dtsub.ec. The
program performs datetime subtraction that returns equivalent interval results in
the range of year to month and month to month and attempts to return an
interval result in the range day to hour.
/*

* dtsub.ec *

The following program subtracts one DATETIME value from another and
displays the resulting INTERVAL value or an error message.

*/

#include <stdio.h>

EXEC SQL include datetime;

main()
{

mint x;
char out_str[16];

EXEC SQL BEGIN DECLARE SECTION;
datetime year to month dt_var1, dt_var2;
interval year to month i_ytm;
interval month to month i_mtm;
interval day to hour i_dth;

EXEC SQL END DECLARE SECTION;

printf("DTSUB Sample ESQL Program running.\n\n");

printf("Datetime (year to month) value #1 = 2007-10\n");
dtcvasc("2007-10", &dt_var1);
printf("Datetime (year to month) value #2 = 2001-08\n");
dtcvasc("2001-08", &dt_var2);

printf("---\n");

/* Determine year-to-month difference */
printf("Difference (year to month) = ");
if(x = dtsub(&dt_var1, &dt_var2, &i_ytm))
printf("Error from dtsub(): %d\n", x);

else
{
/* Convert to ASCII for displaying */
intoasc(&i_ytm, out_str);
printf("%s\n", out_str);
}

/* Determine month-to-month difference */
printf("Difference (month to month) = ");

B-54 IBM Informix ESQL/C Programmer’s Manual

if(x = dtsub(&dt_var1, &dt_var2, &i_mtm))
printf("Error from dtsub(): %d\n", x);

else
{
/* Convert to ASCII for displaying */
intoasc(&i_mtm, out_str);
printf("%s\n", out_str);
}

/* Determine day-to-hour difference: Error - Can’t convert
* year-to-month to day-to-hour
*/
printf("Difference (day to hour) = ");
if(x = dtsub(&dt_var1, &dt_var2, &i_dth))
printf("Error from dtsub(): %d\n", x);

else
{
/* Convert to ASCII for displaying */

intoasc(&i_dth, out_str);
printf("%s\n", out_str);
}

printf("\nDTSUB Sample Program over.\n\n");
}

Output:
DTSUB Sample ESQL Program running.

Datetime (year to month) value #1 = 2007-10
Datetime (year to month) value #2 = 2001-08

Difference (year to month) = 0006-02
Difference (month to month) = 86
Difference (day to hour) = Error from dtsub(): -1266

DTSUB Sample Program over.

The dtsubinv() function
The dtsubinv() function subtracts an interval value from a datetime value. The
result is a datetime value.

Syntax:
mint dtsubinv(dt, inv, res)

dtime_t *dt;
intrvl_t *inv;
dtime_t *res;

dt A pointer to an initialized datetime host variable.

inv A pointer to an initialized interval host variable.

res A pointer to the datetime host variable that contains the result.

Usage:

The dtsubinv() function subtracts the interval value in inv from the datetime value
in dt and stores the datetime value in res. This result inherits the qualifier of dt.

The datetime value must include all the fields present in the interval value. When
you do not initialize the variables dt and inv, the function might return an
unpredictable result.

Appendix B. ESQL/C function library B-55

Return codes:

0 The subtraction was successful.

<0 An error occurred while performing the subtraction.

Examples:

The demo directory contains this sample program in the file dtsubinv.ec.
/*

* dtsubinv.ec *

The following program subtracts an INTERVAL value from a DATETIME value and
displays the result.

*/

#include <stdio.h>

EXEC SQL include datetime;

main()
{

char out_str[16];

EXEC SQL BEGIN DECLARE SECTION;
datetime year to minute dt_var, result;
interval day to minute intvl;

EXEC SQL END DECLARE SECTION;

printf("DTSUBINV Sample ESQL Program running.\n\n");

printf("Datetime (year to month) value = 2007-11-28\n");
dtcvasc("2007-11-28 11:40", &dt_var);
printf("Interval (day to minute) value = 50 10:20\n");
incvasc("50 10:20", &intvl);

printf("---\n");
dtsubinv(&dt_var, &intvl, &result);

/* Convert to ASCII for displaying */
dttoasc(&result, out_str);
printf("Difference (year to hour) = %s\n", out_str);

printf("\nDTSUBINV Sample Program over.\n\n");
}

Output:
DTSUBINV Sample ESQL Program running.

Datetime (year to month) value = 2007-11-28
Interval (day to minute) value = 50 10:20

Difference (year to hour) = 2007-10-09 01:20

DTSUBINV Sample Program over.

The dttoasc() function
The dttoasc() function converts the field values of a datetime variable to an ASCII
string that conforms to ANSI SQL standards. For information about the ANSI SQL
DATETIME standard, see “ANSI SQL standards for DATETIME and INTERVAL
values” on page 6-7.

B-56 IBM Informix ESQL/C Programmer’s Manual

Syntax:
mint dttoasc(dtvalue, outbuf)

dtime_t *dtvalue;
char *outbuf;

dtvalue A pointer to the initialized datetime variable to convert.

outbuf A pointer to the buffer that receives the ANSI-standard DATETIME
string for the value in dtvalue.

Usage:

The dttoasc() function converts the digits of the fields in the datetime variable to
their character equivalents and copies them to the outbuf character string with
delimiters (hyphen, space, colon, or period) between them. You must initialize the
datetime variable in dtvalue with the qualifier that you want the character string to
have.

The character string does not include the qualifier or the parentheses that SQL
statements use to delimit a DATETIME literal. The outbuf string conforms to ANSI
SQL standards. It includes one character for each delimiter, plus the fields, which
are of the following sizes.

Field Field Size

Year Four digits

Fraction of DATETIME As specified by precision

All other fields Two digits

A datetime value with the year to fraction(5) qualifier produces the maximum
length of output. The string equivalent contains 19 digits, 6 delimiters, and the null
terminator, for a total of 26 bytes:
YYYY-MM-DD HH:MM:SS.FFFFF

If you do not initialize the qualifier of the datetime variable, the dttoasc() function
returns an unpredictable value, but this value does not exceed 26 bytes.

Return codes:

0 The conversion was successful.

<0 The conversion failed.

Examples:

The demo directory contains this sample program in the file dttoasc.ec.
/*

* dttoasc.ec *

The following program illustrates the conversion of a datetime value
into an ASCII string in ANSI SQL format

*/

#include <stdio.h>

EXEC SQL include datetime;

main()
{

Appendix B. ESQL/C function library B-57

char out_str[16];

EXEC SQL BEGIN DECLARE SECTION;
datetime year to hour dt1;

EXEC SQL END DECLARE SECTION;

printf("DTTOASC Sample ESQL Program running.\n\n");

/* Initialize dt1 */
dtcurrent(&dt1);

/* Convert the internal format to ascii for displaying */
dttoasc(&dt1, out_str);

/* Print it out*/
printf("\tToday’s datetime (year to hour)value is %s\n", out_str);

printf("\nDTTOASC Sample Program over.\n\n");
}

Output:
DTTOASC Sample ESQL Program running.

Today’s datetime (year to hour) value is 2007-09-19 08

DTTOASC Sample Program over.

The dttofmtasc() function
The dttofmtasc() function uses a formatting mask to convert a datetime variable to
a character string.

Syntax:
mint dttofmtasc(dtvalue, outbuf, buflen, fmtstring)

dtime_t *dtvalue;
char *outbuf;
mint buflen;
char *fmtstring;

dtvalue A pointer to the initialized datetime variable to convert.

outbuf A pointer to the buffer that receives the string for the value in
dtvalue.

buflen The length of the outbuf buffer.

fmtstring A pointer to the buffer that contains the formatting mask to use for
the outbuf string. This time-formatting mask contains the same
formatting directives that the DBTIME environment variable
supports. (For a list of these directives, see the description of
DBTIME in the IBM Informix Guide to SQL: Reference).

Usage:

You must initialize the datetime variable in dtvalue with the qualifier that you want
the character string to have. If you do not initialize the datetime variable, the
function returns an unpredictable value. The character string in outbuf does not
include the qualifier or the parentheses that SQL statements use to delimit a
DATETIME literal.

B-58 IBM Informix ESQL/C Programmer’s Manual

The formatting mask, fmtstring, does not need to imply the same qualifiers as the
datetime variable. When the implied formatting-mask qualifier is different from
the datetime qualifier, dttofmtasc() extends the datetime value (as if it called the
dtextend() function).

If the formatting mask is an empty string, the function sets character string, outbuf,
to an empty string. If fmtstring is a null pointer, the dttofmtasc() function must
determine the format to use for the character string in outbuf. When you use the
default locale, the function uses the following precedence:
1. The format that the DBTIME environment variable specifies (if DBTIME is

set). For more information about DBTIME, see the IBM Informix Guide to SQL:
Reference.

2. The format that the GL_DATETIME environment variable specifies (if
GL_DATETIME is set). For more information about GL_DATETIME, see the
IBM Informix GLS User's Guide.

3. The default date format that conforms to the standard ANSI SQL format:
%iY-%m-%d %H:%M:%S

When you use a two-digit year (%y) in a formatting mask, the dttofmtasc()
function uses the value of the DBCENTURY environment variable to determine
which century to use. If you do not set DBCENTURY, dttofmtasc() assumes the
present century for two-digit years. For information about how to set
DBCENTURY, see the IBM Informix Guide to SQL: Reference.

When you use a nondefault locale (one other than U.S. English) and do not set the
DBTIME or GL_DATETIME environment variables, dttofmtasc() uses the default
DATETIME format that the client locale defines. For more information, see the IBM
Informix GLS User's Guide.

Return codes:

0 The conversion was successful.

<0 The conversion failed. Check the text of the error message.

Examples:

The demo directory contains this sample program in the file dttofmtasc.ec.
/* *dttofmtasc.ec*

The following program illustrates the conversion of a datetime
value into strings of different formats.

*/

#include <stdio.h>

EXEC SQL include datetime;

main()
{

char out_str1[25];
char out_str2[25];
char out_str3[30];
mint x;

EXEC SQL BEGIN DECLARE SECTION;
datetime month to minute birthday;

EXEC SQL END DECLARE SECTION;

Appendix B. ESQL/C function library B-59

printf("DTTOFMTASC Sample ESQL Program running.\n\n");

/* Initialize birthday to "09-06 13:30" */
printf("Birthday datetime (month to minute) value = ");
printf("September 6 at 01:30 pm\n");
x = dtcvfmtasc("September 6 at 01:30 pm","%B %d at %I:%M %p",

&birthday);

/* Convert the internal format to ascii for 3 given display formats.
* Note that the second format does not include the minutes field and
* that the last format includes a year field even though birthday was
* not initialized as year to minute.
*/

x = dttofmtasc(&birthday, out_str1, sizeof(out_str1),
"%d %B at %H:%M");

x = dttofmtasc(&birthday, out_str2, sizeof(out_str2),
"%d %B at %H");

x = dttofmtasc(&birthday, out_str3, sizeof(out_str3),
"%d %B, %Y at%H:%M"); /* Print out the three forms of the same date */

printf("\tFormatted value (%%d %%B at %%H:%%M) = %s\n", out_str1);
printf("\tFormatted value (%%d %%B at %%H) = %s\n", out_str2);
printf("\tFormatted value (%%d %%B, %%Y at %%H:%%M) = %s\n", out_str3);

printf("\nDTTOFMTASC Sample Program over.\n\n");
}

Output:
DTTOFMTASC Sample ESQL Program running.

Birthday datetime (month to minute) value = September 6 at 01:30 pm
Formatted value (%d %B at %H:%M) = 06 September at 13:30
Formatted value (%d %B at %H)) = 06 September at 13
Formatted value (%d %B, %Y at %H:%M)) = 06 September, 2007 at 13:30

DTTOFMTASC Sample Program over.

The GetConnect() function (Windows)
The GetConnect() function is available only in Windows environments and
establishes a new explicit connection to a database server.

Important: Informix ESQL/C supports the GetConnect() connection library
function for compatibility with Version 5.01 Informix ESQL/C for
Windows applications. When you write new Informix ESQL/C
applications for Windows environments, use the SQL CONNECT
statement to establish an explicit connection.

Syntax:
void *GetConnect ()

Usage:

The GetConnect() function call by itself is equivalent to the following SQL
statement:
EXEC SQL connect to ’@dbservername’ with concurrent transaction;

B-60 IBM Informix ESQL/C Programmer’s Manual

In this example, dbservername is the name of a defined database server. All database
servers that the client application specifies must be defined in at least one of the
following places:
v The INFORMIXSERVER environment variable in the Registry contains the

name of the default database server. The Setnet32 utility sets the Registry values.
v The InfxServer field in the InetLogin structure can contain the name of the

default database server or a specified database server. The client application sets
the InetLogin fields.

For more information about the default and specified database server, see “Sources
of connection information in a Windows environment” on page 12-5

For example, the following code fragment uses GetConnect() to establish an
explicit connection to the stores7 database on the mainsrvr database server:
void *cnctHndl;...
strcpy(InetLogin.InfxServer, "mainsrvr");...

cnctHndl = GetConnect();
EXEC SQL database stores7;

In the preceding example, if you had omitted the assignment to the
InetLogin.InfxServer field, Informix ESQL/C would establish an explicit
connection to the stores7 database in the default database server (the database
server that the INFORMIXSERVER environment variable in the Registry
indicates).

After any call to GetConnect(), use the SQL DATABASE statement (or some other
SQL statement that opens a database) to open the desired database. In the previous
code fragment, the combination of the GetConnect() function and the DATABASE
statement is equivalent to the following CONNECT statement:
EXEC SQL connect to ’stores7@mainsrvr’ with concurrent transaction;

Important: Because the GetConnect() function maps to a CONNECT statement, it
sets the SQLCODE and SQLSTATE status codes to indicate the success
or failure of the connection request. This behavior differs from that of
GetConnect() in Version 5.01 Informix ESQL/C for Windows, in which
this function did not set the SQLCODE and SQLSTATE values.

The following table shows the differences between the use of the GetConnect()
function and the SQL CONNECT statement.

Situation GetConnect() library function SQL CONNECT statement

Connection
name

Internally generated and stored in
the connection handle structure for
the connection

Internally generated unless
CONNECT includes the AS clause;
therefore, to switch to other
connections, specify the AS clause
when you create the connection.

Opening a
database

Only establishes an explicit
connection to a database server;
therefore, the application must use
DATABASE (or some other valid
SQL statement) to open the
database.

Can establish an explicit connection
to a database server and open a
database when provided with
names of both the database server
and the database

Appendix B. ESQL/C function library B-61

Important: Because the GetConnect() function maps to a CONNECT statement
with the WITH CONCURRENT TRANSACTION clause, it allows an
explicit connection with open transactions to become dormant. Your
Informix ESQL/C application does not need to ensure that the current
transaction was committed or rolled back before it calls the
SetConnect() function to switch to another explicit connection.

For each connection that you establish with GetConnect(), call ReleaseConnect() to
close the connection and deallocate resources.

Return codes:

CnctHndl The call to GetConnect() was successful, and the function has
returned a connection handle for the new connection.

null pointer The call to GetConnect() was unsuccessful.

The ifx_cl_card() function
The ifx_cl_card() function returns the cardinality of the specified collection type
host variable.

Syntax:
mint ifx_cl_card(collp, isnull)

ifx_collection_t *collp;
mint *isnull;

collp A pointer to the name of the collection host variable in the
application.

isnull Set to 1 if the collection is null, 0 otherwise

Usage:

The ifx_cl_card() function enables you to determine the number of elements in a
collection, whether the collection is empty, and whether the collection is null.

Return codes:

0 The collection is empty.

>0 The number of elements in the collection.

<0 An error occurred.

Examples:

This sample program is in the ifx_cl_card.ec file in the demo directory.
/*
* Check the cardinality of the collection variable when
* the data is returned from the server
*/

main()
{

exec sql begin declare section;
client collection myset;
exec sql end declare section;

mint numelems = 0;
mint isnull = 0;

B-62 IBM Informix ESQL/C Programmer’s Manual

exec sql allocate collection ::myset;
exec sql create database newdb;
exec sql create table tab (col set(int not null));
exec sql insert into tab values ("set{}");
exec sql select * into :myset from tab;
if ((ifx_cl_card(myset, &isnull) == 0) && isnull == 0)

printf("collection is empty\n");
else if ((ifx_cl_card(myset, &isnull) == 0) && isnull == 1)

printf("collection is null\n");
else if ((numelems = ifx_cl_card(myset, &isnull))> 0)

printf("number of elements is %d\n", numelems);
else

printf("error occurred\n");

exec sql update tab set col = 'set{1,2,3}';
exec sql select * into :myset from tab;
if ((ifx_cl_card(myset, &isnull) == 0) && isnull == 0)

printf("collection is empty\n");

else if ((ifx_cl_card(myset, &isnull) == 0) && isnull == 1)
printf("collection is null\n");

else if ((numelems = ifx_cl_card(myset, &isnull))> 0)
printf("number of elements is %d\n", numelems);

else
printf("error occurred\n");

exec sql update tab set col = NULL;
exec sql select * into :myset from tab;
if ((ifx_cl_card(myset, &isnull) == 0) && isnull == 0)

printf("collection is empty\n");
else if ((ifx_cl_card(myset, &isnull) == 0) && isnull == 1)

printf("collection is null\n");
else if ((numelems = ifx_cl_card(myset, &isnull))> 0)

printf("number of elements is %d\n", numelems);
else

printf("error occurred\n");
}

Output:
collection is empty
number of elements is 3
collection is null

The ifx_dececvt() and ifx_decfcvt() function
The ifx_dececvt() and ifx_decfcvt() functions are the thread-safe versions of the
dececvt() and decfcvt() Informix ESQL/C library functions.

Syntax:
mint ifx_dececvt(np, ndigit, decpt, sign, decstr, decstrlen)

register dec_t *np;
register mint ndigit;
mint *decpt;
mint *sign;
char *decstr;
mint decstrlen;

mint ifx_decfcvt(np, ndigit, decpt, sign, decstr, decstrlen)
register dec_t *np;
register mint ndigit;

Appendix B. ESQL/C function library B-63

mint *decpt;
mint *sign;
char *decstr;
mint decstrlen;

np A pointer to a decimal structure that contains the decimal value to
be converted.

ndigit The length of the ASCII string for ifx_dececvt(). It is the number of
digits to the right of the decimal point for ifx_decfcvt().

decpt A pointer to an integer that is the position of the decimal point
relative to the beginning of the string. A negative or zero value for
*decpt means the position is located to the left of the returned
digits.

sign A pointer to the sign of the result. If the sign of the result is
negative, *sign is nonzero; otherwise, it is zero.

decstr The user-defined buffer where the function returns the converted
decimal value.

decstrlen The length, in bytes, of the decstr buffer that the user defines.

Usage:

The ifx_dececvt() function is the thread-safe version of the dececvt() function. The
ifx_decfcvt() function is the thread-safe version of decfcvt() function. Each function
returns a character string that cannot be overwritten when two threads
simultaneously call the function. For information about how to use dececvt() and
decfcvt(), see B-28.

Return codes:

0 The conversion was successful.

<0 The conversion was not successful.

-1273 Output buffer is null or too small to hold the result.

The ifx_defmtdate() function
The ifx_defmtdate() function uses a formatting mask to convert a character string
to an internal DATE format.

Syntax:
mint ifx_defmtdate(jdate, fmtstring, instring, dbcentury)

int4 *jdate;
char *fmtstring;
char *instring;
char dbcentury;

jdate A pointer to an int4 integer value that receives the internal DATE
value for the inbuf string.

fmtstring A pointer to the buffer that contains the formatting mask to use for
the inbuf string.

instring A pointer to the buffer that contains the date string to convert.

dbcentury Can be one of the following characters, which determines which
century to apply to the year portion of the date:

B-64 IBM Informix ESQL/C Programmer’s Manual

R Present. The function uses the two high-order digits of the
current year to expand the year value.

P Past. The function uses the present and past centuries to
expand the year value. It compares these two dates against
the current date and uses the century that is prior to the
current century. If both dates are prior to the current date,
the function uses the century closest to the current date.

F Future. The function uses the present and next centuries to
expand the year value. It compares these against the
current date and uses the century that is later than the
current date. If both dates are later than the current date,
the function uses the date closest to the current date.

C Closest. The function uses the present, past, and next
centuries to expand the year value. It chooses the century
that is closest to the current date.

Usage:

The fmtstring argument points to the date-formatting mask, which contains formats
that describe how to interpret the date string. For more information about these
date formats, see “Formatting date strings” on page 6-1.

The input string and the fmtstring must be in the same sequential order in terms of
month, day, and year. They need not, however, contain the same literals or the
same representation for month, day, and year.

You can include the weekday format (ww), in fmtstring, but the database server
ignores that format. Nothing from the inbuf corresponds to the weekday format.

The following combinations of fmtstring and input are valid.

Formatting mask Input

mmddyy Dec. 25th, 2007

mmddyyyy Dec. 25th, 2007

mmm. dd. yyyy dec 25 2007

mmm. dd. yyyy DEC-25-2007

mmm. dd. yyyy 122507

mmm. dd. yyyy 12/25/07

yy/mm/dd 07/12/25

yy/mm/dd 2007, December 25th

yy/mm/dd In the year 2007, the month of December, it is the
25th day

dd-mm-yy This 25th day of December, 2007

If the value stored in inbuf is a four-digit year, the ifx_defmtdate() function uses
that value. If the value stored in inbuf is a two-digit year, the ifx_defmtdate()
function uses the value of the dbcentury argument to determine which century to
use. If you do not set the dbcentury argument, ifx_defmtdate() uses the
DBCENTURY environment variable to determine which century to use. If you do

Appendix B. ESQL/C function library B-65

not set DBCENTURY, ifx_strdate() assumes the current century for two-digit
years. For information about how to set DBCENTURY, see the IBM Informix Guide
to SQL: Reference.

When you use a nondefault locale whose dates contain eras, you can use
extended-format strings in the fmtstring argument of ifx_defmtdate(). For more
information, see the IBM Informix GLS User's Guide.

Return codes:

If you use an invalid date-string format, ifx_defmtdate() returns an error code and
sets the internal DATE to the current date. The following are possible return codes.

0 The operation was successful.

-1204 The *input parameter specifies an invalid year.

-1205 The *input parameter specifies an invalid month.

-1206 The *input parameter specifies an invalid day.

-1209 Because *input does not contain delimiters between the year,
month, and day, the length of *input must be exactly six or eight
bytes.

-1212 *fmtstring does not specify a year, a month, and a day.

The ifx_dtcvasc() function
The ifx_dtcvasc() function converts a string that conforms to ANSI SQL standard
for a DATETIME value to a datetime value. For information about the ANSI SQL
DATETIME standard, see 6-7.

Syntax:
mint dtcvasc(str, d, dbcentury)

char *str;
dtime_t *d;
char dbcentury;

str A pointer to the buffer that contains an ANSI-standard DATETIME
string.

d A pointer to an initialized datetime variable.

dbcentury Can be one of the following characters, which determines which
century to apply to the year portion of the date:

R Present. The function uses the two high-order digits of the
current year to expand the year value.

P Past. The function uses the past and present centuries to
expand the year value. It compares these two dates against
the current date and uses the century that is prior to the
cur rent century. If both dates are prior to the current date,
the function uses the century closest to the current date.

F Future. The function uses the present and the next
centuries to expand the year value. It compares these
against the current date and uses the century that is later
than the current date. If both dates are later than the
current date, the function uses the date closest to the
current date.

B-66 IBM Informix ESQL/C Programmer’s Manual

C Closest. The function uses the past, present, and next
centuries to expand the year value. It chooses the century
that is closest to the current date.

Usage:

You must initialize the datetime variable in d with the qualifier that you want this
variable to have.

The character string in str must have values that conform to the year to second
qualifier in the ANSI SQL format. The str string can have leading and trailing
spaces. However, from the first significant digit to the last, str can only contain
characters that are digits and delimiters that conform to the ANSI SQL standard
for DATETIME values.

If you specify a year value as one or two digits, the ifx_dtcvasc() function uses the
value of the dbcentury argument to determine which century to use. If you do not
set the dbcentury argument, ifx_dtcvasc() uses the DBCENTURY environment
variable to determine which century to use. If you do not set DBCENTURY,
ifx_dtcvasc() assumes the current century for two-digit years. For information
about the DBCENTURY environment variable, see the IBM Informix Guide to SQL:
Reference.

If the character string is an empty string, the ifx_dtcvasc() function sets to null the
value to which d points. If the character string is acceptable, the function sets the
value in the datetime variable and returns zero. Otherwise, the function leaves the
variable unchanged and returns a negative error code.

Return codes:

0 Conversion was successful.

-1260 It is not possible to convert between the specified types.

-1261 Too many digits in the first field of datetime or interval.

-1262 Non-numeric character in datetime or interval.

-1263 A field in a datetime or interval value is out of range or incorrect.

-1264 Extra characters exist at the end of a datetime or interval.

-1265 Overflow occurred on a datetime or interval operation.

-1266 A datetime or interval value is incompatible with the operation.

-1267 The result of a datetime computation is out of range.

-1268 A parameter contains an invalid datetime qualifier.

The ifx_dtcvfmtasc() function
The ifx_dtcvfmtasc() function uses a formatting mask to convert a character string
to a datetime value.

Syntax:
mint ifx_dtcvfmtasc(input, fmtstring, d, dbcentury)

char *input;
char *fmtstring;
dtime_t *d;

char dbcentury;

Appendix B. ESQL/C function library B-67

input A pointer to the buffer that contains the string to convert.

fmtstring A pointer to the buffer that contains the formatting mask to use for
the input string. This time-formatting mask contains the same
formatting directives that the DBTIME environment variable
supports. (For a list of these directives, see the description of
DBTIME in the IBM Informix Guide to SQL: Reference).

d A pointer to the initialized datetime variable.

dbcentury Can be one of the following characters, which determines which
century to apply to the year portion of the date:

R Present. The function uses the two high-order digits of the
current year to expand the year value.

P Past. The function uses the past and present centuries to
expand the year value. It compares these two dates against
the current date and uses the century that is prior to the
current century. If both dates are prior to the current date,
the function uses the century closest to the current date.

F Future. The function uses the present and the next
centuries to expand the year value. It compares these
against the current date and uses the century that is later
than the current date. If both dates are later than the
current date, the function uses the date closest to the
current date.

C Closest. The function uses the past, present, and next
centuries to expand the year value. It chooses the century
that is closest to the current date.

Usage:

You must initialize the datetime variable in d with the qualifier that you want this
variable to have. The datetime variable does not need to specify the same qualifier
that the formatting mask implies. When the datetime qualifier is different from the
implied formatting-mask qualifier, ifx_dtcvfmtasc() extends the datetime value (as
if it had called the dtextend() function).

All qualifier fields in the character string in input must be contiguous. In other
words, if the qualifier is hour to second, you must specify all values for hour,
minute, and second somewhere in the string, or the ifx_dtcvfmtasc() function
returns an error.

The input character string can have leading and trailing spaces. However, from the
first significant digit to the last, input can contain only digits and delimiters that
are appropriate for the qualifier fields that the formatting mask implies. For more
information about acceptable digits and delimiters for a DATETIME value, see the
“ANSI SQL standards for DATETIME and INTERVAL values” on page 6-7.

The ifx_dtcvfmtasc() function returns an error if the formatting mask, fmtstring, is
an empty string. If fmtstring is a null pointer, the ifx_dtcvfmtasc() function must
determine the format to use when it reads the character string in input. When you
use the default locale, the function uses the following precedence:
1. The format that the DBTIME environment variable specifies (if DBTIME is

set). For more information about DBTIME, see the IBM Informix Guide to SQL:
Reference.

B-68 IBM Informix ESQL/C Programmer’s Manual

2. The format that the GL_DATETIME environment variable specifies (if
GL_DATETIME is set). For more information about GL_DATETIME, see the
IBM Informix GLS User's Guide.

3. The default date format conforms to the standard ANSI SQL format:
%iY-%m-%d %H:%M:%S

The ANSI SQL format specifies a qualifier of year to second for the output. You
can express the year as four digits (2007) or as two digits (07). When you use a
two-digit year (%y) in a formatting mask, the ifx_dtcvfmtasc() function uses the
value of the dbcentury argument to determine which century to use. If you do not
set the dbcentury argument, ifx_dtcvfmtasc() uses the DBCENTURY environment
variable to determine which century to use. If you do not set DBCENTURY,
ifx_dtcvfmtasc() assumes the current century for two-digit years. For information
about the DBCENTURY environment variable, see the IBM Informix Guide to SQL:
Reference.

When you use a nondefault locale (one other than U.S. English) and do not set the
DBTIME or GL_DATETIME environment variables, ifx_dtcvfmtasc() uses the
default DATETIME format that the locale defines. For more information, see the
IBM Informix GLS User's Guide.

When the character string and the formatting mask are acceptable, the
ifx_dtcvfmtasc() function sets the datetime variable in d and returns zero.
Otherwise, it returns an error code and the datetime variable contains an
unpredictable value.

Return codes:

0 The conversion was successful.

<0 The conversion failed.

The ifx_dttofmtasc() function
The ifx_dttofmtasc() function uses a formatting mask to convert a datetime
variable to a character string.

Syntax:
mint dttofmtasc(dtvalue, output, str_len, fmtstring, dbcentury)

dtime_t *dtvalue;
char *outbuf;
mint buflen;
char *fmtstring;

d A pointer to the initialized datetime variable to convert.

output A pointer to the buffer that receives the string for the value in d.

str_len The length of the output buffer.

fmtstring A pointer to the buffer that contains the formatting mask to use for
the output string. This time-formatting mask contains the same
formatting directives that the DBTIME environment variable
supports. (For a list of these directives, see the description of
DBTIME in the IBM Informix Guide to SQL: Reference).

dbcentury Can be one of the following characters, which determines which
century to apply to the year portion of the date:

Appendix B. ESQL/C function library B-69

R Present. The function uses the two high-order digits of the
current year to expand the year value.

P Past. The function uses the past and present centuries to
expand the year value. It compares these two dates against
the current date and uses the century that is prior to the
cur rent century. If both dates are prior to the current date,
the function uses the century closest to the current date.

F Future. The function uses the present and the next
centuries to expand the year value. It compares these
against the current date and uses the century that is later
than the current date. If both dates are later than the
current date, the function uses the date closest to the
current date.

C Closest. The function uses the past, present, and next
centuries to expand the year value. It chooses the century
that is closest to the current date.

Usage:

You must initialize the datetime variable in dtvalue with the qualifier that you want
the character string to have. If you do not initialize the datetime variable, the
function returns an unpredictable value. The character string in outbuf does not
include the qualifier or the parentheses that SQL statements use to delimit a
DATETIME literal.

The formatting mask, fmtstring, does not need to imply the same qualifiers as the
datetime variable. When the implied formatting-mask qualifier is different from
the datetime qualifier, dttofmtasc() extends the datetime value (as if it called the
dtextend() function).

If the formatting mask is an empty string, the function sets character string, outbuf,
to an empty string. If fmtstring is a null pointer, the dttofmtasc() function must
determine the format to use for the character string in outbuf. When you use the
default locale, the function uses the following precedence:
1. The format that the DBTIME environment variable specifies (if DBTIME is

set). For more information about DBTIME, see the IBM Informix Guide to SQL:
Reference.

2. The format that the GL_DATETIME environment variable specifies (if
GL_DATETIME is set). For more information about GL_DATETIME, see the
IBM Informix GLS User's Guide.

3. The default date format that conforms to the standard ANSI SQL format:
%iY-%m-%d %H:%M:%S

When you use a two-digit year (%y) in a formatting mask, the dttofmtasc()
function uses the value of the DBCENTURY environment variable to determine
which century to use. If you do not set DBCENTURY, dttofmtasc() assumes the
present century for two-digit years. For information about how to set
DBCENTURY, see the IBM Informix Guide to SQL: Reference.

When you use a nondefault locale (one other than U.S. English) and do not set the
DBTIME or GL_DATETIME environment variables, dttofmtasc() uses the default
DATETIME format that the client locale defines. For more information, see the IBM
Informix GLS User's Guide.

B-70 IBM Informix ESQL/C Programmer’s Manual

Return codes:

0 The conversion was successful.

<0 The conversion failed. Check the text of the error message.

The ifx_getenv() function
The ifx_getenv() function retrieves the value of a current environment variable.

Syntax:
char *ifx_getenv(varname);

const char *varname;

varname A pointer to a buffer that contains the name of an environment
variable.

Usage:

The ifx_getenv() function searches for the environment variable in the following
order:
1. Table of IBM Informix environment variables that the application has modified

or defined with the ifx_putenv() function or directly (the InetLogin structure)
2. Table of Informix environment variables that the user has defined in the

Registry with the Setnet32 utility
3. Non-Informix environment variables retrieved from the C runtime environment

variables
4. Table of defined defaults for Informix environment variables

The ifx_getenv() function is not case sensitive. You can specify the name of the
environment variable in any case.

The ifx_getenv() function operates only on the data structures accessible to the C
runtime library and not on the environment segment that the operating system
creates for the process. Therefore, programs that use ifx_getenv() might retrieve
invalid information.

The ifx_putenv() and ifx_getenv() functions use the copy of the environment to
which the global variable _environ points to access the environment.

The following program fragment uses ifx_getenv() to retrieve the current value of
the INFORMIXDIR environment variable:
char InformixDirVal[100];

/* Get current value of INFORMIXDIR */
InformixDirVal = ifx_getenv("informixdir");
/* Check if INFORMIXDIR is set */
If(InformixDirVal != NULL)

printf("Current INFORMIXDIR value is %\n", InformixDirVal);

Return codes:

The ifx_getenv() function returns a pointer to the Informix environment table entry
that contains varname, or returns NULL if the function does not find varname in the
table.

Appendix B. ESQL/C function library B-71

Restriction:: Do not use the returned pointer to modify the value of the
environment variable. Use the ifx_putenv() function instead. If
ifx_getenv() does not find "varname" in the Informix environment
table, the return value is NULL.

The ifx_getcur_conn_name() function
The ifx_getcur_conn_name() function returns the name of the current connection.

Syntax:
char *ifx_getcur_conn_name(void);

Usage:

The current connection is the active database server connection that is currently
sending SQL requests to the database server and possibly receiving data from the
database server. In a callback function, the current connection is the current
connection at the time when the callback was registered with a call to the
sqlbreakcallback() function. The current connection name is the explicit name of
the current connection. If the CONNECT statement that establishes a connection
does not include the AS clause, the connection does not have an explicit name.

Return codes:

Name of current connection Successfully obtained current connection name

Null pointer Unable to obtain current connection name or
current connection does not have an explicit name

The ifx_getserial8() function
The ifx_getserial8() function returns the SERIAL8 value of the last inserted row
into an int8 host variable.

Syntax:
void ifx_getserial8(serial8_val)

ifx_int8_t *serial8_val;

serial8_val Apointer to the int8 structure where ifx_getserial8() places the
newly-inserted SERIAL8 value.

Usage:

Use the ifx_getserial8() function after you insert a row that contains a SERIAL8
column. The function returns the new SERIAL8 value in the int8 variable,
serial8_val, which you declare. If the INSERT statement generated a new SERIAL8
value, the serial8_val points to a value greater than zero. A SERIAL8 value of zero
or null indicates an invalid INSERT; the INSERT might have failed or might not
have been performed.

Examples:
EXEC SQL BEGIN DECLARE SECTION;

int8 order_num;
int8 rep_num;
char str[20];

EXEC SQL END DECLARE SECTION;

EXEC SQL create table order2

B-72 IBM Informix ESQL/C Programmer’s Manual

(
order_number SERIAL8(1001),
order_date DATE,
customer_num INTEGER,
backlog CHAR(1),
po_num CHAR(10),
paid_date DATE,
sales_rep INT8

);
EXEC SQL insert into order2 (order_number, sales_rep)

values (0, :rep_num);
if (SQLCODE == 0)
{

ifx_getserial8(order_num);
if (ifx_int8toasc(&order_num, str, 20) == 0)

printf("New order number is %s\n", str);
}

The ifx_int8add() function
The ifx_int8add() function adds two int8 type values.

Syntax:
mint ifx_int8add(n1, n2, sum)

ifx_int8_t *n1;
ifx_int8_t *n2;
ifx_int8_t *sum;

n1 A pointer to the int8 structure that contains the first operand.

n2 A pointer to the int8 structure that contains the second operand.

sum A pointer to the int8 structure that contains the sum of n1 + n2.

Usage:

The sum can be the same as either n1 or n2.

Return codes:

0 The operation was successful.

-1284 The operation resulted in overflow or underflow.

Examples:

The file int8add.ec in the demo directory contains the following sample program.
*int8add.ec *

The following program obtains the sum of two INT8 type values.
*/

#include <stdio.h>

EXEC SQL include "int8.h";

char string1[] = "6";
char string2[] = "9,223,372,036,854,775";
char string3[] = "999,999,999,999,999,9995";
char result[41];

main()
{

Appendix B. ESQL/C function library B-73

mint x;
ifx_int8_t num1, num2, num3, sum;

printf("INT8 Sample ESQL Program running.\n\n");

if (x = ifx_int8cvasc(string1, strlen(string1), &num1))
{
printf("Error %d in converting string1 to INT8\n", x);
exit(1);
}

if (x = ifx_int8cvasc(string2, strlen(string2), &num2))
{
printf("Error %d in converting string2 to INT8\n", x);
exit(1);
}

if (x = ifx_int8add(&num1, &num2, &sum)) /* adding the first two INT8s */
{
printf("Error %d in adding INT8s\n", x);
exit(1);
}

if (x = ifx_int8toasc(&sum, result, sizeof(result)))
{
printf("Error %d in converting INT8 result to string\n", x);
exit(1);
}

result[40] = ’\0’;
printf("\t%s + %s = %s\n", string1, string2, result); /* display result */

/* attempt to convert to INT8 value that is too large*/

if (x = ifx_int8cvasc(string3, strlen(string3), &num3))
{
printf("Error %d in converting string3 to INT8\n", x);
exit(1);
}

if (x = ifx_int8add(&num2, &num3, &sum))
{
printf("Error %d in adding INT8s\n", x);
exit (1);
}

if (x = ifx_int8toasc(&sum, result, sizeof(result)))
{
printf("Error %d in converting INT8 result to string\n", x);
exit(1);

}
result[40] = ’\0’;
printf("\t%s + %s = %s\n", string2, string3, result); /* display result */

printf("\nINT8 Sample Program over.\n\n");
exit(0);

}

Output:
INT8 Sample ESQL Program running.

6 + 9,223,372,036,854,775 = 9223372036854781
Error -1284 in converting string3 to INT8

B-74 IBM Informix ESQL/C Programmer’s Manual

The ifx_int8cmp() function
The ifx_int8cmp() function compares two int8 type numbers.

Syntax:
mint ifx_int8cmp(n1, n2)

ifx_int8_t *n1;
ifx_int8_t *n2;

n1 A pointer to the int8 structure that contains the first number to
compare.

n2 A pointer to the int8 structure that contains the second number to
compare.

Return codes:

-1 The first value is less than the second value.

0 The two values are identical.

1 The first value is greater than the second value.

INT8UNKNOWN
Either value is null.

Examples:

The file int8cmp.ec in the demo directory contains the following sample program.
/*

* ifx_int8cmp.ec *

The following program compares INT8s types and displays
the results.

*/

#include <stdio.h>

EXEC SQL include "int8.h";

char string1[] = "-999,888,777,666";
char string2[] = "-12,345,678,956,546";
char string3[] = "123,456,780,555,224,456";
char string4[] = "123,456,780,555,224,456";
char string5[] = "";

main()
{

mint x;
ifx_int8_t num1, num2, num3, num4, num5;

printf("IFX_INT8CMP Sample ESQL Program running.\n\n");

if (x = ifx_int8cvasc(string1, strlen(string1), &num1))
{
printf("Error %d in converting string1 to int8\n", x);
exit(1);
}

if (x = ifx_int8cvasc(string2, strlen(string2), &num2))
{
printf("Error %d in converting string2 to int8\n", x);
exit(1);
}

Appendix B. ESQL/C function library B-75

if (x = ifx_int8cvasc(string3, strlen(string3), &num3))
{
printf("Error %d in converting string3 to int8\n", x);
exit(1);
}

if (x = ifx_int8cvasc(string4, strlen(string4), &num4))
{
printf("Error %d in converting string4 to int8\n", x);
exit(1);
}

if (x = ifx_int8cvasc(string5, strlen(string5), &num5))
{
printf("Error %d in converting string5 to int8\n", x);
exit(1);
}

printf("num1 = %s\nnum2 = %s\n", string1, string2);
printf("num3 = %s\nnum4 = %s\n", string3, string4);
printf("num5 = %s\n", "NULL");
printf("\nExecuting: ifx_int8cmp(&num1, &num2)\n");
printf(" Result = %d\n", ifx_int8cmp(&num1, &num2));
printf("Executing: ifx_int8cmp(&num2, &num3)\n");
printf(" Result = %d\n", ifx_int8cmp(&num2, &num3));
printf("Executing: ifx_int8cmp(&num1, &num3)\n");
printf(" Result = %d\n", ifx_int8cmp(&num1, &num3));
printf("Executing: ifx_int8cmp(&num3, &num4)\n");
printf(" Result = %d\n", ifx_int8cmp(&num3, &num4));
printf("Executing: ifx_int8cmp(&num1, &num5)\n");
x = ifx_int8cmp(&num1, &num5);
if(x == INT8UNKNOWN)

printf("RESULT is INT8UNKNOWN. One of the INT8 values in null.\n");
else

printf(" Result = %d\n", x);
printf("\nIFX_INT8CMP Sample Program over.\n\n");
exit(0);

}

Output:
IFX_INT8CMP Sample ESQL Program running.

Number 1 = -999,888,777,666 Number 2 = -12,345,678,956,546
Number 3 = 123,456,780,555,224,456 Number 4 = 123,456,780,555,224,456
Number 5 =

Executing: ifx_int8cmp(&num1, &num2)
Result = 1

Executing: ifx_int8cmp(&num2, &num3)
Result = -1

Executing: ifx_int8cmp(&num1, &num3)
Result = -1

Executing: ifx_int8cmp(&num3, &num4)
Result = 0

Executing: ifx_int8cmp(&num1, &num5)
RESULT is INT8UNKNOWN. One of the INT8 values in null.

IFX_INT8CMP Sample Program over.

The ifx_int8copy() function
The ifx_int8copy() function copies one int8 structure to another.

Syntax:

B-76 IBM Informix ESQL/C Programmer’s Manual

void ifx_int8copy(source, target)
ifx_int8_t *source;
ifx_int8_t *target;

source A pointer to the int8 structure that contains the source int8 value
to copy.

target A pointer to the target int8 structure.

The ifx_int8copy() function does not return a status value. To determine the
success of the copy operation, look at the contents of the int8 structure to which
the target argument points.

Examples:

The file int8copy.ec in the demo directory contains the following sample program.
/*

* ifx_int8copy.ec *

The following program copies one INT8 number to another.
*/

#include <stdio.h>

EXEC SQL include "int8.h";

char string1[] = "-12,888,999,555,333";
char result[41];

main()
{

mint x;
ifx_int8_t num1, num2;

printf("IFX_INT8COPY Sample ESQL Program running.\n\n");

printf("String = %s\n", string1);
if (x = ifx_int8cvasc(string1, strlen(string1), &num1))

{
printf("Error %d in converting string1 to INT8\n", x);
exit(1);
}

printf("Executing: ifx_int8copy(&num1, &num2)\n");
ifx_int8copy(&num1, &num2);
if (x = ifx_int8toasc(&num2, result, sizeof(result)))

{
printf("Error %d in converting num2 to string\n", x);
exit(1);
}

result[40] = ’\0’;
printf("Destination = %s\n", result);

printf("\nIFX_INT8COPY Sample Program over.\n\n");
exit(0);

}

Output:
IFX_INT8COPY Sample ESQL Program running.

String = -12,888,999,555,333

Appendix B. ESQL/C function library B-77

Executing: ifx_int8copy(&num1, &num2)
Destination = -12888999555333

IFX_INT8COPY Sample Program over

The ifx_int8cvasc() function
The ifx_int8cvasc() function converts a value held as printable characters in a C
char type into an int8 type number.

Syntax:
mint ifx_int8cvasc(strng_val, len, int8_val)

char *strng_val
mint len;
ifx_int8_t *int8_val;

strng_val A pointer to a string.

len The length of the strng_val string.

int8_val A pointer to the int8 structure where ifx_int8cvasc() places the
result of the conversion.

Usage:

The character string, strng_val, can contain the following symbols:
v A leading sign, either a plus (+) or minus (-).
v An exponent that is preceded by either e or E. You can precede the exponent by

a sign, either a plus (+) or minus (-).

The strng_val character string should not contain a decimal separator or digits to
the right of the decimal separator. The ifx_int8svasc() function truncates the
decimal separator and any digits to the right of the decimal separator. The
ifx_int8cvasc() function ignores leading spaces in the character string.

When you use a nondefault locale (one other than U.S. English), ifx_int8cvasc()
supports non-ASCII characters in the strng_val character string. For more
information, see the IBM Informix GLS User's Guide.

Return codes:

0 The conversion was successful.

-1213 The string has non-numeric characters.

-1284 The operation resulted in overflow or underflow.

Examples:

The file int8cvasc.ec in the demo directory contains the following sample program.
/*

* ifx_in8cvasc.ec *

The following program converts three strings to INT8
types and displays the values stored in each field of
the INT8 structures.

*/

#include <stdio.h>

B-78 IBM Informix ESQL/C Programmer’s Manual

EXEC SQL include "int8.h";

char string1[] = "-12,555,444,333,786,456";
char string2[] = "480";
char string3[] = "5.2";
main()
{

mint x;
ifx_int8_t num1, num2, num3;
void nullterm(char *, mint);

printf("IFX_INT8CVASC Sample ESQL Program running.\n\n");

if (x = ifx_int8cvasc(string1, strlen(string1), &num1))
{
printf("Error %d in converting string1 to INT8\n", x);
exit(1);
}

if (x = ifx_int8cvasc(string2, strlen(string2), &num2))
{
printf("Error %d in converting string2 to INT8\n", x);
exit(1);
}

if (x = ifx_int8cvasc(string3, strlen(string3), &num3))
{
printf("Error %d in converting string3 to INT8\n", x);
exit(1);
}

/* Display the exponent, sign value and number of digits in num1. */

ifx_int8toasc(&num1, string1, sizeof(string1));
nullterm(string1, sizeof(string1));
printf("The value of the first INT8 is = %s\n", string1);

/* Display the exponent, sign value and number of digits in num2. */

ifx_int8toasc(&num2, string2, sizeof(string2));
nullterm(string2, sizeof(string2));
printf("The value of the 2nd INT8 is = %s\n", string2);

/* Display the exponent, sign value and number of digits in num3. */
/* Note that the decimal is truncated */

ifx_int8toasc(&num3, string3, sizeof(string3));
nullterm(string3, sizeof(string3));
printf("The value of the 3rd INT8 is = %s\n", string3);

printf("\nIFX_INT8CVASC Sample Program over.\n\n");
exit(0);

}
void nullterm(char *str, mint size)
{

char *end;

end = str + size;
while(*str && *str > ’ ’ && str <= end)

++str;
*str = ’\0’;

}

Output:

Appendix B. ESQL/C function library B-79

IFX_INT8CVASC Sample ESQL Program running.

The value of the first INT8 is = -12555444333786456
The value of the 2nd INT8 is = 480
The value of the 3rd INT8 is = 5

IFX_INT8CVASC Sample Program over.

The ifx_int8cvdbl() function
The ifx_int8cvdbl() function converts a C double type number into an int8 type
number.

Syntax:
mint ifx_int8cvdbl(dbl_val, int8_val)

double dbl_val;
ifx_int8_t *int8_val;

dbl_val The double value that ifx_int8cvdbl() converts to an int8 type
value.

int8_val A pointer to the int8 structure where ifx_int8cvdbl() places the
result of the conversion.

Return codes:

0 The conversion was successful.

<0 The conversion failed.

Examples:

The file int8cvdbl.ec in the demo directory contains the following sample program.
/*

* int8cvdbl.ec *

The following program converts two double type numbers to
INT8 types and displays the results.

*/

#include <stdio.h>

EXEC SQL include "int8.h";

char result[41];

main()
{

mint x;
ifx_int8_t num;
double d = 2147483647;

printf("IFX_INT8CVDBL Sample ESQL Program running.\n\n");

printf("Number 1 (double) = 1234.5678901234\n");
if (x = ifx_int8cvdbl((double)1234.5678901234, &num))

{
printf("Error %d in converting double1 to INT8\n", x);
exit(1);
}

if (x = ifx_int8toasc(&num, result, sizeof(result)))
{

B-80 IBM Informix ESQL/C Programmer’s Manual

printf("Error %d in converting INT8 to string\n", x);
exit(1);
}

result[40] = ’\0’;
printf(" String Value = %s\n", result);

/* notice that the ifx_int8cvdbl function truncates digits to the
right of a decimal separator. */

printf("Number 2 (double) = %.1f\n", d);
if (x = ifx_int8cvdbl(d, &num))

{
printf("Error %d in converting double2 to INT8\n", x);
exit(1);
}

if (x = ifx_int8toasc(&num, result, sizeof(result)))
{
printf("Error %d in converting second INT8 to string\n", x);
exit(1);
}

result[40] = ’\0’;
printf(" String Value = %s\n", result);

printf("\nIFX_INT8CVDBL Sample Program over.\n\n");
exit(0);

}

Output:
IFX_INT8CVDBL Sample ESQL Program running.

Number 1 (double) = 1234.5678901234
String Value = 1234

Number 2 (double) = 2147483647.0
String Value = 2147483647

IFX_INT8CVDBL Sample Program over.

The ifx_int8cvdec() function
The ifx_int8cvdec() function converts a decimal type value into an int8 type value.

Syntax:
mint ifx_int8cvdec(dec_val, int8_val)

dec_t *dec_val;
ifx_int8_t *int8_val;

dec_val A pointer to the decimal structure that ifx_int8cvdec() converts to
an int8 type value.

int8_val A pointer to the int8 structure where ifx_int8cvdec() places the
result of the conversion.

Return codes:

0 The conversion was successful.

<0 The conversion failed.

Examples:

The file int8cdec.ec in the demo directory contains the following sample program.

Appendix B. ESQL/C function library B-81

/*
* ifx_int8cvdec.ec *

The following program converts two INT8s types to DECIMALS and displays
the results.

*/

#include <stdio.h>

EXEC SQL include decimal;
EXEC SQL include "int8.h";

char string1[] = "2949.3829398204382";
char string2[] = "3238299493";
char result[41];

main()
{

mint x;
ifx_int8_t n;
dec_t num;

printf("IFX_INT8CVDEC Sample ESQL Program running.\n\n");

if (x = deccvasc(string1, strlen(string1), &num))
{
printf("Error %d in converting string1 to DECIMAL\n", x);
exit(1);
}

if (x = ifx_int8cvdec(&num, &n))
{
printf("Error %d in converting DECIMAL1 to INT8\n", x);
exit(1);
}

/* Convert the INT8 to ascii and display it. Note that the
digits to the right of the decimal are truncated in the
conversion.

*/

if (x = ifx_int8toasc(&n, result, sizeof(result)))
{
printf("Error %d in converting INT8 to string\n", x);
exit(1);
}

result[40] = ’\0’;
printf("String 1 Value = %s\n", string1);
printf(" INT8 type value = %s\n", result);

if (x = deccvasc(string2, strlen(string2), &num))
{
printf("Error %d in converting string2 to DECIMAL\n", x);
exit(1);
}

if (x = ifx_int8cvdec(&num, &n))
{
printf("Error %d in converting DECIMAL2 to INT8\n", x);
exit(1);
}

printf("String 2 = %s\n", string2);

/* Convert the INT8 to ascii to display value. */

B-82 IBM Informix ESQL/C Programmer’s Manual

if (x = ifx_int8toasc(&n, result, sizeof(result)))
{
printf("Error %d in converting INT8 to string\n", x);
exit(1);
}

result[40] = ’\0’;
printf(" INT8 type value = %s\n", result);

printf("\nIFX_INT8CVDEC Sample Program over.\n\n");
exit(0);

}

Output:
IFX_INT8CVDEC Sample ESQL Program running.

String 1 Value = 2949.3829398204382
INT8 type value = 2949
String 2 = 3238299493

INT8 type value = 3238299493

IFX_INT8CVDEC Sample Program over.

The ifx_int8cvflt() function
The ifx_int8cvflt() function converts a C float type number into an int8 type
number.

Syntax:
mint ifx_int8cvflt(flt_val, int8_val)

double flt_val;
ifx_int8_t *int8_val;

flt_val The float value that ifx_int8cvflt converts to an int8 type value.

int8_val A pointer to the int8 structure where ifx_int8cvflt() places the
result of the conversion.

Return codes:

0 The conversion was successful.

<0 The conversion failed.

Examples:

The file int8cvflt.ec in the demo directory contains the following sample program.
/*

* ifx_int8cvflt.ec *

The following program converts two floats to INT8 types and displays
the results.

*/

#include <stdio.h>

EXEC SQL include "int8.h";

char result[41];

main()
{

mint x;

Appendix B. ESQL/C function library B-83

ifx_int8_t num;

printf("IFX_INT8CVFLT Sample ESQL Program running.\n\n");

printf("Float 1 = 12944.321\n");

/* Note that in the following conversion, the digits to the
right of the decimal are ignored. */

if (x = ifx_int8cvflt(12944.321, &num))
{
printf("Error %d in converting float1 to INT8\n", x);
exit(1);
}

/* Convert int8 to ascii to display value. */

if (x = ifx_int8toasc(&num, result, sizeof(result)))
{
printf("Error %d in converting INT8 to string\n", x);
exit(1);
}

result[40] = ’\0’;
printf(" The INT8 type value is = %s\n", result);
printf("Float 2 = -33.43\n");

/* Note that in the following conversion, the digits to the
right of the decimal are ignored. */

if (x = ifx_int8cvflt(-33.43, &num))
{
printf("Error %d in converting float2 to INT8\n", x);
exit(1);
}

if (x = ifx_int8toasc(&num, result, sizeof(result)))
{
printf("Error %d in converting INT8 to string\n", x);
exit(1);
}

result[40] = ’\0’;
printf(" The second INT8 type value is = %s\n", result);

printf("\nIFX_INT8CVFLT Sample Program over.\n\n");
exit(0);

}

Output:
IFX_INT8CVFLT Sample ESQL Program running.

Float 1 = 12944.321
The INT8 type value is = 12944

Float 2 = -33.43
The second INT8 type value is = -33

IFX_INT8CVFLT Sample Program over.

The ifx_int8cvint() function
The ifx_int8cvint() function converts a C int type number into an int8 type
number.

Syntax:

B-84 IBM Informix ESQL/C Programmer’s Manual

mint ifx_int8cvint(int_val, int8_val)
mint int_val;
ifx_int8_t *int8_val;

int_val The mint value that ifx_int8cvint() converts to an int8 type value.

int8_val A pointer to the int8 structure where ifx_int8cvint() places the
result of the conversion.

Return codes:

0 The conversion was successful.

<0 The conversion failed.

Examples:

The file int8cvint.ec in the demo directory contains the following sample program.
/*

* ifx_int8cvint.ec *

The following program converts two integers to INT8
types and displays the results.

*/

#include <stdio.h>

EXEC SQL include "int8.h";

char result[41];

main()
{

mint x;
ifx_int8_t num;

printf("IFX_INT8CVINT Sample ESQL Program running.\n\n");

printf("Integer 1 = 129449233\n");
if (x = ifx_int8cvint(129449233, &num))

{
printf("Error %d in converting int1 to INT8\n", x);
exit(1);
}

/* Convert int8 to ascii to display value. */

if (x = ifx_int8toasc(&num, result, sizeof(result)))
{
printf("Error %d in converting INT8 to string\n", x);
exit(1);
}

result[40] = ’\0’;
printf(" The INT8 type value is = %s\n", result);

printf("Integer 2 = -33\n");
if (x = ifx_int8cvint(-33, &num))

{
printf("Error %d in converting int2 to INT8\n", x);
exit(1);
}

/* Convert int8 to ascii to display value. */

Appendix B. ESQL/C function library B-85

if (x = ifx_int8toasc(&num, result, sizeof(result)))
{
printf("Error %d in converting INT8 to string\n", x);
exit(1);
}

result[40] = ’\0’;
printf(" The second INT8 type value is = %s\n", result);

printf("\nIFX_INT8CVINT Sample Program over.\n\n");
exit(0);

}

Output:
IFX_INT8CVINT Sample ESQL Program running.

Integer 1 = 129449233
The INT8 type value is = 129449233

Integer 2 = -33
The second INT8 type value is = -33

IFX_INT8CVINT Sample Program over.

The ifx_int8cvlong() function
The ifx_int8cvlong() function converts a C long type value into an int8 type value.

Syntax:
mint ifx_int8cvlong(lng_val, int8_val)

int4 lng_val;
ifx_int8_t *int8_val;

lng_val The int4 integer that ifx_int8cvlong() converts to an int8 type
value.

int8_val A pointer to the int8 structure where ifx_int8cvlong() places the
result of the conversion.

Return codes:

0 The conversion was successful.

<0 The conversion failed.

Examples:

The file int8cvlong.ec in the demo directory contains the following sample
program.
/*

* ifx_int8cvlong.ec *

The following program converts two longs to INT8
types and displays the results.

*/

#include <stdio.h>

EXEC SQL include "int8.h";

char result[41];

main()
{

B-86 IBM Informix ESQL/C Programmer’s Manual

mint x;
ifx_int8_t num;
int4 n;

printf("IFX_INT8CVLONG Sample ESQL Program running.\n\n");

printf("Long Integer 1 = 129449233\n");
if (x = ifx_int8cvlong(129449233L, &num))

{
printf("Error %d in converting long to INT8\n", x);
exit(1);
}

if (x = ifx_int8toasc(&num, result, sizeof(result)))
{
printf("Error %d in converting INT8 to string\n", x);
exit(1);
}

result[40] = ’\0’;
printf(" String for INT8 type value = %s\n", result);

n = 2147483646; /* set n */
printf("Long Integer 2 = %d\n", n);
if (x = ifx_int8cvlong(n, &num))

{
printf("Error %d in converting long to INT8\n", x);
exit(1);
}

if (x = ifx_int8toasc(&num, result, sizeof(result)))
{
printf("Error %d in converting INT8 to string\n", x);
exit(1);
}

result[40] = ’\0’;
printf(" String for INT8 type value = %s\n", result);

printf("\nIFX_INT8CVLONG Sample Program over.\n\n");
exit(0);

}

Output:
IFX_INT8CVLONG Sample ESQL Program running.

Long Integer 1 = 129449233
String for INT8 type value = 129449233

Long Integer 2 = 2147483646
String for INT8 type value = 2147483646

IFX_INT8CVLONG Sample Program over.

The ifx_int8div() function
The ifx_int8div() function divides two int8 type values.

Syntax:
mint ifx_int8div(n1, n2, quotient)

ifx_int8_t *n1;
ifx_int8_t *n2;
ifx_int8_t *quotient;

n1 A pointer to the int8 structure that contains the dividend.

n2 A pointer to the int8 structure that contains the divisor.

Appendix B. ESQL/C function library B-87

quotient A pointer to the int8 structure that contains the quotient of n1/n2.

Usage:

The quotient can be the same as either n1 or n2.

Return codes:

0 The operation was successful.

-1202 The operation attempted to divide by zero.

Examples:

The file int8div.ec in the demo directory contains the following sample program.
/*

* ifx_int8div.ec *

The following program divides two INT8 numbers and displays the result.
*/

#include <stdio.h>

EXEC SQL include "int8.h";

char string1[] = "480,999,777,666,345,567";
char string2[] = "80,765,456,765,456,654";
char result[41];

main()
{

mint x;
ifx_int8_t num1, num2, dvd;

printf("IFX_INT8DIV Sample ESQL Program running.\n\n");

if (x = ifx_int8cvasc(string1, strlen(string1), &num1))
{
printf("Error %d in converting string1 to INT8\n", x);
exit(1);
}

if (x = ifx_int8cvasc(string2, strlen(string2), &num2))
{
printf("Error %d in converting string2 to INT8\n", x);
exit(1);
}

if (x = ifx_int8div(&num1, &num2, &dvd))
{
printf("Error %d in dividing num1 by num2\n", x);
exit(1);
}

if (x = ifx_int8toasc(&dvd, result, sizeof(result)))
{
printf("Error %d in converting dividend to string\n", x);
exit(1);
}

result[40] = ’\0’;
printf("\t%s / %s = %s\n", string1, string2, result);

printf("\nIFX_INT8DIV Sample Program over.\n\n");
exit(0);

}

B-88 IBM Informix ESQL/C Programmer’s Manual

Output:
IFX_INT8DIV Sample ESQL Program running.

480,999,777,666,345,567 / 80,765,456,765,456,654 = 5

IFX_INT8DIV Sample Program over.

The ifx_int8mul() function
The ifx_int8mul() function multiplies two int8 type values.

Syntax:
mint ifx_int8mul(n1, n2, product)

ifx_int8_t *n1;
ifx_int8_t *n2;
ifx_int8_t *product;

n1 A pointer to the int8 structure that contains the first operand.

n2 A pointer to the int8 structure that contains the second operand.

product A pointer to the int8 structure that contains the product of n1 * n2.

Usage:

The product can be the same as either n1 or n2.

Return codes:

0 The operation was successful.

-1284 The operation resulted in overflow or underflow.

Examples:

The file int8mul.ec in the demo directory contains the following sample program.
/*

* ifx_int8mul.ec *

The following program multiplies two INT8 numbers and
displays the result.

*/

#include <stdio.h>

EXEC SQL include "int8.h";

char string1[] = "480,999,777,666,345";
char string2[] = "80";
char result[41];

main()
{

mint x;
ifx_int8_t num1, num2, prd;

printf("IFX_INT8MUL Sample ESQL Program running.\n\n");

if (x = ifx_int8cvasc(string1, strlen(string1), &num1))
{
printf("Error %d in converting string1 to INT8\n", x);
exit(1);

Appendix B. ESQL/C function library B-89

}
if (x = ifx_int8cvasc(string2, strlen(string2), &num2))

{
printf("Error %d in converting string2 to INT8\n", x);
exit(1);
}

if (x = ifx_int8mul(&num1, &num2, &prd))
{
printf("Error %d in multiplying num1 by num2\n", x);
exit(1);
}

if (x = ifx_int8toasc(&prd, result, sizeof(result)))
{
printf("Error %d in converting product to string\n", x);
exit(1);
}

result[40] = ’\0’;
printf("\t%s * %s = %s\n", string1, string2, result);

printf("\nIFX_INT8MUL Sample Program over.\n\n");
exit(0);

}

Output:
IFX_INT8MUL Sample ESQL Program running.

480,999,777,666,345 * 80 = 38479982213307600

IFX_INT8MUL Sample Program over.

The ifx_int8sub() function
The ifx_int8sub() function subtracts two int8 type values.

Syntax:
mint ifx_int8sub(n1, n2, difference)

ifx_int8_t *n1;
ifx_int8_t *n2;
ifx_int8_t *difference;

n1 A pointer to the int8 structure that contains the first operand.

n2 A pointer to the int8 structure that contains the second operand.

difference A pointer to the int8 structure that contains the difference of n1
and n2 (n1 - n2).

Usage:

The difference can be the same as either n1 or n2.

Return codes:

0 The subtraction was successful.

-1284 The subtraction resulted in overflow or underflow.

Examples:

The file int8sub.ec in the demo directory contains the following sample program.

B-90 IBM Informix ESQL/C Programmer’s Manual

/*
*int8sub.ec *

The following program obtains the difference of two INT8
type values.

*/

#include <stdio.h>

EXEC SQL include "int8.h";

char string1[] = "6";
char string2[] = "9,223,372,036,854,775";
char string3[] = "999,999,999,999,999.5";
char result[41];

main()
{

mint x;
ifx_int8_t num1, num2, num3, sum;

printf("IFX_INT8SUB Sample ESQL Program running.\n\n");

if (x = ifx_int8cvasc(string1, strlen(string1), &num1))
{
printf("Error %d in converting string1 to INT8\n", x);
exit(1);
}

if (x = ifx_int8cvasc(string2, strlen(string2), &num2))
{
printf("Error %d in converting string2 to INT8\n", x);
exit(1);
}

/* subtract num2 from num1 */

if (x = ifx_int8sub(&num1, &num2, &sum))
{
printf("Error %d in subtracting INT8s\n", x);
exit(1);
}

if (x = ifx_int8toasc(&sum, result, sizeof(result)))
{
printf("Error %d in converting INT8 result to string\n", x);
exit(1);
}

result[40] = ’\0’;
printf("\t%s - %s = %s\n", string1, string2, result); /* display result */

if (x = ifx_int8cvasc(string3, strlen(string3), &num3))
{
printf("Error %d in converting string3 to INT8\n", x);
exit(1);
}

/* notice that digits right of the decimal are truncated. */

if (x = ifx_int8sub(&num2, &num3, &sum))
{
printf("Error %d in subtracting INT8s\n", x);
exit (1);

}
if (x = ifx_int8toasc(&sum, result, sizeof(result)))

{

Appendix B. ESQL/C function library B-91

printf("Error %d in converting INT8 result to string\n", x);
exit(1);
}

result[40] = ’\0’;
printf("\t%s - %s = %s\n", string2, string3, result); /* display result */

printf("\nIFX_INT8SUB Sample Program over.\n\n");
exit(0);

}

Output:
IFX_INT8SUB Sample ESQL Program running.

6 - 9,223,372,036,854,775 = -9223372036854769
9,223,372,036,854,775 - 999,999,999,999,999.5 = 8223372036854776

IFX_INT8SUB Sample Program over.

The ifx_int8toasc() function
The ifx_int8toasc() function converts an int8 type number to a C char type value.

Syntax:
mint inf_int8toasc(int8_val, strng_val, len)

ifx_int8_t *int8_val;
char *strng_val;
mint len;

int8_val A pointer to the int8 structure whose value ifx_int8toasc() converts
to a text string.

strng_val A pointer to the first byte of the character buffer where the
ifx_int8toasc() function places the text string.

len The size of strng_val, in bytes, minus 1 for the null terminator.

Usage:

If the int8 number does not fit into a character string of length len, ifx_int8toasc()
converts the number to an exponential notation. If the number still does not fit,
ifx_int8toasc() fills the string with asterisks. If the number is shorter than the
string, ifx_int8toasc() left-justifies the number and pads it on the right with blanks.

Because the character string that ifx_int8toasc() returns is not null terminated, your
program must add a null character to the string before you print it.

When you use a nondefault locale (one other than U.S. English), ifx_int8toasc()
supports non-ASCII characters in the strng_val character string. For more
information, see the IBM Informix GLS User's Guide.

Return codes:

0 The conversion was successful.

-1207 The converted value does not fit into the allocated space.

Examples:

The file int8toasc.ec in the demo directory contains the following sample program.

B-92 IBM Informix ESQL/C Programmer’s Manual

/*
* ifx_int8toasc.ec *

The following program converts three string
constants to INT8 types and then uses ifx_int8toasc()
to convert the INT8 values to C char type values.

*/

#include <stdio.h>
#define END sizeof(result)

EXEC SQL include "int8.h";

char string1[] = "-12,555,444,333,786,456";
char string2[] = "480";
char string3[] = "5.2";
char result[40];

main()
{

mint x;
ifx_int8_t num1, num2, num3;

printf("IFX_INT8TOASC Sample ESQL Program running.\n\n");

if (x = ifx_int8cvasc(string1, strlen(string1), &num1))
{
printf("Error %d in converting string1 to INT8\n", x);
exit(1);
}

if (x = ifx_int8cvasc(string2, strlen(string2), &num2))
{
printf("Error %d in converting string2 to INT8\n", x);
exit(1);
}

if (x = ifx_int8cvasc(string3, strlen(string3), &num3))
{
printf("Error %d in converting string3 to INT8\n", x);
exit(1);
}

printf("\nConverting INT8 back to ASCII\n");
printf(" Executing: ifx_int8toasc(&num1, result, END - 1)");
if (x = ifx_int8toasc(&num1, result, END - 1))

printf("\tError %d in converting INT8 to string\n", x);
else

{
result[END - 1] = ’\0’; /* null terminate */
printf("\n The value of the first INT8 is = %s\n", result);
}

printf("\nConverting second INT8 back to ASCII\n");
printf(" Executing: ifx_int8toasc(&num2, result, END - 1)");
if (x= ifx_int8toasc(&num2, result, END - 1))

printf("\tError %d in converting INT8 to string\n", x);
else

{
result[END - 1] = ’\0’; /* null terminate */
printf("\n The value of the 2nd INT8 is = %s\n", result);
}

printf("\nConverting third INT8 back to ASCII\n");
printf(" Executing: ifx_int8toasc(&num3, result, END - 1)");
/* note that the decimal is truncated */

if (x= ifx_int8toasc(&num3, result, END - 1))

Appendix B. ESQL/C function library B-93

printf("\tError %d in converting INT8 to string\n", x);
else

{
result[END - 1] = ’\0’; /* null terminate */
printf("\n The value of the 3rd INT8 is = %s\n", result);
}

printf("\nIFX_INT8TOASC Sample Program over.\n\n");
exit(0);

}

Output:
IFX_INT8TOASC Sample ESQL Program running.

Converting INT8 back to ASCII
Executing: ifx_int8toasc(&num1, result, sizeof(result)-1)
The value of the first INT8 is = -12555444333786456

Converting second INT8 back to ASCII
Executing: ifx_int8toasc(&num2, result, sizeof(result)-1)
The value of the 2nd INT8 is = 480

Converting third INT8 back to ASCII
Executing: ifx_int8toasc(&num3, result, END)
The value of the 3rd INT8 is = 5

IFX_INT8TOASC Sample Program over.

The ifx_int8todbl() function
The ifx_int8todbl() function converts an int8 type number into a C double type
number.

Syntax:
mint ifx_int8todbl(int8_val, dbl_val)

ifx_int8_t *int8_val;
double *dbl_val;

int8_val A pointer to the int8 structure whose value ifx_int8todbl()
converts to a double type value.

dbl_val A pointer to a double value where ifx_int8todbl() places the result
of the conversion.

Usage:

The floating-point format of the host computer can result in loss of precision in the
conversion of an int8 type number to a double type number.

Return codes:

0 The conversion was successful.

<0 The conversion failed.

Examples:

The file int8todbl.ec in the demo directory contains the following sample program.
/*

* ifx_int8todbl.ec *

The following program converts three strings to INT8

B-94 IBM Informix ESQL/C Programmer’s Manual

types and then to C double types and displays the
results.

*/

#include <stdio.h>

EXEC SQL include "int8.h";

char string1[] = "-12,555,444,333,786,456";
char string2[] = "480";
char string3[] = "5.2";

main()
{

mint x;
double d =0;
ifx_int8_t num1, num2, num3;

printf("\nIFX_INT8TODBL Sample ESQL Program running.\n\n");

if (x = ifx_int8cvasc(string1, strlen(string1), &num1))
{
printf("Error %d in converting string1 to INT8\n", x);
exit(1);
}

if (x = ifx_int8cvasc(string2, strlen(string2), &num2))
{
printf("Error %d in converting string2 to INT8\n", x);
exit(1);
}

if (x = ifx_int8cvasc(string3, strlen(string3), &num3))
{
printf("Error %d in converting string3 to INT8\n", x);
exit(1);
}

printf("\nConverting INT8 to double");
if (x= ifx_int8todbl(&num1, &d))

{
printf("\tError %d in converting INT8 to double\n", x);
exit(1);
}

else
{
printf("\nString 1= %s\n", string1);
printf("INT8 value is = %.10f\n", d);
}

printf("\nConverting second INT8 to double");
if (x= ifx_int8todbl(&num2, &d))

{
printf("\tError %d in converting INT8 to double\n", x);
exit(1);
}

else
{
printf("\nString2 = %s\n", string2);/*

printf("INT8 value is = %.10f\n",d);
}

printf("\nConverting third INT8 to double");
/* Note that the decimal places will be truncated. */

if (x= ifx_int8todbl(&num3, &d))
{
printf("\tError %d in converting INT8 to double\n", x);

Appendix B. ESQL/C function library B-95

exit(1);
}

else
{
printf("\nString3 = %s\n", string3);
printf("INT8 value is = %.10f\n",d);
}

printf("\nIFX_INT8TODBL Sample Program over.\n\n");
exit(0);

}

Output:
IFX_INT8TODBL Sample ESQL Program running.

Converting INT8 to double

Executing: ifx_int8todbl(&num1,&d)
String 1= -12,555,444,333,786,456

The value of the first double is = -12555444333786456.0000000000

Converting second INT8 to double

Executing: ifx_int8todbl(&num2, &d)
String2 = 480

The value of the second double is = 480.0000000000

Converting third INT8 to double

Executing: ifx_int8todbl(&num3, &d)
String3 = 5.2

The value of the third double is = 5.0000000000

IFX_INT8TODBL Sample Program over.

The ifx_int8todec() function
The ifx_int8todec() function converts an int8 type number into a decimal type
number.

Syntax:
mint ifx_int8todec(int8_val, dec_val)

ifx_int8_t *int8_val;
dec_t *dec_val;

int8_val A pointer to an int8 structure whose value ifx_int8todec() converts
to a decimal type value.

dec_val A pointer to a decimal structure in which ifx_int8todec() places the
result of the conversion.

Return codes:

0 The conversion was successful.

<0 The conversion was not successful.

Examples:

B-96 IBM Informix ESQL/C Programmer’s Manual

The file int8todec.ec in the demo directory contains the following sample program.
/*

* ifx_int8todec.ec *

The following program converts three strings to INT8 types and
converts the INT8 type values to decimal type values.
Then the values are displayed.

*/

#include <stdio.h>

EXEC SQL include "int8.h";
#define END sizeof(result)

char string1[] = "-12,555,444,333,786,456";
char string2[] = "480";
char string3[] = "5.2";
char result [40];

main()
{

mint x;
dec_t d;
ifx_int8_t num1, num2, num3;

printf("IFX_INT8TODEC Sample ESQL Program running.\n\n");

if (x = ifx_int8cvasc(string1, strlen(string1), &num1))
{
printf("Error %d in converting string1 to INT8\n", x);
exit(1);
}

if (x = ifx_int8cvasc(string2, strlen(string2), &num2))
{
printf("Error %d in converting string2 to INT8\n", x);
exit(1);
}

if (x = ifx_int8cvasc(string3, strlen(string3), &num3))
{
printf("Error %d in converting string3 to INT8\n", x);
exit(1);
}

printf("\n***Converting INT8 to decimal\n");
printf("\nString 1= %s\n", string1);
printf(" \nExecuting: ifx_int8todec(&num1,&d)");
if (x= ifx_int8todec(&num1, &d))

{
printf("\tError %d in converting INT8 to decimal\n", x);
exit(1);
}

else
{
printf("\nConverting Decimal to ASCII for display\n");
printf("Executing: dectoasc(&d, result, END, -1)\n");
if (x = dectoasc(&d, result, END, -1))

printf("\tError %d in converting DECIMAL1 to string\n", x);
else

{
result[END - 1] = ’\0’; /* null terminate */
printf("Result = %s\n", result);

}

Appendix B. ESQL/C function library B-97

}
printf("\n***Converting second INT8 to decimal\n");
printf("\nString2 = %s\n", string2);
printf(" \nExecuting: ifx_int8todec(&num2, &d)");
if (x= ifx_int8todec(&num2, &d))

{
printf("\tError %d in converting INT8 to decimal\n", x);
exit(1);
}

else
{
printf("\nConverting Decimal to ASCII for display\n");
printf("Executing: dectoasc(&d, result, END, -1)\n");
if (x = dectoasc(&d, result, END, -1))

printf("\tError %d in converting DECIMAL2 to string\n", x);
else

{
result[END - 1] = ’\0’; /* null terminate */
printf("Result = %s\n", result);
}

}
printf("\n***Converting third INT8 to decimal\n");
printf("\nString3 = %s\n", string3);
printf(" \nExecuting: ifx_int8todec(&num3, &d)");
if (x= ifx_int8todec(&num3, &d))

{
printf("\tError %d in converting INT8 to decimal\n", x);
exit(1);
}

else
{
printf("\nConverting Decimal to ASCII for display\n");
printf("Executing: dectoasc(&d, result, END, -1)\n");

/* note that the decimal is truncated */

if (x = dectoasc(&d, result, END, -1))
printf("\tError %d in converting DECIMAL3 to string\n", x);

else
{
result[END - 1] = ’\0’; /* null terminate */
printf("Result = %s\n", result);
}

}
printf("\nIFX_INT8TODEC Sample Program over.\n\n");
exit(0);

}

Output:
IFX_INT8TODEC Sample ESQL Program running.

***Converting INT8 to decimal

String 1= -12,555,444,333,786,456

Executing: ifx_int8todec(&num1,&d)
Converting Decimal to ASCII for display
Executing: dectoasc(&d, result, END, -1)
Result = -12555444333786456.0

***Converting second INT8 to decimal

String2 = 480

B-98 IBM Informix ESQL/C Programmer’s Manual

Executing: ifx_int8todec(&num2, &d)
Converting Decimal to ASCII for display
Executing: dectoasc(&d, result, END, -1)
Result = 480.0

***Converting third INT8 to decimal

String3 = 5.2

Executing: ifx_int8todec(&num3, &d)
Converting Decimal to ASCII for display
Executing: dectoasc(&d, result, END, -1)
Result = 5.0

IFX_INT8TODEC Sample Program over.

The ifx_int8toflt() function
The ifx_int8toflt() function converts an int8 type number into a C float type
number.

Syntax:
mint ifx_int8toflt(int8_val, flt_val)

ifx_int8_t *int8_val;
float *flt_val;

int8_val A pointer to an int8 structure whose value ifx_int8toflt() converts
to a float type value.

flt_val A pointer to a float value where ifx_int8toflt() places the result of
the conversion.

Usage:

The ifx_int8toflt() library function converts an int8 value to a C float. The size of a
C float depends upon the hardware and operating system of the computer you are
using.

Return codes:

0 The conversion was successful.

<0 The conversion failed.

Examples:

The file int8toflt.ec in the demo directory contains the following sample program.
/*

* ifx_int8toflt.ec *

The following program converts three strings to
INT8 values and then to float values and
displays the results.

*/

#include <stdio.h>

EXEC SQL include "int8.h";

char string1[] = "-12,555.765";

Appendix B. ESQL/C function library B-99

char string2[] = "480.76";
char string3[] = "5.2";

main()
{

mint x;
float f =0.0;
ifx_int8_t num1, num2, num3;

printf("\nIFX_INT8TOFLT Sample ESQL Program running.\n\n");
if (x = ifx_int8cvasc(string1, strlen(string1), &num1))

{
printf("Error %d in converting string1 to INT8\n", x);
exit(1);
}

if (x = ifx_int8cvasc(string2, strlen(string2), &num2))
{
printf("Error %d in converting string2 to INT8\n", x);
exit(1);
}

if (x = ifx_int8cvasc(string3, strlen(string3), &num3))
{
printf("Error %d in converting string3 to INT8\n", x);
exit(1);
}

printf("\nConverting INT8 to float\n");
if (x= ifx_int8toflt(&num1, &f))

{
printf("\tError %d in converting INT8 to float\n", x);
exit(1);
}

else
{
printf("String 1= %s\n", string1);
printf("INT8 value is = %f\n", f);
}

printf("\nConverting second INT8 to float\n");
if (x= ifx_int8toflt(&num2, &f))

{
printf("\tError %d in converting INT8 to float\n", x);
exit(1);
}

else
{
printf("String2 = %s\n", string2);
printf("INT8 value is = %f\n", f);

}
printf("\nConverting third INT8 to integer\n");

/* Note that the decimal places will be truncated */

if (x= ifx_int8toflt(&num3, &f))
{
printf("\tError %d in converting INT8 to float\n", x);
exit(1);
}

else
{
printf("String3 = %s\n", string3);
printf("INT8 value is = %f\n",f);

B-100 IBM Informix ESQL/C Programmer’s Manual

}
printf("\nIFX_INT8TOFLT Sample Program over.\n\n");
exit(0);

}

Output:
IFX_INT8TOFLT Sample ESQL Program running.

Converting INT8 to float

Executing: ifx_int8toflt(&num1,&f)
String 1= -12,555.765
The value of the first float is = -12555.000000

Converting second INT8 to float

Executing: ifx_int8toflt(&num2, &f)
String2 = 480.76
The value of the second float is = 480.000000

Converting third INT8 to integer

Executing: ifx_int8toflt(&num3, &f)
String3 = 5.2
The value of the third float is = 5.000000

IFX_INT8TOFLT Sample Program over.

The ifx_int8toint() function
The ifx_int8toint() function converts an int8 type number into a C int type
number.

Syntax:
mint ifx_int8toint(int8_val, int_val)

ifx_int8_t *int8_val;
mint *int_val;

int8_val A pointer to an int8 structure whose value ifx_int8toint() converts
to an mint type value.

int_val A pointer to an mint value where ifx_int8toint() places the result
of the conversion.

Usage:

The ifx_int8toint() library function converts an int8 value to a C integer. The size
of a C integer depends upon the hardware and operating system of the computer
you are using. Therefore, the ifx_int8toint() function equates an integer value with
the SQL SMALLINT data type. The valid range of a SMALLINT is between 32767
and -32767. To convert larger int8 values to larger integers, use the ifx_int8tolong()
library function.

Return codes:

0 The conversion was successful.

Appendix B. ESQL/C function library B-101

<0 The conversion failed.

Examples:

The file int8toint.ec in the demo directory contains the following sample program.
/*

* ifx_int8toint.ec *

The following program converts three strings to INT8 types and
converts the INT8 type values to C integer type values.
Then the values are displayed.

*/

#include <stdio.h>

EXEC SQL include "int8.h";

char string1[] = "-12,555";
char string2[] = "480";
char string3[] = "5.2";

main()
{

mint x;
mint i =0;
ifx_int8_t num1, num2, num3;

printf("IFX_INT8TOINT Sample ESQL Program running.\n\n");
if (x = ifx_int8cvasc(string1, strlen(string1), &num1))

{
printf("Error %d in converting string1 to INT8\n", x);
exit(1);
}

if (x = ifx_int8cvasc(string2, strlen(string2), &num2))
{
printf("Error %d in converting string2 to INT8\n", x);
exit(1);
}

if (x = ifx_int8cvasc(string3, strlen(string3), &num3))
{
printf("Error %d in converting string3 to INT8\n", x);
exit(1);
}

printf("\nConverting INT8 to integer\n");
if (x= ifx_int8toint(&num1, &i))

{
printf("\tError %d in converting INT8 to integer\n", x);
exit(1);
}

else
{
printf("String 1= %s\n", string1);
printf("INT8 value is = %d\n", i);
}

printf("\nConverting second INT8 to integer\n");
if (x= ifx_int8toint(&num2, &i))

{
printf("\tError %d in converting INT8 to integer\n", x);
exit(1);
}

else
{

B-102 IBM Informix ESQL/C Programmer’s Manual

printf("String2 = %s\n", string2);
printf("INT8 value is = %d\n", i);
}

printf("\nConverting third INT8 to integer\n");

/* note that the decimal will be truncated */

if (x= ifx_int8toint(&num3, &i))
{
printf("\tError %d in converting INT8 to integer\n", x);
exit(1);
}

else
{
printf("String3 = %s\n", string3);
printf("INT8 value is = %d\n",i);
}

printf("\nIFX_INT8TOINT Sample Program over.\n\n");
exit(0);

}

Output:
IFX_INT8TOINT Sample ESQL Program running.

Converting INT8 to integer

Executing: ifx_int8toint(&num1,&i)
String 1= -12,555
The value of the first integer is = -12555

Converting second INT8 to integer

Executing: ifx_int8toint(&num2, &i)
String2 = 480
The value of the second integer is = 480

Converting third INT8 to integer

Executing: ifx_int8toint(&num3, &i)
String3 = 5.2
The value of the third integer is = 5

IFX_INT8TOINT Sample Program over.

The ifx_int8tolong() function
The ifx_int8tolong() function converts an int8 type number into a C long type
number.

Syntax:
mint ifx_int8tolong(int8_val, lng_val)

ifx_int8_t *int8_val;
int4 *lng_val;

int8_val A pointer to an int8 structure whose value ifx_int8tolong()
converts to an int4 integer type value.

Appendix B. ESQL/C function library B-103

lng_val A pointer to an int4 integer where ifx_int8tolong() places the result
of the conversion.

Return codes:

0 The conversion was successful.

-1200 The magnitude of the int8 type number is greater than
2,147,483,647.

Examples:

The file int8tolong.ec in the demo directory contains the following sample
program.
/*

* ifx_int8tolong.ec *

The following program converts three strings to INT8 types and
converts the INT8 type values to C long type values.
Then the values are displayed.

*/

#include <stdio.h>

EXEC SQL include "int8.h";

char string1[] = "-1,555,345,698";
char string2[] = "3,235,635";
char string3[] = "553.24";

main()
{

int x;
long l =0;
ifx_int8_t num1, num2, num3;

printf("IFX_INT8TOLONG Sample ESQL Program running.\n\n");

if (x = ifx_int8cvasc(string1, strlen(string1), &num1))
{
printf("Error %d in converting string1 to INT8\n", x);
exit(1);
}

if (x = ifx_int8cvasc(string2, strlen(string2), &num2))
{
printf("Error %d in converting string2 to INT8\n", x);
exit(1);
}

if (x = ifx_int8cvasc(string3, strlen(string3), &num3))
{
printf("Error %d in converting string3 to INT8\n", x);
exit(1);
}

printf("\nConverting INT8 to long\n");
if (x= ifx_int8tolong(&num1, &l))

{
printf("\tError %d in converting INT8 to long\n", x);
exit(1);
}

else
{
printf("String 1= %s\n", string1);

B-104 IBM Informix ESQL/C Programmer’s Manual

printf("INT8 value is = %d\n", l);
}

printf("\nConverting second INT8 to long\n");
if (x= ifx_int8tolong(&num2, &l))

{
printf("\tError %d in converting INT8 to long\n", x);
exit(1);
}

else
{
printf("String2 = %s\n", string2);

printf("INT8 value is = %d\n",l);
}

printf("\nConverting third INT8 to long\n");

/* Note that the decimal places will be truncated. */

if (x= ifx_int8tolong(&num3, &l))
{
printf("\tError %d in converting INT8 to long\n", x);
exit(1);
}

else
{
printf("String3 = %s\n", string3);
printf("INT8 value is = %d\n",l);
}

printf("\nIFX_INT8TOLONG Sample Program over.\n\n");
exit(0);

}

Output:
IFX_INT8TOLONG Sample ESQL Program running.

Converting INT8 to long

Executing: ifx_int8tolong(&num1,&l)
String 1= -1,555,345,698
The value of the first long is = -1555345698

Converting second INT8 to long

Executing: ifx_int8tolong(&num2, &l)
String2 = 3,235,635
The value of the second long is = 3235635

Converting third INT8 to long

Executing: ifx_int8tolong(&num3, &l)
String3 = 553.24
The value of the third long is = 553

IFX_INT8TOLONG Sample Program over.

Appendix B. ESQL/C function library B-105

The ifx_lo_alter() function
The ifx_lo_alter() function alters the storage characteristics of an existing smart
large object.

Syntax:
mint ifx_lo_alter(LO_ptr, LO_spec)

ifx_lo_t *LO_ptr;
ifx_lo_create_spec_t *LO_spec;

LO_ptr A pointer to an LO-pointer structure that identifies the smart large
object whose storage characteristics are altered. For more
information about LO-pointer structures, see “The LO-Pointer
Structure” on page 8-9.

LO_spec A pointer to the LO-specification structure that contains the storage
characteristics that ifx_lo_alter() saves for the smart large object
that LO_ptr indicates. For more information about the
LO-specification structure, see “The LO-specification structure” on
page 8-3.

Usage:

The ifx_lo_alter() function updates the storage characteristics of an existing smart
large object with the characteristics in the LO-specification structure to which
LO_spec points. With ifx_lo_alter(), you can change only the following storage
characteristics:
v Logging characteristics

You can set the LO_LOG or LO_NOLOG flag with the ifx_lo_specget_flags()
function.

v Last-access time characteristics
You can set the LO_KEEP_LASTACCESS_TIME or
LO_NOKEEP_LASTACCESS_TIME flag with the ifx_lo_specset_flags() function.

v Extent size
You can store a new integer value for the allocation extent size with the
ifx_lo_specset_extsz() function. The new extent size applies only to extents
written after the ifx_lo_alter() function completes.

The function obtains an exclusive lock for the entire smart large object before it
proceeds with the update. It holds this lock until the update completes.

Return codes:

0 The function was successful.

<0 The function was not successful and the return value indicates the
cause of the failure.

Related functions:

The ifx_lo_col_info() function

The ifx_lo_create() function

The ifx_lo_def_create_spec() function

The ifx_lo_specset_extsz() function

B-106 IBM Informix ESQL/C Programmer’s Manual

The ifx_lo_specset_flags() function

The ifx_lo_close() function
The ifx_lo_close() function closes an open smart large object.

Syntax:
mint ifx_lo_close(LO_fd)

mint LO_fd;

LO_fd The LO file descriptor of the smart large object to close. For more
information about an LO file descriptor, see “The LO file
descriptor” on page 8-11.

Usage:

The ifx_lo_close() function closes the smart large object that is associated with the
LO file descriptor, LO_fd. The ifx_lo_open() and ifx_lo_create() functions return an
LO file descriptor when they successfully opens a smart large object.

When the ifx_lo_close() function closes a smart large object, the database server
attempts to unlock the smart large object. In some cases, the database server does
not permit the release of the lock until the end of the transaction. (If you do not
perform updates to smart large objects inside a BEGIN WORK transaction block,
every update is a separate transaction.) This behavior might occur if the isolation
mode is repeatable read or if the lock held is an exclusive lock.

Return codes:

0 The function was successful.

<0 The function was not successful and the return value indicates the
cause of the failure.

Related functions:

The ifx_lo_create() function

The ifx_lo_open() function

Examples:

For an example of the ifx_close() function, see “The create_clob.ec program” on
page C-2.

The ifx_lo_col_info() function
The ifx_lo_col_info() function sets the fields of an LO-specification structure to the
column-level storage characteristics for a specified database column.

Syntax:
mint ifx_lo_col_info(column_name, LO_spec)

char *column_name;
ifx_lo_create_spec_t *LO_spec;

column_name A pointer to a buffer that contains the name of the database
column whose column-level storage characteristics you wish to
use.

Appendix B. ESQL/C function library B-107

LO_spec A pointer to the LO-specification structure in which to store the
column-level storage characteristics for column_name. For more
information about the LO-specification structure, see “The
LO-specification structure” on page 8-3.

Usage:

The ifx_lo_col_info() function sets the fields of the LO-specification structure to
which LO_spec points, to the storage characteristics for the column_name database
column. If this specified column does not have column-level storage characteristics
defined for it, the database server uses the storage characteristics that are inherited.
For more information about the inheritance hierarchy, see “Obtain storage
characteristics” on page 8-6.

The column_name buffer must specify the column name in the following format:
database@server_name:table.column

If the column is in a database that is ANSI compliant, you can also include the
owner_name, as follows:
database@server_name:owner.table.column

Important:: You must call the ifx_lo_def_create_spec() function before you call
ifx_lo_col_info().

Return codes:

0 The function was successful.

<0 The function was not successful and the return value indicates the
cause of the failure.

Related functions:

The ifx_lo_create() function

The ifx_lo_def_create_spec() function

Examples:

For an example of the ifx_col_info() function, see “The create_clob.ec program” on
page C-2.

The ifx_lo_copy_to_file() function
The ifx_lo_copy_to_file() function copies the contents of a smart large object into
an operating-system file.

Syntax:
mint ifx_lo_copy_to_file(LO_ptr, fname, flags, result)

ifx_lo_t *LO_ptr;
char *fname;
mint flags;
char *result;

LO_ptr A pointer to the LO-pointer structure that you provide to identify
the smart large object to copy. For more information about
LO-pointer structures, see “The LO-Pointer Structure” on page 8-9.

B-108 IBM Informix ESQL/C Programmer’s Manual

fname The full path name of the target file to hold the data.

flags An integer that specifies the location of the fname file.

result A pointer to a buffer that contains the file name that
ifx_lo_copy_to_file() generates.

Usage:

The ifx_lo_copy_to_file() function can create the target files on either the server or
the client computer. The flag values for the flags argument indicate the location of
the file to copy. Valid values include the following constants, which the locator.h
header file defines.

File-location constant Purpose

LO_CLIENT_FILE The fname file is on the client computer.

LO_SERVER_FILE The fname file is on the server computer.

By default, the ifx_lo_copy_to_file() function generates a file name of the form:
fname.hex_id

In this format, fname is the file name you specify as an argument to
ifx_lo_copy_to_file() and hex_id is the unique hexadecimal smart-large-object
identifier. The maximum number of digits for a smart-large-object identifier is 17;
however most smart large objects would have an identifier with significantly fewer
digits.

For example, suppose you specify a pathname value as ’/tmp/resume’.

If the CLOB column has an identifier of 203b2, the ifx_lo_copy_to_file() function
creates the file: /tmp/resume.203b2.

To change this default file name, you can specify the following wildcards in the file
name portion of fname:
v One or more contiguous question mark (?) characters in the file name can

generate a unique file name.
The ifx_lo_copy_to_file() function replaces each question mark with a
hexadecimal digit from the identifier of the BLOB or CLOB column. For
example, suppose you specify a pathname value as ’/tmp/resume??.txt’.
The ifx_lo_copy_to_file() function puts 2 digits of the hexadecimal identifier into
the name. If the CLOB column has an identifier of 203b2, the
ifx_lo_copy_to_file() function would create the file /tmp/resumeb2.txt.
If you specify more than 17 question marks, the ifx_lo_copy_to_file() function
ignores them.

v An exclamation point (!) at the end of the file name indicates that the file name
does not need to be unique.
For example, suppose you specify a path name value as ’/tmp/resume.txt!’.
The ifx_lo_copy_to_file() function does not use the smart-large-object identifier
in the file name so it generates the following file: /tmp/resume.txt

The exclamation point overrides the question marks in the file name
specification.

Tip: These wildcards are also valid in the fname argument of the ifx_lo_filename()
function. For more information about ifx_lo_filename(), see B-113.

Appendix B. ESQL/C function library B-109

Your application must ensure that there is sufficient space to hold the generated
file.

Return codes:

0 The function was successful.

<0 The function was not successful and the return value indicates the
cause of the failure.

Related functions:

The ifx_lo_copy_to_lo() function

The ifx_lo_filename() function

The ifx_lo_copy_to_lo() function
The ifx_lo_copy_to_lo() function copies the contents of a file into an open smart
large object.

Syntax:
mint ifx_lo_copy_to_lo(LO_fd, fname, flags)

mint LO_fd;
char *fname;
mint flags;

LO_fd The LO file descriptor for the open smart large object in which to
write the file contents. For more information about an LO file
descriptor, see “The LO file descriptor” on page 8-11.

fname The full path name of the source file that contains the data to copy.

flags An integer that specifies the location of the fname file.

Usage:

The ifx_lo_copy_to_lo() function can copy the contents of a source file on either
the server or the client computer. The flag values for the flags argument indicate
the location of the file to copy. Valid values include the following constants, which
the locator.h header file defines.

File-location constant Purpose

LO_CLIENT_FILE The fname file is on the client computer.

LO_SERVER_FILE The fname file is on the server computer.

LO_APPEND Append the data in fname to the end of the
specified smart large object. This flag can be
masked with one of the preceding flags.

Return codes:

0 The function was successful.

<0 The function was not successful and the return value indicates the
cause of the failure.

Related functions:

The ifx_lo_copy_to_file() function

B-110 IBM Informix ESQL/C Programmer’s Manual

The ifx_lo_create() function
The ifx_lo_create() function creates a new smart large object and opens it for
access within an Informix ESQL/C program.

Syntax:
mint ifx_lo_create(LO_spec, flags, LO_ptr, error)

ifx_lo_create_spec_t *LO_spec;
mint flags;
ifx_lo_t *LO_ptr;
mint *error;

LO_spec A pointer to the LO-specification structure that contains the storage
characteristics for new smart large objects. For information about
the LO-specification structure, see “The LO-specification structure”
on page 8-3.

flags An integer that specifies the mode in which to open the new smart
large object. For more information, see “Access Modes” on page
8-13.

LO_ptr A pointer to the LO-pointer structure for the new smart large
object. For more information about LO-pointer structures, see “The
LO-Pointer Structure” on page 8-9.

error A pointer to an integer that contains the error code that
ifx_lo_create() sets.

Usage:

The ifx_lo_create() function performs the following steps to create a new smart
large object:
1. It creates a new LO-pointer structure and assigns a pointer to this structure to

the LO_ptr argument.
2. It assigns the storage characteristics for the smart large object from the

LO-specification structure, LO_spec.
If the LO-specification structure does not contain storage characteristics (the
associated fields are null), ifx_lo_create() uses the storage characteristics from
the inheritance hierarchy for the new smart large object. The ifx_lo_create()
function also uses the system-specified storage characteristics if the LO_spec
pointer is null.
For more information about the inheritance hierarchy, see “Obtain storage
characteristics” on page 8-6.

3. It opens the new smart large object in the access mode that the flags argument
specifies.
The flag values for the flags argument indicate the mode of the smart large
object after ifx_lo_create() successfully completes. Valid values include all
access-mode constants, which Table 8-3 on page 8-14 shows. For more
information about access modes, see “Opening a Smart Large Object” on page
8-13.

4. It returns an LO file descriptor that identifies the open smart large object.

Important: You must call the ifx_lo_def_create_spec() function to initialize an
LO-specification structure before you call the ifx_lo_create() function.

Appendix B. ESQL/C function library B-111

IBM Informix uses the default parameters that the call to ifx_lo_create() establishes
to determine whether subsequent operations result in locking and/or logging of
the corresponding smart large object. For more information, see “Lightweight I/O”
on page 8-15

Each ifx_lo_create() call is implicitly associated with the current connection. When
this connection closes, the database server deallocates any smart large objects that
are not referenced by any columns (those with a reference count of zero).

If the ifx_lo_create() function is successful, it returns a valid LO-file descriptor
(LO_fd). You can then use the LO_fd to identify which smart large object to access
in subsequent function calls such as ifx_lo_read() and ifx_lo_write(). However, a
LO_fd is only valid within the current database connection.

Return codes:

A valid LO file descriptor The function successfully created and opened the
new smart large object.

-1 The function was not successful; examine the error
for a detailed error code.

Related functions:

The ifx_lo_close() function

The ifx_lo_col_info() function

The ifx_lo_def_create_spec() function

Examples:

For an example of the ifx_lo_create() function, see “The create_clob.ec program”
on page C-2.

The ifx_lo_def_create_spec() function
The ifx_lo_def_create_spec() function allocates and initializes an LO-specification
structure.

Syntax:
mint ifx_lo_def_create_spec(LO_spec)

ifx_lo_create_spec_t **LO_spec;

LO_spec A pointer that points to a pointer to a new LO-specification
structure that contains initialized fields. For information about the
LO-specification structure, see “The LO-specification structure” on
page 8-3.

Usage:

The ifx_lo_def_create_spec() function creates and initializes a new LO-specification
structure, ifx_lo_create_spec_t. The ifx_lo_def_create_spec() function initializes the
new ifx_lo_create_spec_t structure with the appropriate null values and places its
address in the LO_spec pointer. At the time the database server stores the large
object, the database server interprets the null values to mean that system-specified

B-112 IBM Informix ESQL/C Programmer’s Manual

defaults should be used for the storage characteristics. For more information, see
“The system-specified storage characteristics” on page 8-7.

Because the ifx_lo_def_create_spec() function allocates memory for the
ifx_lo_create_spec_t structure, you must call the ifx_lo_spec_free() function to free
that memory when you are finished using the structure.

Return codes:

0 The function was successful.

<0 The function was not successful and the return value indicates the
cause of the failure.

Related functions:

The ifx_lo_spec_free() function

The ifx_lo_col_info() function

The ifx_lo_create() function

Examples:

For an example of ifx_lo_def_create_spec(), see the “The create_clob.ec program”
on page C-2.

The ifx_lo_filename() function
The ifx_lo_filename() function returns the path name that the database server
would use if you copied a smart large object to a file.

Syntax:
mint ifx_lo_filename(LO_ptr, fname, result, result_buf_nbytes)

ifx_lo_t *LO_ptr;
char *fname;
char *result;
mint result_buf_nbytes;

LO_ptr A pointer to the LO-pointer structure that identifies the smart large
object to copy. For more information about LO-pointer structures,
see “The LO-Pointer Structure” on page 8-9

fname The full path name of the target file to hold the data.

result A pointer to a buffer that contains the file name that
ifx_lo_copy_to_file() would generate.

result_len The size, in bytes, of the result character buffer.

Usage:

The ifx_lo_filename() function generates a file name from the fname argument that
you provide. Use the ifx_lo_filename() function to determine the file name that the
ifx_lo_copy_to_file() function would create for its fname argument.

By default, the ifx_lo_copy_to_file() function generates a file name of the form:
fname.hex_id

Appendix B. ESQL/C function library B-113

However, you can specify wildcards in the fname argument that can change this
default file name. You can use these wildcards in the fname argument of
ifx_lo_filename() to see what file name these wildcards generate. For more
information about the wildcards that are valid in the fname argument, see the
description of B-108.

Return codes:

0 The function was successful.

<0 The function was not successful and the return value indicates the
cause of the failure.

Related functions:

The ifx_lo_copy_to_file() function

The ifx_lo_from_buffer() function
The ifx_lo_from_buffer() function copies a specified number of bytes from a
user-defined buffer into a smart large object.

Syntax:
mint ifx_lo_from_buffer(LO_ptr, size, buffer, error)

ifx_lo_t *LO_ptr;
mint size;
char *buffer;
mint *error;

LO_ptr The LO-pointer structure for the smart large object into which you
want to copy the data.

size A mint that identifies the number of bytes to copy to the smart
large object.

buffer A pointer to a user-defined buffer from which you want to copy
the data.

error Contains the address of the mint that holds the error code that
ifx_lo_from_buffer() sets

Usage:

The ifx_lo_from_buffer() function copies bytes, up to the size specified by size,
from the user-defined buffer into the smart large object that the LO_ptr argument
identifies. The write operation to the smart large object starts at a zero-byte offset.
To use the ifx_lo_from_buffer() function, the smart large object must already exist
in an sbspace before you copy the data.

Return codes:

0 The function was successful.

-1 The function was not successful.

B-114 IBM Informix ESQL/C Programmer’s Manual

The ifx_lo_lock() function
The ifx_lo_lock() function allows you to lock an explicit range of bytes in a smart
large object.

Syntax:
mint ifx_lo_lock(LO_fd, offset, whence, range, lockmode)

mint LO_fd;
int8 *offset;
mint whence;

int8 *range;

mint lockmode;

LO_fd The LO-file descriptor for the smart large object in which to lock
the range of bytes. For more information about an LO-file
descriptor, see “The LO file descriptor” on page 8-11

offset A pointer to the 8-byte integer (INT8) that specifies the offset
within the smart large object at which the lock begins.

whence A mint constant that specifies from what point the offset is
calculated: the beginning of the smart large object, the current
position within the smart large object, or the end of the smart large
object.

range A pointer to the 8-byte integer (INT8) that specifies the number of
bytes to lock.

lockmode The mode in which to lock the specified bytes. Set to
LO_EXCLUSIVE_MODE for an exclusive lock or to
LO_SHARED_MODE for a shared lock.

Usage:

The ifx_lo_lock() function locks the number of bytes specified by range, beginning
at the location specified by offset and whence, for the smart large object that LO_fd
specifies. The ifx_lo_lock() function places the type of lock that lockmode specifies.
If you specify ISSLOCK, ifx_lo_lock() places a shared lock on the byte range. If
you specify ISXLOCK, ifx_lo_lock() places an exclusive lock on the byte range.

Before you call ifx_lo_lock(), you must obtain a valid LO-file descriptor by calling
either ifx_lo_create() to create a new smart large object, or by calling ifx_lo_open()
to open an existing smart large object. For more information about LO_fd, see “The
LO file descriptor” on page 8-11.

The ifx_lo_lock() function uses the whence and offset arguments to determine the
seek position, as follows:
v The whence value identifies the position from which to start the seek.

Valid values include the following constants, which the locator.h header file
defines.

Whence constant Starting seek position

LO_SEEK_SET The start of the smart large object

LO_SEEK_CUR The current seek position in the smart large
object

LO_SEEK_END The end of the smart large object

Appendix B. ESQL/C function library B-115

– The offset argument identifies the offset, in
bytes, from the starting seek position (that the
whence argument specifies) at which to begin
locking bytes.

In addition to locking nbytes, you can also lock bytes from a specified offset to the
end of the large object, which you can specify as either the current end or the
maximum end of the large object. You can use two integer constants
(LO_CURRENT_END and LO_MAX_END) to denote these values. To use one of
these values, first convert it to an int8 value and then use it for the nbytes
argument.

Return codes:

0 The function was successful

< 0 The function was unsuccessful. The value returned is the sqlcode,
which is the number of the IBM Informix error message. For more
information about sqlcode, see Chapter 11, “Exception handling”

Related function:

The ifx_lo_unlock() function

The ifx_lo_open() function
The ifx_lo_open() function opens an existing smart large object for access.

Syntax:
mint ifx_lo_open(LO_ptr, flags, error)

ifx_lo_t *LO_ptr;
mint flags;
mint *error;

LO_ptr A pointer to the LO-pointer structure that identifies the smart large
object to open. For more information about LO-pointer structures,
see “The LO-Pointer Structure” on page 8-9.

flags A mint that specifies the mode in which to open the smart large
object that LO_ptr identifies. For more information, see “Access
Modes” on page 8-13.

error A pointer to a mint that contains the error code that ifx_lo_open()
sets.

Usage:

Your IBM Informix ESQL/C program must call the ifx_lo_open() function for each
instance of a smart large object that it needs to access.

The value of the flags argument indicates the mode of the smart large object after
ifx_lo_open() successfully completes. For a description of valid values for the flags
argument, see Table 8-3 on page 8-14.

IBM Informix uses the default parameters that ifx_lo_open() (or ifx_lo_create())
establishes to determine whether subsequent operations cause locking or logging to
occur for the smart large object. For more information about the settings that affect
the opening of a smart large object, see “Opening a Smart Large Object” on page
8-13.

B-116 IBM Informix ESQL/C Programmer’s Manual

Each ifx_lo_open() call is implicitly associated with the current connection. When
this connection closes, the database server deallocates any smart large objects that
are not referenced by any columns (those with a reference count of zero).

If the ifx_lo_open() function is successful, it returns a valid LO file descriptor
(LO_fd). You can then use the file descriptor to identify which smart large object to
access in subsequent function calls such as ifx_lo_read() and ifx_lo_write(). A
LO_fd is valid only within the current database connection.

Once ifx_lo_open() has opened the smart large object, it sets the seek position in
the returned LO file descriptor to byte zero (0). If the default range for locking is
set for locking the entire smart large object, the ifx_lo_open() function can also
obtain a lock on the smart large object, based on the following settings for the
access mode:
v For dirty-read mode, the database server does not place a lock on the smart

large object.
v For read-only mode, the database server obtains a shared lock on the smart large

object.
v For write-only, write-append, or read-write mode, the database server obtains an

update lock on the smart large object. When a call to the ifx_lo_write() or
ifx_lo_writewithseek() function occurs, the database server promotes the lock to
an exclusive lock.

The lock that ifx_lo_open() obtains is lost when the current transaction terminates.
The database server obtains the lock again, however, when the next function that
needs a lock executes. If this behavior is undesirable, use BEGIN WORK
transaction blocks and place a COMMIT WORK or ROLLBACK WORK statement
after the last statement that needs to use the lock.

Return codes:

-1 The function was not successful; examine the error
for a detailed error code.

A valid LO file descriptor The function has successfully opened the smart
large object and returned a valid LO file descriptor.

Related functions:

The ifx_lo_close() function

The ifx_lo_create() function

The ifx_lo_read() function

The ifx_lo_write() function

Example:

For an example of the ifx_lo_open() function, see “The create_clob.ec program” on
page C-2.

Appendix B. ESQL/C function library B-117

The ifx_lo_read() function
The ifx_lo_read() function reads a specified number of bytes of data from an open
smart large object.

Syntax:
mint ifx_lo_read(LO_fd, buf, nbytes, error)

mint LO_fd;
char *buf;
mint nbytes;
mint *error;

LO_fd The LO file descriptor for the smart large object from which to
read. For more information about an LO file descriptor, see “The
LO file descriptor” on page 8-11.

buf A pointer to a character buffer that contains the data that
ifx_lo_read() reads from the smart large object.

nbytes The size, in bytes, of the buf character buffer. This value cannot
exceed 2 GB.

error A pointer to a mint that contains the error code that ifx_lo_read()
sets.

Usage:

The ifx_lo_read() function reads nbytes of data from the open smart large object
that the LO_fd file descriptor identifies. The read begins at the current seek
position for LO_fd. You can use the ifx_lo_tell() function to obtain the current seek
position.

The function reads this data into the user-defined buffer to which buf points. The
buf buffer must be less than 2 GB in size. To read smart large objects that are larger
than 2 GB, read them in 2-GB chunks.

Return codes:

>=0 The number of bytes that the function has read from the smart
large object into the buf character buffer.

-1 The function was not successful; examine the error for a detailed
error code.

Related functions:

The ifx_lo_open() function

The ifx_lo_readwithseek() function

The ifx_lo_seek() function

The ifx_lo_tell() function

The ifx_lo_write() function

Example:

B-118 IBM Informix ESQL/C Programmer’s Manual

For an example of the ifx_lo_read() function, see “The upd_lo_descr.ec program”
on page C-8.

The ifx_lo_readwithseek() function
The ifx_lo_readwithseek() function performs a seek operation and then reads a
specified number of bytes of data from an open smart large object.

Syntax:
mint ifx_lo_readwithseek(LO_fd, buf, nbytes, offset, whence, error)

char *buf;
mint nbytes;
ifx_int8_t *offset;
mint whence;
mint *error;

LO_fd The LO file descriptor for the smart large object from which to
read. For more information about an LO file descriptor, see “The
LO file descriptor” on page 8-11.

buf A pointer to a character buffer that contains the data that
ifx_lo_readwithseek() reads from the smart large object.

nbytes The size, in bytes, of the buf character buffer. This value cannot
exceed 2 gigabytes.

offset A pointer to the 8-byte integer (INT8) offset from the starting seek
position.

whence A mint value that identifies the starting seek position.

error A pointer to a mint that contains the error code that
ifx_lo_readwithseek() sets.

Usage:

The ifx_lo_readwithseek() function reads nbytes of data from the open smart large
object that the LO_fd file descriptor identifies.

The read begins at the seek position of LO_fd that the offset and whence arguments
indicate, as follows:
v The whence argument identifies the position from which to start the seek.

Valid values include the following constants, which the locator.h header file
defines.

Whence constant Starting seek position

LO_SEEK_SET The start of the smart large object

LO_SEEK_CUR The current seek position in the smart large
object

LO_SEEK_END The end of the smart large object
– The offset argument identifies the offset, in

bytes, from the starting seek position (that the
whence argument specifies) to which the seek
position should be set.
For more information about how to access
eight-bit (INT8) integers, see “The int8 Data
Type” on page 5-2.

Appendix B. ESQL/C function library B-119

The function reads this data into the user-defined buffer to which buf points. The
size of the buf buffer must be less than 2 GB. To read smart large objects that are
larger than 2 GB, read them in 2-GB chunks.

Return codes:

>=0 The number of bytes that the function has read from the smart
large object into the buf character buffer.

-1 The function was not successful; examine the error for a detailed
error code.

Related functions:

The ifx_lo_open() function

The ifx_lo_read() function

The ifx_lo_seek() function

The ifx_lo_write() function

Example:

For an example of the ifx_lo_readwithseek() function, see “The create_clob.ec
program” on page C-2.

The ifx_lo_release() function
The ifx_lo_release() function tells the database server to release the resources
associated with a temporary smart large object.

Syntax:
mint ifx_lo_release(LO_ptr)

ifx_lo_t *LO_ptr;

LO_ptr The LO-pointer structure for the smart large object for which you
want to release resources.

Usage:

The ifx_lo_release() function is useful for telling the database server when it is safe
to release resources associated with temporary smart large objects. A temporary
smart large object is one that has one or more LO handles, none of which have
been inserted into a table. Temporary smart large objects can occur in the following
ways:
v You create a smart large object with ifx_lo_create() but do not insert its LO

handle into a column of the database.
v You invoke a user-defined routine that creates a smart large object in a query

but never assigns its LO handle to a column of the database.

For example, the following query creates one smart large object for each row in the
table1 table and sends each one to the client application:
SELECT filetoblob(...) FROM table1;

The client application can use the ifx_lo_release() function to indicate to the
database server when it finishes processing each of these smart large objects. Once

B-120 IBM Informix ESQL/C Programmer’s Manual

you call this function on a temporary smart large object, the database server can
release the resources at any time. Further use of the LO handle and any associated
LO file descriptors is not guaranteed to work.

Use of this function on smart large objects that are not temporary does not cause
any incorrect behavior. However, the call is expensive and is not needed for
permanent smart large objects.

Return codes:

0 The function was successful.

< 0 The function was not successful.

The ifx_lo_seek() function
The ifx_lo_seek() function sets the file position for the next read or write operation
on the open smart large object.

Syntax:
mint ifx_lo_seek(LO_fd, offset, whence, seek_pos)

mint LO_fd;
ifx_int8_t *offset;
mint whence;
ifx_int8_t *seek_pos;

LO_fd The LO file descriptor for the smart large object whose seek
position you wish to change. For more information about an LO
file descriptor, see “The LO file descriptor” on page 8-11.

offset A pointer to the 8-byte integer offset from the starting seek
position.

whence A mint value that identifies the starting seek position.

seek_pos A pointer to the resultant 8-byte integer offset, relative to the start
of the file, that corresponds to the position for the next read/write
operation.

Usage:

The function uses the whence and offset arguments to determine the seek position,
as follows:
v The whence value identifies the position from which to start the seek.

Valid values include the following constants, which the locator.h header file
defines.

Whence constant Starting seek position

LO_SEEK_SET The start of the smart large object

LO_SEEK_CUR The current seek position in the smart large
object

LO_SEEK_END The end of the smart large object
– The offset argument identifies the offset, in

bytes, from the starting seek position (that the
whence argument specifies) at which to begin
the seek position.

Appendix B. ESQL/C function library B-121

The ifx_lo_tell() function returns the current seek position for an open smart large
object.

Return codes:

0 The function was successful.

<0 The function was not successful and the return value indicates the
cause of the failure.

Related functions:

The ifx_lo_read() function

The ifx_lo_tell() function

The ifx_lo_write() function

Example:

For an example of the ifx_lo_seek() function, see “The ifx_lo_read() function” on
page B-118.

The ifx_lo_spec_free() function
The ifx_lo_spec_free() function frees the resources of an LO-specification structure.

Syntax:
mint ifx_lo_spec_free(LO_spec)

ifx_lo_create_spec_t *LO_spec;

LO_spec A pointer to the LO-specification structure to free. For information
about the LO-specification structure, see “The LO-specification
structure” on page 8-3.

Usage:

The ifx_lo_spec_free() function frees a LO-specification structure that was allocated
by a call to ifx_lo_def_create_spec(). The LO_spec pointer points to the
ifx_lo_create_spec_t structure which is to be freed.

IBM Informix ESQL/C does not perform memory management for a
LO-specification structure. You must call ifx_lo_spec_free() for each
LO-specification structure that you allocate with a call to the
ifx_lo_def_create_spec() function.

Restriction: Do not use ifx_lo_spec_free() to free an ifx_lo_create_spec_t structure
that you accessed through a call to the ifx_lo_stat_cspec() function.
When you call ifx_lo_stat_free() to free the ifx_lo_stat_t structure, it
also automatically frees the ifx_lo_create_spec_t structure. Use
ifx_lo_spec_free() only to free an ifx_lo_create_spec_t structure that
you created through a call to ifx_lo_def_create_spec().

Return codes:

0 The function was successful.

B-122 IBM Informix ESQL/C Programmer’s Manual

<0 The function was not successful and the return value indicates the
cause of the failure.

Related function:

The ifx_lo_def_create_spec() function

Example:

For an example of the use of the ifx_lo_spec_free() function, see the “The
create_clob.ec program” on page C-2.

The ifx_lo_specget_def_open_flags() function
The ifx_lo_specget_def_open_flags() function obtains the default open flags of a
smart large object from an LO-specification structure.

Syntax:
mint ifx_lo_specget_def_open_flags(LO_spec)

ifx_lo_create_spec_t *LO_spec;

LO_spec A pointer to the LO-specification structure from which to obtain
the default open flags.

Usage:

This function can be used to obtain the default open flags from a LO-specification
structure. It can be used in conjunction with ifx_lo_stat_cspec() to obtain the
default open flags that were specified when an existing smart large object was
created.

Return codes:

>=0 The function was successful. The returned integer stores the values
of the default open flags.

-1 The function was unsuccessful

Example:

For an example of the ifx_lo_specget_def_open_flags() function, see “The
get_lo_info.ec program” on page C-5.

The ifx_lo_specget_estbytes() function
The ifx_lo_specget_estbytes() function obtains from an LO-specification structure
the estimated size of a smart large object.

Syntax:
mint ifx_lo_specget_estbytes(LO_spec, estbytes)

ifx_lo_create_spec_t *LO_spec;
ifx_int8_t *estbytes;

LO_spec A pointer to the LO-specification structure from which to obtain
the estimated size. For information about the LO-specification
structure, see “The LO-specification structure” on page 8-3.

Appendix B. ESQL/C function library B-123

estbytes A pointer to an ifx_int8_t structure into which
ifx_lo_specget_estbytes() puts the estimated number of bytes for
the smart large object.

Usage:

The estbytes value is the estimated final size, in bytes, of the smart large object.
This estimate is an optimization hint for the smart-large-object optimizer. For more
information about the estimated size, see Table 8-1 on page 8-4.

Important: You must call the ifx_lo_def_create_spec() function to initialize an
LO-specification structure before you call ifx_lo_specget_estbytes().
You can use the ifx_lo_col_info() function to store storage
characteristics that are associated with a particular column in an
LO-specification structure.

Return codes:

0 The function was successful.

-1 The function was not successful.

Related functions:

The ifx_lo_def_create_spec() function

The ifx_lo_spec_free() function

The ifx_lo_specset_extsz() function

The ifx_lo_specset_flags() function

The ifx_lo_specget_maxbytes() function

The ifx_lo_specget_sbspace() function

The ifx_lo_specget_estbytes() function

Example:

For an example of the ifx_lo_specget_estbytes() function, see “The get_lo_info.ec
program” on page C-5.

The ifx_lo_specget_extsz() function
The ifx_lo_specget_extsz() function obtains from an LO-specification structure the
allocation extent size of a smart large object.

Syntax:
mint ifx_lo_specget_extsz(LO_spec)

ifx_lo_create_spec_t *LO_spec;

LO_spec A pointer to the LO-specification structure from which to obtain
the extent size. For information about the LO-specification
structure, see “The LO-specification structure” on page 8-3.

Usage:

B-124 IBM Informix ESQL/C Programmer’s Manual

The extsz value specifies the size, in bytes, of the allocation extents to be allocated
for the smart large object when the database server writes beyond the end of the
current extent. This value overrides the estimate that IBM Informix generates for
how large an extent should be. For more information about the allocation extent,
see Table 8-1 on page 8-4.

Important: You must call the ifx_lo_def_create_spec() function to initialize an
LO-specification structure before you call ifx_lo_specget_extsz(). You
can use the ifx_lo_col_info() function to store storage characteristics
that are associated with a particular column in an LO-specification
structure.

Return codes:

>=0 The function was successful and the return value indicates the
extent size.

-1 The function was not successful.

Related functions:

The ifx_lo_def_create_spec() function

The ifx_lo_spec_free() function

The ifx_lo_specset_estbytes() function

The ifx_lo_specget_flags() function

The ifx_lo_specget_maxbytes() function

The ifx_lo_specget_sbspace() function

The ifx_lo_specset_extsz() function

Example:

For an example of the ifx_lo_specget_extsz() function, see “The get_lo_info.ec
program” on page C-5.

The ifx_lo_specget_flags() function
The ifx_lo_specget_flags() function obtains from an LO-specification structure the
create-time flags of a smart large object.

Syntax:
mint ifx_lo_specget_flags(LO_spec)

ifx_lo_create_spec_t *LO_spec;

LO_spec A pointer to the LO-specification structure from which to obtain
the flag value. For information about the LO-specification structure,
see “The LO-specification structure” on page 8-3.

Usage:

The create-time flags provide the following information about a smart large object:
v Whether to use logging on the smart large object

Appendix B. ESQL/C function library B-125

v Whether to store the time of last access for the smart large object

These two indicators are masked together into the single flags value. For more
information about the create-time flags, see Table 8-2 on page 8-5.

Important: You must call the ifx_lo_def_create_spec() function to initialize an
LO-specification structure before you call ifx_lo_specget_flags(). You
can use the ifx_lo_col_info() function to store storage characteristics
that are associated with a particular column in an LO-specification
structure.

Return codes:

>=0 The function was successful and the return value is the value of
the create-time flags.

-1 The function was not successful.

Related functions:

The ifx_lo_def_create_spec() function

The ifx_lo_spec_free() function

The ifx_lo_specget_estbytes() function

The ifx_lo_specget_extsz() function

The ifx_lo_specget_maxbytes() function

The ifx_lo_specget_sbspace() function

The ifx_lo_specset_flags() function

Example:

For an example of the ifx_lo_specget_flags() function, see “The get_lo_info.ec
program” on page C-5.

The ifx_lo_specget_maxbytes() function
The ifx_lo_specget_maxbytes() function obtains from an LO-specification structure
the maximum size of a smart large object.

Syntax:
mint ifx_lo_specget_maxbytes(LO_spec, maxbytes)

ifx_lo_create_spec_t *LO_spec;
ifx_int8_t *maxbytes;

LO_spec A pointer to the LO-specification structure from which to obtain
the maximum size. For information about the LO-specification
structure, see “The LO-specification structure” on page 8-3

maxbytes A pointer to an int8 value into which ifx_lo_specget_maxbytes()
puts the maximum size, in bytes, of the smart large object. If this
value is -1, the smart large object has no size limit.

Usage:

B-126 IBM Informix ESQL/C Programmer’s Manual

IBM Informix does not allow the size of a smart large object to exceed the maxbytes
value. For more information about the maximum size, see Table 8-1 on page 8-4.

Important: You must call the ifx_lo_def_create_spec() function to initialize an
LO-specification structure before you call ifx_lo_specget_maxbytes().
You can use the ifx_lo_col_info() function to store storage
characteristics that are associated with a particular column in an
LO-specification structure.

Return codes:

0 The function was successful.

-1 The function was not successful.

Related functions:

The ifx_lo_def_create_spec() function

The ifx_lo_spec_free() function

The ifx_lo_specget_estbytes() function

The ifx_lo_specget_extsz() function

The ifx_lo_specget_flags() function

The ifx_lo_specget_sbspace() function

The ifx_lo_specset_maxbytes() function

Example:

For an example of the ifx_lo_specget_maxbytes() function, see “The get_lo_info.ec
program” on page C-5.

The ifx_lo_specget_sbspace() function
The ifx_lo_specget_sbspace() function obtains from an LO-specification structure
the name of an sbspace where a smart large object is stored.

Syntax:
mint ifx_lo_specget_sbspace(LO_spec, sbspace_name, length)

ifx_lo_create_spec_t *LO_spec;
char *sbspace_name;
mint length;

LO_spec A pointer to the LO-specification structure from which to obtain
the sbspace name. For information about the LO-specification
structure, see “The LO-specification structure” on page 8-3.

sbspace_name A character buffer into which ifx_lo_specget_sbspace() puts the
name of the sbspace for the smart large object.

length A mint value that specifies the size, in bytes, of the sbspace_name
buffer.

Usage:

Appendix B. ESQL/C function library B-127

The ifx_lo_specget_sbspace() function returns the current setting for the name of
the sbspace in which to store the smart large object. The function copies up to
(length-1) bytes into the sbspace_name buffer and ensures that it is null terminated.
For more information about an sbspace name, see Table 8-1 on page 8-4.

Important: You must call the ifx_lo_def_create_spec() function to initialize an
LO-specification structure before you call ifx_lo_specget_sbspaces().
You can use the ifx_lo_col_info() function to store storage
characteristics that are associated with a particular column in an
LO-specification structure.

An sbspace name can be up to 18 characters long. However, you might want to
allocate at least 129 bytes for the sbspace_name buffer to accommodate future
increases in the length of an sbspace name.

Return codes:

0 The function was successful.

-1 The function was not successful.

Related functions:

The ifx_lo_def_create_spec() function

The ifx_lo_spec_free() function

The ifx_lo_specget_estbytes() function

The ifx_lo_specget_extsz() function

The ifx_lo_specget_flags() function

The ifx_lo_specget_maxbytes() function

The ifx_lo_specset_sbspace() function

Example:

For an example of the ifx_lo_specget_sbspace() function, see “The get_lo_info.ec
program” on page C-5.

The ifx_lo_specset_def_open_flags() function
The ifx_lo_specset_def_open_flags() function sets the default open flags for a
smart large object.

Syntax:
mint ifx_lo_specset_def_open_flags(LO_spec, flags)

ifx_lo_create_spec_t *LO_spec;

mint flags;

LO_spec A pointer to the LO-specification structure in which the default
open flags are to be set.

flags A mint value for the default open flags of the smart large object.

B-128 IBM Informix ESQL/C Programmer’s Manual

Usage:

The most common use of this function is to specify that the smart large object
always is to be opened using unbuffered I/O. This function can also be used to
supply any required default open flags for a smart large object. The supplied flags
are used whenever the smart large object is subsequently opened, unless explicitly
overridden at open time.

Return codes:

0 The function was successful

-1 The function was unsuccessful

Example:
/* use unbuffered I/O on all opens for this LO */

ret = ifx_lo_specset_def_open_flags(lospec, LO_NOBUFFER);

The ifx_lo_specset_estbytes() function
The ifx_lo_specset_estbytes() function sets the estimated size of a smart large
object.

Syntax:
mint ifx_lo_specset_estbytes(LO_spec, estbytes)

ifx_lo_create_spec_t *LO_spec;
ifx_int8_t *estbytes;

LO_spec A pointer to the LO-specification structure in which to save the
estimated size. For information about the LO-specification
structure, see “The LO-specification structure” on page 8-3

estbytes A pointer to an ifx_int8_t structure that contains the estimated
number of bytes for the smart large object.

Usage:

The estbytes value is the estimated final size, in bytes, of the smart large object.
This estimate is an optimization hint for the smart-large-object optimizer. For more
information about the estimated byte size, see Table 8-1 on page 8-4.

If you do not specify an estbytes value when you create a new smart large object,
IBM Informix obtains the value from the inheritance hierarchy of storage
characteristics. For more information about the inheritance hierarchy, see “Obtain
storage characteristics” on page 8-6.

Do not change this system value unless you know the estimated size for the smart
large object. If you do set the estimated size for a smart large object, do not specify
a value much higher than the final size of the smart large object. Otherwise, the
database server might allocate unused storage.

Return codes:

0 The function was successful.

-1 The function was not successful.

Related functions:

Appendix B. ESQL/C function library B-129

The ifx_lo_def_create_spec() function

The ifx_lo_specget_estbytes() function

The ifx_lo_specset_extsz() function

The ifx_lo_specset_flags() function

The ifx_lo_specset_maxbytes() function

The ifx_lo_specset_sbspace() function

The ifx_lo_spec_free() function

Example:

For an example of the ifx_lo_specset_estbytes() function, see “The create_clob.ec
program” on page C-2.

The ifx_lo_specset_extsz() function
The ifx_lo_specset_extsz() function sets the allocation extent size for a smart large
object.

Syntax:
mint ifx_lo_specset_extsz(LO_spec, extsz)

ifx_lo_create_spec_t *LO_spec;
mint extsz;

LO_spec A pointer to the LO-specification structure in which to save the
extent size. For information about the LO-specification structure,
see “The LO-specification structure” on page 8-3.

extsz An integer value for the size of the allocation extent of a smart
large object.

Usage:

The extsz value specifies the size of the allocation extents to be allocated for the
smart large object when the database server writes beyond the end of the current
extent. This value overrides the estimate that IBM Informix generates for how large
an extent should be. For more information about the allocation extent, see Table 8-1
on page 8-4.

If you do not specify an extsz value when you create a new smart large object, IBM
Informix attempts to optimize the extent size based on past operations on the
smart large object and other storage characteristics (such as maximum bytes) that it
obtains from the inheritance hierarchy of storage characteristics. For more
information about the inheritance hierarchy, see “Obtain storage characteristics” on
page 8-6.

Do not change this system value unless you know the allocation extent size for the
smart large object. Only applications that encounter severe storage fragmentation
should ever set the allocation extent size. For such applications, make sure you
know exactly the number of bytes by which to extend the smart large object.

Return codes:

B-130 IBM Informix ESQL/C Programmer’s Manual

0 The function was successful.

-1 The function was not successful.

The ifx_lo_specset_flags() function
The ifx_lo_specset_flags() function sets the create-time flags of a smart large
object.

Syntax:
mint ifx_lo_specset_flags(LO_spec, flags)

ifx_lo_create_spec_t *LO_spec;
mint flags;

LO_spec A pointer to the LO-specification structure in which to save the
flags value. For information about the LO-specification structure,
see “The LO-specification structure” on page 8-3

flags An integer value for the create-time flags of the smart large object.

Usage:

The create-time flags provide the following information about a smart large object:
v Whether to use logging on the smart large object
v Whether to store the time of last access for the smart large object

These two indicators are masked together into the single flags value. For more
information about the create-time flags, see Table 8-2 on page 8-5.

If you do not specify a flags value when you create a new smart large object, IBM
Informix obtains the value from the inheritance hierarchy of storage characteristics.
For more information about the inheritance hierarchy, see “Obtain storage
characteristics” on page 8-6.

Return codes:

0 The function was successful.

-1 The function was not successful.

Related functions:

The ifx_lo_def_create_spec() function

The ifx_lo_spec_free() function

The ifx_lo_specget_flags() function

The ifx_lo_specset_extsz() function

The ifx_lo_specset_flags() function

The ifx_lo_specset_maxbytes() function

The ifx_lo_specset_sbspace() function

Example:

Appendix B. ESQL/C function library B-131

For an example of the ifx_lo_specset_flags() function, see “The create_clob.ec
program” on page C-2.

The ifx_lo_specset_maxbytes() function
The ifx_lo_specset_maxbytes() function sets the maximum size for a smart large
object.

Syntax:
mint ifx_lo_specset_maxbytes(LO_spec, maxbytes)

ifx_lo_create_spec_t *LO_spec;
ifx_int8_t *maxbytes;

LO_spec A pointer to the LO-specification structure in which to save the
maximum size. For information about the LO-specification
structure, see “The LO-specification structure” on page 8-3.

maxbytes A pointer to an ifx_int8_t structure that contains the maximum
number of bytes for the smart large object. If this value is -1, the
smart large object has no size limit.

Usage:

IBM Informix does not allow the size of a smart large object to exceed the maxbytes
value. The database server does not obtain the value from the inheritance
hierarchy of storage characteristics. For more information about the maximum size,
see Table 8-1 on page 8-4.

Return codes:

0 The function was successful.

-1 The function was not successful.

Related functions:

The ifx_lo_def_create_spec() function

The ifx_lo_specget_maxbytes() function

The ifx_lo_specset_estbytes() function

The ifx_lo_specset_extsz() function

The ifx_lo_specset_flags() function

The ifx_lo_specset_sbspace() function

The ifx_lo_spec_free() function

The ifx_lo_specset_sbspace() function
The ifx_lo_specset_sbspace() function sets the name of the sbspace for a smart
large object.

Syntax:

B-132 IBM Informix ESQL/C Programmer’s Manual

mint ifx_lo_specset_sbspace(LO_spec, sbspace_name)
ifx_lo_create_spec_t *LO_spec;
char *sbspace_name;

sbspace_name A pointer to a buffer that contains the name of the sbspace in
which to store the smart large object.

LO_spec A pointer to the LO-specification structure in which to save the
sbspace name. For information about the LO-specification
structure, see “The LO-specification structure” on page 8-3.

Usage:

The name of the sbspace can be at most 18 characters long. It must also be null
terminated.

If you do not specify an sbspace_name when you create a new smart large object,
IBM Informix obtains the sbspace name from either the column information or
from the SBSPACENAME parameter of the ONCONFIG file. For more information,
see “Obtain storage characteristics” on page 8-6.

Return codes:

0 The function was successful.

-1 The function was not successful.

Related functions:

The ifx_lo_def_create_spec() function

The ifx_lo_specget_sbspace() function

The ifx_lo_specset_estbytes() function

The ifx_lo_specset_extsz() function

The ifx_lo_specset_flags() function

The ifx_lo_specset_maxbytes() function

The ifx_lo_spec_free() function

The ifx_lo_stat() function
The ifx_lo_stat() function returns information about the current status of an open
smart large object.

Syntax:
mint ifx_lo_stat(LO_fd, LO_stat)

mint LO_fd;
ifx_lo_stat_t **LO_stat;

LO_fd The LO-file descriptor for the open smart large object whose status
information you wish to obtain. For more information about an
LO-file descriptor, see “The LO file descriptor” on page 8-11.

LO_stat A pointer that points to a pointer to an LO-status structure that
ifx_lo_stat() allocates and fills in with status information. For more

Appendix B. ESQL/C function library B-133

information about the LO-status structure, see “Allocating and
Accessing an LO-Status Structure” on page 8-18.

Usage:

The ifx_lo_stat() function allocates an LO-status structure, ifx_lo_stat_t, and
initializes it with the status information for the smart large object that the LO_fd
file descriptor identifies. To access the status information, use the IBM Informix
ESQL/C accessor functions for the LO-status structure. For more information about
the status information and the corresponding accessor functions, see Table 8-4 on
page 8-19.

Use the ifx_lo_stat_free() function to deallocate an LO-status structure.

Return codes:

0 The function was successful.

<0 The function was not successful and the return value indicates the
cause of the failure.

Related functions:

The ifx_lo_create() function

The ifx_lo_open() function

The ifx_lo_stat_atime() function

The ifx_lo_stat_cspec() function

The ifx_lo_stat_ctime() function

The ifx_lo_stat_free() function

The ifx_lo_stat_mtime_sec() function

The ifx_lo_stat_size() function

Example:

For an example of the ifx_lo_stat() function, see “The get_lo_info.ec program” on
page C-5.

The ifx_lo_stat_atime() function
The ifx_lo_stat_atime() function returns the time of last access for a smart large
object.

Syntax:
mint ifx_lo_stat_atime(LO_stat)

ifx_lo_stat_t *LO_stat;

LO_stat A pointer to an LO-status structure that ifx_lo_stat() allocates and
fills in with status information. For more information about the
LO-status structure, see “Allocating and Accessing an LO-Status
Structure” on page 8-18.

B-134 IBM Informix ESQL/C Programmer’s Manual

Usage:

The time of last access is only guaranteed to be maintained if the smart large object
has the LO_KEEP_LASTACCESS_TIME flag set. If you do not set this flag, the
database server does not write this access-time value to disk. The resolution of the
time that the ifx_lo_stat_atime() function returns is seconds.

The status information for the smart large object is in the LO-status structure to
which LO_stat points. The ifx_lo_stat() function allocates this structure and fills it
with the status information for a particular smart large object. Therefore, you must
precede a call to ifx_lo_stat_atime() with a call to ifx_lo_stat().

Return codes:

>=0 The last-access time for the smart large object that LO_stat
identifies.

-1 The function was not successful.

Related functions:

The ifx_lo_stat() function

The ifx_lo_stat_cspec() function

The ifx_lo_stat_ctime() function

The ifx_lo_stat_free() function

The ifx_lo_stat_mtime_sec() function

Example:

For an example of the ifx_lo_stat_atime() function, see “The get_lo_info.ec
program” on page C-5

The ifx_lo_stat_cspec() function
The ifx_lo_stat_cspec() function returns the LO-specification structure for a smart
large object.

Syntax:
ifx_lo_create_spec_t *ifx_lo_stat_cspec(LO_stat)

ifx_lo_stat_t *LO_stat;

LO_stat A pointer to an LO-status structure that ifx_lo_stat() allocates and
fills in with status information. For more information about the
LO-status structure, see “Allocating and Accessing an LO-Status
Structure” on page 8-18.

Usage:

The ifx_lo_stat_cspec() function returns a pointer to an LO-specification structure,
ifx_lo_create_spec_t, which contains the storage characteristics for the specified
smart large object. You can use this LO-specification structure to create another
smart large object with the same storage characteristics or to access the storage
characteristics through the accessor (ifx_specget_) functions.

Appendix B. ESQL/C function library B-135

You must precede a call to ifx_lo_stat_cspec() with a call to ifx_lo_stat(). The
ifx_lo_stat() function allocates the memory for the ifx_lo_create_spec_t structure,
along with the ifx_lo_stat_t structure, and initializes it with the status information
for the smart large object that you specified. When you call the ifx_lo_stat_free()
function to free the ifx_lo_stat_t structure, it frees the ifx_lo_create_spec_t
structure automatically.

Return codes:

A valid pointer to an LO-specification (ifx_lo_create_spec_t) structure
The function was successful.

NULL The function was not successful.

Related functions:

The ifx_lo_stat() function

The ifx_lo_stat_atime() function

The ifx_lo_stat_ctime() function

The ifx_lo_stat_free() function

The ifx_lo_stat_mtime_sec() function

Example:

For an example of the ifx_lo_stat_cspec() function, see “The get_lo_info.ec
program” on page C-5.

The ifx_lo_stat_ctime() function
The ifx_lo_stat_ctime() function returns the time of last change in status for a
smart large object.

Syntax:
mint ifx_lo_stat_ctime(LO_stat)

ifx_lo_stat_t *LO_stat;

LO_stat A pointer to an LO-status structure that ifx_lo_stat() allocates and
fills in with status information. For more information about the
LO-status structure, see “Allocating and Accessing an LO-Status
Structure” on page 8-18.

Usage:

The last change in status includes modification of storage characteristics, including
a change in the number of references and writes to the smart large object. The
resolution of the time that the ifx_lo_stat_ctime() function returns is seconds.

The status information for the smart large object is in the LO-status structure to
which LO_stat points. The ifx_lo_stat() function allocates this structure and fills it
with the status information for a particular smart large object. Therefore, you must
precede a call to ifx_lo_stat_ctime() with a call to ifx_lo_stat().

Return codes:

B-136 IBM Informix ESQL/C Programmer’s Manual

>=0 The last-change time for the smart large object that LO_stat
identifies.

-1 The function was not successful.

Related functions:

The ifx_lo_stat() function

The ifx_lo_stat_atime() function

The ifx_lo_stat_cspec() function

The ifx_lo_stat_free() function

The ifx_lo_stat_mtime_sec() function

Example:

For an example of the ifx_lo_stat_ctime() function, see “The get_lo_info.ec
program” on page C-5.

The ifx_lo_stat_free() function
The ifx_lo_stat_free() function frees an LO-status structure.

Syntax:
mint ifx_lo_stat_free(LO_stat)

ifx_lo_stat_t *LO_stat;

LO_stat A pointer to an LO-status structure that the ifx_lo_stat() function
has allocated. For more information about the LO-status structure,
see “Allocating and Accessing an LO-Status Structure” on page
8-18.

Usage:

The ifx_lo_stat() function returns status information about an open smart large
object in an LO-status structure. When your application no longer needs this status
information, use the ifx_lo_stat_free() function to deallocate the LO-status
structure.

Return codes:

0 The function was successful.

-1 The function was not successful.

Related function:

The ifx_lo_stat() function

Example:

For an example of the ifx_lo_stat_free() function, see “The get_lo_info.ec program”
on page C-5.

Appendix B. ESQL/C function library B-137

The ifx_lo_stat_mtime_sec() function
The ifx_lo_stat_mtime_sec() function returns the time of last modification for a
smart large object.

Syntax:
mint ifx_lo_stat_mtime_sec(LO_stat)

ifx_lo_stat_t *LO_stat;

LO_stat A pointer to an LO-status structure that ifx_lo_stat() allocates and
fills in with status information. For more information about the
LO-status structure, see “Allocating and Accessing an LO-Status
Structure” on page 8-18.

Usage:

The resolution of the time that the ifx_lo_stat_mtime_sec() function returns is
seconds.

The status information for the smart large object is in the LO-status structure to
which LO_stat points. The ifx_lo_stat() function allocates this structure and fills it
with the status information for a particular smart large object. Therefore, you must
precede a call to ifx_lo_stat_mtime_sec() with a call to ifx_lo_stat().

Return codes:

>=0 The last-modification time for the smart large object that LO_stat
identifies.

-1 The function was not successful.

Related functions:

The ifx_lo_stat() function

The ifx_lo_stat_atime() function

The ifx_lo_stat_cspec() function

The ifx_lo_stat_ctime() function

The ifx_lo_stat_free() function

Example:

For an example of the ifx_lo_stat_mtime_sec() function, see “The get_lo_info.ec
program” on page C-5.

The ifx_lo_stat_refcnt() function
The ifx_lo_stat_refcnt() function returns the number of references to a smart large
object.

Syntax:
mint ifx_lo_stat_refcnt(LO_stat)

ifx_lo_stat_t *LO_stat;

LO_stat A pointer to an LO-status structure that ifx_lo_stat() allocates and

B-138 IBM Informix ESQL/C Programmer’s Manual

fills in with status information. For more information about the
LO-status structure, see “Allocating and Accessing an LO-Status
Structure” on page 8-18.

Usage:

The refcnt argument is the reference count for a smart large object. This count
indicates the number of persistently stored LO-pointer (ifx_lo_t) structures that
currently exist for the smart large object. The database server assumes that it can
safely remove the smart large object and reuse any resources that are allocated to it
when the reference count is zero (0) and any of the following conditions exist:
v The transaction in which the reference count is decremented commits.
v The connection terminates and the smart large object is created during this

connection but its reference count is not incremented.
The database server increments a reference counter when it stores the
LO-pointer structure for a smart large object in a row.

The status information for the smart large object is in the LO-status structure to
which LO_stat points. The ifx_lo_stat() function allocates this structure and fills it
with the status information for a particular smart large object. Therefore, you must
precede a call to ifx_lo_stat_refcnt() with a call to ifx_lo_stat().

Return codes:

>=0 The reference count for the smart large object that LO_stat
identifies.

-1 The function was not successful.

Related functions:

The ifx_lo_stat() function

The ifx_lo_stat_atime() function

The ifx_lo_stat_cspec() function

The ifx_lo_stat_ctime() function

The ifx_lo_stat_free() function

The ifx_lo_stat_mtime_sec() function

Example:

For an example of the ifx_lo_stat_refcnt() function, see “The get_lo_info.ec
program” on page C-5.

The ifx_lo_stat_size() function
The ifx_lo_stat_size() function returns the size, in bytes, of a smart large object.

Syntax:
mint ifx_lo_stat_size(LO_stat, size)

ifx_lo_stat_t *LO_stat;
ifx_int8_t *size;

Appendix B. ESQL/C function library B-139

LO_stat A pointer to an LO-status structure that ifx_lo_stat() allocates and
fills in with status information. For more information about the
LO-status structure, see “Allocating and Accessing an LO-Status
Structure” on page 8-18.

size A pointer to an ifx_int8_t structure that ifx_lo_stat_size() fills with
the size in bytes, of the smart large object.

Usage:

The status information for the smart large object is in the LO-status structure to
which LO_stat points. The ifx_lo_stat() function allocates this structure and fills it
with the status information for a particular smart large object. Therefore, you must
precede a call to ifx_lo_stat_size() with a call to ifx_lo_stat().

Return codes:

0 The function was successful.

-1 The function was not successful.

Related functions:

The ifx_lo_stat() function

The ifx_lo_stat_atime() function

The ifx_lo_stat_cspec() function

The ifx_lo_stat_ctime() function

The ifx_lo_stat_free() function

The ifx_lo_stat_mtime_sec() function

Example:

For an example of the ifx_lo_stat_size() function, see “The get_lo_info.ec program”
on page C-5.

The ifx_lo_tell() function
The ifx_lo_tell() function returns the current file or seek position for an open smart
large object.

Syntax:
mint ifx_lo_tell(LO_fd, seek_pos)

mint LO_fd;
ifx_int8_t *seek_pos;

LO_fd The LO file descriptor for the open smart large object whose seek
position you wish to determine. For more information about an LO
file descriptor, see “The LO file descriptor” on page 8-11.

seek_pos A pointer to the 8-byte integer that identifies the current seek
position.

Usage:

B-140 IBM Informix ESQL/C Programmer’s Manual

The seek position is the offset for the next read or write operation on the smart
large object that is associated with the LO file descriptor, LO_fd. The ifx_lo_tell()
function returns this seek position in the user-defined int8 variable, seek_pos.

Return codes:

0 The function was successful.

<0 The function was not successful and the return value indicates the
cause of the failure.

Related functions:

The ifx_lo_readwithseek() function

The ifx_lo_seek() function

The ifx_lo_writewithseek() function

Example:

The ifx_lo_to_buffer() function
The ifx_lo_to_buffer() function copies a specified number of bytes from a smart
large object into a user-defined buffer.

Syntax:
mint ifx_lo_to_buffer(LO_ptr, size, buf_ptr)

ifx_lo_t *LO_ptr;

mint size;
char **buf_ptr;

mint error;

LO_ptr The LO-pointer structure for the smart large object from which you
want to copy the data.

size A mint that identifies the number of bytes to copy from the smart
large object

buf_ptr A doubly indirect pointer to a user-defined buffer to which you
want to copy the data.

error Contains the address of the mint that holds the error code that
ifx_lo_to_buffer() sets

Usage:

The ifx_lo_to_buffer() function copies bytes, up to the size that the size argument
specifies from the smart large object that the LO_ptr argument identifies. The read
operation from the smart large object starts at a zero-byte offset. If the smart large
object is smaller than the size value, ifx_lo_to_buffer() copies only the number of
bytes in the smart large object. If the smart large object contains more than size
bytes, the ifx_lo_to_buffer() function only copies up to size bytes into the
user-defined buffer.

When buf_ptr is NULL, ifx _lo_to_buffer() allocates the memory for the
user-defined buffer. Otherwise, the function assumes that you have allocated
memory that buf_ptr identifies.

Appendix B. ESQL/C function library B-141

Return codes:

0 The number of bytes copied from the smart large object to the
user-defined buffer that buf_ptr identifies.

-1 The function was not successful.

The ifx_lo_truncate() function
The ifx_lo_truncate() function truncates a smart large object at a specified byte
position.

Syntax:
mint ifx_lo_truncate(LO_fd, offset)

mint LO_fd;
ifx_int8_t *offset;

LO_fd The LO file descriptor for the open smart large object whose value
you wish to truncate. For more information about an LO file
descriptor, see “The LO file descriptor” on page 8-11.

offset A pointer to the 8-byte integer that identifies the offset at which
the truncation of the smart large object begins.

Usage:

The ifx_lo_truncate() function sets the last valid byte of a smart large object to the
specified offset value. If this offset value is beyond the current end of the smart
large object, you actually extend the smart large object. If this offset value is less
than the current end of the smart large object, the database server reclaims all
storage, from the position that offset indicates to the end of the smart large object.

Return codes:

0 The function was successful.

<0 The function was not successful and the return value indicates the
cause of the failure.

The ifx_lo_unlock() function
The ifx_lo_unlock() function allows you to unlock a range of bytes in a smart large
object that was locked by the ifx_lo_lock() function.

Syntax:
mint ifx_lo_unlock(lofd, offset, whence, range)

mint lofd;
int8 *offset;
mint whence;

int8 *range;

LO_fd The LO-file descriptor for the smart large object in which to unlock
the range of bytes. For more information about an LO-file
descriptor, see “The LO file descriptor” on page 8-11.

offset A pointer to the 8-byte integer (INT8) that specifies the offset
within the smart large object at which unlocking is to begin.

whence An integer constant that specifies from what point the offset is

B-142 IBM Informix ESQL/C Programmer’s Manual

calculated: the beginning of the smart large object, the current
position within the smart large object, or the end of the smart large
object.

range A pointer to the 8-byte integer (INT8) that specifies the number of
bytes to unlock.

Usage:

The ifx_lo_unlock() function unlocks the number of bytes specified by nbytes,
beginning at the offset specified by offset and whence, for the smart large object
specified by LO_fd. Before calling ifx_lo_unlock(), you must obtain a valid LO-file
descriptor by calling either ifx_lo_create() to create a new smart large object or by
calling ifx_lo_open() to open an existing smart large object. For more information
about the possible values for offset, whence, and nbytes, see “The ifx_lo_lock()
function” on page B-115.

Return codes:

0 The function was successful

< 0 The function was unsuccessful. The value returned is the sqlcode,
which is the number of the IBM Informix error message. For more
information about sqlcode, see Chapter 11, “Exception handling”

Related function:

The ifx_lo_lock() function

The ifx_lo_write() function
The ifx_lo_write() function writes a specified number of bytes of data to an open
smart large object.

Syntax:
mint ifx_lo_write(LO_fd, buf, nbytes, error)

mint LO_fd;
char *buf;
mint nbytes;
mint *error;

LO_fd The LO file descriptor for the smart large object to which to write.
For more information about an LO file descriptor, see “The LO file
descriptor” on page 8-11.

buf A pointer to a buffer that contains the data that the function writes
to the smart large object.

nbytes The number of bytes to write to the smart large object. With a
minimum length of 0, this value must be less than 2 GB.

error A pointer to a mint that contains the error code that ifx_lo_write()
sets.

Usage:

The ifx_lo_write() function writes nbytes of data to the smart large object that the
LO_fd file descriptor identifies. The write begins at the current seek position for
LO_fd. You can use the ifx_lo_tell() function to obtain the current seek position.

Appendix B. ESQL/C function library B-143

The function obtains the data from the user-defined buffer to which buf points. The
buf buffer must be less than 2 gigabytes in size.

If the database server writes less than nbytes of data to the smart large object, the
ifx_lo_write() function returns the number of bytes that it wrote and sets the error
value to point to a value that indicates the reason for the incomplete write
operation. This condition can occur when the sbspace runs out of space.

Return codes:

>=0 The number of bytes that the function has written from the buf
character buffer to the open smart large object.

-1 The function was not successful; examine the error for a detailed
error code.

Related functions:

The ifx_lo_open() function

The ifx_lo_read() function

The ifx_lo_seek() function

The ifx_lo_tell() function

The ifx_lo_writewithseek() function

The ifx_lo_writewithseek() function
The ifx_lo_writewithseek() function performs a seek operation and then writes a
specified number of bytes of data to an open smart large object.

Syntax:
mint ifx_lo_writewithseek(LO_fd, buf, nbytes, offset, whence, error)

mint LO_fd;
char *buf;
mint nbytes;
ifx_int8_t *offset;
mint whence;
mint *error;

LO_fd The LO file descriptor for the smart large object to which to write.
For more information about an LO-file descriptor, see “The LO file
descriptor” on page 8-11.

buf A pointer to a buffer that contains the data that the function writes
to the smart large object.

nbytes The number of bytes to write to the smart large object. This value
cannot exceed 2 gigabytes.

offset A pointer to the 8-byte integer (INT8) offset from the starting seek
position.

whence A mint value that identifies the starting seek position.

error A pointer to a mint that contains the error code that
ifx_lo_writewithseek() sets.

Usage:

B-144 IBM Informix ESQL/C Programmer’s Manual

The ifx_lo_writewithseek() function writes nbytes of data to the smart large object
that the LO_fd file descriptor identifies. The function obtains the data to write from
the user-defined buffer to which buf points. The buffer must be less than 2
gigabytes in size.

The write begins at the seek position of LO_fd that the offset and whence arguments
indicate, as follows:
v The whence argument identifies the position from which to start the seek.

Valid values include the following constants, which the locator.h header file
defines.

Whence constant Starting seek position

LO_SEEK_SET The start of the smart large object

LO_SEEK_CUR The current seek position in the smart large
object

LO_SEEK_END The end of the smart large object
– The offset argument identifies the offset, in

bytes, from the starting seek position (that the
whence argument specifies) to which the seek
position should be set.
For more information about how to access
eight-bit (INT8) integers, see “The int8 Data
Type” on page 5-2.

If the database server writes less than nbytes of data to the smart large object, the
ifx_lo_writewithseek() function returns the number of bytes that it wrote and sets
the error value to point to a value that indicates the reason for the incomplete write
operation. This condition can occur when the sbspace runs out of space.

Return codes:

>=0 The number of bytes that the function has written from the buf
character buffer to the smart large object.

-1 The function was not successful; examine the error for a detailed
error code.

Related functions:

The ifx_lo_open() function

The ifx_lo_writewithseek() function

The ifx_lo_seek() function

The ifx_lo_write() function

Example:

For an example of the writewithseek() function, see “The create_clob.ec program”
on page C-2 and the “The ifx_lo_seek() function” on page B-121.

Appendix B. ESQL/C function library B-145

The ifx_lvar_alloc() function
The ifx_lvar_alloc() function specifies whether to allocate memory when fetching
lvarchar data.

Syntax:
mint ifx_lvar_alloc(mintalloc)

mint alloc;

alloc The value of the allocation flag; either 1 or 0

Usage:

When the flag is set to 1, ESQL/C automatically performs this memory allocation.
You can use a flag value of 1 before a SELECT statement when you are unsure of
the amount of data that the SELECT statement returns. When the flag is set to 0,
ESQL/C does not automatically perform this memory allocation.

Return codes:

0 The function was successful.

<0 The function was not successful and the return value indicates the
cause of the error.

The ifx_putenv() function
The ifx_putenv() function changes the value of an existing environment variable,
creates a new environment variable, or removes a variable from the runtime
environment.

Syntax:
int ifx_putenv(envstring);

const char *envstring;

envstring A pointer to a string of the form varname=string, in which varname
is the name of the environment variable to add or modify and
string is the variable value.

Usage:

The ifx_putenv() function adds new environment variables or modifies the values
of existing environment variables in the InetLogin structure. These variables define
the environment in which a process executes. If varname is already part of the
environment, ifx_putenv() replaces the existing value with string; otherwise,
ifx_putenv() adds varname to the environment, with the value string.

To remove a variable from the runtime environment, specify varname to its default
value. If the default value is NULL, setting the variable to a null string with
ifx_putenv() effectively removes it from the runtime environment. If the default
value of the variable is not NULL, then setting the variable to a null string with
ifx_putenv() resets the variable to its default value, but does not remove it from
the runtime environment.

The ifx_putenv() function sets IBM Informix variables first and then non-Informix
variables. For a list of Informix environment variables, see “Fields of the InetLogin
Structure” on page 1-33.

B-146 IBM Informix ESQL/C Programmer’s Manual

The following call to the ifx_putenv() function changes the value of the
INFORMIXDIR environment variable:
ifx_putenv("informixdir=c:\informix");

This function affects only the environment variable of the current process. The
environment of the command processor does not change.

Return codes:

0 The call to ifx_putenv() was successful.

-1 The call to ifx_putenv() was not successful.

The ifx_strdate() function
The ifx_strdate() function converts a character string to an internal DATE.

Syntax:
mint ifx_strdate(str, jdate, dbcentury)

char *str;
int4 *jdate;
char dbcentury;

str A is a pointer to the string that contains the date to convert.

jdate A pointer to a int4 integer that receives the internal DATE value
for the str string.

dbcentury Can be one of the following characters, which determines which
century to apply to the year portion of the date:

R Present. The function uses the two high-order digits of the
current year to expand the year value.

P Past. The function uses the past and present centuries to
expand the year value. It compares these two dates against
the current date and uses the century that is prior to the
current century. If both dates are prior to the current date,
the function uses the century closest to the current date.

F Future. The function uses the present and the next
centuries to expand the year value. It compares these
against the current date and uses the century that is later
than the current date. If both dates are later than the
current date, the function uses the date closest to the
current date.

C Closest. The function uses the past, present, and next
centuries to expand the year value. It chooses the century
that is closest to the current date.

Usage:

For the default locale, U.S. English, the ifx_strdate() function determines how to
format the character string with the following precedence:
1. The format that the DBDATE environment variable specifies (if DBDATE is

set). For more information about DBDATE, see the IBM Informix Guide to SQL:
Reference.

Appendix B. ESQL/C function library B-147

2. The format that the GL_DATE environment variable specifies (if GL_DATE is
set). For more information about GL_DATE, see the IBM Informix GLS User's
Guide.

3. The default date form: mm/dd/yyyy. You can use any nonnumeric character as a
separator between the month, day, and year. You can express the year as four
digits (2007) or as two digits (07).

When you use a nondefault locale and do not set the DBDATE or GL_DATE
environment variable, ifx_strdate() uses the date end-user format that the client
locale defines. For more information, see the IBM Informix GLS User's Guide.

When you use a two-digit year in the date string, the ifx_strdate() function uses
the value of the dbcentury argument to determine which century to use. If you do
not set the dbcentury argument, ifx_strdate() uses the DBCENTURY environment
variable to determine which century to use. If you do not set DBCENTURY,
ifx_strdate() assumes the current century for two-digit years. For information
about the DBCENTURY environment variable, see the IBM Informix Guide to SQL:
Reference.

Return codes:

0 The conversion was successful.

< 0 The conversion failed.

-1204 The str parameter specifies an invalid year.

-1205 The str parameter specifies an invalid month.

-1206 The str parameter specifies an invalid day.

-1212 Data conversion format must contain a month, day, or year
component. DBDATE specifies the data conversion format.

-1218 The date specified by the str argument does not properly represent
a date.

The ifx_var_alloc() function
The ifx_var_alloc() function allocates memory for the data buffer of an lvarchar or
var binary host variable.

Syntax:

var binary
mint ifx_var_alloc(var_bin, var_size)

var binary **var_bin
int4 var_size;

lvarchar
mint ifx_var_alloc(lvar, var_size)

lvarchar **lvar
int4 var_size;

var_bin The address of the var binary pointer host variable whose data
buffer is allocated.

lvar The address of the lvarchar pointer host variable whose data
buffer is allocated.

var_size The size, in bytes, of the data buffer to allocate.

B-148 IBM Informix ESQL/C Programmer’s Manual

Usage:

The allocation flag of the ifx_var_flag() function notifies IBM Informix ESQL/C of
the allocation method to use for the data buffer. If you set the allocation flag in
ifx_var_flag() to 0, you must explicitly allocate memory for the data buffer of a var
binary host variable with the ifx_var_alloc() function.

Important: Whether you allocate memory or allow Informix ESQL/C to allocate
the memory for you, you must free the allocated memory using the
ifx_var_dealloc() function.

Return codes:

0 The function was successful.

<0 The function was not successful and the return value indicates the
cause of the error.

Related functions:

The ifx_var_dealloc() function

The ifx_var_flag() function

The ifx_var_dealloc() function
The ifx_var_dealloc() function deallocates the memory that was allocated for the
data buffer of a var binary host variable.

Syntax:

var binary
mint ifx_var_dealloc(var_bin)

var binary **var_bin;

lvarchar
mint ifx_var_dealloc(lvar)

lvarchar **lvar;

var_bin The address of the var binary pointer host variable whose data
buffer is deallocated.

lvar The address of the lvarchar pointer host variable whose data
buffer is allocated.

Usage:

The allocation flag of the ifx_var_flag() function tells Informix ESQL/C which
allocation method to use for the data buffer. Regardless of whether Informix
ESQL/C (allocation flag set to 1) or your application (allocation flag set to 0)
allocates the memory, you must explicitly deallocate memory that was allocated to
an lvarchar or the data buffer of var binary host variable.

Return codes:

0 The function was successful.

<0 The function was not successful and the return value indicates the
cause of the error.

Appendix B. ESQL/C function library B-149

Related functions:

The ifx_var_alloc() function

The ifx_var_flag() function

The ifx_var_flag() function
The ifx_var_flag() function determines how memory is allocated for the data buffer
of an lvarchar or var binary host variable.

Syntax:

var binary
mint ifx_var_flag(var_bin, flag)

var binary **var_bin;
int2 flag;

lvarchar
mint ifx_var_flag(lvar, flag)

lvarchar **lvar;
int2 flag;

flag The int2 value of the allocation flag, either 0 or 1.

var_bin The address of the var binary host variable.

lvar The address of the lvarchar pointer host variable.

Usage:

The value of the flag argument is the allocation flag. It determines who handles
memory allocation for the data of the var_bin host variable, as follows:
v When flag is one, IBM Informix ESQL/C automatically performs this memory

allocation.
You can use a flag value of 1 before a SELECT statement when you are unsure of
the amount of data that the SELECT returns.

v When flag is zero, Informix ESQL/C does not automatically perform this
memory allocation.
When you set flag to 0, you must allocate memory for the data buffer of the lvar
or var_bin variable with the ifx_var_alloc() functions.

If you do not call the ifx_var_flag() function for an lvarchar or var binary host
variable, Informix ESQL/C allocates memory for its data buffer. Whether you
allocate memory for the lvarchar or var binary variable, or allow Informix
ESQL/C to do it for you, you must free the memory with the ifx_var_dealloc()
function.

Return codes:

0 The function was successful.

<0 The function was not successful and the return value indicates the
cause of the error.

Related functions:

The ifx_var_alloc() function

B-150 IBM Informix ESQL/C Programmer’s Manual

The ifx_var_dealloc() function

The ifx_var_freevar() function
The ifx_var_freevar() function frees memory that has been allocated for the var
binary and lvarchar pointer host variables.

Syntax:
int fix_var_freevar(var_bin)

var binary *var_bin;

var_bin The address of the var binary or lvarchar pointer host variable.

Usage:

Whenever you have a var binary or lvarchar pointer host variable, as shown in
the following example, you must explicitly free memory that is allocated for it by
using the ifx_var_freevar() function.
EXEC SQL var binary 'polygon' poly;
EXEC SQL lvarchar *c;

The following example illustrates the use of ifx_var_freevar(). You must explicitly
free memory that has been allocated for var binary and lvarchar pointer host
variables by using the ifx_var_freevar() function.
ifx_var_freevar(&poly);
ifx_var_freevar(&c);

If you do not use ifx_var_dealloc() to deallocate memory that has been allocated
for the data buffer of the var binary host variable, ifx_var_freevar() will do so. It
then frees the memory of the var binary and lvarchar pointer host variables. In the
example above, after ifx_var_freevar() was called, poly and c would be set to null.

Return codes:

0 The function was successful

<0 The function was not successful and the return value indicates the
cause of the error

Related functions:

The ifx_var_flag() function
The ifx_var_alloc() function
The ifx_var_dealloc() function

The ifx_var_getdata() function
The ifx_var_getdata() function returns the data from an lvarchar or var binary host
variable.

Syntax:

var binary
void *ifx_var_getdata(var_bin)

var binary **var_bin;

lvarchar

Appendix B. ESQL/C function library B-151

void *ifx_var_getdata(lvar)
lvarchar **lvar;

var_bin The address of the var binary host variable whose data is
retrieved.

lvar The address of the lvarchar pointer host variable whose data is
retrieved.

Usage:

The ifx_var_getdata() function returns the data as a void * pointer. Your Informix
ESQL/C application must cast this pointer to the correct data type. When you use
ifx_var_getdata() on an lvarchar pointer, you must cast the returned (void) pointer
to a C-language character pointer (char *).

Return codes:

Null pointer The function was not successful.

Valid pointer to the data buffer
The function was successful.

Related functions:

The ifx_var_getlen() function

The ifx_var_setdata() function

The ifx_var_getlen() function
The ifx_var_getlen() function returns the length of the data in an lvarchar pointer
or var binary host variable.

Syntax:

var binary
mint ifx_var_getlen(var_bin)

var binary **var_bin;

lvarchar
mint ifx_var_getlen(lvar)

lvarchar **lvar;

var_bin The address of the var binary host variable whose length is
returned.

lvar The address of the lvarchar pointer host variable whose length is
returned.

Usage:

The length that the ifx_var_getlen() function returns is the number of bytes that
have been allocated for the data buffer of the lvar or var_bin host variable.

If you get an lvarchar pointer or var binary from a descriptor area by using the
DATA clause of a GET DESCRIPTOR statement, the value will be null terminated.

B-152 IBM Informix ESQL/C Programmer’s Manual

If you use ifx_var_getlen() on such a variable the length returned will include the
null terminator. To get the correct length use the LENGTH clause of the GET
DESCRIPTOR statement.

Return codes:

>=0 The length of the data buffer for the var_bin host variable.

<0 The function was not successful.

Related functions:

The ifx_var_getdata() function

The ifx_var_setlen() function

The ifx_var_isnull() function
The ifx_var_isnull() function checks whether an lvarchar or var binary host
variable contains a null value.

Syntax:

var binary
mint ifx_var_isnull(var_bin)

var binary **var_bin;

lvarchar
mint ifx_var_isnull(lvar)

lvarchar **lvar;

var_bin The address of the var binary host variable.

lvar The address of the lvarchar pointer host variable.

Usage:

The ifx_var_isnull() function checks for a null value in an lvarchar or var binary
host variable. To determine whether an IBM Informix ESQL/C host variable of any
other data type contains null, use the risnull() library function. For more
information, see B-191

Return codes:

0 The opaque-type data is not a null value.

1 The opaque-type data is a null value.

Related function:

The ifx_var_setnull() function

Appendix B. ESQL/C function library B-153

The ifx_var_setdata() function
The ifx_var_setdata() function stores data in an lvarchar or var binary host
variable.

Syntax:

var binary
mint ifx_var_setdata(var_bin, buffer, buf_len)

var binary **var_bin;
char *buffer;
int4 buf_len;

lvarchar
mint ifx_var_setdata(lvar, buffer, buf_len)

lvarchar **lvar;
char *buffer;
int4 buf_len;

buffer A character buffer that contains the data to store in the lvar or
var_bin host variable.

buf_len The length, in bytes, of the buffer.

var_bin The address of the var binary host variable.

lvar The address of the lvarchar pointer host variable.

Usage:

The ifx_var_setdata() function stores the data in buffer in the data buffer of the lvar
or var_bin host variable. For an lvarchar pointer host variable, IBM Informix
ESQL/C expects the data inside buffer to be null-terminated ASCII data.

Return codes:

0 The function was successful.

<0 The function was not successful and the return value indicates the
cause of the error.

Related functions:

The ifx_var_getdata() function

The ifx_var_setlen() function

The ifx_var_setlen() function
The ifx_var_setlen() function stores the length of the data buffer for an lvarchar or
var binary host variable.

Syntax:

var binary
mint ifx_var_setlen(var_bin, length)

var binary **var_bin;
int4 length

lvarchar

B-154 IBM Informix ESQL/C Programmer’s Manual

mint ifx_var_setlen(lvar, length)
lvarchar **lvar;
int4 length

length The length, in bytes, of the data buffer to allocate for the var
binary data.

var_bin The address of the var binary host variable.

lvar The address of the lvarchar pointer host variable.

Usage:

The length that the ifx_var_setlen() function sets is the number of bytes to allocate
for the data buffer of the lvar or var_bin host variable. Call this function to change
the size of the data buffer that the ifx_var_alloc() function allocated for the lvar or
var_bin host variable.

Return codes:

0 The function was successful.

<0 The function was not successful and the return value indicates the
cause of the error.

Related functions:

The ifx_var_getlen() function

The ifx_var_setdata() function

The ifx_var_setnull() function
The ifx_var_setnull() function sets an lvarchar or var binary host variable to a null
value.

Syntax:

var binary
mint ifx_var_setnull(var_bin, flag)

var binary **var_bin;
mint flag

lvarchar
mint ifx_var_setnull(var_bin, flag)

var binary **var_bin;
mint flag;

var_bin The address of the var binary host variable.

lvar The address of the lvarchar pointer host variable.

flag The value 0 to indicate a non-null value or 1 to indicate a null
value.

Usage:

The ifx_var_setnull() function sets a host variable of type lvarchar or var binary to
a null value. To set an IBM Informix ESQL/C host variable of any other data type
to null, use the rsetnull() library function. For more information, see B-197.

Appendix B. ESQL/C function library B-155

Return codes:

0 The function was successful.

<0 The function was not successful and the return value indicates the
cause of the error.

Related functionf:

The ifx_var_isnull() function

The incvasc() function
The incvasc() function converts a string that conforms to the ANSI SQL standard
for an INTERVAL value to an interval value. For information about the ANSI SQL
interval standard, see “ANSI SQL standards for DATETIME and INTERVAL
values” on page 6-7.

Syntax:
mint incvasc(inbuf, invvalue)

char *inbuf;
intrvl_t *invvalue;

inbuf A pointer to a buffer that contains an ANSI-standard INTERVAL
string.

invvalue A pointer to an initialized interval variable.

Usage:

You must initialize the interval variable in invvalue with the qualifier that you
want this variable to have.

The character string in inbuf can have leading and trailing spaces. However, from
the first significant digit to the last, inbuf can only contain characters that are digits
and delimiters that are appropriate to the qualifier fields of the interval variable.

If the character string is an empty string, the incvasc() function sets the value in
invvalue to null. If the character string is acceptable, the function sets the value in
the interval variable and returns zero. Otherwise, the function sets the value in the
interval value to null.

Return codes:

0 The conversion was successful.

-1260 It is not possible to convert between the specified types.

-1261 Too many digits in the first field of datetime or interval.

-1262 Non-numeric character in datetime or interval.

-1263 A field in a datetime or interval value is out of range or incorrect.

-1264 Extra characters at the end of a datetime or interval value.

-1265 Overflow occurred on a datetime or interval operation.

-1266 A datetime or interval value is incompatible with the operation.

-1267 The result of a datetime computation is out of range.

-1268 A parameter contains an invalid datetime or interval qualifier.

B-156 IBM Informix ESQL/C Programmer’s Manual

Example:

The demo directory contains this sample program in the file incvasc.ec.
/*

* incvasc.ec *

The following program converts ASCII strings into interval (intvl_t)
structure. It also illustrates error conditions involving invalid
qualifiers for interval values.

*/

#include <stdio.h>

EXEC SQL include datetime;

main()
{

mint x;

EXEC SQL BEGIN DECLARE SECTION;
interval day to second in1;

EXEC SQL END DECLARE SECTION;

printf("INCVASC Sample ESQL Program running.\n\n");

printf("Interval string #1 = 20 3:10:35\n");
if(x = incvasc("20 3:10:35", &in1))
printf("Result = failed with conversion error:%d\n",x);

else
printf("Result = successful conversion\n");

/*
* Note that the following literal string has a 26 in the hours field
*/

printf("\nInterval string #2 = 20 26:10:35\n");
if(x = incvasc("20 26:10:35", &in1))
printf("Result = failed with conversion error:%d\n",x);

else
printf("Result = successful conversion\n");

/*
* Try to convert using an invalid qualifier (YEAR to SECOND)
*/

printf("\nInterval string #3 = 2007-02-11 3:10:35\n");
in1.in_qual = TU_IENCODE(4, TU_YEAR, TU_SECOND);
if(x = incvasc("2007-02-11 3:10:35", &in1))
printf("Result = failed with conversion error:%d\n",x);

else
printf("Result = successful conversion\n");

printf("\nINCVASC Sample Program over.\n\n");
}

Output:
INCVASC Sample ESQL Program running.

Interval string #1 = 20 3:10:35
Result = successful conversion

Interval string #2 = 20 26:10:35
Result = failed with conversion error:-1263

Appendix B. ESQL/C function library B-157

Interval string #3 = 2007-02-11 3:10:35
Result = failed with conversion error:-1268

INCVASC Sample Program over.

The incvfmtasc() function
The incvfmtasc() function uses a formatting mask to convert a character string to
an interval value.

Syntax:
mint incvfmtasc(inbuf, fmtstring, invvalue)

char *inbuf;
char *fmtstring;
intrvl_t *invvalue;

inbuf A pointer to a buffer that contains the string to convert.

fmtstring A pointer to the buffer that contains the formatting mask to use for
the inbuf string. This time-formatting mask contains the same
formatting directives that the DBTIME environment variable
supports. (For a list of these directives, see the description of
DBTIME in the IBM Informix Guide to SQL: Reference).

invvalue A pointer to the initialized interval variable.

Usage:

You must initialize the interval variable in invvalue with the qualifier you want this
variable to have. The interval variable does not need to specify the same qualifier
as the formatting mask. When the interval qualifier is different from the implied
formatting-mask qualifier, incvfmtasc() converts the result to appropriate units as
necessary. However, both qualifiers must belong to the same interval class: either
the year to month class or the day to fraction class.

All fields in the character string in inbuf must be contiguous. In other words, if the
qualifier is hour to second, you must specify all values for hour, minute, and
second somewhere in the string, or incvfmtasc() returns an error.

The inbuf character string can have leading and trailing spaces. However, from the
first significant digit to the last, inbuf can contain only digits and delimiters that
are appropriate for the qualifier fields that the formatting mask implies. For more
information about acceptable digits and delimiters for an INTERVAL value, see
“ANSI SQL standards for DATETIME and INTERVAL values” on page 6-7.

If the character string is acceptable, the incvfmtasc() function sets the interval
value in invvalue and returns zero. Otherwise, the function returns an error code
and the interval variable contains an unpredictable value.

The formatting directives %B, %b, and %p, which the DBTIME environment
variable accepts, are not applicable in fmtstring because month name and A.M./P.M.
information is not relevant for intervals of time. Use the %Y directive if the
interval is more than 99 years (%y can handle only two digits). For hours, use %H
(not %I, because %I can represent only 12 hours). If fmtstring is an empty string,
the function returns an error.

Return codes:

0 The conversion was successful.

B-158 IBM Informix ESQL/C Programmer’s Manual

<0 The conversion failed.

Example:

The demo directory contains this sample program in the file incvfmtasc.ec.
/* *incvfmtasc.ec*
The following program illustrates the conversion of two strings
to three interval values.

*/

#include <stdio.h>

EXEC SQL include datetime;

main()
{

char out_str[30];
char out_str2[30];
char out_str3[30];
mint x;

EXEC SQL BEGIN DECLARE SECTION;
interval day to minute short_time;
interval minute(5) to second moment;
interval hour to second long_moment;

EXEC SQL END DECLARE SECTION;

printf("INCVFMTASC Sample ESQL Program running.\n\n");

/* Initialize short_time */
printf("Interval value #1 = 20 days, 3 hours, 40 minutes\n");

x = incvfmtasc("20 days, 3 hours, 40 minutes",
"%d days, %H hours, %M minutes", &short_time);

/*Convert the internal format to ascii in ANSI format, for displaying. */
x = intoasc(&short_time, out_str);
printf("Interval value (day to minute) = %s\n", out_str);

/* Initialize moment */
printf("\nInterval value #2 = 428 minutes, 30 seconds\n");
x = incvfmtasc("428 minutes, 30 seconds",

"%M minutes, %S seconds", &moment);

/* Convert the internal format to ascii in ANSI format, for displaying. */
x = intoasc(&moment, out_str2);
printf("Interval value (minute to second) = %s\n", out_str2);

/* Initialize long_moment */
printf("\nInterval value #3 = 428 minutes, 30 seconds\n");
x = incvfmtasc("428 minutes, 30 seconds",

"%M minutes, %S seconds", &long_moment);

/*Convert the internal format to ascii in ANSI format, for displaying. */
x = intoasc(&long_moment, out_str3);
printf("Interval value (hour to second) = %s\n", out_str3);

printf("\nINCVFMTASC Sample Program over.\n\n");
}

Output:

Appendix B. ESQL/C function library B-159

INVCFMTASC Sample ESQL Program running.

Interval value #1 = 20 days, 3 hours, 40 minutes
Interval value (day to minute) = 20 03:40

Interval value #2 = 428 minutes, 30 seconds
Interval value (minute to second) = 428:30

Interval value #3 = 428 minute, 30 seconds
Interval value (hour to second) = 7:08:30

INVCFMTASC Sample Program over.

The intoasc() function
The intoasc() function converts the field values of an interval variable to an ASCII
string that conforms to the ANSI SQL standard. For information about the ANSI
SQL INTERVAL standard, see 6-7.

Syntax:
mint intoasc(invvalue, outbuf)

intrvl_t *invvalue;
char *outbuf;

invvalue A pointer to an initialized interval variable to convert.

outbuf A pointer to the buffer that receives the ANSI-standard INTERVAL
string for the value in invvalue.

Usage:

The intoasc() function converts the digits of the fields in the interval variable to
their character equivalents and copies them to the outbuf character string with
delimiters (hyphen, space, colon, or period) between them. You must initialize the
interval variable in invvalue with the qualifier that you want the character string to
have.

The character string does not include the qualifier or the parentheses that SQL
statements use to delimit an INTERVAL literal. The outbuf string conforms to ANSI
SQL standards. It includes one character for each delimiter (hyphen, space, colon,
or period) plus fields with the following sizes.

Field Field size

Leading field As specified by precision

Fraction As specified by precision

All other fields Two digits

An interval value with the day(5) to fraction(5) qualifier produces the maximum
length of output. The string equivalent contains 16 digits, 4 delimiters, and the null
terminator, for a total of 21 bytes:
DDDDD HH:MM:SS.FFFFF

If you do not initialize the qualifier of the interval variable, the intoasc() function
returns an unpredictable value, but this value does not exceed 21 bytes.

Return codes:

0 The conversion was successful.

B-160 IBM Informix ESQL/C Programmer’s Manual

<0 The conversion failed.

Example:

The demo directory contains this sample program in the file intoasc.ec.
/*

* intoasc.ec *

The following program illustrates the conversion of an interval (intvl_t)
into an ASCII string.

*/

#include <stdio.h>

EXEC SQL include datetime;

main()
{

mint x;
char out_str[10];

EXEC SQL BEGIN DECLARE SECTION;
interval day(3) to day in1;

EXEC SQL END DECLARE SECTION;

printf("INTOASC Sample ESQL Program running.\n\n");

printf("Interval (day(3) to day) string is ’3’\n");
if(x = incvasc("3", &in1))
printf("Initial conversion failed with error: %d\n",x);

else
{
/* Convert the internal format to ascii for displaying */
intoasc(&in1, out_str);
printf("\tInterval value after conversion is ’%s’\n", out_str);
}

printf("\nINTOASC Sample Program over.\n\n");
}

Output:
INTOASC Sample ESQL Program running.

Interval (day(3) to day) string is ’3’
Interval value afer conversion is ’ 3’

INTOASC Sample Program over.

The intofmtasc() function
The intofmtasc() function uses a formatting mask to convert an interval variable to
a character string.

Syntax:
mint intofmtasc(invvalue, outbuf, buflen, fmtstring)

intrvl_t *invvalue;
char *outbuf;
mint buflen;
char *fmtstring;

invvalue A pointer to an initialized interval variable to convert.

Appendix B. ESQL/C function library B-161

outbuf A pointer to the buffer that receives the string for the value in
invvalue.

buflen The length of the outbuf buffer.

fmtstring A pointer to the buffer that contains the formatting mask to use for
the outbuf string. This time-formatting mask contains the same
formatting directives that the DBTIME environment variable
supports. (For a list of these directives, see the description of
DBTIME in the IBM Informix Guide to SQL: Reference).

Usage:

You must initialize the interval variable in invvalue with the qualifier that you
want the character string to have. If you do not initialize the interval variable, the
function returns an unpredictable value. The character string in outbuf does not
include the qualifier or the parentheses that SQL statements use to delimit an
INTERVAL literal.

The formatting mask, fmtstring, does not need to imply the same qualifiers as the
interval variable. When the implied formatting-mask qualifier is different from the
interval qualifier, intofmtasc() converts the result to appropriate units, as necessary
(as if it called the invextend() function). However, both qualifiers must belong to
the same class: either the year to month class or the day to fraction class.

If fmtstring is an empty string, the intofmtasc() function sets outbuf to an empty
string.

The formatting directives %B, %b, and %p, which the DBTIME environment
variable accepts, are not applicable in fmtstring because month name and A.M./P.M.
information is not relevant for intervals of time. Use the %Y directive if the
interval is more than 99 years (%y can handle only two digits). For hours, use %H
(not %I, because %I can represent only 12 hours). If fmtstring is an empty string,
the function returns an error.

If the character string and the formatting mask are acceptable, the incvfmtasc()
function sets the interval value in invvalue and returns zero. Otherwise, the
function returns an error code and the interval variable contains an unpredictable
value.

Return codes:

0 The conversion was successful.

<0 The conversion failed.

Example:

The demo directory contains this sample program in the file intofmtasc.ec.
/*
intofmtasc.ec
The following program illustrates the conversion of interval values
to ASCII strings with the specified formats.

*/

#include <stdio.h>

EXEC SQL include datetime;

B-162 IBM Informix ESQL/C Programmer’s Manual

main()
{

char out_str[60];
char out_str2[60];
char out_str3[60];
mint x;

EXEC SQL BEGIN DECLARE SECTION;
interval day to minute short_time;
interval minute(5) to second moment;

EXEC SQL END DECLARE SECTION;

printf("INTOFMTASC Sample ESQL Program running.\n\n");

/* Initialize short_time (day to minute) interval value */
printf("Interval string #1 = ’20 days, 3 hours, 40 minutes’\n");
x = incvfmtasc("20 days, 3 hours, 40 minutes",
"%d days, %H hours, %M minutes", &short_time);

/* Turn the interval into ascii string of a certain format. */
x = intofmtasc(&short_time, out_str, sizeof(out_str),
"%d days, %H hours, %M minutes to go!");

printf("\tFormatted value: %s\n", out_str);

/* Initialize moment (minute(5) to second interval value */
printf("\nInterval string #2: ’428 minutes, 30 seconds’\n");
x = incvfmtasc("428 minutes, 30 seconds",

"%M minutes, %S seconds", &moment);

/* Turn each interval into ascii string of a certain format. Note
* that the second and third calls to intofmtasc both use moment
* as the input variable, but the output strings have different
* formats.
*/

x = intofmtasc(&moment, out_str2, sizeof(out_str2),
"%M minutes and %S seconds left.");

x = intofmtasc(&moment, out_str3, sizeof(out_str3),
"%H hours, %M minutes, and %S seconds still left.");

/* Print each resulting string */
printf("\tFormatted value: %s\n", out_str2);
printf("\tFormatted value: %s\n", out_str3);

printf("\nINTOFMTASC Sample Program over.\n\n");
}

Output:
INTOFMTASC Sample ESQL Program running.

Interval string #1: ’20 days, 3 hours, 40 minutes’
Formatted value: 20 days, 03 hours, 40 minutes to go!

Interval string #2: ’428 minutes, 30 seconds’
Formatted value: 428 minutes and 30 seconds left.
Formatted value: 07 hours, 08 minutes, and 30 seconds still left.

INTOFMTASC Sample Program over.

The invdivdbl() function
The invdivdbl() function divides an interval value by a numeric value.

Syntax:

Appendix B. ESQL/C function library B-163

mint invdivdbl(iv, num, ov)
intrvl_t *iv;
double num;
intrvl_t *ov;

iv A pointer to an interval variable to be divided.

num A numeric divisor value.

ov A pointer to an interval variable with a valid qualifier.

Usage:

The input and output qualifiers must both belong to the same interval class: either
the year to month class or the day to fraction(5) class. If the qualifier for ov is
different from the qualifier for iv (within the same class), the invdivdbl() function
extends the result (as the invextend() function defines).

The invdivdbl() function divides the interval value in iv by num and stores the
result in ov.

The value in num can be either a positive or a negative value.

Return codes:

0 The division was successful.

<0 The division failed.

-1200 A numeric value is too large (in magnitude).

-1201 A numeric value is too small (in magnitude).

-1202 The num parameter is zero (0).

-1265 Overflow occurred on an interval operation.

-1266 An interval value is incompatible with the operation.

-1268 A parameter contains an invalid interval qualifier.

Example:

The demo directory contains this sample program in the file invdivdbl.ec.
/*

* indivdbl.ec *

The following program divides an INTERVAL type variable by a numeric
value and stores the result in an INTERVAL variable. The operation is
done twice, using INTERVALs with different qualifiers to store the result.

*/

#include <stdio.h>

EXEC SQL include datetime;

main()
{

char out_str[16];

EXEC SQL BEGIN DECLARE SECTION;
interval day to second daytosec1;
interval hour to minute hrtomin;
interval day to second daytosec2;

B-164 IBM Informix ESQL/C Programmer’s Manual

EXEC SQL END DECLARE SECTION;

printf("INVDIVDBL Sample ESQL Program running.\n\n");

/* Input is 3 days, 5 hours, 27 minutes, and 30 seconds */
printf("Interval (day to second) string = ’3 5:27:30’\n");
incvasc("3 5:27:30", &daytosec1);

/* Divide input value by 3.0, store in hour to min interval */
invdivdbl(&daytosec1, (double) 3.0, &hrtomin);

/* Convert the internal format to ascii for displaying */
intoasc(&hrtomin, out_str);
printf("Divisor (double) = 3.0 \n");
printf("---\n");
printf("Quotient #1 (hour to minute) = ’%s’\n", out_str);

/* Divide input value by 3.0, store in day to sec interval variable */
invdivdbl(&hrtomin, (double) 3.0, &daytosec2);

/* Convert the internal format to ascii for displaying */
intoasc(&daytosec2, out_str);
printf("Quotient #2 (day to second) = ’%s’\n", out_str);

printf("\nINVDIVDBL Sample Program over.\n\n");
}

Output:
INVDIVDBL Sample ESQL Program running.

Interval (day to second) string = ’3 5:27:30’
Divisor (double) = 3.0

Quotient #1 (hour to minute) = ’ 25:49’
Quotient #2 (day to second) = ’ 1 01:49:10’

INVDIVDBL Sample Program over.

The invdivinv() function
The invdivinv() function divides an interval value by another interval value.

Syntax:
mint invdivinv(i1, i2, num)

intrvl_t *i1, *i2;
double *num;

i1 A pointer to an interval variable that is the dividend.

i2 A pointer to an interval variable that is the divisor.

num A pointer to the double value that is the quotient.

Usage:

The invdivinv() function divides the interval value in i1 by i2, and stores the result
in num. The result can be either positive or negative.

Appendix B. ESQL/C function library B-165

Both the input and output qualifiers must belong to the same interval class: either
the year to month class or the day to fraction(5) class. If necessary, the invdivinv()
function extends the interval value in i2 to match the qualifier for i1 before the
division.

Return codes:

0 The division was successful.

<0 The division failed.

-1200 A numeric value is too large (in magnitude).

-1201 A numeric value is too small (in magnitude).

-1266 An interval value is incompatible with the operation.

-1268 A parameter contains an invalid interval qualifier.

Example:

The demo directory contains this sample program in the file invdivinv.ec.
/*

* invdivinv.ec *

The following program divides one interval value by another and
displays the resulting numeric value.

*/

#include <stdio.h>

EXEC SQL include datetime;

main()
{

mint x;
char out_str[16];

EXEC SQL BEGIN DECLARE SECTION;
interval hour to minute hrtomin1, hrtomin2;
double res;

EXEC SQL END DECLARE SECTION;

printf("INVDIVINV Sample ESQL Program running.\n\n");

printf("Interval #1 (hour to minute) = 75:27\n");
incvasc("75:27", &hrtomin1);
printf("Interval #2 (hour to minute) = 19:10\n");
incvasc("19:10", &hrtomin2);

printf("---\n");
invdivinv(&hrtomin1, &hrtomin2, &res);
printf("Quotient (double) = %.1f\n", res);

printf("\nINVDIVINV Sample Program over.\n\n");
}

Output:
INVDIVINV Sample ESQL Program running.

Interval #1 (hour to minute) = 75.27
Interval #2 (hour to minute) = 19:10

B-166 IBM Informix ESQL/C Programmer’s Manual

Quotient (double) = 3.9

INVDIVINV Sample Program over.

The invextend() function
The invextend() function copies an interval value under a different qualifier.
Extending is the operation of adding or dropping fields of an INTERVAL value to
make it match a given qualifier. For INTERVAL values, both qualifiers must belong
to the same interval class: either the year to month class or the day to fraction(5)
class.

Syntax:
mint invextend(in_inv, out_inv)

intrvl_t *in_inv, *out_inv;

in_inv A pointer to the interval variable to extend.

out_inv A pointer to the interval variable with a valid qualifier to use for
the extension.

Usage:

The invextend() function copies the qualifier-field digits of in_inv interval variable
to the out_inv interval variable. The qualifier of the out_inv variable controls the
copy.

The function discards any fields in in_inv that are to the right of the
least-significant field in out_inv. The function fills in any fields in out_inv that are
not present in in_inv as follows:
v It fills the fields to the right of the least-significant field in in_inv with zeros.
v It sets the fields to the left of the most-significant field in in_inv to valid interval

values.

Return codes:

0 The conversion was successful.

<0 The conversion failed.

-1266 An interval value is incompatible with the operation.

-1268 A parameter contains an invalid interval qualifier.

Example:

The demo directory contains this sample program in the file invextend.ec. The
example illustrates interval extension. In the second result, the output contains
zeros in the seconds field, and the days field has been set to 3.
/*

* invextend.ec *

The following program illustrates INTERVAL extension. It extends an INTERVAL
value to another INTERVAL value with a different qualifier. Note that in the
second example, the output contains zeros in the seconds field and the
days field has been set to 3.

*/

#include <stdio.h>

Appendix B. ESQL/C function library B-167

EXEC SQL include datetime;

main()
{

mint x;
char out_str[16];

;
EXEC SQL BEGIN DECLARE SECTION;
interval hour to minute hrtomin;
interval hour to hour hrtohr;
interval day to second daytosec;

EXEC SQL END DECLARE SECTION;

printf("INVEXTEND Sample ESQL Program running.\n\n");

printf("Interval (hour to minute) value = 75.27\n");
incvasc("75:27", &hrtomin);

/* Extend to hour-to-hour and convert the internal format to
* ascii for displaying
*/

invextend(&hrtomin, &hrtohr);
intoasc(&hrtohr, out_str);
printf("Extended (hour to hour) value = %s\n", out_str);

/* Extend to day-to-second and convert the internal format to
* ascii for displaying

*/
invextend(&hrtomin, &daytosec);
intoasc(&daytosec, out_str);
printf("Extended (day to second) value =: %s\n", out_str);

printf("\nINVEXTEND Sample Program over.\n\n");
}

Output:
INVEXTEND Sample ESQL Program running.

Interval (hour to minute) value = 75:27
Extended (hour to hour) value = 75
Extended (day to second) value = 3 03:27:00

INVEXTEND Sample Program over.

The invmuldbl() function
The invmuldbl() function multiplies an interval value by a numeric value.

Syntax:
mint invmuldbl(iv, num, ov)

intrvl_t *iv;
double num;
intrvl_t *ov;

iv A pointer to the interval variable to multiply.

num The numeric double value.

ov A pointer to the interval variable with a valid qualifier.

Usage:

B-168 IBM Informix ESQL/C Programmer’s Manual

The invmuldbl() function multiplies the interval value in iv by num and stores the
result in ov. The value in num can be either positive or negative.

Both the input and output qualifiers must belong to the same interval class: either
the year to month class or the day to fraction(5) class. If the qualifier for ov is
different from the qualifier for iv (but of the same class), the invmuldbl() function
extends the result (as the invextend() function defines).

Return codes:

0 The multiplication was successful.

<0 The multiplication failed.

-1200 A numeric value is too large (in magnitude).

-1201 A numeric value is too small (in magnitude).

-1266 An interval value is incompatible with the operation.

-1268 A parameter contains an invalid interval qualifier.

Example:

The demo directory contains this sample program in the file invmuldbl.ec. The
example illustrates how to multiply an interval value by a numeric value. The
second multiplication illustrates the result of interval multiplication when the
input and output qualifiers are different.
/*

* invmuldbl.ec *

The following program multiplies an INTERVAL type variable by a numeric value
and stores the result in an INTERVAL variable. The operation is done twice,
using INTERVALs with different qualifiers to store the result.

*/

#include <stdio.h>

EXEC SQL include datetime;

main()
{

char out_str[16];

EXEC SQL BEGIN DECLARE SECTION;
interval hour to minute hrtomin1;
interval hour to minute hrtomin2;
interval day to second daytosec;

EXEC SQL END DECLARE SECTION;

printf("INVMULDBL Sample ESQL Program running.\n\n");

/* input is 25 hours, and 49 minutes */
printf("Interval (hour to minute) = 25:49\n");
incvasc("25:49", &hrtomin1);
printf("Multiplier (double) = 3.0\n");
printf("---\n");

/* Convert the internal format to ascii for displaying */
invmuldbl(&hrtomin1, (double) 3.0, &hrtomin2);
intoasc(&hrtomin2, out_str);
printf("Product #1 (hour to minute) = ’%s’\n", out_str);

Appendix B. ESQL/C function library B-169

/* Convert the internal format to ascii for displaying */
invmuldbl(&hrtomin1, (double) 3.0, &daytosec);
intoasc(&daytosec, out_str);
printf("Product #2 (day to second) = ’%s’\n", out_str);

printf("\nINVMULDBL Sample Program over.\n\n");
}

Output:
INVMULDBL Sample ESQL Program running.

Interval (hour to minute) = 25:49
Multiplier (double) = 3.0

Product #1 (hour to minute) = ’ 77:27’
Product #2 (day to second) = ’ 3 05:27:00’

INVMULDBL Sample Program over.

The ldchar() function
The ldchar() function copies a fixed-length string into a null-terminated string and
removes any trailing blanks.

Syntax:
void ldchar(from, count, to)

char *from;
mint count;
char *to;

from A pointer to the fixed-length source string.

count The number of bytes in the fixed-length source string.

to A pointer to the first byte of a null-terminated destination string.
The to argument can point to the same location as the from
argument, or to a location that overlaps the from argument. If this
is the case, ldchar() does not preserve the value to which from
points.

Example:

This sample program is in the ldchar.ec file in the demo directory.
/*

* ldchar.ec *

The following program loads characters to specific locations in an array
that is initialized to z’s. It displays the result of each ldchar()
operation.

*/

#include <stdio.h>

main()
{

static char src1[] = "abcd ";
static char src2[] = "abcd g ";
static char dest[40];

printf("LDCHAR Sample ESQL Program running.\n\n");

B-170 IBM Informix ESQL/C Programmer’s Manual

ldchar(src1, stleng(src1), dest);
printf("\tSource: [%s]\n\tDestination: [%s]\n\n", src1, dest);

ldchar(src2, stleng(src2), dest);
printf("\tSource: [%s]\n\tDestfination: [%s]\n", src2, dest);

printf("\nLDCHAR Sample Program over.\n\n");
}

Output:
LDCHAR Sample ESQL Program running.

Source: [abcd]
Destination: [abcd]

Source: [abcd g]
Destination: [abcd g]

LDCHAR Sample Program over.

The rdatestr() function
The rdatestr() function converts an internal DATE to a character string.

Syntax:
mint rdatestr(jdate, outbuf)

int4 jdate;
char *outbuf;

jdate The internal representation of the date to format.

outbuf A pointer to the buffer that receives the string for the jdate value.

Usage:

For the default locale, U.S. English, the rdatestr() function determines how to
interpret the format of the character string with the following precedence:
1. The format that the DBDATE environment variable specifies (if DBDATE is

set). For more information about DBDATE, see the IBM Informix Guide to SQL:
Reference.

2. The format that the GL_DATE environment variable specifies (if GL_DATE is
set). For more information about GL_DATE, see the IBM Informix GLS User's
Guide.

3. The default date form: mm/dd/yyyy.

When you use a nondefault locale and do not set the DBDATE or GL_DATE
environment variable, rdatestr() uses the date end-user format that the client locale
defines. For more information, see the IBM Informix GLS User's Guide.

Return codes:

0 The conversion was successful.

<0 The conversion failed.

-1210 The internal date could not be converted to the character string
format.

Appendix B. ESQL/C function library B-171

-1212 Data conversion format must contain a month, day, or year
component. DBDATE specifies the data conversion format.

Example:

The demo directory contains this sample program in the rtoday.ec file.
/*

* rtoday.ec *

The following program obtains today’s date from the system.
It then converts it to ASCII for displaying the result.

*/

#include <stdio.h>

main()
{

mint errnum;
char today_date[20];
int4 i_date;

printf("RTODAY Sample ESQL Program running.\n\n");

/* Get today’s date in the internal format */
rtoday(&i_date);

/* Convert date from internal format into a mm/dd/yyyy string */
if ((errnum = rdatestr(i_date, today_date)) == 0)

printf("\n\tToday’s date is %s.\n", today_date);
else

printf("\n\tError %d in converting date to mm/dd/yyyy\n", errnum);

printf("\nRTODAY Sample Program over.\n\n");
}

Output:
RTODAY Sample ESQL Program running.

Today’s date is 10/26/2007.

RTODAY Sample Program over.

The rdayofweek() function
The rdayofweek() function returns the day of the week as an integer value for an
internal DATE.

Syntax:
mint rdayofweek(jdate)

int4 jdate;

jdate The internal representation of the date.

Return codes:

0 Sunday

1 Monday

2 Tuesday

3 Wednesday

B-172 IBM Informix ESQL/C Programmer’s Manual

4 Thursday

5 Friday

6 Saturday

Example:

The demo directory contains this sample program in the rdayofweek.ec file.
/*

* rdayofweek.ec *

The following program accepts a date entered from the console.
*/

#include <stdio.h>

main()
{

mint errnum;
int4 i_date;
char *day_name;
char date[20];
int x;

static char fmtstr[9] = "mmddyyyy";

printf("RDAYOFWEEK Sample ESQL Program running.\n\n");

/* Allow user to enter a date */
printf("Enter a date as a single string, month.day.year\n");
gets(date);

printf("\nThe date string is %s.\n", date);

/* Put entered date in internal format */
if (x = rdefmtdate(&i_date, fmtstr, date))

printf("Error %d on rdefmtdate conversion\n", x);
else

{
/* Figure out what day of the week i_date is */
switch (rdayofweek(i_date))

{
case 0: day_name = "Sunday";

break;
case 1: day_name = "Monday";

break;
case 2: day_name = "Tuesday";

break;
case 3: day_name = "Wednesday";

break;
case 4: day_name = "Thursday";

break;
case 5: day_name = "Friday";

break;
case 6: day_name = "Saturday";

break;
}

printf("This date is a %s.\n", day_name);
}

printf("\nRDAYOFWEEK Sample Program over.\n\n");
}

Appendix B. ESQL/C function library B-173

Output:
RDAYOFWEEK Sample ESQL Program running.

Enter a date as a single string, month.day.year
10.13.07

The date string is 10.13.07.
This date is a Saturday.

RDAYOFWEEK Sample Program over.

The rdefmtdate() function
The rdefmtdate() function uses a formatting mask to convert a character string to
an internal DATE format.

Syntax:
mint rdefmtdate(jdate, fmtstring, inbuf)

int4 *jdate;
char *fmtstring;
char *inbuf;

jdate A pointer to a int4 integer value that receives the internal DATE
value for the inbuf string.

fmtstring A pointer to the buffer that contains the formatting mask to use the
inbuf string.

inbuf A pointer to the buffer that contains the date string to convert.

Usage:

The fmtstring argument of the rdefmtdate() function points to the date-formatting
mask, which contains formats that describe how to interpret the date string. For
more information about these date formats, see “Formatting date strings” on page
6-1

The input string and the fmtstring must be in the same sequential order in terms of
month, day, and year. They need not, however, contain the same literals or the
same representation for month, day, and year.

You can include the weekday format (ww), in fmtstring, but the database server
ignores that format. Nothing from the inbuf corresponds to the weekday format.

The following combinations of fmtstring and input are valid.

Formatting mask Input

mmddyy Dec. 25th, 2007

mmddyyyy Dec. 25th, 2007

mmm. dd. yyyy dec 25 2007

mmm. dd. yyyy DEC-25-2007

mmm. dd. yyyy 122507

mmm. dd. yyyy 12/25/07

yy/mm/dd 07/12/25

yy/mm/dd 2007, December 25th

B-174 IBM Informix ESQL/C Programmer’s Manual

yy/mm/dd In the year 2007, the month of December, it is the
25th day

dd-mm-yy This 25th day of December, 2007

If the value stored in inbuf is a four-digit year, the rdefmtdate() function uses that
value. If the value stored in inbuf is a two-digit year, the rdefmtdate() function uses
the value of the DBCENTURY environment variable to determine which century
to use. If you do not set DBCENTURY, Informix ESQL/C uses the 20th century.
For information about how to set DBCENTURY, see the IBM Informix Guide to
SQL: Reference.

When you use a nondefault locale whose dates contain eras, you can use
extended-format strings in the fmtstring argument of rdefmtdate(). For more
information, see the IBM Informix GLS User's Guide.

Return codes:

If you use an invalid date-string format, rdefmtdate() returns an error code and
sets the internal DATE to the current date. The following are possible return codes.

0 The operation was successful.

-1204 The *input parameter specifies an invalid year.

-1205 The *input parameter specifies an invalid month.

-1206 The *input parameter specifies an invalid day.

-1209 Because *input does not contain delimiters between the year,
month, and day, the length of *input must be exactly six or eight
bytes.

-1212 *fmtstring does not specify a year, a month, and a day.

Example:

The demo directory contains this sample program in the rdefmtdate.ec file.
/*

* rdefmtdate.ec *

The following program accepts a date entered from the console,
converts it into the internal date format using rdefmtdate().
It checks the conversion by finding the day of the week.

*/

#include <stdio.h>

main()
{

mint x;
char date[20];
int4 i_date;
char *day_name;

static char fmtstr[9] = "mmddyyyy";

printf("RDEFMTDATE Sample ESQL Program running.\n\n");

printf("Enter a date as a single string, month.day.year\n");
gets(date);

Appendix B. ESQL/C function library B-175

printf("\nThe date string is %s.\n", date);

if (x = rdefmtdate(&i_date, fmtstr, date))
printf("Error %d on rdefmtdate conversion\n", x);

else
{
/* Figure out what day of the week i_date is */

switch (rdayofweek(i_date))
{
case 0: day_name = "Sunday";

break;
case 1: day_name = "Monday";

break;
case 2: day_name = "Tuesday";

break;
case 3: day_name = "Wednesday";

break;
case 4: day_name = "Thursday";

break;
case 5: day_name = "Friday";

break;
case 6: day_name = "Saturday";

break;
}

printf("\nThe day of the week is %s.\n", day_name);
}

printf("\nRDEFMTDATE Sample Program over.\n\n");
}

Output:
RDEFMTDATE Sample ESQL Program running.

Enter a date as a single string, month.day.year
080894

The date string is 080894
The day of the week is Monday.

RDEFMTDATE Sample Program over.

The rdownshift() function
The rdownshift() function changes all the uppercase characters within a
null-terminated string to lowercase characters.

Syntax:
void rdownshift(s)

char *s;

s A pointer to a null-terminated string.

Usage:

The rdownshift() function refers to the current locale to determine uppercase and
lowercase letters. For the default locale, U.S. English, rdownshift() uses the ASCII
lowercase (a-z) and uppercase (A-Z) letters.

If you use a nondefault locale, rdownshift() uses the lowercase and uppercase
letters that the locale defines. For more information, see the IBM Informix GLS
User's Guide.

B-176 IBM Informix ESQL/C Programmer’s Manual

Return codes:

This sample program is in the rdownshift.ec file in the demo directory.
/*

* rdownshift.ec *

The following program uses rdownshift() on a string containing
alphanumeric and punctuation characters.

*/

#include <stdio.h>

main()
{

static char string[] = "123ABCDEFGHIJK’.;";

printf("RDOWNSHIFT Sample ESQL Program running.\n\n");

printf("\tInput string...: [%s]\n", string);
rdownshift(string);
printf("\tAfter downshift: [%s]\n", string);

printf("\nRDOWNSHIFT Sample Program over.\n\n");
}

Output:
RDOWNSHIFT Sample ESQL Program running.

Input string...: [123ABCDEFGHIJK’.;]
After downshift: [123abcdefghijk’.;]

RDOWNSHIFT Sample Program over.

The ReleaseConnect() function (Windows)
The ReleaseConnect() function is available only in Windows environments. It
releases, or terminates, the explicit connection and clears all allocated memory.

Important: Informix ESQL/C supports the ReleaseConnect() connection library
function for compatibility with Version 5.01 Informix ESQL/C for
Windows applications. When you write new Informix ESQL/C
applications for Windows environments, use the SQL DISCONNECT
statement to terminate an established explicit connection.

Syntax:
void *ReleaseConnect (void *CnctHndl)

CnctHndl A connection handle returned by a previous GetConnect() call.

Usage:

The ReleaseConnect() function maps to a simple SQL DISCONNECT statement
(one without an ALL, CURRENT, or DEFAULT option). The ReleaseConnect() call
by itself is equivalent to the following SQL statement:
EXEC SQL disconnect db_connection;

Appendix B. ESQL/C function library B-177

In this example, db_connection is the name of an existing connection that the
GetConnect() function has established. You pass this db_connection name to
ReleaseConnect() as an argument; it is a connection handle for the desired
connection.

For example, the following code fragment uses ReleaseConnect() to close an
explicit connection to the stores7 database on the default database server:
void *cnctHndl;...

cnctHndl = GetConnect();
EXEC SQL database stores7;...

EXEC SQL close database;
cnctHndl = ReleaseConnect(cnctHndl);

Call ReleaseConnect() once for each connection that GetConnect() has established.
The ReleaseConnect() function closes any open database before it terminates the
current connection. It fails if any transactions are open in the current connection.

It is good programming practice to close the database explicitly with the SQL
CLOSE DATABASE statement before the call to ReleaseConnect().

Important: Because the ReleaseConnect() function maps to a DISCONNECT
statement, it sets the SQLCODE and SQLSTATE status codes to
indicate the success or failure of the connection termination request.
This behavior differs from that of ReleaseConnect() in Version 5.01
Informix ESQL/C for Windows, in which this function did not set the
SQLCODE and SQLSTATE values.

The ReleaseConnect() function differs from the DISCONNECT statement in the
way that it obtains the connection name. ReleaseConnect() uses an internally
generated name that is stored in the connection handle; you must specify this
handle as an argument to the ReleaseConnect() call. The DISCONNECT statement
uses an internally generated connection name only for a connection that a
CONNECT statement without an AS clause has established; if the connection has a
user-defined connection name (which the AS clause of the CONNECT statement
specifies), DISCONNECT uses this name.

Return codes:

CnctHndl The call to ReleaseConnect() was successful if the function has
returned a connection handle that matches the one passed to it.

The rfmtdate() function
The rfmtdate() function uses a formatting mask to convert an internal DATE
format to a character string.

Syntax:
mint rfmtdate(jdate, fmtstring, outbuf)

int4 jdate;
char *fmtstring;
char *outbuf;

jdate The internal representation of a date to convert.

B-178 IBM Informix ESQL/C Programmer’s Manual

fmtstring A pointer to the buffer that contains the formatting mask to use the
jdate value.

outbuf A pointer to the buffer that receives the formatted string for the
jdate value.

Usage:

The fmtstring argument of the rfmtdate() function points to the date-formatting
mask, which contains formats that describe how to format the date string. For
more information about these date formats, see “Formatting Numeric Strings” on
page 5-9.

The examples in the following list use the formatting mask in fmtstring to convert
the integer jdate, whose value corresponds to December 25, 2007, to a formatted
string outbuf. You must specify one or more fields.

Formatting mask Formatted tesult

"mmdd" 1225

"mmddyy" 122507

"ddmmyy" 251207

"yydd" 0725

"yymmdd" 071225

"dd" 25

"yy/mm/dd" 07/12/25

"yy mm dd" 07 12 25

"yy-mm-dd" 07-12-25

"mmm. dd, yyyy" Dec. 25, 2007

"mmm dd yyyy" Dec 25 2007

"yyyy dd mm" 2007 25 12

"mmm dd yyyy" Dec 25 2007

"ddd, mmm. dd, yyyy" Tue, Dec. 25, 2007

"ww mmm. dd, yyyy" Tue Dec. 25, 2007

"(ddd) mmm. dd, yyyy" (Tue) Dec. 25, 2007

"mmyyddmm" 25071225

"" unpredictable result

When you use a nondefault locale whose dates contain eras, you can use
extended-format strings in the fmtstring argument of rfmtdate(). For more
information, see the IBM Informix GLS User's Guide.

Return codes:

0 The conversion was successful.

-1210 The internal date cannot be converted to month-day-year format.

-1211 The program ran out of memory (memory-allocation error).

-1212 Format string is NULL or invalid.

Appendix B. ESQL/C function library B-179

Example:

The demo directory contains this sample program in the rfmtdate.ec file.
/*

* rfmtdate.ec *

The following program converts a date from internal format to
a specified format using rfmtdate().

*/

#include <stdio.h>

main()
{

char the_date[15];
int4 i_date;
mint x;
int errnum;
static short mdy_array[3] = { 12, 10, 2007 };

printf("RFMTDATE Sample ESQL Program running.\n\n");

if ((errnum = rmdyjul(mdy_array, &i_date)) == 0)
{

/*
* Convert date to "mm-dd-yyyy" format
*/

if (x = rfmtdate(i_date, "mm-dd-yyyy", the_date))
printf("First rfmtdate() call failed with error %d\n", x);

else
printf("\tConverted date (mm-dd-yyy): %s\n", the_date);

/*
* Convert date to "mm.dd.yy" format
*/

if (x = rfmtdate(i_date, "mm.dd.yy", the_date))
printf("Second rfmtdate() call failed with error %d\n",x);

else
printf("\tConverted date (mm.dd.yy): %s\n", the_date);

/*
* Convert date to "mmm ddth, yyyy" format
*/

if (x = rfmtdate(i_date, "mmm ddth, yyyy", the_date))
printf("Third rfmtdate() call failed with error %d\n", x);

else
printf("\tConverted date (mmm ddth, yyyy): %s\n", the_date);

}

printf("\nRFMTDATE Sample Program over.\n\n");
}

Output:
RFMTDATE Sample ESQL Program running.

Converted date (mm-dd-yyy): 12-10-2007.
Converted date (mm.dd.yy): 12.10.07.
Converted date (mmm ddth, yyyy): Dec 10th, 2007

RFMTDATE Sample Program over.

B-180 IBM Informix ESQL/C Programmer’s Manual

The rfmtdec() function
The rfmtdec() function uses a formatting mask to convert a decimal value to a
character string.

Syntax:
mint rfmtdec(dec_val, fmtstring, outbuf)

dec_t *dec_val;
char *fmtstring;
char *outbuf;

dec_val A pointer to the decimal value to format.

fmtstring A pointer to a character buffer that contains the formatting mask to
use for the dec_val value.

outbuf A pointer to a character buffer that receives the formatted string
for the dec_val value.

Usage:

The fmtstring argument of the rfmtdec() function points to the numeric-formatting
mask, which contains characters that describe how to format the decimal value.
For more information about these formatting characters, see “Formatting Numeric
Strings” on page 5-9.

When you use rfmtdec() to format MONEY values, the function uses the currency
symbols that the DBMONEY environment variable specifies. If you do not set this
environment variable, rfmtdec() uses the currency symbols that the client locale
defines. The default locale, U.S. English, defines currency symbols as if you set
DBMONEY to “$,.”. (For a discussion of DBMONEY, see theIBM Informix Guide
to SQL: Reference.)

When you use a nondefault locale that has a multibyte code set, rfmtdec()
supports multibyte characters in the format string. For more information, see the
IBM Informix GLS User's Guide.

Return codes:

0 The conversion was successful.

-1211 The program ran out of memory (memory-allocation error).

-1217 The format string is too large.

Example:

The demo directory contains this sample program in the file rfmtdec.ec.
/*

* rfmtdec.ec *

The following program applies a series of format specifications to each
of a series of DECIMAL numbers and displays each result.

*/

#include <stdio.h>

EXEC SQL include decimal;

char *strings[] =

Appendix B. ESQL/C function library B-181

{
"210203.204",
"4894",
"443.334899312",
"-12344455",
0
};

char *formats[] =
{
"**###########",
"$$$$$$$$$$.##",
"(&&,&&&,&&&.)",
"<,<<<,<<<,<<<",
"$*********.**",
0
};

char result[41];

main()
{

mint x;
mint s = 0, f;
dec_t num;

printf("RFMTDEC Sample ESQL Program running.\n\n");

while(strings[s])
{
/*
* Convert each string to DECIMAL
*/

printf("String = %s\n", strings[s]);
if (x = deccvasc(strings[s], strlen(strings[s]), &num))

{
printf("Error %d in converting string [%s] to decimal\n",

x, strings[s]);
break;
}

f = 0;
while(formats[f])

{
/*
* Format DECIMAL num for each of formats[f]
*/

rfmtdec(&num, formats[f], result);
/*
* Display result and bump to next format (f++)
*/

result[40] = ’\0’;
printf(" Format String = ’%s’\t", formats[f++]);
printf("\tResult = ’%s’\n", result);
}

++s; /* bump to next string */
printf("\n"); /* separate result groups */
}

printf("\nRFMTDEC Sample Program over.\n\n");
}

Output:

B-182 IBM Informix ESQL/C Programmer’s Manual

RFMTDEC Sample ESQL Program running.

String = 210203.204
Format String = ’**###########’ Result = ’** 210203’
Format String = ’$$$$$$$$$$.##’ Result = ’ $210203.20’
Format String = ’(&&,&&&,&&&.)’ Result = ’ 000210,203. ’
Format String = ’<,<<<,<<<,<<<’ Result = ’210,203’
Format String = ’ $*********.**’ Result = ’$***210203.20’

String = 4894
Format String = ’**###########’ Result = ’ ** 4894’
Format String = ’$$$$$$$$$$.##’ Result = ’ $4894.00’
Format String = ’(&&,&&&,&&&.)’ Result = ’ 000004,894. ’
Format String = ’<,<<<,<<<,<<<’ Result = ’4,894’
Format String = ’ $*********.**’ Result = ’$*****4894.00’

String = 443.334899312
Format String = ’**###########’ Result = ’ ** 443’
Format String = ’$$$$$$$$$$.##’ Result = ’ $443.33’
Format String = ’(&&,&&&,&&&.)’ Result = ’ 0000000443. ’
Format String = ’<,<<<,<<<,<<<’ Result = ’ 443’
Format String = ’ $*********.**’ Result = ’$******443.33’

String = -12344455
Format String = ’**###########’ Result = ’ ** 12344455’
Format String = ’$$$$$$$$$$.##’ Result = ’ $12344455.00’
Format String = ’(&&,&&&,&&&.)’ Result = ’(12,344,455.)’
Format String = ’<,<<<,<<<,<<<’ Result = ’12,344,455’
Format String = ’ $*********.**’ Result = ’ $*12344455.00’

RFMTDEC Sample Program over.

The rfmtdouble() function
The rfmtdouble() function uses a formatting mask to convert a double value to a
character string.

Syntax:
mint rfmtdouble(dbl_val, fmtstring, outbuf)

double dbl_val;
char *fmtstring;
char *outbuf;

dbl_val The double number to format.

fmtstring A pointer to a character buffer that contains the formatting mask
for the value in dbl_val.

outbuf A pointer to a character buffer that receives the formatted string
for the value in dbl_val.

Usage:

The fmtstring argument of the rfmtdouble() function points to the
numeric-formatting mask, which contains characters that describe how to format
the double value. For more information about these formatting characters, see
“Formatting Numeric Strings” on page 5-9.

When you use rfmtdouble() to format MONEY values, the function uses the
currency symbols that the DBMONEY environment variable specifies. If you do
not set this environment variable, rfmtdouble() uses the currency symbols that the

Appendix B. ESQL/C function library B-183

client locale defines. The default locale, U.S. English, defines currency symbols as if
you set DBMONEY to “$,.”. (For a discussion of DBMONEY, see the IBM
Informix Guide to SQL: Reference.)

When you use a nondefault locale that has a multibyte code set, rfmtdouble()
supports multibyte characters in the format string. For more information, see the
IBM Informix GLS User's Guide.

Return codes:

0 The conversion was successful.

-1211 The program ran out of memory (memory-allocation error).

-1217 The format string is too large.

Example:

The demo directory contains this sample program in the file rfmtdouble.ec.
/*

* rfmtdouble.ec *

The following program applies a series of format specifications to a
series of doubles and displays the result of each format.

*/

#include <stdio.h>

double dbls[] =
{
210203.204,
4894,
443.334899312,
-12344455,
0
};

char *formats[] =
{
"#############",
"<,<<<,<<<,<<<",
"$$$$$$$$$$.##",
"(&&,&&&,&&&.)",
"$*********.**",
0
};

char result[41];

main()
{

mint x;
mint i = 0, f;

printf("RFMTDOUBLE Sample ESQL Program running.\n\n");

while(dbls[i]) /* for each number in dbls */
{
printf("Double Number = %g\n", dbls[i]);
f = 0;
while(formats[f]) /* format with each of formats[] */

{

B-184 IBM Informix ESQL/C Programmer’s Manual

if (x = rfmtdouble(dbls[i], formats[f], result))
{
printf("Error %d in formatting %g using %s\n",

x, dbls[i], formats[f]);
break;
}

/*
* Display each result and bump to next format (f++)
*/

result[40] = ’\0’;
printf(" Format String = ’%s’\t", formats[f++]);
printf("\tResult = ’%s’\n", result);
}

++i; /* bump to next double */
printf("\n"); /* separate result groups */
}

printf("\nRFMTDOUBLE Sample Program over.\n\n");
}

Output:
RFMTDOUBLE Sample ESQL Program running.

Double Number = 210203
Format String = ’#############’ Result = ’ 210203’
Format String = ’<,<<<,<<<,<<<’ Result = ’210,203’
Format String = ’$$$$$$$$$$.##’ Result = ’ $210203.20’
Format String = ’(&&,&&&,&&&.)’ Result = ’ 000210,203. ’
Format String = ’$*********.**’ Result = ’$***210203.20’

Double Number = 4894
Format String = ’#############’ Result = ’ 4894’
Format String = ’<,<<<,<<<,<<<’ Result = ’4,894’
Format String = ’$$$$$$$$$$.##’ Result = ’ $4894.00’
Format String = ’(&&,&&&,&&&.)’ Result = ’ 000004,894. ’
Format String = ’$*********.**’ Result = ’$*****4894.00’

Double Number = 443.335
Format String = ’#############’ Result = ’ 443’
Format String = ’<,<<<,<<<,<<<’ Result = ’443’
Format String = ’$$$$$$$$$$.##’ Result = ’ $443.33’
Format String = ’(&&,&&&,&&&.)’ Result = ’ 0000000443. ’
Format String = ’$*********.**’ Result = ’$******443.33’

Double Number = -1.23445e+07
Format String = ’#############’ Result = ’ 12344455’
Format String = ’<,<<<,<<<,<<<’ Result = ’12,344,455’
Format String = ’$$$$$$$$$$.##’ Result = ’ $12344455.00’
Format String = ’(&&,&&&,&&&.)’ Result = ’(12,344,455.)’
Format String = ’$*********.**’ Result = ’$*12344455.00’

RFMTDOUBLE Sample Program over.

The rfmtlong() function
The rfmtlong() function uses a formatting mask to convert a C long value to a
character string.

Syntax:
mint rfmtlong(lng_val, fmtstring, outbuf)

int4 lng_val;
char *fmtstring;
char *outbuf;

Appendix B. ESQL/C function library B-185

lng_val The int4 integer that rmtlong() converts to character value.

fmtstring A pointer to a character buffer that contains the formatting mask
for the value in lng_val.

outbuf A pointer to a character buffer that receives the formatted string
for the value in lng_val.

Usage:

The fmtstring argument of the rfmtlong() function points to the numeric-formatting
mask, which contains characters that describe how to format the long integer
value. For more information about these formatting characters, see “Formatting
Numeric Strings” on page 5-9.

When you use rfmtlong() to format MONEY values, the function uses the currency
symbols that the DBMONEY environment variable specifies. If you do not set this
environment variable, rfmtlong() uses the currency symbols that the client locale
defines. The default locale, U.S. English, defines currency symbols as if you set
DBMONEY to “$,.”. (For a discussion of DBMONEY, see the IBM Informix Guide
to SQL: Reference.)

When you use a nondefault locale that has a multibyte code set, rfmtlong()
supports multibyte characters in the format string. For more information, see the
IBM Informix GLS User's Guide.

Return codes:

0 The conversion was successful.

-1211 The program ran out of memory (memory-allocation error).

-1217 The format string is too large.

Example:

The demo directory contains this sample program in the file rfmtlong.ec.
/*

* rfmtlong.ec *

The following program applies a series of format specifications to a series
of longs and displays the result of each format.

*/

#include <stdio.h>

long lngs[] =
{
21020304,
334899312,
-334899312,
-12344455,
0
};

char *formats[] =
{
"################",
"$$$$$$$$$$$$$.##",
"(&,&&&,&&&,&&&.)",
"<<<<,<<<,<<<,<<<",

B-186 IBM Informix ESQL/C Programmer’s Manual

"$************.**",
0
};

char result[41];

main()
{

mint x;
mint s = 0, f;

printf("RFMTLONG Sample ESQL Program running.\n\n");

while(lngs[s]) /* for each long in lngs[] */
{
printf("Long Number = %d\n", lngs[s]);
f = 0;
while(formats[f]) /* format with each of formats[] */

{
if (x = rfmtlong(lngs[s], formats[f], result))

{
printf("Error %d in formatting %d using %s.\n",

x, lngs[s], formats[f]);
break;
}

/*
* Display result and bump to next format (f++)
*/

result[40] = ’\0’;
printf(" Format String = ’%s’\t", formats[f++]);
printf("\tResult = ’%s’\n", result);
}

++s; /* bump to next long */
printf("\n"); /* separate display groups */
}

printf("\nRFMTLONG Sample Program over.\n\n");
}

Output:
RFMTLONG ESQL Sample Program running.

Long Number = 21020304
Format String = ’################’ Result = ’ 21020304’
Format String = ’$$$$$$$$$$$$$.##’ Result = ’ $21020304.00’
Format String = ’(&,&&&,&&&,&&&.)’ Result = ’ 00021,020,304. ’
Format String = ’<<<<,<<<,<<<,<<<’ Result = ’21,020,304’
Format String = ’$************.**’ Result = ’$****21020304.00’

Long Number = 334899312
Format String = ’################’ Result = ’ 334899312’
Format String = ’$$$$$$$$$$$$$.##’ Result = ’ $334899312.00’
Format String = ’(&,&&&,&&&,&&&.)’ Result = ’ 00334,899,312. ’
Format String = ’<<<<,<<<,<<<,<<<’ Result = ’334,899,312’
Format String = ’$************.**’ Result = ’$***334899312.00’

Long Number = -334899312
Format String = ’################’ Result = ’ 334899312’
Format String = ’$$$$$$$$$$$$$.##’ Result = ’ $334899312.00’
Format String = ’(&,&&&,&&&,&&&.)’ Result = ’(00334,899,312.)’
Format String = ’<<<<,<<<,<<<,<<<’ Result = ’334,899,312’
Format String = ’$************.**’ Result = ’$***334899312.00’

Appendix B. ESQL/C function library B-187

Long Number = -12344455
Format String = ’################’ Result = ’ 12344455’
Format String = ’$$$$$$$$$$$$$.##’ Result = ’ $12344455.00’
Format String = ’(&,&&&,&&&,&&&.)’ Result = ’(00012,344,455.)’
Format String = ’<<<<,<<<,<<<,<<<’ Result = ’12,344,455’
Format String = ’$************.**’ Result = ’ $****12344455.00’

RFMTLONG Sample Program over.

The rgetlmsg() function
The rgetlmsg() function retrieves the corresponding error message for a given
Informix-specific error number. The rgetlmsg() function allows for error numbers
in the range of a long integer.

Syntax:
mint rgetlmsg(msgnum, msgstr, lenmsgstr, msglen)

int4 msgnum;
char *msgstr;
mint lenmsgstr;
mint *msglen;

msgnum The error number. The four-byte parameter provides for the full
range of Informix-specific error numbers.

msgstr A pointer to the buffer that receives the message string (the output
buffer).

lenmsgstr The size of the msgstr output buffer. Make this value the size of
the largest message that you expect to retrieve.

msglen A pointer to the mint that contains the actual length of the
message that rgetlmsg() returns.

Usage:

The msgnum error number is typically the value of SQLCODE (or sqlca.sqlcode).
You can also retrieve message text for ISAM errors (in sqlca.sqlerrd[1]). The
rgetlmsg() function uses the IBM Informix error message files (in the
$INFORMIXDIR/msg directory) for error message text.

The rgetlmsg() function returns the actual size of the message that you request in
the fourth parameter, msglen. You can use this value to adjust the size of the
message area if it is too small. If the returned message is longer than the buffer
that you provide, the function truncates the message. You can also use the msglen
value to display only that portion of the msgstr message buffer that contains error
text.

Return codes:

0 The conversion was successful.

-1227 Message file not found.

-1228 Message number not found in message file.

-1231 Cannot seek within message file.

-1232 Message buffer too small.

B-188 IBM Informix ESQL/C Programmer’s Manual

For error message documentation, use the finderr or Error Message utility or view
IBM Informix Error Messages at the IBM Informix information center at
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp.

Example:

This sample program is in the rgetlmsg.ec file in the Informix ESQL/C demo
directory.
/*
* rgetlmsg.ec *
*
* The following program demonstrates the usage of rgetlmsg() function.
* It displays an error message after trying to create a table that
* already exists.
*/

EXEC SQL include sqlca; /* this include is optional */

main()
{

mint msg_len;
char errmsg[400];

printf("\nRGETLMSG Sample ESQL Program running.\n\n");
EXEC SQL connect to ’stores7’;

EXEC SQL create table customer (name char(20));

if(SQLCODE != 0)
{
rgetlmsg(SQLCODE, errmsg, sizeof(errmsg), &msg_len);
printf("\nError %d: ", SQLCODE);
printf(errmsg, sqlca.sqlerrm);
}

printf("\nRGETLMSG Sample Program over.\n\n");
}

This example uses the error message parameter in sqlca.sqlerrm to display the
name of the table. This use of sqlca.sqlerrm is valid because the error message
contains a format parameter that printf() recognizes. If the error message did not
contain the format parameter, no error would result.

Output:
RGETLMSG Sample ESQL Program running.

Error -310: Table (informix.customer) already exists in database.

RGETLMSG Sample Program over.

The rgetmsg() function
The rgetmsg() function retrieves the error message text for a given
Informix-specific error number. The rgetmsg() function can handle a short error
number and, therefore, can only handle error numbers in the range of -32768 to
+32767. For this reason, use the rgetlmsg() function in all new IBM Informix
ESQL/C code.

Syntax:

Appendix B. ESQL/C function library B-189

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp

mint rgetmsg(msgnum, msgstr, lenmsgstr)
mint msgnum;
char *msgstr;
mint lenmsgstr;

msgnum The error number. The two-byte parameter restricts error numbers
to between -32768 and +32767.

msgstr A pointer to the buffer that receives the message string (the output
buffer).

lenmsgstr The size of the msgstr output buffer. Make this value the size of the
largest message that you expect to retrieve.

Usage:

Typically SQLCODE (sqlca.sqlcode) contains the error number. You can also
retrieve message text for ISAM errors (in sqlca.sqlerrd[1]). The rgetmsg() function
uses the Informix error message files (in the $INFORMIXDIR/msg directory) for
error message text. If the message is longer than the size of the buffer that you
provide, the function truncates the message to fit.

Important: Informix ESQL/C supports the rgetmsg() function for compatibility
with earlier versions. Some Informix error numbers currently exceed
the range that the short integer, msgnum, supports. The rgetlmsg()
function, which supports long integers as error numbers, is
recommended over rgetmsg().

If your program passes the value in the SQLCODE variable (or sqlca.sqlcode)
directly as msgnum, cast the SQLCODE value as a short data type. The msgnum
argument of rgetmsg() has a short data type while the SQLCODE value is has a
long data type.

Return codes:

0 The conversion was successful.

-1227 Message file not found.

-1228 Message number not found in message file.

-1231 Cannot seek within message file.

-1232 Message buffer too small.

For error message documentation, use the finderr or Error Message utility or view
IBM Informix Error Messages at the IBM Informix information center at
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp.

Example:

This sample program is in the rgetmsg.ec file in the Informix ESQL/C demo
directory.
/*
* rgetmsg.ec *
*
* The following program demonstrates the usage of the rgetmsg() function.
* It displays an error message after trying to create a table that already
* exists.
*/

EXEC SQL include sqlca; /* this include is optional */

B-190 IBM Informix ESQL/C Programmer’s Manual

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp

main()
{

char errmsg[400];

printf("\nRGETMSG Sample ESQL Program running.\n\n");
EXEC SQL connect to ’stores7’;

EXEC SQL create table customer (name char(20));
if(SQLCODE != 0)
{
rgetmsg((short)SQLCODE, errmsg, sizeof(errmsg));
printf("\nError %d: ", SQLCODE);
printf(errmsg, sqlca.sqlerrm);
}

printf("\nRGETMSG Sample Program over.\n\n");
}

Output:
RGETMSG Sample ESQL Program running.

Error -310: Table (informix.customer) already exists in database.

RGETMSG Sample Program over.

The risnull() function
The risnull() function checks whether a C or an IBM Informix ESQL/C variable
contains a null value.

Syntax:
mint risnull(type; ptrvar)

mint type;
char *ptrvar;

type An integer that corresponds to the data type of a C or Informix
ESQL/C variable. This type can be any data type except var binary
or an lvarchar pointer variable. For more information, see “Data
Type Constants” on page 3-3

ptrvar A pointer to the C or Informix ESQL/C variable.

Usage:

The risnull() function determines whether Informix ESQL/C variables of all data
types except var binary and lvarchar pointer variables contain a null value. To
determine whether a var binary or lvarchar pointer host variable contains null, use
the ifx_var_isnull() macro. For more information, see “The ifx_var_isnull()
function” on page B-153.

Return codes:

1 The variable does contain a null value.

0 The variable does not contain a null value.

Example:

This sample program is in the risnull.ec file in the demo directory.

Appendix B. ESQL/C function library B-191

/*
* risnull.ec *

This program checks the paid_date column of the orders table for NULL
to determine whether an order has been paid.

*/

#include <stdio.h>

EXEC SQL include sqltypes;

#define WARNNOTIFY 1
#define NOWARNNOTIFY 0

main()
{

char ans;
int4 ret, exp_chk();

EXEC SQL BEGIN DECLARE SECTION;
int4 order_num;

mint order_date, ship_date, paid_date;
EXEC SQL END DECLARE SECTION;

printf("RISNULL Sample ESQL Program running.\n\n");
EXEC SQL connect to ’stores7’; /* open stores7 database*/
exp_chk("CONNECT TO stores7", NOWARNNOTIFY)

EXEC SQL declare c cursor for
select order_num, order_date, ship_date, paid_date from orders;

EXEC SQL open c;
if(exp_chk("OPEN c", WARNNOTIFY) == 1) /* Found warnings */
exit(1);

printf("\n Order#\tPaid?\n"); /* print column hdgs */
while(1)
{
EXEC SQL fetch c into :order_num, :order_date, :ship_date, :paid_date;
if ((ret = exp_chk("FETCH c")) == 100) /* if end of rows */

break; /* terminate loop */
if(ret < 0)

exit(1);
printf("%5d\t", order_num);
if (risnull(CDATETYPE, (char *)&paid_date)) /* is price NULL ? */

printf("NO\n");
else

printf("Yes\n");
}

printf("\nRISNULL Sample Program over.\n\n");
}

/*
* The exp_chk() file contains the exception handling functions to
* check the SQLSTATE status variable to see if an error has occurred
* following an SQL statement. If a warning or an error has
* occurred, exp_chk() executes the GET DIAGNOSTICS statement and
* prints the detail for each exception that is returned.
*/

EXEC SQL include exp_chk.ec

B-192 IBM Informix ESQL/C Programmer’s Manual

For a complete listing of the exp_chk() function, see “Guide to the exp_chk.ec File”
on page 11-32 or see the exp_chk.ec file for a listing of this exception-handling
function.

Output:
RISNULL Sample ESQL Program running.

Order# Paid?
1001 Yes
1002 Yes
1003 Yes
1004 NO
1005 Yes
1006 NO
1007 NO
1008 Yes
1009 Yes
1010 Yes
1011 Yes
1012 NO
1013 Yes
1014 Yes
1015 Yes
1016 NO
1017 NO
1018 Yes
1019 Yes
1020 Yes
1021 Yes
1022 Yes
1023 Yes

RISNULL Sample Program over.

The rjulmdy() function
The rjulmdy() function creates an array of three short integer values that represent
the month, day, and year from an internal DATE value.

Syntax:
mint rjulmdy(jdate, mdy)

int4 jdate;
int2 mdy[3];

jdate The internal representation of the date.

mdy An array of short integers, where mdy[0] is the month (1 to 12),
mdy[1] is the day (1 - 31), and mdy[2] is the year (1 - 9999).

Return codes:

0 The operation was successful.

< 0 The operation failed.

-1210 The internal date could not be converted to the character string
format.

Example:

The demo directory contains this sample program in the rjulmdy.ec file.

Appendix B. ESQL/C function library B-193

/*
* rjulmdy.ec *

The following program accepts a date entered from the console and converts
it to an array of three short integers that contain the month, day, and year.

*/

#include <stdio.h>

main()
{

int4 i_date;
short mdy_array[3];
mint errnum;
char date[20];
mint x;

static char fmtstr[9] = "mmddyyyy";

printf("RJULMDY Sample ESQL Program running.\n\n");

/* Allow user to enter a date */
printf("Enter a date as a single string, month.day.year\n");
gets(date);

printf("\nThe date string is %s.\n", date);

/* Put entered date in internal format */
if (x = rdefmtdate(&i_date, fmtstr, date))

printf("Error %d on rdefmtdate conversion\n", x);
else

{

/* Convert from internal format to MDY array */
if ((errnum = rjulmdy(i_date, mdy_array)) == 0)

{
printf("\tThe month component is: %d\n", mdy_array[0]);
printf("\tThe day component is: %d\n", mdy_array[1]);
printf("\tThe year component is: %d\n", mdy_array[2]);
}

else
printf("rjulmdy() call failed with error %d", errnum);

}

printf("\nRJULMDY Sample Program over.\n\n");
}

Output:
RJULMDY Sample ESQL Program running.

Enter a date as a single string, month.day.year
10.12.07

The date string is 10.12.07.
The month component is: 10
The day component is: 12
The year component is: 2007

RJULMDY Sample Program over.

B-194 IBM Informix ESQL/C Programmer’s Manual

The rleapyear() function
The rleapyear() function returns 1 (TRUE) when the argument that is passed to it
is a leap year and 0 (FALSE) when it is not.

Syntax:
mint rleapyear(year)

mint year;

year An integer.

Usage:

The argument year must be the year component of a date and not the date itself.
You must express the year in full form (2007) and not abbreviated form (07).

Return codes:

1 The year is a leap year.

0 The year is not a leap year.

Example:

The demo directory contains this sample program in the rleapyear.ec file.
/*

* rleapyear.ec *

The following program accepts a date entered from the console
and stores this date into an int4, which stores the date in
an internal format. It then converts the internal format into an array of
three short integers that contain the month, day, and year portions of the
date. It then tests the year value to see if the year is a leap year.

*/

#include <stdio.h>

main()
{

int4 i_date;
mint errnum;
short mdy_array[3];
char date[20];
mint x;

static char fmtstr[9] = "mmddyyyy";

printf("RLEAPYEAR Sample Program running.\n\n");

/* Allow user to enter a date */
printf("Enter a date as a single string, month.day.year\n");
gets(date);

printf("\nThe date string is %s.\n", date);

/* Put entered date in internal format */
if (x = rdefmtdate(&i_date, fmtstr, date))

printf("Error %d on rdefmtdate conversion\n", x);
else

{

/* Convert internal format into a MDY array */

Appendix B. ESQL/C function library B-195

if ((errnum = rjulmdy(i_date, mdy_array)) == 0)
{
/* Check if it is a leap year */
if (rleapyear(mdy_array[2]))

printf("%d is a leap year\n", mdy_array[2]);
else

printf("%d is not a leap year\n", mdy_array[2]);
}

else
printf("rjulmdy() call failed with error %d", errnum);

}

printf("\nRLEAPYEAR Sample Program over.\n\n");
}

Output:
RLEAPYEAR Sample ESQL Program running.

Enter a date as a single string, month.day.year
10.12.07

The date string is 10.12.07.
2007 is not a leap year

RLEAPYEAR Sample Program over.

The rmdyjul() function
The rmdyjul() function creates an internal DATE from an array of three short
integer values that represent month, day, and year.

Syntax:
mint rmdyjul(mdy, jdate)

int2 mdy[3];
int4 *jdate;

mdy An array of short integer values, where mdy[0] is the month (1 to
12), mdy[1] is the day (1 - 31), and mdy[2] is the year (1 - 9999).

jdate A pointer to a long integer that receives the internal DATE value
for the mdy array.

Usage:

You can express the year in full form (2007) or abbreviated form (07).

Return codes:

0 The operation was successful.

-1204 The mdy[2] variable contains an invalid year.

-1205 The mdy[0] variable contains an invalid month.

-1206 The mdy[1] variable contains an invalid day.

Example:

The demo directory contains this sample program in the rmdyjul.ec file.
/*

* rmdyjul.ec *

B-196 IBM Informix ESQL/C Programmer’s Manual

This program converts an array of short integers containing values
for month, day and year into an integer that stores the date in
internal format.

*/

#include <stdio.h>

main()
{

int4 i_date;
mint errnum;
static short mdy_array[3] = { 12, 21, 2007 };
char str_date[15];

printf("RMDYJUL Sample ESQL Program running.\n\n");

/* Convert MDY array into internal format */
if ((errnum = rmdyjul(mdy_array, &i_date)) == 0)
{
rfmtdate(i_date, "mmm dd yyyy", str_date);
printf("Date ’%s’ converted to internal format\n", str_date);
}

else
printf("rmdyjul() call failed with errnum = %d\n", errnum);

printf("\nRMDYJUL Sample Program over.\n\n");
}

Output:
RMDYJUL Sample ESQL Program running.

Date ’Dec 21 2007’ converted to internal format

RMDYJUL Sample Program over.

The rsetnull() function
The rsetnull() function sets a C variable to a value that corresponds to a database
null value.

Syntax:
mint rsetnull(type, ptrvar)

mint type;
char *ptrvar;

type A mint that corresponds to the data type of a C or IBM Informix
ESQL/C variable. This type can be any data type except var binary
or an lvarchar pointer variable. For more information, see “Data
Type Constants” on page 3-3.

ptrvar A pointer to the C or Informix ESQL/C variable.

Usage:

The rsetnull() function sets to null Informix ESQL/C variables of all data types
except var binary and lvarchar pointer host variables. To set a var binary or
lvarchar pointer host variable to null, use the ifx_var_setnull() macro. For more
information, see “The ifx_var_setnull() function” on page B-155

Example:

Appendix B. ESQL/C function library B-197

This sample program is in the rsetnull.ec file in the demo directory.
/*

* rsetnull.ec *

This program fetches rows from the stock table for a chosen manufacturer
and allows the user to set the unit_price to NULL.

*/

#include <stdio.h>
#include <ctype.h>
EXEC SQL include decimal;
EXEC SQL include sqltypes;

#define WARNNOTIFY 1
#define NOWARNNOTIFY 0

#define LCASE(c) (isupper(c) ? tolower(c) : (c))

char format[] = "($$,$$$,$$$.&&)";

main()
{

char decdsply[20];
char ans;
int4 ret, exp_chk();

EXEC SQL BEGIN DECLARE SECTION;
short stock_num;
char description[16];
dec_t unit_price;
char manu_code[4];

EXEC SQL END DECLARE SECTION;

printf("RSETNULL Sample ESQL Program running.\n\n");
EXEC SQL connect to ’stores7’; /* connect to stores7 */
exp_chk("Connect to stores7", NOWARNNOTIFY);

printf("This program selects all rows for a given manufacturer\n");
printf("from the stock table and allows you to set the unit_price\n");
printf("to NULL.\n");
printf("\nTo begin, enter a manufacturer code - for example: ’HSK’\n");
printf("\nEnter Manufacturer code: "); /* prompt for mfr. code */
gets(manu_code); /* get mfr. code */
EXEC SQL declare upcurs cursor for /* declare cursor */
select stock_num, description, unit_price from stock
where manu_code = :manu_code
for update of unit_price;

rupshift(manu_code); /* Make mfr code upper case */
EXEC SQL open upcurs; /* open select cursor */
if(exp_chk("Open cursor", WARNNOTIFY) == 1)
exit(1);

/*
* Display Column Headings
*/

printf("\nStock # \tDescription \t\tUnit Price");
while(1)
{
/* get a row */
EXEC SQL fetch upcurs into :stock_num, :description, :unit_price;
if ((ret = exp_chk("fetch", WARNNOTIFY)) == 100) /* if end of rows */

break;
if(ret == 1)

B-198 IBM Informix ESQL/C Programmer’s Manual

exit(1);
if(risnull(CDECIMALTYPE, (char *) &unit_price)) /* unit_price NULL? */

continue; /* skip to next row */
rfmtdec(&unit_price, format, decdsply); /* format unit_price */
/* display item */
printf("\n\t%d\t%15s\t%s", stock_num, description, decdsply);
ans = ’ ’;
/* Set unit_price to NULL? y(es) or n(o) */
while((ans = LCASE(ans)) != ’y’ && ans != ’n’)

{
printf("\n. . . Set unit_price to NULL ? (y/n) ");
scanf("%1s", &ans);
}

if (ans == ’y’) /* if yes, NULL to unit_price */
{
rsetnull(CDECIMALTYPE, (char *) &unit_price);
EXEC SQL update stock set unit_price = :unit_price

where current of upcurs; /* and update current row */
if(exp_chk("UPDATE", WARNNOTIFY) == 1)

exit(1);
}

}
printf("\nRSETNULL Sample Program over.\n\n");

}

/*
* The exp_chk() file contains the exception handling functions to
* check the SQLSTATE status variable to see if an error has occurred
* following an SQL statement. If a warning or an error has
* occurred, exp_chk() executes the GET DIAGNOSTICS statement and
* prints the detail for each exception that is returned.
*/

EXEC SQL include exp_chk.ec

For a complete listing of the exp_chk() function, see “Guide to the exp_chk.ec File”
on page 11-32 or see the exp_chk.ec file for a listing of this exception-handling
function.

Output:
RSETNULL Sample ESQL Program running.

This program selects all rows for a given manufacturer
from the stock table and allows you to set the unit_price
to NULL.

To begin, enter a manufacturer code - for example: ’HSK’

Enter Manufacturer code: HSK

Stock # Description Unit Price
1 baseball gloves $800.00

. . . Set unit_price to NULL ? (y/n) n

3 baseball bat $240.00
. . . Set unit_price to NULL ? (y/n) y

4 football $960.00
. . . Set unit_price to NULL ? (y/n) n

Appendix B. ESQL/C function library B-199

110 helmet $600.00
. . . Set unit_price to NULL ? (y/n) y

RSETNULL Sample Program over.

The rstod() function
The rstod() function converts a null-terminated string into a double value.

Syntax:
mint rstod(string, double_val)

char *string;
double *double_val;

string A pointer to a null-terminated string.

double_val A pointer to a double value that holds the converted value.

Usage:

=0 The conversion was successful.

!=0 The conversion failed.

Example:

This sample program is in the rstod.ec file in the demo directory.
/*

* rstod.ec *

The following program tries to convert three strings to doubles.
It displays the result of each attempt.

*/

#include <stdio.h>

main()
{

mint errnum;
char *string1 = "1234567887654321";
char *string2 = "12345678.87654321";
char *string3 = "zzzzzzzzzzzzzzzz";
double d;

printf("RSTOD Sample ESQL Program running.\n\n");

printf("Converting String 1: %s\n", string1);
if ((errnum = rstod(string1, &d)) == 0)
printf("\tResult = %f\n\n", d);

else
printf("\tError %d in conversion of string 1\n\n", errnum);

printf("Converting String 2: %s\n", string2);
if ((errnum = rstod(string2, &d)) == 0)
printf("\tResult = %.8f\n\n", d);

else
printf("\tError %d in conversion of string 2\n\n", errnum);

printf("Converting String 3: %s\n", string3);
if ((errnum = rstod(string3, &d)) == 0)
printf("\tResult = %.8f\n\n", d);

else

B-200 IBM Informix ESQL/C Programmer’s Manual

printf("\tError %d in conversion of string 3\n\n", errnum);

printf("\nRSTOD Sample Program over.\n\n");
}

Output:
RSTOD Sample ESQL Program running.

Converting String 1: 123456788764321
Result = 1234567887654321.000000

Converting String 2: 12345678.87654321
Result = 12345678.87654321

Converting String 3: zzzzzzzzzzzzzzzz
Error -1213 in conversion of string 3

RSTOD Sample Program over.

The rstoi() function
The rstoi() function converts a null-terminated string into a short integer value.

Syntax:
mint rstoi(string, ival)

char *string;
mint *ival;

string A pointer to a null-terminated string.

ival A pointer to a mint value that holds the converted value.

Usage:

The legal range of values is -32767 - 32767. The value -32768 is not valid because
this value is a reserved value that indicates null.

If string corresponds to a null integer, ival points to the representation for a
SMALLINT null. To convert a string that corresponds to a long integer, use rstol().
Failure to do so can result in corrupt data representation.

Return codes:

=0 The conversion was successful.

!=0 The conversion failed.

Example:

This sample program is in the rstoi.ec file in the demo directory.
/*

* rstoi.ec *

The following program tries to convert three strings to integers.
It displays the result of each conversion.

*/

#include <stdio.h>

EXEC SQL include sqltypes;

Appendix B. ESQL/C function library B-201

main()
{

mint err;
mint i;
short s;

printf("RSTOI Sample ESQL Program running.\n\n");

i = 0;
printf("Converting String ’abc’:\n");
if((err = rstoi("abc", &i)) == 0)

printf("\tResult = %d\n\n", i);
else

printf("\tError %d in conversion of string #1\n\n", err);

i = 0;
printf("Converting String ’32766’:\n");
if((err = rstoi("32766", &i)) == 0)

printf("\tResult = %d\n\n", i);
else

printf("\tError %d in conversion of string #2\n\n", err);

i = 0;
printf("Converting String ’’:\n");
if((err = rstoi("", &i)) == 0)
{
s = i; /* assign to a SHORT variable */
if (risnull(CSHORTTYPE, (char *) &s)) /* and then test for NULL */

printf("\tResult = NULL\n\n");
else

printf("\tResult = %d\n\n", i);
}

else
printf("\tError %d in conversion of string #3\n\n", err);

printf("\nRSTOI Sample Program over.\n\n");
}

Output:
RSTOI Sample ESQL Program running.

Converting String ’abc’:
Error -1213 in conversion of string #1

Converting String ’32766’:
Result = 32766

Converting String ’’:
Result = NULL

RSTOI Sample Program over.

The rstol() function
The rstol() function converts a null-terminated string into a long integer value.

Syntax:
mint rstol(string, long_int)

char *string;
mlong *long_int;

string A pointer to a null-terminated string.

B-202 IBM Informix ESQL/C Programmer’s Manual

long_int A pointer to an mlong value that holds the converted value.

Usage:

The legal range of values is -2,147,483,647 - 2,147,483,647. The value
-2,147,483,648 is not valid because this value is a reserved value that indicates
null.

Return codes:

=0 The conversion was successful.

!=0 The conversion failed.

Example:

This sample program is in the rstol.ec file in the demo directory.
/*

* rstol.ec *

The following program tries to convert three strings to longs. It
displays the result of each attempt.

*/

#include <stdio.h>

EXEC SQL include sqltypes;

main()
{

mint err;
mlong l;

printf("RSTOL Sample ESQL Program running.\n\n");

l = 0;
printf("Converting String ’abc’:\n");
if((err = rstol("abc", &l)) == 0)
printf("\tResult = %ld\n\n", l);

else
printf("\tError %d in conversion of string #1\n\n", err);

l = 0;
printf("Converting String ’2147483646’:\n");
if((err = rstol("2147483646", &l)) == 0)
printf("\tResult = %ld\n\n", l);

else
printf("\tError %d in conversion of string #2\n\n", err);

l = 0;
printf("Converting String ’’:\n");
if((err = rstol("", &l)) == 0)
{
if(risnull(CLONGTYPE, (char *) &l))

printf("\tResult = NULL\n\n", l);
else

printf("\tResult = %ld\n\n", l);
}

else

Appendix B. ESQL/C function library B-203

printf("\tError %d in conversion of string #3\n\n", err);

printf("\nRSTOL Sample Program over.\n\n");
}

Output:
RSTOL Sample ESQL Program running.

Converting String ’abc’:
Error -1213 in conversion of string #1

Converting String ’2147483646’:
Result = 2147483646

Converting String ’’:
Result = NULL

RSTOL Sample Program over.

The rstrdate() function
The rstrdate() function converts a character string to an internal DATE.

Syntax:
mint rstrdate(inbuf, jdate)

char *inbuf;
int4 *jdate;

inbuf A pointer to the string that contains the date to convert.

jdate A pointer to an int4 integer that receives the internal DATE value
for the inbuf string.

Usage:

For the default locale, U.S. English, the rstrdate() function determines how to
format the character string with the following precedence:
1. The format that the DBDATE environment variable specifies (if DBDATE is

set). For more information about DBDATE, see the IBM Informix Guide to SQL:
Reference.

2. The format that the GL_DATE environment variable specifies (if GL_DATE is
set). For more information about GL_DATE, see the IBM Informix GLS User's
Guide.

3. The default date form: mm/dd/yyyy. You can use any nonnumeric character as a
separator between the month, day, and year. You can express the year as four
digits (2007) or as two digits (07).

When you use a nondefault locale and do not set the DBDATE or GL_DATE
environment variable, rstrdate() uses the date end-user format that the client locale
defines. For more information, see the IBM Informix GLS User's Guide.

When you use a two-digit year in the date string, the rstrdate() function uses the
value of the DBCENTURY environment variable to determine which century to
use. If you do not set DBCENTURY, rstrdate() assumes the 20th century for
two-digit years. For information about how to set DBCENTURY, see the IBM
Informix Guide to SQL: Reference.

B-204 IBM Informix ESQL/C Programmer’s Manual

Return codes:

0 The conversion was successful.

< 0 The conversion failed.

-1204 The inbuf parameter specifies an invalid year.

-1205 The inbuf parameter specifies an invalid month.

-1206 The inbuf parameter specifies an invalid day.

-1212 Data conversion format must contain a month, day, or year
component. DBDATE specifies the data conversion format.

-1218 The date specified by the inbuf argument does not properly
represent a date.

Example:

The demo directory contains this sample program in the rstrdate.ec file.
/*

* rstrdate.ec *
The following program converts a character string
in "mmddyyyy" format to an internal date format.

*/

#include <stdio.h>

main()
{

int4 i_date;
mint errnum;
char str_date[15];

printf("RSTRDATE Sample ESQL Program running.\n\n");

/* Convert Sept. 6th, 2007 into i_date */
if ((errnum = rstrdate("9.6.2007", &i_date)) == 0)
{

rfmtdate(i_date, "mmm dd yyyy", str_date);
printf("Date ’%s’ converted to internal format\n" str_date);
}

else
printf("rstrdate() call failed with error %d\n", errnum);

printf("\nRSTRDATE Sample Program over.\n\n");
}

Output:
RSTRDATE Sample ESQL Program running.

Date ’Sep 06 2007’ converted to internal format

RSTRDATE Sample Program over.

The rtoday() function
The rtoday() function returns the system date as a long integer value.

Syntax:

Appendix B. ESQL/C function library B-205

void rtoday(today)
int4 *today;

today A pointer to an int4 value that receives the internal DATE.

Usage:

The rtoday() function obtains the system date on the client computer, not the
server computer.

Example:

The demo directory contains this sample program in the rtoday.ec file.
/*

* rtoday.ec *

The following program obtains today’s date from the system,
converts it to ASCII using rdatestr(), and displays the result.

*/

#include <stdio.h>

main()
{

mint errnum;
char today_date[20];
int4 i_date;

printf("RTODAY Sample ESQL Program running.\n\n");

/* Get today’s date in the internal format */
rtoday(&i_date);

/* Convert date from internal format into a mm/dd/yyyy string */
if ((errnum = rdatestr(i_date, today_date)) == 0)

printf("\n\tToday’s date is %s.\n", today_date);
else

printf("\n\tError %d in converting date to mm/dd/yyyy\n", errnum);

printf("\nRTODAY Sample Program over.\n\n");
}

Output:
RTODAY Sample ESQL Program running.

Today’s date is 09/16/2007.

RTODAY Sample Program over.

The rtypalign() function
The rtypalign() function returns the position of the next proper boundary for a
variable of the specified data type.

Syntax:

32 bit
mint rtypalign(pos, type)

mint pos;
mint type;

B-206 IBM Informix ESQL/C Programmer’s Manual

64 bit
mlong rtypalign(pos, type)

mlong pos;
mint type;

pos The current position in a buffer.

type An integer that corresponds to the data type of a C or Informix
ESQL/C variable. This type can be any data type except the
following:
v var binary

v CFIXBINTYPE
v CVARBINTYPE
v SQLUDTVAR
v SQLUDTFIXED

For more information, see “Data Type Constants” on page 3-3.

Usage:

The rtypalign() and rtypmsize() functions are useful when you use an sqlda
structure to dynamically fetch data into a buffer. On many hardware platforms,
integer and other numeric data types must begin on a work boundary. The C
language memory allocation routines allocate memory that is suitably aligned for
any data type, including structures. However, these routines do not perform
alignment for the constituent components of the structure. The programmer is
responsible for performing that alignment with functions such as rtypalign() and
rtypmsize(). These functions provide machine independence for storing column
data.

After a DESCRIBE statement determines column information, Informix ESQL/C
stores the value of type in sqlda.sqlvar->sqltype.

You can see an application of the rtypalign() function in the unload.ec
demonstration program.

Return codes:

>0 The return value is the offset of the next proper boundary for a
variable of type data type.

Example:

This sample program is in the rtypalign.ec file in the demo directory.
/*

* rtypalign.ec *

The following program prepares a select on all columns of the orders
table and then calculates the proper alignment for each column in a buffer.

*/

#include <decimal.h>

EXEC SQL include sqltypes;

#define WARNNOTIFY 1
#define NOWARNNOTIFY 0

main()

Appendix B. ESQL/C function library B-207

{
mint i, pos;
int4 ret, exp_chk();
struct sqlda *sql_desc;
struct sqlvar_struct *col;

printf("RTYPALIGN Sample ESQL Program running.\n\n");

EXEC SQL connect to ’stores7’; /* open stores7 database */
exp_chk("Connect to", NOWARNNOTIFY);

EXEC SQL prepare query_1 from "select * from orders"; /* prepare select */
if(exp_chk("Prepare", WARNNOTIFY) == 1)

exit(1);

EXEC SQL describe query_1 into sql_desc; /* initialize sqlda */
if(exp_chk("Describe", WARNNOTIFY) == 1)

exit(1);

col = sql_desc->sqlvar;
printf("\n\ttype\t\tlen\tnext\taligned\n"); /* display column hdgs. */
printf("\t\t\t\tposn\tposn\n\n");
/*
* For each column in the orders table
*/

i = 0;
pos = 0;
while(i++ < sql_desc->sqld)

{
/* Modify sqllen if SQL type is DECIMAL or MONEY */
if(col->sqltype == SQLDECIMAL || col->sqltype == SQLMONEY)

{
col->sqllen = sizeof(dec_t);
}

/*
* display name of SQL type, length and un-aligned buffer position
*/

printf("\t%s\t\t%d\t%d", rtypname(col->sqltype), col->sqllen, pos);

pos = rtypalign(pos, col->sqltype); /* align pos. for type */
printf("\t%d\n", pos);

pos += col->sqllen; /* set next position */
++col; /* bump to next column */

}
printf("\nRTYPALIGN Sample Program over.\n\n");

}

/*
* The exp_chk() file contains the exception handling functions to
* check the SQLSTATE status variable to see if an error has occurred
* following an SQL statement. If a warning or an error has
* occurred, exp_chk() executes the GET DIAGNOSTICS statement and
* prints the detail for each exception that is returned.
*/

EXEC SQL include exp_chk.ec

For a complete listing of the exp_chk() function, see “Guide to the exp_chk.ec File”
on page 11-32 or see the exp_chk.ec file for a listing of this exception-handling
function.

Output:
RTYPALIGN Sample ESQL Program running.

B-208 IBM Informix ESQL/C Programmer’s Manual

type len next posn aligned posn

serial 4 0 0
date 4 4 4
integer 4 8 8
char 40 12 12
char 1 52 52
char 10 53 53
date 4 63 64
decimal 22 68 68
money 22 90 90
date 4 112 112

RTYPALIGN Sample Program over.

The rtypmsize() function
The rtypmsize() function returns the number of bytes you must allocate in
memory for the specified Informix ESQL/C or SQL data type.

Syntax:
mint rtypmsize(sqltype, sqllen)

mint sqltype;
mint sqllen;

sqltype The integer code of the Informix ESQL/C or SQL data type. For
more information, see “Data Type Constants” on page 3-3.

sqllen The number of bytes in the data file for the specified data type.

Usage:

The rtypalign() and rtypmsize() functions are useful when you use an sqlda
structure to dynamically fetch data into a buffer. These functions provide machine
independence for the column-data storage.

The rtypmsize() function is provided to use with the sqlda structure that a
DESCRIBE statement initializes. After a DESCRIBE statement determines column
information, the value of sqltype and sqllen components reside in the components of
the same name in each sqlda.sqlvar structure.

When rtypmsize() determines sizes for character data, keep the following size
information in mind:
v For CCHARTYPE (char) and CSTRINGTYPE (string), Informix ESQL/C adds

one byte to the number of characters for the null terminator.
v For CFIXCHARTYPE (fixchar), Informix ESQL/C does not add a null

terminator.

You can see an application of the rtypmsize() function in the unload.ec
demonstration program.

Return codes:

0 The sqltype is not a valid SQL type.

>0 The return value is the number of bytes that the sqltype data type
requires.

Appendix B. ESQL/C function library B-209

Example:

This sample program is in the rtypmsize.ec file in the demo directory.
/*

* rtypmsize.ec *

This program prepares a select statement on all columns of the
catalog table. Then it displays the data type of each column and
the number of bytes needed to store it in memory.

*/

#include <stdio.h>

EXEC SQL include sqltypes;

#define WARNNOTIFY 1
#define NOWARNNOTIFY 0

EXEC SQL BEGIN DECLARE SECTION;
char db_name[20];

EXEC SQL END DECLARE SECTION;

main(argc, argv)
int argc;
char *argv[];
{

mint i;
char db_stmnt[50];

int4 exp_chk();
struct sqlda *sql_desc;
struct sqlvar_struct *col;

printf("RTYPMSIZE Sample ESQL Program running.\n\n");

if (argc > 2) /* correct no. of args? */
{
printf("\nUsage: %s [database]\nIncorrect no. of argument(s)\n",

argv[0]);
exit(1);
}

strcpy(db_name, "stores7");
if (argc == 2)
strcpy(db_name, argv[1]);

EXEC SQL connect to :db_name;
sprintf(db_stmnt, "CONNECT TO %s", argv[1]);
exp_chk(db_stmnt, NOWARNNOTIFY);

printf("Connected to ’%s’ database.", db_name);

EXEC SQL prepare query_1 from ’select * from catalog’; /* prepare select */
if(exp_chk("Prepare", WARNNOTIFY) == 1)
exit(1);

EXEC SQL describe query_1 into sql_desc; /* setup sqlda */
if(exp_chk("Describe", WARNNOTIFY) == 1)
exit(1);

printf("\n\tColumn Type Size\n\n"); /* column hdgs. */
/*
* For each column in the catalog table display the column name and
* the number of bytes needed to store the column in memory.
*/

for(i = 0, col = sql_desc->sqlvar; i < sql_desc->sqld; i++, col++)
printf("\t%-20s%-8s%3d\n", col->sqlname, rtypname(col->sqltype),

B-210 IBM Informix ESQL/C Programmer’s Manual

rtypmsize(col->sqltype, col->sqllen));

printf("\nRTYPMSIZE Sample Program over.\n\n");
}

/*
* The exp_chk() file contains the exception handling functions to
* check the SQLSTATE status variable to see if an error has occurred
* following an SQL statement. If a warning or an error has
* occurred, exp_chk() executes the GET DIAGNOSTICS statement and
* prints the detail for each exception that is returned.
*/

EXEC SQL include exp_chk.ec

For a complete listing of the exp_chk() function, see “Guide to the exp_chk.ec File”
on page 11-32 or see the exp_chk.ec file for a listing of this exception-handling
function.

Output:
RTYPMSIZE Sample ESQL Program running.

Connected to stores7 database.

Column Type Size

catalog_num serial 4
stock_num smallint 2
manu_code char 4
cat_descr text 64
cat_picture byte 64
cat_advert varchar 256

RTYPMSIZE Sample Program over.

The rtypname() function
The rtypname() function returns a null-terminated string that contains the name of
the specified SQL data type.

Syntax:
char *rtypname(sqltype)

mint sqltype;

sqltype An integer code for one of the SQL data types. For more
information, see “Data Type Constants” on page 3-3

The rtypname() function converts a constant for an Informix SQL data type (which
sqltypes.h defines) to a character string.

Return codes:

The rtypname function returns a pointer to a string that contains the name of the
data type specified sqltype. If sqltype is an invalid value, rtypname() returns a null
string (" ").

Example:

This sample program is in the rtypname.ec file in the demo directory.

Appendix B. ESQL/C function library B-211

/*
* rtypname.ec *

This program displays the name and the data type of each column
in the ’orders’ table.

*/

#include <stdio.h>

EXEC SQL include sqltypes;

#define WARNNOTIFY 1
#define NOWARNNOTIFY 0

main(argc, argv)
int argc;
char *argv[];
{

mint i;
int4 err_chk();
char db_stmnt[50];
char *rtypname();
struct sqlda *sql_desc;
struct sqlvar_struct *col;

EXEC SQL BEGIN DECLARE SECTION;
char db_name[20];
EXEC SQL END DECLARE SECTION;

printf("RTYPNAME Sample ESQL Program running.\n\n");

if (argc > 2) /* correct no. of args? */
{
printf("\nUsage: %s [database]\nIncorrect no. of argument(s)\n",

argv[0]);
exit(1);
}

strcpy(db_name, "stores7");

if (argc == 2)
strcpy(db_name, argv[1]);

EXEC SQL connect to :db_name;
sprintf(db_stmnt, "CONNECT TO %s", argv[1]);
exp_chk(db_stmnt, NOWARNNOTIFY);

printf("Connected to ’%s’ database.", db_name);
EXEC SQL prepare query_1 from ’select * from orders’; /* prepare select */
if(exp_chk("Prepare", WARNNOTIFY) == 1)
exit(1);

EXEC SQL describe query_1 into sql_desc; /* initialize sqlda */
if(exp_chk("Describe", WARNNOTIFY) == 1)
exit(1);

printf("\n\tColumn Name \t\tSQL type\n\n");

/*
* For each column in the orders table display the column name and
* the name of the SQL data type
*/

for (i = 0, col = sql_desc->sqlvar; i < sql_desc->sqld; i++, col++)
printf("\t%-15s\t\t%s\n", col->sqlname, rtypname(col->sqltype));

printf("\nRTYPNAME Sample Program over.\n\n");
}

B-212 IBM Informix ESQL/C Programmer’s Manual

/*
* The exp_chk() file contains the exception handling functions to
* check the SQLSTATE status variable to see if an error has occurred
* following an SQL statement. If a warning or an error has
* occurred, exp_chk() executes the GET DIAGNOSTICS statement and
* prints the detail for each exception that is returned.
*/

EXEC SQL include exp_chk.ec

For a complete listing of the exp_chk() function, see “Guide to the exp_chk.ec File”
on page 11-32 or see the exp_chk.ec file for a listing of this exception-handling
function.

Output:
RTYPNAME Sample ESQL Program running.

Connected to stores7 database
Column Name SQL type

order_num serial
order_date date
customer_num integer
ship_instruct char
backlog char
po_num char
ship_date date
ship_weight decimal
ship_charge money
paid_date date

RTYPNAME Sample Program over.

The rtypwidth() function
The rtypwidth() function returns the minimum number of characters that a
character data type needs to avoid truncation when you convert a value with an
SQL data type to a character data type.

Syntax:
mint rtypwidth(sqltype, sqllen)

mint sqltype;
mint sqllen;

sqltype The integer code of the SQL data type. For more information, see
“Data Type Constants” on page 3-3.

sqllen The number of bytes in the data file for the specified SQL data
type.

Usage:

The rtypwidth() function is provided for use with the sqlda structure that a
DESCRIBE statement initializes. The sqltype and sqllen components correspond to
the components of the same name in each sqlda.sqlvar structure.

Return codes:

0 The sqltype is not a valid SQL data type.

Appendix B. ESQL/C function library B-213

>0 The return value is the minimum number of characters that the
sqltype data type requires.

Example:

This sample program is in the rtypwidth.ec file in the demo directory.
/*

* rtypwidth.ec *

This program displays the name of each column in the ’orders’ table and
the number of characters required to store the column when the
data type is converted to characters.

*/

#include <stdio.h>

#define WARNNOTIFY 1
#define NOWARNNOTIFY 0

main(argc, argv)
int argc;
char *argv[];
{

mint i, numchars;

int4 exp_chk();
char db_stmnt[50];
struct sqlda *sql_desc;
struct sqlvar_struct *col;

EXEC SQL BEGIN DECLARE SECTION;
char db_name[20];
EXEC SQL END DECLARE SECTION;

printf("RTYPWIDTH Sample ESQL Program running.\n\n");

if (argc > 2) /* correct no. of args? */
{
printf("\nUsage: %s [database]\nIncorrect no. of argument(s)\n",
argv[0]);
exit(1);
}

strcpy(db_name, "stores7");
if (argc == 2)
strcpy(db_name, argv[1]);

EXEC SQL connect to :db_name;
sprintf(db_stmnt, "CONNECT TO %s", argv[1]);
exp_chk(db_stmnt, NOWARNNOTIFY);

printf("Connected to %s\n", db_name);

EXEC SQL prepare query_1 from ’select * from orders’; /* prepare select */
if(exp_chk("Prepare", WARNNOTIFY) == 1)
exit(1);

EXEC SQL describe query_1 into sql_desc; /* setup sqlda */
if(exp_chk("Describe", WARNNOTIFY) == 1)
exit(1);

printf("\n\tColumn Name \t# chars\n");

/*
* For each column in orders print the column name and the minimum
* number of characters required to convert the SQL type to a character

B-214 IBM Informix ESQL/C Programmer’s Manual

* data type
*/

for (i = 0, col = sql_desc->sqlvar; i < sql_desc->sqld; i++, col++)
{
numchars = rtypwidth(col->sqltype, col->sqllen);
printf("\t%-15s\t%d\n", col->sqlname, numchars);
}

printf("\nRTYPWIDTH Sample Program over.\n\n");
}

/*
* The exp_chk() file contains the exception handling functions to
* check the SQLSTATE status variable to see if an error has occurred
* following an SQL statement. If a warning or an error has
* occurred, exp_chk() executes the GET DIAGNOSTICS statement and
* prints the detail for each exception that is returned.
*/

EXEC SQL include exp_chk.ec

Output:
RTYPWIDTH Sample ESQL Program running.

Connected to stores7

Column Name # chars
order_num 11
order_date 10
customer_num 11
ship_instruct 40
backlog 1
po_num 10
ship_date 10
ship_weight 10
ship_charge 9
paid_date 10

RTYPWIDTH Sample Program over.

The rupshift() function
The rupshift() function changes all the characters within a null-terminated string to
uppercase characters.

Syntax:
void rupshift(s)

char *s;

s A pointer to a null-terminated string.

Usage:

The rupshift() function refers to the current locale to determine uppercase and
lowercase letters. For the default locale, U.S. English, rupshift() uses the ASCII
lowercase (a-z) and uppercase (A-Z) letters.

If you use a nondefault locale, rupshift() uses the lowercase and uppercase letters
that the locale defines. For more information, see the IBM Informix GLS User's
Guide.

Example:

Appendix B. ESQL/C function library B-215

This sample program is in the rupshift.ec file in the demo directory.
/*

* rupshift.ec *

The following program displays the result of rupshift() on a string
of numbers, letters and punctuation.

*/

#include <stdio.h>

main()
{

static char string[] = "123abcdefghijkl;.";

printf("RUPSHIFT Sample ESQL Program running.\n\n");

printf("\tInput string: %s\n", string);
rupshift(string);
printf("\tAfter upshift: %s\n", string); /* Result */

printf("\nRUPSHIFT Sample Program over.\n\n");
}

Output:
RUPSHIFT Sample ESQL Program running.

Input string: 123abcdefghijkl;.
After upshift: 123ABCDEFGHIJKL;.

RUPSHIFT Sample Program over.

The SetConnect() function (Windows)
The SetConnect() function is available only in Windows environments. It switches
the connection to a specified explicit connection.

Important: Informix ESQL/C supports the SetConnect() connection library
function for compatibility with Version 5.01 Informix ESQL/C for
Windows applications. When you write new Informix ESQL/C
applications for Windows environments, use the SQL SET
CONNECTION statement to switch to another active connection.

Syntax:
void *SetConnect (void *CnctHndl)

CnctHndl A connection handle that a previous GetConnect() call has
returned.

Usage:

The SetConnect() function maps to a simple SQL SET CONNECTION statement
(one without a DEFAULT option). The SetConnect() call is equivalent to the
following SQL statement:
EXEC SQL set connection db_connection;

In this example, db_connection is the name of an existing connection that the
GetConnect() function has established. You pass this db_connection name to the
SetConnect() function as an argument. It is a connection handle for the connection
that you want to make active.

B-216 IBM Informix ESQL/C Programmer’s Manual

If you pass a null handle, the SetConnect() function returns the current connection
handle and does not change the current connection. If no current connection exits
when you pass a null handle, SetConnect() returns null.

For example, the following code fragment uses SetConnect() to switch from a
connection to the accounts database on the acctsrvr database server (cnctHndl2) to
a customers database on the mainsrvr database server (cnctHndl1):
void *cnctHndl1, *cnctHndl2, *prevHndl;...

lish connection 'cnctHndl1' to customers@mainsrvr */
strcpy(InetLogin.InfxServer, "mainsrvr");
cnctHndl1 = GetConnect();
EXEC SQL database customers;...

/* Establish connection 'cnctHndl2' to accounts@acctsrvr */
strcpy(InetLogin.InfxServer, "acctsrvr");
cnctHndl2 = GetConnect();
EXEC SQL database accounts;...

prevHndl = SetConnect(cnctHndl1);

Important: Because the SetConnect() function maps to a SET CONNECTION
statement, it sets the SQLCODE and SQLSTATE status codes to
indicate the success or failure of the connection switch request. This
behavior differs from that of SetConnect() in Version 5.01 Informix
ESQL/C for Windows, in which this function did not set the
SQLCODE and SQLSTATE values.

The SetConnect() function differs from the SET CONNECTION statement in the
way that it obtains the connection name. SetConnect() uses an internally generated
name that is stored in the connection handle.You must specify this handle as an
argument to the SetConnect() call. The SET CONNECTION statement uses the
user-defined connection name that the AS clause of the CONNECT statement
specifies.

Important: Because the GetConnect() function maps to a CONNECT statement
with the WITH CONCURRENT TRANSACTION clause, it allows an
explicit connection with open transactions to become dormant. Your
Informix ESQL/C application does not need to ensure that the current
transaction was committed or rolled back before it calls the
SetConnect() function to switch to another explicit connection.

Return codes:

CnctHndl The call to SetConnect() was successful if the function has returned
a connection handle of the connection that is now dormant.

null pointer The call to SetConnect() was not successful, indicating that no
explicit connection was established.

The sqgetdbs() function
The sqgetdbs() function returns the names of databases that a database server can
access.

Syntax:

Appendix B. ESQL/C function library B-217

mint sqgetdbs(ret_fcnt, dbnarray, dbnsize, dbnbuffer, dbnbufsz)
mint *ret_fcnt;
char **dbnarray;
mint dbnsize;
char *dbnbuffer;
mint dbnbufsz;

ret_fcnt A pointer to the number of database names that the function
returns.

dbnarray A user-defined array of character pointers.

dbnsize The size of the dbnarray user-defined array.

dbnbuffer A pointer to a user-defined buffer that contains the names of the
databases that the function returns.

dbnbufsz The size of the dbnbuffer user-defined buffer.

Usage:

You must provide the following user-defined data structures to the sqgetdbs()
function:
v The dbnbuffer buffer holds the names of the null-terminated database names that

sqgetdbs() returns.
v The dbnarray array holds pointers to the database names that the function stores

in the dbnbuffer buffer. For example, dbnarray[0] points to the first character of
the first database name (in dbnbuffer), dbnarray[1] points to the first character of
the second database name, and so on.

If the application is connected to a database server, a call to the sqgetdbs()
function returns the names of the databases that are available in the database
server of the current connection. This includes the user-defined databases as well
as the sysmaster database. Otherwise, it returns the database names that are
available in the default database server (that the INFORMIXSERVER environment
variable indicates). If you use the DBPATH environment variable to identify
additional database servers that contain databases, sqgetdbs() also lists the
databases that are available on these database servers. It first lists the databases
that are available through DBPATH and then the databases that are available
through the INFORMIXSERVER environment variable.

Return codes:

0 Successfully obtained database names

<0 Unable to obtain database names

Example:

The sqgetdbs.ec file in the demo directory contains this sample program.
/*

* sqgetdbs.ec *

This program lists the available databases in the database server
of the current connection.

*/

#include <stdio.h>

/* Defines used with exception-handling function: exp_chk() */
#define WARNNOTIFY 1

B-218 IBM Informix ESQL/C Programmer’s Manual

#define NOWARNNOTIFY 0

/* Defines used for user-defined data structures for sqgetdbs() */
#define BUFFSZ 256
#define NUM_DBNAMES 10

main()
{

char db_buffer[BUFFSZ]; /* buffer for database names */
char *dbnames[NUM_DBNAMES]; /* array of pointers to database

names in 'db_buffer' */
mint num_returned; /* number of database names returned */
mint ret, i;

printf("SQGETDBS Sample ESQL Program running.\n\n");

EXEC SQL connect to default;
exp_chk("CONNECT TO default server", NOWARNNOTIFY);
printf("Connected to default server.\n");

ret = sqgetdbs(&num_returned, dbnames, NUM_DBNAMES,
db_buffer, BUFFSZ);

if(ret < 0)
{
printf("Unable to obtain names of databases.\n");
exit(1);
}

printf("\nNumber of database names returned = %d\n", num_returned);

printf("Databases currently available:\n");
for (i = 0; i < num_returned; i++)

printf("\t%s\n", dbnames[i]);
printf("\nSQGETDBS Sample Program over.\n\n");

}

/*
* The exp_chk() file contains the exception handling functions to
* check the SQLSTATE status variable to see if an error has occurred
* following an SQL statement. If a warning or an error has
* occurred, exp_chk() executes the GET DIAGNOSTICS statement and
* displays the detail for each exception that is returned.
*/

EXEC SQL include exp_chk.ec;

For a source listing of the exp_chk() exception-handling function, see Chapter 11,
“Exception handling.”

Output:

The output you see from the sqgetdbs sample program depends on how you set
your INFORMIXSERVER and DBPATH environment variables. The following
sample output assumes that the INFORMIXSERVER environment variable is set
to mainserver and that this database server contains three databases that are called
stores7, sysmaster, and tpc. This output also assumes that the DBPATH
environment is not set.
SQGETDBS Sample ESQL Program running.

Connected to default server.

Number of database names returned = 3
Databases currently available:

Appendix B. ESQL/C function library B-219

stores7@mainserver
sysmaster@mainserver
tpc@mainserver

SQGETDBS Sample Program over.

The sqlbreak() function
The sqlbreak() function sends the database server a request to interrupt processing
of the current SQL request. You generally call this function to interrupt long
queries.

Syntax:
mint sqlbreak();

Usage:

The sqlbreak() function sends the interrupt request to the database server of the
current connection. When the database server receives this request, it must
determine if the SQL request is interruptible. Some types of database operations
are not interruptible and others cannot be interrupted at certain points. You can
interrupt the following SQL statements.
v ALTER INDEX
v ALTER TABLE
v CREATE INDEX
v CREATE TABLE
v DELETE
v EXECUTE PROCEDURE
v INSERT
v OPEN
v SELECT
v UPDATE

If the SQL request can be interrupted, the database server takes the following
actions:
1. Discontinues execution of the current SQL request
2. Sets SQLCODE (sqlca.sqlcode) to a negative value (-213)
3. Returns control to the application

When the application regains control after an interrupted SQL request, any
resources that are allocated to the SQL statement remain allocated. Any open
databases, cursors, and transactions remain open. Any system-descriptor areas or
sqlda structures remain allocated. The application program is responsible for the
graceful termination of the program; it must release resources and roll back the
current transaction.

While the database server executes an SQL request, the application is blocked,
waiting for results from the database server. To call sqlbreak(), you must first set
up some mechanism to unblock the application process. Two possible methods
follow:
v Provide the application end user with the ability to interrupt an SQL request

once it has begun execution.

B-220 IBM Informix ESQL/C Programmer’s Manual

When the user presses the Interrupt key, the application becomes unblocked and
calls the SIGINT signal-handler function. This signal-handler function includes a
call to sqlbreak() to interrupt the database server. For more information, see
12-23.

v Specify a timeout interval with the sqlbreakcallback() function.
After the timeout interval elapses, the application becomes unblocked and calls
the callback function. This callback function includes a call to sqlbreak() to
interrupt the database server. For more information, see 12-24.

Before your program calls sqlbreak(), verify with the sqldone() function that the
database server is currently processing an SQL request.

Return codes:

0 The call to sqlbreak() was successful. The database server
connection exists and either a request to interrupt was sent
successfully or the database server was idle.

!=0 No database server is running (no database connection exists)
when you called sqlbreak().

The sqlbreakcallback() function
The sqlbreakcallback() function allows you to specify a timeout interval and to
register a callback function. The callback function provides a method for the
application to regain control when the database server is processing an SQL
request.

Restriction: Do not use the sqlbreakcallback() function if your Informix ESQL/C
application uses shared memory (olipcshm) as the nettype to connect
to an IBM Informix database server. Shared memory is not a true
network protocol and does not handle the nonblocking I/O that is
needed to support a callback function. When you use
sqlbreakcallback() with shared memory, the call appears to register
the callback function successfully (it returns zero); however, during
SQL requests, the application never calls the callback function.

Syntax:
mint sqlbreakcallback(timeout, callbackfunc_ptr);

int4 timeout;
void (* callbackfunc_ptr)(int status);

timeout The interval of time to wait for an SQL request to
execute before the application process regains
control.

This value can be as follows:

-1 clears the timeout value.

0 immediately calls the function that
callbackfunc_ptr indicates.

>0 sets the timeout interval to the number of
milliseconds to elapse before the
application calls the function that
callbackfunc_ptr indicates.

Appendix B. ESQL/C function library B-221

The timeout parameter is a 4-byte variable. This
parameter is operating-system dependent: it can be
a variable with an int, long, or short data type.

callbackfunc_ptr A pointer to the user-defined callback function.

Usage:

Once you register a callback function with sqlbreakcallback(), the application calls
this function at three different points in the execution of an SQL request. The value
in the status argument of the callback function indicates the point at which the
application calls the function. The following table summarizes the status values.

When callback function is called Value of status argument

When the database server begins processing
an SQL request

status = 1

While the database server executes an SQL
request, when the timeout interval has
elapsed

status = 2

When the database server completes the
processing of an SQL request

status = 0

When you call the callback function with a status value of 2, the callback function
can determine whether the database server can continue processing with one of
following actions:
v It can call the sqlbreak() function to cancel the SQL request.
v It can omit the call to sqlbreak() to continue the SQL request.

The callback function, and any of its subroutines, can contain only the following
Informix ESQL/C control functions: sqldone(), sqlbreak(), and sqlbreakcallback().
For more information about the callback function, see 12-24.

If you call sqlbreakcallback() with a timeout value of zero, the callback function
executes immediately. The callback function executes over and over again unless it
contains a call to sqlbreakcallback() to redefine the callback function with one of
the following actions:
v It disassociates the callback function to discontinue the calling of the callback

function, as follows:
sqlbreakcallback(-1L, (void *)NULL);

v It defines some other callback function or resets the timeout value to a nonzero
value, as follows:
sqlbreakcallback(timeout, callbackfunc_ptr);

Important: Small timeout values might adversely affect the performance of your
application.

For more information about the timeout interval, see 12-24.

You must establish a database server connection before you call the
sqlbreakcallback() function. The callback function remains in effect for the
duration of the connection or until the sqlbreakcallback() function redefines the
callback function.

Return codes:

B-222 IBM Informix ESQL/C Programmer’s Manual

0 The call to sqlbreakcallback() was successful.

<0 The call to sqlbreakcallback() was not successful.

The sqldetach() function
The sqldetach() function detaches a process from the database server. You
generally call this function when an application forks a new process to begin a
new stream of execution.

Syntax:
mint sqldetach();

Usage:

If an application spawns one or more processes after it initiates a connection to a
database server, all the child processes inherit that database server connection from
the parent process (the application process that spawned the child). However, the
database server still assumes that this connection has only one process. If one
database server connection tries to serve both the parent and child processes at the
same time, problems can result. For example, if both processes send messages to
do something, the database server has no way of knowing which messages belong
to which process. The database server might not receive messages in an order that
makes sense and might thereby generate an error (such as error -408).

In this situation, call the sqldetach() function from the child process. The
sqldetach() function detaches the child process from the connection that the parent
process establishes (which the child inherits). This action drops all database server
connections in the child process. The child process can then establish its own
connection to a database server.

Use the sqldetach() function with the fork() system call. When you spawn a child
process from an application process with a database server connection, sequence
the function calls as follows:
1. Call fork() from the parent process to create a copy of the parent process (the

child process). Now both parent and child share the same connection to the
database server.

2. Call sqldetach() from the child process to detach the child process from the
database server. This call closes the connection in the child process.

Tip: You cannot use sqldetach() after a vfork() call because vfork() does not
execute a true process fork until the exec() function is called. Do not use
sqldetach() after the parent process uses an exec(); when exec() starts the
child process, the child process does not inherit the connection that the parent
process established.

A call to the sqldetach() function does not affect the database server sessions of the
parent process. Therefore, after sqldetach() executes in the child process, the parent
process retains any open cursors, transactions, or databases, and the child process
has neither database server sessions nor database server connections.

When you call the sqlexit() function from the parent process, the function drops
the connection in the parent process but does not affect the connections in the child
process. Similarly, when you call sqlexit() from the child process, the function
drops only the child connections; it does not affect the parent connections. The
sqlexit() function rolls back any open transactions before it closes the connection.

Appendix B. ESQL/C function library B-223

If you execute the DISCONNECT statement from a child process, you disconnect
the process from database server connections and terminate the database server
sessions that correspond to those connections. The DISCONNECT fails if any
transactions are open.

If the child process application has only one implicit connection before it calls
sqldetach(), execution of the next SQL statement or of the sqlstart() library
function reestablishes an implicit connection to the default database server. If the
application has made one or more explicit connections, you must issue a
CONNECT statement before you execute any other SQL statements.

The sqldetach demonstration program illustrates how to use the sqldetach()
function.

Return codes:

0 The call to sqldetach() was successful.

<0 The call to sqldetach() was not successful.

Example:

The sqldetach.ec file in the demo directory contains this sample program.
/*

* sqldetach.ec *

This program demonstrates how to detach a child process from a
parent process using the ESQL/C sqldetach() library function.

*/

main()
{

EXEC SQL BEGIN DECLARE SECTION;
mint pa;

EXEC SQL END DECLARE SECTION;

printf("SQLDETACH Sample ESQL Program running.\n\n");

printf("Beginning execution of parent process.\n\n");
printf("Connecting to default server...\n");
EXEC SQL connect to default;
chk("CONNECT");
printf("\n");

printf("Creating database ’aa’...\n");
EXEC SQL create database aa;
chk("CREATE DATABASE");
printf("\n");

printf("Creating table ’tab1’...\n");
EXEC SQL create table tab1 (a integer);
chk("CREATE TABLE");
printf("\n");

printf("Inserting 4 rows into ’tab1’...\n");
EXEC SQL insert into tab1 values (1);
chk("INSERT #1");
EXEC SQL insert into tab1 values (2);
chk("INSERT #2");
EXEC SQL insert into tab1 values (3);
chk("INSERT #3");
EXEC SQL insert into tab1 values (4);
chk("INSERT #4");

B-224 IBM Informix ESQL/C Programmer’s Manual

printf("\n");

printf("Selecting rows from ’tab1’ table...\n");
EXEC SQL declare c cursor for select * from tab1;
chk("DECLARE");

EXEC SQL open c;
chk("OPEN");

printf("\nForking child process...\n");
fork_child();

printf("\nFetching row from cursor ’c’...\n");
EXEC SQL fetch c into $pa;
chk("Parent FETCH");
if (sqlca.sqlcode == 0)

printf("Value selected from ’c’ = %d.\n", pa);
printf("\n");

printf("Cleaning up...\n");
EXEC SQL close database;
chk("CLOSE DATABASE");
EXEC SQL drop database aa;
chk("DROP DATABASE");
EXEC SQL disconnect all;
chk("DISCONNECT");

printf("\nEnding execution of parent process.\n");
printf("\nSQLDETACH Sample Program over.\n\n");

}

fork_child()
{

mint rc, status, pid;

EXEC SQL BEGIN DECLARE SECTION;
mint cnt, ca;

EXEC SQL END DECLARE SECTION;

pid = fork();
if (pid < 0)

printf("can’t fork child.\n");

else if (pid == 0)
{

printf("\n**\n");
printf("* Beginning execution of child process.\n");
rc = sqldetach();
printf("* sqldetach() call returns %d.\n", rc);

/* Verify that the child is not longer using the parent’s
* connection and has not inherited the parent’s connection
* environment.
*/
printf("* Trying to fetch row from cursor ’c’...\n");
EXEC SQL fetch c into $ca;
chk("* Child FETCH");
if (sqlca.sqlcode == 0)

printf("* Value from ’c’ = %d.\n", ca);

/* startup a connection for the child, since
* it doesn’t have one.
*/

printf("\n* Establish a connection, since child doesn’t have one\n");
printf("* Connecting to database ’aa’...\n");
EXEC SQL connect to ’aa’;
chk("* CONNECT");

Appendix B. ESQL/C function library B-225

printf("* \n");
printf("* Determining number of rows in ’tab1’...\n");

EXEC SQL select count(*) into $cnt from tab1;
chk("* SELECT");
if (sqlca.sqlcode == 0)

printf("* Number of entries in ’tab1’ = %d.\n", cnt);
printf("* \n");

printf("* Disconnecting from ’aa’ database...\n");
EXEC SQL disconnect current;
chk("* DISCONNECT");
printf("* \n");
printf("* Ending execution of child process.\n");
printf("**\n");

exit();
}

/* wait for child process to finish */
while ((rc = wait(&status)) != pid && rc != -1);

}

chk(s)
char *s;
{

mint msglen;
char buf1[200], buf2[200];

if (SQLCODE == 0)
{

printf("%s was successful\n", s);
return;

}
printf("\n%s:\n", s);
if (SQLCODE)
{

printf("\tSQLCODE = %6d: ", SQLCODE);
rgetlmsg(SQLCODE, buf1, sizeof(buf1), &msglen);
sprintf(buf2, buf1, sqlca.sqlerrm);
printf(buf2);
if (sqlca.sqlerrd[1])
{

printf("\tISAM Error = %6hd: ", sqlca.sqlerrd[1]);
rgetlmsg(sqlca.sqlerrd[1], buf1, sizeof(buf1), &msglen);
sprintf(buf2, buf1, sqlca.sqlerrm);
printf(buf2);

}
}

}

Output:
SQLDETACH Sample ESQL Program running.

Beginning execution of parent process.

Connecting to default server...
CONNECT was successful

Creating database ’aa’...
CREATE DATABASE was successful

Creating table ’tab1’...
CREATE TABLE was successful

Inserting 4 rows into ’tab1’...

B-226 IBM Informix ESQL/C Programmer’s Manual

INSERT #1 was successful
INSERT #2 was successful
INSERT #3 was successful
INSERT #4 was successful

Selecting rows from ’tab1’ table...
DECLARE was successful
OPEN was successful

Forking child process...

**
* Beginning execution of child process.
* sqldetach() call returns 0.
* Trying to fetch row from cursor ’c’...

* Child FETCH:
SQLCODE = -404: The cursor or statement is not available.

* Establish a connection, since child doesn’t have one
* Connecting to database ’aa’...
* CONNECT was successful
*
* Determining number of rows in ’tab1’...
* SELECT was successful
* Number of entries in ’tab1’ = 4.
*
* Disconnecting from ’aa’ database...
* DISCONNECT was successful
*
* Ending execution of child process.
**
SQLDETACH Sample ESQL Program running.

Beginning execution of parent process.

Connecting to default server...
CONNECT was successful

Creating database ’aa’...
CREATE DATABASE was successful

Creating table ’tab1’...

CREATE TABLE was successful

Inserting 4 rows into ’tab1’...
INSERT #1 was successful
INSERT #2 was successful
INSERT #3 was successful
INSERT #4 was successful

Selecting rows from ’tab1’ table...
DECLARE was successful
OPEN was successful

Forking child process...

Fetching row from cursor ’c’...
Parent FETCH was successful
Value selected from ’c’ = 1.

Cleaning up...
CLOSE DATABASE was successful
DROP DATABASE was successful
DISCONNECT was successful

Appendix B. ESQL/C function library B-227

Ending execution of parent process.

SQLDETACH Sample Program over.

The sqldone() function
The sqldone() function determines whether the database server is currently
processing an SQL request.

Syntax:
mint sqldone();

Usage:

Use sqldone() to test the status of the database server in the following situations:
v Before a call to the sqlbreak() function to determine if the database server is

processing an SQL request.
v In a signal-handler function, before a call to the longjmp() system function. Only

use longjmp() in a signal-handler function if sqldone() returns zero (the
database server is idle).

When the sqldone() function determines that the database server is not currently
processing an SQL request, you can assume that the database server does not begin
any other processing until your application issues its next request.

You might want to create a defined constant for the -439 value to make your code
more readable. For example, the following code fragment creates the
SERVER_BUSY constant and then uses it to test the sqldone() return status:
#define SERVER_BUSY -439

...

if (sqldone() == SERVER_BUSY)

Return codes:

0 The database server is not currently processing an SQL request: it
is idle.

-439 The database server is currently processing an SQL request.

The sqlexit() function
The sqlexit() function terminates all database server connections and frees
resources. You can use sqlexit() to reduce database overhead in programs that refer
to a database only briefly and after long intervals, or that access a database only
during initialization.

Syntax:
mint sqlexit();

Usage:

Only call the sqlexit() function when no databases are open. If an open database
uses transactions, sqlexit() rolls back any open transactions before it closes the
database. The behavior of this function is similar to that of the DISCONNECT ALL

B-228 IBM Informix ESQL/C Programmer’s Manual

statement. However, the DISCONNECT ALL statement fails if any current
transactions exist. Use the CLOSE DATABASE statement to close open databases
before you call sqlexit().

If the application has only one implicit connection before it calls sqlexit(),
execution of the next SQL statement or of the sqlstart() library function
reestablishes an implicit connection to the default database server. If the
application makes one or more explicit connections, you must issue a CONNECT
statement before you execute any other SQL statements.

Return codes:

0 The call to sqlexit() was successful.

<0 The call to sqlexit() was not successful.

The SqlFreeMem() function
If your application is running on a Windows operating system and using the
multi-threaded library, then you must use SqlFreeMem() when freeing memory
that was allocated by the Informix ESQL/C libraries. If you instead use free() you
will not get an error but the memory will not be freed.

Do not use SqlFreeMem() to free memory that was not allocated by one of the
functions in the Informix ESQL/C library.

Syntax:
void SqlFreeMem(void *memaddr, int freetype);

memaddr The address of the memory to be freed

freetype The type of memory to be freed and can have the following values:

STRING_FREE
Use for strings that were returned by an Informix ESQL/C
function and which your application is expected to free.

SQLDA_FREE
Use this to free an sqlda structure returned by a
DESCRIBE INTO statement. This also frees the associated
sqlvar_struct structures.

If your application allocated the sqlvar_struct structures
you must free them and set the sqlda.sqlvar field to null
before calling this function.

LOC_BUFFER_FREE
Use to free a LOC_BUFFER returned by select or fetch of a
simple large object.

The sqlsignal() function
The sqlsignal() function enables or disables signal handling of the signals that the
Informix ESQL/C library handles.

Syntax:
void sqlsignal(sigvalue, sigfunc_ptr, mode)

mint sigvalue;
void (*sigfunc_ptr) (void); short mode;

Appendix B. ESQL/C function library B-229

sigvalue The mint value of the particular signal that needs to be trapped (as
signal.h) defines).

Currently, this parameter is a placeholder for future functionality.
Initialize this argument to -1.

sigfunc_ptr A pointer to the user-defined function, which takes no arguments,
to call as a signal handler for the sigvalue signal.

Currently, this parameter is a placeholder for future functionality.
Initialize this argument to a null pointer to a function that receives
no arguments.

mode Can be one of three possible modes:

0 Initializes signal handling.

1 Disables signal handling.

2 Re-enables signal handling.

Usage:

The sqlsignal() function currently provides handling only for the SIGCHLD signal.
In some instances, defunct child processes remain after the application ends. If the
application does not clean up these processes, they can cause needless use of
process IDs and increase the risk that you run out of processes. This behavior is
only apparent when the application uses pipes for client-server communication
(that is, the nettype field of the sqlhosts file is ipcpip). You do not need to call
sqlsignal() for other communication mechanisms (for example, a nettype of
tlipcp).

The mode argument of sqlsignal() determines the task that sqlsignal() performs, as
follows:
v Set mode to 0 to initialize signal handling.

sqlsignal(-1, (void (*)()), 0);

When you initialize signal handling with sqlsignal(), the Informix ESQL/C
library traps the SIGCHLD signal to handle the cleanup of defunct child
processes. This initial call to sqlsignal() must occur at the beginning of your
application, before the first SQL statement in the program. If you omit this initial
call, you cannot turn on the signal-handling capability later in your program.

v Enable and disable signal handling.
If you want to have the Informix ESQL/C library perform signal handling for
portions of the program and your own code perform signal handling for other
portions, you can take the following actions:
– To disable signal handling, call sqlsignal() with mode set to 1, at the point

where you want your program to handle signals:
sqlsignal(-1, (void (*)()), 1);

– To re-enable signal handling, call sqlsignal() with mode set to 2, at the point
where you want the IBM Informix ESQL library to handle signals:
sqlsignal(-1, (void (*)()), 2);

When you initialize SIGCHLD signal handling with sqlsignal(), you allow the
Informix ESQL/C library to process SIGCHLD cleanup. Otherwise, your
application must perform the cleanup for these processes if defunct child
processes are a problem.

B-230 IBM Informix ESQL/C Programmer’s Manual

The sqlstart() function
The sqlstart() function starts an implicit default connection. An implicit default
connection can support one connection to the default database server (that the
INFORMIXSERVER environment variable specifies).

Tip: Restrict use of sqlstart() to pre-Version 6.0 applications that only use one
connection. Informix ESQL/C continues to support this function for
compatibility with earlier versions of these applications. For applications of
Version 6.0 and later, use the CONNECT statement to establish explicit
connections to a default database server.

Syntax:
mint sqlstart();

Usage:

Informix ESQL/C provides the sqlstart() function for pre-Version 6.0 applications
that can only support single connections. In this context, possible uses of sqlstart()
are as follows:
v You only need to verify that the default database server is available but you do

not intend to open a database. If the call to sqlstart() fails, you can check the
return status to verify that the default database server is not available.

v You need to speed up the execution of the DATABASE statement when the
application runs over a network. When you put the call to sqlstart() in an
initialization routine, the application establishes a connection before the user
begins interaction with the application. The DATABASE statement can then open
the specified database.

v You do not know the name of the actual database to access, or your application
plans to create a database. The call to sqlstart() can establish the implicit default
connection and the application can later determine the name of the database to
access or create.

If you have a pre-Version 6.0 application that needs an implicit default connection
for any other reason, use the DATABASE statement instead of sqlstart(). For
applications of Version 6.0 and later, use the CONNECT statement to establish
database server connections.

When you call the sqlstart() function, make sure that the application has not yet
established any connections, implicit or explicit. When the application has
established an explicit connection, sqlstart() returns error -1811. If an implicit
connection was established, sqlstart() returns error -1802.

You can call this function several times before you establish an explicit connection,
as long as each implicit connection is disconnected before the next call to sqlstart().
For information about disconnecting, see “Terminating a connection” on page
12-27. For more information about explicit and implicit connections, see
“Establishing a Connection” on page 12-10.

Return codes:

0 The call to sqlstart() was successful.

<0 The call to sqlstart() was not successful.

Appendix B. ESQL/C function library B-231

The stcat() function
The stcat() function concatenates one null-terminated string to the end of another.

Syntax:
void stcat(s, dest)

char *s, *dest;

s A pointer to the start of the string that stcat() places at the end of
the destination string.

dest A pointer to the start of the null-terminated destination string.

Example:

This sample program is in the stcat.ec file in the demo directory.
/*

* stcat.ec *

This program uses stcat() to append user input to a SELECT statement.
*/

#include <stdio.h>

/*
* Declare a variable large enough to hold
* the select statement + the value for customer_num entered from the terminal.
*/

char selstmt[80] = "select fname, lname from customer where customer_num = ";

main()
{

char custno[11];

printf("STCAT Sample ESQL Program running.\n\n");

printf("Initial SELECT string:\n ’%s’\n", selstmt);

printf("\nEnter Customer #: ");
gets(custno);

/*
* Add custno to "select statement"
*/

printf("\nCalling stcat(custno, selstmt)\n");
stcat(custno, selstmt);
printf("SELECT string is:\n ’%s’\n", selstmt);

printf("\nSTCAT Sample Program over.\n\n");
}

Output:
STCAT Sample ESQL Program running.

Initial SELECT string:
’select fname, lname from customer where customer_num = ’

Enter Customer #: 104

Calling stcat(custno, selstmt)

B-232 IBM Informix ESQL/C Programmer’s Manual

SELECT string is:
’select fname, lname from customer where customer_num = 104’

STCAT Sample Program over.

The stchar() function
The stchar() function stores a null-terminated string in a fixed-length string,
padding the end with blanks, if necessary.

Syntax:
void stchar(from, to, count)

char *from;
char *to;
mint count;

from A pointer to the first byte of a null-terminated source string.

to A pointer to the fixed-length destination string. This argument can
point to a location that overlaps the location to which the from
argument points. In this case, Informix ESQL/C discards the value
to which from points.

count The number of bytes in the fixed-length destination string.

Example:

This sample program is in the stchar.ec file in the demo directory.
/*

* stchar.ec *

The following program shows the blank padded result produced by
stchar() function.

*/

#include <stdio.h>

main()
{

static char src[] = "start";
static char dst[25] = "123abcdefghijkl;.";

printf("STCHAR Sample ESQL Program running.\n\n");

printf("Source string: [%s]\n", src);
printf("Destination string before stchar: [%s]\n", dst);

stchar(src, dst, sizeof(dst) - 1);

printf("Destination string after stchar: [%s]\n", dst);

printf("\nSTCHAR Sample Program over.\n\n");
}

Output:
STCHAR Sample ESQL Program running.

Source string: [start]

Appendix B. ESQL/C function library B-233

Destination string before stchar: [123abcdefghijkl;.]
Destination string after stchar: [start]

STCHAR Sample Program over.

The stcmpr() function
The stcmpr() function compares two null-terminated strings.

Syntax:
mint stcmpr(s1, s2)

char *s1, *s2;

s1 A pointer to the first null-terminated string.

s2 A pointer to the second null-terminated string.

Important: s1 is greater than s2 when s1 appears after s2 in the
ASCII collation sequence.

Return codes:

=0 The two strings are identical.

<0 The first string is less than the second string.

>0 The first string is greater than the second string.

Example:

This sample program is in the stcmpr.ec file in the demo directory.
/*

* stcmpr.ec *

The following program displays the results of three string
comparisons using stcmpr().

*/

#include <stdio.h>

main()
{

printf("STCMPR Sample ESQL Program running.\n\n");

printf("Executing: stcmpr(\"aaa\", \"aaa\")\n");
printf(" Result = %d", stcmpr("aaa", "aaa")); /* equal */
printf("\nExecuting: stcmpr(\"aaa\", \"aaaa\")\n");
printf(" Result = %d", stcmpr("aaa", "aaaa")); /* less */
printf("\nExecuting: stcmpr(\"bbb\", \"aaaa\")\n");
printf(" Result = %d\n", stcmpr("bbb", "aaaa")); /* greater */

printf("\nSTCMPR Sample Program over.\n\n");
}

Output:
STCMPR Sample ESQL Program running.

Executing: stcmpr("aaa", "aaa")
Result = 0

Executing: stcmpr("aaa", "aaaa")
Result = -1

B-234 IBM Informix ESQL/C Programmer’s Manual

Executing: stcmpr("bbb", "aaaa")
Result = 1

STCMPR Sample Program over.

The stcopy() function
The stcopy() function copies a null-terminated string from one location in memory
to another location.

Syntax:
void stcopy(from, to)

char *from, *to;

from A pointer to the null-terminated string that you want stcopy() to
copy.

to A pointer to a location in memory where stcopy() copies the string.

Example:

This sample program is in the stcopy.ec file in the demo directory.
/*

* stcopy.ec *

This program displays the result of copying a string using stcopy().
*/

#include <stdio.h>

main()
{

static char string[] = "abcdefghijklmnopqrstuvwxyz";

printf("STCOPY Sample ESQL Program running.\n\n");

printf("Initial string:\n [%s]\n", string); /* display dest */
stcopy("John Doe", &string[15]); /* copy */
printf("After copy of ’John Doe’ to position 15:\n [%s]\n",

string);

printf("\nSTCOPY Sample Program over.\n\n");
}

Output:
STCOPY Sample ESQL Program running.

Initial string:
[abcdefghijklmnopqrstuvwxyz]

After copy of ’John Doe’ to position 15:
[abcdefghijklmnoJohn Doe]

STCOPY Sample Program over.

The stleng() function
The stleng() function returns the length, in bytes, of a null-terminated string that
you specify.

Syntax:

Appendix B. ESQL/C function library B-235

mint stleng(string)
char *string;

string A pointer to a null-terminated string.

Usage:

The length does not include the null terminator.

Example:

This sample program is in the stleng.ec file in the demo directory.
/*

* stleng.ec *

This program uses stleng to find strings that are greater than 35
characters in length.

*/

#include <stdio.h>

char *strings[] =
{
"Your First Season’s Baseball Glove",
"ProCycle Stem with Pearl Finish",
"Athletic Watch w/4-Lap Memory, Olympic model",
"High-Quality Kickboard",
"Team Logo Silicone Swim Cap - fits all head sizes",
};

main(argc, argv)
int argc;
char *argv[];
{

mint length, i;

printf("STLENG Sample ESQL Program running.\n\n");

printf("Strings with lengths greater than 35:\n");
i = 0;
while(strings[i])
{
if((length = stleng(strings[i])) > 35)

{
printf(" String[%d]: %s\n", i, strings[i]);
printf(" Length: %d\n\n", length);
}

++i;
}

printf("\nSTLENG Sample Program over.\n\n");
}

Output:
STLENG Sample ESQL Program running.

Strings with lengths greater than 35:
String[2]: Athletic Watch w/4-Lap Memory, Olympic model
Length: 44

String[4]: Team Logo Silicone Swim Cap - fits all head sizes
Length: 49

STLENG Sample Program over.

B-236 IBM Informix ESQL/C Programmer’s Manual

Appendix C. Examples for Smart-Large-Object Functions

The examples in this appendix apply only if you are using IBM Informix as your
database server. The examples in this appendix illustrate how to use the Informix
ESQL/C library functions to access smart large objects.

Prerequisites
The examples in this section depend on the existence of the following, alternate
catalog table for the stores7 database. The examples also depend on the presence
of an sbspace, s9_sbspc, that stores the contents of the BLOB and CLOB columns,
picture and advert_descr, in the alternate catalog table.
-- create table that uses smart large objects (CLOB & BLOB) to
-- store the catalog advertisement data.

CREATE TABLE catalog
(
catalog_num SERIAL8 (10001) primary key,
stock_num SMALLINT,
manu_code CHAR(3),
unit CHAR(4),
advert ROW (picture BLOB, caption VARCHAR(255, 65)),
advert_descr CLOB,

FOREIGN KEY (stock_num, manu_code) REFERENCES stock constraint aa
)
PUT advert IN (s9_sbspc)

(EXTENT SIZE 100),
advert_descr IN (s9_sbspc)

(EXTENT SIZE 20, KEEP ACCESS TIME)

The following example illustrates typical commands to create an sbspace. The
values of specific options can vary. You must replace PATH with the complete file
name of the file that you allocate for the sbspace.
touch s9_sbspc
onspaces -c -S s9_sbspc -g 4 -p PATH -o 0 -s 2000

For more information about how to create an sbspace, and particularly on the
onspaces utility, see your IBM Informix Administrator's Guide.

Figure C-1 illustrates the format of entries in a load file that you might use to load
data into the alternate catalog table. A load file contains data that the LOAD
statement loads into a table. Each line in Figure C-1 loads one row in the table.
Figure C-1 shows only a sample of code that you can use to load the catalog table.
For more information about the LOAD statement, see the IBM Informix Guide to
SQL: Syntax:

© Copyright IBM Corp. 1996, 2010 C-1

The code in Figure C-2 illustrate the format of information in the catalog.des file,
to which Figure C-1 refers. The entry for advert_descr (0,62,/tmp/catalog.des) in
Figure C-1 specifies the offset, length, and file name from which the description is
loaded. The offset and length are hexadecimal values.

This appendix contains the following example programs.

Program Description See

create_clob.ec Inserts a row that contains a CLOB column into the
alternate catalog table that is described in C-1.

C-2

get_lo_info.ec Appends the price from the stock table of the stores7
database to the advert_descr column of the alternate
catalog table that is described in C-1.

C-5

upd_lo_descr.ec Obtains the price of catalog items for which the
advert_descr column is not null and appends the price to
the description.

C-8

The create_clob.ec program
The create_clob program demonstrates how to perform the following tasks on a
smart large object:
v Create a new smart large object with user-defined storage characteristics.
v Insert the new smart large object into a database column.

Storage characteristics for the example
The create_clob program creates an advert_descr smart large object that has the
following user-defined storage characteristics:

0|1|HRO|case|ROW(/tmp/cn_1001.gif,"Your First Season’s Baseball Glove")|0,62,
/tmp/catalog.des|

0|1|HSK|case|ROW(NULL,"All Leather, Hand Stitched, Deep Pockets, Sturdy Webbing That Won’t
Let Go")||

0|1|SMT|case|ROW(NULL,"A Sturdy Catcher’s Mitt With the Perfect Pocket")||
0|2|HRO|each|ROW(NULL,"Highest Quality Ball Available, from the Hand-Stitching to the

Robinson Signature")||
0|3|HSK|case|ROW(NULL,"High-Technology Design Expands the Sweet Spot")||
0|3|SHM|case|ROW(NULL,"Durable Aluminum for High School and Collegiate Athletes")||
0|4|HSK|case|ROW(NULL,"Quality Pigskin with Norm Van Brocklin Signature")||

Figure C-1. Example of load file for alternate catalog table

Brown leather. Specify first baseman’s or infield/outfield style. Specify right- or
left-handed.

Double or triple crankset with choice of chainrings. For double crankset, chainrings from
38-54 teeth. For triple crankset, chainrings from 24-48 teeth.

No buckle so no plastic touches your chin. Meets both ANSI and Snell standards for impact
protection.7.5 oz. Lycra cover.

Fluorescent yellow.

Super shock-absorbing gel pads disperse vertical energy into a horizontal plane for
extraordinary cushioned comfort. Great motion control. Mens only. Specify size

Figure C-2. Example of load file for alternate catalog table

C-2 IBM Informix ESQL/C Programmer’s Manual

v Logging is on: LO_LOG
v Keep last access time (default from advert_descr column):

LO_KEEP_ACCESSTIME
v Integrity is high
v Allocation extent size is 10 KB
EXEC SQL include int8;
EXEC SQL include locator;

EXEC SQL define BUFSZ 10;

extern char statement[80];

main()
{
EXEC SQL BEGIN DECLARE SECTION;

int8 catalog_num, estbytes, offset;
int error, numbytes, lofd, ic_num, buflen = 256;
char buf[256], srvr_name[256], col_name[300];
ifx_lo_create_spec_t *create_spec;
fixed binary ’clob’ ifx_lo_t descr;

EXEC SQL END DECLARE SECTION;

void nullterm(char *);
void handle_lo_error(int);

EXEC SQL whenever sqlerror call whenexp_chk;
EXEC SQL whenever sqlwarning call whenexp_chk;

printf("CREATE_CLOB Sample ESQL program running.\n\n");
strcpy(statement, "CONNECT stmt");
EXEC SQL connect to ’stores7’;
EXEC SQL get diagnostics exception 1

:srvr_name = server_name;
nullterm(srvr_name);

/* Allocate and initialize the LO-specification structure
*/

error = ifx_lo_def_create_spec(&create_spec);
if (error < 0)
{

strcpy(statement, "ifx_lo_def_create_spec()");
handle_lo_error(error);

}

/* Get the column-level storage characteristics for the
* CLOB column, advert_descr.
*/

sprintf(col_name, "stores7@%s:catalog.advert_descr",
srvr_name);

error = ifx_lo_col_info(col_name, create_spec);
if (error < 0)
{

strcpy(statement, "ifx_lo_col_info()");
handle_lo_error(error);

}

/* Override column-level storage characteristics for
* advert_desc with the following user-defined storage
* characteristics:
* no logging
* extent size = 10 kilobytes
*/

Appendix C. Examples for Smart-Large-Object Functions C-3

ifx_lo_specset_flags(create_spec,LO_LOG);
ifx_int8cvint(BUFSZ, &estbytes);
ifx_lo_specset_estbytes(create_spec, &estbytes);

/* Create an LO-specification structure for the smart large object
*/

if ((lofd = ifx_lo_create(create_spec, LO_RDWR,
&descr, &error)) == -1)

{
strcpy(statement, "ifx_lo_create()");
handle_lo_error(error);

}
/* Copy data into the character buffer ’buf’ */

sprintf(buf, "%s %s",
"Pro model infielder’s glove. Highest quality leather and
stitching. "
"Long-fingered, deep pocket, generous web.");

/* Write contents of character buffer to the open smart
* large object that lofd points to. */

ifx_int8cvint(0, &offset);
numbytes = ifx_lo_writewithseek(lofd, buf, buflen,

&offset, LO_SEEK_SET, &error);
if (numbytes < buflen)
{

strcpy(statement, "ifx_lo_writewithseek()");
handle_lo_error(error);

}

/* Insert the smart large object into the table */
strcpy(statement, "INSERT INTO catalog");
EXEC SQL insert into catalog values (0, 1, ’HSK’, ’case’, ROW(NULL,
NULL),
:descr);

/* Need code to find out what the catalog_num value was assigned to new
* row */

/* Close the LO file descriptor */
ifx_lo_close(lofd);

/* Select back the newly inserted value. The SELECT
* returns an LO-pointer structure, which you then use to
* open a smart large object to get an LO file descriptor.
*/

ifx_getserial8(&catalog_num);
strcpy(statement, "SELECT FROM catalog");
EXEC SQL select advert_descr into :descr from catalog

where catalog_num = :catalog_num;

/* Use the returned LO-pointer structure to open a smart
* large object and get an LO file descriptor.
*/

lofd = ifx_lo_open(&descr, LO_RDONLY, &error);
if (error < 0)
{

strcpy(statement, "ifx_lo_open()");
handle_lo_error(error);

}
/* Use the LO file descriptor to read the data in the
* smart large object.
*/

C-4 IBM Informix ESQL/C Programmer’s Manual

ifx_int8cvint(0, &offset);
strcpy(buf, "");
numbytes = ifx_lo_readwithseek(lofd, buf, buflen,

&offset, LO_SEEK_CUR, &error);
if (error || numbytes == 0)
{

strcpy(statement, "ifx_lo_readwithseek()");
handle_lo_error(error);

}
if(ifx_int8toint(&catalog_num, &ic_num) != 0)

printf("\nifx_int8toint failed to convert catalog_num to int");
printf("\nContents of column \’descr\’ for catalog_num:
%d \n\t%s\n",

ic_num, buf);
/* Close open smart large object */
ifx_lo_close(lofd);
/* Free LO-specification structure */
ifx_lo_spec_free(create_spec);

}

void handle_lo_error(error_num)
int error_num;
{

printf("%s generated error %d\n", statement, error_num);
exit(1);

}

void nullterm(str)
char *str;
{

char *end;

end = str + 256;
while(*str != ’ ’ && *str != ’\0’ && str < end)
{

++str;
}
if(str >= end)

printf("Error: end of str reached\n");
if(*str == ’ ’)

*str = ’\0’;
}

/* Include source code for whenexp_chk() exception-checking
* routine
*/

EXEC SQL include exp_chk.ec;

The get_lo_info.ec program
This program retrieves information about smart large objects stored in a BLOB
column.
#include <time.h>

EXEC SQL define BUFSZ 10;

extern char statement[80];

main()
{

int error, ic_num, oflags, cflags, extsz, imsize, isize, iebytes;
time_t time;

Appendix C. Examples for Smart-Large-Object Functions C-5

struct tm *date_time;
char col_name[300], sbspc[129];

EXEC SQL BEGIN DECLARE SECTION;
fixed binary ’blob’ ifx_lo_t picture;
char srvr_name[256];
ifx_lo_create_spec_t *cspec;
ifx_lo_stat_t *stats;
ifx_int8_t size, c_num, estbytes, maxsize;
int lofd;
long atime, ctime, mtime, refcnt;
EXEC SQL END DECLARE SECTION;

void nullterm(char *);
void handle_lo_error(int);

imsize = isize = iebytes = 0;
EXEC SQL whenever sqlerror call whenexp_chk;
EXEC SQL whenever sqlwarning call whenexp_chk;

printf("GET_LO_INFO Sample ESQL program running.\n\n");
strcpy(statement, "CONNECT stmt");
EXEC SQL connect to ’stores7’;
EXEC SQL get diagnostics exception 1

:srvr_name = server_name;
nullterm(srvr_name);

EXEC SQL declare ifxcursor cursor for
select catalog_num, advert.picture
into :c_num, :picture
from catalog
where advert.picture is not null;

EXEC SQL open ifxcursor;
while(1)
{

EXEC SQL fetch ifxcursor;
if (strncmp(SQLSTATE, "00", 2) != 0)
{

if(strncmp(SQLSTATE, "02", 2) != 0)
printf("SQLSTATE after fetch is %s\n", SQLSTATE);

break;
}
/* Use the returned LO-pointer structure to open a smart
* large object and get an LO file descriptor.
*/
lofd = ifx_lo_open(&picture, LO_RDONLY, &error);
if (error < 0)
{

strcpy(statement, "ifx_lo_open()");
handle_lo_error(error);

}
if(ifx_lo_stat(lofd, &stats) < 0)

{
printf("\nifx_lo_stat() < 0");
break;

}
if(ifx_int8toint(&c_num, &ic_num) != 0)

ic_num = 99999;
if((ifx_lo_stat_size(stats, &size)) < 0)

isize = 0;
else

if(ifx_int8toint(&size, &isize) != 0)
{

C-6 IBM Informix ESQL/C Programmer’s Manual

printf("\nFailed to convert size");
isize = 0;

}
if((refcnt = ifx_lo_stat_refcnt(stats)) < 0)

refcnt = 0;
printf("\n\nCatalog number %d", ic_num);
printf("\nSize is %d, reference count is %d", isize, refcnt);

if((atime = ifx_lo_stat_atime(stats)) < 0)
printf("\nNo atime available");

else
{

time = (time_t)atime;
date_time = localtime(&time);
printf("\nTime of last access: %s", asctime(date_time));

}
if((ctime = ifx_lo_stat_ctime(stats)) < 0)

printf("\nNo ctime available");
else
{

time = (time_t)ctime;
date_time = localtime(&time);
printf("Time of last change: %s", asctime(date_time));

}

if((mtime = ifx_lo_stat_mtime_sec(stats)) < 0)
printf("\nNo mtime available");

else
{

time = (time_t)mtime;
date_time = localtime(&time);

printf("Time to the second of last modification: %s",
asctime(date_time));

}
if((cspec = ifx_lo_stat_cspec(stats)) == NULL)
{

printf("\nUnable to access ifx_lo_create_spec_t structure");
break;

}
oflags = ifx_lo_specget_def_open_flags(cspec);
printf("\nDefault open flags are: %d", oflags);
if(ifx_lo_specget_estbytes(cspec, &estbytes) == -1)
{

printf("\nifx_lo_specget_estbytes() failed");
break;

}
if(ifx_int8toint(&estbytes, &iebytes) != 0)
{

printf("\nFailed to convert estimated bytes");
}
printf("\nEstimated size of smart LO is: %d", iebytes);
if((extsz = ifx_lo_specget_extsz(cspec)) == -1)

{
printf("\nifx_lo_specget_extsz() failed");
break;

}
printf("\nAllocation extent size of smart LO is: %d", extsz);
if((cflags = ifx_lo_specget_flags(cspec)) == -1)
{

printf("\nifx_lo_specget_flags() failed");
break;

}
printf("\nCreate-time flags of smart LO are: %d", cflags);
if(ifx_lo_specget_maxbytes(cspec, &maxsize) == -1)

Appendix C. Examples for Smart-Large-Object Functions C-7

{
printf("\nifx_lo_specget_maxsize() failed");
break;

}
if(ifx_int8toint(&maxsize, &imsize) != 0)
{

printf("\nFailed to convert maximum size");
break;

}
if(imsize == -1)

printf("\nMaximum size of smart LO is: No limit");
else

printf("\nMaximum size of smart LO is: %d\n", imsize);
if(ifx_lo_specget_sbspace(cspec, sbspc, sizeof(sbspc)) == -1)

printf("\nFailed to obtain sbspace name");
else

printf("\nSbspace name is %s\n", sbspc);

}
/* Close smart large object */
ifx_lo_close(lofd);
ifx_lo_stat_free(stats);

EXEC SQL close ifxcursor;
EXEC SQL free ifxcursor;

}

void handle_lo_error(error_num)
int error_num;
{

printf("%s generated error %d\n", statement, error_num);
exit(1);

}

void nullterm(str)
char *str;
{

char *end;

end = str + 256;
while(*str != ’ ’ && *str != ’\0’ && str < end)
{

++str;
}
if(str >= end)

printf("Error: end of str reached\n");
if(*str == ’ ’)

*str = ’\0’;
}
/* Include source code for whenexp_chk() exception-checking
* routine
*/

EXEC SQL include exp_chk.ec;

The upd_lo_descr.ec program
This program obtains the price of catalog items for which the advert_descr column
is not null and appends the price to the description.
EXEC SQL include sqltypes;

EXEC SQL define BUFSZ 10;

extern char statement[80];

C-8 IBM Informix ESQL/C Programmer’s Manual

main()
{

int error, isize;
char format[] = "<<<,<<<.&&";
char decdsply[20], buf[50000], *end;

EXEC SQL BEGIN DECLARE SECTION;
dec_t price;
fixed binary ’clob’ ifx_lo_t descr;
smallint stockno;
char srvr_name[256], mancd[4], unit[5];
ifx_lo_stat_t *stats;
ifx_int8_t size, offset, pos;
int lofd, ic_num;
EXEC SQL END DECLARE SECTION;

void nullterm(char *);
void handle_lo_error(int);

isize = 0;
EXEC SQL whenever sqlerror call whenexp_chk;
EXEC SQL whenever sqlwarning call whenexp_chk;

printf("UPD_LO_DESCR Sample ESQL program running.\n\n");
strcpy(statement, "CONNECT stmt");
EXEC SQL connect to ’stores7’;
EXEC SQL get diagnostics exception 1

:srvr_name = server_name;
nullterm(srvr_name);

/* Selects each row where the advert.picure column is not null and
* displays
* status information for the smart large object.
*/

EXEC SQL declare ifxcursor cursor for
select catalog_num, stock_num, manu_code, unit, advert_descr
into :ic_num, :stockno, :mancd, :unit, :descr
from catalog
where advert_descr is not null;

EXEC SQL open ifxcursor;
while(1)
{

EXEC SQL fetch ifxcursor;
if (strncmp(SQLSTATE, "00", 2) != 0)
{

if(strncmp(SQLSTATE, "02", 2) != 0)
printf("SQLSTATE after fetch is %s\n", SQLSTATE);

break;
}
EXEC SQL select unit_price into :price

from stock
where stock_num = :stockno
and manu_code = :mancd
and unit = :unit;

if (strncmp(SQLSTATE, "00", 2) != 0)
{

printf("SQLSTATE after select on stock: %s\n", SQLSTATE);
break;

}
if(risnull(CDECIMALTYPE, (char *) &price)) /* NULL? */

continue; /* skip to next row */
rfmtdec(&price, format, decdsply); /* format unit_price */

Appendix C. Examples for Smart-Large-Object Functions C-9

/* Use the returned LO-pointer structure to open a smart
* large object and get an LO file descriptor.
*/

lofd = ifx_lo_open(&descr, LO_RDWR, &error);
if (error < 0)
{

strcpy(statement, "ifx_lo_open()");
handle_lo_error(error);

}
ifx_int8cvint(0, &offset);
if(ifx_lo_seek(lofd, &offset, LO_SEEK_SET, &pos) < 0)
{

printf("\nifx_lo_seek() < 0\n");
break;

}
if(ifx_lo_stat(lofd, &stats) < 0)
{

printf("\nifx_lo_stat() < 0");
break;

}
if((ifx_lo_stat_size(stats, &size)) < 0)
{

printf("\nCan’t get size, isize = 0");
isize = 0;

}
else

if(ifx_int8toint(&size, &isize) != 0)
{

printf("\nFailed to convert size");
isize = 0;

}
if(ifx_lo_read(lofd, buf, isize, &error) < 0)
{

printf("Read operation failed\n");
break;

}
end = buf + isize;

strcpy(end++, "(");
strcat(end, decdsply);
end += strlen(decdsply);
strcat(end++, ")");
if(ifx_lo_writewithseek(lofd, buf, (end - buf), &offset,
LO_SEEK_SET,

&error) < 0)
{

printf("Write error on LO: %d", error);
continue;

}
printf("\nNew description for catalog_num %d is: \n%s\n", ic_num,
buf);

}
/* Close smart large object */
ifx_lo_close(lofd);
ifx_lo_stat_free(stats);
/* Free LO-specification structure */
EXEC SQL close ifxcursor;
EXEC SQL free ifxcursor;

}

void handle_lo_error(error_num)
int error_num;
{

printf("%s generated error %d\n", statement, error_num);
exit(1);

C-10 IBM Informix ESQL/C Programmer’s Manual

}

void nullterm(str)
char *str;
{

char *end;

end = str + 256;
while(*str != ’ ’ && *str != ’\0’ && str < end)
{

++str;
}
if(str >= end)

printf("Error: end of str reached\n");
if(*str == ’ ’)

*str = ’\0’;
}

/* Include source code for whenexp_chk() exception-checking
* routine
*/

EXEC SQL include exp_chk.ec;

Appendix C. Examples for Smart-Large-Object Functions C-11

C-12 IBM Informix ESQL/C Programmer’s Manual

Appendix D. Accessibility

IBM strives to provide products with usable access for everyone, regardless of age
or ability.

Accessibility features for IBM Informix
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility Features
The following list includes the major accessibility features in IBM Informix. These
features support:
v Keyboard-only operation.
v Interfaces that are commonly used by screen readers.
v The attachment of alternative input and output devices.

Tip: The IBM Informix Information Center and its related publications are
accessibility-enabled for the IBM Home Page Reader. You can operate all
features using the keyboard instead of the mouse.

Keyboard Navigation
This product uses standard Microsoft Windows navigation keys.

Related Accessibility Information
IBM is committed to making our documentation accessible to persons with
disabilities. Our publications are available in HTML format so that they can be
accessed with assistive technology such as screen reader software. The syntax
diagrams in our publications are available in dotted decimal format. For more
information about the dotted decimal format, go to “Dotted Decimal Syntax
Diagrams.”

You can view the publications for IBM Informix in Adobe Portable Document
Format (PDF) using the Adobe Acrobat Reader.

IBM and Accessibility
See the IBM Accessibility Center at http://www.ibm.com/able for more information
about the commitment that IBM has to accessibility.

Dotted Decimal Syntax Diagrams
The syntax diagrams in our publications are available in dotted decimal format,
which is an accessible format that is available only if you are using a screen reader.

In dotted decimal format, each syntax element is written on a separate line. If two
or more syntax elements are always present together (or always absent together),
the elements can appear on the same line, because they can be considered as a
single compound syntax element.

© Copyright IBM Corp. 1996, 2010 D-1

http://www.ibm.com/able

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read
punctuation. All syntax elements that have the same dotted decimal number (for
example, all syntax elements that have the number 3.1) are mutually exclusive
alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax can
include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, the word or symbol is preceded by
the backslash (\) character. The * symbol can be used next to a dotted decimal
number to indicate that the syntax element repeats. For example, syntax element
*FILE with dotted decimal number 3 is read as 3 * FILE. Format 3* FILE
indicates that syntax element FILE repeats. Format 3* * FILE indicates that
syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol that provides information about the syntax elements. For example, the lines
5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, that element is defined elsewhere.
The string following the % symbol is the name of a syntax fragment rather than a
literal. For example, the line 2.1 %OP1 means that you should refer to a separate
syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:

? Specifies an optional syntax element. A dotted decimal number followed
by the ? symbol indicates that all the syntax elements with a
corresponding dotted decimal number, and any subordinate syntax
elements, are optional. If there is only one syntax element with a dotted
decimal number, the ? symbol is displayed on the same line as the syntax
element (for example, 5? NOTIFY). If there is more than one syntax element
with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if
you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that syntax
elements NOTIFY and UPDATE are optional; that is, you can choose one or
none of them. The ? symbol is equivalent to a bypass line in a railroad
diagram.

! Specifies a default syntax element. A dotted decimal number followed by
the ! symbol and a syntax element indicates that the syntax element is the
default option for all syntax elements that share the same dotted decimal
number. Only one of the syntax elements that share the same dotted
decimal number can specify a ! symbol. For example, if you hear the lines

D-2 IBM Informix ESQL/C Programmer’s Manual

2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the
default option for the FILE keyword. In this example, if you include the
FILE keyword but do not specify an option, default option KEEP is applied.
A default option also applies to the next higher dotted decimal number. In
this example, if the FILE keyword is omitted, default FILE(KEEP) is used.
However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP only applies to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword), and
does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* Specifies a syntax element that can be repeated zero or more times. A
dotted decimal number followed by the * symbol indicates that this syntax
element can be used zero or more times; that is, it is optional and can be
repeated. For example, if you hear the line 5.1* data-area, you know that
you can include more than one data area or you can include none. If you
hear the lines 3*, 3 HOST, and 3 STATE, you know that you can include
HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is
only one item with that dotted decimal number, you can repeat that
same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item
from the list, but you cannot use the items more than once each. In the
previous example, you could write HOST STATE, but you could not write
HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax
diagram.

+ Specifies a syntax element that must be included one or more times. A
dotted decimal number followed by the + symbol indicates that this syntax
element must be included one or more times. For example, if you hear the
line 6.1+ data-area, you must include at least one data area. If you hear
the lines 2+, 2 HOST, and 2 STATE, you know that you must include HOST,
STATE, or both. As for the * symbol, you can only repeat a particular item if
it is the only item with that dotted decimal number. The + symbol, like the
* symbol, is equivalent to a loop-back line in a railroad syntax diagram.

Appendix D. Accessibility D-3

D-4 IBM Informix ESQL/C Programmer’s Manual

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
all countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1996, 2010 E-1

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not

E-2 IBM Informix ESQL/C Programmer’s Manual

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM
Corp. Sample Programs. © Copyright IBM Corp. (enter the year or years). All
rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, and PostScript are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other
countries.

Intel, Itanium, and Pentium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Notices E-3

http://www.ibm.com/legal/copytrade.shtml

E-4 IBM Informix ESQL/C Programmer’s Manual

Index

Special characters
-ansi preprocessor option 2-5, 12-11
-c processor option 2-24, 2-26
-cc processor option 2-23
-e preprocessor option 2-5, 2-12
-ED preprocessor option 2-5, 2-13
-EU preprocessor option 2-5, 2-13
-f processor option 2-10, 2-24
-g preprocessor option 2-15
-G preprocessor option 2-5, 2-15
-I preprocessor option 2-5, 2-14
-icheck preprocessor option 1-23, 2-5, 2-14
-l processor option 2-28
-libs processor option 2-5, 2-27
-local preprocessor option 2-5, 2-15, 14-4
-log preprocessor option 2-5, 2-16
-lw preprocessor option 2-10
-mserr preprocessor option 2-10, 2-22
-N processor option 2-10
-nln preprocessor option 2-5, 2-15
-nowarn preprocessor option 2-5, 2-16, 2-22
-o preprocessor option 2-5, 2-10, 2-23, 2-26
-r processor option 2-28
-runtime processor option 2-27
-Sc processor option 2-27
-ss processor option 2-27
-static preprocessor option 2-5, 13-3, 13-4, 13-17
-subsystem processor option 2-27
-Sw processor option 2-27
-target processor option 2-26, 2-31, 12-10
-thread preprocessor option 2-5, 2-12, 13-3, 13-9, 13-16

for dynamic thread library 13-32
-ts preprocessor option 2-11
-V preprocessor option 2-11
-V processor option 2-5
-version processor option 2-5
-wd processor option 2-26, 2-31, 12-10
-we processor option 2-26
-xopen preprocessor option 2-5, 2-16, 15-13, 15-14
.c file extension 2-2, 2-12, 2-24, 2-27, 11-20, 13-8
.def file extension 2-26, 2-27
.dll file extension 2-23, 2-30, 12-13
.ec file extension 2-2, 2-5, 2-24
.ecp file extension 2-2, 2-5
.exe file extension 2-23, 2-30, 12-13
.h file extension 1-29
.o file extension 2-27
.obj file extension 2-24
.rc file extension 2-27, 2-28
.res file extension 2-27, 2-28
.sl file extension 13-7
.so file extension 13-4, 13-7

A
Access mode flags, locks on smart large objects 8-16
Accessibility D-1

dotted decimal format of syntax diagrams D-1
keyboard D-1
shortcut keys D-1

Accessibility (continued)
syntax diagrams, reading in a screen reader D-1

Aggregate functions 1-21, 1-23, 11-9, 11-17
ALLOCATE COLLECTION statement 9-9
ALLOCATE DESCRIPTOR statement 16-3
ALLOCATE ROW statement 9-35
Allocating memory

for fetch arrays 15-30
Allocation extent size 8-3, B-124, B-130
ALLOW_NEWLINE parameter 1-7
ALTER INDEX statement 12-22, 15-10, B-220
ALTER TABLE statement 12-22, 15-10, B-220
Ampersand (&) symbol 5-9
ANSI C standards 13-15
ANSI SQL standards

checking for Informix extensions 11-9, 11-14, 11-17, 12-11
connecting to a database 12-11
declaring host variables 1-9
defining ESQL/C function prototypes 1-27
delimiting identifiers 1-13
delimiting strings 1-13
escape character 1-6
for datetime and interval values 6-7, B-56, B-160
getting diagnostic information 11-3
preparing SQL statements 14-3
specifying host variables 1-8
SQLSTATE class values 11-8
using EXEC SQL keywords 1-28
using GOTO in the WHENEVER statement 11-28
using INDICATOR keyword 1-24
warning values 11-13

ANSI-compliant database
determining 11-9, 11-14, 11-17, 12-18
indicating NOT FOUND condition 11-13, 11-22
inserting character data 4-12
nonstandard syntax in sqlwarn 11-17

ANSI-style parameters as host variables 1-19
Arithmetic operations

description of 3-10
Array

and truncated SQL value 1-23
dimension limit 1-16
in a host-variable typedef 1-17
of host variables 1-16

ASKPASSATCONNECT network parameter 1-33, 12-9
Asterisk (*) symbol

as formatting character 5-9
as overflow character 3-9, 6-7

AUTOFREE feature 14-13
enabling 14-14
for a particular cursor 14-14
with Deferred-PREPARE and OPTOFC features 14-24

B
Backslash (\) character 1-6
BIGINT

corresponding SQL data type 3-1
bigint data type

character conversion B-8
decimal conversion B-8

© Copyright IBM Corp. 1996, 2010 X-1

bigint data type (continued)
double conversion B-8
float conversion B-9
int (2–byte) conversion B-9
int (4-byte) conversion B-10
int (8–byte) conversion B-9

BIGINT data type
corresponding ESQL/C data type 3-1, 3-7
corresponding SQL data type 3-1
defined constant 3-5

bigintcvasc() function B-5
bigintcvdbl() function B-6
bigintcvdec() function B-6
bigintcvflt() function B-6
bigintcvifx_int8() function B-7
bigintcvint2() function B-7
bigintcvint4 function B-7
biginttoasc() function B-8
biginttodbl() function B-8
biginttodec() function B-8
biginttoflt() function B-9
biginttoifx_int8() function B-9
biginttoint2() function B-9
biginttoint4() function B-10
BIGSERIAL data type

corresponding ESQL/C data type 3-1, 3-7
BLOB data type

corresponding ESQL/C datatype 3-3, 3-7
declaring host variable for 8-2
implementation of 10-22
on optical disc 8-21
role of locator.h 3-7

boolean data type
corresponding SQL data type 3-7
defined constant 3-6

Boolean data type
declaration 5-4

BOOLEAN data type
corresponding ESQL/C data type 3-1, 3-7
data conversion 3-10, 5-4
defined constant 3-5
distinct-bit constant 15-21
distinct-bit macro 15-21

Buffer.
See Cursor buffer.

Build file 2-25
Built-in data types

as element type of collection 9-5
as field type in row 9-32

bycmpr() library function B-10
bycopy() library function B-12
byfill() library function B-13
byleng() library function B-14
BYTE data type

corresponding ESQL/C datatype 3-1, 3-7
declaring host variable for 7-3
defined constant 3-5
inserting 7-11, 7-16, 7-20, 7-23
locator structure shown 7-4
on optical disc 7-28
role of locator.h 1-25, 3-7
selecting 7-9, 7-14, 7-18, 7-23
subscripting 7-4

Byte range lock, description 8-16
Bytes

comparing B-10
copying B-12

Bytes (continued)
determining number of B-14
filling with a character B-13

C
C compiler

-c option 2-26
#define preprocessor statement 1-30
#include preprocessor statement 1-27, 1-30, 2-14, 2-15
ANSI C 1-27
called by esql 2-3
generating thread-safe code 13-17
initializer expressions 1-10
linking in other files 2-27
naming restrictions 1-10
options invoked implicitly 2-25
passing arguments to 2-23
role in compiling ESQL/C programs 2-3
specifying 2-23

C header files
for conditional compilation of ESQL/C programs 2-17
for defining host variables 2-17
including in EXEC SQL declare section 2-20
shared between ESQL/C and C programs 2-18

C preprocessor
role in compiling ESQL/C programs 2-3
running first 2-3, 2-17

C preprocessor directives, using to define ESQL/C host
variables 2-3

C programs, compiling 2-27
Callback function

declaring 12-24, 12-26
defining 12-25, 12-31
definition of 12-24
determining current connection 12-20
disassociating 12-25, B-221
registering 12-26, B-221

calloc() system call 17-5
Cardinality, ifx_cl_card() B-62
Case sensitivity 1-5, 1-14
CBOOLTYPE data-type constant 3-6, 5-4
CC8BITLEVEL environment variable 1-33
CCHARTYPE data-type constant 3-6, B-209
CCOLTYPE data-type constant 3-6
CDATETYPE data-type constant 3-6
CDECIMALTYPE data-type constant 3-6
CDOUBLETYPE data-type constant 3-6
CDTIMETYPE data-type constant 3-6
CFILETYPE data-type constant 3-6
CFIXBINTYPE data-type constant 3-6
CFIXCHARTYPE data-type constant 3-6
CFLOATTYPE data-type constant 3-6
char (C) data type

bigint conversion B-5
char data type

converting from decimal B-28, B-36, B-181
converting from double B-183
converting from int8 B-92
converting from long int B-185
converting to decimal B-19
converting to int8 B-78
defined constant 3-6
definition of 4-2
fetching into 3-10, 4-7, 4-8, 4-11, 5-8, 6-7
inserting from 4-8, 4-9, 4-11, 4-12
with ANSI-compliant database 4-12

X-2 IBM Informix ESQL/C Programmer’s Manual

CHAR data type
corresponding ESQL/C data type 3-2, 3-7, 4-1
data conversion 4-7
defined constant 3-5, 3-6
fetching 4-7
inserting 4-8, 4-12

Child process
detaching from database server B-223
handling defunct B-229

CINT8TYPE data-type constant 3-6
CINTTYPE data-type constant 3-6
CINVTYPE data-type constant 3-6
CLIENT_GEN_VER version macro 13-8
CLIENT_GLS_VER version macro 13-8
CLIENT_LOCALE environment variable, in InetLogin

structure 1-33
CLIENT_OS_VER version macro 13-8
CLIENT_SQLI_VER version macro 13-8
Client-server environment

and the cursor buffer 14-13
architecture of 12-2
connecting to a database 12-11
local connection 12-3
locating simple large objects 7-7
optimized message transfers 12-27
remote connection 12-3

Client-side collection variable 9-8
CLOB data type

corresponding ESQL/C data type 3-3, 3-8
declaring host variable for 8-2
implementation of 10-22
on optical disc 8-21
role of locator.h 3-8

CLOCATORTYPE data-type constant 3-6
CLONGTYPE data-type constant 3-6
CLOSE DATABASE statement 12-11, 12-12, 12-27, 15-10,

B-177, B-228
CLOSE statement 9-17, 14-7, 14-8, 14-10

optimizing 14-22
CLVCHARTYPE data-type constant 3-6
CMONEYTYPE data-type constant 3-6
COLLCHAR environment variable

in InetLogin structure 1-33
collct.h header file, definition of 1-26
Collection data type

cardinality, returning B-62
selecting entire row from 9-18

collection data type (ESQL/C)
allocating memory for 9-9
client-side 9-8
Collection Derived Table clause 9-10
corresponding SQL data type 3-3, 3-7, 3-8
deallocating memory for 9-9
declaration 9-4
defined constant 3-6
fetching from 9-17
fetching into 9-12
initializing 9-12
insert cursor for 9-15
inserting into 9-13
literal values 9-23
operating on 9-10
preparing statements that contain 14-5
select cursor for 9-19
typed collection variable 9-5
untyped collection variable 9-7
updating 9-20

Collection data type (SQL)
accessing 9-2
as element type of collection 9-5
as field type in row 9-32
declaring host variables for 9-4
deleting 9-30
extended identifier 15-5, 15-7
fetching 9-12, 9-17
in dynamic SQL 15-7
inserting into 9-13, 9-28
literal values 9-23, 9-29, 9-46
nested collection 9-18, 9-25, 9-30, 9-46
owner of 15-5, 15-7
selecting from 9-28
simple collection 9-10
updating 9-20, 9-28

Collection data type (SQL), selecting a row from 9-18
Collection derived table

for collection variables 9-10
for row variables 9-36
in DELETE 9-24, 9-41
in INSERT 9-13, 9-14, 9-39
in SELECT 9-17, 9-19, 9-39
in UPDATE 9-20

Colon (:)
between main variable and indicator variable 1-22
preceding host variables 1-8
specifying indicator variable 1-22

Column (database)
determining if truncated 11-9, 11-17
using data conversion 3-8

Comma (,) symbol 5-9
Comments in ESQL/C program 1-8
COMMIT WORK statement 12-19, 15-10
Compiler

for ESQL/C programs 2-4
preprocessing 2-4
redirecting errors 2-16
syntax 2-5
version information 2-11

Compiler version independence 2-29
Compiling an ESQL/C program

default order, overview of 2-3
esql command 1-4, 2-2
ESQL/C preprocessor 2-2
overview 2-2

Compiling dynamic thread application 13-32
Compiling ESQL/C programs

default order 2-17
non-default order 2-18

Conditional compilation directives
description of 1-28
processing of 2-2

Configuration information
in InetLogin structure 1-33
locations of 1-37
reading in 1-37

CONNECT statement 12-6, 12-46
and explicit connections 12-11
determining database server features 12-18
determining name of a connection 11-6
determining name of a database server 11-6, 12-20
establishing a connection 12-12, 13-10
with an active transaction 12-19
WITH CONCURRENT TRANSACTION clause 12-19

Connection authentication 2-29
Connection handle 12-46

Index X-3

Connections
using InetLogin structure 1-33, 12-5

Constants
for distinct bit 15-21
for ESQL/C data types 3-5
for smart large objects 8-4, 8-13, B-108, B-110, B-119
for SQL data types 3-4, 15-13, 16-6
for SQL statements 11-20, 15-9
for varchar data 4-4
for X/Open SQL data types 3-6
with dynamic-management structures 15-9, 15-13

COUNT descriptor field
after a DESCRIBE 15-8, 16-4
definition of 15-3
determining number of return values 16-16
initializing 16-3
saving 16-6, 16-9, 16-11, 16-18
setting 16-5, 16-22, 16-25

CPFIRST environment variable 2-18
CREATE DATABASE statement 12-11, 12-12, 12-18, 15-10
CREATE FUNCTION statement 14-30
CREATE INDEX statement 12-22, 15-10, B-220
CREATE OPAQUE TYPE statement, maxlength value and

lvarchar 10-4
CREATE PROCEDURE statement 14-30, 15-10
CREATE TABLE statement 8-8, 9-44, 12-22, 15-10, B-220
Create-time flags B-125, B-131
CROWTYPE data-type constant 3-6
CSHORTTYPE data-type constant 3-6
CSTRINGTYPE data-type constant 3-6, B-209
Cursor (database)

and sqlca.sqlerrd 11-17
deferring PREPARE 14-17
definition of 14-8
dynamic 13-9, 14-11
for receiving rows 14-8
for sending rows 14-10
freeing 14-7, 14-13
hold 14-8, 14-10
identifying variable mismatch 11-9, 11-14, 11-17
in thread-safe application 13-14
insert 14-10
interrupting the database server B-220
naming 14-10
optimizing 14-11
scroll 14-8
sequential 14-8, 14-10
sizing the cursor buffer 14-11
update 14-8
using 14-8

Cursor buffer
changing size of 14-12
default size 14-12
description 14-11
fetch buffer 14-11
insert buffer 14-11
sizing 14-11

Cursor function
definition of 14-32
known at compile time 14-33
not known at compile time 16-17, 17-17
parameterized 14-35
with sqlda structure 17-17
with system-descriptor area 16-17

Cursor names
case sensitivity 1-5
scope rules 2-15, 13-14

Cursor names (continued)
specifying 14-10
using delimited identifiers 1-14, 14-11
using host variables 14-11

CVARBINTYPE data-type constant 3-6
CVCHARTYPE data-type constant 3-6

D
Data conversion

arithmetic operations 3-10
definition of 3-8
for boolean values 3-10, 5-4
for CHAR data type 4-7
for char values B-19, B-28, B-36, B-78, B-92
for character data types 3-9, 3-10, 4-7, 5-8
for DATE values 6-8
for DATETIME values 3-10, 6-6, 6-8, B-52
for decimal values B-19, B-21, B-24, B-25, B-28, B-36, B-39,

B-40, B-42, B-96
for DECIMAL values 3-11, B-81, B-181
for double values B-21, B-39, B-94, B-183
for floating-point data types 3-10, 5-8
for int values B-24, B-40, B-101
for int4 values B-42
for INTERVAL values 3-10, 6-6, 6-8
for long int values B-25, B-86, B-103, B-185
for MONEY values B-181, B-183, B-185
for numeric data types 3-9, 3-10, 3-11
for NVARCHAR data type 4-8
for VARCHAR values 3-10, 4-8
when fetching DATETIME 6-7
when fetching INTERVAL 6-7
when inserting DATETIME 6-7
when inserting INTERVAL 6-7

DATA descriptor field
after a DESCRIBE 16-4
after a FETCH 16-8, 16-9, 16-12, 16-17, 16-26
allocating memory for 16-3
definition of 15-3
freeing memory for 16-8
setting column value 16-18, 16-20
setting input parameter 16-22, 16-25
setting simple-large-object column 16-33

Data transfer
error checking 12-26

Data types
array of host variables 1-16
defined constants for 15-13, 16-6
for dynamic thread library 13-26
int1 5-2
int2 5-2
int4 5-2
locale-specific 4-1
locator structure 7-4
MCHAR 5-2
mint 5-2
mlong 5-2
MSHORT 5-2
pointers 1-17
relationship between C and SQL types 3-1
structures 1-16
typedef expressions 1-17
X/Open defined constants for 3-6, 15-14

Database cursor
in explicit connection 12-46

X-4 IBM Informix ESQL/C Programmer’s Manual

Database server connection
active 12-20, 13-10, B-72
checking status of 12-21
current 12-11, 12-19, 12-20, 12-30, B-72, B-116
detaching from 12-21
determining features 12-18
determining name of 11-6, 12-20
dormant 12-11, 12-19, 13-10
freeing resources of B-228
in thread-safe application 13-10
interrupting 12-22
switching between 12-18
terminating 12-27, 13-13
types of 12-10
using across threads 13-12

Database servers
connecting to 12-13
current 12-6
default 1-33, 12-5, 12-6, 12-16
determining available databases 12-21
determining features of 12-18
determining name of 11-6, 12-20
determining type of 11-9, 11-14
in InetLogin structure 1-33
interrupting B-220
message request 12-22, 12-25, 12-44, 14-12, 14-13, 14-17,

14-22
optimized message transfers 12-27
optimizing OPEN, FETCH, and CLOSE 14-22
receiving configuration information 12-5
reducing messages 14-17
specified 12-6

DATABASE statement B-60
and implicit connections 12-11, B-231
defined statement constant 15-9
determining name of a connection 11-6
determining name of a database server 11-6, 12-20
opening a database 12-18
starting a database server 12-12

Databases
closing 12-27
determining available 12-21
determining if ANSI-compliant 11-9, 11-14, 11-17, 12-18
determining transaction logging 11-9, 11-14, 11-17, 12-18
environment 12-3
fetching CHAR data 4-7
fetching DATETIME data 6-6
fetching INTERVAL data 6-6
fetching VARCHAR data 4-8
inserting CHAR data 4-8
inserting NCHAR data 4-8
inserting NVARCHAR data 4-10
inserting VARCHAR data 4-9

date data type
corresponding SQL data type 3-2, 3-7
data conversion 6-8
declaration 6-1
defined constant 3-6

DATE data type
corresponding ESQL/C variable type 3-2, 3-7
data conversion 6-8
declaring host variables for 6-1
defined constant 3-5
ifx_defmtdate() B-64
ifx_strdate() B-147
rdatestr() B-171
rdayofweek() B-172

DATE data type (continued)
rdefmtdate() B-174
rfmtdate() B-178
rjulmdy() B-193
rleapyear() B-195
rmdyjul() B-196
rstrdate() B-204
rtoday() B-205

Date expressions
formatting 6-1
valid characters 6-1

datetime data type
corresponding SQL data type 3-2
data conversion 6-8
declaration 6-3
defined constant 3-6
definition of 6-2
fetching into 6-6
inserting from 6-6
role of datetime.h 3-7

DATETIME data type
ANSI-standard qualifiers 6-7
corresponding ESQL/C data type 3-2, 3-7
data conversion 3-10, 6-6, 6-7, 6-8, B-52
datetime.h, role of 1-25
declaring host variables for 6-3
defined constant 3-5
dtaddinv() B-45
dtcurrent() B-46
dtcvasc() B-47
dtcvfmtasc() B-49
dtextend() B-52
dtsub() B-53
dtsubinv() B-55
dttoasc() B-56
dttofmtasc() B-58
dynamically allocating structures for 17-7
extending 6-6, B-52
fetching 3-10, 6-6
ifx_dtcvasc() B-66
ifx_dtcvfmtasc() B-67
ifx_dttofmtasc() B-69
inserting 3-10, 6-6
macros 6-5
precision of underlying decimal value 6-3
qualifiers 6-3, 6-7
role of datetime.h 3-7

datetime.h header file
contents and use 6-3
data types defined 3-7
definition of 1-25
macros defined 6-5, 17-8

DB_LOCALE environment variable 1-33
DBALSBC environment variable 1-33
DBANSIWARN environment variable 1-33, 2-12, 11-14, 11-17,

12-11
DBAPICODE environment variable 1-33
DBASCIIBC environment variable 1-33
DBCENTURY environment variable 1-33, B-47, B-49, B-58,

B-64, B-67, B-69, B-147, B-174, B-204
DBCODESET environment variable 1-33
DBCONNECT environment variable 1-33
DBCSCONV environment variable 1-33
DBCSOVERRIDE environment variable 1-33
DBCSWIDTH environment variable 1-33
DBDATE environment variable 1-33, B-49, B-58, B-67, B-69,

B-147, B-171, B-204

Index X-5

DBFLTMASK environment variable 1-33
DBLANG environment variable 1-33
DBMONEY environment variable 1-33, 5-9, 5-10, B-181,

B-183, B-185
DBMONEYSCALE environment variable 1-33
DBPATH environment variable 1-33, 12-17, B-217
DBSS2 environment variable 1-33
DBSS3 environment variable 1-33
DBTEMP environment variable 1-33
DBTIME environment variable 1-33, B-49, B-58, B-67, B-69,

B-158, B-161
DEALLOCATE COLLECTION statement 9-9
DEALLOCATE DESCRIPTOR statement 16-3, 16-8
DEALLOCATE ROW statement 9-35
dec_t typedef

defined constant for DECIMAL data type 3-6
defined constant for MONEY data type 3-6
definition of 5-5

decadd() library function B-15
deccmp() library function B-17
deccopy() library function B-18
deccvasc() library function B-19
deccvdbl() library function B-21
deccvflt() library function B-23
deccvint() library function B-24
deccvlong() library function B-25
decdiv() library function B-27
dececvt() library function 13-15, 13-18, B-28, B-63
decfcvt() library function 13-15, 13-18, B-28, B-63
Decimal arithmetic

addition B-15
division B-27
multiplication B-32
subtraction B-35

decimal data
bigint conversion B-6

decimal data type
addition B-15
comparing B-17
converting from double B-21
converting from int8 B-96
converting from integer B-24
converting from long int B-25
converting from text B-19
converting to double B-39
converting to int B-40
converting to int8 B-81
converting to long int B-42
converting to text B-28, B-36, B-181
copying B-18
corresponding SQL data type 3-2
data conversion 3-11
declaration 5-5
defined constant for DECIMAL data type 3-6
defined constant for MONEY data type 3-6
division B-27
floating-point decimals 3-11, 3-12
in thread-safe application 13-15
multiplication B-32
role of decimal.h 3-7
rounding B-34
subtraction B-35
truncating B-43

DECIMAL data type
corresponding ESQL/C variable type 3-2, 3-7
data conversion 3-10, 3-11, 3-12, B-81, B-181
decadd() B-15

DECIMAL data type (continued)
deccmp() B-17
deccopy() B-18
deccvasc() B-19
deccvbl() B-21
deccvint() B-23, B-24
deccvlong() B-25
decdiv() B-27
dececvt() B-28
decfcvt() B-28
decimal structure shown 5-5
declaring host variables for 5-5
decmul() B-32
decround() B-34
decsub() B-35
dectoasc() B-36
dectodbl() B-39
dectoint() B-40
dectolong() B-42
dectrunc() B-43
defined constant 3-5, 3-6
fixed-point decimals 3-11, 3-12
number of decimal digits 3-10
role of decimal.h 1-25, 3-7
scale and precision 3-12, 15-4

decimal structure 5-5
decimal.h header file

data types defined 3-7, 5-5
definition of 1-25

DECLARE SECTION 1-9
excluding C header file statements from 2-20
including C declaration syntax in 2-20

DECLARE statement
and sqlca structure 11-17, 11-24
in thread-safe application 13-15
insert cursor for collection variable 9-15
select cursor for collection variable 9-19
with a SELECT statement 14-8
with an EXECUTE FUNCTION statement 14-8, 16-17,

17-17
with an INSERT statement 14-10
with deferred PREPARE 14-17
with OPTOFC and Deferred-PREPARE features 14-24

decmul() library function B-32
decround() library function B-34
decsub() library function B-35
dectoasc() library function B-36
dectodbl() library function B-39
dectoint() library function B-40
dectolong() library function B-42
dectrunc() library function B-43
Default order of compilation of ESQL/C programs, overview

of 2-3
Deferred-PREPARE feature 14-17

enabling 14-18
restrictions on 14-18
SET DEFERRED_PREPARE statement 14-19
with AUTOFREE and OPTOFC features 14-24
with OPTOFC feature 14-24

define directives, ESQL/C
processing of 2-2

define preprocessor directive 1-28, 1-30, 2-13
DELETE statements

and NOT FOUND condition 11-13, 11-22
collection columns 9-30
Collection Derived Table clause 9-24, 9-41
defined-statement constant 15-9, 15-10

X-6 IBM Informix ESQL/C Programmer’s Manual

DELETE statements (continued)
determining estimated cost of 11-17
determining number of rows deleted 11-5, 11-17
determining rowid 11-17
dynamic 14-25, 14-34, 15-17
failing to access rows 11-17
in ANSI-compliant database 4-12
interrupting 12-22, B-220
known at compile time 14-25, 14-34
not known at compile time 15-17
parameterized 14-34, 15-17, 16-28, 17-27
row variables 9-41
WHERE CURRENT OF clause 14-11
with DESCRIBE 15-9, 15-15
without WHERE clause 11-9, 11-14, 11-17, 15-10, 15-15

DELIMIDENT environment variable 1-14, 1-33, 9-41
Delimited identifiers 1-13, 9-41, 14-11
demo1 sample program 1-39
demo2 sample program 14-35
demo3 sample program 16-10, 16-23, 17-11
demo4 sample program 14-35, 16-9, 17-21
Demonstration programs

location 1-39
source files for A-1

DESCRIBE statement
allocating memory for data 16-4, 17-6, B-206
allocating memory for sqlda 17-3
and deferred PREPARE 14-20
and lvarchar host variables 16-4
and sqlca structure 15-15
determining column data type 3-3, 4-4, 15-14
determining return-value data type 15-14
determining SQL statement type 11-17, 11-20, 15-9
initializing sqlda structure 17-4
initializing system-descriptor area 16-4
INTO clause 15-8, 17-2, 17-3, 17-4, 17-27
role in dynamic SQL 14-6
setting COUNT field 16-4
SQLCODE value 11-20, 15-9
USING SQL DESCRIPTOR clause 15-8, 16-3, 16-4, 16-9,

16-18, 16-28
warnings after 11-9, 11-14, 11-17
with an item descriptor 16-9, 16-18
with deferred PREPARE 14-18
with input parameters 16-4
with sqlvar_struct 17-11, 17-16

Diagnostic information
definition of 11-2
with GET DIAGNOSTICS statement 11-4
with the sqlca structure 11-17

Diagnostics area
CLASS_ORIGIN field 11-6, 11-13, 11-15
CONNECTION_NAME field 11-6, 12-20
definition of 11-4
INFORMIX_SQLCODE field 11-6, 11-7
MESSAGE_LENGTH field 11-6
MESSAGE_TEXT field 11-6, 11-15
MORE field 11-5
NUMBER field 11-5
RETURNED_SQLSTATE field 11-6, 11-7
ROW_COUNT field 11-5
SERVER_NAME field 11-6, 12-20
SUBCLASS_ORIGIN field 11-6, 11-13, 11-15
undefined fields 11-7

Disabilities, visual
reading syntax diagrams D-1

Disability D-1

DISCONNECT statement 12-46, B-177
and explicit connections 12-11
and open transactions B-228
in thread-safe application 13-13
terminating a database server connection 12-27

dispcat_pic sample program 7-31, 11-32
Distinct bit 15-21
Distinct data types

algorithm for determining 15-21
distinct bit 15-21
dynamically executing 15-21
extended identifier 15-5, 15-7
in dynamic SQL 15-7
name of 15-5, 15-7
owner of 15-5, 15-7
source data type 15-5, 15-8, 15-21

Distributed computing environment (DCE) 13-9, 13-15, 13-16
DLL Registry 2-29
Dollar ($) sign

as formatting character 5-10
between main variable and indicator variable 1-22
for function parameters 1-18
relation to SQL keyword protection 2-21
to declare host variables 1-8, 1-9
with embedded SQL statements 1-4
with preprocessor directives 1-28

Dot notation 9-40, 9-45
Dotted decimal format of syntax diagrams D-1
Double dash (--) 1-8
double data type

bigint conversion B-6
converting from decimal B-39
converting from int8 B-94
converting to decimal B-21
converting to int8 B-80
converting to text B-183
corresponding SQL data type 3-2, 3-7, 5-8
data conversion 3-11
defined constant 3-6

Double quotes (" ")
delimiting identifiers 1-13, 9-41
escaping 1-6
in a literal collection 9-29
in a literal row 9-46
in a quoted string 1-7

DROP DATABASE statement 12-11, 12-12, 15-10
DROP FUNCTION statement 14-30
DROP PROCEDURE statement 14-30
dtaddinv() library function B-45
dtcurrent() library function B-46
dtcvasc() library function 6-8, B-47
dtcvfmtasc() library function 6-8, B-49
dtextend() library function 6-8, B-52
dtime structure 6-3
dtime_t typedef

defined constant 3-6
definition 6-3, 6-6
setting qualifiers for DATETIME 17-7

dtsub() library function B-53
dtsubinv() library function B-55
dttoasc() library function 6-8, B-56
dttofmtasc() library function 6-8, 16-39, B-58
dyn_sql sample program 11-32
Dynamic link library (DLL)

and import library 2-30
building 2-31
definition 2-30

Index X-7

Dynamic link library (DLL) (continued)
ESQL client interface 12-8
esqlauth.dll 2-29, 12-10
locating 2-31
Registry 2-29
sharing 12-13
with WHENEVER 11-28

Dynamic SQL
assembling the statement string 14-2
definition of 14-1, 14-2
describing the statement 14-6, 15-8
executing the statement 14-6
freeing resources 14-7
memory management 15-1
non-SELECT statements known at compile time 14-25
non-SELECT statements not known at compile time 15-17
preparing the statement 14-2
SELECT statements known at compile time 14-26
SELECT statements not known at compile time 15-16,

15-17
statements not known at compile time 15-19
statements used 14-6, 14-8, 14-10, 16-3, 17-2
statements with user-defined data types 15-19
user-defined functions known at compile time 14-30
user-defined functions not known at compile time 15-18

Dynamic thread functions, registering 13-29
Dynamic thread library

creating 13-24
data types for 13-26
registering functions 13-29

Dynamic-management structure
sqlda structure 15-5, 17-1
system-descriptor area 15-2, 16-1

dynthr_init() function 13-30

E
elif preprocessor directive 1-28, 1-30
else preprocessor directive 1-28, 1-30
endif preprocessor directive 1-28, 1-30
Environment variables

CC8BITLEVEL 1-33
CLIENT_LOCALE 1-33
COLLCHAR 1-33
CPFIRST 2-18
DB_LOCALE 1-33
DBALSBC 1-33
DBANSIWARN 1-33, 2-12, 11-14, 11-17, 12-11
DBASCIIBC 1-33
DBCENTURY 1-33, B-47, B-49, B-58, B-64, B-67, B-69,

B-147, B-174, B-204
DBCODESET 1-33
DBCONNECT 1-33
DBCSCONV 1-33
DBCSOVERRIDE 1-33
DBCSWIDTH 1-33
DBDATE 1-33, B-49, B-58, B-67, B-69, B-147, B-171, B-204
DBFLTMASK 1-33
DBLANG 1-33
DBMONEY 1-33, 5-9, 5-10, B-181, B-183, B-185
DBMONEYSCALE 1-33
DBPATH 1-33, 12-17, B-217
DBSS2 1-33
DBSS3 1-33
DBTEMP 1-33
DBTIME 1-33, B-49, B-58, B-67, B-69, B-158, B-161
DELIMIDENT 1-14, 1-33

Environment variables (continued)
ESQLMF 1-33
FET_BUF_SIZE 1-33, 14-13
GL_DATE 1-33, B-49, B-58, B-67, B-69, B-147, B-171, B-204
GL_DATETIME 1-33
IFX_AUTOFREE 14-14
IFX_DEFERRED 14-18
IFX_LOB_XFERSIZE 12-26
IFX_SESSION_MUX 12-15
in thread-safe application 13-15
INFORMIXCONRETRY 1-33
INFORMIXCONTIME 1-33
INFORMIXDIR 1-33, 2-5, 2-15
INFORMIXSERVER 1-33, 1-40, 12-5, 16-30, B-217, B-231
INFORMIXSQLHOSTS 12-5
LANG 1-33
LC_COLLATE 1-33
LC_CTYPE 1-33
LC_MONETARY 1-33
LC_NUMERIC 1-33
LC_TIME 1-33
LD_LIBRARY_PATH 13-5, 13-31
OPTMSG 12-28
OPTOFC 14-23
PATH 2-31
precedence 1-37
retrieving 1-31
setting 1-31
THREADLIB 13-16, 13-17, 13-31

eprotect utility
-u mode 2-18, 2-21
protecting SQL keywords 2-21

Error code, finderr utility 1-2
Error handling

checking during data transfer 12-26
retrieving an error message B-188
role of sqlca.h 1-25
using in-line code 11-25
with optimized message transfers 12-29

Error messages
determining length of 11-6
Informix-specific 11-25, 11-30
obtaining parameters 11-17
redirecting 2-16
retrieving text of 11-6, 11-29, B-188, B-189

Escape character 1-6, 9-29, 9-46
Escape characters, multibyte filter for 1-2
ESQL client-interface DLL 12-8

contents of 2-30
description 2-29

ESQL client-interface library 2-30
esql command

calling C preprocessor and compiler 2-3
compatibility issues 13-6
library options 13-3
linking options 2-27
options passed implicitly 2-25
preprocessing options 2-11
requirements for using 2-2, 2-5
steps esql performs 2-4
syntax 2-5
version information 2-5

ESQL preprocessor
stage 1 2-2

ESQL/C conditional compilation directives
processing of 2-2

X-8 IBM Informix ESQL/C Programmer’s Manual

ESQL/C data types
BIGINT 3-1
BIGSERIAL 3-1
boolean 3-7
char 4-2
character data types 4-1
collection 3-3, 3-7, 3-8, 9-2
date 3-2, 3-7, 6-1
datetime 3-2, 3-7, 6-2
decimal 3-2, 3-7
defined constants for 3-3, 3-5, 15-14
double 3-2, 3-7, 5-8
fixchar 3-2, 3-7, 4-2
fixed binary 3-3, 3-8
float 3-2, 3-7, 5-8
floating-point data types 5-8
ifx_lo_t 3-3, 3-7, 3-8, 8-2
int8 3-2, 5-2
integer data types 5-1
interval 3-2, 3-7, 6-2
loc_t 3-1, 3-2, 3-7, 7-3
long int 3-7, 5-1
lvarchar 3-2, 3-3, 3-8, 4-2, 4-5
row 3-3, 3-8, 9-30
short int 3-7, 5-1
string 3-2, 3-7, 4-2, 4-3
trailing blanks 4-3
var binary 3-3, 3-8
varchar 3-2, 3-7, 4-2, 4-3

ESQL/C define directives, processing of 2-2
ESQL/C Dynamic Link Libraries 2-29
ESQL/C host variables, using C preprocessor directives to

define 2-3
ESQL/C include directives, preprocessing of 2-2
ESQL/C library functions

character and string functions 4-12
connection functions 12-46
database server control functions 12-23, 12-25, 12-30
DATE type functions 6-2
DATETIME type functions 6-9
DECIMAL type functions 13-18
environment variable functions 1-31
error message functions 11-29
formatting functions 5-13
function prototypes 1-27
INT8 type functions 5-3
INTERVAL type functions 6-9
numeric formatting functions 5-13
size and alignment functions 3-13
smart-large-object functions 8-21

ESQL/C preprocessor, stage 2 2-2
ESQL/C, files for Windows 1-2
ESQLAUTH sample program 12-10
esqlauth.c authorization file 12-9
esqlauth.dll ESQL client-interface DLL 2-29
esqlauth.dll Informix DLL 12-10
ESQLMF environment variable 1-33
ESQLMF.EXE multibyte filter 1-2
Exception handling

definition of 11-2
determining number of exceptions 11-5
displaying error text 11-25, 11-30
NOT FOUND condition 11-12, 11-21, 11-22, 11-28
retrieving error message text 11-6, 11-29
runtime errors 11-15, 11-23, 11-28
success condition 11-12, 11-21
using the WHENEVER statement 11-28

Exception handling (continued)
warning conditions 11-13, 11-22, 11-28
with sqlca structure 11-20
with SQLSTATE variable 11-11

Exclamation point (!), wildcard in smart large object
filenames B-108

EXEC SQL keywords
to declare host variables 1-9
with embedded SQL statements 1-4
with preprocessor directives 1-28

exec() system call 13-15, B-223
EXECUTE FUNCTION statement

associated with a cursor 14-8, 14-33
defined statement constant 15-10, 16-14, 16-16, 17-17
executing a cursor function 14-33
executing a noncursor function 14-32
for user-defined functions 14-30, 14-31, 15-18
INTO host_var clause 14-31
known at compile time 14-28, 14-31
not known at compile time 15-16, 15-17
parameterized 14-33, 14-35, 15-17
with DESCRIBE 15-9, 15-18, 16-4, 17-4
with dynamic-management structures 15-18
with sqlda structure 17-16
with system-descriptor area 16-13

EXECUTE IMMEDIATE statement 11-24, 14-26, 14-31
EXECUTE PROCEDURE statement 12-22, 14-25, 14-30, 14-31,

14-34, 15-10, 15-17
EXECUTE statement

INTO DESCRIPTOR clause 17-2, 17-9, 17-17
INTO host_var clause 11-17, 14-27, 14-32
INTO SQL DESCRIPTOR clause 16-3, 16-8, 16-13, 16-14
role in dynamic SQL 14-6
SQLCODE values 11-24
USING DESCRIPTOR clause 16-3, 17-2, 17-9, 17-19, 17-25,

17-26, 17-27
USING host_var clause 14-34
USING SQL DESCRIPTOR clause 16-7, 16-19, 16-27, 16-28
with non-SELECT statements known at compile

time 14-25
with noncursor functions known at compile time 14-32
with singleton SELECT statements known at compile

time 14-27
with user-defined procedures 14-31

exit() system call 11-20, 11-27
Explicit connection

connection handle 12-46
default 12-16
definition of 12-10, 12-13
establishing 12-12, B-60
identifying 12-20
limits of 12-46
starting 12-12
switching to B-216
terminating 12-27, B-177
when to use 12-13
with sqlexit() B-228

Exporting runtime routines 2-29
Extended identifier 15-5, 15-7, 15-21
External function

definition 14-31
executing dynamically 14-32, 14-33, 16-14, 16-18, 17-17,

17-18
iterator function 14-33

External procedure 14-31
External routines 14-31
EXTYPEID descriptor field 15-5

Index X-9

EXTYPELENGTH descriptor field 15-5
EXTYPENAME descriptor field 15-5
EXTYPEOWNERLENGTH descriptor field 15-5
EXTYPEOWNERNAME descriptor field 15-5

F
fclose() system call 2-15
FET_BUF_SIZE environment variable 1-33, 14-13
FetArrSize global variable 15-30

and FetBufSize 15-31
with a fetch array 15-23

FetBufSize global variable 1-38, 14-13
and FetArrSize 15-31

Fetch array
allocating memory for 15-30
allocating memory, example 15-31
and simple large objects 15-22
description of 15-22
FetArrSize global variable 15-23
freeing memory 15-35
obtaining values from 15-34
sample program 15-23
use of ifx_loc_t structure 15-31
using 15-22
USING DESCRIPTOR clause 15-23
using sqlda structure with 15-23
with Deferred PREPARE and OPTOFC features 15-23

Fetch buffer 14-8, 14-11
FETCH statement

and NOT FOUND condition 11-13, 11-22
checking for truncation 11-17
fetching into a collection variable 9-20
getting values from a system-descriptor area 16-7
INTO DESCRIPTOR clause 17-17
INTO host_var clause 1-16, 11-17
INTO SQL DESCRIPTOR clause 16-17
optimizing 14-22
retrieving a row 14-8
USING DESCRIPTOR clause 17-2, 17-9, 17-12, 17-18, 17-21
USING SQL DESCRIPTOR clause 16-3, 16-7, 16-9, 16-10,

16-17, 16-23
warnings 11-17
with aggregate functions 11-17
with fetch array 15-22
with OPTOFC and Deferred PREPARE features 14-24

Fetching
CHAR values 4-7
character data 4-7
collection data 9-12
data conversion 3-8
DATETIME values 3-10, 6-6
determining rowid 11-17
INTERVAL values 3-10, 6-6
into char host variable 3-10, 4-7, 4-8, 4-11, 5-8, 6-7
into collection host variable 9-26, 9-28
into datetime host variable 6-6
into fixchar host variable 3-10, 4-7, 4-8, 4-11, 5-8, 6-7
into fixed binary host variable 10-15
into ifx_lo_t host variable 8-12
into interval host variable 6-6
into lvarchar host variable 10-9
into row host variable 9-45
into string host variable 3-10, 4-7, 4-8, 4-11, 5-8, 6-7
into var binary host variable 10-20
into varchar host variable 3-10, 4-7, 4-11, 5-8
NCHAR values 4-8

Fetching (continued)
NVARCHAR values 4-10
row-type data 9-38
VARCHAR values 3-10, 4-8

File extensions
.c 2-2, 2-12, 2-24, 2-27, 13-8
.def 2-26, 2-27
.dll 2-23, 2-30, 12-13
.ec 2-2, 2-5, 2-24
.ecp 2-5
.exe 2-23, 2-30, 12-13
.h 1-29
.o 2-27
.obj 2-24
.rc 2-27, 2-28
.res 2-27, 2-28
.sl 13-7
.so 13-4, 13-7

File name
compiled resource file 2-27
ESQL/C executable 2-5, 2-10, 2-23
ESQL/C libraries 2-5, 2-27
include file 2-5
log file 2-5
module-definition file 2-27
options for 2-11
project file 2-10, 2-24
resource file 2-27
response file 2-9, 2-25

File-open mode flags 7-13
Files

copying a smart large object to B-108
copying to a smart large object B-110
getting name for a smart large object B-113
named file as a simple-large-object location 7-18, 16-20,

16-21
open file as a simple-large-object location 7-14

finderr utility 1-2
fixchar data type

corresponding SQL data type 3-2, 3-7
defined constant 3-6
definition of 4-2
fetching into 3-10, 4-7, 4-8, 4-11, 5-8, 6-7
for boolean values 5-4
inserting from 4-8, 4-9, 4-11, 4-12
with ANSI-compliant database 4-12

fixed binary data type
checking for null 10-15
corresponding SQL data type 3-3, 3-8
declaration 10-12
defined constant 3-6
fetching into 10-15
inserting from 10-14
setting to null 10-15
use with smart large objects 8-2

Fixed-length opaque data type
declaring host variable for 10-12
inserting 10-8, 10-15
selecting 10-9, 10-15

Fixed-point decimals 3-11, 3-12
float (C) data type

bigint conversion B-6
float data type

corresponding SQL data type 3-2, 3-7, 5-8
data conversion 3-11
defined constant 3-6
passed as double 5-8

X-10 IBM Informix ESQL/C Programmer’s Manual

FLOAT data type
corresponding ESQL/C data type 3-2, 3-7, 5-8
data conversion 3-10, 3-11, 3-12
defined constant 3-5, 3-6
determining how stored 11-9, 11-14, 11-17, 12-18
number of decimal digits 3-10

Floating-point decimals 3-10, 3-11, 3-12, 5-8, B-39, B-94
FLUSH statement 9-17, 14-10, 16-22, 17-19
fopen() system call 2-15
fork() system call 13-15, B-223
Formatting function

ifx_defmtdate() B-64
rdefmtdate() B-174
rfmtdate() B-178
rfmtdec() B-181
rfmtdouble() B-183
rfmtlong() B-185

fread() system call 2-15
FREE statement

freeing cursor resources 14-7, 14-8, 14-10
freeing statement-identifier resources 14-7
role in dynamic SQL 14-7

free() system call
freeing a simple-large-object memory buffer 7-9
freeing an sqlda structure 17-16
freeing column data buffer 17-16

Freeing a cursor automatically 14-13
Freeing memory, fetch array 15-35
Function cursor

definition of 14-9
fetch buffer 14-11
statements that manage 14-8
using 14-33
with sqlda structure 17-17
with system-descriptor area 16-17

Function libraries, for ESQL/C 1-3
Function library

bycmpr() B-10
bycopy() B-12
byfill() B-13
byleng() B-14
decadd() B-15
deccmp() B-17
deccopy() B-18
deccvasc() B-19
deccvdbl() B-21
deccvflt() B-23
deccvint() B-24
deccvlong() B-25
decdiv() B-27
dececvt() 13-15, 13-18, B-28, B-63
decfcvt() 13-15, 13-18, B-28, B-63
decmul() B-32
decround() B-34
decsub() B-35
dectoasc() B-36
dectodbl() B-39
dectoint() B-40
dectolong() B-42
dectrunc() B-43
dtaddinv() B-45
dtcurrent() B-46
dtcvasc() B-47
dtcvfmtasc() B-49
dtextend() B-52
dtsub() B-53
dtsubinv() B-55

Function library (continued)
dttoasc() B-56
dttofmtasc() 16-39, B-58
GetConnect() 12-46, B-60
ifx_cl_card() B-62
ifx_dececvt() 13-15, B-63
ifx_decfcvt() 13-15, B-63
ifx_defmtdate() B-64
ifx_dtcvasc() B-66
ifx_dtcvfmtasc() B-67
ifx_dttofmtasc() B-69
ifx_getcur_conn_name() B-72
ifx_getenv() B-71
ifx_getserial8() B-72
ifx_int8add() B-73
ifx_int8cmp() B-75
ifx_int8copy() B-76
ifx_int8cvasc() B-78
ifx_int8cvdbl() B-80
ifx_int8cvdec() B-81
ifx_int8cvint() B-83, B-84
ifx_int8cvlong() B-86
ifx_int8div() B-87
ifx_int8mul() B-89
ifx_int8sub() B-90
ifx_int8toasc() B-92
ifx_int8todbl() B-94
ifx_int8todec() B-96
ifx_int8toint() B-99, B-101
ifx_int8tolong() B-103
ifx_lo_

See k()
ifx_lo_alter() B-106
ifx_lo_close() B-107
ifx_lo_col_info() B-107
ifx_lo_copy_to_file() B-62, B-108
ifx_lo_copy_to_lo() B-110
ifx_lo_create() B-111
ifx_lo_def_create_spec() B-112
ifx_lo_filename() B-113
ifx_lo_from_buffer() B-114
ifx_lo_lock() B-115
ifx_lo_open() B-114, B-116
ifx_lo_read() B-118
ifx_lo_readwith

See k()
ifx_lo_release() B-120
ifx_lo_spec_free() B-122
ifx_lo_specget_estbytes() B-123
ifx_lo_specget_extsz() B-124
ifx_lo_specget_flags() B-125
ifx_lo_specget_maxbytes() B-126
ifx_lo_specget_sbspace() B-127
ifx_lo_specset_estbytes() B-129
ifx_lo_specset_extsz() B-130
ifx_lo_specset_flags() B-131
ifx_lo_specset_maxbytes() B-132
ifx_lo_specset_sbspace() B-132
ifx_lo_stat_atime() B-134
ifx_lo_stat_cspec() B-135
ifx_lo_stat_ctime() B-136
ifx_lo_stat_free() B-137
ifx_lo_stat_mtime_sec() B-138
ifx_lo_stat_refcnt() B-138
ifx_lo_stat_size() B-139
ifx_lo_stat() B-133
ifx_lo_tell() B-140

Index X-11

Function library (continued)
ifx_lo_to_buffer() B-141
ifx_lo_truncate() B-142
ifx_lo_unlock() B-142
ifx_lo_write() B-143
ifx_lo_writewith

See k()
ifx_lvar_alloc() B-146
ifx_putenv() B-146
ifx_strdate() B-147
incvasc() B-156
incvfmtasc() B-158
intoasc() B-160
intofmtasc() 16-39, B-161
invdivdbl() B-163
invdivinv() B-165
invextend() B-167
invmuldbl() B-168
ldchar() 7-41, B-170
rdatestr() B-171
rdayofweek() B-172
rdefmtdate() B-174
rdownshift() B-176
ReleaseConnect() 12-46, B-177
rfmtdate() 16-39, B-178
rfmtdec() 16-39, B-181
rfmtdouble() B-183
rfmtlong() B-185
rgetlmsg() B-188
rgetmsg() B-189
risnull() B-191
rjulmdy() B-193
rleapyear() B-195
rmdyjul() B-196
rsetnull() B-197
rstod() B-200
rstoi() B-201
rstol() B-202
rstrdate() B-204
rtoday() B-205
rtypalign() 17-7, 17-14, B-206
rtypmsize() 17-7, 17-14, B-209
rtypname() B-211
rtypwidth() B-213
rupshift() B-215
SetConnect() 12-46, B-216
sqgetdbs() B-217
sqlbreak() 12-22, 12-31, B-220
sqlbreakcallback() 12-24, B-221
sqldetach() 12-21, 12-27, 13-15, B-223
sqldone() 12-21, 12-31, B-228
sqlexit() 12-27, B-228
sqlsignal() B-229
sqlstart() 12-12, B-228, B-231
stcat() 14-4, B-232
stchar() B-233
stcmpr() B-234
stcopy() 14-4, B-235
stleng() B-235

Functions
callback 12-24
cursor 14-32, 14-33
dynamic thread library 13-24
dynamic thread, registering 13-24
iterator 14-33
noncursor 14-32
parameters 14-11, 16-38

Functions (continued)
signal handler 12-23

G
GB18030-2000 codeset 2-16
GET DESCRIPTOR statement

getting COUNT field 16-9, 16-18
getting fields 16-3, 16-6
getting row values 16-9
setting COUNT field 16-6
with OPTOFC and Deferred-PREPARE features 14-24

GET DIAGNOSTICS
failure and SQLSTATE 11-15

GET DIAGNOSTICS statement
and OPTOFC feature 14-23
ANSI SQL compliance 11-4
description 11-4
examples of use 11-5, 11-6, 11-16, 11-30
exception information 11-5
retrieving multiple exceptions 11-15
RETURNED_SQLSTATE field 11-7
SQLCODE variable 11-7
SQLSTATE variable 11-7
statement information 11-4
X/Open compliance 11-4

getcd_me sample program 7-9
getcd_nf sample program 7-18
getcd_of sample program 7-14
GetConnect() library function 12-46, B-60
GL_DATE environment variable 1-33, B-49, B-58, B-67, B-69,

B-147, B-171, B-204
GL_DATETIME environment variable 1-33
GL_USEGLU environment variable 2-16
Global ESQL/C variables 1-38
Global Language Support (GLS) environment

character data types for host variables 4-1
inserting character data 4-8, 4-10
naming host variables 1-10
naming indicator variables 1-22
transfering character data 4-7

Global variable
FetBufSize 14-13
OptMsg 12-28

GLS for Unicode (GLU) 2-16
gls.h header file, definition of 1-25
GLU.

See GLS for Unicode

H
Header file

automatic inclusion 1-27
collct.h 1-26
datetime.h 1-25
decimal.h 1-25
gls.h 1-25
ifxgls.h 1-26
ifxtypes.h 1-25
infxcexp.c 1-27
int8.h 1-26, 5-3
list of 3-7
locator.h 1-25, 8-2
login.h 1-27, 1-33, 12-8
pthread.h 13-15
sqlca.h 1-25

X-12 IBM Informix ESQL/C Programmer’s Manual

Header file (continued)
sqlda.h 1-25, 1-27
sqlhdr.h 1-25, 1-27, 13-8
sqliapi.h 1-25
sqlproto.h 1-27
sqlstype.h 1-26
sqlstypes.h 16-32
sqltypes.h 1-26
sqlxtype.h 1-26
syntax for including 1-28, 1-29
system 1-39
value.h 1-26
varchar.h 1-26

Hold cursor 9-15, 14-8, 14-10
HOST network parameter 1-33, 12-9
Host variable

array of 1-16
as ANSI-style parameter 1-19
as C structure 1-16
as cursor name 14-11
as function parameter 14-11, 16-38
as input parameter 14-33
as pointer 1-17
as routine argument 14-28
as SQL identifier 1-12
assigning a value to 1-12
based on definitions in C header files 2-17
Boolean data type 5-4
case sensitivity 1-5
char data type 3-10, 4-2, 6-7
choosing data type for 1-10, 3-1, 3-5, 15-14, 17-9
collection data type 9-2
date data type 6-1
datetime data type 6-3
decimal data type 5-5
declaring 1-9
fetching DATETIME value 3-10
fetching INTERVAL value 3-10
fetching VARCHAR value 3-10
fixchar data type 3-10, 4-2, 6-7
fixed binary data type 10-12
ifx_lo_t data type 8-2
in embedded SQL 1-8
in EXECUTE FUNCTION 14-32, 14-33
in GLS environment 1-10
in nonparameterized SELECT 14-27, 14-28
in parameterized DELETE or UPDATE 14-34
in parameterized EXECUTE FUNCTION 14-35
in parameterized SELECT 14-35
in typedef expressions 1-17
initializing 1-10
inserting DATETIME value 3-10
inserting INTERVAL value 3-10
inserting VARCHAR 3-10
int8 data type 5-2
interval data type 6-4, 6-6
loc_t data type 7-3
lvarchar data type 4-5, 10-3
naming 1-10
row data type 9-30
scope of 1-10
string data type 3-10, 4-3, 6-7
truncation of 1-24
using data conversion 3-8
var binary data type 10-15
varchar data type 4-3
with float values 5-8

Host variable (continued)
with null values 1-15, B-153, B-155, B-191, B-197

HostInfoStruct structure
AskPassAtConnect field 12-9
definition of 12-8
Host field 12-9
InfxServer field 12-9
Options field 12-9
Pass field 12-9
Protocol field 12-9
Service field 12-9
User field 12-9

Hyphen
as formatting character 5-9
double(--) 1-8

I
IBM Informix

checking for secondary mode 11-9, 11-14, 11-17, 12-18
connect statement 11-14
DATASKIP feature 1-23, 11-9, 11-14, 11-17
determining type 11-9, 11-14
interrupting 12-24, B-221

IBM Informix SE 11-9
ICU.

See International Components for Unicode
IDATA descriptor field 15-4, 16-23
ifdef preprocessor directive 1-28, 1-30
ifndef preprocessor directive 1-28, 1-30
ifx_allow_newline() user defined routine 1-7
IFX_AUTOFREE environment variable 14-14

client only 14-24
ifx_cl_card() library function B-62
ifx_dececvt() library function 13-15, B-63
ifx_decfcvt() library function 13-15, B-63
IFX_DEFERRED_PREPARE environment variable 14-18

client only 14-24
ifx_defmtdate() library function B-64
ifx_dtcvasc() library function B-66
ifx_dtcvfmtasc() library function B-67
ifx_dttofmtasc() library function B-69
ifx_getcur_conn_name() library function B-72
ifx_getenv() library function B-71
ifx_getserial8() library function B-72
ifx_getversion utility 13-7
ifx_int8add() library function B-73
ifx_int8cmp() library function B-75
ifx_int8copy() library function B-76
ifx_int8cvasc() library function B-78
ifx_int8cvdbl() library function B-80
ifx_int8cvdec() library function B-81
ifx_int8cvint() library function B-83, B-84
ifx_int8cvlong() library function B-86
ifx_int8div() library function B-87
ifx_int8mul() library function B-89
ifx_int8sub() library function B-90
ifx_int8toasc() library function B-92
ifx_int8todbl() library function B-94
ifx_int8todec() library function B-96
ifx_int8toint() library function B-99, B-101
ifx_int8tolong() library function B-103
ifx_lo_

See k() library function
ifx_lo_alter() library function B-106

lightweight I/O 8-15
ifx_lo_close() library function 8-18, B-107

Index X-13

ifx_lo_close() library function (continued)
lightweight I/O 8-15

ifx_lo_col_info() library function B-107
ifx_lo_copy_to_file() library function B-62, B-108, B-113
ifx_lo_copy_to_lo() library function B-110
ifx_lo_create() library function 8-7, 8-9, 8-13, B-111

duration of open 8-17
lightweight I/O 8-15
locks on smart large objects 8-16

ifx_lo_def_create_spec() library function 8-7, 8-8, B-112
ifx_lo_filename() library function B-113
ifx_lo_from_buffer() library function 8-11, 8-22, B-114
ifx_lo_lock() library function B-115
ifx_lo_open() library function 8-13, B-114, B-116

duration of open 8-17
lightweight I/O 8-15
locks on smart large objects 8-16

ifx_lo_read() library function 8-17, B-118
ifx_lo_readwith

See k() library function
ifx_lo_release B-114
ifx_lo_release() library function 8-11, 8-22, B-120
ifx_lo_spec_free() library function 8-9, B-122
ifx_lo_specget_estbytes() library function B-123
ifx_lo_specget_extsz() library function 8-3, B-124
ifx_lo_specget_flags() library function 8-4, B-125
ifx_lo_specget_maxbytes() library function 8-3, B-126
ifx_lo_specget_sbspace() library function 8-3, B-127
ifx_lo_specset_estbytes() library function B-129
ifx_lo_specset_extsz() library function 8-3, B-130
ifx_lo_specset_flags() library function 8-4, B-131
ifx_lo_specset_maxbytes() library function 8-3, B-132
ifx_lo_specset_sbspace() library function B-132
ifx_lo_stat_atime() library function 8-19, B-134
ifx_lo_stat_cspec() library function 8-19, B-135
ifx_lo_stat_ctime() library function 8-19, B-136
ifx_lo_stat_free() library function 8-19, B-137
ifx_lo_stat_mtime_sec() library function 8-19, B-138
ifx_lo_stat_refcnt() library function 8-19, B-138
ifx_lo_stat_size() library function 8-19, B-139
ifx_lo_stat() library function 8-18, B-133
ifx_lo_t data type

corresponding SQL data type 3-3, 3-7, 3-8
declaration 8-2
definition of 8-2
fetching into 8-12
inserting from 8-9
use of fixed binary data type 8-2, 10-22

ifx_lo_tell() library function 8-17, B-140
ifx_lo_to_buffer() function 8-23
ifx_lo_to_buffer() library function 8-11, B-141
ifx_lo_truncate() library function B-142
ifx_lo_unlock() library function B-142
ifx_lo_write() library function 8-17, B-143
ifx_lo_writewith

See k() library function
IFX_LOB_XFERSIZE

environment variable 12-26
ifx_loc_t structure, with fetch array 15-31
ifx_lvar_alloc() library function B-146
ifx_putenv() function 12-28, 14-23
ifx_putenv() library function B-146
ifx_release() library function 8-22
IFX_SESSION_MUX environment variable, for

Windows 12-15
ifx_strdate() library function B-147
ifx_var_alloc() function B-148

ifx_var_dealloc() function B-149
ifx_var_flag() function B-150
ifx_var_getdata() function B-151
ifx_var_getlen() function B-152
ifx_var_isnull() function 10-21, B-153
ifx_var_setdata() function B-154
ifx_var_setlen() function B-154
ifx_var_setnull() function 10-20, B-155
ifx_varlena_t structure 10-17
ifxgls.h header file, definition of 1-26
ifxtypes.h file, description of 1-25
ILENGTH descriptor field 15-4, 16-23
ILogin sample program 1-2
ILOGIN sample program 1-36
Implicit connection

default 12-17
definition of 12-11
starting 12-12, B-231
terminating 12-27
with sqlexit() B-228

Import library 2-30
Include directives, ESQL/C

preprocessing of 2-2
Include files

header files as 1-25
preprocessor directive for 1-29
search path 2-15
specifying search path 2-14
syntax for 1-28, 1-29

Include preprocessor directive 1-27, 1-28, 1-29
incvasc() library function B-156
incvfmtasc() library function B-158
INDICATOR descriptor field 15-4, 15-20, 16-23
INDICATOR keyword 1-22, 1-24, 14-27
Indicator variable

checking for missing indicator 2-14
declaring 1-22
definition of 1-21
determining null data 1-15, 1-23, 1-24
in GLS environment 1-22
in INTO clause of EXECUTE 14-27
indicating truncation 1-23, 4-7, 4-8, 4-10, 4-11, 6-7, 15-20
inserting null values 1-23
specifying in SQL statement 1-22
valid data types 1-22
with opaque data type 15-20
with sqlda structure 15-7, 17-4, 17-6, 17-18, 17-20
with system-descriptor area 15-4, 16-23

InetLogin structure
application example 1-36, 12-6
AskPassAtConnect field 1-33, 12-9
CC8BitLevel field 1-33
Client_Loc field 1-33
CollChar field 1-33
connection information in 12-5
ConRetry field 1-33
ConTime field 1-33
DB_Loc field 1-33
DbAlsBc field 1-33
DbAnsiWarn field 1-33
DbApiCode field 1-33
DbAsciiBc field 1-33
DbCentury field 1-33
DbCodeset field 1-33
DbConnect field 1-33
DbCsConv field 1-33
DbCsOverride field 1-33

X-14 IBM Informix ESQL/C Programmer’s Manual

InetLogin structure (continued)
DbCsWidth field 1-33
DbDate field 1-33
DbFltMsk field 1-33
DbLang field 1-33
DbMoney field 1-33
DbMoneyScale field 1-33
DbPath field 1-33
DbSS2 field 1-33
DbSS3 field 1-33
DbTemp field 1-33
DbTime field 1-33
DelimIdent field 1-33
description of 1-33
determining default database server 1-33
EsqlMF field 1-33
FetBuffSize field 1-33
fields of 1-33
GlDate field 1-33
GlDateTime field 1-33
Host field 1-33, 12-9
InformixDir field 1-33
InformixSqlHosts field 1-33
InfxServer field 1-33, 12-6, 12-9, B-60
Lang field 1-33
Lc_Collate field 1-33
Lc_CType field 1-33
Lc_Monetary field 1-33
Lc_Numeric field 1-33
Lc_Time field 1-33
Options field 1-33, 12-9
Pass field 1-33, 12-9
precedence 1-37
Protocol field 1-33, 12-9
Service field 1-33, 12-9
setting fields 1-36
User field 1-33, 12-9
with HostInfoStruct 12-8

Informix general library
actual name 13-3, 13-5
API version 13-8
choosing version of 13-2
compatibility issues 13-6
default version 13-5
description of 13-1
libasf 2-28, 13-2
libgen 2-28, 13-2
libgls 2-28, 13-2
libos 2-28, 13-2
libsql 2-28, 13-2
linking 13-3, 13-4, 13-5, 13-16
location of 13-2
naming 13-3, 13-4
obtaining version of 13-7
shared 13-1, 13-4, 13-6
static 13-1, 13-3
symbolic name 13-4
thread-safe 13-1
thread-safe shared 13-17
thread-safe static 13-17

INFORMIX Registry subkey
connection information in 1-37

Informix Server Information dialog box (Setnet32 utility) B-60
INFORMIXCONRETRY environment variable 1-33
INFORMIXCONTIME environment variable 1-33
INFORMIXDIR

location of demonstration programs 1-2

INFORMIXDIR environment variable 2-5, 2-15, 13-2
in InetLogin structure 1-33
location of DLLs 2-29
location of executables 1-2
location of function libraries 1-2
location of import library 2-26
location of include files 2-26

INFORMIXSERVER environment variable 1-40, 12-5, 16-30,
B-217, B-231

and GetConnect() B-60
in HostInfoStruct structure 12-9
in InetLogin structure 1-33

INFORMIXSQLHOSTS environment variable 1-33, 12-5
infxcexp.c header file, definition of 1-27
Input parameter

definition of 14-4, 14-33
in singleton SELECT 14-27
not known at compile time 15-16
specifying value in a system-descriptor area 16-7
specifying value in an sqlda structure 17-8
specifying values for EXECUTE FUNCTION

statements 14-33, 14-35, 15-17
specifying values for non-SELECT statements 14-34, 15-17
specifying values for SELECT statements 14-33, 14-35,

15-17
specifying values for user-defined routines 14-28
with DESCRIBE 16-4

Insert
from var binary-host variable 10-19

Insert buffer 14-10, 14-11
Insert cursor 17-9

definition of 14-10
description of 14-11
executing with sqlda structure 17-19
executing with system-descriptor area 16-22
for collection variable 9-15
input parameters in VALUES clause 16-7
insert buffer 14-11
required for 14-10
statements that manage 14-10
with system-descriptor area 16-7

INSERT statements
and NOT FOUND condition 11-13, 11-22
associated with a cursor 14-10
collection columns 9-28
Collection Derived Table clause 9-13, 9-39
defined statement constant 15-9
determining estimated cost of 11-17
determining number of rows inserted 11-5, 11-17
determining rowid 11-17
dynamic 14-10, 14-25, 14-34, 15-17
executing with sqlda structure 17-19
executing with system-descriptor area 16-18
failing to access rows 11-17
inserting CHAR data 4-8, 4-12
inserting collection data 9-13, 9-27, 9-28
inserting NCHAR data 4-8
inserting NVARCHAR data 4-10
inserting opaque-type data 10-8, 10-15, 10-20, 15-19
inserting row-type data 9-39, 9-45
inserting smart-large-object data 8-9
inserting VARCHAR data 4-9
interrupting 12-22, B-220
known at compile time 14-25, 14-34
not known at compile time 15-16
obtaining generated SERIAL value 11-17
parameterized 14-34

Index X-15

INSERT statements (continued)
VALUES clause 1-16, 14-34
with DESCRIBE 15-9, 16-4, 17-4
with null values 1-23

Inserting
CHAR values 4-8
character data 4-7, 4-12
data conversion 3-8
DATETIME values 3-10, 6-6
from char host variable 4-8, 4-9, 4-11
from datetime host variable 6-6
from fixchar host variable 4-8, 4-9, 4-11
from fixed binary host variable 10-14
from fixed-size lvarchar 10-8
from ifx_lo_t host variable 8-9
from interval host variable 6-6
from string host variable 4-8, 4-9, 4-11
from varchar host variable 4-8, 4-9, 4-11
INTERVAL values 3-10, 6-6
into collection column 9-27, 9-28
into collection variable 9-13
into row variable 9-39
into row-type column 9-45
opaque-type values 15-19
smart-large-object data 8-9
VARCHAR values 3-10, 4-9

int (2-byte) data type
bigint conversion B-7

int (4-byte) data type
bigint conversion B-7

int (8–byte) data type
bigint conversion B-7

int data type 3-6
converting from decimal B-40
converting from int8 B-101
converting to decimal B-24

int1 data type 5-2
int2 data type 5-2
int4 data type 5-2
int8 data type

addition B-73
comparing B-75
converting from decimal B-81
converting from double B-80
converting from integer B-83, B-84
converting from long int B-86
converting from text B-78
converting to decimal B-96
converting to double B-94
converting to int B-99, B-101
converting to long int B-103
converting to text B-92
copying B-76
corresponding ESQL/C data type 3-2, 3-7, 5-8
corresponding SQL data type 3-2
declaration 5-2
declaring host variable for 5-2
defined constant 3-6
division B-87
getting SERIAL8 values B-72
ifx_getserial8() B-72
ifx_int8add() B-73
ifx_int8cmp() B-75
ifx_int8copy() B-76
ifx_int8cvasc() B-78
ifx_int8cvdbl() B-80
ifx_int8cvdec() B-81

int8 data type (continued)
ifx_int8cvint() B-83, B-84
ifx_int8cvlong() B-86
ifx_int8div() B-87
ifx_int8mul() B-89
ifx_int8sub() B-90
ifx_int8toasc() B-92
ifx_int8todbl() B-94
ifx_int8todec() B-96
ifx_int8toflt() B-99
ifx_int8toint() B-101
ifx_int8tolong() B-103
int8 structure shown 5-3
multiplication B-89
subtraction B-90

INT8 data type
corresponding ESQL/C data type 5-1
defined constant 3-5

int8.h header file 3-7, 5-3
int8.h header file, definition of 1-26
INTEGER data type

corresponding ESQL/C data type 3-2, 3-7, 5-1
data conversion 3-10, 3-11, 3-12
defined constant 3-5, 3-6

International Components for Unicode (ICU) 2-16
interval data type

corresponding SQL data type 3-2
data conversion 6-8
declaration 6-4
defined constant 3-6
definition of 6-2
fetching into 6-6
inserting from 6-6
role of datetime.h 3-7

INTERVAL data type
ANSI-standard qualifiers 6-7
classes of 6-6, 6-7
corresponding ESQL/C data type 3-2, 3-7
data conversion 3-10, 6-6, 6-7, 6-8
datetime.h, role of 1-25
declaring host variables for 6-4
defined constant 3-5
dynamically allocating structures for 17-7
fetching 3-10, 6-6
incvasc() B-156
incvfmtasc() B-158
inserting 3-10, 6-6
intoasc() B-160
intofmtasc() B-161
invdivdbl() B-163
invdivinv() B-165
invextend() B-167
invmuldbl() B-168
macros 6-5
precision of underlying decimal value 6-3
qualifiers 6-4, 6-7
role of datetime.h 3-7

intoasc() library function B-160
intofmtasc() library function 6-8, 16-39, B-161
intrvl structure 6-4
intrvl_t typedef

defined constant 3-6
definition of 6-4, 6-6
setting qualifier for INTERVAL 17-7

invdivdbl() library function B-163
invdivinv() library function B-165
invextend() library function 6-6, B-167

X-16 IBM Informix ESQL/C Programmer’s Manual

invmuldbl() library function B-168
ISAM error code

and sqlerrd 11-17
and sqlerrd[1] 11-23
retrieving message text 11-6, B-188, B-189

ISDISTINCTBOOLEAN distinct-bit macro 15-21
ISDISTINCTLVARCHAR distinct-bit macro 15-21
ISDISTINCTTYPE distinct-bit macro 15-21
Item descriptor

definition of 15-2
EXTYPEID field 15-5
EXTYPELENGTH field 15-5
EXTYPENAME field 15-5
EXTYPEOWNERLENGTH field 15-5
EXTYPEOWNERNAME field 15-5
getting field values 16-6
IDATA field 15-4, 16-23
ILENGTH field 15-4, 16-23
INDICATOR field 15-4, 15-20, 16-23
ITYPE field 15-4, 16-23
NAME field 15-4, 16-4, 16-13
NULLABLE field 15-4, 16-4, 16-13
PRECISION field 15-4, 16-4
SCALE field 15-4, 16-4
setting fields 16-5
setting maximum number 16-3
SOURCEID field 15-5, 15-21
SOURCETYPE field 15-5, 15-21

Iterator functions 14-33, 16-18, 17-18
ITYPE descriptor field 15-4, 16-6, 16-23

L
LANG environment variable 1-33
LC_COLLATE environment variable 1-33
LC_CTYPE environment variable 1-33
LC_MONETARY environment variable 1-33
LC_NUMERIC environment variable 1-33
LC_TIME environment variable 1-33
LD_LIBRARY_PATH environment variable 13-5
ldchar() library function 7-41, B-170
LENGTH descriptor field

after a DESCRIBE 16-4, 16-13
definition of 15-4
for varchar data 4-4
inserting opaque-type data 15-19
setting input parameter length 16-22, 16-25

Less than (5-9
libasf Informix library 2-28, 13-2
libgen Informix library 2-28, 13-2
libgls Informix library 2-28, 13-2
libos Informix library 2-28, 13-2
Libraries

thread-safe
shared 13-17

Library
creating dynamic thread 13-24
ESQL client-interface 2-30
import 2-30
of ESQL/C functions 1-3
runtime search path 13-5
shared 13-1, 13-4, 13-6
static 13-1, 13-3
static-link 2-30
thread-safe 13-1

shared 13-17
static 13-17

libsql Informix library 2-28, 13-2
Lightweight I/O

for smart large objects 8-15
specifying for all smart large objects 8-16
switching to buffered I/O 8-15

Line wrapping 2-22
Linker

linking the ESQL client-interface DLL 2-30
options invoked implicitly 2-25
passing arguments to 2-28

LIST data type
accessing 9-4
after a DESCRIBE 17-4
corresponding ESQL/C data type 3-3, 3-8
declaring host variable for 9-5
defined constant 3-5
definition of 9-2
inserting many elements into 9-15

LO file descriptor
deallocating 8-18
description of 8-11
ESQL/C functions for 8-11

LO handle, deallocating B-120
LO_APPEND access-mode constant 8-14
LO_APPEND file-location constant B-110
LO_BUFFER access-mode flag 8-15
LO_CLIENT_FILE file-location constant B-108, B-110
LO_DIRTY_READ access-mode constant 8-14
LO_KEEP_LASTACCESS_TIME create-time constant 8-4, 8-19
LO_LOCKALL flag 8-16
LO_LOCKRANGE flag 8-16
LO_LOG create-time constant 8-4
LO_NOBUFFER access-mode flag 8-15
LO_NOKEEP_LASTACCESS_TIME create-time constant 8-4
LO_NOLOG create-time constant 8-4
LO_RDONLY access-mode constant 8-14, 8-15
LO_RDWR access-mode constant 8-14, 8-15
LO_SERVER_FILE file-location constant B-108, B-110
LO_WRONLY access-mode constant 8-14, 8-15
LO-pointer structure

creating 8-9
description of 8-10
ESQL/C functions for 8-11
in INSERT 8-9
in UPDATE 8-9
obtaining a valid 8-18

LO-specification structure
allocating 8-2, B-112
allocation extent size B-124, B-130
create-time flags 8-4, B-125, B-131
deallocating 8-9, B-122
description of 8-3
disk-storage information 8-3
ESQL/C functions for 8-5
estimated size B-123, B-129
initializing B-112
maximum size B-126, B-132
sbspace name B-127, B-132
setting B-107, B-135
storage characteristics 8-6

LO-status structure
allocating 8-18
deallocating 8-19, B-137
description of 8-19

LOC_ALLOC locator constant 7-8
LOC_APPEND locator mask 7-14, 7-15
LOC_DESCRIPTOR locator mask 7-28

Index X-17

LOC_RONLY locator mask 7-13, 7-17, 7-23
loc_t data type

corresponding SQL data type 3-1, 3-2
declaration 7-3
defined constant 3-6
definition of 7-3
role of locator.h 3-7

loc_t.loc_loctype field
assigning values to 7-7
definition of 7-5, 7-6
LOCFILE value 7-7, 7-14
LOCFNAME value 7-7, 7-18
LOCMEMORY value 7-7, 16-33
LOCUSER value 7-7, 7-22

loc_t.loc_oflags field
file-open mode flags 7-13
setting for memory 7-8
setting for named file 7-18
setting for open file 7-14
setting for optical disc 7-28
using LOC_APPEND mask 7-14
using LOC_RONLY mask 7-13, 7-23
using LOC_USEALL mask 7-22
using LOC_WONLY mask 7-13, 7-23

loc_t.loc_size field
definition of 7-6
determining transfer size 7-22
indicating simple-large-object size 7-8, 7-9
inserting a simple large object 7-18, 7-24

LOC_USEALL locator mask 7-22
LOC_WONLY locator mask 7-13, 7-23
Locating a simple large object

in a client-server environment 7-7
in a named file 7-18, 16-20, 16-21
in an open file 7-14
in memory 7-7, 16-33
locations for 7-6
on optical disc 7-28
with user-defined functions 7-22

Locator structure
definition of 7-3, 7-4
fields of 7-5
lc_union structure 7-5, 7-7, 7-13, 7-23
loc_buffer field 7-7, 7-8
loc_bufsize field 7-7, 7-8, 16-33
loc_close field 7-23, 7-24, 7-27
loc_currdata_p field 7-7
loc_fd field 7-13, 7-14, 7-17, 7-18
loc_fname field 7-13, 7-18
loc_indicator field 7-6, 7-9
loc_mflags field 7-7, 7-8
loc_mode field 7-13
loc_open field 7-14, 7-23, 7-24
loc_position field 7-13, 7-14
loc_read field 7-23, 7-24, 7-25
loc_status field 7-6, 7-8, 7-14, 7-18
loc_type field 7-6
loc_user_env field 7-23
loc_write field 7-23, 7-26
loc_xfercount field 7-23
memory buffer 7-8

locator.h header file
access-mode constants 8-13
create-time constants 8-4
data types defined 3-7, 3-8, 7-4
definition of 1-25
description of 8-2

locator.h header file (continued)
field-name shortcuts 7-7, 7-13
file-location constants B-108, B-110
file-open mode flags 7-13
LO-pointer structure 8-10
LO-specification structure 8-3
LO-status structure 8-19
LOC_ALLOC constant 7-8
location constants 7-7
whence constants B-115, B-119, B-121, B-144

LOCFILE location constant 7-7, 7-14
LOCFNAME location constant 7-7, 7-18
Locks, on smart large objects

byte range 8-16
description of 8-16
LO_LOCKALL flag 8-16
LO_LOCKRANGE flag 8-16

LOCMEMORY location constant 7-7, 16-33
LOCUSER location constant 7-7, 7-22
login.h header file 1-27, 1-33, 12-8
long identifier

determining if truncated 12-18
long int data type

converting from decimal B-42
converting from int8 B-103
converting to decimal B-25
converting to int8 B-86
converting to text B-185
corresponding SQL data type 3-7, 5-1
data conversion 3-11
defined constant 3-6

longjmp() system call 12-23, B-228
lvarchar data type

checking for null 10-9
corresponding SQL data type 3-2, 3-3, 3-8
CREATE OPAQUE TYPE statement 10-4
declaration 10-4
declaring 4-5
defined constant 3-6
definition of 4-2, 4-5
description of 4-5
fetching from column 4-11
fetching into 10-9
inserting from 4-12
inserting from, fixed size 10-8
inserting to column 4-11
of a fixed size 4-6
of fixed size 10-5
opaque type name 10-7
pointer host variable 4-7, 10-6

allocating memory 10-6
and ifx_var() functions 10-7
functions for 10-22
ifx_var_alloc() function B-148
ifx_var_dealloc() function B-149
ifx_var_flag() function B-150
ifx_var_getdata() function B-151
ifx_var_getlen() function B-152
ifx_var_isnull() function B-153
ifx_var_setdata() function B-154
ifx_var_setlen() function B-154
ifx_var_setnull() function B-155
inserting from 10-9
selecting into 10-10
using 10-9

selecting into, fixed size 10-9
setting to null 10-8

X-18 IBM Informix ESQL/C Programmer’s Manual

lvarchar data type (continued)
truncation, fixed size 4-6
using 10-7
with ANSI-compliant database 4-12
with DESCRIBE statement 16-4

LVARCHAR data type
corresponding ESQL/C data type 3-2, 3-7
defined constant 3-5
distinct-bit constant 15-21
distinct-bit macro 15-21

M
Macro

for datetime and interval data types 6-5
for distinct bit 15-21
for library versions 13-8
for thread-safe status variables 13-17
for var binary data type 10-22
for varchar data type 4-4

malloc() system call 7-9, 17-5, 17-6, 17-16
MAXVCLEN varchar constant 4-4
MCHAR data type 5-2
Memory allocation, LO handle B-120
Memory management

ESQL/C functions 17-7
for sqlda structure 17-3
for system-descriptor area 16-3, 16-4
freeing resources 14-7, 16-8, 17-10

Message chaining 12-28
Message request

definition of 12-22
interrupting 12-22
optimizing for cursor 14-12, 14-13, 14-17, 14-22
representing 12-44
with callback function 12-25

Message transfers, optimized 12-27
mi_lo_release() function B-120
mint data type 5-2
mlong data type 5-2
MONEY data type

corresponding ESQL/C data type 3-2, 3-7
data conversion 3-11, B-181, B-183, B-185
defined constant 3-5
role of decimal.h 1-25, 3-7
scale and precision 15-4

MSHORT data type 5-2
Mulitplexed connection

Windows requirement 12-15
Multibyte filter 1-2
Multiplexed connection

and multithreaded applications on Windows 12-15
description of 12-15
IFX_SESSION_MUX environment variable 12-15
limitations on 12-16

MULTISET data type
accessing 9-4
after a DESCRIBE 17-4
corresponding ESQL/C data type 3-3, 3-7
declaring host variable for 9-5
defined constant 3-5
definition of 9-2
inserting many elements into 9-15

Multithreaded applications
warning for Windows 12-15

N
NAME descriptor field 15-4, 16-4, 16-13
Named row type

after a DESCRIBE 17-4
declaring host variable for 9-33
in a collection-derived table 9-34
in a typed table 9-44
literal values 9-46

Named row variable 9-33
NCHAR data type

corresponding ESQL/C data type 3-2, 3-7, 4-1
defined constant 3-5
fetching 4-8
transferring with host variables 4-7

Network parameter
ASKPASSATCONNECT 1-33, 12-9
HOST 1-33, 12-9
INFORMIXSERVER 1-33, 12-9
OPTIONS 1-33
PASSWORD 1-33, 12-9
precedence 1-37
PROTOCOL 1-33, 12-9
SERVICE 1-33, 12-9
setting with InetLogin 1-36
USER 1-33, 12-9

Newline, including in quoted strings 1-7
Non-default compilation of ESQL/C programs

options for 2-17
Non-default order of compilation

for all ESQL/C files 2-18
Non-parameterized non-SELECT statements 14-25
Non-parameterized SELECT statements 14-26, 15-16, 16-9,

17-11
Non-SELECT statements

definition of 14-25
known at compile time 14-25
nonparameterized 14-25
not known at compile time 15-17
parameterized 14-34, 15-17, 16-28, 17-27
preparing 14-25
with sqlda structure 17-27
with system-descriptor area 16-28

Noncursor function
definition of 14-32
known at compile time 14-32
not known at compile time 16-14, 17-17
parameterized 14-33
with sqlda structure 17-17
with system-descriptor area 16-14

NOT FOUND condition
definition of 11-3
using SQLCODE 11-21
using SQLSTATE 11-12
using the WHENEVER statement 11-28

Null values
determining in dynamic SQL 15-4, 17-18
for simple-large-object values 7-6, 7-12, 7-18, 7-22
ifx_var_isnull() B-153
ifx_var_setnull() 10-20, B-155
in aggregate function 11-9, 11-17
in host variables 1-15
inserting code to check for 2-14
inserting into table 1-23
returned in indicator 1-23
risnull() 1-15, B-191
rsetnull() 1-15, B-197
setting to 1-15, 10-8, 10-15, 10-20, B-155, B-197

Index X-19

Null values (continued)
testing for 1-15, 1-21, 10-9, 10-15, 10-21, B-153, B-191

NULLABLE descriptor field 15-4, 16-4, 16-13
Numeric expressions

example formats 5-10
formatting 5-9
rfmtdec() function B-181
rfmtdouble() function B-183
rfmtlong() function B-185
valid characters 5-9

NVARCHAR data type
corresponding ESQL/C data type 3-2, 3-7, 4-1, 4-2
data conversion 4-8
defined constant 3-5
fetching 4-10
transferring with host variables 4-7

O
ONCONFIG file

ALLOW_NEWLINE parameter 1-7
onspaces database utility 8-7
Opaque data types

after a DESCRIBE 17-4
as element type of collection 9-5
as field type of row 9-32
corresponding ESQL/C data type 3-3, 3-8
defined constant 3-5
definition of 10-1
dynamically executing 15-19
extended identifier 15-5, 15-7
in dynamic SQL 15-7
inserting 15-19
name of 15-5, 15-7
owner of 15-5, 15-7
predefined 10-22
truncation of data 15-20

OPEN statement
and deferred PREPARE 14-20
executing a cursor 14-8, 14-10
executing with PREPARE 14-17
interrupting 12-22
optimizing 14-22
role in dynamic SQL 14-6
USING DESCRIPTOR clause 17-2, 17-9, 17-21, 17-26
USING host_var clause 14-35
USING SQL DESCRIPTOR clause 16-3, 16-7, 16-23, 16-27
with a SELECT statement 14-8
with an EXECUTE FUNCTION statement 14-8, 16-17,

17-17
with an INSERT statement 14-10
with deferred PREPARE 14-17
with OPTOFC and Deferred-PREPARE features 14-24

OPEN, FETCH, and CLOSE (OPTOFC) feature
restrictions 14-22

open() system call 7-13
Optimized message transfers

description of 12-27
enabling 12-28
error handling 12-29
reasons to disable 12-29
restrictions on 12-27

Optimizing
OPEN, FETCH, and CLOSE statements 14-22

OPTIONS network parameter 1-33
OPTMSG environment variable 12-28

setting 12-28

OptMsg global variable 12-28
setting 12-28

OPTOFC environment variable 14-23
client only 14-24

OPTOFC feature
and static cursors 14-23
enabling 14-23
with AUTOFREE and Deferred-PREPARE features 14-24
with Deferred-PREPARE feature 14-24

P
PARAMETER keyword 1-18, 14-11, 16-38
Parameterized non-SELECT statements 14-34, 15-17, 16-28,

17-27
Parameterized SELECT statements 14-35, 15-17, 16-22, 16-27,

17-20, 17-26
Parenthesis symbol 5-10
PASSWORD network parameter 1-33, 12-9
PATH environment variable 2-31

required 2-2
Period (.) symbol 5-9, 9-45
Plus (+) sign 5-9
Pointer, as host variable 1-17
Pound (#) sign 5-9
PRECISION descriptor field 15-4, 16-4
PREPARE statement

and sqlca.sqlerrd[0] 11-17, 14-5
and sqlca.sqlerrd[3] 11-17, 14-5
and sqlca.sqlerrd[4] 11-17, 11-24, 14-5
deferring execution of 14-17
exceptions returned 14-5
for collection variables 14-5
in thread-safe application 13-13
role in dynamic SQL 14-2
SQLCODE value 11-24, 14-5
with DATABASE statement 12-11
with EXECUTE 14-25
with EXECUTE FUNCTION 16-13, 16-16, 17-16
with EXECUTE PROCEDURE 14-31
with EXECUTE...INTO 14-27, 14-32
with INSERT 16-18
with OPTOFC and Deferred- PREPARE features 14-24
with SELECT 16-9

Preprocessor
case sensitivity 1-5
conditional compilation 1-30
definitions 1-30, 2-13
generating thread-safe code 13-9
header files 1-27
include files 1-29
line numbers 2-15
redirecting errors 2-16
search path for included files 2-15
stage 1 1-29, 2-13
stage 2 1-31, 2-17
syntax 2-5
version information 2-5

Preprocessor directive
define 1-30, 2-13
definition of 1-28
elif 1-30
else 1-30
endif 1-30
ifdef 1-30
ifndef 1-30
include 1-27, 1-29

X-20 IBM Informix ESQL/C Programmer’s Manual

Preprocessor directive (continued)
undef 1-30, 2-13

Preprocessor option
-ansi 2-5, 12-11
-e 2-5, 2-12
-ED 2-5, 2-13
-EU 2-5, 2-13
-g 2-15
-G 2-5, 2-15
-I 2-5, 2-14
-icheck 2-5, 2-14
-l for dynamic thread library 13-32
-local 2-5, 2-15, 14-4
-log 2-5, 2-16
-lw 2-10
-mserr 2-10, 2-22
-nln 2-5, 2-15
-nowarn 2-5, 2-16, 2-22
-o 2-5, 2-10, 2-23, 2-26
-static 2-5, 13-3, 13-4, 13-17
-thread 2-5, 2-12, 13-3, 13-9, 13-16
-ts 2-11
-V 2-11
-xopen 2-5, 2-16, 15-13, 15-14
those affecting linking 2-27
those affecting preprocessing 2-11
those for Informix libraries 13-3

Preprocessor, ESQL
stage 1 2-2

Preprocessor, ESQL/C
stage 2 2-2

Process
child 12-21, B-223
parent 11-20, 12-21, B-223

Processor
associating options with files 2-11
creating a response file 2-25
naming executable file 2-23
using a project file 2-24

Processor option
-c 2-24
-cc 2-23
-f 2-10, 2-24
-l 2-28
-libs 2-5, 2-27
-N 2-10
-r 2-28
-runtime 2-27
-Sc 2-27
-ss 2-27
-subsystem 2-27
-Sw 2-27
-target 2-26, 2-31
-V 2-5
-version 2-5
-wd 2-26, 2-31
-we 2-26
placement of 2-11

Program
checking library version 13-8
commenting 1-8
compiling 2-3, 2-24, 13-6
including files 1-27, 1-29
linking 2-3, 2-27, 13-3, 13-4, 13-5, 13-6, 13-16
message request 12-22, 12-25, 12-44, 14-12, 14-13, 14-17,

14-22
naming the executable file 2-5, 2-10, 2-23

Program (continued)
preprocessing 1-28, 2-11, 2-12
running 2-3
suppressing compilation 2-12
suppressing linking 2-24

Project file 2-10, 2-24
PROTOCOL network parameter 1-33, 12-9
pthread_lock_global_np() DCE function 13-15
pthread_yield() DCE function 13-16
pthread.h DCE header file 13-15
PUT statement

inserting a row 14-10
inserting into a collection variable 9-16
USING DESCRIPTOR clause 17-2, 17-9, 17-19
USING SQL DESCRIPTOR clause 16-3, 16-7, 16-22

putenv() system call 12-28, 14-23

Q
Question mark (?) 14-33

wildcard in smart-large-object filenames B-108
Quotation marks

escaping 1-6, 9-29, 9-46

R
rdatestr() library function B-171
rdayofweek() library function B-172
rdefmtdate() library function B-174
rdownshift() library function B-176
Reference count 8-19, B-138
Registering dynamic thread functions 13-30
Registry

in-memory copy 1-37
InformixServer B-60
precedence 1-37

ReleaseConnect() library function 12-46, B-177
Resource compiler

default options 2-25
passing arguments to 2-28

Resource file 2-27
Response file 2-9, 2-25
Restrictions

on optimized message transfers 12-27
on OPTOFC feature 14-22

Retrieving an error message B-188
rfmtdate() library function 6-8, 16-39, B-178
rfmtdec() library function 16-39, B-181
rfmtdouble() library function B-183
rfmtlong() library function B-185
rgetlmsg() library function B-188
rgetmsg() library function B-189
risnull() library function B-191
rjulmdy() library function B-193
rleapyear() library function B-195
rmdyjul() library function B-196
ROLLBACK WORK statement 12-20, 15-10
Row constructor 9-43
row data type (ESQL/C)

accessing a typed table 9-44
allocating memory for 9-35
client-side 9-35
Collection Derived Table clause 9-37
corresponding SQL data type 3-3, 3-8
deallocating memory for 9-35
declaration 9-31

Index X-21

row data type (ESQL/C) (continued)
defined constant 3-6
deleting from 9-41
fetching from 9-39
fetching into 9-38
field names 9-41
field values 9-42
initializing 9-38
inserting into 9-39
literal values 9-42
named row variable 9-33
nested rows 9-40
operating on 9-36
typed row variable 9-31
untyped row variable 9-32
updating 9-41

Row data type(ESQL/C)
with a collection 9-18

ROW data types
accessing 9-30
as element type of collection 9-5
as field type of row 9-32
constructed rows 9-43
corresponding ESQL/C data type 3-3, 3-8
declaring host variables for 9-31
defined constant 3-5
definition of 9-30
deleting 9-41, 9-47
dot notation 9-40, 9-45
extended identifier 15-5, 15-7
fetching 9-38, 9-39
in dynamic SQL 15-7
inserting into 9-39, 9-45
literal values 9-42, 9-45, 9-46
nested 9-43
owner of 15-5, 15-7
selecting from 9-45
typed table 9-44
updating 9-41, 9-45

rsetnull() library function B-197
rstod() library function B-200
rstoi() library function B-201
rstol() library function B-202
rstrdate() library function B-204
rtoday() library function B-205
rtypalign() library function 17-7, 17-14, B-206
rtypmsize() library function 17-7, 17-14, B-209
rtypname() library function B-211
rtypwidth() library function B-213
Running C preprocessor first

options for 2-17
Runtime environment 1-31
Runtime errors

definition of 11-3
in user-defined routines 11-11, 11-15
Informix-specific messages 11-15
using rgetlmsg() B-188
using rgetmsg() B-189
using sqlca structure 11-23
using SQLSTATE variable 11-15
using the WHENEVER statement 11-28

Runtime routines, exporting 2-29
rupshift() library function B-215

S
Sample program

bycmpr B-10
bycopy B-12
byfill B-13
byleng B-14
decadd B-16
deccmp B-17
deccopy B-18
deccvasc 5-6, B-19
deccvdbl B-21, B-23
deccvint B-24
deccvlong B-25
decdiv B-27
dececvt B-29
decfcvt B-31
decmul B-32
decround B-34
decsub B-35
dectoasc B-36
dectodbl B-39
dectoint B-40
dectolong B-42
dectrunc B-43
demo1 1-39
demo2 14-35
demo3 16-10, 16-23, 17-11
demo4 14-35, 16-9, 17-21
dispcat_pic 7-31, 11-32
dtaddinv B-45
dtcurrent B-46
dtcvasc B-47
dtcvfmtasc B-49
dtextend B-52
dtsub B-53
dtsubinv B-55
dttoasc B-56
dttofmtasc B-58
dyn_sql 11-32
ESQLAUTH 12-10
getcd_me 7-9
getcd_nf 7-18
getcd_of 7-14
ILOGIN 1-36
incvasc B-156
incvfmtasc B-158
intoasc B-160
intofmtasc B-161
invdivdbl B-163
invdivinv B-165
invextend B-167
invmuldbl B-168
ldchar B-170
rdatestr B-171
rdayofweek B-172
rdefmtdate B-174
rdownshift B-176
rfmtdate B-178
rfmtdec B-181
rfmtdouble B-183
rfmtlong B-185
rgetlmsg B-188
rgetmsg B-189
risnull B-191
rjulmdy B-193
rleapyear B-195
rmdyjul B-196

X-22 IBM Informix ESQL/C Programmer’s Manual

Sample program (continued)
rsetnull B-197
rstod B-200
rstoi B-201
rstol B-202
rstrdate B-204
rtoday B-205
rtypalign B-206
rtypmsize B-209
rtypname B-211
rtypwidth B-213
rupshift B-215
sqgetdbs B-217
sqldetach B-223
stcat B-232
stchar B-233
stcmpr B-234
stcopy B-235
stleng B-235
timeout 12-31
updcd_me 7-11
updcd_nf 7-20
updcd_of 7-16
varchar 4-4
WDEMO 2-31

SBSPACENAME configuration parameter 8-7
sbspaces

definition of 8-3
getting name of B-127
on optical disc 8-21
running out of space B-143, B-144
setting B-132
storage characteristics for 8-7

SCALE descriptor field 15-4, 16-4
Scope of

cursor names 2-15, 13-14
host variables 1-10
preprocessor definitions 1-30
statement identifiers 2-15, 13-13

Screen reader
reading syntax diagrams D-1

Scroll cursors 14-8
Select cursor

definition of 14-9
fetch buffer 14-11
for collection variable 9-19
statements that manage 14-8
using 14-28

SELECT statements
and NOT FOUND condition 11-13, 11-22
associated with a cursor 14-8, 16-3, 17-2
checking for truncation 11-17
Collection Derived Table clause 9-17, 9-39
defined statement constant 15-9
determining estimated cost of 11-17
determining rowid 11-17, 11-21
executing a singleton SELECT 14-27
failing to access rows 11-17
fetching CHAR data 4-7, 4-12
fetching collection data 9-12, 9-17, 9-26, 9-28
fetching DATETIME data 6-6
fetching INTERVAL data 6-6
fetching opaque-type data 10-9, 10-15, 10-21
fetching row-type data 9-38, 9-39, 9-45
fetching smart-large-object data 8-12
fetching VARCHAR data 4-8
identifying variable mismatch 11-9, 11-14, 11-17

SELECT statements (continued)
in ANSI-compliant database 4-12
interrupting 12-22, B-220
INTO host_var clause 11-17, 14-3
INTO TEMP clause 11-13, 11-22
known at compile time 14-26
nonparameterized 14-26, 15-16, 16-9, 17-11
not known at compile time 15-16, 15-17
parameterized 14-33, 14-35, 15-17, 16-22, 16-27, 17-20,

17-26
singleton 14-6, 14-9, 14-27, 16-3, 16-8, 17-2
with aggregate functions 11-17
with DESCRIBE 15-9, 16-4, 17-4
with sqlda structure 17-11, 17-20
with system-descriptor area 16-9, 16-22, 16-27, 17-26

SENDRECV data type
defined constant 3-5

Sequential cursor 9-15, 9-19, 14-8, 14-10
SERIAL data type

corresponding ESQL/C data type 3-2, 3-7, 5-1
data conversion 3-10
defined constant 3-5
obtaining value after INSERT 11-17
using typedefs 1-17

SERIAL8 data type
corresponding ESQL/C data type 3-2, 3-7, 5-1
declaring host variable for 5-2
ifx_getserial8() B-72

SERVICE network parameter 1-33, 12-9
SET AUTOFREE (SQL) statement 14-14

setting 14-14
SET AUTOFREE statement 14-14
SET CONNECTION statement 12-46, B-216

and explicit connections 12-11
determining database server features 12-18
making connection dormant 13-10, 13-12, 13-14
managing connections across threads 13-12
switching to a dormant connection 12-19, 13-10
with an active transaction 12-19

SET data type
accessing 9-4
after a DESCRIBE 17-4
corresponding ESQL/C data type 3-3, 3-8
declaring host variable for 9-5
defined constant 3-5
definition of 9-2
inserting many elements into 9-15

SET DEFERRED PREPARE statement 14-19
SET DESCRIPTOR statement

setting COUNT field 16-5, 16-22
setting fields 16-3, 16-5, 16-22
VALUE keyword 16-23

SetConnect() library function 12-46, B-216
setjmp() system call 12-23
Setnet32 utility 12-6

description 1-2
determining default database server B-60
use of ixreg.dll 2-29

Shared libraries
creating for dynamic thread functions 13-31

short int data type
corresponding SQL data type 3-7, 5-1
data conversion 3-11
defined constant 3-6

Shortcut keys
keyboard D-1

Index X-23

Signal handling
of ESQL/C library B-229
of SIGINT 12-23

Signal-handler function 12-23
signal() system call 12-23
Signals

SIGCHLD B-229
SIGINT 12-23

Simple large objects, and a fetch array 15-22
Simple-large-object data type

compared with smart large objects 7-2
declaring host variable for 7-3
definition of 7-1
inserting 7-11, 7-16, 7-20, 7-23, 16-20
null values 7-6
on optical disc 7-28
programming with 7-3
selecting 7-9, 7-14, 7-18, 7-23, 16-39
subscripting 7-4

Simple-large-object descriptor 7-28
Single quotes (' ')

delimiting strings 1-13
escaping 1-6
in a literal collection 9-29
in a literal row 9-46
in a quoted string 1-7

SMALLFLOAT data type
corresponding ESQL/C data type 3-2, 3-7, 5-8
data conversion 3-10, 3-11, 3-12
defined constant 3-5
number of decimal digits 3-10

SMALLINT data type
corresponding ESQL/C data type 3-2, 3-7, 5-1
creating a typedef for 1-17
data conversion 3-10, 3-11, 3-12
defined constant 3-5, 3-6

Smart large objects, permanent B-120
Smart-large-object data type

access modes 8-13
accessing 8-12
advantages 7-2
allocation extent size B-124, B-130
altering B-106
closing 8-18, B-107
compared with simple large objects 7-2
copying from user-defined buffer B-114
copying to a file B-108
copying to a user-defined buffer B-141
create-time flags B-125, B-131
creating 8-12, B-111
declaring host variable for 8-2
definition of 8-1, 9-1
determining storage characteristics of B-111
duration of open 8-17
ESQL/C functions for 8-21
estimated size 8-3, B-123, B-129
file position B-121, B-140
format on disk 8-21
getting size of 8-19, B-139
hexadecimal identifier for 8-9, B-108
ifx_lo_

See k()
ifx_lo_alter() B-106
ifx_lo_close() B-107
ifx_lo_col_info() B-107
ifx_lo_copy_to_file() B-62, B-108
ifx_lo_copy_to_lo() B-110

Smart-large-object data type (continued)
ifx_lo_create() B-111
ifx_lo_def_create_spec() B-112
ifx_lo_filename() B-113
ifx_lo_from_buffer() B-114
ifx_lo_open() B-114, B-116
ifx_lo_read() B-118
ifx_lo_readwith

See k()
ifx_lo_release() B-120
ifx_lo_spec_free() B-122
ifx_lo_specget_estbytes() B-123
ifx_lo_specget_extsz() B-124
ifx_lo_specget_flags() B-125
ifx_lo_specget_maxbytes() B-126
ifx_lo_specget_sbspace() B-127
ifx_lo_specset_estbytes() B-129
ifx_lo_specset_extsz() B-130
ifx_lo_specset_maxbytes() B-132
ifx_lo_specset_sbspace() B-132
ifx_lo_stat_atime() B-134
ifx_lo_stat_cspec() B-135
ifx_lo_stat_ctime() B-136
ifx_lo_stat_free() B-137
ifx_lo_stat_mtime_sec() B-138
ifx_lo_stat_refcnt() B-138
ifx_lo_stat_size() B-139
ifx_lo_stat() B-133
ifx_lo_tell() B-140
ifx_lo_to_buffer() B-141
ifx_lo_truncate() B-142
ifx_lo_write() B-143
ifx_lo_writewith

See k()
inserting 8-9
lightweight I/O 8-15
LO file descriptor 8-11
LO-pointer structure 8-10
LO-specification structure 8-3
LO-status structure 8-19
locking 8-16, B-107, B-111, B-116
locks 8-16
maximum size 8-3, B-126, B-132
modifying 8-17
obtaining status of 8-18, B-133
on optical disc 8-21
opening 8-13, B-111, B-116
programming with 8-2
reading from 8-17, B-118, B-119
reference count 8-19, B-138
sample program C-2
sbspaces B-127, B-132
selecting 8-12
storage characteristics 8-3, 8-6
storing 8-9
temporary smart large objects B-120
temporary, releasing resources B-120
time of last access 8-19, B-134
time of last change in status 8-19, B-136
time of last modification 8-19, B-138
truncating B-142
updating 8-9
writing to 8-17, B-143, B-144

SOURCEID descriptor field 15-5, 15-21
SOURCETYPE descriptor field 15-5, 15-21
SPL function

cursor function 14-26

X-24 IBM Informix ESQL/C Programmer’s Manual

SPL function (continued)
definition 14-31
executing dynamically 14-33, 16-14, 16-18, 17-17, 17-18

SPL procedure 14-31
SPL routines 12-22, 14-31
sqgetdbs() library function B-217
SQL data types

BIGINT 3-1, 3-7, 5-1
BIGSERIAL 3-7, 5-1
BLOB 3-3, 3-7, 8-1
BOOLEAN 3-1, 3-7, 5-4
BYTE 3-1, 3-7, 7-1
CHAR 3-2, 3-7, 4-1
CLOB 3-3, 3-8
collections 9-2
DATE 3-2, 3-7, 6-1
DATETIME 3-2, 3-7, 6-2
DECIMAL 3-2, 3-7
defined constants for 3-4, 15-14
distinct 15-19
FLOAT 3-2, 3-7, 5-8
int8 3-2, 3-7, 5-1, 5-8
INT8 5-2
INTEGER 3-2, 3-7, 5-1
INTERVAL 3-2, 3-7, 6-2
LIST 3-3, 3-8, 9-2
LVARCHAR 3-2, 3-7
MONEY 3-2, 3-7
MULTISET 3-3, 3-7, 9-2
named row type 9-30
NCHAR 3-2, 3-7, 4-1
NVARCHAR 3-2, 3-7, 4-1, 4-2
opaque 3-3, 3-8, 10-1
row types 3-3, 9-30
SERIAL 3-2, 3-7, 5-1
SERIAL8 3-2, 3-7, 5-1, 5-2
SET 3-3, 3-8, 9-2
SMALLFLOAT 3-2, 3-7, 5-8
SMALLINT 3-2, 3-7, 5-1
TEXT 3-2, 3-7, 7-1
unnamed row type 3-8, 9-30
VARCHAR 3-2, 3-7, 4-1
X/Open defined constants 3-6

SQL identifier 1-12, 14-33
SQL keyword protection

against interpretation by C preprocessor 2-21
relation to the dollar ($) sign 2-21

SQL statements
case sensitivity 1-5
CLOSE DATABASE B-177
CONNECT 12-6, 12-46
cursor-management statements 14-8, 14-10
DATABASE B-60
defined constants for 11-20, 15-9
DISCONNECT 12-46, B-177
for dynamic SQL 14-6, 14-8, 14-10, 16-3, 17-2
interruptable 12-22
obtaining diagnostic information 11-2
parameterized 14-33
SET CONNECTION 12-46, B-216
static 11-17, 14-1

sqlauth() authentication function 1-33, 2-29, 12-8
SQLBIGSERIAL data-type constant 3-5
SQLBOOL data-type constant 3-5
sqlbreak() library function 12-22, 12-31, B-220
sqlbreakcallback() library function 12-20, 12-24, B-221
SQLBYTES data-type constant 3-5

sqlca structure 1-38
and DESCRIBE 15-15
and PREPARE 14-5
checking for exceptions 11-17
definition of 11-17
determining database server features 11-17, 11-23, 12-18
in thread-safe code 13-9, 13-17
indicating truncation 1-23, 3-9
relation to SQLCODE status variable 11-19
retrieving error message text 11-29
sqlerrm 11-23, B-188
using the WHENEVER statement 11-28
warning values 11-22

sqlca.h header file
constant definitions 11-22
definition of 1-25
structure definition 13-17
variable definitions 11-7, 11-19, 13-17

sqlca.sqlerrd array
sqlerrd\ B-188, B-189
sqlerrd[0] 11-21, 14-5
sqlerrd[1] 11-17, 11-21, 11-23
sqlerrd[2] 11-21, 11-23
sqlerrd[3] 11-21, 14-5
sqlerrd[4] 11-24, 14-5
sqlerrd[5] 11-21

sqlca.sqlwarn structure
definition of 11-22
sqlwarn0 11-17
sqlwarn1 4-7, 4-11, 6-7, 11-17, 12-18
sqlwarn2 11-17, 12-18
sqlwarn3 11-17, 12-18
sqlwarn4 11-17, 12-18, 15-15
sqlwarn5 11-17
sqlwarn6 11-17, 12-18
sqlwarn7 11-17, 12-18

SQLCHAR data-type constant 3-5
SQLCODE value 1-38, B-60, B-177, B-216
SQLCODE variable

after a DESCRIBE statement 11-20, 15-9
after a GET DIAGNOSTICS statement 11-7
after a PREPARE statement 11-24
after a simple-large-object access 7-6
after an ALLOCATE COLLECTION 9-9
after an ALLOCATE ROW 9-35
after an EXECUTE statement 11-24
and sqlerrd 11-17
definition of 11-19
in diagnostics area 11-6, 11-7
in thread-safe code 13-9, 13-17
indicating an interrupt B-220
indicating runtime errors 11-23
relation to sqlca structure 11-19
result codes 11-20
retrieving error message text B-188, B-189

sqlda
and a fetch array 15-23

sqlda structure
allocating memory for 13-9, 17-3, 17-6
assigning values to 17-8
data type lengths 4-4
declaring 17-3
definition of 15-5
desc_name field 15-8
desc_next field 15-8
desc_occ field 15-8
examples 17-11, 17-21

Index X-25

sqlda structure (continued)
fetching rows into 17-9
fields of 15-5, 15-6, 15-7
for columns of a SELECT 17-11
for columns of an INSERT 17-18
for distinct-type columns 15-21
for input parameters 17-20, 17-27
for opaque-type columns 15-19, 15-20
for return values of a user-defined function 17-16
freeing memory for 17-10
getting field values 17-8
initializing 17-4
interrupting database server B-220
managing 17-2
obtaining values from 17-8
setting fields 17-8
specifying input parameter values for 17-8
uses of 17-10
using an indicator variable 15-7

sqlda.h header file 1-25, 1-27, 17-3
sqlda.sqld field

after a DESCRIBE 15-8, 17-4, 17-6, 17-13
definition of 15-5, 15-6
saving 17-11, 17-18
setting 17-20, 17-24

sqlda.sqlvar structure
after a DESCRIBE 17-4
definition of 15-7
getting field values 17-8
setting fields 17-8
sqlflags field 15-8
sqlformat field 15-7
sqlidata field 15-7, 17-20
sqlilen field 15-7, 17-20
sqlind field 15-7, 15-20, 17-4, 17-6, 17-18, 17-20
sqlitype field 15-7, 17-20
sqlname field 15-7, 17-4, 17-6, 17-13, 17-15
sqlownerlen field 15-8
sqlownername field 15-7
sqlsourceid field 15-8, 15-21
sqlsourcetype field 15-8, 15-21
sqltypelen field 15-7
sqltypename field 15-7
sqlxid field 15-7

sqlda.sqlvar.sqldata field
after a DESCRIBE 17-4, 17-6
after a FETCH 17-9, 17-11, 17-15, 17-18, 17-24
allocating memory for 15-5, 17-6, 17-14
definition of 15-7
freeing memory for 17-10, 17-16
setting column value 17-18, 17-19
setting input parameter data 17-20, 17-25

sqlda.sqlvar.sqllen field
after a DESCRIBE 17-4, 17-6
definition of 15-7
determining host variable type 17-9, 17-15
for varchar data 4-4
inserting opaque-type data 15-19
setting input parameter length 17-20, 17-25
used to allocate memory 17-7, 17-11, 17-14, 17-17

sqlda.sqlvar.sqltype field
after a DESCRIBE 17-4, 17-6
column type values 15-13, 15-21, 17-8
definition of 15-7
determining host variable type 17-9, 17-15
indicating distinct-type data 15-21
inserting opaque-type data 15-19

sqlda.sqlvar.sqltype field (continued)
setting input parameter type 17-20, 17-25
used to allocate memory 17-7, 17-11, 17-14, 17-17

SQLDATE data-type constant 3-5
SQLDBOOLEAN distinct-bit constant 15-21, 15-22
SQLDECIMAL data-type constant 3-5
sqldetach() library function 12-21, 12-27, 13-15, B-223
SQLDISTINCT distinct-bit constant 15-21, 15-22
SQLDLVARCHAR distinct-bit constant 15-21, 15-22
sqldone() library function 12-21, 12-31, B-228
SQLDTIME data-type constant 3-5
sqlexit() library function 12-27, B-228
SQLFLOAT data-type constant 3-5
sqlhdr.h file

and FetBufSize global variable 14-13
FetBufSize variable 14-13

sqlhdr.h header file 1-25, 1-27
determining product version 13-8
var binary macros 10-22

sqlhdr.h, and OptMsg global variable 12-28
sqlhosts file 12-4

accessing 12-4
on UNIX 12-4

sqlhosts file or registry
multiplexed connections 12-15

sqlhosts registry
a central 12-7
and InetLogin 12-5
and Setnet32 12-6
information in 12-6
on Windows 12-5

sqliapi.h header file, definition of 1-25
SQLINFXBIGINT data-type constant 3-5
SQLINT data-type constant 3-5
SQLINT8 data-type constant 3-5
SQLINTERVAL data-type constant 3-5
SQLKEYWORD_ prefix 2-21
SQLLIST data-type constant 3-5
SQLLVARCHAR data-type constant 3-5
SQLMONEY data-type constant 3-5
SQLMULTISET data-type constant 3-5
SQLNCHAR data-type constant 3-5
SQLNOTFOUND constant

definition of 11-22
detecting NOT FOUND condition 11-28

SQLNVCHAR data-type constant 3-5
sqlproto.h header file 1-27
SQLROW data-type constant 3-5
SQLSENDRECV data type constant 3-5
SQLSERIAL data-type constant 3-5
SQLSET data-type constant 3-5
sqlsignal() library function B-229
SQLSMFLOAT data-type constant 3-5
SQLSMINT data-type constant 3-5
sqlstart() library function 12-12, B-228, B-231
SQLSTATE values 1-38, B-60, B-177, B-216
SQLSTATE variable

after a GET DIAGNOSTICS statement 11-7
class and subclass codes 11-6, 11-8
determining database server features 11-14, 12-18
determining number of exceptions 11-5
determining origin of class portion 11-6, 11-13, 11-15
determining origin of subclass portion 11-6, 11-13, 11-15
in diagnostics area 11-6
in thread-safe code 13-9, 13-17
indicating truncation 4-7, 4-11
result codes 11-11

X-26 IBM Informix ESQL/C Programmer’s Manual

SQLSTATE variable (continued)
using 11-7
using the WHENEVER statement 11-28
warning values 11-13

sqlstype.h header file
definition of 1-26
statement-type constants 11-20, 15-9

sqlstypes.h header file 16-32
SQLTEXT data-type constant 3-5
sqltypes.h header file

data-type constants 3-3, 15-13, 16-6
definition of 1-26
distinct-bit constants 15-21
distinct-bit macros 15-21
simple-large-object data types 7-4, 7-6
source type for distinct columns 15-5, 15-8

SQLUDTFIXED data-type constant 3-5, 15-22
SQLUDTVAR data-type constant 3-5, 15-22
sqlvar_struct structure

with fetch array 15-30
SQLVCHAR data-type constant 3-5
sqlxtype.h header file

definition of 1-26
X/Open data types 2-16, 3-6, 15-14

START DATABASE statement 12-11, 12-12
Statement identifier

case sensitivity 1-5
creating 14-2
freeing 14-7
scope rules 2-15, 13-13
structure 14-2
using delimited identifiers 1-14

Static cursor
with OPTOFC feature 14-23

Static-link library 2-30
stcat() library function 14-4, B-232
stchar() library function B-233
stcmpr() library function B-234
stcopy() library function 14-4, B-235
stleng() library function B-235
Storage characteristics

altering B-106
column level 8-8, B-107
create-time flags 8-4
disk-storage information 8-3
inheritance hierarchy 8-6
obtaining 8-6, 8-19, B-135
sbspace level 8-7
system default 8-7
system level B-112
system specified 8-7
user defined 8-8

Stored procedures 14-31
string data type

corresponding SQL data type 3-2, 3-7
defined constant 3-6
definition of 4-2, 4-3
fetching into 3-10, 4-7, 4-8, 4-11, 5-8, 6-7
inserting from 4-8, 4-9, 4-11, 4-12
with ANSI-compliant database 4-12

strncmp() system call 11-12, 11-15
Structure

as host variable 1-16
decimal 5-5
dtime 6-3
for dynamic management 15-1
ifx_int8_t 5-2

Structure (continued)
ifx_lo_create_spec_t 8-3
ifx_lo_stat_t 8-19
ifx_lo_t 8-10
intrvl 6-4
nesting 1-16
sqlca 11-17
sqlda 15-5
sqlvar_struct 15-7

Syntax diagrams
reading in a screen reader D-1

System call
calloc() 17-5
DCE restrictions 13-15
exec() 13-15, B-223
exit() 11-20, 11-27
fclose() 2-15
fopen() 2-15
fork() 13-15, B-223
fread() 2-15
free() 7-9, 17-16
longjmp() 12-23, B-228
malloc() 7-9, 17-5, 17-6, 17-16
open() 7-13
setjmp() 12-23
signal() 12-23
strncmp() 11-12, 11-15
vfork() B-223

System-descriptor area
allocating memory for 16-3
assigning values to 16-5
data type lengths 4-4
definition of 15-2, 16-1
examples 16-10, 16-14, 16-19, 16-23
fetching rows into 16-7
fields of 15-2, 15-3
for columns of a SELECT 16-9, 16-18
for columns of an INSERT 16-18
for distinct-type columns 15-21
for input parameters 16-22, 16-27, 16-28, 17-26
for opaque-type columns 15-19, 15-20
for return values of a user-defined function 16-13
freeing memory for 16-8
getting field values 16-6
initializing 16-4
interrupting database server B-220
item descriptor fields 15-3
managing 16-3
obtaining values from 16-5
setting fields 16-5
specifying input parameter values for 16-7
uses for 16-8
using an indicator variable 15-4, 16-23

T
Tabs 2-23
TEXT data type

corresponding ESQL/C data type 3-2, 3-7
declaring host variable for 7-3
defined constant 3-5
inserting 7-11, 7-16, 7-20, 7-23, 16-20
locator structure shown 7-4
on optical disc 7-28
role of locator.h 1-25, 3-7
selecting 7-9, 7-14, 7-18, 7-23, 16-21
subscripting 7-4

Index X-27

Thread-safe application
concurrent connections 13-10
connections across threads 13-12
creating 13-9
cursors across threads 13-14
DCE restrictions 13-15
decimal values 13-15, 13-18
DISCONNECT ALL statement 13-13
environment variables 13-15
linking 13-16
preparing statements 13-13
programming hints 13-10
resource allocation 13-16
sample 13-19
SET CONNECTION statement 13-10, 13-12
thread-safe code 13-9

thread-safe DLLs for Windows 2-12
THREADLIB environment variable 13-16, 13-17
Timeout interval 12-24, 12-31, B-221
timeout sample program 12-31
Trailing blanks

in VARCHAR conversion 4-8, 4-9
inserting into database 4-9
removing B-170
with ESQL/C data types 4-3

Transactions
committing 12-19
determining if used 11-9, 11-14, 11-17, 12-18
exiting all connections B-228
interrupting the database server B-220
rolling back 12-20
switching server connections 12-19

Truncated value
in CHAR conversion 4-7, 4-11
in decimal conversion B-43
in VARCHAR conversion 4-8, 4-10
indicated by sqlca 11-17
indicated by SQLSTATE 11-9
of opaque data type 15-20
using indicator variable 1-21, 1-23
with pointers 1-17

TU_DAY qualifier macro 6-5
TU_DTENCODE qualifier macro 6-5, B-46
TU_ENCODE qualifier macro 6-5
TU_END qualifier macro 6-5
TU_FLEN qualifier macro 6-5
TU_Fn qualifier macro 6-5
TU_FRAC qualifier macro 6-5
TU_HOUR qualifier macro 6-5
TU_IENCODE qualifier macro 6-5
TU_LEN qualifier macro 6-5
TU_MINUTE qualifier macro 6-5
TU_MONTH qualifier macro 6-5
TU_SECOND qualifier macro 6-5
TU_START qualifier macro 6-5
TU_YEAR qualifier macro 6-5
TYPE descriptor field

after a DESCRIBE 16-4, 16-13
column-type values 15-13, 16-6
definition of 15-4
indicating distinct-type data 15-21
inserting opaque-type data 15-19
setting column type 15-21, 16-20
setting input parameter type 16-25
setting input-parameter type 16-22

Typed collection variable
allocating memory for 9-9

Typed collection variable (continued)
deallocating memory for 9-9
declaring 9-5
operating on 9-10

Typed row variable
allocating memory for 9-35
deallocating memory for 9-35
declaring 9-31
operating on 9-36

typedef
as host variable 1-17
dec_t 5-5
dtime_t 6-3, 6-6
intrvl_t 6-4, 6-6

U
undef preprocessor directive 1-28, 1-30, 2-13
Unicode 2-16
Union of structures 1-17, 7-5
Unnamed row type

after a DESCRIBE 17-4
literal values 9-46

Untyped collection variable
allocating memory for 9-9
deallocating memory for 9-9
declaring 9-7
operating on 9-10

Untyped row variable
allocating memory for 9-35
deallocating memory for 9-35
declaring 9-32
operating on 9-36

Update cursor 9-19, 9-20, 14-8
UPDATE statements

and NOT FOUND condition 11-13, 11-22
collection columns 9-28
collection data 9-20
Collection Derived Table clause 9-20
defined statement constant 15-9, 15-10
determining estimated cost of 11-17
determining number of rows updated 11-5, 11-17
determining rowid 11-17
dynamic 14-25, 14-34, 15-17
failing to access rows 11-17
in ANSI-compliant database 4-12
interrupting 12-22, B-220
known at compile time 14-25, 14-34
not known at compile time 15-17
parameterized 14-34, 15-17, 16-28, 17-27
row-type columns 9-45
row-type data 9-41
SET clause 1-16, 14-34
updating smart-large-object data 8-9
WHERE CURRENT OF clause 14-11
with DESCRIBE 15-9, 15-15
without WHERE clause 11-9, 11-14, 11-17, 15-10, 15-15

updcd_me sample program 7-11
updcd_nf sample program 7-20
updcd_of sample program 7-16
USER network parameter 1-33, 12-9
User-defined function

arguments 14-28
compared with procedure 14-30
creating 14-30
cursor 14-32, 14-33, 16-3, 17-2
definition 14-30

X-28 IBM Informix ESQL/C Programmer’s Manual

User-defined function (continued)
determining return values dynamically 15-18
dropping 14-30
executing 14-30, 14-31
executing dynamically 14-30, 14-31
known at compile time 14-30
noncursor 14-28, 14-32, 16-3, 16-8, 17-2
not known at compile time 15-18
parameterized 14-28, 14-33, 14-35, 16-27, 17-26
with sqlda structure 17-16
with system-descriptor area 16-13

User-defined procedure
arguments 14-28
compared with function 14-30
creating 14-30
definition 14-30
dropping 14-30
executing 14-30, 14-31
executing dynamically 14-31
parameterized 14-28, 14-34, 16-27, 17-26

User-defined routines
definition 14-30
error messages 11-11, 11-15
ifx_allow_newline() 1-7
languages supported 14-31
warning messages 11-9, 11-13

USING DESCRIPTOR clause
of EXECUTE statement 17-2, 17-9, 17-19, 17-25, 17-27
of FETCH statement 17-2, 17-9
of OPEN statement 17-2, 17-9
of PUT statement 17-2, 17-9, 17-19
with a fetch array 15-23

USING host_var clause
of EXECUTE statement 14-34
of OPEN statement 14-35

USING SQL DESCRIPTOR clause
of DESCRIBE statement 16-3, 16-4, 16-9, 16-18
of EXECUTE statement 16-3, 16-7, 16-19
of FETCH statement 16-3, 16-7, 16-9
of OPEN statement 16-3, 16-7
of PUT statement 16-3, 16-7, 16-22

Utilities
finderr 1-2
ILogin 1-2
Setnet32 1-2

V
VALUE descriptor field 16-13
value.h header file 1-26
var binary data type

checking for null 10-21, B-148, B-153
corresponding SQL data type 3-3, 3-8
deallocating data buffer B-149
declaration 10-16
defined constant 3-6
fetching into 10-20
getting data buffer from B-151
getting size of data buffer B-152
setting data buffer B-154
setting size of data buffer B-154
setting to null 10-20, B-155
specifying memory allocation B-150

varchar data type
corresponding SQL data type 3-2, 3-7
defined constant 3-6
definition of 4-2, 4-3

varchar data type (continued)
fetching into 3-10, 4-7, 4-11, 5-8
inserting from 4-8, 4-9, 4-11, 4-12
role of varchar.h 1-26
with ANSI-compliant database 4-12

VARCHAR data type
corresponding ESQL/C data type 3-2, 3-7, 4-1
data conversion 3-10, 4-8
defined constant 3-5
fetching 3-10, 4-8
inserting 3-10, 4-9
macros 4-4
role of varchar.h 1-26
truncating values 4-8, 4-9
with null-terminated strings 4-2

varchar.h header file 1-26, 4-4
Varying-length opaque data type

declaring host variable for 10-16
inserting 10-20
selecting 10-21

VCLENGTH varchar macro 4-4
VCMAX varchar macro 4-4
VCMIN varchar macro 4-4
VCSIZ varchar macro 4-4
Version independence 2-29
Version information 2-5
vfork() system call B-223
Visual disabilities

reading syntax diagrams D-1

W
Warnings

definition of 11-3
displaying in Microsoft format 2-22
extensions to X/Open standards 2-16
in user-defined routines 11-9, 11-13
Informix-specific messages 11-13, 11-22
redirecting 2-16
suppressing 2-16, 2-22
using sqlca structure 11-22
using SQLSTATE variable 11-13
using the WHENEVER statement 11-28
X/Open messages 11-13

WDEMO sample program 2-31
WHENEVER statement 11-28
Wildcard character

exclamation point (!) B-108
question mark (?) B-108
with smart-large-object filenames B-108

WORM optical disc 7-28, 8-21

X
X/Open standards

checking for Informix extensions to 2-16
connecting to a database 12-11
data type defined constants 2-16, 3-6, 15-14
getting diagnostic information 11-3
nonstandard system descriptor fields 15-4
runtime error values 11-15
SQLSTATE class values 11-8
TYPE field values 16-23
using dynamic SQL statements 15-1, 15-16, 15-17, 15-18
warning values 11-13
warnings on extensions 2-16

Index X-29

XSQLCHAR data-type constant 3-6
XSQLDECIMAL data-type constant 3-6
XSQLFLOAT data-type constant 3-6
XSQLINT data-type constant 3-6
XSQLSMINT data-type constant 3-6

X-30 IBM Informix ESQL/C Programmer’s Manual

����

Printed in USA

SC23-9420-05

Sp
in
e
in
fo
rm
at
io
n:

IB
M

In
fo

rm
ix

Ve
rs

io
n

3.
50

IB
M

In
fo

rm
ix

ES
QL

/C
Pr

og
ra

m
m

er
’s

M
an

ua
l

�
�

�

	Contents
	Introduction
	About this publication
	Types of users
	Software dependencies
	Assumptions About Your Locale
	Demonstration Databases

	What's new in ESQL/C for Client SDK, Version 3.50
	Example Code Conventions
	Additional Documentation
	Compliance with Industry Standards
	Syntax Diagrams
	How to Read a Command-Line Syntax Diagram
	Keywords and Punctuation
	Identifiers and Names

	How to Provide Documentation Feedback

	Part 1. What Is IBM Informix ESQL/C
	Chapter 1. Programming with IBM Informix ESQL/C
	What Is IBM Informix ESQL/C?
	ESQL/C Components
	ESQL/C Files for Windows
	ESQL/C Library Functions

	Creating an ESQL/C Program

	Embedding SQL Statements
	Handling Case Sensitivity in Embedded SQL Statements
	Using Quotation Marks and Escape Characters
	Including Newline in Quoted Strings

	Adding Comments
	Specifying Host Variables

	Declaring and Using Host Variables
	Declaring a Host Variable
	Host-Variable Names
	Host-Variable Data Types
	Initial Host-Variable Values
	Scope of Host Variables
	Sample Host-Variable Declarations

	Assigning a Value to a Host Variable
	SQL Identifiers
	Null values in host variables

	Using Host Variables in Data Structures
	Arrays of host variables
	C structures as host variables
	C typedef statements as host variables
	Pointers as host variables
	Function parameters as host variables

	Using Host Variables in Windows Environments
	Declaring Variables with Non-ANSI Storage-Class Modifiers

	Using Indicator Variables
	Declaring Indicator Variables
	Associating an Indicator Variable with a Host Variable
	Indicating Null Values
	Indicating truncated values
	An Example Using Indicator Variables

	Using ESQL/C Header Files
	Declaring Function Prototypes
	Including Header Files

	Using ESQL/C Preprocessor Directives
	The include Directive
	The define and undef Directives
	The ifdef, ifndef, elif, else, and endif Directives

	Setting and Retrieving Environment Variables in Windows Environments
	InetLogin structure
	Fields of the InetLogin Structure
	InetLogin field values
	Precedence of Configuration Values

	Using Global ESQL/C Variables in a Windows Environment
	A Sample IBM Informix ESQL/C Program
	Compiling the demo1 Program
	Guide to demo1.ec File
	Line 1
	Lines 2 to 3
	Lines 4 to 9
	Lines 10 to 12
	Lines 13 to 17
	Line 18
	Lines 19 to 25
	Lines 26 to 27
	Lines 28 to 29
	Lines 30 to 32

	Chapter 2. Compiling programs
	Compiling an IBM Informix ESQL/C program
	ESQL/C Preprocessor
	C Preprocessor and Compiler
	Default Compilation Order
	Running the C Preprocessor First

	Using the esql Command
	Requirements for Using esql
	Syntax of the esql command
	Options That Affect Preprocessing
	Checking the Version Number
	Associating Options with Files
	Preprocessing Without Compiling or Linking
	Generating Thread-Safe Code
	Checking for ANSI-Standard SQL Syntax
	Defining and Undefining Definitions While Preprocessing
	Checking for Missing Indicator Variables
	Naming the Location of Include Files
	Numbering Lines
	Setting the Scope of Cursor Names and Statement IDs
	Redirecting Errors and Warnings
	Suppressing Warnings
	Using the GLS for Unicode (GLU) Feature
	Using X/Open Standards

	Running the C Preprocessor Before the ESQL/C Preprocessor
	Options for Running the C Preprocessor First
	CPFIRST Environment Variable (UNIX)
	Using the eprotect.exe Utility (Windows)
	The Order of Compilation When the C Preprocessor Runs First
	Defining Host Variables Based on C #defines and typedefs
	Allowing All Valid C Declaration Syntax Inside the EXEC SQL Declare Section
	Excluding Statements Inside C Header Files
	SQL Keyword Protection
	SQL Keyword Protection and the Dollar Sign ($) Symbol

	Preprocessor Options Specific to Windows Environments
	Line Wrapping
	Changing Error and Warning Displays
	Setting Tab Stops

	Compiling and Linking Options of the esql Command
	Naming the Executable
	Setting the Type of Executable Created (Windows)
	Pass options to the C compiler
	Specify a particular C compiler (Windows)
	Compile without linking
	Special Compile Options for Windows Environments
	Using a Project File
	Creating a Response File
	Implicit Options Invoked by the esql Preprocessor in Windows Environments

	Linking Options
	General Linking Options
	Special Linking Options for Windows

	Accessing the ESQL Client-Interface DLL in Windows Environments
	Accessing the Import Library
	Locating a DLL
	Building an Application DLL

	Chapter 3. Informix ESQL/C data types
	Choosing data types for host variables
	Data Type Constants
	SQL Data Type Constants
	ESQL/C Data Type Constants
	X/Open Data Type Constants

	Header Files for Data Types

	Data Conversion
	Fetching and Inserting with Host Variables
	Converting Numbers and Strings
	Converting Floating-Point Numbers to Strings
	Converting BOOLEAN Values to Characters
	Converting DATETIME and INTERVAL Values
	Converting Between VARCHAR and Character Data Types

	Performing Arithmetic Operations
	Converting Numbers to Numbers
	Using Operations That Involve a Decimal Value

	Data-Type Alignment Library Functions

	Chapter 4. Working with character and string data types
	Character data types
	The char Data Type
	The fixchar Data Type
	The string Data Type
	The varchar Data Type
	The lvarchar Data Type
	A lvarchar Host Variable of a Fixed Size
	The lvarchar Pointer Host Variable

	Fetching and Inserting Character Data Types
	Fetching and Inserting CHAR Data
	Fetching CHAR Data
	Inserting CHAR Data

	Fetching and Inserting VARCHAR Data
	Fetching VARCHAR Data
	Inserting VARCHAR Data

	Fetching and Inserting lvarchar Data
	Fetching lvarchar Data
	Inserting LVARCHAR Data

	Fetching and Inserting with an ANSI-Compliant Database

	Character and string library functions

	Chapter 5. Working with numeric data types
	The integer data types
	The Integer Host Variable Types
	The INT8 and SERIAL8 SQL Data Types
	The int8 Data Type
	The int8 Library Functions

	The BOOLEAN data type
	The decimal data type
	The decimal structure
	The decimal Library Functions

	The Floating-Point Data Types
	Declaring float Host Variables
	Implicit Data Conversion

	Formatting Numeric Strings
	Numeric-Formatting Functions

	Chapter 6. Working with time data types
	The SQL DATE data type
	Formatting date strings

	DATE Library Functions
	The SQL DATETIME and INTERVAL Data Types
	The datetime Data Type
	The interval Data Type
	Macros for datetime and interval Data Types
	Fetching and Inserting DATETIME and INTERVAL Values
	Fetching and Inserting into datetime Host Variables
	Fetching and Inserting into interval Host Variables
	Implicit Data Conversion

	ANSI SQL standards for DATETIME and INTERVAL values
	Data conversion for datetime and interval values

	Support of Non-ANSI DATETIME Formats
	The USE_DTENV environment variable

	DATETIME and INTERVAL Library Functions

	Chapter 7. Working with simple large objects
	Choosing a large-object data type
	Programming with Simple Large Objects
	Declaring a Host Variable for a Simple Large Object
	Accessing the Locator Structure
	The Fields of the Locator Structure
	Locations for Simple-Large-Object Data

	Locating Simple Large Objects in Memory
	Allocating the Memory Buffer
	A memory buffer that the ESQL/C libraries allocate
	A memory buffer that the program allocates

	Selecting a simple large object into memory
	Inserting a Simple Large Object from Memory

	Locating Simple Large Objects in Files
	File-Open Mode Flags
	Error Returns in loc_status
	Locating Simple Large Objects in Open Files
	Selecting a Simple Large Object into an Open File
	Inserting a Simple Large Object from an Open File

	Locating Simple Large Objects in Named Files
	Selecting a Simple Large Object into a Named File
	Inserting a Simple Large Object from a Named File

	Using User-Defined Simple-Large-Object Locations
	Selecting a Simple Large Object into a User-Defined Location
	Inserting a Simple Large Object into a User-Defined Location
	Creating the User-Defined Simple-Large-Object Functions
	The User-Defined Open Function
	The User-Defined Read Function
	The User-Defined Write Function
	The User-Defined Close Function

	Reading and Writing Simple Large Objects to an Optical Disc (UNIX)
	The dispcat_pic Program
	Loading the Simple-Large-Object Images
	Choosing the Image Files
	Using the blobload Utility

	Guide to the dispcat_pic.ec File
	Lines 8 to 11
	Lines 12 to 16
	Lines 17 to 21
	Line 22
	Lines 23 to 26
	Lines 27 to 29
	Lines 30 to 33
	Lines 34 to 51
	Lines 52 to 60
	Lines 61 to 74
	Lines 75 to 81
	Lines 82 to 88
	Lines 89 to 95
	Lines 96 to 104
	Lines 105 to 110
	Lines 111 to 113
	Lines 114 to 122
	Lines 123 to 130
	Line 131 to 133
	Lines 134 and 135
	Lines 136 and 145
	Line 146 to 153

	Guide to the prdesc.c File
	Lines 1 to 20

	Guide to the inpfuncs.c File
	Lines 1 to 7
	Lines 8 to 32
	Lines 33 to 45

	Chapter 8. Working with smart large objects
	Data structures for Smart Large Objects
	Declaring a Host Variable
	The LO-specification structure
	The ifx_lo_create_spec_t structure
	ESQL/C functions that use the LO-specification structure
	Obtain storage characteristics
	Deallocating the LO-Specification Structure

	The LO-Pointer Structure
	Storing a Smart Large Object
	The ifx_lo_t Structure
	ESQL/C functions that use the LO-pointer structure

	The LO file descriptor
	ESQL/C library functions that use an LO file descriptor

	Creating a Smart Large Object
	Accessing a Smart Large Object
	Selecting a Smart Large Object
	Opening a Smart Large Object
	Access Modes
	Smart-Large-Object Locks
	Duration of an Open on a Smart Large Object

	Deleting a Smart Large Object
	Modifying a Smart Large Object
	Reading Data From a Smart Large Object
	Writing Data to a Smart Large Object

	Closing a Smart Large Object

	Obtaining the Status of a Smart Large Object
	Obtaining a Valid LO-Pointer Structure
	Allocating and Accessing an LO-Status Structure
	Allocating an LO-Status Structure
	Accessing the LO-Status Structure

	Deallocating the LO-Status Structure

	Altering a Smart-Large-Object Column
	Migrating Simple Large Objects
	Reading and Writing Smart Large Objects on an Optical Disc (UNIX)
	The ESQL/C API for Smart Large Objects

	Chapter 9. Working with complex data types
	Accessing a collection
	Accessing a Collection Derived Table
	Advantage of a Collection Derived Table
	Restrictions on a Collection Derived Table

	Declaring Collection Variables
	Typed and Untyped Collection Variables
	Client Collections

	Managing Memory for Collections
	Operating on a Collection Variable
	Using the Collection-Derived Table Clause on Collections
	Initializing a Collection Variable
	Inserting into a Collection Variable
	Selecting from a Collection Variable
	Updating a Collection Variable
	Specifying Element Values
	Deleting Elements from a Collection Variable
	Accessing a Nested Collection

	Operating on a Collection Column
	Selecting from a Collection Column
	Inserting into and Updating a Collection Column

	Accessing Row Types
	Declaring Row Variables
	Typed and Untyped Row Variables
	Using Named Row Types
	Client-Side Rows

	Managing Memory for Rows
	Operating on a Row Variable
	Using the Collection-Derived Table Clause on Row Types
	Initializing a Row Variable
	Inserting into a Row Variable
	Selecting from a Row Variable
	Updating a Row Variable
	Deleting from a Row Variable
	Specifying Field Names
	Specifying Field Values

	Accessing a Typed Table
	Operating on a Row-Type Column
	Selecting from a Row-Type Column
	Inserting into and Updating Row-Type Columns
	Deleting an Entire Row Type

	Chapter 10. Working with opaque data types
	The SQL opaque Data Type
	Accessing the External Format of an Opaque Type
	Declaring lvarchar Host Variables
	An lvarchar Host Variable of a Fixed Size
	The lvarchar Pointer Host Variable
	The Opaque Type Name

	Using lvarchar Host Variables
	Using Fixed-Size lvarchar Host Variables
	Using lvarchar Pointer Variables

	Accessing the Internal Format of an Opaque Type
	Accessing a Fixed-Length Opaque Type
	Declaring fixed binary Host Variables
	Using fixed binary Host Variables

	Accessing a Varying-Length Opaque Type
	Declaring var binary Host Variables
	Using var binary Host Variables

	The lvarchar pointer and var binary library functions
	Accessing Predefined Opaque Data Types

	Part 2. Database server communication
	Chapter 11. Exception handling
	Obtain diagnostic information after an SQL statement
	Types of Diagnostic Information
	Types of Database Exceptions
	Descriptive Information

	Types of Status Variables

	Exception Handling with SQLSTATE
	Using GET DIAGNOSTICS
	Statement Information
	Exception Information

	Using the SQLSTATE Variable
	Class and Subclass Codes
	List of SQLSTATE Class Codes

	Checking for Exceptions with SQLSTATE
	Success in SQLSTATE
	NOT FOUND in SQLSTATE
	Warnings in SQLSTATE
	Runtime Errors in SQLSTATE
	Multiple Exceptions

	Exception Handling with the sqlca Structure
	Fields of the sqlca structure
	Using the SQLCODE Variable
	SQLCODE in Pure C Modules
	SQLCODE and the exit() Call
	SQLCODE After a DESCRIBE Statement

	Checking for Exceptions with sqlca
	Success in sqlca
	NOT FOUND in SQLCODE
	Warnings in sqlca.sqlwarn
	Runtime Errors in SQLCODE

	Displaying Error Text (Windows)

	Choosing an Exception-Handling Strategy
	Checking After Each SQL Statement
	The WHENEVER Statement

	Library Functions for Retrieving Error Messages
	Displaying Error Text in a Windows Environment

	A Program That Uses Exception Handling
	Compiling the Program
	Guide to the getdiag.ec File
	Line 4
	Lines 12 and 13
	Line 15
	Lines 17, 23, 25, and 33
	Lines 35 and 37
	Line 41

	Guide to the exp_chk.ec File
	Lines 1 to 4
	Line 5
	Lines 6 to 31
	Lines 32 to 80
	Lines 81 to 87
	Lines 88 to 94
	Lines 95 to 117
	Lines 118 to 144
	Lines 145 to 168
	Lines 169 to 213

	Chapter 12. Working with the database server
	The client-server architecture of ESQL/C applications
	The Client-Server Connection
	Sources of Connection information about a UNIX Operating System
	Accessing the sqlhosts File
	Specifying the Default Database Server

	Sources of connection information in a Windows environment
	Setting Environment Variables for Connection in a Windows Environment
	The sqlhosts information in a Windows environment
	Using a Central Registry
	Connection Authentication Functionality in a Windows Environment

	Connecting to a Database Server
	Establishing a Connection
	Establishing an Explicit Connection in a Windows Environment
	Using Password Encryption
	Using Pluggable Authentication Modules (PAM)
	Using LDAP Authentication
	Using Multiplexed Connections

	Identifying the Database Server
	A Specific Database Server
	The Default Database Server

	Interacting with the Database Server
	Determining Features of the Database Server
	Switching Between Multiple Database Connections
	Making a Connection Current®
	Handling Transactions

	Identifying an Explicit Connection
	Obtaining Available Databases
	Checking the Status of the Database Server
	Detaching from a Connection
	Interrupting an SQL Request
	Interruptible SQL Statements
	Allowing a User to Interrupt
	Setting Up a Timeout Interval

	Error Checking During Data Transfer
	Terminating a connection

	Optimized Message Transfers
	Restrictions on Optimized Message Transfers
	Enabling Optimized Message Transfers
	Setting the OPTMSG Environment Variable
	Setting the OptMsg Global Variable

	Error Handling with Optimized Message Transfers

	Using Database Server Control Functions
	The Timeout Program
	Compiling the Program
	Guide to the timeout.ec File
	Lines 4 to 9
	Lines 10 to 20
	Lines 24 and 25
	Lines 29 to 33
	Lines 43 to 50
	Line 51
	Lines 53 to 67
	Lines 68 to 72
	Lines 73 to 83
	Lines 84 to 97
	Lines 98 to 101
	Lines 108 to 120
	Lines 121 to 132
	Line 133
	Lines 134 to 154
	Lines 155 to 182
	Lines 185 to 187
	Lines 190 to 199
	Lines 199 to 249
	Lines 199 to 249 (continued)
	Lines 251 to 261
	Lines 262 to 281
	Lines 282 to 287
	Lines 288 to 292
	Lines 293 to 297
	Lines 298 to 307
	Lines 300 to 317
	Lines 320 to 329
	Lines 330 to 336
	Lines 337 to 347
	Lines 348 to 355

	Example Output
	Lines 3 to 17
	Lines 18 to 19
	Line 20
	Lines 21 to 30
	Line 31
	Line 32
	Lines 36 to 41
	Lines 45 to 52
	Lines 54 and 55

	Using ESQL/C Connection Library Functions in a Windows Environment

	Chapter 13. Using Informix libraries
	Choosing a version of the Informix general libraries
	The Informix general libraries
	The esql command
	Link static Informix general libraries
	Link static Informix general libraries into an ESQL/C module

	Link shared Informix general libraries
	Symbolic names of linked shared libraries (UNIX)

	Choosing Between Shared and Static Library Versions

	Compatibility of Preexisting ESQL/C Applications with Current Library Versions
	Using the ifx_getversion Utility (UNIX)
	Checking the API Version of a Library

	Create thread-safe ESQL/C applications
	Characteristics of thread-safe ESQL/C code
	Programming a Thread-Safe ESQL/C Application
	Concurrent active connections
	Connections across threads
	The DISCONNECT ALL Statement
	Prepared Statements Across Threads
	Cursors Across Threads
	Environment Variables Across Threads
	Message File Descriptors
	Decimal Functions
	DCE Restrictions (UNIX)

	Linking Thread-Safe Libraries
	Linking Thread-Safe Informix General Libraries to an ESQL/C Module on a UNIX Operating System
	Defining Thread-Safe Variables (UNIX)
	Linking Shared or Static Versions
	Linking Thread-Safe Informix General Libraries to an ESQL/C Module in a Windows Environment

	Using ESQL/C Thread-Safe Decimal Functions
	Context Threaded Optimization
	A Sample Thread-Safe Program
	Source Listing
	Output

	Creating a Dynamic Thread Library on UNIX Operating Systems
	Data Types
	Registering the Dynamic Thread Functions
	Setting the $THREADLIB Environment Variable
	Creating the Shared Library
	Compiling with the -thread and -l Preprocessor Options

	Part 3. Dynamic SQL
	Chapter 14. Using Dynamic SQL
	Using Dynamic SQL
	Assembling and Preparing the SQL Statement
	Assembling the Statement
	Preparing Statements That Have Collection Variables
	Checking the Prepared Statement

	Executing the SQL Statement
	Freeing Resources

	Using a Database Cursor
	Receiving More Than One Row
	A Select Cursor
	A Function Cursor

	Sending More Than One Row
	Naming the Cursor
	Optimizing Cursor Execution
	Sizing the Cursor Buffer
	Automatically Freeing a Cursor
	Deferring Execution of the PREPARE Statement

	The collect.ec Program
	Optimizing OPEN, FETCH, and CLOSE
	Restrictions on OPTOFC
	Enabling the OPTOFC Feature

	Using OPTOFC and Deferred-PREPARE Together
	SQL Statements That Are Known at Compile Time
	Executing Non-SELECT Statements
	Using PREPARE and EXECUTE
	Using EXECUTE IMMEDIATE

	Executing SELECT Statements
	Using PREPARE and EXECUTE INTO
	Using a Select Cursor

	The lvarptr.ec Program
	Executing User-Defined Routines in IBM Informix
	A User-Defined Procedure
	A User-Defined Function

	Execute statements with input parameters
	Using an EXECUTE USING Statement
	Using an OPEN USING Statement
	Lines 9 and 10
	Lines 14 to 21
	Line 22
	Lines 23 to 27
	Line 28
	Lines 29 to 38
	Lines 39 and 40
	Line 41
	Lines 42 and 43

	SQL Statements That Are Not Known at Compile Time

	Chapter 15. Determining SQL statements
	Using Dynamic-Management Structure
	A System-Descriptor Area
	Fixed-Length Portion
	An Item Descriptor

	An sqlda Structure
	Fixed-Length Portion
	An sqlvar_struct Structure
	Descriptive Information

	Using the DESCRIBE Statement
	Determining the Statement Type
	Determining the Data Type of a Column
	Informix-Specific SQL Data Types
	X/Open SQL Data Types
	Constants for ESQL/C Data Types

	Determining Input Parameters
	Checking for a WHERE Clause

	Determining Statement Information at Runtime
	Handling an Unknown Select List
	Handling an Unknown Column List
	Determining Unknown Input Parameters
	Determining Return Values Dynamically
	Handling Statements That Contain User-Defined Data Types
	SQL Statements with Opaque-Type Columns
	SQL Statements with Distinct-Type Columns

	Using a Fetch Array
	Allocating Memory for the Fetch Arrays
	Obtaining Values from Fetch Arrays
	Freeing Memory for a Fetch Array

	Chapter 16. Using a system-descriptor area
	Managing a System-Descriptor Area
	Allocating Memory for a System-Descriptor Area
	Initializing the System-Descriptor Area
	The DESCRIBE Statement and Input Parameters
	The DESCRIBE Statement and Memory Allocation

	Assigning and Obtaining Values from a System-Descriptor Area
	Using the SET DESCRIPTOR Statement
	Using the GET DESCRIPTOR Statement

	Specifying Input Parameter Values
	Putting Column Values into a System-Descriptor Area
	Freeing Memory Allocated to a System-Descriptor Area

	Using a System-Descriptor Area
	Handling an Unknown Select List
	Executing a SELECT That Returns Multiple Rows
	Lines 5 to 11
	Lines 14 to 22
	Line 23
	Line 24
	Line 25
	Line 26
	Lines 27 and 28
	Lines 29 to 31
	Lines 33 to 46
	Lines 47 and 48
	Line 49
	Lines 50 to 54
	Lines 58 to 77

	Executing a Singleton SELECT

	Handling Unknown Return Values
	Executing a noncursor function
	Lines 19 to 25
	Line 26
	Line 27
	Lines 28 to 33
	Lines 34 to 40
	Lines 41 to 49
	Lines 50 and 51

	Executing a Cursor Function

	Handling an unknown column list
	Executing a Simple Insert
	Lines 5 to 10
	Lines 15 to 17
	Lines 18 and 19
	Line 20 and 21
	Lines 22 and 23
	Lines 24 and 25
	Lines 26 to 29
	Lines 30 to 36
	Lines 37 and 38
	Lines 39 to 44
	Lines 45 to 48
	Lines 55 to 60

	Executing an INSERT That Is Associated with a Cursor

	Handling a Parameterized SELECT Statement
	Executing a parameterized SELECT that returns multiple rows
	Lines 8 to 14
	Lines 17 to 25
	Line 26
	Line 27
	Lines 28 to 38
	Lines 39 to 43
	Lines 44 and 45
	Lines 47 to 49
	Lines 50 and 51
	Lines 52 to 59
	Lines 60 to 70
	Line 73
	Lines 74 to 77

	Executing a Parameterized Singleton SELECT

	Handling a parameterized user-defined routine
	Executing a parameterized function
	Executing a parameterized procedure

	Handling a Parameterized UPDATE or DELETE Statement
	The dyn_sql Program
	Compiling the Program
	Guide to the dyn_sql.ec File
	Lines 7 to 13
	Lines 14 to 17
	Line 18
	Lines 19 to 23
	Lines 24 to 27
	Lines 28 to 51
	Lines 52 to 67
	Lines 68 to 75
	Lines 76 to 79
	Lines 80 to 93
	Lines 94 to 98
	Lines 99 to 102
	Lines 114 to 137
	Lines 138 to 149
	Line 152
	Lines 153 to 156
	Lines 157 to 167
	Lines 168 to 380
	Lines 381 to 387
	Lines 388 to 397
	Lines 398 to 405

	Chapter 17. Using an sqlda structure
	Managing an sqlda structure
	Defining an sqlda Structure
	Allocating Memory for the sqlda Structure
	Initializing the sqlda Structure
	Allocating Memory for Column Data
	Assigning and Obtaining Values from an sqlda Structure
	Assigning Values
	Obtaining Values

	Specifying Input Parameter Values
	Putting Column Values into an sqlda Structure
	Freeing Memory Allocated to an sqlda Structure

	Using an sqlda Structure
	Handling an Unknown Select List
	Executing a SELECT That Returns Multiple Rows
	Line 2
	Lines 6 to 13
	Lines 16 to 24
	Line 25
	Line 26
	Lines 27 and 28
	Lines 29 to 32
	Lines 33 to 48
	Line 49
	Lines 50 to 60
	Lines 61 and 62
	Line 63
	Lines 64 and 65
	Lines 66 to 71
	Lines 75 to 81

	Executing a Singleton SELECT

	Handling Unknown Return Values
	Executing a Noncursor Function
	Executing a Cursor Function

	Handling an unknown column list
	Executing a Simple Insert
	Executing an INSERT That Is Associated with a Cursor

	Handling a Parameterized SELECT Statement
	Executing a Parameterized SELECT That Returns Multiple Rows
	Line 2
	Lines 9 to 14
	Lines 17 to 20
	Line 21
	Lines 22 and 23
	Line 24
	Lines 25 and 26
	Line 27
	Lines 28
	Lines 29 to 31
	Lines 32 to 36
	Lines 37 to 59
	Lines 60 to 62
	Lines 63 and 64
	Lines 69 to 77
	Lines 78 to 84
	Lines 85 to 102

	Executing a Parameterized Singleton SELECT

	Handling a Parameterized User-Defined Routine
	Executing a Parameterized Function
	Executing a Parameterized Procedure

	Handling a Parameterized UPDATE or DELETE Statement

	Appendix A. The ESQL/C example programs
	Appendix B. ESQL/C function library
	IBM Informix ESQL/C library functions
	The bigintcvasc() function
	The bigintcvdbl() function
	The bigintcvdec() function
	The bigintcvflt() function
	The bigintcvifx_int8() function
	The bigintcvint2() function
	The bigintcvint4() function
	The biginttoasc() function
	The biginttodbl() function
	The biginttodec() function
	The biginttoflt() function
	The biginttoifx_int8() function
	The biginttoint2() function
	The biginttoint4() function
	The bycmpr() function
	The bycopy() function
	The byfill() function
	The byleng() fucntion
	The decadd() function
	The deccmp() function
	The deccopy() function
	The deccvasc() function
	The deccvdbl() function
	The deccvflt() function
	The deccvint() function
	The deccvlong() function
	The decdiv() function
	The dececvt() and decfcvt() functions
	The decmul() function
	The decround() function
	The decsub() function
	The dectoasc() function
	The dectodbl() function
	The dectoint() function
	The dectolong() function
	The dectrunc() function
	The dtaddinv() function
	The dtcurrent() function
	The dtcvasc() function
	The dtcvfmtasc() function
	The dtextend() function
	The dtsub() function
	The dtsubinv() function
	The dttoasc() function
	The dttofmtasc() function
	The GetConnect() function (Windows)
	The ifx_cl_card() function
	The ifx_dececvt() and ifx_decfcvt() function
	The ifx_defmtdate() function
	The ifx_dtcvasc() function
	The ifx_dtcvfmtasc() function
	The ifx_dttofmtasc() function
	The ifx_getenv() function
	The ifx_getcur_conn_name() function
	The ifx_getserial8() function
	The ifx_int8add() function
	The ifx_int8cmp() function
	The ifx_int8copy() function
	The ifx_int8cvasc() function
	The ifx_int8cvdbl() function
	The ifx_int8cvdec() function
	The ifx_int8cvflt() function
	The ifx_int8cvint() function
	The ifx_int8cvlong() function
	The ifx_int8div() function
	The ifx_int8mul() function
	The ifx_int8sub() function
	The ifx_int8toasc() function
	The ifx_int8todbl() function
	The ifx_int8todec() function
	The ifx_int8toflt() function
	The ifx_int8toint() function
	The ifx_int8tolong() function
	The ifx_lo_alter() function
	The ifx_lo_close() function
	The ifx_lo_col_info() function
	The ifx_lo_copy_to_file() function
	The ifx_lo_copy_to_lo() function
	The ifx_lo_create() function
	The ifx_lo_def_create_spec() function
	The ifx_lo_filename() function
	The ifx_lo_from_buffer() function
	The ifx_lo_lock() function
	The ifx_lo_open() function
	The ifx_lo_read() function
	The ifx_lo_readwithseek() function
	The ifx_lo_release() function
	The ifx_lo_seek() function
	The ifx_lo_spec_free() function
	The ifx_lo_specget_def_open_flags() function
	The ifx_lo_specget_estbytes() function
	The ifx_lo_specget_extsz() function
	The ifx_lo_specget_flags() function
	The ifx_lo_specget_maxbytes() function
	The ifx_lo_specget_sbspace() function
	The ifx_lo_specset_def_open_flags() function
	The ifx_lo_specset_estbytes() function
	The ifx_lo_specset_extsz() function
	The ifx_lo_specset_flags() function
	The ifx_lo_specset_maxbytes() function
	The ifx_lo_specset_sbspace() function
	The ifx_lo_stat() function
	The ifx_lo_stat_atime() function
	The ifx_lo_stat_cspec() function
	The ifx_lo_stat_ctime() function
	The ifx_lo_stat_free() function
	The ifx_lo_stat_mtime_sec() function
	The ifx_lo_stat_refcnt() function
	The ifx_lo_stat_size() function
	The ifx_lo_tell() function
	The ifx_lo_to_buffer() function
	The ifx_lo_truncate() function
	The ifx_lo_unlock() function
	The ifx_lo_write() function
	The ifx_lo_writewithseek() function
	The ifx_lvar_alloc() function
	The ifx_putenv() function
	The ifx_strdate() function
	The ifx_var_alloc() function
	The ifx_var_dealloc() function
	The ifx_var_flag() function
	The ifx_var_freevar() function
	The ifx_var_getdata() function
	The ifx_var_getlen() function
	The ifx_var_isnull() function
	The ifx_var_setdata() function
	The ifx_var_setlen() function
	The ifx_var_setnull() function
	The incvasc() function
	The incvfmtasc() function
	The intoasc() function
	The intofmtasc() function
	The invdivdbl() function
	The invdivinv() function
	The invextend() function
	The invmuldbl() function
	The ldchar() function
	The rdatestr() function
	The rdayofweek() function
	The rdefmtdate() function
	The rdownshift() function
	The ReleaseConnect() function (Windows)
	The rfmtdate() function
	The rfmtdec() function
	The rfmtdouble() function
	The rfmtlong() function
	The rgetlmsg() function
	The rgetmsg() function
	The risnull() function
	The rjulmdy() function
	The rleapyear() function
	The rmdyjul() function
	The rsetnull() function
	The rstod() function
	The rstoi() function
	The rstol() function
	The rstrdate() function
	The rtoday() function
	The rtypalign() function
	The rtypmsize() function
	The rtypname() function
	The rtypwidth() function
	The rupshift() function
	The SetConnect() function (Windows)
	The sqgetdbs() function
	The sqlbreak() function
	The sqlbreakcallback() function
	The sqldetach() function
	The sqldone() function
	The sqlexit() function
	The SqlFreeMem() function
	The sqlsignal() function
	The sqlstart() function
	The stcat() function
	The stchar() function
	The stcmpr() function
	The stcopy() function
	The stleng() function

	Appendix C. Examples for Smart-Large-Object Functions
	Prerequisites
	The create_clob.ec program
	Storage characteristics for the example

	The get_lo_info.ec program
	The upd_lo_descr.ec program

	Appendix D. Accessibility
	Accessibility features for IBM Informix
	Accessibility Features
	Keyboard Navigation
	Related Accessibility Information
	IBM and Accessibility

	Dotted Decimal Syntax Diagrams

	Notices
	Trademarks

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

