
Informix Product Family
Informix Global Language Support
Version 4.50

IBM Informix GLS API
Programmer's Guide

SC27-3831-00

���

Informix Product Family
Informix Global Language Support
Version 4.50

IBM Informix GLS API
Programmer's Guide

SC27-3831-00

���

Note
Before using this information and the product it supports, read the information in “Notices” on page C-1.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this publication should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1998, 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Introduction . vii
About this publication . vii

Types of users . vii
Software compatibility . vii
Assumptions about your locale . viii
Demonstration databases . viii

Character-representation conventions . ix
Single-byte characters . ix
Multibyte characters . ix
Single-byte and multibyte characters in the same string . x
White space characters in strings . x
Trailing white space characters . x

Example code conventions . xi
Additional documentation . xi
Compliance with industry standards . xi
How to provide documentation feedback . xii

Chapter 1. Using Informix GLS . 1-1
Character-representation conventions . 1-1

Single-byte characters . 1-1
Multibyte characters . 1-1
Single-byte and multibyte characters in the same string 1-2
White space characters in strings . 1-2
Trailing white space characters. 1-3

Internationalized programs with Informix GLS . 1-3
What is Informix GLS? . 1-4
Informix GLS compatibility . 1-5
Choose a GLS Locale . 1-5

Using Informix GLS in a C-language program . 1-7
Compile and link Informix GLS . 1-7
Initialize the Informix GLS library . 1-10
Informix GLS exceptions . 1-11
Allocate memory . 1-12
Input and output streams . 1-12
Run the program . 1-12

Improve program performance . 1-13
Optimize Informix GLS . 1-13
Processing wide characters . 1-13

Chapter 2. Character processing . 2-1
Types of characters . 2-1

Single-byte characters . 2-1
Multibyte characters . 2-2

Character operations . 2-5
Character classification . 2-5
Case conversion . 2-8
Code-set conversion . 2-13

String operations . 2-18
String traversal . 2-18
String processing . 2-19
Character/string comparison and sorting . 2-20

Other operations . 2-22
String and character termination . 2-22
Managing memory for strings and characters . 2-24
Keep multibyte strings consistent . 2-26

© Copyright IBM Corp. 1998, 2011 iii

Chapter 3. Data formatting . 3-1
Locale-specific data formats. 3-1

The LC_NUMERIC locale-file category . 3-1
The LC_MONETARY locale-file category . 3-2
The LC_TIME locale-file category . 3-3

Conversion and formatting with Informix GLS . 3-3
Convert a locale-specific string. 3-5
Format a locale-specific string . 3-5

Chapter 4. Informix GLS functions . 4-1
Function summary. 4-1
Function reference . 4-4

The ifx_gl_case_conv_outbuflen() function . 4-4
The ifx_gl_conv_needed() function . 4-5
The ifx_gl_convert_date() function . 4-6
The ifx_gl_convert_datetime() function . 4-12
The ifx_gl_convert_money() function . 4-19
The ifx_gl_convert_number() function . 4-22
The ifx_gl_cv_mconv() function . 4-25
The ifx_gl_cv_outbuflen() function . 4-28
The ifx_gl_cv_sb2sb_table() function . 4-29
The ifx_gl_format_date() function . 4-30
The ifx_gl_format_datetime() function . 4-36
The ifx_gl_format_money() function . 4-42
The ifx_gl_format_number() function . 4-46
The ifx_gl_getmb() function . 4-50
The ifx_gl_init() function . 4-51
The ifx_gl_ismalnum() function . 4-53
The ifx_gl_ismalpha() function . 4-54
The ifx_gl_ismblank() function . 4-56
The ifx_gl_ismcntrl() function. 4-57
The ifx_gl_ismdigit() function. 4-58
The ifx_gl_ismgraph() function . 4-60
The ifx_gl_ismlower() function . 4-61
The ifx_gl_ismprint() function . 4-63
The ifx_gl_ismpunct() function . 4-64
The ifx_gl_ismspace() function . 4-66
The ifx_gl_ismupper() function . 4-67
The ifx_gl_ismxdigit() function . 4-69
The ifx_gl_iswalnum() function . 4-70
The ifx_gl_iswalpha() function . 4-71
The ifx_gl_iswblank() function . 4-73
The ifx_gl_iswcntrl() function . 4-74
The ifx_gl_iswdigit() function. 4-75
The ifx_gl_iswgraph() function . 4-76
The ifx_gl_iswlower() function . 4-77
The ifx_gl_iswprint() function . 4-78
The ifx_gl_iswpunct() function . 4-79
The ifx_gl_iswspace() function . 4-81
The ifx_gl_iswupper() function . 4-82
The ifx_gl_iswxdigit() function . 4-83
The ifx_gl_lc_errno() function. 4-84
The ifx_gl_mb_loc_max() function . 4-85
The ifx_gl_mblen() function . 4-86
The ifx_gl_mbscat() function . 4-87
The ifx_gl_mbschr() function . 4-88
The ifx_gl_mbscoll() function . 4-90
The ifx_gl_mbscpy() function . 4-91
The ifx_gl_mbscspn() function . 4-92
The ifx_gl_mbslen() function . 4-94
The ifx_gl_mbsmbs() function. 4-95

iv IBM Informix GLS API Programmer's Guide

The ifx_gl_mbsncat() function. 4-97
The ifx_gl_mbsncpy() function . 4-98
The ifx_gl_mbsnext() function . 4-100
The ifx_gl_mbsntsbytes() function . 4-101
The ifx_gl_mbsntslen() function. 4-102
The ifx_gl_mbspbrk() function . 4-104
The ifx_gl_mbsprev() function . 4-105
The ifx_gl_mbsrchr() function . 4-106
The ifx_gl_mbsspn() function . 4-108
The ifx_gl_mbstowcs() function . 4-109
The ifx_gl_mbtowc() function . 4-111
The ifx_gl_putmb() function . 4-112
The ifx_gl_tomlower() function . 4-113
The ifx_gl_tomupper() function . 4-115
The ifx_gl_towlower() function . 4-116
The ifx_gl_towupper() function . 4-117
The ifx_gl_wcscat() function . 4-118
The ifx_gl_wcschr() function . 4-119
The ifx_gl_wcscoll() function . 4-120
The ifx_gl_wcscpy() function . 4-122
The ifx_gl_wcscspn() function . 4-123
The ifx_gl_wcslen() function . 4-124
The ifx_gl_wcsncat() function . 4-125
The ifx_gl_wcsncpy() function . 4-127
The ifx_gl_wcsntslen() function . 4-128
The ifx_gl_wcspbrk() function . 4-129
The ifx_gl_wcsrchr() function . 4-130
The ifx_gl_wcsspn() function . 4-131
The ifx_gl_wcstombs() function . 4-133
The ifx_gl_wcswcs() function . 4-134
The ifx_gl_wctomb() function . 4-135

Appendix A. List of Informix GLS error numbers A-1

Appendix B. Accessibility . B-1
Accessibility features for IBM Informix products. B-1

Accessibility features . B-1
Keyboard navigation . B-1
Related accessibility information . B-1
IBM and accessibility . B-1

Dotted decimal syntax diagrams . B-1

Notices . C-1
Trademarks . C-3

Index . X-1

Contents v

vi IBM Informix GLS API Programmer's Guide

Introduction

This introduction provides an overview of the information in this publication and
describes the conventions it uses.

About this publication
This publication describes the global language support (GLS) application
programming interface (API) available in IBM® Informix® ESQL/C and IBM
Informix DataBlade® modules.

Application programmers use the IBM Informix GLS API to write programs (or
change existing programs) to handle different languages, cultural conventions, and
code sets.

New editions and product names

IBM Informix Dynamic Server editions were withdrawn and new Informix editions
are available. Some products were also renamed. The publications in the Informix
library pertain to the following products:
v IBM Informix database server, formerly known as IBM Informix Dynamic Server

(IDS)
v IBM OpenAdmin Tool (OAT) for Informix, formerly known as OpenAdmin Tool

for Informix Dynamic Server (IDS)
v IBM Informix SQL Warehousing Tool, formerly known as Informix Warehouse

Feature

For more information about the Informix product family, go to
http://www.ibm.com/software/data/informix/.

Types of users
This publication is written for DataBlade module developers and ESQL/C
programmers who want to internationalize their applications with IBM Informix
GLS.

This publication assumes that you have the following background:
v A working knowledge of your computer, your operating system, and the utilities

that your operating system provides
v Some experience working with relational databases or exposure to database

concepts
v Some experience with computer programming

If you have limited experience with relational databases, SQL, or your operating
system, see the IBM Informix Getting Started Guide for your database server for a
list of supplementary titles.

Software compatibility
For information about software compatibility, see the IBM Informix GLS release
notes.

© Copyright IBM Corp. 1998, 2011 vii

http://www.ibm.com/software/data/informix/

Assumptions about your locale
IBM Informix products can support many languages, cultures, and code sets. All
the information related to character set, collation and representation of numeric
data, currency, date, and time that is used by a language within a given territory
and encoding is brought together in a single environment, called a Global
Language Support (GLS) locale.

The IBM Informix OLE DB Provider follows the ISO string formats for date, time,
and money, as defined by the Microsoft OLE DB standards. You can override that
default by setting an Informix environment variable or registry entry, such as
DBDATE.

If you use Simple Network Management Protocol (SNMP) in your Informix
environment, note that the protocols (SNMPv1 and SNMPv2) recognize only
English code sets. For more information, see the topic about GLS and SNMP in the
IBM Informix SNMP Subagent Guide.

The examples in this publication are written with the assumption that you are
using one of these locales: en_us.8859-1 (ISO 8859-1) on UNIX platforms or
en_us.1252 (Microsoft 1252) in Windows environments. These locales support U.S.
English format conventions for displaying and entering date, time, number, and
currency values. They also support the ISO 8859-1 code set (on UNIX and Linux)
or the Microsoft 1252 code set (on Windows), which includes the ASCII code set
plus many 8-bit characters such as é, è, and ñ.

You can specify another locale if you plan to use characters from other locales in
your data or your SQL identifiers, or if you want to conform to other collation
rules for character data.

For instructions about how to specify locales, additional syntax, and other
considerations related to GLS locales, see the IBM Informix GLS User's Guide.

Demonstration databases
The DB-Access utility, which is provided with your IBM Informix database server
products, includes one or more of the following demonstration databases:
v The stores_demo database illustrates a relational schema with information about

a fictitious wholesale sporting-goods distributor. Many examples in IBM
Informix publications are based on the stores_demo database.

v The superstores_demo database illustrates an object-relational schema. The
superstores_demo database contains examples of extended data types, type and
table inheritance, and user-defined routines.

For information about how to create and populate the demonstration databases,
see the IBM Informix DB–Access User's Guide. For descriptions of the databases and
their contents, see the IBM Informix Guide to SQL: Reference.

The scripts that you use to install the demonstration databases are in the
$INFORMIXDIR/bin directory on UNIX platforms and in the %INFORMIXDIR%\bin
directory in Windows environments.

viii IBM Informix GLS API Programmer's Guide

Character-representation conventions
Throughout this publication, examples show how single-byte and multibyte
characters are displayed. Multibyte characters are usually ideographic (such as
Japanese or Chinese characters), but this publication does not depict the actual
multibyte characters.

Instead, it uses ASCII characters to represent both single-byte and multibyte
characters. This section describes how this publication represents multibyte and
single-byte characters abstractly

Single-byte characters
This publication represents single-byte characters as a series of lowercase letters.

The format for representing one single-byte character abstractly is a. Here a stands
for any single-byte character, not for the letter “a” itself.

The format for representing a string of single-byte characters is a...z. Here a
stands for the first character and z stands for the last character in the string. For
example, if the string Ludwig consists of six single-byte characters, the following
format represents this six-character string abstractly:
abcdef

Tip: The letter “s” does not show in examples that represent strings of single-byte
characters. The publication reserves the letter “s” as a symbol to represent a
single-byte white space character. See also “White space characters in strings” on
page x.

Multibyte characters
This publication does not attempt to show the actual appearance of multibyte
characters in text, examples, or diagrams.

Instead, the following convention shows abstractly how multibyte characters are
stored:
A1...An

One to four identical uppercase letters, each followed by a different superscript
number, represent one multibyte character. The superscripts show the first to the
nth byte of the multibyte character, where n has values 2 - 4. For example, the
following symbols represent a multibyte character that consists of 2 bytes:
A1A2

The following notation represents a multibyte character that consists of 4 bytes (the
maximum length of a multibyte character):
A1A2A3A4

The next example shows a string of multibyte characters in an SQL statement:
CREATE DATABASE A1A2B1B2C1C2D1D2E1E2;

This statement creates a database whose name consists of five multibyte characters,
each of which is 2 bytes long. For more about using multibyte characters in SQL
identifiers, see Name database objects.

Introduction ix

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.glsug.doc/ids_gug_093.htm

Single-byte and multibyte characters in the same string
For a multibyte code set, a given string might be composed of both single-byte and
multibyte characters.

To represent mixed strings, this publication combines the formats for multibyte and
single-byte characters. The next example represents a string with four characters,
where the first and fourth characters are single-byte characters, and the second and
third characters are multibyte characters that consist of 2 bytes each:
aA1A2B1B2b

White space characters in strings
White space is a series of one or more characters that show as blank space, Each
GLS locale defines what characters are white space characters.

For example, both the TAB (ASCII 9) and blank space (ASCII 32) might be defined
as white space characters in one locale, but certain combinations of the CTRL key
and another character might be defined as white space characters in a different
locale.

The convention for representing a single-byte white space in this publication is the
letter “s”. The following notation represents one single-byte white space:
s

In the ASCII code set, an example of a single-byte white space is the blank
character (ASCII 32). To represent a string that consists of two ASCII blank
characters, the publication uses the following notation:
ss

The following notation represents a multibyte white space character:
s1...sn

Here s1 represents the first byte of the white space character, and sn represents the
last byte of the white space character, where n can range 2 - 4. The following
notation represents one 4-byte white space character:
s1s2s3s4

Trailing white space characters
Combinations of characters with white space can occur in quoted strings, in CHAR
columns that contain fewer characters than the declared column length, and in
other contexts.

For example, if a CHAR(5) column in a single-byte code set contains three
characters, the string is padded with two white spaces so that its length is equal to
the column length:
abcss

The next example represents a string of five characters (three characters of data
and two trailing white space characters) in a multibyte code set where each of the
data characters and white space characters consists of 2 bytes:
A1A2B1B2C1C2s1s2s1s2

In some locales, a string can contain both single-byte and multibyte white space
characters. For example, consider the following string:

x IBM Informix GLS API Programmer's Guide

abcss1s2sss1s2

The string has three single-byte characters (abc), a single-byte white space
character (s), a multibyte white space character (s1s2), two single-byte white space
characters (ss), and one multibyte white space character (s1s2).

Example code conventions
Examples of SQL code occur throughout this publication. Except as noted, the code
is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by
semicolons. For instance, you might see the code in the following example:
CONNECT TO stores_demo
...

DELETE FROM customer
WHERE customer_num = 121

...

COMMIT WORK
DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules for
that product. For example, if you are using an SQL API, you must use EXEC SQL
at the start of each statement and a semicolon (or other appropriate delimiter) at
the end of the statement. If you are using DB–Access, you must delimit multiple
statements with semicolons.

Tip: Ellipsis points in a code example indicate that more code would be added in
a full application, but it is not necessary to show it to describe the concept being
discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the documentation for your product.

Additional documentation
Documentation about this release of IBM Informix products is available in various
formats.

You can access or install the product documentation from the Quick Start CD that
is shipped with Informix products. To get the most current information, see the
Informix information centers at ibm.com®. You can access the information centers
and other Informix technical information such as technotes, white papers, and IBM
Redbooks® publications online at http://www.ibm.com/software/data/sw-
library/.

Compliance with industry standards
IBM Informix products are compliant with various standards.

IBM Informix SQL-based products are fully compliant with SQL-92 Entry Level
(published as ANSI X3.135-1992), which is identical to ISO 9075:1992. In addition,
many features of IBM Informix database servers comply with the SQL-92
Intermediate and Full Level and X/Open SQL Common Applications Environment
(CAE) standards.

Introduction xi

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/

The IBM Informix Geodetic DataBlade Module supports a subset of the data types
from the Spatial Data Transfer Standard (SDTS)—Federal Information Processing
Standard 173, as referenced by the document Content Standard for Geospatial
Metadata, Federal Geographic Data Committee, June 8, 1994 (FGDC Metadata
Standard).

IBM Informix Dynamic Server (IDS) Enterprise Edition, Version 11.50 is certified
under the Common Criteria. For more information, see Common Criteria
Certification: Requirements for IBM Informix Dynamic Server, which is available at
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US
&FNC=SRX&PBL=SC23-7690-00.

How to provide documentation feedback
You are encouraged to send your comments about IBM Informix user
documentation.

Use one of the following methods:
v Send email to docinf@us.ibm.com.
v In the Informix information center, which is available online at

http://www.ibm.com/software/data/sw-library/, open the topic that you want
to comment on. Click the feedback link at the bottom of the page, fill out the
form, and submit your feedback.

v Add comments to topics directly in the information center and read comments
that were added by other users. Share information about the product
documentation, participate in discussions with other users, rate topics, and
more!

Feedback from all methods is monitored by the team that maintains the user
documentation. The feedback methods are reserved for reporting errors and
omissions in the documentation. For immediate help with a technical problem,
contact IBM Technical Support. For instructions, see the IBM Informix Technical
Support website at http://www.ibm.com/planetwide/.

We appreciate your suggestions.

xii IBM Informix GLS API Programmer's Guide

http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=SC23-7690-00
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=SC23-7690-00
mailto://docinf@us.ibm.com
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/planetwide/

Chapter 1. Using Informix GLS

The IBM Informix GLS library enables a program to access the culture-specific
information in the GLS locales that Informix provides.

This section provides information about the following topics:
v How the Informix GLS library can help you create internationalized programs.
v How to use the Informix GLS library
v How to optimize programs that use the Informix GLS library

For an introduction to GLS concepts and use, see the IBM Informix GLS User's
Guide.

Character-representation conventions
Throughout this publication, examples show how single-byte and multibyte
characters are displayed. Multibyte characters are usually ideographic (such as
Japanese or Chinese characters), but this publication does not depict the actual
multibyte characters.

Instead, it uses ASCII characters to represent both single-byte and multibyte
characters. This section describes how this publication represents multibyte and
single-byte characters abstractly

Single-byte characters
This publication represents single-byte characters as a series of lowercase letters.

The format for representing one single-byte character abstractly is a. Here a stands
for any single-byte character, not for the letter “a” itself.

The format for representing a string of single-byte characters is a...z. Here a
stands for the first character and z stands for the last character in the string. For
example, if the string Ludwig consists of six single-byte characters, the following
format represents this six-character string abstractly:
abcdef

Tip: The letter “s” does not show in examples that represent strings of single-byte
characters. The publication reserves the letter “s” as a symbol to represent a
single-byte white space character. See also “White space characters in strings” on
page x.

Multibyte characters
This publication does not attempt to show the actual appearance of multibyte
characters in text, examples, or diagrams.

Instead, the following convention shows abstractly how multibyte characters are
stored:
A1...An

One to four identical uppercase letters, each followed by a different superscript
number, represent one multibyte character. The superscripts show the first to the

© Copyright IBM Corp. 1998, 2011 1-1

nth byte of the multibyte character, where n has values 2 - 4. For example, the
following symbols represent a multibyte character that consists of 2 bytes:
A1A2

The following notation represents a multibyte character that consists of 4 bytes (the
maximum length of a multibyte character):
A1A2A3A4

The next example shows a string of multibyte characters in an SQL statement:
CREATE DATABASE A1A2B1B2C1C2D1D2E1E2;

This statement creates a database whose name consists of five multibyte characters,
each of which is 2 bytes long. For more about using multibyte characters in SQL
identifiers, see Name database objects.

Single-byte and multibyte characters in the same string
For a multibyte code set, a given string might be composed of both single-byte and
multibyte characters.

To represent mixed strings, this publication combines the formats for multibyte and
single-byte characters. The next example represents a string with four characters,
where the first and fourth characters are single-byte characters, and the second and
third characters are multibyte characters that consist of 2 bytes each:
aA1A2B1B2b

White space characters in strings
White space is a series of one or more characters that show as blank space, Each
GLS locale defines what characters are white space characters.

For example, both the TAB (ASCII 9) and blank space (ASCII 32) might be defined
as white space characters in one locale, but certain combinations of the CTRL key
and another character might be defined as white space characters in a different
locale.

The convention for representing a single-byte white space in this publication is the
letter “s”. The following notation represents one single-byte white space:
s

In the ASCII code set, an example of a single-byte white space is the blank
character (ASCII 32). To represent a string that consists of two ASCII blank
characters, the publication uses the following notation:
ss

The following notation represents a multibyte white space character:
s1...sn

Here s1 represents the first byte of the white space character, and sn represents the
last byte of the white space character, where n can range 2 - 4. The following
notation represents one 4-byte white space character:
s1s2s3s4

1-2 IBM Informix GLS API Programmer's Guide

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.glsug.doc/ids_gug_093.htm

Trailing white space characters
Combinations of characters with white space can occur in quoted strings, in CHAR
columns that contain fewer characters than the declared column length, and in
other contexts.

For example, if a CHAR(5) column in a single-byte code set contains three
characters, the string is padded with two white spaces so that its length is equal to
the column length:
abcss

The next example represents a string of five characters (three characters of data
and two trailing white space characters) in a multibyte code set where each of the
data characters and white space characters consists of 2 bytes:
A1A2B1B2C1C2s1s2s1s2

In some locales, a string can contain both single-byte and multibyte white space
characters. For example, consider the following string:
abcss1s2sss1s2

The string has three single-byte characters (abc), a single-byte white space
character (s), a multibyte white space character (s1s2), two single-byte white space
characters (ss), and one multibyte white space character (s1s2).

Internationalized programs with Informix GLS
You can make IBM Informix database applications easily adaptable to any culture
and language.

Design the application so that the tasks in the following table do not make any
assumptions about the language, territory, and code set that the application uses at
run time. The data in a database that the application accesses should already be in
a language that the end user can understand.

Table 1-1. Tasks for a database application

Application task Description

User interfaces v Includes any text that is visible to end
users, including menus, buttons, prompts,
help text, status messages, error messages,
and graphics.

v Includes translating the character strings in
any external resource or message files that
the application uses.

Character processing Includes the following processing tasks:

v Character classification

v Character case conversion

v Collation and sorting

v Character versus byte processing

v String traversal

v Code-set conversion

Chapter 1. Using Informix GLS 1-3

Table 1-1. Tasks for a database application (continued)

Application task Description

Data formatting Includes any culture-specific formats for the
following types of data:

v Numeric

v Monetary

v Date

v Time

Documentation Includes any explanatory material such as
printed manuals, online documentation, and
readme files.

An internationalized program dynamically obtains language-specific information
for these application tasks. Therefore, one executable file for the application can
support multiple languages.

What is Informix GLS?
IBM Informix GLS is an application programming interface (API) for DataBlade
module developers and ESQL/C programmers.

You can use the library of C language functions and macros of Informix GLS to
write programs (or change existing programs) to handle different languages,
cultural conventions, and code sets.

Of the tasks in Table 1-1 on page 1-3, the Informix GLS library facilitates the
following:

Character processing
The Informix GLS library provides functions that perform the following
character-processing tasks:
v Process single-byte, multibyte, and wide characters and strings
v Collate single-byte and multibyte characters and strings
v Process input and output
v Convert between compatible code sets

Data formatting
The Informix GLS library also provides functions that convert date, time,
monetary, and numeric strings from and to internal representations.

Of the tasks in Table 1-1 on page 1-3, the Informix GLS library does not provide
functions for the following:

User interfaces
You must ensure that user interfaces are designed in a way that is not
language specific. In addition, put language-specific text, menus, buttons,
and messages in external files that the application can reference at run
time.

Documentation
You must ensure that any documentation you provide is translated to the
correct language for a particular locale and territory. You might want to
develop rules for the creation of documentation that simplify the
translation tasks.

1-4 IBM Informix GLS API Programmer's Guide

Important: Although the Informix GLS library does provide functions to perform
case conversions (from lowercase to uppercase and vice versa), it does not provide
a way to translate words, nor does it translate data in a database. You must obtain
accurate and appropriate translations of text that the end user sees. These tasks
must be performed by people experienced in the application and the languages
involved.

Informix GLS compatibility
The IBM Informix GLS library is compatible with most Informix products.

In order for you to use Informix GLS, both the database server and the application
must support the following Informix application products:
v Informix ESQL/C develops client applications in the C language and can contain

embedded SQL statements.
For more information about how to write ESQL/C applications, see the IBM
Informix ESQL/C Programmer's Manual.

v The Informix DataBlade API supports development of client applications and
user-defined routines (UDRs).
Both kinds of DataBlade programs use DataBlade API functions to communicate
with IBM Informix. For more information about how to use the DataBlade API,
see the IBM Informix DataBlade API Programmer's Guide.

An ESQL/C or DataBlade API client application that uses Informix GLS can obtain
locale information from an Informix database server that supports GLS
functionality.

A DataBlade server routine can use Informix GLS to obtain locale information from
IBM Informix with UD Option.

Choose a GLS Locale
An IBM Informix GLS locale is a set of Informix files that bring together
information about data that is specific to a particular culture, language, or territory.

In particular, a GLS locale provides the following information:
v The name of the code set that the application data uses
v The classes of characters in the code set
v The collation order to use for character data
v The format for date, time, numeric, and monetary data to appear to end users

Choose a locale that provides the culture-specific information for the language,
territory, and code set that the application is to support. Locale files are located in
various subdirectories under the gls directory of the INFORMIXDIR directory.

Important: Informix defines and preprocesses these locale files. You cannot modify
Informix locales.

At run time, a database application uses the following locales.

Client locale
The locale that the database application uses for locale-specific information.

The application uses the client locale to obtain:
v The code set for read and write (I/O) operations on the client computer.

Chapter 1. Using Informix GLS 1-5

v The format for literal data strings (data formats).
v The code set for embedded SQL statements, host variables, and data sent

to or received from the database server.

Database locale
The locale that the database uses for its data.

The application uses the database locale to obtain the code set for:
v Data sent to or received from the database server.
v Names of database objects, such as databases, tables, columns, and

views.

If this code set is different from the client code set, the application must
perform code-set conversion.

Server locale
The locale that the database server uses for locale-specific information.

When the client application establishes a connection, the database server
uses the client locale, database locale, and server locale to determine the
server-processing locale for this connection. The database server uses the
server-processing locale for its own internal sessions and for access to any
database that the connection opens.

At run time, an application obtains the locales that it needs from its application
environment. You establish the locales of the application environment as follows.

Locale Default locale Nondefault locale

Client locale U.S. English Set the CLIENT_LOCALE
environment variable to the
name of the locale you want.

Database locale U.S. English Set the DB_LOCALE
environment variable to the
name of the locale you want.

Server locale U.S. English Set the SERVER_LOCALE
environment variable to the
name of the locale you want.

At run time, an internationalized program makes no assumptions about how these
locales are set. Once the program environment specifies the locales to use, the
application can access the correct GLS locale files for locale-specific information. As
long as Informix provides a GLS locale that supports a particular language,
territory, and code set, the program can obtain the locale-specific information
dynamically.

The current processing locale (sometimes called the current locale) is the locale
currently in effect for an application. It is based on one of the following
environments:
v The client environment

ESQL/C creates client applications. Therefore, the current processing locale for
ESQL/C applications is the client locale.
The current processing locale for DataBlade client applications is the client
locale.

v The database that the database server is currently accessing

1-6 IBM Informix GLS API Programmer's Guide

The current processing locale for DataBlade UDRs is the server-processing locale,
which the database server determines from the client, database, and server
locales.

For more information about the default locale, client locale, database locale, server
locale, server-processing locale, or any of the locale environment variables, see the
IBM Informix GLS User's Guide.

Using Informix GLS in a C-language program

To use IBM Informix GLS in a C-language program, include the following header
file in the source file:
#include <ifxgls.h>

This section provides additional information about how to use the Informix GLS
library.
Related reference

“Compile and link Informix GLS”
Chapter 4, “Informix GLS functions,” on page 4-1

Compile and link Informix GLS

The following table lists the directories that must be accessible to compile and link
an ESQL/C or DataBlade program with IBM Informix GLS.

Contents Windows directory UNIX directory

Subdirectories for GLS locale
and code-set conversion files

%INFORMIXDIR%\gls $INFORMIXDIR/gls

Static and shared GLS
libraries

%INFORMIXDIR%\lib\esql $INFORMIXDIR/lib/esql

Two GLS header files: gls.h
and ifxgls.h

%INFORMIXDIR%\incl\public $INFORMIXDIR/incl/public

In all these directories, the INFORMIXDIR environment variable is set to the directory
where your Informix products are installed.

Informix GLS in ESQL/C applications

To compile and link ESQL/C applications that use IBM Informix GLS, issue the
following command: % esql source_file

The esql preprocessor automatically links the Informix GLS library to an ESQL/C
application. It also links the version of the GLS libraries (shared or static) that you
specify with command-line options. For more information about how to compile
an ESQL/C application, see the IBM Informix ESQL/C Programmer's Manual.

Informix GLS in DataBlade programs
The way to compile and link a DataBlade program depends on whether the
program is a DataBlade client application or a DataBlade user-defined routine
(UDR).

DataBlade client applications:

Chapter 1. Using Informix GLS 1-7

You can compile and link a DataBlade client application with the IBM Informix
GLS libraries.

For information about how to write and compile DataBlade client applications, see
the IBM Informix DataBlade API Programmer's Guide.

You must specify the location of the Informix GLS header file, ifxgls.h. This
header file is located in %INFORMIXDIR%\incl\public for Windows and in
$INFORMIXDIR/incl/public for UNIX.

This directory also contains many of the other files that a DataBlade client
application uses. Therefore, it is an important directory to include when you
compile the application.

The following command uses the Microsoft compiler, cl, to compile a DataBlade
client application called sample.c that uses Informix GLS:
cl -MD -Id:\msdev\include -Id:\informix\incl\public -Id:\informix\incl\esql \
-Id:\informix\incl -c sample.c

All Informix GLS functions are exported through the libthdmi.lib library. For
linking, you must specify the following two libraries.

At link time (in lib
subdirectory of
INFORMIXDIR)

At run time (in bin
subdirectory of
INFORMIXDIR) Purpose

libthdmi.lib idmit09a.dll DataBlade API functions

isqlt09a.lib isqlt09a.dll ESQL/C functions

Make sure to include the $INFORMIXDIR/incl/public directory with the -I compiler
option, as follows:
cc -I$INFORMIXDIR/incl/public -I$INFORMIXDIR/esql -I$INFORMIXDIR/incl -c sample.c

The preceding command checks to see whether the API client libraries have been
installed in the directory that the INFORMIXDIR environment variable indicates.

On UNIX platforms, you must explicitly specify the location and name of the
library, as follows:
v For the library location, use the following -L compiler option:

-L$INFORMIXDIR/lib/esql

v For the library name, include the -lifgls command-line option.

The following command links the sample.o object file to create an executable file
called sample:
cc -o sample sample.o \
-L$INFORMIXDIR/lib/esql -L$INFORMIXDIR/lib/dmi -L$INFORMIXDIR/lib \
-lifdmi -lifsql -lifasf -lifcss -lifos -lifgen -lifgls -lifglx \
-lnsl -lsocket -laio -lm -ldl -lelf -lw \
$INFORMIXDIR/lib/esql/checkapi.o

Alternatively, you can use the ESQL/C preprocessor, esql, to compile and link the
DataBlade client application. The esql preprocessor automatically links most of the
libraries that the client application requires (including the Informix GLS library).
However, you must explicitly specify the libdmi library. The following esql
command compiles and links the sample.o object file:

1-8 IBM Informix GLS API Programmer's Guide

esql -o sample sample.o -L$INFORMIXDIR/lib/dmi -ldmi

DataBlade user-defined routines:

This topic provides information about how to compile and link a DataBlade
user-defined routine (UDR).

For more information about how to write user-defined routines, see the IBM
Informix User-Defined Routines and Data Types Developer's Guide, the IBM Informix
DataBlade API Programmer's Guide, and the DataBlade Developers Kit
documentation.

The GLS libraries are already linked to the database server. All IBM Informix GLS
functions are exported through the SAPI.LIB library. Therefore, you do not need to
specify the Informix GLS library explicitly when you compile and link a DataBlade
UDR on Windows. For example, the following commands compile and link a
DataBlade UDR called func1() that uses the Informix GLS library:
cl /DNT_MI_SAPI /DMI_SERVBUILD
-Id:\msdev\include -Id:\informix\incl\public -Id:\informix\incl
-c func1.c
link /DLL /OUT:func1.dll /DEF:func1.def func1.obj d:\informix\lib\SAPI.LIB

In the preceding example, d: specifies the drive on which Informix software is
installed; informix is the directory that INFORMIXDIR specifies. The resulting
dynamic link libraries (DLLs) must have the READONLY attribute set with the
attrib +r command.

The Microsoft compiler, cl, defaults to the /MT option, which specifies the
multithreaded library for DLL builds. This multithreaded library is statically linked
to the DLL. You can specify the /MD option to put MSVCRT40.DLL in a command
path. All the UDRs that are built with /MD use one copy of the LIBC DLL. This
option prevents virtual-memory buildup in the database server when many UDRs
are loaded.

The following example shows the use of the /MD option to compile the func1()
DataBlade UDR:
cl /MD /DNT_MI_SAPI /DMI_SERVBUILD \
-Id:\msdev\include -Id:\informix\incl\public -Id:\informix\incl
-c func1.c

If MSVCRT40.DLL is not visible to the database server, the database server puts the
following error in the online.log file when it attempts to execute the UDR:
Error loading UDR

On UNIX platforms, the GLS libraries are not linked to the database server.
Therefore, you must explicitly specify the location and name of the Informix GLS
library, as you do for DataBlade client applications.

The location of the Informix GLS header file, ifxgls.h, is the $INFORMIXDIR/incl/
public directory. This directory contains many of the other files that a DataBlade
client application uses. Make sure that you include this directory with the -I option
of the compiler.

Tip: When you use the DataBlade Developers Kit to compile user-defined routines,
you do not have to specify the location of the header files explicitly.

Chapter 1. Using Informix GLS 1-9

Additionally, you need to indicate that the DataBlade module is a DataBlade UDR
(which runs on the server computer), not a DataBlade client application (which
runs on a client computer). Include the MI_SERVBUILD compiler flag when you
compile a DataBlade UDR.

The following example builds a shared object called udrs.so that contains the C
code for a DataBlade UDR called func1():
% cc -KPIC -DMI_SERVBUILD -I$INFORMIXDIR/incl/public -I$INFORMIXDIR/incl
-L$INFORMIXDIR/esql/lib -c func1.c
% ld -G func1.o -o udrs.so

Related concepts

“DataBlade client applications” on page 1-7

Initialize the Informix GLS library
Before you can use IBM Informix GLS functions in your application, these
functions must be able to access the current processing locale.

The ifx_gl_init() function initializes the current processing locale to the client
locale. It creates a global locale structure that the Informix GLS functions can
access to obtain the name of the current processing locale.

Whether an application requires a call to the ifx_gl_init() function depends on
whether the application establishes its own connection to a database server or
executes in the context of an existing database server connection:
v ESQL/C applications establish their own connections to a database server and

therefore must call the ifx_gl_init() function at the beginning of the main()
program block to establish the client locale as the current processing locale.

v DataBlade client applications establish their own connections to a database
server and therefore must call the ifx_gl_init() function at the beginning of the
main() program block to establish the client locale as the current processing
locale.

v DataBlade user-defined routines (UDRs) execute in the context of an established
connection and therefore use the server-processing locale as their current
processing locale.
The database server uses a server-processing locale to obtain locale information
for its own internal sessions and for any connections. It uses the values of the
client locale, database locale, server locale, and other environment information to
determine the server-processing locale. DataBlade UDRs are not required to call
the ifx_gl_init() function. For more information about the server-processing
locale and how the database server establishes it, see the IBM Informix GLS
User's Guide.

Important: You must ensure that the database server has established a current
processing locale for an application before the application uses any other Informix
GLS functions. If an application requires the ifx_gl_init() function, it must call
ifx_gl_init() before it calls any other Informix GLS functions.

The ifx_gl_init() function does not generate an error if you call it multiple times
within the same application. The first time that the application calls ifx_gl_init(),
the function initializes the global locale structure. Subsequent calls do not result in
multiple locale structures.

1-10 IBM Informix GLS API Programmer's Guide

Informix GLS exceptions
Many of the IBM Informix GLS functions return a unique value if they encounter
an error. To further identify the cause of the error, you can use the
ifx_gl_lc_errno() function to obtain the value of the Informix GLS error number.

The ifx_gl_lc_errno() function returns the error number as an int value. Informix
GLS library functions can use ifx_gl_lc_errno() to obtain more information about
an error that has occurred. The Informix GLS functions set the error number only
if an error occurs unless a particular function is documented otherwise.

Because any Informix GLS library function can set the error number, you must call
ifx_gl_lc_errno() immediately after the Informix GLS function in which the error
occurred to inspect the relevant value of the error number.

For example, the ifx_gl_mbslen() function returns a value of -1 when it encounters
an error. The following code fragment shows how to use the ifx_gl_lc_errno()
function to obtain the error number:
if (ifx_gl_mbslen(mbs, n) == -1)

switch (ifx_gl_lc_errno())
...

An application can also ignore the return value of an Informix GLS function and
check the ifx_gl_lc_errno() function if the application sets ifx_gl_lc_errno() to 0
before it calls the function.
ifx_gl_lc_errno() = 0;
(void) ifx_gl_mbslen(mbs, n);
if (ifx_gl_lc_errno() != 0)

switch (ifx_gl_lc_errno())
...

If an Informix GLS library function does not return a unique value to indicate that
an error has occurred, you must use the preceding technique to obtain the error
number. For example, the following code fragment tests whether the
ifx_gl_ismupper() function has detected an invalid multibyte character:
ifx_gl_lc_errno() = 0;
value = ifx_gl_ismupper(mb, IFX_GL_NO_LIMIT);
if (ifx_gl_lc_errno() != 0)

switch (ifx_gl_lc_errno())
...

You can set ifx_gl_lc_errno() to 0 and check it after a function call only if the
current processing locale was initialized correctly with ifx_gl_init(). For example,
the following code fragment of a client application results in a memory fault
because the current processing locale is uninitialized:
int wrong_func()
{

ifx_gl_lc_errno() = 0; /* A memory fault will occur here. */
(void) ifx_gl_init();
if (ifx_gl_lc_errno() != 0)

switch (ifx_gl_lc_errno())
...

In the preceding code fragment, the ifx_gl_lc_errno() function can write or read
the error number only after a call to the ifx_gl_init() function has correctly
initialized the current processing locale.

Chapter 1. Using Informix GLS 1-11

The following code fragment of a client application executes successfully because it
correctly initializes the server-processing locale:
int right_func()
{

(void) ifx_gl_init();
ifx_gl_lc_errno() = 0;
if (ifx_gl_lc_errno() != 0)

switch (ifx_gl_lc_errno())
...

For multithreaded ESQL/C applications, the error-number value is stored as a field
in the thread control block. Therefore, multithreaded ESQL/C applications can use
the error number.
Related reference

Appendix A, “List of Informix GLS error numbers,” on page A-1

Allocate memory
If an IBM Informix GLS function allocates memory, this memory is only allocated
within the function itself and is freed before the function returns.

No Informix GLS library function allocates memory that remains after the function
returns. Therefore, you must allocate any memory for data that an Informix GLS
function needs or returns.

DataBlade UDRs can assume that the Informix GLS functions allocate memory
with a PER_ROUTINE memory duration.

You must ensure that memory is allocated for any return value or argument that
an Informix GLS function provides to the calling program.

Tip: You must also handle memory allocation for multibyte-character and
wide-character strings that an Informix GLS functions use.
Related reference

“Managing memory for strings and characters” on page 2-24

Input and output streams

Character data that contains Asian characters must be correctly processed in all
I/O for a graphical user interface, clipboard, character terminal, file, and network.

The following IBM Informix GLS functions process input and output multibyte
character streams:
v The ifx_gl_getmb() function calls a function that you define to obtain the bytes

that form one multibyte character from a specified location.
v The ifx_gl_putmb() function calls a function that you define to put the bytes

that form one multibyte character in a specified location.

Run the program

A client application (ESQL/C or DataBlade) that uses the IBM Informix GLS
library must be able to access the following directories at run time.

1-12 IBM Informix GLS API Programmer's Guide

Contents Windows directory UNIX directory

Subdirectories for locale and
code-set conversion files

%INFORMIXDIR%\gls $INFORMIXDIR/gls

Static and shared GLS
libraries

%INFORMIXDIR%\lib\esql $INFORMIXDIR/lib/esql

A DataBlade UDR executes in the context of the SQL statement that called it. The
calling program must have access to the preceding directories.

Improve program performance

Performance of an application that uses IBM Informix GLS is enhanced in the
following ways:
v Optimization that all Informix GLS functions automatically perform
v Optional use of wide characters in the application

Optimize Informix GLS

You can optimize the IBM Informix GLS functions by performing the following
tasks:
v Evaluate the requested Informix GLS function.
v Determine if the requested function is appropriate for the data that you are

trying to process.
v Execute the code that is appropriate for the type of data.

For example, if you use the ifx_gl_mbsnext() function to traverse data that is
encoded in a single-byte code set, the function is reduced to a macro that advances
the character byte by byte. The function does not execute code that parses
multibyte sequences because it determines that the data is single byte.

Additionally, when collation is based on code-set order rather than locale-specific
order, functions use a binary compare (such as strcmp()) instead of algorithms that
examine collation weights.

Processing wide characters
You can choose how to structure your data to improve performance. IBM Informix
GLS provides wide-character versions of most of its multibyte processing
functions.

Typically, wide-character processing functions are faster than multibyte-character
functions. However, wide characters require more space. Therefore, character data
is generally stored and retrieved from the database in its multibyte form.

To use wide-character processing:
1. Convert the multibyte string to a wide-character string with the

ifx_gl_mbstowcs() function.
2. Process the wide-character string.
3. Convert the wide-character string back to a multibyte string with the

ifx_gl_wcstombs() function.

Chapter 1. Using Informix GLS 1-13

This technique is cost effective if the data that you process is traversed more than
once.
Related concepts

“Wide characters” on page 2-3

1-14 IBM Informix GLS API Programmer's Guide

Chapter 2. Character processing

These topics describe the character-processing capabilities of the IBM Informix GLS
library.

These topics describe the following topics that the Informix GLS library supports:
v Character types: single byte, multibyte, and wide
v Character operations such as character classification and code-set conversion
v String operations such as string traversal and concatenation
v Other operations on multibyte and wide characters

Table 2-1. Character-processing tasks in descending order of importance.

Character-processing task See

String traversal “String traversal” on page 2-18

String processing (concatenation, copying,
string-length determination, character
searching)

“String processing” on page 2-19

Memory allocation “Managing memory for strings and
characters” on page 2-24

Code-set conversion “Code-set conversion” on page 2-13

Character classification “Character classification” on page 2-5

Case conversion “Case conversion” on page 2-8

Character comparison and sorting “Character/string comparison and sorting”
on page 2-20

Data-formatting issues such as date/time conversion are also important areas in
your application to internationalize.
Related reference

Chapter 3, “Data formatting,” on page 3-1

Types of characters
A GLS locale supports a particular code set, which maps characters to unique bit
patterns called code points.

A particular code set can contain the single-byte characters or multibyte characters.

For a general introduction to code sets, single-byte characters, and multibyte
characters, see the IBM Informix GLS User's Guide.

Use of the IBM Informix GLS library helps to remove most assumptions about the
type of character that your application handles.

Single-byte characters
A single-byte character can hold code-point values 0 - 255.

A single-byte character can use 7 or 8 bits of a byte to represent a character, as
follows:

© Copyright IBM Corp. 1998, 2011 2-1

v The 7-bit characters make up the ASCII code set.
These characters contain code points in the range 0 - 127.

v The 8-bit characters contain code points in the range 128 - 255.
Only software that is 8-bit clean can correctly interpret 8-bit characters.

English, European, and Middle Eastern code sets support at most 256 characters.
Therefore, code sets that support these languages consist of single-byte characters.

When your application processes only single-byte characters, it can perform
string-processing tasks based on the assumption that the number of bytes in a
buffer equals the number of characters that the buffer can hold. For single-byte
code sets, you can rely on the built-in scaling for array allocation and access that
the C compiler provides.

The IBM Informix GLS functions and macros that handle multibyte characters are
optimized for single-byte characters. Use of single-byte characters with these
functions does not involve the full algorithms that multibyte-processing involves.
Related reference

“Optimize Informix GLS” on page 1-13

Multibyte characters
A multibyte character can hold code-point values greater than 255. One multibyte
character can range 2 - 4 bytes in length.

Asian code sets are multibyte code sets; they contain both single-byte and
multibyte characters.

If your application processes multibyte characters, it can no longer make the same
assumption as for single-byte characters. The number of bytes in a buffer no longer
equals the number of characters in the buffer. Because of the potential of varying
number of bytes for each character, you can no longer rely on the C compiler to
perform the following operations correctly:
v Allocate space for a multibyte-character string
v Traverse a multibyte-character string
v Find the beginning of the nth character in a multibyte-character string

Your application cannot use the built-in scaling of the C compiler for
multibyte-character strings, but it can use the macros and functions of the IBM
Informix GLS library to perform these operations on multibyte-character strings. To
process a multibyte character, you cannot pass the entire character to a function.
You must pass a pointer to the beginning of the character so that the called
function can access the remaining bytes of the character.

For a list of operations that the functions of the Informix GLS library can perform
on multibyte characters see “Character operations” on page 2-5. For a list of
operations that the functions of the Informix GLS library can perform on
multibyte-character strings, see “String operations” on page 2-18.

One single-byte assumption can still be applied to multibyte-character strings: no
multibyte character has the null byte (0x000) as its second, third, or fourth byte.
Therefore, if code is checking for only the single-byte ASCII null character, that
code does not need to change to handle multibyte characters. This null character is
also the null terminator in a multibyte character.

2-2 IBM Informix GLS API Programmer's Guide

The names of most Informix GLS functions that handle multibyte characters start
with one of the following strings:

ifx_gl_mb
Handles a multibyte character

ifx_gl_mbs
Handles a multibyte-character string

For example, ifx_gl_mblen() determines the length of a multibyte character, and
ifx_gl_mbslen() determines the length of a multibyte-character string.

The gl_mchar_t data type

The IBM Informix GLS library represents a multibyte character with the
gl_mchar_t data type. The gls.h header file defines the gl_mchar_t data type, and
the ifxgls.h header file includes gls.h. Therefore, you must include ifxgls.h in
any file that uses the gl_mchar_t data type (or any Informix GLS function).

Restriction: The gl_mchar_t data type is an opaque structure. Do not access the
individual bytes of a multibyte character directly.

Because any character in a multibyte-character string might contain up to 4 bytes,
and gl_mchar_t refers to only one of those bytes, you usually declare a multibyte
variable as a pointer to a gl_mchar_t data type. For example, the following
declaration creates the mb_string variable as a pointer to a multibyte-character
string:
#include <ifxgls.h>;
...
gl_mchar_t *mb_string;

The preceding declaration assumes that the application allocates memory for the
mb_string multibyte string elsewhere.

You can also cast a C string to a multibyte-character string, as follows:
char *string; /* allocated & initialized elsewhere */
...
gl_mchar_t *mbs = (gl_mchar_t *) string;

Related reference

“Multibyte-character-string allocation” on page 2-24

Wide characters

The IBM Informix GLS functions and macros that handle multibyte characters use
special multibyte-processing algorithms to determine the size of multibyte
characters. However, the handling of these full multibyte-processing algorithms can
be significant. Therefore, the Informix GLS library provides support for wide
characters as an alternative form for the processing of multibyte characters. Wide
characters allow you to rely on the C compiler built-in scaling instead of the
multibyte-processing algorithms.

A wide-character form of a code set involves the normalization of the size of each
multibyte character so that each character is the same size. This size must be equal
to or greater than the largest character that an operating system can support, and it
must match the size of an integer data type that the C compiler can scale (such as
short int, int, and long int).

Chapter 2. Character processing 2-3

The names of most Informix GLS functions that handle wide characters start with
one of the following strings:

ifx_gl_wc
Handles a wide character

ifx_gl_wcs
Handles a wide-character string

For example, the function ifx_gl_wctomb() converts a wide character to a
multibyte character, and ifx_gl_wcslen() determines the length of a wide-character
string.

The gl_wchar_t data type:

The IBM Informix GLS library represents a wide character with the gl_wchar_t
data type.

The gls.h header file defines the gl_wchar_t data type, and the ifxgls.h header
file includes gls.h. Therefore, you must include ifxgls.h in any file that uses the
gl_wchar_t data type (or any Informix GLS function).

Restriction: The gl_wchar_t data type is an opaque structure. Do not access the
individual bytes of a wide character directly.

The gl_wchar_t data type is a fixed-length structure. Therefore, you can declare a
variable as a pointer to a gl_wchar_t structure or as a gl_wchar_t structure directly.
For example, the following declarations create the wc_string variable as a pointer
to a wide-character string and wc_string2 as a single wide character:
#include <ifxgls.h>:
...
gl_wchar_t *wc_string;
gl_wchar_t wc_string2;

The declaration of wc_string assumes that the application allocates memory for
this wide-character string elsewhere. The declaration of wc_string2 allocates one
wide character.

You can compare or assign a single-byte ASCII character or character constant to a
single wide character, as in the following code fragment:
gl_wchar_t wc = ’a’; /* assigns an ASCII character */
if (wc==’a’) /* compares with an ASCII character */

...

Related reference

“Wide-character-string allocation” on page 2-25

Conversion between multibyte and wide characters:

To use wide characters, you convert multibyte characters to their wide character
equivalents, process the characters, and convert the wide characters back to their
multibyte equivalents.

The IBM Informix GLS library supports conversion between a multibyte form of a
code set and its wide-character form. Unlike code-set conversion, the actual
integral value of each character does not change in this conversion.

2-4 IBM Informix GLS API Programmer's Guide

To change all character data to wide characters, you must first locate the character
data and then find all the places where it is assigned and passed to functions.
Informix GLS functions perform the following tasks to convert between multibyte
and wide characters:
v To convert from a multibyte character to a wide character, the code point of the

multibyte character is assigned a fixed number of bytes for all values, padded
on the left with zeros:
– The ifx_gl_mbtowc() function performs this conversion from multibyte

character to wide character.
– The ifx_gl_mbstowcs() function performs this conversion from

multibyte-character string to wide-character string.
v To convert from a wide character to a multibyte character, the code point of the

wide character is assigned the minimum number of bytes necessary to represent
the value:
– The ifx_gl_wctomb() function performs this conversion from wide character

to multibyte character.
– The ifx_gl_wcstombs() function performs this conversion from wide-character

string to multibyte-character string.
Related tasks

“Processing wide characters” on page 1-13

Character operations
The IBM Informix GLS library supports character classification, case conversion,
and code-set conversion operations on multibyte and wide characters.
Related reference

Chapter 4, “Informix GLS functions,” on page 4-1

Character classification
A GLS locale groups the characters of a code set into character classes. Each class
contains characters that have a related purpose.

The contents of a character class can be language specific. For example, the lower
class contains all alphabetic lowercase characters in a code set. In the default locale,
the default code set groups the English characters a through z into the lower class,
but it also includes lowercase characters such as á, è, î, õ, and ü.

The default code set on UNIX platforms is ISO8859-1. The default code set for
Windows environments is Microsoft 1252.

For more information about the default locale and the default code set, see the IBM
Informix GLS User's Guide.

The LC_CTYPE category of a GLS locale file defines the following character
classes.

Chapter 2. Character processing 2-5

Character class Contains

alpha Alphabetic characters:

v Single-byte alphabetic characters a through
z and A through Z

v Any single-byte non-English characters
that the locale defines

v Any multibyte alphabetic or digit
characters that the locale defines

This class includes characters in the lower
and upper classes.

lower Lowercase alphabetic characters:

v Single-byte alphabetic characters a through
z

v Any single-byte non-English lowercase
characters that the locale defines

v Any multibyte lowercase characters that
the locale defines

No characters in this class are in the upper
class.

upper Uppercase alphabetic characters:

v Single-byte alphabetic characters A
through Z

v Any single-byte non-English uppercase
characters that the locale defines

v Any multibyte uppercase alphabetic
characters that the locale defines

No characters in this class are in the lower
class.

digit Single-byte decimal digits 0 through 9

xdigit Hexadecimal digits:

v Single-byte numeric digits 0 through 9

v Single-byte representations of hexadecimal
digits a through f and A through F

This class includes characters in the digit
class.

alnum All characters in both the alpha and digit
classes.

blank Horizontal white space:

v Single-byte horizontal-space characters:

“ ” (ASCII 0x020)

tab (ASCII 0x009)

v Any multibyte horizontal-space characters
that the locale defines

2-6 IBM Informix GLS API Programmer's Guide

Character class Contains

space Horizontal and vertical white space:

v Single-byte horizontal-space characters as
defined in the blank class

v Single-byte vertical-space characters: new
line, vertical tab, form feed, carriage return

v Any multibyte vertical-space characters
that the locale defines

This class includes characters in the blank
class.

cntrl Control characters:

v Single-byte control characters: ASCII 0x000
to 0x01F

v Any other control characters that the locale
defines

graph Graphical characters are all characters that
have visual representation. This class
includes characters in the alpha, lower,
upper, digit, xdigit, and punct classes.

punct Punctuation:

v Single-byte punctuation characters:

! @ # $ % ^ & * () - = + \ | ‘ ~ [] { } ; : ‘ “
, . ? < >

v Any non-ASCII punctuation characters
that the locale defines

print All printable characters

This class includes characters in the alpha,
lower, upper, digit, xdigit, graph, and punct
classes.

Your application must not assume which characters belong in a particular character
class. For example, it must not contain code such as the following example to
determine whether a character is lowercase:
if (one_char >= ’a’ && one_char <= ’z’)

Instead, use functions in the IBM Informix GLS library to identify the class of a
particular character. The following table lists the GLS character classes and the
Informix GLS functions that test for these classes for both multibyte and wide
characters.

Table 2-2. Informix GLS character-class functions

Character class Multibyte-character function Wide-character function

alnum (alpha or digit) ifx_gl_ismalnum() ifx_gl_iswalnum()

alpha ifx_gl_ismalpha() ifx_gl_iswalpha()

lower ifx_gl_ismlower() ifx_gl_iswlower()

upper ifx_gl_ismupper() ifx_gl_iswupper()

blank ifx_gl_ismblank() ifx_gl_iswblank()

space ifx_gl_ismspace() ifx_gl_iswspace()

digit ifx_gl_ismdigit() ifx_gl_iswdigit()

Chapter 2. Character processing 2-7

Table 2-2. Informix GLS character-class functions (continued)

Character class Multibyte-character function Wide-character function

xdigit ifx_gl_ismxdigit() ifx_gl_iswxdigit()

cntrl ifx_gl_ismcntrl() ifx_gl_iswcntrl()

graph ifx_gl_ismgraph() ifx_gl_iswgraph()

punct ifx_gl_ismpunct() ifx_gl_iswpunct()

print ifx_gl_ismprint() ifx_gl_iswprint()

These Informix GLS functions check the LC_CTYPE category of the current locale
to determine whether a specified character belongs to the respective character
classification. The following code fragment uses the ifx_gl_ismlower() function to
determine whether a multibyte character is lowercase:
if (ifx_gl_ismlower(one_char, char_size)

The Informix GLS functions in Table 2-2 on page 2-7 do not return a unique value
if they encounter an error. To detect an error, initialize the ifx_gl_lc_errno() error
number to 0 before you call one of these functions, and then call ifx_gl_lc_errno()
immediately after you call the function. For example, the following code fragment
performs error checking for the ifx_gl_ismlower() function:
/* Initialize the error number */
ifx_gl_lc_errno() = 0;

/* Determine if ’mb’ character is lowercase */
value = ifx_gl_ismlower(mb, mb_size);

/* If the error number has changed, ifx_gl_ismlower()has
* set it to indicate the cause of an error */
if (ifx_gl_lc_errno() != 0)

/* Handle error */
else if (value != 0)

/* Character ’mb’ is in lower class */
else if (value == 0)

/* Character ’mb’ is NOT in lower class */

Case conversion
In many languages, alphabetic characters have an uppercase and lowercase
representation. Your application must not assume the case equivalent for a
particular character.

For example, it must not contain code such as the following to obtain the
uppercase equivalent of the character in lower_char:
upper_char = lower_char - ’a’ + ’A’;

The preceding line works for the English characters of the ASCII code set.
However, it does not work for 8-bit characters, such as à and À.

To handle case conversion in your application, use functions in the IBM Informix
GLS library to obtain the case equivalent of a particular character. The following
table lists the case-conversion operations and the Informix GLS functions that
perform them, both the multibyte functions and their wide-character equivalents.

2-8 IBM Informix GLS API Programmer's Guide

Table 2-3. Informix GLS case-conversion functions

Case-conversion operation Multibyte-character function Wide-character function

Obtain the lowercase
equivalent of the source
character

ifx_gl_tomlower() ifx_gl_towlower()

Obtain the uppercase
equivalent of the source
character

ifx_gl_tomupper() ifx_gl_towupper()

The Informix GLS case-conversion functions check the LC_CTYPE category of the
current locale to determine the case equivalent of a source character. If the case
equivalent that you want exists, the functions return an integer value that is the
alphabetic case equivalent of the source character. If no case equivalent exists, these
functions return the source character.

The following code fragment uses the ifx_gl_tomupper() function to perform the
case conversion of a multibyte character:
ret = ifx_gl_tomupper(upper_char, lower_char, char_sz)

Case conversion for multibyte characters

The ifx_gl_tomlower() and ifx_gl_tomupper() functions require three arguments:
v The multibyte character or string to convert
v The destination buffer for the converted multibyte character or string
v The number of bytes to read to obtain a single multibyte character

For a multibyte-character string, the size of the case-converted string might not
equal the size of the unconverted string. Therefore, to perform case conversion on
multibyte characters, you must take the following special processing steps:
v Determine whether you need to allocate a separate destination buffer; if a

destination buffer is needed, determine its size.
v Determine the number of bytes that the case-conversion process has read and

written.

Determine when to allocate a destination buffer:

Whether you can perform case conversion of multibyte characters in place depends
on whether the number of bytes written to the destination buffer is the same as the
number of bytes read from the source.

You can determine when to allocate a destination buffer as follows:
v If the ifx_gl_case_conv_outbuflen() function determines that the size of the

source string and its case-converted value are exactly equal, you can perform
case conversion in place.

v If the size of the case-converted value of the source string is not the same as the
size of the source string itself, you cannot perform case conversion in place.

If you cannot perform case conversion in place, you must allocate a separate
destination buffer. To allocate this buffer, you need to have an estimate of the
number of bytes that it needs to hold. Use any of the following methods to
determine the number of bytes that might be written to the destination buffer:

Chapter 2. Character processing 2-9

v The ifx_gl_case_conv_outbuflen() function calculates either exactly the number
of bytes that will be written to the destination buffer or a close over
approximation of the number.
This function applies to both uppercase and lowercase conversions. The second
argument to ifx_gl_case_conv_outbuflen() is the number of bytes in the
character source.

v The ifx_gl_mb_loc_max() function calculates the maximum number of bytes that
can be written to the destination buffer for any source value in the current
locale.
This value is always greater than or equal to (>=) the value that the
ifx_gl_case_conv_outbuflen() function returns.

v The macro IFX_GL_MB_MAX returns the maximum number of bytes that can be
written to the destination buffer for any source value in any locale.
This value is always greater than or equal to the value that the
ifx_gl_mb_loc_max() function returns.

Of the preceding options, the macro IFX_GL_MB_MAX is the fastest and the only
method that can initialize static buffers. The function ifx_gl_case_conv_outbuflen()
is the slowest but the most precise.

The following code fragment uses the ifx_gl_mblen() function to determine the
size of the source character and the ifx_gl_case_conv_outbuflen() function to
determine the estimated size of the case-converted value:
/* Obtain the sizes of the source and destination strings */
src_mb_bytes = ifx_gl_mblen(src_mb, ...);
dst_mb_bytes = ifx_gl_case_conv_outbuflen(src_mb_bytes);

if (dst_mb_bytes == src_mb_bytes)
/* Sizes of source and case-equivalent characters are the
* same. Perform the case conversion in place */

{
retval =

ifx_gl_tomupper(src_mb, src_mb, IFX_GL_NO_LIMIT);
}

else
/* Sizes of source and destination characters are NOT the
* same. Allocate a destination buffer and perform case
* conversion into this buffer */

{
dst_mb = (gl_mchar_t *) malloc(dst_mb_bytes);
retval =

ifx_gl_tomupper(dst_mb, src_mb, IFX_GL_NO_LIMIT);
}

Related concepts

“Multibyte-character termination” on page 2-23

Determine the number of bytes read and written:

The ifx_gl_tomupper() and ifx_gl_tomlower() functions return an unsigned short
integer that encodes the information about the number of bytes that the function
has read.

The Informix GLS library provides the following macros to obtain this information
from the return value.

IFX_GL_CASE_CONV_SRC_BYTES()
The number of bytes read from the source string

2-10 IBM Informix GLS API Programmer's Guide

IFX_GL_CASE_CONV_DST_BYTES()
The number of bytes written to the destination buffer

The following code fragment uses the ifx_gl_tomlower() function to convert a
multibyte character to its lowercase equivalent. It uses the case-conversion macros
to obtain the number of bytes read and written during the case-conversion
operation:
/* Initialize source pointer, ’src_mb’, to beginning of the
* multibyte string. Initialize destination pointer to
* beginning of destination buffer */
src_mb = src_mbs;
dst_mb = dst_mbs;

/* Traverse source string until the null terminator is
* reached */
while (*src_mb != ’\0’)

{
/* Convert source multibyte character, ’src_mb’, to lowercase
* and put in the destination buffer */

unsigned short retval =
ifx_gl_tomlower(dst_mb, src_mb, src_mbs_bytes);

...
/* Increment the source pointer by the number of bytes that
* have been read and the destination pointer by the number
* of bytes that have been written */

src_mb += IFX_GL_CASE_CONV_SRC_BYTES(retval);
dst_mb += IFX_GL_CASE_CONV_DST_BYTES(retval);
src_mbs_bytes -= IFX_GL_CASE_CONV_SRC_BYTES(retval);
}

The memory-management rules for case conversion of a single multibyte character
also apply to converting a string of one or more multibyte characters. For example,
the following code fragment converts a multibyte-character string to its uppercase
equivalent:
/* Assume src_mbs is null terminated */
src_mbs_bytes = strlen(src_mbs);
dst_mbs_bytes = ifx_gl_case_conv_outbuflen(src_mbs_bytes);

if (dst_mbs_bytes == src_mbs_bytes)
{
/* If two strings have the same size, overwrite each
* multibyte character in the ’src_mbs’ multibyte string
* with its uppercase equivalent */
src_mb = src_mbs;
while (*src_mb != ’\0’)

{
retval =

ifx_gl_tomupper(src_mb,src_mb,IFX_GL_NO_LIMIT);
src_mb += IFX_GL_CASE_CONV_SRC_BYTES(retval);
}

}
else

{
/* Two strings are not the same size, so must allocate a
* destination buffer whose size is determined by the
* ifx_gl_case_conv_outbuflen() function */
dst_mbs = (gl_mchar_t *) malloc(dst_mbs_bytes + 1);

src_mb = src_mbs;
dst_mb = dst_mbs;

while (*src_mb != ’\0’)
{
retval =

Chapter 2. Character processing 2-11

ifx_gl_tomupper(dst_mb,src_mb,IFX_GL_NO_LIMIT);
src_mb += IFX_GL_CASE_CONV_SRC_BYTES(retval);
dst_mb += IFX_GL_CASE_CONV_DST_BYTES(retval);
}

*dst_mb = ’\0’;
}

Case conversion for wide characters
Because a wide character has a fixed size, the ifx_gl_towlower() and
ifx_gl_towupper() functions require only one argument: the wide character to
convert.

These functions return an integer value of the case-equivalent character for this
wide character. Therefore, you can always perform case conversion of wide
characters in place. For example, you can assign the case equivalent of src_wc back
to src_wc, as follows:
src_wc = ifx_gl_towupper(src_wc);

You can also perform case conversion of wide characters to a destination buffer.
The previous line could also be written as follows:
dst_wc = ifx_gl_towupper(src_wc);

Exception handling

These case-conversion functions do not return a special value if they encounter an
error. To detect an error, initialize the ifx_gl_lc_errno() error number to 0 before
you call one of these functions and check ifx_gl_lc_errno() immediately after you
call it. The following code fragment performs exception handling in the conversion
of a wide character to its lowercase equivalent:
/* Initialize the error number */
ifx_gl_lc_errno() = 0;

/* Perform conversion of ’src_wc’ to lowercase */
dst_wc = ifx_gl_towlower(src_wc);

/* If the error number has changed, ifx_gl_towlower() has set
* it to indicate the cause of an error */
if (ifx_gl_lc_errno() != 0)

/* Handle error */
else

...

Performance issues

The IBM Informix GLS case-conversion functions assign the destination character
regardless of whether the source character has a case-equivalent character. If no
case equivalent for a particular source character exists, the functions return only
the source character. Therefore, the following two algorithms perform the same
task:
v Calling the case-conversion function regardless of the existence of a

case-equivalent character, as follows:
dst_wc = ifx_gl_towlower(src_wc);

v Calling the case-conversion function only if a case-equivalent character exists, as
follows:
if (ifx_gl_iswupper(src_wc))

dst_wc = ifx_gl_towlower(src_wc);
else

dst_wc = src_wc;

2-12 IBM Informix GLS API Programmer's Guide

However, the first approach is usually faster.

Code-set conversion
A character might be encoded differently on two different operating systems.
Therefore, the appropriate communication layer must be prepared to convert
between the two encodings.

This process of conversion between two code sets is called code-set conversion.
Code-set conversion translates code points from a source code set to a destination
code set.

IBM Informix ESQL/C applications automatically perform any needed code-set
conversion when they send and receive database data.

The following principles apply when you send and receive database data:
v DataBlade client applications automatically perform any needed code-set

conversion.
v DataBlade UDRs do not automatically perform code-set conversion.

For an introduction to code-set conversion, see the IBM Informix GLS User's Guide.

If your application needs to perform code-set conversion, it must:
v Determine if code-set conversion is needed between the source and target code

sets.
v Perform the code-set conversion on a character string if it is needed.

Determining if code-set conversion is needed
The ifx_gl_conv_needed() function determines whether characters encoded in a
source code set require conversion to a destination code set. Use this function to
determine if code-set conversion is needed.

Comparing the names of the code sets does not provide enough information to
determine if it is necessary. In the ifx_gl_conv_needed() function, you can specify
the source and destination code sets as any of the following items:
v Locale names
v Code-set names
v The IFX_GL_PROC_CS macro
Related concepts

“Specify code-set names” on page 2-14

Perform code-set conversion

For a multibyte-character string, the size of the converted string might not equal
the size of the unconverted string. Therefore, to perform code-set conversion on
multibyte characters, you must take the following special processing steps:
v Determine whether you need to allocate a separate destination buffer; if a

destination buffer is needed, determine its size.
v Preserve state information for multiple fragments of a multibyte string.

Determine when to allocate a destination buffer:

Chapter 2. Character processing 2-13

Whether you can perform code-set conversion on multibyte characters in place
depends on whether the number of bytes written to the destination buffer is the
same as the number of bytes read from the source.

Determine when to allocate a destination buffer as follows:
v If the ifx_gl_cv_outbuflen() function determines that the size of the source

string and its code-set-converted value are exactly equal, you can perform
code-set conversion in place.

v If the size of the code-set-converted value of the source string is not the same as
the size of the source string itself, you cannot perform code-set conversion in
place.

If you cannot perform code-set conversion in place, you must allocate a separate
destination buffer. To allocate a destination buffer, you need to have an estimate of
the number of bytes that it needs to hold. You can use either of the following
methods to determine the number of bytes that might be written to the destination
buffer:
v The ifx_gl_cv_outbuflen() function calculates either exactly the number of bytes

that will be written to the destination buffer or a close over-approximation of the
number.
The third argument to ifx_gl_cv_outbuflen() is the number of bytes in the
character source.

v The IFX_GL_MB_MAX macro can be used in the following expression to
calculate the maximum number of bytes that can be written to the destination
buffer for any source value in any locale:
src_bytesleft * IFX_GL_MB_MAX

The src_bytesleft value is the number of bytes to convert. This expression value is
always greater than or equal to the expression value that uses the
ifx_gl_mb_loc_max() function.

Of the two options, the expression that uses the macro IFX_GL_MB_MAX is faster
and can be used to initialize static buffers. The function
ifx_gl_case_conv_outbuflen() is slower but more precise.

The following code fragment uses the ifx_gl_cv_outbuflen() function to determine
the estimated size of a code-set-conversion destination buffer:
int dstbytes;
gl_mchar_t *dstmbs;
conv_state_t state;

dstbytes = ifx_gl_cv_outbuflen("ujis", "sjis", srcbytes);
dstmbs = (gl_mchar_t *) malloc(dstbytes);

state.first_frag = 1;
state.last_frag = 1;
if (ifx_gl_cv_mconv(&state, &dstmbs, &dstbytes, "ujis"

&srcmbs, &srcbytes, "sjis") == -1)

Related concepts

“Preserve state information” on page 2-15

Specify code-set names:

You can specify the names of the source and destination code sets with either
locale names, code-set names, or the IFX_GL_PROC_CS macro.
v Locale names

2-14 IBM Informix GLS API Programmer's Guide

For example, you can use de_de.8859-1 for the German locale or ja_jp.ujis for the
Japanese UJIS locale. For more information about locale names, see the IBM
Informix GLS User's Guide.

v Code-set names
You can find the names of code sets in code-set name registry.
The code-set name registry is in %INFORMIXDIR%\gls\cmZ for Windows and in
$INFORMIXDIR/gls/cmZ for UNIX.
In the preceding path names, INFORMIXDIR is the environment variable that
specifies the directory where you install the IBM Informix product, and Z
represents the version number for the code-set object-file format.

v The IFX_GL_PROC_CS macro
This macro specifies use of the code set of the current processing locale.
Depending on the context, the value of IFX_GL_PROC_CS is based on either the
client environment or the database that the database server is currently
accessing.

The preceding formats are valid as code-set names in any of the following Informix
GLS functions:
v ifx_gl_conv_needed()

v ifx_gl_cv_mconv()

v ifx_gl_cv_outbuflen()

v ifx_gl_cv_sb2sb_table()

Preserve state information:

Most code sets are not state dependent; that is, the characters of these code sets
can be decoded with only one algorithm, and each byte sequence represents a
unique character.

In contrast, byte sequences in state-dependent code sets can represent more than
one character. Which character a sequence represents depends on the current state.
State-dependent code sets occur primarily on IBM mainframe computers, and they
affect only code-set conversion.

When you fragment a complete source string into two or more nonadjacent source
buffers, you must call the ifx_gl_cv_mconv() function multiple times, to perform
code-set conversion on each fragment of the string. Because of the nature of
state-dependent code sets (and because the caller of this function cannot know
whether either the source or destination code set is a state-dependent code set),
you must preserve state information across the multiple calls of ifx_gl_cv_mconv().
The ifx_gl_cv_mconv() argument state is used for this purpose.

The state argument is a pointer to a conv_state_t structure. This structure contains
two fields that you must set to indicate that you are performing code-set
conversion on fragmented strings: first_frag and last_frag. The following table lists
the different fragments of a string and the corresponding values to which you
must set these two conv_state_t fields.

String fragment Value of first_frag field Value of last_frag field

String is the first of n
fragments.

1 0

String is the 2nd, ..., nth-1
fragment.

0 0

Chapter 2. Character processing 2-15

String fragment Value of first_frag field Value of last_frag field

String is the last (nth)
fragment.

0 1

String is not fragmented; it is
a complete string.

1 1

Important: The conv_state_t structure contains other fields that are for internal use
only. IBM Informix does not guarantee that these other internal fields of
conv_state_t will not change in future releases. Therefore, to create portable code,
set only the first_frag and last_frag fields of the conv_state_t structure.

Pass the fragments to the ifx_gl_cv_mconv() function in the same order in which
they appear in the complete string. Use the same conv_state_t structure for all of
the fragments of the same complete string.

The following code performs code-set conversion on a complete character string
that is not fragmented:
int unfrag_strng(out_str, out_len, out_cs, in_str,

in_len, in_cs)
gl_mchar_t *out_str;
int out_len;
char *out_cs;
gl_mchar_t *in_str;
int in_len;
char *in_cs;

{
conv_state_t state;
int ret;

state.first_frag = 1;
state.last_frag = 1;
ret = ifx_gl_cv_mconv(&state, &out_str, &out_len,

out_cs, &in_str, &in_len, in_cs);
...

}

This code assigns both the first_frag and last_frag fields a value of 1 to indicate
that the multibyte string is not fragmented.

Suppose that you have a complete multibyte-character string that is fragmented
into four different buffers. The following code performs code-set conversion on this
fragmented string:
int frag_strng(out_str, out_len, out_cs, in_str,

in_len, in_cs)
gl_mchar_t *out_str;
int out_len;
char *out_cs;
gl_mchar_t *in_str[];
int in_len;
char *in_cs;

{
conv_state_t state;
int ret;

/* Perform code-set conversion on the FIRST fragment:
* first_frag = 1; last_frag = 0 */

state.first_frag = 1;
state.last_frag = 0;
ret = ifx_gl_cv_mconv(&state, &out_str, &out_len, out_cs,

&in_str[0], &in_len, in_cs);
...

2-16 IBM Informix GLS API Programmer's Guide

/* Perform code-set conversion on the SECOND fragment:
first_frag = 0; last_frag = 0 */
state.first_frag = 0;
state.last_frag = 0;
ret = ifx_gl_cv_mconv(&state, &out_str, &out_len, out_cs,

&in_str[1], &in_len, in_cs);
...

/* Perform code-set conversion on the THIRD fragment.
* No need to set the first_frag and last_frag fields again,
* because they are already 0 */

ret = ifx_gl_cv_mconv(&state, &out_str, &out_len, out_cs,
&in_str[2], &in_len, in_cs);

...
/* Perform code-set conversion on the FOURTH (last)
* fragment: first_frag = 0; last_frag = 1 */

state.first_frag = 0;
state.last_frag = 1;
ret = ifx_gl_cv_mconv(&state, &out_str, &out_len, out_cs,

&in_str[3], &in_len, in_cs);
...

}

Related concepts

“Fragment multibyte strings” on page 2-26

Performance issues

Most performance overhead in code-set conversion is a result of either memory
management or multibyte-string traversal. However, only if one of the code sets is
a multibyte code set does code-set conversion require this overhead to convert
correctly. If the code-set conversion is between two single-byte code sets, you can
obtain a code-set conversion table and avoid this overhead.

The following sample code uses the ifx_gl_cv_sb2sb_table() function to obtain a
code-set conversion table for two single-byte code sets:
void do_codeset_conversion(src, src_codeset, dst,

dst_codeset)
unsigned char *src;
char *src_codeset;
unsigned char *dst;
char *dst_codeset;

{
unsigned char *table;

if (ifx_gl_cv_sb2sb_table(dst_codeset,
src_codeset, &table) == -1)

/* Handle Error */

if (table != NULL)
{
/* Convert in place */
for (; *src != ’\0’; src++) *src = table[*src];

dst = src;
}

else
{
/* Full GLS code-set conversion, which handles
* multibyte conversions and complex conversions
* between single-byte code sets */
...
}

}

Chapter 2. Character processing 2-17

String operations
The IBM Informix GLS library supports string traversal and string processing
operations on multibyte-character and wide-character strings.
Related reference

Chapter 4, “Informix GLS functions,” on page 4-1

String traversal
Because a single-byte character occupies only one byte, string traversal of a
single-byte character string can use the built-in scaling of the C compiler. However,
you must take special steps to handle string traversal of multibyte-character and
wide-character strings.

Multibyte-character-string traversal

Because a multibyte-character string might contain multibyte characters of different
sizes, you cannot automatically traverse the string with any built-in scaling.
Instead, use the following functions in IBM Informix GLS to traverse a multibyte
string:
v The ifx_gl_mblen() function determines the number of bytes in a multibyte

character.
v The ifx_gl_mbsnext() function returns a pointer to the next multibyte character

in the multibyte string.
v The ifx_gl_mbsprev() function returns a pointer to the previous multibyte

character in the multibyte string.

These functions support string traversal in the following directions:
v Forward

gl_mchar_t buf[], *p;
for (p = buf; *p != '\0’ ;

p = ifx_gl_mbsnext(p, IFX_GL_NO_LIMIT))
process_mchar(p);

v Backward
gl_mchar_t buf[], *p;
p = ifx_gl_mbsprev(buf, buf + strlen(buf));
if (p != NULL)

for (; p >= buf; p = ifx_gl_mbsprev(buf, p))
process_mchar(p);

Wide-character-string traversal

A wide-character string consists of fixed-length characters. The IBM Informix GLS
library does not need to provide traversal functions for wide-character strings
because you can traverse the string with the built-in scaling of the C compiler.
However, the library does provide the ifx_gl_wcslen() function, which determines
the number of bytes in a wide-character string.

The Informix GLS library supports wide-character string traversal in the following
directions:
v Forward

gl_wchar_t buf[], *p;
for (p = buf; *p != '\0’ ; p++)

process_wchar(*p);

v Backward

2-18 IBM Informix GLS API Programmer's Guide

gl_wchar_t buf[], *p;
for (p = buf + ifx_gl_wcslen(buf) - 1; p >= buf; p--)

process_wchar(*p);

String processing
The IBM Informix GLS library provides functions for concatenation, string copying,
string-length determination, and character searching. The Informix GLS library
provides both multibyte and wide-character functions for these string-processing
tasks.

Concatenation
Concatenation is the process of appending one string to the end of another string.

The following table lists the IBM Informix GLS multibyte functions and their
wide-character equivalents that perform string concatenation.

Concatenation operation Multibyte-character function Wide-character function

Append a copy of one
character string to the end of
another character string. If
the two strings overlap, the
result of the operation is
undefined.

ifx_gl_mbscat() ifx_gl_wcscat()

Append a specified number
of characters from one
character string to the end of
a second character string. If
the two strings overlap, the
result of this operation is
undefined.

ifx_gl_mbsncat() ifx_gl_wcsncat()

String copying

The following table lists the IBM Informix GLS multibyte functions and their
wide-character equivalents that perform string copying.

String-processing task Multibyte-character function Wide-character function

Copy one character string to
a specified location in a
second character string. If the
two strings overlap, the result
of this operation is
undefined.

ifx_gl_mbscpy() ifx_gl_wcscpy()

Copy a specified number of
characters from one character
string to a second character
string. If the two strings
overlap, the result of this
operation is undefined.

ifx_gl_mbsncpy() ifx_gl_wcsncpy()

String-length determination

The following table lists the IBM Informix GLS multibyte functions and their
wide-character equivalents that determine string length or number of characters.

Chapter 2. Character processing 2-19

String-length task Multibyte-character function Wide-character function

Determine the number of
characters in the string, not
including any terminating
null characters.

ifx_gl_mbslen() ifx_gl_wcslen()

Determine the number of
bytes in a multibyte string,
not including any trailing
space characters.

ifx_gl_mbsntsbytes() None

Determine the number of
characters in a string, not
including the trailing space
characters.

ifx_gl_mbsntslen() ifx_gl_wcsntslen()

Determine the number of
characters in the initial
substring of one string that
consists entirely of characters
in a second specified
character string.

ifx_gl_mbsspn() ifx_gl_wcsspn()

Determine the number of
characters in the initial
substring of one string that
consists entirely of characters
not in a specified second
character string.

ifx_gl_mbscspn() ifx_gl_wcscspn()

Character searching

The following table lists the IBM Informix GLS multibyte functions and their
wide-character equivalents that perform character searching.

Character-searching task Multibyte-character function Wide-character function

Search for the first occurrence
of a character in the character
string.

ifx_gl_mbschr() ifx_gl_wcschr()

Search for the last occurrence
of a character in the character
string.

ifx_gl_mbsrchr() ifx_gl_wcsrchr()

Search for a substring in
another string.

ifx_gl_mbsmbs() ifx_gl_wcswcs()

Search for the first occurrence
in the character string of any
character from a second
specified character string.

ifx_gl_mbspbrk() ifx_gl_wcspbrk()

Character/string comparison and sorting
Collation involves the sorting of character data that is either stored in a database
or manipulated in a client application.

IBM Informix database servers support the following methods of collation for
character data:
v Code-set collation order is the bit-pattern order of characters within a code set.

The order of the code points in the code set determines the sort order.

2-20 IBM Informix GLS API Programmer's Guide

v Locale-specific order is an order of the characters that relates to a real language.
The LC_COLLATE category of a GLS locale file defines the order of the
characters in the locale-specific order.

For more information about code-set and locale-specific order, see the IBM Informix
GLS User's Guide.

To perform code-set collation, you compare only the integer values of two
multibyte or two wide characters. For example, suppose one multibyte character,
mbs1, contains the value A1A2A3 and a second multibyte character, mbs2, contains
the value B1B2B3. If the integer value of A1A2A3 is less than the integer value of B1B2B3,
then mbs1 is less than mbs2 in code-set collation order.

However, sometimes you want to sort character data according to the language
usage of the characters. In code-set order, the character a is greater than the
character A. In many contexts, you would probably not want the string Apple to
sort before the string apple. The locale-specific order could list the character A after
the character a. Similarly, even though the character À might have a code point of
133, the locale-specific order could list this character after A and before B (A=65,
À=133, B=66). In this case, the string ÀB sorts after AC but before BD.

The following table lists the Informix GLS functions that use locale-specific order
to compare two multibyte-character or wide-character strings.

String-comparison task Multibyte-character function Wide-character function

Compare two character
strings by locale-specific
order.

ifx_gl_mbscoll() ifx_gl_wcscoll()

These functions access the LC_COLLATE category of a locale file to obtain
localized collating information when they compare character strings. They return
an integer value that indicates the results of the comparison between two string
arguments. The following table shows the comparison between the first string
argument (Arg 1) and the second string argument (Arg 2), as well as the return
values.

Argument comparison Return value

Arg 1 < Arg 2 <0

Arg 1 = Arg 2 0

Arg 1 > Arg 2 >0

The ifx_gl_mbscoll() and ifx_gl_wcscoll() functions do not return a special value if
an error has occurred. Therefore, to detect an error condition, you must initialize
the ifx_gl_lc_errno() error number to zero before you call one of these functions
and check ifx_gl_lc_errno() after you call the function. The following code
fragment performs error checking for a call to the ifx_gl_wcscoll() function:
/* Initialize the error number */
ifx_gl_lc_errno() = 0;

/* Compare the two wide-character strings */
value = ifx_gl_wcscoll(wcs1, wcs1_char_length, wcs2,
wcs2_char_length);

/* If the error number has changed, ifx_gl_wcscoll() has

Chapter 2. Character processing 2-21

* set it to indicate the cause of an error */
if (ifx_gl_lc_errno() != 0)

/* Handle error */
else if (value < 0)

/* wcs1 is less than wcs2 */
else if (value == 0)

/* wcs1 is equal to wcs2 */
else if (value > 0)

/* wcs1 is greater than wcs2 */
...

Other operations
In addition to the operations on characters and strings, the IBM Informix GLS
library provides support for terminating characters and strings, allocating memory
for characters and strings, and truncating and fragmenting strings.

String and character termination
You can use the IBM Informix GLS library with many different application
programming interfaces (APIs), which might handle strings in different ways.

To provide flexible support for APIs, the Informix GLS library allows you to
indicate how to handle the following items:
v Character-string termination

Is the string argument a null-terminated string?
v Multibyte-character termination

Is the length of a multibyte character known?

Character-string termination

The API that you use with the IBM Informix GLS library might handle string
termination in either of the following ways:
v All character strings are terminated with a null character.

The null character indicates the end of the string. Such strings are called
null-terminated strings. The null terminator of a multibyte string consists of one
byte whose value is 0. The null terminator of a wide-character string consists of
one gl_wchar_t character whose value is 0.

v Each string consists of a pointer and length that indicates the number of bytes in
the string.
Character strings that are not null-terminated are called length-terminated
strings. Length-terminated strings can contain null characters, but these null
characters do not indicate the end of the string.

The Informix GLS functions that take a string argument allow you to pass this
string as either a null-terminated string or a length-terminated string. To provide
this flexibility, many Informix GLS functions that accept a multibyte or
wide-character string expect the string to be represented with the following two
arguments:
v The string itself
v The length of the string

The value that you provide for the string length tells the Informix GLS function
how to handle the associated string, as the following table shows.

2-22 IBM Informix GLS API Programmer's Guide

String-length value Meaning

IFX_GL_NULL The Informix GLS function assumes that the
string is a null-terminated string.

>=0 The Informix GLS function assumes that this
length indicates the number of bytes in the
length-terminated string.

<0, != IFX_GL_NULL The Informix GLS function sets the error
number to the IFX_GL_PARAMERR error.

Multibyte-character termination

Many GLS library functions operate on just one multibyte character. Each IBM
Informix GLS function that accepts a multibyte character expects the character to
be represented by the following two arguments:
v The character itself
v The maximum length of the character

The value that you provide for the character length tells the Informix GLS function
how to handle the associated character, as the following table shows.

String-length value Meaning

IFX_GL_NO_LIMIT The Informix GLS function reads as many
bytes as necessary from the multibyte
character to form a complete character.

>=0 The Informix GLS function does not read
more than this number of bytes from the
multibyte character when it tries to form a
complete character.

<0, != IFX_GL_NO_LIMIT The Informix GLS function sets the error
number to the IFX_GL_EINVAL error.

If the multibyte character is in a null-terminated multibyte string, the character
length must be IFX_GL_NO_LIMIT. For example, if mbs points to a
null-terminated string of multibyte characters, the following code fragment must
specify IFX_GL_NO_LIMIT as the character length:
for (mb = mbs; *mb != ’\0’; mb += bytes)

{
if ((bytes = ifx_gl_mblen(mb, IFX_GL_NO_LIMIT)) == -1)

/* handle error */
}

If a multibyte character, mb, is in a length-terminated multibyte string or is a
character in a buffer by itself, the character length must equal the number of bytes
between where mb points and the end of the buffer that holds the string or
character. For example, if mbs points to a length-terminated string of multibyte
characters and mbs_bytes is the number of bytes in that string, the following call
to ifx_gl_mblen() must specify the length of the multibyte string:
for (mb = mbs; mbs_bytes > 0; mb += bytes,

mbs_bytes -= bytes)
{
if ((bytes = ifx_gl_mblen(mb, mbs_bytes)) == -1)

/* handle error */
}

Chapter 2. Character processing 2-23

Similarly, if mb points to one multibyte character and mb_bytes is the number of
bytes in the buffer that holds the character, the following call to ifx_gl_mblen()
must specify the length of the multibyte character:
if ((bytes = ifx_gl_mblen(mb, mb_bytes)) == -1)

/* handle error */

If the Informix GLS function cannot determine whether bytes in a buffer make up
a valid multibyte character, it sets the error number to IFX_GL_EINVAL. The
function is unable to determine a valid multibyte character for the following
reasons:
v The function would need to read more than the specified number of bytes to

recognize a multibyte character.
v The specified character length is less than or equal to zero (<=0).

Tip: Wide characters are fixed length. Therefore, Informix GLS functions that
operate on wide characters do not require the character length.

Managing memory for strings and characters
You must make buffers large enough to hold text in any of the languages that your
application will handle.

If your application will handle many languages, you must ensure that allocated
buffers are large enough to hold translated versions of the text. If your application
will handle Asian (multibyte) languages, you need to replace single-byte buffers
with multibyte- or wide-character buffers.

Important: Any memory that IBM Informix GLS functions allocate remains
allocated only for the duration of the function. It does not remain after the function
returns. Therefore, you must manage memory for multibyte-character and
wide-character strings.

Multibyte-character-string allocation
Multibyte characters have varying lengths. When you represent a
multibyte-character string in an array, the number of array elements does not equal
the number of multibyte characters in the string. Therefore, you cannot use the
same allocation method for multibyte strings as for single-byte strings.

Instead, you can use the following IBM Informix GLS macro and functions to help
you determine how much memory a multibyte character requires.

IFX_GL_MB_MAX
Indicates the maximum number of bytes that any multibyte character in
any locale can occupy.

Use this macro to allocate space in static buffers that are intended to
contain one or more multibyte characters.

ifx_gl_mb_loc_max()
Returns the maximum number of bytes that any character in the current
locale can occupy.

ifx_gl_cv_outbuflen()
ifx_gl_case_conv_outbuflen()

Calculates one of the following values:
v Exactly the number of bytes that are required by a destination buffer of

the converted multibyte characters
v A close over-approximation of the number

2-24 IBM Informix GLS API Programmer's Guide

For example, the following declaration statically allocates 20 multibyte characters
for the mbs string:
gl_mchar_t mbs[20 * IFX_GL_MB_MAX]; /* static allocation */

The following declarations dynamically allocate 20 multibyte characters for the
mb1 and mb2 strings:
gl_mchar_t *mbs1 = (gl_mchar_t *) malloc(20*IFX_GL_MB_MAX);
gl_mchar_t *mbs2 = (gl_mchar_t *) malloc(20*ifx_gl_mb_loc_max());

The declaration for mb1 uses the maximum multibyte-character size. The
declaration for mb2 uses the ifx_gl_mb_loc_max() function to obtain a more
precise estimate for the size of 20 multibyte characters. The ifx_gl_mb_loc_max()
function returns the maximum size among all characters in the current processing
locale.

If your multibyte-character string is null terminated, allocate one additional byte
for the null terminator. The following declarations allocate three null-terminated
multibyte-character strings:
/* static allocation */
gl_mchar_t mbs[20*IFX_GL_MB_MAX+1];

/* dynamic allocation with IFX_GL_MB_MAX */
gl_mchar_t *mbs1 = (gl_mchar_t *) malloc(20*IFX_GL_MB_MAX+1);

/* dynamic allocation with ifx_gl_mb_loc_max() */
gl_mchar_t *mbs2 = (gl_mchar_t *)
malloc(20*ifx_gl_mb_loc_max()+1);

Wide-character-string allocation
When you represent a wide-character string in an array, the number of array
elements does equal the number of wide characters in the string. Therefore, you
can use the same allocation method for wide-character strings as for single-byte
strings.

For example, the following declaration statically allocates 20 wide characters for
the wcs string:
gl_wchar_t wcs[20];

The following declaration dynamically allocates 20 wide characters for the wc1
string:
gl_wchar_t *wcs1 = (gl_wchar_t *) malloc(20*sizeof(gl_wchar_t));

If your wide-character string is null terminated, you must allocate one additional
character for the null terminator. The null terminator requires the same space
allocated as an entire wide-character. The following declaration allocates three
null-terminated wide-character strings:
/* static allocation */
gl_wchar_t wcs[21];
/* dynamic allocation */
gl_wchar_t *wcs3 = (gl_wchar_t *) malloc(21*sizeof(gl_wchar_t));

String deallocation
The IBM Informix GLS library does not automatically deallocate memory that you
dynamically allocate. Once you no longer need the string buffer, you must ensure
that you deallocate any memory that your application has dynamically allocated
for multibyte-character and wide-character strings.

Chapter 2. Character processing 2-25

The DataBlade API does provide some automatic garbage collection for memory
that you allocate dynamically. When this memory is deallocated depends on the
memory duration with which it was allocated. However, it is good programming
practice to handle memory deallocation implicitly whenever possible. For more
information about memory management with the DataBlade API, see the IBM
Informix DataBlade API Programmer's Guide.

Keep multibyte strings consistent
You must take special measures to perform truncation and fragmentation operations
on multibyte strings so that you do not split a multibyte character.

Truncation
Makes a long character string fit into a smaller buffer.

Fragmentation
Breaks a long character string into two or more nonadjacent buffers to
meet the memory-management requirements of their components.

Truncate multibyte strings

Sometimes you need to truncate a long character string so that it fits into a smaller
buffer. When you truncate a character string that contains just single-byte
characters, you can truncate at an arbitrary byte location in the string. Because
each character is one byte long, the truncated result still contains only complete
characters.

However, to truncate a string that might contain even one multibyte character, you
must take special measures. If you truncate at an arbitrary byte location in a
multibyte-character string, you might truncate at a byte that is part of a multibyte
character. In this case, the truncated string might end with only the first 1, 2, or 3
bytes of a multibyte character without the remaining bytes of the character. For
such a string, subsequent traversal could result in an attempt to read beyond the
end of the buffer.

Therefore, all IBM Informix GLS functions that traverse one multibyte character or
a length-terminated multibyte-character string set the error number to
IFX_GL_EINVAL if they detect that an otherwise valid character has been
truncated.

If you know that no truncation has occurred to the string, you can consider the
IFX_GL_EINVAL error the same as IFX_GL_EILSEQ. However, if truncation might
have occurred, IFX_GL_EINVAL indicates that you need to further truncate the
string so that the last character in the string is complete. Depending on your
application, you might take one of the following actions:
v Make the truncated string even shorter than originally intended.
v Replace the first 1, 2, or 3 bytes of the truncated character with a padding

character that is appropriate for your application.

Important: Even though the Informix GLS library functions can detect invalid
characters after truncation has occurred, it is much better to avoid the situation.

Fragment multibyte strings

Sometimes you need to fragment a long character string into two or more
nonadjacent buffers to meet the memory-management requirements of their
components. When you fragment a character string that contains just single-byte

2-26 IBM Informix GLS API Programmer's Guide

characters, you can fragment at an arbitrary byte location in the string. Because
each character is one byte long, the fragmented results are still each a complete
character string.

However, to fragment a string that might contain even one multibyte character,
you must take special measures. If you fragment at an arbitrary byte location in a
multibyte-character string, you might fragment at a byte that is part of a multibyte
character. In this case, one fragment might end with the first 1, 2, or 3 bytes of a
character, while the next fragment starts with the remaining byte or bytes.

If the only thing that you ever do with these fragments is to concatenate them back
together to form one string, you do not need to perform any special processing.
However, if you need to traverse the fragments as multibyte strings, these
fragments might cause an attempt to read beyond the end of one fragment or an
illegal character at the beginning of the next fragment.

Therefore, all IBM Informix GLS functions that traverse one multibyte character or
a length-terminated multibyte-character string set the error number to
IFX_GL_EINVAL if they detect an otherwise valid character at the end of a
fragment.

Important: The Informix GLS functions cannot detect that the beginning of a
fragment contains the remaining bytes of the last character in some previous
fragment because they cannot look at the previous fragment first. Therefore, they
might interpret the last 1, 2, or 3 bytes of a multibyte character as a valid character.

If you know that no fragmentation has occurred on the string, you can consider
the IFX_GL_EINVAL error the same as IFX_GL_EILSEQ. However, if fragmentation
might have occurred, IFX_GL_EINVAL indicates that you need to fragment the
string so that each fragment is a complete string. Depending upon your
application, you might take one of the following actions:
v Make a fragment even shorter than originally intended.
v Replace the first 1, 2, or 3 bytes of the fragmented character with a padding

character that is appropriate for your application and shift these bytes to the
beginning of the next fragment.

Important: Even though the Informix GLS library functions can detect invalid
characters after fragmentation has occurred, it is much better to avoid the situation.

Chapter 2. Character processing 2-27

2-28 IBM Informix GLS API Programmer's Guide

Chapter 3. Data formatting

You must handle the format of locale-specific data in your applications.

These topics answer the following questions:
v What are the different locale-file categories and what locale-specific formats do

they define?
v How do you use the IBM Informix GLS library to convert and format

locale-specific data?
Related reference

Chapter 2, “Character processing,” on page 2-1

Locale-specific data formats
The format in which data appears within an application when it is in literal strings
or character variables is called the end-user format. End-user formats are locale
specific: different countries use different formats for numeric, monetary, date, and
date/time data.

The GLS locale file defines locale-specific formats for each of these types of data, as
the following table shows.

Type of data Locale-file category SQL built-in data types

Numeric LC_NUMERIC DECIMAL, INT8, INTEGER,
SMALLINT, FLOAT,
SMALLFLOAT

Monetary LC_MONETARY MONEY

Date and time LC_TIME DATE, DATETIME

For more information about the end-user formats that this section describes, see
the IBM Informix GLS User's Guide.

The LC_NUMERIC locale-file category
The LC_NUMERIC locale-file category is the section within a GLS locale file that
defines the locale-specific formats for strings that contain numeric data.

Numeric data is considered to be all values that contain digits except monetary
data. Therefore, integer, fixed-point, and floating-point numbers are all considered
numeric data. Strings of numeric data are called number strings.

Tip: In the IBM Informix GLS User's Guide, the LC_NUMERIC locale-file category is
sometimes referred to as the NUMERIC locale category. This manual uses
LC_NUMERIC as the category name for numeric data.

The LC_NUMERIC category of each locale file contains subcategories that define
the different numeric formats for that locale. The following table lists the numeric
formats and their corresponding LC_NUMERIC subcategory.

© Copyright IBM Corp. 1998, 2011 3-1

Numeric format LC_NUMERIC subcategory

Numeric decimal separator decimal_point

Numeric thousands separator thousands_sep

Numeric grouping information (number of
numeric digits to group together before
inserting a thousands separator)

grouping

Numeric positive sign num_positive_sign

Numeric negative sign num_negative_sign

The LC_MONETARY locale-file category
The LC_MONETARY locale-file category is the section within a GLS locale file that
defines the locale-specific formats for strings that contain monetary data.

Monetary data is considered to be values that contain digits and that represent
units of some currency. Therefore, only fixed-point numbers can be monetary data.
All other types of numbers (such as integer and floating-point) are considered to
be numeric data. Strings of monetary data are called money strings.

Tip: In the IBM Informix GLS User's Guide, the LC_MONETARY locale-file category
is sometimes referred to as the MONETARY locale category. This manual uses
LC_MONETARY as the category name for monetary data.

The LC_MONETARY category of each locale file contains subcategories that define
the different monetary formats for that locale. The following table lists the
monetary formats and their corresponding LC_MONETARY subcategory.

Monetary format LC_MONETARY subcategory

International currency symbol (in accordance
with the ISO 4217:1987 standard)

int_curr_symbol

National (local) currency symbol currency_symbol

Monetary decimal separator mon_decimal_point

Monetary thousands separator mon_thousands_sep

Monetary grouping information (number of
monetary digits to group together before
inserting a thousands separator)

mon_grouping

Monetary positive sign positive_sign

Monetary negative sign negative_sign

Number of fractional digits (those digits to
the right of the decimal separator) to use in
the international monetary format

int_frac_digits

Number of fractional digits (those digits to
the right of the decimal separator) to use in
the national (local) monetary format

frac_digits

Whether the currency symbol precedes or
follows the monetary value

p_cs_precedes, n_cs_precedes

Whether to separate the currency symbol
from the monetary value with a space

p_sep_by_space, n_sep_by_space

Position of positive and negative signs in a
monetary value

p_sign_posn, n_sign_posn

3-2 IBM Informix GLS API Programmer's Guide

Tip: The DBMONEY environment variable can also specify formats for locale-specific
formats for money strings.

For definitions of any of these monetary formats (such as currency symbol, decimal
separator, or thousands separator) and more information about the DBMONEY
environment variable, see the IBM Informix GLS User's Guide.

The LC_TIME locale-file category
The LC_TIME locale-file category is the section within a GLS locale file that defines
the locale-specific formats for strings that contain date and time data.

Such strings are called date strings (which contain only date data) or date/time
strings (which contain date and time data).

Tip: In the IBM Informix GLS User's Guide, the LC_TIME locale-file category is
sometimes referred to as the TIME locale category. This manual uses LC_TIME as
the category name for date and time data.

The LC_TIME category of each locale file contains subcategories that define the
different date and time formats. The following table lists the available formats and
their corresponding LC_TIME subcategory.

Date/time format LC_TIME subcategory

Abbreviated weekday names abday

Full weekday names day

Abbreviated month names abmon

Full month names mon

Date representation d_fmt

Time representation t_fmt

Date/time representation d_t_fmt

a.m. and p.m. equivalents am_pm

Representation of date/time with a.m. and
p.m. indicators

t_fmt_ampm

Era names era

Representation of date with eras era_d_fmt

Representation of time with eras era_t_fmt

Representation of date/time with eras era_d_t_fmt

Alternative digits to use in date and time
strings

alt_digits

Tip: The GL_DATE, GL_DATETIME, DBDATE, and DBTIME environment variables can also
specify formats for locale-specific formats for date and time strings.

For definitions of any of these date or time formats (such as eras) and information
about related environment variables, see the IBM Informix GLS User's Guide.

Conversion and formatting with Informix GLS
The IBM Informix GLS library provides functions that allow you to perform the
conversion and formatting tasks on locale-specific data.

Chapter 3. Data formatting 3-3

Conversion
Changes a string that contains locale-specific formats to the internal
representation of its value.

You usually perform conversion on a locale-specific string to prepare it for
storage in a program variable or a database column.

Formatting
Changes the internal representation of a value to a locale-specific string.

You usually perform formatting of a locale-specific string to prepare the
internal representation of a value for display or printing to the end user.

The internal representation of a value is one that can be stored directly in a
database column. The following table lists the SQL data types for the internal
representations along with the ESQL/C and DataBlade API data types that hold
these internal representations.

Type of data SQL data type ESQL/C data type
DataBlade API data
type

Numeric DECIMAL

* SMALLINT,
INTEGER, INT8,
FLOAT,
SMALLFLOAT

decimal (dec_t) mi_decimal

Monetary MONEY decimal (dec_t) mi_decimal

Date DATE date (long int) mi_date

Date and time DATETIME datetime (dtime_t) mi_datetime

* Numeric data includes integer, floating-point, and fixed-point numbers. The IBM
Informix GLS conversion and formatting functions represent all these numeric data
types with the decimal (or mi_decimal) data type. To convert the decimal (or
mi_decimal) representation to an integer or floating-point value, use a library
function such as dectoint(), dectolong(), or dectodbl(). For more information about
these decimal-conversion functions, see the IBM Informix ESQL/C Programmer's
Manual.

The following table lists the functions that the Informix GLS library provides for
the conversion and formatting of locale-specific data.

Table 3-1. Informix GLS conversion and formatting functions

Locale-specific data Conversion Formatting

Numeric ifx_gl_convert_number() ifx_gl_format_number()

Monetary ifx_gl_convert_money() ifx_gl_format_money()

Date ifx_gl_convert_date() ifx_gl_format_date()

Date/time ifx_gl_convert_datetime() ifx_gl_format_datetime()

The conversion and formatting functions in the preceding table accept a format
string to indicate how to handle a locale-specific string. A format string is
composed of white spaces, ordinary characters, and one or more formatting
directives. A formatting directive consists of the following characters:
v A percent symbol (%)
v Optional format modifiers
v A type-specifier character, which determines the type of conversion

3-4 IBM Informix GLS API Programmer's Guide

For example, the ifx_gl_convert_number() function supports the following
formatting directive: %0x

In the preceding formatting directive, 0 is a format modifier that indicates padding,
and x is a type specifier that indicates the hexadecimal format of a number.

Convert a locale-specific string

The IBM Informix GLS conversion functions scan the incoming locale-specific
string to create a corresponding internal representation, as follows.

Conversion function Unconverted form

Converted form

ESQL/C data
type

DataBlade API
data type

ifx_gl_convert_number() Number string decimal (dec_t) mi_decimal

ifx_gl_convert_money() Money string decimal (dec_t) mi_decimal

ifx_gl_convert_date() Date string date (long int) mi_date

ifx_gl_convert_datetime() Date/time string datetime
(dtime_t)

mi_datetime

The formatting directives in the format string tell the conversion functions what
conversions to perform on the locale-specific string. To process a formatting
directive, a conversion function consults the appropriate category in the current
locale to obtain any locale-specific formats and then converts the resulting value to
an internal representation that can be stored in a database.

For example, if the current locale is the default locale, the following DataBlade API
call to the ifx_gl_convert_number() function converts the number string "1,450" to
its hexadecimal equivalent in an mi_decimal value:
mi_decimal num_val;
...
if (ifx_gl_convert_number(&num_val, "1,450","%0x") != 0)

/* handle error */

In the current locale, the thousands separator is defined as the comma (,) symbol.
Therefore, the ifx_gl_convert_number() function must correctly interpret the
comma in the number string so that it can convert this string to the hexadecimal
equivalent of the value 1450 and store the result in the mi_decimal value,
num_val.

If the current locale is French (fr_fr), the thousands separator is a space. Therefore,
the following call to ifx_gl_convert_number() must interpret a space as the
thousands separator to convert the French number string ("1 450") successfully to
its mi_decimal equivalent:
mi_decimal *num_val;
...
if (ifx_gl_convert_number(num_val, "1 450","%0x") != 0)

/* handle error */

Format a locale-specific string

The IBM Informix GLS conversion functions scan the incoming locale-specific
string to create a corresponding internal representation, as follows.

Chapter 3. Data formatting 3-5

Formatting function

Unformatted form

Formatted form
ESQL/C internal
representation

DataBlade API
internal
representation

ifx_gl_format_number() decimal (dec_t) mi_decimal Number string

ifx_gl_format_money() decimal (dec_t) mi_decimal Money string

ifx_gl_format_date() date (long int) mi_date Date string

ifx_gl_format_datetime() datetime (dtime_t) mi_datetime Date/time string

The formatting directives in the format string tell the formatting functions how to
format the internal representation of a value into a locale-specific string. To process
a formatting directive, a formatting function consults the appropriate category in
the current locale to obtain any locale-specific formats and then formats the
locale-specific string with this information.

For example, the following DataBlade API call to the function
ifx_gl_format_number() converts the hexadecimal representation of the number
1450 to a number string:
mi_decimal num_val;
char num_str[BUFSIZE];
...
if (ifx_gl_format_number(num_str, BUFSIZE, &num_val,"%0x") != 0)

/* handle error */

If the current locale is the default locale, num_str contains the number string
"1,450" upon successful completion of this call to ifx_gl_format_number(). The
function correctly formats the comma (,) as the thousands separator in the number
string. If the current locale is French (fr_fr), the thousands separator is a space.
Therefore, the preceding call to the function ifx_gl_convert_number() would
format the French number string as "1 450".

3-6 IBM Informix GLS API Programmer's Guide

Chapter 4. Informix GLS functions

These topics describe the functions that the IBM Informix GLS library provides.
First is a summary of functions by categories. The rest of the topics provide
reference information about the Informix GLS public functions, in alphabetical
order.

For information about DataBlade API header files and data structures to use with
the functions, see the IBM Informix DataBlade API Programmer's Guide.

Function summary
This topic groups all the functions of the IBM Informix GLS library by task.

Memory allocation

The Informix GLS library provides the following macro and function to assist in
memory allocation:
v The IFX_GL_MB_MAX macro
v The ifx_gl_mb_loc_max() function

For more information, see “Allocate memory” on page 1-12.

Initialization and error handling

The Informix GLS library provides the following functions:
v The ifx_gl_init() function initializes the Informix GLS library.

For more information, see “Initialize the Informix GLS library” on page 1-10.
v The ifx_gl_lc_errno() function obtains the value of the Informix GLS error

number.
For more information, see “Informix GLS exceptions” on page 1-11.

Stream input and output

The Informix GLS library provides the ifx_gl_getmb() and ifx_gl_putmb()
functions to input and output multibyte characters in a user-defined location.

For more information, see “Input and output streams” on page 1-12.

Character processing

Most of the Informix GLS functions provide support for character processing of
both multibyte and wide characters. This section lists the character-processing tasks
and the Informix GLS functions that support them. For general information about
character processing, see Chapter 2, “Character processing,” on page 2-1.

Code-set conversion

The Informix GLS library provides the following functions to perform code-set
conversion:
v ifx_gl_conv_needed()

© Copyright IBM Corp. 1998, 2011 4-1

v ifx_gl_cv_mconv()

v ifx_gl_cv_outbuflen()

v ifx_gl_cv_sb2sb_table()

For general information, see “Code-set conversion” on page 2-13.

Character classification

The Informix GLS library provides the following functions for character
classification of multibyte and wide characters.

Multibyte-character classification Wide-character classification

ifx_gl_ismalnum() ifx_gl_iswalnum()

ifx_gl_ismalpha() ifx_gl_iswalpha()

ifx_gl_ismblank() ifx_gl_iswblank()

ifx_gl_ismcntrl() ifx_gl_iswcntrl()

ifx_gl_ismdigit() ifx_gl_iswdigit()

ifx_gl_ismgraph() ifx_gl_iswgraph()

ifx_gl_ismlower() ifx_gl_iswlower()

ifx_gl_ismprint() ifx_gl_iswprint()

ifx_gl_ismpunct() ifx_gl_iswpunct()

ifx_gl_ismspace() ifx_gl_iswspace()

ifx_gl_ismupper() ifx_gl_iswupper()

ifx_gl_ismxdigit() ifx_gl_iswxdigit()

For general information, see “Character classification” on page 2-5.

Case conversion

The Informix GLS library provides the following functions for case conversion of
multibyte and wide characters.

Multibyte-character case conversion Wide-character case conversion

ifx_gl_tomlower() ifx_gl_towlower()

ifx_gl_tomupper() ifx_gl_toupper()

ifx_gl_mbsspn() ifx_gl_wcsspn()

In addition, the Informix GLS library provides the function
ifx_gl_case_conv_outbuflen(). For general information, see “Case conversion” on
page 2-8.

String traversal

The Informix GLS library provides the following functions for string traversal of
multibyte-character strings:
v ifx_gl_mblen()

v ifx_gl_mbsnext()

v ifx_gl_mbsprev()

For general information, see “String traversal” on page 2-18.

String processing

4-2 IBM Informix GLS API Programmer's Guide

The Informix GLS library provides the following functions for string processing of
multibyte and wide characters.

Multibyte-character classification Wide-character classification

ifx_gl_mbscat() ifx_gl_wcscat()

ifx_gl_mbschr() ifx_gl_wcschr()

ifx_gl_mbscpy() ifx_gl_wcscpy()

ifx_gl_mbscspn() ifx_gl_wcscspn()

ifx_gl_mbslen() ifx_gl_wcslen()

ifx_gl_mbsmbs() ifx_gl_wcswcs()

ifx_gl_mbsncat() ifx_gl_wcsncat()

ifx_gl_mbsncpy() ifx_gl_wcsncpy()

ifx_gl_mbsntslen() ifx_gl_wcsntslen()

ifx_gl_mbsntsbytes() None

ifx_gl_mbspbrk() ifx_gl_wcspbrk()

ifx_gl_mbsrchr() ifx_gl_wcsrchr()

ifx_gl_mbsspn() ifx_gl_wcsspn()

For general information, see “String processing” on page 2-19.

Character/string comparison and sorting

The Informix GLS library provides the ifx_gl_mbscoll() and ifx_gl_wcscoll()
functions to obtain locale-specific order for characters and strings.

For general information, see “Character/string comparison and sorting” on page
2-20.

Data formatting

The Informix GLS library provides functions to support the conversion and
formatting of locale-specific strings. This section lists the data types that involve
locale-specific strings and the Informix GLS functions that support them. For
general information about data formatting, see Chapter 3, “Data formatting,” on
page 3-1.

Date and time conversion and formatting functions

The Informix GLS library provides the following functions for conversion and
formatting of date and date/time strings:
v ifx_gl_convert_date()

v ifx_gl_convert_datetime()

v ifx_gl_format_date()

v ifx_gl_format_datetime()

Numeric conversion and formatting

The Informix GLS library provides the ifx_gl_convert_number() and ifx_gl_format
number() functions for conversion and formatting of number strings.

Money conversion and formatting

Chapter 4. Informix GLS functions 4-3

The Informix GLS library provides the ifx_gl_convert_money() and
ifx_gl_format_money() functions for conversion and formatting of money strings.

Function reference
This section describes the syntax, usage, and return values of IBM Informix GLS
functions in alphabetical order.

The ifx_gl_case_conv_outbuflen() function
The ifx_gl_case_conv_outbuflen() function calculates an approximation of the
number of bytes required to store a case-converted multibyte character.

Syntax
#include <ifxgls.h>
...
int ifx_gl_case_conv_outbuflen(src_mbs_bytes)

int src_mbs_bytes;

src_mbs_bytes
The integer number of bytes in the buffer of multibyte characters to be case
converted.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_case_conv_outbuflen() function returns one of the following values:
v The exact number of bytes that a buffer of case-equivalent multibyte characters

requires
v A close over-approximation of this number of bytes

This buffer can contain one or more multibyte characters. This function applies to
both uppercase and lowercase conversions.

Use this function to determine whether case conversion of multibyte characters can
be performed in place. If the value that this function returns is not equal to
src_mbs_bytes, case conversion of multibyte characters cannot be performed in
place. You must allocate a separate multibyte destination buffer. However, if the
value that this function returns is exactly equal to src_mbs_bytes, multibyte case
conversion can be performed in place.

Tip: This function does not apply to wide-character case conversions.

Return values

>0 The number of bytes required to store multibyte characters of length
src_mbs_bytes after they have been converted to either lowercase or
uppercase characters.

0 The function was not successful.

Errors

None

4-4 IBM Informix GLS API Programmer's Guide

Related reference

“The ifx_gl_tomlower() function” on page 4-113
“The ifx_gl_tomupper() function” on page 4-115

The ifx_gl_conv_needed() function
The ifx_gl_conv_needed() function determines whether code-set conversion
between two code sets is required.

Syntax
#include <ifxgls.h>
...
int ifx_gl_conv_needed(dst_codeset, src_codeset)

char *dst_codeset;
char *src_codeset;

dst_codeset
A pointer to the name of the destination (target) code set.

src_codeset
A pointer to the name of the source code set.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_conv_needed() function determines whether characters encoded in
src_codeset require conversion to dst_codeset. It is not enough to compare the names
of the code sets because several names can identify the same code set. For
example, 8859-1, 819, and Latin-1 refer to the same code set.

The code sets, src_codeset and dst_codeset, can be any of the following:
v Locale names
v Code-set names
v The IFX_GL_PROC_CS macro

Return values

0 Code-set conversion is not needed between the code sets that dst_codeset
and src_codeset specify.

1 Code-set conversion is needed between the code sets that dst_codeset and
src_codeset specify.

-1 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

If an error occurred, the function sets the ifx_gl_lc_errno() error number to one of
the following values.

IFX_GL_EINVAL
The src_codeset string is not a valid locale specification or code-set name, or
the code-set name could not be mapped to a code-set number.

Chapter 4. Informix GLS functions 4-5

IFX_GL_EBADF
Function cannot find the code-set registry.

IFX_GL_BADFILEFORM
Bad format found in the code-set registry.

Related reference

“The ifx_gl_cv_mconv() function” on page 4-25
“The ifx_gl_cv_outbuflen() function” on page 4-28
“The ifx_gl_cv_sb2sb_table() function” on page 4-29
“The ifx_gl_lc_errno() function” on page 4-84

The ifx_gl_convert_date() function
The ifx_gl_convert_date() function converts a date string to its internal date
representation.

Syntax
#include <ifxgls.h>
...
int ifx_gl_convert_date(date, datestr, format)

mi_date *date;
char *datestr;
char *format;

date A pointer to the variable that holds the internal date representation that
ifx_gl_convert_date() creates from the datestr date string.

datestr A pointer to the first character of the date string that the function converts
to its internal date representation.

format A pointer to the format string that determines how to interpret the datestr
date string. For more information, see “Format string.”

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_convert_date() function converts the date string that datestr references to
its internal date representation, which the function stores in the date argument. The
function uses the format that the format string specifies to scan the datestr date
string.

The date argument is a pointer to a date (4-byte int) value.

The date argument is a pointer to an mi_date value.

Format string

If format is NULL, the ifx_gl_convert_date() function determines the format of the
datestr date string that it scans from the environment, as follows:
1. If the DBDATE environment variable is set, the function scans datestr according to

the order of the format elements in DBDATE.
2. If the GL_DATE environment variable is set, the function scans datestr according

to the specification of GL_DATE.

4-6 IBM Informix GLS API Programmer's Guide

3. Otherwise, the function obtains the format from the d_fmt subcategory of the
LC_TIME category in the current GLS locale file.

If format is not NULL, it must point to a string that follows the rules that this
section describes. To convert the datestr date string, ifx_gl_convert_date() compares
each character in datestr with the format string. It takes the following actions for
each possible character that it finds in format.

Contents of format string Conversion action taken

One or more white space characters The function skips over the corresponding
number of white space characters in the
datestr date string (unless the formatting
directive begins with the minus-sign
modifier), up to the first character that is not
white space or until no more characters can
be scanned. White space characters are
characters that the blank class of the
LC_CTYPE category in the current locale
defines.

To execute a series of formatting directives
composed of %n, %t, white space characters,
or any combination, the function scans up to
the first character that is not white space
(which remains unscanned) or until no more
characters can be scanned.

A valid formatting directive The function performs the specified
conversion on the date element in the datestr
date string. It replaces the formatting
directive with an internal representation of
the date element for conversion to the date
value. There must be white space or other
nonalphanumeric characters between any
two formatting directives.

Ordinary characters The function must find the same ordinary
character in the datestr date string. Any
mismatch generates an error. The differing
and subsequent characters in datestr remain
unscanned.

You cannot include white space characters as
ordinary characters.

The formatting directive consists of the following sequence:
%[modifiers][flags][maximum_width][.minimum_width]type_specifier

Argument See

modifiers “Modified formatting directives” on page 4-9

flags “Field width” on page 4-10

minimum_width “Field width” on page 4-10

maximum_width “Field width” on page 4-10

type_specifier “Valid type specifiers” on page 4-8

Tip: In the preceding format sequence, the square brackets indicate that the
enclosed portion of the format is optional.

Chapter 4. Informix GLS functions 4-7

Valid type specifiers

The type specifier is a letter (or letters) within a formatting directive that identifies
a format for the ifx_gl_convert_date() function to expect when it scans a date
element of a datestr string. These date formats are formats that the LC_TIME
locale-file category of the current locale might define. The ifx_gl_convert_date()
function supports the following formatting directives to represent a date element.

%a Matches the day of the week. You can specify the abbreviated weekday
name, which the abday subcategory of the LC_TIME defines or specify the
full weekday name, which the day subcategory of LC_TIME defines.

%A Same as %a.

%b Matches the month. You can specify the abbreviated month name, which
the abmon subcategory of LC_TIME defines or specify the full month
name, which the mon subcategory of LC_TIME defines.

%B Same as %b.

%C Matches the century number in the range 0 - 99. Leading zeros are
permitted but not required. If %C is used without %y, it is ignored.

%d Matches the day of the month as a decimal number in the range 1 - 31.
Leading zeros are permitted but not required.

%e Same as %d.

%h Same as %b.

%j Matches the day of the year as a decimal number in the range 1 - 366.
Leading zeros are permitted but not required.

%m Matches the month as a decimal number in the range 1 - 12. Leading zeros
are permitted but not required.

%n Matches any horizontal white space that the blank class of the LC_CTYPE
category defines.

%t Matches any vertical white space that the space class of the LC_CTYPE
category defines.

%u Matches the weekday as a decimal number in the range 1 -7, with 0
representing Sunday. Leading zeros are permitted but not required.

%w Matches the weekday as a decimal number in the range 0 - 6, with 0
representing Sunday. Leading zeros are permitted but not required.

%x Indicates use of the format that the d_fmt subcategory of LC_TIME
defines.

%y Matches the year within century as a decimal number in the range 0 - 99.
Leading zeros are permitted but not required. If %y is used without %C
and the month and day of month are part of the datestr string, the function
determines the century from the DBCENTURY environment variable.

%Y Matches the year, including the century, as a decimal number in the range
0 - 9999.

%% Matches the % symbol.

Tip: The ifx_gl_convert_date() function ignores case when it matches items such
as month or weekday names.

4-8 IBM Informix GLS API Programmer's Guide

If the format string contains redundant formatting directives, directives that are
closer to the end of the format string take precedence over the directives that are
closer to the beginning of the format string.

If a formatting directive does not correspond to any of the preceding directives, the
behavior of the conversion is undefined.

Modified formatting directives

You can modify some formatting directives with format modifiers, which follow
the percent symbol (%), to indicate use of an alternative format that the LC_TIME
locale-file category of the current locale might define. The ifx_gl_convert_date()
function supports the following format modifiers.

E Use formats that include the era-based dates.

LC_TIME Subcategory: era, era_d_fmt

O Use alternative locale-specific digits in dates.

LC_TIME Subcategory: alt_digits

The alternative format replaces one that an unmodified formatting directive
normally uses. If the alternative format does not exist for the current locale, the
behavior is the same as if unmodified formatting directives were used. The
ifx_gl_convert_date() function supports the following modified formatting
directives with the E and O modifier.

%EC Matches the name of the base year (period) in the alternative
representation. You can specify either the abbreviated or full name, which
the era subcategory of LC_TIME defines.

%Eg Same as %EC.

%Ex Indicates use of the format that the era_d_fmt subcategory of LC_TIME
category defines.

%Ey Matches the offset from %EC (year only) in the alternative representation,
which the era subcategory of LC_TIME defines.

%EY Uses the alternative digits that the alt_digits subcategory of LC_TIME
defines to match the full alternative year representation, which the era
subcategory of LC_TIME defines.

%Od Uses the alternative digits that the alt_digits subcategory of LC_TIME
defines to match the day of the month. Leading zeros are permitted but
not required.

%Oe Same as %Od.

%Om Uses the alternative digits that the alt_digits subcategory of LC_TIME
defines to match the month.

%Ow Uses the alternative digits that the alt_digits subcategory of LC_TIME
defines to match the weekday as a number (Sunday=0).

%Oy Uses the alternative digits that the alt_digits subcategory of LC_TIME
defines to match the value of %Ey.

The ifx_gl_convert_date() function needs the era base, era offset, day, and month
to determine the year from era information. The function uses a default era offset
of 1 if you specify era base, day, and month but not era offset.

Chapter 4. Informix GLS functions 4-9

The ifx_gl_convert_date() function also supports the i modifier in the following
formatting directives to support formats that are compatible with earlier IBM
Informix date and time formatting.

%iy Indicates use of the Informix DBDATE format Y2. Both 98 and 1998 are
interpreted as 1998 (or the century that DBCENTURY indicates).

%iY Indicates use of the Informix DBDATE format Y4. Both 98 and 1998 are
interpreted as 1998 (or the century that DBCENTURY indicates).

Field width

You can modify some formatting directives with the following modifiers to
indicate use of an alternative format that the LC_TIME locale-file category of the
current locale might define:
[- | 0][maximum_width][.minimum_width]

[- | 0]
Indicates field justification.

If the specification begins with a minus sign (-), the function assumes that
the field is left-aligned. In this case, the value that is being read must start
with a digit and can be trailed with spaces. The field can be preceded with
leading spaces unless the first character is 0. If the specification begins with
0, the function assumes that the field is right-aligned. Any padding to the
left must use zeros. Otherwise, the function assumes that the datestr string
is right-aligned.

maximum_width
A decimal number that indicates an optional maximum field width.

minimum_width
Indicates an optional minimum field width. The minimum field width has
the format of a period (.) followed by a decimal number. The
minimum_width decimal number represents the minimum number of
characters to read. If the function reads fewer than minimum_width
characters, it generates an error (unless you specified left justification).
When you specify left justification, the function skips any trailing white
space to read the required number of characters.

Locale information

The LC_TIME category of the current locale affects the behavior of this function
because it provides the locale-specific information for the scan of the datestr date
string. For more information, see “The LC_TIME locale-file category” on page 3-3.

Return values

0 The function was successful.

-1 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

If an error occurs, this function returns -1 and sets the ifx_gl_lc_errno() error
number to one of the following values.

IFX_GL_E2BIG
Operation would overflow buffer.

4-10 IBM Informix GLS API Programmer's Guide

IFX_GL_EBADF
A formatting directive is invalid.

IFX_GL_INVALIDFMT
The format string is invalid.

IFX_GL_EDAYRANGE
Day number is out of bounds.

IFX_GL_EWKDAYRANGE
Weekday number is out of bounds.

IFX_GL_EYDAYRANGE
Yearday number is out of bounds.

IFX_GL_EMONTHRANGE
Month number is out of bounds.

IFX_GL_EYEARRANGE
Year number is out of bounds.

IFX_GL_EERAOFFRANGE
Era offset is out of bounds.

IFX_GL_BADDAY
Month (as a number) could not be scanned.

IFX_GL_BADWKDAY
Weekday (as a number) could not be scanned.

IFX_GL_BADYDAY
Day of year (as a number) could not be scanned.

IFX_GL_BADMONTH
Month could not be scanned.

IFX_GL_BADYEAR
Year could not be scanned.

IFX_GL_BADERANAME
Era name is invalid.

IFX_GL_BADERAOFFSET
Era offset is invalid.

IFX_GL_BADFMTMOD
Format modifier is invalid.

IFX_GL_BADFMTWP
Width is invalid.

IFX_GL_BADINPUT
Input string does not match format string.

IFX_GL_NOPOINT
Missing decimal point in input string.

IFX_GL_BADMONTHSTR
Month string could not be scanned.

IFX_GL_BADERASPEC
Could not load era from locale.

Chapter 4. Informix GLS functions 4-11

Related reference

“The ifx_gl_convert_datetime() function”
“The ifx_gl_format_date() function” on page 4-30
“The ifx_gl_lc_errno() function” on page 4-84

The ifx_gl_convert_datetime() function
The ifx_gl_convert_datetime() function converts a date/time string to its internal
date/time representation.

Syntax
#include <ifxgls.h>
...
int ifx_gl_convert_datetime(datetime, datetimestr, format)

mi_datetime *datetime;
char *datetimestr;
char *format;

datetime
A pointer to the variable that holds the internal date/time representation
that ifx_gl_convert_datetime() creates from the datetimestr date/time string.

datetimestr
A pointer to the first character of the date/time string that the function
converts to its internal date/time representation.

format A pointer to the format string that determines how to interpret the
datetimestr date/time string. For more information, see “Format string” on
page 4-6.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_convert_datetime() function converts the date/time string that
datetimestr references to its internal date/time representation, which the function
stores in the datetime argument. The function uses the format that the format string
specifies to scan the datetimestr date/time string.

The datetime argument is a pointer to a datetime (dtime_t) value.

The datetime argument is a pointer to an mi_datetime value.

Format string

If format is NULL, the ifx_gl_convert_datetime() function determines the format of
the datetimestr date/time string that it scans from the environment, as follows:
1. If the DBTIME environment variable is set, the function scans according to

DBTIME.
2. If the GL_DATETIME environment variable is set, the function scans datetimestr

according to the specification of GL_DATETIME.
3. Otherwise, the function obtains the format from the d_t_fmt subcategory of the

LC_TIME category in the current GLS locale file.

4-12 IBM Informix GLS API Programmer's Guide

If format is not NULL, it must point to a string that follows the rules that this
section describes. To convert the datetimestr date/time string,
ifx_gl_convert_datetime() compares each character in datetimestr with the format
string. It takes the following actions for each possible character that it finds in
format.

Contents of format string Conversion action taken

One or more white space characters The function skips over the corresponding
number of white space characters in the
datetimestr date/time string (unless the
formatting directive begins with the
minus-sign modifier), up to the first
character that is not white space or until no
more characters can be scanned. White space
characters are characters that the blank class
of the LC_CTYPE category in the current
locale defines.

To execute a series of formatting directives
composed of %n, %t, white space characters,
or any combination, the function scans up to
the first character that is not white space
(which remains unscanned) or until no more
characters can be scanned.

A valid formatting directive The function performs the specified
conversion on the date/time element in the
datetimestr date/time string. It replaces the
formatting directive with an internal
representation of the date/time element for
conversion to the datetime value. There must
be white space or other nonalphanumeric
characters between any two formatting
directives.

Ordinary characters The function must find the same ordinary
character in the datetimestr date/time string.
Any mismatch generates an error. The
differing and subsequent characters in
datetimestr remain unscanned.

You cannot include white space characters as
ordinary characters.

The formatting directive consists of the following sequence:
%[modifiers][flags][maximum_width][.minimum_width]type_specifier

Argument See

modifiers “Modified formatting directives” on page
4-15

flags “Field width” on page 4-17

minimum_width “Field width” on page 4-17

maximum_width “Field width” on page 4-17

type_specifier “Valid type specifiers” on page 4-14

Tip: In the preceding format sequence, the square brackets indicate that the
enclosed portion of the format is optional.

Chapter 4. Informix GLS functions 4-13

Valid type specifiers

The type specifier is a letter (or letters) within a formatting directive that identifies
a format for the ifx_gl_convert_datetime() function to expect when it scans a
date/time element of a datetimestr string. These date/time formats are formats that
the LC_TIME locale-file category of the current locale might define. The
ifx_gl_convert_datetime() function supports the following formatting directives to
represent a date/time element.

%a Matches the day of the week. You can specify the abbreviated weekday
name, which the abday subcategory of the LC_TIME defines or specify the
full weekday name, which the day subcategory of LC_TIME defines. The
directive ignores case when it matches weekday names.

%A Same as %a.

%b Matches the month. You can specify the abbreviated month name, which
the abmon subcategory of LC_TIME defines or specify the full month
name, which the mon subcategory of LC_TIME defines. The directive
ignores case when it matches month names.

%B Same as %b.

%c Indicates use of the format that the d_t_fmt subcategory of the LC_TIME
defines for the scan.

%C Matches the century number in the range 0 - 99. Leading zeros are
permitted but not required. If %C is used without %y, it is ignored.

%d Matches the day of the month as a decimal number in the range 1 - 31.
Leading zeros are permitted but not required.

%D Is the same as %m/%d/%y.

%e Same as %d.

%F[n] Matches the microsecond as a decimal number in the range 0 - 999999.
Leading zeros are permitted but not required. An optional precision
specification can follow the %F. This n value must be 1 - 5.

%h Same as %b.

%H Matches the hour (24-hour clock) as a decimal number in the range 0 - 23.
Leading zeros are permitted but not required.

%I Matches the hour (12-hour clock) as a decimal number in the range 0 - 12.
Leading zeros are permitted but not required. If %I is used without %p,
the function assumes a.m.

%j Matches the day of the year as a decimal number in the range 1 - 366.
Leading zeros are permitted but not required.

%M Matches the minute as a decimal number in the range 0 - 59. Leading zeros
are permitted but not required.

%n Matches any white space that the blank class of the LC_CTYPE category
defines.

%p Matches the equivalent of either a.m. or p.m. that the am_pm subcategory
of LC_TIME defines.

%r Indicates use of the format that the t_fmt_ampm subcategory of LC_TIME
defines.

%R Matches the time as %H:%M.

4-14 IBM Informix GLS API Programmer's Guide

%S Matches the second as a decimal number in the range 0- 61. Leading zeros
are permitted but not required.

%t Matches any white space that the space class of the LC_CTYPE category
defines.

%T Matches the time as %H:%M:%S.

%u Matches the weekday as a decimal number in the range 1- 7, with 0
representing Sunday. Leading zeros are permitted but not required.

%w Matches the weekday as a decimal number in the range 0 - 6, with 0
representing Sunday. Leading zeros are permitted but not required.

%x Indicates use of the format that the d_fmt subcategory of LC_TIME
defines.

%X Indicates use of the format that the t_fmt subcategory of LC_TIME defines.

%y Matches the year within century as a decimal number in the range 0 - 99.
Leading zeros are permitted but not required. If %y is used without %C
and the month and day of month are part of the datetimestr string, the
function determines the century from the DBCENTURY environment variable.

%Y Matches the year, including the century, as a decimal number in the range
0 - 9999.

%% Matches the % symbol.

Tip: The ifx_gl_convert_datetime() function ignores case when it matches items
such as month or weekday names.

If the format string contains redundant formatting directives, directives that are
closer to the end of the format string take precedence over the directives that are
closer to the beginning of the format string.

If a formatting directive does not correspond to any of the preceding directives, the
behavior of the conversion is undefined.

Modified formatting directives

You can modify some formatting directives with format modifiers, which follow
the percent symbol (%), to indicate use of an alternative format that the LC_TIME
locale-file category of the current locale might define. The
ifx_gl_convert_datetime() function supports the following format modifiers.

E Use formats that include the era-based dates and times.

LC_TIME Subcategory: era, era_d_fmt, era_t_fmt, era_d_t_fmt

O Use alternative locale-specific digits in dates and times.

LC_TIME Subcategory: alt_digits

The alternative format replaces one that an unmodified formatting directive
normally uses. If the alternative format does not exist for the current locale, the
behavior is the same as if unmodified formatting directives were used. The
ifx_gl_convert_datetime() function supports the following modified formatting
directives with the E and O modifier.

%Ec Indicates use of the format that the era_d_t_fmt subcategory of LC_TIME
defines.

Chapter 4. Informix GLS functions 4-15

%EC Matches the name of the base year (period) in the alternative
representation. You can specify either the abbreviated or full name, which
the era subcategory of LC_TIME defines.

%Eg Same as %EC.

%Ex Indicates use of the format that the era_d_fmt subcategory of LC_TIME
category defines.

%EX Indicates use of the format that the era_t_fmt subcategory of LC_TIME
defines.

%Ey Matches the offset from %EC in the alternative representation, which the
era subcategory of LC_TIME defines.

%EY Matches the full alternative year representation that the era subcategory of
LC_TIME defines.

%Od Uses the alternative digits that the alt_digits subcategory of LC_TIME
defines to match the day of the month. Leading zeros are permitted but
not required.

%Oe Same as %Od.

%OH Uses the alternative digits that the alt_digits subcategory of LC_TIME
defines to match the hour (24-hour clock).

%OI Uses the alternative digits that the alt_digits subcategory of LC_TIME
defines to match the hour (12-hour clock).

%Om Uses the alternative digits that the alt_digits subcategory of LC_TIME
defines to match the month.

%OM Uses the alternative digits that the alt_digits subcategory of LC_TIME
defines to match the minutes.

%OS Uses the alternative digits that the alt_digits subcategory of LC_TIME
defines to match the seconds.

%Ow Uses the alternative digits that the alt_digits subcategory of LC_TIME
defines to match the weekday as a number (Sunday=0).

%Oy Uses the alternative digits that the alt_digits subcategory of LC_TIME
defines to match the value of %Ey.

The ifx_gl_convert_datetime() function needs the era base, era offset, day, and
month to determine the year from era information. The function uses a default era
offset of 1 if you specify era base, day, and month but not era offset.

The ifx_gl_convert_datetime() function also supports the i modifier in the
following formatting directives to support formats that are compatible with earlier
IBM Informix date and time formatting.

%iF[n] Indicates use of the Informix DBTIME format %F. An optional precision
specification, n, can follow F. This n value must be 1 - 5.

%iy Indicates use of the Informix DBDATE format Y2. Both 98 and 1998 are
interpreted as 1998 (or the century that DBCENTURY indicates).

%iY Indicates use of the Informix DBDATE format Y4. Both 98 and 1998 are
interpreted as 1998 (or the century that DBCENTURY indicates).

4-16 IBM Informix GLS API Programmer's Guide

Field width

You can specify an optional field width in a formatting directive. This information
follows the initial percent symbol (%) of the formatting directive and has the
following format:
[- | 0][maximum_width][.minimum_width]

[- | 0]
Indicates field justification.

If the specification begins with a minus sign (-), the function assumes that
the field is left-aligned. In this case, the value that is being read must start
with a digit and can be trailed with spaces. The field can be preceded with
leading spaces unless the first character is 0. If the specification begins with
0, the function assumes that the field is right-aligned. Any padding to the
left must use zeros. Otherwise, the function assumes that the datetimestr
string is right-aligned.

maximum_width
A decimal value that specifies the maximum number of characters to read
from the datetimestr date/time string.

minimum_width
Indicates an optional minimum field width. The minimum field width has
the format of a period (.) followed by a decimal number. The
minimum_width decimal number represents the minimum number of
characters to read. If the function reads fewer than minimum_width
characters, it generates an error (unless you specified left justification).
When you specify left justification, the function skips any trailing white
space to read the required number of characters.

Tip: The ifx_gl_convert_datetime() function ignores any field-width specification
for any nonnumeric or compound formats.

For the %Fn format, n overrides the minimum field width. If n is greater than the
maximum field width, the maximum field width is increased to n. If n is not 1 - 5,
an error is returned.

Locale information

The LC_TIME category of the current locale affects the behavior of this function
because it provides the locale-specific information for the scan of the datetimestr
date/time string.

Return values

0 The function was successful.

-1 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

If an error occurs, this function returns -1 and sets the ifx_gl_lc_errno() error
number to one of the following values.

IFX_GL_EBADF
A formatting directive is invalid.

Chapter 4. Informix GLS functions 4-17

IFX_GL_EFRACRANGE
Fraction of second is out of bounds.

IFX_GL_ESECONDRANGE
Second is out of bounds.

IFX_GL_EHOURRANGE
Hour is out of bounds.

IFX_GL_EMINUTERANGE
Minute is out of bounds.

IFX_GL_EDAYRANGE
Day number is out of bounds.

IFX_GL_EWKDAYRANGE
Weekday number is out of bounds.

IFX_GL_EYDAYRANGE
Year day number is out of bounds.

IFX_GL_EMONTHRANGE
Month number is out of bounds.

IFX_GL_EYEARRANGE
Year number is out of bounds.

IFX_GL_EERAOFFRANGE
Era offset is out of bounds.

IFX_GL_BADFRAC
Fraction could not be scanned.

IFX_GL_BADSECOND
Second could not be scanned.

IFX_GL_BADMINUTE
Minute could not be scanned.

IFX_GL_BADHOUR
Hour could not be scanned.

IFX_GL_BADDAY
Month (as a number) could not be scanned.

IFX_GL_BADWKDAY
Weekday (as a number) could not be scanned.

IFX_GL_BADYDAY
Day of year (as a number) could not be scanned.

IFX_GL_BADMONTH
Month could not be scanned.

IFX_GL_BADYEAR
Year could not be scanned.

IFX_GL_BADERANAME
Era name was not found.

IFX_GL_BADERAOFFSET
Era offset could not be scanned.

4-18 IBM Informix GLS API Programmer's Guide

Related concepts

“The LC_TIME locale-file category” on page 3-3
Related reference

“The ifx_gl_convert_date() function” on page 4-6
“The ifx_gl_format_datetime() function” on page 4-36
“The ifx_gl_lc_errno() function” on page 4-84

The ifx_gl_convert_money() function
The ifx_gl_convert_money() function converts a money string to its internal money
representation.

Syntax
#include <ifxgls.h>
...
int ifx_gl_convert_money(money, monstr, format)

mi_money *money;
char *monstr;
char *format;

money A pointer to the variable that holds the internal money representation that
ifx_gl_convert_money() creates from the monstr money string.

monstr A pointer to the first character of the money string that the function
converts to its internal money representation.

format A pointer to the format string that determines how to interpret the monstr
money string. For more information, see “Format string”

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_convert_money() function converts the money string that monstr
references to its internal money representation, which the function stores in the
money argument. The function uses the format that the format string specifies to
scan the monstr money string.

The money argument is a pointer to a decimal (dec_t) value.

The money argument is a pointer to an mi_money value.

Format string

If format is NULL, the ifx_gl_convert_money() function determines the format of
the monstr money string that it scans from the environment, as follows:
1. If the DBMONEY environment variable is set, the function scans monstr, as DBMONEY

specifies.
2. Otherwise, the function uses the formats in the LC_MONETARY category of

the current GLS locale to scan the money value.

If format is not NULL, it must point to a string that follows the rules that this
section describes. To convert the monstr money string, the function
ifx_gl_convert_money() compares each character in monstr with the format string. It
takes the following actions for each possible character that it finds in format.

Chapter 4. Informix GLS functions 4-19

Contents of format string Conversion action taken

One or more white space characters The function skips over the corresponding
number of white space characters in the
monstr money string (unless the formatting
directive begins with the minus-sign
modifier), up to the first character that is not
white space or until no more characters can
be scanned. White space characters are
characters that the blank class of the
LC_CTYPE category in the current locale
defines.

A valid formatting directive The function performs the specified
conversion on the monetary element in the
monstr money string. It replaces the
formatting directive with an internal
representation of the monetary element for
conversion to the money value. Only one
formatting directive is allowed in the format
string.

Ordinary characters The function must find the same ordinary
character in the monstr money string. Any
mismatch generates an error. The differing
and subsequent characters in monstr remain
unscanned.

You cannot include white space characters as
ordinary characters.

The formatting directive consists of the following sequence:
%[flags][maximum_width]type_specifier

Argument See

flags “Field width” on page 4-21

maximum_width “Field width” on page 4-21

type_specifier “Valid type specifiers”

Tip: In the preceding format sequence, the square brackets indicate that the
enclosed portion of the format is optional.

Valid type specifiers

The type specifier is a letter or letters within a formatting directive that identify a
format for the ifx_gl_convert_money() function to expect when it scans a monetary
element of a monstr string. The LC_MONETARY locale-file category of the current
locale might define these monetary formats. The ifx_gl_convert_money() function
supports the following formatting directives to represent a monetary element.

%i Matches the international monetary format (which uses the
int_curr_symbol subcategory of the LC_MONETARY category in the
current locale) for the monstr argument. For example, in the default locale,
the international monetary format for 1,234.56 is the “USD 1,234.56” string.
Declare the corresponding money value as (double *).

%n Matches the national currency format (which uses the currency_symbol of
the LC_MONETARY category in the current locale) for the monstr

4-20 IBM Informix GLS API Programmer's Guide

argument. For example, in the default locale, the national monetary format
for 1,234.56 is the “$1,234.56” string. Declare the corresponding money
value as (double *).

%% Matches a % character. No corresponding argument is needed.

If a formatting directive does not correspond to any of the preceding directives, the
behavior of the conversion is undefined.

Field width

You can specify an optional field width in a formatting directive. This information
follows the initial percent symbol (%) of the formatting directive and has the
following format:
[’][-][maximum_width]

[’] Indicates grouping rules.

If the specification begins with a single quotation mark ('), the field is
expected to follow the grouping rules in the LC_MONETARY category of
the current locale.

[-] Indicates field justification.

If the specification begins with a minus sign (-), the function expects the
first character of the monstr money string to be the first character of the
value to be converted. The function does not skip white space characters in
monstr but reports them as an error.

If you omit the minus sign (-), the function assumes that the monstr string
is right-aligned, and it skips any initial white space characters.

maximum_width
A decimal value that specifies the maximum number of characters to read
from the monstr money string.

Locale information

The LC_MONETARY category of the current locale affects the behavior of this
function because it provides the locale-specific information for the scan of the
monstr money string. For more information, see “The LC_MONETARY locale-file
category” on page 3-2.

Return values

0 The function was successful.

-1 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

If an error occurred, this function returns -1 and sets the ifx_gl_lc_errno() error
number to the following value.

IFX_GL_INVALIDFMT
The format string is invalid.

Chapter 4. Informix GLS functions 4-21

Related reference

“The ifx_gl_convert_number() function”
“The ifx_gl_format_money() function” on page 4-42
“The ifx_gl_lc_errno() function” on page 4-84

The ifx_gl_convert_number() function
The ifx_gl_convert_number() function converts a number string to its internal
decimal representation.

Syntax
#include <ifxgls.h>
...
int ifx_gl_convert_number(number, numstr, format)

mi_number *number;
char *numstr;
char *format;

number
A pointer to the variable that holds the internal decimal representation that
ifx_gl_convert_number() creates from the numstr number string.

numstr A pointer to the first character of the number string that the function
converts to its internal decimal representation.

format A pointer to the format string that determines how to interpret the numstr
number string. For more information, see “Format string”

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_convert_number() function converts the number string that numstr
references to its internal decimal representation, which the function stores in the
number argument. The function uses the format that the format string specifies to
scan the numstr number string.

The number argument is a pointer to a decimal (dec_t) value.

The number argument is a pointer to an mi_decimal value.

Format string

If format is NULL, the function uses the formats in the LC_NUMERIC category of
the current GLS locale file to scan the numstr number string. If format is not NULL,
it must point to a string that follows the rules that this section describes.

To convert the numstr number string, ifx_gl_convert_number() compares each
character in numstr with the format string. It takes the following actions for each
possible character that it finds in format.

4-22 IBM Informix GLS API Programmer's Guide

Contents of format string Conversion action taken

One or more white space characters The function skips over the corresponding
number of white space characters in the
numstr number string (unless the formatting
directive begins with the minus-sign
modifier), up to the first character that is not
white space or until no more characters can
be scanned. White space characters are
characters that the blank class of the
LC_CTYPE category in the current locale
defines.

A valid formatting directive The function performs the specified
conversion on the numeric element in the
numstr number string. It replaces the
formatting directive with an internal
representation of the numeric element for
conversion to the number value. Only one
formatting directive is allowed in the format
string.

Ordinary characters The function must find the same ordinary
character in the numstr number string. Any
mismatch generates an error. The differing
and subsequent characters in numstr remain
unscanned.

The formatting directive consists of the following sequence:
%[flags][maximum_width[.minimum_width]]type_specifier

Argument See

flags “Field width” on page 4-24

maximum_width “Field width” on page 4-24

minimum_width “Field width” on page 4-24

type_specifier “Valid type specifiers”

Tip: In the preceding format sequence, the square brackets indicate that the
enclosed portion of the format is optional.

Valid type specifiers

The type specifier is a letter or letters within a formatting directive that identify a
format for the ifx_gl_convert_number() function to expect when it scans a numeric
element of a numstr string. These numeric formats are formats that the
LC_NUMERIC locale-file category of the current locale might define. The
ifx_gl_convert_number() function supports the following formatting directives to
represent a numeric element.

%b Matches a binary integer.

%d Matches a decimal integer

%e Matches a floating-point number

%E Same as %e.

%f Same as %e.

Chapter 4. Informix GLS functions 4-23

%g Same as %e.

%G Same as %e.

%i Same as %d.

%o Matches an octal integer.

%q Matches a base-4 integer.

%u Matches an unsigned decimal integer.

%x Matches a hexadecimal integer.

%X Same as %x.

Field width

You can specify an optional field width in a formatting directive. This information
follows the initial percent symbol (%) of the formatting directive and has the
following format:
[-][maximum_width][.minimum_width]

[-] Indicates field justification.

If the specification begins with a minus sign (-), the function expects the
first character of the numstr number string to be the first character of the
value to be converted. The function does not skip white space characters in
numstr but reports them as an error.

If you omit the minus sign (-), the function assumes that the numstr string
is right-aligned, and it skips any initial white space characters.

maximum_width
A decimal value that specifies the maximum number of characters to read
from the numstr money string.

minimum_width
Indicates an optional minimum field width. The minimum field width has
the format of a period (.) followed by a decimal number. The
minimum_width decimal number represents the minimum number of
characters to read. If the function reads fewer than minimum_width
characters, it generates an error (unless you specified left justification).
When you specify left justification, the function skips any trailing white
space to read the required number of characters.

Locale information

The LC_NUMERIC category of the current locale affects the behavior of this
function because it provides the locale-specific information for the scan of the
numstr number string.

Return values

0 The function was successful.

-1 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

If an error occurred, this function returns -1 and sets the ifx_gl_lc_errno() error
number to one of the following values.

4-24 IBM Informix GLS API Programmer's Guide

IFX_GL_INVALIDFMT
The format string is invalid.

IFX_GL_PARAMERR
The type specifier in the formatting directive is invalid.

Related concepts

“The LC_NUMERIC locale-file category” on page 3-1
Related reference

“The ifx_gl_convert_money() function” on page 4-19
“The ifx_gl_format_number() function” on page 4-46
“The ifx_gl_lc_errno() function” on page 4-84

The ifx_gl_cv_mconv() function
The ifx_gl_cv_mconv() function converts characters from one code set to another.

Syntax
#include <ifxgls.h>
...
int ifx_gl_cv_mconv(state, dst, dst_bytesleft, dst_codeset, src, src_bytesleft,

src_codeset)
conv_state_t *state;
gl_mchar_t **dst;
int *dst_bytesleft;
char *dst_codeset;
gl_mchar_t **src;
int *src_bytesleft;
char *src_codeset;

state Points to a conv_state_t structure. For more information, see “Convert
fragmented strings” on page 4-26.

dst Points to a pointer to the first character in the destination buffer. If dst is
NULL, the function updates *src, *src_bytesleft, and *dst_bytesleft, but the
converted data is not written to *dst.

dst_bytesleft
Points to the maximum number of bytes to write to *dst.

dst_codeset
A pointer to the name of the destination (target) code set.

src Points to a pointer to the first character in the source buffer.

src_bytesleft
Points to the number of bytes in *src to convert. If src_bytesleft is NULL, the
function converts data until it reaches a null character in the source buffer.

src_codeset
A pointer to the name of the source code

Valid in client application Valid in DataBlade UDR

Yes Yes

Chapter 4. Informix GLS functions 4-25

Usage

The ifx_gl_cv_mconv() function converts the string of multibyte characters in *src
to the same characters, but encoded in another code set, and stores the result in the
buffer that *dst references. The ifx_gl_cv_mconv() function updates the following
arguments:
v The function updates src to point to the byte that follows the last source

character successfully converted.
v The function updates the integer that src_bytesleft references to the number of

bytes in *src that have not been converted. After a successful conversion,
src_bytesleft points to 0.

v The function updates dst to point to the first character of the code-set-converted
text.

v The function updates the integer that dst_bytesleft references to the number of
bytes still available in *dst.

Specify code sets

The code sets, src_codeset and dst_codeset, can be any of the following items:
v Locale names
v Code-set names
v The IFX_GL_PROC_CS macro

For more information, see “Specify code-set names” on page 2-14.

Calculate the size of the destination buffer

The number of bytes written to *dst might be more or fewer than the number of
bytes read from *src. You can determine the number of bytes that will be written to
*dst in one of the following ways:
v The function ifx_gl_cv_outbuflen() calculates an estimate based on the

*src_bytesleft value.
v The following expression is the maximum number of bytes that will be written

to *dst for any value of *src in any locale:
(*srcbytesleft) * IFX_GL_MB_MAX

Of these options, the last method is the fastest. The ifx_gl_cv_outbuflen() function
is the slowest but the most precise.

Convert fragmented strings

The state argument is a pointer to a conv_state_t structure. You must allocate a
conv_state_t structure and set the first_frag and last_frag fields of the conv_state_t
structure to tell the ifx_gl_cv_mconv() function whether the string to be converted
is a fragment.

The following table lists the different fragments of a string and the corresponding
values to which you must set these two conv_state_t fields.

String fragment Value of first_frag field Value of last_frag field

String is the first of n
fragments.

1 0

4-26 IBM Informix GLS API Programmer's Guide

String fragment Value of first_frag field Value of last_frag field

String is one of the 2nd, ...,
nth-1 fragments.

0 0

String is the last (nth)
fragment.

0 1

String is not fragmented; it is
a complete string.

1 1

Important: The conv_state_t structure contains other fields that are for internal use
only. IBM Informix does not guarantee that these other internal fields of
conv_state_t will not change in future releases. Therefore, to create portable code,
set only the first_frag and last_frag fields of the conv_state_t structure.

Locale information

For more information on the use of the conv_state_t structure, see “Preserve state
information” on page 2-15.

Return values

0 The code-set conversion was successful, and the *src, *src_bytesleft, *dst, and
*dst_bytesleft arguments have been updated. If the entire source buffer is
converted, the *srcbytesleft value is 0.

-1 The function was not successful, and the error number is set to indicate the
cause. See the Errors section. If the source conversion is stopped due to an
error, the *srcbytesleft value is greater than 0.

Errors

If an error occurred, this function returns -1 and sets the ifx_gl_lc_errno() error
number to one of the following values.

IFX_GL_FILEERR
Retrieving the conversion information for the specified code sets failed.
This failure might be due to invalid code-set names, a missing registry file,
a missing code-set-conversion object file or one with an incorrect format, or
insufficient memory for the code-set-conversion object.

IFX_GL_EILSEQ
The *src value contains an invalid character. Conversion stops after both
the last successfully converted source and destination character.

IFX_GL_EINVAL
The function cannot determine whether the last character of *src is a valid
character or the end of shift sequence because it would need to read more
than *src_bytesleft bytes from *src. Conversion stops after the last
successfully converted source and destination character.

IFX_GL_E2BIG
Not enough space is available in the destination buffer. Conversion stops
after both the last successfully converted source and destination character.

Chapter 4. Informix GLS functions 4-27

Related concepts

“Code-set conversion” on page 2-13
“Keep multibyte strings consistent” on page 2-26
“Fragment multibyte strings” on page 2-26
Related reference

“The ifx_gl_conv_needed() function” on page 4-5
“The ifx_gl_cv_outbuflen() function”
“The ifx_gl_cv_sb2sb_table() function” on page 4-29
“The ifx_gl_lc_errno() function” on page 4-84

The ifx_gl_cv_outbuflen() function
The ifx_gl_cv_outbuflen() function calculates an approximation of the number of
bytes required to store a code-set converted multibyte character.

Syntax
#include <ifxgls.h>
...
int ifx_gl_cv_outbuflen(dst_codeset, src_codeset, src_bytes)

char *dst_codeset;
char *src_codeset;
int src_bytes;

dst_codeset
A pointer to the name of the destination (target) code set.

src_codeset
A pointer to the name of the source code set.

src_bytes
The number of bytes in the buffer of multibyte characters to be code-set
converted.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_cv_outbuflen() function returns one of the following values:
v The exact number of bytes that a buffer of code-set-converted multibyte

characters requires
v A close over-approximation of this number of bytes

Use this function to determine whether code-set conversion of multibyte characters
can be performed in place. If the value that this function that returns is not equal
to src_bytes, code-set conversion of multibyte characters cannot be performed in
place. You must allocate a separate multibyte destination buffer. However, if the
value that this function returns is exactly equal to src_bytes, you can perform
multibyte code-set conversion in place.

The code sets, src_codeset and dst_codeset, can be any of the following:
v Locale names
v Code-set names
v The IFX_GL_PROC_CS macro

4-28 IBM Informix GLS API Programmer's Guide

Return values

>=0 The number of bytes required to store multibyte characters of length
src_bytes after they have been code-set converted.

-1 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

If an error occurred, this function returns -1 and sets the ifx_gl_lc_errno() error
number to the following value.

IFX_GL_FILEERR
Retrieval of the conversion information for the specified code sets failed.
This failure might be due to invalid code-set names, a missing registry file,
a missing code-set-conversion object file or one with an incorrect format, or
insufficient memory for the code-set-conversion object.

Related concepts

“Code-set conversion” on page 2-13
“Specify code-set names” on page 2-14
Related reference

“The ifx_gl_conv_needed() function” on page 4-5
“The ifx_gl_cv_mconv() function” on page 4-25
“The ifx_gl_cv_sb2sb_table() function”
“The ifx_gl_lc_errno() function” on page 4-84

The ifx_gl_cv_sb2sb_table() function
The ifx_gl_cv_sb2sb_table() function returns the single-byte conversion table from
the source code set to the destination code set.

Syntax
#include <ifxgls.h>
...
int ifx_gl_cv_sb2sb_table(dst_codeset, src_codeset, array)

char *dst_codeset;
char *src_codeset;
unsigned char **array;

dst_codeset
A pointer to the name of the destination (target) code set.

src_codeset
A pointer to the name of the source code set.

array A pointer to a variable that points to a table of unsigned char values
representing the conversion

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

If the code-set conversion from src_codeset to dst_codeset converts from one
single-byte code set to another single-byte code set (where no substitution
conversions occur), the ifx_gl_cv_sb2sb_table() function sets array to an array of

Chapter 4. Informix GLS functions 4-29

256 unsigned char values that represent the conversion. If the code-set conversion
is not of this form, the function sets array to NULL.

The code sets, src_codeset and dst_codeset, can be any of the following:
v Locale names
v Code-set names
v The IFX_GL_PROC_CS macro

Return values

0 The function was successful, and the array argument points to the
conversion table.

-1 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

If an error occurred, this function returns -1 and sets the ifx_gl_lc_errno() error
number to the following value.

IFX_GL_FILEERR
Retrieval of the conversion information for the specified code sets failed.
This failure might be due to invalid code-set names, a missing registry file,
a missing code-set-conversion object file or one with an incorrect format, or
insufficient memory for the code-set-conversion object.

Related concepts

“Code-set conversion” on page 2-13
“Specify code-set names” on page 2-14
Related reference

“The ifx_gl_conv_needed() function” on page 4-5
“The ifx_gl_cv_mconv() function” on page 4-25
“The ifx_gl_cv_outbuflen() function” on page 4-28
“The ifx_gl_lc_errno() function” on page 4-84

The ifx_gl_format_date() function
The ifx_gl_format_date() function formats an internal date value to a date string.

Syntax
#include <ifxgls.h>
...
int ifx_gl_format_date(datestr, datebytes, date, format)

char *datestr;
int datebytes;
mi_date *date;
char *format;

datestr A pointer to the first character in the date string that the function formats
from its internal date representation.

datebytes
The size of the datestr buffer for the date string. This size is the maximum
size that the formatted string can reach.

date A pointer to the variable that holds the internal representation that
ifx_gl_format_date() formats to create the datestr date string.

4-30 IBM Informix GLS API Programmer's Guide

format A pointer to the format string that determines how to interpret the datestr
date string. For more information, see “Format string.”

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_format_date() function uses the format that the format string specifies to
format the internal date representation in date as a date string. It stores the
resulting date string in a buffer that datestr references.

The date argument is a pointer to a date (4-byte int) value.

The date argument is a pointer to an mi_date value.

Format string

If format is NULL, the ifx_gl_format_date() function determines the format for the
datestr date string that it creates from the environment, as follows:
1. If the DBDATE environment variable is set, the function scans datestr according to

the order of the format elements in DBDATE.
2. If the GL_DATE environment variable is set, the function scans datestr according

to the specification of GL_DATE.
3. Otherwise, the function obtains the format from the d_fmt subcategory of the

LC_TIME category in the current GLS locale file.

If format is not NULL, it must point to a string that follows the rules that this
section describes. To format the datestr date string, ifx_gl_format_date() takes the
following actions for each possible character that it finds in format.

Contents of format string Conversion action taken

Valid formatting directives The function performs the specified
formatting of the data in the date argument.
It replaces the formatting directive with a
string representation of a date element for
the datestr date string.

Ordinary characters The function copies the ordinary character
unchanged to the datestr date string.
Ordinary characters include the null
terminator and white space characters.

The formatting directive consists of the following sequence:
%[modifiers][flag][width][.precision]type_specifier

Argument See

modifiers “Modified formatting directives” on page
4-33

flag “Field width and precision” on page 4-34

width “Field width and precision” on page 4-34

precision “Field width and precision” on page 4-34

type_specifier “Valid type specifiers” on page 4-32

Chapter 4. Informix GLS functions 4-31

Tip: In the preceding format sequence, the square brackets indicate that the
enclosed portion of the format is optional.

Valid type specifiers

The type specifier is a letter or letters within a formatting directive that identify a
format for the ifx_gl_format_date() function to use when it creates a date element
of a datestr string. These date formats are formats that the LC_TIME locale-file
category of the current locale might define. The ifx_gl_format_date() function
supports the following formatting directives to represent a date element.

%a Replaced by the abbreviated weekday name that the abday subcategory of
LC_TIME defines.

%A Replaced by the full weekday name that the day subcategory of LC_TIME
defines.

%b Replaced by the abbreviated month name that the abmon subcategory of
LC_TIME defines.

%B Replaced by the full month name that the mon subcategory of LC_TIME
defines.

%C Replaced by the century number (the year divided by 100 and truncated to
an integer as a decimal number in the range 00-00).

%d Replaced by the day of the month as a decimal number in the range 1 - 31.

%D Same as %m/%d/%y.

%e Replaced by the day of the month as a decimal number in the range 1 - 31;
a single digit is preceded by a space.

%h Same as %b.

%j Replaced by the day of the year as a decimal number in the range 1 - 366.

%m Replaced by the month as a decimal number in the range 1 - 12.

%n Replaced by a newline character.

%t Replaced by a tab character.

%u Replaced by the weekday as a decimal number in the range 1 - 7, with 1
representing Monday.

%w Replaced by the weekday as a decimal number in the range 0 - 6, with 0
representing Sunday.

%x Indicates use of the format that the d_fmt subcategory of LC_TIME
defines.

%y Replaced by year without century as a decimal number in the range 0 -99.

%Y Replaced by year with century as a decimal number in the range 0 - 99.

%% Replaced by the % symbol.

If a formatting directive does not correspond to any of the preceding directives, the
behavior of the conversion is undefined.

4-32 IBM Informix GLS API Programmer's Guide

Modified formatting directives

You can modify some formatting directives with format modifiers, which follow
the percent symbol (%), to indicate use of an alternative format that the LC_TIME
locale-file category of the current locale might define. The ifx_gl_format_date()
function supports the following format modifiers.

E Use formats that include the era-based dates.

LC_TIME subcategory: era, era_d_fmt

O Use alternative locale-specific digits in dates.

LC_TIME subcategory: alt_digits

The alternative format replaces one that an unmodified formatting directive
normally uses. If the alternative format does not exist for the current locale, the
behavior is the same as if unmodified formatting directives were used. The
ifx_gl_format_date() function supports the following modified formatting
directives with the E and O modifier.

%EC Replaced by the name of the base year (period) that the era subcategory of
LC_TIME defines.

%Eg Replaced by the abbreviated name of the base year (period) that the era
subcategory of LC_TIME defines.

%Ex The value of the era_d_fmt subcategory of the LC_TIME category for the
current locale is temporarily used as the format string.

%Ey Replaced by the offset from %EC (year only) that the era subcategory of
LC_TIME defines.

%EY Replaced by the full alternative year representation that the era
subcategory of LC_TIME defines.

%Oe Replaced by the day of the month, using the alternative digits that the
alt_digits subcategory of LC_TIME defines. This formatting directive fills
as needed with leading spaces.

%Om Replaced by the month, using the alternative digits that the alt_digits
subcategory of LC_TIME defines.

%Ou Replaced by the weekday as a number, using the alternative digits that the
alt_digits subcategory of LC_TIME defines (Monday=1).

%Oy Replaced by the value of %Ey, using the alternative digits that the
alt_digits subcategory of LC_TIME defines.

The ifx_gl_format_date() function also supports the i modifier in the following
formatting directives to support formats that are compatible with earlier IBM
Informix date and time formatting.

%iy Replaced by the Informix DBDATE format Y2. This format prints the
two-digit year offset.

%iY Replaced by the Informix DBDATE format Y4. This format prints the full
four-digit year.

Chapter 4. Informix GLS functions 4-33

Field width and precision

You can also specify an optional field width and precision in a formatting
directive. This information precedes the type specifier in the formatting directive
and has the following format:
[- | 0][width][.precision]

[- | 0]
Indicates field justification.

If the specification begins with a minus sign (-), the function left-aligns the
field and pads it with spaces on the right. If the value begins with 0, the
function right-aligns the field and pads it with zeros on the left. Otherwise,
the function right-aligns the field and pads it with spaces on the left.

width A decimal value that specifies a minimum field width for the formatted
datestr value.

precision
The format has the format of a period (.) followed by a decimal value. The
field width specifier can optionally be followed by a precision directive. For
more information about the purpose of precision, see the following table.

The values of width and precision affect each element of the directive. For example,
%6.4D is interpreted as "%6.4m/%6.4d/%6.4y".

The precision value has the following effects on the different formatting directives.

Formatting directives Effect of precision

%C, %d, %e, %Ey, %iy, %iY, %j, %m, %u,
%w, %y, %Y

The value of precision specifies the minimum
number of digits to appear. If a directive
supplies fewer digits than precision specifies,
the function pads the value with leading
zeros.

The %d, %Ey, %iy, %m, %u, %w, and %y
directives have a default precision of 2. The
%j directive has a default precision of 3. The
%Y and %iY directives have a default
precision of 4.

%a, %A, %b, %B, %EC, %Eg, %h The value of precision specifies the maximum
number of characters to be used. If a value to
be formatted has more characters than the
precision specifies, the function truncates the
result on the right.

%Ex, %EY, %n, %t, %x, %% The values of width and precision do not
affect these directives.

Directives modified with O (alternative
digits)

The field width relates to display width
rather than actual number of digits; precision
is still the minimum number of digits
printed.

Locale information

The LC_TIME category of the current locale affects the behavior of this function
because it provides the locale-specific information for the formatting of the date
value.

4-34 IBM Informix GLS API Programmer's Guide

Return values

0 The function was successful.

-1 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

If an error occurs, this function returns -1 and sets the ifx_gl_lc_errno() error
number to one of the following values.

IFX_GL_E2BIG
Formatting stopped due to lack of space in the buffer.

IFX_GL_EBADF
A formatting directive is invalid.

IFX_GL_EDAYRANGE
Day number is out of bounds.

IFX_GL_EWKDAYRANGE
Weekday number is out of bounds.

IFX_GL_EYDAYRANGE
Year day number is out of bounds.

IFX_GL_EMONTHRANGE
Month number is out of bounds.

IFX_GL_EYEARRANGE
Year number is out of bounds.

IFX_GL_BADDAY
Month (as a number) could not be scanned.

IFX_GL_BADWKDAY
Weekday (as a number) could not be scanned.

IFX_GL_BADYDAY
Day of year (as a number) could not be scanned.

IFX_GL_BADMONTH
Month could not be scanned.

IFX_GL_BADYEAR
Year could not be scanned.

IFX_GL_BADERANAME
Era name was not found.

IFX_GL_BADERAOFFSET
Era offset could not be scanned.

Chapter 4. Informix GLS functions 4-35

Related concepts

“The LC_TIME locale-file category” on page 3-3
Related reference

“The ifx_gl_convert_date() function” on page 4-6
“The ifx_gl_format_datetime() function”
“The ifx_gl_lc_errno() function” on page 4-84

The ifx_gl_format_datetime() function
The ifx_gl_format_datetime() function formats an internal date/time value to a
date/time string.

Syntax
#include <ifxgls.h>
...
int ifx_gl_format_datetime(datetimestr, datetimebytes, datetime, format)

char *datetimestr;
int datetimebytes;
mi_datetime *datetime;
char *format;

datetimestr
A pointer to the first character in the date/time string that the function
formats from its internal datetime representation.

datetimebytes
The size of the datetimestr buffer for the date/time string. This size is the
maximum size that the formatted string can reach.

datetime
A pointer to the variable that holds the internal representation that
ifx_gl_format_datetime() formats to create the datetimestr date/time string.

format A pointer to the format string that determines how to interpret the
datetimestr date/time string. For more information, see “Format string.”

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_format_datetime() function uses the format that the format string
specifies to format the internal date/time representation in datetime as a date/time
string. It stores the resulting date/time string in a buffer that datetimestr references.

The datetime argument is a pointer to a datetime (dtime_t) value.

The datetime argument is a pointer to an mi_datetime value.

Format string

If format is NULL, the ifx_gl_format_datetime() function determines the format of
the datetimestr date/time string that it creates from the environment, as follows:
1. If the DBTIME environment variable is set, the function formats datetimestr

according toDBTIME.
2. If the GL_DATETIME environment variable is set, the function formats datetimestr

according to the specification of GL_DATETIME.

4-36 IBM Informix GLS API Programmer's Guide

3. Otherwise, the function obtains the format from the d_t_fmt subcategory of the
LC_TIME category in the current GLS locale file.

If format is not NULL, it must point to a string that follows the rules that this
section describes. To format the datetimestr date/time string,
ifx_gl_format_datetime() takes the following actions for each possible character
that it finds in format.

Contents of format string Conversion action taken

Valid formatting directives The function performs the specified
formatting of the data in the datetime
argument. It replaces the formatting directive
with a string representation of a date or time
element for the datetimestr date/time string.

Ordinary characters The function copies the ordinary character
unchanged to the datetimestr date/time
string. Ordinary characters include the null
terminator and white space characters.

The formatting directive consists of the following sequence:
%[modifiers][flag][width][.precision]type_specifier

Argument See

modifiers “Modified formatting directives” on page
4-39

flag “Field width and precision” on page 4-40

width “Field width and precision” on page 4-40

precision “Field width and precision” on page 4-40

type_specifier “Valid type specifiers”

Tip: In the preceding format sequence, the square brackets indicate that the
enclosed portion of the format is optional.

Valid type specifiers

The type specifier is a letter or letters within a formatting directive that identify a
format for the ifx_gl_format_datetime() function to use when it creates a date or
time element of a datetimestr string. These date and time formats are formats that
the LC_TIME locale-file category of the current locale might define. The
ifx_gl_format_datetime() function supports the following formatting directives to
represent a date or time element that the LC_TIME locale-file category of the
current locale might define.

%a Replaced by the abbreviated weekday name that the abday subcategory of
LC_TIME defines.

%A Replaced by the full weekday name that the day subcategory of LC_TIME
defines.

%b Replaced by the abbreviated month name that the abmon subcategory of
LC_TIME defines.

%B Replaced by the full month name that the mon subcategory of LC_TIME
defines.

Chapter 4. Informix GLS functions 4-37

%c Indicates use of the format that the d_t_fmt subcategory of LC_TIME
defines.

%C Replaced by the century number (the year divided by 100 and truncated to
an integer as a decimal number [00-00]).

%d Replaced by the day of the month as a decimal number in the range 1 - 31.

%D Same as %m/%d/%y.

%e Replaced by the day of the month as a decimal number in the range 1 - 31;
a single digit is preceded by a space.

%F[n] Replaced by the microsecond as a decimal number. An optional precision
specification, n, can follow F. This n value must be 1 - 5.

%h Same as %b.

%H Replaced by the hour (24-hour clock) as a decimal number in the range 0 -
23.

%I Replaced by the hour (12-hour clock) as a decimal number in the range 0
-12.

%j Replaced by the day of the year as a decimal number in the range 1 - 366.

%m Replaced by the month as a decimal number in the range 1 -12.

%M Replaced by the minute as a decimal number in the range 0- 59.

%n Replaced by a newline character.

%p Replaced by the locale equivalent of either a.m. or p.m. that the am_pm
subcategory of LC_TIME defines.

%r Indicates use of the format that the t_fmt_amp subcategory of LC_TIME
defines.

%R Replaced by the time in 24-hour notation (%H:%M).

%S Replaced by the second as a decimal number.

%t Replaced by a tab character.

%T Replaced by the time (%H:%M:%S).

%u Replaced by the weekday as a decimal number in the range 1 - 7, with 1
representing Monday.

%w Replaced by the weekday as a decimal number in the range 0 - 6, with 0
representing Sunday.

%x Indicates use of the format that the d_fmt subcategory of LC_TIME
defines.

%X Indicates use of the format that the t_fmt subcategory of LC_TIME defines.

%y Replaced by year without century as a decimal number in the range 0 - 99.

%Y Replaced by year with century as a decimal number 0 - 99.

%% Replaced by the % symbol.

If a formatting directive does not correspond to any of the preceding directives, the
behavior of the conversion is undefined.

4-38 IBM Informix GLS API Programmer's Guide

Modified formatting directives

You can modify some formatting directives with format modifiers, which follow
the percent symbol (%), to indicate use of an alternative format that the LC_TIME
locale-file category of the current locale might define. The ifx_gl_format_datetime()
function supports the following format modifiers.

E Use formats that include the era-based dates and times.

LC_TIME subcategory: era, era_d_fmt, era_t_fmt, era_d_t_fmt

O Use alternative locale-specific digits in dates and times.

LC_TIME subcategory: alt_digits

The alternative format replaces one that an unmodified formatting directive
normally uses. If the alternative format does not exist for the current locale, the
behavior is the same as if unmodified formatting directives were used. The
ifx_gl_format_datetime() function supports the following modified formatting
directives with the E and O modifier.

%Ec Indicates use of the format that the era_d_t_fmt subcategory of LC_TIME
defines.

%EC Replaced by the name of the base year (period) that the era subcategory of
LC_TIME defines.

%Eg Replaced by the abbreviated name of the base year (period) in the
alternative representation that the era subcategory of LC_TIME defines.

%Ex Indicates use of the format that the era_d_fmt subcategory of LC_TIME
defines.

%EX Indicates use of the format that the era_t_fmt subcategory of LC_TIME
defines.

%Ey Replaced by the offset from %EC (year only) that the era subcategory of
LC_TIME defines.

%EY Replaced by the full alternative year representation that the era
subcategory of LC_TIME defines.

%Oe Replaced by the day of the month, using the alternative digits that the
alt_digits subcategory of LC_TIME defines. This formatting directive fills
as needed with leading spaces.

%OH Uses the alternative digits that the alt_digits subcategory of LC_TIME
defines to format the hour (24-hour clock).

%OI Uses the alternative digits that the alt_digits subcategory of LC_TIME
defines to format the hour (12-hour clock).

%Om Uses the alternative digits that the alt_digits subcategory of LC_TIME
defines to format the month.

%OM Uses the alternative digits that the alt_digits subcategory of LC_TIME
defines to format the minutes.

%OS Uses the alternative digits that the alt_digits subcategory of LC_TIME
defines to format the seconds.

%Ou Uses the alternative digits that the alt_digits subcategory of LC_TIME
defines to format the weekday as a number (Monday=1).

Chapter 4. Informix GLS functions 4-39

%Oy Uses the alternative digits that the alt_digits subcategory of LC_TIME
defines to format the value of %Ey.

The ifx_gl_format_datetime() function also supports the i modifier in the following
formatting directives to support formats that are compatible with earlier IBM
Informix date and time formatting.

%iF[n] Replaced by the Informix DBTIME format %F. An optional precision
specification, n, can follow F. This n value must be 1 - 5.

%iy Replaced by the Informix DBDATE format Y2. This format prints the
two-digit year offset.

%iY Replaced by the Informix DBDATE format Y4. This format prints the full
four-digit year.

Field width and precision

You can also specify an optional field width and precision in a formatting
directive. This information precedes the type specifier in the formatting directive
and has the following format:
[- | 0][width][.precision]

[- | 0]
Indicates field justification.

If the specification begins with a minus sign (-), the function left-aligns the
field and pads it with spaces on the right. If the value begins with 0, the
function right-aligns the field and pads it with zeros on the left. Otherwise,
the function right-aligns the field and pads it with spaces on the left.

width A decimal value that specifies a minimum field width for the formatted
datetimestr value.

precision
The format has the format of a period (.) followed by a decimal value. The
field width specifier can optionally be followed by a precision directive. For
more information about the purpose of precision, see the following table.

The values of width and precision affect each element of the %D, %R, and %T
directives. For example, %6.4D is interpreted as "%6.4m/%6.4d/%6.4y".

The precision value has the following effects on the different formatting directives.

Formatting directives Effect of precision

%C, %d, %e, %Ey, %F, %H, %iF, %iy, %iY,
%I, %j, %m, %M, %S, %u, %w, %y, %Y

The value of precision specifies the minimum
number of digits to appear. If a directive
supplies fewer digits than precision specifies,
the function pads the value with leading
zeros.

The %d, %Ey, %H, %iF, %iy, %m, %M, %S,
%u, %w, and %y directives have a default
precision of 2. The %j directive has a default
precision of 3. The %Y and %iY directives
have a default precision of 4.

4-40 IBM Informix GLS API Programmer's Guide

Formatting directives Effect of precision

%a, %A, %b, %B, %EC, %Eg, %h, %p The value of precision specifies the maximum
number of characters to be used. If a value to
be formatted has more characters than the
precision specifies, the function truncates the
result on the right.

%c, %Ec, %Ex, %EX, %EY, %n, %r, %t, %x,
%X, %%

The values of width and precision do not
affect these directives.

Directives modified with O (alternative
digits)

The field width relates to display width
rather than actual number of digits; precision
is still the minimum number of digits
printed.

Locale information

The LC_TIME category of the current locale affects the behavior of this function
because it provides the locale-specific information for the formatting of the datetime
value.

Return values

0 The function was successful.

-1 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

If an error occurs, this function returns -1 and sets the ifx_gl_lc_errno() error
number to one of the following values.

IFX_GL_E2BIG
Formatting stopped due to lack of space in the buffer.

IFX_GL_EBADF
A formatting directive is invalid.

IFX_GL_EFRACRANGE
Fraction of second is out of bounds.

IFX_GL_ESECONDRANGE
Second is out of bounds.

IFX_GL_EHOURRANGE
Hour is out of bounds.

IFX_GL_EMINUTERANGE
Minute is out of bounds.

IFX_GL_EDAYRANGE
Day number is out of bounds.

IFX_GL_EWKDAYRANGE
Weekday number is out of bounds.

IFX_GL_EYDAYRANGE
Year day number is out of bounds.

IFX_GL_EMONTHRANGE
Month number is out of bounds.

Chapter 4. Informix GLS functions 4-41

IFX_GL_EYEARRANGE
Year number is out of bounds.

IFX_GL_EERAOFFRANGE
Era offset is out of bounds.

IFX_GL_BADFRAC
Fraction could not be scanned.

IFX_GL_BADSECOND
Second could not be scanned.

IFX_GL_BADMINUTE
Minute could not be scanned.

IFX_GL_BADHOUR
Hour could not be scanned.

IFX_GL_BADDAY
Month (as a number) could not be scanned.

IFX_GL_BADWKDAY
Weekday (as a number) could not be scanned.

IFX_GL_BADYDAY
Day of year (as a number) could not be scanned.

IFX_GL_BADMONTH
Month could not be scanned.

IFX_GL_BADYEAR
Year could not be scanned.

IFX_GL_BADERANAME
Era name was not found.

IFX_GL_BADERAOFFSET
Era offset could not be scanned.

Related concepts

“The LC_TIME locale-file category” on page 3-3
Related reference

“The ifx_gl_convert_datetime() function” on page 4-12
“The ifx_gl_format_date() function” on page 4-30
“The ifx_gl_lc_errno() function” on page 4-84

The ifx_gl_format_money() function
The ifx_gl_format_money() function formats an internal money value to a money
string.

Syntax
#include <ifxgls.h>
...
int ifx_gl_format_money(monstr, monstrbytes, money, format)

char *monstr;
int monstrbytes;
mi_money *money;
char *format;

monstr A pointer to the first character of the money string that the function
formats to its internal money representation.

4-42 IBM Informix GLS API Programmer's Guide

monstrbytes
The size of the monstr buffer for the money string. This size is the
maximum size that the formatted string can reach.

money A pointer to the variable that holds the internal representation that
ifx_gl_format_money() formats to create the monstr money string.

format A pointer to the format string that determines how to format the monstr
money string. For more information, see “Format string”

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_format_money() function uses the format that the format string specifies
to format the internal money representation in money as a money string. It stores
the resulting money string in a buffer that monstr references.

The money argument is a pointer to a decimal (dec_t) value.

The money argument is a pointer to an mi_money value.

Format string

If format is NULL, the ifx_gl_format_money() function determines the format of
the monstr money string that it creates from the environment, as follows:
1. If the DBMONEY environment variable is set, the function formats monstr

according to DBMONEY.
2. Otherwise, the function uses the monetary formats in the LC_MONETARY

category of the current GLS locale.

If format is not NULL, it must point to a string that follows the rules that this
section describes. To format the monstr money string, the function
ifx_gl_format_money() takes the following actions for each possible character that
it finds in format.

Contents of format string Conversion action taken

A valid formatting directive The function performs the specified
formatting of the data in the money
argument. It replaces the formatting directive
with a string representation of a money
element for the monstr money string. Only
one formatting directive is allowed in the
format string.

Ordinary characters The function copies the ordinary character
unchanged to the monstr money string.
Ordinary characters include the null
terminator and white space characters.

The formatting directive consists of the following sequence:
%[modifiers][flag][width[#left_precision][.right_precision]]type_specifier

Chapter 4. Informix GLS functions 4-43

Argument See

modifiers “Modified formatting directives”

flag “Field width and precision” on page 4-45

width “Field width and precision” on page 4-45

left_precision “Field width and precision” on page 4-45

right_precision “Field width and precision” on page 4-45

type_specifier “Valid type specifiers”

Tip: In the preceding format sequence, the square brackets indicate that the
enclosed portion of the format is optional.

Valid type specifiers

The type specifier is a letter or letters within a formatting directive that identify a
format for the ifx_gl_format_money() function to use when it creates a monetary
element of a monstr string. These monetary formats are formats that the
LC_MONETARY locale-file category of the current locale might define. The
ifx_gl_format_money() function supports the following formatting directives.

%i Replaced by the international monetary format (which uses the
int_curr_symbol subcategory of the LC_MONETARY category in the
current locale) for the money argument. For example, in the default locale,
the international monetary format for 1,234.56 is USD 1,234.56.

%n Replaced by the national currency format (which uses the
currency_symbol of the LC_MONETARY category in the current locale) for
the money argument. For example, in the default locale, the national
monetary format for 1,234.56 is $1,234.56.

%% Replaced by the % symbol.

If a formatting directive does not correspond to any of the preceding directives, the
behavior of the conversion is undefined.

Modified formatting directives

You can modify some formatting directives with format modifiers, which follow
the percent symbol (%), to indicate use of an alternative format. The
ifx_gl_format_money() function supports the following format modifiers.

=f Use the single-byte character f as the numeric-fill character. The fill
character must be representable in a single byte to work with precision and
width counts. The default numeric-fill character is the blank (space)
character. This flag does not affect field-width filling, which always uses
the space character. Unless you specify left_precision, this flag is ignored.

^ Do not format the monetary amount with thousands separators. The
default action is to insert the thousands separators if the LC_MONETARY
category of the current locale defines them.

+ or (Specify how to represent positive and negative monetary amounts. You can
specify only + or (. If you specify the plus sign (+) , the function uses the
equivalent of + and - that the LC_MONETARY category of the current
locale defines. For example, in the default locale, a plus sign means an
empty string for positive values and a minus sign (-) for negative values. If

4-44 IBM Informix GLS API Programmer's Guide

you do not specify either flag, the function uses the locale equivalent of the
minus sign (-) for negative values and no sign for positive values.

! Suppress the currency symbol from the formatted result.

Field width and precision

You can also specify an optional field width and precision in a formatting
directive. This information precedes the type specifier in the formatting directive
and has the following format:
[-][width[#left_precision][.right_precision]]

- Indicates field justification. If the specification begins with a minus sign (-),
the function left-aligns the field and pads it with spaces on the right.
Otherwise, the function right-aligns the field and pads it with spaces on
the left.

width A decimal value that specifies a minimum field width, in characters, in
which the resulting string is right-aligned. The default field width is 0.

left_precision
A string that specifies the maximum number of digits expected to the left
of the decimal separator. This option causes an amount to be formatted as
if it has the number of digits that n specifies. If more than n digit positions
are required, the function ignores this precision specification.

right_precision
A decimal value that specifies the number of digits after the decimal
separator. If the value of right_precision is 0, no decimal separator appears
in the formatted string. If you do not include right_precision, the function
uses a default, which the current locale specifies. The amount that is being
formatted is rounded to the specified number of digits before formatting.

You can use this left_precision option to:
v keep the formatted output from multiple calls to this function aligned in the

same columns.
v fill unused positions with a special character, such as the asterisk character in

the “$***123.45” string.

For left_precision, digit positions in excess of those positions required are filled with
the numeric-fill character (see the description of the =f modifier in “Modified
formatting directives” on page 4-44). If grouping has not been suppressed with the
^ modifier, and it is defined for the current locale, the function inserts thousands
separators before the fill characters (if any) are added. Thousands separators are
not applied to fill characters even if the fill character is a digit.

To ensure alignment, any characters that appear before or after the number in the
formatted output, such as currency or sign symbols, are padded as necessary with
space characters to make their positive and negative formats an equal length.

Locale information

The LC_MONETARY category of the current locale affects the behavior of this
function because it provides the locale-specific information for the formatting of
the money value. For more information, see “The LC_MONETARY locale-file
category” on page 3-2.

Chapter 4. Informix GLS functions 4-45

Return values

0 The function was successful.

-1 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

If an error occurred, this function returns -1 and sets the ifx_gl_lc_errno() error
number to one of the following value.

IFX_GL_ENOSYS
The formatting directive is not supported.

IFX_GL_E2BIG
Formatting stopped due to insufficient space in the buffer.

Related concepts

“The LC_MONETARY locale-file category” on page 3-2
Related reference

“The ifx_gl_convert_money() function” on page 4-19
“The ifx_gl_format_number() function”
“The ifx_gl_lc_errno() function” on page 4-84

The ifx_gl_format_number() function
The ifx_gl_format_number() function formats an internal decimal value to a
number string.

Syntax
#include <ifxgls.h>
...
int ifx_gl_format_number(numstr, numstrbytes, number, format)

char *numstr;
int numstrbytes;
mi_decimal *number;
char *format;

numstr A pointer to the first character in the number string that the function
formats from its internal number representation.

numstrbytes
The size of the numstr buffer for the number string. This size is the
maximum size that the formatted string can reach.

number
A pointer to the variable that holds the internal representation that
ifx_gl_format_number() formats to create the numstr number string.

format A pointer to the format string that determines how to format the numstr
number string. For more information, see “Format string” on page 4-47

Valid in client application Valid in DataBlade UDR

Yes Yes

4-46 IBM Informix GLS API Programmer's Guide

Usage

The ifx_gl_format_number() function uses the format that the format string
specifies to format the internal decimal representation in number as a number
string. It stores the resulting number string in a buffer that numstr references.

The number argument is a pointer to a decimal (dec_t) value.

The number argument is a pointer to an mi_decimal value.

Format string

If format is NULL, the function uses the numeric formats in the LC_NUMERIC
category of the current GLS locale file to format the numstr number string that it
creates.

If format is not NULL, it must point to a string that follows the rules that this
section describes. To format the numstr number string, ifx_gl_format_number()
takes the following actions for each possible character that it finds in format.

Contents of format string Conversion action taken

A valid formatting directive The function performs the specified
formatting of the data in the number
argument. It replaces the formatting directive
with a string representation of a numeric
element for the numstr number string. Only
one formatting directive is allowed in the
format string.

Ordinary characters The function copies the ordinary character
unchanged to the numstr number string.
Ordinary characters include the null
terminator and white space characters.

The formatting directive consists of the following sequence:
%[modifiers][flags][width[.precision]]type_specifier

Argument See

modifiers “Modified formatting directives” on page
4-48

flags “Field width and precision” on page 4-49

width “Field width and precision” on page 4-49

precision “Field width and precision” on page 4-49

type_specifier “Valid type specifiers”

Tip: In the preceding format sequence, the square brackets indicate that the
enclosed portion of the format is optional.

Valid type specifiers

The type specifier is a letter or letters within a formatting directive that identify a
format for the ifx_gl_format_number() function to use when it creates a numeric
element of a numstr string. These numeric formats are formats that the

Chapter 4. Informix GLS functions 4-47

LC_NUMERIC locale-file category of the current locale might define. The
ifx_gl_format_number() function supports the following formatting directives.

%b Replaced by the binary representation of number.

%d Replaced by the decimal representation of number.

%e Replaced by the style [-]d.ddde[+|-]dd of number (where d is a digit).

%E Replaced by the style [-]d.dddE[+|-]dd of number (where d is a digit).

%f Replaced by the style [-]ddd.ddd of number (where d is a digit). The default
precision is 6.

%g Replaced by the style of %f or %e. The %e directive is used only if the
converted exponent is less than -4 or greater than or equal to the precision.
The precision specifies the number of significant digits. Trailing zeros are
removed from the fractional portion of the result.

%G Same as %g , except for the replacement of %E for %e.

%i Same as %d.

%o Replaced by the octal representation of number.

%q Replaced by the base-4 representation of number.

%u Replaced by the unsigned decimal representation of number.

%x Replaced by the hexadecimal representation of number, using the
hexadecimal characters a through f.

%X Same as %x, but use uppercase hexadecimal characters (A through F)
instead of lowercase letters (a through f).

If a formatting directive does not correspond to any of the preceding directives, the
behavior of the formatting is undefined.

Modified formatting directives

You can modify some formatting directives with format modifiers, which follow
the percent symbol (%), to indicate use of an alternative format. The
ifx_gl_format_number() function supports the following format modifiers.

' Separates the significant digits of the converted number with the grouping
character defined in the locale, according to the grouping format also
defined in the locale.

+ Begins the result of a signed conversion with a positive or negative sign,
which the locale defines.

- Left-justifies the result of the conversion within the field. space Prefixes the
result with a space character (unless the + modifier exists) if the beginning
of a signed conversion is not a sign.

Converts the value to an alternate form. For a %o directive, the first digit
of the result is forced to be 0. For a %x (or %X) directive, a nonzero result
will have a leading “0x” (or “0X”). For a %e, %E, %f, %g, or %G directive,
the result always has a decimal-separator character.

0 Pads the field width with leading zeros (unless the - modifier exists).

If the alternative format does not exist for the current locale, the function uses the
unmodified formatting directive.

4-48 IBM Informix GLS API Programmer's Guide

Field width and precision

You can also specify an optional field width and precision in a formatting
directive. This information precedes the type specifier in the formatting directive
and has the following format:
[- | 0][width[.precision]]

[- | 0]
Indicates field justification. If the specification begins with a minus sign (-),
the function left-aligns the field and pads it with spaces on the right. If the
value begins with 0, the function right-aligns the field and pads it with
zeros on the left. Otherwise, the function right-aligns the field and pads it
with spaces on the left.

width A decimal value that specifies a minimum field width for the formatted
string.

precision
The format has the format of a period (.) followed by a decimal value. The
field width specifier can optionally be followed by a precision directive.

For the %d, %o, %u, %x, and %X directives, the value of precision specifies
the minimum number of digits to appear. If a directive supplies fewer
digits than specified by the precision, it is padded with leading zeros.

For the %e, %E, and %f directives, the value of precision specifies the
number of digits to appear after the decimal separator.

For the %g, and %G directives, the value of precision specifies the
maximum number of significant digits.

Locale information

The LC_NUMERIC category of the current locale affects the behavior of this
function because it provides the locale-specific information for the formatting of
the number value.

Return values

0 The function was successful.

-1 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

If an error occurred, this function returns -1 and sets the ifx_gl_lc_errno() error
number to one of the following values.

IFX_GL_INVALIDFMT
The format string is invalid.

IFX_GL_PARAMERR
The type specifier in the formatting directive is invalid.

IFX_GL_E2BIG
Formatting stopped due to lack of space in the buffer.

Chapter 4. Informix GLS functions 4-49

Related concepts

“The LC_NUMERIC locale-file category” on page 3-1
Related reference

“The ifx_gl_convert_number() function” on page 4-22
“The ifx_gl_format_money() function” on page 4-42
“The ifx_gl_lc_errno() function” on page 4-84

The ifx_gl_getmb() function
The ifx_gl_getmb() function obtains a single multibyte character from a
user-specified location.

Syntax
#include <ifxgls.h>
...
int ifx_gl_fgetmb(mb, funcp, v, bytes_got)

gl_mchar_t *mb;
int (*funcp)(void *v);
void *v;
int *bytes_got;

mb A pointer to the multibyte character whose bytes the funcp function reads
from a specified location.

funcp A pointer to a function that you define to specify the location from which
to read the multibyte character.

v A pointer that the ifx_gl_getmb() function passes to the funcp function
each time that it is called.

bytes_got
A pointer to an integer that ifx_gl_getmb() sets to indicate the number of
bytes that the funcp function has successfully read.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_getmb() function calls a function that you define to obtain the bytes
that form one multibyte character from a specified location. This multibyte
character is then written to the mb buffer.

The funcp argument is a pointer to a function that you must define as follows:
int funcp(void *v)

The pointer v is passed to funcp each time that it is called. On success, funcp must
return a value 0 - 255, inclusive, which is the next byte of the multibyte character.
On failure, funcp must return -1.

This function calls funcp until one of the following occurs:
v A complete multibyte character has been formed.
v The funcp function returns a byte that forms an illegal character when appended

to the bytes already read.
v The funcp function fails.

4-50 IBM Informix GLS API Programmer's Guide

All bytes obtained by calling funcp are guaranteed to be written to mb. This
function assumes that mb is large enough to hold the result. You can determine
what will be written to mb in either of the following ways:
v The function ifx_gl_mb_loc_max() calculates the maximum number of bytes in

any multibyte character for the current locale.
v The macro IFX_GL_MB_MAX is the maximum number of bytes in any multibyte

character in any locale. This value is always equal to or greater than the value
that ifx_gl_mb_loc_max() returns.

Of these two options, the macro IFX_GL_MB_MAX is faster, and it can be used to
initialize static buffers. The function ifx_gl_mb_loc_max() is slower but more
precise.

The number of bytes that funcp successfully reads is returned in bytes_got (even
when funcp fails).

Return values

0 - 255 The value of the next byte for the multibyte character

-1 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

If an error occurred, this function returns -1 and sets the ifx_gl_lc_errno() error
number to one of the following values.

IFX_GL_EILSEQ
The bytes read from funcp do not form a valid multibyte character.

IFX_GL_EINVAL
The funcp function returned -1 in the middle of an otherwise valid
multibyte character.

IFX_GL_EOF
The funcp function returned -1 on the first call.

Related reference

“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_mb_loc_max() function” on page 4-85
“The ifx_gl_putmb() function” on page 4-112

The ifx_gl_init() function
The ifx_gl_init() function initializes the current processing locale for the current
program.

Syntax
#include <ifxgls.h>
...
int ifx_gl_init(void)

Valid in client application Valid in DataBlade UDR

Yes Not needed

Chapter 4. Informix GLS functions 4-51

Usage

The ifx_gl_init() function initializes a global locale structure that identifies the
current processing locale. Because this locale structure is global, the IBM Informix
GLS functions do not require the current locale as an argument. Any program that
establishes its own connections must call the ifx_gl_init() function before it calls
any other Informix GLS functions.

ESQL/C applications establish their own connections to a database server and
therefore must call the ifx_gl_init() function before any Informix GLS functions to
establish a current processing locale.

DataBlade client applications establish their own connections to a database server
and therefore must call the ifx_gl_init() function before any Informix GLS
functions to establish a current processing locale.

However, a DataBlade UDR executes in the context of an established connection
and therefore has an established current processing locale. DataBlade UDRs are not
required to call the ifx_gl_init() function.

For both ESQL/C and DataBlade client applications, ifx_gl_init() initializes the
current processing locale to the client locale.

Return values

0 The function was successful.

-1 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

If an error occurred, this function returns -1 and sets the ifx_gl_lc_errno() error
number to one of the following values.

IFX_GL_PARAMERR
Either specifiers for locale or code-set conversion (such as GLS
environment variables) are incorrect, or the code-set name registry file
could not be found.

IFX_GL_ENOMEM
Not enough memory is available to allocate a new locale object or a new
code-set-conversion object.

IFX_GL_FILEERR
The locale or code-set conversion file could not be found, is not readable,
or has the wrong format.

IFX_GL_INVALIDLOC
An attempt to create a locale with incompatible code sets occurred.

IFX_GL_ELOCTOOWIDE
The locale contains characters that are wider than the library allows.

IFX_GL_BADOBJVER
The locale object version is not compatible with the current library.

IFX_GL_BADFILEFORM
Bad format was found in the code-set registry file.

4-52 IBM Informix GLS API Programmer's Guide

Related concepts

“Initialize the Informix GLS library” on page 1-10

The ifx_gl_ismalnum() function
The ifx_gl_ismalnum() function determines whether a multibyte character contains
an alphabetic or digit character.

Syntax
#include <ifxgls.h>
...
int ifx_gl_ismalnum(mb, mb_byte_limit)

gl_mchar_t *mb;
int mb_byte_limit;

mb A pointer to the multibyte character whose character classification you
want to determine.

mb_byte_limit
The integer number of bytes to read from mb to try to form a complete
multibyte character. If mb_byte_limit is IFX_GL_NO_LIMIT, the
ifx_gl_ismalnum() function reads as many bytes as necessary from mb to
form a complete character.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_ismalnum() function tests whether mb is in the alnum character class
(either the alpha or digit class) according to the rules of the current locale. The
alpha class contains all characters from the upper and lower classes. The digit class
contains only the 10 ASCII digit characters: '0' to '9' (ASCII 0x030 to 0x039).

To determine whether a multibyte character is defined only in the alpha class, use
the ifx_gl_ismalpha() function. To determine whether a multibyte character is
defined only in the digit class, use the ifx_gl_ismdigit() function.

Locale information

The LC_CTYPE category of the current locale affects the behavior of this function
because it defines the alnum character class.

Return values

>0 The *mb character is in the alpha or digit character class.

0 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

This function does not return a unique value to indicate an error. If an error
occurred, the function returns 0 and sets the ifx_gl_lc_errno() error number to one
of the following values.

IFX_GL_EILSEQ
The *mb value is not a valid multibyte character.

Chapter 4. Informix GLS functions 4-53

IFX_GL_EINVAL
The function cannot determine whether mb is a valid multibyte character
because it would need to read more than mb_byte_limit bytes from mb. If
mb_byte_limit is less than or equal to 0, this function always returns this
error.

Related concepts

“Character classification” on page 2-5
“Multibyte-character termination” on page 2-23
“Keep multibyte strings consistent” on page 2-26
Related reference

“The ifx_gl_ismalpha() function”
“The ifx_gl_ismdigit() function” on page 4-58
“The ifx_gl_ismlower() function” on page 4-61
“The ifx_gl_ismupper() function” on page 4-67
“The ifx_gl_iswalnum() function” on page 4-70
“The ifx_gl_lc_errno() function” on page 4-84

The ifx_gl_ismalpha() function
The ifx_gl_ismalpha() function determines whether a multibyte character contains
an alphabetic character.

Syntax
#include <ifxgls.h>
...
int ifx_gl_ismalpha(mb, mb_byte_limit)

gl_mchar_t *mb;
int mb_byte_limit;

mb A pointer to the multibyte character whose character classification you
want to determine.

mb_byte_limit
The integer number of bytes to read from mb to try to form a complete
multibyte character. If mb_byte_limit is IFX_GL_NO_LIMIT, the
ifx_gl_ismalpha() function reads as many bytes as necessary from mb to
form a complete character. For more information about mb_byte_limit, see
“Multibyte-character termination” on page 2-23.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_ismalpha() function tests whether mb is in the alpha character class
according to the rules of the current locale. The alpha class contains all characters
from the upper and lower classes. In addition to the uppercase and lowercase
Latin-based characters, this class includes any alphabetic characters that the locale
might define, including:
v Asian ideographic characters; for example, Kanji characters.
v Asian phonetic characters; for example, single-byte and multibyte Katakana and

Hiragana characters.
v non-ASCII digit characters (see the digit class).

4-54 IBM Informix GLS API Programmer's Guide

v Latin-based alphabetic characters that do not have a case-equivalent character.
v user-defined characters.
v vendor-defined characters.

Characters in the alpha class are also in the graph and print classes. No characters
in the digit, blank, space, punct, or cntrl classes are in the alpha class.

To determine the case of an alphabetic multibyte character, you can use the
ifx_gl_ismupper() and ifx_gl_ismlower()functions. Use the function
ifx_gl_ismalnum() to test whether a multibyte character is an alphabetic character
or a digit.

Locale information

The LC_CTYPE category of the current locale affects the behavior of this function
because it defines the alpha character class.

Return values

>0 The *mb character is in the alpha character class.

0 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

This function does not return a unique value to indicate an error. If an error
occurred, the function returns 0 and sets the ifx_gl_lc_errno() error number to one
of the following values.

IFX_GL_EILSEQ
The *mb value is not a valid multibyte character.

IFX_GL_EINVAL
The function cannot determine whether mb is a valid multibyte character
because it would need to read more than mb_byte_limit bytes from mb. If
mb_byte_limit is less than or equal to 0, this function always returns this
error. For more information about this error, see “Keep multibyte strings
consistent” on page 2-26.

Chapter 4. Informix GLS functions 4-55

Related concepts

“Character classification” on page 2-5
“Keep multibyte strings consistent” on page 2-26
Related reference

“The ifx_gl_ismalnum() function” on page 4-53
“The ifx_gl_ismgraph() function” on page 4-60
“The ifx_gl_ismlower() function” on page 4-61
“The ifx_gl_ismprint() function” on page 4-63
“The ifx_gl_ismupper() function” on page 4-67
“The ifx_gl_iswalpha() function” on page 4-71
“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_tomlower() function” on page 4-113
“The ifx_gl_tomupper() function” on page 4-115

The ifx_gl_ismblank() function
The ifx_gl_ismblank() function determines whether a multibyte character contains
a horizontal-space character.

Syntax
#include <ifxgls.h>
...
int ifx_gl_ismblank(mb, mb_byte_limit)

gl_mchar_t *mb;
int mb_byte_limit;

mb A pointer to the multibyte character whose character classification you
want to determine.

mb_byte_limit
The integer number of bytes to read from mb to try to form a complete
multibyte character. If mb_byte_limit is IFX_GL_NO_LIMIT, the
ifx_gl_ismblank() function reads as many bytes as necessary from mb to
form a complete character. For more information about mb_byte_limit, see
“Multibyte-character termination” on page 2-23.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_ismblank() function tests whether mb is in the blank character class
according to the rules of the current locale. The blank character class includes the
single-byte space (ASCII 0x020) and tab character (ASCII 0x009, ^I) plus any
multibyte version of these characters that the locale defines. Characters in the
blank class are also in the space class. No characters in the upper, lower, alpha,
digit, xdigit, punct, or graph classes are in the blank class.

Locale information

The LC_CTYPE category of the current locale affects the behavior of this function
because it defines the blank character class.

4-56 IBM Informix GLS API Programmer's Guide

Return values

>0 The *mb character is in the blank character class.

0 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

This function does not return a unique value to indicate an error. If an error
occurred, the function returns 0 and sets the ifx_gl_lc_errno() error number to one
of the following values.

IFX_GL_EILSEQ
The *mb value is not a valid multibyte character.

IFX_GL_EINVAL
The function cannot determine whether mb is a valid multibyte character
because it would need to read more than mb_byte_limit bytes from mb. If
mb_byte_limit is less than or equal to 0, this function always returns this
error.

Related concepts

“Character classification” on page 2-5
“Keep multibyte strings consistent” on page 2-26
Related reference

“The ifx_gl_ismspace() function” on page 4-66
“The ifx_gl_iswblank() function” on page 4-73
“The ifx_gl_lc_errno() function” on page 4-84

The ifx_gl_ismcntrl() function
The ifx_gl_ismcntrl() function determines whether a multibyte character contains a
control character.

Syntax
#include <ifxgls.h>
...
int ifx_gl_ismcntrl(mb, mb_byte_limit)

gl_mchar_t *mb;
int mb_byte_limit;

mb A pointer to the multibyte character whose character classification you
want to determine.

mb_byte_limit
The integer number of bytes to read from mb to try to form a complete
multibyte character. If mb_byte_limit is IFX_GL_NO_LIMIT, the
ifx_gl_ismcntrl() function reads as many bytes as necessary from mb to
form a complete character.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_ismcntrl() function tests whether mb is in the cntrl character class
according to the rules of the current locale. The cntrl character class contains the

Chapter 4. Informix GLS functions 4-57

single-byte control characters: alert, backspace, tab, newline, vertical tab, form feed,
carriage return, NUL, SOH, STX, ETX, EOT, ENQ, ACK, SO, SI, DLE, DC1, DC2,
DC3, DC4, NAK, SYN, ETB, CAN, EM, SUB, ESC, IS4, IS3, IS2, IS1, and DEL.
These characters are the ASCII characters whose code points are in the range 0x00
to 0x1F. In addition, the cntrl class contains any other control characters that the
locale might define.

No characters in the upper, lower, alpha, digit, xdigit, punct, graph, or print classes
are in the cntrl class.

Locale information

The LC_CTYPE category of the current locale affects the behavior of this function
because it defines the cntrl character class.

Return values

>0 The *mb character is in the cntrl character class.

0 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

This function does not return a unique value to indicate an error. If an error
occurred, the function returns 0 and sets the ifx_gl_lc_errno() error number to one
of the following values.

IFX_GL_EILSEQ
The *mb value is not a valid multibyte character.

IFX_GL_EINVAL
The function cannot determine whether mb is a valid multibyte character
because it would need to read more than mb_byte_limit bytes from mb. If
mb_byte_limit is less than or equal to 0, this function always returns this
error.

Related concepts

“Character classification” on page 2-5
“Multibyte-character termination” on page 2-23
“Keep multibyte strings consistent” on page 2-26
Related reference

“The ifx_gl_iswcntrl() function” on page 4-74
“The ifx_gl_lc_errno() function” on page 4-84

The ifx_gl_ismdigit() function
The ifx_gl_ismdigit() function determines whether a multibyte character contains a
decimal digit.

Syntax
#include <ifxgls.h>
...
int ifx_gl_ismdigit(mb, mb_byte_limit)

gl_mchar_t *mb;
int mb_byte_limit;

mb A pointer to the multibyte character whose character classification you
want to determine.

4-58 IBM Informix GLS API Programmer's Guide

mb_byte_limit
The integer number of bytes to read from mb to try to form a complete
multibyte character. If mb_byte_limit is IFX_GL_NO_LIMIT, the
ifx_gl_ismdigit() function reads as many bytes as necessary from mb to
form a complete character.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_ismdigit() function tests whether mb is in the digit character class
according to the rules of the current locale. The digit character class contains only
the 10 ASCII digit characters (ASCII 0x030 to 0x039). Any multibyte versions or
alternative representations of these digits that the locale might define (for example,
Hindi or Kanji digits) are not in this class. Instead, they are in the alpha class.

Characters in this class are also in the xdigit, graph, and print classes. No
characters in the upper, lower, alpha, blank, space, punct, or cntrl classes are in the
digit class.

To determine whether a multibyte character contains a hexadecimal digit, you can
use the ifx_gl_ismxdigit() function. Use the ifx_gl_ismalnum() function to test
whether a multibyte character is an alphabetic character or a digit.

Locale information

The LC_CTYPE category of the current locale affects the behavior of this function
because it defines the digit character class.

Return values

>0 The *mb character is in the digit character class.

0 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

This function does not return a unique value to indicate an error. If an error
occurred, the function returns 0 and sets the ifx_gl_lc_errno() error number to one
of the following values.

IFX_GL_EILSEQ
The *mb value is not a valid multibyte character.

IFX_GL_EINVAL
The function cannot determine whether mb is a valid multibyte character
because it would need to read more than mb_byte_limit bytes from mb. If
mb_byte_limit is less than or equal to 0, this function always returns this
error.

Chapter 4. Informix GLS functions 4-59

Related concepts

“Character classification” on page 2-5
“Multibyte-character termination” on page 2-23
“Keep multibyte strings consistent” on page 2-26
Related reference

“The ifx_gl_ismalnum() function” on page 4-53
“The ifx_gl_ismalpha() function” on page 4-54
“The ifx_gl_ismgraph() function”
“The ifx_gl_ismprint() function” on page 4-63
“The ifx_gl_ismxdigit() function” on page 4-69
“The ifx_gl_iswdigit() function” on page 4-75
“The ifx_gl_lc_errno() function” on page 4-84

The ifx_gl_ismgraph() function
The ifx_gl_ismgraph() function determines whether a multibyte character contains
a graphical (visible) character.

Syntax
#include <ifxgls.h>
...
int ifx_gl_ismgraph(mb, mb_byte_limit)

gl_mchar_t *mb;
int mb_byte_limit;

mb A pointer to the multibyte character whose character classification you
want to determine.

mb_byte_limit
The integer number of bytes to read from mb to try to form a complete
multibyte character. If mb_byte_limit is IFX_GL_NO_LIMIT, the
ifx_gl_ismgraph() function reads as many bytes as necessary from mb to
form a complete character.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_ismgraph() function tests whether mb is in the graph character class
according to the rules of the current locale. The graph character class contains all
characters that have a visual representation, including characters from the alpha,
digit, punct, and xdigit classes. In addition, all placeholder characters used in
round-trip code-set conversion are in this class.

Characters in the graph class are also in the print class. No characters in the blank,
space, or cntrl classes are in the graph class.

Locale information

The LC_CTYPE category of the current locale affects the behavior of this function
because it defines the graph character class.

4-60 IBM Informix GLS API Programmer's Guide

Return values

>0 The *mb character is in the graph character class.

0 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

This function does not return a unique value to indicate an error. If an error
occurred, the function returns 0 and sets the ifx_gl_lc_errno() error number to one
of the following values.

IFX_GL_EILSEQ
The *mb value is not a valid multibyte character.

IFX_GL_EINVAL
The function cannot determine whether mb is a valid multibyte character
because it would need to read more than mb_byte_limit bytes from mb. If
mb_byte_limit is less than or equal to 0, this function always returns this
error.

Related concepts

“Character classification” on page 2-5
“Multibyte-character termination” on page 2-23
“Keep multibyte strings consistent” on page 2-26
Related reference

“The ifx_gl_ismalnum() function” on page 4-53
“The ifx_gl_ismalpha() function” on page 4-54
“The ifx_gl_ismdigit() function” on page 4-58
“The ifx_gl_ismlower() function”
“The ifx_gl_ismprint() function” on page 4-63
“The ifx_gl_ismpunct() function” on page 4-64
“The ifx_gl_ismupper() function” on page 4-67
“The ifx_gl_ismxdigit() function” on page 4-69
“The ifx_gl_iswgraph() function” on page 4-76
“The ifx_gl_lc_errno() function” on page 4-84

The ifx_gl_ismlower() function
The ifx_gl_ismlower() function determines whether a multibyte character contains
a lowercase alphabetic character.

Syntax
#include <ifxgls.h>
...
int ifx_gl_ismlower(mb, mb_byte_limit)

gl_mchar_t *mb;
int mb_byte_limit;

mb A pointer to the multibyte character whose character classification you
want to determine.

mb_byte_limit
The integer number of bytes to read from mb to try to form a complete

Chapter 4. Informix GLS functions 4-61

multibyte character. If mb_byte_limit is IFX_GL_NO_LIMIT, the
ifx_gl_ismlower() function reads as many bytes as necessary from mb to
form a complete character.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_ismlower() function tests whether mb is in the lower character class
according to the rules of the current locale. The lower character class contains:
v the ASCII characters a through z.
v all other single-byte and multibyte lowercase characters for Latin-based

languages; for example â, ç, é, and ü.

Characters in this class are also in the alpha, graph, and print classes. No
characters in the upper, digit, blank, space, punct, or cntrl classes are in this class.

To determine the uppercase equivalent of an alphabetic multibyte character, you
can use the ifx_gl_tomupper() function. Use the ifx_gl_ismalpha() function to test
whether a multibyte character is an alphabetic character (uppercase or lowercase).

Locale information

The LC_CTYPE category of the current locale affects the behavior of this function
because it defines the lower character class.

Return values

>0 The *mb character is in the lower character class.

0 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

This function does not return a unique value to indicate an error. If an error
occurred, the function returns 0 and sets the ifx_gl_lc_errno() error number to one
of the following values.

IFX_GL_EILSEQ
The *mb value is not a valid multibyte character.

IFX_GL_EINVAL
The function cannot determine whether mb is a valid multibyte character
because it would need to read more than mb_byte_limit bytes from mb. If
mb_byte_limit is less than or equal to 0, this function always returns this
error.

4-62 IBM Informix GLS API Programmer's Guide

Related concepts

“Character classification” on page 2-5
“Multibyte-character termination” on page 2-23
“Keep multibyte strings consistent” on page 2-26
Related reference

“The ifx_gl_ismalnum() function” on page 4-53
“The ifx_gl_ismalpha() function” on page 4-54
“The ifx_gl_ismgraph() function” on page 4-60
“The ifx_gl_ismprint() function”
“The ifx_gl_ismupper() function” on page 4-67
“The ifx_gl_iswlower() function” on page 4-77
“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_tomupper() function” on page 4-115

The ifx_gl_ismprint() function
The ifx_gl_ismprint() function determines whether a multibyte character contains a
printable character.

Syntax
#include <ifxgls.h>
...
int ifx_gl_ismprint(mb, mb_byte_limit)

gl_mchar_t *mb;
int mb_byte_limit;

mb A pointer to the multibyte character whose character classification you
want to determine.

mb_byte_limit
The integer number of bytes to read from mb to try to form a complete
multibyte character. If mb_byte_limit is IFX_GL_NO_LIMIT, the
ifx_gl_ismprint() function reads as many bytes as necessary from mb to
form a complete character.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_ismprint() function tests whether mb is in the print character class
according to the rules of the current locale. The print character class contains all
characters that have a visual representation or are in the space class but not in the
cntrl class.

All characters from the alpha, digit, punct, xdigit, and graph classes are also in this
class. No characters in the cntrl class are in this class.

Locale information

The LC_CTYPE category of the current locale affects the behavior of this function
because it defines the print character class.

Chapter 4. Informix GLS functions 4-63

Return values

>0 The *mb character is in the print character class.

0 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

This function does not return a unique value to indicate an error. If an error
occurred, the function returns 0 and sets the ifx_gl_lc_errno() error number to one
of the following values.

IFX_GL_EILSEQ
The *mb value is not a valid multibyte character.

IFX_GL_EINVAL
The function cannot determine whether mb is a valid multibyte character
because it would need to read more than mb_byte_limit bytes from mb. If
mb_byte_limit is less than or equal to 0, this function always returns this
error.

Related concepts

“Character classification” on page 2-5
“Multibyte-character termination” on page 2-23
“Keep multibyte strings consistent” on page 2-26
Related reference

“The ifx_gl_ismalnum() function” on page 4-53
“The ifx_gl_ismalpha() function” on page 4-54
“The ifx_gl_ismgraph() function” on page 4-60
“The ifx_gl_ismlower() function” on page 4-61
“The ifx_gl_ismprint() function” on page 4-63
“The ifx_gl_ismupper() function” on page 4-67
“The ifx_gl_ismxdigit() function” on page 4-69
“The ifx_gl_iswprint() function” on page 4-78
“The ifx_gl_lc_errno() function” on page 4-84

The ifx_gl_ismpunct() function
The ifx_gl_ismpunct() function determines whether a multibyte character contains
a punctuation character.

Syntax
#include <ifxgls.h>
...
int ifx_gl_ismpunct(mb, mb_byte_limit)

gl_mchar_t *mb;
int mb_byte_limit;

mb A pointer to the multibyte character whose character classification you
want to determine.

mb_byte_limit
The integer number of bytes to read from mb to try to form a complete
multibyte character. If mb_byte_limit is IFX_GL_NO_LIMIT, the
ifx_gl_ismpunct() function reads as many bytes as necessary from mb to
form a complete character.

4-64 IBM Informix GLS API Programmer's Guide

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_ismpunct() function tests whether mb is in the punct character class
according to the rules of the current locale. The punct character class contains the
following characters:
v The single-byte ASCII punctuation characters: ! @ # $ % ^ & * () - _ = + \ | ‘ ~

[] { } ; : ' ” , . / < > ?
v Any non-ASCII punctuation characters that the locale might define

Graphic characters that are not really punctuation characters have traditionally
been put in the punct class; instead they are in the graph class. Characters in this
class are also in the graph and print classes. No characters in the upper, lower,
alpha, digit, xdigit, blank, space, or cntrl classes are in this class.

Locale information

The LC_CTYPE category of the current locale affects the behavior of this function
because it defines the punct character class.

Return values

>0 The *mb character is in the punct character class.

0 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

This function does not return a unique value to indicate an error. If an error
occurred, the function returns 0 and sets the ifx_gl_lc_errno() error number to one
of the following values.

IFX_GL_EILSEQ
The *mb value is not a valid multibyte character.

IFX_GL_EINVAL
The function cannot determine whether mb is a valid multibyte character
because it would need to read more than mb_byte_limit bytes from mb. If
mb_byte_limit is less than or equal to 0, this function always returns this
error.

Chapter 4. Informix GLS functions 4-65

Related concepts

“Character classification” on page 2-5
“Multibyte-character termination” on page 2-23
“Keep multibyte strings consistent” on page 2-26
Related reference

“The ifx_gl_ismgraph() function” on page 4-60
“The ifx_gl_ismprint() function” on page 4-63
“The ifx_gl_iswpunct() function” on page 4-79
“The ifx_gl_lc_errno() function” on page 4-84

The ifx_gl_ismspace() function
The ifx_gl_ismspace() function determines whether a multibyte character contains
a space (vertical or horizontal) character.

Syntax
#include <ifxgls.h>
...
int ifx_gl_ismspace(mb, mb_byte_limit)

gl_mchar_t *mb;
int mb_byte_limit;

mb A pointer to the multibyte character whose character classification you
want to determine.

mb_byte_limit
The integer number of bytes to read from mb to try to form a complete
multibyte character. If mb_byte_limit is IFX_GL_NO_LIMIT, the
ifx_gl_ismspace() function reads as many bytes as necessary from mb to
form a complete character.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_ismspace() function tests whether mb is in the space character class
according to the rules of the current locale. The space character class contains:
v all characters from the blank class, including the horizontal space character

(ASCII 0x020).
v the vertical-space character.
v the single-byte newline, vertical tab, form feed, and carriage return (ASCII

0x00A through 0x00D).
v any multibyte versions of newline, vertical tab, form feed, and carriage return.

No characters in the alpha, digit, xdigit, punct, or graph classes are in this class.

Locale information

The LC_CTYPE category of the current locale affects the behavior of this function
because it defines the space character class.

4-66 IBM Informix GLS API Programmer's Guide

Return values

>0 The *mb character is in the space character class.

0 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

This function does not return a unique value to indicate an error. If an error
occurred, the function returns 0 and sets the ifx_gl_lc_errno() error number to one
of the following values.

IFX_GL_EILSEQ
The *mb value is not a valid multibyte character.

IFX_GL_EINVAL
The function cannot determine whether mb is a valid multibyte character
because it would need to read more than mb_byte_limit bytes from mb. If
mb_byte_limit is less than or equal to 0, this function always returns this
error.

Related concepts

“Character classification” on page 2-5
“Multibyte-character termination” on page 2-23
“Keep multibyte strings consistent” on page 2-26
Related reference

“The ifx_gl_ismblank() function” on page 4-56
“The ifx_gl_iswspace() function” on page 4-81
“The ifx_gl_lc_errno() function” on page 4-84

The ifx_gl_ismupper() function
The ifx_gl_ismupper() function determines whether a multibyte character contains
an uppercase alphabetic character.

Syntax
#include <ifxgls.h>
...
int ifx_gl_ismupper(mb, mb_byte_limit)

gl_mchar_t *mb;
int mb_byte_limit;

mb A pointer to the multibyte character whose character classification you
want to determine.

mb_byte_limit
The integer number of bytes to read from mb to try to form a complete
multibyte character. If mb_byte_limit is IFX_GL_NO_LIMIT, the
ifx_gl_ismupper() function reads as many bytes as necessary from mb to
form a complete character.

Valid in client application Valid in DataBlade UDR

Yes Yes

Chapter 4. Informix GLS functions 4-67

Usage

The ifx_gl_ismupper() function tests whether mb is in the upper character class
according to the rules of the current locale. The upper character class contains:
v the ASCII characters A through Z.
v all other single-byte and multibyte lowercase characters for Latin-based

languages; for example: Â, Ç, É, and Ü.

Characters in this class are also in the alpha, graph, and print classes. No
characters in the lower, digit, blank, space, punct, or cntrl classes are in this class.

To determine the lowercase equivalent of an alphabetic multibyte character, you
can use the ifx_gl_tomlower() function. Use the ifx_gl_ismalpha() function to test
whether a multibyte character is an alphabetic character (uppercase or lowercase).

Locale information

The LC_CTYPE category of the current locale affects the behavior of this function
because it defines the upper character class.

Return values

>0 The mb character is in the upper character class.

0 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

This function does not return a unique value to indicate an error. If an error
occurred, the function returns 0 and sets the ifx_gl_lc_errno() error number to one
of the following values.

IFX_GL_EILSEQ
The *mb value is not a valid multibyte character.

IFX_GL_EINVAL
The function cannot determine whether mb is a valid multibyte character
because it would need to read more than mb_byte_limit bytes from mb. If
mb_byte_limit is less than or equal to 0, this function always returns this
error.

4-68 IBM Informix GLS API Programmer's Guide

Related concepts

“Character classification” on page 2-5
“Multibyte-character termination” on page 2-23
“Keep multibyte strings consistent” on page 2-26
Related reference

“The ifx_gl_ismalnum() function” on page 4-53
“The ifx_gl_ismalpha() function” on page 4-54
“The ifx_gl_ismgraph() function” on page 4-60
“The ifx_gl_ismlower() function” on page 4-61
“The ifx_gl_ismprint() function” on page 4-63
“The ifx_gl_iswupper() function” on page 4-82
“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_tomupper() function” on page 4-115

The ifx_gl_ismxdigit() function
The ifx_gl_ismxdigit() function determines whether a multibyte character contains
a hexadecimal digit.

Syntax
#include <ifxgls.h>
...
int ifx_gl_ismxdigit(mb, mb_byte_limit)

gl_mchar_t *mb;
int mb_byte_limit;

mb A pointer to the multibyte character whose character classification you
want to determine.

mb_byte_limit
The integer number of bytes to read from mb to try to form a complete
multibyte character. If mb_byte_limit is IFX_GL_NO_LIMIT, the
ifx_gl_ismxdigit() function reads as many bytes as necessary from mb to
form a complete character.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_ismxdigit() function tests whether mb is in the xdigit character class
according to the rules of the current locale. The xdigit character class contains:
v the 10 ASCII digit characters (ASCII 0x030 to 0x039).
v the characters A through F.
v the characters a through f.

Any multibyte versions or alternative representations of these hexadecimal digits
that the locale might define (for example, Hindi or Kanji digits) are not in this
class. Instead, they are in the alpha class.

Characters in this class are also in the graph and print classes. No characters in the
blank, space, punct, or cntrl classes are in this class.

Chapter 4. Informix GLS functions 4-69

To determine whether a multibyte character contains a decimal digit, you can use
the ifx_gl_ismdigit() function. Use the ifx_gl_ismalnum() function to test whether
a multibyte character contains an alphabetic character or a digit.

Locale information

The LC_CTYPE category of the current locale affects the behavior of this function
because it defines the xdigit character class.

Return values

>0 The mb character is in the xdigit character class.

0 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

This function does not return a unique value to indicate an error. If an error
occurred, the function returns 0 and sets the ifx_gl_lc_errno() error number to one
of the following values.

IFX_GL_EILSEQ
The *mb value is not a valid multibyte character.

IFX_GL_EINVAL
The function cannot determine whether mb is a valid multibyte character
because it would need to read more than mb_byte_limit bytes from mb. If
mb_byte_limit is less than or equal to 0, this function always returns this
error.

Related concepts

“Character classification” on page 2-5
“Multibyte-character termination” on page 2-23
“Keep multibyte strings consistent” on page 2-26
Related reference

“The ifx_gl_ismalnum() function” on page 4-53
“The ifx_gl_ismalpha() function” on page 4-54
“The ifx_gl_ismdigit() function” on page 4-58
“The ifx_gl_ismgraph() function” on page 4-60
“The ifx_gl_ismprint() function” on page 4-63
“The ifx_gl_iswxdigit() function” on page 4-83
“The ifx_gl_lc_errno() function” on page 4-84

The ifx_gl_iswalnum() function
The ifx_gl_iswalnum() function determines whether a wide character contains an
alphabetic or digit character.

Syntax
#include <ifxgls.h>
...
int ifx_gl_iswalnum(wc)

gl_wchar_t *wc;

wc A pointer to the wide character whose character classification you want to
determine.

4-70 IBM Informix GLS API Programmer's Guide

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_iswalnum() function tests whether wc is in the alnum character class
(either the alpha or digit class) according to the rules of the current locale. The
alpha class contains all characters from the upper and lower classes. The digit class
contains only the 10 ASCII digit characters: '0' to '9' (ASCII 0x030 to 0x039).

To determine whether a wide character is defined only in the alpha class, use the
ifx_gl_iswalpha() function. To determine whether a wide character is defined only
in the digit class, use the ifx_gl_iswdigit() function.

Locale information

The LC_CTYPE category of the current locale affects the behavior of this function
because it defines the alnum character class.

Return values

>0 The wc character is in the digit character class.

0 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

This function does not return a unique value to indicate an error. If an error
occurred, the function returns 0 and sets the ifx_gl_lc_errno() error number to the
following value.

IFX_GL_EILSEQ
The *wc value is not a valid wide character.

Related concepts

“Character classification” on page 2-5
Related reference

“The ifx_gl_ismalnum() function” on page 4-53
“The ifx_gl_iswalpha() function”
“The ifx_gl_iswdigit() function” on page 4-75
“The ifx_gl_iswlower() function” on page 4-77
“The ifx_gl_iswupper() function” on page 4-82
“The ifx_gl_lc_errno() function” on page 4-84

The ifx_gl_iswalpha() function
The ifx_gl_iswalpha() function determines whether a wide character contains an
alphabetic character.

Syntax
#include <ifxgls.h>
...
int ifx_gl_iswalpha(wc)

gl_wchar_t *wc;

Chapter 4. Informix GLS functions 4-71

wc A pointer to the wide character whose character classification you want to
determine.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_iswalpha() function tests whether wc is in the alpha character class
according to the rules of the current locale. The alpha class contains all characters
from the upper and lower classes. In addition to the uppercase and lowercase
Latin-based characters, this class includes any alphabetic characters that the locale
might define, including:
v Asian ideographic characters; for example, Kanji characters.
v Asian phonetic characters; for example, single-byte and multibyte Katakana and

Hiragana characters.
v non-ASCII digit characters (see the digit class).
v Latin-based alphabetic characters that do not have a case-equivalent character.
v user-defined characters.
v vendor-defined characters.

Characters in the alpha class are also in the graph and print classes. No characters
in the digit, blank, space, punct, or cntrl classes are in this class.

To determine the case of a wide alphabetic character, you can use the
ifx_gl_iswupper() and ifx_gl_iswlower() functions. Use the ifx_gl_iswalnum()
function to test whether a wide character is an alphabetic character or a digit.

Locale information

The LC_CTYPE category of the current locale affects the behavior of this function
because it defines the alpha character class.

Return values

>0 The wc character is in the digit character class.

0 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

This function does not return a unique value to indicate an error. If an error
occurred, the function returns 0 and sets the ifx_gl_lc_errno() error number to the
following value.

IFX_GL_EILSEQ
The *wc value is not a valid wide character.

4-72 IBM Informix GLS API Programmer's Guide

Related concepts

“Character classification” on page 2-5
Related reference

“The ifx_gl_ismalpha() function” on page 4-54
“The ifx_gl_iswalnum() function” on page 4-70
“The ifx_gl_iswgraph() function” on page 4-76
“The ifx_gl_iswlower() function” on page 4-77
“The ifx_gl_iswprint() function” on page 4-78
“The ifx_gl_iswupper() function” on page 4-82
“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_tomlower() function” on page 4-113
“The ifx_gl_tomupper() function” on page 4-115

The ifx_gl_iswblank() function
The ifx_gl_iswblank() function determines whether a wide character contains a
horizontal-space character.

Syntax
#include <ifxgls.h>
...
int ifx_gl_iswblank(wc)

gl_wchar_t *wc;

wc A pointer to the wide character whose character classification you want to
determine.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_iswblank() function tests whether wc is in the blank character class
according to the rules of the current locale. The blank character class includes the
single-byte space (ASCII 0x020) and tab character (ASCII 0x009, ^I) plus any
multibyte version of these characters that the locale defines. Characters in the
blank class are also in the space class. No characters in the upper, lower, alpha,
digit, xdigit, punct, or graph classes are in the blank class.

Locale information

The LC_CTYPE category of the current locale affects the behavior of this function
because it defines the blank character class.

Return values

>0 The wc character is in the digit character class.

0 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Chapter 4. Informix GLS functions 4-73

Errors

This function does not return a unique value to indicate an error. If an error
occurred, the function returns 0 and sets the ifx_gl_lc_errno() error number to the
following value.

IFX_GL_EILSEQ
The *wc value is not a valid wide character.

Related concepts

“Character classification” on page 2-5
Related reference

“The ifx_gl_ismblank() function” on page 4-56
“The ifx_gl_iswspace() function” on page 4-81
“The ifx_gl_lc_errno() function” on page 4-84

The ifx_gl_iswcntrl() function
The ifx_gl_iswcntrl() function determines whether a wide character contains a
control character.

Syntax
#include <ifxgls.h>
...
int ifx_gl_iswcntrl(wc)

gl_wchar_t *wc;

wc A pointer to the wide character whose character classification you want to
determine.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_iswcntrl() function tests whether wc is in the cntrl character class
according to the rules of the current locale. The cntrl character class contains the
single-byte control characters: alert, backspace, tab, newline, vertical tab, form feed,
carriage return, NUL, SOH, STX, ETX, EOT, ENQ, ACK, SO, SI, DLE, DC1, DC2,
DC3, DC4, NAK, SYN, ETB, CAN, EM, SUB, ESC, IS4, IS3, IS2, IS1, and DEL.
These characters are the ASCII characters whose code points are in the range 0x000
to 0x1F. In addition, the cntrl class contains any other control characters that the
locale might define.

No characters in the upper, lower, alpha, digit, xdigit, punct, graph, or print classes
are in the cntrl class.

Locale information

The LC_CTYPE category of the current locale affects the behavior of this function
because it defines the cntrl character class.

Return values

>0 The wc character is in the cntrl character class.

4-74 IBM Informix GLS API Programmer's Guide

0 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

This function does not return a unique value to indicate an error. If an error
occurred, the function returns 0 and sets the ifx_gl_lc_errno() error number to the
following value.

IFX_GL_EILSEQ
The *wc value is not a valid wide character.

Related concepts

“Character classification” on page 2-5
Related reference

“The ifx_gl_ismcntrl() function” on page 4-57
“The ifx_gl_lc_errno() function” on page 4-84

The ifx_gl_iswdigit() function
The ifx_gl_iswdigit() function determines whether a wide character contains a
decimal digit.

Syntax
#include <ifxgls.h>
...
int ifx_gl_iswdigit(wc)

gl_wchar_t *wc;

wc A pointer to the wide character whose character classification you want to
determine.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_iswdigit() function tests whether wc is in the digit character class
according to the rules of the current locale. The digit character class contains only
the 10 ASCII digit characters (ASCII 0x030 to 0x039). Any multibyte versions or
alternative representations of these digits that the locale might define (for example,
Hindi or Kanji digits) are not in this class. Instead, they are in the alpha class.

Characters in this class are also in the xdigit, graph, and print classes. No
characters in the upper, lower, alpha, blank, space, punct, or cntrl classes are in this
class.

To determine whether a wide character contains a hexadecimal digit, you can use
the ifx_gl_iswxdigit() function. Use the ifx_gl_iswalnum() function to test whether
a wide character is an alphabetic character or a digit.

Locale information

The LC_CTYPE category of the current locale affects the behavior of this function
because it defines the digit character class.

Chapter 4. Informix GLS functions 4-75

Return values

>0 The wc character is in the digit character class.

0 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

This function does not return a unique value to indicate an error. If an error
occurred, the function returns 0 and sets the ifx_gl_lc_errno() error number to the
following value.

IFX_GL_EILSEQ
The *wc value is not a valid wide character.

Related concepts

“Character classification” on page 2-5
Related reference

“The ifx_gl_ismdigit() function” on page 4-58
“The ifx_gl_iswalnum() function” on page 4-70
“The ifx_gl_iswalpha() function” on page 4-71
“The ifx_gl_iswgraph() function”
“The ifx_gl_iswprint() function” on page 4-78
“The ifx_gl_iswxdigit() function” on page 4-83
“The ifx_gl_lc_errno() function” on page 4-84

The ifx_gl_iswgraph() function
The ifx_gl_iswgraph() function determines whether a wide character contains a
graphical (visible) character.

Syntax
#include <ifxgls.h>
...
int ifx_gl_iswgraph(wc)

gl_wchar_t *wc;

wc A pointer to the wide character whose character classification you want to
determine.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_iswgraph() function tests whether wc is in the graph character class
according to the rules of the current locale. The graph character class contains all
characters that have a visual representation, including characters from the alpha,
digit, punct, and xdigit classes. In addition, all placeholder characters used in
round-trip code-set conversion are in this class.

Characters in the graph class are also in the print class. No characters in the blank,
space, or cntrl classes are in the graph class.

4-76 IBM Informix GLS API Programmer's Guide

Locale information

The LC_CTYPE category of the current locale affects the behavior of this function
because it defines the graph character class.

Return values

>0 The wc character is in the digit character class.

0 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

This function does not return a unique value to indicate an error. If an error
occurred, the function returns 0 and sets the ifx_gl_lc_errno() error number to the
following value.

IFX_GL_EILSEQ
The *wc value is not a valid wide character.

Related concepts

“Character classification” on page 2-5
Related reference

“The ifx_gl_ismgraph() function” on page 4-60
“The ifx_gl_iswalnum() function” on page 4-70
“The ifx_gl_iswalpha() function” on page 4-71
“The ifx_gl_iswdigit() function” on page 4-75
“The ifx_gl_iswprint() function” on page 4-78
“The ifx_gl_iswpunct() function” on page 4-79
“The ifx_gl_iswupper() function” on page 4-82
“The ifx_gl_iswxdigit() function” on page 4-83
“The ifx_gl_lc_errno() function” on page 4-84

The ifx_gl_iswlower() function
The ifx_gl_iswlower() function determines whether a wide character contains a
lowercase alphabetic character.

Syntax
#include <ifxgls.h>
...
int ifx_gl_iswlower(wc)

gl_wchar_t *wc;

wc A pointer to the wide character whose character classification you want to
determine.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_iswlower() function tests whether wc is in the lower character class
according to the rules of the current locale. The lower character class contains:
v the ASCII characters a through z.

Chapter 4. Informix GLS functions 4-77

v all other single-byte and multibyte lowercase characters for Latin-based
languages; for example: â, ç, é, and ü.

Characters in this class are also in the alpha, graph, and print classes. No
characters in the upper, digit, blank, space, punct, or cntrl classes are in this class.

To obtain the uppercase equivalent of an alphabetic wide character, you can use
the ifx_gl_towupper() function. Use the ifx_gl_iswalpha() function to test whether
a wide character is an alphabetic character (uppercase or lowercase).

Locale information

The LC_CTYPE category of the current locale affects the behavior of this function
because it defines the lower character class.

Return values

>0 The wc character is in the digit character class.

0 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

This function does not return a unique value to indicate an error. If an error
occurred, the function returns 0 and sets the ifx_gl_lc_errno() error number to the
following value.

IFX_GL_EILSEQ
The *wc value is not a valid wide character.

Related concepts

“Character classification” on page 2-5
Related reference

“The ifx_gl_ismlower() function” on page 4-61
“The ifx_gl_iswalnum() function” on page 4-70
“The ifx_gl_iswalpha() function” on page 4-71
“The ifx_gl_iswgraph() function” on page 4-76
“The ifx_gl_iswprint() function”
“The ifx_gl_iswupper() function” on page 4-82
“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_towupper() function” on page 4-117

The ifx_gl_iswprint() function
The ifx_gl_iswprint() function determines whether a wide character contains a
printable character.

Syntax
#include <ifxgls.h>
...
int ifx_gl_iswprint(wc)

gl_wchar_t *wc;

wc A pointer to the wide character whose character classification you want to
determine.

4-78 IBM Informix GLS API Programmer's Guide

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_iswprint() function tests whether wc is in the print character class
according to the rules of the current locale. The print character class contains all
characters that have a visual representation or are in the space class but not in the
cntrl class.

All characters from the alpha, digit, punct, xdigit, and graph classes are also in this
class. No characters in the cntrl class are in this class.

Locale information

The LC_CTYPE category of the current locale affects the behavior of this function
because it defines the print character class.

Return values

>0 The wc character is in the digit character class.

0 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

This function does not return a unique value to indicate an error. If an error
occurred, the function returns 0 and sets the ifx_gl_lc_errno() error number to the
following value.

IFX_GL_EILSEQ
The *wc value is not a valid wide character.

Related concepts

“Character classification” on page 2-5
Related reference

“The ifx_gl_ismprint() function” on page 4-63
“The ifx_gl_iswalnum() function” on page 4-70
“The ifx_gl_iswalpha() function” on page 4-71
“The ifx_gl_iswdigit() function” on page 4-75
“The ifx_gl_iswgraph() function” on page 4-76
“The ifx_gl_iswlower() function” on page 4-77
“The ifx_gl_iswpunct() function”
“The ifx_gl_iswupper() function” on page 4-82
“The ifx_gl_iswxdigit() function” on page 4-83
“The ifx_gl_lc_errno() function” on page 4-84

The ifx_gl_iswpunct() function
The ifx_gl_iswpunct() function determines whether a wide character contains a
punctuation character.

Chapter 4. Informix GLS functions 4-79

Syntax
#include <ifxgls.h>
...
int ifx_gl_iswpunct(wc)

gl_wchar_t *wc;

wc A pointer to the wide character whose character classification you want to
determine.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_iswpunct() function tests whether wc is in the punct character class
according to the rules of the current locale. The punct character class contains the
following characters:
v The single-byte ASCII punctuation characters: ! @ # $ % ^ & * () - _ = + \ | ‘ ~

[] { } ; : ' ” , . / < > ?
v Any non-ASCII punctuation characters that the locale might define

Graphic characters that are not true punctuation characters have traditionally been
put in the punct class; instead they are in the graph class. Characters in this class
are also in the graph and print classes. No characters in the upper, lower, alpha,
digit, xdigit, blank, space, or cntrl classes are in this class.

Locale information

The LC_CTYPE category of the current locale affects the behavior of this function
because it defines the punct character class.

Return values

>0 The wc character is in the digit character class.

0 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

This function does not return a unique value to indicate an error. If an error
occurred, the function returns 0 and sets the ifx_gl_lc_errno() error number to the
following value.

IFX_GL_EILSEQ
The *wc value is not a valid wide character.

4-80 IBM Informix GLS API Programmer's Guide

Related concepts

“Character classification” on page 2-5
Related reference

“The ifx_gl_ismpunct() function” on page 4-64
“The ifx_gl_iswgraph() function” on page 4-76
“The ifx_gl_iswprint() function” on page 4-78
“The ifx_gl_lc_errno() function” on page 4-84

The ifx_gl_iswspace() function
The ifx_gl_iswspace() function determines whether a wide character contains a
space (vertical or horizontal) character.

Syntax
#include <ifxgls.h>
...
int ifx_gl_iswspace(wc)

gl_wchar_t *wc;

wc A pointer to the wide character whose character classification you want to
determine.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_iswspace() function tests whether wc is in the space character class
according to the rules of the current locale. The space character class contains:
v all characters from the blank class, including the horizontal space character

(ASCII 0x020).
v the vertical-space character.
v the single-byte newline, vertical tab, form feed, and carriage return (ASCII 0x0A

through 0x0D).
v any multibyte versions of newline, vertical tab, form feed, and carriage return.

No characters in the alpha, digit, xdigit, punct, or graph classes are in this class.

Locale information

The LC_CTYPE category of the current locale affects the behavior of this function
because it defines the space character class.

Return values

>0 The wc character is in the digit character class.

0 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

This function does not return a unique value to indicate an error. If an error
occurred, the function returns 0 and sets the ifx_gl_lc_errno() error number to the
following value.

Chapter 4. Informix GLS functions 4-81

IFX_GL_EILSEQ
The *wc value is not a valid wide character.

Related concepts

“Character classification” on page 2-5
Related reference

“The ifx_gl_ismspace() function” on page 4-66
“The ifx_gl_iswblank() function” on page 4-73
“The ifx_gl_lc_errno() function” on page 4-84

The ifx_gl_iswupper() function
The ifx_gl_iswupper() function determines whether a wide character contains an
uppercase alphabetic character.

Syntax
#include <ifxgls.h>
...
int ifx_gl_iswupper(wc)

gl_wchar_t *wc;

wc A pointer to the wide character whose character classification you want to
determine.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_iswupper() function tests whether wc is in the upper character class
according to the rules of the current locale. The upper character class contains:
v the ASCII characters A through Z.
v all other single-byte and multibyte uppercase characters for Latin-based

languages; for example: Â, Ç, É, and Ü.

Characters in this class are also in the alpha, graph, and print classes. No
characters in the lower, digit, blank, space, punct, or cntrl classes are in this class.

To determine the lowercase equivalent of an alphabetic wide character, you can use
the ifx_gl_tomlower() function. Use the ifx_gl_ismalpha() function to test whether
a wide character is an alphabetic character (uppercase or lowercase).

Locale information

The LC_CTYPE category of the current locale affects the behavior of this function
because it defines the upper character class.

Return values

>0 The wc character is in the digit character class.

0 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

4-82 IBM Informix GLS API Programmer's Guide

Errors

This function does not return a unique value to indicate an error. If an error
occurred, the function returns 0 and sets the ifx_gl_lc_errno() error number to the
following value.

IFX_GL_EILSEQ
The *wc value is not a valid wide character.

Related concepts

“Character classification” on page 2-5
Related reference

“The ifx_gl_ismupper() function” on page 4-67
“The ifx_gl_iswalnum() function” on page 4-70
“The ifx_gl_iswalpha() function” on page 4-71
“The ifx_gl_iswgraph() function” on page 4-76
“The ifx_gl_iswlower() function” on page 4-77
“The ifx_gl_iswprint() function” on page 4-78
“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_towupper() function” on page 4-117

The ifx_gl_iswxdigit() function
The ifx_gl_iswxdigit() function determines whether a wide character contains a
hexadecimal digit.

Syntax
#include <ifxgls.h>
...
int ifx_gl_iswxdigit(wc)

gl_wchar_t *wc;

wc A pointer to the wide character whose character classification you want to
determine.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_iswxdigit() function tests whether wc is in the xdigit character class
according to the rules of the current locale. The xdigit character class contains:
v the 10 ASCII digit characters (ASCII 0x030 to 0x039).
v the characters A through F.
v the characters a through f.

Any multibyte versions or alternative representations of these hexadecimal digits
that the locale might define (for example, Hindi or Kanji digits) are not in this
class. Instead, they are in the alpha class.

Characters in this class are also in the graph and print classes. No characters in the
blank, space, punct, or cntrl classes are in this class.

Chapter 4. Informix GLS functions 4-83

To determine whether a wide character contains a decimal digit, you can use the
ifx_gl_iswdigit() function. Use the ifx_gl_iswalnum() function to test whether a
wide character contains an alphabetic character or a digit.

Locale information

The LC_CTYPE category of the current locale affects the behavior of this function
because it defines the xdigit character class.

Return values

>0 The wc character is in the digit character class.

0 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

This function does not return a unique value to indicate an error. If an error
occurred, the function returns 0 and sets the ifx_gl_lc_errno() error number to the
following value.

IFX_GL_EILSEQ
The *wc value is not a valid wide character.

Related concepts

“Character classification” on page 2-5
Related reference

“The ifx_gl_ismxdigit() function” on page 4-69
“The ifx_gl_iswalnum() function” on page 4-70
“The ifx_gl_iswalpha() function” on page 4-71
“The ifx_gl_iswdigit() function” on page 4-75
“The ifx_gl_iswgraph() function” on page 4-76
“The ifx_gl_iswprint() function” on page 4-78
“The ifx_gl_lc_errno() function”

The ifx_gl_lc_errno() function
The ifx_gl_lc_errno() function returns the value of the error number that some
other IBM Informix GLS function has set.

Syntax
#include <gls.h>
...
int ifx_gl_lc_errno(void);

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The Informix GLS functions set the error number, of type int, to indicate additional
information about an error that occurred. Informix GLS functions set this value
only when an error occurs (unless documented otherwise). Because any Informix

4-84 IBM Informix GLS API Programmer's Guide

GLS function can set the error number, you must use ifx_gl_lc_errno() to inspect
the error number immediately after you call the function in which the error
occurred.

Tip: The Errors section for each function documents the values that
ifx_gl_lc_errno() returns after that particular function.

Certain code-set conversion functions are not dependent on a locale and do not set
an error number that you can retrieve with ifx_gl_lc_errno(). Instead, these
functions return a negative error code.

Return values

Integer error number
The error number that an Informix GLS function has set. These error
numbers are defined in the gls.h file and are described in the Errors
section for each function.

-1 The function was not successful. The current processing locale has not been
correctly initialized.

Errors

None
Related concepts

“Informix GLS exceptions” on page 1-11

The ifx_gl_mb_loc_max() function
The ifx_gl_mb_loc_max() function returns the maximum number of bytes in the
characters of the current locale.

Syntax
#include <ifxgls.h>
...
int ifx_gl_mb_loc_max(void);;

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_mb_loc_max() function is useful when you need to allocate memory for
a multibyte-character string. It returns the maximum number of bytes that any
multibyte character can occupy. A multibyte code set can have characters of one,
two, three, or four bytes.

Return values

>=0 The maximum number of bytes in the current locale.

-1 The function was not successful.

Errors

None

Chapter 4. Informix GLS functions 4-85

Related reference

“Managing memory for strings and characters” on page 2-24

The ifx_gl_mblen() function
The ifx_gl_mblen() function returns the number of bytes in a multibyte character.

Syntax
#include <ifxgls.h>
...
int ifx_gl_mblen(mb, mb_byte_limit)

gl_mchar_t *mb;
int mb_byte_limit;

mb A pointer to the multibyte character whose character classification you
want to determine.

mb_byte_limit
The integer number of bytes to read from mb to try to form a complete
multibyte character. If mb_byte_limit is IFX_GL_NO_LIMIT, the function
reads as many bytes as necessary from mb to form a complete character.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_mblen() function determines the number of bytes in the multibyte
character, mb. This function is often used to advance a pointer through a
null-terminated multibyte string. However, it is slightly faster to advance a pointer
through a null-terminated string with ifx_gl_mbsnext(), as the following code
shows:
for (mb = mbs; *mb != ’\0’;)

{
if ((mb = ifx_gl_mbsnext(mb, IFX_GL_NO_LIMIT)) == NULL)

/* handle error */
}

Return values

>=0 The number of bytes in the mb multibyte character.

-1 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

If an error occurred, this function returns -1 and sets the ifx_gl_lc_errno() error
number to one of the following values.

IFX_GL_EILSEQ
The *mb value is not a valid multibyte character.

IFX_GL_EINVAL
The function cannot determine whether mb is a valid multibyte character
because it would need to read more than mb_byte_limit bytes from mb. If
mb_byte_limit is less than or equal to 0, this function always returns this
error.

4-86 IBM Informix GLS API Programmer's Guide

Related concepts

“String traversal” on page 2-18
“Multibyte-character termination” on page 2-23
“Keep multibyte strings consistent” on page 2-26
Related reference

“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_mbsnext() function” on page 4-100
“The ifx_gl_mbsprev() function” on page 4-105

The ifx_gl_mbscat() function
The ifx_gl_mbscat() function concatenates two multibyte-character strings.

Syntax
#include <ifxgls.h>
...
int ifx_gl_mbscat(mbs1, mbs1_byte_length, mbs2, mbs2_byte_length)

gl_mchar_t *mbs1;
int mbs1_byte_length;
gl_mchar_t *mbs2;
int mbs2_byte_length;

mbs1 A pointer to the multibyte-character string to which the function
concatenates mbs2.

mbs1_byte_length
The integer number of bytes in the mbs1 string. If mbs1_byte_length is the
value IFX_GL_NULL, the function assumes that mbs1 is a null-terminated
string.

mbs2 A pointer to the multibyte-character string to concatenate onto mbs1.

mbs2_byte_length
The integer number of bytes in the mbs2 string. If mbs2_byte_length is the
value IFX_GL_NULL, the function assumes that mbs2 is a null-terminated
string.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_mbscat() function appends a copy of the mbs2 multibyte-character
string to the end of the mbs1 multibyte-character string.

If mbs1 and mbs2 overlap, the results of this function are undefined. If
mbs1_byte_length is equal to IFX_GL_NULL, the function null-terminates the
concatenated string. Any other value of mbs1_byte_length means that the function
does not null-terminate the resulting concatenated string.

Return values

>=0 The number of characters in the concatenated string, not including any
null terminator.

-1 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Chapter 4. Informix GLS functions 4-87

Errors

If an error occurred, this function returns -1 and sets the ifx_gl_lc_errno() error
number to one of the following values.

IFX_GL_PARAMERR
Either mbs1_byte_length is not equal to IFX_GL_NULL and is not greater
than or equal to 0, or mbs2_byte_length is not equal to IFX_GL_NULL and
is not greater than or equal to 0.

IFX_GL_TERMMISMAT
Either mbs1_byte_length is equal to IFX_GL_NULL, and mbs2_byte_length is
greater than or equal to 0; or mbs1_byte_length is greater than or equal to 0,
and mbs2_byte_length is equal to IFX_GL_NULL.

IFX_GL_EILSEQ
Either mbs1 or mbs2 contains an invalid multibyte character.

IFX_GL_EINVAL
Either the function cannot determine whether the last character of mbs1 is a
valid multibyte character because it would need to read more than
mbs1_byte_length bytes from mbs1, or the function cannot determine
whether the last character of mbs2 is a valid multibyte character because it
would need to read more than mbs2_byte_length bytes from mbs2.

Related concepts

“Concatenation” on page 2-19
“Character-string termination” on page 2-22
“Keep multibyte strings consistent” on page 2-26
Related reference

“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_mbsncat() function” on page 4-97
“The ifx_gl_wcscat() function” on page 4-118
“The ifx_gl_wcsncat() function” on page 4-125

The ifx_gl_mbschr() function
The ifx_gl_mbschr() function searches for the first occurrence of a character in a
multibyte-character string.

Syntax
#include <ifxgls.h>
...
gl_mchar_t *ifx_gl_mbschr(mbs, mbs_byte_length, mb, mb_byte_limit)

gl_mchar_t *mbs;
int mbs_byte_length;
gl_mchar_t *mb;
int mb_byte_limit;

mbs A pointer to the multibyte-character string in which the function searches
for mb.

mbs_byte_length
The integer number of bytes in the mbs string. If mbs_byte_length is the
value IFX_GL_NULL, the function assumes that mbs1 is a null-terminated
string.

mb A pointer to the multibyte character to search for in mbs.

4-88 IBM Informix GLS API Programmer's Guide

mb_byte_limit
The number of bytes to read from the mb character to try to form a
complete multibyte character. If mb_byte_limit is IFX_GL_NO_LIMIT, the
ifx_gl_mbschr() function reads as many bytes as necessary from mb to
form a complete character.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_mbschr() function locates the first occurrence of mb in the multibyte
string mbs.

Return values

gl_mchar_t *
A pointer to the first occurrence of mb in mbs.

NULL Either mb was not found in mbs (the ifx_gl_lc_errno() error number is set
to 0); or the function was not successful, and the error number is set to
indicate the cause. See the Errors section.

Errors

If an error occurred, this function returns NULL and sets the ifx_gl_lc_errno()
error number to one of the following values.

IFX_GL_EILSEQ
The *mb value is an invalid multibyte character, or *mbs contains an invalid
multibyte character.

IFX_GL_EINVAL
The function cannot determine whether mb is a valid multibyte character
because it would need to read more than mb_byte_limit bytes from mb, or
the function cannot determine whether the last character of mbs is a valid
multibyte character because it would need to read more than
mbs_byte_length bytes from mbs. If mb_byte_limit is less than or equal to 0,
this function always returns this error.

IFX_GL_PARAMERR
The mbs_byte_length is not equal to IFX_GL_NULL and is not greater than
or equal to 0.

Chapter 4. Informix GLS functions 4-89

Related concepts

“Character-string termination” on page 2-22
“Multibyte-character termination” on page 2-23
“Keep multibyte strings consistent” on page 2-26
Related reference

“Character searching” on page 2-20
“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_mbsrchr() function” on page 4-106
“The ifx_gl_wcschr() function” on page 4-119
“The ifx_gl_wcsrchr() function” on page 4-130

The ifx_gl_mbscoll() function
The ifx_gl_mbscoll() function uses locale-specific order to compare two
multibyte-character strings.

Syntax
#include <ifxgls.h>
...
int ifx_gl_mbscoll(mbs1, mbs1_byte_length, mbs2, mbs2_byte_length)

gl_mchar_t *mbs1;
int mbs1_byte_length;
gl_mchar_t *mbs2;
int mbs2_byte_length;

mbs1 A pointer to the multibyte-character string to compare with mbs2.

mbs1_byte_length
The integer number of bytes in the mbs1 string. If mbs1_byte_length is the
value IFX_GL_NULL, the function assumes that mbs1 is a null-terminated
string.

mbs2 A pointer to the multibyte-character string to compare with mbs1.

mbs2_byte_length
The integer number of bytes in the mbs2 string. If mbs2_byte_length is the
value IFX_GL_NULL, the function assumes that mbs2 is a null-terminated
string.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_mbscoll() function uses locale-specific order to compare the
multibyte-character strings mbs1 and mbs2.

Locale information

The LC_COLLATE category of the current locale affects the behavior of this
function because it defines the locale-specific order.

Return values

<0 The mbs1 string is less than the mbs2 string (mbs1 < mbs2); or the function
was not successful, and the error number is set to indicate the cause. See
the Errors section.

4-90 IBM Informix GLS API Programmer's Guide

=0 The mbs1 string is equal to the mbs2 string (mbs1 = mbs2).

>0 The mbs1 string is greater than the mbs2 string (mbs1 > mbs2).

Errors

This function does not return a unique value to indicate an error. If an error
occurred, this function returns -1 and sets the ifx_gl_lc_errno() error number to
one of the following values.

IFX_GL_PARAMERR
Either mbs1_byte_length is not equal to IFX_GL_NULL and is not greater
than or equal to 0, or mbs2_byte_length is not equal to IFX_GL_NULL and
is not greater than or equal to 0.

IFX_GL_TERMMISMAT
Either mbs1_byte_length is equal to IFX_GL_NULL, and mbs2_byte_length is
greater than or equal to 0; or mbs1_byte_length is greater than or equal to 0,
and mbs2_byte_length is equal to IFX_GL_NULL.

IFX_GL_EILSEQ
Either mbs1 or mbs2 contains an invalid multibyte character.

IFX_GL_EINVAL
Either the function cannot determine whether the last character of mbs1 is a
valid multibyte character because it would need to read more than
mbs1_byte_length bytes from mbs1, or the function cannot determine
whether the last character of mbs2 is a valid multibyte character because it
would need to read more than mbs2_byte_length bytes from mbs2.

IFX_GL_ENOMEM
Not enough memory is available to complete the operation.

Related concepts

“Character/string comparison and sorting” on page 2-20
“Character-string termination” on page 2-22
“Keep multibyte strings consistent” on page 2-26
Related reference

“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_wcscoll() function” on page 4-120

The ifx_gl_mbscpy() function
The ifx_gl_mbscpy() function copies a multibyte-character string.

Syntax
#include <ifxgls.h>
...
int ifx_gl_mbscpy(mbs1, mbs2, mbs2_byte_length)

gl_mchar_t *mbs1;
gl_mchar_t *mbs2;
int mbs2_byte_length;

mbs1 A pointer to the location where the function copies mbs2.

mbs2 A pointer to the multibyte-character string to copy to mbs1.

mbs2_byte_length
The integer number of bytes in the mbs2 string. If mbs2_byte_length is the
value IFX_GL_NULL, the function assumes that mbs2 is a null-terminated

Chapter 4. Informix GLS functions 4-91

string. For more general information about string lengths, see
“Character-string termination” on page 2-22.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_mbscpy() function copies the multibyte string mbs2 to the location that
mbs1 references.

If mbs1 and mbs2 overlap, the results of this function are undefined. If
mbs2_byte_length is equal to IFX_GL_NULL, the function null-terminates the
concatenated string. Any other value of mbs2_byte_length means that the function
does not null-terminate the resulting concatenated string.

Return values

>=0 The number of bytes in the copied string, not including any null
terminator.

-1 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

If an error occurred, this function returns -1 and sets the ifx_gl_lc_errno() error
number to one of the following values.

IFX_GL_PARAMERR
The mbs2_byte_length is not equal to IFX_GL_NULL and is not greater than
or equal to 0.

IFX_GL_EILSEQ
The *mbs2 value contains an invalid multibyte character.

IFX_GL_EINVAL
The function cannot determine whether the last character of mbs2 is a valid
multibyte character because it would need to read more than
mbs2_byte_length bytes from mbs2.

Related concepts

“Keep multibyte strings consistent” on page 2-26
Related reference

“String copying” on page 2-19
“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_mbsncpy() function” on page 4-98
“The ifx_gl_wcscpy() function” on page 4-122
“The ifx_gl_wcsncpy() function” on page 4-127

The ifx_gl_mbscspn() function
The ifx_gl_mbscspn() function determines the length of a complementary
multibyte substring for a multibyte-character string.

4-92 IBM Informix GLS API Programmer's Guide

Syntax
#include <ifxgls.h>
...
int ifx_gl_mbscspn(mbs1, mbs1_byte_length, mbs2, mbs2_byte_length)

gl_mchar_t *mbs1;
int mbs1_byte_length;
gl_mchar_t *mbs2;
int mbs2_byte_length;

mbs1 A pointer to the multibyte-character string to check for the complementary
string of characters in mbs2.

mbs1_byte_length
The integer number of bytes in the mbs1 string. If mbs1_byte_length is the
value IFX_GL_NULL, the function assumes that mbs1 is a null-terminated
string.

mbs2 A pointer to the string of multibyte characters to search for in mbs1.

mbs2_byte_length
The integer number of bytes in the mbs2 string. If mbs2_byte_length is the
value IFX_GL_NULL, the function assumes that mbs2 is a null-terminated
string.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_mbscspn() function returns the size of the initial substring of mbs1 that
does not contain any characters that match characters in mbs2. The initial substring
begins at the first character of mbs1. Therefore, this size is the number of characters
in mbs1 before the first character that the mbs1 and mbs2 strings have in common.
The string of unmatched characters is called the complementary string.

For example, suppose you have the following two multibyte-characters strings,
mbs1 and mbs2:
mbs1 = "A1A2B1B2B3C1C2D1D2D3A1A2E1F1F2A1A2G1D1D2D3";
mbs2 = "F1F2G1D1D2D3";

With these multibyte strings, the following call to the ifx_gl_mbscspn() function
returns 3:
ifx_gl_mbscspn(mbs1, bytelen1, mbs2, bytelen2)

The first three characters of mbs1 are not in mbs2. The fourth character in mbs1 is
D1D2D3, which is in mbs2 also.

Return values

>=0 The number of characters in the initial substring of mbs1 that consists
entirely of multibyte characters not in the string mbs2.

-1 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

If an error occurred, this function returns -1 and sets the ifx_gl_lc_errno() error
number to one of the following values.

Chapter 4. Informix GLS functions 4-93

IFX_GL_PARAMERR
Either mbs1_byte_length is not equal to IFX_GL_NULL and is not greater
than or equal to 0, or mbs2_byte_length is not equal to IFX_GL_NULL and
is not greater than or equal to 0.

IFX_GL_TERMMISMAT
Either mbs1_byte_length is equal to IFX_GL_NULL, and mbs2_byte_length is
greater than or equal to 0; or mbs1_byte_length is greater than or equal to 0,
and mbs2_byte_length is equal to IFX_GL_NULL.

IFX_GL_EILSEQ
Either mbs1 or mbs2 contains an invalid multibyte character.

IFX_GL_EINVAL
Either the function cannot determine whether the last character of mbs1 is a
valid multibyte character because it would need to read more than
mbs1_byte_length bytes from mbs1, or the function cannot determine
whether the last character of mbs2 is a valid multibyte character because it
would need to read more than mbs2_byte_length bytes from mbs2.

Related concepts

“Character-string termination” on page 2-22
“Keep multibyte strings consistent” on page 2-26
Related reference

“String-length determination” on page 2-19
“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_mbsspn() function” on page 4-108
“The ifx_gl_wcscspn() function” on page 4-123
“The ifx_gl_wcsspn() function” on page 4-131

The ifx_gl_mbslen() function
The ifx_gl_mbslen() function determines the number of characters in a
multibyte-character string.

Syntax
#include <ifxgls.h>
...
int ifx_gl_mbslen(mbs, mbs_byte_length)

gl_mchar_t *mbs;
int mbs_byte_length;

mbs A pointer to the multibyte-character string whose length the function
determines.

mbs_byte_length
The integer number of bytes in the mbs string. If mbs_byte_length is the
value IFX_GL_NULL, the function assumes that mbs is a null-terminated
string.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_mbslen() function returns the number of characters (not bytes) in the
string mbs, not including any terminating null character. The length that

4-94 IBM Informix GLS API Programmer's Guide

ifx_gl_mbslen() returns includes any trailing white space. The trailing-space
characters are all characters that the blank character class of the current locale
defines. Use the ifx_gl_mbntslen() function if you want the length without trailing
white space.

For example, the following call to ifx_gl_mbslen() returns a value of 12 (where
A1A2 is the multibyte character of 2 bytes, B1B2B3 is the multibyte character of 3
bytes, and E1 is the multibyte character of 1 byte, and each s represents a
single-byte horizontal white space character):
ifx_gl_mbslen("A1A2B1B2B3scdsE1sssss", mbs_byte_length)

Use the ifx_gl_mbsntslen() or ifx_gl_mbsntsbytes() function if you want the
length without trailing white space.

Return values

>=0 The number of characters in the mbs string, not including any null
terminator but including any trailing white space.

-1 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

If an error occurred, this function returns -1 and sets the ifx_gl_lc_errno() error
number to one of the following values.

IFX_GL_PARAMERR
The mbs_byte_length is not equal to IFX_GL_NULL and is not greater than
or equal to 0.

IFX_GL_EILSEQ
The *mbs value contains an invalid multibyte character.

IFX_GL_EINVAL
The function cannot determine whether the last character of mbs is a valid
multibyte character because it would need to read more than
mbs_byte_length bytes from mbs.

Related concepts

“Character-string termination” on page 2-22
“Keep multibyte strings consistent” on page 2-26
Related reference

“String-length determination” on page 2-19
“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_mblen() function” on page 4-86
“The ifx_gl_mbsnext() function” on page 4-100
“The ifx_gl_mbsntsbytes() function” on page 4-101
“The ifx_gl_mbsntslen() function” on page 4-102
“The ifx_gl_wcslen() function” on page 4-124

The ifx_gl_mbsmbs() function
The ifx_gl_mbsmbs() function searches for a specified substring within a
multibyte-character string.

Chapter 4. Informix GLS functions 4-95

Syntax
#include <ifxgls.h>
...
gl_mchar_t *ifx_gl_mbsmbs(mbs1, mbs1_byte_length, mbs2, mbs2_byte_length)

gl_mchar_t *mbs1;
int mbs1_byte_length;
gl_mchar_t *mbs2;
int mbs2_byte_length;

mbs1 A pointer to the multibyte-character string to search for the substring mbs2.

mbs1_byte_length
The integer number of bytes in the mbs1 string. If mbs1_byte_length is the
value IFX_GL_NULL, the function assumes that mbs1 is a null-terminated
string.

mbs2 A pointer to the string of multibyte characters to search for in mbs1.

mbs2_byte_length
The integer number of bytes in the mbs2 string. If mbs2_byte_length is the
value IFX_GL_NULL, the function assumes that mbs2 is a null-terminated
string.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_mbsmbs() function searches for the first occurrence of the multibyte
string mbs2 in the multibyte string mbs1.

Return values

gl_mchar_t *
A pointer to the first byte of the first occurrence of mbs2 in mbs1.

NULL Either mbs2 was not found in mbs1 (the ifx_gl_lc_errno() error number is
set to 0); or the function was not successful, and the error number is set to
indicate the cause. See the Errors section.

Errors

If an error occurred, this function returns NULL and sets ifx_gl_lc_errno() to one
of the following values.

IFX_GL_PARAMERR
Either mbs1_byte_length is not equal to IFX_GL_NULL and is not greater
than or equal to 0, or mbs2_byte_length is not equal to IFX_GL_NULL and
is not greater than or equal to 0.

IFX_GL_TERMMISMAT
Either mbs1_byte_length is equal to IFX_GL_NULL, and mbs2_byte_length is
greater than or equal to 0; or mbs1_byte_length is greater than or equal to 0,
and mbs2_byte_length is equal to IFX_GL_NULL.

IFX_GL_EILSEQ
Either mbs1 or mbs2 contains an invalid multibyte character.

IFX_GL_EINVAL
Either the function cannot determine whether the last character of mbs1 is a
valid multibyte character because it would need to read more than

4-96 IBM Informix GLS API Programmer's Guide

mbs1_byte_length bytes from mbs1, or the function cannot determine
whether the last character of mbs2 is a valid multibyte character because it
would need to read more than mbs2_byte_length bytes from mbs2.

Related concepts

“Character-string termination” on page 2-22
“Keep multibyte strings consistent” on page 2-26
Related reference

“Character searching” on page 2-20
“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_mbschr() function” on page 4-88
“The ifx_gl_mbsrchr() function” on page 4-106
“The ifx_gl_wcschr() function” on page 4-119
“The ifx_gl_wcswcs() function” on page 4-134

The ifx_gl_mbsncat() function
The ifx_gl_mbsncat() function concatenates a specified number of multibyte
characters in one multibyte string to another.

Syntax
#include <ifxgls.h>
...
int ifx_gl_mbsncat(mbs1, mbs1_byte_length, mbs2, mbs2_byte_length, char_limit)

gl_mchar_t *mbs1;
int mbs1_byte_length;
gl_mchar_t *mbs2;
int mbs2_byte_length;
int char_limit;

mbs1 A pointer to the multibyte-character string to which the function
concatenates mbs2.

mbs1_byte_length
The integer number of bytes in the mbs1 string. If mbs1_byte_length is the
value IFX_GL_NULL, the function assumes that mbs1 is a null-terminated
string.

mbs2 A pointer to the multibyte-character string to concatenate onto mbs1.

mbs2_byte_length
The integer number of bytes in the mbs2 string. If mbs2_byte_length is the
value IFX_GL_NULL, the function assumes that mbs2 is a null-terminated
string.

char_limit
The maximum number of multibyte characters to read from mbs2.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_mbscat() function appends mbs2 to the end of mbs1.

If mbs1 and mbs2 overlap, the results of this function are undefined. If
mbs1_byte_length is equal to IFX_GL_NULL, the function null-terminates the

Chapter 4. Informix GLS functions 4-97

concatenated string. Any other value of mbs1_byte_length means that the function
does not null-terminate the resulting concatenated string.

Return values

>=0 The number of characters in the concatenated string, not including any
null terminator.

-1 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

If an error occurred, this function returns -1 and sets the ifx_gl_lc_errno() error
number to one of the following values.

IFX_GL_PARAMERR
Either mbs1_byte_length is not equal to IFX_GL_NULL and is not greater
than or equal to 0, or mbs2_byte_length is not equal to IFX_GL_NULL and
is not greater than or equal to 0.

IFX_GL_TERMMISMAT
Either mbs1_byte_length is equal to IFX_GL_NULL, and mbs2_byte_length is
greater than or equal to 0; or mbs1_byte_length is greater than or equal to 0,
and mbs2_byte_length is equal to IFX_GL_NULL.

IFX_GL_EILSEQ
Either mbs1 or mbs2 contains an invalid multibyte character.

IFX_GL_EINVAL
Either the function cannot determine whether the last character of mbs1 is a
valid multibyte character because it would need to read more than
mbs1_byte_length bytes from mbs1, or the function cannot determine
whether the last character of mbs2 is a valid multibyte character because it
would need to read more than mbs2_byte_length bytes from mbs2.

Related concepts

“Concatenation” on page 2-19
“Character-string termination” on page 2-22
“Keep multibyte strings consistent” on page 2-26
Related reference

“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_mbscat() function” on page 4-87
“The ifx_gl_wcscat() function” on page 4-118
“The ifx_gl_wcsncat() function” on page 4-125

The ifx_gl_mbsncpy() function
The ifx_gl_mbsncpy() function copies a specified number of multibyte characters
from a multibyte-character string.

Syntax
#include <ifxgls.h>
...
int ifx_gl_mbsncpy(mbs1, mbs2, mbs2_byte_length, char_limit)

gl_mchar_t *mbs1;
gl_mchar_t *mbs2;
int mbs2_byte_length;
int char_limit;

4-98 IBM Informix GLS API Programmer's Guide

mbs1 A pointer to the location where the function copies mbs2.

mbs2 A pointer to the multibyte-character string to copy to mbs1.

mbs2_byte_length
The integer number of bytes in the mbs2 string. If mbs2_byte_length is the
value IFX_GL_NULL, the function assumes that mbs2 is a null-terminated
string.

char_limit
The maximum number of multibyte characters to read from mbs2.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_mbsncpy() function copies mbs2 to the location that mbs1 references.
The function reads no more than char_limit characters from mbs2 and writes them
to mbs1. If mbs1 and mbs2 overlap, the results of this function are undefined.

If mbs1 and mbs2 overlap, the results of this function are undefined. If
mbs2_byte_length is equal to IFX_GL_NULL, the function null-terminates the
concatenated string. Any other value of mbs2_byte_length means that the function
does not null-terminate the resulting concatenated string.

Return values

>=0 The number of bytes in the copied string, not including any null
terminator.

-1 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

If an error occurred, this function returns -1 and sets the ifx_gl_lc_errno() error
number to one of the following values.

IFX_GL_PARAMERR
The mbs2_byte_length is not equal to IFX_GL_NULL and is not greater than
or equal to 0.

IFX_GL_EILSEQ
The *mbs2 value contains an invalid multibyte character.

IFX_GL_EINVAL
The function cannot determine whether the last character of mbs2 is a valid
multibyte character because it would need to read more than
mbs2_byte_length bytes from mbs2.

Chapter 4. Informix GLS functions 4-99

Related concepts

“Character-string termination” on page 2-22
“Keep multibyte strings consistent” on page 2-26
Related reference

“String copying” on page 2-19
“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_mbscpy() function” on page 4-91
“The ifx_gl_wcscpy() function” on page 4-122
“The ifx_gl_wcsncpy() function” on page 4-127

The ifx_gl_mbsnext() function
The ifx_gl_mbsnext() function returns the next multibyte character from a
multibyte string.

Syntax
#include <ifxgls.h>
...
gl_mchar_t *ifx_gl_mbsnext(mb, mb_byte_limit)

gl_mchar_t *mb;
int mb_byte_limit;

mb A pointer to the current multibyte character in the multibyte string.

mb_byte_limit
The integer number of bytes to read from mb to try to form a complete
multibyte character. If mb_byte_limit is IFX_GL_NO_LIMIT, the function
reads as many bytes as necessary from mb to form a complete character.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_mbsnext() function returns a pointer to the next multibyte character
after mb in a multibyte-character string. This function is typically used to
transform the single-byte forward-traversal loop to a multibyte loop. For example,
suppose you have the following single-byte loop:
for (sb = sbs; *sb != ’\0’; sb++)

{
/* Process single-byte character */

The following code fragment traverses the string with the ifx_gl_mbsnext()
function instead of incrementing the pointer of the single-byte loop:
for (mb = mbs; *mb != ’\0’;)

{
/* Process multibyte character; increment pointer through string */
if ((mb = ifx_gl_mbsnext(mb, IFX_GL_NO_LIMIT)) == NULL)
/* Handle error */
}

Return values

gl_mchar_t *
A pointer to the byte that immediately follows mb.

4-100 IBM Informix GLS API Programmer's Guide

NULL The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

If an error occurred, this function returns NULL and sets the ifx_gl_lc_errno()
error number to one of the following values.

IFX_GL_EILSEQ
The *mb value is not a valid multibyte character.

IFX_GL_EINVAL
The function cannot determine whether mb is a valid multibyte character
because it would need to read more than mb_byte_limit bytes from mb. If
mb_byte_limit is less than or equal to 0, this function always returns this
error.

Related concepts

“String traversal” on page 2-18
“Multibyte-character termination” on page 2-23
“Keep multibyte strings consistent” on page 2-26
Related reference

“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_mblen() function” on page 4-86
“The ifx_gl_mbsprev() function” on page 4-105

The ifx_gl_mbsntsbytes() function
The ifx_gl_mbsntsbytes() function determines the number of bytes in a multibyte
string. It ignores trailing spaces.

Syntax
#include <ifxgls.h>
...
int ifx_gl_mbsntsbytes(mbs, mbs_byte_length)

gl_mchar_t *mbs;
int mbs_byte_length;

mbs A pointer to the multibyte-character string whose length the function
determines.

mbs_byte_length
The integer number of bytes in the mbs string. If mbs_byte_length is the
value IFX_GL_NULL, the function assumes that mbs is a null-terminated
string.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_mbsntsbytes() function returns the number of bytes in mbs, not
including the trailing-space characters. The trailing-space characters are all
characters that the blank character class of the current locale defines. For more
information about the blank class, see “Character classification” on page 2-5.

Chapter 4. Informix GLS functions 4-101

Space characters that are embedded in the string at any place except the end of the
string are included in the count. For example, the following call to
ifx_gl_mbsntsbytes() returns a value of 10 (the number of bytes in the string
“A1A2B1B2B3 cd E1”, where A1A2 is the multibyte character of 2 bytes, B1B2B3 is the
multibyte character of 3 bytes, and E1 is the multibyte character of 1 byte, and s
represents a single-byte horizontal white space character):
ifx_gl_mbsntsbytes("A1A2B1B2B3scdsE1ssssss", mbs_byte_length)

Return values

>=0 The number of bytes in the mbs string, not including any trailing space.

-1 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

If an error occurred, this function returns -1 and sets the ifx_gl_lc_errno() error
number to one of the following values.

IFX_GL_PARAMERR
The mbs_byte_length is not equal to IFX_GL_NULL and is not greater than
or equal to 0.

IFX_GL_EILSEQ
The *mbs value contains an invalid multibyte character.

IFX_GL_EINVAL
The function cannot determine whether the last character of mbs is a valid
multibyte character because it would need to read more than
mbs_byte_length bytes from mbs.

Related concepts

“Character-string termination” on page 2-22
“Keep multibyte strings consistent” on page 2-26
Related reference

“String-length determination” on page 2-19
“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_mbsntslen() function”
“The ifx_gl_wcslen() function” on page 4-124

The ifx_gl_mbsntslen() function
The ifx_gl_mbsntslen() function determines the number of characters in a
multibyte string. It ignores trailing spaces.

Syntax
#include <ifxgls.h>
...
int ifx_gl_mbsntslen(mbs, mbs_byte_length)

gl_mchar_t *mbs;
int mbs_byte_length;

mbs A pointer to the multibyte-character string whose length the function
determines.

4-102 IBM Informix GLS API Programmer's Guide

mbs_byte_length
The integer number of bytes in the mbs string. If mbs_byte_length is the
value IFX_GL_NULL, the function assumes that mbs is a null-terminated
string.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_mbsntslen() function returns the number of characters in mbs, not
including any trailing-space characters. The trailing-space characters are all
characters that the blank character class of the current locale defines. For more
information about the blank class, see “Character classification” on page 2-5.

Space characters that are embedded in the string at any place except the end of the
string are included in the count. For example, the following call to
ifx_gl_mbsntslen() returns a value of 7 (the number of bytes in the string
“A1A2B1B2B3 cd E1”, where A1A2 is the multibyte character of 2 bytes, B1B2B3 is the
multibyte character of 3 bytes, and E1 is the multibyte character of 1 byte, and s
represents a single-byte horizontal white space character):
ifx_gl_mbsntslen("A1A2B1B2B3scdsE1ssssss", mbs_byte_length)

Use the ifx_gl_mbslen() function if you want the length to include trailing white
space.

Return values

>=0 The number of bytes in the mbs string, not including any trailing space.

-1 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

If an error occurred, this function returns -1 and sets the ifx_gl_lc_errno() error
number to one of the following values.

IFX_GL_PARAMERR
The mbs_byte_length is not equal to IFX_GL_NULL and is not greater than
or equal to 0.

IFX_GL_EILSEQ
The *mbs value contains an invalid multibyte character.

IFX_GL_EINVAL
The function cannot determine whether the last character of mbs is a valid
multibyte character because it would need to read more than
mbs_byte_length bytes from mbs.

Chapter 4. Informix GLS functions 4-103

Related concepts

“Character-string termination” on page 2-22
“Keep multibyte strings consistent” on page 2-26
Related reference

“String-length determination” on page 2-19
“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_mblen() function” on page 4-86
“The ifx_gl_mbsntsbytes() function” on page 4-101
“The ifx_gl_wcsntslen() function” on page 4-128

The ifx_gl_mbspbrk() function
The ifx_gl_mbspbrk() function searches for any multibyte character from one
multibyte string in another multibyte-character string.

Syntax
#include <ifxgls.h>
...
gl_mchar_t *ifx_gl_mbspbrk(mbs1, mbs1_byte_length, mbs2, mbs2_byte_length)

gl_mchar_t *mbs1;
int mbs1_byte_length;
gl_mchar_t *mbs2;
int mbs2_byte_length;

mbs1 A pointer to the string of multibyte characters to search for the characters
in mbs2.

mbs1_byte_length
The integer number of bytes in the mbs1 string. If mbs1_byte_length is the
value IFX_GL_NULL, the function assumes that mbs1 is a null-terminated
string.

mbs2 A pointer to the multibyte-character string whose characters the function
searches for in mbs1.

mbs2_byte_length
The integer number of bytes in the mbs2 string. If mbs2_byte_length is the
value IFX_GL_NULL, the function assumes that mbs2 is a null-terminated
string.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_mbspbrk() function searches for the first occurrence of any multibyte
character from the string mbs2 in the multibyte string mbs1.

Return values

gl_mchar_t *
A pointer to the first byte of the first occurrence in mbs1 of any character
from mbs2.

NULL Either no character in mbs2 was found in mbs1 (the ifx_gl_lc_errno() error
number is set to 0); or the function was not successful, and the error
number is set to indicate the cause. See the Errors section.

4-104 IBM Informix GLS API Programmer's Guide

Errors

If an error occurred, this function returns NULL and sets ifx_gl_lc_errno() to one
of the following values.

IFX_GL_PARAMERR
Either mbs1_byte_length is not equal to IFX_GL_NULL and is not greater
than or equal to 0, or mbs2_byte_length is not equal to IFX_GL_NULL and
is not greater than or equal to 0.

IFX_GL_TERMMISMAT
Either mbs1_byte_length is equal to IFX_GL_NULL, and mbs2_byte_length is
greater than or equal to 0; or mbs1_byte_length is greater than or equal to 0,
and mbs2_byte_length is equal to IFX_GL_NULL.

IFX_GL_EILSEQ
Either mbs1 or mbs2 contains an invalid multibyte character.

IFX_GL_EINVAL
Either the function cannot determine whether the last character of mbs1 is a
valid multibyte character because it would need to read more than
mbs1_byte_length bytes from mbs1, or the function cannot determine
whether the last character of mbs2 is a valid multibyte character because it
would need to read more than mbs2_byte_length bytes from mbs2.

Related concepts

“Character-string termination” on page 2-22
“Keep multibyte strings consistent” on page 2-26
Related reference

“Character searching” on page 2-20
“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_mbschr() function” on page 4-88
“The ifx_gl_mbsrchr() function” on page 4-106
“The ifx_gl_wcschr() function” on page 4-119
“The ifx_gl_wcspbrk() function” on page 4-129
“The ifx_gl_wcsrchr() function” on page 4-130

The ifx_gl_mbsprev() function
The ifx_gl_mbsprev() function returns the previous multibyte character in a
multibyte string.

Syntax
#include <ifxgls.h>
...
gl_mchar_t *ifx_gl_mbsprev(mbs_start, mb)

gl_mchar_t *mbs_start;
gl_mchar_t *mb;

mbs_start
A pointer to beginning of the multibyte string.

mb A pointer to the current multibyte character in the multibyte string.

Valid in client application Valid in DataBlade UDR

Yes Yes

Chapter 4. Informix GLS functions 4-105

Usage

The ifx_gl_mbsprev() function returns a pointer to the multibyte character before
mb in a multibyte-character string. This function is typically used to transform the
single-byte reverse-traversal loop to a multibyte loop. For example, suppose you
have the following single-byte loop:
sb = sb0 + strlen(sb0);
for (sb--; sb >= sb0; sb--)

/* Process single-byte character */

The following code fragment traverses the string with the ifx_gl_mbsprev()
function instead of decrementing the pointer of the single-byte loop:
mb = mbs_start + strlen(mbs_start);
for (mb = ifx_gl_mbsprev(mbs_start, mb) ; mb >= mbs_start;

mb = ifx_gl_mbsprev(mbs_start, mb))
/* Process multibyte character */

Return values

gl_mchar_t *
A pointer to the first byte of the multibyte character immediately before
mb.

NULL The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

If an error occurred, this function returns NULL and sets the ifx_gl_lc_errno()
error number to one of the following values.

IFX_GL_EILSEQ
The *mb character or a character between mbs_start and mb is not a valid
multibyte character.

IFX_GL_EINVPTR
The mb value is less than or equal to mbs_start.

IFX_GL_EINVAL
The function cannot determine whether the character before mb is a valid
multibyte character because it would need to read beyond mb.

Related concepts

“String traversal” on page 2-18
“Keep multibyte strings consistent” on page 2-26
Related reference

“String-length determination” on page 2-19
“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_mblen() function” on page 4-86
“The ifx_gl_mbsnext() function” on page 4-100

The ifx_gl_mbsrchr() function
The ifx_gl_mbsrchr() function searches for the last occurrence of a character in a
multibyte-character string.

4-106 IBM Informix GLS API Programmer's Guide

Syntax
#include <ifxgls.h>
...
gl_mchar_t *ifx_gl_mbsrchr(mbs, mbs_byte_length, mb, mb_byte_limit)

gl_mchar_t *mbs;
int mbs_byte_length;
gl_mchar_t *mb;
int mb_byte_limit;

mbs A pointer to the multibyte-character string in which the function searches
for mb.

mbs_byte_length
The integer number of bytes in the mbs string. If mbs_byte_length is the
value IFX_GL_NULL, the function assumes that mbs1 is a null-terminated
string.

mb A pointer to the multibyte character to search for in mbs.

mb_byte_limint
The number of bytes to read from the mb character to try to form a
complete multibyte character. If mb_byte_limit is IFX_GL_NO_LIMIT, this
function reads as many bytes as necessary from mb to form a complete
character.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_mbsrchr() function locates the last occurrence of mb in the multibyte
string mbs.

Return values

gl_mchar_t *
A pointer to the last occurrence of mb in mbs.

NULL Either mb was not found in mbs (the ifx_gl_lc_errno() error number is set
to 0); or the function was not successful, and the error number is set to
indicate the cause. See the Errors section.

Errors

If an error occurred, this function returns NULL and sets the ifx_gl_lc_errno()
error number to one of the following values.

IFX_GL_EILSEQ
The *mb value is an invalid multibyte character, or mbs contains an invalid
multibyte character.

IFX_GL_EINVAL
The function cannot determine whether mb is a valid multibyte character
because it would need to read more than mb_byte_limit bytes from mb, or
the function cannot determine whether the last character of mbs is a valid
multibyte character because it would need to read more than
mbs_byte_length bytes from mbs. If mb_byte_limit is less than or equal to 0,
this function always returns this error.

Chapter 4. Informix GLS functions 4-107

IFX_GL_PARAMERR
The mbs_byte_length is not equal to IFX_GL_NULL and is not greater than
or equal to 0.

Related concepts

“Character-string termination” on page 2-22
“Multibyte-character termination” on page 2-23
“Keep multibyte strings consistent” on page 2-26
Related reference

“Character searching” on page 2-20
“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_wcschr() function” on page 4-119
“The ifx_gl_wcsrchr() function” on page 4-130

The ifx_gl_mbsspn() function
The ifx_gl_mbsspn() function determines the length of a multibyte substring for a
specified multibyte-character string.

Syntax
#include <ifxgls.h>
...
int ifx_gl_mbsspn(mbs1, mbs1_byte_length, mbs2, mbs2_byte_length)

gl_mchar_t *mbs1;
int mbs1_byte_length;
gl_mchar_t *mbs2;
int mbs2_byte_length;

mbs1 A pointer to the multibyte string to check for a substring of characters
found in mbs2.

mbs1_byte_length
The integer number of bytes in the mbs1 string. If mbs1_byte_length is the
value IFX_GL_NULL, the function assumes that mbs1 is a null-terminated
string.

mbs2 A pointer to the multibyte-character string whose characters the function
searches for in mbs1.

mbs2_byte_length
The integer number of bytes in the mbs2 string. If mbs2_byte_length is the
value IFX_GL_NULL, the function assumes that mbs2 is a null-terminated
string.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_mbsspn() function returns the size of the initial substring of mbs1 that
contains only characters that match characters in mbs2. The initial substring begins
at the first character of mbs1. Therefore, this size is the number of characters in
mbs1 before the first character that is not found in mbs2. For example, suppose you
have the following two multibyte-characters strings, mbs1 and mbs2. For example,
suppose you have the following two multibyte-characters strings, mbs1 and mbs2:
mbs1 = "A1A2B1B2B3C1C2D1D2D3A1A2E1F1F2A1A2G1D1D2D3";
mbs2 = "B1B2B3D1D2D3A1A2C2C2";

4-108 IBM Informix GLS API Programmer's Guide

With these multibyte strings, the following call to the ifx_gl_mbsspn() function
returns 5:
ifx_gl_mbsspn(mbs1, bytelen1, mbs2, bytelen2)

The first five characters of mbs1 are in mbs2. The sixth character in mbs1 is E1, which
is not a character that matches one of the characters in mbs2.

Return values

>=0 The number of characters in mbs1 before the first character for which mbs1
and mbs2 differ.

-1 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

If an error occurred, this function returns -1 and sets the ifx_gl_lc_errno() error
number to one of the following values.

IFX_GL_PARAMERR
Either mbs1_byte_length is not equal to IFX_GL_NULL and is not greater
than or equal to 0, or mbs2_byte_length is not equal to IFX_GL_NULL and
is not greater than or equal to 0.

IFX_GL_TERMMISMAT
Either mbs1_byte_length is equal to IFX_GL_NULL, and mbs2_byte_length is
greater than or equal to 0; or mbs1_byte_length is greater than or equal to 0,
and mbs2_byte_length is equal to IFX_GL_NULL.

IFX_GL_EILSEQ
Either mbs1 or mbs2 contains an invalid multibyte character.

IFX_GL_EINVAL
Either the function cannot determine whether the last character of mbs1 is a
valid multibyte character because it would need to read more than
mbs1_byte_length bytes from mbs1, or the function cannot determine
whether the last character of mbs2 is a valid multibyte character because it
would need to read more than mbs2_byte_length bytes from mbs2.

Related concepts

“Character-string termination” on page 2-22
“Keep multibyte strings consistent” on page 2-26
Related reference

“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_wcscspn() function” on page 4-123
“The ifx_gl_wcsspn() function” on page 4-131

The ifx_gl_mbstowcs() function
The ifx_gl_mbstowcs() function converts a multibyte character string to its
wide-character representation.

Syntax
#include <ifxgls.h>
...
int ifx_gl_mbstowcs(wcs, mbs, mbs_byte_length, char_limit)

Chapter 4. Informix GLS functions 4-109

gl_wchar_t *wcs;
gl_mchar_t *mbs;
int mbs_byte_length;
int char_limit;

wcs A pointer to the wide-character string that contains the wide-character
equivalent of mbs.

mbs A pointer to the multibyte-character string to convert to the wcs
wide-character string.

mbs_byte_length
The integer number of bytes in the mbs string. If mbs_byte_length is the
value IFX_GL_NULL, the function assumes that mbs is a null-terminated
string.

char_limit
The maximum number of multibyte characters to read from mbs.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_mbstowcs() function converts mbs into its wide-character representation
and stores the result in the location that wcs references. The function reads no more
than char_limit characters from mbs and writes them to wcs.

If mbs_byte_length is equal to IFX_GL_NULL, the function null-terminates the string
in wcs. Any other value of mbs_byte_length means that the function does not
null-terminate the resulting wide-character string.

Return values

>=0 The number of characters read from mbs and written to wcs, not counting
any null terminator.

-1 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

If an error occurred, this function returns -1 and sets the ifx_gl_lc_errno() error
number to one of the following values.

IFX_GL_PARAMERR
The mbs_byte_length is not equal to IFX_GL_NULL and is not greater than
or equal to 0.

IFX_GL_EILSEQ
The *mbs value contains an invalid multibyte character.

IFX_GL_EINVAL
The function cannot determine whether the last character of mbs is a valid
multibyte character because it would need to read more than
mbs_byte_length bytes from mbs.

4-110 IBM Informix GLS API Programmer's Guide

Related concepts

“Character-string termination” on page 2-22
“Keep multibyte strings consistent” on page 2-26
Related reference

“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_mbtowc() function”
“The ifx_gl_wcstombs() function” on page 4-133

The ifx_gl_mbtowc() function
The ifx_gl_mbtowc() function converts one multibyte character to its
wide-character representation.

Syntax
#include <ifxgls.h>
...
int ifx_gl_mbtowc(wc, mb, mb_byte_limit)

gl_wchar_t *wc;
gl_mchar_t *mb;
int mb_byte_limit;

wc A pointer to the wide-character string that contains the wide-character
equivalent of mb.

mb A pointer to the multibyte-character to convert to the wc wide-character .

mb_byte_length
The integer number of bytes to read from mb to try to form a complete
multibyte character. If mb_byte_limit is IFX_GL_NO_LIMIT, the function
reads as many bytes as necessary from mb to form a complete character.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_mbtowc() function converts the multibyte character mb into its
wide-character representation and stores the result in the wide character that wc
references.

Return values

>=0 The number of bytes read from mb.

-1 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

If an error occurred, this function returns -1 and sets the ifx_gl_lc_errno() error
number to one of the following values.

IFX_GL_EILSEQ
The *mb value is not a valid multibyte character.

IFX_GL_EINVAL
The function cannot determine whether mb is a valid multibyte character

Chapter 4. Informix GLS functions 4-111

because it would need to read more than mb_byte_limit bytes from mb. If
mb_byte_limit is less than or equal to 0, this function always returns this
error.

Related concepts

“Multibyte-character termination” on page 2-23
“Keep multibyte strings consistent” on page 2-26
Related reference

“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_mbstowcs() function” on page 4-109
“The ifx_gl_wcstombs() function” on page 4-133
“The ifx_gl_wctomb() function” on page 4-135

The ifx_gl_putmb() function
The ifx_gl_putmb() function puts a single multibyte character in a user-defined
location.

Syntax
#include <ifxgls.h>
...
int ifx_gl_putmb(mb, mb_byte_limit, funcp, v, bytes_put)

gl_mchar_t *mb;
int mb_byte_limit;
int (*funcp)(gl_mchar_t byte, void *v);
void *v;
int *bytes_put;

mb A pointer to the multibyte character whose bytes the funcp function writes
to a specified location.

mb_byte_limit
The number of bytes in mb that the ifx_gl_putmb() function reads when it
tries to form a complete multibyte character. If mb_byte_limit is
IFX_GL_NO_LIMIT, this function reads as many bytes as necessary from
mb to form a complete character.

funcp A pointer to a function that you define to specify the location at which to
write the multibyte character.

v An argument to the user-defined function, which is a parameter to
ifx_gl_putmb(). Use v to specify where the character should go; for
example, stdout, stderr, a file, and other locations.

bytes_put

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_putmb() function calls a function that you define to put the bytes that
form one multibyte character in a specified location. This multibyte character is
read from the mb buffer.

The funcp argument is a pointer to a function that you must define as follows:
int funcp(gl_mchar_t byte, void *v)

4-112 IBM Informix GLS API Programmer's Guide

On success, funcp must return 0. On failure, funcp must return -1. The number of
bytes that funcp successfully puts is returned in bytes_put (even when funcp fails).

Return values

0 The function was successful.

-1 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

If an error occurred, this function returns -1 and sets the ifx_gl_lc_errno() error
number to one of the following values.

IFX_GL_EILSEQ
The *mb value is not a valid multibyte character.

IFX_GL_EINVAL
The funcp function cannot determine whether mb is a valid multibyte
character because it would need to read more than mb_byte_limit bytes
from mb. If mb_byte_limit is less than or equal to 0, this function always
returns this error.

IFX_GL_EIO
The funcp function returned -1 when first called.

Related concepts

“Multibyte-character termination” on page 2-23
“Keep multibyte strings consistent” on page 2-26
Related reference

“The ifx_gl_getmb() function” on page 4-50
“The ifx_gl_lc_errno() function” on page 4-84

The ifx_gl_tomlower() function
The ifx_gl_tomlower() function converts an uppercase multibyte character to its
lowercase equivalent.

Syntax
#include <ifxgls.h>
...
unsigned short ifx_gl_tomlower(dst_mb, src_mb, src_mb_byte_limit)

gl_mchar_t *dst_mb;
gl_mchar_t *src_mb;
int src_mb_byte_limit;

dst_mb A pointer to the destination character, which holds the case conversion for
the src_mb character.

src_mb A pointer to the source multibyte character that you want to convert to its
lowercase equivalent.

src_mb_byte_limit
The integer number of bytes to read from src_mb to try to form a complete
multibyte character. If src_mb_byte_limit is IFX_GL_NO_LIMIT, this function
reads as many bytes as necessary from src_mb to form a complete
multibyte character.

Chapter 4. Informix GLS functions 4-113

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_tomlower() function obtains the lowercase equivalent of the src_mb
source multibyte character and stores it in the dst_mb destination buffer. If the
locale does not define a lowercase equivalent for src_mb, ifx_gl_tomlower() copies
src_mb to dst_mb unchanged.

For a multibyte-character string, the size of the lowercase multibyte string might
not equal the size of the uppercase string. Therefore, to perform case conversion on
multibyte characters, you must take the following special processing steps:
v Determine whether you need to allocate a separate destination buffer.

If a destination buffer is needed, determine its size.
v Determine the number of bytes that have been read and written in the

case-conversion process.

The ifx_gl_tomlower() function returns an unsigned short integer that encodes the
number of bytes read from src_mb and the number of bytes written to dst_mb. The
IBM Informix GLS library provides the following macros to obtain this information
from the return value.

IFX_GL_CASE_CONV_SRC_BYTES()
The number of bytes read from the source string.

IFX_GL_CASE_CONV_DST_BYTES()
The number of bytes written to the destination buffer.

Return values

>0 An unsigned short integer that encodes the number of bytes read from
src_mb and the number of bytes written to dst_mb.

0 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

This function does not return a unique value to indicate an error. If an error
occurred, the function returns 0 and sets the ifx_gl_lc_errno() error number to one
of the following values.

IFX_GL_EILSEQ
The *src_mb value is not a valid multibyte character.

IFX_GL_EINVAL
The function cannot determine whether src_mb is a valid multibyte
character because it would need to read more than src_mb_byte_limit bytes
from src_mb. If src_mb_byte_limit is less than or equal to 0, this function
always returns this error.

4-114 IBM Informix GLS API Programmer's Guide

Related concepts

“Case conversion” on page 2-8
“Case conversion for multibyte characters” on page 2-9
“Multibyte-character termination” on page 2-23
“Keep multibyte strings consistent” on page 2-26
Related reference

“The ifx_gl_case_conv_outbuflen() function” on page 4-4
“The ifx_gl_ismlower() function” on page 4-61
“The ifx_gl_ismupper() function” on page 4-67
“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_mb_loc_max() function” on page 4-85
“The ifx_gl_tomupper() function”
“The ifx_gl_towlower() function” on page 4-116

The ifx_gl_tomupper() function
The ifx_gl_tomupper() function converts a lowercase multibyte character to its
uppercase equivalent.

Syntax
#include <ifxgls.h>
...
unsigned short ifx_gl_tomupper(dst_mb, src_mb, src_mb_byte_limit)

gl_mchar_t *dst_mb;
gl_mchar_t *src_mb;
int src_mb_byte_limit;

dst_mb A pointer to the destination character, which holds the case conversion for
the src_mb character.

src_mb A pointer to the source multibyte character that you want to convert to its
uppercase equivalent.

src_mb_byte_limit
The integer number of bytes to read from src_mb to try to form a complete
multibyte character. If src_mb_byte_limit is IFX_GL_NO_LIMIT, this function
reads as many bytes as necessary from src_mb to form a complete
multibyte character.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_tomupper() function obtains the uppercase equivalent of the src_mb
source multibyte character and stores it in the dst_mb destination buffer. If the
locale does not define an uppercase equivalent for src_mb, ifx_gl_tomupper()
copies src_mb to dst_mb unchanged.

For a multibyte-character string, the size of the uppercase multibyte string might
not equal the size of the uppercase string. Therefore, to perform case conversion on
multibyte characters, you must take the following special processing steps:
v Determine whether you need to allocate a separate destination buffer.

If a destination buffer is needed, determine its size.

Chapter 4. Informix GLS functions 4-115

v Determine the number of bytes that have been read and written in the
case-conversion process.

The ifx_gl_tomupper() function returns an unsigned short integer that encodes the
number of bytes read from src_mb and the number of bytes written to dst_mb. The
IBM Informix GLS library provides the following macros to obtain this information
from the return value.

IFX_GL_CASE_CONV_SRC_BYTES()
The number of bytes read from the source string.

IFX_GL_CASE_CONV_DST_BYTES()
The number of bytes written to the destination buffer.

Return values

>0 An unsigned short integer that encodes the number of bytes read from
src_mb and the number of bytes written to dst_mb.

0 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

This function does not return a unique value to indicate an error. If an error
occurred, the function returns 0 and sets the ifx_gl_lc_errno() error number to one
of the following values.

IFX_GL_EILSEQ
The *src_mb value is not a valid multibyte character.

IFX_GL_EINVAL
The function cannot determine whether src_mb is a valid multibyte
character because it would need to read more than src_mb_byte_limit bytes
from src_mb. If src_mb_byte_limit is less than or equal to 0, this function
always returns this error.

Related concepts

“Case conversion” on page 2-8
“Case conversion for multibyte characters” on page 2-9
“Multibyte-character termination” on page 2-23
“Keep multibyte strings consistent” on page 2-26
Related reference

“The ifx_gl_case_conv_outbuflen() function” on page 4-4
“The ifx_gl_ismlower() function” on page 4-61
“The ifx_gl_ismupper() function” on page 4-67
“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_mb_loc_max() function” on page 4-85
“The ifx_gl_tomlower() function” on page 4-113
“The ifx_gl_towupper() function” on page 4-117

The ifx_gl_towlower() function
The ifx_gl_towlower() function converts an uppercase wide character to its
lowercase equivalent.

4-116 IBM Informix GLS API Programmer's Guide

Syntax
#include <ifxgls.h>
...
unsigned short ifx_gl_towlower(src_wc)

gl_mchar_t *src_wc;

src_wc A pointer to the source wide character that you want to convert to its
lowercase equivalent.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_towlower() function returns the lowercase equivalent of the src_wc
source wide character. If the locale does not define a lowercase equivalent for
src_wc, ifx_gl_towlower() returns src_wc unchanged.

Return values

>0 An unsigned short integer that represents the lowercase equivalent of
src_wc.

0 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

This function does not return a unique value to indicate an error. If an error
occurred, the function returns 0 and sets the ifx_gl_lc_errno() error number to the
following value.

IFX_GL_EILSEQ
The *src_wc value is not a valid wide character.

Related concepts

“Case conversion” on page 2-8
Related reference

“The ifx_gl_case_conv_outbuflen() function” on page 4-4
“The ifx_gl_iswlower() function” on page 4-77
“The ifx_gl_iswupper() function” on page 4-82
“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_mb_loc_max() function” on page 4-85
“The ifx_gl_tomlower() function” on page 4-113
“The ifx_gl_towupper() function”

The ifx_gl_towupper() function
The ifx_gl_towupper() function converts a lowercase wide character to its
uppercase equivalent.

Syntax
#include <ifxgls.h>
...
unsigned short ifx_gl_towupper(src_wc)

gl_mchar_t *src_wc;

Chapter 4. Informix GLS functions 4-117

src_wc A pointer to the source wide character that you want to convert to its
uppercase equivalent.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_towupper() function returns the uppercase equivalent of the src_wc
source wide character. If the locale does not define an uppercase equivalent for
src_wc, ifx_gl_towupper() returns src_wc unchanged.

Return values

>0 An unsigned short integer that represents the uppercase equivalent of
src_wc.

0 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

This function does not return a unique value to indicate an error. If an error
occurred, the function returns 0 and sets the ifx_gl_lc_errno() error number to the
following value.

IFX_GL_EILSEQ
The *src_wc value is not a valid wide character.

Related concepts

“Case conversion” on page 2-8
Related reference

“The ifx_gl_case_conv_outbuflen() function” on page 4-4
“The ifx_gl_iswlower() function” on page 4-77
“The ifx_gl_iswupper() function” on page 4-82
“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_mb_loc_max() function” on page 4-85
“The ifx_gl_tomupper() function” on page 4-115
“The ifx_gl_towlower() function” on page 4-116

The ifx_gl_wcscat() function
The ifx_gl_wcscat() function concatenates two wide-character strings.

Syntax
#include <ifxgls.h>
...
int ifx_gl_wcscat(wcs1, wcs1_char_length, wcs2, wcs2_char_length)

gl_wchar_t *wcs1;
int wcs1_char_length;
gl_wchar_t *wcs2;
int wcs2_char_length;

wcs1 A pointer to the wide-character string to which the function concatenates
wcs2.

4-118 IBM Informix GLS API Programmer's Guide

wcs1_char_length
The integer number of characters in the wcs1 string. If wcs1_char_length is
the value IFX_GL_NULL, the function assumes that wcs1 is a
null-terminated string.

wcs2 A pointer to the wide-character string to concatenate onto wcs1.

wcs2_char_length
The integer number of characters in the wcs2 string. If wcs2_char_length is
the value IFX_GL_NULL, the function assumes that wcs2 is a
null-terminated string.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_wcscat() function appends a copy of wcs2 to the end of wcs1. If wcs1
and wcs2 overlap, the results of this function are undefined.

Return values

>=0 The number of characters in the concatenated string, not including any
null terminator.

-1 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

If an error occurred, this function returns -1 and sets the ifx_gl_lc_errno() error
number to one of the following values.

IFX_GL_PARAMERR
Either wcs1_char_length is not equal to IFX_GL_NULL and is not greater
than or equal to 0, or wcs2_char_length is not equal to IFX_GL_NULL and is
not greater than or equal to 0.

IFX_GL_TERMMISMAT
Either wcs1_char_length is equal to IFX_GL_NULL, and wcs2_char_length is
greater than or equal to 0; or wcs1_char_length is greater than or equal to 0,
and wcs2_char_length is equal to IFX_GL_NULL.

Related concepts

“Concatenation” on page 2-19
“Character-string termination” on page 2-22
Related reference

“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_mbscat() function” on page 4-87
“The ifx_gl_mbsncat() function” on page 4-97
“The ifx_gl_wcsncat() function” on page 4-125

The ifx_gl_wcschr() function
The ifx_gl_wcschr() function searches for the first occurrence of a character in a
wide-character string.

Chapter 4. Informix GLS functions 4-119

Syntax
#include <ifxgls.h>
...
gl_wchar_t *ifx_gl_wcschr(wcs, wcs_char_length, wc)

gl_wchar_t *wcs;
int wcs_char_length;
gl_wchar_t wc;

wcs A pointer to the wide-character string in which the function searches for
wc.

wcs_char_length
The integer number of characters in the wcs string. If wcs_char_length is
the value IFX_GL_NULL, the function assumes that wcs is a
null-terminated string.

wc A pointer to the wide character to search for in wcs.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_wcschr() function locates the first occurrence of wc in the
wide-character string wcs.

Return values

gl_wchar_t *
A pointer to the first occurrence of wc in wcs.

NULL Either wc was not found in wcs (the ifx_gl_lc_errno() error number is set to
0); or the function was not successful, and the error number is set to
indicate the cause. See the Errors section.

Errors

If an error occurred, this function returns NULL and sets the ifx_gl_lc_errno()
error number to the following value.

IFX_GL_PARAMERR
The wcs_char_length is not equal to IFX_GL_NULL and is not greater than
or equal to 0.

Related concepts

“Character-string termination” on page 2-22
Related reference

“Character searching” on page 2-20
“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_mbschr() function” on page 4-88
“The ifx_gl_wcsrchr() function” on page 4-130

The ifx_gl_wcscoll() function
The ifx_gl_wcscoll() function uses locale-specific order to compare two
wide-character strings.

4-120 IBM Informix GLS API Programmer's Guide

Syntax
#include <ifxgls.h>
...
int ifx_gl_wcscoll(wcs1, wcs1_char_length, wcs2, wcs2_char_length)

gl_wchar_t *wcs1;
int wcs1_char_length;
gl_wchar_t *wcs2;
int wcs2_char_length;

wcs1 A pointer to the wide-character string to compare with wcs2.

wcs1_char_length
The integer number of characters in the wcs1 string. If wcs1_char_length is
the value IFX_GL_NULL, the function assumes that wcs1 is a
null-terminated string.

wcs2 A pointer to the wide-character string to compare with wcs1.

wcs2_char_length
The integer number of characters in the wcs2 string. If wcs2_char_length is
the value IFX_GL_NULL, the function assumes that wcs2 is a
null-terminated string.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_wcscoll() function uses locale-specific order to compare the
wide-character strings wcs1 and wcs2.

Locale information

The LC_COLLATE category of the current locale affects the behavior of this
function because it defines the locale-specific order.

Return values

<0 The wcs1 string is less than the wcs2 string (wcs1 < wcs2); or the function
was not successful, and the error number is set to indicate the cause. See
the Errors section.

=0 The wcs1 string is equal to the wcs string (wcs1 = wcs).

>0 The wcs1 string is greater than the wcs string (wcs1 > wcs).

Errors

This function does not return a unique value to indicate an error. If an error
occurred, this function returns -1 and sets the ifx_gl_lc_errno() error number to
one of the following values.

IFX_GL_PARAMERR
Either wcs1_char_length is not equal to IFX_GL_NULL and is not greater
than or equal to 0, or wcs2_char_length is not equal to IFX_GL_NULL and is
not greater than or equal to 0.

IFX_GL_TERMMISMAT
Either wcs1_char_length is equal to IFX_GL_NULL, and wcs2_char_length is

Chapter 4. Informix GLS functions 4-121

greater than or equal to 0; or wcs1_char_length is greater than or equal to 0,
and wcs2_char_length is equal to IFX_GL_NULL.

IFX_GL_EILSEQ
Either wcs1 or wcs2 contains an invalid wide character.

IFX_GL_ENOMEM
Not enough memory is available to complete the operation.

Related concepts

“Character/string comparison and sorting” on page 2-20
“Character-string termination” on page 2-22
Related reference

“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_mbscoll() function” on page 4-90

The ifx_gl_wcscpy() function
The ifx_gl_wcscpy() function copies a wide-character string.

Syntax
#include <ifxgls.h>
...
int ifx_gl_wcscpy(wcs1, wcs2, wcs2_char_length)

gl_wchar_t *wcs1;
gl_wchar_t *wcs2;
int wcs2_char_length;

wcs1 A pointer to the location where the function copies wcs2.

wcs2 A pointer to the wide-character string to copy to wcs1.

wcs2_char_length
The integer number of characters in the wcs2 string. If wcs2_char_length is
the value IFX_GL_NULL, the function assumes that wcs2 is a
null-terminated string.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_wcscpy() function copies the wide-character string wcs2 to the location
that wcs1 references. If wcs1 and wcs2 overlap, the results of this function are
undefined.

Return values

>=0 The number of bytes in the copied string, not including any null
terminator.

-1 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

If an error occurred, this function returns -1 and sets the ifx_gl_lc_errno() error
number to the following value.

4-122 IBM Informix GLS API Programmer's Guide

IFX_GL_PARAMERR
The wcs2_char_length is not equal to IFX_GL_NULL and is not greater than
or equal to 0.

Related concepts

“Character-string termination” on page 2-22
Related reference

“String copying” on page 2-19
“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_mbscpy() function” on page 4-91
“The ifx_gl_mbsncpy() function” on page 4-98
“The ifx_gl_wcsncpy() function” on page 4-127

The ifx_gl_wcscspn() function
The ifx_gl_wcscspn() function determines the length of a complementary
wide-character substring for a wide-character string.

Syntax
#include <ifxgls.h>
...
int ifx_gl_wcscspn(wcs1, wcs1_char_length, wcs2, wcs2_char_length)

gl_wchar_t *wcs1;
int wcs1_char_length;
gl_wchar_t *wcs2;
int wcs2_char_length;

wcs1 A pointer to the wide-character string to check for the complementary
substring of characters in wcs2.

wcs1_char_length
The integer number of characters in the wcs1 string. If wcs1_char_length is
the value IFX_GL_NULL, the function assumes that wcs1 is a
null-terminated string. For more information about wide-character lengths,
see “Character-string termination” on page 2-22.

wcs2 A pointer to the string of wide-characters to search in wcs1.

wcs2_char_length
The integer number of characters in the wcs2 string. If wcs2_char_length is
the value IFX_GL_NULL, the function assumes that wcs2 is a
null-terminated string.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_wcscspn() function returns the size of the initial substring of wcs1 that
does not contain any characters that match characters in wcs2. The initial substring
begins at the first character of wcs1. Therefore, this size is the number of characters
in wcs1 before the first character that the wcs1 and wcs2 strings have in common.
The string of unmatched characters is called the complementary string.

For example, suppose you have the following two wide-character strings, wcs1 and
wcs2:

Chapter 4. Informix GLS functions 4-123

wcs1 = "A1A2B1B2C1C2D1D2A1A2E1E2F1F2A1A2G1G2D1D2";
wcs2 = "F1F2G1D1D2";

With these wide-character strings, the following call to the ifx_gl_wcscspn()
function returns 3:
ifx_gl_wcscspn(wcs1, charlen1, wcs2, charlen2)

The first three characters of wcs1 are not in wcs2. The fourth character in wcs1 is
D1D2, which is in wcs2 also.

Return values

>=0 The number of characters in the initial substring of wcs1 that consist
entirely of wide characters not in the string wcs2.

-1 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

If an error occurred, this function returns NULL and sets the ifx_gl_lc_errno()
error number to one of the following values.

IFX_GL_PARAMERR
Either wcs1_char_length is not equal to IFX_GL_NULL and is not greater
than or equal to 0, or wcs2_char_length is not equal to IFX_GL_NULL and is
not greater than or equal to 0.

IFX_GL_TERMMISMAT
Either wcs1_char_length is equal to IFX_GL_NULL, and wcs2_char_length is
greater than or equal to 0; or wcs1_char_length is greater than or equal to 0,
and wcs2_char_length is equal to IFX_GL_NULL.

Related concepts

“Character-string termination” on page 2-22
Related reference

“String-length determination” on page 2-19
“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_mbscspn() function” on page 4-92
“The ifx_gl_mbsspn() function” on page 4-108
“The ifx_gl_wcsspn() function” on page 4-131

The ifx_gl_wcslen() function
The ifx_gl_wcslen() function determines the number of characters in a
wide-character string.

Syntax
#include <ifxgls.h>
...
int ifx_gl_wcslen(wcs)

gl_wchar_t *wcs;

wcs A pointer to the wide-character string whose length the function
determines.

Valid in client application Valid in DataBlade UDR

Yes Yes

4-124 IBM Informix GLS API Programmer's Guide

Usage

The ifx_gl_wcslen() function computes the number of wide characters in the
wide-character string to which wcs points, not including the null-terminating
wide-character code. The length that ifx_gl_wcslen() returns includes any trailing
white space. The trailing-space characters are all characters that the blank character
class of the current locale defines.

For example, the following call to ifx_gl_wcslen() return a value of 7 (where A1A2,
B1B2, and C1C2 are wide characters of 2 bytes each, and s1s2 is the wide-character
blank space):
ifx_gl_wcslen("A1A2B1B2s1s2C1C2s1s2s1s2s1s2")

Use the ifx_gl_wcntslen() function if you want the length without trailing white
space.

Return values

>=0 The number of characters in the wcs string, not including any null
terminator but including any trailing white space.

-1 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

If an error occurred, this function returns -1 and sets the ifx_gl_lc_errno() error
number to the following value.

IFX_GL_EILSEQ
The *wcs value contains an invalid wide character.

Related concepts

“Character classification” on page 2-5
Related reference

“String-length determination” on page 2-19
“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_mbslen() function” on page 4-94
“The ifx_gl_mbsntsbytes() function” on page 4-101
“The ifx_gl_mbsntslen() function” on page 4-102
“The ifx_gl_wcsntslen() function” on page 4-128

The ifx_gl_wcsncat() function
The ifx_gl_wcsncat() function concatenates a specified number of wide characters
in one wide-character string to another.

Syntax
#include <ifxgls.h>
...
int ifx_gl_wcsncat(wcs1, wcs1_char_length, wcs2, wcs2_char_length, char_limit)

gl_wchar_t *wcs1;
int wcs1_char_length;
gl_wchar_t *wcs2;
int wcs2_char_length;
int char_limit;

Chapter 4. Informix GLS functions 4-125

wcs1 A pointer to the wide-character string to which the function concatenates
wcs2.

wcs1_char_length
The integer number of characters in the wcs1 string. If wcs1_char_length is
the value IFX_GL_NULL, the function assumes that wcs1 is a
null-terminated string.

wcs2 A pointer to the wide-character string to concatenate to wcs1.

wcs2_char_length
The integer number of characters in the wcs2 string. If wcs2_char_length is
the value IFX_GL_NULL, the function assumes that wcs2 is a
null-terminated string.

char_limit
The maximum number of wide characters to read from wcs2.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_wcsncat() function appends wcs2 to the end of wcs1. If wcs1 and wcs2
overlap, the results of this function are undefined. The function reads no more
than char_limit characters from wcs2 and writes them to wcs1.

Return values

>=0 The number of characters in the concatenated string, not including any
null terminator.

-1 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

If an error occurred, this function returns -1 and sets the ifx_gl_lc_errno() error
number to one of the following values.

IFX_GL_PARAMERR
Either wcs1_char_length is not equal to IFX_GL_NULL and is not greater
than or equal to 0, or wcs2_char_length is not equal to IFX_GL_NULL and is
not greater than or equal to 0.

IFX_GL_TERMMISMAT
Either wcs1_char_length is equal to IFX_GL_NULL, and wcs2_char_length is
greater than or equal to 0; or wcs1_char_length is greater than or equal to 0,
and wcs2_char_length is equal to IFX_GL_NULL.

4-126 IBM Informix GLS API Programmer's Guide

Related concepts

“Concatenation” on page 2-19
“Character-string termination” on page 2-22
Related reference

“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_mbscat() function” on page 4-87
“The ifx_gl_mbsncat() function” on page 4-97
“The ifx_gl_wcscat() function” on page 4-118

The ifx_gl_wcsncpy() function
The ifx_gl_wcsncpy() function copies a specified number of wide characters from a
wide-character string.

Syntax
#include <ifxgls.h>
...
int ifx_gl_wcsncpy(wcs1, wcs2, wcs2_char_length, char_limit)

gl_wchar_t *wcs1;
gl_wchar_t *wcs2;
int wcs2_char_length;
int char_limit;

wcs1 A pointer to the location where the function copies wcs2.

wcs2 A pointer to the wide-character string to copy to wcs1.

wcs2_char_length
The integer number of characters in the wcs2 string. If wcs2_char_length is
the value IFX_GL_NULL, the function assumes that wcs2 is a
null-terminated string.

char_limit
The maximum number of wide characters to read from wcs2.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_wcsncpy() function copies wcs2 to the location that wcs1 references. The
function reads no more than char_limit characters from wcs2 and writes them to
wcs1. If wcs1 and wcs2 overlap, the results of this function are undefined.

Return values

>=0 The number of bytes in the copied string, not including any null
terminator.

-1 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

If an error occurred, this function returns -1 and sets the ifx_gl_lc_errno() error
number to the following value.

Chapter 4. Informix GLS functions 4-127

IFX_GL_PARAMERR
The wcs2_char_length is not equal to IFX_GL_NULL and is not greater than
or equal to 0.

Related concepts

“Character-string termination” on page 2-22
Related reference

“String copying” on page 2-19
“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_mbscpy() function” on page 4-91
“The ifx_gl_mbsncpy() function” on page 4-98
“The ifx_gl_wcscpy() function” on page 4-122

The ifx_gl_wcsntslen() function
The ifx_gl_wcsntslen() function determines the number of characters in a
wide-character string.

Syntax
#include <ifxgls.h>
...
int ifx_gl_wcsntslen(wcs, wcs_char_length)

gl_wchar_t *wcs;
int wcs_char_length;

wcs A pointer to the wide-character string whose length the function
determines.

wcs_char_length
The integer number of characters in the wcs string. If wcs_char_length is the
value IFX_GL_NULL, the function assumes that wcs is a null-terminated
string.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_wcsntslen() function returns the number of characters in wcs, not
including the trailing-space characters. The trailing-space characters are all
characters that the blank character class of the current locale defines.

Space characters that are embedded in the string at any place except the end of the
string are included in the count. For example, the following call to
ifx_gl_wcsntslen() return a value of 4 (the number of wide characters in the string
“A1A2B1B2s1s2C1C2”, where A1A2, B1B2, and C1C2 are wide characters of 2 bytes
each, and s1s2 is the wide-character blank space):
ifx_gl_wcsntslen("A1A2B1B2s1s2C1C2s1s2s1s2s1s2", wcs_char_length)

Use the ifx_gl_wcntslen() function if you want the length without trailing white
space.

Return values

>=0 The number of characters in the wcs string, not including any trailing
space.

4-128 IBM Informix GLS API Programmer's Guide

-1 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

If an error occurred, this function returns -1 and sets the ifx_gl_lc_errno() error
number to the following value.

IFX_GL_PARAMERR
The wcs_char_length is not equal to IFX_GL_NULL and is not greater than
or equal to 0.

Related concepts

“Character classification” on page 2-5
“Character-string termination” on page 2-22
Related reference

“String-length determination” on page 2-19
“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_mbsntsbytes() function” on page 4-101
“The ifx_gl_mbsntslen() function” on page 4-102
“The ifx_gl_wcslen() function” on page 4-124

The ifx_gl_wcspbrk() function
The ifx_gl_wcspbrk() function searches for any wide character from one
wide-character string in another wide-character string.

Syntax
#include <ifxgls.h>
...
gl_wchar_t *ifx_gl_wcspbrk(wcs1, wcs1_char_length, wcs2, wcs2_char_length)

gl_wchar_t *wcs1;
int wcs1_char_length;
gl_wchar_t *wcs2;
int wcs2_char_length;

wcs1 A pointer to the wide-character string to search for any character in wcs2.

wcs1_char_length
The integer number of characters in the wcs1 string. If wcs1_char_length is
the value IFX_GL_NULL, the function assumes that wcs1 is a
null-terminated string.

wcs2 A pointer to the wide-character string whose characters the function
searches for in wcs1.

wcs2_char_length
The integer number of characters in the wcs2 string. If wcs2_char_length is
the value IFX_GL_NULL, the function assumes that wcs2 is a
null-terminated string.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_wcspbrk() function searches for the first occurrence of any wide
character from the string wcs2 in the wide-character string wcs1.

Chapter 4. Informix GLS functions 4-129

Return values

gl_wchar_t *
A pointer to the first byte of the first occurrence in wcs1 of any character
from wcs2.

NULL Either no character in wcs2 was found in wcs1 (the ifx_gl_lc_errno() error
number is set to 0); or the function was not successful, and the error
number is set to indicate the cause. See the Errors section.

Errors

If an error occurred, this function returns NULL and sets the ifx_gl_lc_errno()
error number to one of the following values.

IFX_GL_PARAMERR
Either wcs1_char_length is not equal to IFX_GL_NULL and is not greater
than or equal to 0, or wcs2_char_length is not equal to IFX_GL_NULL and is
not greater than or equal to 0.

IFX_GL_TERMMISMAT
Either wcs1_char_length is equal to IFX_GL_NULL, and wcs2_char_length is
greater than or equal to 0; or wcs1_char_length is greater than or equal to 0,
and wcs2_char_length is equal to IFX_GL_NULL.

Related concepts

“Character-string termination” on page 2-22
Related reference

“Character searching” on page 2-20
“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_mbschr() function” on page 4-88
“The ifx_gl_mbspbrk() function” on page 4-104
“The ifx_gl_mbsrchr() function” on page 4-106
“The ifx_gl_wcschr() function” on page 4-119
“The ifx_gl_wcsrchr() function”

The ifx_gl_wcsrchr() function
The ifx_gl_wcsrchr() function searches for the last occurrence of a character in a
wide-character string.

Syntax
#include <ifxgls.h>
...
gl_wchar_t *ifx_gl_wcsrchr(wcs, wcs_char_length, wc)

gl_wchar_t *wcs;
int wcs_char_length;
gl_wchar_t wc;

wcs A pointer to the wide-character string in which the function searches for
wc.

wcs_char_length
The integer number of characters in the wcs string. If wcs_char_length is the
value IFX_GL_NULL, the function assumes that wcs is a null-terminated
string.

wc A pointer to the wide character to search for in wcs.

4-130 IBM Informix GLS API Programmer's Guide

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_wcsrchr() function locates the last occurrence of wc in the wide
character string wcs.

Return values

gl_wchar_t *
A pointer to the last occurrence of wc in wcs.

NULL Either wc was not found in wcs (the ifx_gl_lc_errno() error number is set to
0); or the function was not successful, and the error number is set to
indicate the cause. See the Errors section.

Errors

If an error occurred, this function returns NULL and sets the ifx_gl_lc_errno()
error number to the following value.

IFX_GL_PARAMERR
The wcs_char_length is not equal to IFX_GL_NULL and is not greater than
or equal to 0.

Related concepts

“Character-string termination” on page 2-22
Related reference

“Character searching” on page 2-20
“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_mbschr() function” on page 4-88
“The ifx_gl_mbsrchr() function” on page 4-106
“The ifx_gl_wcschr() function” on page 4-119

The ifx_gl_wcsspn() function
The ifx_gl_wcsspn() function determines the length of a wide-character substring
for a specified wide-character string.

Syntax
#include <ifxgls.h>
...
int ifx_gl_wcsspn(wcs1, wcs1_char_length, wcs2, wcs2_char_length)

l_wchar_t *wcs1;
int wcs1_char_length;
gl_wchar_t *wcs2;
int wcs2_char_length;

wcs1 A pointer to the wide-character string to check for a substring of characters
found in wcs2.

wcs1_char_length
The integer number of characters in the wcs1 string. If wcs1_char_length is
the value IFX_GL_NULL, the function assumes that wcs1 is a
null-terminated string.

Chapter 4. Informix GLS functions 4-131

wcs2 A pointer to the wide-character string whose characters the function
searches for in wcs1.

wcs2_char_length
The integer number of characters in the wcs2 string. If wcs2_char_length is
the value IFX_GL_NULL, the function assumes that wcs2 is a
null-terminated string.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_wcsspn() function returns the size of the initial substring of wcs1 that
contains only characters that match characters in wcs2. The initial substring begins
at the first character of wcs1. Therefore, this size is the number of characters in
wcs1 before the first character that is not found in wcs2.

For example, suppose you have the following two wide-character strings, wcs1 and
wcs2:
wcs1 = "A1A2B1B2C1C2D1D2A1A2E1E2F1F2A1A2G1G2D1D2";
wcs2 = "B1B2D1D2A1A2C1C2";

With these wide-character strings, the following call to the ifx_gl_wcsspn()
function returns 5:
ifx_gl_wcsspn(wcs1, charlen1, wcs2, charlen2)

The first five characters of wcs1 are in wcs2. The sixth character in wcs1 is E1E2,

which is not a character that matches one of the characters in wcs2.

Return values

>=0 The number of characters in the initial substring of wcs1 that consist
entirely of wide characters in the string wcs2.

-1 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

If an error occurred, this function returns -1 and sets the ifx_gl_lc_errno() error
number to one of the following values.

IFX_GL_PARAMERR
Either wcs1_char_length is not equal to IFX_GL_NULL and is not greater
than or equal to 0, or wcs2_char_length is not equal to IFX_GL_NULL and is
not greater than or equal to 0.

IFX_GL_TERMMISMAT
Either wcs1_char_length is equal to IFX_GL_NULL, and wcs2_char_length is
greater than or equal to 0; or wcs1_char_length is greater than or equal to 0,
and wcs2_char_length is equal to IFX_GL_NULL.

4-132 IBM Informix GLS API Programmer's Guide

Related concepts

“Character-string termination” on page 2-22
Related reference

“String-length determination” on page 2-19
“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_mbscspn() function” on page 4-92
“The ifx_gl_mbsspn() function” on page 4-108
“The ifx_gl_wcscspn() function” on page 4-123

The ifx_gl_wcstombs() function
The ifx_gl_wcstombs() function converts a wide-character string to its multibyte
representation.

Syntax
#include <ifxgls.h>
...
int ifx_gl_wcstombs(mbs, wcs, wcs_char_length, mbs_byte_limit)

gl_mchar_t *mbs;
gl_wchar_t *wcs;
int wcs_char_length;
int mbs_byte_limit;

mbs A pointer to the multibyte-character string that contains the multibyte
equivalent for wcs.

wcs A pointer to the wide-character string to convert to the mbs multibyte
string.

wcs_char_length
The integer number of characters in the wcs string. If wcs_char_length is the
value IFX_GL_NULL, the function assumes that wcs is a null-terminated
string.

mbs_byte_limit
The integer number of bytes to read from mbs.

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_wcstombs() function converts the wide-character string wcs to its
multibyte representation and stores the result in the location that mbs references.

The function writes at most mbs_byte_limit bytes to mbs. If a particular character
would cause more than mbs_byte_limit bytes to be written to mbs, no part of that
character is written to mbs. In this case, fewer than mbs_byte_limit bytes are written
to mbs, but mbs is still considered full.

If wcs_char_length is equal to IFX_GL_NULL, the function null-terminates mbs. Any
other value of wcs_char_length means that the function does not null-terminate the
resulting string.

Chapter 4. Informix GLS functions 4-133

Return values

>=0 The number of characters that were written to mbs, not including any null
terminator.

-1 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

If an error occurred, this function returns -1 and sets the ifx_gl_lc_errno() error
number to one of the following values.

IFX_GL_PARAMERR
The wcs_char_length is not equal to IFX_GL_NULL and is not greater than
or equal to 0.

IFX_GL_EILSEQ
The *wcs value contains an invalid wide character.

Related concepts

“Character-string termination” on page 2-22
Related reference

“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_mbstowcs() function” on page 4-109
“The ifx_gl_mbtowc() function” on page 4-111
“The ifx_gl_wctomb() function” on page 4-135

The ifx_gl_wcswcs() function
The ifx_gl_wcswcs() function searches for a specified substring within a
wide-character string.

Syntax
#include <ifxgls.h>
...
gl_wchar_t *ifx_gl_wcswcs(wcs1, wcs1_char_length, wcs2, wcs2_char_length)

gl_wchar_t *wcs1;
int wcs1_char_length;
gl_wchar_t *wcs2;
int wcs2_char_length;

wcs1 A pointer to the wide-character string to search for the substring wcs2.

wcs1_char_length
The integer number of characters in the wcs1 string. If wcs1_char_length is
the value IFX_GL_NULL, the function assumes that wcs1 is a
null-terminated string.

wcs2 A pointer to the wide-character substring to search for in wcs1.

wcs2_char_length
The integer number of characters in the wcs2 string. If wcs2_char_length is
the value IFX_GL_NULL, the function assumes that wcs2 is a
null-terminated string.

Valid in client application Valid in DataBlade UDR

Yes Yes

4-134 IBM Informix GLS API Programmer's Guide

Usage

The ifx_gl_wcswcs() function searches for the first occurrence of the wide-character
string wcs2 in the wide-character string wcs1.

Return values

gl_wchar_t *
A pointer to the first byte of the first occurrence of wcs2 in wcs1.

NULL Either wcs2 was not found in wcs1 (the ifx_gl_lc_errno() error number is
set to 0); or the function was not successful, and the error number is set to
indicate the cause. See the Errors section.

Errors

If an error occurred, this function returns NULL and sets the ifx_gl_lc_errno()
error number to one of the following values.

IFX_GL_PARAMERR
Either wcs1_char_length is not equal to IFX_GL_NULL and is not greater
than or equal to 0, or wcs2_char_length is not equal to IFX_GL_NULL and is
not greater than or equal to 0.

IFX_GL_TERMMISMAT
Either wcs1_char_length is equal to IFX_GL_NULL, and wcs2_char_length is
greater than or equal to 0; or wcs1_char_length is greater than or equal to 0,
and wcs2_char_length is equal to IFX_GL_NULL.

Related concepts

“Character-string termination” on page 2-22
Related reference

“Character searching” on page 2-20
“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_mbschr() function” on page 4-88
“The ifx_gl_mbsmbs() function” on page 4-95
“The ifx_gl_mbsrchr() function” on page 4-106
“The ifx_gl_wcschr() function” on page 4-119
“The ifx_gl_wcsrchr() function” on page 4-130

The ifx_gl_wctomb() function
The ifx_gl_wctomb() function converts one wide character to its multibyte
representation.

Syntax
#include <ifxgls.h>
...
int ifx_gl_wctomb(mb, wc)

gl_mchar_t *mb;
gl_wchar_t wc;

mb A pointer to the multibyte character that contains the multibyte equivalent
for wc.

wc A pointer to the wide character to convert to the mb multibyte character.

Chapter 4. Informix GLS functions 4-135

Valid in client application Valid in DataBlade UDR

Yes Yes

Usage

The ifx_gl_wctomb() function converts the wide character in wc to its multibyte
representation and stores the result in consecutive bytes that start at mb. This
function assumes that mb contains enough space to hold the multibyte
representation of wc. You can use either of the following methods to determine the
number of bytes that will be written to mb:
v The function ifx_gl_mb_loc_max() calculates the maximum number of bytes in

the multibyte representation for any wide character for the current locale.
v The macro IFX_GL_MB_MAX is the maximum number of bytes in the multibyte

representation for any wide character in any locale.
The value is always greater than or equal to the value that ifx_gl_mb_loc_max()
returns.

Of the two options, the macro IFX_GL_MB_MAX is faster and can initialize static
buffers. The function ifx_gl_mb_loc_max() is slower but more precise.

Return values

>=0 The number of bytes written to mb.

-1 The function was not successful, and the error number is set to indicate the
cause. See the Errors section.

Errors

If an error occurred, this function returns -1 and sets the ifx_gl_lc_errno() error
number to the following value.

IFX_GL_EILSEQ
The *wc value is not a valid wide character. In this case, some bytes might
be written to mb, but the contents of mb are undefined.

Related reference

“The ifx_gl_lc_errno() function” on page 4-84
“The ifx_gl_mb_loc_max() function” on page 4-85
“The ifx_gl_mbstowcs() function” on page 4-109
“The ifx_gl_mbtowc() function” on page 4-111
“The ifx_gl_wcstombs() function” on page 4-133

4-136 IBM Informix GLS API Programmer's Guide

Appendix A. List of Informix GLS error numbers

This topic provides a list of the error-number constants that the ifx_gl_lc_errno()
function can retrieve. It also provides a list of the IBM Informix GLS functions that
might set a particular error number.

The Informix GLS error-number constants are defined in the gls.h header file. For
a complete list of error-number constants, see the gls.h header file.

Error-number constant Description Informix GLS functions

IFX_GL_NOERRNO No error has occurred. Internal use only

© Copyright IBM Corp. 1998, 2011 A-1

Error-number constant Description Informix GLS functions

IFX_GL_EILSEQ Character sequence in a
multibyte or wide character
is invalid.

ifx_gl_cv_mconv(),
ifx_gl_getmb(),
ifx_gl_ismalnum(),
ifx_gl_ismalpha(),
ifx_gl_ismblank(),
ifx_gl_ismcntrl(),
ifx_gl_ismdigit(),
ifx_gl_ismgraph(),
ifx_gl_ismlower(),
ifx_gl_ismprint(),
ifx_gl_ismpunct(),
ifx_gl_ismspace(),
ifx_gl_ismupper(),
ifx_gl_ismxdigit(),
ifx_gl_iswalnum(),
ifx_gl_iswalpha(),
ifx_gl_iswblank(),
ifx_gl_iswcntrl(),
ifx_gl_iswdigit(),
ifx_gl_iswgraph(),
ifx_gl_iswlower(),
ifx_gl_iswprint(),
ifx_gl_iswpunct(),
ifx_gl_iswspace(),
ifx_gl_iswupper(),
ifx_gl_iswxdigit(),
ifx_gl_mblen(),
ifx_gl_mbscat(),
ifx_gl_mbschr(),
ifx_gl_mbscoll(),
ifx_gl_mbscpy(),
ifx_gl_mbscspn(),
ifx_gl_mbslen(),
ifx_gl_mbsmbs(),
ifx_gl_mbsncat(),
ifx_gl_mbsncpy(),
ifx_gl_mbsnext(),
ifx_gl_mbsntsbytes(),
ifx_gl_mbsntslen(),
ifx_gl_mbspbrk(),
ifx_gl_mbsprev(),
ifx_gl_mbsrchr(),
ifx_gl_mbsspn(),
ifx_gl_mbstowcs(),
ifx_gl_mbtowc(),
ifx_gl_putmb(),
ifx_gl_tomlower(),
ifx_gl_tomupper(),
ifx_gl_towlower(),
ifx_gl_towupper(),
ifx_gl_wcscoll(),
ifx_gl_wcslen(),
ifx_gl_wcstombs(),
ifx_gl_wctomb()

IFX_GL_ENULLPTR Function received a NULL
pointer to a function.

Internal use only

A-2 IBM Informix GLS API Programmer's Guide

Error-number constant Description Informix GLS functions

IFX_GL_ENOMEM Function encountered a
memory-allocation failure.

ifx_gl_init(),
ifx_gl_mbscoll(),
ifx_gl_wcscoll()

IFX_GL_EINDEXRANGE Index is out of bounds. Internal use only

IFX_GL_EINVPTR An end pointer is less than a
begin pointer.

ifx_gl_mbsprev(),
ifx_gl_putmb()

IFX_GL_ERANGE The base of a number is out
of range.

Internal use

IFX_GL_EINVAL Wide-character or
multibyte-character string is
invalid.

ifx_gl_conv_needed(),
ifx_gl_cv_mconv(),
ifx_gl_getmb(),
ifx_gl_ismalnum(),
ifx_gl_ismalpha(),
ifx_gl_isblank(),
ifx_gl_ismcntrl(),
ifx_gl_ismdigit(),
ifx_gl_ismgraph(),
ifx_gl_ismlower(),
ifx_gl_ismprint(),
ifx_gl_ismpunct(),
ifx_gl_ismspace(),
ifx_gl_ismupper(),
ifx_gl_ismxdigit(),
ifx_gl_mblen(),
ifx_gl_mbscat(),
ifx_gl_mbschr(),
ifx_gl_mbscoll(),
ifx_gl_mbscpy(),
ifx_gl_mbscspn(),
ifx_gl_mbslen(),
ifx_gl_mbsmbs(),
ifx_gl_mbsncat(),
ifx_gl_mbsncpy(),
ifx_gl_mbsnext(),
ifx_gl_mbsntsbytes(),
ifx_gl_mbsntslen(),
ifx_gl_mbspbrk(),
ifx_gl_mbsprev(),
ifx_gl_mbsrchr(),
ifx_gl_mbsspn(),
ifx_gl_mbstowcs(),
ifx_gl_mbtowc(),
ifx_gl_putmb(),
ifx_gl_tomlower(),
ifx_gl_tomupper()

IFX_GL_FILEERR Input file could not be read. ifx_gl_cv_mconv(),
ifx_gl_cv_outbuflen(),
ifx_gl_cv_sb2sb_table(),
ifx_gl_init()

Appendix A. List of Informix GLS error numbers A-3

Error-number constant Description Informix GLS functions

IFX_GL_PARAMERR Parameter is out of bounds. ifx_gl_convert_number(),
ifx_gl_format_number(),
ifx_gl_init(), ifx_gl_mbscat(),
ifx_gl_mbschr(),
ifx_gl_mbscoll(),
ifx_gl_mbscpy(),
ifx_gl_mbscspn(),
ifx_gl_mbslen(),
ifx_gl_mbsmbs(),
ifx_gl_mbsncat(),
ifx_gl_mbsncpy(),
ifx_gl_mbsntsbytes(),
ifx_gl_mbsntslen(),
ifx_gl_mbspbrk(),
ifx_gl_mbsrchr(),
ifx_gl_mbsspn(),
ifx_gl_mbstowcs(),
ifx_gl_wcscat(),
ifx_gl_wcschr(),
ifx_gl_wcscoll(),
ifx_gl_wcscpy(),
ifx_gl_wcscspn(),
ifx_gl_wcsncat(),
ifx_gl_wcsncpy(),
ifx_gl_wcsntslen(),
ifx_gl_wcspbrk(),
ifx_gl_wcsrchr(),
ifx_gl_wcsspn(),
ifx_gl_wcstombs(),
ifx_gl_wcswcs()

IFX_GL_CATASTROPHE Function encountered an
internal error. Result is
undefined result.

Internal use only

IFX_GL_BADFILEFORM File format was invalid. ifx_gl_conv_needed(),
ifx_gl_init()

IFX_GL_INVALIDLOC Locale code sets are
inconsistent.

ifx_gl_init()

IFX_GL_EIO Function encountered an I/O
error.

Internal use only

IFX_GL_E2BIG Operation would overflow a
buffer.

ifx_gl_convert_date(),
ifx_gl_cv_mconv(),
ifx_gl_format_date(),
ifx_gl_format_datetime(),
ifx_gl_format_money(),
ifx_gl_format_number()

IFX_GL_EBADF Function received a bad
handle.

ifx_gl_conv_needed(),
ifx_gl_convert_date(),
ifx_gl_convert_datetime(),
ifx_gl_format_date(),
ifx_gl_format_datetime()

IFX_GL_EOF Function encountered an
end-of-file on input stream.

ifx_gl_getmb()

IFX_GL_EUNKNOWN An unknown system error
has occurred.

Internal use only

A-4 IBM Informix GLS API Programmer's Guide

Error-number constant Description Informix GLS functions

IFX_GL_UNLOADEDCAT Function cannot copy from
an unloaded category.

Internal use only

IFX_GL_LOADEDCAT Function cannot copy into a
loaded category.

Internal use only

IFX_GL_ENOSYS A feature is not supported. ifx_gl_format_money()

IFX_GL_ELOCTOOWIDE The current locale has
characters that are too wide
for this version of the
Informix GLS library.

ifx_gl_init()

IFX_GL_INVALIDFMT A formatted argument string
is invalid.

ifx_gl_convert_date(),
ifx_gl_convert_money(),
ifx_gl_convert_number(),
ifx_gl_format_number()

IFX_GL_EFRACRANGE Fraction of second is out of
bounds.

ifx_gl_convert_datetime(),
ifx_gl_format_datetime()

IFX_GL_ESECONDRANGE Second is out of bounds. ifx_gl_convert_datetime(),
ifx_gl_format_datetime()

IFX_GL_EMINUTERANGE Minute is out of bounds. ifx_gl_convert_datetime(),
ifx_gl_format_datetime()

IFX_GL_EHOURRANGE Hour is out of bounds. ifx_gl_convert_datetime(),
ifx_gl_format_datetime()

IFX_GL_EDAYRANGE Day number is out of
bounds.

ifx_gl_convert_date(),
ifx_gl_convert_datetime(),
ifx_gl_format_date(),
ifx_gl_format_datetime()

IFX_GL_EWKDAYRANGE Weekday number is out of
bounds.

ifx_gl_convert_date(),
ifx_gl_convert_datetime(),
ifx_gl_format_date(),
ifx_gl_format_datetime()

IFX_GL_EYDAYRANGE Year-day number is out of
bounds.

ifx_gl_convert_date(),
ifx_gl_convert_datetime(),
ifx_gl_format_date(),
ifx_gl_format_datetime()

IFX_GL_EMONTHRANGE Month number is out of
bounds.

ifx_gl_convert_date(),
ifx_gl_convert_datetime(),
ifx_gl_format_date(),
ifx_gl_format_datetime()

IFX_GL_EERAOFFRANGE Era offset is out of bounds. ifx_gl_convert_date(),
ifx_gl_convert_datetime(),
ifx_gl_format_date(),
ifx_gl_format_datetime()

IFX_GL_EYEARRANGE Year number is out of
bounds.

ifx_gl_convert_date(),
ifx_gl_convert_datetime(),
ifx_gl_format_date(),
ifx_gl_format_datetime()

IFX_GL_BADFRAC Fraction could not be
scanned.

ifx_gl_convert_datetime(),
ifx_gl_format_datetime()

IFX_GL_BADSECOND Second could not be scanned. ifx_gl_convert_datetime(),
ifx_gl_format_datetime()

IFX_GL_BADMINUTE Minute could not be scanned. ifx_gl_convert_datetime(),
ifx_gl_format_datetime()

Appendix A. List of Informix GLS error numbers A-5

Error-number constant Description Informix GLS functions

IFX_GL_BADHOUR Hour could not be scanned. ifx_gl_convert_datetime(),
ifx_gl_format_datetime()

IFX_GL_BADDAY Month-day could not be
scanned.

ifx_gl_convert_date(),
ifx_gl_convert_datetime(),
ifx_gl_format_date(),
ifx_gl_format_datetime()

IFX_GL_BADWKDAY Weekday could not be
scanned.

ifx_gl_convert_date(),
ifx_gl_convert_datetime(),
ifx_gl_format_date(),
ifx_gl_format_datetime()

IFX_GL_BADYDAY Year-day could not be
scanned.

ifx_gl_convert_date(),
ifx_gl_convert_datetime(),
ifx_gl_format_date(),
ifx_gl_format_datetime()

IFX_GL_BADMONTH Month could not be scanned. ifx_gl_convert_date(),
ifx_gl_convert_datetime(),
ifx_gl_format_date(),
ifx_gl_format_datetime()

IFX_GL_BADYEAR Year could not be scanned. ifx_gl_convert_date(),
ifx_gl_convert_datetime(),
ifx_gl_format_date(),
ifx_gl_format_datetime()

IFX_GL_BADERANAME Era name is invalid. ifx_gl_convert_date(),
ifx_gl_convert_datetime(),
ifx_gl_format_date(),
ifx_gl_format_datetime()

IFX_GL_BADERAOFFSET Era offset is invalid ifx_gl_convert_date(),
ifx_gl_convert_datetime(),
ifx_gl_format_date(),
ifx_gl_format_datetime()

IFX_GL_BADFMTMOD Format modifier is invalid. ifx_gl_convert_date()

IFX_GL_BADFMTWP Field width or precision is
invalid.

ifx_gl_convert_date()

IFX_GL_BADINPUT Input string does not match
format string.

ifx_gl_convert_date()

IFX_GL_NOPOINT Input is missing a decimal
separator.

ifx_gl_convert_date()

IFX_GL_BADMONTHSTR Month string could not be
scanned

ifx_gl_convert_date()

IFX_GL_BADERASPEC Function could not load era
from locale.

ifx_gl_convert_date()

IFX_GL_BADCALENDAR LC_TIME category contains
an unsupported calendar.

Internal use only

IFX_GL_BADOBJVER The lc (locale), cm (code set),
or cv (code-set conversion)
object is the wrong version.

ifx_gl_init()

IFX_GL_BADALTDATE Function could not convert
%Z information.

Internal use only

IFX_GL_NOSYMMAP Character/symbol is not in
charmap.

Internal use only

A-6 IBM Informix GLS API Programmer's Guide

Error-number constant Description Informix GLS functions

IFX_GL_BADSYM Symbolic character name is
invalid.

Internal use only

IFX_GL_ELOCLOAD Function could not load
locale.

Internal use only

IFX_GL_TERMMISMAT String-termination parameters
do not match.

ifx_gl_mbscat(),
ifx_gl_mbscoll(),
ifx_gl_mbscspn(),
ifx_gl_mbsmbs(),
ifx_gl_mbsncat(),
ifx_gl_mbspbrk(),
ifx_gl_mbsspn(),
ifx_gl_wcscat(),
ifx_gl_wcscoll(),
ifx_gl_wcscspn(),
ifx_gl_wcsncat(),
ifx_gl_wcspbrk(),
ifx_gl_wcsspn(),
ifx_gl_wcswcs()

IFX_GL_NOCTYPE GL_CTYPE is not loaded Internal use only

IFX_GL_LOCMISMAT Loaded code sets are not
same.

Internal use only

Appendix A. List of Informix GLS error numbers A-7

A-8 IBM Informix GLS API Programmer's Guide

Appendix B. Accessibility

IBM strives to provide products with usable access for everyone, regardless of age
or ability.

Accessibility features for IBM Informix products
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features
The following list includes the major accessibility features in IBM Informix
products. These features support:
v Keyboard-only operation.
v Interfaces that are commonly used by screen readers.
v The attachment of alternative input and output devices.

Tip: The information center and its related publications are accessibility-enabled
for the IBM Home Page Reader. You can operate all features by using the keyboard
instead of the mouse.

Keyboard navigation
This product uses standard Microsoft Windows navigation keys.

Related accessibility information
IBM is committed to making our documentation accessible to persons with
disabilities. Our publications are available in HTML format so that they can be
accessed with assistive technology such as screen reader software.

You can view the publications in Adobe Portable Document Format (PDF) by using
the Adobe Acrobat Reader.

IBM and accessibility
See the IBM Accessibility Center at http://www.ibm.com/able for more information
about the IBM commitment to accessibility.

Dotted decimal syntax diagrams
The syntax diagrams in our publications are available in dotted decimal format,
which is an accessible format that is available only if you are using a screen reader.

In dotted decimal format, each syntax element is written on a separate line. If two
or more syntax elements are always present together (or always absent together),
the elements can appear on the same line, because they can be considered as a
single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read
punctuation. All syntax elements that have the same dotted decimal number (for
example, all syntax elements that have the number 3.1) are mutually exclusive

© Copyright IBM Corp. 1998, 2011 B-1

http://www.ibm.com/able

alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax can
include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, the word or symbol is preceded by
the backslash (\) character. The * symbol can be used next to a dotted decimal
number to indicate that the syntax element repeats. For example, syntax element
*FILE with dotted decimal number 3 is read as 3 * FILE. Format 3* FILE
indicates that syntax element FILE repeats. Format 3* * FILE indicates that
syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol that provides information about the syntax elements. For example, the lines
5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, that element is defined elsewhere.
The string following the % symbol is the name of a syntax fragment rather than a
literal. For example, the line 2.1 %OP1 refers to a separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:

? Specifies an optional syntax element. A dotted decimal number followed
by the ? symbol indicates that all the syntax elements with a
corresponding dotted decimal number, and any subordinate syntax
elements, are optional. If there is only one syntax element with a dotted
decimal number, the ? symbol is displayed on the same line as the syntax
element (for example, 5? NOTIFY). If there is more than one syntax element
with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if
you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that syntax
elements NOTIFY and UPDATE are optional; that is, you can choose one or
none of them. The ? symbol is equivalent to a bypass line in a railroad
diagram.

! Specifies a default syntax element. A dotted decimal number followed by
the ! symbol and a syntax element indicates that the syntax element is the
default option for all syntax elements that share the same dotted decimal
number. Only one of the syntax elements that share the same dotted
decimal number can specify a ! symbol. For example, if you hear the lines
2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the
default option for the FILE keyword. In this example, if you include the
FILE keyword but do not specify an option, default option KEEP is applied.
A default option also applies to the next higher dotted decimal number. In
this example, if the FILE keyword is omitted, default FILE(KEEP) is used.

B-2 IBM Informix GLS API Programmer's Guide

However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP only applies to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword), and
does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* Specifies a syntax element that can be repeated zero or more times. A
dotted decimal number followed by the * symbol indicates that this syntax
element can be used zero or more times; that is, it is optional and can be
repeated. For example, if you hear the line 5.1* data-area, you know that
you can include more than one data area or you can include none. If you
hear the lines 3*, 3 HOST, and 3 STATE, you know that you can include
HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is
only one item with that dotted decimal number, you can repeat that
same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item
from the list, but you cannot use the items more than once each. In the
previous example, you can write HOST STATE, but you cannot write HOST
HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax
diagram.

+ Specifies a syntax element that must be included one or more times. A
dotted decimal number followed by the + symbol indicates that this syntax
element must be included one or more times. For example, if you hear the
line 6.1+ data-area, you must include at least one data area. If you hear
the lines 2+, 2 HOST, and 2 STATE, you know that you must include HOST,
STATE, or both. As for the * symbol, you can repeat a particular item if it is
the only item with that dotted decimal number. The + symbol, like the *
symbol, is equivalent to a loop-back line in a railroad syntax diagram.

Appendix B. Accessibility B-3

B-4 IBM Informix GLS API Programmer's Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

© Copyright IBM Corp. 1998, 2011 C-1

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,

C-2 IBM Informix GLS API Programmer's Guide

modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, and PostScript are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other
countries.

Intel, Itanium, and Pentium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Notices C-3

http://www.ibm.com/legal/copytrade.shtml

C-4 IBM Informix GLS API Programmer's Guide

Index

A
Accessibility B-1

dotted decimal format of syntax diagrams B-1
keyboard B-1
shortcut keys B-1
syntax diagrams, reading in a screen reader B-1

Allocate destination buffer
determining 2-9, 2-14

alnum character class 2-5
alpha character class 2-5
Asian characters 1-12
Asian code sets 2-2

B
blank character class 2-5

C
Case conversion

multibyte characters 2-9
operations 2-8
wide characters 2-12

Case conversion functions 2-12
performance issues 2-12

Character class
alnum 2-5
alpha 2-5
blank 2-5
cntrl 2-5
digit 2-5
graph 2-5
lower 2-5
print 2-5
punct 2-5
space 2-5
upper 2-5
xdigit 2-5

Character classification 2-5
Character operations 2-5
Character searching

multibyte functions 2-20
tasks 2-20
wide character equivalents 2-20

Character types
multibyte 2-1
single-byte 2-1

Character-processing capabilities 2-1
Character-processing tasks

case conversion 2-1
character classification 2-1
character comparison and sorting 2-1
code-set conversion 2-1
memory allocation 2-1
string processing 2-1
string traversal 2-1

Character-string termination 2-22
description of 2-22

Character/string comparison and sorting 2-20

Client locale
default locale 1-5
defined 1-5
nondefault locale 1-5

CLIENT_LOCALE
environment variable 1-5

cntrl character class 2-5
Code set 2-1
Code-set conversion

defined 2-13
determining if needed 2-13
performing 2-13

Code-set names
code-set names 2-14
locale names 2-14
specifying 2-14

Collation
Code-set collation

defined 2-20
performing 2-20

defined 2-20
Localized collation

comparing multibyte and wide characters 2-20
defined 2-20

methods 2-20
compliance with standards xi
Concatenation

defined 2-19
multibyte functions 2-19
operations 2-19
wide character equivalents 2-19

Conversion
ifx_gl_mbstowcs() function 2-4
ifx_gl_mbtowc() function 2-4
ifx_gl_wcstombs() function 2-4
ifx_gl_wctomb() function 2-4
Informix GLS functions

ifx_gl_mbstowcs() 2-4
ifx_gl_mbtowc() 2-4
ifx_gl_wcstombs() 2-4
ifx_gl_wctomb() 2-4

multibyte characters to wide characters 2-4
Current processing locale 1-5

D
Data formatting 3-1
Data types

gl_mchar_t 2-3
gl_wchar_t 2-4

Database application tasks
character processing 1-3, 1-4
data formatting 1-3, 1-4
descriptions 1-3
documentation 1-3, 1-4
user interfaces 1-3, 1-4

Database locale
default locale 1-5
defined 1-5
nondefault locale 1-5

© Copyright IBM Corp. 1998, 2011 X-1

Datablade client applications
compile 1-8
link 1-8

Datablade user-defined routines
compile 1-9
link 1-9

DB_LOCALE
environment variable 1-5

DBDATE environment variable 3-3
DBMONEY environment variable 3-2
DBTIME environment variable 3-3
digit character class 2-5
Disabilities, visual

reading syntax diagrams B-1
Disability B-1
Dotted decimal format of syntax diagrams B-1

E
End-user formats

defined 3-1
Environment variables

CLIENT_LOCALE 1-5
DB_LOCALE 1-5
DBDATE 3-3
DBMONEY 3-2
DBTIME 3-3
GL_DATE 3-3
GL_DATETIME 3-3
INFORMIXDIR 1-7, 1-8, 2-14
SERVER_LOCALE 1-5

Error numbers
descriptions A-1
error number constants A-1
list of A-1

Exception handling 2-12

G
GL_DATE environment variable 3-3
GL_DATETIME environment variable 3-3
gl_mchar_t

data type 2-3
gl_wchar_t

data type 2-4
gls.h

header file 1-7, 2-3, 2-4, A-1
graph character class 2-5

H
Header files

directories 1-7
gls.h 1-7, 2-3, 2-4, A-1
ifx.h 2-4
ifxgls.h 1-7, 1-8, 2-3

I
IFX_GL_CASE_CONV_DST_BYTES() marco 2-10
ifx_gl_case_conv_outbuflen() function 2-9, 2-24

errors 4-4
return values 4-4
syntax 4-4
usage 4-4

IFX_GL_CASE_CONV_SRC_BYTES() macro 2-10
ifx_gl_conv_needed() function 2-13

errors 4-5
return values 4-5
syntax 4-5
usage 4-5

ifx_gl_convert_date() function 3-5
errors 4-6
field width 4-6
format string 4-6
locale information 4-6
modified formatting directives 4-6
return values 4-6
syntax 4-6
usage 4-6
valid type specifiers 4-6

ifx_gl_convert_datetime() function 3-5
errors 4-12
field width 4-12
format string 4-12
locale information 4-12
modified formatting directives 4-12
return values 4-12
syntax 4-12
usage 4-12
valid type specifiers 4-12

ifx_gl_convert_money() function 3-5
errors 4-19
field width 4-19
format string 4-19
locale information 4-19
return values 4-19
syntax 4-19
usage 4-19
valid type specifiers 4-19

ifx_gl_convert_number() function 3-5
errors 4-22
field width 4-22
format string 4-22
locale information 4-22
return values 4-22
syntax 4-22
usage 4-22
valid type specifiers 4-22

ifx_gl_cv_mconv() function 2-15
errors 4-25
locale information 4-25
return values 4-25
syntax 4-25
usage 4-25

ifx_gl_cv_outbuflen() function 2-14, 2-24
errors 4-28
return values 4-28
syntax 4-28
usage 4-28

ifx_gl_cv_sb2sb_table() function
errors 4-29
return values 4-29
syntax 4-29
usage 4-29

ifx_gl_format_date() function 3-5
errors 4-30
field with and precision 4-30
format string 4-30
locale information 4-30
modified formatting directives 4-30
return values 4-30

X-2 IBM Informix GLS API Programmer's Guide

ifx_gl_format_date() function (continued)
syntax 4-30
usage 4-30
valid type specifiers 4-30

ifx_gl_format_datetime() function 3-5
errors 4-36
field width and precision 4-36
format string 4-36
locale information 4-36
modified formatting directives 4-36
return values 4-36
syntax 4-36
usage 4-36
valid type specifiers 4-36

ifx_gl_format_money() function 3-5
errors 4-42
field width and precision 4-42
format string 4-42
locale information 4-42
modified formatting directives 4-42
return values 4-42
syntax 4-42
usage 4-42
valid type specifiers 4-42

ifx_gl_format_number() function 3-5
errors 4-46
field width and precision 4-46
format string 4-46
locale information 4-46
modified formatting directives 4-46
return values 4-46
syntax 4-46
usage 4-46
valid type specifiers 4-46

ifx_gl_getmb() function 1-12
errors 4-50
return values 4-50
syntax 4-50
usage 4-50

ifx_gl_init() function 1-10
errors 4-51
return values 4-51
syntax 4-51
usage 4-51

ifx_gl_ismalnum() function
errors 4-53
locale information 4-53
return values 4-53
syntax 4-53
usage 4-53

ifx_gl_ismalpha() function
errors 4-54
locale information 4-54
return values 4-54
syntax 4-54
usage 4-54

ifx_gl_ismblank() function
errors 4-56
locale information 4-56
return values 4-56
syntax 4-56
usage 4-56

ifx_gl_ismcntrl() function
errors 4-57
return values 4-57
syntax 4-57
usage 4-57

ifx_gl_ismdigit() function
errors 4-58
return values 4-58
syntax 4-58
usage 4-58

ifx_gl_ismgraph() function
errors 4-60
locale information 4-60
return values 4-60
syntax 4-60
usage 4-60

ifx_gl_ismlower() function
errors 4-61
location information 4-61
return values 4-61
syntax 4-61
usage 4-61

ifx_gl_ismprint() function
errors 4-63
locale information 4-63
return values 4-63
syntax 4-63
usage 4-63

ifx_gl_ismpunct() function
errors 4-64
locale information 4-64
return values 4-64
syntax 4-64
usage 4-64

ifx_gl_ismspace() function
errors 4-66
locale information 4-66
return values 4-66
syntax 4-66
usage 4-66

ifx_gl_ismupper() function
errors 4-67
locale information 4-67
return values 4-67
syntax 4-67
usage 4-67

ifx_gl_ismxdigit() function
errors 4-69
locale information 4-69
return values 4-69
syntax 4-69
usage 4-69

ifx_gl_iswalnum() function
errors 4-70
locale information 4-70
return values 4-70
syntax 4-70
usage 4-70

ifx_gl_iswalpha() function
errors 4-71
locale information 4-71
return values 4-71
syntax 4-71
usage 4-71

ifx_gl_iswblank() function
errors 4-73
locale information 4-73
return values 4-73
syntax 4-73
usage 4-73

ifx_gl_iswcntrl() function
errors 4-74

Index X-3

ifx_gl_iswcntrl() function (continued)
locale information 4-74
return values 4-74
syntax 4-74
usage 4-74

ifx_gl_iswdigit() function
errors 4-75
locale information 4-75
return values 4-75
syntax 4-75
usage 4-75

ifx_gl_iswgraph() function
errors 4-76
locale information 4-76
return values 4-76
syntax 4-76
usage 4-76

ifx_gl_iswlower() function
errors 4-77
locale information 4-77
return values 4-77
syntax 4-77
usage 4-77

ifx_gl_iswprint() function
errors 4-78
locale information 4-78
return values 4-78
syntax 4-78
usage 4-78

ifx_gl_iswpunct() function
errors 4-80
locale information 4-80
return values 4-80
syntax 4-80
usage 4-80

ifx_gl_iswspace() function
errors 4-81
locale information 4-81
return values 4-81
syntax 4-81
usage 4-81

ifx_gl_iswupper() function
errors 4-82
locale information 4-82
return values 4-82
syntax 4-82
usage 4-82

ifx_gl_iswxdigit() function
errors 4-83
locale information 4-83
return values 4-83
syntax 4-83
usage 4-83

ifx_gl_lc_errno() function 2-12, 2-20, A-1
errors 4-84
examples 1-11
return values 4-84
syntax 4-84
usage 4-84

ifx_gl_mb_loc_max() function 2-9, 2-24
errors 4-85
return values 4-85
syntax 4-85
usage 4-85

IFX_GL_MB_MAX macro 2-9, 2-14, 2-24
ifx_gl_mblen() function 2-18

errors 4-86

ifx_gl_mblen() function (continued)
return values 4-86
syntax 4-86
usage 4-86

ifx_gl_mbscat() function 2-19
errors 4-87
return values 4-87
syntax 4-87
usage 4-87

ifx_gl_mbschr() function 2-20
errors 4-88
return values 4-88
syntax 4-88
usage 4-88

ifx_gl_mbscoll() function 2-20
errors 4-90
locale information 4-90
return values 4-90
syntax 4-90
usage 4-90

ifx_gl_mbscpy() function 2-19
errors 4-91
return values 4-91
syntax 4-91
usage 4-91

ifx_gl_mbscspn() function 2-19
errors 4-93
return values 4-93
syntax 4-93
usage 4-93

ifx_gl_mbslen() function 2-19
errors 4-94
return values 4-94
syntax 4-94
usage 4-94

ifx_gl_mbsmbs() function 2-20
errors 4-96
return values 4-96
syntax 4-96
usage 4-96

ifx_gl_mbsncat() function 2-19
errors 4-97
return values 4-97
syntax 4-97
usage 4-97

ifx_gl_mbsncpy() function 2-19
errors 4-98
return values 4-98
syntax 4-98
usage 4-98

ifx_gl_mbsnext() function 2-18
errors 4-100
return values 4-100
syntax 4-100
usage 4-100

ifx_gl_mbsntsbytes() function 2-19
errors 4-101
return values 4-101
syntax 4-101
usage 4-101

ifx_gl_mbsntslen() function 2-19
errors 4-102
return values 4-102
syntax 4-102
usage 4-102

ifx_gl_mbspbrk() function 2-20
errors 4-104

X-4 IBM Informix GLS API Programmer's Guide

ifx_gl_mbspbrk() function (continued)
return values 4-104
syntax 4-104
usage 4-104

ifx_gl_mbsprev() function 2-18
errors 4-105
return values 4-105
syntax 4-105
usage 4-105

ifx_gl_mbsrchr() function 2-20
errors 4-107
return values 4-107
syntax 4-107
usage 4-107

ifx_gl_mbsspn() function 2-19
errors 4-108
return values 4-108
syntax 4-108
usage 4-108

ifx_gl_mbstowcs() function 1-13
errors 4-109
return values 4-109
syntax 4-109
usage 4-109

ifx_gl_mbtowc() function
errors 4-111
return values 4-111
syntax 4-111
usage 4-111

IFX_GL_PROC_CS macro 2-14
ifx_gl_putmb() 1-12
ifx_gl_putmb() function

errors 4-112
return values 4-112
syntax 4-112
usage 4-112

ifx_gl_tomlower() function 2-8, 2-9, 2-10
errors 4-113
return values 4-113
syntax 4-113
usage 4-113

ifx_gl_tomupper() function 2-8, 2-9, 2-10
errors 4-115
return values 4-115
syntax 4-115
usage 4-115

ifx_gl_towlower() function 2-8, 2-12
errors 4-117
return values 4-117
syntax 4-117
usage 4-117

ifx_gl_towupper() function 2-8, 2-12
errors 4-117
return values 4-117
syntax 4-117
usage 4-117

ifx_gl_wcscat() function 2-19
errors 4-118
return values 4-118
syntax 4-118
usage 4-118

ifx_gl_wcschr() function 2-20
errors 4-120
return values 4-120
syntax 4-120
usage 4-120

ifx_gl_wcscoll() function 2-20

ifx_gl_wcscoll() function (continued)
errors 4-121
return values 4-121
syntax 4-121
usage 4-121

ifx_gl_wcscpy() function 2-19
errors 4-122
return values 4-122
syntax 4-122
usage 4-122

ifx_gl_wcscspn() function 2-19
errors 4-123
return values 4-123
syntax 4-123
usage 4-123

ifx_gl_wcslen() function 2-18, 2-19
errors 4-124
return values 4-124
syntax 4-124
usage 4-124

ifx_gl_wcsncat() function 2-19
errors 4-125
return values 4-125
syntax 4-125
usage 4-125

ifx_gl_wcsncpy() function 2-19
errors 4-127
return values 4-127
syntax 4-127
usage 4-127

ifx_gl_wcsntslen() function 2-19
errors 4-128
return values 4-128
syntax 4-128
usage 4-128

ifx_gl_wcspbrk() function 2-20
errors 4-129
return values 4-129
syntax 4-129
usage 4-129

ifx_gl_wcsrchr() function 2-20
errors 4-130
return values 4-130
syntax 4-130
usage 4-130

ifx_gl_wcsspn() function 2-19
errors 4-131
return values 4-131
syntax 4-131
usage 4-131

ifx_gl_wcstombs() function 1-13
errors 4-133
return values 4-133
syntax 4-133
usage 4-133

ifx_gl_wcswcs() function 2-20
errors 4-134
return values 4-134
syntax 4-134
usage 4-134

ifx_gl_wctomb() function
errors 4-135
return values 4-135
syntax 4-135
usage 4-135

ifx.h
header file 2-4

Index X-5

ifxgls.h
directory 1-8
header file 1-7, 1-8, 2-3

industry standards xi
INFORMIX directory 1-5
Informix GLS

compile 1-7
defined 1-4
error numbers A-1
esql command 1-7
exceptions 1-11
ifx_gl_towlower() 2-12
ifx_gl_towupper() 2-12
in C-language program 1-7
in Datablade programs

compile 1-7
link 1-7

in ESQL/C applications
compile 1-7
link 1-7

link 1-7
Informix GLS functions 2-18, 4-1

allocating memory 1-12
case conversion 2-8
character-string termination 2-22
code-set conversion 2-13
conversion functions 3-4
formatting functions 3-4
function reference 4-4
function summary

character processing 4-1
data formatting 4-1
initialization and error handling 4-1
memory allocation 4-1
stream input and output 4-1

ifx_gl_case_conv_outbuflen() 2-9, 2-24, 4-4
ifx_gl_conv_needed() 2-13, 4-5
ifx_gl_convert_date() 3-5, 4-6
ifx_gl_convert_datetime() 3-5, 4-12
ifx_gl_convert_money() 3-5, 4-19
ifx_gl_convert_number() 3-5, 4-22
ifx_gl_cv_mconv() 2-15, 4-25
ifx_gl_cv_outbuflen() 2-14, 2-24, 4-28
ifx_gl_cv_sb2sb_table() 4-29
ifx_gl_format_date() 3-5, 4-30
ifx_gl_format_datetime() 3-5, 4-36
ifx_gl_format_money() 3-5, 4-42
ifx_gl_format_number() 3-5, 4-46
ifx_gl_getmb() 1-12, 4-50
ifx_gl_init() 1-10, 4-51
ifx_gl_ismalnum() 4-53
ifx_gl_ismalpha() 4-54
ifx_gl_ismblank() 4-56
ifx_gl_ismcntrl() 4-57
ifx_gl_ismdigit() 4-58
ifx_gl_ismgraph() 4-60
ifx_gl_ismlower() 4-61
ifx_gl_ismprint() 4-63
ifx_gl_ismpunct() 4-64
ifx_gl_ismspace() 4-66
ifx_gl_ismupper() 4-67
ifx_gl_ismxdigit() 4-69
ifx_gl_iswalnum() 4-70
ifx_gl_iswalpha() 4-71
ifx_gl_iswblank() 4-73
ifx_gl_iswcntrl() 4-74
ifx_gl_iswdigit() 4-75

Informix GLS functions (continued)
ifx_gl_iswgraph() 4-76
ifx_gl_iswlower() 4-77
ifx_gl_iswprint() 4-78
ifx_gl_iswpunct() 4-80
ifx_gl_iswspace() 4-81
ifx_gl_iswupper() 4-82
ifx_gl_iswxdigit() 4-83
ifx_gl_lc_errno() 1-11, 2-12, 2-20, 4-84, A-1
ifx_gl_mb_loc_max() 2-9, 2-24, 4-85
ifx_gl_mblen() 4-86
ifx_gl_mbscat() 2-19, 4-87
ifx_gl_mbschr() 2-20, 4-88
ifx_gl_mbscoll() 2-20, 4-90
ifx_gl_mbscpy() 2-19, 4-91
ifx_gl_mbscspn() 2-19, 4-93
ifx_gl_mbslen() 2-19, 4-94
ifx_gl_mbsmbs() 2-20, 4-96
ifx_gl_mbsncat() 2-19, 4-97
ifx_gl_mbsncpy() 2-19, 4-98
ifx_gl_mbsnext() 4-100
ifx_gl_mbsntsbytes() 2-19, 4-101
ifx_gl_mbsntslen() 2-19, 4-102
ifx_gl_mbspbrk() 2-20, 4-104
ifx_gl_mbsprev() 4-105
ifx_gl_mbsrchr() 2-20, 4-107
ifx_gl_mbsspn() 2-19, 4-108
ifx_gl_mbstowcs() 1-13, 4-109
ifx_gl_mbtowc() 4-111
ifx_gl_putmb() 1-12, 4-112
ifx_gl_tomlower() 2-8, 2-9, 2-10, 4-113
ifx_gl_tomupper() 2-8, 2-9, 2-10, 4-115
ifx_gl_towlower() 2-8, 4-117
ifx_gl_towupper() 2-8, 4-117
ifx_gl_wcscat() 2-19, 4-118
ifx_gl_wcschr() 2-20, 4-120
ifx_gl_wcscoll() 2-20, 4-121
ifx_gl_wcscpy() 2-19, 4-122
ifx_gl_wcscspn() 2-19, 4-123
ifx_gl_wcslen() 2-18, 2-19, 4-124
ifx_gl_wcsncat() 2-19, 4-125
ifx_gl_wcsncpy() 2-19, 4-127
ifx_gl_wcsntslen() 2-19, 4-128
ifx_gl_wcspbrk() 2-20, 4-129
ifx_gl_wcsrchr() 2-20, 4-130
ifx_gl_wcsspn() 2-19, 4-131
ifx_gl_wcstombs() 1-13, 4-133
ifx_gl_wcswcs() 2-20, 4-134
ifx_gl_wctomb() 4-135
multibyte character handling 2-2
multibyte-character termination 2-23
optimization tasks 1-13
string comparison 2-20
valid code-set names 2-14
wide character handling 2-3

Informix GLS library
accessing directories 1-12
client applications 1-12
compatibility 1-5
conversion and formatting 3-4
initializing 1-10
provided functions 1-4
representation of multibyte characters 2-3
support for wide characters 2-3

Informix GLS macros
IFX_GL_CASE_CONV_DST_BYTES() 2-10
IFX_GL_CASE_CONV_SRC_BYTES() 2-10

X-6 IBM Informix GLS API Programmer's Guide

Informix GLS macros (continued)
IFX_GL_MB_MAX 2-9, 2-14, 2-24
IFX_GL_PROC_CS 2-14

INFORMIXDIR
environment variable 1-7, 1-8
subdirectories 1-8

INFORMIXDIR environment variable 2-14
Input multibyte character stream 1-12
Internationalized programs 1-3

L
LC_CTYPE locale-file category

alnum character class 2-5
alpha character class 2-5
blank character class 2-5
cntrl character class 2-5
description of 2-5
digit character class 2-5
graph character class 2-5
lower character class 2-5
print character class 2-5
punct character class 2-5
space character class 2-5
upper character class 2-5
xdigit character class 2-5

LC_MONETARY locale-file category 3-1, 3-2
LC_NUMERIC locale-file category 3-1
LC_TIME locale-file category 3-1, 3-3
Locale 1-7

choosing 1-5
defined 1-5
LC_COLLATE category 2-20

Locale file
LC_MONETARY category 3-2
LC_NUMERIC category 3-1
LC_TIME category 3-3

Locale file category
LC_MONETARY category 3-1
LC_NUMERIC category 3-1
LC_TIME category 3-1

Locale-specific data formats
Locale-file category 3-1
SQL built-in data types 3-1
types of data 3-1

Locale-specific strings
conversion functions 3-5
converting 3-5
formatting 3-5

lower character class 2-5

M
Memory management 1-12

characters 2-24
string 2-24

Multibyte character
string traversal

backward direction 2-18
forward direction 2-18

Multibyte character functions 2-5, 2-8
Multibyte characters

description of 2-2
Multibyte strings

fragmentation 2-26
fragmenting 2-26

Multibyte strings (continued)
keeping consistency 2-26
truncating 2-26
truncation 2-26

Multibyte-character strings
allocation 2-24

Multibyte-character termination 2-22

N
Number of bytes read and written

determining 2-10

O
Optimization tasks 1-13
Other operations

character-string termination 2-22
managing memory 2-24
multibyte string consistency 2-26
multibyte-character termination 2-23
multibyte-character-string allocation 2-24
string and character termination 2-22
string deallocation 2-26
wide-character-string allocation 2-25

Output multibyte character stream 1-12

P
print character class 2-5
Processing wide characters 1-13
Program performance

improving 1-13
punct character class 2-5

S
SAPI.LIB

library 1-9
Screen reader

reading syntax diagrams B-1
Server locale

default locale 1-5
defined 1-5
nondefault locale 1-5

SERVER_LOCALE
environment variable 1-5

Shared GLS libraries 1-12
Shortcut keys

keyboard B-1
Single-byte characters

description of 2-1
Software dependencies viii
space character class 2-5
standards xi
State information

preserving 2-15
State-dependent code sets 2-15
Static and shared GLS libraries

directories 1-7
Static GLS libraries 1-12
Stream I/O 1-12
String comparison tasks 2-20
String copying

multibyte functions 2-19

Index X-7

String copying (continued)
tasks 2-19
wide character equivalents 2-19

String deallocation 2-26
String operations 2-18

character/string comparison and sorting 2-20
String processing 2-19

character searching 2-20
concatenation 2-19
string copying 2-19
string-length determination 2-19

string traversal
backward direction 2-18
forward direction 2-18
ifx_gl_mblen() 2-18
ifx_gl_mbsnext() 2-18
ifx_gl_mbsprev() 2-18

String traversal
description of 2-18
multibyte character 2-18
wide character 2-18

String-length
determining 2-19
multibyte functions 2-19
tasks 2-19
wide character equivalents 2-19

Subdirectories
code-set conversion files 1-12
locale files 1-12

subdirectories location 1-7
Syntax diagrams

reading in a screen reader B-1

U
upper character class 2-5

V
Visual disabilities

reading syntax diagrams B-1

W
Wide character 2-18
Wide character functions 2-5, 2-8
Wide characters

description of 2-3
processing 1-13

Wide-character-strings
allocation 2-25

X
xdigit character class 2-5

X-8 IBM Informix GLS API Programmer's Guide

����

Printed in USA

SC27-3831-00

Sp
in
e
in
fo
rm
at
io
n:

In
fo

rm
ix

Pr
od

uc
tF

am
ily

In
fo

rm
ix

Gl
ob

al
La

ng
ua

ge
Su

pp
or

t
Ve

rs
io

n
4.

50
IB

M
In

fo
rm

ix
GL

S
AP

IP
ro

gr
am

m
er

's
Gu

id
e

�
�

�

	Contents
	Introduction
	About this publication
	Types of users
	Software compatibility
	Assumptions about your locale
	Demonstration databases

	Character-representation conventions
	Single-byte characters
	Multibyte characters
	Single-byte and multibyte characters in the same string
	White space characters in strings
	Trailing white space characters

	Example code conventions
	Additional documentation
	Compliance with industry standards
	How to provide documentation feedback

	Chapter 1. Using Informix GLS
	Character-representation conventions
	Single-byte characters
	Multibyte characters
	Single-byte and multibyte characters in the same string
	White space characters in strings
	Trailing white space characters

	Internationalized programs with Informix GLS
	What is Informix GLS?
	Informix GLS compatibility
	Choose a GLS Locale

	Using Informix GLS in a C-language program
	Compile and link Informix GLS
	Informix GLS in ESQL/C applications
	Informix GLS in DataBlade programs

	Initialize the Informix GLS library
	Informix GLS exceptions
	Allocate memory
	Input and output streams
	Run the program

	Improve program performance
	Optimize Informix GLS
	Processing wide characters

	Chapter 2. Character processing
	Types of characters
	Single-byte characters
	Multibyte characters
	The gl_mchar_t data type
	Wide characters

	Character operations
	Character classification
	Case conversion
	Case conversion for multibyte characters
	Case conversion for wide characters
	Exception handling
	Performance issues

	Code-set conversion
	Determining if code-set conversion is needed
	Perform code-set conversion
	Performance issues

	String operations
	String traversal
	Multibyte-character-string traversal
	Wide-character-string traversal

	String processing
	Concatenation
	String copying
	String-length determination
	Character searching

	Character/string comparison and sorting

	Other operations
	String and character termination
	Character-string termination
	Multibyte-character termination

	Managing memory for strings and characters
	Multibyte-character-string allocation
	Wide-character-string allocation
	String deallocation

	Keep multibyte strings consistent
	Truncate multibyte strings
	Fragment multibyte strings

	Chapter 3. Data formatting
	Locale-specific data formats
	The LC_NUMERIC locale-file category
	The LC_MONETARY locale-file category
	The LC_TIME locale-file category

	Conversion and formatting with Informix GLS
	Convert a locale-specific string
	Format a locale-specific string

	Chapter 4. Informix GLS functions
	Function summary
	Function reference
	The ifx_gl_case_conv_outbuflen() function
	The ifx_gl_conv_needed() function
	The ifx_gl_convert_date() function
	The ifx_gl_convert_datetime() function
	The ifx_gl_convert_money() function
	The ifx_gl_convert_number() function
	The ifx_gl_cv_mconv() function
	The ifx_gl_cv_outbuflen() function
	The ifx_gl_cv_sb2sb_table() function
	The ifx_gl_format_date() function
	The ifx_gl_format_datetime() function
	The ifx_gl_format_money() function
	The ifx_gl_format_number() function
	The ifx_gl_getmb() function
	The ifx_gl_init() function
	The ifx_gl_ismalnum() function
	The ifx_gl_ismalpha() function
	The ifx_gl_ismblank() function
	The ifx_gl_ismcntrl() function
	The ifx_gl_ismdigit() function
	The ifx_gl_ismgraph() function
	The ifx_gl_ismlower() function
	The ifx_gl_ismprint() function
	The ifx_gl_ismpunct() function
	The ifx_gl_ismspace() function
	The ifx_gl_ismupper() function
	The ifx_gl_ismxdigit() function
	The ifx_gl_iswalnum() function
	The ifx_gl_iswalpha() function
	The ifx_gl_iswblank() function
	The ifx_gl_iswcntrl() function
	The ifx_gl_iswdigit() function
	The ifx_gl_iswgraph() function
	The ifx_gl_iswlower() function
	The ifx_gl_iswprint() function
	The ifx_gl_iswpunct() function
	The ifx_gl_iswspace() function
	The ifx_gl_iswupper() function
	The ifx_gl_iswxdigit() function
	The ifx_gl_lc_errno() function
	The ifx_gl_mb_loc_max() function
	The ifx_gl_mblen() function
	The ifx_gl_mbscat() function
	The ifx_gl_mbschr() function
	The ifx_gl_mbscoll() function
	The ifx_gl_mbscpy() function
	The ifx_gl_mbscspn() function
	The ifx_gl_mbslen() function
	The ifx_gl_mbsmbs() function
	The ifx_gl_mbsncat() function
	The ifx_gl_mbsncpy() function
	The ifx_gl_mbsnext() function
	The ifx_gl_mbsntsbytes() function
	The ifx_gl_mbsntslen() function
	The ifx_gl_mbspbrk() function
	The ifx_gl_mbsprev() function
	The ifx_gl_mbsrchr() function
	The ifx_gl_mbsspn() function
	The ifx_gl_mbstowcs() function
	The ifx_gl_mbtowc() function
	The ifx_gl_putmb() function
	The ifx_gl_tomlower() function
	The ifx_gl_tomupper() function
	The ifx_gl_towlower() function
	The ifx_gl_towupper() function
	The ifx_gl_wcscat() function
	The ifx_gl_wcschr() function
	The ifx_gl_wcscoll() function
	The ifx_gl_wcscpy() function
	The ifx_gl_wcscspn() function
	The ifx_gl_wcslen() function
	The ifx_gl_wcsncat() function
	The ifx_gl_wcsncpy() function
	The ifx_gl_wcsntslen() function
	The ifx_gl_wcspbrk() function
	The ifx_gl_wcsrchr() function
	The ifx_gl_wcsspn() function
	The ifx_gl_wcstombs() function
	The ifx_gl_wcswcs() function
	The ifx_gl_wctomb() function

	Appendix A. List of Informix GLS error numbers
	Appendix B. Accessibility
	Accessibility features for IBM Informix products
	Accessibility features
	Keyboard navigation
	Related accessibility information
	IBM and accessibility

	Dotted decimal syntax diagrams

	Notices
	Trademarks

	Index
	A
	B
	C
	D
	E
	G
	H
	I
	L
	M
	N
	O
	P
	S
	U
	V
	W
	X

