Informix Product Family
Informix
Version 11.50

IBM Informix
Database Extensions User's Guide

<||I

Informix Product Family
Informix
Version 11.50

IBM Informix
Database Extensions User's Guide

..ll

Note
FBefore using this information and the product it supports, read the information in|[“Notices” on page B-1)

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this publication should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2005, 2011.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Introduction. ix
In this introduction . . ix
About this publication . . ix
Types of users . . ix
What's new in Database Extensmns for IBM Informlx Versmn 11 50 . . ix
Example code conventions . xi
Additional documentation . xii
Compliance with industry standards . xii
Syntax diagrams . . . xiii
How to read a Command lme syntax dlagram . xiv
Keywords and punctuation . . XV
Identifiers and names . . XV
How to provide documentation feedback . XV
Part 1. Large object management
Chapter 1. About Large Object Locator .11
Large object limitations . . .12
Registering Large Object Locator . .12
Chapter 2. Large Object Locator data types . 241
The 11d_locator data type . 2-1
The 11d_lob data type . 2-2
Chapter 3. Large Object Locator functions . . 3-1
Interfaces . .31
API library .31
ESQL/C library. . 3-1
SQL interface . .32
Working with large objects . 3-2
The 11d_close() function . 3-3
The 11d_copy() function . . 33
The 11d_create() function . .35
The 11d_delete() function. 3-7
The 11d_open() function . . .38
The 11d_read() function . . 3-10
The 11d_seek() function . . 3-10
The 11d_tell() function . 3-12
The 11d_write() function. . 3-13
Client file support . . . 3-14
The 11d_create_client() functlon . . 3-14
The 11d_delete_client() function . . 3-15
The 11d_from_client() function . 3-16
The 11d_open_client() function . 317
The 11d_to_client() function . 3-19
Error utility functions . . 3-20
The 11d_error_raise() functlon . 3-20
The 11d_sqlstate() function . . 321
Smart large object functions . 321
The LOCopy function . 321
The LOToFile function . . 322
The LLD_LobType function . 3-23
Chapter 4. Large Object Locator example code . . 41
© Copyright IBM Corp. 2005, 2011 iii

The SQL interface . . 4-1
The 11d_lob type . 4-1
The 11d_locator type . 4-3

The API interface . . . 4-6
Create the Ild copy_subset functlon . . 4-7
The 1ld_copy_subset routine . 49

Chapter 5. Large Object Locator error handlmg . 5-1

Large Object Locator errors . e . 5-1

Error handling exceptions . 5-1

Error codes . . 52

Part 2. MQ Messaging

Chapter 6. About MQ messaging . 6-1

Prepare to use MQ messaging . . 6-1
Install and configure WMQ . . . 6-1
Configure your database server for MQ messagmg . . 62
Register the MQ messaging extension 6-2

Verification . . 6-2
Insert data into a queue . .62
Read an entry from a queue . 6-3
Receive an entry from a queue. 6-3
Publish and subscribe to a queue . . 63

Chapter 7. MQ messaglng tables . .71

Schema mapping . . 7-1

General table behavior . 7-1

Create and bind a table . . 7-1

Use INSERT and SELECT .72

Retrieve the queue element . 7-2

Special considerations. 7-2

Table errors . 7-3

Chapter 8. MQ messaging functions. . 8-1

Service and policy tables. .81
The "informix".mqiservice table . 82
The "informix".mgipubsub table 8-3
The "informix".mqipolicy table. 8-3

MQCreateVtiRead() function . 87

MQCreateVtiReceive() function . .89

MQPublish() function . 811

MQPublishClob() function . . 8-14

MQRead() function . . 8-18

MQReadClob() function . 821

MOQReceive() function . 823

MQReceiveClob() function. . 825

MQSend() function . . 8-28

MQSendClob() function. . 8-30

MQSubscribe() function. . 8-32

MQTrace() function . . 835

MQUnsubscribe() function. . 8-36

MQVersion() function . 8-38

Chapter 9. MQ messaging error handling . 9-1

Part 3. Binary data types

iV IBM Informix Database Extensions User's Guide

Chapter 10. Binary data types overview. . 10-1
Register the Binary DataBlade Module. . 10-1
Unregister the Binary DataBlade Module . . 10-1
Chapter 11. Store and index bmary data . 111
Binary data types. . 11-1
The binaryvar data type . 11-1
The binary18 data type . . L 11-1
ASCII representation of binary data types . 11-1
Binary data type examples. . . 11-1
Insert binary data. . 11-2
Index binary data. L 11-2
Chapter 12. Binary data type functions . . 121
Bitwise operation functions . 12-1
The bit_and() function . . 12-1
The bit_complement() function L1241
The bit_or() function. L1222
The bit_xor() function . 12-3
Support functions for binary data types . 12-3
The bdtrelease() function . . 12-3
The bdttrace() function . . 124
The LENGTHY() function . 124
The OCTET_LENGTHY() functlon . 12-5
Part 4. Basic Text Search
Chapter 13. Preparing for basic text searching. . 13-1
Basic text search requirements and restrictions . . 13-1
Creating BTS virtual processors . . 13-2
Creating a default sbspace. . 13-2
Creating a space for the bts index . 13-3
Creating a space for temporary data . . . 134
Register the Basic Text Search DataBlade module . . 13-4
Creating a bts index . . . 13-4
bts access method syntax . . 13-5
Tracking queries on bts indexes . . 13-7
Chapter 14. Basic text search queries . 1441
Basic Text Search query syntax . 14-1
Basic Text Search query terms . 14-2
Basic Text Search fields . . 14-2
Basic Text Search query term modlflers . 143
Wildcard searches . 14-3
Fuzzy searches . 144
Proximity searches . 14-5
Range searches . 14-5
Boost a term . 14-6
Boolean operators . 14-6
AND operator . . 14-7
OR operator . 14-7
NOT operator . . 14-7
Group words and phrases . 148
Basic Text Search stopwords . . 14-8
Stopwords index parameter .. 148
Maximum number of query results . 14-10
Canonical mapping. . . 14-10
The canonical_maps mdex parameter. . 14-11
Mapping single characters . 14-12

Contents V

Specifying multiple original characters

. 14-13

Specify multiple characters in mapping strings . 14-13
Preventing indexing of characters . . 14-13
Managing multiple spellings. . 14-13
Search for special characters . . 14-14
Chapter 15. Basic Text Search XML index parameters. . 15-1
Overview of Basic Text Search XML index parameters . . 15-1
Basic Text Search XML index parameters syntax . 152
The xmltags index parameter . . . 152
Example: Index specific XML tags . . 15-4
The all_xmltags index parameter . 154
Example: Index all XML tags . . 15-5
The all_xmlattrs index parameter . 15-5
Examples: Index XML attributes . . 15-6
The xmlpath_processing index parameter. . 157
Full paths and relative paths in path processmg . 15-7
Example: Index XML paths o . 15-8
The include_contents index parameter . . 159
Example: Index XML tag values and XML tag names . . . 159
The strip_xmltags index parameter . . 15-10
Example: Index XML tag values in a separate freld . . 15-10
The include_namespaces index parameter . . 15-10
Example: Index namespaces in XML data . 15-11
The include_subtag_text index parameter . 15-12
Example: Index subtags in XML data . . 15-12
Chapter 16. Basic text search analyzers . 16-1
Standard analyzer . 16-1
Chapter 17. Basic text search functions. . 171
The bts_index_compact() function . 17-1
The bts_index_fields() function . . 171
The bts_release() function . . 17-3
The bts_tracefile() function. . 17-3
The bts_tracelevel() function . . 174
Chapter 18. Basic text search performance . 18-1
Optimize the bts index . . . 181
Delete rows from the bts index manually when usmg deferred mode . 181
Delete rows from the bts index automatically with immediate mode. . 18-2
Disk space for the bts index . . 182
Transactions with Basic Text Search 182
Adding BTS virtual processors to run multiple querles sunultaneously . 182
Improve performance with configuration parameters . . 18-3
Chapter 19. Basic text search error codes. . 1941
Part 5. Hierarchical data type
Chapter 20. The node data type for querying hierarchical data . . 20-1
Upgrading from version 1.0 of the node data type. .o . 20-1
Troubleshooting the node data type. . . 20-2
Chapter 21. Node data type functions. . 21-1
Ancestors() function . . 21-1
Compare() function . . 21-1
Depth() function . . 212
Equal() function . . 212

Vi IBM Informix Database Extensions User's Guide

GetMember() function . . 21-3
GetParent() function . . 21-3
Graft() function . . 214
GreaterThan() function . . . 214
GreaterThanOrEqual() function . . 21-5
Increment() function . . . 21-5
IsAncestor() function . 21-6
IsChild() function. . 21-7
IsDescendant() function. . 21-8
IsParent() function . 21-8
Length() Node function. . 219
LessThan() function 219
LessThanOrEqual() function . . 21-10
NewLevel() function . 21-10
NodeRelease() function . 21-11
NotEqual() function. . 21-11
Part 6. Informix web feature service for Geospatial Data
Chapter 22. Informix web feature service administration . 221
The WFSDriver CGI program. . 22-1
WESVP virtual processor class . 22-1
Configuring the WFSDriver program . . 22-1
WES transactions 2222
Implement security in WFS . 222
Chapter 23. WFS reference . 23-1
DescribeFeatureType element . . 23-1
GetCapabilities element. . 23-1
GetFeature operation . 232
WES transactions . . 23-3
Insert element . . 234
Update element . 23-5
Delete element. . 23-6
Native element . 23-7
WEFS transaction response document . 23-7
WEFESConfig program. . 23-8
WEFSExplode UDR . 23-8
WFSpwecerypt program . . 239
WFSRegister UDR . 239
WESSetup program . . 239
Part 7. Appendixes
Appendix. Accessibility . . . A1
Accessibility features for IBM Informix products . A-1
Accessibility features . . A-1
Keyboard navigation . . . A-1
Related accessibility 1nf0rmat10n . A-1
IBM and accessibility. . A-1
Dotted decimal syntax diagrams . LAl
Notices . . B-1
Trademarks . . B3
Index . . X-1
Contents ~ Vii

viili IBM Informix Database Extensions User's Guide

Introduction

In this introduction

This introduction introduces the IBM Informix Database Extensions User's Guide.
Read this chapter for an overview of the information provided in this publication
and for an understanding of the conventions used throughout.

About this publication

This publication explains how to use the following database extensions that come
with IBM® Informix®:

* Large object locator, a set of data types and functions for large objects
management that can be used by other DataBlade® modules that create or store
large-object data.

* MQ messaging, which allows IBM Informix database applications to
communicate with other MQSeries® applications with MQ messaging.

* Binary data types that allow you to store binary-encoded strings, which can be
indexed for quick retrieval.

* Basic text search, which allows you to search words and phrases stored in a
column of a table.

* Node data type, which along with its supporting functions, gives you the ability
to represent hierarchical data within the relational database.

¢ IBM Informix web feature service for Geospatial data, which lets you add an
Open Geospatial Consortium (OGC) web feature service as a presentation layer
for spatial and geodetic data types.

Types of users

This publication is for application developers and database administrators who
want to use the built-in extensions provided in IBM Informix for storing, querying,
and manipulating data.

What's new in Database Extensions for IBM Informix Version 11.50

This publication includes information about new features and changes in existing
functionality.

The following changes and enhancements are relevant to this publication. For a

comprehensive list of all new features for this release, see the IBM Informix Getting
Started Guide.

© Copyright IBM Corp. 2005, 2011 ix

Table 1. What's new in the IBM Informix Database Extensions User's Guide for Version 11.50.xC9

Overview Reference

Increase the maximum number of results for basic text ["Maximum number of query results” on page 14-10)|
search queries

You can increase the maximum number of query results for
a basic text search query by including the
max_clause_count index parameter in the bts index
definition. The default number of query results is 1024.

Table 2. What's new in the IBM Informix Database Extensions User's Guide for Version 11.50.xC6

Overview Reference

Process Multiple Basic Text Search Queries Simultaneously [*Adding BTS virtual processors to run multiple queries|
simultaneously” on page 18-2|

If basic text search queries are slow because multiple users
are running queries at the same time, you can add more
BTS virtual processors so that queries run simultaneously,
each in its own virtual processor. Previously, you could only
create one BTS virtual processor and queries ran serially.

Table 3. What's new in the IBM Informix Database Extensions User's Guide for Version 11.50.xC4

Overview Reference

Control the Results of a Fuzzy Search with the Basic Text [“Fuzzy searches” on page 14-4
Search DataBlade module

You can now specify the degree of similarity of search
results in fuzzy searches when using the Basic Text Search
DataBlade module. Specify a number between 0 and 1,
where a higher value results in a higher degree of similarity.
To limit results, specify a higher number. To maximize
results, specify a lower number. The default degree of
similarity is 0.5.

Map Characters for Indexing with the Basic Text Search [‘Canonical mapping” on page 14-10|
DataBlade module

You can now map characters in your data to other
characters during indexing with the Basic Text Search
DataBlade module. For example, you can specify that letters
with diacritical marks are indexed as the same letters
without marks. You can also standardize inconsistent
prefixes or delete character strings from indexed text. To use
character maps, include the canonical_maps parameter
when you create your bts index.

Default Boolean Operator in Basic Text Search Queries [‘Boolean operators” on page 14-6|

You can now change the default Boolean operator between
search terms in Basic Text Search queries from OR to AND
by using the query_default_operator parameter when you
create a bts index. The default operator is represented by a
blank space between terms. Many popular end-user search
engines use AND as the default operator between search
terms, where end-users expect the search results to contain
all their search terms.

X IBM Informix Database Extensions User's Guide

Table 3. What's new in the IBM Informix Database Extensions User's Guide for Version 11.50.xC4 (continued)

Overview Reference

Storage for Temporary Basic Text Search Files [‘Creating a space for temporary data” on page 13-4|

You can now specify that temporary files used by the Basic
Text Search DataBlade module are stored in a separate
sbspace from the one used to store the bts index. Separating
temporary files from the bts index might improve query
performance.

Track Basic Text Search Query Trends [‘Tracking queries on bts indexes” on page 13-7]

You can now track what queries are run against your bts
index by including the query_log parameter when you
create a bts index. You can use query trends information to
provide hints to end-users on popular queries or work on
optimizing the most popular queries.

Fragment bts Indexes by Expressions [“bts access method syntax” on page 13-5

You can now fragment bts indexes by expressions into
multiple sbspaces instead of a single sbspace.

Table 4. What's New in the IBM Informix Database Extensions User's Guide for Version 11.50.xC3

Overview Reference

Basic Text Search DataBlade module Supports [‘Creating a space for the bts index” on page 13-3)
High-Availability Clusters

You can now use the Basic Text Search DataBlade module to
perform searches on high-availability cluster servers by
creating indexes in sbspaces. Previously, the Basic Text
Search DataBlade module only supported the creation of
indexes in extspaces, and thus could not participate in any
queries on high-availability secondary servers and in
backup and restore operations.

Querying XML Attributes with the Basic Text DataBlade |”The all_xmlattrs index parameter” on page 15-5|
module

The Basic Text Search DataBlade module now supports
searches on XML attributes in a document repository. The
new all_xmlattrs parameter enables searches on all
attributes that are contained in the XML tags or paths in a
column that contains an XML document.

Table 5. What's New in the IBM Informix Database Extensions User's Guide for Version 11.50.xC1

Overview Reference
Support added for a user-defined stopword list [‘Basic Text Search stopwords” on page 14-§|
Support added for XML-structured documents Chapter 15, “Basic Text Search XML index parameters,”

on page 15-1|

Example code conventions

Examples of SQL code occur throughout this publication. Except as noted, the code

is not specific to any single IBM Informix application development tool.

Introduction

xi

If only SQL statements are listed in the example, they are not delimited by
semicolons. For instance, you might see the code in the following example:

CONNECT TO stores_demo

DELETE FROM customer
WHERE customer_num = 121

COMMIT WORK
DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules for
that product. For example, if you are using an SQL API, you must use EXEC SQL
at the start of each statement and a semicolon (or other appropriate delimiter) at
the end of the statement. If you are using DB-Access, you must delimit multiple
statements with semicolons.

Tip: Ellipsis points in a code example indicate that more code would be added in
a full application, but it is not necessary to show it to describe the concept being
discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the documentation for your product.

Additional documentation

Documentation about this release of IBM Informix products is available in various
formats.

You can access or install the product documentation from the Quick Start CD that
is shipped with Informix products. To get the most current information, see the
Informix information centers at ibm.com®. You can access the information centers
and other Informix technical information such as technotes, white papers, and IBM
Redbooks® publications online at lhttp:/ /www.ibm.com /software/data/sw-|

Compliance with industry standards

xii

IBM Informix products are compliant with various standards.

IBM Informix SQL-based products are fully compliant with SQL-92 Entry Level
(published as ANSI X3.135-1992), which is identical to ISO 9075:1992. In addition,
many features of IBM Informix database servers comply with the SQL-92
Intermediate and Full Level and X/Open SQL Common Applications Environment
(CAE) standards.

The IBM Informix Geodetic DataBlade Module supports a subset of the data types
from the Spatial Data Transfer Standard (SDTS)—Federal Information Processing
Standard 173, as referenced by the document Content Standard for Geospatial
Metadata, Federal Geographic Data Committee, June 8, 1994 (FGDC Metadata
Standard).

IBM Informix Dynamic Server (IDS) Enterprise Edition, Version 11.50 is certified
under the Common Criteria. For more information, see Common Criteria

IBM Informix Database Extensions User's Guide

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/

Certification: Requirements for IBM Informix Dynamic Server, which is available at

http:/ /www.ibm.com /e-business/linkweb /publications/servlet/pbi.wss?CTY=UY

&FNC=SRX&PBL=SC23-7690-00}

Syntax diagrams

Syntax diagrams use special components to describe the syntax for statements and

commands.

Table 6. Syntax Diagram Components

Component represented in PDF

Component represented in HTML

Meaning

Statement begins.

s >
< IR > Statement continues on next
line.
> > e Statement continues from
previous line.
1 5 < Statement ends.
SELECT——+ |- SELECT=mmmmmmmmem Required item.
e e R Optional item.
LOCAL [LOCAL------ '
ALL o ALL-mmmmmm R Required item with choice.
+--DISTINCT-=--- + Only one item must be
DISTINCT '---UNIQUE------ ' present.
—— UNIQUE ———
e e feee Optional items with choice
— FOR UPDATE i‘ +--FOR UPDATE----- + are shown below the main
L FOR READ ONLY '--FOR READ ONLY--' line, one of which you might
specify.
NEXT- eeNEXTmmmmmm e The values below the main
e e e R line are optional, one of
PRIOR +==-PRIOR=====mm- + which you might specify. If
'---PREVIOUS----- ! you do not specify an item,
—— PREVIOUS—— the value above the line is
used by default.
, [S —— Optional items. Several items
l | v are allowed; a comma must
oo R precede each repetition.
index_name +---index_name---+
table_name '---table_name---'

»—iTabIe Reference H

>>-| Table Reference |-><

Reference to a syntax
segment.

Table Reference

I view |
table

synonym ———

Table Reference

[View-------- +--|
AEEEEEE table------ +
'----synonym------ '

Syntax segment.

Introduction Xiii

http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=SC23-7690-00
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=SC23-7690-00

xiv

How to read a command-line syntax diagram

Command-line syntax diagrams use similar elements to those of other syntax
diagrams.

Some of the elements are listed in the table in|Syntax Diagrams|

Creating a no-conversion job

»»—onpladm create job—job -n— -d—device— -D—database——>

L —p—pr‘oject—|

»— -t—table >

M

>«

(1)
|_ _s_server_l |_ _T_target_l | Setting the Run Mode —

Notes:

1 See page Z-1

This diagram has a segment named “Setting the Run Mode,” which according to
the diagram footnote is on page Z-1. If this was an actual cross-reference, you
would find this segment on the first page of Appendix Z. Instead, this segment is
shown in the following segment diagram. Notice that the diagram uses segment
start and end components.

Setting the run mode:

=
I O I I I I AR |

To see how to construct a command correctly, start at the upper left of the main
diagram. Follow the diagram to the right, including the elements that you want.
The elements in this diagram are case-sensitive because they illustrate utility
syntax. Other types of syntax, such as SQL, are not case-sensitive.

The Creating a No-Conversion Job diagram illustrates the following steps:
1. Type onpladm create job and then the name of the job.
2. Optionally, type -p and then the name of the project.
3. Type the following required elements:
* -n
* -d and the name of the device
¢ -D and the name of the database
* -t and the name of the table

IBM Informix Database Extensions User's Guide

4. Optionally, you can choose one or more of the following elements and repeat
them an arbitrary number of times:

* -S and the server name
e -T and the target server name

¢ The run mode. To set the run mode, follow the Setting the Run Mode
segment diagram to type -f, optionally type d, p, or a, and then optionally
type 1 or u.

5. Follow the diagram to the terminator.

Keywords and punctuation

Keywords are words reserved for statements and all commands except
system-level commands.

When a keyword appears in a syntax diagram, it is shown in uppercase letters.
When you use a keyword in a command, you can write it in uppercase or
lowercase letters, but you must spell the keyword exactly as it appears in the
syntax diagram.

You must also use any punctuation in your statements and commands exactly as
shown in the syntax diagrams.

Identifiers and names

Variables serve as placeholders for identifiers and names in the syntax diagrams
and examples.

You can replace a variable with an arbitrary name, identifier, or literal, depending
on the context. Variables are also used to represent complex syntax elements that

are expanded in additional syntax diagrams. When a variable appears in a syntax
diagram, an example, or text, it is shown in lowercase italic.

The following syntax diagram uses variables to illustrate the general form of a
simple SELECT statement.

»>—SELECT—column_name—FROM—table_name ><

When you write a SELECT statement of this form, you replace the variables
column_name and table_name with the name of a specific column and table.

How to provide documentation feedback

You are encouraged to send your comments about IBM Informix user
documentation.

Use one of the following methods:
* Send email to|docinf@us.ibm.com|
e In the Informix information center, which is available online at
[http:/ /www.ibm.com /software/data/sw-library /| open the topic that you want

to comment on. Click the feedback link at the bottom of the page, fill out the
form, and submit your feedback.

Introduction XV

mailto://docinf@us.ibm.com
http://www.ibm.com/software/data/sw-library/

e Add comments to topics directly in the information center and read comments
that were added by other users. Share information about the product
documentation, participate in discussions with other users, rate topics, and
more!

Feedback from all methods is monitored by the team that maintains the user
documentation. The feedback methods are reserved for reporting errors and
omissions in the documentation. For immediate help with a technical problem,
contact IBM Technical Support. For instructions, see the IBM Informix Technical
Support website at jttp:/ /www.ibm.com /planetwide /|

We appreciate your suggestions.

XVl IBM Informix Database Extensions User's Guide

http://www.ibm.com/planetwide/

Part 1. Large object management

The IBM Informix Large Object Locator DataBlade Module enables you to create a
single consistent interface to large objects. It extends the concept of large objects to
include data stored outside the database.

IBM Informix stores large object data (data that exceeds a length of 255 bytes or
contains non-ASCII characters) in columns in the database. You can access this data
using standard SQL statements. The server also provides functions for copying
data between large object columns and files. See IBM Informix Guide to SQL: Syntax
and IBM Informix Guide to SQL: Tutorial for more information.

With Large Object Locator you create a reference to a large object and store the
reference as a row in the database. The object itself can reside outside the database:
for example, on a file system (or it could be a BLOB or CLOB type column in the
database). The reference identifies the type, or access protocol, of the object and
points to its storage location. For example, you could identify an object as a file
and provide a path name to it or identify it as a binary or character smart large
object stored in the database. Smart large objects are a category of large objects that
include CLOB and BLOB data types, which store text and images. Smart large
objects are stored and retrieved in pieces, and have database properties such as
crash recovery and transaction rollback.

You access a large object by passing its reference to a Large Object Locator
function. For example, to open a large object for reading or writing, you pass the
object's reference to the 1ld_open() function. This function uses the reference to
find the location of the object and to identify its type. Based on the type, it calls
the appropriate underlying function to open the object. For example, if the object is
stored on a UNIX file system, 1ld_open() calls a UNIX function to open the object.

Important: In theory, you could use Large Object Locator to reference any type of
large object in any storage location. In practice, access protocols must be built into
Large Object Locator for each type of supported object. Because support for new
types can be added at any time, be sure to read the release notes accompanying
this publication—not the publication itself—to see the types of large objects Large
Object Locator currently supports.

© Copyright IBM Corp. 2005, 2011

IBM Informix Database Extensions User's Guide

Chapter 1. About Large Object Locator

Large Object Locator is implemented through two data types and a set of functions
The Large Object Locator data types are 1ld_locator and 11d_lob.

You use the 1ld_locator type to identify the access protocol for a large object and to
point to its location. This type is a row type, stored as a row in the database. You
can insert, select, delete, and update instances of 11d_locator rows in the database
using standard SQL INSERT, SELECT, DELETE, and UPDATE statements.

You can also pass an lld_locator row to various Large Object Locator functions. For
example, to create, delete, or copy a large object, and to open a large object for
reading or writing, you pass an lld_locator row to the appropriate Large Object
Locator function. See[“The 11d_locator data type” on page 2-1| for a detailed
description of this data type.

The 1ld_lob type enables Large Object Locator to reference smart large objects,
which are stored as BLOB or CLOB data in the database. The Ild_lob type is
identical to the BLOB and CLOB types except that, in addition to pointing to the
data, it tracks whether the underlying smart large object contains binary or
character data.

See [“The 11d_lob data type” on page 2-2|for a complete description of this data
type.

Large Object Locator provides a set of functions similar to UNIX I/O functions for
manipulating large objects. You use the same functions regardless of how or where
the underlying large object is stored.

The Large Object Locator functions can be divided into four main categories:

Basic functions
Creating, opening, closing, deleting, and reading from and writing to large
objects.

Client functions
Creating, opening, and deleting client files and for copying large objects to
and from client files. After you open a client file, you can use the basic
functions to read from and write to the file.

Utility functions
Raising errors and converting errors to their SQL state equivalents.

Smart large object functions
Copying smart large objects to files and to other smart large objects

There are three interfaces to the Large Object Locator functions:
* An API library

e An ESQL/C library

* An SQL interface

© Copyright IBM Corp. 2005, 2011 1-1

All Large Object Locator functions are implemented as API library functions. You
can call Large Object Locator functions from user-defined routines within an
application you build.

All Large Object Locator functions, except 11d_error_raise(), are implemented as
ESQL/C functions. You can use the Large Object Locator functions to build
ESQL/C applications.

A limited set of the Large Object Locator functions are implemented as
user-defined routines that you can execute within SQL statements. See
linterface” on page 3-2|for a list of the Large Object Locator functions that you can
execute directly in SQL statements.

(Chapter 3, “Large Object Locator functions,” on page 3-1,|describes all the Large
Object Locator functions and the three interfaces in detail.

Large object limitations

Certain limitations are inherent in using large objects with a database, because the
objects themselves, except for smart large objects, are not stored in the database
and are not subject to direct control by the server. Two specific areas of concern are
transaction rollback and concurrency control.

Because large objects, other than smart large objects, are stored outside the
database, any changes to them take place outside the server's control and cannot
be rolled back if a transaction is aborted. For example, when you execute
11d_create(), it calls an operating system routine to create the large object itself. If
you roll back the transaction containing the call to 11d_create(), the server has no
way of deleting the object that you have just created.

Therefore, you are responsible for cleaning up any resources you have allocated if
an error occurs. For example, if you create a large object and the transaction in
which you create it is aborted, you should delete the object you have created.
Likewise, if you have opened a large object and the transaction is aborted (or is
committed), you should close the large object.

For the same reason, Large Object Locator provides no direct way of controlling
concurrent access to large objects. If you open a large object for writing, it is
possible to have two separate processes or users simultaneously alter the large
object. You must provide a means, such as locking a row, to guarantee that
multiple users cannot access a large object simultaneously for writing.

Registering Large Object Locator

1-2

To use the Large Object Locator functions, you must use BladeManager to register
the functions and data types with each database for which you want Large Object
Locator functionality. See the IBM Informix DataBlade Module Installation and
Registration Guide for more information.

IBM Informix Database Extensions User's Guide

Chapter 2. Large Object Locator data types

This chapter describes the Large Object Locator data types, 11d_locator and 11d_lob.

The lld_locator data type

The 1ld_locator data type identifies a large object. It specifies the kind of large
object and provides a pointer to its location. 1ld_locator is a row type and is
defined as follows:

create row type informix.11d_locator

To_protoco]l char(18
To_pointer informix.11d_1ob0
To_location informix.Ivarchar

}

lo_protocol
Identifies the kind of large object.

lo_pointer
A pointer to a smart large object, or is NULL if the large object is any kind
of large object other than a smart large object.

lo_location
A pointer to the large object, if it is not a smart large object. Set to NULL if it
is a smart large object.

In the lo_protocol field, specify the kind of large object to create. The kind of large
object you specify determines the values of the other two fields:

* If you specify a smart large object:
— use the lo_pointer field to point to it.
— specify NULL for the lo_location field.
* If you specify any other kind of large object:
— specify NULL for the lo_pointer field.
— use the lo_location field to point to it.

The lo_pointer field uses the lld_lob data type, which is defined by Large Object
Locator. This data type allows you to point to a smart large object and specif
whether it is of type BLOB or type CLOB. For more information, see|“The 1ld_lob

(data type” on page 2-2

The lo_location field uses an lvarchar data type, which is a varying-length character

type.

The following table lists the current protocols and summarizes the values for the
other fields based on the protocol that you specify. Be sure to check the release
notes shipped with this publication to see if Large Object Locator supports
additional protocols not listed here.

Tip: Although the Ild_locator type is not currently extensible, it might become so

later. To avoid future name space collisions, the protocols established by Large
Object Locator all have an IFX prefix.

© Copyright IBM Corp. 2005, 2011 2-1

Table 2-1. Fields of lld_locator data type

lo_protocol lo_pointer lo_location Description

IFX_BLOB Pointer to a smart large object NULL Smart large object
IFX_CLOB Pointer to a smart large object NULL Smart large object
IFX_FILE NULL pathname File accessible on server

Important: The lo_protocol field is not case-sensitive. It is shown in uppercase
letters for display purposes only.

The 11d_locator type is an instance of a row type. You can insert a row into the
database using an SQL INSERT statement, or you can obtain a row by calling the
DataBlade API mi_row_create() function. See the IBM Informix ESQL/C
Programmer’s Manual for information about row types. See the IBM Informix
DataBlade API Programmer’s Guide for information about the mi_row_create()
function.

To reference an existing large object, you can insert an 1lld_locator row directly into
a table in the database.

To create a large object, and a reference to it, you can call the 11d_create() function
and pass an lld_locator row.

You can pass an lld_locator type to these Large Object Locator functions, described
in |Chapter 3, “Large Object Locator functions,” on page 3-1}

“The 11d_copy() function” on page 3-3|

* |“The 11d_create() function” on page 3-5|
* [“The 11d_delete() function” on page 3-7|
» |“The 11d_open() function” on page 3-§|

* [“The 1ld_from_client() function” on page 3-1¢

* |[“The 11d_to_client() function” on page 3-19|

The lid_lob data type

The 1ld_lob data type is a user-defined type. You can use it to specify the location
of a smart large object and to specify whether the object contains binary or
character data.

The 11d_lob data type is defined for use with the API as follows:
typedef struct

{

MI_LO_HANDLE lo;
mi_integer type;
} T1d_lob_t;

It is defined for ESQL/C as follows:

typedef struct
{

ifx_lo_t To;
int type;
} 11d_Tob_t;
lo A pointer to the location of the smart large object.

2-2 IBM Informix Database Extensions User's Guide

type The type of the object. For an object containing binary data, set type to
LLD_BLOB; for an object containing character data, set type to LLD_CLOB.

The 1ld_lob type is equivalent to the CLOB or BLOB type in that it points to the
location of a smart large object. In addition, it specifies whether the object contains
binary or character data. You can pass the lld_lob type as the lo_pointer field of an
1ld_locator row. You should set the 11d_lob_t.type field to LLD_BLOB for binary
data and to LLD_CLOB for character data.

See [“The 11d_lob type” on page 4-1| for example code that uses the 11d_lob type.

LOB Locator provides explicit casts from:

* a CLOB type to an 11d_lob type.

* a BLOB type to an 1ld_lob type.

 an lld_lob type to the appropriate BLOB or CLOB type.

Tip: If you attempt to cast an lld_lob type containing binary data into a CLOB
type or an lld_lob type containing character data into a BLOB type, Large Object
Locator returns an error message.

You can pass an l1d_lob type to these functions, described in [Chapter 3, “Large]
Object Locator functions,” on page 3-1}

* [“The LOCopy function” on page 3-21|
+ |[“The LOToFile function” on page 3-22|
* [“The LLD_LobType function” on page 3-23|

Note that LOCopy and LOToFile functions are overloaded versions of built-in
server functions. The only difference is that you pass an lld_lob to the Large Object
Locator versions of these functions and a BLOB or CLOB type to the built-in
versions.

Chapter 2. Large Object Locator data types ~ 2-3

2-4 IBM Informix Database Extensions User's Guide

Chapter 3. Large Object Locator functions

This chapter briefly describes the three interfaces to Large Object Locator and
describes in detail all the Large Object Locator functions.

Interfaces

Large Object Locator functions are available through three interfaces:
e An API library

* An ESQL/C library

* An SQL interface

If the syntax for a function depends on the interface, each syntax appears under a
separate subheading. Because there are few differences between parameters and
usage in the different interfaces, there is a single parameter description and one
“Usage,” “Return,” and “Related topics” section for each function. Where there are
differences between the interfaces, these differences are described.

The naming convention for the SQL interface is different from that for the ESQL/C
and API interfaces. For example, the SQL client copy function is called
LLD_ToClient(), whereas the API and ESQL/C client copy functions are called
11d_to_client(). This publication uses the API and ESQL/C naming convention
unless referring specifically to an SQL function.

API library

All Large Object Locator functions except the smart large object functions are
implemented as API functions defined in header and library files (11dsapi.h and
11dsapi.a).

You can call the Large Object Locator API functions from your own user-defined
routines. You execute Large Object Locator API functions just as you do functions
provided by the IBM Informix DataBlade API. See the IBM Informix DataBlade API
Programmer’s Guide for more information.

See [“The API interface” on page 4-6|for an example of a user-defined routine that
calls Large Object Locator API functions to copy part of a large object to another
large object.

ESQL/C library

All Large Object Locator functions except 11d_error_raise() and the smart large
object functions are implemented as ESQL/C functions, defined in header and
library files (11desql.h and 11desql.so).

Wherever possible, the ESQL/C versions of the Large Object Locator functions
avoid server interaction by directly accessing the underlying large object.

See the IBM Informix ESQL/C Programmer’s Manual for more information about
using the ESQL/C interface to execute Large Object Locator functions.

© Copyright IBM Corp. 2005, 2011 3-1

SQL interface

The following Large Object Locator functions are implemented as user-defined
routines that you can execute within SQL statements:

* LLD_LobType()

e LLD_Create()

* LLD_Delete()

+ LLD_Copy0)

e LLD_FromClient()
* LLD_ToClient()

* LOCopy()

* LOToFile()

See the following three-volume set for further information about the IBM Informix
SQL interface:

* IBM Informix Guide to SQL: Reference
* IBM Informix Guide to SQL: Syntax
* IBM Informix Guide to SQL: Tutorial

Working with large objects

This section describes functions that allow you to:

* create large objects.

* open, close, and delete large objects.

 return and change the current position within a large object.
* read from and write to large objects.

* copy a large object.

Generally, you use the functions described in this section in the following order.

1. You use lld_create() to create a large object. It returns a pointer to an
1ld_locator row that points to the large object.

If the large object already exists, you can insert an lld_locator row into a table
in the database to point to the object without calling 11d_create().

2. You can pass the lld_locator type to the 1ld_open() function to open the large
object you created. This function returns an LLD_IO structure that you can
pass to various Large Object Locator functions to manipulate data in the open
object (see Step EI)

You can also pass the 1ld_locator type to the 1ld_copy(), 11d_from_client(), or
11d_to_client() functions to copy the large object.

3. After you open a large object, you can pass the LLD_IO structure to:

11d_tell()
Returns the current position within the large object.

11d_seek()
Changes the current position within the object.

11d_read()
Reads from large object.

11d_write()
Writes to the large object.

3-2 IBM Informix Database Extensions User's Guide

11d_close()
Closes an object. You should close a large object if the transaction in
which you open it is aborted or committed.

Tip: To delete a large object, you can pass the 1ld_locator row to 1ld_delete() any
time after you create it. For example, if the transaction in which you created the
object is aborted and the object is not a smart large object, you should delete the
object because the server's rollback on the transaction cannot delete an object
outside the database.

The functions within this section are presented in alphabetical order, not in the
order in which you might use them.

The lld_close() function

This function closes the specified large object.

Syntax

API

mi_integer 11d_close (conn, io, error)
MI_CONNECTION= conn;
LLD_IO* io;
mi_integerx error;

ESQL/C

int 11d_close (LLD_IO* io, intx error);

conn The connection descriptor established by a previous call to the mi_open()
or mi_server_connect() functions. This parameter is for the API interface
only. In the ESQL/C version of this function, you must already be
connected to a server.

io A pointer to an LLD_IO structure created with a previous call to the
11d_open() function.

error An output parameter in which the function returns an error code.
Usage

The 11d_close() function closes the open large object and frees the memory
allocated for the LLD_IO structure, which you cannot use again after this call.

Return codes
For an API function, returns MI_0K if the function succeeds and MI_ERROR if it fails.
For an ESQL/C function, returns 0 if the function succeeds and -1 if it fails.

Context

[“The 11d_open() function” on page 3-§

The lid_copy() function

This function copies the specified large object.

Chapter 3. Large Object Locator functions 3-3

3-4

Syntax

API

MI_ROWx 11d_copy(conn, src, dest, error);
MI_CONNECTION= conn,
MI_ROW~* src,
MI_ROW~* dest,
mi_integerx error

ESQL/C

ifx_collection_t* 11d_copy (src, dest, error);
EXEC SQL BEGIN DECLARE SECTION;
PARAMETER ROW src;
PARAMETER ROW dest;
EXEC SQL END DECLARE SECTION;
int* error;

SQL

CREATE FUNCTION LLD Copy (src LLD Locator, dest LLD Locator)
RETURNS LLD_Locator;

conn The connection descriptor established by a previous call to the mi_open()
or mi_server_connect() function. This parameter is for the API interface
only. In the ESQL/C and SQL versions of this function, you must already
be connected to a server.

src A pointer to the 1ld_locator row, identifying the source object.

dest A pointer to an lld_locator row, identifying the destination object. If the
destination object itself does not exist, it is created.

error An output parameter in which the function returns an error code. The SQL
version of this function does not have an error parameter.
Usage

This function copies an existing large object.

If the destination object exists, pass a pointer to its lld_locator row as the dest
parameter.

If the destination object does not exist, pass an 1ld_locator row with the following
values as the dest parameter to 11d_copy():

In the lo_protocol field, specify the type of large object to create.

If you are copying to any type of large object other than a smart large object:
¢ specify NULL for the lo_pointer field.
* point to the location of the new object in the lo_location field.

The 11d_copy() function creates the type of large object that you specify, copies the
source object to it, and returns the row you passed, unaltered.

If you are copying to a smart large object, specify NULL for the lo_pointer and
lo_location fields of the 1ld_locator row that you pass as the dest parameter. The
11d_copy() function returns an lld_locator row with a pointer to the new smart
large object in the lo_pointer field.

IBM Informix Database Extensions User's Guide

The server deletes a new smart large object at the end of a transaction if there are
no disk references to it and if it is closed. Therefore, after copying to a newly
created smart large object, either open it or insert it into a table.

If 11d_copy() creates a new smart large object, it uses system defaults for required
storage parameters such as sbspace. If you want to override these parameters, you
can use the server large object interface to create the smart large object and specify
the parameters you want in an MI_LO_SPEC structure. You can then call
11d_copy() and set the lo_pointer field of the lld_locator row to point to the new
smart large object.

Likewise, if protocols are added to Large Object Locator for new types of large
objects, these objects might require creation attributes or parameters for which
Large Object Locator supplies predefined default values. As with smart large
objects, you can create the object with 11d_copy() and accept the default values, or
you can use the creation routines specific to the new protocol and supply your
own attributes and parameters. After you create the object, you can call 11d_copy()
and pass it an 11d_locator row that points to the new object.

Return codes

On success, this function returns a pointer to an lld_locator row, specifying the
location of the copy of the large object. If the destination object already exists,
1ld_copy() returns a pointer to the unaltered lld_locator row you passed in the dest
parameter. If the destination object does not already exist, lld_copy() returns a
pointer to an lld_locator row, pointing to the new object it creates.

On failure, this function returns NULL.

Context

[“The 11d_from_client() function” on page 3-16|

[“The 11d_to_client() function” on page 3-19|

The lld_create() function

This function creates a new large object with the protocol and location you specify.

Syntax

API

MI_ROW+ 11d_create(conn, lob, error)
MI_CONNECTION= conn
MI_ROW* Tobs
mi_integerx error;

ESQL/C

ifx_collection_t* 11d _create (lob, error);
EXEC SQL BEGIN DECLARE SECTION;
PARAMETER ROW Tob;
EXEC SQL END DECLARE SECTION;
int* error;

SOL

Chapter 3. Large Object Locator functions 3-5

3-6

CREATE FUNCTION LLD Create (lob LLD Locator)
RETURNS LLD_Locator;

conn The connection descriptor established by a previous call to the mi_open()
or mi_server_connect() functions. This parameter is for the API interface
only. In the ESQL/C and SQL versions of this function, you must already
be connected to a server.

lob A pointer to an Ild_locator row, identifying the object to create.

error An output parameter in which the function returns an error code. The SQL
version of this function does not have an error parameter.

Usage

You pass an 11d_locator row, with the following values, as the lob parameter to
11d_create():

In the lo_protocol field, specify the type of large object to create.

For any type of large object other than a smart large object:
¢ specify NULL for the lo_pointer field.
* point to the location of the new object in the lo_location field.

The 11d_create() function returns the row you passed, unaltered.

If you are creating a smart large object, specify NULL for the lo_pointer and
lo_location fields of the lld_locator row. The 1ld_create() function returns an
1ld_locator row with a pointer to the new smart large object in the lo_pointer field.

The server deletes a new smart large object at the end of a transaction if there are
no disk references to it and if it is closed. Therefore, after creating a smart large
object, either open it or insert it into a table.

Large Object Locator does not directly support transaction rollback, except for
smart large objects. Therefore, if the transaction in which you call 11d_create() is
aborted, you should call 11d_delete() to delete the object and reclaim any allocated
resources.

See [“Large object limitations” on page 1-2|for more information.

When you create a smart large object, 11d_create() uses system defaults for required
storage parameters such as sbspace. If you want to override these parameters, you
can use the server large object interface to create the smart large object and specify
the parameters you want in an MI_LO_SPEC structure. You can then call
11d_create() and set the lo_pointer field of the lld_locator row to point to the new
smart large object.

Likewise, if protocols are added to Large Object Locator for new types of large
objects, these objects might require creation attributes or parameters for which
Large Object Locator supplies predefined default values. As with smart large
objects, you can create the object with 11d_create() and accept the default values, or
you can use the creation routines specific to the new protocol and supply your
own attributes and parameters. After you create the object, you can call 11d_create()
and pass it an 11d_locator row that points to the new object.

IBM Informix Database Extensions User's Guide

Return codes

On success, this function returns a pointer to an lld_locator row specifying the
location of the new large object. For a smart large object, 11d_create() returns a
pointer to the location of the new object in the lo_pointer field of the 1ld_locator
row. For all other objects, it returns a pointer to the unaltered 1ld_locator row you
passed in the lob parameter.

The 11d_open function can use the 11d_locator row that 11d_create() returns.

On failure, this function returns NULL.

Context

|”The 11d_delete() function”

[“The 11d_open() function” on page 3-§

The lld_delete() function

This function deletes the specified large object.

Syntax

API

mi_integer 11d_delete(conn, lob, error)
MI_CONNECTION= conn;
LLD_Locator lob;
mi_integerx error;

ESQL/C

int 11d_delete (Tob, error);

EXEC SQL BEGIN DECLARE SECTION;
PARAMETER ROW Tob;

EXEC SQL END DECLARE SECTION;
int* error;

SOL

CREATE FUNCTION LLD Delete (Tob LLD_Locator)
RETURNS BOOLEAN;

conn The connection descriptor established by a previous call to the mi_open()
or mi_server_connect() functions. This parameter is for the API interface
only. In the ESQL/C and SQL versions of this function, you must already
be connected to a server.

lob A pointer to an lld_locator row, identifying the object to delete.
error An output parameter in which the function returns an error code. The SQL
version of this function does not have an error parameter.

Usage

For large objects other than smart large objects, this function deletes the large
object itself, not just the lld_locator row referencing it. For smart large objects, this
function does nothing.

Chapter 3. Large Object Locator functions ~ 3-7

3-8

To delete a smart large object, delete all references to it, including the 11d_locator
row referencing it.

Return codes
For an API function, returns MI_0K if the function succeeds and MI_ERROR if it fails.

For an ESQL/C function, returns 0 if the function succeeds and -1 if the function
fails.

The lld_open() function

This function opens the specified large object.

Syntax

API

LLD_I0* 11d_open(conn, lob, flags, error)
MI_CONNECTION= conn;
MI_ROW* Tobs
mi_integer flags,
mi_integerx error);

ESQL/C

LLD_IO* 11d_open(lob, flags, error);
EXEC SQL BEGIN DECLARE SECTION;
PARAMETER ROW Tob;
EXEC SQL END DECLARE SECTION;
int flags;int* error;

conn The connection descriptor established by a previous call to the mi_open()
or mi_server_connect() functions. This parameter is for the API interface
only. In the ESQL/C and SQL versions of this function, you must already
be connected to a server.

lob A pointer to an lld_locator row, identifying the object to delete.

flags A set of flags that you can set to specify attributes of the large object after
it is opened. The flags are as follows:

LLD_RDONLY
Opens the large object for reading only. You cannot use the
11d_write function to write to the specified large object when this
flag is set.

LLD_WRONLY
Opens the large object for writing only. You cannot use the
11d_read() function to read from the specified large object when
this flag is set.

LLD_RDWR
Opens the large object for both reading and writing.

LLD_TRUNC
Clears the contents of the large object after opening.

LLD_APPEND
Seeks to the end of the large object for writing. When the object is
opened, the file pointer is positioned at the beginning of the object.
If you have opened the object for reading or reading and writing,
you can seek anywhere in the file and read. However, any time

IBM Informix Database Extensions User's Guide

you call 11d_write() to write to the object, the pointer moves to the
end of the object to guarantee that you do not overwrite any data.

LLD_SEQ
Opens the large object for sequential access only. You cannot use
the 1ld_seek() function with the specified large object when this
flag is set.

error An output parameter in which the function returns an error code.
Usage

In the lob parameter, you pass an lld_locator row to identify the large object to
open. In the lo_protocol field of this row, you specify the type of the large object to
open. The 11d_open() function calls an appropriate open routine based on the type
you specify. For example, for a file, lld_open() uses an operating system file
function to open the file, whereas, for a smart large object, it calls the server's
mi_lo_open() routine.

Large Object Locator does not directly support two fundamental database features,
transaction rollback and concurrency control. Therefore, if the transaction in which
you call 11d_open() is aborted, you should call 11d_close() to close the object and
reclaim any allocated resources.

Your application should also provide some means, such as locking a row, to
guarantee that multiple users cannot write to a large object simultaneously.

See [“Large object limitations” on page 1-2| for more information about transaction
rollback and concurrency control.

Return codes

On success, this function returns a pointer to an LLD_IO structure it allocates. The
LLD_IO structure is private, and you should not directly access it or modify its
contents. Instead, you can pass the LLD_IO structure's pointer to Large Object
Locator routines such as lld_write(), 1ld_read(), and so on, that access open large
objects.

A large object remains open until you explicitly close it with the 11d_close()
function. Therefore, if you encounter error conditions after opening a large object,
you are responsible for reclaiming resources by closing it.

On failure, this function returns NULL.

Context

[“The 11d_close() function” on page 3-3|

[“The 11d_create() function” on page 3-5

“The 1ld_read() function” on page 3-10
pag

[“The 11d_seek() function” on page 3-10|

[“The 11d_tell() function” on page 3-12|

{“The 11d_write() function” on page 3-13

Chapter 3. Large Object Locator functions 3-9

The lld_read() function

This function reads from a large object, starting at the current position.

Syntax

API

mi_integer 11d_read (io, buffer, bytes, error)
LLD_I0% io,

void* buffer,
mi_integer bytes,
mi_integer= error);
ESQL/C

int 11d_read (LLD_IO+* io,
void* buffer, int bytes,
int* error);

io A pointer to an LLD_IO structure created with a previous call to the
11d_open() function.

buffer A pointer to a buffer into which to read the data. The buffer must be at
least as large as the number of bytes specified in the bytes parameter.

bytes The number of bytes to read.

error An output parameter in which the function returns an error code.

Usage

Before calling this function, you must open the large object with a call to
11d_open() and set the LLD_RDONLY or LLD_RDWR flag. The 11d_read() function
begins reading from the current position. By default, when you open a large object,

the current position is the beginning of the object. You can call 11d_seek() to change
the current position.

Return codes

On success, the 11d_read() function returns the number of bytes that it has read
from the large object.

On failure, for an API function, it returns MI_ERROR; for an ESQL/C function, it
returns -1.

Context

“The 11d_open() function” on page 3-
p pag

|”The 11d_seek() function”|

[“The 11d_tell() function” on page 3-12|

The lld_seek() function

This function sets the position for the next read or write operation to or from a
large object that is open for reading or writing.

3-10 IBM Informix Database Extensions User's Guide

Syntax

API

mi_integer 11d_seek(conn, io, offset, whence, new offset, error)
MI_CONNECTION= conn
LLD_I0* io;
mi_int8+ offset;
mi_integer whence;
mi_int8+ new_offset;
mi_integerx error;

ESQL/C

int 11d_seek(io,offset, whence, new_offset, error)
LLD_IO* io;

EXEC SQL BEGIN DECLARE SECTION;
PARAMETER int8* offset;
EXEC SQL END DECLARE SECTION;
EXEC SQL BEGIN DECLARE SECTION;
PARAMETER int8x new_offset;
EXEC SQL END DECLARE SECTION;
int whence;
int* error;

conn The connection descriptor established by a previous call to the mi_open()
or mi_server_connect() functions. This parameter is for the API interface
only. In the ESQL/C and SQL versions of this function, you must already
be connected to a server.

io A pointer to an LLD_IO structure created with a previous call to the
11d_open() function.

offset A pointer to the offset. It describes where to seek in the object. Its value
depends on the value of the whence parameter.

o If whence is LLD_SEEK_SET, the offset is measured relative to the
beginning of the object.

* If whence is LLD_SEEK_CUR, the offset is relative to the current position
in the object.

o If whence is LLD_SEEK_END, the offset is relative to the end of the file.
whence Determines how the offset is interpreted.

new_offset
A pointer to an int8 that you allocate. The function returns the new offset
in this int8.

error An output parameter in which the function returns an error code.
Usage

Before calling this function, you must open the large object with a call to
11d_open().

Although this function takes an 8-byte offset, this offset is converted to the
appropriate size for the underlying large object storage system. For example, if the
large object is stored in a 32-bit file system, the 8-byte offset is converted to a
4-byte offset, and any attempt to seek past 4 GB generates an error.

Return codes

For an API function, returns MI_0K if the function succeeds and MI_ERROR if it fails.

Chapter 3. Large Object Locator functions ~ 3-11

3-12

For an ESQL/C function, returns 0 if the function succeeds and -1 if the function
fails.

Context

|”The 1ld_open() function” on page 3—8|

|”The 1ld_read() function” on page 3—10|

[“The 11d_tell() function”|

[“The 11d_write() function” on page 3-13

The lid_tell() function

This function returns the offset for the next read or write operation on an open
large object.

Syntax

API

mi_integer 11d_tel1(conn, io, offset, error)
MI_CONNECTION= conn;
LLD_I0* io,
mi_int8+ offset;
mi_integerx error;

ESQL/C

int 11d_tell (io, offset, error);
LLD_T0* io;

EXEC SQL BEGIN DECLARE SECTION;
PARAMETER int8+* offset;

EXEC SQL END DECLARE SECTION;
int* error;

conn The connection descriptor established by a previous call to the mi_open()
or mi_server_connect() functions. This parameter is for the API interface
only. In the ESQL/C and SQL versions of this function, you must already
be connected to a server.

io A pointer to an LLD_IO structure created with a previous call to the
11d_open() function.

offset A pointer to an int8 that you allocate. The function returns the offset in
this int8.

error An output parameter in which the function returns an error code.
Usage

Before calling this function, you must open the large object with a call to
11d_open().

Return codes
For an API function, returns MI_0K if the function succeeds and MI_ERROR if it fails.

For an ESQL/C function, returns 0 if the function succeeds and -1 if the function
fails.

IBM Informix Database Extensions User's Guide

Context

[‘The 11d_open() function” on page 3-§

[‘The 11d_read() function” on page 3-10)|

|”The 11d_seek() function” on page 3—10|

[“The 11d_write() function”|

The lld_write() function

This function writes data to an open large object, starting at the current position.

Syntax
API
mi_integer 11d_write (conn, io, buffer, bytes, error)
MI_CONNECTION= conn;
LLD_I0* io;
void* buffer;
mi_integer bytes;
mi_integerx error;
ESQL/C

int 11d_write (LLD_IO* io, voidx buffer,
int bytes, int* error);

conn The connection descriptor established by a previous call to the mi_open()
or mi_server_connect() functions. This parameter is for the API interface
only. In the ESQL/C and SQL versions of this function, you must already
be connected to a server.

io A pointer to an LLD_IO structure created with a previous call to the
11d_open() function.

buffer A pointer to a buffer from which to write the data. The buffer must be at
least as large as the number of bytes specified in the bytes parameter.

bytes The number of bytes to write.

error An output parameter in which the function returns an error code.
Usage

Before calling this function, you must open the large object with a call to
1ld_open() and set the LLD_WRONLY or LLD_RDWR flag. The 1ld_write()
function begins writing from the current position. By default, when you open a
large object, the current position is the beginning of the object. You can call
11d_seek() to change the current position.

If you want to append data to the object, specify the LLD_APPEND flag when you
open the object to set the current position to the end of the object. If you have
done so and have opened the object for reading and writing, you can still use
11d_seek to move around in the object and read from different places. However, as
soon as you begin to write, the current position is moved to the end of the object
to guarantee that you do not overwrite any existing data.

Chapter 3. Large Object Locator functions ~ 3-13

Return codes
On success, the lld_write() function returns the number of bytes that it has written.

On failure, for an API function it returns MI_ERROR; for an ESQL/C function, it
returns -1.

Context

[“The 11d_open() function” on page 3-§

“The 1l1d_seek() function” on page 3-10
pag

[“The 11d_tell() function” on page 3-12|

Client file support

3-14

This section describes the Large Object Locator functions that provide client file
support. These functions allow you to create, open, and delete client files and to
copy large objects to and from client files.

The client functions make it easier to code user-defined routines that input or
output data. These user-defined routines, in many cases, operate on large objects.
They also input data from or output data to client files. Developers can create two
versions of a user-defined routine: one for client files, which calls
1ld_open_client(), and one for large objects, which calls 11d_open(). After the large
object or client file is open, you can use any of the Large Object Locator functions
that operate on open objects, such as 11d_read(), 11d_seek(), and so on. Thus, the
remaining code of the user-defined function can be the same for both versions.

You should use the Large Object Locator client functions with care. You can only
access client files if you are using the client machine on which the files are stored.
If you change client machines, you can no longer access files stored on the original
client machine. Thus, an application that stores client file names in the database
might find at a later date that the files are inaccessible.

The lld_create_client() function

This function creates a new client file.

Syntax

API

mi_integer 11d_create client(conn, path, error);
MI_CONNECTION=* conn
mi_string* path;
mi_integerx error;

ESQL/C

int 11d_create_client (char* path, int* error);

conn The connection descriptor established by a previous call to the mi_open()
or mi_server_connect() functions. This parameter is for the API interface
only. In the ESQL/C and SQL versions of this function, you must already
be connected to a server.

IBM Informix Database Extensions User's Guide

path A pointer to the path name of the client file.

error An output parameter in which the function returns an error code.
Usage

This function creates a file on your client machine. Use the 11d_open_client()
function to open the file for reading or writing and pass it the same pathname as
you passed to 1ld_create_client().

Large Object Locator does not directly support transaction rollback, except for
smart large objects. Therefore, if the transaction in which you call
11d_create_client() is aborted, you should call 11d_delete_client() to delete the
object and reclaim any allocated resources.

See [“Large object limitations” on page 1-2| for more information.

Return codes
For an API function, returns MI_0K if the function succeeds and MI_ERROR if it fails.

For an ESQL/C function, returns 0 if the function succeeds and -1 if the function
fails.

Context

[“The 11d_delete_client() function”|

The lld_delete_client() function

This function deletes the specified client file.

Syntax

API

mi_integer 11d_delete _client(conn, path, error)
MI_CONNECTION= conn;
mi_string* path;
mi_integerx error;

ESQL/C

int 11d_delete_client (char* path,int* error);

conn The connection descriptor established by a previous call to the mi_open()
or mi_server_connect() functions. This parameter is for the API interface
only. In the ESQL/C and SQL versions of this function, you must already
be connected to a server.

path A pointer to the path name of the client file.

error An output parameter in which the function returns an error code.
Usage

This function deletes the specified client file and reclaims any allocated resources.

Chapter 3. Large Object Locator functions ~ 3-15

Return codes
For an API function, returns MI_0K if the function succeeds and MI_ERROR if it fails.

For an ESQL/C function, returns 0 if the function succeeds and -1 if the function
fails.

Context

[“The 11d_create_client() function” on page 3-14|

The lld_from_client() function

This function copies a client file to a large object.

Syntax

API

MI_ROWx 11d_from client(conn, src, dest, error);
MI_CONNECTION= conn,
mi_string* src,
MI_ROW~* dest,
mi_integerx error

ESQL/C

ifx_collection_t* 11d_from_client (src, dest, error);
char* src;

EXEC SQL BEGIN DECLARE SECTION;
PARAMETER ROW dest;

EXEC SQL END DECLARE SECTION;

int* error;

SQL

CREATE FUNCTION LLD FromClient(src LVARCHAR,
dest LLD_Locator)
RETURNS LLD_Locator;

conn The connection descriptor established by a previous call to the mi_open()
or mi_server_connect() functions. This parameter is for the API interface
only. In the ESQL/C and SQL versions of this function, you must already
be connected to a server.

src A pointer to the source path name.

dest A pointer to the destination lld_locator row. If the destination object itself
does not exist, it is created.

error An output parameter in which the function returns an error code. The SQL
version of this function does not have an error parameter.

Usage
This function copies an existing large object.

If the destination object exists, pass a pointer to its lld_locator row as the dest
parameter.

If the destination object does not exist, pass an lld_locator row with the following
values as the dest parameter to 11d_from_client().

3-16 IBM Informix Database Extensions User's Guide

In the lo_protocol field, specify the type of large object to create.

If you are copying to any type of large object other than a smart large object:
* specify NULL for the lo_pointer field.
* point to the location of the new object in the lo_location field.

The 11d_from_client() function creates the type of large object that you specify,
copies the source file to it, and returns the row you passed, unaltered.

If you are copying to a smart large object, specify NULL for the lo_pointer and
lo_location fields of the lld_locator row that you pass as the dest parameter. The
11d_from_client() function returns an lld_locator row with a pointer to the new
smart large object in the lo_pointer field.

The server deletes a new smart large object at the end of a transaction if there are
no disk references to it and if it is closed. Therefore, after you copy to a newly
created smart large object, either open it or insert it into a table.

If 11d_from_client() creates a new smart large object, it uses system defaults for
required storage parameters such as sbspace. If you want to override these
parameters, you can use the server large object interface to create the smart large
object and specify the parameters you want in an MI_LO_SPEC structure. You can
then call 11d_from_client() and set the lo_pointer field of the 1ld_locator row to
point to the new smart large object.

Likewise, if protocols are added to Large Object Locator for new types of large
objects, these objects might require creation attributes or parameters for which
Large Object Locator supplies predefined default values. As with smart large
objects, you can create the object with 11d_from_client() and accept the default
values, or you can use the creation routines specific to the new protocol and
supply your own attributes and parameters. After you create the object, you can
call 11d_from_client() and pass it an 1ld_locator row that points to the new object.

Return codes

On success, returns a pointer to an lld_locator row that specifies the location of the
copy of the large object. If the destination object already exists, 11d_from_client()
returns a pointer to the unaltered 1ld_locator row that you created and passed in
the dest parameter. If the destination object does not already exist,
11d_from_client() returns an lld_locator row that points to the new object it creates.

On failure, this function returns NULL.

Context

[“The 11d_create_client() function” on page 3-14|

[“The 11d_open_client() function”|

The lld_open_client() function

This function opens a client file.

Chapter 3. Large Object Locator functions ~ 3-17

3-18

Syntax

API

LLD_IO0* 11d_open_client(conn, path, flags, error);
MI_CONNECTION= conn
mi_string= path;
mi_integer flags;
mi_integerx error;

ESQL/C

LLD_IO* 11d_open_client(MI_CONNECTION* conn,mi_string* path,
mi_integer flags,mi_integerx error);

conn The connection descriptor established by a previous call to the mi_open()
or mi_server_connect() functions. This parameter is for the API interface
only. In the ESQL/C and SQL versions of this function, you must already
be connected to a server.

path A pointer to the path name of the client file.

flags A set of flags that you can set to specify attributes of the large object after
it is opened. The flags are as follows:

LLD_RDONLY
Opens the client file for reading only. You cannot use the 11d_write
function to write to the specified client file when this flag is set.

LLD_WRONLY
Opens the client file for writing only. You cannot use the 11d_read()
function to read from the specified client file when this flag is set.

LLD_RDWR
Opens the client file for both reading and writing.

LLD_TRUNC
Clears the contents of the client file after opening.

LLD_APPEND
Seeks to the end of the large object for writing. When the object is
opened, the file pointer is positioned at the beginning of the object.
If you have opened the object for reading or reading and writing,
you can seek anywhere in the file and read. However, any time
you call 11d_write() to write to the object, the pointer moves to the
end of the object to guarantee that you do not overwrite any data.

LLD_SEQ
Opens the client file for sequential access only. You cannot use the
I1d_seek() function with the specified client file when this flag is
set.

error An output parameter in which the function returns an error code.
Usage
This function opens an existing client file. After the file is open, you can use any of

the Large Object Locator functions, such as 11d_read(), 11d_write(), and so on, that
operate on open large objects.

IBM Informix Database Extensions User's Guide

Large Object Locator does not directly support two fundamental database features,
transaction rollback and concurrency control. Therefore, if the transaction in which
you call 11d_open_client() is aborted, you should call 11d_close() to close the object
and reclaim any allocated resources.

Your application should also provide some means, such as locking a row, to
guarantee that multiple users cannot write to a large object simultaneously.

See [“Large object limitations” on page 1-2| for more information about transaction
rollback and concurrency control.

Return codes

On success, this function returns a pointer to an LLD_IO structure that it allocates.
The LLD_IO structure is private, and you should not directly access it or modify
its contents. Instead, you should pass its pointer to Large Object Locator routines
such as 11d_write(), 11d_read(), and so on, that access open client files.

A client file remains open until you explicitly close it with the 11d_close() function.
Therefore, if you encounter error conditions after opening a client file, you are
responsible for reclaiming resources by closing it.

On failure, this function returns NULL.

Context

[“The 11d_close() function” on page 3-3|

[“The 11d_read() function” on page 3-10|

[“The 11d_seek() function” on page 3-10|

[“The 11d_tell() function” on page 3-12|

[“The 11d_write() function” on page 3-13

[“The 11d_create_client() function” on page 3-14|

The lld_to_client() function

This function copies a large object to a client file.

Syntax

API

MI_ROWx 11d_to client(conn, src, dest, error);
MI_CONNECTION= conn,
MI_ROW~* src,
mi_string* dest,
mi_integerx error

ESQL/C

Chapter 3. Large Object Locator functions ~ 3-19

ifx_collection_t* 11d_to_client (src, dest, error);
EXEC SQL BEGIN DECLARE SECTION;
PARAMETER ROW src;
EXEC SQL END DECLARE SECTION;
char* dest;
int* error;

SQL

LLD_ToClient (src LLD Locator, dest LVARCHAR)
RETURNS BOOLEAN;

conn The connection descriptor established by a previous call to the mi_open()
or mi_server_connect() functions. This parameter is for the API interface
only. In the ESQL/C and SQL versions of this function, you must already
be connected to a server.

src A pointer to the Ild_locator row that identifies the source large object.

dest A pointer to the destination path name. If the destination file does not
exist, it is created.

error An error code. The SQL version of this function does not have an error
parameter.

Usage

This function copies an existing large object to a client file. It creates the client file
if it does not already exist.

Return codes
For an API function, returns MI_0K if the function succeeds and MI_ERROR if it fails.

For an ESQL/C function, returns 0 if the function succeeds and -1 if the function
fails.

Context

[“The 11d_open_client() function” on page 3-17

Error utility functions

3-20

The two functions described in this section allow you to raise error exceptions and
convert error codes to their SQL state equivalent.

The lld_error_raise() function

This function generates an exception for the specified error.

Syntax

API

mi_integer 11d_error_raise (error);
mi_integer error

error An error code that you specify.

IBM Informix Database Extensions User's Guide

Usage

This function calls the server mi_db_error_raise function to generate an exception
for the specified Large Object Locator error.

Return codes
On success, this function does not return a value unless the exception is handled
by a callback function. If the exception is handled by the callback and control

returns to 11d_error_raise(), it returns MI_ERROR.

On failure, it also returns MI_ERROR.

The lld_sqlstate() function
This function translates integer error codes into their corresponding SQL states.
Syntax

API

mi_string* 11d_sqlstate (error);
mi_integer error

ESQL/C
int* 11d_sqlstate (int error);

error An error code.
Return codes

On success, this function returns the SQL state value corresponding to the error
code. On failure, returns NULL.

Important: This function returns a pointer to a constant, not to an allocated
memory location.

Smart large object functions

The functions described in this section allow you to copy a smart large object to a
file and to copy a smart large object to another smart large object. There is also a
function that tells you whether the data in an 1ld_lob column is binary or character
data.

The LOCopy function
This function creates a copy of a smart large object.
Syntax
SQL

CREATE FUNCTION LOCopy (lob LLD_Lob)
RETURNS LLD_Lob ;

Chapter 3. Large Object Locator functions ~ 3-21

CREATE FUNCTION LOCopy (lob, LLD Lob, table_name, CHAR(18),
column_name, CHAR(18))
RETURNS LLD Lob;

lob A pointer to the smart large object to copy.

table_name
A table name. This parameter is optional.

column_name
A column name. This parameter is optional.

Usage

This function is an overloaded version of the LOCopy built-in server function. This
function is identical to the built-in version of the function, except the first
parameter is an lld_lob type rather than a BLOB or CLOB type.

The table_name and column_name parameters are optional. If you specify a
table_name and column_name, LOCopy uses the storage characteristics from the
specified column_name for the new smart large object that it creates.

If you omit table_name and column_name, LOCopy creates a smart large object with
system-specified storage defaults.

See the description of the LOCopy function in the IBM Informix Guide to SQL:
Syntax for complete information about this function.

Return codes
This function returns a pointer to the new lld_lob value.
Context

LOCopy in the IBM Informix Guide to SQL: Syntax.
The LOToFile function

Copies a smart large object to a file.
Syntax

SQL

CREATE FUNCTION LOToFile(lob LLD Lob, pathname LVARCHAR,
file_dest CHAR(6)
RETURNS LVARCHAR;

lob A pointer to the smart large object.

pathname
A directory path and name of the file to create.

file_dest
The computer on which the file resides. Specify either server or client.

3-22 IBM Informix Database Extensions User's Guide

Usage
This function is an overloaded version of the LOToFile built-in server function.
This function is identical to the built-in version of the function, except the first

parameter is an 11d_lob type rather than a BLOB or CLOB type.

See the description of the LOToFile function in the IBM Informix Guide to SQL:
Syntax for complete information about this function.

Return codes
This function returns the value of the new file name.
Context

LOToFile in the IBM Informix Guide to SQL: Syntax.
The LLD_LobType function

Returns the type of data in an lld_lob column.
Syntax
SQL

CREATE FUNCTION LLD_LobType(lob LLD Lob)
RETURNS CHAR(4);

lob A pointer to the smart large object

Usage

An lld_lob column can contain either binary or character data. You pass an lld_lob
type to the LLD_LobType function to determine the type of data that the column
contains.

Return codes

This function returns blob if the specified 1ld_lob contains binary data and clob if
it contains character data.

Chapter 3. Large Object Locator functions ~ 3-23

3-24 IBM Informix Database Extensions User's Guide

Chapter 4. Large Object Locator example code

This chapter provides example code that shows how to use some of the Large
Object Locator functions together. It shows how to use all three of the Large Object
Locator interfaces: SQL, server, and ESQL/C.

The SQL interface

The examples in this section show how to use the SQL interface to Large Object
Locator.

The lid_lob type

The 1ld_lob is a user-defined type that you can use to specify the location of a
smart large object and to specify whether the object contains binary or character
data. The following subsections show how to use the lld_lob data type.

Implicit lild_lob casts

This section shows how to insert binary and character data into an 1lld_lob type
column of a table. The following example makes use of implicit casts from BLOB
and CLOB types to the 1ld_lob type.

create table slobs (key int primary key, slo 11d_lob);

--Insert binary and text large objects into an 11d_lob field
--Implicitly cast from blob/clob to 11d_Tob
insert into slobs values (1, filetoblob ('logo.gif', 'client'));

insert into slobs values (2, filetoclob ('quotel.txt', 'client'));

select * from slobs;

key 1

slo blob:00608460a6b7c8d900000002000000030000000200000018000000000001000000608
460736c6f000010029a2a6c92070000000000006c000af0cdd900000080006082500af0c9d
e

key 2

slo clob:00608460a6b7c8d900000002000000030000000300000019000000000001000000608
460736c6f000010029a2a6c930d0000000000006c000af0cdd900000016000000010af0c9d
e

Figure 4-1. Implicit lld_lob casts

The slobs table, created in this example, contains the slo column, which is of type
1ld_lob. The first INSERT statement uses the filetoblob function to copy a binary
large object to a smart large object. There exists an implicit cast from a BLOB type
to an Ild_lob type, so the INSERT statement can insert the BLOB type large object
into an lld_lob type column.

Likewise, there is an implicit cast from a CLOB type to an lld_lob type, so the
second INSERT statement can insert a CLOB type large object into the slo column
of the slobs table.

© Copyright IBM Corp. 2005, 2011 4-1

4-2

The SELECT statement returns the lld_lob types that identify the two smart large
objects stored in the slobs table.

The slo column for key 1 contains an instance of an lld_lob type that identifies the
data as BLOB data and contains a hexadecimal number that points to the location
of the data.

The slo column for key 2 identifies the data as CLOB data and contains a
hexadecimal number that points to the location of the data.

Explicit lld_lob casts

The example in the following figure shows how to select large objects of type
BLOB and CLOB from a table and how to copy them to a file.

This example uses the slobs table created in [Figure 4-1 on page 4-1}

--Explicitly cast from 11d_Tob to blob/clob
select slo::bTob from slobs where key = 1;

(expression) <SBlob Data>

select slo::clob from slobs where key = 2;

(expression)
Ask not what your country can do for you,
but what you can do for your country.

Figure 4-2. Explicit lld_lob casts

The first SELECT statement retrieves the data in the slo column associated with
key 1 and casts it as BLOB type data. The second SELECT statement retrieves the
data in the slo column associated with key 2 and casts it as CLOB type data.

The LLD_LobType function

The following example shows how to use the LLD_LobType function to obtain the
type of data—BLOB or CLOB—that an 1ld_lob column contains.

The slobs table in this example is the same one created in [Figure 4-1 on page 4-1}
That example created the table and inserted a BLOB type large object for key 1 and
a CLOB type large object for key 2.

IBM Informix Database Extensions User's Guide

-- LLD_LobType UDR
select key, 11d_lobtype(slo) from slobs;

key (expression)
1 blob
2 clob

select slo::clob from slobs where 11d_Tobtype(slo) = 'clob';

(expression)
Ask not what your country can do for you,
but what you can do for your country.

Figure 4-3. The LLD_LobType function

The first SELECT statement returns:

1 blob
2 clob

indicating that the data associated with key 1 is of type BLOB and the data
associated with key 2 is of type CLOB.

The second SELECT statement uses LLD_LobType to retrieve the columns
containing CLOB type data. The second SELECT statement casts the slo column
(which is of type lld_lob) to retrieve CLOB type data.

The lild_locator type
The 1ld_locator type defines a large object. It identifies the type of large object and
points to its location. It contains three fields:

lo_protocol
Identifies the kind of large object.

lo_pointer
A pointer to a smart large object or is NULL if the large object is any kind of
large object other than a smart large object.

lo_location
A pointer to the large object, if it is not a smart large object. Set to NULL if it
is a smart large object.

The examples in this section show how to:

Insert an lld_locator row into a table

The following example creates a table with an lld_locator row and shows how to
insert a large object into the row.

Chapter 4. Large Object Locator example code 4-3

4-4

--Create Tobs table
create table lobs (key int primary key, 1o 11d_Tocator);

-- Create an 11d_Tocator for an existing server file
insert into lobs
values (1, "row('ifx_file',null,'/tmp/quotel.txt')");

Figure 4-4. Insert an lld_locator row into a table

The INSERT statement inserts an instance of an 1ld_locator row into the lobs table.
The protocol in the first field, IFEX_FILE, identifies the large object as a server file.
The second field, lo_pointer, is used to point to a smart large object. Because the
object is a server file, this field is NULL. The third field identifies the server file as
quotel.txt.

Create a smart large object

The following example creates a smart large object containing CLOB type data. The
11d_create function in figure creates a smart large object. The first parameter to
11d_create uses the IFX_CLOB protocol to specify CLOB as the type of object to
create. The other two arguments are NULL.

The 11d_create function creates the CLOB type large object and returns an
11d_locator row that identifies it.

The insert statement inserts in the lobs table the 1ld_locator row returned by
11d_create.

--Create a new clob using 11d_create
insert into lobs
values (2, 11d_create ("row('ifx_clob',null,null)"::11d _locator));

Figure 4-5. Using Ild_create
Copy a client file to a large object

The following example uses the lobs table created in .

In the example, the 11d_fromclient function in the first SELECT statement, copies
the client file, quote2.txt, to an 1ld_locator row in the lobs table.

IBM Informix Database Extensions User's Guide

-- Copy a client file to an 11d_locator
select 11d_fromclient ('quote2.txt', 1o) from Tobs where key = 2;

(expression) ROW('IFX_CLOB ",'clob: ffffffffabb7c8d9000000020000000300
0000090000001a0000000000010000000000000ad3¢c3dc000000000bO6eec8000
00000005c4e6000607 fdc000000000000000000000000" ,NULL)

select To.lo_pointer::clob from lobs where key = 2;

(expression)
To be or not to be,
that is the question.

Figure 4-6. Copy a client file to a large object

The 11d_fromclient function returns a pointer to the 1ld_locator row that identifies
the data copied from the large object. The first SELECT statement returns this
11d_locator row.

The next SELECT statement selects the lo_pointer field of the 1ld_locator row,
lo.T1o_pointer, and casts it to CLOB type data. The result is the data itself.

Copy a large object to a large object

The following example uses the lobs table created in [Figure 4-4 on page 4-4}

The 11d_copy function in the example copies large object data from one 1ld_locator
type row to another.

-- Copy an 11d_locator to an 11d_locator
select 11d_copy (S.1o, D.1o) from Tobs S, Tobs D where S.key = 1 and D.key = 2;

(expression) ROW('IFX_CLOB ",'clob: ffffffffabb7c8d9000000020000000300
0000090000001a0000000000010000000000000ad3c3dcOO0000000bO6eec8000
00000005c4e6000607 fdc000000000000000000000000 "' ,NULL)

select To.lo_pointer::clob from Tobs where key = 2;

(expression)
Ask not what your country can do for you,
but what you can do for your country.

Figure 4-7. Copy a large object to a large object

The second SELECT statement casts 1o.1o_pointer to a CLOB type to display the
data in the column.

Copy large object data to a client file

The following example uses the lobs table created in [Figure 4-4 on page 4-4 The
11d_toclient function in|“Copy large object data to a client file”| copies large object
data to the output.txt client file. This function returns t when the function
succeeds. The SELECT statement returns t, or true, indicating that the function

Chapter 4. Large Object Locator example code 4-5

returned successfully.

-- Copy an 11d_locator to a client file
select 11d_toclient (lo, 'output.txt') from Tobs where key = 2;

(expression)

t

Figure 4-8. Copy large object data to a client file
Create and delete a server file

The following example shows how to create a server file and then delete it.

The 11d_copy function copies a large object to another large object. The 1ld_locator
rows for the source and destination objects use the IFX_FILE protocol to specify a
server file as the type of large object. The 1ld_copy function returns an Ild_locator
row that identifies the copy of the large object.

The INSERT statement inserts this row into the lobs table using 3 as the key.

-- Create and delete a new server file
insert into Tobs
values (3, 11d_copy (
"row('ifx_file',null,'/tmp/quote2.txt')"::11d locator,
"row('ifx_file',null,"'/tmp/tmp3')"::11d_locator));

select To from Tobs where key = 3;
To ROW('IFX_FILE " ,NULL, '/tmp/tmp3")

select 11d_delete (1o) from Tobs where key = 3;
(expression)

t

delete from lobs where key = 3;

Figure 4-9. Create and delete a server file

The first SELECT statement returns the 1ld_locator row identifying the large object.

The 11d_delete function deletes the large object itself. The DELETE statement
deletes the 1ld_locator row that referenced the large object.

The API interface

4-6

This section contains one example that shows how to use the Large Object Locator
functions to create a user-defined routine. This routine copies part of a large object
to another large object.

IBM Informix Database Extensions User's Guide

Create the lld_copy_subset function

The example shows the code for the 1ld_copy_subset user-defined routine. This
routine copies a portion of a large object and appends it to another large object.

/* LLD SAPI interface example x/

#include <mi.h>
#include <1ldsapi.h>

/* append a (small) subset of a large object to another large object x/

MI_ROW=*
11d_copy_subset (MI_ROW* src, /* source LLD Locator =/
MI_ROW* dest, /* destination LLD_Locator =/
mi_int8+ offset, /* offset to begin copy at */
mi_integer nbytes, /* number of bytes to copy */
MI_FPARAMx fp)
{
MI_ROWx new_dest; /* return value */
MI_CONNECTION* conn; /* database server connection */
mi_string= buffer; /* 1/0 buffer =/
LLD_I0= io; /* open large object descriptor */
mi_int8 new_offset; /* offset after seek */
mi_integer bytes_read; /* actual number of bytes copied */
mi_integer error; /* error argument x/
mi_integer _error; /* extra error argument x/
mi_boolean created dest; /* did we create the dest large object? */

/* initialize variables =/
new_dest = NULL;

conn = NULL;

buffer = NULL;

io = NULL;

error = LLD_E OK;
created_dest = MI_FALSE;

/* open a connection to the database server %/
conn = mi_open (NULL, NULL, NULL);
if (conn == NULL)

goto bad;

/* allocate memory for I/0 */
buffer = mi_alloc (nbytes);
if (buffer == NULL)

goto bad;

/* read from the source large object */
jo = 11d_open (conn, src, LLD _RDONLY, &error);
if (error != LLD_E_OK)

goto bad;

11d_seek (conn, io, offset, LLD SEEK SET, &new_offset, &error);
if (error != LLD_E_OK)
goto bad;

Chapter 4. Large Object Locator example code

bytes_read = 11d_read (conn, io, buffer, nbytes, &error);
if (error != LLD_E_OK)
goto bad;

11d_close (conn, io, &error);
if (error != LLD_E_OK)
goto bad;

/* write to the destination large object =/
new_dest = 11d_create (conn, dest, &error);
if (error == LLD_E_OK)

created_dest = MI_TRUE;
else if (error != LLD_E_EXISTS)

goto bad;

io = 11d_open (conn, new dest, LLD WRONLY | LLD APPEND | LLD SEQ, &error);
if (error != LLD_E_OK)
goto bad;

11d_write (conn, io, buffer, bytes read, &error);
if (error != LLD_E_OK)
goto bad;

11d_close (conn, io, &error);
if (error != LLD_E _OK)
goto bad;

/* free memory =/
mi_free (buffer);

/* close the database server connection */
mi_close (conn);

return new_dest;

/* error clean up */
bad:
if (io !'= NULL)
11d_close (conn, io, & error);
if (created_dest)
11d_delete (conn, new_dest, & error);
if (buffer != NULL)
mi_free (buffer);
if (conn != NULL)
mi_close (conn);
11d_error_raise (conn, error);
mi_fp_setreturnisnull (fp, 0, MI_TRUE);
return NULL;
}

Figure 4-10. The lld_copy_subset function

The 11d_copy_subset function defines four parameters:
* A source large object (lld_locator type)

* A destination large object (lld_locator type)

* The byte offset to begin copying

* The number of bytes to copy

It returns an 1ld_locator, identifying the object being appended.

The mi_open function opens a connection to the database. A buffer is allocated for
1/0.

4-8 IBM Informix Database Extensions User's Guide

The following Large Object Locator functions are called for the source object:

11d_open
OpensS the source object

11d_seek
Seeks to the specified byte offset in the object

11d_read
Reads the specified number of bytes from the object

11d_close
Closes the object

The following Large Object Locator functions are called for the destination object:
* 1lld_open, to open the destination object

* 1ld_write, to write the bytes read from the source into the destination object

* 1ld_close, to close the destination object

The mi_close function closes the database connection.

This function also contains error-handling code. If the database connection cannot
be made, if memory cannot be allocated, or if any of the Large Object Locator
functions returns an error, the error code is invoked.

The error code handling code (bad) does one or more of the following actions, if
necessary:

* Closes the source file

* Deletes the destination file

* Frees the buffer

* Closes the database connection
* Raises an error

You should establish a callback for exceptions (this example code, in the interest of

simplicity and clarity, does not do so). See the IBM Informix DataBlade API
Programmer’s Guide for more information.

The lld_copy_subset routine

The following example shows how to use the 1ld_copy_subset user-defined routine
defined in the previous section.

Chapter 4. Large Object Locator example code 4-9

4-10

-- Using the 11d_copy_subset function

create function 11d_copy_subset (11d_locator, 11d_locator, int8, int)
returns 11d_Tlocator
external name '/tmp/sapidemo.so’
language c;

insert into Tobs
values (5, 11d_copy subset (
"row('ifx_file',null,'/tmp/quote3.txt')"::11d_locator,
"row('ifx_clob',null,nu11)"::11d_Tocator, 20, 70));

select To from lobs where key = 5;
select lo.lo_pointer::clob from Tobs where key = 5;

Figure 4-11. The lld_copy_subset routine

The 11d_copy_subset function copies 70 bytes, beginning at offset 20 from the
quote3.txt file, and appends them to a CLOB object. The INSERT statement inserts

this data into the lobs table.

The first SELECT statement returns the 1ld_locator that identifies the newly copied
CLOB data. The second SELECT statement returns the data itself.

IBM Informix Database Extensions User's Guide

Chapter 5. Large Object Locator error handling

This chapter describes how to handle errors when calling Large Object Locator
functions. It also lists and describes specific Large Object Locator errors.

There are two methods by which Large Object Locator returns errors to you:
* Through the error argument of a Large Object Locator function
* Through an exception

Both the API and ESQL/C versions of Large Object Locator functions use the error
argument. Exceptions are returned only to the API functions.

Large Object Locator errors

All Large Object Locator functions use the return value to indicate failure.
Functions that return a pointer return NULL in the event of failure. Functions that
return an integer return -1.

Large Object Locator functions also provide an error code argument that you can
test for specific errors. You can pass this error code to 11d_error_raise()—which
calls mi_db_error_raise if necessary to generate an MI_EXCEPTION—and
propagate the error up the calling chain.

For ESQL/C functions, the LLD_E_SQL error indicates that an SQL error occurred.
You can check the SQLSTATE variable to determine the nature of the error.

When an error occurs, Large Object Locator functions attempt to reclaim any
outstanding resources. You should close any open large objects and delete any
objects you have created that have not been inserted into a table.

A user-defined routine that directly or indirectly calls a Large Object Locator
function (API version) can register a callback function. If this function catches and
handles an exception and returns control to the Large Object Locator function,
Large Object Locator returns the LLD_E_EXCEPTION error. You can handle this
error as you would any other: close open objects and delete objects not inserted in
a table.

Error handling exceptions

You should register a callback function to catch exceptions generated by
underlying DataBlade API functions called by Large Object Locator functions. For
example, if you call 11d_read() to open a smart large object, Large Object Locator
calls the DataBlade API mi_lo_read() function. If this function returns an error and
generates an exception, you must catch the exception and close the object you have
open for reading.

Use the mi_register_callback() function to register your callback function. The

callback function should track all open large objects, and in the event of an
exception, close them. You can track open large objects by creating a data structure

© Copyright IBM Corp. 2005, 2011 5-1

with pointers to LLD_IO structures, the structure that the 11d_open() function
returns when it opens an object. Use the 11d_close() function to close open large
objects.

Error codes

This section lists and describes the Large Object Locator error codes.

Error code SQL state Description

LLD_E_INTERNAL ULLDO Internal Large Object Locator error. If you receive this error, call IBM
Informix Technical Support.

LLD_E_OK N.A. No error.

LLD_E_EXCEPTION N.A. MI_EXCEPTION raised and handled. Applies to API only.

LLD_E_SQL N.A. SQL error code in SQLSTATE/SQLCODE. Applies to ESQL/C interface only.

LLD_E_ERRNO ULLD1 OS (UNIX/POSIX)

LLD_E_ROW ULLD2 Passed an invalid MI_ROW type. The type should be 1ld_locator. This is an
API error only.

LLD_E_PROTOCOL ULLD3 Passed an invalid or unsupported lo_protocol value.

LLD_E_LOCATION ULLD4 Passed an invalid lo_location value.

LLD_E_EXISTS ULLD5 Attempted to (re)create an existing large object.

LLD_E_NOTEXIST ULLD6 Attempted to open a nonexistent large object.

LLD_E_FLAGS ULLD7 Used invalid flag combination when opening a large object.

LLD_E_LLDIO ULLDS8 Passed a corrupted LLD_IO structure.

LLD_E_RDONLY ULLD9 Attempted to write to a large object that is open for read-only access.

LLD_E_WRONLY ULLDA Attempted to read from a large object that is open for write-only access.

LLD_E_SEQ ULLDB Attempted to seek in a large object that is open for sequential access only.

LLD_E_WHENCE ULLDC Invalid whence (seek) value.

LLD_E_OFFSET ULLDD Attempted to seek to an invalid offset.

N.A. ULLDO Specified an invalid 11d_lob input string.

N.A. ULLDP Specified an invalid 11d_lob type.

N.A. ULLDQ Attempted an invalid cast of an lld_lobtype into a BLOB or CLOB type.

N.A. ULLDR Used an invalid import file specification with the 1ld_lob type.

5-2 IBM Informix Database Extensions User's Guide

Part 2. MQ Messaging

IBM WebSphere® MQ (WMQ) messaging products provide an infrastructure for
distributed, asynchronous communication of data in a distributed, heterogeneous
environment. The WMQ message queue allows you to easily exchange information
across platforms.

The IBM Informix MQ DataBlade Module (MQ DataBlade) provides the

functionality to exchange messages between IBM Informix databases and WMQ
message queues.

© Copyright IBM Corp. 2005, 2011

IBM Informix Database Extensions User's Guide

Chapter 6. About MQ messaging

You can use either functions or tables to communicate between a database server
application and an IBM WebSphere MQ queue.

MQ messaging has the following limitations and requirements:
* Each database server instance can connect to only one WMQ queue manager.

* The database server and IBM WebSphere MQ must be installed on the same
computer.

* Non-logged databases are not supported.
¢ ANSI databases are not supported.

WMQ platform requirements are independent of your database server platform
requirements. For more information about respective platform requirements, see
the WMQ documentation and your machine notes.

For more information about using MQ functions, see [Chapter 8, “MQ messaging]|
functions,” on page 8-1|For more information about MQ tables, see |Chagter 7,|
“MQ messaging tables,” on page 7-1]

Related reference

(Chapter 8, “MQ messaging functions,” on page 8-1|

(Chapter 7, “MQ messaging tables,” on page 7-1|

Prepare to use MQ messaging

Before you can use MQ messaging, you must install and configure IBM WebSphere
MQ (WMQ) and configure your database server for use with WMQ.

To use MQ messaging, you perform these tasks:

1. Install the database server and WMQ on the same computer.
2. Verify that MQ messaging is working correctly.

3. Use MQ functions or tables in your application.

Install and configure WMQ
You must install and configure IBM WebSphere MQ before using MQ messaging.

Information about how to install WMQ is included in the WMQ product
documentation.

A WMQ queue manager is a system program that provides queuing services to
applications. It provides an application programming interface for programs to
access messages on the queues managed by a WMQ message broker. Applications
can send and receive messages to and from a queue.

As necessary, you need to complete the following WMQ queue configuration:
* Create a queue manager.

* Create a queue.

* Create a subscriber queue.

© Copyright IBM Corp. 2005, 2011 6-1

For instructions on how to create a queue manager, a queue, and a subscriber
queue, see the platform-specific documentation received with your WMQ product.

Configure your database server for MQ messaging

You must configure your Informix database for MQ messaging.

To configure for MQ messaging;:

1. Add user informix to the mqm group. Only members of the mqm group are
authorized to access to WMQ queues. For more information, see the
platform-specific documentation for WMQ.

2. Shut down and restart IBM Informix.

3. Create an mq VP class with the noyield option. Create the VP class in one of
the following two ways:

* Run onmode -p +1 mq

* Manually change the onconfig file to add the following parameter to your
configuration file and then shut down and restart IBM Informix:

VPCLASS mg,noyield,num=1

Tip: If the VP class is not created, the following error will be returned when you
attempt to use the MQ DataBlade Module:

9799: User define routine (mgread) VP context switch failed.

Register the MQ messaging extension

Use BladeManager to register the MQ messaging extension in each database from
which you want to access WMQ. See the IBM Informix DataBlade Module Installation
and Registration Guide for more information.

Information about how to unregister your DataBlade is also available in the IBM
Informix DataBlade Module Installation and Registration Guide. During unregistration,
the "informix".mqi* tables are dropped. You must unload the table data and
re-load the tables again.

Verification

After completely the necessary configuration, verify that MQ messaging is working
correctly.

MQ functions must be used within a transaction. For functions that use the
EXECUTE statement, you must explicitly start the transaction with a BEGIN
WORK statement. For functions that use the SELECT, UPDATE, DELETE, or
INSERT statements, you do not need to use a BEGIN WORK statement.

For more information about all of the functions used below, see [Chapter 8, “MQ|
Imessaging functions,” on page 8-1|

Insert data into a queue

The service IDS.DEFAULT.SERVICE specifies the IDS.DEFAULT.QUEUE. Before
inserting data into the queue, you should check the size of the queue.

After inserting the data, you should check the queue to confirm that the data was
added.

6-2 IBM Informix Database Extensions User's Guide

BEGIN WORK;
EXECUTE FUNCTION MQSend('IDS.DEFAULT.SERVICE', 'IDS.DEFAULT.POLICY', 'hello queue');

(expression) 1
1 row(s) retrieved.

COMMIT WORK;

Read an entry from a queue
The MQRead() function reads a message from the queue but does not remove it.

After reading the message, the queue has not been changed:
BEGIN WORK;

EXECUTE FUNCTION MQRead('IDS.DEFAULT.SERVICE', 'IDS.DEFAULT.POLICY');
(expression) hello queue
1 row(s) retrieved.

COMMIT WORK;

The following example reads a message from the queue and inserts it into a
database table:

INSERT into msgtable values (MQRead('IDS.DEFAULT.SERVICE', 'IDS.DEFAULT.POLICY'));
1 row(s) inserted.

SELECT * from msgtable;

msg hello queue

1 row(s) retrieved.

COMMIT WORK;

Receive an entry from a queue
The MQReceive() function removes the message from the queue.

The following example shows the removal of message from the queue:
BEGIN WORK;

EXECUTE FUNCTION MQReceive('IDS.DEFAULT.SERVICE', 'IDS.DEFAULT.POLICY');
(expression) hello queue
1 row(s) retrieved.

COMMIT WORK;

Publish and subscribe to a queue

Publishing and subscribing to a queue is an effective way of exchanging
information between multiple users.

MQ messaging interacts directly with the WMQ Publish/Subscribe component.

The component allows a message to be sent to multiple subscribers based on a
topic. Users subscribe to a topic, and when a publisher inserts a message with that

Chapter 6. About MQ messaging ~ 6-3

6-4

topic into the queue, the WMQ broker routes the messages to all of the queues of
each specified subscriber. Then, the subscriber retrieves the message from the
queue.

Subscribe to a queue
To subscribe to a queue, use the MQSubscribe() function.

The following example shows how a database application subscribes to a queue to
receive messages for a topic named “Weather”:

--- before subscribe

Topic: MQ/TIMESERIES.QUEUE.MANAGER /StreamSupport

Topic: MQ/S/TIMESERIES.QUEUE.MANAGER /Subscribers/Identities/*
Topic: MQ/S/TIMESERIES.QUEUE.MANAGER /Subscribers/Identities/*
Topic: MQ/S/TIMESERIES.QUEUE.MANAGER /Subscribers/Identities/*

BEGIN WORK;

EXECUTE FUNCTION MQSubscribe('AMT.SAMPLE.SUBSCRIBER', 'AMT.SAMPLE.PUB.SUB.POLICY',
'"Weather');

(expression) 1
1 row(s) retrieved.

--- after subscribe

Topic: MQ/TIMESERIES.QUEUE.MANAGER /StreamSupport

Topic: MQ/S/TIMESERIES.QUEUE.MANAGER /Subscribers/Identities/=
Topic: Weather

Topic: MQ/S/TIMESERIES.QUEUE.MANAGER /Subscribers/Identities/*
Topic: MQ/S/TIMESERIES.QUEUE.MANAGER /Subscribers/Identities/*

COMMIT WORK;

Unsubscribe from a queue
To unsubscribe from a queue, use the MQUnsubscribe() function.

For example, specify:
BEGIN WORK;

EXECUTE FUNCTION MQUnsubscribe('AMT.SAMPLE.SUBSCRIBER', 'AMT.SAMPLE.PUB.SUB.POLICY',
"Weather'); (

expression) 1

1 row(s) retrieved.

Topic: MQ/TIMESERIES.QUEUE.MANAGER /StreamSupport

Topic: MQ/S/TIMESERIES.QUEUE.MANAGER /Subscribers/Identities/*
Topic: MQ/S/TIMESERIES.QUEUE.MANAGER /Subscribers/Identities/*
Topic: MQ/S/TIMESERIES.QUEUE.MANAGER /Subscribers/Identities/*

COMMIT WORK;

Publish to a queue
To publish to a queue, use the MQPublish() function.

For example, specify:

BEGIN WORK;

EXECUTE FUNCTION MQPublish('IDS.DEFAULT.SERVICE', 'IDS.DEFAULT.POLICY', 'Weather');
(expression) 1

COMMIT WORK;

IBM Informix Database Extensions User's Guide

Chapter 7. MQ messaging tables

You use Virtual-Table Interface (VTI) access method to access WMQ queues using
IBM Informix table semantics.

VTI binds tables to WMQ queues, creating transparent access to WMQ objects and
enabling users to access the queue as if it were a table. For more information about
VTI, see the IBM Informix Virtual-Table Interface Programmer’s Guide.

Related reference

Chapter 6, “About MQ messaging,” on page 6-1]

Schema mapping

When a table is bound to a WMQ queue, the schema is mapped directly to WMQ

objects.

The following table shows the mapping of schema to WMQ objects.

Table 7-1. Schema mapping to WMQ objects

Name Type Description

msg Ivarchar(maxMessage) The message being sent or received. The default
size is 4,000; the limit is 32,628.

correlid varchar(24) The correlation ID, which can be used as a
qualifier

topic varchar(40) The topic used with publisher or subscriber,
which can be used as a qualifier

gname varchar(48) The name of the queue

msgid varchar(12) The message ID

msgformat | varchar(8) The message format

General table behavior

WMQ metadata tables operate in specified ways.

For every table created, the following applies:

e The PUBLIC group is limited to SELECT privileges. Only the database
administrator and the table creator have INSERT privileges.

* When a function is first invoked in each user session, WMQ metadata tables are
read and their values are cached in the PER_SESSION memory. The cache is not
refreshed until the session closes or the database is closed and reopened.

Create and bind a table

Use the MQCreateVtiReceive() function to create a table and bind it to a queue.

The following example creates a table named vtimgq, and binds it to the queue
defined by service IDS.DEFAULT.SERVICE and policy IDS.DEFAULT.POLICY.

© Copyright IBM Corp. 2005, 2011

BEGIN WORK;

EXECUTE FUNCTION MQICreateVtiReceive ("VtiMQ",
"IDS.DEFAULT.SERVICE", "IDS.DEFAULT.POLICY");

Using a SELECT statement on a table created with MQCreateVtiReceive(), results
in a message is received from the table, which is the equivalent of calling the
MOQReceive() function on the queue. For both functions, the messages selected are
removed from the queue.

To browse the messages on the queue without removing the messages from the
queue, use the MQCreateVtiRead() function. In the following example,
MOQCreateVtiRead() binds the table vtimq to a queue:

BEGIN WORK;

EXECUTE FUNCTION MQCreateVtiRead (vtimg, read-service, policy, maxMessage)

For complete information about the MQCreateVtiRead() or MQCreateVtiReceive()
functions, see [Chapter 8, “MQ messaging functions,” on page 8-1)

Use INSERT and SELECT

After a table is bound to a queue, use INSERT to insert items into the WMQ
queue, and SELECT to retrieve WMQ messages.

Using the example with table vtimq above, the following example inserts a
message into the msg column of VtiMQ and into the queue described by
IDS.DEFAULT.SERVICE service and policy IDS.DEFAULT.POLICY:

INSERT into VtiMQ (msg) values ('PUT on queue with SQL INSERT');
1 row(s) inserted.

Use a SELECT statement to display the message:
SELECT * from VtiMQ;

msg PUT on queue with SQL INSERT
correlid

topic

gname IDS.DEFAULT.QUEUE

msgid AMQ

msgformat MQSTR

Retrieve the queue element

Use the MQRead() function to retrieve the queue element.

For example:
BEGIN WORK;

EXECUTE FUNCTION MQRead('IDS.DEFAULT.SERVICE', 'IDS.DEFAULT.POLICY');
(expression) PUT on queue with SQL INSERT

1 row(s) retrieved.

COMMIT WORK

Special considerations

Binding a table to a queue creates a useful interface between the queue and the
database. However, due to the inherent limitations of a queue, not all database
functionality can be used.

7-2 IBM Informix Database Extensions User's Guide

When a message is fetched from a queue, the default database processing is to
dequeue, or remove, it. Every time a queue is read by the database, the data within
the queue changes. This behavior differs from a standard read by a database, in
which the data does not change. Supplying only a mapping that enables users to
browse, where reading does not remove the queue, eliminates a major queue
functionality. Enabling both processing models provides more options and requires
corresponding responsibility.

By default, the top element is removed when a message is fetched from a queue.
WMQ allows messages to be retrieved based upon a correlid. A correlid is a
correlation identifier that can be used as a key, for example, to correlate a response
message to a request message. If the correlid of the message matches the correlid
of a request, the message is returned. If the VTI table is qualified with the correlid
column, the correlid qualifier is passed into the WMQ request to fetch a value.

In the following example, a queue has three messages and only the second
message contains a correlid, which is named 'fred'. The following statement
removes all three messages from the queue and places them in a table named
flounder:

INSERT into flounder (deQueuedMsg) values (SELECT msg from vtimgq);

When execution completes, no messages remain on the queue and three new rows
appear in the flounder table.

The following example qualifies the vtimq table:

INSERT into flounder (deQueuedMsg) values (SELECT msg from vtimg where
correlid = 'fred');

The above statement creates two groups of messages:
* Messages that failed the correlid = 'fred' qualification

* Messages that passed the correlid = 'fred' qualification. The one message that
passed the qualification is located in the flounder table.

Statements including qualifiers other than equality (=) or NULL return an error.
Statements including NULL return unexpected results.

Table errors

Tables that are mapped to WMQ can generate non-database errors if the
underlying WMQ request fails.

In the example below, a VTI mapping was established using a bad service
definition, and the error was not recognized until a SELECT statement was
executed against the table.

BEGIN WORK;

EXECUTE FUNCTION MQCreateVtiReceive('vtiTable',"BAD.SERVICE");
SELECT * from vtitable;

(MQB15) - FUNCTION:MqiGetServicePolicy, SERVICE:BAD.SERVICE,
POLICY:IDS.DEFAULT.POLICY ::

BAD.SERVICE is not present in the database "informix".MQISERVICE table.
Error in line 1

Near character position 23

Chapter 7. MQ messaging tables ~ 7-3

7-4 IBM Informix Database Extensions User's Guide

Chapter 8. MQ messaging functions

MQ messaging functions to enable IBM Informix applications to exchange data
directly between the application and WebSphere MQ.

All MQ messaging functions are created with a stack size of 64K. These MQ
messaging functions can be executed within SQL statements and should have an
explicit or implicit transactional context.

All MQ messaging functions or MQ messaging-based VTI tables can be invoked
only on local (sub-ordinator) servers. Using MQ messaging functions or MQ
messaging-based VTI tables on a remote server will return an error. MQ messaging
functions cannot be used when Informixis participating as a resource manager in
an externally-managed global XA transaction.

MQ messaging functions use the "informix".mqi* service and policy tables to
gmng q policy

provide default values if the optional policy and service parameters are not

specified.
Related reference

(Chapter 6, “About MQ messaging,” on page 6-1|

Service and policy tables

MQ messaging functions use three service and policy tables.

Most of the MQ messaging functions have an optional policy and service parameter.
If the parameter is not passed, the default value is used. The following table lists
the default values for these parameters.

Table 8-1. Default policy and service values

Type Name Resources Status
Service IDS.DEFAULT.SERVICE IDS.DEFAULT.QUEUE created
Service IDS.DEFAULT.SUBSCRIBER SYSTEM.BROKER.CONTROL.QUEUE system
default

Service IDS.DEFAULT.PUBLISHER SYSTEM.BROKER.DEFAULT.STREAM system
default

Service IDS.DEFAULT.SUBSCRIBER.RECEIVER | IDS.DEFAULT.SUBSCRIBER.RECEIVER.QUEUE created
Policy IDS.DEFAULT.POLICY connection name :default queuemanager system
default

Publisher IDS.DEFAULT.PUBLISHER sender:IDS.DEFAULT.PUBLISHER system
default

Subscriber | IDS.DEFAULT.SUBSCRIBER sender:IDS.DEFAULT.SUBSCRIBER receiver: system
IDS.DEFAULT.SUBSCRIBER.RECEIVER default

Each service definition includes a queue specification. The service can be mapped
any queue. For testing purposes, you can create the following queues using the

script idsdefault.tst:

* IDS.DEFAULT.QUEUE queue for the IDS.DEFAULT.SERVICE

© Copyright IBM Corp. 2005, 2011

8-1

* IDS.DEFAULT.SUBSCRIBER.RECIVER.QUEUE queue for the
IDS.DEFAULT.SUBSCRIBER

The script idsdefault.tst is located in the MQBLADE directory. Use the runmgsc
utility to execute commands in idsdefault.tst.

If the QueueManager is not a default queue manager, you must update the
queuemanager column of the informix.mqiservice table by updating servicename
to IDS.DEFAULT.SERVICE, IDS.DEFAULT.PUBLISHER,
IDS.DEFAULT.SUBSCRIBER and IDS.DEFAULT.SUBSCRIBER.RECEIVER.

During registration, the following default values are inserted into the
"informix".mqi* tables:

INSERT INTO ""informix"".mgiservice(servicename, queuemanager, queuename)
VALUES('IDS.DEFAULT.SERVICE', '', 'IDS.DEFAULT.QUEUE');

INSERT INTO ""informix"".mqgiservice(servicename, queuemanager, queuename)
VALUES('IDS.DEFAULT.PUBLISHER', "', 'SYSTEM.BROKER.DEFAULT.STREAM');

INSERT INTO ""informix"".mgiservice(servicename, queuemanager, queuename)
VALUES('IDS.DEFAULT.SUBSCRIBER', '', 'SYSTEM.BROKER.CONTROL.QUEUE');

INSERT INTO ""informix"".mgiservice(servicename, queuemanager, queuename)
VALUES('IDS.DEFAULT.SUBSCRIBER.RECEIVER', '',
"IDS.DEFAULT.SUBSCRIBER.RECEIVER.QUEUE')

INSERT INTO ""informix"".mqipubsub(pubsubname, servicebroker, receiver,
psstream, pubsubtype)
VALUES('IDS.DEFAULT.SUBSCRIBER', 'IDS.DEFAULT.SUBSCRIBER',
'"IDS.DEFAULT.SUBSCRIBER.RECEIVER',
'SYSTEM.BROKER.DEFAULT.STREAM', 'Subscriber');

INSERT INTO ""informix"".mqipubsub(pubsubname, servicebroker, receiver,
psstream, pubsubtype)
VALUES (' IDS.DEFAULT.PUBLISHER', 'IDS.DEFAULT.PUBLISHER', "', '',
'"PubTisher');

INSERT INTO ""informix"".mgipolicy(policyname)
VALUES('IDS.DEFAULT.POLICY');

INSERT INTO ""informix"".mgipolicy(policyname)
VALUES('IDS.DEFAULT.PUB.SUB.POLICY');

The "informix".mgqiservice table

The "informix".mqiservice table contains the service definitions for service point
(sender/receiver) attributes.

The "informix".mgqiservice table has the following schema:

CREATE TABLE "informix".mgiservice
servicename LVARCHAR(256) ,
queuemanager VARCHAR(48) NOT NULL,

queuename VARCHAR(48) NOT NULL,
defaultformat VARCHAR(8) default ' ',
cesid VARCHAR(6) default ' ',

PRIMARY KEY (servicename));

The attributes are defined as follows:

servicename
The service name used in the MQ functions.

8-2 IBM Informix Database Extensions User's Guide

queuemanager
The queue manager service provider.

queuename
The queue name to send the message to or receive the message from.

defaultformat
Defines the default format.

cesid The coded character set identifier of the destination application.

The "informix".mqipubsub table

The "informix".mqipubsub table contains publisher definitions.

The "informix".mqipubsub table has the policy definitions for the following
attributes:

* Distribution list
* Receive

* Subscriber

* Publisher

The "informix".mqipubsub table has the following schema:
CREATE TABLE "informix".mqipubsub

pubsubname LVARCHAR(256) NOT NULL UNIQUE,

servicebroker LVARCHAR(256),

receiver LVARCHAR(256) default ' ',

psstream LVARCHAR(256) default ' ',

pubsubtype VARCHAR(20) CHECK (pubsubtype IN ('Publisher', 'Subscriber')),

FOREIGN KEY (servicebroker) REFERENCES "informix".mgiservice(servicename));

The attributes are defined as follows:

pubsubname
is the name of the publish/subscribe service.

servicebroker
The service name of the publish/subscribe service.

receiver
The queue on which to receive messages after subscription.

psstream
The stream coordinating the publish/subscribe service.

pubsubtype
The service type.

The "informix".mqipolicy table
The "informix".mqipolicy table contains policy definitions.

The "informix".mqipolicy table has the policy definitions for the following
attributes:

* General
e Publish
* Receive
* Reply
* Send

Chapter 8. MQ messaging functions 8-3

e Subscribe

The "informix".mqipolicy table has the following schema:
CREATE TABLE "informix".mqipolicy

policyname VARCHAR(128) NOT NULL,

messagetype CHAR(1) DEFAULT 'D' CHECK (messagetype IN ('D', 'R')),

messagecontext CHAR(1) DEFAULT 'Q' CHECK (messagecontext IN
('Q",'P', ', 'N')),

snd_priority CHAR(1) DEFAULT 'T' CHECK (snd_priority IN
(|0|’|1|’|2|,|3|’|4|’ I5I,I6l,I7I,I8|,I9|, ITI)),

snd_persistence CHAR(1) DEFAULT 'T' CHECK (snd_persistence IN
(IYI,INI,ITI)),

snd_expiry INTEGER DEFAULT -1 CHECK (snd_expiry > 0 OR snd_expiry

snd_retrycount
snd_retry_intrvl
snd_newcorrelid
snd_resp_correlid
snd_xcption_action

snd_report_data

snd_rt_exception
snd_rt_coa
snd_rt_cod
snd_rt_expiry
reply_q
reply_gmgr
rcv_truncatedmsg
rcv_convert
rcv_poisonmsg
rcv_openshared

rcv_wait_intrvl
pub_suppressreg
pub_anonymous
pub_publocal
pub_direct
pub_correlasid
pub_retain
pub_othersonly
sub_anonymous
sub_sublocal
sub_newpubsonly
sub_pubonreqonly
sub_correlasid
sub_informifret
sub_unsuball

= -1)9
INTEGER DEFAULT 0 CHECK (snd_retrycount >= 0),
INTEGER DEFAULT 1000 CHECK (snd_retry intrvl >= 0),
CHAR(1) DEFAULT 'N' CHECK (snd_newcorrelid IN ('Y','N')),
CHAR(1) DEFAULT 'M' CHECK (snd_resp_correlid IN ('M','C")),
CHAR(1) DEFAULT 'Q' CHECK (snd_xcption_action IN
('Q','n")),
CHAR(1) DEFAULT 'R' CHECK (snd_report_data IN
(IRI’IDI’IFI))’
CHAR(1) DEFAULT 'N' CHECK (snd_rt_exception IN ('Y','N')),
CHAR(1) DEFAULT 'N', CHECK (snd_rt_coa IN ('Y','N')),
CHAR(1) DEFAULT 'N' CHECK (snd_rt cod IN ('Y','N")),
CHAR(1) DEFAULT 'N' CHECK (snd_rt_expiry IN ('Y','N")),
VARCHAR(48) DEFAULT 'SAME AS INPUT_Q',
VARCHAR (48) DEFAULT 'SAME AS INPUT_QMGR',
CHAR(1) DEFAULT 'N' CHECK (rcv_truncatedmsg IN ('Y','N')),
CHAR(1) DEFAULT 'Y' CHECK (rcv_convert IN ('Y','N")),
CHAR(1) DEFAULT 'N' CHECK (rcv_poisonmsg IN ('Y','N")),
CHAR(1) DEFAULT 'Q' CHECK (rcv_openshared IN
(IYI,INI,IQI)),
INTEGER DEFAULT 0 CHECK (rcv_wait_intrvl >= -1),
CHAR(1) DEFAULT 'Y' CHECK (pub_suppressreg IN ('Y','N')),
CHAR(1) DEFAULT 'N' CHECK (pub_anonymous IN ('Y','N")),
CHAR(1) DEFAULT 'N' CHECK (pub_publocal IN ('Y','N')),
CHAR(1) DEFAULT 'N' CHECK (pub_direct IN ('Y','N")),
CHAR(1) DEFAULT 'N' CHECK (pub_correlasid IN ('Y','N")),
CHAR(1) DEFAULT 'N' CHECK (pub_retain IN ('Y','N")),
CHAR(1) DEFAULT 'N' CHECK (pub_othersonly IN ('Y','N")),
CHAR(1) DEFAULT 'N' CHECK (sub_anonymous IN ('Y','N")),
CHAR(1) DEFAULT 'N' CHECK (sub_sublocal IN ('Y','N')),
CHAR(1) DEFAULT 'N' CHECK (sub_newpubsonly IN ('Y','N'
CHAR(1) DEFAULT 'N' CHECK (sub_pubonreqgonly IN ('Y','N
CHAR(1) DEFAULT 'N' CHECK (sub_correlasid IN ('Y','N')
(sub_informifret IN ('Y','N'
(sub_unsuball IN ('Y','N')),

)),

),

)
CHAR(1) DEFAULT 'Y' CHECK)
CHAR(1) DEFAULT 'N' CHECK

PRIMARY KEY (policyname));

The attributes are defined as follows:

policyname
The name of the policy.

messagetype
The type of message.

messagecontext
Defines how the message context is set in messages sent by the application:

* The default is Set By Queue Manager (the queue manager sets the
context).

* If set to Pass Identity, the identity of the request message is passed to
any output messages.

8-4 IBM Informix Database Extensions User's Guide

 If set to Pass Al1, all the context of the request message is passed to any
output messages.

 If set to No Context, no context is passed.

snd_priority
The priority set in the message, where 0 is the lowest priority and 9 is the
highest. When set to As Transport, the value from the queue definition is
used. You must deselect As Transport before you can set a priority value.

snd_persistence
The persistence set in the message, where Yes is persistent and No is not
persistent. When set to As Transport, the value from the underlying queue
definition is used.

snd_expiry
A period of time (in tenths of a second) after which the message will not
be delivered.

snd_retrycount
The number of times a send will be retried if the return code gives a
temporary error. Retry is attempted under the following conditions: Queue
full, Queue disabled for put, Queue in use.

snd_retry_introl
The interval (in milliseconds) between each retry.

snd_newcorrelid
Whether each message is sent with a new correlation ID (except for
response messages, where this is set to the Message 1D or Correl ID of the
request message).

snd_resp_correlid
The ID set in the Correl ID of a response or report message. This is set to
either the Message ID or the Correl ID of the request message, as specified.

snd_xcption_action
The action when a message cannot be delivered. When set to DLQ, the
message is sent to the dead-letter queue. When set to Discard, the message
is discarded.

snd_report_data
The amount of data included in a report message, where Report specifies
no data, With Data specifies the first 100 bytes, and With Full Data
specifies all data.

snd_rt_exception
Whether Exception reports are required.

snd_rt_coa
Whether Confirm on Arrival reports are required.

snd_rt_cod
Whether Confirm on Delivery reports are required.

snd_rt_expiry
Whether Expiry reports are required.

reply_q The name of the reply queue.

reply_qmgr
The name of the reply Queue Manager.

rev_truncatedmsg
Whether truncated messages are accepted.

Chapter 8. MQ messaging functions 8-5

8-6

rco_convert
Whether the message is code page converted by the message transport
when received.

7CU_poisonmsg
Whether poison message handling is enabled. Sometimes, a badly
formatted message arrives on a queue. Such a message might make the
receiving application fail and back out the receipt of the message. In this
situation, such a message might be received, and then returned to the
queue repeatedly.

rcv_openshared
Whether the queue is opened as a shared queue.

rcv_wait_introl
A period of time (in milliseconds) that the receive waits for a message to
be available.

pub_suppressreg
Whether implicit registration of the publisher is suppressed. (This attribute
is ignored for WebSphere MQ Integrator Version 2.)

pub_anonymous
Whether the publisher registers anonymously.

pub_publocal
Whether the publication is only sent to subscribers that are local to the
broker.

pub_direct
Whether the publisher should accept direct requests from subscribers.

pub_correlasid
Whether the Correl ID is used by the broker as part of the publisher's
identity.

pub_retain
Whether the publication is retained by the broker.

pub_othersonly
Whether the publication is not sent to the publisher if it has subscribed to
the same topic (used for conference-type applications).

sub_anonymous
Whether the subscriber registers anonymously.

sub_sublocal
Whether the subscriber is sent publications that were published with
the Publish Locally option, at the local broker only.

sub_newpubsonly
Whether the subscriber is not sent existing retained publications when it
registers.

sub_pubonreqonly
Whether the subscriber is not sent retained publications, unless it requests
them by using Request Update.

sub_correlasid
The broker as part of the subscriber's identity.

sub_informifret
Whether the broker informs the subscriber if a publication is retained.

IBM Informix Database Extensions User's Guide

sub_unsuball
Whether all topics for this subscriber are to be deregistered.

MQcCreateVtiRead() function

The MQCreateVtiRead() function creates a table and maps it to a queue managed
by WMQ.

Syntax

»>—MQCREATEVTIREAD—(—table_name >

»<
| <

l—,—service_name

l—,—pol icy_name
I—,—maxMessage—|

table_name
Required parameter. Specifies the name of the table to be created. The
queue pointed to by the service_name parameter is mapped to this table.

service_name
Optional parameter. Refers to the value in the servicename column of the
"informix".mqiservice table. If service_name is not specified,
IDS.DEFAULT.SERVICE is used as the service. The maximum size of
service_name is 48 bytes.

policy_name
Optional parameter. Refers to the value in the policyname column of the
"informix".mqipolicy table. If policy_name is not specified,
IDS.DEFAULT.POLICY is used as the policy. The maximum size of
policy_name is 48 bytes.

maxMessage
Optional parameter. Specifies the maximum length of the message to be
sent or received. The default value is 4000; the maximum allowable size is
32628.

Usage

The MQCreateVtiRead() function creates a table bound to a queue specified by
service_name, using the quality of service policy defined in policy_name. Selecting
from the table created by this function returns all the committed messages in the
queue, but does not remove the messages from the queue. If no messages are
available to be returned, the SELECT statement returns no rows. An insert to the
bound table puts a message into the queue.

The table created has the following schema and uses the "informix".mq access
method:

create table table_name (

msg Tvarchar(maxMessage) ,

correlid varchar(24),

topic varchar(40),

gname varchar(48),

msgid varchar(12),

msgformat varchar(8));

using "informix".mq (SERVICE = service_name,

POLICY = policy_name,
ACCESS "READ");

Chapter 8. MQ messaging functions ~ 8-7

8-8

The mapping for a table bound to a queue requires translation of operation.
Actions on specific columns within the table are translated into specific operations
within the queue, as outlined here:

* An insert operation inserts the following into the mapped table column:

— msg. The message text that will be inserted onto the queue. If msg is NULL,
MQ functions send a zero-length message to the queue.

— correlid. The message will be sent with the specified correlation identifier.
* A select operation maps these in the following way to a WMQ queue:
— msg. The message is retrieved from the queue

— correlid. Within the WHERE clause, is the value passed to the queue manager
to qualify messages (the correlation identifier). The only operator that should
be used when qualifying is equals (=).

The following table describes how the arguments for the MQCreateVtiRead()
function are interpreted.

Table 8-2. MQCreateVtiRead() argument interpretation

Usage Argument interpretation
MQCreateVtiRead(argl) argl = table_name
MQCreateVtiRead(argl, arg2) argl = table_name

arg2 = service_name

MQCreateVtiRead(argl, arg2, arg3) argl = table_name
arg?2 = service_naime

arg3 = policy_name

MQCreateVtiRead(argl, arg2, arg3, arg4) argl = table_name
arg2 = service_nane

arg3 = policy_name

arg4d = maxMessage

Return codes

't' The operation was successful.
'f' The operation was unsuccessful.
Example

Create a table called VtiReadTest using the default service name and policy name:

begin;
EXECUTE FUNCTION MQCreateVtiRead('VtiReadTest');
commit;

Insert a message into the queue:
INSERT INTO VtiReadTest(msg) values ('QMessage');

Read a message from the queue:
select * from VtiReadTest;

IBM Informix Database Extensions User's Guide

MQCreateVtiReceive() function

The MQCreateVtiReceive() function creates a table and maps it to a queue
managed by WMQ.

Syntax

»»>—MQCREATEVTIRECEIVE—(—table_name >

A\
A

|)

l—,—service_name

l—,—pol icy_name
I—,—maxMesscrge—|

table_name
Required parameter. Specifies the name of the table to be created. The
queue pointed to by the service_name parameter is mapped to this table.

service_name
Optional parameter. Refers to the value in the servicename column of the
"informix".mgqiservice table. If service_name is not specified,
IDS.DEFAULT.SERVICE is used as the service. The maximum size of
service_name is 48 bytes.

policy_name
Optional parameter. Refers to the value in the policyname column of the
"informix".mqipolicy table. If policy_name is not specified,
IDS.DEFAULT.POLICY is used as the policy. The maximum size of
policy_name is 48 bytes.

maxMessage
Optional parameter. Specifies the maximum length of the message to be
sent or received. The default value is 4000; the maximum allowable size is
32628.

Usage

The MQCreateVtiReceive() function creates a table_name bound to a queue
specified by service_name, using the quality of service policy defined in policy_name.
Selecting from this table returns all the available messages in the queue and also
removes the messages from the queue. If no messages are available to be returned,
the no rows are returned. An insert into the bound table puts messages in the
queue.

The table created has the following schema and uses the "informix".mq access
method:

create table table_name (

msg lvarchar(maxMessage),

correlid varchar(24),

topic varchar(40),

gname varchar(48),

msgid varchar(12),

msgformat varchar(8));

using "informix".mq (SERVICE = service_name,

POLICY = policy_name,
ACCESS = "RECEIVE");

Chapter 8. MQ messaging functions 8-9

8-10

The mapping between a table bound to a queue requires translation of operation.
Actions on specific columns within the table are translated into specific operations
within the queue, as outlined here:

* An insert operation maps the following columns to the MQ manager:

— msg. The text that will be inserted onto the queue. If msg is NULL, MQ
functions send a zero-length message to the queue.

— correlid. The key recognized by queue manager to get messages from the
queue

* A select operation maps the following columns to the MQ manager:
— msg. The message is removed from the queue.

— correlid. Within the WHERE clause, is the value passed to the queue manager
to qualify messages (the correlation identifier). The only operator that should
be used when qualifying is equals (=).

The following table describes how the arguments for the MQCreateVtiReceive()
function are interpreted.

Table 8-3. MQCreateVtiReceive() argument interpretation

Usage Argument interpretation
MQCreateVtiReceive(argl) argl = table_name
MQCreateVtiReceive(argl, arg2) argl = table_name

arg2 = service_name

MQCreateVtiReceive(argl, arg2, arg3) argl = table_name
arg?2 = service_name

arg3 = policy_name

MQCreateVtiReceive(argl, arg2, arg3, arg4) argl = table_name
arg2 = service_name
arg3 = policy_name

arg4 = maxMessage

Return codes

't' The operation was successful.
'f' The operation was unsuccessful.
Example

Create the table VtiReceiveTest using the default service name and policy name:

begin;
EXECUTE FUNCTION MQCreateVtiRead('VtiReceiveTest');
commit;

Insert a message to the queue:
INSERT INTO VtiReceiveTest(msg) values ('QMessage');

Read a message from the queue:
select = from VtiReceiveTest;

IBM Informix Database Extensions User's Guide

Attempting to read the queue a second time results in returning no rows because
the table was created using the MQCreateVtiReceive() function, which removes
entries as they are read.

MQPublish() function

The MQPublish() function publishes a message on one or more topics to a queue
managed by WMOQ.

Syntax

»»—MQPUBLISH—(| msg_datgq———>

|—pub lisher_name—,
|—pol icy_name—,—|

(1)
>)
I—,—topic—I l—,—cor‘rel_id—|

Notes:
1 See the Usage section for argument interpretation.

publisher_name
Optional parameter. Refers to the value in the pubsubname column of the
"informix".mqipubsub table. If publisher_name is not specified,
IDS.DEFAULT.PUBLISHER is used as the publisher. The maximum length
of publisher_name is 48 bytes.

policy_name
Optional parameter. Refers to the value in the policyname column of the
"informix".mqipolicy table. If policy_name is not specified,
IDS.DEFAULT.PUB.SUB.POLICY is used as the policy. The maximum size
of policy_name is 48 bytes.

msg_data
Required parameter. A string containing the data to be sent by WMQ. The
maximum size of the string is defined by the LVARCHAR data type. If
msg_data is NULL, it sends a zero-length message to the queue.

topic Optional parameter. A string containing the topic for the message
publication. The maximum size of a topic is 40 bytes. Multiple topics can
be specified in one string (up to 40 characters long). Each topic must be
separated by a colon. For example, "t1:t2:the third topic" indicates that the
message is associated with all three topics: t1, t2, and the third topic. If no
topic is specified, none are associated with the message.

correl_id
Optional parameter. A string containing a correlation identifier to be
associated with this message. The correl_id is often specified in request and
reply scenarios to associate requests with replies. The maximum size of
correl_id is 24 bytes. If not specified, no correlation ID is added to the
message.

Chapter 8. MQ messaging functions ~ 8-11

Usage

The MQPublish() function publishes data to WMQ. It requires the installation of
the WMQ Publish/Subscribe component of WMQ), and that the Message Broker is
running.

The MQPublish() function publishes the data contained in msg_data to the WMQ
publisher specified in publisher_name, using the quality of service policy defined by
policy_name.

The following table describes how the arguments for the MQPublish() function are
interpreted.

Table 8-4. MQPublish() argument interpretation

Usage Argument interpretation
MQPublish(argl) argl = msg_data
MQPublish(argl, arg?) argl = msg_data

arg2 = topic
MQPublish(argl, arg2, arg3) argl = publisher_name

arg2 = msg_data

arg3 = topic

MQPublish(argl, arg2, arg3, arg4) argl = publisher_name
arg2 = policy_name
arg3 = msg_data

arg4 = topic

MQPublish(argl, arg?2, arg3, arg4, arg5) argl = publisher_name
arg2 = policy_name
arg3 = msg_data

arg4 = topic

argb = correl_id

Return codes
1 The operation was successful.

Error The operation was unsuccessful.
Examples

Example 1

begin;
EXECUTE FUNCTION MQPublish('Testing 123');
commit:

This example publishes the message with the following parameters:
* publisher_name: default publisher
e policy_name: default policy

8-12 IBM Informix Database Extensions User's Guide

* msg_data: "Testing 123"
* topic: None
e correl_id: None

Example 2

begin;
EXECUTE FUNCTION MQPublish('MYPUBLISHER','Testing 345','TESTTOPIC');
commit;

This example publishes the message with the following parameters:
e publisher_name: "MYPUBLISHER"

* policy_name: default policy

* msg_data: "Testing 345"

* topic: "TESTTOPIC"

* correl_id: None

Example 3

begin;

EXECUTE FUNCTION MQPublish('MYPUBLISHER','MYPOLICY','Testing 678", 'TESTTOPIC',
'TEST1');

commit;

This example publishes the message with the following parameters:
* publisher_name: "MYPUBLISHER"

* policy_name: "MYPOLICY"

* msg_data: "Testing 678"

* topic: "TESTTOPIC"

* correl_id: "TEST1"

Example 4

begin;
EXECUTE FUNCTION MQPublish('Testing 901','TESTS');
commit;

This example publishes the message with the following parameters:
e publisher_name: default publisher

* policy_name: default policy

* msg_data: "Testing 901"

e topic: "TESTS"

* correl_id: None

Example 5

begin;
EXECUTE FUNCTION MQPublish('SEND.MESSAGE', 'emergency', 'CODE BLUE', 'expedite');
commit;

This example publishes the message with the following parameters:
e publisher_name: "SEND.MESSAGE"

* policy_name: "emergency"

» msg_data: "CODE BLUE"

e topic: "expedite”

Chapter 8. MQ messaging functions ~ 8-13

e correl_id: None
Example 6

The following table contains sample rows and columns in the
"informix".mqipubsub table.

pubsubname pubsubtype
column receiver column column
Sample row 1 | 'IDS.DEFAULT. " 'Publisher’
PUBLISHER'
Sample row 2 | IDS.DEFAULT. 'IDS.DEFAULT. 'Subscriber’
SUBSCRIBER' SUBSCRIBER.RECEIVER'

begin;
EXECUTE FUNCTION
MQSubscribe('IDS.DEFAULT.SUBSCRIBER',
'"IDS.DEFAULT.PUB.SUB.POLICY', 'Weather');
commit;

This statement demonstrates a subscriber registering an interest in messages
containing the topic “Weather,” with the following parameters:

e subscriber_name: "TDS.DEFAULT.SUBSCRIBER"
* policy_name: "IDS.DEFAULT.PUB.SUB.POLICY"
e topic: "Weather"
begin;
EXECUTE FUNCTION MQPublish('IDS.DEFAULT.PUBLISHER',
"IDS.DEFAULT.PUB.SUB.POLICY', 'Rain', 'Weather');
commit;

This statement publishes the message with the following parameters:
e publisher_name: "IDS.DEFAULT.PUBLISHER"

* policy_name: "IDS.DEFAULT.PUB.SUB.POLICY"

* msg_data: "Rain"

e topic: "Weather"

* correl_id: None

begin;
EXECUTE FUNCTION MQReceive('IDS.DEFAULT.SUBSCRIBER.RECEIVER',
"IDS.DEFAULT.PUB.SUB.POLICY"');
commit;

This statement receives the message with the following parameters (it returns
"Rain"):

e service_name: "IDS.DEFAULT.SUBSCRIBER.RECEIVER"

e policy_name: "IDS.DEFAULT.PUB.SUB.POLICY"

MQPublishClob() function

The MQPublishClob() function publishes CLOB data on one or more topics to a
queue managed by WMQ.

Syntax

8-14 I1BM Informix Database Extensions User's Guide

»>—MQPUBLISHCLOB—(clob_datg——>

|—pubZ isher_name—, |
|—pol icy_name—,—l

(1)
>) <
|—,—topicJ |—,—correl_idJ

Notes:
1 See the Usage section for argument interpretation.

publisher_name
Optional parameter. Refers to the value in the pubsubname column of the
"informix".mqipubsub table. If publisher_name is not specified,
IDS.DEFAULT.PUBLISHER is used as the publisher. The maximum length
of publisher_name is 48 bytes.

policy_name
Optional parameter. Refers to the value in the policyname column of the
"informix".mqipolicy table. If policy_name is not specified,
IDS.DEFAULT.PUB.SUB.POLICY is used as the policy. The maximum size
of policy_name is 48 bytes.

clob_data
Required parameter. The CLOB data to be sent to WMQ. Even though the
CLOB data size can be up to 4 TB, the maximum size of the message is
limited by what Websphere MQ supports. If clob_data is NULL, it sends a
zero-length message to the queue.

topic Optional parameter. A string containing the topic for the message
publication. The maximum size of a topic is 40 bytes. Multiple topics can
be specified in one string (up to 40 characters long). Each topic must be
separated by a colon. For example, "t1:t2:the third topic" indicates that the
message is associated with all three topics: t1, t2, and the third topic. If no
topic is specified, none are associated with the message.

correl_id
Optional parameter. A string containing a correlation identifier to be
associated with this message. The correl_id is often specified in request and
reply scenarios to associate requests with replies. The maximum size of
correl_id is 24 bytes. If not specified, no correlation ID is added to the
message.

Usage

The MQPublishClob() function publishes data to WMQ. It requires the installation
of the WMQ Publish/Subscribe component of WMQ), and that the Message Broker
is running.

The MQPublishClob() function publishes the data contained in clob_data to the
WMQ publisher specified in publisher_name, using the quality of service policy
defined by policy_name.

The following table describes how the arguments for the MQPublishClob()
function are interpreted.

Chapter 8. MQ messaging functions ~ 8-15

Table 8-5. MQPublishClob() argument interpretation

Usage Argument interpretation
MQPublishClob(arg1) argl = clob_data
MQPublishClob(argl, arg2) argl = clob_data

arg2 = topic
MQPublishClob(argl, arg2, arg3) argl = publisher_name

arg2 = clob_data

arg3 = topic

MQPublishClob(argl, arg2, arg3, arg4) argl = publisher_name
arg2 = policy_name
arg3 = clob_data

argd = topic

MQPublishClob(argl, arg2, arg3, arg4, arg5) argl = publisher_name
arg2 = policy_name
arg3 = clob_data

argd = topic

argb = correl_id

Return codes
1 The operation was successful.

Error The operation was unsuccessful.
Examples

Example 1

begin;
EXECUTE FUNCTION MQPublishClob(filetoclob("/work/mydata","client");
commit:

This example publishes the message with the following parameters:
e publisher_name: default publisher

* policy_name: default policy

* clob_data: filetoclob("/work/mydata", "client")

* topic: None

e correl_id: None

Example 2

begin;
EXECUTE FUNCTION MQPublishClob('MYPUBLISHER',filetoclob("/work/mydata", "client"),
'"TESTTOPIC') ;commit;

This example publishes the message with the following parameters:
* publisher_name: "MYPUBLISHER"
e policy_name: default policy

8-16 IBM Informix Database Extensions User's Guide

* clob_data: filetoclob("/work/mydata", "client")
* topic: "TESTTOPIC"
 correl_id: None

Example 3

begin;
EXECUTE FUNCTION MQPublishClob('MYPUBLISHER','MYPOLICY',filetoclob("/work/mydata",
"client"), 'TESTTOPIC','TEST1') ;commit;

This example publishes the message with the following parameters:
e publisher_name: "MYPUBLISHER"

* policy_name: "MYPOLICY"

* clob_data: filetoclob("/work/mydata", "client")

* topic: "TESTTOPIC"

e correl_id: "TEST1"

Example 4

begin;
EXECUTE FUNCTION MQPublishClob(filetoclob("/work/mydata", "client"),'TESTS');
commit;

This example publishes the message with the following parameters:
* publisher_name: default publisher

* policy_name: default policy

* clob_data: filetoclob("/work/mydata", "client")

e topic: "TESTS"

e correl_id: None

Example 5

begin;
EXECUTE FUNCTION MQPublishClob('SEND.MESSAGE', 'emergency',
filetoclob("/work/mydata", "client") 'expedite');commit;

This example publishes the message with the following parameters:
* publisher_name: "SEND.MESSAGE"

* policy_name: "emergency"

* clob_data: filetoclob("/work/mydata", "client")

e topic: "expedite”

e correl_id: None

Example 6

The following table contains sample rows and columns in the
"informix".mqipubsub table.

pubsubname pubsubtype
column receiver column column

Sample row 1 'IDS.DEFAULT. v 'Publisher’
PUBLISHER'

Chapter 8. MQ messaging functions 8-17

pubsubname pubsubtype
column receiver column column

Sample row 2 | IDS.DEFAULT. 'IDS.DEFAULT. 'Subscriber’
SUBSCRIBER' SUBSCRIBER.RECEIVER'

begin;
EXECUTE FUNCTION
MQSubscribe('IDS.DEFAULT.SUBSCRIBER',
"IDS.DEFAULT.PUB.SUB.POLICY', 'Weather');
commit;

This statement demonstrates a subscriber registering an interest in messages
containing the topic "Weather," with the following parameters:

e subscriber_name: "IDS.DEFAULT.SUBSCRIBER"
* policy_name: "IDS.DEFAULT.PUB.SUB.POLICY"
e topic: "Weather"

begin;
EXECUTE FUNCTION MQPublishClob('IDS.DEFAULT.PUBLISHER',
"IDS.DEFAULT.PUB.SUB.POLICY', filetoclob("/work/mydata",
"client"), 'Weather');commit;

This statement publishes the message with the following parameters:
e publisher_name: "IDS.DEFAULT.PUBLISHER"

¢ policy_name: "IDS.DEFAULT.PUB.SUB.POLICY"

* clob_data: filetoclob("/work/mydata", "client")

e topic: "Weather"

e correl_id: None

begin;
EXECUTE FUNCTION MQReceiveClob('IDS.DEFAULT.SUBSCRIBER.RECEIVER',
"IDS.DEFAULT.PUB.SUB.POLICY');
commit;

This statement receives the message with the following parameters:
e service_name: "IDS.DEFAULT.SUBSCRIBER.RECEIVER"
e policy_name: "IDS.DEFAULT.PUB.SUB.POLICY"

MQRead() function

The MQRead() function returns a message from WMQ without removing the
message from the queue.

Syntax

»»—MQREAD— (|)—— >

l—service_name

l—,—pol icy_name
l—,—correl_id—l

service_name
Optional parameter. Refers to the value in the servicename column of the
"informix".mqiservice table. If service_name is not specified,
IDS.DEFAULT.SERVICE is used as the service. The maximum size of
service_name is 48 bytes.

8-18 IBM Informix Database Extensions User's Guide

policy_name
Optional parameter. Refers to the value in the policyname column of the
"informix".mqipolicy table. If policy_name is not specified,
IDS.DEFAULT.POLICY is used as the policy. The maximum size of
policy_name is 48 bytes.

correl_id
Optional parameter. A string containing a correlation identifier to be
associated with this message. The correl_id is often specified in request and
reply scenarios to associate requests with replies. The maximum size of
correl_id is 24 bytes. If not specified, no correlation ID is added to the
message.

Usage

The MQRead() function returns a message from the WMQ queue specified by
service_name, using the quality of service policy defined in policy_name. This
function does not remove the message from the queue associated with
service_name. If correl_id is specified, then the first message with a matching
correlation ID is returned. If correl_id is not specified, then the message at the head
of the queue is returned. The result of the function is a string of type LVARCHAR.
If no messages are returned, this function returns NULL. This function only reads
committed messages.

The following table describes how the arguments for the MQRead() function are
interpreted.

Table 8-6. MQRead() argument interpretation

Usage Argument interpretation
MQRead() No arguments
MQRead(arg1) argl = service_name
MQRead(argl, arg?) argl = service_name

arg2 = policy_name

MQRead(argl, arg2, arg3) argl = service_name

arg?2 = policy_name

arg3 = correl_id

Return codes

A string of type LVARCHAR
The operation was successful.

NULL No Messages are available.
Error The operation was unsuccessful.
Examples

Example 1

begin;

EXECUTE FUNCTION MQRead();

commit;

Alternatively, the following syntax can be used:

Chapter 8. MQ messaging functions ~ 8-19

8-20

insert into my_order_table VALUES(MQRead());

This example reads the message at the head of the queue with the following
parameters:

e service_name: default service name
* policy_name: default policy name
e correl_id: None

Example 2

begin;
EXECUTE FUNCTION MQRead('MYSERVICE');
rollback;

Alternatively, the following syntax can be used:
insert into my_order_table VALUES(MQRead('MYSERVICE'));

This example reads the message at the head of the queue with the following
parameters:

* service_name: "MYSERVICE"
* policy_name: default policy name
* correl_id: None

Example 3

begin;
EXECUTE FUNCTION MQRead('MYSERVICE','MYPOLICY');
commit;

Alternatively, the following syntax can be used:
insert into my_order_table VALUES(MQRead('MYSERVICE', 'MYPOLICY'));

This example reads the message at the head of the queue with the following
parameters:

o service_name: "MYSERVICE"
e policy_name: "MYPOLICY"
e correl_id: None

Example 4

begin;
EXECUTE FUNCTION MQRead('MYSERVICE', 'MYPOLICY', 'TESTS');
commit;

Alternatively, the following syntax can be used:
insert into my order_table VALUES(MQRead('MYSERVICE', 'MYPOLICY', 'TESTS'));

This example reads the message at the head of the queue with the following
parameters:

e service_name: "MYSERVICE"
e policy_name: "MYPOLICY"
e correl_id: "TESTS"

IBM Informix Database Extensions User's Guide

MQReadClob() function

The MQReadClob() function returns a message as a CLOB from WMQ without
removing the message from the queue.

Syntax

»»—MQREADCLOB— (

|)——>«

l—ser‘vice_name

l—,—pol icy_name |_ _|
,—correl_id

service_name
Optional parameter. Refers to the value in the servicename column of the
"informix".mqiservice table. If service_name is not specified,
IDS.DEFAULT.SERVICE is used as the service. The maximum size of
service_name is 48 bytes.

policy_name
Optional parameter. Refers to the value in the policyname column of the
"informix".mqipolicy table. If policy_name is not specified,
IDS.DEFAULT.POLICY is used as the policy. The maximum size of
policy_name is 48 bytes.

correl_id
Optional parameter. A string containing a correlation identifier to be
associated with this message. The correl_id is often specified in request and
reply scenarios to associate requests with replies. The maximum size of
correl_id is 24 bytes. If not specified, no correlation ID is added to the
message.

Usage

The MQReadClob() function returns a message as a CLOB from the WMQ location
specified by service_name, using the quality-of-service policy defined in policy_name.
This function does not remove the message from the queue associated with
service_name. If correl_id is specified, then the first message with a matching
correlation ID is returned. If correl_id is not specified, then the message at the head
of the queue is returned. The result of this function is a CLOB type. If no messages
are available to be returned, this function returns NULL. This function only reads
committed messages.

The following table describes how the arguments for the MQReadClob() function
are interpreted.

Table 8-7. MQReadClob() argument interpretation

Usage Argument interpretation
MQReadClob() No arguments
MQReadClob(argl) argl = service_name
MQReadClob(argl, arg?2) argl = service_name

arg2 = policy_name

Chapter 8. MQ messaging functions 8-21

8-22

Table 8-7. MQReadClob() argument interpretation (continued)

Usage Argument interpretation

MQReadClob(argl, arg2, arg3) argl = service_name
arg2 = policy_name

arg3 = correl_id

Return codes

The contents of the message as a CLOB
The operation was successful. If no messages are available, the result is
NULL.

Error The operation was unsuccessful.
Example

Example 1

begin;
EXECUTE FUNCTION MQReadClob();
commit;

Alternatively, the following syntax can be used:
insert into my order_table(clob_col) VALUES(MQReadClob());

This example reads the content of the message as a CLOB at the head of the queue
into the CLOB with the following parameters:

e service_name: default service name
* policy_name: default policy name
e correl_id: None

Example 2

begin;
EXECUTE FUNCTION MQReadClob('MYSERVICE');
rollback;

Alternatively, the following syntax can be used:

insert into my order_table(clob_col)
VALUES (MQReadClob ('MYSERVICE'));

This example reads the content of the message as a CLOB at the head of the queue
into the CLOB with the following parameters:

e service_name: "MYSERVICE"
* policy_name: default policy name
e correl_id: None

Example 3

begin;
EXECUTE FUNCTION MQReadClob('MYSERVICE','MYPOLICY');
commit;

Alternatively, the following syntax can be used:

insert into my_order_table(clob_col)
VALUES (MQReadCTlob ('MYSERVICE', 'MYPOLICY'));

IBM Informix Database Extensions User's Guide

This example reads the content of the message as a CLOB at the head of the queue
into the CLOB with the following parameters:

e service_name: "MYSERVICE"
e policy_name: "MYPOLICY"
e correl_id: None

Example 4

begin;
EXECUTE FUNCTION MQReadClob('MYSERVICE','MYPOLICY', 'TESTS');
commit;

Alternatively, the following syntax can be used:

insert into my_order_table(clob_col)
VALUES (MQReadClob ('MYSERVICE', 'MYPOLICY', 'TESTS'));

This example reads the content of the message as a CLOB at the head of the queue
into the CLOB with the following parameters:

e service_name: "MYSERVICE"
* policy_name: "MYPOLICY"
e correl_id: "TESTS"

MQReceive() function

The MQReceive() function returns a message from the WMQ queue and removes
the message from the queue.

Syntax

»»—MQRECEIVE—(

)———>«
l—service_name |

l—,—poZicy_name |_ _|
,—correl_id

service_name
Optional parameter. Refers to the value in the servicename column of the
"informix".mqiservice table. If service_name is not specified,
IDS.DEFAULT.SERVICE is used as the service. The maximum size of
service_name is 48 bytes.

policy_name
Optional parameter. Refers to the value in the policyname column of the
"informix".mqipolicy table. If policy_name is not specified,
IDS.DEFAULT.POLICY is used as the policy. The maximum size of
policy_name is 48 bytes.

correl_id
Optional parameter. A string containing a correlation identifier to be
associated with this message. The correl_id is often specified in request and
reply scenarios to associate requests with replies. The maximum size of
correl_id is 24 bytes. If not specified, no correlation ID is added to the
message.

Chapter 8. MQ messaging functions ~ 8-23

8-24

Usage

The MQReceive() function returns a message from the WMQ location specified by
service_name, using the quality of service policy policy_name. This function removes
the message from the queue associated with service_name. If correl_id is specified,
then the first message with a matching correlation identifier is returned. If correl_id
is not specified, then the message at the head of the queue is returned. The result
of the function is a string LVARCHAR type. If no messages are available to be
returned, the function returns NULL.

The following table describes how the arguments for the MQReceive() function are
interpreted.

Table 8-8. MQReceive() argument interpretation

Usage Argument interpretation
MQReceive() No arguments
MQReceive(argl) argl = service_name
MOQReceive(argl, arg2) argl = service_name

arg2 = policy_name

MQReceive(argl, arg2, arg3) argl = service_name

arg2 = policy_name

arg3 = correl_id

Return codes

A string of LVARCHAR type
The operation was successful.

NULL No messages are available.

Error The operation was unsuccessful.
Examples

Example 1

begin;
EXECUTE FUNCTION MQReceive();
commit;

Alternatively, the following syntax can be used:
insert into my_order_table VALUES(MQReceive());

This example receives the message at the head of the queue with the following
parameters:

* service_name: default service name
* policy_name: default policy name
e correl_id: none

Example 2

begin;
EXECUTE FUNCTION MQReceive('MYSERVICE');
rollback;

IBM Informix Database Extensions User's Guide

Alternatively, the following syntax can be used:
insert into my order_table VALUES(MQReceive('MYSERVICE'));

This example receives the message at the head of the queue with the following
parameters:

e service_name: "MYSERVICE"
* policy_name: default policy name
e correl_id: none

Example 3

begin;
EXECUTE FUNCTION MQReceive('MYSERVICE', 'MYPOLICY');
commit;

Alternatively, the following syntax can be used:
insert into my_order_table VALUES(MQReceive('MYSERVICE', 'MYPOLICY'));

This example receives the message at the head of the queue with the following
parameters:

e service_name: "MYSERVICE"
* policy_name: "MYPOLICY"
e correl_id: none

Example 4

begin;
EXECUTE FUNCTION MQReceive('MYSERVICE','MYPOLICY','1234');
commit;

Alternatively, the following syntax can be used:
insert into my_order_table VALUES(MQReceive('MYSERVICE', 'MYPOLICY', '1234'));

This example receives the message at the head of the queue with the following
parameters:

e service_name: "MYSERVICE"
* policy_name: "MYPOLICY"
e correl_id: "1234"

MQReceiveClob() function

The MQReceiveClob() function retrieves a message as a CLOB from the WMQ
queue and removes the message from the queue.

Syntax
»»—MQRECEIVECLOB—(|_ | >
service_name |_ |
,—policy_name |_ _|
,—correl_id
>—) ><

service_name
Optional parameter. Refers to the value in the servicename column of the

Chapter 8. MQ messaging functions ~ 8-25

8-26

"informix".mqiservice table. If service_name is not specified,
IDS.DEFAULT.SERVICE is used as the service. The maximum size of
service_name is 48 bytes.

policy_name
Optional parameter. Refers to the value in the policyname column of the
"informix".mqipolicy table. If policy_name is not specified,
IDS.DEFAULT.POLICY is used as the policy. The maximum size of
policy_name is 48 bytes.

correl_id
Optional parameter. A string containing a correlation identifier to be
associated with this message. The correl_id is often specified in request and
reply scenarios to associate requests with replies. The maximum size of
correl_id is 24 bytes. If not specified, no correlation ID is added to the
message.

Usage

The MQReceiveClob() function returns a message as a CLOB from the WMQ
location specified by service_name, using the quality-of-service policy policy_name.
This function removes the message from the queue associated with service_name. If
correl_id is specified, then the first message with a matching correlation identifier is
returned. If correl_id is not specified, then the message at the head of the queue is
returned. The result of the function is a CLOB. If messages are not available to be
returned, the function returns NULL.

The following table describes how the arguments for the MQReceiveClob()
function are interpreted.

Table 8-9. MQReceiveClob() argument interpretation

Usage Argument interpretation
MOQReceiveClob() No arguments
MOQReceiveClob(argl) argl = service_name
MOQReceiveClob(argl, arg2) argl = service_name

arg2 = policy_name

MOQReceiveClob(argl, arg2, arg3) argl = service_name
arg2 = policy_name

arg3 = correl_id

Return codes

The contents of the message as a CLOB
The operation was successful. If no messages are available, the result is
NULL.

Error The operation was unsuccessful.
Examples

Example 1

begin;
EXECUTE FUNCTION MQReceiveClob();
commit;

IBM Informix Database Extensions User's Guide

Alternatively, the following syntax can be used:
insert into my order_table(clob _col) VALUES(MQReceiveClob());

This example receives the content of the message as a CLOB at the head of the
queue into the CLOB with the following parameters:

 service_name: default service name
* policy_name: default policy name
e correl_id: none

Example 2

begin;
EXECUTE FUNCTION MQReceiveClob('MYSERVICE');
rollback;

Alternatively, the following syntax can be used:

insert into my_order_table(clob_col)
VALUES (MQReceiveClob('MYSERVICE'));

This example receives the content of the message as a CLOB at the head of the
queue into the CLOB with the following parameters:

e service_name: "MYSERVICE"
* policy_name: default policy name
e correl_id: none

Example 3

begin;
EXECUTE FUNCTION MQReceiveClob('MYSERVICE', 'MYPOLICY');
commit;

Alternatively, the following syntax can be used:

insert into my_order_table(clob_col)
VALUES (MQReceiveClob('MYSERVICE', 'MYPOLICY'));

This example receives the content of the message as a CLOB at the head of the
queue into the CLOB with the following parameters:

e service_name: "MYSERVICE"
* policy_name: "MYPOLICY"
e correl_id: none

Example 4

begin;
EXECUTE FUNCTION MQReceiveClob('MYSERVICE', 'MYPOLICY', 'TESTS');
commit;

Alternatively, the following syntax can be used:

insert into my_order_table(clob_col)
VALUES (MQReceiveClob('MYSERVICE', 'MYPOLICY', 'TESTS'));

This example receives the content of the message as a CLOB at the head of the
queue into the CLOB with the following parameters:

e service_name: "MYSERVICE"
e policy_name: "MYPOLICY"
e correl_id: "TESTS"

Chapter 8. MQ messaging functions 8-27

MQSend() function

8-28

The MQSend() function puts the message into the WMQ queue.

Syntax

»»—MQSEND— (>
l—service_name—, |
|—poZ icy_name—,J

(1)

v
A

»msg_data)
l—,—correl_id—l

Notes:
1 See the Usage section for information about argument interpretation.

service_name
Optional parameter. Refers to the value in the servicename column of the
"informix".mqiservice table. If service_name is not specified,
IDS.DEFAULT.SERVICE is used as the service. The maximum size of
service_name is 48 bytes.

policy_name
Optional parameter. Refers to the value in the policyname column of the
"informix".mqipolicy table. If policy_name is not specified,
IDS.DEFAULT.POLICY is used as the policy. The maximum size of
policy_name is 48 bytes.

msg_data
Required parameter. A string containing the data to be sent by WMQ. The
maximum size of the string is defined by the LVARCHAR data type. If
msg_data is NULL, it sends a zero-length message to the queue.

correl_id
Optional parameter. A string containing a correlation identifier to be
associated with this message. The correl_id is often specified in request and
reply scenarios to associate requests with replies. The maximum size of
correl_id is 24 bytes. If not specified, no correlation ID is added to the
message.

Usage

The MQSend() function puts the data contained in msg_data into the WMQ
location specified by service_name, using the quality of policy name defined by
policy_name. If correl_id is specified, then the message is sent with a correlation
identifier. If correl_id is not specified, then no correlation ID is sent with the
message.

The following table describes how the arguments for the MQSend() function are
interpreted.

Table 8-10. MQSend() argument interpretation

Usage Argument interpretation

MQSend(argl) argl = msg_data

IBM Informix Database Extensions User's Guide

Table 8-10. MQSend() argument interpretation (continued)

Usage Argument interpretation

MQSend(argl, arg?2) argl = service_name

arg2 = msg_data

MQSend(argl, arg2, arg3) argl = service_name
arg2 = policy_name

arg3 = msg_data

MQSend(argl, arg2, arg3, arg4) argl = service_name
arg2 = policy_name
arg3 = msg_data

argd = correl_id

Return codes
1 The operation was successful.

0 or Error
The operation was unsuccessful.

Examples

Example 1
EXECUTE FUNCTION MQSend('Testing 123')

This example sends the message to the WMQ with the following parameters:

e service_name: default service name
* policy_name: default policy

* msg_data: "Testing 123"

e correl_id: none

Example 2

begin;
EXECUTE FUNCTION MQSend('MYSERVICE','Testing 901');
commit;

This example sends the message to the WMQ with the following parameters:

e service_name: "MYSERVICE"
e policy_name: default policy
* msg_data: "Testing 901"

e correl_id: none

Example 3

begin;
EXECUTE FUNCTION MQSend('MYSERVICE','MYPOLICY','Testing 345');
commit;

This example sends the message to the WMQ with the following parameters:

e service_name: "MYSERVICE"

Chapter 8. MQ messaging functions

8-29

* policy_name: "MYPOLICY"
* msg_data: "Testing 345"
* correl_id: none

Example 4

begin;
EXECUTE FUNCTION MQSend('MYSERVICE','MYPOLICY','Testing 678','TEST3');
commit;

This example sends the message to the WMQ with the following parameters:
e service_name: "MYSERVICE"

* policy_name: "MYPOLICY"

* msg_data: "Testing 678"

e correl_id: "TEST3"

MQSendClob() function

8-30

The MQSendClob() function puts the CLOB data into the WMQ queue.
Syntax

»»—MQSENDCLOB— (

—clob_dato—————

l—service_name—, |_ _|
policy_name—,

(1)

v
A

>)
l—,—corre l_id—|

Notes:
1 See the Usage section for information about argument interpretation.

service_name
Optional parameter. Refers to the value in the servicename column of the
"informix".mqiservice table. If service_name is not specified,
IDS.DEFAULT.SERVICE is used as the service. The maximum size of
service_name is 48 bytes.

policy_name
Optional parameter. Refers to the value in the policyname column of the
"informix".mqipolicy table. If policy_name is not specified,
IDS.DEFAULT.POLICY is used as the policy. The maximum size of
policy_name is 48 bytes.

clob_data
Required parameter. The CLOB data to be sent to WMQ. Even though the
CLOB data size can be up to 4 TB, the maximum size of the message is
limited by what Websphere MQ supports. If clob_data is NULL, it sends a
zero-length message to the queue.

correl_id
Optional parameter. A string containing a correlation identifier to be
associated with this message. The correl_id is often specified in request and

IBM Informix Database Extensions User's Guide

reply scenarios to associate requests with replies. The maximum size of
correl_id is 24 bytes. If not specified, no correlation ID is added to the
message.

Usage

The MQSendClob() function puts the data contained in clob_data to the WMQ
queue specified by service_name, using the quality of service policy defined by
policy_name. If correl_id is specified, then the message is sent with a correlation
identifier. If correl_id is not specified, then no correlation ID is sent with the
message.

The following table describes how the arguments for the MQSendClob() function
are interpreted.

Table 8-11. MQSendClob() argument interpretation

Usage

Argument interpretation

MQSendClob(arg1)

argl = clob_data

MQSendClob(argl, arg?)

argl = service_name

arg2 = clob_data

MQSendClob(argl, arg?2, arg3)

argl = service_name

arg2 = policy_name

arg3 = clob_data

MQSendClob(argl, arg2, arg3, arg4) argl = service_name
arg2 = policy_name

arg3 = clob_data

arg4 = correl_id

Return codes
1 The operation was successful.

0 or Error
The operation was unsuccessful.

Examples

Example 1

begin;

EXECUTE FUNCTION MQSendClob(filetoclob("/work/mydata", "client"));
commit;

This example sends a CLOB to the WMQ with the following parameters:
e service_name: default service name

* policy_name: default policy

* clob_data: filetoclob("/work/mydata", "client")

e correl_id: none

Example 2

Chapter 8. MQ messaging functions ~ 8-31

begin;
EXECUTE FUNCTION MQSendClob('MYSERVICE', filetoclob("/work/mydata", "client"));
commit;

This example sends a CLOB to the WMQ with the following parameters:
e service_name: "MYSERVICE"
* policy_name: default policy

* msg_data: filetoclob("/work/mydata", "client")
* correl_id: none

Example 3

begin;

EXECUTE FUNCTION MQSendClob('MYSERVICE', 'MYPOLICY',
filetoclob("/work/mydata", “"client"));

commit;

This example sends a CLOB to the WMQ with the following parameters:
e service_name: "MYSERVICE"

* policy_name: "MYPOLICY"

* msg_data: filetoclob("/work/mydata", "client")

e correl_id: none

Example 4

begin;

EXECUTE FUNCTION MQSendClob('MYSERVICE', 'MYPOLICY',
filetoclob("/work/mydata", "client"), 'TEST3');
commit;

This example sends a CLOB to the WMQ with the following parameters:
e service_name: "MYSERVICE"

* policy_name: "MYPOLICY"

* msg_data: filetoclob("/work/mydata", "client")

e correl_id: "TEST3"

MQSubscribe() function

The MQSubscribe() function is used to register interest in WMQ messages
published on one or more topics.

Syntax

»»>—MQSUBSCRIBE—(

| topic—)———»<

I—subscriber_name—, |_ _|
policy_name—,

subscriber_name
Optional parameter. Refers to the value in the pubsubname column of the
"informix".mgqiservice table. If subscriber_name is not specified,
IDS.DEFAULT.SUBSCRIBER is used as the subscriber. The maximum size
of subscriber_name is 48 bytes.

policy_name
Optional parameter. Refers to the value in the policyname column of the

8-32 IBM Informix Database Extensions User's Guide

"informix".mqipolicy table. If policy_name is not specified,
IDS.DEFAULT.PUB.SUB.POLICY is used as the policy. The maximum size
of policy_name is 48 bytes.

topic Required parameter. A string containing the topic for the message
publication. The maximum size of a topic is 40 bytes. Multiple topics can
be specified in one string (up to 40 characters long). Each topic must be
separated by a colon. For example, "t1:t2:the third topic" indicates that the
message is associated with all three topics: t1, t2, and the third topic. If no
topic is specified, none are associated with the message.

Usage

The MQSubscribe() function is used to register interest in WMQ messages
published on a specified topic. The subscriber_name specifies a logical destination
for messages that match the specified topic. Messages published on the topic are
placed on the queue referred by the service pointed to by the receiver column for
the subscriber (subscriber_name parameter). These messages can be read or received
through subsequent calls to the MQRead() and MQReceive() functions on the
receiver service.

This function requires the installation of the WMQ Publish/Subscribe Component
of WMQ and that the Message Broker must be running.

The following table describes how the arguments for the MQSubscribe() function
are interpreted.

Table 8-12. MQSubscribe() argument interpretation

Usage Argument interpretation
MQSubscribe(argl) argl = topic
MQSubscribe(argl, arg?2) argl = service_name

arg2 = topic
MQSubscribe(argl, arg2, arg3) argl = service_name

arg2 = policy_name

arg3 = topic

Return codes
1 The operation was successful.

Error The operation was unsuccessful.
Examples
Example 1

The following table contains sample rows and columns in the
"informix".mqipubsub table.

pubsubname pubsubtype
column receiver column column

Sample row 1 'IDS.DEFAULT. " 'Publisher’
PUBLISHER'

Chapter 8. MQ messaging functions 8-33

pubsubname pubsubtype
column receiver column column

Sample row 2 | IDS.DEFAULT. 'IDS.DEFAULT. 'Subscriber’
SUBSCRIBER' SUBSCRIBER.RECEIVER'

begin;

EXECUTE FUNCTION MQSubscribe('IDS.DEFAULT.SUBSCRIBER',
'IDS.DEFAULT.PUB.SUB.POLICY', 'Weather');

commit;

The above statement demonstrates a subscriber registering an interest in messages
containing the topic "Weather" with the following parameters:

e subscriber_name: "IDS.DEFAULT.SUBSCRIBER"
e policy_name: "IDS.DEFAULT.PUB.SUB.POLICY"
* topic: "Weather"

begin;

EXECUTE FUNCTION MQPublish('IDS.DEFAULT.PUBLISHER',
'IDS.DEFAULT.PUB.SUB.POLICY', 'Rain', 'Weather');
commit;

The above statement publishes the message with the following parameters:
* publisher_name: "IDS.DEFAULT.PUBLISHER"

* policy_name: "IDS.DEFAULT.PUB.SUB.POLICY"

* msg_data: "Rain"

* topic: "Weather"

* correl_id: none

begin;

EXECUTE FUNCTION MQReceive('IDS.DEFAULT.SUBSCRIBER.RECEIVER',
"IDS.DEFAULT.PUB.SUB.POLICY");

commit;

The above statement receives the message with the following parameters (it returns
"Rain"):

* service_name: "IDS.DEFAULT.SUBSCRIBER.RECEIVER"

e policy_name: "IDS.DEFAULT.PUB.SUB.POLICY"

Example 2

begin;
EXECUTE FUNCTION MQSubscribe('Weather');
commit;

This example demonstrates a subscriber registering an interest in messages
containing the topics "Weather" with the following parameters:

e subscriber_name: default subscriber
* policy_name: default policy
e topic: "Weather"

Example 3

begin;
EXECUTE FUNCTION MQSubscribe('PORTFOLIO-UPDATES', 'BASIC-POLICY', 'Stocks:Bonds');
commit;

8-34 IBM Informix Database Extensions User's Guide

This example demonstrates a subscriber registering an interest in messages
containing the topics "Stocks" and "Bonds" with the following parameters:

e subscriber_name: "PORTFOLIO-UPDATES"
* policy_name: "BASIC-POLICY"
* topic: "Stocks", "Bonds"

MQTrace() function

The MQTrace() procedure specifies the level of tracing and the location to which
the trace file is written.

Syntax

»>—MQTRACE—(—trace level—,—trace file—) ><

trace_level
Required parameter. Integer value specifying the trace level, currently only
a value of greater than 50 results in output.

trace_file
Required parameter. The full path and name of the file to which trace
information is appended. The file must be writable by user informix.

To enable tracing, you must first create a trace class by inserting a record into the
systemtraceclasses system catalog:

insert into informix.systraceclasses(name) values ('idsmq')
For more details regarding tracing, see the IBM Informix Guide to SQL: Reference.
Example

Enable tracing at a level of 50 with an output file of /tmp/trace.log:
EXECUTE PROCEDURE MQTrace(50, '/tmp/trace.log');

Execute a request:

begin;

EXECUTE FUNCTION MQSend('IDS');
commit;

Look at the trace output:

14:19:38 Trace ON Tevel : 50

14:19:47 >>ENTER : mqSend<<

14:19:47 status:corrid is null

14:19:47 >>ENTER : MqOpen<<

14:19:47 status:MgOpen @ build_get_mq_cache()

14:19:47 >>ENTER : build_get_mq_cache<<

14:19:47 status:build_get_mq_cache @ mi_get_database_info()
14:19:47 status:build_get mg_cache @ build mq_service cache()
14:19:47 >>ENTER : build_mq_service_cache<<

14:19:47 <<EXIT : build_mq_service_cache>>

14:19:47 status:build_get _mq_cache @ build_mq_policy_cache()
14:19:47 >>ENTER : build_mg_policy_cache<<

14:19:47 <<EXIT : build_mqg_policy cache>>

14:19:47 status:build_get_mq_cache @ build_mq_pubsub_cache()
14:19:47 >>ENTER : build_mq_pubsub_cache<<

14:19:47 <<EXIT : build_mq_pubsub_cache>>

14:19:47 <<EXIT : build_get_mq_cache>>

14:19:47 status:MgOpen @ MgiGetServicePolicy()

Chapter 8. MQ messaging functions 8-35

>>ENTER : MgiGetServicePolicy<<

<<EXIT : MqgiGetServicePolicy>>
MQI:MgOpen @ MQCONNX()
status:MgOpen @ MgXadsRegister()

>>ENTER : MgXadsRegister<<
status:MgXadsRegister @ ax_reg()

<<EXIT : MgXadsRegister>>
status:MqOpen @ MgGetMgiContext ()

>>ENTER : MqgGetMgiContext<<
MQI:MgGetMgiContext @ MQOPEN()

<<EXIT : MgGetMqgiContext>>

<<EXIT : MqOpen>>

>>ENTER : MgTransmit<<

>>ENTER : MqBuildMQPMO<<

<<EXIT : MqBuildMQPMO>>

>>ENTER : MqBuildMQMDSend<<

<<EXIT : MqBuildMQMDSend>>
MQI:MgTransmit @ MQPUT()

<<EXIT : MgTransmit>>

<<EXIT : mgSend>>

>>ENTER : MgEndTran<<
MQI:MgEndTran @ MQCMIT()
status:MgEndTran @ MgShut()

>>ENTER : MgShut<<
status:MgEndTran @ MQDISC

<<EXIT : MgEndTran>>:

MQUnsubscribe() function

8-36

The MQUnsubscribe() function is used to unregister interest in WMQ messages
published on one or more topics.

Syntax

»»—MQUNSUBSCRIBE— (

subscriber_name
Optional parameter. Refers to the value in the pubsubname column of the
"informix".mqiservice table. If subscriber_name is not specified,
IDS.DEFAULT.SUBSCRIBER is used as the subscriber. The maximum size
of subscriber_name is 48 bytes.

policy_name
Optional parameter. Refers to the value in the policyname column of the
"informix".mqipolicy table. If policy_name is not specified,
IDS.DEFAULT.PUB.SUB.POLICY is used as the policy. The maximum size
of policy_name is 48 bytes.

l—subscriber_name—, |_

P

oZicy_name—,—|

topic—)———»<

topic Required parameter. A string containing the topic for the message
publication. The maximum size of a topic is 40 bytes. Multiple topics can
be specified in one string (up to 40 characters long). Each topic must be
separated by a colon. For example, "t1:t2:the third topic" indicates that the
message is associated with all three topics: t1, t2, and the third topic. If no

topic is specified, none are associated with the message.

IBM Informix Database Extensions User's Guide

Usage

The MQUnsubscribe() function is used to unregister interest in WMQ messages
subscription on a specified topic. The subscriber_name specifies a logical destination
for messages that match the specified topic.

This function requires the installation of the WMQ Publish/Subscribe Component
of WMQ and that the Message Broker must be running.

The following table describes how the arguments for the MQUnsubscribe()
function are interpreted.

Table 8-13. MQUnsubscribe() argument interpretation

Usage Argument interpretation
MQUnsubscribe(arg1) argl = topic
MQUnsubscribe(argl, arg?2) argl = service_name

arg2 = topic
MQUnsubscribe(argl, arg2, arg3) argl = service_name

arg2 = policy_name

arg3 = topic

Return codes
1 The operation was successful.

Error The operation was unsuccessful.
Examples

Example 1

begin;
EXECUTE FUNCTION MQUnsubscribe('Weather');
commit;

This example demonstrates unsubscribing an interest in messages containing the
topic "Weather" with the following parameters:

e subscriber_name: default subscriber
e policy_name: default policy
* topic: "Weather"

Example 2

begin;

EXECUTE FUNCTION MQUnsubscribe('PORTFOLIO-UPDATES', 'BASIC-POLICY',
'Stocks:Bonds');

commit;

This example demonstrates unsubscribing an interest in messages containing the
topics "Stocks" and "Bonds" with the following parameters:

e subscriber_name: "PORTFOLIO-UPDATES"
* policy_name: "BASIC-POLICY"
* topic: "Stocks", "Bonds"

Chapter 8. MQ messaging functions ~ 8-37

MQVersion() function

The MQVersion() function returns version information.
The MQVersion() function returns the version of the MQ DataBlade Module.

Syntax

»»—MQVersion—() >

Example
Show the version:

EXECUTE FUNCTION MQVersion();
OutPut of the MQVersion() function: MQBLADE 2.0 on 29-MAR-2005

8-38 IBM Informix Database Extensions User's Guide

Chapter 9. MQ messaging error handling

This topic describes MQ messaging error codes.

SQL State Description

MQO000 Memory allocation failure in %FUNC%.

MQPOL MQOPEN Policy : %POLICY%

MQSES MQOPEN Session : %SESSION%

MQRCV Read %BYTES% from the queue.

MQNMS No data read/received, queue empty.

MQSUB Subscribing to %SUBSCRIBE%.

MQVNV VTI Table definition parameter NAME:%NAME% VALUE:%VALUE%.

MQNPL VTI No policy defined for table mapped to MQ. Must define table with policy attribute.

MQNSV VTI No service defined for table mapped to MQ. Must define table with service attribute.

MQNAC VTI No access defined for table mapped to MQ. Must define table with access attribute.

MQBAC VTI Invalid Access specification FOUND:%VALUE%, possible values%VALONE% or %VALTWO%.

MQVCN VTI Qualified : Column 'correlid' cannot be qualified with NULL.

MQVTB Table missing required 'message’ column. Message column is bound to the queue, it is mandatory.

MQVSP VTI mapped Queue did not include the POLICY and SESSION columns.

MQVIA VTI table definition invalid access type (% VALUE%), valid access types are %READ% or %RECEIVE%.

MQVMS VTI mapped queue missing SERVICE specification.

MQVMA VTI mapped QUEUE creation did not include ACCESS definition.

MQVMP VTI mapped QUEUE creation did not include POLICY specification.

MQVQC VTI queue mapping, Column '%COLUMN%' must be qualified with a constant.

MQVON VTI queue mapping, Column '%COLUMN%' cannot be qualified with NULL.

MQVQE VTI queue mapping, Column '%COLUMN%' can only use equality operator.

MQVQF VTI queue mapping, column '%COLUMN%' - failed to fetch field.

MQSUN Invalid selector '%IDX%' found, path not possible.

MQERX Extended error : '%FUNC%', code:%CODE% explain: %EXPLAIN%, refer to MQSeries publication for
further description.

MQGEN %FUNC% encountered error %ERR% with accompanying message : %MSG%

MQTNL Topic cannot be NULL.

MQCNL Internal error encountered NULL context.

MQNLM Cannot send NULL message.

MQVNQ MQSeries underlying qualification system does not support negation.

MQVDQ Qualifications cannot bridge between MQSeries and database.

MQEDN MQ Transport error, service '%NAME%' underlying queue manager may not be activated.

MQEPL Policy '%POLICY%' could not be found in the repository.

MQRLN Error during read, expected %EXPECT%, received:%READ%.

MQELO Error attempting to fetch CLOB, function:%NAME% returned %CODE%.

MQRDA MQ Transport error, service '%NAME%' underlying transpost layer not enabled to receive requests

© Copyright IBM Corp. 2005, 2011

9-1

SQL State

Description

MQSDA MQ Transport error, service '%NAME%' underlying transpost layer not enabled to send requests

MQVQOM MQSeries : Cannot have multiple qualifies for the same column (%COLUMNY%).

MQRFQ Retrieved entries from queue, at least one entry failed qualification - data lost.

MQQCI Qualification column invalid, only can qualify on 'topic' and 'correlid".

MQGER MQ Error : %MSG%

MQGVT MQ VTI Error : %MSG%

MQZCO Correlation value found to be zero length, invalid value for MQSeries.

MQVTN Must supply name of VTI table.

MQO018 FUNCTION:%NAME%, SERVICE:%SERVICE%, POLICY:%POLICY% :: The specified (sender, receiver,
distribution list, publisher, or subscriber) service was not found, so the request was not carried out.

MQ020 FUNCTION:%NAME%, SERVICE:%SERVICE%, POLICY:%POLICY% :: The specified policy was not
found, so the request was not carried out.

MQT40 Topic exceeded forty character maximum.

MOQINX Input too large, maximum:%len% found:%txt%

MQITM Invalid table 'msg' column size %len%, valid range (1-%max%)

MQEXT AMRC_TRANPORT_ERR, fetched secondary error at:%NAME%, MQI error :%ERR%

MQXAR Xadatasource (%XADS%) registration error : FUNCTION: %FUNCTION%, RETURN VALUE:
%VALUE%

MQO010 FUNCTION:%NAME%: Unable to obtain database information.

MQO11 FUNCTION:%NAME%: Error while querying table:%TABNAME%

MQO012 FUNCTION:%NAME%: Unexpected NULL value while querying the table:%TABNAME%

MQO013 FUNCTION:%NAME%: Unexpected return value from mi function while querying
table:% TABNAME%

MQO014 FUNCTION:%NAME%: Unexpected failure opening mi connection while querying
table:%TABNAME%

MQMOQI FUNCTION:%FNAME%, SERVICE:%SERVICE%, POLICY:%POLICY% :: MQI Error generated by
%MQINAME% with CompCode=%CCODE%, Reason=%REASON%.

MQO015 FUNCTION:%FNAME%, SERVICE:%SERVICE%, POLICY:%POLICY% :: %NAME% is not present in
the database %TABNAME% table.

MQO16 FUNCTION:%FNAME%, SERVICE:%SERVICE%, POLICY:%POLICY% :: Connection to Multiple
QueueManagers are not allowed in the same transaction.

MQO019 FUNCTION:%FNAME%, SERVICE:%SERVICE%, POLICY:%POLICY% :: Internal Error. not able to
switch to the virtual processor where the MQCONNX() is invoked.

MQO017 FUNCTION:%FNAME%, SERVICE:%SERVICE%, POLICY:%POLICY% :: Internal Error. The Virtual

processor class not the same as ""MQ""

9-2 IBM Informix Database Extensions User's Guide

Part 3. Binary data types

The binary18 and binaryvar data types allow you to store binary-encoded strings,
which can be indexed for quick retrieval.

You can use string manipulation functions to validate the data types and bitwise
operation functions that allow you to perform bitwise logical AND, OR, XOR
comparisons or apply a bitwise logical NOT to a string.

Because the binary data types are unstructured types, they can store many
different types of information, for example, IP addresses, MAC addresses, or
device identification numbers from RFID tags. The binary data types can also store
encrypted data in binary format, which saves disk space. Instead of storing an IP
address like xxx.xxx.xxx.xxx as a CHAR(15) data type, you can store it as a
binaryvar data type, which uses only 6 bytes.

© Copyright IBM Corp. 2005, 2011

IBM Informix Database Extensions User's Guide

Chapter 10. Binary data types overview

The binary18 and binaryvar data types have certain restrictions due to the nature
of binary data.

The Binary DataBlade Module is supported on IBM Informix Version 10.00.xC6 or
later.

Binary data type can be used in the following situations:
* The binary data types are allowed in Enterprise Replication.

* Casts to and from the LVARCHAR data type are permitted as are implicit casts
between the binaryl8 and binaryvar data types.

* The aggregate functions COUNT DISTINCT(), DISTINCT(), MAX(), and MIN()
are supported.

Binary data types have the following limitations:

* The only arithmetic operations supported are the bitwise operators: bit_and(),
bit_or(), bit_xor(), and bit_complement().

* The LIKE and MATCHES conditions are not supported.

Register the Binary DataBlade Module

Use BladeManager to register the Binary DataBlade Module in each database in
which you want to use binary user-defined types and functions. See the IBM
Informix DataBlade Module Installation and Registration Guide for more information.

You cannot register the Binary DataBlade Module into an ANSI-compliant
database.

Unregister the Binary DataBlade Module

Unregistration removes the definitions of the Binary DataBlade Module's
user-defined binary data types and their associated functions. You can unregister a
DataBlade module that was previously installed only if there is no data in your
database that uses the definitions defined by the DataBlade module. This means,
for example, that if a table currently uses the binaryvar or the binaryl8 data type,
you cannot unregister the Binary DataBlade Module from your database. Refer to
the IBM Informix DataBlade Module Installation and Registration Guide for instructions
on how to unregister the DataBlade modules.

© Copyright IBM Corp. 2005, 2011 10-1

10-2 IBM Informix Database Extensions User's Guide

Chapter 11. Store and index binary data

This chapter describes the binary data types and how to insert and index binary
data.

Binary data types

You can store and index binary data by using the binaryvar and binary18 data

types.

The binaryvar data type

The binaryvar data type is a variable-length opaque type with a maximum length
of 255 bytes.

The binary18 data type

The binary18 data type is a fixed-length opaque data type that holds 18 bytes.
Input strings shorter than 18 bytes are right-padded with zeros (00). Strings longer
than 18 bytes are truncated.

The binary18 data type has the advantage of not having its length stored as part of
the byte stream. When inserting data into the binaryvar data type, the first byte
must be the length of the byte array. The binary18 data type does not have this
restriction.

ASCII representation of binary data types

Binary data types are input using a 2-digit ASCII representation of the characters
in the hexadecimal range of 0-9, A-F. The characters A-F are not case-sensitive and
you can add a leading 0x prefix to the string. You must enter an even number of
bytes up to the maximum number of encoded bytes permitted, otherwise an error
is generated. For example, 36 bytes are input to represent the binary18 data type.
No spaces or other separators are supported.

Each 2-byte increment of the input string is stored as a single byte. For example,
the 2-byte ASCII representation of "AB" in hexadecimal notation is divided into
blocks of four binary characters, where 1010 1011 equals one byte.

Binary data type examples
Example 1: binaryvar data type

The following code stores the binary string of 0123456789 on disk:
CREATE TABLE bindata_test (int_col integer, bin_col binaryvar)

INSERT INTO bindata_test values (1, '30313233343536373839')
INSERT INTO bindata_test values (2, '0X30313233343536373839')

Example 2: binary18 data type

The following code inserts the string IBMCORPORATION2006:
CREATE TABLE bindata_test (int_col integer, bin_col binaryl8)

INSERT INTO bindata_test values (1,'49424d434f52504f524154494f4e32303036")
INSERT INTO bindata_test values (2,'0x49424d434f525041524154494f3e32303036")

© Copyright IBM Corp. 2005, 2011 11-1

Insert binary data

You can use one of two methods to insert binary data with the binary data types:
an SQL INSERT statement that uses the ASCII representation of the binary data
type or an SQL INSERT statement from a Java or C program that treats the column
as a byte stream. For example, given the following table:

CREATE TABLE network_table (
mac_address binaryvar NOT NULL,
device name varchar(128),
device_location varchar(128),
device_ip_address binaryvar,
date_purchased date,
last_serviced date)

Using an SQL INSERT statement that uses the ASCII representation of the
binaryvar or binary18 column:

INSERT INTO network table VALUES ('©00012DF4F6C', 'Network Router 1',
'Basement', 'COA80042', '01/01/2001', '01/01/2006");

Using an SQL INSERT statement from a Java program that treats the column as a
byte stream, such as the JDBC setBytes() method:

String binsqlstmt = "INSERT INTO network_table (mac address, device_name,
device location, device ip_address) VALUES (2, 2, 2, 2)3
PreparedStatement stmt = null;

byte[] maddr = new byte[6];

byte[] ipaddr = new byte[4];

try
{
stmt = conn.prepareStatement(binsqlstmt);
maddr[0] =
maddr[1] =
maddr[2] = 18;
maddr[3] = -33;
maddr[4] = 79;

maddr[5] = 108;

stmt.setBytes(1, maddr);
stmt.setString(2, "Network Router 1");
stmt.setString(3, "Basement");

ipaddr[0] = -64;
ipaddr[1] = -88;
ipaddr[2] = 0;

ipaddr[3] = 66;
stmt.setBytes(4,ipaddr);
stmt.executeUpdate();
stmt.close()

1

catch

{
System.out.printin("Exception: " + e);
e.printStackTrace(System.out);
throw e;

}

Index binary data

The binaryvar and binary18 data types support indexing using the B-tree access
method for single-column indexes and composite indexes. Nested-loop join
operations are also supported.

For example, given the following table:

11-2 IBM Informix Database Extensions User's Guide

CREATE TABLE network_table (
mac_address binaryvar NOT NULL,
device_name varchar(128),
device_location varchar(128),
device_ip_address binaryvar,
date_purchased date,
Tast_serviced date)

The following statement can be used to create the index:
CREATE UNIQUE INDEX netmac_pk ON network_table (mac_address) USING btree;

Chapter 11. Store and index binary data 11-3

11-4 IBM Informix Database Extensions User's Guide

Chapter 12. Binary data type functions

This chapter describes functions for the binary data types and provides detailed
information about each function's syntax and usage.

Bitwise operation functions

These functions perform bitwise operations on binary18 or binaryvar fields. The
expressions can be either binary18 or binaryvar columns or they can be expressions
that have been implicitly or explicitly cast to either the binary18 or the binaryvar
data type.

The return type for all of these functions is either the binary18 or the binaryvar
data type.

The bit_and() function

The bit_and() function performs a bitwise logical AND operation on two binary
data type columns.

Syntax

bit_and(columnl, column2)

columnl, column2
Two input binary data type columns.

Usage

If the columns are different lengths, the return value is the same length as the
longer input parameter with the logical AND operation performed up to the length
of the shorter parameter.

Return codes

The function returns the value of the bitwise logical AND operation.

If either parameter is NULL, the return value is also NULL.

Example

In the following example, the value of binaryvar_col1l is '00086000'.

SELECT bit_and(binaryvar _coll, '0003C000'::binaryvar) FROM table WHERE x = 1
expression

00004000

The bit_complement() function

The bit_complement() function performs a logical NOT, or one’s complement on a
single binary data type column.

© Copyright IBM Corp. 2005, 2011 12-1

12-2

Syntax

bit_complement (column)

column The input binary data type column.
Usage

The function changes each binary digit to its complement. Each 0 becomes a 1 and
each 1 becomes a 0.

Return codes
The function returns the value of the bitwise logical NOT operation.
Example

In the following example the value of binaryvarcoll is '00086000':

SELECT bit_complement(binaryvar_coll) FROM table WHERE x = 1
expression

FFF79FFF

The bit_or() function

The bit_or() function performs a bitwise logical OR on two binary data type
columns.

Syntax

bit_or(columnl, column2)
columnl, column2
Two input binary data type columns.

Usage

If the columns are of different length, the return value is the same length as the
longer input parameter, with the OR operation performed up to the length of the
shorter parameter. The remainder of the return value is the unprocessed data in
the longer string.

Return codes

The function returns the value of the bitwise logical OR operation.
If either parameter is NULL, the return value is also NULL.
Example

In the following example, the value binaryvarcoll is '00006000'":

SELECT bit_or(binaryvar_coll, '00080000'::binaryvar) FROM table WHERE x = 1
expression

00086000

IBM Informix Database Extensions User's Guide

The bit_xor() function

The bit_xor() function performs a bitwise logical XOR on two binary data type
columns.

Syntax

bit_xor(columnl, column2)
columnl, column2
Two input binary data type columns.

Usage

If the columns are of different lengths, the return value is the same length as the
longer input parameter, with the XOR operation performed up to the length of the
shorter parameter. The remainder of the return value is the unprocessed data in
the longer parameter.

Return codes

The function returns the value of the bitwise logical XOR operation.
If either parameter is NULL, the return value is also NULL.
Example

In the following example, the value of binaryvarcoll is '00086000':

SELECT bit_xor(binaryvar _coll, '00004000'::binaryvar) FROM table WHERE x = 1'
expression

00082000

Support functions for binary data types

Supporting functions for binary data types include the SQL LENGTH() and
OCTET_LENGTH() functions that allow you to determine the length of a column.
The bdttrace() function is used to trace events related to using binary data types.

The bdtrelease() function

The bdtrelease() function provides the version number of the binary data types.

Syntax

bdtrelease(void)
Usage

Use the bdtrelease() function when directed to do so by an IBM Software support
representative.

Return codes

This function returns the name and version number of the binary data types.

Chapter 12. Binary data type functions 12-3

12-4

Example

Example output:
execute function bdtrelease();

(expression) BinaryString DataBlade Release 1.0a Patch level 0 (Build 107)
Compiled on Tue Apr 17 13:49:40 EDT 2007 with:
IBM Informix Dynamic Server Version 11.10.FC1
glslib-4.50.UC1_B1

The bdttrace() function

The bdttrace() function specifies the location where the trace file is written.

Syntax

bdttrace(filename)

filename
The full path and name of the file to which trace information is appended.
The file must be writable by user informix. If no file name is provided, a

standard session_id.trc file is placed in the $INFORMIXDIR/tmp directory. If
the file already exists, the trace information is appended to the file.

Usage
Use the bdttrace() function to troubleshoot events related to binary data types.

To enable tracing, create a trace class by inserting a record into the
systemtraceclasses system catalog;:

insert into informix.systraceclasses(name) values ('binaryUDT')
For more details regarding tracing, see the IBM Informix Guide to SQL: Reference.

Example
bdttrace(tracefile)

The LENGTH() function

Use the LENGTH() SQL function to determine if the string is from a binaryvar or
a binary18 column. The LENGTH() function returns the number of bytes in a
column.

Syntax
LENGTH (column)

column The binary data type column.
Usage

This function returns the length of the column in bytes as an integer. For the
binaryl8 data type, the function always returns 18.

For binary data types, the SQL LENGTH() and OCTET_LENGTH() functions
return the same value. For more information about length functions, see the IBM
Informix Guide to SQL: Reference.

IBM Informix Database Extensions User's Guide

Example

SELECT length(binaryvar_col) FROM table WHERE binaryvar_col = '0A010204'
expression

The OCTET_LENGTH() function

Use the OCTET_LENGTH() SQL function to determine if the string is from a
binaryvar or a binary18 column. The OCTET_LENGTH() function returns the
number of octets (bytes).

Syntax
OCTET_LENGTH(column)

column The binary data type column.
Usage

This function returns the length of the column in bytes as an integer. For the
binaryl8 data type, the function always returns 18.

For binary data types, the SQL LENGTH() and OCTET_LENGTH() functions
return the same value. For more information about length functions, see the IBM
Informix Guide to SQL: Reference.

Example

SELECT octet_length(binaryvar_col) FROM table WHERE binaryvar_col = '93FB'
expression

Chapter 12. Binary data type functions 12-5

12-6 IBM Informix Database Extensions User's Guide

Part 4. Basic Text Search

You can perform basic text searching for words and phrases in a document
repository stored in a column of a table with the IBM Informix Basic Text Search
DataBlade Module.

In traditional relational database systems, you must use a LIKE or MATCHES
condition to search for text data and use the database server to perform the search.
Informix uses the open source CLucene text search package to perform basic text
searches. This text search package and its associated functions, known as the text
search engine, is specifically designed to perform fast retrieval and automatic
indexing of text data. The text search engine runs in virtual processors that are
controlled by the database server.

To perform basic text searches, you create a bts index on one column and then use
the bts_contains() search predicate function to query the text data.

You can specify synonyms for data has multiple words for the same information,
for example, proper names that with multiple spellings. You can use canonical
mapping to create a static list of synonyms.

To search for words and phrases you use a predicate called bts_contains() that
instructs the database server to call the text search engine to perform the search.

For example, to search for the string century in the column brands in the table
products you use the following statement:

SELECT id FROM products
WHERE bts_contains(brands, 'century');

The search predicate takes a variety of arguments to make the search more detailed
than one using a LIKE condition. Search strategies include single and multiple
character wildcard searches, fuzzy and proximity searches, AND, OR and NOT
Boolean operations, range options, and term-boosting.

You can search for unstructured text or, if you use XML index parameters, you can
search columns with XML documents by tags, attributes, or XML paths.

You can use basic text search functions to perform maintenance tasks, such as
compacting the bts index and obtaining the list of indexed field names.

© Copyright IBM Corp. 2005, 2011

IBM Informix Database Extensions User's Guide

Chapter 13. Preparing for basic text searching

Before you can perform basic text searching, you must prepare the server
environment and create the bts index. Review the requirements and restrictions.

To prepare for basic text searching, complete these tasks:

Define the bts extension virtual process class.

Create a default sbspace.

Optional: Create an sbspace for the bts index.

Optional: Create a space for temporary data.

Register the IBM Informix Basic Text Search DataBlade Module.
Create the bts index.

ook owN =

Basic text search requirements and restrictions

When you plan how to configure basic text searching, you must understand the
requirements and restrictions.

To use the IBM Informix Basic Text Search DataBlade Module, you must have IBM
Informix Version, 11.10 or a later version.

Basic text search queries can use most multi-byte character sets and global
language support, including UTF-8, but cannot use ideographic languages such as
Chinese, Korean, and Japanese.

You can run basic text search queries on primary and all types of secondary
servers in high-availability clusters.

To use basic text searching, you must store the text data in a column of data type
BLOB, CHAR, CLOB, LVARCHAR, NCHAR, NVARCHAR, or VARCHAR. The
index can be stored in either an sbspace or an extspace.

Although you can store searchable text in a column of the BLOB data type, you
cannot create a basic text search index on binary data. BLOB data type columns
must contain text.

Restriction:
If your documents are over 32 KB, store them in columns of type BLOB or CLOB.

The size of a document that you want to index is limited by the amount of
available virtual memory on your machine. For example, if you have 1 GB of
available virtual memory, you can only index documents that are smaller than 1
GB.

The following characteristics are not supported for bts indexes:
* Fill factors

* Composite indexes

* Index clustering

* Unique indexes

© Copyright IBM Corp. 2005, 2011 13-1

You cannot include basic text search queries in distributed queries or parallel
database queries.

Creating BTS virtual processors

You must create one or more BTS virtual processors to use a bts index. The Basic
Text Search functions run in a BTS virtual processor, which means that only one
query or other type of index operation runs at a time in each virtual processor.

To create BTS virtual processors in the onconfig file:

1. Add an instance of the VPCLASS configuration parameter that specifies the
BTS processor class and the number of BTS virtual processors to start. For
example, the following line in the onconfig file creates one BTS virtual
processor: VPCLASS bts,num=1

2. Restart the database server.

For information about virtual processors, see the IBM Informix Administrator’s
Guide.

Creating a default sbspace

13-2

You must create a default sbspace and set the SBSPACENAME configuration
parameter in the onconfig file before you create a bts index or register the
DataBlade module into any database, or the registration fails. The database server
sets up internal directories for basic text searching in a default sbspace.

The database server also stores bts indexes in the default sbspace unless you
explicitly specify another sbspace when you create the index. Be sure the default
sbspace is large enough to hold all of these objects. Monitor the size of the default
sbspace and increase its size when necessary.

The sbspace for bts index must have these characteristics:

* Logging must be enabled. Include the -Df "LOGGING=ON" option when you
create the sbspace with the onspaces utility.

* Buffering must be enabled. Buffering is enabled by default when you create an
sbspace with the onspaces utility.

To create the default sbspace:

1. Set the SBSPACENAME configuration parameter in the configuration file to the
name of your default sbspace.

The following example sets the name of the default sbspace to sbsp1:
SBSPACENAME sbhspl

2. Restart the database server.

3. Create the sbspace. Include the -Df "LOGGING=0ON" option.

The following example creates an sbspace called sbsp1 in the file
c:\IFMXDATA\shspace by using the onspaces utility:

onspaces -c -S shspl -p c:\IFMXDATA\sbspace -0 0 -s 100000 -Df "LOGGING=ON"

IBM Informix Database Extensions User's Guide

Related reference

[[SBSPACENAME Configuration Parameter (Administrator's Reference)|

[[onspaces -c -S: Create an sbspace (Administrator's Reference)|

[[onspaces -c -x: Create an extspace (Administrator's Reference)|

[[create sbspace argument: Create an sbspace (SQL administration API)|
[(Administrator's Reference)|

create sbspace from storagepool argument: Create an sbspace from the stora
[[create sb from st I t: Create an sbspace from the storag
ipool (SQL administration API) (Administrator's Reference)|

Creating a space for the bts index

Each bts index is stored in one or more sbspaces. You can create a dedicated
sbspace to store your bts index and then specify that sbspace name when you
create the bts index. For backwards compatibility, you can continue to store bts
indexes in extspaces.

If you do not create a separate sbspace for your bts indexes, the database server
stores bts indexes in the default sbspace.

In general, the sbspace for a bts index should be at least the size of the data being
indexed. A highly optimized index might take up to three times the size of the
data being indexed.

The sbspace for bts index must have these characteristics:

* Logging must be enabled. Include the -Df "LOGGING=ON" option when you
create the sbspace with the onspaces utility.

* Buffering must be enabled. Buffering is enabled by default when you create an
sbspace with the onspaces utility.

To create an sbspace, use the onspaces utility. For example:
onspaces -c -S bts_sbspace -0 0 -s 100000 -p /dev/sbspace -Df LOGGING=ON

To create an extspace:
1. Create a directory for the index.

2. Create the extspace by using the onspaces utility.
The following example creates a directory and an extspace:

mkdir bts_extspace_directory
onspaces -c -x bts_extspace -1 "/bts_extspace_directory"

Chapter 13. Preparing for basic text searching 13-3

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_adr_0147.htm#ids_adr_0147
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_adr_0470.htm#ids_adr_0470
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_adr_0475.htm#ids_adr_0475
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_sapi_022.htm#ids_sapi_022
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_sapi_022.htm#ids_sapi_022
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_sapi_113.htm#ids_sapi_113
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_sapi_113.htm#ids_sapi_113

Related reference

[[onspaces -c -S: Create an sbspace (Administrator's Reference)|

[[onspaces -c -x: Create an extspace (Administrator's Reference)|

[|Create sbspace argument: Create an sbspace (SQL administration API)|
[(Administrator's Reference)

create sbspace from storagepool argument: Create an sbspace from the stora
[[create sb from st] t: Create an sbspace from the storag
ipool (SQL administration API) (Administrator's Reference)|

Creating a space for temporary data

Basic text searching creates temporary data while processing bts indexes. You can
create a separate space for temporary data and specify it when you create the bts
index.

For best performance, the space should be a temporary sbspace since data and
metadata for temporary files are not logged. However, you can also use an sbspace
or an extspace.

If you do not specify a separate space for temporary data when you create the bts
index with the tempspace index parameter, the database server stores temporary
data in one of the following locations that is defined:

* An sbspace specified by the SBSPACETEMP configuration parameter. The
temporary sbspace with the most free space is used. If no temporary sbspaces
are listed, the sbspace with the most free space is used.

* The sbspace specified in the CREATE INDEX statement.
* The sbspace specified by the SBSPACENAME configuration parameter.

To create a temporary sbspace, use the onspaces utility with the -t option. (Do not
include the -Df "LOGGING=ON" option.)

For example:
onspaces -c -S temp_sbspace -t -0 0 -s 50000 -p /dev/temp_sbspace
Related reference

[[onspaces -c -S: Create an sbspace (Administrator's Reference)|

[[create tempsbspace from storagepool argument: Create a temporary sbspace|
ffrom the storage pool (SQL administration API) (Administrator's Reference

Register the Basic Text Search DataBlade module

Use BladeManager to register the]lBM Informix Basic Text Search DataBlade
Module in each database in which you want to use it. See the IBM Informix
DataBlade Module Installation and Registration Guide for more information.

Important: Registration fails if the SBSPACENAME configuration parameter is not
set in the configuration file.

Creating a bts index

You create a bts index by using the bts access method and specifying index
parameters and other options.

13-4 IBM Informix Database Extensions User's Guide

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_adr_0470.htm#ids_adr_0470
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_adr_0475.htm#ids_adr_0475
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_sapi_022.htm#ids_sapi_022
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_sapi_022.htm#ids_sapi_022
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_sapi_113.htm#ids_sapi_113
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_sapi_113.htm#ids_sapi_113
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_adr_0470.htm#ids_adr_0470
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_sapi_114.htm#ids_sapi_114
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_sapi_114.htm#ids_sapi_114

Before you create a bts index, plan which index parameters and other options you
want to use. You can use a table of file to store information for many of the index
parameters.

To create a bts index:

1. Optional. Create any files or tables necessary to store information for index
parameters.

2. Create an index using the bts access method.
Related reference

[“The canonical_maps index parameter” on page 14-11|

“Stopwords index parameter” on page 14-8|

“Basic Text Search XML index parameters syntax” on page 15-2|

bts access method syntax

The bts access method is a secondary access method to create indexes that support
basic text searching.

Syntax

»»—CREATE INDEX—index_name—ON—table_name— (—column_name—op_class—)—USING bts >

L [(1) J_J
(—Y XML Index Parameters EE——)
(2)
Stopwords Index Parameter |7
_| J:"deferred" (3)
—delete= "1'mmed1'ate"]—
(4)
—tempspace=tempspace_name:
llnoll (5)
query_1 og=£"yes"_|
IIORII (6)
—query_default_operator=£"AND"
(7)

—max_clause_count="max_clauses"
(8)

— Canonical Mapping —

|:I N—space_name
FRAGMENT BY EXPRESSION—Y—(—expression—)—IN—space_name
|—REMAINDER—IN—space_nannzJ

Notes:

See [‘Basic Text Search XML index parameters syntax” on page 15-2]

See [“Stopwords index parameter” on page 14-8.|

See [“Optimize the bts index” on page 18-1]

See [“Creating a space for temporary data” on page 13-4

See [“Tracking queries on bts indexes” on page 13-7

See [“Boolean operators” on page 14-6.]

See [“Maximum number of query results” on page 14-10]

R I O O A LN

See [“The canonical_maps index parameter” on page 14-11]

Chapter 13. Preparing for basic text searching 13-5

Element Description

column_name The name of the column in the table that contains the text
documents to search.

expression Expression defining an index fragment. Must return a Boolean
value. Can contain only columns from the current table and
data values from only a single row. No subqueries nor
aggregates are allowed. The built-in CURRENT, DATE,
SYSDATE, and TODAY functions are not valid here. The
bts_contains() search predicate is not valid. For more

information about expressions, see [Expressio

index_name The name of the bts index.

max_clauses The maximum number of clauses in a basic text search query.
Default is 1024.

op_class The operator class applicable to the data type specified in the
column_name. Available operator classes are listed below.

space_name The name of the sbspace or extspace in which to store the bts
index.

table_name The name of the table for which you are creating the index.

tempspace_name The name of the space in which to store temporary files.

Usage

You must create a bts index for each text column that you plan to search.

You cannot alter the characteristics of a bts index after you create it. Instead, you
must drop the index and re-create it with the desired characteristics.

When you create a bts index, you specify the operator class defined for the data
type of the column being indexed. An operator class is a set of functions that the
database server associates with the bts access method to optimize queries and
build indexes. Each of the data types that support a bts index has a corresponding
operator class. The following table lists each data type and its corresponding
operator class.

Table 13-1. Data types and their corresponding operator classes

Data type Operator class
BLOB bts_blob_ops
CHAR bts_char_ops
CLOB bts_clob_ops
LVARCHAR bts_lvarchar_ops
NCHAR bts_nchar_ops
NVARCHAR bts_nvarchar_ops
VARCHAR bts_varchar_ops
Examples

Example 1: Create a bts index and store it in an sbspace

13-6 IBM Informix Database Extensions User's Guide

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqls.doc/ids_sqs_1425.htm#ids_sqs_1425

For example, suppose your search data is contained in a column brands, of data
type CHAR, in a products table. To create a bts index named desc_idx in the
sbspace sbspl, use the following syntax:

CREATE INDEX desc_idx ON products (brands bts_char_ops)
USING bts IN shspl;

Example 2: Create a fragmented bts index

The following example stores the bts index in three sbspaces by fragmenting the
index according to an expression:

CREATE INDEX bts_idx ON bts_tab(col2 bts_char_ops) USING bts
FRAGMENT BY EXPRESSION
(coll <= 1000000) IN bts_sbspace00,
(coll > 1000000 and coll <= 2000000) IN bts_sbspace0l,
REMAINDER IN bts_sbspace36;

Related reference

[“Stopwords index parameter” on page 14-§|

Tracking queries on bts indexes

You can determine the frequency of queries that are run against a bts index by
enabling tracking.

When tracking is enabled, each query run against the bts index produces a log
record in the $INFORMIXDIR/tmp/bts_query.log file. Each log record has five fields,
separated by a pipe character (I):

query time stamp | index name | partn | query | number of rows |

The fields are described in the following table.
Table 13-2. Query tracking fields

Field name Data type Description

Query time stamp DATETIME YEAR TO The time when the query was
FRACTION run.

Index name LVARCHAR The name of the index.

Partn INTEGER The identifying code of the

physical location of the
fragment in which the index

is located.
Query LVARCHAR The syntax of the query.
Number of rows INTEGER The number of rows returned

by the query.

You can view the log records by loading them into a table and then querying the
table.

To track queries:

1. Include the query_log="yes" parameter in the CREATE INDEX statement
when you create your bts index.

2. Create a table to hold the log records.
3. Load the log records into the log table.
4. Query the log table to view the records.

Chapter 13. Preparing for basic text searching 13-7

The following example shows how to perform each of these steps.

Create the bts index with tracking enabled:

CREATE INDEX bts_idx ON products (brands bts_char_ops)
USING bts (query_log="yes") IN sbspl;

Create a table to hold the log records:

CREATE TABLE bts_query log_data(
gwhen DATETIME YEAR TO FRACTION,
idx_name LVARCHAR,
partn INTEGER,
query LVARCHAR,
rows INTEGER);

Load the log records into the table:
LOAD FROM '$INFORMIXDIR/tmp/bts_query.log' INSERT INTO bts query log_data;

Query the table to view the log records:
SELECT ids_name,query,rows FROM bts_query_Tlog_data;
idx_name bts_idx

query melville
rows 14

idx_name bts_idx
query dickens
rows 29

idx_name bts_idx
query austen
rows 3

3 row(s) retrieved.

13-8 IBM Informix Database Extensions User's Guide

Chapter 14. Basic text search queries

You perform basic text search queries with the bts_contains() search predicate.

The Basic Text Search module supports many types of searches, such as word,
phrase, Boolean, proximity, and fuzzy. Searches are performed using the
bts_contains() search predicate. Before you can perform a search, you must create
a bts index on the column you want to search.

For information about creating a bts index, see|“bts access method syntax” on page
-13—5.

Basic text search queries have the following restrictions:
* Searches are not case-sensitive.

* The SQL Boolean predicates AND, OR, and NOT cannot be used between
bts_contains() search predicates. For example the expression,
bts_contains(column, 'wordl') AND bts contains(column, 'word2') is not
supported. However, the expression, bts_contains(column, 'wordl AND word2')
is correct, where the Boolean operator (AND) is within the search predicate.

Basic Text Search query syntax
Use the bts_contains() search predicate to perform basic text search queries.

bts_contains() Search Predicate:

|—bts_conta1’ns—(—column—,—'—query_parse_string—'

v

l—,—score # REAL—|

>—) |

column The column to be searched. It must be a single column for which a bts
index has been defined.

query_parse_string
The word or phrase that is being searched as well as optional search
operators. Enclose the query_parse_string within single quotation marks. If
the data is indexed with XML index parameters, include the XML tag field
or path field followed by the searchable text in the format fieldname:string.

score # REAL
Optional argument used to pass a statement local variable (SLV) to the text
search engine. The search engine uses this variable to record the document
score it assigns to each row in the results. The score value is a REAL
number between 0.0 and 100.0 inclusive, that indicates the relevance of
each document to the search criteria, compared to that of other indexed
records. The higher the document score value, the more closely the
document matches the criteria.

The following example shows a search for the word standard in the column
brands in a table called products.

SELECT id FROM products
WHERE bts_contains(brands, 'standard');

© Copyright IBM Corp. 2005, 2011 14-1

You can use an SLV as a filtering mechanism and to sort the results by score. The
following example returns documents that contain the word standard from the
column brands in a table called products if the document score value is greater
than 70. The results are ordered in descending order by score.

SELECT id FROM products

WHERE bts_contains(brands, 'standard', score # REAL)

AND score > 70.0;
ORDER BY score DESC;

For more information about SLVs, see the IBM Informix Guide to SQL: Syntax.
Related reference

[“Basic Text Search XML index parameters syntax” on page 15-2

Basic Text Search query terms

Query terms are words or phrases.

A word is a single word, such as Hello. A phrase is a group of words enclosed in
double quotation marks, such as "Hello World". Multiple words or phrases can be
combined with Boolean operators to form complex queries.

This example searches for the word Coastal:
bts_contains(column, 'Coastal')

This example searches for the phrase "Black and Orange":
bts_contains(column, ' "Black and Orange" ')

White space and punctuation characters are ignored. Terms within angle brackets
(< >) are not interpreted as tagged HTML or XML text unless you are using XML
index parameters. Letter case is not considered in query terms. Words are indexed
in lower case according the DB_LOCALE environment variable setting. All three of
the following search predicate examples search for the term orange8 in
unstructured text:

bts_contains(column, ' Orange8 ')
bts_contains(column, ' <oranGe8> ')
bts_contains(column, ' "<Orange8>" ')

Basic Text Search fields

14-2

The Basic Text Search module indexes searchable data in fields.

When you index unstructured text, each value is indexed in a default field called
contents. You do not need to specify the contents field in the bts_contains()
search predicate because it is always searched.

When you index structured text by using XML index parameters, the names for the
XML tags or paths are indexed in separate fields and you must specify those fields
in the bts_contains() search predicate. If you specify a list of XML tags to be
indexed with the xmltags index parameter, the default field is the first tag or path
in the field list. You must specify the field name for any other field in the
bts_contains() search predicate. If you enable the al1_xmltags index parameter,
there is no default field. You must specify each field name in the bts_contains()
search predicate.

IBM Informix Database Extensions User's Guide

To search text within a field, specify the field name followed by a colon (:) and the
query term in the format fieldname:string. For example if the XML data is indexed
in a field called fruit, you can use the following search predicates:

bts_contains(column, ' fruit:Orange ')
bts_contains(column, ' fruit:"Orange Juice" ')

If the XML data is indexed in a field that contains the path /fruit/citrus, you can
use the following search predicate:

bts _contains(column, ' /fruit/citrus:"Orange Juice" ')

If you enable the include_namespaces index parameter, you must escape the colon
(:) in namespaces with a backslash (\). For example, if you are using the fruit
namespace:

bts_contains(column, ' fruit\:citrus:Orange ')

For information about indexing and searching for XML data, see [Chapter 15, “Basic|
[Text Search XML index parameters,” on page 15-1]

Basic Text Search query term modifiers

You can modify query terms to perform more complex searches.

If you are searching fielded data, you can use query term modifiers only on the
query terms, not on the field names.

Wildcard searches

You can use wildcards in basic text search queries on single terms. You cannot use
wildcards in searches on phrases.

To perform a single-character wildcard search, use a question mark (?) in the
search term. The single-character wildcard search looks for terms that match with
the single character replaced. For example, to search for the terms text and test,
use te?t in the search predicate:

bts_contains(column, 'te?t')

You can use a single wildcard character (?) as the first character of the search term.
Multiple-character wildcard searches

Multiple-character wildcard searches look for zero or more characters.

To perform a multiple-character wildcard search, use an asterisk (*) in the search

term. For example, to search for geo, geography, and geology, use geo* in the
search predicate:

bts_contains(column, 'geo*')

The multiple-character wildcard search can also be in the middle of a term. For
example, the search term c*r will match contour, crater, color, and any other
words that start with the letter ¢ and end with the letter r:

bts_contains(column, 'c*r')

You cannot use a multiple wildcard character (*) as the first character of the search
term.

Chapter 14. Basic text search queries ~ 14-3

If the number of indexed tokens that match your wildcard query exceed 1024, you
receive the following error:

(BTSBO) - bts clucene error: Too Many Clauses

To solve this problem, you can make the query more restrictive or you can recreate
the bts index with the max_clause_count index parameter set to a number greater
than 1024.

Related concepts

[“Maximum number of query results” on page 14-1(

Fuzzy searches

A fuzzy search searches for text that matches a term closely instead of exactly.
Fuzzy searches help you find relevant results even when the search terms are
misspelled.

To perform a fuzzy search, append a tilde (~) at the end of the search term. For
example the search term bank™ will return rows that contain tank, benk or banks.

bts_contains(column, 'bank™')

You can use an optional parameter after the tilde in a fuzzy search to specify the
degree of similarity. The value can be between 0 and 1, with a value closer to 1
requiring the highest degree of similarity. The default degree of similarity is 0.5,
which means that words with a degree of similarity greater than 0.5 are included
in the search.

The degree of similarity between a search term and a word in the index is
determined by using the following formula:

similarity = 1 - (edit_distance / min (Ten(term), Ten(word)))

The edit distance between the search term and the indexed word is calculated by
using the Levenshtein Distance, or Edit Distance algorithm. The min() function
returns the minimum of the two values of the len() functions, which return the
length of the search term and the indexed word. The following table shows the
values used to calculate similarity and the resulting similarity between the search
term "tone" and various indexed words.

Table 14-1. Sample set of comparisons

Length of Length of
Term term Word word Edit distance |Similarity
tone 4 tone 4 0 1.00
tone 4 ton 3 1 0.67
tone 4 tune 4 1 0.75
tone 4 tones 4 1 0.75
tone 4 once 4 2 0.50
tone 4 tan 3 2 0.33
tone 4 two 3 3 0.00
tone 4 terrible 8 6 -0.50
tone 4 fundamental |11 9 -1.25

For example, the following query searches for words with the default degree of
similarity of greater than 0.50 to the search term tone:

IBM Informix Database Extensions User's Guide

bts_contains(text, 'tone™')

This query returns rows that contain these words: tone, ton, tune, and tones. Rows
that contain the word onceare not included because the degree of similarity for
once is exactly 0.50, not greater than 0.50. The following query would include the
rows that contain the word once:

bts_contains(text, 'tone™0.49')

Tip: Test the behavior of specifying the degree of similarity with your data before
you rely on it in your application.

If the number of indexed tokens that match your fuzzy query exceed 1024, you
receive the following error:

(BTSBO) - bts clucene error: Too Many Clauses

To solve this problem, you can make the query more restrictive or you can recreate
the bts index with the max_clause_count index parameter set to a number greater
than 1024.

Related concepts

[“Maximum number of query results” on page 14-10|

Proximity searches

You can specify the number of nonsearch words that can occur between search
terms in a proximity search.

To perform a proximity search, enclose the search terms within double quotation
marks and append a tilde (~) followed by the number of nonsearch words
allowed. For example, to search for the terms curb and Take within 8 words of
each other within a document, use the following search predicate:

bts_contains(column, ' "curb Take"™8 ')

Range searches

With a range search, you match terms that are between the lower and upper
bounds specified by the query. Range searches can be inclusive or exclusive of the
upper and lower bounds. Sorting is in lexicographical order (also known as
dictionary order or alphabetic order).

Lexicographical order does not give the expected results to numeric data unless all
numbers have the same number of digits. If necessary, add zeros to the beginning
of numbers to provide the necessary number of digits.

Range searches use the keyword TO to separate search terms. By default, the word
"to" is a stopword and is not an indexed term. If you are using a stopword list that
does not include the word "to" or you are not using a stopword list, omit the word
TO from the range query.

Inclusive range searches

Use brackets ([]) in the search predicate to specify an inclusive search. The syntax
is [searchterm1 TO searchterm?].

The following search predicate finds all terms between apple and orange, including
the terms apple and orange:

bts_contains(column, ' [apple TO orange] ')

Chapter 14. Basic text search queries 14-5

This example finds all terms between 20063105 and 20072401, including 20063105
and 20072401:

bts_contains(column, ' [20063105 TO 20072401] ')
Exclusive range searches

Use braces ({ }) in the search predicate to specify an exclusive search. The syntax is
{searchterm1 TO searchterm2}.

The following search predicate finds all terms between Beethoven and Mozart,
excluding the terms Beethoven and Mozart:

bts_contains(column, ' {Beethoven TO Mozart} ')

This example finds all terms between 65 and 89, excluding 65 and 89:
bts_contains(column, ' {65 T0 89} ')

Boost a term

Boosting a term assigns more relevance to a word or phrase.

By default, all terms have equal value when the relevance score of a matching
document is computed. Boosting a term raises the score of a document that
contains it above the score of documents that do not. The search results are the
same, but when sorted in descending order by score, documents containing the
boosted term appear higher in the results.

To boost a term, use the caret symbol (*) followed by a number for the boost factor
after the term that you want to appear more relevant. By default the boost factor is
1. It must be a positive number, but it can be less than one: for example .3 or .5.

For example, if your search terms are Windows and UNIX as in the search predicate
bts_contains(column, ' Windows UNIX '), you can boost the term Windows by a
factor of 4:

bts_contains(column, ' Windows™4 UNIX ')

This example boosts the phrase road bike over the phrase mountain bike by a
factor of 2:

bts_contains(column, ' "road bike"”2 "mountain bike" ')

You can also boost more than one term in a query. This example would return
rows with the term 1ake before documents with the term 1and, before documents
with the term air.

bts_contains(column, ' lake”20 1and"~10 air ')

Tip: Test the behavior of boosting a term with your data before you rely on it in
your application.

Boolean operators

Boolean operators combine terms in logical combinations. You can use the
operators AND, OR, and NOT, or their equivalent special characters, in the
bts_contains() search predicate.

By default, the OR operator is assumed if you do not supply a Boolean operator
between two terms. However, you change the default operator to AND by setting

14-6 IBM Informix Database Extensions User's Guide

the query_default_operator to AND when you create a bts index. For more
information, see [“bts access method syntax” on page 13-5.|

The Boolean operators are not case-sensitive.

AND operator

The AND operator matches documents where both terms exist anywhere in the
text of a single document.

You can also use two adjacent ampersands (&&) instead of AND.

If the query_default_operator index parameter is set to AND, the AND operator is
assumed if you do not specify a Boolean operator between two terms.

The following search predicates search for documents that contain both the word
UNIX and the phrase operating system:

bts_contains(column, ' UNIX AND "operating system" ')
bts_contains(column, ' UNIX && "operating system" ')

The following search predicates search XML data for documents that contain both
the word travel in the book field and the word stewart in the author field:

bts_contains(column, ' book:travel AND author:stewart ')
bts_contains(column, ' book:travel && author:stewart ')

The following search predicate searches for documents that contain both the word
travel in the book field and the phrase john stewart in the author field:

bts_contains(column, ' book:travel AND author:"john stewart" ')

OR operator

The OR Boolean operator is the default conjunction operator. If no Boolean
operator appears between two terms, the OR operator is assumed, unless the
query_default_operator index parameter is set to AND. In that case, you must
specify the OR operator, or use two adjacent vertical bars (| |) to represent the OR
operator.

The following search predicates find documents that contain either the term UNIX
or the term Windows:

bts_contains(column, ' UNIX Windows ')
bts_contains(column, ' UNIX OR Windows ')

bts_contains(column, ' UNIX || Windows ')

NOT operator

Use the NOT Boolean operator in combination with the AND operator (or its
equivalent symbols) when you want to search for documents that do not contain a
specified term or phrase.

The NOT operator can also be denoted with an exclamation point (!) or with a
minus sign (-).

The following search predicates find documents that contain the term UNIX, but not
the term Windows:

bts_contains(column, ' UNIX AND NOT Windows ')
bts_contains(column, ' UNIX AND !Windows ')

Chapter 14. Basic text search queries 14-7

bts_contains(column, ' +UNIX -Windows ')

The minus sign (-) can be used with the plus sign (+), but not with the AND
operator.

Group words and phrases

You can group words and phrases in parentheses to form more complex queries
using Boolean operators. For example, to search for words UNIX or Windows and the
phrase operating system, you can use this search predicate:

bts_contains(column, ' (UNIX OR Windows) AND "operating system" ')

This search will return results that must contain the phrase operating system, and
either the word UNIX or the word Windows.

You can also group words and phrases in field data:
bts_contains(column, ' os:(UNIX AND "Windows XP") ')

In that case, the search results must contain the word UNIX and the phrase Windows
XP in the os field.

Basic Text Search stopwords

Stopwords are excluded from the bts index and are not searchable.

Stopwords can reduce the time it takes to perform a search, reduce index size, and
help avoid false results. You can create a customized stopword list for frequently
occurring words in your data or you can use the default stopword list. To create a
customized stopword list, use the stopwords index parameter.

The following words are in the default stopword list for basic text searching:

a an and are as at be but by for if in into is it no not of on
or s such t that the their then there these they this to was
will with

Stopwords index parameter

When you specify a customized stopword list, it replaces the default stopword list.
You create a customized stopword list with the stopwords index parameter when
you create the bts index.

Stopwords index parameter:

f—stopwords—=—" (—Zword) " |
file:directory/filename—

table:table.column

Element Description

column The name of the column that contains stopwords.
directory The path for the stopwords file.

filename The name of the file that contains stopwords.
table The name of the table that contains stopwords.

14-8 IBM Informix Database Extensions User's Guide

Element Description

word The term to use as a stopword. Stopwords must be lowercase
characters.

Usage

You can specify the list of stopword in a table column or in a file. The file or table
must be readable by the user creating the index. Separate the field name and
stopword pairs in the file or table by commas, white spaces, new lines, or a
combination of those separators. The file or table becomes read-only when the
index is created. If you want to add or change stopword assignments, you must
drop and recreate the index.

Examples
Example 1: Input stopwords as inline comma-separated words

Inline comma-separated words are useful when you have only a few stopwords.

"o

The following example prevents searching the words "am,", "be," and "are":
stopwords="(am,be,are)"

The following example shows how to create a bts index with an inline
comma-separated customized stopword list:

CREATE INDEX books bts ON books(book data bts_Tvarchar_ops)
USING bts(stopwords="(am,be,are)") IN bts_shspace;

Example 2: Input stopwords from a file or a table column

The following example shows the contents of a stopword file where stopwords are
separated by commas, white spaces, and new lines:

avec, et
mais pour

The following example shows how to create a bts index with a customized
stopword list in a file:

CREATE INDEX books_bts ON books(book_data bts_lvarchar_ops)
USING bts(stopwords="file:/docs/stopwords.txt") IN bts_sbspace;

The following example shows how to create a bts index with a customized
stopword list in a table column:

CREATE INDEX books bts ON books(book data bts_Tvarchar ops)
USING bts(stopwords="table:mytable.mycolumn") IN bts_sbspace;

Chapter 14. Basic text search queries ~ 14-9

Related tasks
[‘Creating a bts index” on page 13-4

Related reference

[‘bts access method syntax” on page 13-5

Maximum number of query results

By default the maximum number of query results is 1024. You can adjust the
maximum number of query results by using the max_clause_count index
parameter.

If a query results in more than 1024 results, you receive the following error:
(BTSBO) - bts clucene error: Too Many Clauses

This error is most common with a wildcard or fuzzy search. Basic text search
queries that contain wildcards or fuzzy searches are internally rewritten as a series
of matching term searches joined by the Boolean OR operator. If the matching
terms exceed 1024, the query fails with this error. The limit of 1024 results controls
virtual memory usage.

You can increase the maximum number of query results by recreating the bts index
with the max_clause_count index parameter set to a value greater than 1024.
Queries with large result sets can result in slower performance and the allocation
of additional virtual segments. You can monitor the number of virtual segments
with the onstat -g seg command.

Example

The following statement creates a bts index with a maximum number of 4000
query results:
CREATE INDEX bts_idx ON bts_tab(text bts_char_ops)

USING bts (max_clause_count="4000")
IN sbspacel;

Related concepts

[“Wildcard searches” on page 14-3]

[‘Fuzzy searches” on page 14-4|

Related reference

[[onstat -g seg command: Print shared memory segment statistics|
[(Administrator's Reference)

Canonical mapping

14-10

You can index synonyms by creating a canonical map.

You can map characters in your data to other characters for indexing. For example,
you can specify that a letter with a diacritical mark is indexed without its
diacritical mark. You can also normalize strings that tend to be inconsistent or
delete character strings from indexed text.

You cannot update your canonical map unless you recreate the index.

IBM Informix Database Extensions User's Guide

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_adr_0573.htm#ids_adr_0573
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_adr_0573.htm#ids_adr_0573

The canonical_maps index parameter

You specify canonical mapping strings with the canonical_maps index parameter
when you create the bts index.

For the complete syntax see|“bts access method syntax” on page 13-5Following is
a syntax segment for the canonical_maps index parameter:

The canonical_maps index parameter:

{[original_char orginal_char]}—
file:directory/filename
table:table.column

j—canoni ca]maps——'—[(—'t(originalchar}—l—:—{mappedstring}J—)——'4|

Element Description

column The name of the column containing canonical mapping strings.
directory The directory path for the canonical mapping file.

filename The name of the file containing canonical mapping strings.
table The name of the table containing the column with canonical

mapping strings.

original_char The characters to replace with a mapped string during indexing
and searching.

mapped_string The characters to which the original characters are replaced
during indexing.

Usage

Use canonical maps to improve the accuracy of queries by equating characters with
a canonical representation of those characters.

During indexing and searching, by default all characters are transformed to lower
case, therefore, any uppercase characters in the original characters must be mapped
to lowercase characters in the mapping sting. For some locales, the uppercase
characters of letters with diacritical marks or ligatures are considered independent
characters from their lowercase equivalents. For those locales, you must map both
the uppercase and the lowercase characters with diacritical marks or ligatures to
the same lowercase letter. You cannot specify an uppercase letter in a mapped
string.

Blank spaces are significant.

The mapped characters are indexed and searched, therefore, when returning the
results, words with the original characters are treated as if those characters are the
same as their corresponding mapped characters. For example, if you map the
character "u" to the letter "u," then both "Raul" and "Raul" are indexed as "raul.”
Similarly, if you search for 'Raul' or for 'Raul’, all rows containing either "Raul" or
"Raul" are returned.

Examples

The following examples show how to create a bts index with the canonical_maps
parameter.

Chapter 14. Basic text search queries 14-11

14-12

Example 1: Map characters as inline comma-separated strings

The following example shows how to create an index specifying two character
substitutions:

CREATE INDEX docs_idx on repository
(document_text bts_lvarchar_ops)
USING bts
(canonical_maps="({a}:{u},{=}:{ae})")
IN mysbspace;

Example 2: Map characters as a file

The following example illustrates a file of character mappings. Some mapped
characters have multiple original characters. This example assumes the locale
en_us.8859-1, which does not designate uppercase letters with diacritical marks as
uppercase. Therefore, both uppercase and lowercase versions of letters are included
in the original characters.

{k=}:{ae},

{[000UaGau] } = {u},
{Cc}:{cl,
{@o}:{o},
{Yg}:{y},
{B}:{ss},
{mc }:{mc}

The following example shows how to create an index specifying a mapping file
named canon:
CREATE INDEX docs_idx on repository
(document_text bts_Tvarchar_ops)
USING bts
(canonical_maps="file:/tmp/canon")
IN mysbspace;

Related tasks
[“Creating a bts index” on page 13-4

Mapping single characters

You can map a single character to another character with canonical mapping.

To map a single character to another character, use the following syntax with the
canonical_maps index parameter, put the original character in the first set of
braces and the character to map it to in the second set of braces.

IBM Informix Database Extensions User's Guide

The following example maps the single character "i" to the single character "u™

{a}:{u}

Specifying multiple original characters
You can map multiple original characters to a single character with canonical
mapping.

To specify multiple original characters in the same set of braces, enclose them in
brackets. Do not put a blank space between the characters when you use brackets
or every blank space in the text will be indexed as the mapping string.

The following example maps both "tt" and "a" to the letter "u™:

{[0a]}:{u}

The following example also maps both "t1" and "a" to the letter "u," but it uses two
sets of mapping strings that are separated by a comma:

{a}:{u}, {a}:{u}
Specify multiple characters in mapping strings

The mapping string can have multiple characters. For example, the following

"

example maps the single "a" character to the two letters "ae'":

{®}:{ae}

Preventing indexing of characters

You can prevent the indexing of characters with canonical mapping.

If you want to prevent symbols from being indexed, consider how they are being
used. For example, if you delete the forward slash character (/) with the mapping
{/}:{}, then the string "/home/john/henry" is indexed as "homejohnhenry".

To prevent the indexing of characters, specify empty braces for the mapping string
with the canonical_maps index parameter.

"me_n,

The following example prevents the indexing of the characters "'s":

{'s}:{}

Managing multiple spellings
You can use canonical mapping to manage the inconsistent use of prefixes or other
spellings.

To manage multiple spellings of a string, map the possible strings to each other
with the canonical_maps index parameter.

For example, if you want to search for the name "McHenry" and you know that
the indexed name might be spelled as either "mchenry" or "mc henry", your query
string would be:

'mchenry OR "mc henry

Alternatively, you can map the two prefixes:
{mc }:{mc}

Chapter 14. Basic text search queries 14-13

Note the space after the "mc" in the original characters. With this mapping, all the
"mc henry" names are indexed as "mchenry" and you would specify 'mchenry' to
search for both 'mchenry' and 'mc henry'.

Search for special characters

You can use the special characters that are part of Basic Text Search query syntax
in searches by using the backslash (\) as an escape character before the special

character.
The following characters are Basic Text Search special characters: + - && || ! () {}
[I~A"~*2:\

For example, to search for the phrase (7+1), use the following search predicate:
bts_contains(column, ' \(7\+1\) ')

14-14 1BM Informix Database Extensions User's Guide

Chapter 15. Basic Text Search XML index parameters

This chapter describes the XML index parameters for basic text search and
provides detailed examples about each parameter's usage.

Overview of Basic Text Search XML index parameters

You can use Basic Text Search XML index parameters to manipulate searches of
XML data in different ways.

When you do not use XML index parameters, XML documents are indexed as
unstructured text. The XML tags, attributes, and values are included in searches
and are indexed in a single field called contents. By contrast when you use XML
index parameters, the XML tag and attribute values can be indexed in separate
fields either by tag name, attribute name, or by path.

xmltags
all_xmltags
Identifies the tags to index

all_xmlattrs
Enables searches on all attributes that are contained in the XML tags or paths
in a column that contains an XML document.

xmlpath_processing
Enables searches based on XML paths.

include_namespaces
Indexes XML tags that include namespaces.

include_subtag_text
Indexes tags and subtags as a unified string.

include_contents
Puts the XML data in original format into the contents field

strip_xmltags
Puts the XML data in an untagged format into the contents field.

For a basic example, given the following XML fragment:
<skipper>Captain Black</skipper>

You can create a bts index for searching the text within the <skipper> </skipper>
tags:

CREATE INDEX boats_bts ON boats(xml_data bts_Tlvarchar_ops)
USING bts(xmltags="(skipper)") IN bts_sbspace;

To search for a skipper's name that contains the word "Black,” use the bts search
predicate:

bts_contains(xml_data, 'skipper:black')

© Copyright IBM Corp. 2005, 2011 15-1

Basic Text Search XML index parameters syntax

The Basic Text Search XML index parameters are optional parameters that you can
specify when you create a bts index. For the complete syntax see
imethod syntax” on page 13-5] Following is a syntax segment for the XML index
parameters:

XML Index Parameters:

s

v

file:directory/filename—
table:table.column

} xmltags—=—" ii(Y field) "

v n

—|:a11 xmltags—= "no
- Lllyesll_l
Ilnoll

all_xmlattrs—= __l_
_Euyesu

-

»Y |
—include_contents—= "no" I
Ilyesll
—xmlpath_processing—= "no"
"yes"—|
—strip_xmltags—= "no"
Ilyesll
—include_namespaces—= "no"
"yes"—l

—incl ude_subtag_text—=—|:" no "—_l—
II‘yes n

column The column that contains tags to index.

directory
The location of the file that contains tags to index.

field ~ The XML tag or path to index. The field values can be full or relative XML
paths if used with the xmlpath_processing parameter.

filename
The name of the file that contains tags to index.

table The name of the table that contains the column with tags to index.

The parameters are described in the following sections.
Related tasks
[“Creating a bts index” on page 13-4|

Related reference

[“Basic Text Search query syntax” on page 14-1

The xmltags index parameter

15-2

Use the xmltags parameter to specify which XML tags or XML paths are searchable
in a column.

IBM Informix Database Extensions User's Guide

The XML tags or paths that you specify become the field names in the bts index.
The text values within fields can be searched. In searches, the default field is the
first tag or path in the field list. The Basic Text Search module does not check if the
tags exist in the column, which means that you can specify fields for tags that you
will add to the column after you have created the index.

The input for the field names for the xmltags parameter can be one of three forms:
* inline comma-separated values
* an external file

* a table column
Input as inline comma-separated field names

Inline comma-separated field names are useful when you have only a few fields to
index. For example, xmltags="(fieldl,field2,field3)" where fieldn specifies the
tag or path to index.

If the xmltags parameter is enabled, you can specify paths for the xm1tags values.
For example

xmltags="(/text/book/title,/text/book/author,/text/book/date)"

XML tags are case-sensitive. When you use the inline comma-separated field
names for input, the field names are transformed to lowercase characters. If the
field names are uppercase or mixed case, use an external file or a table column for
input instead.

Input from a file or a table column
Input from an external file has the format: xmltags="file:/directory/filename"
Input from a table column has the format: xmltags="table:table.column"

The file or table that contains the field names must be readable by the user
creating the index. The file or table is read only when the index is created. If you
want to add new field names to the index, you must drop and re-create the index.
The field names in the file or table column can be separated by commas, white
spaces, newlines, or a combination.

Following is an example of how field names can appear in the file or the table
column:

title, author
date ISBN

If the xmlpath_processing parameter is enabled, you can specify paths or
combination of paths and individual field names in the file or the table column:

/text/book/title
author

For information about using XML paths, see [‘The xmlpath_processing index]
[parameter” on page 15-7]

If you want to index all the XML tags in a column, see|“The all_xmltags index|
[parameter” on page 15-4]

Chapter 15. Basic Text Search XML index parameters 15-3

To view the fields that you have indexed, use the bts_index_fields() function. See
[‘The bts_index_fields() function” on page 17-1.|

Example: Index specific XML tags

You can use the xmltags parameter to index-specific fields so that you can restrict
your searches by XML tag names.

Given the table:
EXECUTE PROCEDURE IFX ALLOW NEWLINE('t');

CREATE TABLE boats(docid integer, xml_data Tvarchar(4096));
INSERT INTO boats values(1l, '

<boat>

<skipper>Captain Jack</skipper>

<boatname>Black Pearl</boatname>

</boat> ');
INSERT INTO boats values(2, '
<boat>

<skipper>Captain Black</skipper>
<boatname>The Queen Anne's Revenge</boatname>
</boat> ');

To create a bts index for the skipper and boatname tags:

CREATE INDEX boats_bts ON boats(xml_data bts_Tvarchar_ops)
USING bts(xmltags="(skipper,boatname)") IN bts_sbspace;

The index will contain the following fields:

For the row where docid = 1, the fields are:

skipper:Captain Jack
boatname:Black Pearl

For the row where docid = 2, the fields are:

skipper:Captain Black
boatname:The Queen Anne's Revenge

To search for the skipper with the name " Black", the SELECT statement is:
SELECT xm1_data FROM boats WHERE bts_contains(xml_data, 'skipper:black');

The search will return docid 2 because the skipper field for that row contains the
word "black." For docid = 1, the boatname field also contains the word "black," but
it is not returned because the search was only for the skipper field.

The all_xmltags index parameter

15-4

Use the al1_xmltags parameter to enable searches on all the XML tags or paths in
a column.

All the XML tags are indexed as fields in the bts index. If you use the
xmlpath_processing parameter, full paths are indexed. The text value within fields
can be searched. The attributes of XML tags are not indexed in a field unless you
use the al1_xmlattrs index parameter.

For information about using paths, see[*The xmlpath_processing index parameter’]

IBM Informix Database Extensions User's Guide

If you want to index only specific tags in a column, use the xmltags parameter. See
[‘The xmltags index parameter” on page 15-2.|

To view the fields that you have indexed, use the bts_index_fields() function. See
[‘The bts_index_fields() function” on page 17-1.|

Example: Index all XML tags

You can use the all_xmltags parameter to index all of the tags in a column.

Given the XML fragment:

<book>

<title>Graph Theory</title>
<author>Stewart</author>

<date edition="second">January 14, 2006</date>
</book>

To create an index for all the XML tags, use the SQL statement:

CREATE INDEX book bts ON books(xml data bts_Tvarchar_ops)
USING bts(all_xmltags="yes") IN bts_sbspace;

The index will contain three fields that can be searched:

title:graph theory
author:stewart
date:january 14, 2006

The top level <book></book> tags are not indexed because they do not contain text
values. The edition attribute is also not indexed.

If you enable path processing with the xmlpath_processing parameter, you can
index the full paths:

CREATE INDEX book_bts ON books(xml_data bts_lvarchar_ops)
USING bts(all_xmltags="yes",xmlpath_processing="yes") IN bts_sbspace;

The index will contain three fields with full paths that can be searched:

/book/title:graph theory
/book/author:stewart
/book/date:january 14, 2006

The all_xmlattrs index parameter

Use the al1_xmlattrs parameter to search on XML attributes in a document
repository stored in a column of a table. This parameter enables searches on all
attributes that are contained in the XML tags or paths in a column that contains an
XML document.

Specify an attribute using the syntax @attrname, where attrname is the name of the
attribute.

All the XML attributes are indexed as fields in the bts index. If you use the
xmlpath_processing parameter, full paths are indexed. The text value within fields
can be searched. The tags of XML tags are not indexed in a field unless you use
the al1_xmltags index parameter.

To view the fields that you have indexed, use the bts_index_fields() function. See
[“The bts_index_fields() function” on page 17-1

Chapter 15. Basic Text Search XML index parameters 15-5

Examples: Index XML attributes

These examples are based on the following three rows of data:
<boat><name reg="hmc">titanic</name></boat>

<airplane callsign="qofz">kittyhawk</airplane>

<boat><name reg="CAN">Spirit of Canada</name></boat>
Example 1: Compare all_xmitags and all_xmlattrs

The following CREATE INDEX statement uses the al1_xmltags parameter:

CREATE INDEX bts_idx ON bts_100_tab(col2 bts_nvarchar_ops)
USING bts(all_xmltags="yes") IN bts_sbspacel ;

The index has these fields representing the type of tag:

airplane
name

By contrast, the following CREATE INDEX statement uses the al1_xmlattrs
parameter instead of the al1_xmltags parameter:

CREATE INDEX bts_idx ON bts_100_tab(col2 bts_nvarchar_ops)
USING bts(all_xmlattrs="yes") IN bts_sbspacel ;

The index has these fields representing the attributes of the tags:

@callsign
@reg

Example 2: Combine all_xmlattrs and all_xmltags

The following CREATE INDEX statement uses both the all_xmlattrs and the
all_xmltags parameters:
CREATE INDEX bts_idx ON bts_100_tab(col2 bts_nvarchar_ops)

USING bts(all _xmlattrs="yes",
all_xmltags="yes") IN bts_sbspacel ;

The index has these fields representing both the types of tags and the tag
attributes:

@callsign

Greg

airplane

name

Example 3: Combine all_xmlattrs, all_xmltags, and
xmipath_processing

The following CREATE INDEX statement uses the al1_xmlattrs, the al1_xmltags,
and the xmlpath_processing parameters:

CREATE INDEX bts_idx ON bts_100_tab(col2 bts_nvarchar_ops)
USING bts(xmlpath_processing="yes",
all_xmlattrs="yes",
all_xmltags="yes") IN bts_sbspacel ;

The index has these fields, representing the full paths of the tags and attributes:

15-6 IBM Informix Database Extensions User's Guide

/airplane
/airplane@callsign
/boat/name
/boat/name@reg

Example 4: Comparing all_xmltags to all_xmlattrs along with
xmlipath_processing

The following CREATE INDEX statement uses the al1_xmltags parameter with the
xmlpath_processing parameter:

CREATE INDEX bts_idx ON bts 100 tab(col2 bts_nvarchar_ops)
USING bts(xmlpath_processing="yes",
all_xmltags="yes") IN bts_sbspacel ;

The index has these fields, representing the paths of the tags:

/airplane
/boat/name

The following CREATE INDEX statement uses the all_xmlattrs parameter with
the xmlpath_processing parameter:

CREATE INDEX bts_idx ON bts_100_tab(col2 bts_nvarchar_ops)
USING bts(xmlpath_processing="yes",
all_xmlattrs="yes") IN bts_sbspacel ;

The index has these fields, representing the paths of the attributes:

/airplane@callsign
/boat/name@reg

The xmlipath_processing index parameter

Use the xmlpath_processing parameter to enable searches based on XML paths.

The xmlpath_processing parameter requires that you specify tags with the xmltags
parameter or that you enable the al1_xmltags or all_x1Imattrs parameter.

When you enable xmlpath_processing, all the tags within the path are searched.
Tags that are not within the path cannot be searched. If xmlpath_processing is not
enabled only individual tags can be searched.

Full paths and relative paths in path processing
The XML path can be either a full path or a relative path.
Full paths

Full paths begins with a slash (/). If you use the al1_xmltags parameter with
xmlpath_processing, all of the full paths are indexed. You can index specific full or
relative paths when you use the xm1tags parameter.

Given the XML fragment:

<text>

<book>

<title>Graph Theory</title>
<author>Stewart</author>
<date>January 14, 2006</date>
</book>

<text>

Chapter 15. Basic Text Search XML index parameters 15-7

The following full XML paths can be processed with the xmlpath_processing
parameter:
/text/book/title

/text/book/author
/text/book/date

Tip: If you have indexed a full path, include the initial slash (/) in the search
predicate. For example:

bts_contains("/text/book/author:stewart")

Relative paths

Relative paths begin with text. You can specify one or more relative or full paths
with the xmltags parameter.

Based on the preceding XML fragment, each of the following relative XML paths
can be processed with the xmlpath_processing parameter:
text/book/title

text/book/author

text/book/date

book/title

book/author

book/date

title

author

date

The field is created from the first matching path for the values specified with the
xmltags parameter.

You can create an index for the book/title and the title fields:

CREATE INDEX books_bts ON books(xml_data bts_Tlvarchar_ops)
using bts(xmltags="(book/title,title)",xmlpath_processing="yes")
IN bts_sbspace;

In that case, the index will contain only the first matching field, book/titTe. It will
not contain a title field:

book/title:Graph Theory

To view the fields that you have indexed, use the bts_index_fields() function. See
[‘The bts_index_fields() function” on page 17-1|

Example: Index XML paths

Use XML path processing to restrict searches by paths.

Given the XML fragment:

<boat>

<skipper>Captain Black</skipper>
<boatname>The Queen Anne's Revenge</boatname>
<alternate>

<skipper>Captain Blue Beard</skipper>
</alternate>
</boat>

Following are the possible XML paths and text values:

15-8 IBM Informix Database Extensions User's Guide

/boat/skipper:Captain Black
/boat/boathame:The Queen Anne's Revenge
/boat/alterate/skipper:Captain Blue Beard

To create an index for boat/skipper and skipper, use the statement:

CREATE INDEX boats_bts ON boats(xml_data bts_Tlvarchar_ops)
using bts(xmltags="(boat/skipper,skipper)",xmlipath_processing="yes")
IN bts_sbspace;

Each path is compared to the values specified by the xm1tags parameter. The index
then creates fields for the entire first matching path found for each xmltags value.
In this example, the first path matches boat/skipper. The third path matches
skipper. The index will contain two fields that can be searched:

/boat/skipper:Captain Black
/boat/alterate/skipper:Captain Blue Beard

The include_contents index parameter

Use the include_contents parameter to add the contents field to the index.

The include_contents parameter must be used with either the xmltags parameter
specified or with the al1_xmltags or all_xmlattrs parameter enabled.

When you do not use XML index parameters, XML documents are indexed as
unstructured text in the contents field. When you specify the xmltags parameter or
you enable the all1_xmltags parameter, you can add the contents field to the index
by enabling the include_contents parameter. This allows you to search the
unstructured text in the contents field in addition to fields containing the tag or
attribute text.

To view the fields that you have indexed, use the bts_index_fields() function. See
[“The bts_index_fields() function” on page 17-1|

Example: Index XML tag values and XML tag names

Use the include_contents parameter to search both XML tag values and XML tag
names.

Given the XML fragment:
<book>

<title>Graph Theory</title>
<author>Stewart</author>
<date>January 14, 2006</date>
</book>

To create a bts index for all the tags as well as the XML tags in their unstructured
form, use the statement:
CREATE INDEX book_bts ON books(xml _data bts_Tvarchar_ops)

USING bts(all_xmltags="yes",include_contents="yes")
IN bts_sbspace;

The index will have four fields; one for each of the XML tags and one for the
contents field:

Chapter 15. Basic Text Search XML index parameters 15-9

title:graph theory

author:stewart

date:january 14, 2006

contents:<book> <title>Graph Theory</title> <author>Stewart</author>
<date>January 14, 2006</date> </book>

The strip_xmltags index parameter

Use the strip_xmltags parameter to add the untagged values to the contents field
in the index. Attribute values are also removed.

Unlike other XML index parameters, you can use the strip_xmltags parameter in a
CREATE INDEX statement without specifying the xmltags parameter or enabling
the al1_xmltags parameter. In this case, the contents field is created automatically.

However, if you specify the xmltags parameter or if you enable the al1_xmltags
parameter, you must also enable the include_contents parameter.

To view the fields that you have indexed, use the bts_index_fields() function. See
[“The bts_index_fields() function” on page 17-1

Example: Index XML tag values in a separate field

Given the XML fragment:
<book>

<title>Graph Theory</title>
<author>Stewart</author>
<date>January 14, 2006</date>
</book>

To create an index with the untagged values only, use the statement:

CREATE INDEX books_bts ON books(xml_data bts_Ivarchar_ops)
USING bts(strip_xmltags="yes") IN bts_sbspace;

The index will contain a single contents field:
contents:Graph Theory Stewart January 14, 2006

To create an index that has XML tag fields as well as a field for the untagged
values, use the statement:
CREATE INDEX book_bts ON books(xml_data bts_Tvarchar_ops)

USING bts(all_xmltags="yes",include _contents="yes",strip_xmltags="yes")
IN bts_sbspace;

The index will contain XML tag fields as well as the untagged values in the
contents field:

title:graph theory

author:stewart

date:january 14, 2006

contents:Graph Theory Stewart January 14, 2006

The include_namespaces index parameter

Use the include_namespaces parameter to index XML tags that include namespaces
in the qualified namespace format prefix:localpart. For example:

<book:title></book:title>

15-10 1BM Informix Database Extensions User's Guide

The include_namespaces parameter must be used with either the xmltags
parameter specified or with the al1_xmltags parameter enabled.

When you enable the include_namespaces parameter and the data includes the
namespace in the indexed tags, you must use the namespace prefix in your queries
and escape each colon (:) with a backslash (\).

For example, to search for the text Smith, in the field customer:name:, use the
format:

bts_contains("/customer\:name:Smith")

To view the fields that yvou have indexed, use the bts_index_fields() function. See
[“The bts_index_fields() function” on page 17-1]

Example: Index namespaces in XML data

The following XML fragment contains the namespace book:title:

<book>

<book:title>Graph Theory</book:title>
<author>Stewart</author>
<date>January 14, 2006</date>

</book>

You can create a bts index with the include_namespaces parameter disabled as in
the statement:
CREATE INDEX books_bts ON books(xml_data bts_Tvarchar_ops)

USING bts(all_xmltags="yes",include_namespaces="no",xmlpath_processing="yes")
IN bts_sbspace;

In that case, the namespace prefix book: is ignored. The index will have the
following fields.
/book/title:graph theory

/book/author:stewart
/book/date:january 14, 2006

Also, you can create a bts index with the include_namespaces parameter enabled,
as in the statement:
CREATE INDEX books_bts ON books(xml_data bts_lvarchar_ops)

USING bts(all_xmltags="yes",include_namespaces="yes",xmlpath_processing="yes")
IN bts_sbspace;

In that case, the tag with the namespace book:title is the first field. The index has
the following fields:
/book/book:title:graph theory

/book/author:stewart
/book/date:january 14, 2006

To search the field /book/book:title: for the text theory, use the search predicate:
bts_contains("/book/book\:title:theory")

When you specify tags with the xmltags parameter, you can index the tags with
and without namespaces in different combinations using the include_namespaces
parameter. For example, given the XML fragments:
<bsns:bookstore>
<title> Marine Buyers' Guide </title>
<bns2:title> Boat Catalog </bns2:title>
</bsns:bookstore>

Chapter 15. Basic Text Search XML index parameters 15-11

<bsns:bookstore>
<bnsl:title> Toy Catalog </bnsl:title>
<bns2:title> Wish Book </bns2:title>
</bsns:bookstore>

To index only the title tag, use the format:

CREATE INDEX bookstore bts ON bookstores(xml_data bts_Tvarchar_ops)
USING bts(xmltag="(title)",include_namespaces="yes)
IN bts_sbspace;

Even though the include_namespaces parameter is enabled, the index will contain
only one field because the fields bnsl:title and bns2:title do not match the
specified tag title.

If you want to index a namespace, include the namespace prefix in the specified
tags. For example if you use the format:
CREATE INDEX bookstore_bts ON bookstores(xml_data bts_Tvarchar_ops)

USING bts(xmltag="(title,bnsl:title)",include_namespaces="yes)
IN bts_sbspace;

The index will contain the fields:

title: Marine Buyers' Guide
bnsl:title: Toy Catalog

The include_subtag_text index parameter

15-12

Use the include_subtag_text parameter to index XML tags and subtags as one
string. The include_subtag_text parameter is useful when you want to index text
that has been formatted with bold or italic <i></i> tags.

Use the include_subtag_text parameter with either the xmltags parameter
specified or with the al1_xmltags parameter enabled.

To view the fields that you have indexed, use the bts_index_fields() function. See
[“The bts_index_fields() function” on page 17-1|

Example: Index subtags in XML data

You can use the include_subtag_text parameter to include the text within
formatting tags in the indexed data.

Given the XML fragment:

<comment>

this

<bold> highlighted </bold>
text is very

<italic>
<bold>important</bold>
</italic>

to me

</comment>

If you create a bts index with the include_subtag_text parameter disabled:
CREATE INDEX comments bts ON mylog(comment data bts_Tlvarchar_ops)
USING bts(xmltags="(comment)",include_subtag_text="no") IN bts_sbspace;

The index will have three separate comment fields:

IBM Informix Database Extensions User's Guide

comment:this
comment:text is very
comment:to me

If you create a bts index with the include_subtag_text parameter enabled:
CREATE INDEX comments bts ON mylog(comment data bts_Tlvarchar_ops)
USING bts(xmltags="(comment)",include_subtag_text="yes") IN bts_sbspace;

All of the text is indexed in a single comment field:
comment:this highlighted text is very important to me

Chapter 15. Basic Text Search XML index parameters 15-13

15-14 1BM Informix Database Extensions User's Guide

Chapter 16. Basic text search analyzers

A text analyzer prescribes how text is indexed.
A text analyzer converts input text into tokens that are indexed.

The database server includes the Standard Analyzer.

Standard analyzer

The Standard analyzer removes stopwords and indexes words, numbers, and some
special characters. The Standard analyzer is the default analyzer.

The Standard analyzer processes text characters in the following ways:
* Stopwords are not indexed.

* Converts alphabetical characters to lower case.

* Ignores colons, #, %, $, parentheses, and slashes.

¢ Indexes underscores, hyphens, @, and & symbols when they are part of words
or numbers.

* Separately indexes number and words if numbers appear at the beginning of a
word.

* Indexes numbers as part of the word if they are within or at the end of the
word.

* Indexes apostrophes if they are in the middle of a word, but removes them if
they are at the beginning or end of a word.

* Ignores an apostrophe followed by the letter s at the end of a word.
Examples

In these examples, the input string is shown on the first line and the resulting
tokens are shown on the second line, each surrounded by square brackets.

In the following example, stopwords are removed and the words are converted to
lower case:

The Quick Brown Fox Jumped Over The Lazy Dog
[quick] [brown] [fox] [jumped] [over] [lazy] [dog]

In the following example, the apostrophe at the beginning of a word and the
apostrophe followed by an s are ignored, but the apostrophe in the middle of a
word is indexed:

Prequ'ile Mark's 'cause
[prequ'ile] [mark] [cause]

In the following example, the colon and backslash are ignored:

c:/informix
[c] [informix]

In the following example, the ampersand is indexed as part of the company name:

XY&Z Corporation
[xy&z] [corporation]

© Copyright IBM Corp. 2005, 2011 16-1

In the following example, the e-mail address is indexed as is:

xyz@exampTle.com
[xyz@example.com]

In the following example, numbers at the beginning of the words are separated
into different tokens, while numbers at the end of words are included in a single
token:

labc 12abc abcl abcl2
[1] [abc] [12] [abc] [abcl] [abcl2]

16-2 IBM Informix Database Extensions User's Guide

Chapter 17. Basic text search functions

This chapter describes the basic text search functions and provides detailed
information about each function's syntax and usage.

The bts_index_compact() function

The bts_index_compact() function deletes all documents from the bts index that
are marked as deleted.

Syntax

»»>—bts_index_compact—(—'—index_name—'—) >

index_name
The name of the bts index for which you want to delete rows.

Usage

Use the bts_index_compact() function to delete documents from a bts index that
was created with the default deletion mode parameter of delete="deferred". The
bts_index_compact() function releases space in the index by immediately deleting
the rows marked as deleted. The index is unavailable while it is rewritten.
Optionally, you can include the index storage space path and file name, the
database name, and the owner name in addition to the index name, separated by
forward slash (/) characters.

Documents marked as deleted can also be deleted with the oncheck utility. For
oncheck syntax and information about optimizing the bts index, see|“Optimize the

bts index” on page 18-1)

Return codes

t The operation was successful.
f The operation was unsuccessful.
Example

The following example compacts the bts index desc_idx:
EXECUTE FUNCTION bts_index_compact('desc_idx');

The bts_index_fields() function

The bts_index_fields() function returns the list of indexed field names in the bts
index.

Syntax

»»—bts_index_fields—(—'—index_name—'—) >

© Copyright IBM Corp. 2005, 2011 17-1

17-2

index_name
The name of the bts index.

Usage

Use the bts_index_fields() function to identify searchable fields in the bts index.
Optionally, you can include the index storage space path and file name, the
database name, and the owner name in addition to the index name, separated by
forward slash (/) characters.

When you do not use Basic Text Search XML index parameters, the
bts_index_fields() function returns one default field called contents. When you
use XML index parameters, the XML data is indexed in separate fields by tag name
or by path. The contents field is not indexed unless you also enable the
include_contents parameter.

When you specify tags with the xmltags parameter, the bts_index_fields() function
returns only field names for tags that exist in the indexed column. However, if at a
later time you add a row that contains the specified tag name, the field name for
that tag will appear in the output.

The bts_index_fields() function returns the field names in alphabetical order.
Example

Given the XML fragment:

<boat>
<skipper>Captain Jack</skipper>
<boatname>Black Pearl</boatname>
</boat>

If you create an index without XML index parameters:

CREATE INDEX boats_bts ON boats(boat_data bts_Tvarchar_ops)
USING bts IN bts_sbspace;

The bts_index_fields() function will return the default field: contents

If you create an index with XML index parameters:

CREATE INDEX boats_bts ON boats(xml_data bts_lvarchar_ops)
USING bts(xmltags="(skipper,boatname,crew)") IN bts_sbspace;

The bts_index_fields() function will return the following field names:

boatname
skipper

The field name for the tag crew is not returned because it does not exist in the
XML fragment example.

If you create an index with the al1_xmltags and the xmlpath_processing
parameters enabled:

CREATE INDEX boats_bts ON boats(xml_data bts_lvarchar_ops)
USING bts(all_xmltags="yes",xmlpath_processing="yes")
IN bts_sbspace;

The bts_index_fields() function will return field names that include full paths:

IBM Informix Database Extensions User's Guide

/boat/boatname
/boat/skipper

If you create an index with the include_contents parameter enabled:

CREATE INDEX boats_bts ON boats(xml_data bts_Ivarchar_ops)
USING bts(all_xmltags="yes",include_contents="yes")
IN bts_sbspace;

The bts_index_fields() function will return the following fields:

boatname
contents
skipper

For information about the XML index parameters, see [Chapter 15, “Basic Text]
Search XML index parameters,” on page 15-1|

The bts_release() function

The bts_release() function provides the release version number of the basic text
search engine.

Syntax

v
A

»»—bts release—()

Usage

Use the bts_release() function if IBM Software Support asks you for the basic text
search version number.

Return codes

This function returns the name and release version number of the basic text search
engine.

Example

Example output:
BTS 2.00 Compiled on Tue Mar 31 11:25:52 CDT 2009

The bts_tracefile() function

The bts_tracefile() function specifies the location where the trace file is written.
Use this function together with the bts_tracelevel() function to trace basic text
search-related events.

Syntax

»»—bts_tracefile—(—filename—) ><

filename
The full path and name of the file to which trace information is appended.

Chapter 17. Basic text search functions 17-3

The file must be writable by user informix. If no file name is provided, a
standard session_id.trc file is placed in the $INFORMIXDIR/tmp directory.

Usage

Use the bts_tracefile() function to troubleshoot events related to the basic text
searches.

For the syntax for bts_tracelevel(), see I"The bts_tracelevel() function.”l

For more details about tracing, see the IBM Informix Guide to SQL: Reference.
Example

The following example specifies a trace log named bts_select.log in the /tmp
directory:

EXECUTE FUNCTION bts_tracefile('/tmp/bts_select.log');

The bts_tracelevel() function

17-4

The bts_tracelevel() function sets the level of tracing. Use this function together
with the bts_tracefile() function to trace Basic Text Search-related events.

Syntax

v
A

»»—bts tracelevel—(—level—)

level ~ The level of tracing output:

1 UDR entry points.

10 UDR entry points and lower-level calls.
20 Trace information and small events.

100 Memory resource tracing (very verbose).

If you enter a value from 1-9, it is treated as level 1, a value between 10 and 19 is
treated as level 10, a value between 20 and 99 is treated as level 20. A value greater
than or equal to 100 is treated as level 100.

Usage

Use the bts_tracelevel() function to troubleshoot events related to the IBM Informix
Basic Text Search DataBlade Module.

For the syntax for bts_tracefile(), see [‘The bts_tracefile() function” on page 17-3]

For more details about tracing, see the IBM Informix Guide to SQL: Reference.
Example

The following example specifies a trace file, sets the trace level to 20, and then
performs a SELECT statement, which generates a tracing log:
EXECUTE FUNCTION bts_tracefile('/tmp/bts_select.log');

EXECUTE FUNCTION bts_tracelevel(20);
SELECT * FROM vessels WHERE bts_contains(xml_info, 'boatname:black');

IBM Informix Database Extensions User's Guide

The following might be the contents of the tracing log for trace level 20. The

number 32 is the trace session number.

Tracing session: 32 on 03/26/2009

09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]
09:21:11 BTS[32]

bts_tracelevel_set: exit (level = 20, status = 0)
bts_am cost: entry

bts_am cost: exit (status = 0, cost = 0.500000)
bts_am_open: entry

bts_init: entry

bts_Tock try: entry (name = 'EVP')

bts_lock name: entry (name = 'EVP')

bts_lock_name: exit (lock name: 'BTS_LOCK-EVP', status
bts lock try: exit (status = 0)

bts_c1_init: entry (bts_c1_init_value = 0)
bts_c1_init_restore: entry

bts_cl_init_setup: entry

bts_c1_init_setup: exit (status = 0)
bts_c1_init_restore: exit (status = 0)
bts_c1_init: exit (bts_cl_init_value = 1, status = 0)
bts gls_init: entry

bts_gls_init: exit (status = 0)

bts_evp_check: entry

bts_evp_check: exit (status = 0)

bts_auto_trace: (skipped)

bts_init: exit (status = 0)

bts_am_spacename: entry

bts_am_spacename: exit (spacename = 'bts_sbspacel', status

bts_am_space: entry
bts_am_sbspace: entry

bts_am_sbspace: exit (rtn = '/ashworth/vessels_bts/1048885', status
bts_am_space: exit (rtn = '/ashworth/vessels_bts/1048885', status

bts_hdr_check: entry
bts_hdr_check: (hdr_status mask = 00000000)
bts_hdr_check: exit (status = 0)

bts_lock_try: entry (name = '/ashworth/vessels_bts/1048885")

bts_Tock try: exit (status = 0)

bts_am params_read: entry
bts_am_params_canonical_maps_setup: entry
bts_am_params_canonical _maps_setup: (expand = 1)
bts_am params_canonical_maps_setup: exit (status = 0)
bts_am_params read: exit (status = 0)

bts_Tock_release: entry (name = '/ashworth/vessels_bts/1048885")

bts_Tock release: exit (status = 0)
bts_am_open: (open set_size 256)

bts_xact_register:
bts xact_register:
bts_xact_register:
bts xact_register:
bts_xact_register:
bts_xact_register:
bts_xact_register:
bts_xact_register:
bts _xact_log_params
bts_xact_init_bxt:
bts_am_params_copy:
bts_xact_log_params
bts_xact_log_params
bts_xact_log_params
bts_fini: entry (er
bts c1_fini: entry
bts_c1_init_clear:
bts_c1_init_clear:
bts_cl_fini: exit
bts_lock_release: e

entry

(XACT: named_memory (BTS_XACT_20))
(new savepoint: 1-1 (first))
(register savepoint callback)
(register end_stmt callback)
(register end_xact callback)
(register post_xact callback)
exit (status = 0)

: entry

exit (status = 0)

exit (status = 0)

: (XACT: sbspace(bts_sbspacel))
: (XACT: space_type(1))

: exit (status = 0)

rcode = 0)
(bts_c1_init_value = 1)
entry

exit (status = 0)
(bts_c1_init_value = 0, status = 0)
ntry (name = 'EVP')

Chapter 17. Basic text search functions

17-5

09:21:11 BTS[32] bts_lock name: entry (name = 'EVP')

09:21:11 BTS[32] bts_Tock name: exit (lock name: 'BTS_LOCK-EVP', status = 0)
09:21:11 BTS[32] bts_lock release: exit (status = 0)

09:21:11 BTS[32] bts_fini: exit (status = 0)

09:21:11 BTS[32] bts_am open: exit (status = 0)

09:21:11 BTS[32] bts_am beginscan: entry

09:21:11 BTS[32] bts_am userdata_get: entry

09:21:11 BTS[32] bts_am spacename: entry

09:21:11 BTS[32] bts_am_spacename: exit (spacename = 'bts_sbspacel', status =
09:21:11 BTS[32] bts_am userdata get: (target = '/ashworth/vessels bts/1048885"
09:21:11 BTS[32] bts_am userdata_get: exit (status = 0)

09:21:11 BTS[32] bts_am _beginscan: (target = '/ashworth/vessels bts/1048885")
09:21:11 BTS[32] bts_am literal: entry

09:21:11 BTS[32] bts_am_literal_size: entry

09:21:11 BTS[32] bts_am literal size: exit (status = 0)

09:21:11 BTS[32] bts_am literal_cat: entry

09:21:11 BTS[32] bts_am literal cat: exit (status = 0)

09:21:11 BTS[32] bts_am literal: (literal is 'boatname:black')

09:21:11 BTS[32] bts_am literal: exit (status = 0)

09:21:11 BTS[32] bts_am beginscan: (literal = 'boatname:black')

09:21:11 BTS[32] bts_am beginscan: (rows = 256, score needed = 'no')

09:21:11 BTS[32] bts_am beginscan: exit (status = 0)

09:21:11 BTS[32] bts_am_getnext: entry

09:21:11 BTS[32] bts_init: entry

09:21:11 BTS[32] bts_lock_try: entry (name = 'EVP')

09:21:11 BTS[32] bts_lock name: entry (name = 'EVP')

09:21:11 BTS[32] bts_lock name: exit (lock name: 'BTS_LOCK-EVP', status = 0)
09:21:11 BTS[32] bts_Tock try: exit (status = 0)

09:21:11 BTS[32] bts_c1_init: entry (bts _cl_init _value = 0)

09:21:11 BTS[32] bts_cl_init_restore: entry

09:21:11 BTS[32] bts _cl init _restore: exit (status = 0)

09:21:11 BTS[32] bts_cl_init: exit (bts_cl_init_value = 1, status = 0)
09:21:11 BTS[32] bts_gls_init: entry

09:21:11 BTS[32] bts_gls_init: exit (status = 0)

09:21:11 BTS[32] bts_evp_check: entry

09:21:11 BTS[32] bts_evp check: exit (status = 0)

09:21:11 BTS[32] bts_auto_trace: (skipped)

09:21:11 BTS[32] bts_init: exit (status = 0)

09:21:11 BTS[32] bts_lock_try: entry (name = '/ashworth/vessels_bts/1048885")
09:21:11 BTS[32] bts_Tock try: exit (status = 0)

09:21:11 BTS[32] bts_cl_query: entry

09:21:11 BTS[32] bts_cl_query_setup: entry

09:21:11 BTS[32] bts _xact _get cl cb: entry

09:21:11 BTS[32] bts_xact_get_cl_cb: exit (status = 0)

09:21:11 BTS[32] bts_cl_query_parse: entry

09:21:11 BTS[32] bts_c1_query dump: entry

09:21:11 BTS[32] bts_cl_query_dump: (max clause count = 1024)

09:21:11 BTS[32] bts_c1_query dump: (query default operator = '0' (or))
09:21:11 BTS[32] bts_cl_query_dump: (query = 'boatname:black')

09:21:11 BTS[32] bts_c1_query dump: (keyfield = 'boatname')

09:21:11 BTS[32] bts_cl_query dump: exit (status = 0)

09:21:11 BTS[32] bts_cl_query_parse: exit (status = 0)

0)
)

09:21:11 BTS[32] bts_cl_query setup: exit (status = 0)
09:21:11 BTS[32] bts_cl_query_parse: entry
09:21:11 BTS[32] bts_cl_query parse: exit (status = 0)

09:21:11 BTS[32] bts_cl_query: exit (status = 0)

09:21:11 BTS[32] bts_am getnext: (return 0 (0) fragid = 1048884, rowid = 257)
09:21:11 BTS[32] bts_lock release: entry (name = '/ashworth/vessels_bts/1048885")
09:21:11 BTS[32] bts_Tlock release: exit (status = 0)

09:21:11 BTS[32] bts_fini: entry (errcode = 0)

09:21:11 BTS[32] bts_c1_fini: entry (bts_cl_init_value = 1)

09:21:11 BTS[32] bts_c1 _init_clear: entry

09:21:11 BTS[32] bts_cl_init_clear: exit (status = 0)

09:21:11 BTS[32] bts _c1 fini: exit (bts_cl _init _value = 0, status = 0)
09:21:11 BTS[32] bts_lock release: entry (name = 'EVP')

09:21:11 BTS[32] bts_lock _name: entry (name = 'EVP')

09:21:11 BTS[32] bts_lock _name: exit (lock name: 'BTS_LOCK-EVP', status = 0)

17-6 IBM Informix Database Extensions User's Guide

BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]

bts_lock release: exit (status = 0)

bts_fini: exit (status = 0)

bts_am_getnext: exit (status = 1)

bts_am_getnext: entry

bts_init: entry

bts_Tock_try: entry (name = 'EVP')

bts_Tock_name: entry (name = 'EVP')

bts_lock name: exit (lock name: 'BTS_LOCK-EVP', status = 0)
bts_lock try: exit (status = 0)

bts c1_init: entry (bts _cl_init_value = 0)
bts_cl_init_restore: entry

bts_c1_init_restore: exit (status = 0)

bts_c1_init: exit (bts_cl_init_value = 1, status = 0)
bts_gls_init: entry

bts gls_init: exit (status = 0)

bts_evp_check: entry

bts_evp_check: exit (status = 0)

bts_auto_trace: (skipped)

bts_init: exit (status = 0)

bts_lock_try: entry (name = '/ashworth/vessels_bts/1048885")
bts_Tock try: exit (status = 0)

bts _cl1_query: entry

bts_cl_query_next: entry

bts_cl1_query parse: entry

bts_c1_query_parse: exit (status = 0)

bts_c1_query next: exit (status = 0)
bts_cl_query_parse: entry

bts_c1_query parse: exit (status = 0)

bts c1_query: exit (status = 0)

bts_Tock_release: entry (name = '/ashworth/vessels_bts/1048885")

bts lock release: exit (status = 0)

bts_fini: entry (errcode = 0)

bts_c1 _fini: entry (bts_cl_init_value = 1)
bts_cl_init_clear: entry

bts_c1_init_clear: exit (status = 0)

bts c1_fini: exit (bts_cl_init_value = 0, status = 0)
bts_lock_release: entry (name = 'EVP')

bts_lock name: entry (name = 'EVP')

bts_lock_name: exit (lock name: 'BTS_LOCK-EVP', status = 0)
bts_Tock release: exit (status = 0)

bts_fini: exit (status = 0)

bts_am_getnext: exit (status = 0)

bts_xact_end_stmt: entry

bts_xact_bxh_init: entry

bts_xact_bxh_init: (XACT: named_memory(BTS_XACT 20))
bts_xact_bxh_init: exit (status = 0, bxh = 0x53661ce8)
bts_init: entry

bts_Tock_try: entry (name = 'EVP')

bts_lock_name: entry (name = 'EVP')

bts lock name: exit (lock name: 'BTS_LOCK-EVP', status = 0)
bts_Tock_try: exit (status = 0)

bts_c1_init: entry (bts_cl_init_value = 0)
bts_c1_init_restore: entry

bts_c1_init_restore: exit (status = 0)

bts c1_init: exit (bts_cl_init_value = 1, status = 0)
bts_gls_init: entry

bts gls_ init: exit (status = 0)

bts_evp_check: entry

bts_evp _check: exit (status = 0)

bts_auto_trace: (skipped)

bts_init: exit (status = 0)

bts xact_end stmt: (procesing current_stmt: 1)
bts_xact_process: entry

bts _xact process: (process: NORMAL END)
bts_xact_process: (process end_stmt: 1)
bts_xact_process: (current savepoint is 1-1)
bts_lock_try: entry (name = '/ashworth/vessels_bts/1048885")

Chapter 17. Basic text search functions

17-7

09:21:11 BTS[32] bts_lock try: exit (status = 0)

09:21:11 BTS[32] bts_Tock release: entry (name = '/ashworth/vessels _bts/1048885"')
09:21:11 BTS[32] bts_lock release: exit (status = 0)

09:21:11 BTS[32] bts_xact_process: exit (status = 0)

09:21:11 BTS[32] bts_xact_end_stmt: (new stmt: 2)

09:21:11 BTS[32] bts_fini: entry (errcode = 0)

09:21:11 BTS[32] bts_c1_fini: entry (bts_cl_init_value = 1)

09:21:11 BTS[32] bts_cl1 _init_clear: entry

09:21:11 BTS[32] bts_cl_init_clear: exit (status = 0)

09:21:11 BTS[32] bts _c1 fini: exit (bts_cl _init _value = 0, status = 0)
09:21:11 BTS[32] bts_lock release: entry (name = 'EVP')

09:21:11 BTS[32] bts_lock _name: entry (name = 'EVP')

09:21:11 BTS[32] bts_lock name: exit (lock name: 'BTS_LOCK-EVP', status
09:21:11 BTS[32] bts_Tlock release: exit (status = 0)

09:21:11 BTS[32] bts_fini: exit (status = 0)

09:21:11 BTS[32] bts_xact_end_stmt: exit (status = 0, state = 0)
09:21:11 BTS[32] bts_am endscan: entry

09:21:11 BTS[32] bts_init: entry

09:21:11 BTS[32] bts_Tlock_try: entry (name = 'EVP')

09:21:11 BTS[32] bts_lock _name: entry (name = 'EVP')

09:21:11 BTS[32] bts_lock_name: exit (lock name: 'BTS_LOCK-EVP', status
09:21:11 BTS[32] bts_lock try: exit (status = 0)

09:21:11 BTS[32] bts_cl_init: entry (bts_cl_init_value = 0)

09:21:11 BTS[32] bts _cl_init restore: entry

09:21:11 BTS[32] bts_cl1_init_restore: exit (status = 0)

09:21:11 BTS[32] bts_cl_init: exit (bts_cl_init_value = 1, status = 0)
09:21:11 BTS[32] bts_gls_init: entry

09:21:11 BTS[32] bts_gls_init: exit (status = 0)

09:21:11 BTS[32] bts_evp _check: entry

09:21:11 BTS[32] bts_evp_check: exit (status = 0)

09:21:11 BTS[32] bts_auto_trace: (skipped)

09:21:11 BTS[32] bts_init: exit (status = 0)

09:21:11 BTS[32] bts_Tock try: entry (name = '/ashworth/vessels bts/1048885")
09:21:11 BTS[32] bts_lock try: exit (status = 0)

09:21:11 BTS[32] bts_cl1_query_end: entry

09:21:11 BTS[32] bts_cl1_query parse: entry

09:21:11 BTS[32] bts_cl_query parse: exit (status = 0)

09:21:11 BTS[32] bts_cl query end: exit (status = 0)

09:21:11 BTS[32] bts_lock release: entry (name = '/ashworth/vessels_bts/1048885")
09:21:11 BTS[32] bts_Tlock release: exit (status = 0)

09:21:11 BTS[32] bts_fini: entry (errcode = 0)

09:21:11 BTS[32] bts_c1_fini: entry (bts_cl_init_value = 1)

09:21:11 BTS[32] bts _c1 _init _clear: entry

09:21:11 BTS[32] bts_cl_init_clear: exit (status = 0)

09:21:11 BTS[32] bts_cl1_fini: exit (bts_cl_init_value = 0, status = 0)
09:21:11 BTS[32] bts_lock release: entry (name = 'EVP')

09:21:11 BTS[32] bts_lock name: entry (name = 'EVP')

09:21:11 BTS[32] bts_lock name: exit (lock name: 'BTS_LOCK-EVP', status
09:21:11 BTS[32] bts_Tlock release: exit (status = 0)

09:21:11 BTS[32] bts_fini: exit (status = 0)

09:21:11 BTS[32] bts_am_endscan: exit (status = 0)

09:21:11 BTS[32] bts_am close: entry

09:21:11 BTS[32] bts_init: entry

09:21:11 BTS[32] bts_Tlock_try: entry (name = 'EVP')

09:21:11 BTS[32] bts_lock name: entry (name = 'EVP')

09:21:11 BTS[32] bts_lock_name: exit (lock name: 'BTS_LOCK-EVP', status
09:21:11 BTS[32] bts_lock try: exit (status = 0)

09:21:11 BTS[32] bts_c1_init: entry (bts_cl_init_value = 0)

09:21:11 BTS[32] bts_cl_init_restore: entry

09:21:11 BTS[32] bts_cl1_init_restore: exit (status = 0)

09:21:11 BTS[32] bts_cl_init: exit (bts_cl_init_value = 1, status = 0)
09:21:11 BTS[32] bts_gls_init: entry

09:21:11 BTS[32] bts_gls_init: exit (status = 0)

09:21:11 BTS[32] bts_evp check: entry

09:21:11 BTS[32] bts_evp_check: exit (status = 0)

09:21:11 BTS[32] bts_auto_trace: (skipped)

09:21:11 BTS[32] bts_init: exit (status = 0)

0)

0)

0)

0)

17-8 IBM Informix Database Extensions User's Guide

BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]

bts_am spacename: entry

bts_am_spacename: exit

(spacename = 'bts_sbspacel', status = 0)

bts_am userdata: (target = '/ashworth/vessels bts/1048885")
bts_am_userdata_free: entry

bts_fini: entry (errcode = 0)

bts_c1_fini: entry (bts_cl_init_value = 1)

bts_cl_init_clear:
bts_cl_init_clear:

bts_cl_fini: exit

entry
exit (status = 0)

(bts_c1_init_value = 0, status = 0)

bts lock release: entry (name = 'EVP')

bts_lock_name: entry (name =
bts_Tlock_name: exit
bts_Tlock_release: exit

bts_fini: exit

bts_am close: exit
bts_xact_end_xact:
bts_xact_bxh_init:
bts_xact_bxh_init:
bts_xact_bxh_init:
bts_xact_bxh_init:
bts_xact_bxh_init:
bts_xact_end_xact:

'EVP')
(Tock name: 'BTS_LOCK-EVP', status = 0)
(status = 0)
(status = 0)
(status = 0)
entry
entry
(XACT: named_memory (BTS_XACT_20))
(XACT: mi_named_get (BTS_XACT_20) failed: 2)
(XACT: mi_named_get (BTS_XACT_20) failure ignored)
exit (status = 0, bxh = 0x00000000)
exit (status = 0, state = -1)

FSE Entry bts_inFseXactCallback end_xact
FSE Exit bts_inFseXactCallback end xact
bts_xact_post_xact: entry

BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]
BTS[32]

bts_xact_bxh_init:
bts_xact_bxh_init:
bts_xact_bxh_init:
bts_xact_bxh_init:
bts_xact_bxh_init:
bts xact post xact: exit

entry

(XACT: named_memory (BTS_XACT_20))

(XACT: mi_named_get (BTS_XACT_20) failed: 2)
(XACT: mi_named_get (BTS_XACT_20) failure ignored)
exit (status = 0, bxh = 0x00000000)

(status = 0, state = -1)

FSE Entry bts_inFseXactCallback post_xact
FSE Exit bts_inFseXactCallback post_xact

Chapter 17. Basic text search functions

17-9

17-10 1BM Informix Database Extensions User's Guide

Chapter 18. Basic text search performance

This chapter describes how to optimize the bts index and how transactions work
with basic text search.

Optimize the bts index

Optimizing (also known as compacting) the index removes index information for
deleted documents and frees up disk space. Basic Text Search provides two ways
for you to optimize the bts index: manually or automatically after every delete
operation.

Tip: Disk space for documents that are marked as deleted in the bts index can be
reclaimed when more documents are added. Optimizing the index releases all disk
space for all deleted documents.

For a description and the complete syntax of the CREATE INDEX statement for a
bts index, including the deletion mode parameters, see [“bts access method syntax”]

Delete rows from the bts index manually when using deferred
mode

When you create a bts index, the default mode for deleting rows is deferred
(deTete="'deferred'). A delete operation on a row in a table marks the row as
deleted in the bts index. The disk space can be reclaimed as more documents are
added to the index. Queries made against bts columns do not return the deleted
documents.

To release disk space occupied by the deleted documents in the index, use the
oncheck utility in the format:

oncheck -ci -y db_name:table_name#index_name

Alternatively, you can use the bts_index_compact() function to release disk space
for the rows marked for deletion. The difference between the two methods is that
the bts_index_compact() function requires that you know the directory path to the
bts index, whereas using the oncheck utility requires that you know the database
name, table name, and the index name. Both methods have the same functionality.

Delete operations are faster in the deferred mode. The deferred mode is best for
large indexes that are updated frequently. The indexes should be optimized
(compacted) manually either with the oncheck utility or by using the
bts_index_compact() function.

For information about the oncheck utility, see the IBM Informix Administrator’s
Reference. For the syntax of the bts_index_compact() function, see
bts_index_compact() function” on page 17-1/

© Copyright IBM Corp. 2005, 2011 18-1

Delete rows from the bts index automatically with immediate

You can override the deferred deletion mode by creating the bts index with the
delete="immediate" parameter. In the immediate deletion mode, index information
for deleted documents is physically removed from the index after every delete
operation. This mode frees up space in the index immediately. However, the
immediate mode rewrites the index each time it deletes an index entry so it will
slow down delete operations and make the index unusable for the period of time it
takes to delete the entries.

Disk space for the bts index

The size of the external bts index depends on the number of documents being
indexed as well as the number of words and the number of unique words in those
documents.

If you receive an I/O error such as (BTSA1) - bts clucene error: IO error: File
I0 Write error, check the online log. The probable cause is insufficient disk space.
If this happens, drop the bts index with a DROP INDEX statement and recreate it
on a disk with enough disk space.

To prevent running out of space for the bts index, create a dedicated sbspace for
the bts index and a separate sbspace for temporary data. A separate sbspace for
temporary data might also improve the speed of creating and updating the bts
index.

See [Chapter 13, “Preparing for basic text searching,” on page 13-1|for the
procedure to create a bts index. See the IBM Informix Guide to SQL: Syntax for
instructions for the DROP INDEX statement.

Transactions with Basic Text Search

The bts index is located in an sbspace. If you have defined multiple BTS virtual
processors, each one can simultaneously process a different transaction. However,
when a transaction containing INSERT, DELETE, or UPDATE statements that affect
the bts index is being committed, it acquires an exclusive lock on the bts index.
Any other concurrent transaction waits for up to 15 minutes for the lock to be
released.

The bts index works in READ COMMITTED isolation level regardless of the
isolation level set in the database server. The READ COMMITTED isolation level
provides access only to rows that have been committed. Uncommitted rows from
other concurrent transaction are not accessible.

Adding BTS virtual processors to run multiple queries simultaneously

18-2

You can increase the number of basic text search queries or other index operations
that can run at the same time by adding additional BTS virtual processors.

Each Basic Text Search function, including bts_contains(), runs in a BTS virtual
processor without yielding. If basic text search queries are slow because multiple
users are running queries at the same time, you can add more BTS virtual
processors so that queries run simultaneously, each in their own virtual processor.

IBM Informix Database Extensions User's Guide

To dynamically add BTS virtual processors for the current database server session:

Run the onmode -p command, specifying the number of virtual processors to add
and the BTS virtual processor class. For example, the following command adds
three BTS virtual processors: onmode -p 3 bts

Alternatively, you can use the SQL administration API task() or admin() function
with the onmode and p arguments to add BTS virtual processors.

To permanently increase the number of BTS virtual processors, set the value of the
VPCLASS bts configuration parameter in the onconfig file and then restart the
database server. If the onconfig file contains an existing entry for the VPCLASS
bts configuration parameter, update that entry; otherwise, add a new entry for the
VPCLASS bts configuration parameter.

For more information about the onmode utility or the SQL administration API, see
the IBM Informix Administrator’s Reference,

Improve performance with configuration parameters

You can optimize the performance of text searches that use bts indexes by
configuring some configuration tuning parameters.

BUFFERPOOL
The BUFFERPOOL configuration parameter defines a buffer pool for pages
that correspond to each unique page size in use by your dbspaces. Use the
BUFFERPOOL parameter to specify information about the buffer pool
including its size, the number of LRU queues in the buffer pool, the number of
buffers in the buffer pool, and minimum and maximum percentages of
modified pages in the LRU queues.

RA_PAGES
The RA_PAGES configuration parameter specifies the number of disk pages
that the database server should attempt to read ahead during sequential scans
of data or index records. Try setting this parameter to 64.

RA_THRESHOLD
The RA_THRESHOLD configuration parameter specifies the number of
unprocessed pages in memory that signals the database server to perform the
next read ahead. If RA_PAGES is set to 64, setting RA_THRESHOLD to 33
could improve the performance of your text searches.

RESIDENT
The RESIDENT configuration parameter specifies whether the resident portion
of shared memory remains resident in operating system physical memory. If
your operating system supports forced residency, you can improve the
performance of searches by specifying that the resident portion of shared
memory not be swapped to disk. To do this, set this parameter to 1 (on).

VPCLASS noage
You can add the noage option when you specify the bts VP to disable priority
aging by the operating system if the operating system implements priority
aging. The noage option for the VPCLASS parameter controls whether the
operating system lowers the priority of database server processes as the
processes run over a period of time. You can improve the performance of
searches by setting this option to noage.

Chapter 18. Basic text search performance 18-3

Before you make any changes to your configuration file, refer to the IBM Informix
Administrator’s Reference for more detailed information about each parameter.

18-4 IBM Informix Database Extensions User's Guide

Chapter 19. Basic text search error codes

Basic text searching has specific error messages.

The following table lists error codes for basic text searching.

SQLstate Description

BTS01 bts error, assertion failed. File %FILE%, line %LINE%

BTS02 bts internal error. File %FILE%, line %LINE%

BTS03 bts error - could not set trace level to %PARAM1% for trace class %PARAM2%

BTS04 bts error - could not set trace output file to %PARAM1%

BTS05 bts error - unique index not supported

BTS06 bts error - cluster index not supported

BTS07 bts error - composite index not supported

BTS08 bts error - cannot query the table %TABLENAME%

BTS09 bts error - BTS index only supports extspaces and sbspaces

BTS10 bts error - cannot get connection descriptor

BTS11 bts error - extspace not specified

BTS12 bts error - cannot determine index owner

BTS13 bts error - cannot determine index name

BTS14 bts error - cannot create directory %PARAM1%

BTS15 bts error - current vpclass (%VPCLASS%) is not specified as noyield

BTS16 bts error - too many virtual processors running (%NUMVPS%) for the current vpclass (%VPCLASS%),
1 is the maximum

BTS17 bts error - out of memory

BTS18 bts error - SQL Boolean expression are not supported with bts_contains

BTS19 bts error - cannot query with a null value

BTS20 bts error - invalid value for index delete parameter: %PARAM1% should be either immediate or
deferred

BTS21 bts error - unsupported type: %PARAM1%

BTS22 bts error - bts_contains requires an index on the search column

BTS23 bts error - cannot register end-of-transaction-callback

BTS24 bts error - invalid value for field_token_max parameter: %s should be an integer value greater than 0

BTS25 bts error - CLOB or BLOB is too large, must be less than or equal to 2,147,483,647 bytes

BTS26 bts error - clob or blob is too large, must be less than or equal to 2,147,483,647

BTS27 bts error - BTS indexes in external spaces only permitted on primary or standard servers

BTS28 bts error - invalid value for min_merge parameter: %MIN_MERGE_PARAMY% should be an integer
value greater than 0

BTS29 bts error - invalid value for max_merge parameter: %MAX_MERGE_PARAM% should be an integer
value greater than 0

BTS30 bts error - invalid value for merge_factor parameter: %MERGE_FACTOR_PARAM% should be an
integer value greater than 0

BTS31 bts error - invalid value for noswchk parameter: %NOSWCHK_PARAM% should be either yes or no

© Copyright IBM Corp. 2005, 2011 19-1

SQLstate

Description

BTS32 bts error - invalid value for noxtchk parameter: %NOXTCHK_PARAM?% should be either yes or no

BTS33 bts error - invalid value for optimize_after_create parameter: %OPTIMIZE_AFTER_CREATE_PARAM%
should be either yes or no

BTS34 bts error - uppercase characters are not allowed in stopwords

BTS35 bts internal error - mi_open() failed. File %FILE%, line %LINE%

BTS36 bts internal error - mi_lo_open() failed. File %FILE%, line %LINE%

BTS37 bts internal error - mi_lo_seek() failed. File %FILE%, line %LINE%

BTS38 bts internal error - mi_lo_read() failed. File %FILE%, line %LINE%

BTS39 bts internal error - ifx_int8toasc() failed. File %FILE%, line %LINE%

BTS40 bts internal error - mi_lo_spec_init() failed. File %FILE%, line %LINE%

BTS41 bts internal error - mi_lo_create() failed. File %FILE%, line %LINE%

BTS42 bts internal error - mi_lo_increfcount() failed. File %FILE%, line %LINE%

BTS43 bts internal error - ifx_int8cvlong() failed. File %FILE%, line %LINE%

BTS44 bts internal error - mi_lo_write() failed. File %FILE%, line %LINE%

BTS45 bts error - cannot open file %FILENAME%

BTS46 bts error - cannot create file %FILENAME%

BTS47 bts error - xml syntax error

BTS48 bts error - invalid value for strip_xmltags parameter: %STRIP_XMLTAGS_PARAM% should be either
yes or no

BTS49 bts error - invalid value for all_xmltags parameter: % ALL_XMLTAGS_PARAM% should be either yes
or no

BTS50 bts error - if either xmltags is specified or all_xmltags is enabled, then include_contents must be
enabled if strip_xmltags is enabled

BTS51 bts error - xmlpath_processing cannot be enabled unless either xmltags is specified or all_xmltags is
enabled.

BTS52 bts error - all_xmltags and xmltags parameters are mutually exclusive

BTS53 bts error - invalid value for include_contents parameter: %INCLUDE_CONTENTS_PARAM% should
be either yes or no

BTS54 bts error - cannot write to file %FILENAME%

BTS55 bts error - cannot read from file %FILENAME%

BTS56 bts error - bad magic number on file %FILENAME%

BTS57 bts error - the specified table (%TABLENAME%) is not in the database

BTS58 bts error - column (%COLUMNNAME%) not found in specified table (% TABLENAME%)

BTS59 bts error - column (%COLUMNNAME%) in specified table (%TABLENAME%) is not of type char,
varchar, nchar, nvarchar or lvarchar

BTS60 bts error - invalid value for include_namespaces parameter: %PARAM1% should be either yes or no

BTS61 bts error - invalid value for xmlpath_processing parameter: %PARAM1% should be either yes or no

BTS62 bts error - invalid value for include_subtag_text parameter: %PARAM1% should be either yes or no

BTS63 bts error - parameter %PARAM1% is not implemented yet"

BTS64 bts error - %PARAM1% contains a '/' character which indicates an xmlpath however
xmlpath_processing is not enabled. Either remove the '/' in the xmltag or enable xmlpath_processing"

BTS65 bts error - invalid value for termvector parameter: %PARAM1% should be either yes or no

19-2 IBM Informix Database Extensions User's Guide

SQLstate

Description

BTS66 bts error - include_contents cannot be enabled unless either xmltags is specified or all_xmltags is
enabled

BTS67 bts error - include_namespaces cannot be enabled unless either xmltags is specified or all_xmltags is
enabled

BTS68 bts error - include_subtag_text cannot be enabled unless either xmltags is specified or all_xmltags is
enabled

BTS69 bts error - invalid value for all_xmlattrs parameter: %s should be either yes or no

BTS70 bts internal error - mi_lo_specset_sbspace() failed. File %FILE%, line %LINE%

BTS71 bts internal error - mi_lo_stat() failed. File %FILE%, line %LINE%

BTS72 bts internal error - mi_lo_stat_cspec() failed. File %FILE%, line %LINE%

BTS73 bts error - sbspace %PARAM1% is not logged

BTS74 bts error - sbspace for FSE is not set

BTS75 bts error - SBSPACENAME not set in onconfig file

BTS76 bts error - transaction uses too much memory. Perform smaller transactions or increase the value of the
xact_memory parameter on the index

BTS77 bts error - invalid value for xact_memory: %PARAM1% should be either unlimited or the maximum
amount of memory (between 1 and %PARAM2% kilobytes)

BTS78 bts error - SQL create index and drop index are not supported on updatable secondary nodes

BTS79 bts error - not implemented yet

BTS80 bts error - database must be logged

BTS81 bts error - not in a transaction

BTS90 bts error - CLucene index exists and is locked

BTS91 bts error - CLucene index exists

BTS92 bts error - CLucene index does not exist

BTS99 bts clucene error: Unknown error: %PARAM1%

BTSA1 bts clucene error: IO error: %PARAM1%

BTSA2 bts clucene error: Null pointer error: %PARAM1%

BTSA3 bts clucene error: Runtime error: %PARAM1%

BTSA4 bts clucene error: Illegal argument: %PARAM1%

BTSA5 bts clucene error: Parse error: %PARAM1%

BTSA6 bts clucene error: Token manager error: %PARAM1%

BTSA7 bts clucene error: Unsupported operation: %PARAM1%

BTSAS bts clucene error: Invalid state: %PARAM1%

BTSA9 bts clucene error: Index out of bounds: %PARAM1%

BTSBO bts clucene error: Too Many Clauses: %PARAM1%

BTSB1 bts clucene error: RAM Transaction error: %PARAM1%

BTSB2 bts clucene error: Invalid Cast: %PARAM1%

The following basic text search error codes are generated in English under the

SQLSTATE U00001.

bts error - The all_xmlattrs and xmltags parameters are mutually exclusive.

bts error - The copy_temp attribute can only be specified on an index in an sbspace.

Chapter 19. Basic text search error codes

19-3

bts error - The specified directory cannot contain a bts index.

bts error - Duplicate parameters, %s, were specified.

bts error - The field and mapping_string are mutually exclusive.

bts error - The field is not defined on the document or the value is not stored.

bts error - The fragment attribute must be specified on a fragmented index.

bts error - The GLS character name '%s' is not found.

bts error - The ID is out of bounds.

bts error - Incorrect canonical map[%d]: missing] in alternates in original characters
specification.

bts error - Incorrect canonical map[%d]: missing %c in original character specification.

bts error - Incorrect canonical map[%d]: missing : in mapped characters specification.

bts error - Incorrect canonical map[%d]: missing %c in mapped characters specification.

bts error - Incorrect canonical map[%d]: spaces found in original characters string at %d.

bts error - Incorrect canonical map[%d]: trailing characters found.

[
[
[
[
[
[

bts error - Incorrect canonical map[%d]: zero length original character string.

bts error - Incorrect flag for the create_mode parameter: %s

bts error - Incorrect hex specification: \x%c%c

bts error - Incorrect value for the create_mode parameter: %s is too long.

bts error - Incorrect value for the create_mode parameter: %s should be a hexadecimal
number.

bts error - Incorrect value for the create_mode parameter: %s should be an integer value
greater than 0.

bts error - Incorrect value for the create_set_size parameter: %s should be an integer value
greater than 0.

bts error - Incorrect value for the htr parameter: %s should be either yes or no.

bts error - Incorrect value for the insert_set_size parameter: %s should be an integer value
greater than 0.

bts error - Incorrect value for the max_clause_count parameter: %s should be an integer
value greater than 0.

bts error - Incorrect value for the nonorms parameter: %s should be either yes or no.

bts error - Incorrect value for the query_batch_size parameter: %s should be an integer value
greater than 0.

bts error - Incorrect value for the query_default_operator parameter: %s should be either
"and" or "or".

bts error - Incorrect value for the query_limit parameter: %s should be "unlimited" or an
integer value greater than 0.

bts error - Incorrect value for the query_log parameter: %s should be either yes or no.

bts error - Incorrect value for the query_set_size parameter: %s should be an integer value
greater than 0.

bts error - Incorrect value for the strip_nul_chars parameter: %s should be either yes or no.

bts error - Incorrect value for the tempspace parameter: %s should be an existing extspace or
sbspace.

bts error - Incorrect value for the termvector parameter: %s is too long.

bts error - Incorrect value for the termvector parameter: %s should be either yes,
with_positions, with_offsets or no.

19-4 1BM Informix Database Extensions User's Guide

bts error - Missing a comma (,) between parameters.

bts error - Missing the column name in table:%s. Use the form
table:table_name.column_name.

bts error - Missing the closing parenthesis,), in a string that has an opening parenthesis: (.

bts error - Missing the closing parenthesis:). The parameter should be in the form of
name=(values).

bts error - Missing a double quotation mark: ". The parameter %s should be in the form of
name="value".

bts error - The parameter %s should be in the form of name=value.

bts error - query attribute must be specified.

bts error - Recursive params parameter.

bts error - %s is an uppercase character. Uppercase characters are not allowed in canonical
maps.

bts error - Unknown parameter name: %.*s

bts error - The value for the tempspace parameter, %s, is too long.

Chapter 19. Basic text search error codes 19-5

19-6 IBM Informix Database Extensions User's Guide

Part 5. Hierarchical data type

The node data type helps to resolve a difficult relational database
problem—transitive closure.

This transitive closure problem is endemic to data management problems, and not
particularly well addressed by the relational model. The same basic problem is
found modeling organizational hierarchies, networks, manufacturing and process
control databases.

You can use the node data type to improve query performance for many recursive
queries. Using the node data type can also ease the burden of transitive
dependency in the relational database model. Transitive dependency occurs when a
non-key attribute is dependent on another non-key attribute. This relationship
frequently has multiple levels of attribute dependency. The problem usually is seen
when you model organizational hierarchies, networks, and databases for
manufacturing and process control.

© Copyright IBM Corp. 2005, 2011

IBM Informix Database Extensions User's Guide

Chapter 20. The node data type for querying hierarchical data

The node data type is an opaque type of variable length up to 256 characters.
Operations involving Enterprise Replication are supported.

Deep copy and LIKE matching statements are not supported.

Upgrading from version 1.0 of the node data type

The node data type Version 1.0 was released as an unsupported DataBlade module
on IBM developerWorks® in 2001.

The node data type included in Informix provides the following enhancements
over the unsupported version:

¢ Support for Enterprise Replication

* New depth() function, which has the same functionality as the length() function
* Maximum node size increased from 64 to 256 bytes

* New noderelease() function

* Error number prefix changes from UNOD to UNDE

» Additional trace functions

Direct upgrades from Version 1.0 to later versions are not supported because
unpredictable results can occur if you customized Version 1.0. Use caution if you
customized Version 1.0 to allow for a node length greater than 256 bytes because
data truncation might occur. You can use the character LENGTH() function to
determine the maximum size of your node data

The DataBlade module requires IBM Informix, Version, 11.10 or later. See the IBM
Informix DataBlade Module Installation and Registration Guide for more information
about registering the DataBlade module.

To upgrade from the node data type Version 1.0 to a later version, follow these
steps:

1. Unload the data.

2. Unregister the Node DataBlade Module Version 1.0 module with
BladeManager.

3. Install Node DataBlade Module Version 2.0 with the node data type.
4. Register Node DataBlade Module Version 2.0 with BladeManager.
5. Reload the data.

© Copyright IBM Corp. 2005, 2011 20-1

Troubleshooting the node data type

Error message specific to the node data type have the prefix UND. You can enable
tracing on the node data type to diagnose problems.

You might receive the following errors:

Error Description

UNDET: Invalid input string. A node is invalid. Nodes cannot end in 0.
UNDE2: Illegal character found in input An argument contains an illegal character.
string. Nodes can contain only numeric characters.
UNDES3: Third input parameter is not The third argument of a Graft function is not
descendant of first input parameter. a descendant of the first argument.

UNDE4: Index to node element should be A problem exists with the node indexing.
greater than or equal to 1.

To enable tracing, create a trace class by inserting a record into the
systemtraceclasses system catalog;:

INSERT INTO informix.systraceclasses(name) VALUES ('Node');

For more details regarding tracing, see the IBM Informix Guide to SQL: Reference.

20-2 IBM Informix Database Extensions User's Guide

Chapter 21. Node data type functions

Use these functions in queries involving the node data type.

Ancestors() function

The Ancestors() function is an iterator function that returns ancestor nodes. The
Ancestors function recursively calls itself with the output from IsAncestor.

Syntax

Ancestors (node)

node The node for which you want to find all ancestor nodes.

Example
EXECUTE FUNCTION ancestors('1.2.3.4.5.6.7.8.9');

This function returns the following eight rows as ancestor nodes:

1.2.3.4.5.6.7.8
1.2.3.4.5.6.7
1.2.3.4.5.6
1.2.3.4.5
1.2.3.4

1.2.3

1.2

1.0

Compare() function

The Compare() function compares two node types to determine if they are the
same.

Returns: -1, 0, or 1.

-1 The first argument is less than the second.

0 The arguments are equal.

1 The first argument is greater than the second.
Syntax

compare(nodel, node?2)
nodel The first node to compare.

node2 The node to which the first argument is compared

Example

CREATE TABLE nodetabl (coll node);
INSERT INTO nodetabl VALUES ('1.0'
OI

)s
INSERT INTO nodetabl VALUES ('2.0');

SELECT nl.coll, n2.coll, Compare (nl.coll, n2.coll)
FROM nodetabl nl, nodetabl n2;

coll 1.0

© Copyright IBM Corp. 2005, 2011 21-1

coll 1.0
(expression) 0

coll 2.0
coll 1.0
(expression) 1

coll 1.0
coll 2.0

(expression) -1

Depth() function

The Depth() function returns the number of levels in the specified node.
Returns: integer

Syntax
Depth(node)

node The node for which you want to determine depth.
Examples

Example 1
EXECUTE FUNCTION DEPTH('1.22.3');

Returns: 3

Example 2
EXECUTE FUNCTION DEPTH('6.5.4.3.2.1');

Returns: 6

Equal() function

21-2

The Equal() function compares two variable-length opaque types This function
implements the comparison operator, so you can use it in SQL statements using the
function name or the corresponding symbol.

Returns: Boolean

Syntax
Equal (nodel ,node?2)

node The node against which you will test for equality.

node2 The node that you will compare to the first to test for equality.
Examples

Example 1
SELECT * FROM tablename WHERE Equal(nodecolumn, "1.4");

Example 2
SELECT * FROM tablename WHERE nodecolumn = "1.4";

IBM Informix Database Extensions User's Guide

This example is the same as Example 1, except an equals sign is used.

GetMember() function

The GetMember() function returns information about a node level, returns integer.
The GetMember() function returns specific parts of the node argument. The second
argument specifies the level you want returned. A NULL is returned if no
corresponding level exists.

Returns: integer or NULL

Syntax

GetMember(node, integer)
node

integer

Example

CREATE TABLE nodetabl (coll n
INSERT INTO nodetabl VALUES (
INSERT INTO nodetabl VALUES (
INSERT INTO nodetabl VALUES (
INSERT INTO nodetabl VALUES (
INSERT INTO nodetabl VALUES (

SELECT coll, GetMember(coll, 3)
FROM nodetabl;

coll 1.0
(expression)

coll 1.1.1
(expression) 1

coll 1.1.2
(expression) 2

coll 1.1.2.1
(expression) 2

coll 2.0
(expression)

GetParent() function

The GetParent() function returns the parent of a node. If the node does not have a
parent NULL is returned.

Returns: node or NULL

Syntax
GetParent (node)

node The child node whose parent you want to determine.

Example

CREATE TABLE nodetabl (coll node);
INSERT INTO nodetabl VALUES ('1.0

. T);
INSERT INTO nodetabl VALUES ('1.1.1'

)s

Chapter 21. Node data type functions 21-3

INSERT INTO nodetabl VALUES ('1.1.2
INSERT INTO nodetabl VALUES ('1.1.2
INSERT INTO nodetabl VALUES ('2.0")

)s
BN
SELECT coll, GetParent(coll)

FROM nodetabl;

coll 1.0
(expression)

coll 1.1.1
(expression) 1.1
coll 1.1.2
(expression) 1.1
coll 1.1.2.1
(expression) 1.1.2
coll 2.0

(expression)

Graft() function

The Graft() function moves parts of the node tree. The Graft() function is useful
for moving subsections of the tree and returns a new node value that is the result
of grafting the third argument, under the second argument, from the first
argument node down. No values are verified against any table data.

Returns: node

Syntax
Graft(nodel, node2, node3)

nodel The parent of the node that you are grafting to another location.
node2 The new parent of the grafted node.

node3 The node to move from a child of nodel to a child of node2.

Example

EXECUTE FUNCTION Graft ("1.2.3", "1.4", "1.2.3.2");
(expression) 1.4.2

The node 1.2.3.2 is moved from under node 1.2.3 to under node 1.4. The moved
node becomes 1.4.2. Existing nodes cannot be overwritten.

GreaterThan() function

21-4

The GreaterThan() function compares two nodes to determine which is greater.
This function implements the comparison operator and can be used in SQL
statements either using the function name or the corresponding symbol.

Returns: Boolean

Syntax

GreaterThan(nodel, node?2)

nodel The node that you are will compare against.

IBM Informix Database Extensions User's Guide

node2 The node that you are checking to see if it is greater than nodel.
Examples

Example 1

SELECT =
FROM tablename
WHERE GreaterThan(nodecolumn, "1.4");

Example 2

SELECT =
FROM tablename
WHERE nodecolumn > "1.4";

This example is the same as Example 1, except a greater than sign is used in place
of the function name.

GreaterThanOrEqual() function

The GreaterThanOrEqual() function compares two nodes to determine if the first
is greater or equal to the second. Implements the comparison operator and can be
used in SQL statements either using the function name or the corresponding
symbol.

Returns: Boolean

Syntax
GreaterThanOrEqual (nodel, node?2)

nodel The node that you are will compare against.

node2 The node that you are checking to see if it is greater than or equal to nodel.
Examples

Example 1

SELECT =
FROM tablename
WHERE GreaterThanOrEqual(nodecolumn, "1.4");

Example 2

SELECT =
FROM tablename
WHERE nodecolumn >= "1.4";

This example is the same as Example 1, except a greater than or equal sign is used
in place of the function name.

Increment() function

The Increment() function determines the next node at the same level. You can also
increase the level of a node by one at a specified level.

Returns: node

Chapter 21. Node data type functions 21-5

Syntax

Increment (node, integer)
node The starting node to increment from.

integer
The node member to increment. If you do not specify this argument, the
next node at the same level as nodel is returned.

Examples

Example 1

EXECUTE FUNCTION Increment('1.2.3');
(expression) 1.2.4

This example uses only one argument. The result shows the next node at the same
level.

Example 2

EXECUTE FUNCTION Increment('1.2.3', 3);

(expression) 1.2.4

This example increments the member in position three, whose value is 3.
Example 3

EXECUTE FUNCTION Increment('1.2.3', 1);

(expression) 2.0

This example increments the first node member.

IsAncestor() function

The IsAncestor() function lets you determine if a specific node is an ancestor of
another. This function is the opposite of IsDescendant().

Returns: Boolean

Syntax

IsAncestornodel, node2)
nodel The parent node for which you want to find an ancestor.

node2 The node that you want to determine whether it is an ancestor of nodel.
Examples

Example 1

CREATE TABLE nodetabl (coll no
INSERT INTO nodetabl VALUES ('
INSERT INTO nodetabl VALUES ('

d
1
1
INSERT INTO nodetabl VALUES ('1

.)s
SELECT nl.coll, n2.coll, IsAncestor (nl.coll, n2.coll)
FROM nodetabl nl, nodetabl n2;

coll 1.0
coll 1.1
(expression) t

21-6 IBM Informix Database Extensions User's Guide

coll 1.0
coll 1.1.1
(expression) t

coll 1.1
coll 1.1.1
(expression) t
coll 1.1.1
coll .1

1
(expression) f

Example 2

SELECT coll

FROM nodetabl nl

WHERE isAncestor(coll, '1.1.2');
coll 1.0

coll 1.1

IsChild() function

The IsChild() function determines whether a node is a child of another node. This
is the opposite of IsParent().

Returns: Boolean

Syntax
IsChild(nodel, node2)

nodel The node that you want to determine whether it is a child of node2.

node2 The parent node for which you want to find a child.

Example

CREATE TABLE nodetabl (coll node);
INSERT INTO nodetabl VALUES ('1.0');
INSERT INTO nodetabl VALUES ('1.1');
INSERT INTO nodetabl VALUES ('1.1.1');

SELECT nl.coll, n2.coll, IsChild (nl.coll, n2.coll)
FROM nodetabl nl, nodetabl n2;

coll 1.1
coll 1.0
(expression) t
coll 1.1.1
coll 1.0
(expression) f
coll 1.0
coll 1.1
(expression) f
coll 1.1
coll 1.1
(expression) f
coll 1.1.1
coll 1.1

(expression) t

Chapter 21. Node data type functions ~21-7

coll 1.0
coll 1.1.
(expression) f

1

IsDescendant() function

The IsDescendant() function lets you determine if a specific node is a descendant
of another. This function is the opposite of IsAncestor().

Returns: Boolean

Syntax

IsDescendant (nodel, node?)
nodel The node that you want to determine whether it is a descendant of nodel.

node2 The parent node for which you want to find a descendant.

Example

CREATE TABLE nodetabl (coll node
INSERT INTO nodetabl VALUES ('1.
INSERT INTO nodetabl VALUES ('1.
INSERT INTO nodetabl VALUES ('1.

)s
s
1');
1.1');

SELECT nl.coll, n2.coll, IsDescendant (nl.coll, n2.coll)
FROM nodetabl nl, nodetabl n2;

coll 1.0
coll 1.0
(expression) f
coll 1.1
coll 1.0
(expression) t
coll 1.1.1
coll 1.0
(expression) t
coll 1.0
coll 1.1

(expression) f

IsParent() function

21-8

The IsParent() function lets you determine if a specific node is a parent of another.
This function is the opposite of IsChild().

Returns: Boolean

Syntax

IsParent (nodel, node2)
nodel The node that you want to determine whether it is a parent of node2.

node2 The descendant node for which you want to find a parent.

IBM Informix Database Extensions User's Guide

Example

CREATE TABLE nodetabl (coll node);
INSERT INTO nodetabl VALUES ('1.0');
INSERT INTO nodetabl VALUES ('1.1');
INSERT INTO nodetabl VALUES ('1.1.1');

SELECT nl.coll, n2.coll, IsParent (nl.coll, n2.coll)
FROM nodetabl nl, nodetabl n2;

coll 1.0
coll 1.1
(expression) t
coll 1.1
coll 1.1.1
(expression) t
coll 1.0
coll 1.1.1

(expression) f

Length() Node function

The Length() function returns the number of levels in the specified node and is
equivalent to the Depth() function. This is the name of the function that was
included in Node Version 1.0 and supported for continuity.

Returns: integer

Syntax
Length(node: :node)

node The node for which you want to determine depth, which is how many
levels are in the node.

Example

execute function length('1.22.3'::node);
(expression) 3

LessThan() function

The LessThan() function compares two nodes to determine which is less.
Implements the comparison operator and can be used in SQL statements either
using the function name or the corresponding symbol.

Returns: Boolean

Syntax
LessThan(nodel, node?)

nodel The node that you are will compare against.

node2 The node that you are checking to see if it is less than nodel.
Examples

Example 1
SELECT * FROM tablename WHERE LessThan(nodecolumn, '1.4');

Chapter 21. Node data type functions 21-9

The following list includes nodes that are less than 1.4:

1. 04
2. 13
3. 1.3.66
4. 1.1.1.1

The following list includes nodes that are greater than 1.4:

1. 1411
2. 15
3. 20
Example 2

SELECT * FROM tablename WHERE nodecolumn < '1.4';

LessThanOrEqual() function

The LessThanOrEqual() function compares two nodes to determine if the first is
less or equal to the second. Implements the comparison operator and can be used
in SQL statements either using the function name or the corresponding symbol.

Returns: Boolean

Syntax
LessThanOrEqual (nodel, node?2)

nodel The node that you are will compare against.

node2 The node that you are checking to see if it is less than or equal to nodel.
Examples

Example 1

SELECT * FROM tablename
WHERE LessThanOrEqual(nodecolumn, '1.4');

This example searches the values in the node column of the table to find the node
with the value 1.4.

Example 2

SELECT * FROM tablename
WHERE nodecolumn <= '1.4';

This example is the equivalent to the first, but uses symbols instead of the function
name.

NewLevel() function

21-10

The NewLevel() function creates a new node level. This function simply returns a
new node value under the argument node. This function is independent of table
values. The function does not check for duplication.

Returns: node

IBM Informix Database Extensions User's Guide

Syntax

NewLevel (node)

node The node under which a new node is created

Example

EXECUTE FUNCTION NewLevel ('1.2.3');
(expression) 1.2.3.1

NodeRelease()

function

The NodeRelease() function reports the release and version information of the
node data type. This function takes no arguments.

Returns: string

Syntax
NodeRelease()

node

NotEqual() function

The NotEqual() function compares two nodes to determine whether they are not
equal. Implements the comparison operator and can be used in SQL statements
either using the function name or the corresponding symbol. The opposite function
is Equal().

Returns: Boolean

Syntax
NotEqual(nodel, node2)

nodel The node against which you will test for inequality.

node2 The node that you will compare to the first to test for inequality.
Examples

Example 1
SELECT * FROM tablename WHERE NotEqual(nodecolumn, '1.4');

Example 2
SELECT * FROM tablename WHERE nodecolumn != '1.4';

This example is the same as Example 1, except a not equal sign is used in place of
the function name.

Chapter 21. Node data type functions ~21-11

21-12 1BM Informix Database Extensions User's Guide

Part 6. Informix web feature service for Geospatial Data

The Web Feature Service DataBlade Module lets you add an Open Geospatial
Consortium (OGC) web feature service (WFS) as a presentation layer for the
Spatial and Geodetic DataBlade modules.

See the Spatial or Geodetic DataBlade module machine notes for details on support
of WES.

An OGC web feature service allows requests for geographical features across the
web using platform-independent calls.

The Informix WFS includes support for inserting, updating, and deleting features

using a CGI client program, the wfsdriver, and a server-side function,
WEFSExplode().

© Copyright IBM Corp. 2005, 2011

IBM Informix Database Extensions User's Guide

Chapter 22. Informix web feature service administration

The Informix WEFS handles requests for geographical features from a web server
using platform-independent calls. The Informix WEFS is based on the transaction
WES specification from the Open Geospatial Consortium (OGC).

You can use the Spatial and Geodetic DataBlade modules to support web-based
geographical programs using data that you have stored in IBM Informix.

You can insert, update, and delete geographical features. The XML-based
Geography Markup Language (GML) encodes the geographic features. The
detailed specification is available at www.opengeospatial.org.

The Informix WFS encodes geographic features in the Geography Markup
Language (GML) 3.1.1 specification. GML 2.1.1 is also supported for compatibility.
All features must be uniquely identified. The identifiers commonly take the form
of Feature.ObjectID, where Feature is a feature class or table and ObjectID is a
unique identifier (usually a primary key) for that class or table.

For information about whether the Informix WFS runs on your operating system,
see the machine notes for your platform.

The WFSDriver CGI program

The WEFSDriver CGI program processes all requests using either the HTTP
methods GET or POST encoded as key-value-pairs (KVP) or XML. The program
uses its corresponding wfs.cnf file to determine which IBM Informix database to
connect to, how to connect to it, and the user ID to use to connect to the database.

The WFSDriver CGI program determine whether it is passing KVP or XML data.
KVP data goes through preliminary validation, while XML is passed directly to the
wfsexplode UDR on the data server. The WESDriver CGI program finally returns
the results from the WFSExplode UDR and returns them to the web server.

WFSVP virtual processor class
Informix WFS routines run in a virtual processor class named WFSVP.
You must define the WFSVP virtual processor class before you use the functions.
To add WESVP virtual processors, add the following line to your onconfig file,

substituting n with the number of virtual processors you want to start, and restart
the database server: VPCLASS wfsvp,noyield,num=n.

Configuring the WFSDriver program

Before your web server can run the WESDriver CGI program, you must set up
your environment and configure your web server.

For example, on an Apache web server with a root directory /1ocal®/IBMIHS and a
database name mywfs, the WFSSetup program creates a directory

/Tocal0/IBMIHS/mywfs, which contains the files wfs.cnf and wfsdriver.

© Copyright IBM Corp. 2005, 2011 22-1

1. Register the Web Feature Service DataBlade Module.
2. Create the WFSVP virtual processor class. See ["WFSVP virtual processor class’]

3. Install and register the Spatial or Geodetic DataBlade module.

4. Run WFSSetup as described in [“WFSSetup program” on page 23-9)

5. Run WFSRegister on the tables on which you want to use the web feature
service. See ["WFSRegister UDR” on page 23-9| for details.

6. Edit the web server configuration file, httpd.conf, in /Tocal0/IBMIHS/conf and
add the following line so the web server can find the CGI program: ScriptAlias
/mywfs "/local0/IBMIHS/mywfs/" Other web servers might use somewhat
different configuration formats. See your web server documentation for
configuration details.

WFS transactions

The transaction operation includes insert, update, and delete operations on
web-accessible feature instances. After a transaction completes, the Informix WFS
generates an XML response document that indicates the completion status of the
transaction.

A transaction operation can contain multiple insert, update, and delete elements.
These elements are processed in the order in which they are contained in the
transaction request.

The TransactionResponse element contains a TransactionSummary element, and the
optional TransactionResult and InsertResults elements. The results of a
transaction request are summarized in the TransactionSummary element in the
totalInserted, totalUpdated, and totalDeleted elements. The optional
TransactionResult element is required. The contents of the TransactionResult
element indicates which actions of the transaction request failed to complete
successfully. For details on transaction operations, see ["WEFS transactions” on page|
23-3.

Implement security in WFS

The web server handles secure access to the CGI program.

The password to access the database is stored in the wfs.cnf file, which is in the
same directory as the WEFSDriver CGI program. The user ID should have
permission to select, insert, update, and delete features. You can use the
WESpwecrypt program to generate encrypted passwords for the user IDs. See
[“WFSpwecrypt program” on page 23-9 for more information.

22-2 IBM Informix Database Extensions User's Guide

Chapter 23. WFS reference

The Informix WEFS includes elements, programs, routines, and operations.

DescribeFeatureType element

A DescribeFeatureType request contains zero or more TypeName elements that
encode the names of feature types that are to be described. This request is the
same as issuing the following query in dbaccess:

INFO COLUMNS FOR TABLE tableName

If the content of the DescribeFeatureType element is empty, all of the feature types
(that is, tables) that are registered to the WEFS are returned. The following XML
schema fragment defines the XML encoding of a DescribeFeatureType request:

<xsd:element name="DescribeFeatureType" type="wfs:DescribeFeatureTypeType"/>
<xsd:complexType name="DescribeFeatureTypeType">
<xsd:complexContent>
<xsd:extension base="sfs:BaseRequestType">
<xsd:sequence>
<xsd:element name="TypeName" type="xsd:QName"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="outputFormat"
type="xsd:string" use="optional"
default="text/xml; subtype=gm1/3.1.1"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

The following example shows a DescribeFeatureType request with its key-value
pairs:

http://www.ibm.com/mydb/wfsdriver.cgi?SERVICE=WFS&VERSION=1.1.0&
REQUEST=DescribeFeatureType&TypeName=TreesA_1M

GetCapabilities element

The web feature service (WFS) can describe its capabilities by returning service
metadata in response to a GetCapabilities request. A GetCapabilities request uses
key-value pair (KVP) encoded form over an HTTP GET request.

Table 23-1. Keys of GetCapabilities

Key Mandatory or Optional Definition and Example

service Mandatory Service type identifier.
service=WFS

request Mandatory Operation name
request=GetCapabilities

AcceptVersions Optional. Returns the latest | Comma-separated prioritized
supported version if omitted. |sequence of one of more
specification versions
accepted by the client, with
preferred versions listed first.

AcceptVersions=1.1.0,1.0,0

© Copyright IBM Corp. 2005, 2011 23-1

Table 23-1. Keys of GetCapabilities (continued)

Key Mandatory or Optional Definition and Example

updateSequence Optional. Returns the most Service metadata document
recent metadata document version. The value is
version if omitted or not increased whenever any

supported by the web server. |change is made in complete
metadata document.

updateSequence=123

AcceptFormats Optional. Returns a service A comma-separated sequence
metadata document using of zero or more response
MIME types text/xml if formats for the client. List the

omitted or not supported by |preferred formats first.

the web server. AcceptFormats=text/xml

The following example shows a GetCapabilities request that is encoded using KVP:

http://hostname:port/wfsdriver.cgi?SERVICE=WFS&REQUEST=GetCapabilties&
ACCEPTVERSIONS=1.1.0,1.0.0&4SECTIONS=Contents&UPDATESEQUENCE=XXX&
ACCEPTFORMATS=text/xm1

The response document contains the following sections:
Service identification

Service provider

Operational metadata

FeatureType list

ServesGMLODbjectType list

SupportsGMLODbjectType list

Filter capabilities

N O~

GetFeature operation

23-2

The GetFeature operation lets you retrieve features from a WFS. The information
that is retrieved can be features or a number that indicates how many features
match your query. You can use the MaxFeatures element to limit the number of
features that are returned.

The GetFeature operation contains one or more Query elements, each of which
contains the description of the query. The results of all queries in a GetFeature
request are concatenated into a result set. The typeName attribute in the schema
indicates the name of one or more feature type instances or class instances to be
queried. The value of this attribute is a list of valid feature types that are registered
in the database. Specifying more than one typeName indicates that a join operation
is being performed on the relational tables of the database.

The XML encoding of a GetFeature request is defined by the following XML
schema fragment:

<xsd:element name="GetFeature" type="wfs:GetFeatureType"/>
<xsd:complexType name="GetFeatureType">
<xsd:complexContent>
<xsd:extensions base="wfs:BaseReqeustType'">
<xsd:sqeuence>
<xsd:element ref="wfs:Query" maxOccursj="unbounded"/>
</xsd:squence>
<xsd:attribute name="resultType" type="wfs:ResultTypeType"

IBM Informix Database Extensions User's Guide

use="optional" default="results"/>

<xsd:attribute name="outputFormat" type="xsd:string"
use="optional" default="text/xml; subtype=3.1.1"/>

<xsd:attribute name="traverseXlinkDepth" type="xsd:string"
use="optional"/>

<xsd:attribute name="traverseXlinkExpiry" type="xsd:positivelngeger"
use="optional"/>

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:simpleType name="ResultTypeType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="resuls"/>
<xsd:enumeration value="hits"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:element name="Query type="wfs:QueryType"/>
<xsd:complexType name="QueryType">
<xsd:sequence>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="wfs:PropertyName"/>
<xsd:element ref="ogs:Function"/>
</xsd:choice>
<xsd:element ref="ogc:Filter" minOccurs="0" MaxOccurs="1"/>
<xsd:element ref="ogc:SortBy" minOccurs="0" MaxOccurs="1"/>
</xsd:squence>
<xsd:attribute name="handle" type="xsd:string" use="optional"/>
<xsd:attribute name="typeName" type="wfs:TypeNameListType" use="required"/>
<xsd:attribute name="featureVersion" type="xsd:string" use="optional"/>
</xsd:complexType>
<xsd:simpleType name="Base TypeNameListType">
<xsd:1ist itemType="OName"/>
<.xsd:simpleType>
<xsd:simpleType name="TypeNamelListType">
<xsd:restriction base="wfs:Base_TypeNameListType">
<xsd:pattern value="([\w:)?2\w((=\w)?]{1,}"/>
</xsd:restriction>
</xsd:simpleType>

The following query returns all properties of all instances of type InWaterA_1M:

http://www.ibm.com/wfsdriver.cgi&SERVICE=WFS&VERSION=1.1.0&
REQUEST=GetFeature&TypeName=InWaterA 1M

The query is passed to the WESExplode UDR, which creates the following SQL
query:

SELECT genxmlclob('InWaterA IM',ROW(id,tileid,GeoASGML(geom)))

FROM InWaterA_IM;

WFS transactions

If a transaction request includes an insert operation, the unique feature identifier is
reported for each operation that was part of the transaction. The following XML
schema fragment shows the XML coding of a WES transaction response:

<xsd:element name="TransactionResponse" type="wfs:TransactionResponseType"/>
<xsd:complexType name="TransactionResponseType">
<xsd:sequence>
<xsd:element name="TransactionSummary" type="wfs:TransactionSummaryType"/>
<xsd:element name="TransactionResults" type="wfs:TransactionResultsType"
minOccurs="0"/>
<xsd:element name="InsertResults" type="wfs:InsertResultsType" minOccurs="0"/>
</xds:sequence>

Chapter 23. WFS reference 23-3

<xsd:attribute name="version" type="xsd:string" use="required" fixed="1.1.0"/>
</xsd:complexType>
<xsd:complexType name="TransactionSummaryType">
<xsd:sequence>
<xsd:element name="totalInserted"
type="xsd:nonNegativeInteger" minOccurs="0"/>
<xsd:element name="totalUpdated"
type="xsd:nonNegativeInteger" minOccurs="0"/>
<xsd:element name="totalDeleted"
type="xsd:nonNegativeInteger" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType>
<xsd:complexType name="TransactionResultsType">
<xsd:sequence>
<xsd:element name="Action" type="wfs:ActionType" minOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="ActionType">
<xsd:sequence>
<xsd:element name="Message" type="xsd:string" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="locator" type="xsd:string" use="required"/>
<xsd:attribute name="code" type="xsd:string" use="optional"/>
</xsd:complexType>
<xsd:complexType name="InsertResultsType">
<xsd:sequence>
<xsd:element name="Feature" type="wfs:InsertedFeatureType"
max0Occurs="unbounded" />
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="InsertedFeatureType">
<xsd:sequence>
<xsd:element ref="ogc:Featureld" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="handle" type="xsd:string" use="optional"/>
</xsd:complexType>

Insert element

The Insert element creates new feature instances. By default, the initial state of a
feature to be created is expressed using GML3, but the defined inputFormat
attribute supports older versions of GML. In response to an insert operation, the
WES generates a list of identifiers assigned to the new feature instances. Feature
identifiers are generated by the WES or specified by the client using gml:id
attribute values on inserted features and elements. The idgen attribute defined on
the Insert element can indicate a method of assigning feature identifiers to use, as
shown in the following table.

Table 23-2. Actions corresponding to idgen values

idgen Value Action

GenerateNew (default) The WEFS generates unique identifiers for all
newly inserted feature instances.

UseExisting In response to an insert operation, the web
feature service uses the gml:id attribute
values on inserted features and elements. If
any IDs duplicate the ID of a feature or
element already stored in the WFS, the WFS
raises an exception.

23-4 IBM Informix Database Extensions User's Guide

Table 23-2. Actions corresponding to idgen values (continued)

idgen Value Action

ReplaceDuplicate A WFS client can request that the WFS
generate IDs to replace the input values of
gml:id attributes of feature elements that
duplicate the ID of a feature or element
already stored in the WFS instead of raising
an exception by setting the idgen attribute of
the InsertElementType to the value
ReplaceDuplicate.

After an insert operation, the WES generates a list of identifiers that are assigned to
the new feature instances. The following example shows an insert operation:

<wfs:Transaction

version="1.1.0"

service="WFS"

handle="Transaction 01"
xmins="http://www.yourserver.com/mydbns"
xmins:wfs="http://www.opengis.net/wfs"
xmsns:ogc="http://www.opengis.net/ogc"
xmsns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.yourserver.com/mydbns

http://www.yourserver.com/wfs/wfs.cgi?request=DESCRIBEFEATURETYPE&
typename=ELEVP_1M

http://www.opengis.net/wfs ../wfs/1.1.0/WFS.xsd">

<wfs:Insert handle="statement 1">
<ElevP_1M>
<id>167928</id>
<f_code>CA</fcode>
<acc>2</acc>
<ela>l</ela>
<Z\V2>152</7ZV2>
<tilelD>250</tilelD>
<end_id>111</end_id>
<location>
<gml:Point srsname="http://www.opengis.net/gms/srs/epsg.xml#63266405">
<gml:p0os>-98.5485 24.2633</gml:pos>
</gml:Point>
</location>
</ElevP_IM>
</wfs:Insert>
</wfs:Transaction>

The WFSExplode() function transforms the insert operation into the following
INSERT statement:
INSERT INTO ElevP_IM
(id,f_code,acc,ela,ZV2,tilelD,end_id,Tocation)
VALUES (167928,'CA',2,1,152, 250, 111,
GeoFromGML('<gml:Point ...> ... </gml:Point>")

Update element

The Update element describes one update operation to apply to a feature or set of
features of a single feature type. Multiple update operations can be contained in a
single transaction request. The Filter element can limit the scope of an update

Chapter 23. WFS reference 23-5

operation to a numbered set of features using spatial and non-spatial constraints.
The following is an example of an update transaction that is filtered by a
non-spatial constraint:

<?xml version="1.0" ?>
<wfs:Transaction

version="1.1.0"

service="WFS"

handle="Transaction 01"
xmins="http://www.yourserver.com/mydbns"
xmins:wfs="http://www.opengis.net/wfs"
xmsns:ogc="http://www.opengis.net/ogc"
xmsns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.yourserver.com/mydbns

http://www.yourserver.com/wfs/wfs.cgi?request=DESCRIBEFEATURETYPE&
typename=BuiltUpA_1IM

http://www.opengis.net/wfs ../wfs/1.1.0/WFS.xsd">

<wfs:Update typename="BuiltUpA IM>
<wfs:Property>
<wfs:Name>bndry</wfs:Name>
<wfs:Value>
<gml:Polygon gid="g5"
srsname="http://www.opengis.net/gml/srs/epsg.xml#63266405">
<gml:exterior>
<gml:LinearRing>
<gml:PosList>-89.8 44.3 -89.9 44.4 ... </gml:PosList>
</gml:LinearRing>
</gml:exterior>
</gml:Polygon>
</wfs:Value>
</wfs:Property>
<ogc:Filter>
<ogc:GmiObjectId gml:id="BuiltUpA_1M.1725"/>
</ogc:Filter>
</wfs:Update>
</wfs:Transaction>

The WFSExplode() function transforms the request into the following UPDATE
statement:
UPDATE BuiltUpA_1M

SET bndry=GeoFromGML('<:gml:Polygon ...> ... </gml:Polygon>)
WHERE id=1725;

If the Filter element does not identify any feature instances on which to operate,
no result is returned and no exception is raised.

Delete element

The Delete element is used to delete one or more feature instances. The scope of
the delete is determined by using the Filter element similar to how the Update
element is constrained. If the Filter element does not identify any feature
instances on which to operate, no result is returned and no exception is raised. The
Delete element is a special case within the transaction operation, because it is the
only element that can be specified by either the XML or KVP encoding methods.
The first example is XML encoded delete operation; the second is a KVP encoded
delete operation:
<wfs:Transaction

version="1.1.0"

service="WFS"

handle="Transaction 01"

xmins="http://www.yourserver.com/mydbns"
xmins:wfs="http://www.opengis.net/wfs"

23-6 IBM Informix Database Extensions User's Guide

xmsns:ogc="http://www.opengis.net/ogc"
xmsns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.yourserver.com/mydbns

http://www.yourserver.com/wfsdriver.cgi?request=DESCRIBEFEATURETYPE&
typename=BuiltUpA_1IM

http://www.opengis.net/wfs ../wfs/1.1.0/WFS.xsd">

<wfs:Delete typeName="BuiltUpA_IM">

<ogc:Filter>

<ogc:Gm10bjectID gml:id="BuiltUpA_1M.1013"/>

</ogc:Filter>

</wfs:Delete>
</wfs:Transaction>

KVP encoded delete operation:

http://www.yourserver.com/wfsdriver.cgi?
SERVICE=WFS&
VERSION=1.1.0&
REQUEST=Transaction&
OPERATION=Deleted
FEATUREID=BuiltUpA_1M.1013

WEFSExplode generates the same DELETE statement in both cases:
DELETE FROM BuiltUpA_IM WHERE id=1013

Native element

The Native element allows access to vendor-specific capabilities of any particular
web feature server or datastore. This element is defined by the following XML
Schema fragment:
<xsd:element name="Native" type="wfs:NativeType"/>
<xsd:complexType name="NativeType">
<xsd: any />
<xsd: attribute name="vendorId" type="xsd:string" use="required"/>
<xsd: attribute name="safeToIgnore" types="xsd:Boolean" use="required"/>
</xsd:complexType>

The vendorld attribute identifies the vendor that recognizes the command or
operation enclosed by the Native element. The safeToIgnore attribute guides the
actions of the WFS when the native operation is not recognized. The element can
have the values True or False. The following example shows the Native element:
<Native vendorId="IBM Informix Dynamic Server WFS" safeToIgnore="True">

execute function GeoParamSessionSet("WFSDisplayTemporal","true")
</Native>

WFS transaction response document

The WEFS generates an XML document that indicates the completion status of the
transaction. If the transaction request includes an insert operation, the unique
feature identifier is included for each operation that was part of the transaction.
The following XML schema fragment defines the XML coding of the WFS
transaction response document:

<xsd:element name="TransactionResponse" type="wfs:TransactionResponeType"/>
<xsd:complexType name="TransactionResponseType">
<xsd:sequence>
<xsd:element name="TransactionsSummary"
type="wfs:TransactionSummaryType"/>
<xsd:element name="TransactionsResults"
type="TransactionResultsType" minOccurs="0"/>
<xsd:element name="InsertResults"

Chapter 23. WFS reference 23-7

type="InsertResultsType" minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="version"
type="xsd:string" use="required" fixed="1.1.0"/>
</xsd:complexType>

WFSConfig program

Use this program to add a new path to the WFS web driver configuration file. The
new path must include the following values:

* The database name

e The user ID

¢ The encrypted password
* The server name

The WFSConfig program has the following syntax:

wfsconfig -addmap -p path_name -f configpath_and filename -d database -u userID

WFSExplode UDR

WEFSExplode() is an IBM Informix UDR that handles requests for displaying,
creating, modifying, and deleting features that stored in the database. A request is
passed to the WFSExplode() UDR after the web driver program, wfsdriver,
validates the service and version of a request and determines if the request is
GetCapbilities, DescribeFeatureType, GetFeature, Transaction, or another request in
KVP format. The WFSExplode() UDR passes the returned data to the web server.
The WFSExplode() UDR has two forms:

¢ The first form accepts an XML document from the WESDriver program. It takes
a CLOB or lvarchar type for the XML document in the following formats:
WFSExplode(CLOB) returns ROW(Tvarchar,CLOB)
WFSExplode(1varchar) returns ROW(1varchar,CLOB)

WFSExplode(Ivarchar,CLOB) returns ROW(1varchar,CLOB)
WFSExplode(1varchar,lvarchar) returns ROW(Tvarchar,CLOB)

For example:
execute function WFSExplode('GetCapabilties', NULL)

execute function WFSExplode('DescribeFeatureType','TypeName=BuiltUpA 1M')

execute function NFSExp]ode('GetFeature','TypeName=InwaterA_1M|
PropertyName=InWaterA 1M/wkbGeom/InWaterA 1M/tileld')

execute function WFSExplode('Transaction',
'Operation=Delete|TypeName=InWaterA 1M|
Filter=(<:Filter><:Within><:PropertyName>InWaterA_1M/wkbGeom
<:/PropertyName><:gml:Envelope><:gml:lowerCorner>10 10
<:/gml:1owerCorner><:gml :upperCorner>20 20<:/gml:upperCorner>
<:/gml:Envelope><:/Within><:/Filter)"')

* The second form takes 2 arguments in a key-value pair (KVP) format. The first
argument will describe the transaction type (GetCapabilties, GetFeature,
DescribeFeatureType, Transaction), and the second argument is a list of
additional parameters for the transaction that are separated by a vertical bar (|
). For example:

WFSExplode('Transaction', 'Operation=Delete | FeatureId=BuiltUpA_IM')

execute function WFSExplode('GetFeature',
'TypeName=InWaterA IM|PropertyName=InWaterA 1M/wkbGeom/InWaterA IM/tileld')

23-8 IBM Informix Database Extensions User's Guide

WFSpwcrypt program

The WFSpwecrypt program encrypts a password for the user ID that uses the web
feature service. The WFS configuration file, wfs.cnf, includes the name of a
database and the user ID with which the connection to the database is made. WFS
automatically encrypts the password using its own encryption key. If, however,
you want to use your own encryption key, you must use the webpwecrypt utility to
create the encrypted password and update the web.cnf file manually. The
webpwecrypt utility is located in the directory INFORMIXDIR/extend/
web.version/utils, where INFORMIXDIR refers to the main IBM Informix
directory and version refers to the current version of the Web DataBlade module
installed on your computer.

wfspwcrypt database_name username key

WFSRegister UDR

This UDR makes sure that a table that contains features contains a primary key. All
features that participate in a Web Feature Service must be able to be uniquely
identified. Feature identifiers commonly take the form of Feature.ObjectID, where
Feature is a feature class or table and ObjectID is a primary key for that class or
table. WFSRegister() takes a single table name as its only argument. If the table
does not have a primary key, an error is returned and the table cannot participate
in the web feature service. WFSRegister() also verifies that there are no
unsupported opaque types or collection or row types in the table definition. Only
IBM Informix base types and the opaque types found in the Spatial or Geodetic
DataBlade modules are supported.

Run the WFSRegister() UDR on a table before using it with the WFS:
execute function WFSRegister(tableName)

WFSSetup program

The WFSSetup program creates and configures the WES configuration file, wfs.cnf.
Determine the following values before you run the wfssetup program:

¢ INFORMIXDIR

* INFORMIXSERVER

* Web server directory

* Web driver type (The default is CGIL.)

* Path name for URL WES access

¢ Database name

¢ MI_WFSCONFIGDIR (For CGI the default is the web server CGI directory.)
* The user ID for connecting to database server

¢ The password that is associated with the user ID

The WFSSetup program copies the wfs.cnf and the web driver program, wfsdriver,
to the path that you specified in MI_ WFSCONGIDIR. The program prompts you to
enter the password twice and will ask for a password key to use to encrypt the
password.

Chapter 23. WFS reference 23-9

To make changes to the values that you specified when you ran the WESSetup
program, run the WFSConfig program. See ["WFSConfig program” on page 23-8| for
details.

Run the wfssetup program using the following syntax:

wfssetup [-s informix_server —w web_server —t driver_type —p path_name
-d database -u userID —c cnf_dir]

23-10 IBM Informix Database Extensions User's Guide

Part 7. Appendixes

© Copyright IBM Corp. 2005, 2011

IBM Informix Database Extensions User's Guide

Appendix. Accessibility

IBM strives to provide products with usable access for everyone, regardless of age
or ability.

Accessibility features for IBM Informix products

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in IBM Informix
products. These features support:

* Keyboard-only operation.
* Interfaces that are commonly used by screen readers.

¢ The attachment of alternative input and output devices.

Tip: The information center and its related publications are accessibility-enabled
for the IBM Home Page Reader. You can operate all features by using the keyboard
instead of the mouse.

Keyboard navigation

This product uses standard Microsoft Windows navigation keys.

Related accessibility information

IBM is committed to making our documentation accessible to persons with
disabilities. Our publications are available in HTML format so that they can be
accessed with assistive technology such as screen reader software.

You can view the publications in Adobe Portable Document Format (PDF) by using
the Adobe Acrobat Reader.

IBM and accessibility

See the IBM Accessibility Center at|http://www.ibm.com/abld for more information
about the IBM commitment to accessibility.

Dotted decimal syntax diagrams

The syntax diagrams in our publications are available in dotted decimal format,
which is an accessible format that is available only if you are using a screen reader.

In dotted decimal format, each syntax element is written on a separate line. If two
or more syntax elements are always present together (or always absent together),
the elements can appear on the same line, because they can be considered as a
single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read
punctuation. All syntax elements that have the same dotted decimal number (for
example, all syntax elements that have the number 3.1) are mutually exclusive

© Copyright IBM Corp. 2005, 2011 A-1

http://www.ibm.com/able

A-2

alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax can
include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, the word or symbol is preceded by
the backslash (\) character. The * symbol can be used next to a dotted decimal
number to indicate that the syntax element repeats. For example, syntax element
*FILE with dotted decimal number 3 is read as 3 * FILE. Format 3* FILE
indicates that syntax element FILE repeats. Format 3% * FILE indicates that
syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol that provides information about the syntax elements. For example, the lines
5.1%, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, that element is defined elsewhere.
The string following the % symbol is the name of a syntax fragment rather than a
literal. For example, the line 2.1 %0P1 refers to a separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:

? Specifies an optional syntax element. A dotted decimal number followed
by the ? symbol indicates that all the syntax elements with a
corresponding dotted decimal number, and any subordinate syntax
elements, are optional. If there is only one syntax element with a dotted
decimal number, the ? symbol is displayed on the same line as the syntax
element (for example, 5? NOTIFY). If there is more than one syntax element
with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if
you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that syntax
elements NOTIFY and UPDATE are optional; that is, you can choose one or
none of them. The ? symbol is equivalent to a bypass line in a railroad
diagram.

! Specifies a default syntax element. A dotted decimal number followed by
the ! symbol and a syntax element indicates that the syntax element is the
default option for all syntax elements that share the same dotted decimal
number. Only one of the syntax elements that share the same dotted
decimal number can specify a ! symbol. For example, if you hear the lines
2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the
default option for the FILE keyword. In this example, if you include the
FILE keyword but do not specify an option, default option KEEP is applied.
A default option also applies to the next higher dotted decimal number. In
this example, if the FILE keyword is omitted, default FILE(KEEP) is used.

IBM Informix Database Extensions User's Guide

However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP only applies to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword), and
does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

Specifies a syntax element that can be repeated zero or more times. A
dotted decimal number followed by the * symbol indicates that this syntax
element can be used zero or more times; that is, it is optional and can be
repeated. For example, if you hear the line 5.1* data-area, you know that
you can include more than one data area or you can include none. If you
hear the lines 3%, 3 HOST, and 3 STATE, you know that you can include
HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is
only one item with that dotted decimal number, you can repeat that
same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item
from the list, but you cannot use the items more than once each. In the
previous example, you can write HOST STATE, but you cannot write HOST
HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax
diagram.

Specifies a syntax element that must be included one or more times. A
dotted decimal number followed by the + symbol indicates that this syntax
element must be included one or more times. For example, if you hear the
line 6.1+ data-area, you must include at least one data area. If you hear
the lines 2+, 2 HOST, and 2 STATE, you know that you must include HOST,
STATE, or both. As for the * symbol, you can repeat a particular item if it is
the only item with that dotted decimal number. The + symbol, like the *
symbol, is equivalent to a loop-back line in a railroad syntax diagram.

Appendix. Accessibility A-3

A-4 IBM Informix Database Extensions User's Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.

1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

© Copyright IBM Corp. 2005, 2011 B-1

B-2

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation

J46A /G4

555 Bailey Avenue

San Jose, CA 95141-1003
US.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,

IBM Informix Database Extensions User's Guide

modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at|http://www.ibm.com/legal/copytrade.shtm]

Adobe, the Adobe logo, and PostScript are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other
countries.

Intel, Itanium, and Pentium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Notices B-3

http://www.ibm.com/legal/copytrade.shtml

B-4 1BM Informix Database Extensions User's Guide

Index

Special characters

"informix".mqipolicy table 8-3
"informix".mqipubsub table 8-3
"informix".mqiservice table 8-2

A

Access method
bts 13-5
Accessibility A-1
dotted decimal format of syntax diagrams A-1
keyboard A-1
shortcut keys A-1
syntax diagrams, reading in a screen reader A-1
all_xmlattrs Basic Text Search index parameter 15-5
all_xmltags Basic Text Search index parameter 15-4
Ancestors() function
defined 21-1
API interface 3-1
using 4-6, 4-7
ASCII representation
in the Binary DataBlade module 11-1

Basic text search
Canonical mapping 14-10
maximum query results 14-10
Standard analyzer 16-1
stopwords 14-8

Basic Text Search
Boolean operators 14-6
boosting a term 14-6
default sbspace 13-2
error codes listed 19-1
escaping special search characters 14-14
fuzzy searches 14-4
Grouping words and phrases 14-8
installing 13-4
obtaining a score value 14-1
overview 0-7
preparation steps 13-1
proximity searches 14-5
query terms 14-2
range searches 14-5
registering 13-4
requirements 13-1
restrictions 13-1
setting SBSPACENAME 13-2
supported data types 13-1
transactions 18-2
wildcard searches 14-3

Basic Text Search DataBlade module
index 13-5

Basic Text Search fields 14-2

Basic Text Search index parameters
all_xmlattrs 15-5
all_xmltags 15-4
include_contents 15-9
include_namespaces 15-10

© Copyright IBM Corp. 2005, 2011

Basic Text Search index parameters (continued)
include_subtag_text 15-12
strip_xmltags 15-10
xmlpath_processing 15-7
xmltags 15-2

Basic Text Search queries
restrictions 14-1

Basic Text Search Stopwords 14-8

Basic Text Search XML index parameters
overview 15-1
syntax 15-2

basic text searching
analyzers 16-1

bdtrelease() function 12-3

bdttrace() function 12-4

Binary data
determining for 11d_lob data type 4-2
indexing 11-2
inserting 11-2
inserting into table 4-1
specifying with lld_lob data type 2-2

Binary data types
overview (-3
restrictions 10-1

Binary DataBlade module
ASCII representation 11-1
installing 10-1
registering 10-1

binary18 data type 0-3, 11-1

binaryvar data type 0-3, 11-1

bit_and() function 12-1

bit_complement() function 12-1

bit_or() function 12-2

bit_xor() function 12-3

Bitwise functions 12-1

BladeManager
registering Basic Text Search 13-4
registering Binary DataBlade module 10-1
registering Large Object Locator 1-2
registering MQ 6-2

BLOB data type
casting to lld_lob data type 2-2

explicitly 4-2
implicitly 4-1

Boolean operators
Basic Text Search 14-6

Boosting a term
Basic Text Search 14-6

bts
access method 13-5
operator classes 13-5
virtual processors 18-2

BTS
virtual processors 13-2

bts index
creating 13-5
deletion mode 18-1
directory location 13-3
optimize 18-1
restrictions 13-1

bts_blob_ops operator class 13-5

X-1

bts_char_ops operator class 13-5
bts_clob_ops operator class 13-5
bts_contains() search predicate
syntax 14-1
bts_index_compact() function 17-1
bts_index_fields() function 17-1
bts_lvarchar_ops operator class 13-5
bts_release() function 17-3
bts_tracefile() function 17-3
bts_tracelevel() function 17-4
bts_varchar_ops operator class 13-5

C

Callback function
registering 5-1
Canonical mapping 14-10
Casting
BLOB data type to lld_lob data type 2-2
explicitly 4-2
implicitly 4-1
CLOB data type to lld_lob data type 2-2
explicitly 4-2
implicitly 4-1
1ld_lob data type to BLOB and CLOB data types 2-2, 4-1,
4-2
Character data
determining for 1ld_lob data type 4-2
inserting into table 4-1
specifying with 1ld_lob data type 2-2
Client files
copying
to a large object 3-16, 3-19
to a large object, example 4-1, 4-4, 4-5
creating 3-14
deleting 3-15
functions 3-14
opening 3-17
CLOB data type
casting to 1ld_lob data type 2-2
explicitly 4-2
implicitly 4-1
Compare() function
defined 21-1
compliance with standards xii
Concurrent access, how to limit 1-2
Conventions
functions, naming 3-1
Customized stopword list
for Basic Text Search 14-8

D

Data types
binary18 11-1
binaryvar 11-1

1id_lob
casting to BLOB and CLOB data types 2-2, 4-1, 4-2
defined 2-2

determining type of data 3-23, 4-2

introduced 1-1

using 4-1, 4-2

using to insert binary and character data into table 4-1
11d_locator

defined 2-1

introduced 1-1

X-2 IBM Informix Database Extensions User's Guide

Data types (continued)
11d_locator (continued)
using 4-3, 4-6
using to insert row into table 4-3

using to reference smart large object, example

Default stopword list

for Basic Text Search 14-8
Default table values

MQ 81
Deletion modes

bts index 18-1
Depth() function

defined 21-2
Disabilities, visual

reading syntax diagrams A-1
Disability A-1
Disk space

for the bts index 18-2
Dotted decimal format of syntax diagrams
Dynamic Server

configuring for MQ 6-2

E

Equal() function
defined 21-2
Error code
argument 5-1
Error codes
MQ 9-1
Errors
callback functions, registering for 5-1
codes listed 5-2
codes listed, Basic Text Search 19-1
error code argument for 5-1
exceptions, generating for 3-20
exceptions, handling for 5-1
handling
example of 4-7
functions for 3-20
MQ 9-1
SQL 5-1
status of, and function return value 5-1
translating to SQL states 3-21
Escaping special search characters
Basic Text Search 14-14
ESQL/C
interface 3-1
Exceptions
generating 3-20
handling 5-1

F

Fields

in Basic Text Search 14-2
Files

client. 3-22

copying smart large objects to 3-22
creating, example 4-6
deleting, example 4-6
Functions
Ancestors() 21-1
basic large object 3-2
bdtrelease() 12-3
bdttrace() 12-4

A-1

4-4

Functions (continued)
bit_and() 12-1
bit_complement() 12-1
bit_or() 12-2
bit_xor() 12-3
bitwise 12-1
bts_index_compact() 17-1
bts_index_fields() 17-1
bts_release() 17-3
bts_tracefile() 17-3
bts_tracelevel() 17-4
client file support 3-14
Compare() 21-1
Depth() 21-2
Equal() 21-2
error code argument 5-1
error utility 3-20
GetMember() 21-3
GetParent() 21-3
Graft() 21-4
GreaterThan() 21-4
GreaterThanOrEqual() 21-5
Increment() 21-5
introduced 1-1
IsAncestor() 21-6
IsChild() 21-7
IsDescendant() 21-8
IsParent() 21-8
Length() 21-9
LENGTH() 12-4
LessThan() 21-9
LessThanOrEqual() 21-10
11d_close() 3-3

using 4-7
Ild_copy() 3-3

using 4-5, 4-6
1ld_create 3-5, 4-4
1ld_create_client() 3-14
1Id_delete_client() 3-15
1Id_delete() 3-7
1Id_error_raise() 3-20
1ld_from_client() 3-16

using 4-4
LLD_LobType 3-23,4-2
1ld_open_client 3-17
1ld_open() 3-8

using 4-7
1Id_read() 3-10, 4-7
1ld_sqlstate 3-21
1ld_tell() 3-12
1ld_to_client() 3-19, 4-5
1ld_write() 3-13, 4-7
LOCopy 3-21
LOToFile 3-22
MQCreateVtiRead() 8-7
MQCreateVtiReceive() 8-9
MQPublish() 8-11
MQPublishClob() 8-14
MQRead() 8-18
MQReadClob() 8-21
MQReceive() 8-23
MQReceiveClob() 8-25
MQSend() 8-28
MQSendClob() 8-30
MQSubscribe() 8-32
MQTrace() 8-35
MQUnsubscribe() 8-36

Functions (continued)
MQVersion() 8-38
naming conventions 3-1
NewlLevel() 21-10
NodeRelease() 21-11
NotEqual() 21-11
OCTET_LENGTH() 12-5
return value and error status 5-1
smart large object copy 3-21
Fuzzy searches
Basic Text Search 14-4

G

GetMember() function
defined 21-3

GetParent() function
defined 21-3

Graft() function
defined 21-4

GreaterThan() function
defined 21-4

GreaterThanOrEqual() function
defined 21-5

Grouping words and phrases
Basic Text Search 14-8

H

Hexadecimal representation
in the Binary DataBlade module 11-1

include_contents Basic Text Search index parameter 15-9
15-10
15-12

include_namespaces Basic Text Search index parameter
include_subtag_text Basic Text Search index parameter
Increment() function

defined 21-5
Indexing binary data 11-2
industry standards xii
Inserting binary data 11-2
Installing

Basic Text Search 13-4

Binary DataBlade module 10-1
Interfaces 3-1

API 3-1

using 4-6, 4-7

ESQL/C 3-1

naming conventions 3-1

SQL 3-2

using 4-1, 4-6

IsAncestor() function

defined 21-6
IsChild() function

defined 21-7
IsDescendant() function

defined 21-8
IsParent() function

defined 21-8

L

Large Object Locator 0-1
functions 1-1

Index

X-3

Large Object Locator (continued)
registering 1-2
Large objects
accessing 0-1
basic functions for 3-2
closing 3-3
copying
client files to 3-16
function for 3-3
to client files 3-19
to large objects, example 4-5
copying to client files, example 4-5
creating 3-5
defined 0-1
deleting 3-7
limiting concurrent access 1-2
offset
returning for 3-12
opening 3-8
protocols, listed 2-1
reading from 3-10
referencing 2-1
setting read and write position in 3-10
tracking open 5-1
writing to 3-13
Length() function
defined 21-9
LENGTH)() function 12-4
LessThan() function
defined 21-9
LessThanOrEqual() function
defined 21-10
Libraries
API 3-1
ESQL/C 3-1
SQL 3-2
11d_close() function 3-3
using 4-7
1ld_copy() function 3-3
using 4-5, 4-6
11d_create_client() function 3-14
1ld_create() function 3-5
using 4-4
11d_delete_client() function 3-15
11d_delete() function 3-7
11d_error_raise() function 3-20
1ld_from_client() function 3-16
using 4-4
1ld_lob data type
casting to BLOB and CLOB data types
explicitly 4-2
defined 2-2
determining type of data in 3-23, 4-2
inserting binary data into table 4-1
inserting character data into table 4-1
introduced 1-1
using 4-1, 4-2
LLD_LobType function 3-23
using 4-2
1ld_locator data type
defined 2-1
inserting a row into a table 4-3
introduced 1-1
referencing a smart large object 4-4
using 4-3, 4-6
1ld_open_client() function 3-17
1ld_open() function 3-8

X-4 IBM Informix Database Extensions User's Guide

11d_open() function (continued)
using 4-7

1ld_read() function 3-10
using 4-7

11d_sqlstate() function 3-21

11d_tell() function 3-12

11d_to_client() function 3-19
using 4-5

1ld_write() function 3-13
using 4-7

LOCopy function 3-21

LOToFile function 3-22

M

Messages
receiving from a queue 6-1
sending to a queue 6-1
Messaging
WMQ 0-3
MQ
configuring Dynamic Server for 6-2
default table values 8-1
error codes 9-1
error handling 9-1
functions 6-1
binding a table 7-1
creating a table 7-1
retrieving a queue element 7-2
installing WMQ 6-1
MQ
communications 6-1
preparing 6-1
publishing to queue 6-3
subscribing to queue 6-3
tables 6-1
verifying functionality 6-2
MQ DataBlade
functions
MQCreateVtiRead() 8-7
MQCreateVtiReceive() 8-9
MQPublish() 8-11
MQPublishClob() 8-14
MOQRead() 8-18
MQReadClob() 8-21
MOQReceive() 8-23
MQReceiveClob() 8-25
MQSend() 8-28
MQSendClob() 8-30
MQSubscribe() 8-32
MQTrace() 8-35
MQUnsubscribe() 8-36
MQVersion() 8-38
overview 8-1
inserting data into queue 6-2
publishing to queue 6-4
reading entry from queue 6-3
receiving entry from queue 6-3
unsubscribing from queue 6-4
MQ messaging
registering 6-2
mq virtual processor class, creating 6-2
MQCreateVtiRead() function
defined 8-7
MQCreateVtiReceive() function
defined 89

MQPublish() function
defined 8-11
MQPublishClob() function
defined 8-14
MQRead() function
defined 8-18
MQReadClob() function
defined 8-21
MQReceive() function
defined 8-23
MQReceiveClob() function
defined 8-25
MQSend() function
defined 8-28
MQSendClob() function
defined 8-30
MQSubscribe() function
defined 8-32
MQTrace() function
defined 8-35
MQUnsubscribe() function
defined 8-36
MQVersion() function
defined 8-38

N

Naming conventions 3-1
NewLevel() function
defined 21-10
Node data type
functions
Ancestors() 21-1
Compare() 21-1
Depth() 21-2
Equal() 21-2
GetMember() 21-3
GetParent() 21-3
Graft() 21-4
GreaterThan() 21-4
GreaterThanOrEqual() 21-5
Increment() 21-5
IsAncestor() 21-6
IsChild() 21-7
IsDescendant() 21-8
IsParent() 21-8
Length() 21-9
LessThan() 21-9
LessThanOrEqual() 21-10
NewlLevel() 21-10
NodeRelease() 21-11
NotEqual() 21-11
NodeRelease() function
defined 21-11
NotEqual() function
defined 21-11

(0

Obtaining a score value
Basic Text Search 14-1
OCTET_LENGTHY() function 12-5
Offset
in large objects
returning 3-12

Operator classes
for bts 13-5
Optimizing
bts index 18-1

P

Protocol

list, for large objects 2-1
Proximity searches

Basic Text Search 14-5

Q

Queries
Basic Text Search 14-1
Query results, maximum number 14-10
Query syntax
Basic Text Search 14-1
Query terms
Basic Text Search 14-2

R

Range searches
Basic Text Search 14-5
READ COMMITTED
with Basic Text Search 18-2
Registering
Basic Text Search 13-4
Binary DataBlade module 10-1
Large Object Locator 1-2
MQ messaging 6-2

Requirements

Basic Text Search 13-1
Resources

cleaning up 1-2
Restrictions

Basic Text Search 13-1
Basic Text Search queries 14-1
bts index 13-1
Rollback
limits on with Large Object Locator 1-2

S

sbspace
for bts index 13-3
SBSPACENAME configuration parameter
setting for Basic Text Search 13-2
Schema mapping to WMQ objects 7-1
Score value
Basic Text Search 14-1
Screen reader
reading syntax diagrams A-1
Search predicate
bts_contains() 14-1
Secondary access method
bts 13-5
Shortcut keys
keyboard A-1
Smart large objects
copying to a file 3-22
copying to a smart large object 3-21
creating, example 4-4

Index

Smart large objects (continued) WMQ

functions for copying 3-21 messages
referencing with 1ld_lob data type 2-2 SELECT 7-2
referencing, example 4-1 messaging 0-3
SQL metadata table behavior 7-1
errors 5-1 objects
interface 3-2 schema mapping to 7-1
using 4-1, 4-6 product documentation 6-1
states, translating from error codes 3-21 queues
Standard analyzer 16-1 accessing 7-1
standards xii configuring 6-1
stopwords 14-8 INSERTitems into 7-2
Stopwords mapping to tables 7-1
customized list for Basic Text Search 14-8 tables mapped to
default list for Basic Text Search 14-8 generating errors 7-3

in Basic Text Search 14-8
strip_xmltags Basic Text Search index parameter 15-10

Supported data types X
Basic Text Search 13-1 XML index parameters
Syntax

syntax for Basic Text Search 15-2
xmlpath_processing Basic Text Search index parameter 15-7
xmltags Basic Text Search index parameter 15-2

bts_contains() 14-1

for Basic Text Search XML index parameters 15-2
Syntax diagrams

reading in a screen reader A-1

T

Table values

default

MQ 8-1

Transaction rollback

limits on with Large Object Locator 1-2
Transactions

with Basic Text Search 18-2
Types. 1-1

U

Unregistering
Binary DataBlade module 10-1
User-defined routines
calling API functions from 3-1
example 4-6, 4-9

\'}

virtual processors
BTS 13-2
Virtual-Table Interface
accessing WMQ queues 7-1
Visual disabilities
reading syntax diagrams A-1
vpP
bts 18-2
VPCLASS parameter
MQ DataBlade 6-2
VTI
accessing WMQ queues 7-1

W

Wildcard searches
Basic Text Search 14-3

X-6 IBM Informix Database Extensions User's Guide

Printed in USA

SC27-3833-00

apiny s,1as() suoIsualxj aseqejeq xiwJopu| gl

06’1} uoisiap

XILIou| Ajitued 19npoid XIWIou|

:uoLjewdojul autds

	Contents
	Introduction
	In this introduction
	About this publication
	Types of users

	What's new in Database Extensions for IBM Informix Version 11.50
	Example code conventions
	Additional documentation
	Compliance with industry standards
	Syntax diagrams
	How to read a command-line syntax diagram
	Keywords and punctuation
	Identifiers and names

	How to provide documentation feedback

	Part 1. Large object management
	Chapter 1. About Large Object Locator
	Large object limitations
	Registering Large Object Locator

	Chapter 2. Large Object Locator data types
	The lld_locator data type
	The lld_lob data type

	Chapter 3. Large Object Locator functions
	Interfaces
	API library
	ESQL/C library
	SQL interface

	Working with large objects
	The lld_close() function
	The lld_copy() function
	The lld_create() function
	The lld_delete() function
	The lld_open() function
	The lld_read() function
	The lld_seek() function
	The lld_tell() function
	The lld_write() function

	Client file support
	The lld_create_client() function
	The lld_delete_client() function
	The lld_from_client() function
	The lld_open_client() function
	The lld_to_client() function

	Error utility functions
	The lld_error_raise() function
	The lld_sqlstate() function

	Smart large object functions
	The LOCopy function
	The LOToFile function
	The LLD_LobType function

	Chapter 4. Large Object Locator example code
	The SQL interface
	The lld_lob type
	Implicit lld_lob casts
	Explicit lld_lob casts
	The LLD_LobType function

	The lld_locator type
	Insert an lld_locator row into a table
	Create a smart large object
	Copy a client file to a large object
	Copy a large object to a large object
	Copy large object data to a client file
	Create and delete a server file

	The API interface
	Create the lld_copy_subset function
	The lld_copy_subset routine

	Chapter 5. Large Object Locator error handling
	Large Object Locator errors
	Error handling exceptions
	Error codes

	Part 2. MQ Messaging
	Chapter 6. About MQ messaging
	Prepare to use MQ messaging
	Install and configure WMQ
	Configure your database server for MQ messaging
	Register the MQ messaging extension

	Verification
	Insert data into a queue
	Read an entry from a queue
	Receive an entry from a queue
	Publish and subscribe to a queue
	Subscribe to a queue
	Unsubscribe from a queue
	Publish to a queue

	Chapter 7. MQ messaging tables
	Schema mapping
	General table behavior
	Create and bind a table
	Use INSERT and SELECT
	Retrieve the queue element
	Special considerations
	Table errors

	Chapter 8. MQ messaging functions
	Service and policy tables
	The "informix".mqiservice table
	The "informix".mqipubsub table
	The "informix".mqipolicy table

	MQCreateVtiRead() function
	MQCreateVtiReceive() function
	MQPublish() function
	MQPublishClob() function
	MQRead() function
	MQReadClob() function
	MQReceive() function
	MQReceiveClob() function
	MQSend() function
	MQSendClob() function
	MQSubscribe() function
	MQTrace() function
	MQUnsubscribe() function
	MQVersion() function

	Chapter 9. MQ messaging error handling
	Part 3. Binary data types
	Chapter 10. Binary data types overview
	Register the Binary DataBlade Module
	Unregister the Binary DataBlade Module

	Chapter 11. Store and index binary data
	Binary data types
	The binaryvar data type
	The binary18 data type
	ASCII representation of binary data types
	Binary data type examples

	Insert binary data
	Index binary data

	Chapter 12. Binary data type functions
	Bitwise operation functions
	The bit_and() function
	The bit_complement() function
	The bit_or() function
	The bit_xor() function

	Support functions for binary data types
	The bdtrelease() function
	The bdttrace() function
	The LENGTH() function
	The OCTET_LENGTH() function

	Part 4. Basic Text Search
	Chapter 13. Preparing for basic text searching
	Basic text search requirements and restrictions
	Creating BTS virtual processors
	Creating a default sbspace
	Creating a space for the bts index
	Creating a space for temporary data
	Register the Basic Text Search DataBlade module
	Creating a bts index
	bts access method syntax

	Tracking queries on bts indexes

	Chapter 14. Basic text search queries
	Basic Text Search query syntax
	Basic Text Search query terms
	Basic Text Search fields
	Basic Text Search query term modifiers
	Wildcard searches
	Fuzzy searches
	Proximity searches
	Range searches
	Boost a term

	Boolean operators
	AND operator
	OR operator
	NOT operator

	Group words and phrases
	Basic Text Search stopwords
	Stopwords index parameter

	Maximum number of query results
	Canonical mapping
	The canonical_maps index parameter
	Mapping single characters
	Specifying multiple original characters
	Specify multiple characters in mapping strings
	Preventing indexing of characters
	Managing multiple spellings

	Search for special characters

	Chapter 15. Basic Text Search XML index parameters
	Overview of Basic Text Search XML index parameters
	Basic Text Search XML index parameters syntax

	The xmltags index parameter
	Example: Index specific XML tags

	The all_xmltags index parameter
	Example: Index all XML tags

	The all_xmlattrs index parameter
	Examples: Index XML attributes

	The xmlpath_processing index parameter
	Full paths and relative paths in path processing
	Example: Index XML paths

	The include_contents index parameter
	Example: Index XML tag values and XML tag names

	The strip_xmltags index parameter
	Example: Index XML tag values in a separate field

	The include_namespaces index parameter
	Example: Index namespaces in XML data

	The include_subtag_text index parameter
	Example: Index subtags in XML data

	Chapter 16. Basic text search analyzers
	Standard analyzer

	Chapter 17. Basic text search functions
	The bts_index_compact() function
	The bts_index_fields() function
	The bts_release() function
	The bts_tracefile() function
	The bts_tracelevel() function

	Chapter 18. Basic text search performance
	Optimize the bts index
	Delete rows from the bts index manually when using deferred mode
	Delete rows from the bts index automatically with immediate mode

	Disk space for the bts index
	Transactions with Basic Text Search
	Adding BTS virtual processors to run multiple queries simultaneously
	Improve performance with configuration parameters

	Chapter 19. Basic text search error codes
	Part 5. Hierarchical data type
	Chapter 20. The node data type for querying hierarchical data
	Upgrading from version 1.0 of the node data type
	Troubleshooting the node data type

	Chapter 21. Node data type functions
	Ancestors() function
	Compare() function
	Depth() function
	Equal() function
	GetMember() function
	GetParent() function
	Graft() function
	GreaterThan() function
	GreaterThanOrEqual() function
	Increment() function
	IsAncestor() function
	IsChild() function
	IsDescendant() function
	IsParent() function
	Length() Node function
	LessThan() function
	LessThanOrEqual() function
	NewLevel() function
	NodeRelease() function
	NotEqual() function

	Part 6. Informix web feature service for Geospatial Data
	Chapter 22. Informix web feature service administration
	The WFSDriver CGI program
	WFSVP virtual processor class
	Configuring the WFSDriver program
	WFS transactions
	Implement security in WFS

	Chapter 23. WFS reference
	DescribeFeatureType element
	GetCapabilities element
	GetFeature operation
	WFS transactions
	Insert element
	Update element
	Delete element
	Native element
	WFS transaction response document

	WFSConfig program
	WFSExplode UDR
	WFSpwcrypt program
	WFSRegister UDR
	WFSSetup program

	Part 7. Appendixes
	Appendix. Accessibility
	Accessibility features for IBM Informix products
	Accessibility features
	Keyboard navigation
	Related accessibility information
	IBM and accessibility

	Dotted decimal syntax diagrams

	Notices
	Trademarks

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

