
IBM Informix

IBM Informix Virtual-Table Interface Programmer’s Guide

Version 11.50

SC23-9440-00

���

IBM Informix

IBM Informix Virtual-Table Interface Programmer’s Guide

Version 11.50

SC23-9440-00

���

Note:

Before using this information and the product it supports, read the information in “Notices” on page B-1.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this publication should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Introduction . vii

In This Introduction . vii

About This Publication . vii

Types of Users . vii

Software Dependencies . vii

Assumptions About Your Locale . vii

Demonstration Databases . viii

Documentation Conventions . viii

Typographical Conventions . viii

Feature, Product, and Platform Markup . ix

Example Code Conventions . ix

Additional Documentation . x

Compliance with Industry Standards . x

Syntax Diagrams . x

How to Read a Command-Line Syntax Diagram . xi

Keywords and Punctuation . xii

Identifiers and Names . xiii

How to Provide Documentation Feedback . xiii

Chapter 1. Access Methods . 1-1

In This Chapter . 1-1

Built-in Access Methods . 1-1

User-Defined Access Methods . 1-2

Access to Storage Spaces . 1-2

Seamless Use of SQL . 1-2

Access-Method Components . 1-3

Components That the IBM Informix Database Server Provides 1-3

Components That You Provide . 1-7

Access Method Flow . 1-9

Locating Purpose Functions . 1-9

Invoking Purpose Functions . 1-11

Calling Functions From a Purpose Function . 1-12

Improving An Access Method . 1-12

Chapter 2. Developing an Access Method . 2-1

In This Chapter . 2-1

Choosing Features . 2-1

Writing Purpose Functions . 2-2

Starting and Ending Processing . 2-3

Creating and Dropping Database Objects . 2-3

Optimizing Queries . 2-4

Inserting, Deleting, and Updating Data . 2-5

Registering Purpose Functions . 2-5

Supplying Routine Modifiers . 2-6

Registering the Access Method . 2-6

Testing the Access Method . 2-8

Creating and Specifying Storage Spaces . 2-8

Inserting, Querying, and Updating Data . 2-11

Checking Data Integrity . 2-11

Dropping an Access Method . 2-12

Cannot Rename Databases That Have Virtual Tables . 2-12

Chapter 3. Design Decisions . 3-1

In This Chapter . 3-1

Storing Data in Shared Memory . 3-2

© Copyright IBM Corp. 1996, 2008 iii

Functions That Allocate and Free Memory . 3-2

Memory-Duration Options . 3-2

Persistent User Data . 3-3

Accessing Database and System Catalog Tables . 3-4

No Label-Based Access Control on Virtual Tables . 3-5

Executing a UDR Across Databases of the Same Database Server Instance 3-5

Handling the Unexpected . 3-6

Using Callback Functions . 3-6

Using Error Messages . 3-7

Supporting Data Definition Statements . 3-8

Interpreting the Table Descriptor . 3-8

Managing Storage Spaces . 3-9

Providing Configuration Keywords . 3-12

Leveraging Indexes on Virtual Tables . 3-13

Processing Queries . 3-14

Interpreting the Scan Descriptor . 3-14

Interpreting the Qualification Descriptor . 3-15

Qualifying Data . 3-18

Enhancing Performance . 3-22

Executing in Parallel . 3-22

Buffering Multiple Results . 3-23

Supporting Data Retrieval, Manipulation, and Return . 3-24

Checking Isolation Levels . 3-24

Converting to and from Row Format . 3-26

Determining Transaction Success or Failure . 3-26

Supplying Error Messages and a User Guide . 3-27

Avoiding Database Server Exceptions . 3-27

Notifying the User About Access-Method Constraints . 3-29

Documenting Nonstandard Features . 3-29

Chapter 4. Purpose-Function Reference . 4-1

In This Chapter . 4-1

Purpose-Function Flow . 4-1

ALTER FRAGMENT Statement Interface . 4-2

CREATE Statement Interface . 4-4

DROP Statement Interface . 4-5

INSERT, DELETE, and UPDATE Statement Interface . 4-5

SELECT...WHERE Statement Interface . 4-6

oncheck Utility Interface . 4-7

Purpose-Function Syntax . 4-7

am_beginscan . 4-9

am_check . 4-10

am_close . 4-12

am_create . 4-13

am_delete . 4-14

am_drop . 4-15

am_endscan . 4-16

am_getbyid . 4-17

am_getnext . 4-18

am_insert . 4-20

am_open . 4-21

am_rescan . 4-22

am_scancost . 4-23

am_stats . 4-25

am_truncate . 4-26

am_update . 4-27

Chapter 5. Descriptor Function Reference . 5-1

In This Chapter . 5-2

Descriptors . 5-2

iv IBM Informix Virtual-Table Interface Programmer’s Guide

Qualification Descriptor . 5-3

Row Descriptor . 5-5

Scan Descriptor . 5-5

Statistics Descriptor . 5-6

Table Descriptor . 5-6

Include Files . 5-7

Accessor Functions . 5-7

mi_eval_am_qual() . 5-8

mi_init_am_qual() . 5-9

mi_qual_boolop() . 5-10

mi_qual_column() . 5-11

mi_qual_commuteargs() . 5-12

mi_qual_constant() . 5-13

mi_qual_constant_nohostvar() . 5-14

mi_qual_constisnull() . 5-16

mi_qual_constisnull_nohostvar() . 5-17

mi_qual_const_depends_hostvar() . 5-18

mi_qual_const_depends_outer() . 5-19

mi_qual_funcid() . 5-20

mi_qual_funcname() . 5-21

mi_qual_handlenull() . 5-22

mi_qual_issimple() . 5-23

mi_qual_needoutput() . 5-24

mi_qual_negate() . 5-25

mi_qual_nquals() . 5-26

mi_qual_qual() . 5-27

mi_qual_setoutput() . 5-28

mi_qual_setreopt() . 5-29

mi_qual_setvalue() . 5-30

mi_qual_value() . 5-31

mi_scan_forupdate() . 5-32

mi_scan_isolevel() . 5-33

mi_scan_locktype() . 5-34

mi_scan_newquals() . 5-35

mi_scan_nprojs() . 5-36

mi_scan_projs() . 5-37

mi_scan_quals() . 5-38

mi_scan_setuserdata() . 5-39

mi_scan_table() . 5-40

mi_scan_userdata() . 5-41

mi_tab_amparam() . 5-42

mi_tab_check_msg() . 5-43

mi_tab_createdate() . 5-45

mi_tab_id() . 5-46

mi_tab_isolevel() . 5-47

mi_tab_istable() . 5-48

mi_tab_mode() . 5-49

mi_tab_name() . 5-50

mi_tab_niorows() . 5-51

mi_tab_numfrags() . 5-52

mi_tab_owner() . 5-53

mi_tab_partnum() . 5-54

mi_tab_rowdesc() . 5-55

mi_tab_setnextrow() . 5-56

mi_tab_setniorows() . 5-57

mi_tab_setuserdata() . 5-58

mi_tab_spaceloc() . 5-59

mi_tab_spacename() . 5-60

mi_tab_spacetype() . 5-62

mi_tab_update_stat_mode() . 5-63

mi_tab_userdata() . 5-64

Contents v

mi_tstats_setnpages() . 5-65

mi_tstats_setnrows() . 5-66

Chapter 6. SQL Statements for Access Methods 6-1

In This Chapter . 6-1

ALTER ACCESS_METHOD (+) . 6-2

CREATE ACCESS_METHOD (+) . 6-4

DROP ACCESS_METHOD (+) . 6-6

Purpose Options . 6-7

Chapter 7. Using XA-Compliant External Data Sources 7-1

Creating a Virtual-Table Interface for XA Data Sources . 7-1

Appendix. Accessibility . A-1

Accessibility features for IBM Informix Dynamic Server . A-1

Accessibility Features . A-1

Keyboard Navigation . A-1

Related Accessibility Information . A-1

IBM and Accessibility . A-1

Dotted Decimal Syntax Diagrams . A-1

Notices . B-1

Trademarks . B-3

Index . X-1

vi IBM Informix Virtual-Table Interface Programmer’s Guide

Introduction

In This Introduction . vii

About This Publication . vii

Types of Users . vii

Software Dependencies . vii

Assumptions About Your Locale . vii

Demonstration Databases . viii

Documentation Conventions . viii

Typographical Conventions . viii

Feature, Product, and Platform Markup . ix

Example Code Conventions . ix

Additional Documentation . x

Compliance with Industry Standards . x

Syntax Diagrams . x

How to Read a Command-Line Syntax Diagram . xi

Keywords and Punctuation . xii

Identifiers and Names . xiii

How to Provide Documentation Feedback . xiii

In This Introduction

This introduction provides an overview of the information in this publication and

describes the conventions it uses.

About This Publication

This publication explains how to create a primary access method with the

Virtual-Table Interface (VTI) so that users have a single SQL interface to IBM®

Informix® tables and to data that does not conform to the storage scheme of IBM

Informix Dynamic Server.

Types of Users

This publication is written for experienced C programmers who develop primary

access methods, as follows:

v Partners who integrate data that does not conform to the built-in primary access

method for relational tables or an industry-standard gateway API

v Engineers who support IBM Informix customers, partners, and third-party

developers

Before you develop an access method, you should be familiar with creating

user-defined routines and programming with the DataBlade API.

Software Dependencies

This publication assumes that you are using IBM Informix Dynamic Server, Version

11.50, as your database server.

Assumptions About Your Locale

IBM Informix products can support many languages, cultures, and code sets. All

culture-specific information is brought together in a single environment, called a

Global Language Support (GLS) locale.

© Copyright IBM Corp. 1996, 2008 vii

The examples in this publication are written with the assumption that you are

using the default locale, en_us.8859-1. This locale supports U.S. English format

conventions for date, time, and currency. In addition, this locale supports the ISO

8859-1 code set, which includes the ASCII code set plus many 8-bit characters such

as é, è, and ñ.

If you plan to use nondefault characters in your data or your SQL identifiers, or if

you want to conform to the nondefault collation rules of character data, you need

to specify the appropriate nondefault locale.

For instructions on how to specify a nondefault locale, additional syntax, and other

considerations related to GLS locales, see the IBM Informix GLS User’s Guide.

Demonstration Databases

The DB–Access utility, which is provided with the IBM Informix database server

products, includes one or more of the following demonstration databases:

v The stores_demo database illustrates a relational schema with information about

a fictitious wholesale sporting-goods distributor. Many examples in IBM

Informix manuals are based on the stores_demo database.

v The sales_demo database illustrates a dimensional schema for data-

warehousing applications. For conceptual information about dimensional data

modeling, see the IBM Informix Database Design and Implementation Guide.

For information about how to create and populate the demonstration databases,

see the IBM Informix DB–Access User’s Guide. For descriptions of the databases and

their contents, see the IBM Informix Guide to SQL: Reference.

The scripts that you use to install the demonstration databases reside in the

$INFORMIXDIR/bin directory on UNIX® platforms and in the

%INFORMIXDIR%\bin directory in Windows environments.

Documentation Conventions

This section describes the following conventions, which are used in the product

documentation for IBM Informix Dynamic Server:

v Typographical conventions

v Feature, product, and platform conventions

v Syntax diagrams

v Command-line conventions

v Example code conventions

Typographical Conventions

This publication uses the following conventions to introduce new terms, illustrate

screen displays, describe command syntax, and so forth.

 Convention Meaning

KEYWORD Keywords of SQL, SPL, and some other programming languages appear

in uppercase letters in a serif font.

italics Within text, new terms and emphasized words appear in italics. Within

syntax and code examples, variable values that you are to specify

appear in italics.

viii IBM Informix Virtual-Table Interface Programmer’s Guide

Convention Meaning

boldface Names of program entities (such as classes, events, and tables),

environment variables, file names, path names, and interface elements

(such as icons, menu items, and buttons) appear in boldface.

monospace Information that the product displays and information that you enter

appear in a monospace typeface.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans serif

font.

> This symbol indicates a menu item. For example, “Choose Tools >

Options” means choose the Options item from the Tools menu.

Feature, Product, and Platform Markup

Feature, product, and platform markup identifies paragraphs that contain

feature-specific, product-specific, or platform-specific information. Some examples

of this markup follow:

Dynamic Server

Identifies information that is specific to IBM Informix Dynamic Server

End of Dynamic Server

Windows Only

Identifies information that is specific to the Windows operating system

End of Windows Only

 This markup can apply to one or more paragraphs within a section. When an

entire section applies to a particular product or platform, this is noted as part of

the heading text, for example:

 Table Sorting (Windows)

Example Code Conventions

Examples of SQL code occur throughout this publication. Except as noted, the code

is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by

semicolons. For instance, you might see the code in the following example:

CONNECT TO stores_demo

...

DELETE FROM customer

 WHERE customer_num = 121

...

COMMIT WORK

DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules for

that product. For example, if you are using an SQL API, you must use EXEC SQL

at the start of each statement and a semicolon (or other appropriate delimiter) at

the end of the statement. If you are using DB–Access, you must delimit multiple

statements with semicolons.

Introduction ix

Tip: Ellipsis points in a code example indicate that more code would be added in

a full application, but it is not necessary to show it to describe the concept

being discussed.

For detailed directions on using SQL statements for a particular application

development tool or SQL API, see the documentation for your product.

Additional Documentation

You can view, search, and print all of the product documentation from the IBM

Informix Dynamic Server information center on the Web at http://
publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp.

For additional documentation about IBM Informix Dynamic Server and related

products, including release notes, machine notes, and documentation notes, go to

the online product library page at http://www.ibm.com/software/data/informix/
pubs/library/. Alternatively, you can access or install the product documentation

from the Quick Start CD that is shipped with the product.

Compliance with Industry Standards

The American National Standards Institute (ANSI) and the International

Organization of Standardization (ISO) have jointly established a set of industry

standards for the Structured Query Language (SQL). IBM Informix SQL-based

products are fully compliant with SQL-92 Entry Level (published as ANSI

X3.135-1992), which is identical to ISO 9075:1992. In addition, many features of

IBM Informix database servers comply with the SQL-92 Intermediate and Full

Level and X/Open SQL Common Applications Environment (CAE) standards.

Syntax Diagrams

This guide uses syntax diagrams built with the following components to describe

the syntax for statements and all commands other than system-level commands.

 Table 1. Syntax Diagram Components

Component represented in PDF Component represented in HTML Meaning

>>---------------------- Statement begins.

-----------------------> Statement continues on next

line.

>----------------------- Statement continues from

previous line.

----------------------->< Statement ends.

--------SELECT---------- Required item.

--+-----------------+---

 ’------LOCAL------’

Optional item.

x IBM Informix Virtual-Table Interface Programmer’s Guide

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://www.ibm.com/software/data/informix/pubs/library/
http://www.ibm.com/software/data/informix/pubs/library/

Table 1. Syntax Diagram Components (continued)

Component represented in PDF Component represented in HTML Meaning

---+-----ALL-------+---

 +--DISTINCT-----+

 ’---UNIQUE------’

Required item with choice.

One and only one item must

be present.

---+------------------+---

 +--FOR UPDATE-----+

 ’--FOR READ ONLY--’

Optional items with choice

are shown below the main

line, one of which you might

specify.

 .---NEXT---------.

----+----------------+---

 +---PRIOR--------+

 ’---PREVIOUS-----’

The values below the main

line are optional, one of

which you might specify. If

you do not specify an item,

the value above the line will

be used as the default.

 .-------,-----------.

 V |

---+-----------------+---

 +---index_name---+

 ’---table_name---’

Optional items. Several items

are allowed; a comma must

precede each repetition.

>>-| Table Reference |->< Reference to a syntax

segment.

Table Reference

|--+-----view--------+--|

 +------table------+

 ’----synonym------’

Syntax segment.

How to Read a Command-Line Syntax Diagram

The following command-line syntax diagram uses some of the elements listed in

the table in Syntax Diagrams.

Creating a No-Conversion Job

�� onpladm create job job

-p

project
 -n -d device -D database �

� -t table �

�

�

(1)

Setting

the

Run

Mode

-S

server

-T

target

��

Introduction xi

Notes:

1 See page Z-1

The second line in this diagram has a segment named “Setting the Run Mode,”

which according to the diagram footnote, is on page Z-1. If this was an actual

cross-reference, you would find this segment in on the first page of Appendix Z.

Instead, this segment is shown in the following segment diagram. Notice that the

diagram uses segment start and end components.

Setting the Run Mode:

-f

d

p

a

 l

c

u

n

N

To see how to construct a command correctly, start at the top left of the main

diagram. Follow the diagram to the right, including the elements that you want.

The elements in this diagram are case sensitive because they illustrate utility

syntax. Other types of syntax, such as SQL, are not case sensitive.

The Creating a No-Conversion Job diagram illustrates the following steps:

1. Type onpladm create job and then the name of the job.

2. Optionally, type -p and then the name of the project.

3. Type the following required elements:

v -n

v -d and the name of the device

v -D and the name of the database

v -t and the name of the table
4. Optionally, you can choose one or more of the following elements and repeat

them an arbitrary number of times:

v -S and the server name

v -T and the target server name

v The run mode. To set the run mode, follow the Setting the Run Mode

segment diagram to type -f, optionally type d, p, or a, and then optionally

type l or u.
5. Follow the diagram to the terminator.

Keywords and Punctuation

Keywords are words reserved for statements and all commands except

system-level commands. When a keyword appears in a syntax diagram, it is

shown in uppercase letters. When you use a keyword in a command, you can

write it in uppercase or lowercase letters, but you must spell the keyword exactly

as it appears in the syntax diagram.

You must also use any punctuation in your statements and commands exactly as

shown in the syntax diagrams.

xii IBM Informix Virtual-Table Interface Programmer’s Guide

Identifiers and Names

Variables serve as placeholders for identifiers and names in the syntax diagrams

and examples. You can replace a variable with an arbitrary name, identifier, or

literal, depending on the context. Variables are also used to represent complex

syntax elements that are expanded in additional syntax diagrams. When a variable

appears in a syntax diagram, an example, or text, it is shown in lowercase italic.

The following syntax diagram uses variables to illustrate the general form of a

simple SELECT statement.

�� SELECT column_name FROM table_name ��

When you write a SELECT statement of this form, you replace the variables

column_name and table_name with the name of a specific column and table.

How to Provide Documentation Feedback

You are encouraged to send your comments about IBM Informix user

documentation by using one of the following methods:

v Send e-mail to docinf@us.ibm.com.

v Go to the Information Center at http://publib.boulder.ibm.com/infocenter/
idshelp/v115/index.jsp and open the topic that you want to comment on. Click

Feedback at the bottom of the page, fill out the form, and submit your feedback.

Feedback from both methods is monitored by those who maintain the user

documentation of Dynamic Server. The feedback methods are reserved for

reporting errors and omissions in our documentation. For immediate help with a

technical problem, contact IBM Technical Support. For instructions, see the IBM

Informix Technical Support Web site at http://www.ibm.com/planetwide/.

We appreciate your suggestions.

Introduction xiii

mailto:docinf@us.ibm.com
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://www.ibm.com/planetwide/

xiv IBM Informix Virtual-Table Interface Programmer’s Guide

Chapter 1. Access Methods

In This Chapter . 1-1

Built-in Access Methods . 1-1

User-Defined Access Methods . 1-2

Access to Storage Spaces . 1-2

Seamless Use of SQL . 1-2

Access-Method Components . 1-3

Components That the IBM Informix Database Server Provides 1-3

Virtual-Table Interface . 1-3

DataBlade API . 1-6

SQL Extensions . 1-6

API Libraries . 1-7

Components That You Provide . 1-7

Purpose Functions . 1-7

User-Defined Routines and Header Files . 1-9

User Messages and Documentation . 1-9

Access Method Flow . 1-9

Locating Purpose Functions . 1-9

Invoking Purpose Functions . 1-11

Calling Functions From a Purpose Function . 1-12

Improving An Access Method . 1-12

In This Chapter

This chapter explains:

v The term access method

v Why you create user-defined access methods

v How you create user-defined access methods

Warning: This publication is specifically for customers and IBM Informix

DataBlade partners developing alternative access methods for IBM

Informix Dynamic Server. The interface described in this publication

continues to be enhanced and modified. Customers and partners who

use this interface should work with an support representative to ensure

that they continue to receive the latest information and that they are

prepared to change their access method.

Built-in Access Methods

An access method consists of software routines that open files, retrieve data into

memory, and write data to permanent storage such as a disk.

A primary access method provides a relational-table interface for direct read and

write access. A primary access method reads directly from and writes directly to

source data. It provides a means to combine data from multiple sources in a

common relational format that the database server, users, and application software

can use.

A secondary access method provides a means to index data for alternate or

accelerated access. An index consists of entries, each of which contains one or more

key values and a pointer to the row in a table that contains the corresponding

value or values. The secondary access method maintains the index to coincide with

inserts, deletes, and updates to the primary data.

© Copyright IBM Corp. 1996, 2008 1-1

Dynamic Server recognizes both built-in and user-defined access methods.

Although an index typically points to table rows, an index can point to values

within smart large objects or to records from external data sources.

The database server provides the following built-in access methods:

v The built-in primary access method scans, retrieves, and alters rows in IBM

Informix relational tables.

By default, tables that you create with the CREATE TABLE statement use the

built-in primary access method.

v The built-in secondary access method is a generic B-tree index.

By default, indexes that you create with the CREATE INDEX statement use this

built-in secondary access method. For more information about the built-in B-tree

index, refer to the IBM Informix Guide to SQL: Syntax.

Tip: The R-tree secondary access method is also provided. For more information,

see the IBM Informix R-Tree Index User’s Guide.

User-Defined Access Methods

This publication explains how to create primary access methods that provide SQL

access to non-relational and other data that does not conform to built-in access

methods. For example, a user-defined access method might retrieve data from an

external location or manipulate specific data within a smart large object.

An access method can make any data appear to the end user as rows from an

internal relational table. With the help of an access method, the end user can apply

SQL statements to retrieve nonstandard data. Because the access method creates

rows from the data that it accesses, external or smart-large-object data can join

with other data from an internal database.

This publication refers to the table that the access method presents to the end user

as a virtual table.

Access to Storage Spaces

The database server allows a user to define a method for accessing either of the

following types of storage spaces:

v A smart large object, which resides in an sbspace

The database server can log, back up, and recover smart large objects.

v An external table, which resides in an extspace

An extspace refers to a storage location that the IBM Informix database server

does not manage. For example, an extspace might refer to a path and filename

that the operating system manages or another database that a different database

manager controls.

The database server does not provide transaction, backup, or recovery services

for data that resides in an extspace.

For more information about how to choose the storage spaces that the user-defined

access method will support, refer to “Managing Storage Spaces” on page 3-9.

Seamless Use of SQL

With the aid of a user-defined primary access method, you can use a SELECT

statement to access any of the following data as though the data resided in an IBM

Informix relational table:

1-2 IBM Informix Virtual-Table Interface Programmer’s Guide

v Legacy data such as flat-file records

v Mixed binary and text data such as a word-processor document

v Multiple-vendor data across the enterprise

v Mobile device feeds

v Internet and intranet application streams

v Nonrelational data, such as hierarchically-structured Extensible Markup

Language (XML) documents

The end user can use SQL to access both IBM Informix data and virtual table data.

A virtual table requires a user-defined access method to make the data in the table

accessible to Dynamic Server. In Figure 1-1, a single application processes IBM

Informix data as well as virtual data in an external location and smart-large-object

storage.

Access-Method Components

When you add an access method to Dynamic Server, you add, or register, a

collection of C user-defined routines (UDRs) in the system catalog. These UDRs

take advantage of an IBM Informix application programming interface (API), the

Virtual-Table Interface (VTI).

Components That the IBM Informix Database Server Provides

The IBM Informix database server provides the following API support for the

development of user-defined access methods:

v Virtual-Table Interface

v DataBlade API

v Access-method specific SQL extensions

v Additional IBM Informix API libraries, as needed

Virtual-Table Interface

The Virtual-Table Interface (VTI) consists of the following items:

v Purpose functions

Dynamic Server

Virtual table

Client program

Informix table

Virtual table

(Stored in an sbspace)

(Stored in an extspace)

SQL engine
Built-in access-method

User-defined access-method

Figure 1-1. Using a Primary Access Method

Chapter 1. Access Methods 1-3

v Descriptors

v Accessor functions

Purpose Functions: The database server calls user-defined purpose functions to

pass SQL statement specifications and state information to the access method. The

following special traits distinguish purpose functions from other user-defined

routines (UDRs):

v A purpose function conforms to a predefined syntax.

The purpose-function syntax describes the parameters and valid return values,

but the access method developer chooses a unique function name.

v The database server calls a purpose function as the entry point into the access

method for a specific access-method task.

v Each SQL statement results in specific purpose-function calls.

v The sysams system catalog table contains the unique function name for each

purpose function.

v The database server substitutes calls to purpose functions for calls to built-in

access-method modules.

For example, when the database server encounters a CREATE TABLE statement, it

invokes an access-method function with the following required parameter and

return value types:

mi_integer am_create(MI_AM_TABLE_DESC *)

To determine which UDR provides the entry point for table creation in this

example, the database server looks for the function identifier in the am_create

column of the sysams system catalog. The database server then calls that UDR and

passes, by reference, an MI_AM_TABLE_DESC structure that contains

data-definition information.

The access-method developer provides the program code inside the purpose

function to create the new table structure. When the purpose function exits, the

access-method returns a prespecified value to indicate success or failure.

For information about the access-method developer’s contribution to purpose

functions, refer to “Components That You Provide” on page 1-7. For the syntax

and usage of each purpose function, refer to Chapter 4, “Purpose-Function

Reference,” on page 4-1.

Descriptors: Descriptors are predefined opaque data types that the database server

creates to exchange information with a Datablade module or an access method.

The VTI provides several descriptors in addition to those that the DataBlade API

provides. An access-method descriptor contains the specifications from an SQL

statement or oncheck request as well as relevant information from the system

catalog.

The database server passes descriptors by reference as arguments to purpose

functions. The following list highlights only a few access-method descriptors to

illustrate the type of information that the database server passes to an access

method. For detailed information about all the VTI descriptors, refer to

“Descriptors” on page 5-2.

1-4 IBM Informix Virtual-Table Interface Programmer’s Guide

Descriptor Name and

Structure Database Server Entries in the Descriptor

table descriptor

MI_AM_TABLE_DESC

The database server puts CREATE TABLE specifications in the table descriptor,

including the following items:

v Identification by table name, owner, table identifier, storage space, and current

fragment

v Structural details, such as the number of fragments in the whole table, column

names, and data types

v Optional user-supplied parameters

v Constraints such as read/write mode

scan descriptor

MI_AM_SCAN_DESC

The database server puts SELECT statement specifications in the scan descriptor,

including the following items:

v Columns to project

v Lock type and isolation level

v Pointers to the table descriptor and the qualification descriptor

qualification

descriptor

MI_AM_QUAL_DESC

In the qualification descriptor, the database server describes the functions and

Boolean operators that a WHERE clause specifies. A qualification function tests the

value in a column against a constant or value that an application supplies. The

following examples test the value in the price column against the constant value 80.

WHERE lessthan(price,80)

WHERE price < 80

The qualification descriptor for a function identifies the following items:

v Function name

v Arguments that the WHERE clause passes to the function

v Negation (NOT) operator, if any

A complex qualification combines the results of two previous qualifications with an

AND or OR operation, as the following example shows:

WHERE price < 80 AND cost > 60

A complex qualification descriptor contains each Boolean AND or OR operator

from the WHERE clause.

For examples, refer to “Interpreting the Qualification Descriptor” on page 3-15.

Descriptors reserve areas where the access method stores information. An access

method can also allocate user-data memory of a specified duration and store a

pointer to the user-data in a descriptor, as the following list shows.

 Descriptor Name and

Structure Access Method Entries in the Descriptor

table descriptor

MI_AM_TABLE_DESC

To share state information among multiple purpose functions, the access method

can allocate user-data memory with a PER_STMT_EXEC duration and store a

pointer to the user data in the table descriptor. PER_STMT_EXEC memory lasts for

the duration of an SQL statement, for as long as the accessed data source is open.

For example, an access method might execute DataBlade API functions that open

smart large objects or files and store the values, or handles, that the functions

return in PER_STMT_EXEC memory.

scan descriptor

MI_AM_SCAN_DESC

To maintain state information during a scan, an access method can allocate

user-data memory with a PER_COMMAND duration and store a pointer to the

user data in the scan descriptor. For example, as it scans a table, the access method

can maintain a pointer in PER_COMMAND memory to the address of the current

record.

Chapter 1. Access Methods 1-5

Descriptor Name and

Structure Access Method Entries in the Descriptor

qualification descriptor

MI_AM_QUAL_DESC

As it processes each qualification against a single row, the access method can set

the following items in the qualification descriptor:

v A host-variable value for a function with an OUT argument

v The MI_VALUE_TRUE or MI_VALUE_FALSE to indicate the result that each

function or Boolean operator returns

v An indicator that forces the database server to reoptimize between scans for a

join or subquery

To allocate memory for a specific duration, the access method specifies a duration

keyword. For example, the following command allocates PER_STMT_EXEC

memory:

my_data = (my_data_t *) mi_dalloc(sizeof(my_data_t),

 PER_STMT_EXEC)

Accessor Functions: Unlike purpose functions, the VTI supplies the full code for

each accessor function. Accessor functions obtain and set specific information in

descriptors. For example, the access method can perform the following actions:

v Call the mi_tab_name() accessor function to obtain the name of the table from

the table descriptor.

v Store state information, such as a file handle or LO handle, in shared memory

and then call the mi_tab_setuserdata() to place the pointer to the handle in the

table descriptor so that subsequent purpose functions can retrieve the handle.

For the syntax and usage of each accessor function, refer to “Accessor Functions”

on page 5-7.

DataBlade API

The DataBlade API includes functions and opaque data structures that enable an

application to implement C UDRs. The access method uses functions from the

DataBlade API that allocate shared memory, execute user-defined routines, handle

exceptions, construct rows, and report whether a transaction commits or rolls back.

The remainder of this publication contains information about the specific

DataBlade API functions that an access method calls. For more information about

the DataBlade API, refer to the IBM Informix DataBlade API Programmer’s Guide.

SQL Extensions

IBM Informix extension to ANSI SQL-92 entry-level standard SQL includes

statements and keywords that specifically refer to user-defined access methods.

Registering the Access Method in a Database: The CREATE PRIMARY

ACCESS_METHOD statement registers a user-defined access method. When you

register an access method, the database server puts information in the system

catalog that identifies the purpose functions and other properties of the access

method.

ALTER ACCESS_METHOD changes the registration information in the system

catalog, and DROP ACCESS_METHOD removes the access-method entries from

the system catalog.

1-6 IBM Informix Virtual-Table Interface Programmer’s Guide

For more information about the SQL statements that register, alter, or drop the

access method, refer to Chapter 6, “SQL Statements for Access Methods,” on page

6-1.

Specifying an Access Method for a Virtual Table: The user needs a way to

specify a virtual table in an SQL statement.

To create a virtual table with the CREATE TABLE statement, a user specifies the

USING keyword followed by the access-method name and, optionally, with

additional access-method-specific keywords.

With the IN clause, the user can place the virtual table in an extspace or sbspace.

For more information about the SQL extensions specific to virtual tables, refer to

“Supporting Data Definition Statements” on page 3-8 and “Supporting Data

Retrieval, Manipulation, and Return” on page 3-24.

API Libraries

Global Language Support

The IBM Informix database server provides Global Language Support with the

IBM Informix GLS functions, which access Informix locales and support multibyte

character sets. Use this API to allow the access method to interpret international

alphabets.

End of Global Language Support

 For information about the complete set of APIs for Dynamic Server, refer to the

IBM Informix Dynamic Server Getting Started Guide.

Components That You Provide

As the developer of a user-defined access method, you design, write, and test the

following components:

v Purpose functions

v Additional UDRs that the purpose functions call

v User messages and documentation

Purpose Functions

A purpose function is a UDR that can interpret the user-defined structure of a

virtual table. You implement purpose functions in C to build, connect, populate,

query, and update tables. The interface requires a specific purpose-function syntax

for each of several specific tasks.

Tip: To discuss the function call for a given task, this publication uses a column

name from the sysams system catalog table as the generic purpose-function

name. For example, this publication refers to the UDR that builds a new table

as am_create. The am_create column in sysams contains the registered UDR

name that the database server calls to perform the work of am_create.

Table 1-1 shows the task that each purpose function performs and the reasons that

the database server invokes that purpose function. In Table 1-1, the list groups the

purpose functions as follows:

v Data-definition

v File or smart-large-object access

Chapter 1. Access Methods 1-7

v Data changes

v Scans

v Structure and data-integrity verification

 Table 1-1. Purpose Functions

Generic Name Description

Invoking Statement or

Command

am_create Creates a new virtual table and

registers it in the system catalog

CREATE TABLE

ALTER FRAGMENT

am_drop Drops an existing virtual table and

removes it from the system catalog

DROP TABLE

am_open Opens the file or smart large object

that contains the virtual table

Typically, am_open allocates

memory to store handles and

pointers.

CREATE TABLE

DROP TABLE

DROP DATABASE

ALTER FRAGMENT

DELETE, UPDATE, INSERT

SELECT

am_close Closes the file or smart large object

that contains the virtual table and

releases any remaining memory that

the access method allocated

CREATE TABLE

ALTER FRAGMENT

DELETE, UPDATE, INSERT

SELECT

am_insert Inserts a new row into a virtual table ALTER FRAGMENT

INSERT

am_delete Deletes an existing row from a

virtual table

DELETE, ALTER FRAGMENT

am_update Modifies an existing row in a virtual

table

UPDATE

am_stats Builds statistics information about

the virtual table

UPDATE STATISTICS

am_scancost Calculates the cost of a scan for

qualified data in a virtual table

SELECT

INSERT, UPDATE, DELETE

WHERE...

am_beginscan Initializes pointers to a virtual table

and possibly parses the query

statement prior to a scan

SELECT

INSERT, UPDATE, DELETE

WHERE...

am_getnext Scans for the next row that satisfies a

query

SELECT

INSERT, UPDATE, DELETE

WHERE...,

ALTER FRAGMENT

am_rescan Scans for the next item from a

previous scan to complete a join or

subquery

SELECT

INSERT, UPDATE, DELETE

WHERE...

am_endscan Releases resources that

am_beginscan allocates

SELECT

INSERT, UPDATE, DELETE

WHERE...

am_getbyid Uses a specific physical address to

fetch a row

SELECT using an index

INSERT, UPDATE, DELETE

am_check Performs a check on the physical

integrity of a virtual table

oncheck utility

For more information about purpose functions, refer to the following chapters:

1-8 IBM Informix Virtual-Table Interface Programmer’s Guide

v Chapter 2, “Developing an Access Method,” on page 2-1, helps you decide

which purpose functions to provide and explains how to register them in a

database.

v Chapter 3, “Design Decisions,” on page 3-1, describes some of the functionality

that you program and provides examples of program code.

v Chapter 4, “Purpose-Function Reference,” on page 4-1, specifies syntax and

usage.

User-Defined Routines and Header Files

The database server calls a purpose function to initiate a specific task. Often, the

purpose function calls other modules in the access-method library. For example,

the scanning, insert, and update purpose functions might all call the same UDR to

check for valid data type.

A complete access method provides modules that convert data formats, detect and

recover from errors, commit and roll back transactions, and perform other tasks.

You provide the additional UDRs and header files that complete the access

method.

User Messages and Documentation

You provide messages and a user guide that help end users apply the access

method in SQL statements and interpret the results of the oncheck utility.

A user-defined access method alters some of the functionality that the database

server manuals describe. The documentation that you provide details storage-area

constraints, deviations from the IBM Informix implementation of SQL,

configuration options, data types, error messages, backup procedures, and

extended features that the IBM Informix documentation library does not describe.

For samples of user documentation that you must provide, refer to “Supplying

Error Messages and a User Guide” on page 3-27.

Access Method Flow

To apply a user-defined access method, the database server must locate the

access-method components, particularly the purpose functions.

Locating Purpose Functions

The SQL statements that register a purpose function and an access method create

records in the system catalog, which the database server consults to locate a

purpose function.

As the access-method developer, you write the purpose functions and register

them with the CREATE FUNCTION statement. When you register a purpose

function, the database server puts a description of it in the sysprocedures system

catalog table.

For example, assume you write a get_next_record() function that performs the

tasks of the am_getnext purpose function. Assume that as user informix, you

register the get_next_record() function. Depending on the operating system, you

Chapter 1. Access Methods 1-9

use one of the following statements to register the function:

UNIX Only

CREATE FUNCTION get_next_record(pointer,pointer,pointer)

RETURNS int

WITH (NOT VARIANT)

EXTERNAL NAME "$INFORMIXDIR/extend/am_lib.bld(get_next_record)"

LANGUAGE C

End of UNIX Only

Windows Only

CREATE FUNCTION get_next_record (pointer,pointer,pointer)

RETURNS int

WITH (NOT VARIANT)

EXTERNAL NAME "%INFORMIXDIR%\extend\am_lib.bld(get_next_record)"

LANGUAGE C

End of Windows Only

 The get_next_record() declaration has three generic pointer arguments to conform

with the prototype of the am_getnext purpose function. For a detailed explanation

of the arguments and return value, refer to the description of am_getnext on page

4-18.

As a result of the CREATE FUNCTION statement, the sysprocedures system

catalog table includes an entry with values that are similar to the example in

Table 1-2.

 Table 1-2. Partial sysprocedures Entry

Column Name Value

procname get_next_record

owner informix

procid 163

numargs 3

externalname $INFORMIXDIR/extend/am_lib.bld(get_next_record) (on UNIX)

langid 1 (Identifies C in the syslanguages system catalog table)

paramtypes pointer,pointer,pointer

variant f (Indicates false or nonvariant)

You then register the access method with a CREATE PRIMARY

ACCESS_METHOD statement to inform the database server what function from

sysprocedures to execute for each purpose.

The following example registers the super_access access method and identifies

get_next_record() as the am_getnext purpose function.

CREATE PRIMARY ACCESS_METHOD super_access

(AM_GETNEXT = get_next_record)

The super_access access method provides only one purpose function. If user

informix executes the CREATE PRIMARY ACCESS_METHOD, the sysams system

1-10 IBM Informix Virtual-Table Interface Programmer’s Guide

catalog table has an entry similar to Table 1-3.

 Table 1-3. Partial sysams Entry

Column Name Value

am_name super_access

am_owner informix

am_id 100 (Unique identifier that the database server assigns)

am_type P

am_sptype A

am_getnext 163 (Matches the procid value in the sysprocedures system catalog

table entry for get_next_record())

Invoking Purpose Functions

When an SQL statement or oncheck command specifies a virtual table, the

database server executes one or more access-method purpose functions. A single

SQL command might involve a combination of the following purposes:

v Open a connection, file, or smart large object

v Create a table

v Scan and select data

v Insert, delete, or update data

v Drop a table

v Close the connection, file, or smart large object

A single oncheck request requires at least the following actions:

v Open a connection, file, or smart large object

v Check the integrity of a table

v Close the connection, file, or smart large object

For information about which purpose functions the database server executes for

specific commands, refer to “Purpose-Function Flow” on page 4-1.

The example in Table 1-3 on page 1-11 specifies only the am_getnext purpose for

the super_access access method. A SELECT statement on a virtual-table that uses

super_access initiates the following database server actions:

1. Gets the function name for am_getnext that the super_access entry in sysams

specifies; in this case get_next_record()

2. Gets the external file name of the executable from the get_next_record() entry

in the sysprocedures catalog

The CREATE FUNCTION statement assigns the executable file as follows:

 Operating System External Executable-File Name

UNIX or Linux® $INFORMIXDIR/extend/am_lib.bld(get_next_record)

Windows %INFORMIXDIR%\extend\am_lib.bld(get_next_record)

3. Allocates memory for the descriptors that the database server passes by

reference through get_next_record() to the access method

4. Executes the am_getnext purpose function, get_next_record()

Chapter 1. Access Methods 1-11

Calling Functions From a Purpose Function

A query proceeds as follows for the super_access access method, which has only

an am_getnext purpose function:

1. The access method am_getnext purpose function, get_next_record(), uses

DataBlade API functions to the initiate callback functions for error handling.

2. The database server prepares a table descriptor to identify the table that the

query specifies, a scan descriptor to describe the query projection, and a

qualification descriptor to describe the query selection criteria.

3. The database server passes a pointer to the scan descriptor through the

get_next_record() to the access method. The scan descriptor, in turn, points to

the table descriptor and qualification descriptor in shared memory.

4. The access method get_next_record() function takes the following actions:

a. Calls VTI accessor functions to retrieve the table description and then calls

DataBlade API functions to open that table

b. Calls accessor functions to retrieve the query projection and selection

criteria from the scan and qualification descriptors

c. Calls the DataBlade API function (usually mi_dalloc()) to allocate memory

for a user-data structure to hold the current virtual-table data

d. Begins its scan
5. Each time that the access method retrieves a qualifying record, it calls a

DataBlade API function, mi_row_create(), to create an IBM Informix-formatted

row from the raw data.

6. The database server executes get_next_record() to continue scanning until

get_next_record() returns MI_NO_MORE_RESULTS to indicate to the database

server that the access method has returned every qualifying row.

7. The access method calls a DataBlade API function to close the table and release

any allocated memory.

8. The database server reports the results to the user or application that initiated

the query.

The steps in the preceding example illustrate the interaction between the database

server, the access method, and the DataBlade API.

Improving An Access Method

The super_access access method in the example has no purpose functions to open

or close files or smart large objects. The get_next_record() function must open and

close any data as well as keep an indicator that notifies get_next_record() to open

only at the start of the scan and close only after it completes the scan.

The incomplete super_access access method example does not create a virtual table

because the example includes neither an am_create purpose function nor add,

delete, or update rows.

To enable INSERT, DELETE, and UPDATE statements to execute, the access

method must provide registered UDRs for the am_open, am_close, am_insert,

am_delete, and am_update purpose functions.

1-12 IBM Informix Virtual-Table Interface Programmer’s Guide

Chapter 2. Developing an Access Method

In This Chapter . 2-1

Choosing Features . 2-1

Writing Purpose Functions . 2-2

Starting and Ending Processing . 2-3

Creating and Dropping Database Objects . 2-3

Optimizing Queries . 2-4

Providing Optimizer Information . 2-4

Splitting a Scan . 2-4

Inserting, Deleting, and Updating Data . 2-5

Registering Purpose Functions . 2-5

Supplying Routine Modifiers . 2-6

Registering the Access Method . 2-6

Testing the Access Method . 2-8

Creating and Specifying Storage Spaces . 2-8

Using Internal Storage . 2-8

Using External Storage . 2-9

Using Fragments . 2-10

Avoiding Storage-Space Errors . 2-10

Inserting, Querying, and Updating Data . 2-11

Checking Data Integrity . 2-11

Dropping an Access Method . 2-12

Cannot Rename Databases That Have Virtual Tables . 2-12

In This Chapter

This chapter describes the steps that you take to implement a user-defined access

method with the Virtual-Table Interface (VTI).

 To provide an access method:

1. Choose the optional features that the access method supports.

2. Program and compile the C header files and purpose functions as well as the

modules that the purpose functions call.

3. Execute the CREATE FUNCTION statement to register each purpose function

in the sysprocedures system catalog table.

4. Execute the CREATE PRIMARY ACCESS_METHOD statement to register the

user-defined access method in the sysams system catalog table.

5. Test the access method in an end-user environment.

The rest of this chapter describes the preceding steps in more detail.

Choosing Features

The VTI provides many optional features. Choose the features that you need to

fulfill the access-method specifications.

The following optional features support data definition:

v Data in extspaces, sbspaces, or both

v Fragmentation

v User-configured keywords

© Copyright IBM Corp. 1996, 2008 2-1

Support for the following optional features can contribute to access-method

performance:

v Clustered data

v Fetch by rowid for indexed tables

v Parallel-function execution

v More than one row returned per scan-function call

v Complex qualifications

For more information about any of these optional features, refer to Chapter 3,

“Design Decisions,” on page 3-1.

Writing Purpose Functions

The VTI specifies the parameters and return values for a limited set of UDRs,

called purpose functions, that correspond to one or more SQL statements. For most

SQL statements, the database server attempts to invoke a sequence of task-specific

purpose functions to process the statement. You choose the tasks and SQL

statements that the access method supports and then write the appropriate

purpose functions for those tasks. For more information about the specific purpose

functions that the database server executes for specific statements, refer to

“Purpose-Function Flow” on page 4-1.

Table 2-1 shows purpose-function prototypes for access-method tasks and one or

more corresponding SQL statements. Table 2-1 includes the purpose function

prototype that the database server calls to process the oncheck utility.

 Table 2-1. Statements and Their Purpose Functions

Invoking Statement or Command Purpose-Function Prototype

All If you do not supply am_open and am_close,

open and close the data source in am_getnext.

am_open(MI_AM_TABLE_DESC *)

am_close(MI_AM_TABLE_DESC *)

CREATE TABLE am_create(MI_AM_TABLE_DESC *)

DROP TABLE am_drop(MI_AM_TABLE_DESC *)

INSERT am_insert(MI_AM_TABLE_DESC *, MI_ROW *, mi_integer *)

DELETE am_delete(MI_AM_TABLE_DESC *, mi_integer *)

SELECT

INSERT, UPDATE, DELETE

WHERE...

am_scancost(MI_AM_TABLE_DESC *, MI_AM_QUAL_DESC *)

am_beginscan(MI_AM_SCAN_DESC *)

am_getnext(MI_AM_SCAN_DESC *, MI_ROW **,

mi_integer *)am_endscan(MI_AM_SCAN_DESC *)

SELECT with join am_rescan(MI_AM_SCAN_DESC *)

SELECT using an index am_getbyid(MI_AM_TABLE_DESC *, MI_ROW **, mi_integer)

UPDATE am_update(MI_AM_TABLE_DESC *, MI_ROW *, mi_integer)

UPDATE STATISTICS am_stats(MI_AM_TABLE_DESC *, MI_AM_TSTATS_DESC *)

oncheck utility am_check(MI_AM_TABLE_DESC *, mi_integer)

Important: Do not use the purpose label (am_open, am_create, am_getnext) as the

actual name of a user-defined purpose function. Avoid names such as

vti_open, vti_create, vti_*. Assign unique names, such as image_open,

docfile_open, and getnext_record. To prevent potential name-space

collision, follow the instructions for registering and using an object

prefix in the IBM Informix DataBlade Developers Kit User’s Guide.

2-2 IBM Informix Virtual-Table Interface Programmer’s Guide

When the database server calls a purpose function, it passes the appropriate

parameters for the current database server activity. Most parameters reference the

opaque descriptor data structures. The database server creates and passes

descriptors to describe the state of the table and the current SQL statement or

oncheck command. For an overview of descriptors, refer to “Descriptors” on page

1-4 and for detailed information, refer to “Descriptors” on page 5-2.

As you write the purpose functions, adhere to the syntax provided for each in

“Purpose-Function Syntax” on page 4-7.

At a minimum, you must supply one purpose function, the am_getnext purpose

function, to scan data. To determine which other purpose functions to provide,

decide if the access method should support the following tasks:

v Opening and initializing files or smart large objects, as well as closing them

again at the end of processing

v Creating new tables

v Inserting, updating, or deleting data

v Running the oncheck utility

v Optimizing queries

Warning: The database server issues an error if a user or application tries to

execute an SQL statement, and the access method does not include a

purpose function to support that statement.

The following sections name the functions that the database server calls for the

specific purposes in the previous list. The access-method library might contain a

separate function for each of several purpose-function prototypes or supply only

an am_getnext purpose function as the entry point for all the essential

access-method processing. For a detailed description of each purpose function,

refer to Chapter 4, “Purpose-Function Reference,” on page 4-1.

Starting and Ending Processing

Most SQL statements cause the database server to execute the function that you

register for am_open. To fulfill the am_open tasks, the function can open a

connection, store file- or smart-large-object handles, allocate user memory, and set

the number of entries that am_getnext returns.

At the end of processing, the database server calls the function that you register for

am_close. This close of access-method processing reverses the actions of the

am_open purpose function. It deallocates memory and writes smart-large-object

data to disk.

Creating and Dropping Database Objects

In response to a CREATE TABLE statement, the database server executes the

function that you register for am_create. If the database server does not find a

function name associated with am_create, it updates the appropriate system

catalog tables to reflect the attributes of the table that CREATE TABLE specifies.

If you supply a function for am_create, consider the necessity of also providing a

function to drop a table that the access method creates. The database server

executes the function that you register for am_drop in response to a DROP TABLE

or DROP DATABASE statement. If you do not provide a function to drop a virtual

table, the database server deletes any system catalog information that describes the

dropped object.

Chapter 2. Developing an Access Method 2-3

Optimizing Queries

To provide the optimum performance with an access method, perform the

following actions:

v Provide am_scancost and am_stats purpose functions.

v Split scan processing into am_beginscan, am_getnext, am_rescan, and

am_endscan purpose functions.

v Return more than one row from am_getnext or am_rescan, as “Buffering

Multiple Results” on page 3-23 describes.

v Register purpose functions as parallelizable, as “Executing in Parallel” on page

3-22 describes.

Providing Optimizer Information

In response to a SELECT statement, the query optimizer compares the cost of

alternative query paths. To determine the cost for the access method to scan the

virtual table that it manages, the optimizer relies on two sources of information:

v The cost of a scan that the access method performs on its virtual table

The am_scancost purpose function calculates and returns this cost to the

optimizer. If you do not provide an am_scancost purpose function, the optimizer

cannot analyze those query paths that involve a scan of data by the access

method.

v The distribution statistics that the am_stats purpose function sets

This purpose function takes the place of the type of distribution analysis that the

database server performs for an UPDATE STATISTICS statement.

Splitting a Scan

The way in which you split a scan influences the ability of the access method to

optimize performance during queries. You can choose to provide separate

functions for each of the following purpose-function prototypes:

v am_beginscan

Identify the columns to project and the function to execute for each WHERE

clause qualification. The database server calls the function for am_beginscan

only once per query.

v am_getnext

Scan through the table to find a qualifying entry and return it. The database

server calls this function as often as necessary to exhaust the qualified entries in

the table.

v am_rescan

Reuse the information from am_beginscan and possibly some data from

am_getnext to perform any subsequent scans for a join or subquery.

v am_endscan

Deallocate any memory that am_beginscan allocates. The database server calls

this function only once.

If you provide only an am_getnext purpose function, that one purpose function

(and any UDRs that it calls) analyzes the query, scans, rescans, and performs

end-of-query cleanup.

Tip: When the database server can scan an index to query a table, it does not need

to call any of the functions in the previous list. Instead, the database server

can pass the physical address (rowid) of each qualified row to an am_getbyid

2-4 IBM Informix Virtual-Table Interface Programmer’s Guide

purpose function. The function for am_getbyid calls the appropriate

DataBlade API or external routines to read or write disk data. It does not scan

the table to find rows.

If you supply a function for am_getbyid, you must also set the am_rowids

purpose flag when you register the access method.

Inserting, Deleting, and Updating Data

The following optional purpose functions support the data-manipulation

statements shown in the table.

Purpose Function Statement

am_insert INSERT

am_delete DELETE

am_update UPDATE

 If you do support insert, delete, and update transactions for data in extspaces, you

might need to write and call routines for transaction management from the

purpose functions that create transactions. The database server has no mechanism

to roll back external data if an error prevents the database server from committing

a complete set of transactions to the corresponding virtual table. For more

information, refer to “Determining Transaction Success or Failure” on page 3-26.

If you do not supply functions for am_insert, am_update, or am_delete, or you do

not set the appropriate purpose flags, the database server cannot process the

corresponding SQL statement and issues an error. For information about the

purpose flags, refer to “Avoiding Database Server Exceptions” on page 3-27.

Registering Purpose Functions

To register user-defined purpose functions with the database server, issue a

CREATE FUNCTION statement for each one.

By convention, you package access-method functions in a DataBlade® module.

Install the software in $INFORMIXDIR/extend/DataBlade_name on UNIX or

%INFORMIXDIR%\extend\DataBlade_name on Windows.

For example, assume you create an open_virtual function that has a table

descriptor as its only argument, as the following declaration shows:

mi_integer open_virtual(MI_AM_TAB_DESC *)

Because the database server always passes descriptors by reference as generic

pointers to the access method, you register the purpose functions with an

argument of type pointer for each descriptor. The following example registers the

open_virtual() function on a UNIX system. The path suggests that the function

belongs to a DataBlade module named amBlade.

CREATE FUNCTION open_virtual(pointer)

RETURNING integer

EXTERNAL NAME

 ’$INFORMIXDIR/extend/amBlade/my_virtual.bld(open_virtual)’

LANGUAGE C

Important: You must have the Resource or DBA privilege to use the CREATE

FUNCTION statement and the Usage privilege on C to use the

LANGUAGE C clause.

Chapter 2. Developing an Access Method 2-5

For the complete syntax of the CREATE FUNCTION statement, refer to the IBM

Informix Guide to SQL: Syntax. For information about privileges, refer to the

GRANT statement in the IBM Informix Guide to SQL: Syntax.

Important: The CREATE FUNCTION statement adds a function to a database but

not to an access method. To enable the database server to recognize a

registered function as a purpose function in an access method, you

register the access method, as described on page 2-6.

Supplying Routine Modifiers

When you register purpose functions, you can specify optional routine modifiers in

the CREATE FUNCTION statement using the WITH keyword. These routine

modifiers allow you to specify certain attributes of function behavior.

 PARALLELIZABLE Routine Modifier:

 The PARALLELIZABLE routine modifier indicates that you have designed the

function to execute safely in parallel. Parallel execution can dramatically speed the

throughput of data. The following example adds the PARALLELIZABLE modifier

to a CREATE FUNCTION statement.

CREATE FUNCTION open_virtual(pointer)

RETURNING integer

WITH (PARALLELIZABLE)

EXTERNAL NAME

 ’$INFORMIXDIR/extend/amBlade/my_virtual.bld(open_virtual)’

LANGUAGE C

Important: By itself, the routine modifier does not make your purpose function

parallelizable. The function must also be designed in such a way that it

can safely execute in parallel. For more information about parallel

execution of functions that belong to an access method, refer to

“Executing in Parallel” on page 3-22.

Registering the Access Method

The CREATE FUNCTION statement identifies a function as part of a database, but

not necessarily as part of an access method. To register the access method, issue

the CREATE PRIMARY ACCESS_METHOD statement, which sets values in the

sysams system catalog table, such as:

v The unique name of each purpose function

v A storage-type (extspaces or sbspaces) indicator

v Flags that activate optional features, such as writable data or clustering

The sample statement in Figure 2-1 assigns registered function names to some

purpose functions. It specifies that the access method should use sbspaces and it

enables clustering.

2-6 IBM Informix Virtual-Table Interface Programmer’s Guide

Figure 2-2 shows the resulting sysams system catalog entry for the new access

method.

The statement in Figure 2-1 does not name a purpose function for am_stats,

am_scancost, or am_check, as the 0 values in Figure 2-2 indicate. The database

server sets a 0 value for am_parallel because none of the CREATE FUNCTION

statements for the purpose functions included the PARALLELIZATION routine

modifier.

Warning: Even if you supply and register a purpose function with the CREATE

FUNCTION statement, the database server assumes that a purpose

function does not exist if the purpose-function name in the sysams

system catalog table is missing or misspelled.

For syntax and a list of available purpose settings, refer to Chapter 6, “SQL

Statements for Access Methods,” on page 6-1.

CREATE PRIMARY ACCESS_METHOD my_virtual

(AM_OPEN = open_virtual,

 AM_CLOSE = close_virtual,

 AM_CREATE = create_virtual,

 AM_DROP = drop_virtual,

 AM_BEGINSCAN = beginscan_virtual,

 AM_GETNEXT = getnext_virtual,

 AM_ENDSCAN = endscan_virtual,

 AM_INSERT = insert_virtual,

 AM_DELETE = delete_virtual,

 AM_UPDATE = update_virtual,

 AM_READWRITE,

 AM_ROWIDS,

 AM_SPTYPE = S,

 AM_CLUSTER)

Figure 2-1. Registering a Primary Access Method

am_name my_virtual

am_owner informix

am_id 101

am_type P

am_sptype S

am_cluster 1

am_rowids 1

am_readwrite 1

am_parallel 0

am_costfactor 1.000000000000

am_create 162

am_drop 163

am_open 164

am_close 165

am_insert 166

am_delete 167

am_update 168

am_stats 0

am_scancost 0

am_check 0

am_beginscan 169

am_endscan 170

am_rescan 0

am_getnext 171

Figure 2-2. Registering an Access Method

Chapter 2. Developing an Access Method 2-7

Testing the Access Method

To test the access method, take the same actions that users of the access method

take to create and access virtual data:

 To test the access method:

1. Create one or more storage spaces.

2. Use the access method to create tables in your storage spaces.

3. Run SQL statements to insert, query, and alter data.

4. Use the oncheck utility, which executes am_check, to check the integrity of the

data structures that the access method writes to disk.

Typically, a database server administrator who is responsible for the configuration

of the database server performs steps 1 and 4. A database administrator performs

step 2. Anyone with the appropriate SQL privileges to access or update the table

that uses the access method performs step 3.

Creating and Specifying Storage Spaces

A storage space is a physical area where the table data is stored. To test how the

access method builds new tables, you create a new physical storage space before

you create the table.

If the access method interfaces with legacy data, the storage spaces already exist,

usually in external storage.

This section describes how to establish storage spaces.

Using Internal Storage

An sbspace holds smart large objects for the database server. This space is

physically included in the database server configuration.

 To test the access method with an sbspace:

1. Create an sbspace with the onspaces utility.

2. Optionally, set the default sbspace for the database server.

3. Create a virtual table with the CREATE TABLE statement.

Creating an Sbspace: An sbspace must exist before you can create a virtual table

in it. Before you can test the ability of the access method to create a table that does

not yet exist, you must run the onspaces utility to create a smart-large-object

storage space. The onspaces command associates a logical name with a physical

area of a specified size in a database server partition.

The following onspaces command creates an sbspace named vspace1:

UNIX Only

onspaces -c -S vspace1 -g 2 -p /home/informix/chunk2

 -o 0 -s 20000

End of UNIX Only

Windows Only

onspaces -c -S vspace1 -g 2 -p \home\informix\chunk2

 -o 0 -s 20000

2-8 IBM Informix Virtual-Table Interface Programmer’s Guide

End of Windows Only

Specifying the Logical Sbspace Name: The following example creates a virtual

table in the previously created vspace1:

CREATE TABLE tab1(...)

 IN vspace1

 USING your_access_method

If you do not intend to specify an sbspace explicitly in the CREATE TABLE

statement, specify a default sbspace. To find out how to create a default dbspace,

see “Creating a Default Sbspace” on page 3-10.

The following example also creates a virtual table in the sbspace that

SBSPACENAME specifies:

CREATE TABLE tab1(...)

 USING your_access_method

Using External Storage

An extspace lies outside the disk storage that is configured for the database server.

To create a physical extspace, you might use an operating system command or use

a data management software system. An extspace can have a location other than a

path or filename because the database server does not interpret the location. Only

the access method uses the location information.

To store virtual data in an extspace, take one of the following actions:

v Create logical names for existing external storage with the onspaces utility and

then specify the reserved name or names when you create a virtual table with

the CREATE TABLE statement.

v Directly specify an existing physical external storage location as a quoted string

in the CREATE TABLE statement.

v Provide a default physical external storage location, such as a disk file, in the

access-method code.

Specifying a Logical Name: The onspaces command creates an entry in the

system catalog that associates a name with an existing extspace. To create a logical

extspace name, use the following command-line syntax:

onspaces -c -x exspace_name -l "location_specifier"

UNIX Only

 The following example assigns the logical name disk_file to a path and filename

for a physical disk:

onspaces -c -x disk_file -l "/home/database/datacache"

The following example specifies a tape device:

onspaces -c -x tape_dev -l "/dev/rmt/0"

End of UNIX Only

Windows Only

 The following example assigns the logical name disk_file to a physical disk path

and filename:

Chapter 2. Developing an Access Method 2-9

onspaces -c -x disk_file -l "\home\database\datacache"

End of Windows Only

 If you assign a name with onspaces, refer to it by its logical name in the SQL

statement that creates the table, as in the following example:

CREATE TABLE tab1(

 col1 INTEGER,

 col2 INTEGER)

 IN disk_file

 USING your_access_method

Specifying the Physical Location: As an alternative to the extspace name, a

CREATE TABLE statement can directly specify a quoted string that contains the

external location.

CREATE TABLE tab1(

 col1 INTEGER,

 col2 INTEGER)

 IN "location_specifier"

 USING your_access_method

Providing a Default Extspace: If you do not intend to specify an extspace

explicitly in the CREATE TABLE statement, the access method can create a default

extspace. For an example that creates an extspace directly in the access-method

code, refer to Figure 3-3 on page 3-10.

Using Fragments

To test the access method for fragmentation support, specify a different storage

space for each fragment.

The following example shows the creation of a table with two fragments. Each

fragment corresponds to a separate extspace. The database server alternates

between the fragments to store new data.

CREATE TABLE table_name(...)

 FRAGMENT BY ROUNDROBIN IN "location_specifier1",

"location_specifier2"

 USING access_method_name

To fragment a table in smart-large-object storage, create a separate sbspace for each

fragment before you create the table. Use the onspaces command, as the following

example shows:

onspaces -c -S fragspace1 -g 2 -p location_specifier1 -o 0 -s 20000

onspaces -c -S fragspace2 -g 2 -p location_specifier2 -o 0 -s 20000

CREATE TABLE catalog (status pages)

 USING catalog_am

 FRAGMENT BY EXPRESSION

 pages > 15 IN fragspace2,

 REMAINDER IN fragspace1

Avoiding Storage-Space Errors

An SQL error occurs if you include an IN clause with the CREATE TABLE

statement and one of the following conditions is true:

v The IN clause specifies an extspace or sbspace that does not exist.

v The IN clause specifies an sbspace but the am_sptype purpose value is set to X.

v The IN clause specifies an extspace but the am_sptype purpose value is set to S.

2-10 IBM Informix Virtual-Table Interface Programmer’s Guide

An SQL error occurs if the CREATE TABLE statement contains no IN clause and

one of the following conditions is true:

v The am_sptype purpose value is set to A, no default SBSPACENAME exists, and

the access method does not create an extspace.

v The am_sptype purpose value is set to S, and no default SBSPACENAME exists.

v The am_sptype purpose value is set to X, and the access method does not create

an extspace.

An SQL error occurs if one of the following conditions is true:

v The am_sptype purpose value is set to D.

v The IN clause with the CREATE TABLE statement specifies a dbspace, even if

the am_sptype purpose value is set to A.

Inserting, Querying, and Updating Data

If you want to test fragmented tables, use the SQL syntax in “Supporting

Fragmentation” on page 3-12. If you want to support user-configured options, use

the SQL syntax in “Providing Configuration Keywords” on page 3-12.

You can provide support in the access method for CREATE TABLE statement

keywords that affect transaction processing. For example, if a CREATE TABLE

statement specifies the WITH ROWIDS keyword, the access method must add a

column of visible row identifiers to the table and allow queries on row identifiers.

If a CREATE TABLE statement specifies the LOCK MODE clause, the access

method must impose and manage locks during data retrieval and update. To

determine the state of a table during transaction processing, the access method

calls VTI functions to determine the lock mode, data-entry constraints, referential

constraints, and other state information.

A user sets the isolation level with commands such as SET ISOLATION and SET

TRANSACTION or with configuration settings in the ONCONFIG file. It is

recommended that you document the isolation levels that the access method

supports, as “mi_scan_isolevel()” on page 5-33 describes. For information about

setting isolation levels, refer to the IBM Informix Guide to SQL: Syntax and the IBM

Informix Guide to SQL: Tutorial.

A database server administrator can use the ONCONFIG file to set defaults for

such things as isolation level, locking, logging, and sbspace name. For information

about defaults that you can set for the test-environment ONCONFIG file, refer to

the IBM Informix Administrator’s Guide.

For information about SQL statements and keywords that your access method can

support, refer to the IBM Informix Guide to SQL: Syntax. For information about the

VTI functions that determine which statements and keywords the user specifies,

refer to Chapter 5, “Descriptor Function Reference,” on page 5-1.

Checking Data Integrity

If you implement the oncheck command with the am_check access method, you

can execute the oncheck command with appropriate options on a command line.

The access method can issue messages that describe any problems in the test data.

For more information about how to implement the oncheck processing, refer to the

description of am_check . For more information about how to specify options on

the command line for oncheck, refer to the IBM Informix Administrator’s Reference.

Chapter 2. Developing an Access Method 2-11

Dropping an Access Method

To drop an access method, execute the DROP ACCESS_METHOD statement, as the

following example shows:

DROP ACCESS_METHOD my_virtual RESTRICT

Warning: Do not drop an access method if database objects exist that rely on the

specified access method for access. For example, if you create a virtual

table using my_virtual_am, you need my_virtual_am to execute the

DROP TABLE statement before you can execute DROP

ACCESS_METHOD.

For more information, refer to “DROP ACCESS_METHOD (+)” on page 6-6.

Cannot Rename Databases That Have Virtual Tables

You cannot rename a database if the database has any tables that were created

using the primary access method (also known as virtual table interface) or indexes

that were created using the secondary access method (also known as virtual index

interface).

2-12 IBM Informix Virtual-Table Interface Programmer’s Guide

Chapter 3. Design Decisions

In This Chapter . 3-1

Storing Data in Shared Memory . 3-2

Functions That Allocate and Free Memory . 3-2

Memory-Duration Options . 3-2

Persistent User Data . 3-3

Accessing Database and System Catalog Tables . 3-4

No Label-Based Access Control on Virtual Tables . 3-5

Executing a UDR Across Databases of the Same Database Server Instance 3-5

Handling the Unexpected . 3-6

Using Callback Functions . 3-6

Using Error Messages . 3-7

Supporting Data Definition Statements . 3-8

Interpreting the Table Descriptor . 3-8

Managing Storage Spaces . 3-9

Choosing DataBlade API Functions . 3-9

Setting the am_sptype Value . 3-9

Creating a Default Storage Space . 3-10

Ensuring Data Integrity . 3-11

Checking Storage-Space Type . 3-12

Supporting Fragmentation . 3-12

Providing Configuration Keywords . 3-12

Leveraging Indexes on Virtual Tables . 3-13

Processing Queries . 3-14

Interpreting the Scan Descriptor . 3-14

Interpreting the Qualification Descriptor . 3-15

Simple Functions . 3-15

Runtime Values as Arguments . 3-16

Negation . 3-17

Complex Boolean Expressions . 3-17

Qualifying Data . 3-18

Qualification by the Database Server . 3-18

Qualification by the Access Method . 3-18

Qualification by External Software . 3-21

Supporting Query Plan Evaluation . 3-21

Enhancing Performance . 3-22

Executing in Parallel . 3-22

Buffering Multiple Results . 3-23

Supporting Data Retrieval, Manipulation, and Return . 3-24

Checking Isolation Levels . 3-24

Converting to and from Row Format . 3-26

Determining Transaction Success or Failure . 3-26

Supplying Error Messages and a User Guide . 3-27

Avoiding Database Server Exceptions . 3-27

Statements That the Access Method Does Not Support 3-28

Keywords That the Access Method Does Not Support 3-28

Storage Spaces and Fragmentation . 3-28

SQL Restrictions . 3-29

Notifying the User About Access-Method Constraints . 3-29

Documenting Nonstandard Features . 3-29

In This Chapter

This chapter presents the choices that you make to optimize the performance and

flexibility of your access method.

© Copyright IBM Corp. 1996, 2008 3-1

The chapter begins with several topics that discuss how the access method uses

DataBlade API functions. It then presents topics that discuss alternative ways to

accomplish several SQL tasks.

The chapter ends with guidelines for helping end users and application developers

use the access method in “Supplying Error Messages and a User Guide” on page

3-27.

Storing Data in Shared Memory

The access method can allocate areas in shared memory to preserve information

between purpose-function calls. To allocate memory, you decide:

v Which function to call

v What duration to assign

Functions That Allocate and Free Memory

The DataBlade API provides two categories of memory-allocation functions:

v Public functions allocate memory that is local to one database server thread.

v Semipublic functions allocate named, global memory that multiple threads might

share.

For either unnamed or named memory, you can specify a duration that reserves

the memory for access method use beyond the life of a particular purpose

function.

For most purposes, UDRs, including access methods, can allocate shared memory

with the public DataBlade API memory-management functions, mi_alloc(),

mi_dalloc(), or mi_zalloc(). UDRs share access to memory that a public function

allocates with the pointer that the allocation function returns. For an example that

allocates memory and stores a pointer, refer to “Persistent User Data” on page 3-3.

The public mi_free() function frees the memory that a public function allocates.

The memory that you allocate with public functions is available only to UDRs that

execute during a single-thread table operation. Access-method UDRs might execute

across multiple threads to manipulate multiple fragments or span multiple queries.

UDRs that execute in multiple threads can share named memory.

The semipublic DataBlade API mi_named_alloc() or mi_named_zalloc()

memory-management functions allocate named memory, the mi_named_get()

function retrieves named memory, and the mi_named_free() function releases the

named memory. Related semipublic functions provide for locking on named

memory.

Warning: Do not call malloc() because the memory that malloc() allocates

disappears after a virtual processor (VP) switch. The access method

might not properly deallocate memory that malloc() provides, especially

during exception handling.

Memory-Duration Options

When a UDR calls a DataBlade API memory-allocation function, the memory exists

until the duration assigned to that memory expires. The database server stores

memory in pools by duration. By default, memory-allocation functions assign a

PER_ROUTINE duration to memory. The database server automatically frees

PER_ROUTINE memory after the UDR that allocates the memory completes.

3-2 IBM Informix Virtual-Table Interface Programmer’s Guide

An SQL statement typically invokes many UDRs to perform a table task. Memory

that stores state information must persist across all the UDR calls that the

statement requires. The default PER_ROUTINE duration does not allow memory to

persist for an entire SQL statement.

Use the mi_dalloc() function to specify a memory duration for a particular new

memory allocation. If you do not specify a duration, the default duration applies.

You can change the default from PER_ROUTINE to a different duration with the

mi_switch_mem_duration() function. The following list describes memory

durations that an access method typically specifies:

v Use PER_COMMAND for the memory that you allocate to scan-descriptor user

data, which must persist from the am_beginscan thorough the am_endscan

functions.

v Use PER_STMT_EXEC or PER_STMT_PREP for the memory that you allocate for

table-descriptor user data, which must persist from the am_open through the

am_close functions.

You must store a pointer to the PER_COMMAND, PER_STMT_EXEC, or

PER_STMT_PREP memory so that multiple UDRs that execute during the

command or statement can retrieve and reference the pointer to access the

memory.

For detailed information about the following, refer to the IBM Informix DataBlade

API Programmer’s Guide:

v Functions that allocate public memory

v Duration keywords

For more information about semipublic functions and named memory, see the

indexing information on the IBM Informix Developer Zone at http://
www.ibm.com/software/data/developer/informix. Look for the following titles

from the list of tech notes:

v Memory Allocation for C UDRs

v Semi-Public Functions for DataBlade Module Development

Persistent User Data

The term user data refers to information that a purpose function saves in shared

memory. The access method defines a user-data type and then allocates an area of

memory with the appropriate size and duration. In the following example, the user

data stores the information that the access method needs for a PER_STMT_EXEC

duration.

Chapter 3. Design Decisions 3-3

Table 3-1 shows accessor functions that the VTI provides to store and retrieve user

data.

 Table 3-1. Storing and Retrieving User-Data Pointers

Descriptor User-Data Duration

Stores Pointer to

User Data

Retrieves Pointer to

User Data

Table descriptor PER_STMT_EXEC mi_tab_setuserdata() mi_tab_userdata()

Scan descriptor PER COMMAND mi_scan_setuserdata() mi_scan_userdata()

The following example shows how to retrieve the pointer from the table descriptor

that the mi_tab_setuserdata() function set in Figure 3-1:

my_data=(my_data_t *)mi_tab_userdata(tableDesc);

For more information about mi_tab_setuserdata(), mi_tab_userdata(),

mi_scan_setuserdata(), and mi_scan_userdata(), refer to Chapter 5, “Descriptor

Function Reference,” on page 5-1.

Accessing Database and System Catalog Tables

Although the VTI does not provide its own function for querying tables, you can

execute an SQL statement with DataBlade API functions mi_exec(), mi_prepare(),

or mi_execute_prepared_statement(). SQL provides data directly from the system

catalog tables and enables the access method to create tables to hold user data on

the database server.

The following example queries the system catalog table for previous statistics:

MI_AM_TAB_DESC * tableDesc; /* Pointer to table descriptor */

typedef enum my_col_types

{

 MY_INT = 1,

 MY_CHAR

} my_col_type;

typedef struct my_row

{

 char data[500];

 struct my_row *next;

} my_row_t;

typedef struct statement_data

{

 MI_DATUM *retrow; /*Points to data in memory*/

 my_col_type col_type[10]; /*Data types in the projected row*/

 mi_boolean is_null[10]; /*Array of true and false indicators*/

 my_row_t *current row;

 MI_CONNECTION *conn;

 MI_CALLBACK_HANDLE *error_cback;

} statement_data_t;

/*Allocate memory*/

my_data = (statement_data_t *)

 mi_dalloc(sizeof(statement_data_t),PER_STMT_EXEC);

mi_tab_setuserdata(tableDesc, (void *) my_data); /*Store pointer*/

Figure 3-1. Allocating User-Data Memory

3-4 IBM Informix Virtual-Table Interface Programmer’s Guide

MI_CONNECTION *conn;

conn = mi_open(NULL, NULL, NULL);

/* Query system tables */

mi_exec(conn, "select tabname, nrows from systables ", MI_QUERY_NORMAL);

For more information on querying database tables, consult the IBM Informix

DataBlade API Programmer’s Guide.

Warning: A parallelizable UDR must not call mi_exec(), mi_prepare(),

mi_execute_prepared_statement(), or a UDR that calls these functions. A

database server exception results if a parallelizable UDR calls any UDR

that prepares or executes SQL. For more information about parallelizable

access-method functions, refer to “Executing in Parallel” on page 3-22.

No Label-Based Access Control on Virtual Tables

You cannot have label-based access control on virtual tables or tables with virtual

indexes.

Executing a UDR Across Databases of the Same Database Server

Instance

UDRs used as VTI access methods can have built-in UDT parameters and returned

data types across multiple databases of the local database server. You can implicitly

and explicitly execute a UDR (written in SPL, C, or Java™) across databases with

built-in data types and user-defined distinct types whose base types are built-in

data type parameters and return types. These built-in data types include

BOOLEAN, LVARCHAR, BLOB, and CLOB data types. User-defined opaque data

types and distinct types whose base types are opaque data types must be explicitly

cast to built-in data types if you want multiple databases on the same server

instance to access them. All user-defined data types and casts must be defined in

all of the participating databases of the same database server instance.

You can execute SQL statements, such as SELECT, INSERT, DELETE, UPDATE, and

EXECUTE (implicit and explicit) involving the following data types across

databases on the same server instance:

v Built-in data types

v User-defined distinct types whose base types are built-in data types

v Explicitly cast opaque data types

v Explicitly cast distinct types with opaque data-type columns

For example, if you use the SELECT statement in a query involving a user-defined

opaque data type, be sure that the user-defined opaque data type is defined in all

databases that you are using in the query. Then use the SELECT statement as

follows:

SELECT coludt::lvarchar FROM db2:tab2 WHERE colint > 100;

SELECT loccolint, extcoludt::lvarchar FROM loctab, db2:exttab

 WHERE loctab.loccolint = exttab.extcolint;

SELECT coldistint, coldistudt::lvarchar FROM db2:tab2

 WHERE coldistint > 100;

SELECT loccoldistint, extcoludt::lvarchar FROM loctab, db2:exttab

 WHERE loctab.loccoldistint = exttab.extcoldistint;

Chapter 3. Design Decisions 3-5

For more information about the SQL to use in statements for more than one

database in the same database server instance, see the IBM Informix Guide to SQL:

Syntax.

Explicit execution occurs when the EXECUTE FUNCTION or EXECUTE

PROCEDURE statement executes the UDR. Implicit execution occurs when the

UDR appears in the projection list or predicate of a query, when the UDR is called

to convert a function argument from one data type to another, or when an operator

function for a user-defined data type is executed. The execution context of the

UDR is the database in which the UDR is defined, not the local database.

Handling the Unexpected

The access method can respond to events that the database server initiates, as well

as to errors in requests for access-method features that the database server cannot

detect.

Using Callback Functions

Database server events include the following types.

Event Type Description

MI_Exception Exceptions with the following severity:

v Warnings

v Runtime errors

MI_EVENT_END_XACT End-of-transaction state transition

MI_EVENT_END_STMT End-of-statement state transition

MI_EVENT_END_SESSION End-of-session state transition

 To have the access method handle an error or a transaction rollback, use the

DataBlade API mechanism of callback functions. A callback function automatically

executes when the database server indicates that the event of a particular type has

occurred.

To register an access-method callback function, pass the function name and the

type of event that invokes the function to mi_register_callback(), as the example in

Figure 3-2 shows.

typedef struct statement_data

{

...

...

 MI_CALLBACK_HANDLE *error_cback;

} statement_data_t;

/*Allocate memory*/

my_data = (statement_data_t *)

 mi_dalloc(sizeof(statement_data_t),PER_STMT_EXEC);

my_data.error_cback=

 mi_register_callback(connection,

 MI_Exception, error_callback, NULL, NULL)

Figure 3-2. Registering a Callback Function

3-6 IBM Informix Virtual-Table Interface Programmer’s Guide

The example in Figure 3-2 accomplishes the following actions:

v Registers the error_callback() function as a callback function to handle the

MI_Exception event

v Stores the callback handle that mi_register_callback() returns in the error_cback

field of the my_data memory

For more information about detecting whether a transaction commits or rolls back,

refer to “Checking Isolation Levels” on page 3-24.

By default, the database server aborts the execution of the access-method UDR if

any of the following actions by the access method fails:

v Allocating memory

v Using the FastPath feature to execute a UDR

v Obtaining a handle for a file or smart large object

v Obtaining a connection

v Reading or writing to storage media, such as a disk

If you want to avoid an unexpected exit from the access method, register a callback

function for any exception that you can anticipate. The callback function can roll

back transactions and free memory before it returns control to the database server,

or it can tell the database server to resume access-method processing.

For a complete discussion of callback processing and the DataBlade API

mi_register_callback() function, refer to the IBM Informix DataBlade API

Programmer’s Guide. For code samples, choose the DataBlade Corner from the list

box on the IBM Informix Developer Zone at http://www.ibm.com/software/data/
developer/informix.

Using Error Messages

The database server cannot validate specifications for features that the access

method adds. If the access method includes a feature that the database server

cannot detect, the access method must explicitly handle syntax errors in requests

for that feature. To handle errors that the database server cannot detect, call the

DataBlade API mi_db_error_raise() function.

The following example shows how an access method might avoid an unexpected

exit due to a user error that the database server cannot detect. The CREATE

TABLE statement in this example specifies configuration parameters.

CREATE TABLE legacy

...

USING text_file_access(delimiter = ’!’)

The access method should notify a user if a statement specifies an invalid

parameter. To determine the parameters that a CREATE TABLE statement specifies,

the access method calls the accessor function mi_tab_amparam(). To notify a user

of an invalid parameter, the access method raises an exception, as the following

example shows:

if (mi_tab_amparam(tableDesc) != ’delimiter’)

 mi_db_error_raise(connection, MI_EXCEPTION,

 "Invalid configuration keywordin the USING clause.");

Chapter 3. Design Decisions 3-7

The MI_EXCEPTION alerts the database server that an exception has occurred. If

the function that called mi_db_error_raise() has registered a callback for

MI_Exception (upper and lowercase), that callback will be executed to handle the

error.

For more information on callbacks, refer to the IBM Informix DataBlade API

Programmer’s Guide.

Important: The connection handle argument to mi_db_error_raise() must be valid,

not NULL, and it must have the same value as the one used in

mi_register_callback().

The database server cannot always determine that the access method does not

support a feature that a user specifies. The access method can test for the presence

of specifications and either provide the feature or raise an exception for those

features that it cannot provide.

For example, the database server does not know if the access method can handle

lock types, isolation levels, referential constraints, or fragmentation that an SQL

statement specifies. To retrieve the settings for mode, isolation level, and lock, the

access method calls the following accessor functions.

Function Purpose

mi_tab_mode() The input/output mode (read-only, read and write,

write only, and log transactions)

mi_tab_isolevel() The isolation level

mi_scan_locktype() The lock type for the scan

mi_scan_isolevel() The isolation level in force

 For more information, refer to the following sections:

v Checking Isolation Levels

v Notifying the User About Access-Method Constraints

v Accessor Functions

Supporting Data Definition Statements

The data definition statement CREATE TABLE names the table and specifies the

owner, column names and data types, fragmentation method, storage space, and

other structural characteristics. Other data definition statements alter the structure

from the original specifications in the CREATE TABLE statement. This section

discusses design considerations for CREATE TABLE, ALTER TABLE, and ALTER

FRAGMENT.

Interpreting the Table Descriptor

A table descriptor contains data definition specifications, such as owner, column

names and data types, and storage space that the CREATE TABLE, ALTER TABLE,

and ALTER FRAGMENT statements specify for the virtual table. A table descriptor

describes a single table fragment, so that the storage space and fragment identifier

(part number) change in each of multiple table descriptors that the database server

constructs for a fragmented table.

For a complete description, refer to Chapter 5, “Descriptor Function Reference,” on

page 5-1.

3-8 IBM Informix Virtual-Table Interface Programmer’s Guide

Managing Storage Spaces

A user-defined access method stores data in sbspaces, extspaces, or both. To access

data in smart large objects, the access method must support sbspaces. To access

legacy data in disk files or within another database management system, the access

method supports extspaces.

Important: Your access method cannot directly create, open, or manipulate a table

in a dbspace.

The following sections describe how the access method supports sbspaces,

extspaces, or both.

Choosing DataBlade API Functions

The type of storage space determines whether you use mi_file_*() functions or

mi_lo_*() functions to open, close, read from, and write to data.

To have the access method store data in an sbspace, use the smart-large-object

interface of the DataBlade API. The names of most functions of the

smart-large-object interface begin with the mi_lo_ prefix. For example, you open a

smart large object in an sbspace with mi_lo_open() or one of the smart-large-object

creation functions: mi_lo_copy(), mi_lo_create(), mi_lo_expand(), or

mi_lo_from_file().

If the access method stores data on devices that the operating system manages, use

the DataBlade API file-access functions. Most file-access functions begin with the

mi_file_ prefix. For example, the am_open purpose function might open a disk file

with mi_file_open().

Important: Do not use operating-system commands to access data in an extspace.

For more information about smart-large-object functions and file-access functions,

refer to the IBM Informix DataBlade API Programmer’s Guide.

If another database manager reads and writes the data, pass input/output requests

to the external database manager. For a demonstration of a primary access method

that passes data requests to external processes, choose the DataBlade Corner from

the list box on the IBM Informix Developer Zone at http://www.ibm.com/
software/data/developer/informix.

Setting the am_sptype Value

Set the am_sptype value to S if the access method reads and writes to sbspaces

but not to extspaces. Set the am_sptype value to X if the access method reads and

writes only to extspaces but not to sbspaces.

To set the am_sptype purpose value, use the CREATE PRIMARY

ACCESS_METHOD or ALTER ACCESS_METHOD statement, as Chapter 6, “SQL

Statements for Access Methods,” on page 6-1 describes.

If you do not set the am_sptype storage option, the default value A means that a

user can create a virtual table in either extspaces or sbspaces. The access method

must be able to read and write to both types of storage spaces.

Warning: In the access-method user guide, notify users whether the access method

supports sbspaces, extspaces, or both, and describe default behavior. The

database server issues an SQL error if the user or application attempts to

use a storage space that the access method does not support.

Chapter 3. Design Decisions 3-9

Creating a Default Storage Space

A default storage space of the appropriate type prevents an exception from

occurring if the user does not specify a storage-space name in the CREATE TABLE

statement.

Creating a Default Sbspace: If the access method supports sbspaces, the user,

typically the database server administrator, can create a default sbspace.

 To create a default sbspace:

1. Create a named sbspace with the onspaces utility.

When you create the default sbspace, you can turn on transaction logging.

2. Assign that name as the default sbspace in SBSPACENAME parameter of the

ONCONFIG file.

3. Initialize the database server with the oninit utility.

For example, you create a default sbspace named vspace with the following steps.

1. From the command line, create the sbspace with logging turned on:

onspaces -c -S vspace -p path -o offset -s size -Df "LOGGING=ON"

2. Edit the ONCONFIG file to insert the following line:

SBSPACENAME vspace # Default sbspace name

3. Take the database server offline and then bring it online again to initialize

memory with the updated configuration.

onmode -ky

oninit

For more information about the configuration file parameters and the onspaces,

onmode, and oninit utilities, refer to the IBM Informix Administrator’s Reference.

Creating a Default Extspace: The ONCONFIG file does not provide a parameter

that specifies default extspace name. The access method might do one of the

following if the CREATE TABLE statement does not specify an extspace:

v Raise an error.

v Specify an external storage space.

The example in Figure 3-3 specifies a directory path as the default extspace on a

UNIX system.

mi_integer external_create(td)

MI_AM_TABLE_DESC *td;

{

...

/* Did the CREATE statement specify a named extspace? **/

dirname = mi_tab_spaceloc(td);

if (!dirname || !*dirname)

{

 /* No. Put the table in /tmp */

 dirname = (mi_string *)mi_alloc(5);

 strcpy(dirname, "/tmp");

}

sprintf(name,"%s/%s-%d", dirname, mi_tab_name(td),

 mi_tab_partnum(td));

out = mi_file_open(name,O_WRONLY|O_TRUNC|O_CREAT,0600);

Figure 3-3. Creating a Default Extspace

3-10 IBM Informix Virtual-Table Interface Programmer’s Guide

Ensuring Data Integrity

The access method might provide any of the following features to ensure that

source data matches virtual data:

v Locks

v Logging

v Backup and recovery

v Transaction management

Activating Automatic Controls in Sbspaces: The following advantages apply to

data that resides in sbspaces:

v A database server administrator can back up and restore sbspaces with standard

IBM Informix utilities.

v The database server automatically provides for locking.

v If a transaction fails, the database server automatically rolls back sbspace

metadata activity.

If logging is turned on for the smart large object, the database server does the

following:

v Logs transaction activity

v Rolls back uncommitted activity if a transaction fails

You can either advise the end user to set logging on with the onspaces utility or

call the appropriate DataBlade API functions to set logging.

Important: To provide transaction integrity, it is recommended that the access

method require transaction logging in sbspaces. It is also recommended

that the access method raise an error if an end user attempts to create a

virtual table in an unlogged sbspace.

In the access-method user guide, provide the appropriate information to describe

transaction logging using the access method. If the access method does not turn on

transaction logging, the user guide should explain how to turn on logging for a

virtual table in an sbspace.

To enable logging, the access method sets the MI_LO_ATTR_LOG create-time

constant with the DataBlade API mi_lo_create() or mi_lo_alter() function. The

following example attempts to set the constant that turns on logging and verifies

that the setting succeeded:

mi_integer status;.

status = mi_lo_specset_flags(lo_spec_p, MI_LO_ATTR_LOG);

if(status == MI_ERROR)

{

 mi_db_error_raise(NULL,MI_EXCEPTION,

 "Unable to activate transaction logging.");

 return MI_ERROR;

}

For more information about metadata logging and transaction logging, refer to the

IBM Informix Administrator’s Guide.

Adding Controls for Extspaces: Because the database server cannot safeguard

operations on extspace data, include UDRs for any of the following features that

you want the access method to provide:

Chapter 3. Design Decisions 3-11

v Locks

v Logging and recovery

v Transaction commit and rollback management (described in “Checking Isolation

Levels” on page 3-24)

Checking Storage-Space Type

The database server issues an error if the CREATE TABLE statement specifies

inappropriate storage type. To determine the storage space (if any) that the

CREATE TABLE statement specifies, the access method calls the

mi_tab_spacetype() function. For details, refer to the description of

mi_tab_spacetype() on page 5-62.

For more information about errors that occur from inappropriate storage-space

type, refer to “Avoiding Storage-Space Errors” on page 2-10. For more information

about documenting potential errors and intercepting error events, refer to

“Supplying Error Messages and a User Guide” on page 3-27.

Supporting Fragmentation

A fragmented table has multiple physical locations, called fragments. The user

specifies the criteria by which the database server distributes information into the

available fragments. For examples of how a user creates fragments, refer to “Using

Fragments” on page 2-10. For a detailed discussion about the benefits of and

approaches to fragmentation, refer to the IBM Informix Database Design and

Implementation Guide.

When the table is fragmented, each call to the access method involves a single

fragment rather than the whole table. An SQL statement such as CREATE TABLE

can result in a set of purpose-function calls from am_open through am_close for

each fragment.

The database server can process fragments in parallel. For each fragment identifier,

the database server starts a new access-method thread. To obtain the fragment

identifier for the table, call the mi_tab_partnum() function.

An end user might change the way in which values are distributed among

fragments after data already exists in the table. Because some rows might move to

a different fragment, an ALTER FRAGMENT statement requires a scan, delete, and

insert for each moved row. For information about how the database server uses the

access method to redefine fragments, refer to “ALTER FRAGMENT Statement

Interface” on page 4-2.

For information about the FRAGMENT BY clause, refer to the IBM Informix Guide

to SQL: Syntax.

Providing Configuration Keywords

You can provide configuration keywords that the access method interrogates to

tailor its behavior. The user specifies one or more parameter choices in the USING

clause of the CREATE TABLE statement. The access method calls the

mi_tab_amparam() accessor function to retrieve the configuration keywords and

values.

In the following example, the access method checks the keyword value to

determine if the user wants mode set to the number of rows to store in a shared

memory buffer. The CREATE TABLE statement specifies the configuration keyword

and value between parentheses.

3-12 IBM Informix Virtual-Table Interface Programmer’s Guide

CREATE TABLE ...

IN sbspace

USING sbspace_access_method ("setbuffer=10")

In the preceding statement, the mi_tab_amparam() function returns setbuffer=10.

Figure 3-4 shows how the access method determines the value that the user

specifies and applies it to create the sbspace.

Important: If the access method accepts parameters, describe them in the user

guide for the access method. For example, a description of the action in

Figure 3-4 would explain how to set a value in the parameter string

"setbuffer=" and describe how a buffer might improve performance.

A user can specify multiple configuration parameters separated by commas, as the

following syntax shows:

CREATE TABLE ...

...

USING access_method_name (keyword=’string’, keyword=’string’ ...)

Leveraging Indexes on Virtual Tables

The database server can quickly scan a B-tree index for qualifying entries. For each

qualifying entry, the database server takes one of the following actions:

v Invokes the access method to fetch a specific row from the base table

v Returns the index keys

If the index keys contain all the columns that the query projects, the database

server does not need to invoke the access method.

If the query requires data from the base table, the database server can pass row

identifiers to the access method. With row identifiers, the access method retrieves

data by address, which eliminates the need to scan the entire base table.

To enable an index on a virtual table, provide an am_getbyid purpose function to

fetch data directly from a physical address and set the am_rowids purpose flag

with the CREATE ACCESS_METHOD or ALTER ACCESS_METHOD statement.

If the database server can scan an index to locate rows in a virtual table, it executes

am_getbyid instead of the am_getnext purpose function. The am_getbyid purpose

mi_integer my_beginscan (sd)

 MI_AM_SCAN_DESC *sd;

{

 MI_AM_TABLE_DESC *td;

 mi_integer nrows;

 ...

 td=mi_scan_table(sd); /*Get table descriptor. */

 /*Check for parameter.

 ** Do what the user specifies. */

 if (mi_tab_amparam(td) != NULL)

 {

 /* Extract number of rows from string.

 ** Set nrows to that number. (not shown.)

 */

 mi_tab_setniorows(nrows);

 }

 ...

}

Figure 3-4. Checking a Configuration Parameter Value

Chapter 3. Design Decisions 3-13

function calls DataBlade API or external routines to access the row by its row

identifier. Thus, if you provide am_getbyid and the appropriate index exists, the

access method does not scan the table to find rows.

For more information about am_getbyid, refer to “am_getbyid” on page 4-17. For

more information about am_rowids, refer to the access method statements in IBM

Informix Guide to SQL: Syntax.

Processing Queries

This section describes various options for processing a SELECT statement, or query,

that involves a virtual table. An SQL query requests that the database server fetch

and assemble stored data into rows. A SELECT statement often includes a WHERE

clause that specifies the values that a row must have to qualify for selection.

Depending on the specifications in the query, the returned data might contain the

entire stored table or particular columns and rows. The Projection clause lists the

columns that make up the projection. An efficient access method returns values for

projected columns only. The WHERE clause specifies the values that qualify a row

for selection. An efficient access method formats and returns only those rows that

contain the selected values.

The following query projects the values in the particular columns name and

department and selects the particular rows that contain the value Manager in the

title column. The query does not include title in the projection.

SELECT name, department FROM employee

 WHERE title = ’Manager’

Query processing involves the following actions:

v Assessing the cost of the requested scan for the optimizer

v Interpreting the scan and qualification descriptors

v Scanning the table to select rows

v Returning rows that satisfy the query

Interpreting the Scan Descriptor

The database server constructs a scan descriptor to pass the contents of the

Projection clause to the access method. The scan descriptor specifies which

columns the query projects and provides information about the locks and isolation

levels that apply to the data that the query specifies.

For efficiency, the access method can format only the data that the Projection clause

projects and places NULL values in the remaining columns. To determine which

columns to project, call the mi_scan_projs() function.

As one of its primary functions, the scan descriptor stores a pointer to another

opaque structure, the qualification descriptor that contains WHERE-clause

information. To access the qualification descriptor, use the pointer that the

mi_scan_quals() function returns. A NULL-valued pointer indicates that the

database server did not construct a qualification descriptor.

Important: If mi_scan_quals() returns a NULL-valued pointer, the access method

must format and return all possible rows.

3-14 IBM Informix Virtual-Table Interface Programmer’s Guide

For more information about the information that scan descriptor provides, refer to

Chapter 5, “Descriptor Function Reference,” on page 5-1 and the scan-descriptor

accessor functions that begin with “mi_scan_forupdate()” on page 5-32.

Interpreting the Qualification Descriptor

A qualification descriptor contains the individual qualifications that the WHERE

clause specifies. A qualification, or filter, tests a value from a row against a constant

value. Each branch or level of a WHERE clause specifies one of the following

operations:

v A function

v A Boolean expression

The WHERE clause might include negation indicators, each of which reverses the

result of a particular function.

The access method executes VTI accessor functions to extract individual

qualifications from a qualification descriptor. The following table lists frequently

used accessor functions.

 Accessor Function Purpose

mi_qual_nquals() Determines the number of simple functions and Boolean

operators in a complex qualification

mi_qual_qual() Points to one qualification in a complex qualification descriptor

or to the only qualification

mi_qual_issimple()
mi_qual_boolop()

Determines which of the following qualifications the descriptor

describes:

v A simple function

v A complex AND or OR expression

mi_qual_funcid() or

mi_qual_funcname()

Identifies a simple function by function identifier or function

name

mi_qual_column() Identifies the column argument of a function

mi_qual_constant() Extracts the value from the constant argument of a function

mi_qual_negate() Returns MI_TRUE if the qualification includes the operator

NOT

mi_qual_setvalue() Sets a MI_VALUE_TRUE or MI_VALUE_FALSE indicator for

one qualification in a complex qualification descriptor

mi_qual_value() Retrieves the results that mi_qual_setvalue() set for a previous

qualification Until the qualification sets a result, this function

returns the initial value, MI_VALUE_NOT_EVALUATED.

For a complete list of accessor functions for the qualification descriptor, refer to

Chapter 5, “Descriptor Function Reference,” on page 5-1.

Simple Functions

The smallest element of a qualification is a function that tests the contents of a

column against a specified value. For example, in the following SELECT statement,

the function tests whether the value in the lname column is the character string

SMITH:

SELECT lname, fname, customer_num from customer

WHERE lname = "SMITH"

Chapter 3. Design Decisions 3-15

In the preceding example, the equal operator (=) represents the function equal()

and has two arguments, a column name and a string constant. The following

formats apply to simple qualification functions.

 Table 3-2. Generic Function Prototypes

Generic Prototype Description

function(column_name) Evaluates the contents of the named column

function(column_name, constant)

function(constant, column_name)

Evaluates the contents of the named column and

the explicit value of the constant argument In a

commuted argument list, the constant value precedes

the column name.

function(column ?) Evaluates the value in the specified column of the

current row and a value, called a host variable, that a

client program supplies

function(column, slv #) Evaluates the value in the specified column of the

current row and a value, called a statement-local

variable (SLV), that the UDR supplies

function(column, constant, slv #)

function(constant, column, slv #)

Evaluates the value in the specified column of the

current row, an explicit constant argument, and an

SLV

Runtime Values as Arguments

The following types of arguments supply values as the function executes:

v A statement-local variable (SLV)

v A host variable

Statement-Local Variables: The parameter list of a UDR can include an OUT

keyword that the UDR uses to pass information back to its caller. The following

example shows a CREATE FUNCTION statement with an OUT parameter:

CREATE FUNCTION stem(column LVARCHAR, OUT y CHAR)...

In an SQL statement, the argument that corresponds to the OUT parameter is

called a statement-local variable, or SLV. The SLV argument appears as a variable

name and pound sign (#), as the following example shows:

SELECT...WHERE stem(lname, y # CHAR)

The VTI includes functions to determine whether a qualification function includes

an SLV argument and to manage its value. For more information about how the

access method intercepts and sets SLVs, refer to the descriptions of

“mi_qual_needoutput()” on page 5-24 and “mi_qual_setoutput()” on page 5-28.

For more information about output parameters, the OUT keyword, and SLVs, refer

to the IBM Informix User-Defined Routines and Data Types Developer’s Guide.

Host Variables: While a client application executes, it can calculate values and

pass them to a function as an input parameter. Another name for the input

parameter is host variable. In the SQL statement, a question mark (?) represents the

host variable, as the following example shows:

SELECT...WHERE equal(lname, ?)

The SET parameter in the following example contains both explicit values and a

host variable:

SELECT...WHERE in(SET{‘Smith’, ‘Smythe’, ?}, lname)

3-16 IBM Informix Virtual-Table Interface Programmer’s Guide

Because the value of a host variable applies to every row in the table, the access

method treats the host variable as a constant. However, the constant that the client

application supplies might change during additional scans of the same table. The

access method can request that the optimizer reevaluate the requirements of the

qualification between scans.

For more information about how the access method provides for a host variable,

refer to the description of mi_qual_const_depends_hostvar() and

mi_qual_setreopt() in Chapter 5, “Descriptor Function Reference,” on page 5-1.

For more information about the following topics, refer to the manual indicated.

 Topic Manual

Setting values for host variables in client

applications

IBM Informix ESQL/C Programmer’s Manual

Using DataBlade API functions from client

applications

IBM Informix DataBlade API Programmer’s

Guide

Using host variables in SQL statements IBM Informix Guide to SQL: Syntax

Negation

The NOT operator reverses, or negates, the meaning of a qualification. In the

following example, the access method returns only rows with an lname value

other than SMITH:

WHERE NOT lname = "SMITH"

NOT can also reverse the result of a Boolean expression. In the next example, the

access method rejects rows that have southwest or northwest in the region column:

WHERE NOT (region = "southwest" OR region = “northwest”)

Complex Boolean Expressions

In a complex WHERE clause, Boolean operators combine multiple conditions. The

following example combines a function with a complex qualification:

WHERE year > 95 AND (quarter = 1 OR quarter = 3)

The OR operator combines two functions, equal(quarter,1) and

equal(quarter,3). If either is true, the combination is true. The AND operator

combines the result of the greaterthan(year,95) with the result of the Boolean OR

operator.

If a WHERE clause contains multiple conditions, the database server constructs a

qualification descriptor that contains multiple, nested qualification descriptors.

Figure 3-5 shows a complex WHERE clause that contains multiple levels of

qualifications. At each level, a Boolean operator combines results from two

previous qualifications.

Figure 3-6 and Figure 3-7 represent the structure of the qualification descriptor that

corresponds to the WHERE clause in Figure 3-5.

WHERE region = "southwest" AND

 (balance < 90 OR aged <= 30)

Figure 3-5. Complex WHERE Clause

Chapter 3. Design Decisions 3-17

The qualification descriptors for the preceding expression have a hierarchical

relationship, as the following figure shows.

For a detailed description of the functions that the access method uses to extract

the WHERE clause conditions from the qualification descriptor, refer to Chapter 5,

“Descriptor Function Reference,” on page 5-1.

Qualifying Data

An access method can do one or more of the following to qualify or disqualify

each source record or row:

v Pass the row to database server for evaluation

v Evaluate the source data inside the access-method

v Send part or all of the query to external software

Qualification by the Database Server

The optimizer does not create a qualification descriptor if the cost for the access

method to qualify rows exceeds the cost for a full table scan. If the database server

does not construct a qualification descriptor, the mi_scan_quals() function returns

a NULL-valued pointer.

Important: The mi_scan_quals() function returns a NULL-valued pointer to

indicate that a qualification descriptor does not exist. In response to the

NULL-valued pointer, the access method creates a row from each

source record.

Qualification by the Access Method

An access method might perform all the qualification tests or it might examine

some of the values that a WHERE clause specifies to partially qualify rows.

Guidelines for Implementation: An access method might create a row from each

source record and pass the row to the database server for evaluation. However,

each call to mi_row_create() to format a row or to mi_eval_am_qual() to have the

database server evaluate the row can reduce performance. A developer might use

this simple approach for low-volume data.

If possible, an access method evaluates the entire WHERE clause to eliminate

unqualified source records. For each candidate record that it cannot disqualify, the

access method calls mi_row_create() and mi_eval_am_qual() functions, which

AND(equal(region,’southwest’),

 OR(lessthan(balance,90), lessthanequal(aged,30)))

Figure 3-6. Function Nesting

Q5: Q4 = = MI_TRUE AND Q3= = MI_TRUE

Q4: region =

Q3: Q1 = = MI_TRUE OR Q2 = = MI_TRUE

Q1:balance < Q2: aged <=

Figure 3-7. Qualification- Descriptor Hierarchy

3-18 IBM Informix Virtual-Table Interface Programmer’s Guide

causes the database server to fill in any missing results in the qualification

descriptor. For an example of this approach, refer to “Processing Complex

Qualifications” on page 3-19.

Ideally, the access method only formats values that the query projects and fills the

remaining columns with NULL values. To determine which columns contain the

values that the query requires, the access method calls the mi_scan_nprojs() and

mi_scan_projs() functions.

Executing Qualification Functions: This section describes the following

alternative ways to process a simple function:

v To execute a function in a database server thread, use the routine identifier.

v To enable the access method or external software to execute an equivalent

function, use the function name.

Using the Routine Identifier: The access method uses a DataBlade API facility called

FastPath to execute registered UDRs that do not reside in the same shared-object

module as the access-method functions. To use the FastPath facility, the access

method performs the following general steps:

1. Calls the mi_qual_funcid() accessor function to obtain the routine identifier

2. Passes the routine identifier to the DataBlade API mi_func_desc_by_typeid()

function, which returns the function descriptor

3. Passes the function descriptor to the DataBlade API mi_routine_exec() function

For complete information about FastPath functions and the function descriptor

(MI_FUNC_DESC), see the IBM Informix DataBlade API Programmer’s Guide.

Tip: You can obtain the function descriptor in the am_beginscan purpose function,

store the function descriptor in the PER_COMMAND user data, and call

mi_scan_setuserdata() to store a pointer to the user data. In the am_getnext

purpose function, call mi_scan_userdata() to retrieve the pointer, access the

function descriptor, and execute the function with mi_routine_exec(). For

examples, choose the DataBlade Corner from the list box at the IBM Informix

Developer Zone at http://www.ibm.com/software/data/developer/informix.

Using the Function Name: To extract the function name from the qualification

descriptor, the access method calls the mi_qual_funcname() accessor function.

You can use mi_qual_funcname() to identify the function in a qualification, then

directly call a local routine that implements it. For example, if an access method

contains a local equal() function, it might include the following condition:

/* Compare function name to string.*/

if (strcmp("equal", mi_qual_funcname(qd)) == 0)

{ /* Execute equal() locally. */ }

An access method can also use the mi_qual_funcid() function if external software

controls the data. The access method uses this and other accessor functions to

extract information from the qualification descriptor into a form that the external

software can interpret. For a demonstration access method that parses and passes a

qualification to external software, choose the DataBlade Corner from the list box on

the IBM Informix Developer Zone at http://www.ibm.com/software/data/
developer/informix.

Processing Complex Qualifications: In Figure 3-8 on page 3-20, the am_getnext

purpose function attempts to disqualify source records. It creates rows for fully

Chapter 3. Design Decisions 3-19

qualified source records and for those that it cannot disqualify.

In Figure 3-9, the get_result() function loops recursively through the qualification

descriptor, looking for simple qualifications that the access method knows how to

evaluate. It sets results for the simple qualifications and leaves

MI_VALUE_NOT_EVALUATED in the Boolean-operator portions of the

qualification descriptor.

Tip: The examples in this section do not illustrate the code that the access method

uses to execute functions. For information about executing functions, refer to

“Executing Qualification Functions” on page 3-19.

mi_integer sample_getnext(sd,retrow,retrowid)

 MI_AM_SCAN_DESC *sd;

 MI_ROW **retrow

 mi_integer retrowid;

{

 my_data_t *my_data;

 MI_ROW_DESC *rd;

 MI_AM_TABLE_DESC *td;

 MI_AM_QUAL_DESC *qd;

 td = mi_scan_table(sd); /* Get table descriptor. */

 rd = mi_tab_rowdesc(td); /* Get column data types. */

 my_data = (my_data_t *)mi_tab_userdata(td); /* Get pointer to user data.*/

 MI_DATUM qdvalue;

 /* Evaluate records until one qualifies for return to caller.. */

 for (;;)

 {

 /* Test for and exit if end of data. (more_rows() routine not shown.)*/

 if (more_rows(my_data) !=MI_OK)

 return MI_NO_MORE_RESULTS;

 /* User data contains more rows, so evaluate the next one */

 get_results(qd, my_data);

 qdvalue = mi_qual_value(qd)

 if (qdvalue == MI_VALUE_TRUE)

 {

 /*Create MI_ROW and return it to the database server. */

 *retrow = mi_row_create(...);

 return MI_ROWS;

 }

 else if (qdvalue == MI_VALUE_NOT_EVALUATED)

 {

 /*Create MI_ROW and return it to the database server. */

 *retrow = mi_row_create(...);

 if (mi_eval_am_qual(retrow, qd) == MI_VALUE_TRUE)

 return MI_ROWS;

 }

 /* Either get_result() or mi_eval_am_qual() returned MI_VALUE_FALSE. */

 mi_init_am_qual(qd); /* Reset qualification descriptor */

 my_data->rowptr++;

 } /*End loop.*/

}/* End getnext.*/

Figure 3-8. Sample am_getnext Purpose Function

3-20 IBM Informix Virtual-Table Interface Programmer’s Guide

Qualification by External Software

If required, an access method can pass a qualification to external software. To

exchange information with external software, the access method must manage

communication. To obtain a demonstration access method that communicates with

external software, choose the DataBlade Corner from the list box on the IBM

Informix Developer Zone at http://www.ibm.com/software/data/developer/
informix.

Supporting Query Plan Evaluation

At the start of a SELECT statement, the database server initiates query planning. A

query plan specifies the steps that the database server takes to fulfill a query with

optimal efficiency. The database server includes an optimizer, which compares

various combinations of operations and chooses the query plan from among

alternative approaches. To help the optimizer select the best query plan, provide

reliable information about the cost for using the access method to select data.

Calculating Statement-Specific Costs: The optimizer compares the cost in time

and memory to perform such tasks as the following:

v Locating an index entry or table row on disk

v Retrieving the entry or row into memory

v Sorting and joining data

v Applying WHERE clause qualifications

v Retrieving rows from a primary table, if the optimizer uses an index

For more information about query plans, refer to the IBM Informix Performance

Guide.

... get_result(qd, my_data)

 MI_AM_QUAL_DESC *qd;

 user_data_t *my_data

{

 if (mi_qual_issimple(qd))

 {

 /* Execute simple, function. (Not shown.) */

 /* Test the result that the function returns. */

 if (result == MI_TRUE)

 {

 /* Set result in qualification descriptor.*/

 mi_qual_setvalue(qd,MI_VALUE_TRUE);

 return; ;

 }

 else

 {

 mi_qual_setvalue(qd,MI_VALUE_FALSE);

 return;;

 }

 } /* END: if (mi_qual_issimple(qd)) */

 else

 { /* Complex qualification (has AND or OR)..Loop until all functions execute.*/

 for (i = 0; i < mi_qual_nquals(qd); i++)

 get_result(mi_qual_qual(qd, i), my_data)

 } /* END: Complex qualification (has AND or OR) */

 return;;

Figure 3-9. Setting Results in the Qualification Descriptor

Chapter 3. Design Decisions 3-21

If the query involves a user-defined access method, the database server executes

the am_scancost purpose function to request cost information from the access

method. For a description of the factors that am_scancost calculates, refer to

“am_scancost” on page 4-23.

To avoid error messages, the access method can use the am_scancost purpose

function to notify the optimizer when it does not support all the requirements

specified in a query. If necessary, am_scancost can return a negative cost so that

the optimizer excludes this access method from the query plan.

Updating Statistics: The UPDATE STATISTICS statement stores statistics about

the distribution of rows on physical storage media for use by the optimizer. The

database server updates data-distribution statistics for internal, relational tables;

the access method updates data-distribution statistics for virtual tables. When a

user issues an UPDATE STATISTICS statement that requires the access method to

determine the distribution of data in a table, the database server calls the am_stats

purpose function.

The access method can call mi_tab_update_stat_mode() to determine if the

UPDATE STATISTICS statement includes the keyword HIGH or MEDIUM, each of

which influences the percentage of rows that the access method should sample and

the particular statistics that it should supply.

To store statistics in the statistics descriptor, the am_stats purpose function calls the

various accessor functions with the name prefix mi_tstats_set. The database server

copies the information from the statistics descriptor in the appropriate system

catalog tables. For information about these functions, refer to Chapter 5,

“Descriptor Function Reference,” on page 5-1.

For information about how to access the system catalog tables or to maintain tables

in an IBM Informix database, refer to “Accessing Database and System Catalog

Tables” on page 3-4. For information about the effects of query costs and

distribution of data, refer to the IBM Informix Performance Guide.

Enhancing Performance

The access method can take advantage of the following performance

enhancements:

v Executing parallel scans, inserts, deletes, and updates

v Buffering multiple rows

Executing in Parallel

Parallelizable routines can execute in parallel across multiple processors.

To make a UDR parallelizable, apply the following rules:

v Follow the guidelines for well-behaved user-defined routines.

v Avoid any DataBlade API routine that involves query processing (mi_exec(),

mi_exec_prepared_statement()), collections (mi_collection_*), row types, or save

sets (mi_save_set_*).

v Do not create rows that contain any complex types including another row type

as one of the columns. Do not use the mi_row_create() or mi_value() functions

with complex types or row types.

3-22 IBM Informix Virtual-Table Interface Programmer’s Guide

v Avoid DataBlade API FastPath functions (mi_routine_*,

mi_func_desc_by_typeid()) if the access method might pass them routine

identifiers for nonparallelizable routines.

v Specify the PARALLELIZABLE routine modifier in the CREATE FUNCTION or

CREATE PROCEDURE statement for the UDR.

For more information about the following topics, refer to the IBM Informix

DataBlade API Programmer’s Guide:

v Guidelines for well-behaved user-defined routines

v A complete list of nonparallelizable functions

v FastPath function syntax, usage, and examples

For more information about the PARALLELIZABLE (and other) routine modifiers,

refer to the routine modifier section in the IBM Informix Guide to SQL: Syntax. For

more information about parallelizable UDRs, refer to Creating User-Defined

Routines and User-Defined Types.

 To make an access method parallelizable:

1. Create a basic set of parallelizable purpose functions.

The basic set, which enables a SELECT statement to execute in parallel,

includes the following purpose functions: am_open, am_close, am_getbyid,

am_beginscan, am_endscan, am_getnext, and am_rescan.

An access method might not supply all of the purpose functions that define a

basic parallelizable set. As long as you make all the basic purpose functions

that you provide parallelizable, a SELECT statement that uses the access

method can execute in parallel.

2. Add a parallelizable purpose function to the basic set for any of the following

actions that you want the database server to execute in parallel.

 Parallel SQL Statement Parallelizable Purpose Function

INSERT (in a SELECT) am_insert

SELECT INTO TEMP am_insert

DELETE am_delete

UPDATE am_update

Important: A parallelizable purpose function must call only routines that are also

parallelizable.

 The database server sets an am_parallel purpose value in the sysams system

catalog table to indicate which access-method actions can occur in parallel. For

more information, refer to the purpose options of the CREATE ACCESS METHOD

and ALTER ACCESS METHOD SQL statements in IBM Informix Guide to SQL:

Syntax.

Buffering Multiple Results

The am_getnext purpose function can find and store several qualified rows in

shared memory before it returns control to the database server.

 To set up and fill a multiple-row buffer in shared memory:

1. Call mi_tab_setniorows() in am_open or am_beginscan to set the number of

rows that the access method can return in one scan.

Chapter 3. Design Decisions 3-23

2. Call mi_tab_niorows() at the start of am_getnext to find out how many rows to

return.

3. Loop through mi_tab_setnextrow() in am_getnext until the number of

qualifying rows matches the return value of mi_tab_niorows() or until no more

qualifying rows remain.

Figure 3-10 shows the preceding steps. For more information about these functions,

refer to Chapter 5, “Descriptor Function Reference,” on page 5-1.

The find_good_row() function is not shown here. If there is a row to return from

the external data source, find_good_row() retrieves and assembles values and

NULLs into arrays of MI_DATUM and mi_boolean, creates a row with

mi_row_create(), sets nextrow and nextrowid accordingly, and returns. If there is

no row to return, it simply sets nextrow to NULL.

Supporting Data Retrieval, Manipulation, and Return

The following topics affect the design of am_getnext, am_insert, am_delete, and

am_update:

v Checking isolation levels

v Converting data to and from IBM Informix row format

v Detecting transaction success or failure

Checking Isolation Levels

The isolation level affects the concurrency between sessions that access the same

set of data. The following tables show the types of phenomena that can occur

without appropriate isolation-level controls.

mi_integer sample_getnext(MI_AM_SCAN_DESC *sd, MI_ROW **retrow,

mi_integer *rowid

)

{

mi_integer nrows, row, fragid;

mi_integer retval;

MI_AM_TABLE_DESC *td =mi_scan_table(sd);

fragid = 0; /* table is not fragmented */

nrows = mi_tab_niorows(td);

if (nrows > 0)

{/*Store qualified results in shared-memory buffer.*/

for (row = 0; row < nrows; ++row)

{ /* Evaluate rows until we get one to return to caller. */

find_good_row(sd, retrow, rowid);

if (*retrow == MI_NULL) break;

mi_tab_setnextrow(td, *retrow, *rowid, fragid);

} /* End of loop for nrows times to fill shared memory.*/

retval = (row>0) ? MI_ROWS : MI_NO_MORE_RESULTS;

}/*End (nrows > 0). */

else

{/*Only one result per call to am_getnext.*/

find_good_row(sd, retrow, rowid);

retval = (retrow!=MI_NULL) ? MI_ROWS : MI_NO_MORE_RESULTS;

}

return retval;

} /* end function sample_getnext() */

Figure 3-10. Storing Multiple Results In a Buffer

3-24 IBM Informix Virtual-Table Interface Programmer’s Guide

v A Dirty Read occurs because transaction 2 sees the uncommitted results of

transaction 1.

Transaction 1 Write(a) Roll Back

Transaction 2 Read(a)

v A Nonrepeatable Read occurs if transaction 1 retrieves a different result from the

each read.

Transaction 1 Read(a) Read(a)

Transaction 2 Write/Delete(a) Commit

v A Phantom Read occurs if transaction 1 obtains a different result from each Select

for the same criteria.

Transaction 1 Select(criteria) Select(criteria)

Transaction 2 Update/Create Commit

To determine which of the following isolation levels the user or application

specifies, the access method can call either the mi_tab_isolevel() or

mi_scan_isolevel() function.

 Isolation Level Type of Read Prevented

Serializable Dirty Read, Nonrepeatable Read, Phantom Read

Repeatable Read or Cursor Stability Dirty Read, Nonrepeatable Read

Read Committed Dirty Read

Read Uncommitted None

If an access method does not support Serializable isolation for data in an extspace,

an update by another transaction can change data on disk after the access method

sends the same row to the database server. The disk data no longer matches the

data that the database server placed in shared memory.

A virtual-table interface cannot use the COMMITTED READ LAST COMMITTED

isolation level feature.

For more information about how applications use isolation levels, consult the IBM

Informix Guide to SQL: Reference, IBM Informix Guide to SQL: Syntax, and IBM

Informix Guide to SQL: Tutorial. For information about determining isolation level,

refer to mi_scan_isolevel() or mi_tab_isolevel() in Chapter 5, “Descriptor Function

Reference,” on page 5-1.

The database server automatically enforces repeatable read isolation under the

following conditions:

v The virtual table resides in sbspaces.

v User-data logging is turned on for the smart large objects that contain the data.

To find out how to turn on user-data logging with the access method, refer to

“Activating Automatic Controls in Sbspaces” on page 3-11. To find out how to

provide for logging with ONCONFIG parameters, refer to your IBM Informix

Administrator’s Guide.

The access method must provide the code to enforce isolation levels under the

following circumstances:

v Users require Serializable isolation.

The database server does not provide support for full Serializable isolation.

v Some or all of the data resides in extspaces.

Chapter 3. Design Decisions 3-25

Important: You must document the isolation level that the access method supports

in a user guide. For an example of how to word the isolation-level

notice, refer to Figure 3-11 on page 3-29.

Converting to and from Row Format

Before the access method can return row values to a query, the access method must

convert source data to data types that database server recognizes, native IBM

Informix data types, and user-defined data types (UDTs). The database server can

recognize a UDT because the application registers it in the database with a

CREATE TYPE statement.

 To create a row:

1. Call mi_tab_rowdesc() to retrieve the row descriptor.

2. Call the appropriate DataBlade API row-descriptor accessor functions to obtain

the information, such as data type, for each column.

For a list of available row-descriptor accessor functions, refer to the description

of MI_ROW_DESC in the IBM Informix DataBlade API Programmer’s Guide.

3. Call mi_scan_nprojs() and mi_scan_projs() to determine which columns the

query specifies.

4. If necessary, convert external data types to types that the database server

recognizes.

5. Set the value of the columns that the query does not need to NULL.

6. Call the DataBlade API mi_row_create() function to create a row from the

converted source data.

The database server passes an MI_ROW structure to the am_insert and am_update

purpose functions. To extract the values to insert or update, call mi_value() or

mi_value_by_name(). For more information about these functions, refer to the IBM

Informix DataBlade API Programmer’s Guide.

Determining Transaction Success or Failure

The access method can register an end-of-transaction callback function to handle

the MI_EVENT_END_XACT event, which the database server raises at the end of a

transaction. In that callback function, test the return value of the DataBlade API

mi_transition_type() function to determine the state of the transaction, as follows.

 Return Value for

mi_transition_type() Transaction State

MI_NORMAL_END Successful transaction completion The database server can

commit the data.

MI_ABORT_END Unsuccessful transaction completion The database server must

roll back the table to its state before the transaction began.

Warning: IBM does not ensure uniform commit or rollback (called

two-phase-commit protocol) with data in an external database server. If

a transaction partially commits and then aborts, inconsistencies can

occur between the database server and external data.

As long as a transaction is in progress, the access method should save each

original source record value before it executes a delete or update. For transactions

that include both internal and external objects, the access method can include

either an end-of-transaction or end-of-statement callback function to ensure the

3-26 IBM Informix Virtual-Table Interface Programmer’s Guide

correct end-of-transaction action. Depending on the value that mi_transition_type()

returns, the callback function either commits or rolls back (if possible) the

operations on the external objects.

If an external transaction does not completely commit, the access method must

notify the database server to roll back any effects of the transaction on the state of

the virtual table.

For detailed information about the following items, refer to the IBM Informix

DataBlade API Programmer’s Guide:

v Handling state-transitions in a UDR

v End-of-transaction callback functions

v End-of-statement callback functions

Supplying Error Messages and a User Guide

As you plan access-method purpose functions, familiarize yourself with the

following information:

v The SQL statement syntax in the IBM Informix Guide to SQL: Syntax

v The IBM Informix Guide to SQL: Tutorial and the IBM Informix Database Design and

Implementation Guide

These documents include examples of IBM Informix SQL statements and expected

results, which the SQL user consults.

The user of your access method will expect the SQL statements and keywords to

behave as documented in the database server documentation. If the access method

causes an SQL statement to behave differently, you must provide access-method

documentation and messages to alert the user to these differences.

In the access-method user guide, list all SQL statements, keywords, and options

that raise an exception if an end user attempts to execute them. Describe any

features that the access method supports in addition to the standard SQL

statements and keywords.

Create callback functions to respond to database server exceptions, as “Handling

the Unexpected” on page 3-6 describes. Raise access-method exceptions for

conditions that the database server cannot detect. Use the following sections as a

checklist of items for which you supply user-guide information, callback functions,

and messages.

Avoiding Database Server Exceptions

When an SQL statement involves the access method, the database server checks the

purpose settings in the sysams system catalog table to determine whether the

access method supports the statement and the keywords within that statement.

The database server issues an exception and an error message if the purpose

settings indicate that the access method does not support a requested SQL

statement or keyword. If a user inadvertently specifies a feature that the

access-method design purposely omits and the SQL syntax conforms to the IBM

Informix Guide to SQL: Syntax, the documentation does not provide a solution.

Chapter 3. Design Decisions 3-27

Specify access-method support for the following items in the sysams system

catalog table with a CREATE PRIMARY ACCESS_METHOD or Alter

ACCESS_METHOD statement:

v Statements

v Keywords

v Storage space type

Statements That the Access Method Does Not Support

The user can receive an SQL error for statements that require a purpose function

that you did not supply. The access-method user guide must advise users which

statements to avoid.

If the access method does not supply one or more of the following purpose

functions or set the corresponding purpose flags, the access-method user guide

must advise users not to use any of the following statements.

 Without this purpose function and purpose flag Avoid this SQL statement

am_insert, am_readwrite INSERT, ALTER FRAGMENT

am_delete, am_readwrite, am_rowids DELETE, ALTER FRAGMENT

am_update, am_readwrite, am_rowids UPDATE

am_stats UPDATE STATISTICS

Important: For statements that alter data, a purpose function alone does not avoid

the SQL error. You must also set the am_readwrite purpose flag and

the am_rowids purpose flag when the database server uses a row

identifier.

Keywords That the Access Method Does Not Support

You must set a purpose flag to indicate the existence of code within the access

method to support certain keywords. If a purpose flag is not set, the database

server assumes that the access method does not support the corresponding

keyword and issues an error if an SQL statement specifies that keyword.

For example, unless the am_cluster purpose flag is set in the sysams system

catalog table, an SQL statement with the CLUSTER keyword fails. If the access

method does not provide for clustering, the access-method user guide must advise

users not to use the CLUSTER keyword.

Storage Spaces and Fragmentation

An SQL statement fails if it specifies a storage space that does not agree with the

am_sptype purpose value in the sysams system catalog table. In the user guide,

specify whether the access method supports sbspaces, extspaces, or both. Advise

the user how to do the following:

v Create sbspace or extspace names with the onspaces command

v Specify a default sbspace if the access method supports sbspaces

v Locate the default extspace if the access method creates one

v Specify an IN clause in a CREATE TABLE or ALTER FRAGMENT statement

For more information about specifying storage spaces, refer to “Creating and

Specifying Storage Spaces” on page 2-8.

3-28 IBM Informix Virtual-Table Interface Programmer’s Guide

If the access method supports fragmentation in sbspaces, advise the user to create

multiple sbspaces with onspaces before issuing an SQL statement that creates

fragments. For an example, refer to “Using Fragments” on page 2-10.

SQL Restrictions

The database server also raises exceptions due to restrictions that the VTI imposes

on SQL. A user cannot specify a dbspace in a CREATE TABLE or ALTER

FRAGMENT statement. The VTI does not support the following statements for

virtual tables:

v An ALTER TABLE statement that adds, drops, or modifies a column

v A LOCK TABLE or UNLOCK TABLE statement

v An ATTACH or DETACH keyword in an ALTER FRAGMENT statement

Notifying the User About Access-Method Constraints

The database server cannot detect unsupported or restricted features for which the

sysams system catalog table has no setting.

Specify any precautions that an application might require for isolation levels, lock

types, and logging.

Advise users whether the access method handles logging and data recovery. Notify

users about parameters that they might set to turn logging on. For an example,

refer to Figure 3-4 on page 3-13.

Provide the precise wording for the isolation levels that the access method

supports. It is recommended that you use standard wording for isolation level. The

following example shows the language to define the ways in which the qualifying

data set might change in the transaction.

Documenting Nonstandard Features

Provide instructions and examples for any feature that aids the user in applying

the access method. For example, provide information and examples about the

following items:

v Parameter keywords

For examples, refer to “Providing Configuration Keywords” on page 3-12.

v Output from the oncheck utility

For more information about the options that the oncheck provides, refer to the

IBM Informix Administrator’s Reference. For more information about providing

oncheck functionality, refer to the description of “am_check” on page 4-10.

The access method fully supports the ANSI Repeatable Read level of

isolation. The user need not account for dirty reads or

nonrepeatable reads. It is recommended that the user take

precautions against phantom reads.

Figure 3-11. Sample Language to Describe Isolation Level

Chapter 3. Design Decisions 3-29

3-30 IBM Informix Virtual-Table Interface Programmer’s Guide

Chapter 4. Purpose-Function Reference

In This Chapter . 4-1

Purpose-Function Flow . 4-1

ALTER FRAGMENT Statement Interface . 4-2

CREATE Statement Interface . 4-4

DROP Statement Interface . 4-5

INSERT, DELETE, and UPDATE Statement Interface . 4-5

SELECT...WHERE Statement Interface . 4-6

oncheck Utility Interface . 4-7

Purpose-Function Syntax . 4-7

am_beginscan . 4-9

am_check . 4-10

am_close . 4-12

am_create . 4-13

am_delete . 4-14

am_drop . 4-15

am_endscan . 4-16

am_getbyid . 4-17

am_getnext . 4-18

am_insert . 4-20

am_open . 4-21

am_rescan . 4-22

am_scancost . 4-23

am_stats . 4-25

am_truncate . 4-26

am_update . 4-27

In This Chapter

This chapter describes the purpose functions that the access-method developer

provides. This chapter consists of two major parts:

v Purpose-Function Flow illustrates the sequence in which the database server

calls purpose functions.

v “Purpose-Function Syntax” on page 4-7 specifies the predefined function-call

syntax and suggests usage for each purpose function.

Purpose-Function Flow

The diagrams in this section show, for each SQL statement, which purpose

functions the database server executes. Use the diagrams to determine which

purpose functions to implement in the access method.

The complexity of the purpose-function flow for each statement determines the

order in which the statement appears in this section. This section describes the

purpose-function interface for the following SQL statements:

v ALTER FRAGMENT Statement Interface

v CREATE Statement Interface

v DROP Statement Interface

v INSERT, DELETE, and UPDATE Statement Interface

v SELECT...WHERE Statement Interface

This section also describes the “oncheck Utility Interface” on page 4-7.

© Copyright IBM Corp. 1996, 2008 4-1

Tip: The database server invokes the am_open and am_close purpose functions

once per fragment for the first SQL statement that references a new virtual

table. After the initial calls to am_open and am_close, the database server

resumes the normal purpose function flow for the active SQL statement.

The following statements result in an additional call to am_open and am_close

before the INSERT statement:

CREATE TABLE newtab (...) USING myvti

INSERT INTO newtab VALUES (....)

ALTER FRAGMENT Statement Interface

When the database server executes an ALTER FRAGMENT statement, the database

server moves data between existing fragments and also creates a new fragment.

The statement in Figure 4-1 creates and fragments a jobs table.

The statement in Figure 4-2 changes the fragment expression for jobs, which

redistributes the table entries.

For each fragment that the ALTER FRAGMENT statement specifies, the database

server performs the following actions:

1. Executes an access-method scan

2. Evaluates the returned rows to determine which ones must move to a different

fragment

3. Executes the access method to create a new fragment for the target fragment

that does not yet exist

4. Executes the access method to delete rows from one fragment and insert them

in another

Figures 4-3 through Figure 4-6 show the separate sequences of purpose functions

that create the fragments and distribute the data for the SQL ALTER FRAGMENT

statement in Figure 4-2. The database server performs steps 1, 2, and 3 to move

fragments from fragspace1 to fragspace2 and then performs steps 1 through 3 to

move fragments from fragspace2 to fragspace3.

Figure 4-3 shows the sequential scan in step 1, which returns all rows from the

fragment because the scan descriptor contains a NULL-valued pointer instead of a

CREATE TABLE jobs (sstatus file_ops)

 FRAGMENT BY EXPRESSION

 sstatus > 15 IN fragspace2,

 REMAINDER IN fragspace1

 USING file_am

Figure 4-1. SQL to Create the Fragmented Jobs Table

ALTER FRAGMENT ON TABLE jobs

 MODIFY fragspace1 TO (sstatus <= 5) IN

fragspace1,

 MODIFY fragspace2 TO

 (sstatus > 5 AND sstatus <= 10) IN

fragspace2,

 REMAINDER IN fragspace3

Figure 4-2. SQL to Alter the Jobs Fragments

4-2 IBM Informix Virtual-Table Interface Programmer’s Guide

pointer to a qualification descriptor.

In Figure 4-4, the database server returns the row identifiers that the access method

should delete from fragspace1 and insert in fragspace2.

Figure 4-5 again shows the sequential scan in step 1. This scan returns all the rows

from fragment2.

Figure 4-3. Getting All the Rows in Fragment 1

Figure 4-4. Moving Rows Between Fragments

Chapter 4. Purpose-Function Reference 4-3

Figure 4-6 shows steps 3 and 4. The database server returns the row identifiers that

the access method should delete from fragspace2 and insert in fragspace3. The

database server does not have fragspace3, so it executes am_create to have the

access method create a fragment before it executes am_insert.

For more information about fragments that a VTI-based access method manages,

refer to “Supporting Fragmentation” on page 3-12.

CREATE Statement Interface

Figure 4-7 shows the order in which the database server executes purpose

functions for a CREATE TABLE statement. If the IN clause specifies multiple

storage spaces in which to fragment the table, the database server repeats the

sequence of purpose functions that Figure 4-7 shows for each storage space.

Figure 4-5. Getting All the Rows in Fragment 2

Figure 4-6. Adding and Filling a Fragment

4-4 IBM Informix Virtual-Table Interface Programmer’s Guide

For more information about implementing the CREATE TABLE statement in the

access method, refer to “Supporting Data Definition Statements” on page 3-8.

DROP Statement Interface

Figure 4-8 shows the processing for each fragment of a DROP TABLE or DROP

DATABASE statement.

If you drop an inherited table whose index uses the virtual index interface, the

following additional call sequence is invoked.

To avoid this additional call sequence when dropping an inherited table, drop the

index before dropping the table.

INSERT, DELETE, and UPDATE Statement Interface

Figure 4-10 shows the order in which the database server executes purpose

functions to insert, delete, or update a row at a specific physical address. The

physical address consists of fragment identifier and row identifier.

am_create

am_open

am_close

Figure 4-7. Processing a CREATE TABLE Statement

am_open

am_drop

Figure 4-8. Processing a DROP Statement

am_open

am_delete

am_close

Figure 4-9. Processing a DROP Statement on a Table with a VII Index

Figure 4-10. INSERT, DELETE, or UPDATE by Row Address

Chapter 4. Purpose-Function Reference 4-5

Figure 4-11 shows the order in which the database server executes purpose

functions if the insert, delete, or in-place update has an associated WHERE clause.

Figure 4-12 shows the more complicated case in which am_getnext returns multiple

rows to the database server. In either case, the database server calls am_insert,

am_delete, or am_update once per row.

For more information about implementing insert, delete, and update statements,

refer to “Supporting Data Retrieval, Manipulation, and Return” on page 3-24.

SELECT...WHERE Statement Interface

Figure 4-13 shows the order in which the database server executes purpose

functions for a SELECT statement with a WHERE clause. For information about

how to process the scan and qualifications, refer to “Processing Queries” on page

Figure 4-11. INSERT, DELETE, or UPDATE in a Subquery

Figure 4-12. Returning Multiple Rows That Qualify for INSERT, DELETE, or UPDATE

4-6 IBM Informix Virtual-Table Interface Programmer’s Guide

3-14.

oncheck Utility Interface

The oncheck utility reports on the state of a table and provides a means for a

database server administrator to check on the state of objects in a database. You, as

an access-method developer, can also use oncheck to verify that the access method

creates and maintains appropriate tables.

As Figure 4-14 shows, the database server calls only one access-method function

for the oncheck utility. If necessary, the am_check purpose function can call

am_open and am_close or can itself contain the appropriate logic to obtain

handles, allocate memory, and release memory.

Purpose-Function Syntax

The database server expects a particular prototype for each purpose function. As

the access-method developer, you program the actions of a purpose function but

must use the parameters and return values that the VTI prototypes specify. This

section lists purpose-function prototypes in alphabetical order.

For each purpose function that your access method provides, use the prototype

that this chapter shows, but change the prototype-function name to a unique name.

For example, you might save your version of am_open with the name

vtable_open(). To associate the unique purpose-function names to the

corresponding prototype names, use the CREATE PRIMARYACCESS_METHOD

statement, as “CREATE ACCESS_METHOD (+)” on page 6-4 specifies.

The parameter list for each purpose function includes (by reference) one or more

descriptor data structures that describe the SQL statement keywords or oncheck

options and the specified table that requires the access method. For detailed

information about each descriptor, refer to “Descriptors” on page 5-2.

Purpose functions are simply entry points from which the access method calls

other routines from the access-method library, DataBlade API functions, and the

am_open

MI_NO_MORE_RESULTS

am_close

am_beginscan

am_getnext

am_endscan

am_scancost

MI_ROWS

Figure 4-13. Processing a SELECT Statement Scan

am_check

Figure 4-14. Processing the oncheck Utility

Chapter 4. Purpose-Function Reference 4-7

VTI functions that “Accessor Functions” on page 5-7 describes.

4-8 IBM Informix Virtual-Table Interface Programmer’s Guide

am_beginscan

The database server calls am_beginscan to start a scan on a virtual table. This

function initializes the scan.

Syntax

mi_integer am_beginscan(MI_AM_SCAN_DESC *scanDesc)

scanDesc points to the scan descriptor.

Usage

The functions that the access method supplies for am_beginscan, am_getnext, and

am_endscan compose the main scan-management routines. In its turn, the

am_beginscan purpose function can perform the following operations:

v Obtain the qualification descriptor from the scan descriptor

v Parse the criteria in the qualification descriptor

For a more detailed discussion, refer to “Processing Queries” on page 3-14.

v Determine the need for data type conversions to process qualification

expressions

v Based on the information in the qualification descriptor, initiate a search for data

that fulfills the qualification

v Allocate PER_COMMAND memory to build user data and then store the user

data in the scan descriptor for the am_getnext function

For more information about memory allocation, refer to “Storing Data in Shared

Memory” on page 3-2.

You can also choose to defer any processing of qualifications until the am_getnext

function.

Return Values

MI_OK indicates success. MI_ERROR indicates failure.

Related Topics

See the descriptions of:

v Purpose functions am_endscan, am_getnext, and am_rescan

v “Optimizing Queries” on page 2-4

am_beginscan

Chapter 4. Purpose-Function Reference 4-9

am_check

If a user executes the oncheck utility for a virtual table, the database server calls

am_check.

Syntax

mi_integer am_check(MI_AM_TABLE_DESC *tableDesc,

 mi_integer option)

tableDesc points to the table descriptor of the table that the current oncheck

command specifies.

option contains an encoded version of the current command-line option

string for the oncheck utility.

Usage

A user, generally a system administrator or operator, runs the oncheck utility to

verify physical data structures. The options that follow the oncheck command

indicate the kind of checking to perform. For information about oncheck options,

refer to the IBM Informix Administrator’s Reference.

In response to an oncheck command, the database server calls the am_check

purpose function, which checks the internal consistency of the table and returns a

success or failure indicator. If appropriate, am_check can call the am_open and

am_close purpose functions.

Interpreting Options: To determine the exact contents of the command line, pass

the option argument to the following VTI macros. Each macro returns a value of

MI_TRUE if the option includes the particular -c or -p qualifier that the following

table shows.

 Macro Option oncheck Action

MI_CHECK_DATA()

MI_DISPLAY_DATA()

-cd

-pd

Checks and displays data rows, but not

simple or smart large objects

MI_CHECK_DATA_BLOBS()

MI_DISPLAY_DATA_BLOBS()

-cD

-pD

Checks and displays data rows, simple

large objects, and smart-large-object

metadata

MI_CHECK_EXTENTS()

MI_DISPLAY_EXTENTS()

-ce

-pe

Checks and displays chunks and extents,

including sbspaces

MI_DISPLAY_TPAGES() -pp Checks and displays pages by table or

fragment

MI_DISPLAY_CPAGES() -pP Checks and displays pages by chunk

MI_DISPLAY_SPACE() -pt Checks and displays space usage

The am_check purpose function executes each macro that it needs until one of

them returns MI_TRUE. For example, the following syntax tests for oncheck option

-cD demonstrate:

if (MI_CHECK_EXTENTS(option) == MI_TRUE)

{

 /* Check rows and smart-large-object metadata

 * If problem exists, issue message. */

}

Checking and Displaying Table State: The access method can call accessor

function mi_tab_spacetype() to determine whether the specified table resides in an

sbspace or extspace. If the data resides in an sbspace, the am_check purpose

am_check

4-10 IBM Informix Virtual-Table Interface Programmer’s Guide

function can duplicate the expected behavior of the oncheck utility. For

information about the behavior for each oncheck option, refer to the IBM Informix

Administrator’s Reference.

For an extspace, such as a file that the operating system manages, am_check

performs tasks that correspond to the command-line option.

To provide detailed information about the state of the table, am_check can call the

mi_tab_check_msg() function.

Return Values

MI_OK validates the table structure as error free.

MI_ERROR indicates the access method could not validate the table structure as

error free.

Related Topics

See the descriptions of:

v Purpose functions am_open and am_close

v Accessor function mi_tab_check_msg() in Chapter 5, “Descriptor Function

Reference,” on page 5-1

am_check

Chapter 4. Purpose-Function Reference 4-11

am_close

The database server calls am_close when the processing of a single SQL statement

(SELECT, UPDATE, INSERT, DELETE) completes.

Syntax

mi_integer am_close(MI_AM_TABLE_DESC *tableDesc)

tableDesc points to the table descriptor.

Usage

The am_close function might:

v Deallocate user-data memory that am_open allocated with a PER_STMT_EXEC

or PER_STMT_PREP duration

v Call mi_file_close(), mi_lo_close(), or one of the DataBlade API functions that

copies smart-large-object data to a file

Important: Do not call the DataBlade API mi_close() function to free a database

connection handle that you open (in the am_open purpose function)

with mi_open(). Because the database connection has a

PER_COMMAND duration not a PER_STATEMENT duration, the

database server frees the handle before it calls the am_close purpose

function.

Return Values

MI_OK indicates success. MI_ERROR indicates failure.

Related Topics

See the description of:

v Purpose function am_open

v DataBlade API functions, such as mi_file_close() or mi_lo_close(), in the IBM

Informix DataBlade API Programmer’s Guide

v “Starting and Ending Processing” on page 2-3

am_close

4-12 IBM Informix Virtual-Table Interface Programmer’s Guide

am_create

The database server calls am_create to process a CREATE TABLE statement.

Syntax

mi_integer am_create(MI_AM_TABLE_DESC *tableDesc)

tableDesc points to the table descriptor.

Usage

Even if the access method does not provide an am_create function, the database

server automatically adds the created object to the system catalog tables, such as

systables. For example, a user might issue the CREATE TABLE command to

register an existing, external table in the database server system catalog.

The am_create function typically:

v Calls accessor functions to extract table specifications from the table descriptor,

including a pointer to the row descriptor

v Calls DataBlade API functions to extract column attributes from the row

descriptor

v Verifies that the access method can provide all the requirements that the

CREATE TABLE specifies

v Calls the appropriate DataBlade API functions to create a smart large object or

interact with the operating system for file creation, as described in “Managing

Storage Spaces” on page 3-9

Important: By default, transaction logging is disabled in sbspaces. To find out how

to turn logging on, refer to “Ensuring Data Integrity” on page 3-11.

Return Values

MI_OK indicates success. MI_ERROR indicates failure.

Related Topics

In this publication, see the description of:

v Purpose function am_drop

v “Creating and Dropping Database Objects” on page 2-3

In the IBM Informix DataBlade API Programmer’s Guide, see the descriptions of:

v DataBlade API functions, such as mi_lo_create(), and create-time constants

v DataBlade API accessor functions for the row descriptor

am_create

Chapter 4. Purpose-Function Reference 4-13

am_delete

The database server calls am_delete for:

v A DELETE statement

v An UPDATE statement that requires a change in physical location

v An ALTER FRAGMENT statement that moves a row to a different fragment

Syntax

mi_integer am_delete(MI_AM_TABLE_DESC *tableDesc,

 mi_integer rowID))

tableDesc points to the table descriptor.

rowID is the identifier of the row to delete.

Usage

The am_delete purpose function deletes one row in the virtual table. In response

to a DELETE statement, the database server first calls the appropriate purpose

functions to scan for the table entry or entries that qualify for deletion and then

executes am_delete separately for each qualifying entry.

Important: The database server does not call the am_delete purpose function

unless you set both the am_rowids and am_readwrite purpose flags.

For more information about setting purpose flags, refer to Chapter 6,

“SQL Statements for Access Methods,” on page 6-1.

Warning: If the access method does not supply an am_delete purpose function,

but an SQL statement requires it, the database server raises an error. For

more information on how to handle this error, refer to “Supplying Error

Messages and a User Guide” on page 3-27.

Return Values

MI_OK indicates success. MI_ERROR indicates failure.

Related Topics

See the descriptions of:

v Purpose functions am_insert and am_update

v Purpose flags am_rowids and am_readwrite in “Settings Purpose Functions,

Flags, and Values” on page 6-8

v “Inserting, Deleting, and Updating Data” on page 2-5

am_delete

4-14 IBM Informix Virtual-Table Interface Programmer’s Guide

am_drop

The database server calls am_drop for a DROP TABLE or DROP DATABASE

statement.

Syntax

mi_integer am_drop(MI_AM_TABLE_DESC *tableDesc)

tableDesc points to the table descriptor.

Usage

Even if the access method provides no am_drop purpose function, the database

server automatically removes the dropped object from the system catalog tables.

The database server no longer recognizes the name of the dropped object.

Return Values

MI_OK indicates success. MI_ERROR indicates failure.

Related Topics

See the descriptions of:

v Purpose function am_create

v “Creating and Dropping Database Objects” on page 2-3

am_drop

Chapter 4. Purpose-Function Reference 4-15

am_endscan

The database server calls am_endscan when am_getnext finds no more rows.

Syntax

mi_integer am_endscan(MI_AM_SCAN_DESC *scanDesc)

scanDesc points to the scan descriptor.

Usage

The am_endscan purpose function might:

v Deallocate the PER_COMMAND user-data memory that the am_beginscan

purpose function allocates and stores in the scan descriptor

For more information on PER_COMMAND memory and memory deallocation,

refer to “Storing Data in Shared Memory” on page 3-2.

v Check for transaction commit or rollback

Call the appropriate DataBlade API functions to determine if the transaction

succeeds. Disregard the copy of old values if the transaction commits or reapply

old values if the transaction rolls back.

For more information about transaction processing, see “Determining

Transaction Success or Failure” on page 3-26.

Return Values

MI_OK indicates success. MI_ERROR indicates failure.

Related Topics

See the descriptions of:

v Purpose functions am_beginscan , am_getnext, and am_rescan

v “Optimizing Queries” on page 2-4

am_endscan

4-16 IBM Informix Virtual-Table Interface Programmer’s Guide

am_getbyid

The database server calls am_getbyid instead of am_getnext to pass the row

identifier instead of a scan descriptor. For example, the database server might

obtain the row identifier from an index on the virtual table.

Syntax

mi_integer am_getbyid(MI_AM_TABLE_DESC *tableDesc,

 MI_ROW **retrow, mi_integer rowID)

tableDesc points to the table descriptor.

retrow points to the location where the function should place a row

structure that contains the fetched data.

rowID is the row identifier or physical address of the row to fetch.

Usage

The am_getbyid purpose function does not scan a table to find a qualifying row.

Possible row identifiers that rowID might point to include:

v The sequence of this row within the fragment

v An offset to an LO handle

v A value that an external data manager assigns

v A value that the access method assigns

As with am_getnext, am_getbyid first fetches the specified row and then passes

the retrow pointer to mi_row_create() to build the composite MI_ROW value from

fetched data.

Important: The database server does not call am_getbyid unless you set the

am_rowids purpose flag. For more information about setting purpose

flags, refer to Chapter 6, “SQL Statements for Access Methods,” on

page 6-1.

Return Values

MI_OK indicates success. MI_ERROR indicates failure.

Related Topics

See the descriptions of:

v Purpose flag am_rowids in “Settings Purpose Functions, Flags, and Values” on

page 6-8

v DataBlade API function mi_row_create() in the IBM Informix DataBlade API

Programmer’s Guide

v Purpose function am_getnext

am_getbyid

Chapter 4. Purpose-Function Reference 4-17

am_getnext

The am_getnext purpose function identifies rows that meet query criteria.

Syntax

mi_integer am_getnext(MI_AM_SCAN_DESC *scanDesc,

 MI_ROW **row, mi_integer *rowid);

scanDesc points to the scan descriptor.

row points to the location where the access method creates rows from

source records that satisfy the query.

rowid points to the returned row identifier.

Usage

Every access method must provide an am_getnext purpose function. This required

function typically reads source data and returns query results.

If a statement includes a WHERE clause, either am_beginscan or am_getnext can

parse the qualification descriptor. For each row, an am_getnext purpose function

might:

v Read source data into user data

v Execute functions in the qualification descriptor

v Save the results in the qualification descriptor

v Call mi_eval_am_qual() to complete a complex qualification expression

v Build a row from the fetched data that matches the projection specifications in

the query

To find out how to create a row, refer to “Converting to and from Row Format”

on page 3-26.

The am_getnext purpose function can loop to fill a shared-memory buffer with

multiple rows. For more information about buffering, see “Buffering Multiple

Results” on page 3-23.

The database server calls the am_getnext purpose function until that function

returns MI_NO_MORE_RESULTS. Then the database server calls the am_endscan

purpose function, if any, that the access method supplies.

If the access method does not provide an am_rescan purpose function, am_getnext

stores interim data for subsequent scans in memory that persists between

executions of the access method. For more information on memory duration, refer

to “Storing Data in Shared Memory” on page 3-2.

Return Values

MI_ROWS indicates the return of a qualified row.

MI_NO_MORE_RESULTS indicates the end of the scan.

MI_ERROR indicates failure.

Related Topics

See the descriptions of:

v Purpose functions am_getnext, am_endscan, and am_rescan

v Accessor functions mi_eval_am_qual(), mi_tab_niorows(), and

mi_tab_setnextrow() in Chapter 5, “Descriptor Function Reference,” on page 5-1

am_getnext

4-18 IBM Informix Virtual-Table Interface Programmer’s Guide

v DataBlade API function mi_row_create() in the IBM Informix DataBlade API

Programmer’s Guide

v “Executing Qualification Functions” on page 3-19

v “Optimizing Queries” on page 2-4

am_getnext

Chapter 4. Purpose-Function Reference 4-19

am_insert

The database server calls am_insert for:

v An INSERT or UPDATE statement

v An ALTER FRAGMENT statement that moves a row to a different fragment

Syntax

mi_integer

am_insert(MI_AM_TABLE_DESC *tableDesc,

 MI_ROW *row, mi_integer *rid)

tableDesc points to the table descriptor.

row points to a row structure in shared memory that contains the

values for the access method to insert.

rid points to the row identifier of the new row.

Usage

Possible row identifiers include:

v The sequence of this row within the fragment

v An offset to an LO handle

v A value that an external data manager assigns

v A value that the access method assigns

For each new entry, am_insert:

v Restructures and converts the data in the MI_ROW data structure as necessary

to conform to the source table

v Stores the new data in the appropriate sbspace or extspace

If the data is in an extspace, the access method stores the rowID value for use in

retrieving the new record in the future.

Important: The database server does not call am_insert unless the am_readwrite

purpose flag is set. If you do not set the am_rowids purpose flag, the

database server ignores any row identifier that the access method

provides. For more information about setting purpose flags, refer to

Chapter 6, “SQL Statements for Access Methods,” on page 6-1.

Warning: If the access method does not supply am_insert, but an SQL statement

requires it, the database server raises an error. For more information on

how to handle this error, refer to “Supplying Error Messages and a User

Guide” on page 3-27.

Return Values

MI_OK indicates success. MI_ERROR indicates failure.

Related Topics

See the descriptions of:

v Purpose functions am_delete and am_update

v Purpose flags am_readwrite and am_rowid in “Settings Purpose Functions,

Flags, and Values” on page 6-8

v “Inserting, Deleting, and Updating Data” on page 2-5

am_insert

4-20 IBM Informix Virtual-Table Interface Programmer’s Guide

am_open

The database server calls am_open to initialize input or output prior to processing

an SQL statement.

Syntax

mi_integer am_open(MI_AM_TABLE_DESC *tableDesc)

tableDesc points to the table descriptor.

Usage

As part of the initialization, am_open might:

v Determine the reason or mode for the open, as described in “mi_tab_mode()” on

page 5-49.

v Allocate PER_STMT_EXEC or PER_STMT_PREP memory for a user-data

structure as described in “Persistent User Data” on page 3-3.

v Open a database connection with the DataBlade API mi_open() function.

To enable subsequent purpose functions to use the database, am_open can copy

the connection handle that mi_open() returns into the user-data structure.

v Register callback functions to handle exceptions, as described in “Handling the

Unexpected” on page 3-6.

v Call the appropriate DataBlade API functions to obtain a file handle for an

extspace or an LO handle for a smart large object.

Return Values

MI_OK indicates success. MI_ERROR indicates failure.

Related Topics

See the descriptions of:

v Purpose function am_close

v Memory allocation, callback functions, and the functions to open files or smart

large objects in the IBM Informix DataBlade API Programmer’s Guide

v mi_tab_mode() and mi_tab_setniorows() in Chapter 5, “Descriptor Function

Reference,” on page 5-1

v “Starting and Ending Processing” on page 2-3

am_open

Chapter 4. Purpose-Function Reference 4-21

am_rescan

The database server typically calls am_rescan to process a join or subquery that

requires multiple scans on the same table.

Syntax

mi_integer am_rescan(MI_AM_SCAN_DESC *scanDesc)

scanDesc points to the scan descriptor.

Usage

Although am_rescan is an optional purpose function, the access method can

enhance efficiency by supplying am_rescan for applications that involve joins,

subqueries, and other multiple-pass scan processes. The am_rescan purpose

function ends the previous scan in an appropriate manner and begins a new scan

on the same open table.

Without an am_rescan purpose function, the database server calls the am_endscan

function and then am_beginscan, if the access method provides these functions.

Tip: To determine if an outer join might cause a constant value to change, call

mi_qual_const_depends_outer(). To determine the need to reevaluate the

qualification descriptor, call mi_scan_newquals() from am_rescan.

Return Values

MI_OK indicates success. MI_ERROR indicates failure.

Related Topics

See the descriptions of:

v Purpose function am_getnext

v Accessor functions mi_qual_const_depends_outer()and mi_scan_newquals() in

Chapter 5, “Descriptor Function Reference,” on page 5-1

v “Optimizing Queries” on page 2-4

am_rescan

4-22 IBM Informix Virtual-Table Interface Programmer’s Guide

am_scancost

The query optimizer calls am_scancost during a SELECT statement, before it calls

am_open.

Syntax

mi_real * am_scancost(MI_AM_TABLE_DESC *tableDesc,

 MI_AM_QUAL_DESC *qualDesc)

tableDesc points to the table descriptor.

qualDesc points to the qualification descriptor, which specifies the criteria

that a table row must satisfy to qualify for retrieval.

Usage

The am_scancost purpose function estimates the cost to fetch and qualify data for

the current query. The optimizer relies on the am_scancost return value to evaluate

a query path for a scan that involves the access method. This function is not called

for indexes on remote tables.

Warning: If the access method does not have an am_scancost purpose function,

the database server estimates the cost of a scan, which can diminish the

optimal nature of the query plan.

Calculating Cost: The following types of information influence cost:

v Distribution of values across storage media

– Is the data clustered?

– Are fragments spread across different physical volumes?

– Does any one fragment contain a large or a narrow range of values for a

column that the query specifies?
v Information about the tables, columns, and indexes in the queried database

– Does the query contain a subquery?

– Does it require a place in memory to store aggregations?

– Does a qualification require casting or conversion of data types?

– Does the query involve multiple tables or inner joins?

– Do indexes exist for the appropriate key columns? Are keys unique?

To calculate a cost, am_scancost considers the following factors:

v Disk access

Add 1 to the cost for every disk access required to access the data.

v Memory access

Add .15 to the cost for every row accessed in memory.

v The cost of evaluating the qualification criteria

Compute the cost of retrieving only those table entries that qualify.

Important: Because a function cannot return an mi_real data type by value, you

must allocate memory to store the scan cost value and return a pointer

to that memory from the am_scancost purpose function.

Factoring Cost: To adjust the result of am_scancost, set the am_costfactor purpose

value. The database server multiplies the cost that am_scancost returns by the

am_scancost

Chapter 4. Purpose-Function Reference 4-23

value of am_costfactor, which defaults to 1 if you do not set it. To find out how to

set purpose values, refer to Chapter 6, “SQL Statements for Access Methods,” on

page 6-1.

Forcing Reoptimization: The optimizer might need a new scan cost for

subsequent scans of the same table, for example, because of a join. To execute

am_scancost before each rescan, call the mi_qual_setreopt() function. For a list of

VTI accessor functions that am_scancost can call to help evaluate cost and the need

to reoptimize, refer to “Related Topics” on page 4-17.

Return Values

The return value is a pointer to an mi_real data type that contains the cost value.

Related Topics

See the descriptions of:

v Purpose function am_stats

v Purpose flag am_scancost in “Settings Purpose Functions, Flags, and Values” on

page 6-8

v Accessor functions mi_qual_const_depends_hostvar(),

mi_qual_constisnull_nohostvar(), mi_qual_constant_nohostvar(),

mi_qual_boolop(), mi_qual_issimple(), and mi_qual_setreopt() in Chapter 5,

“Descriptor Function Reference,” on page 5-1

am_scancost

4-24 IBM Informix Virtual-Table Interface Programmer’s Guide

am_stats

The database server calls am_stats to process an UPDATE STATISTICS statement.

Syntax

mi_integer am_stats(MI_AM_TABLE_DESC *tableDesc,

 MI_AM_TSTATS_DESC *tstatsDesc);

tableDesc points to the table descriptor.

tstatsDesc points to the statistics descriptor.

Usage

To influence the am_stats sampling rate, an UPDATE STATISTICS statement might

include an optional distribution-level keyword, low, medium, or high. If the

UPDATE STATISTICS statement does not include one of these keywords, the

default low distribution level applies.

Adjust the sampling rate in your version of the am_stats purpose function

according to the distribution-level keyword that the user specifies in the UPDATE

STATISTICS statement. To determine which keyword—LOW, MEDIUM, or

HIGH—an UPDATE STATISTICS statement specifies, call the

mi_tab_update_stat_mode() function. For detailed information about the sampling

rates that each keyword implies, refer to the description of UPDATE STATISTICS

in the IBM Informix Guide to SQL: Syntax.

The am_stats purpose function calls the various VTI accessor functions that set

values in the statistics descriptor for the database server. The database server

places the statistics descriptor results in the systables and syscolumns, system

catalog tables. The am_stats function can also save any additional values in a

location that am_scancost can access, such as a file in the extspace or a table in

sbspace.

Return Values

MI_OK indicates success. MI_ERROR indicates failure.

Related Topics

See the descriptions of:

v The am_scancost purpose function

v Accessor functions mi_tab_update_stat_mode() and mi_tstats_* in Chapter 5,

“Descriptor Function Reference,” on page 5-1

v The Chapter 5, “Descriptor Function Reference,” on page 5-1

v “Updating Statistics” on page 3-22

am_stats

Chapter 4. Purpose-Function Reference 4-25

am_truncate

Dynamic Server provides built-in am_truncate purpose functions for its primary

access methods that support TRUNCATE operations on columns of permanent and

temporary tables. Dynamic Server also provides a built-in am_truncate purpose

function for its secondary access method for TRUNCATE operations on B-tree

indexes.

Usage

You must use the am_truncate() access method with the TRUNCATE statement to

operate on virtual tables or on tables with virtual indexes. You use TRUNCATE to

depopulate a local table and free the storage space that formerly held its data rows

and B-tree structures.

For more information am_truncate(), see the IBM Informix Guide to SQL: Syntax.

am_truncate

4-26 IBM Informix Virtual-Table Interface Programmer’s Guide

am_update

The database server calls am_update to process an UPDATE statement.

Syntax

mi_integer am_update(MI_AM_TABLE_DESC *tableDesc,

 MI_ROW *row, mi_integer rowid);

tableDesc points to the table descriptor.

row points to the row structure that contains the updated values.

rowid indicates where to write the updated values.

Usage

The am_update function modifies the contents of an existing row.

If the access method needs to move the updated row, am_update can take the

following actions:

v Deletes the old row

v Adjusts the data format in row to conform to the source data

v Stores the updated source-data record

v Stores the updated row identifier

Important: The database server does not call am_update unless both the

am_rowids and am_readwrite purpose flags are set. For more

information about setting purpose flags, refer to Chapter 6, “SQL

Statements for Access Methods,” on page 6-1.

Warning: If the access method does not supply am_update, but an SQL statement

requires it, the database server raises an error. For more information on

how to handle this error, refer to “Supplying Error Messages and a User

Guide” on page 3-27.

Return Values

MI_OK indicates success. MI_ERROR indicates failure.

Related Topics

See the descriptions of:

v Purpose functions am_delete and am_insert

v Purpose flags am_rowids and am_readwrite in “Settings Purpose Functions,

Flags, and Values” on page 6-8

v “Inserting, Deleting, and Updating Data” on page 2-5

am_update

Chapter 4. Purpose-Function Reference 4-27

4-28 IBM Informix Virtual-Table Interface Programmer’s Guide

Chapter 5. Descriptor Function Reference

In This Chapter . 5-2

Descriptors . 5-2

Qualification Descriptor . 5-3

Row Descriptor . 5-5

Scan Descriptor . 5-5

Statistics Descriptor . 5-6

Table Descriptor . 5-6

Include Files . 5-7

Accessor Functions . 5-7

mi_eval_am_qual() . 5-8

mi_init_am_qual() . 5-9

mi_qual_boolop() . 5-10

mi_qual_column() . 5-11

mi_qual_commuteargs() . 5-12

mi_qual_constant() . 5-13

mi_qual_constant_nohostvar() . 5-14

mi_qual_constisnull() . 5-16

mi_qual_constisnull_nohostvar() . 5-17

mi_qual_const_depends_hostvar() . 5-18

mi_qual_const_depends_outer() . 5-19

mi_qual_funcid() . 5-20

mi_qual_funcname() . 5-21

mi_qual_handlenull() . 5-22

mi_qual_issimple() . 5-23

mi_qual_needoutput() . 5-24

mi_qual_negate() . 5-25

mi_qual_nquals() . 5-26

mi_qual_qual() . 5-27

mi_qual_setoutput() . 5-28

mi_qual_setreopt() . 5-29

mi_qual_setvalue() . 5-30

mi_qual_value() . 5-31

mi_scan_forupdate() . 5-32

mi_scan_isolevel() . 5-33

mi_scan_locktype() . 5-34

mi_scan_newquals() . 5-35

mi_scan_nprojs() . 5-36

mi_scan_projs() . 5-37

mi_scan_quals() . 5-38

mi_scan_setuserdata() . 5-39

mi_scan_table() . 5-40

mi_scan_userdata() . 5-41

mi_tab_amparam() . 5-42

mi_tab_check_msg() . 5-43

mi_tab_createdate() . 5-45

mi_tab_id() . 5-46

mi_tab_isolevel() . 5-47

mi_tab_istable() . 5-48

mi_tab_mode() . 5-49

mi_tab_name() . 5-50

mi_tab_niorows() . 5-51

mi_tab_numfrags() . 5-52

mi_tab_owner() . 5-53

mi_tab_partnum() . 5-54

mi_tab_rowdesc() . 5-55

© Copyright IBM Corp. 1996, 2008 5-1

mi_tab_setnextrow() . 5-56

mi_tab_setniorows() . 5-57

mi_tab_setuserdata() . 5-58

mi_tab_spaceloc() . 5-59

mi_tab_spacename() . 5-60

mi_tab_spacetype() . 5-62

mi_tab_update_stat_mode() . 5-63

mi_tab_userdata() . 5-64

mi_tstats_setnpages() . 5-65

mi_tstats_setnrows() . 5-66

In This Chapter

This chapter provides syntax and usage for the functions that the IBM Informix

database server supplies to access-method developers. This chapter consists of the

following information:

v “Descriptors” on page 5-2, following, describes the predefined data structures

through which the database server and access method pass information.

v “Include Files” on page 5-7 lists the header files with descriptor and function

declarations that the access method must include.

v “Accessor Functions” on page 5-7 lists every function provided specifically for

use with the VTI.

The information in this chapter is organized in alphabetical order by descriptor

and function name.

Purpose functions use the functions and data structures that this chapter describes

to communicate with the database server. For details about the purpose function,

refer to Chapter 4, “Purpose-Function Reference,” on page 4-1.

Descriptors

The application programming interface (API) that the IBM Informix database

server provides with the VTI consists primarily of the following components:

v Opaque data structures, called descriptors, that the database server passes by

reference to purpose functions

v Accessor functions that store and retrieve descriptor values

The Virtual-Table Interface (VTI) provides the following descriptors and accessor

functions.

Descriptor Describes

Accessor-

Function

Prefix Reference

qualification descriptor

(MI_AM_QUAL_DESC)

WHERE clause criteria mi_qual_ “Qualification

Descriptor” on page

5-3

row descriptor

(MI_ROW)

Order and data types

of projected columns

Various

DataBlade API

functions

IBM Informix

DataBlade API

Programmer’s Guide

scan descriptor

(MI_AM_SCAN_DESC)

Projection clause lists

objects or expressions

to retrieve

mi_scan_ “Scan Descriptor” on

page 5-5

5-2 IBM Informix Virtual-Table Interface Programmer’s Guide

Descriptor Describes

Accessor-

Function

Prefix Reference

statistics descriptor

(MI_AM_TSTATS_DESC)

Distribution of values mi_tstats_ “Statistics

Descriptor” on page

5-6

table descriptor

(MI_AM_TABLE_DESC)

Table attributes and

fragment partition

mi_tab_ “Table Descriptor” on

page 5-6

Each of the following sections describes the contents of a descriptor and the name

of the accessor function that retrieves each descriptor field. For complete syntax,

including the parameters and return type of each accessor function, refer to

“Accessor Functions” on page 5-7.

Important: Because the internal structure of any VTI descriptor might change, IBM

Informix declares them as opaque structures. To make a portable access

method, always use the access functions to extract or set descriptor

values. Do not access descriptor fields directly.

Qualification Descriptor

A qualification descriptor, or MI_AM_QUAL_DESC structure, describes the

conditions in the WHERE clause of an SQL statement. For a detailed description of

qualification processing, including examples, refer to “Processing Queries” on page

3-14.

Use the VTI mi_scan_quals() function to obtain a pointer to the qualification

descriptor from the scan descriptor.

The following accessor functions extract information from a qualification

descriptor.

Accessor Function Return Value

mi_qual_boolop() The operator type (AND or OR) of a qualification

that is a complex expression

mi_qual_column() The position that the column argument to a

qualification function occupies within a row

mi_qual_commuteargs() MI_TRUE if the argument list begins with a

constant rather than a column value

mi_qual_const_depends_hostvar()

MI_TRUE if a constant argument to a qualification

function acquires a value at runtime from a host

variable

mi_qual_const_depends_outer()

MI_TRUE if the value of a particular constant

argument can change each rescan

mi_qual_constant() The runtime value of the constant argument to a

qualification function

mi_qual_constant_nohostvar() The value specified in the WHERE clause for the

constant argument to a qualification function

mi_qual_constisnull() MI_ TRUE if the value of a constant argument to a

qualification function is NULL

Chapter 5. Descriptor Function Reference 5-3

mi_qual_constisnull_nohostvar()

MI_ TRUE if the WHERE clause specifies a NULL

value as the constant argument to a qualification

function

mi_qual_funcid() The routine identifier of a qualification function

mi_qual_funcname() The name of a qualification function

mi_qual_handlenull() MI_TRUE if the qualification function accepts

NULL arguments

mi_qual_issimple() MI_TRUE if the qualification contains one function

rather than a complex expression

mi_qual_needoutput() MI_TRUE if the qualification function supplies an

output parameter value

 Obtain and set a pointer to the output-parameter

value with mi_qual_setoutput().

mi_qual_negate() MI_TRUE if the qualification includes the operator

NOT

mi_qual_nquals() The number of nested qualifications in a complex

expression, or 0 for a simple qualification that

contains no Boolean operators

mi_qual_qual() Pointer to one qualification in a complex

qualification descriptor or to the only qualification

mi_qual_value() One of the following possible values:

v MI_VALUE_NOT_EVALUATED until the

qualification returns a result

v MI_VALUE_TRUE if the qualification returns

MI_TRUE

v MI_VALUE_FALSE if the qualification returns

MI_FALSE

Set the results in the qualification descriptor with

mi_qual_setvalue(). Reset the qualification

descriptor to MI_VALUE_NOT_EVALUATED with

mi_init_am_qual().

 The following accessor functions set values in the descriptor.

Accessor Function Value Set

mi_qual_setvalue() The result from executing the qualification operator

or function

mi_qual_setoutput() A host-variable value

mi_qual_setreopt() An indicator to force reoptimization between

rescans

mi_eval_am_qual() MI_TRUE if the current row satisfies the current

qualification

mi_init_am_qual() MI_VALUE_NOT_EVALUATED to reset all results

fields in a qualification descriptor

5-4 IBM Informix Virtual-Table Interface Programmer’s Guide

Row Descriptor

A row descriptor, or MI_ROW_DESC structure, typically describes the columns

that the CREATE TABLE statement establishes for a table. A row descriptor can

also describe a single row-type column. The DataBlade API defines the row

descriptor that the access-method API uses.

The table descriptor contains a pointer to the row descriptor.

The accessor functions for the row descriptor (mi_column_*) provide information

about each column, including the column name, floating-point precision and scale,

alignment, and a pointer to a type descriptor. For information about the accessor

functions for the row descriptor, refer to the IBM Informix DataBlade API

Programmer’s Guide.

Scan Descriptor

The scan descriptor, or MI_AM_SCAN_DESC structure, contains the specifications

of an SQL query, including the following items:

v The columns to project

v A pointer to selection criteria from the WHERE clause

v Isolation and locking information

v A pointer to where the access method can store scanned data

The database server passes the scan descriptor to the access-method scanning

purpose functions: am_beginscan, am_endscan, am_rescan, and am_getnext.

The following functions extract information from the scan descriptor.

Accessor Function Return Value

mi_scan_forupdate() MI_TRUE if a SELECT statement includes a FOR

UPDATE clause

mi_scan_isolevel() The isolation level for the table

mi_scan_locktype() The lock type for the scan

mi_scan_newquals() MI_TRUE if the qualification descriptor changes

after the first scan for a join or subquery

mi_scan_nprojs() The number of columns in the projected row that

the access method returns to the query

mi_scan_projs() A pointer to an array that identifies which columns

from the row descriptor make up the projected row

that the query returns

mi_scan_quals() A pointer to the qualification descriptor or a

NULL-valued pointer if the database server does

not create a qualification descriptor

mi_scan_table() A pointer to the table descriptor for the table that

the access method scans

mi_scan_userdata() A pointer to the user-data area of memory

 The following accessor function sets data in the qualification descriptor.

Accessor Function Value Set

Chapter 5. Descriptor Function Reference 5-5

mi_scan_setuserdata() The pointer to user data that a subsequent function

will need

Statistics Descriptor

An access method returns statistics to the UPDATE STATISTICS statement in a

statistics descriptor, or MI_AM_TSTATS_DESC structure. The database server

copies the separate values from the statistics descriptor to pertinent tables in the

system catalog.

The following accessor functions set information in the statistics descriptor.

Accessor Function Value Set

mi_tstats_setnpages() The number of pages that the table uses

mi_tstats_setnrows() The number of rows in the table

Table Descriptor

The table descriptor, or MI_AM_TABLE_DESC structure, provides information

about the table, particularly the data definition from the CREATE TABLE statement

that created the object.

The following accessor functions extract information from or set values in the table

descriptor.

Accessor Function Return Value

mi_tab_amparam() Parameter values from the USING clause of the

CREATE TABLE statement

mi_tab_createdate() The date that the table was created

mi_tab_id() The unique table identifier

mi_tab_isolevel() The isolation level

mi_tab_istable() MI_TRUE for a primary access method

mi_tab_mode() The input/output mode (read-only, read and write,

write-only, and log transactions)

mi_tab_name() The table name

mi_tab_niorows() The number of rows that mi_tab_setniorows() sets

mi_tab_numfrags() The number of fragments in the table or 1 for a

nonfragmented table

mi_tab_owner() The table owner

mi_tab_partnum() The unique partition number, or fragment

identifier, of this table or fragment

mi_tab_rowdesc() A pointer to a row descriptor that describes the

columns in the row

mi_tab_spaceloc() The extspace location of the table fragment

mi_tab_spacename() The storage space name for the fragment from the

CREATE TABLE statement IN clause

mi_tab_spacetype() The type of space used for the table: X for an

extspace or S for an sbspace

5-6 IBM Informix Virtual-Table Interface Programmer’s Guide

Any other value means that neither an IN clause

nor the sysams system catalog table specifies the

type of storage space.

mi_tab_update_stat_mode() The level of statistics that an UPDATE STATISTICS

statement generates: low, medium, or high

mi_tab_userdata() A pointer to the user-data area of memory

 The following accessor functions set values in the table descriptor.

Accessor Function Value Set

mi_tab_setniorows() The number of rows that shared memory can store

from a scan

mi_tab_setnextrow() One row of the number that mi_tab_setniorows()

allows

mi_tab_setuserdata() A pointer in the user-data area of memory

Include Files

Several files contain definitions that the access method references. Include the

following files in your access-method build:

v The mi.h file defines the DataBlade API descriptors, other opaque data

structures, and function prototypes.

v The miami.h file defines the descriptors and prototypes for the VTI.

v If your access method alters the default memory duration, include the

memdur.h and minmdur.h files.

Global Language Support

v To call GLS routines for internationalization, include ifxgls.h.

End of Global Language Support

Accessor Functions

The VTI library contains functions that primarily access selected fields from the

various descriptors.

For a description of any descriptor in this section, refer to “Descriptors” on page

5-2.

This chapter lists detailed information about specific VTI accessor functions in

alphabetical order by function name. To find the accessor functions for a particular

descriptor, look for the corresponding function-name prefix at the top of each page.

 Descriptor Accessor-Function Prefix Descriptor Accessor-Function Prefix

Qualification mi_qual_*() Scan mi_scan_*()

mi_eval_am_qual() Statistics mi_tstats_*()

mi_init_am_qual() Table mi_tab_*()

Chapter 5. Descriptor Function Reference 5-7

mi_eval_am_qual()

The mi_eval_am_qual() function evaluates parts of a qualification that the access

method does not set to MI_VALUE_TRUE or MI_VALUE_FALSE.

Syntax

mi_boolean

mi_eval_am_qual(MI_ROW *row, MI_AM_QUAL_DESC *qualDesc);

row points to the row structure.

qualDesc points to the qualification descriptor.

Usage

The am_getnext purpose function can call mi_eval_am_qual() to obtain results for

any qualifications that the access method cannot complete. Before the access

method can call mi_eval_am_qual(), it must call mi_row_create() to assemble a

row. For a detailed procedure and examples, refer to “Processing Complex

Qualifications” on page 3-19.

Tip: Both mi_row_create() and mi_eval_am_qual() can increase response time and

CPU usage. Call them only if necessary.

If mi_eval_am_qual() returns MI_TRUE, am_getnext returns MI_ROWS. If

mi_eval_am_qual() returns MI_FALSE, am_getnext disregards the current row,

does not return a value, and starts to evaluate the next row.

Return Values

MI_TRUE indicates that the row qualifies. MI_FALSE indicates that the row does

not qualify.

Related Topics

See the description of function mi_init_am_qual().

5-8 IBM Informix Virtual-Table Interface Programmer’s Guide

mi_init_am_qual()

The mi_init_am_qual() function reinitializes all parts of the qualification to

MI_VALUE_NOT_EVALUATED.

Syntax

void mi_init_am_qual(MI_AM_QUAL_DESC *qualDesc);

qualDesc points to the qualification descriptor.

Usage

The database server does not initialize the results area of a qualification descriptor

to MI_VALUE_NOT_EVALUATED after a call to mi_eval_am_qual() changes the

results value to MI_VALUE_TRUE or MI_VALUE_FALSE. To initialize the

qualification results for the next row, have am_getnext call mi_init_am_qual().

Return Values

None

Related Topics

See the description of function mi_eval_am_qual().

Chapter 5. Descriptor Function Reference 5-9

mi_qual_boolop()

The mi_qual_boolop() function retrieves the Boolean operator that combines two

qualifications in a complex expression.

Syntax

MI_AM_BOOLOP mi_qual_boolop(MI_AM_QUAL_DESC *qualDesc);

qualDesc points to the qualification descriptor.

Usage

The access method first obtains results for the simple functions in a complex

qualification. To determine how to combine the results that the access method has

so far, it can call the mi_qual_boolop() function.

Return Values

MI_BOOLOP_NONE indicates that the current qualification does not contain a

Boolean operator.

MI_BOOLOP_AND indicates that the current qualification contains a Boolean AND

operator.

MI_BOOLOP_OR indicates that the current qualification contains a Boolean OR

operator.

Related Topics

See the descriptions of:

v Function mi_qual_issimple()

v “Qualifying Data” on page 3-18

5-10 IBM Informix Virtual-Table Interface Programmer’s Guide

mi_qual_column()

The mi_qual_column() function identifies the key-column argument to a

qualification function.

Syntax

mi_smallint mi_qual_column(MI_AM_QUAL_DESC *qualDesc);

qualDesc points to the qualification descriptor.

Usage

A qualification identifies a column by a number that locates the column in the row

descriptor. The mi_qual_column() function returns the number 0 for the first

column specified in the row descriptor and adds 1 for each subsequent column.

For example, assume the WHERE clause contains the function

equal(name,’harry’) and that name is the second column in the row. The

mi_qual_column() function returns the value 1.

The access method might need to identify the column by name, for example, to

assemble a query for an external database manager. To retrieve the column name,

pass the return value of mi_qual_column() and the row descriptor to the

DataBlade API mi_column_name() function as in the following example:

rowDesc = mi_tab_rowdesc(tableDesc);

colnum=mi_qual_column(qualDesc);

colname=mi_column_name(rowDesc,colnum);

Return Values

The integer identifies the column argument by its position in the table row.

Related Topics

See the descriptions of:

v Functions mi_qual_constant() and mi_tab_rowdesc()

v DataBlade API row-descriptor accessor functions in the IBM Informix DataBlade

API Programmer’s Guide

Chapter 5. Descriptor Function Reference 5-11

mi_qual_commuteargs()

The mi_qual_commuteargs() function determines whether the constant precedes

the column in a qualification-function argument list.

Syntax

mi_boolean mi_qual_commuteargs(MI_AM_QUAL_DESC *qualDesc);

qualDesc points to the qualification descriptor.

Return Values

MI_TRUE indicates that constant precedes column in the argument list, for example,

function(constant, column).

MI_FALSE indicates that column precedes constant in the argument list, for example

function(column, constant).

Related Topics

See the description of accessor function mi_qual_issimple().

5-12 IBM Informix Virtual-Table Interface Programmer’s Guide

mi_qual_constant()

The mi_qual_constant() function retrieves the constant value that the where clause

specifies as a qualification-function argument.

Syntax

MI_DATUM mi_qual_constant(MI_AM_QUAL_DESC *qualDesc);

qualDesc points to the qualification descriptor.

Usage

To retrieve the constant value from the argument lists of a qualification function,

call mi_qual_constant() from the am_beginscan or am_getnext purpose function.

Qualification functions evaluate the contents of a column against some criteria,

such as a supplied constant value.

If a qualification function does not involve a host variable, mi_qual_constant()

retrieves the explicit constant argument. For example, mi_qual_constant() retrieves

the string harry from the arguments to the following function:

WHERE equal(name,’harry’)

If a qualification function involves a host variable but no explicit value,

mi_qual_constant() retrieves the runtime constant value that is associated with the

host variable. For example, mi_qual_constant() retrieves the runtime value that

replaces the ? in the following function:

WHERE equal(name,?)

Important: Because the value that an application binds to host variables can

change between scans, the results of mi_qual_constant() might change

between calls to am_getnext.

To determine if a function involves a host variable argument, execute

mi_qual_const_depends_hostvar() in the am_scancost purpose function. If

mi_qual_const_depends_hostvar() returns MI_TRUE, call mi_qual_constant() from

am_getnext to retrieve the most recent value for the host variable and do not save

the value from mi_qual_constant() in user data for subsequent scans.

Return Values

The MI_DATUM structure contains the value of the constant argument.

Related Topics

See the descriptions of:

v Functions mi_qual_column(), mi_qual_constisnull(), and

mi_qual_const_depends_hostvar()

v Generic functions in Table 3-2 on page 3-16

v MI_DATUM in the IBM Informix DataBlade API Programmer’s Guide

Chapter 5. Descriptor Function Reference 5-13

mi_qual_constant_nohostvar()

The mi_qual_constant_nohostvar() function returns an explicit constant value, if

any, from the qualification-function arguments.

Syntax

MI_DATUM

mi_qual_constant_nohostvar(MI_AM_QUAL_DESC *qualDesc);

qualDesc points to the qualification descriptor.

Usage

To help calculate the cost of a qualification function, the am_scancost purpose

function can extract the constant and column arguments and evaluate the

distribution of the specified constant value in the specified column. Function

arguments can include constants from two sources:

v A value that the WHERE clause explicitly supplies

v A dynamic value, or host variable, that the access method or a client application

might supply

In the WHERE clause, the function argument list contains a placeholder, such as

a question mark (?), for the host variable.

The following function involves both an explicit value (200) and a host variable (?)

as constant arguments, rather than an explicit value:

WHERE range(cost, 200, ?)

In the following example, a WHERE clause specifies two constant values in a row

that holds three values. A client program supplies the remaining value.

WHERE equal(prices, row(10, ?, 20))

For the preceding qualification, the mi_qual_constant_nohostvar() function returns

row(10, NULL, 20).

Because the am_scancost purpose function cannot predict the value of a host

variable, it can only evaluate the cost of scanning for constants that the WHERE

clause explicitly specifies. Call the mi_qual_constant_nohostvar() function to

obtain any argument value that is available to am_scancost. The

mi_qual_constant_nohostvar() function ignores host variables if the qualification

supplies an explicit constant value.

By the time the database server invokes the am_beginscan or am_getnext purpose

function, the qualification descriptor contains a value for any host- variable

argument. To execute the function, obtain the constant value with the

mi_qual_constant() function.

Return Values

If the argument list of a function includes a specified constant value,

mi_qual_constant_nohostvar() returns that value in an MI_DATUM structure.

If the specified constant contains multiple values, this function returns all provided

values and substitutes a NULL for each host variable.

If the function arguments do not explicitly specify a constant value, this function

returns a NULL value.

5-14 IBM Informix Virtual-Table Interface Programmer’s Guide

Related Topics

See the descriptions of:

v Accessor functions mi_qual_constisnull_nohostvar() and mi_qual_constant()

v “Runtime Values as Arguments” on page 3-16

v MI_DATUM in the IBM Informix DataBlade API Programmer’s Guide

v Host variables in the IBM Informix DataBlade API Programmer’s Guide, IBM

Informix User-Defined Routines and Data Types Developer’s Guide, and the IBM

Informix ESQL/C Programmer’s Manual

Chapter 5. Descriptor Function Reference 5-15

mi_qual_constisnull()

The mi_qual_constisnull() function determines whether the arguments to a

qualification function include a NULL constant.

Syntax

mi_boolean mi_qual_constisnull(MI_AM_QUAL_DESC *qualDesc);

qualDesc points to the qualification descriptor.

Usage

The Return Value column shows the results of the mi_qual_constisnull() function

for various constant arguments.

 Sample Function Description Return Value

function(column, 10) The arguments specify the explicit

non-NULL constant value 10.

MI_FALSE

function(column, NULL) The arguments specify an explicit NULL

value.

MI_TRUE

The form function(column,?) should not occur because the qualification descriptor

that the database server passes to the am_beginscan or am_getnext purpose

function contains values for any host-variable argument.

Do not call this function from the am_scancost purpose function. Use

mi_qual_constisnull_nohostvar() instead.

Return Values

MI_TRUE indicates that the arguments include an explicit NULL-valued constant.

5-16 IBM Informix Virtual-Table Interface Programmer’s Guide

mi_qual_constisnull_nohostvar()

The mi_qual_constisnull_nohostvar() function determines whether a

qualification-function argument list contains an explicit NULL value.

Syntax

mi_boolean

mi_qual_constisnull_nohostvar(MI_AM_QUAL_DESC *qualDesc);

qualDesc points to the qualification descriptor.

Usage

The mi_qual_constisnull_nohostvar() function evaluates the explicit value, if any,

that the WHERE clause specifies in the function argument list. This function does

not evaluate host variables. Call this function from the am_scancost purpose

function.

The following functions compare a column that contains a row to a row constant.

Each function depends on a client application to provide part or all of the constant

value. The Return Value column shows the results of the

mi_qual_constisnull_nohostvar() function.

 Sample Function Description Return Value

function(column, row(10,?,20)) The row contains the explicit constant

values 10 and 20. The unknown value

that replaces ? does not influence the

return value of

mi_qual_constisnull_nohostvar().

MI_FALSE

function(column,

row(NULL,?,20))

The first field in the row constant

specifies an explicit NULL value.

MI_TRUE

function(column,?) The arguments to the function contain no

explicit values. The qualification

descriptor contains a NULL in place of

the missing explicit value.

MI_TRUE

Return Values

MI_TRUE indicates one of the following conditions in the argument list:

v An explicit NULL-valued constant

v No explicit values

MI_FALSE indicates that the constant argument is not NULL-valued.

Related Topics

See the descriptions of:

v Accessor function mi_qual_constisnull()

v “Runtime Values as Arguments” on page 3-16

v Host variables in the IBM Informix DataBlade API Programmer’s Guide, IBM

Informix User-Defined Routines and Data Types Developer’s Guide, and the IBM

Informix ESQL/C Programmer’s Manual

Chapter 5. Descriptor Function Reference 5-17

mi_qual_const_depends_hostvar()

The mi_qual_const_depends_hostvar() function indicates whether the value of a

host variable influences the evaluation of a qualification.

Syntax

mi_boolean

mi_qual_const_depends_hostvar(MI_AM_QUAL_DESC *qualDesc)

qualDesc points to the qualification descriptor.

Usage

Call mi_qual_const_depends_hostvar() in the am_scancost purpose function to

determine whether a qualification function contains a host variable but no explicit

constant value.

Because the database server executes am_scancost before the application binds the

host variable to a value, the qualification descriptor cannot provide a value in time

to evaluate the cost of the scan.

If mi_qual_const_depends_hostvar() returns MI_TRUE, am_scancost can call

mi_qual_setreopt(), which tells the database server to reoptimize before it executes

the scan.

Return Values

MI_TRUE indicates that a host variable provides values when the function

executes. MI_FALSE indicates that the qualification descriptor supplies the constant

value.

Related Topics

See the descriptions of:

v Accessor functions mi_qual_needoutput() and mi_qual_setreopt()

v “Runtime Values as Arguments” on page 3-16

v Host variables in the IBM Informix DataBlade API Programmer’s Guide, IBM

Informix User-Defined Routines and Data Types Developer’s Guide, and IBM Informix

ESQL/C Programmer’s Manual

5-18 IBM Informix Virtual-Table Interface Programmer’s Guide

mi_qual_const_depends_outer()

The mi_qual_const_depends_outer() function indicates that an outer join provides

the constant in a qualification.

Syntax

mi_boolean

mi_qual_const_depends_outer(MI_AM_QUAL_DESC *qualDesc)

qualDesc points to the qualification descriptor.

Usage

If this mi_qual_const_depends_outer() evaluates to MI_TRUE, the join or subquery

can produce a different constant value for each rescan.

Call mi_qual_const_depends_outer() in am_rescan. If your access method has no

am_rescan purpose function, call mi_qual_const_depends_outer() in

am_beginscan.

Return Values

MI_TRUE indicates that the constant depends on an outer join. MI_FALSE

indicates that the constant remains the same on a rescan.

Related Topics

See the description of accessor function mi_qual_constant().

Chapter 5. Descriptor Function Reference 5-19

mi_qual_funcid()

The mi_qual_funcid() function returns the routine identifier of a qualification

function.

Syntax

mi_integer mi_qual_funcid(MI_AM_QUAL_DESC *qualDesc);

qualDesc points to the qualification descriptor.

Usage

To execute a registered UDR or an internal function with DataBlade API Fastpath

facility, the access method needs a valid routine identifier. The mi_qual_funcid()

function provides a routine identifier, if available, for the qualification function.

If mi_qual_funcid() returns a positive number, the routine identifier exists in the

sysprocedures system catalog table, and the database server can execute the

function. A negative return value from the mi_qual_funcid() function can indicate

a valid function if the database server loads an internal function in shared memory

but does not describe the function in sysprocedures.

Warning: A negative return value might indicate that the SQL WHERE clause

specified an invalid function.

Return Values

A positive integer is the routine identifier by which the database server recognizes

a function.

A negative return value indicates that the sysprocedures system catalog table does

not have a routine identifier for the function.

Related Topics

In this book, see the descriptions of:

v Accessor function mi_qual_funcname()

v “Using the Routine Identifier” on page 3-19

In the IBM Informix DataBlade API Programmer’s Guide, see the descriptions of:

v The function descriptor (MI_FUNC_DESC data structure) and its accessor

functions

v Fastpath function execution, including DataBlade API functions

mi_func_desc_by_typeid() and mi_routine_exec()

5-20 IBM Informix Virtual-Table Interface Programmer’s Guide

mi_qual_funcname()

The mi_qual_funcname() function returns the name of a qualification function.

Syntax

mi_string * mi_qual_funcname(MI_AM_QUAL_DESC *qualDesc)

qualDesc points to the qualification descriptor.

Usage

If mi_qual_funcid() returns a negative value instead of a valid routine identifier,

the qualification function is not registered in the database. The access method

might call the qualification function by name from the access-method library or

send the function name and arguments to external software. For examples, refer to

“Using the Function Name” on page 3-19.

Return Values

The return string contains the name of a simple function in the qualification.

Chapter 5. Descriptor Function Reference 5-21

mi_qual_handlenull()

The mi_qual_handlenull() function determines whether the qualification function

can accept NULL arguments.

Syntax

mi_boolean mi_qual_handlenull(MI_AM_QUAL_DESC *qualDesc)

qualDesc points to the qualification descriptor.

Usage

The database server indicates that a UDR can accept NULL-valued arguments if

the CREATE FUNCTION statement specified the HANDLESNULLS routine

modifier.

Return Values

MI_TRUE indicates that the function handles NULL values. MI_FALSE indicates

that the function does not handle NULL values.

5-22 IBM Informix Virtual-Table Interface Programmer’s Guide

mi_qual_issimple()

The mi_qual_issimple() function determines whether a qualification is a function.

A function has one of the formats that Table 3-2 on page 3-16 shows, with no AND

or OR operators.

Syntax

mi_boolean mi_qual_issimple(MI_AM_QUAL_DESC *qualDesc);

qualDesc points to the qualification descriptor.

Usage

Call mi_qual_issimple() to determine where to process the current qualification. If

mi_qual_issimple() returns MI_TRUE, call the access method routine that executes

the qualification-function execution.

For an example that uses mi_qual_issimple() to find the functions in a complex

WHERE clause, refer to “Processing Complex Qualifications” on page 3-19.

If mi_qual_issimple() returns MI_FALSE, the current qualification is a Boolean

operator rather than a function. For more information about the Boolean operator,

call the mi_qual_boolop() accessor function.

Return Values

MI_TRUE indicates that the qualification is a function. MI_FALSE indicates that the

qualification is not a function.

Related Topics

See the description of:

v Accessor function mi_qual_boolop()

v “Simple Functions” on page 3-15

Chapter 5. Descriptor Function Reference 5-23

mi_qual_needoutput()

The mi_qual_needoutput() function determines whether the access method must

set the value for an OUT argument in a UDR.

Syntax

mi_boolean mi_qual_needoutput(MI_AM_QUAL_DESC *qualDesc,

 mi_integer n);

qualDesc points to the qualification descriptor.

n is always set to 0 to indicate the first and only argument that needs

a value.

Usage

If a UDR declaration includes an out parameter, the function call in the WHERE

clause includes a corresponding placeholder, called a statement-local variable (SLV).

If the mi_qual_needoutput() function detects the presence of an slv, the access

method calls the mi_qual_setoutput() function to set a constant value for that SLV.

For examples of OUT parameters and SLVs, refer to “Runtime Values as

Arguments” on page 3-16.

Return Values

MI_TRUE indicates that the qualification function involves an SLV argument.

MI_FALSE indicates that the qualification function does not specify an SLV

argument.

Related Topics

See the description of accessor function mi_qual_setoutput().

5-24 IBM Informix Virtual-Table Interface Programmer’s Guide

mi_qual_negate()

The mi_qual_negate() function indicates whether the NOT Boolean operator

applies to the results of the specified qualification. The NOT operator can negate

the return value of a function or a Boolean expression.

Syntax

mi_boolean mi_qual_negate(MI_AM_QUAL_DESC *qualDesc);

qualDesc points to the qualification descriptor.

Return Values

MI_TRUE indicates that the qualification function should be negated. MI_FALSE

indicates that the qualification function should not be negated.

Related Topics

See the description of “Negation” on page 3-17.

Chapter 5. Descriptor Function Reference 5-25

mi_qual_nquals()

The mi_qual_nquals() function retrieves the number of qualifications in an AND

or OR qualification expression.

Syntax

mi_integer mi_qual_nquals(MI_AM_QUAL_DESC *qualDesc);

qualDesc points to the qualification descriptor.

Return Values

The return integer indicates the number of qualifications in an AND or OR

qualification expression. A return value of 0 indicates that the qualification contains

one simple function and no Boolean operators.

Related Topics

See the description of “Complex Boolean Expressions” on page 3-17.

5-26 IBM Informix Virtual-Table Interface Programmer’s Guide

mi_qual_qual()

The mi_qual_qual() function points to one function or Boolean expression in a

complex qualification.

Syntax

MI_AM_QUAL_DESC* mi_qual_qual(MI_AM_QUAL_DESC *qualDesc,

 mi_integer n);

qualDesc points to the qualification descriptor.

n identifies which qualification to retrieve in the expression.

 Set n to 0 to retrieve the first qualification descriptor in the array of

qualification descriptors. Set n to 1 to retrieve the second

qualification descriptor in the array. Increment n by 1 to retrieve

each subsequent qualification.

Usage

To determine the number of qualifications in an expression and thus the number of

iterations through mi_qual_qual(), first call the mi_qual_nquals() accessor

function. If mi_qual_nquals() returns 0, the access method does not call

mi_qual_qual() because the access method already knows the address of the

qualification descriptor. For a simple qualification, mi_qual_qual() points to the

same qualification descriptor as mi_scan_quals().

If mi_qual_nquals() returns a non-zero value, the qualification descriptor combines

nested qualifications in a complex expression. The access method can loop through

mi_qual_qual() to process each qualification from those that AND or OR combine.

For an example, refer to “Processing Complex Qualifications” on page 3-19.

Return Values

The pointer that this function returns provides the beginning address of the next

qualification from a complex WHERE clause.

Chapter 5. Descriptor Function Reference 5-27

mi_qual_setoutput()

The mi_qual_setoutput() function sets a constant-argument value for a UDR.

Syntax

void

mi_qual_setoutput(MI_AM_QUAL_DESC *qualDesc, mi_integer n,

 MI_DATUM value, mi_boolean nullflag);

qualDesc points to the qualification descriptor.

n is always set to 0 to indicate the first and only argument that needs

a value.

value passes the output value in a MI_DATUM data structure.

null_flag is MI_TRUE if value is NULL.

Usage

If a function declaration includes an out parameter, the function call in the WHERE

clause includes a corresponding placeholder, called a statement-local variable (SLV).

If the mi_qual_needoutput() function detects the presence of an slv, the access

method calls the mi_qual_setoutput() function to set a constant value for that SLV.

For examples of OUT parameters and SLVs, refer to “Runtime Values as

Arguments” on page 3-16.

Return Values

None

Related Topics

See the description of accessor function mi_qual_needoutput().

5-28 IBM Informix Virtual-Table Interface Programmer’s Guide

mi_qual_setreopt()

The mi_qual_setreopt() function sets an indicator in the qualification descriptor to

force reoptimization.

Syntax

void mi_qual_setreopt(MI_AM_QUAL_DESC *qualDesc)

qualDesc points to the qualification descriptor.

Usage

The am_scancost purpose function can call the mi_qual_setreopt() to indicate that

the optimizer should reevaluate the query path between scans. For example, if

either the mi_qual_const_depends_hostvar() or mi_qual_const_depends_outer()

function returns MI_TRUE, the access method can call mi_qual_setreopt() to alert

the optimizer that the constant-argument value in a qualification descriptor might

change between scans on the same table.

If the access method sets mi_qual_setreopt(), the database server invokes the

am_scancost purpose function before the next scan.

Return Values

None

Related Topics

See the descriptions of:

v Accessor functions mi_qual_const_depends_hostvar() and

mi_qual_const_depends_outer()

v Purpose function am_scancost

Chapter 5. Descriptor Function Reference 5-29

mi_qual_setvalue()

The mi_qual_setvalue() function sets a qualification result.

Syntax

void mi_qual_setvalue(MI_AM_QUAL_DESC *qualDesc,

 MI_AM_VALUE result_value);

qualDesc points to the qualification descriptor.

result_value indicates the result from executing the qualification.

 MI_VALUE_TRUE indicates that the qualification is true.

MI_VALUE_FALSE indicates that the qualification is false.

MI_VALUE_NOT_EVALUATED indicates a pending evaluation.

Usage

The database server initializes all results in a qualification descriptor to

MI_VALUE_NOT_EVALUATED. Typically, am_getnext makes a qualification test

and then calls the mi_qual_setvalue() function to change result_value from

MI_VALUE_NOT_EVALUATED to the test results (MI_VALUE_TRUE or

MI_VALUE_FALSE).

When am_getnext sets all the qualifications that it can for a row, it calls the

mi_eval_am_qual() function to handle any qualifications that it has not set. For an

example, refer to “Processing Complex Qualifications” on page 3-19.

Return Values

None

Related Topics

See the descriptions of accessor functions mi_eval_am_qual(), mi_init_am_qual(),

mi_qual_boolop(), and mi_qual_qual().

5-30 IBM Informix Virtual-Table Interface Programmer’s Guide

mi_qual_value()

The mi_qual_value() function retrieves the result of a qualification.

Syntax

MI_AM_VALUE mi_qual_value(MI_AM_QUAL_DESC *qualDesc);

qualDesc points to the qualification descriptor.

Usage

To evaluate a nested qualification, the access method can use a recursive function.

If a previous recursion set a value for the qualification with the mi_qual_setvalue()

or mi_eval_am_qual() function, mi_qual_value() returns MI_TRUE or MI_FALSE.

The access method can use the mi_qual_value() to obtain the MI_TRUE or

MI_FALSE value for each argument to a Boolean expression. If mi_qual_value

returns MI_VALUE_NOT_EVALUATED, evaluate the corresponding qualification

or pass it to mi_eval_am_qual().

For examples of recursive evaluation, refer to “Processing Complex Qualifications”

on page 3-19.

Return Values

MI_VALUE_TRUE indicates a satisfied qualification.

MI_VALUE_FALSE indicates one of the following:

v A previous function disqualified a column-argument value.

v A previous Boolean operation returned MI_FALSE.

MI_VALUE_NOT_EVALUATED indicates a qualification for which no results exist.

Chapter 5. Descriptor Function Reference 5-31

mi_scan_forupdate()

The mi_scan_forupdate() function determines if the SELECT query includes a FOR

UPDATE clause.

Syntax

mi_boolean mi_scan_forupdate(MI_AM_SCAN_DESC *scanDesc);

scanDesc points to the scan descriptor.

Usage

The access method should protect data with the appropriate lock level for update

transactions and possibly store user data for the am_update or am_delete purpose

function.

To determine the lock level, call the mi_scan_locktype() access function.

Return Values

MI_TRUE indicates that the query includes a FOR UPDATE clause.

MI_FALSE indicates that the query does not include a FOR UPDATE clause.

Related Topics

See the description of accessor functions mi_scan_locktype() and mi_tab_mode().

5-32 IBM Informix Virtual-Table Interface Programmer’s Guide

mi_scan_isolevel()

The mi_scan_isolevel() function retrieves the isolation level that the database

server expects for the table that am_getnext scans.

Syntax

MI_ISOLATION_LEVEL mi_scan_isolevel(MI_AM_SCAN_DESC *scanDesc);

scanDesc points to the scan descriptor.

Usage

If the access method supports isolation levels, it can call mi_scan_isolevel() from

am_beginscan to determine the appropriate isolation level. For a detailed

description of isolation levels, see “Checking Isolation Levels” on page 3-24.

Call mi_scan_isolevel() to validate that the isolation level requested by the

application does not surpass the isolation level that the access method supports. If

the access method supports Serializable, it does not call mi_scan_isolevel() because

Serializable includes the capabilities of all the other levels.

Return Values

MI_ISO_NOTRANSACTION indicates that no transaction is in progress.

MI_ISO_READUNCOMMITTED indicates Dirty Read.

MI_ISO_READCOMMITTED indicates Read Committed.

MI_ISO_CURSORSTABILITY indicates Cursor Stability.

MI_ISO_REPEATABLEREAD indicates Repeatable Read.

MI_ISO_SERIALIZABLE indicates Serializable.

Related Topics

See the descriptions of:

v Functions mi_scan_locktype() and mi_tab_isolevel()

v Isolation levels in “Checking Isolation Levels” on page 3-24

v Sample isolation-level language for access-method documentation (Figure 3-11

on page 3-29)

Chapter 5. Descriptor Function Reference 5-33

mi_scan_locktype()

The mi_scan_locktype() function retrieves the lock type that the database server

expects for the table that am_getnext scans.

Syntax

MI_LOCK_TYPE mi_scan_locktype(MI_AM_SCAN_DESC *scanDesc);

scanDesc points to the scan descriptor.

Usage

If the access method supports locking, use the return value from this function to

determine whether you need to lock an object during am_getnext.

Return Values

MI_LCK_S indicates a shared lock on the table.

MI_LCK_X indicates an exclusive lock on the table.

MI_LCK_IS_S indicates an intent-shared lock on the table and shared lock on the

row.

MI_LCK_IX_X indicates intent-exclusive lock on the table and exclusive lock on the

row.

MI_LCK_SIX_X indicates an intent-shared exclusive lock on the table and an

exclusive lock on the row.

Related Topics

See the descriptions of:

v Functions mi_scan_isolevel() and mi_scan_forupdate()

v Locks in the IBM Informix Performance Guide

5-34 IBM Informix Virtual-Table Interface Programmer’s Guide

mi_scan_newquals()

The mi_scan_newquals() function indicates whether the qualification descriptor

includes changes between multiple scans for the same query statement.

Syntax

mi_boolean mi_scan_newquals(MI_AM_SCAN_DESC *scanDesc);

scanDesc points to the scan descriptor.

Usage

This function pertains to multiple-scan queries, such as a join or subquery. If the

access method provides a function for the am_rescan purpose, that rescan function

calls mi_scan_newquals().

If this function returns MI_TRUE, retrieve information from the qualification

descriptor and obtain function descriptors. If it returns MI_FALSE, retrieve state

information that the previous scan stored in user data.

Return Values

MI_TRUE indicates that the qualifications have changed since the start of the scan

(am_beginscan). MI_FALSE indicates that the qualifications have not changed.

Chapter 5. Descriptor Function Reference 5-35

mi_scan_nprojs()

The mi_scan_nprojs() function returns a value that is 1 less than the number of

columns in a query projection.

Syntax

mi_integer mi_scan_nprojs(MI_AM_SCAN_DESC *scanDesc)

scanDesc points to the scan descriptor.

Usage

Use the return value from this function to determine the number of times to loop

through the related mi_scan_projs() function.

The mi_scan_nprojs() function returns 2 to indicate that the following SELECT

statement projects three columns:

SELECT column1, column2, column3 FROM table

Return Values

The integer return value indicates the number of columns that the Projection clause

of a query specifies.

Related Topics

See the description of accessor function mi_scan_projs().

5-36 IBM Informix Virtual-Table Interface Programmer’s Guide

mi_scan_projs()

The mi_scan_projs() function identifies each column that the Projection clause of a

query specifies.

Syntax

mi_smallint * mi_scan_projs(MI_AM_SCAN_DESC *scanDesc)

scanDesc points to the scan descriptor.

Usage

Use the return value from mi_scan_nprojs() to determine the number of times to

execute mi_scan_projs(). Then use mi_scan_projs() to identify columns that the

return row must contain.

A qualification identifies a column by a number that locates the column in the row

descriptor. The number 0 indicates the first column in the row descriptor. In the

following example, mi_scan_projs() points to the values 1, 5, and 4:

SELECT column1, column5, column4 FROM table

The row descriptor describes the columns in the order that they appear in the

CREATE TABLE statement. The following example shows how to determine the

data type of each projected column:

MI_TYPE_DESC *typedesc;

MI_AM_TABLE_DESC*td;

MI_ROW_DESC *rd;

MI_AM_SCAN_DESC*sd;

mi_integer n;

mi_smallint c, *projcols; /* column identifiers */

rd = mi_tab_rowdesc(td); /* describes a table row*/

n = mi_scan_nprojs(sd); /*How many columns are projected?*/

projcols=mi_scan_projs(sd);/* identifies projected columns*/

for (int i = 0; i < n; i++)

{

 c = projcols[i]; /* Get offset to row descriptor.*/

 /* Get data type for projected column. For example

 ** my_data->col_type[c] = mi_column_typedesc(rd, c) */

}

Tip: Because the access method needs to return data for only the columns that

make up the projection, the access method can put a NULL value in the

remaining columns. Eliminate unnecessary column data to improve

performance and reduce the resources that the database server allocates to

format and store the returned rows.

Return Values

Each of the small integers in the array that this function returns identifies a column

by the position of that column in the row descriptor.

Related Topics

See the descriptions of:

v Accessor functions mi_scan_nprojs(), mi_scan_table(), and mi_tab_rowdesc()

v The mi_column_* group of DataBlade API functions and the row descriptor

(MI_ROW_DESC data structure) in the IBM Informix DataBlade API Programmer’s

Guide

Chapter 5. Descriptor Function Reference 5-37

mi_scan_quals()

The mi_scan_quals() function returns the qualification descriptor, which describes

the conditions that an entry must satisfy to qualify for selection.

Syntax

MI_AM_QUAL_DESC* mi_scan_quals(MI_AM_SCAN_DESC *scanDesc);

scanDesc points to the scan descriptor.

Usage

The am_getnext purpose function calls mi_scan_quals() to obtain the starting point

from which it evaluates a row and then passes the return value (a pointer) from

this function to all the qualification-descriptor accessor functions.

Important: If this function returns a NULL-valued pointer, the access method

sequentially scans the table and returns all rows.

Return Values

A valid pointer indicates the start of the qualification descriptor for this scan. A

NULL-valued pointer indicates that the access method should return all rows.

Related Topics

See the description of the accessor functions in “Qualification Descriptor” on page

5-3.

5-38 IBM Informix Virtual-Table Interface Programmer’s Guide

mi_scan_setuserdata()

The mi_scan_setuserdata() function stores a pointer to user data in the scan

descriptor.

Syntax

void mi_scan_setuserdata(MI_AM_SCAN_DESC *scanDesc, void

*userdata);

scanDesc points to the scan descriptor.

user_data points to the user data.

Usage

The access method can create a user-data structure in shared memory to store

reusable information, such as function descriptors for qualifications and to

maintain a row pointer for each execution of the am_getnext purpose function. To

retain user data in memory during the scan (starting when am_beginscan is called

and ending when am_endscan is called), follow these steps:

 To retain user data in memory during the scan:

1. In the am_beginscan purpose function, call the appropriate DataBlade API

function to allocate memory for the user-data structure.

Allocate the user-data memory with a duration of PER_COMMAND.

2. In am_getnext, populate the user-data structure with scan-state information.

3. Before am_getnext exits, call mi_scan_setuserdata() to store a pointer to the

user-data structure in the scan descriptor.

4. In the am_endscan purpose function, call the appropriate DataBlade API

function to deallocate the user-data memory.

Return Values

None

Related Topics

See the descriptions of:

v Function mi_scan_userdata()

v DataBlade API functions for memory allocation and duration in “Storing Data in

Shared Memory” on page 3-2

Chapter 5. Descriptor Function Reference 5-39

mi_scan_table()

The mi_scan_table() function retrieves a pointer to the table descriptor for the table

that the access method scans.

Syntax

MI_AM_TABLE_DESC* mi_scan_table(MI_AM_SCAN_DESC *scanDesc);

scanDesc points to the scan descriptor.

Usage

The table descriptor points to the row descriptor. The row descriptor contains the

column data types that define a row.

The table descriptor also typically contains PER_STMT_EXEC or PER_STMT_PREP

user data that remains in memory until the completion of the current SQL

statement.

Return Values

This function returns a pointer to the table descriptor that is associated with this

scan.

Related Topics

See the descriptions of:

v Accessor functions in “Table Descriptor” on page 5-6

v Accessor functions for the row descriptor in the IBM Informix DataBlade API

Programmer’s Guide

5-40 IBM Informix Virtual-Table Interface Programmer’s Guide

mi_scan_userdata()

The mi_scan_userdata() function retrieves the pointer from the scan descriptor that

points to a user data structure.

Syntax

void* mi_scan_userdata(MI_AM_SCAN_DESC *scanDesc);

scanDesc points to the scan descriptor.

Usage

If the access method allocates user-data memory to hold scan-state information, it

places a pointer to that user data in the scan descriptor. Use the

mi_scan_userdata() function to retrieve the pointer for access to the user data.

For example, the am_getnext might maintain a row pointer to keep track of its

progress through the table during a scan. Each time am_getnext prepares to exit, it

stores the address or row identifier of the row that it just processed. The next

execution of am_getnext retrieves and increments the address to fetch the next row

in the table.

Return Values

This function returns a pointer to a user-data structure that the access method

creates during the scan.

Related Topics

See the description of:

v Function mi_scan_setuserdata()

v “Storing Data in Shared Memory” on page 3-2

Chapter 5. Descriptor Function Reference 5-41

mi_tab_amparam()

The mi_tab_amparam() function retrieves any user-defined configuration values

for the table.

Syntax

mi_string* mi_tab_amparam(MI_AM_TABLE_DESC *tableDesc);

tableDesc points to the table descriptor.

Usage

If the access method supports configuration keywords, the USING access-method

clause of the CREATE TABLE statement can specify values for those keywords. A

user or application can apply values to adjust the way in which the access method

behaves.

Return Values

The pointer accesses a string that contains user-specified keywords and values. A

NULL-valued pointer indicates that the CREATE TABLE statement specified no

configuration keywords.

Related Topics

See the descriptions of:

v “Providing Configuration Keywords” on page 3-12

v The USING clause of the CREATE TABLE statement in the IBM Informix Guide to

SQL: Syntax

5-42 IBM Informix Virtual-Table Interface Programmer’s Guide

mi_tab_check_msg()

The mi_tab_check_msg() function sends messages to the oncheck utility.

Syntax

mi_integer mi_tab_check_msg(MI_AM_TABLE_DESC *tableDesc,

 mi_integer msg_type,

 char *msg[, marker_1, ..., marker_n])

tableDesc points to the descriptor for the table that the oncheck command

line specifies.

msg_type indicates where oncheck should look for the message.

 If msg_type is MI_SQL, an error occurred. The syserrors system

catalog table contains the message.

If msg_type is MI_MESSAGE, the pointer in the msg argument

contains the address of an information-only message string.

msg points to a message string of up to 400 bytes if msg_type is

MI_MESSAGE.

 If msg_type is MI_SQL, msg points to a 5-character SQLSTATE

value. The value identifies an error or warning in the syserrors

system catalog table.

marker_n specifies a marker name in the syserrors system catalog table and a

value to substitute for that marker.

 When a user initiates the oncheck utility, the database server invokes the

am_check purpose function, which checks the structure and integrity of virtual

tables. To report state information to the oncheck utility, am_check can call the

mi_tab_check_msg() function.

The syserrors system catalog table can contain user-defined error and warning

messages. A five-character SQLSTATE value identifies each message.

The text of an error or warning message can include markers that the access

method replaces with state-specific information. To insert state-specific information

in the message, the access method passes values for each marker to

mi_tab_check_msg().

To raise a exception whose message text is stored in syserrors, provide the

following information to the mi_tab_check_msg() function:

v A message type of MI_SQL

v The value of the SQLSTATE variable that identifies the custom exception

v Optionally, values specified in parameter pairs that replace markers in the

custom exception message

The access method can allocate memory for messages or create automatic variables

that keep their values for the duration of the mi_tab_check_msg() function.

The DataBlade API mi_db_error_raise() function works similarly to

mi_tab_check_msg(). For examples that show how to create messages, refer to the

description of mi_db_error_raise() in the IBM Informix DataBlade API Programmer’s

Guide.

Chapter 5. Descriptor Function Reference 5-43

Important: Do not use msg_type values MI_FATAL or MI_EXCEPTION with

mi_tab_check_msg(). These message types are reserved for the

DataBlade API function mi_db_error_raise().

Return Values

None

Related Topics

See the descriptions of:

v Purpose function am_check on page 4-10

v DataBlade API function mi_db_error_raise() in the IBM Informix DataBlade API

Programmer’s Guide, particularly the information about raising custom messages

v oncheck in the IBM Informix Administrator’s Reference

5-44 IBM Informix Virtual-Table Interface Programmer’s Guide

mi_tab_createdate()

The mi_tab_createdate() function returns the date that the table was created.

Syntax

mi_date * mi_tab_createdate(MI_AM_TABLE_DESC *tableDesc);

tableDesc points to the table descriptor.

Return Values

The date indicates when the CREATE TABLE statement was issued.

Chapter 5. Descriptor Function Reference 5-45

mi_tab_id()

The mi_tab_id() function retrieves the table identifier from the table descriptor.

Syntax

mi_integer mi_tab_id(MI_AM_TABLE_DESC *tableDesc)

tableDesc points to the table descriptor.

Usage

The access method can call the mi_tab_id() function to determine the unique

identifier that the systables system catalog table associates with the virtual table.

Return Values

The return value identifies the table to the database server in the tabid column of

the systables or sysfragments system catalog table.

The table identifier is identical for each fragment in the table.

5-46 IBM Informix Virtual-Table Interface Programmer’s Guide

mi_tab_isolevel()

The mi_tab_isolevel() function retrieves the isolation level that the SET

ISOLATION or SET TRANSACTION statement applies.

Syntax

MI_ISOLATION_LEVEL mi_tab_isolevel(MI_AM_TAB_DESC *tableDesc);

tableDesc points to the table descriptor.

Usage

If the access method supports isolation levels, it can call mi_tab_isolevel() to

validate that the isolation level requested by the application does not surpass the

isolation level that the access method supports. If the access method supports

Serializable, it does not call mi_tab_isolevel() because Serializable includes the

capabilities of all the other levels.

Return Values

MI_ISO_NOTRANSACTION indicates that no transaction is in progress.

MI_ISO_READUNCOMMITTED

indicates Dirty Read.

MI_ISO_READCOMMITTED indicates Read Committed.

MI_ISO_CURSORSTABILITY indicates Cursor Stability.

MI_ISO_REPEATABLEREAD indicates Repeatable Read.

MI_ISO_SERIALIZABLE indicates Serializable.

Related Topics

See the descriptions of:

v Functions mi_scan_locktype() and mi_scan_isolevel()

v Isolation levels in “Checking Isolation Levels” on page 3-24

v Sample isolation-level language for access-method documentation (Figure 3-11

on page 3-29)

Chapter 5. Descriptor Function Reference 5-47

mi_tab_istable()

The mi_tab_istable() function indicates whether the table descriptor describes a

table.

Syntax

mi_boolean mi_tab_istable(MI_AM_TABLE_DESC *tableDesc)

tableDesc points to the table descriptor.

Usage

If the access method shares source files with a secondary access method, use this

function to verify that the table descriptor belongs to the primary access method.

Return Values

MI_TRUE indicates that the table descriptor pertains to a table. MI_FALSE

indicates that it describes an index.

5-48 IBM Informix Virtual-Table Interface Programmer’s Guide

mi_tab_mode()

The mi_tab_mode() function retrieves the I/O mode of the table from the table

descriptor.

Syntax

mi_unsigned_integer

mi_tab_tab_mode(MI_AM_TABLE_DESC *tableDesc)

tableDesc points to the table descriptor.

Usage

The I/O mode refers to the operations expected subsequent to the opening of a

table.

 To determine the input and output requirements of the current statement:

1. Call mi_tab_mode() to obtain an input/output indicator.

2. Pass the value that mi_tab_mode() returns to the macros in Table 5-1 for

interpretation.

Each macro returns either MI_TRUE or MI_FALSE.

 Table 5-1. Macro Modes

Macro Mode Verified

MI_INPUT() Open for input only, usually in the case of a SELECT statement

MI_OUTPUT() Open for output only, usually in the case of an INSERT statement

MI_INOUT() Open for input and output, usually in the case of an UPDATE

statement

MI_NOLOG() No logging required

In the following example, the access method calls mi_tab_mode() to verify that a

query is read-only. If MI_INOUT() returns MI_FALSE, the access method requests

a multiple-row buffer because the access method can return several rows without

interruption by an update:

if (MI_INOUT(tableDesc) == MI_FALSE)

 mi_tab_setniorows(tableDesc, 10);

If MI_inOUT() returns MI_TRUE, the access method can process only one row

identifier with each call to am_getnext.

Return Values

The integer indicates whether an input or output request is active.

To interpret the returned integer, use the macros that Table 5-1 on page 5-49

describes.

Related Topics

See the descriptions of

v “Buffering Multiple Results” on page 3-23

v Purpose functions am_beginscan and am_getnext

v Setting logging preferences in Figure 3-4 on page 3-13

Chapter 5. Descriptor Function Reference 5-49

mi_tab_name()

The mi_tab_name() function retrieves the table name that the active SQL statement

or oncheck command specifies.

Syntax

mi_string* mi_tab_name(MI_AM_TABLE_DESC *tableDesc)

tableDesc points to the table descriptor.

Return Values

The string specifies the name of the table to access. The table name is identical for

each fragment in the table.

5-50 IBM Informix Virtual-Table Interface Programmer’s Guide

mi_tab_niorows()

The mi_tab_niorows() function retrieves the number of rows that the database

server expects to process in am_getnext.

Syntax

mi_integer

mi_tab_niorows(MI_AM_TABLE_DESC *tableDesc)

tableDesc points to the table descriptor.

Usage

Call this function from am_getnext and then loop through the scan as often as

necessary to fill the reserved number of rows or until no more rows qualify. See

mi_tab_setnextrow() for an example.

Return Values

The maximum number of rows that am_getnext can place in shared memory.

A return value of 0 indicates that am_open or am_beginscan did not call the

mi_tab_setniorows() function or that mi_tab_setniorows() returned an error. Thus,

the database server did not reserve memory for multiple rows, and the access

method must process only one row.

A negative return value indicates an error.

Related Topics

See the descriptions of functions mi_tab_setniorows() and mi_tab_setnextrow().

Chapter 5. Descriptor Function Reference 5-51

mi_tab_numfrags()

The mi_tab_numfrags() function retrieves the number of fragments in the table.

Syntax

mi_integer mi_tab_numfrags(MI_AM_TABLE_DESC *tableDesc)

tableDesc points to the table descriptor.

Return Values

The integer specifies the number of fragments in the table from the table

descriptor. If the table is not fragmented, mi_tab_numfrags() returns 1.

5-52 IBM Informix Virtual-Table Interface Programmer’s Guide

mi_tab_owner()

The mi_tab_owner() function retrieves the owner of the table.

Syntax

mi_string* mi_tab_owner(MI_AM_TABLE_DESC *tableDesc)

tableDesc points to the table descriptor.

Usage

The user who creates a table owns that table. The database server identifies the

owner by user ID, which it stores in the systables system catalog table. In some

environments, user ID of the table owner must precede the table name as follows:

SELECT * from owner.table_name

Return Values

The string contains the user ID of the table owner.

Related Topics

See the description of the Owner Name segment in the IBM Informix Guide to SQL:

Syntax.

Chapter 5. Descriptor Function Reference 5-53

mi_tab_partnum()

The mi_tab_partnum() function retrieves the fragment identifier for the table.

Syntax

mi_integer mi_tab_partnum(MI_AM_TABLE_DESC *tableDesc)

tableDesc points to the table descriptor.

Usage

If a CREATE TABLE or ALTER FRAGMENT statement specifies fragmentation, use

this function to determine the current fragment identifier (also called a partition

number). Each fragment occupies one named sbspace or extspace.

Return Values

The integer specifies physical address of the fragment. If the table is not

fragmented, the return value corresponds to the partnum value for this table in the

systables system catalog table.

For a fragmented table, the return value corresponds to the fragment identifier and

the partn value in the sysfragments system catalog table.

5-54 IBM Informix Virtual-Table Interface Programmer’s Guide

mi_tab_rowdesc()

The mi_tab_rowdesc() function retrieves the row descriptor, which describes the

columns that belong to the table that the table descriptor identifies.

Syntax

MI_ROW_DESC* mi_tab_rowdesc(MI_AM_TABLE_DESC *tableDesc)

tableDesc points to the table descriptor.

Usage

To access information in the row descriptor, pass the pointer in this column to the

DataBlade API row-descriptor accessor functions. A row descriptor describes the

columns that make up the table.

The order of the columns in the row descriptor corresponds to the order of the

columns in the CREATE TABLE statement. Another accessor function, such as

mi_scan_projs(), can obtain information about a specific column by passing the

position of the column in the row descriptor.

Return Values

The pointer enables the access method to locate the row descriptor, which

describes the columns in this table.

Related Topics

Refer to the IBM Informix DataBlade API Programmer’s Guide for the descriptions of:

v DataBlade API row-descriptor accessor functions mi_column_bound(),

mi_column_count(), mi_column_id(), mi_column_name(),

mi_column_nullable(), mi_column_scale(), mi_column_type_id(), and

mi_column_typedesc()

v The row descriptor (MI_ROW_DESC data structure)

Chapter 5. Descriptor Function Reference 5-55

mi_tab_setnextrow()

The am_getnext purpose function calls mi_tab_setnextrow() to store the next entry

that qualifies for selection.

Syntax

mi_integer

mi_tab_setnextrow(MI_AM_TABLE_DESC *tableDesc,

 MI_ROW *row,

 mi_integer *rowid,

 mi_integer *fragid)

tableDesc points to the table descriptor.

row points to the address of a row structure that contains fetched data.

rowid points to the row identifier of the fetched values.

fragid is the ID associated with a fragment represented in the table

descriptor.

Usage

Use this function in the am_getnext purpose function if the access method can

fetch multiple rows into shared memory. The values in row and rowid replace

arguments that the database server passes to am_getnext if shared memory

accommodates only one fetched row.

The mi_tab_setnextrow() function works together with the following other

accessor functions:

v The mi_tab_setniorows() function sets a number of rows to pass to am_getnext.

v The mi_tab_niorows() function sets the number of rows to expect.

For an example that shows how these three functions work together, refer to

Figure 3-10 on page 3-24.

Return Values

The integer indicates which row in shared memory to fill. The first call to

mi_tab_setnextrow() returns 0. Each subsequent call adds 1 to the previous return

value. The maximum rows available depends on the value that mi_tab_niorows()

returns.

A negative return value indicates an error.

Related Topics

See the descriptions of:

v Functions mi_tab_setniorows() and mi_tab_niorows()

v “Buffering Multiple Results” on page 3-23

5-56 IBM Informix Virtual-Table Interface Programmer’s Guide

mi_tab_setniorows()

The mi_tab_setniorows() function indicates:

v That the access method can handle more than one row per call

v The number of rows for which the database server should allocate memory

Syntax

mi_integer mi_tab_setniorows(MI_AM_TABLE_DESC *tableDesc,

 mi_integer nrows)

tableDesc points to the table descriptor.

nrows specifies the maximum number of rows that am_getnext processes.

Usage

The access method must call this function before it calls mi_tab_setnextrow().

Multiple calls to mi_tab_setniorows() during the execution of a single statement

causes an exception to be raised.

Return Values

The integer indicates the actual number of rows for which the database server

allocates memory. Currently, the return value equals nrows. A zero or negative

return value indicates an error.

Related Topics

See the descriptions of functions mi_tab_niorows() and mi_tab_setnextrow().

Chapter 5. Descriptor Function Reference 5-57

mi_tab_setuserdata()

The mi_tab_setuserdata() function stores a pointer to user data in the table

descriptor.

Syntax

void mi_tab_setuserdata(MI_AM_TABLE_DESC *tableDesc,

 void *userdata)

tableDesc points to the table descriptor.

user_data points to a data structure that the access method creates.

Usage

The access method stores state information from one purpose function so that

another purpose function can use it.

 To save table-state information as user data:

1. Call the appropriate DataBlade API memory-management function to allocate

PER_STMT_EXEC or PER_STMT_PREP memory for the user-data structure.

2. Populate the user-data structure with the state information.

3. Call the mi_tab_setuserdata() function to store the pointer that the

memory-allocation function returns in the table descriptor.

Pass the pointer as the user_data argument.

Typically, an access method performs the preceding procedure in the am_open

purpose function and deallocates the user-data memory in the am_close purpose

function. To have the table descriptor retain the pointer to the user data as long as

the table remains open, specify a memory duration of PER_STMT_EXEC or

PER_STMT_PREP as “Memory-Duration Options” on page 3-2 and “Persistent

User Data” on page 3-3 describe.

To retrieve the pointer from the table descriptor to access the table-state user data,

call the mi_tab_userdata() function in any purpose function between am_open and

am_close.

Return Values

None

Related Topics

See the descriptions of:

v Function mi_tab_userdata()

v Purpose functions am_open and am_close

v DataBlade API functions for memory allocation and duration in “Storing Data in

Shared Memory” on page 3-2

5-58 IBM Informix Virtual-Table Interface Programmer’s Guide

mi_tab_spaceloc()

The mi_tab_spaceloc() function retrieves the location of the extspace in which the

table resides.

Syntax

mi_string* mi_tab_spaceloc(MI_AM_TABLE_DESC *tableDesc)

tableDesc points to the table descriptor.

Usage

A user, usually a database server administrator, can assign a short name to an

extspace with the onspaces utility. When a user creates a table, the CREATE

TABLE statement can include an IN clause to specify one of the following:

v The name that is assigned with the onspaces utility

v A string that contains the actual location

To find out the string that the user specifies as the storage space, call the

mi_tab_spaceloc() function.

For example, the mi_tab_spaceloc() function returns the string

host=dcserver,port=39 for a storage space that the following commands specify:

onspaces -c -x dc39 -l "host=dcserver,port=39"

CREATE TABLE remote...

 IN dc39

 USING access_method

Return Values

A string identifies the extspace.

If the table resides in an sbspace, this function returns a NULL-valued pointer.

Chapter 5. Descriptor Function Reference 5-59

mi_tab_spacename()

The mi_tab_spacename() function retrieves the name of the storage space where

the virtual table resides.

Syntax

mi_string* mi_tab_spacename(MI_AM_TABLE_DESC *tableDesc)

tableDesc points to the table descriptor.

Usage

Call the mi_tab_spacename() function to determine the storage space identifier

from one of the following sources:

v An IN clause specification

v The SBSPACENAME value in the database ONCONFIG file

IN Clause: When a user creates a table, the CREATE TABLE statement can

include an IN clause that specifies one of the following:

v The name that is assigned with the onspaces utility

v A string that contains the actual location

For example, the mi_tab_spacename() function returns the string dc39 for a storage

space that the following commands specify:

onspaces -c -x dc39 -l "host=dcserver,port=39"

CREATE TABLE remote...

 IN dc39

 USING access_method

The statement that creates the table can specify the physical storage location rather

than a logical name that the onspaces utility associates with the storage space. In

the following UNIX example, mi_tab_spacename() returns the physical path, /tmp:

CREATE TABLE remote...

 IN ’/tmp’

 USING access_method

If the IN clause specifies multiple storage spaces, each makes up a fragment of the

table and the table descriptor pertains to only the fragment that the return value

for the mi_tab_spacename() function names.

SBSPACENAME Value: An optional SBSPACENAME parameter in the

ONCONFIG file indicates the name of an existing sbspace as the default location to

create new smart large objects or virtual tables. The database server assigns the

default sbspace to a virtual table under the following circumstances:

v A CREATE TABLE statement does not include an IN clause.

v The database server determines (from the am_sptype purpose value in the

sysams system catalog table) that the access method supports sbspaces.

v The ONCONFIG file contains a value for the SBSPACENAME parameter.

v The onspaces command created an sbspace with the name that SBSPACENAME

specifies.

v The default sbspace does not contain a table due to a previous SQL statement.

For more information, refer to “Creating a Default Storage Space” on page 3-10.

Return Values

A string identifies the sbspace or extspace that the CREATE TABLE statement

associates with the table. A NULL-valued pointer indicates that the table does not

5-60 IBM Informix Virtual-Table Interface Programmer’s Guide

reside in a named storage space.

Chapter 5. Descriptor Function Reference 5-61

mi_tab_spacetype()

The mi_tab_spacetype() function retrieves the type of storage space in which the

virtual table resides.

Syntax

mi_char1 mi_tab_spacetype(MI_AM_TABLE_DESC *tableDesc)

tableDesc points to the table descriptor.

Return Values

The letter S indicates that the table resides in an sbspace. The letter X indicates that

the table resides in an extspace. The letter D indicates that the table resides in a

dbspace and is reserved for IBM Informix use only.

Important: A user-defined access method cannot create tables in dbspaces.

5-62 IBM Informix Virtual-Table Interface Programmer’s Guide

mi_tab_update_stat_mode()

The mi_tab_update_stat_mode() function indicates whether an UPDATE

STATISTICS function includes a LOW, MEDIUM, or HIGH mode keyword.

Syntax

MI_UPDATE_STAT_MODE

mi_tab_update_stat_mode(MI_AM_TABLE_DESC *tableDesc))

tableDesc points to the table descriptor.

Usage

To extract the distribution-level keyword that an UPDATE STATISTICS statement

specifies, the am_stats purpose function calls the mi_tab_update_stat_mode()

function. Three keywords describe distribution level, HIGH, MEDIUM, and the

default LOW.

If a purpose function other than am_stats calls mi_tab_update_stat_mode(), the

return value indicates that UPDATE STATISTICS is not running.

Return Values

MI_US_LOW indicates that the update statistics statement specifies the low

keyword or that low is in effect by default. MI_US_MED or MI_US_HIGH

indicates that the UPDATE STATISTICS specifies the medium or the HIGH

keyword, respectively. MI_US_NOT_RUNNING indicates that no UPDATE

STATISTICS statement is executing. MI_US_ERROR indicates an error.

Related Topics

See the descriptions of:

v Purpose function am_stats on page 4-25

v UPDATE STATISTICS in the IBM Informix Guide to SQL: Syntax and the IBM

Informix Performance Guide

Chapter 5. Descriptor Function Reference 5-63

mi_tab_userdata()

The mi_tab_userdata() function retrieves, from the table descriptor, a pointer to a

user-data structure that the access method maintains in shared memory.

Syntax

void* mi_tab_userdata(MI_AM_TABLE_DESC *tableDesc)

tableDesc points to the table descriptor.

Usage

During the am_open purpose function, the access method can create and populate

a user-data structure in shared memory. The table descriptor user data generally

holds state information about the table for use by other purpose functions. To

ensure that the user data remains in memory until am_close executes, the access

method allocates the memory with a duration of PER_STMT_EXEC or

PER_STMT_PREP.

To store the pointer in that structure in the table descriptor, am_open calls

mi_tab_setuserdata(). Any other purpose function can call mi_tab_userdata() to

retrieve the pointer for access to the state information.

Return Values

The pointer indicates the location of a user-data structure in shared memory.

Related Topics

See the descriptions of:

v Function mi_tab_setuserdata()

v “Storing Data in Shared Memory” on page 3-2

5-64 IBM Informix Virtual-Table Interface Programmer’s Guide

mi_tstats_setnpages()

The mi_tstats_setnpages() function stores the number of table pages in the

statistics descriptor.

Syntax

void mi_tstats_setnpages(MI_AM_TSTATS_DESC *tstatsDesc,

 mi_integer npages)

tstatsDesc points to the statistics descriptor.

npages provides the number of pages in the table.

Usage

The am_stats purpose function sets the number of data pages, which the database

server stores in the npused column of the systables system catalog table. The

optimizer uses the number of pages in a table to choose an optimal query path.

Return Values

None

Chapter 5. Descriptor Function Reference 5-65

mi_tstats_setnrows()

The mi_tstats_setnrows() function stores the number of table rows in the statistics

descriptor.

Syntax

void mi_tstats_setnrows(MI_AM_TSTATS_DESC *tstatsDesc,

 mi_integer nrows)

tstatsDesc points to the statistics descriptor.

nrows provides the number of rows in the table.

Usage

The am_stats purpose function sets the number of rows in the table, which the

database server stores in the nrows column of the systables system catalog table.

The optimizer uses it to choose an optimal query path.

Return Values

None

5-66 IBM Informix Virtual-Table Interface Programmer’s Guide

Chapter 6. SQL Statements for Access Methods

In This Chapter . 6-1

ALTER ACCESS_METHOD (+) . 6-2

CREATE ACCESS_METHOD (+) . 6-4

DROP ACCESS_METHOD (+) . 6-6

Purpose Options . 6-7

In This Chapter

This chapter describes the syntax and usage of the following SQL statements,

which insert, change, or delete entries in the sysams system catalog table:

v ALTER ACCESS_METHOD

v CREATE PRIMARY ACCESS_METHOD

v DROP ACCESS_METHOD

For information about how to interpret the syntax diagrams in this chapter, refer to

“Syntax Diagrams” on page x of the Introduction.

This chapter also provides the valid purpose-function, purpose-flag, and

purpose-value settings.

© Copyright IBM Corp. 1996, 2008 6-1

ALTER ACCESS_METHOD (+)

The ALTER ACCESS_METHOD statement changes the attributes of a user-defined

access method in the sysams system catalog table.

Syntax

�� ALTER ACCESS_METHOD access-method name �

�

�

 '

(1)

ADD

Purpose

Option

MODIFY

DROP

purpose name

��

Notes:

1 See “Purpose Options” on page 6-7

 Element Purpose Restrictions Syntax

access-

method

name

The access method to alter A previous CREATE PRIMARY

ACCESS_METHOD statement must

register the access method in the

database.

Database Object Name

segment; see IBM

Informix Guide to SQL:

Syntax.

purpose

name

A keyword that indicates which

purpose function, purpose value,

or purpose flag to drop

A previous statement must associate the

purpose name with this access method.

Table 6-1 on page 6-8

Usage

Use ALTER ACCESS_METHOD to modify the definition of a user-defined

access-method. You must be the owner of the access method or have DBA

privileges to alter an access method.

When you alter an access method, you change the purpose-option specifications

(purpose functions, purpose flags, or purpose values) that define the access

method. For example, you alter an access method to assign a new

purpose-function name or provide a multiplier for the scan cost. For detailed

information about how to set purpose-option specifications, refer to “Purpose

Options” on page 6-7.

If a transaction is in progress, the database server waits to alter the access method

until the transaction is committed or rolled back. No other users can execute the

access method until the transaction has completed.

Sample Statements

The following statement alters the remote access method.

6-2 IBM Informix Virtual-Table Interface Programmer’s Guide

The preceding example:

v Adds an am_insert purpose function

v Drops the am_check purpose function

v Sets (adds) the am_readwrite flag

v Modifies the am_sptype purpose value

References

See the descriptions of:

v CREATE ACCESS_METHOD (+) statement and Purpose Options in this chapter

v Privileges in the IBM Informix Database Design and Implementation Guide or the

GRANT statement in the IBM Informix Guide to SQL: Syntax

ALTER ACCESS_METHOD remote

ADD AM_INSERT=ins_remote,

ADD AM_READWRITE,

DROP AM_CHECK,

MODIFY AM_SPTYPE = ’ X’;

Figure 6-1. Sample ALTER ACCESS_METHOD Statement

Chapter 6. SQL Statements for Access Methods 6-3

CREATE ACCESS_METHOD (+)

Use the CREATE PRIMARY ACCESS_METHOD statement to register a new

primary access method. When you register an access method, the database server

places an entry in the sysams system catalog table.

Syntax

�� CREATE PRIMARY ACCESS_METHOD access-method name �

�

�

 ,

(1)

(

Purpose

Option

)

��

Notes:

1 See “Purpose Options” on page 6-7

 Element Purpose Restrictions Syntax

access-

method name

The access method to add The access method must have a unique

name in the sysams system catalog

table.

Database Object Name

segment; see IBM

Informix Guide to SQL:

Syntax.

Usage

The CREATE PRIMARY ACCESS_METHOD statement adds a user-defined access

method to a database. When you create an access method, you specify purpose

functions, purpose flags, or purpose values as attributes of the access method. To

set purpose options, refer to “Purpose Options” on page 6-7.

You must have the DBA or Resource privilege to create an access method. For

information about privileges, refer to the IBM Informix Database Design and

Implementation Guide or the GRANT statement in the IBM Informix Guide to SQL:

Syntax.

Sample Statements

The following statement creates a primary access method named textfile that

resides in an extspace. The am_getnext purpose function is assigned to a function

name that already exists. The textfile access method supports clustering.

References

See the descriptions of:

v ALTER ACCESS_METHOD (+) and DROP ACCESS_METHOD (+) statements, as

well as Purpose Options, in this chapter

CREATE PRIMARY ACCESS_METHOD textfile(

AM_GETNEXT = textfile_getnext,

AM_CLUSTER,

AM_SPTYPE = ’ X’);

Figure 6-2. Sample CREATE PRIMARY ACCESS_METHOD Statement

6-4 IBM Informix Virtual-Table Interface Programmer’s Guide

v Privileges in the IBM Informix Database Design and Implementation Guide or the

GRANT statement in the IBM Informix Guide to SQL: Syntax

Chapter 6. SQL Statements for Access Methods 6-5

DROP ACCESS_METHOD (+)

Use the DROP ACCESS_METHOD statement to remove a previously defined

access method from the database.

Syntax

�� DROP ACCESS_METHOD access-method name RESTRICT ��

 Element Purpose Restrictions Syntax

access-method

name

The access method to drop The access method must be registered

in the sysams system catalog table with

a previous CREATE ACCESS_METHOD

statement.

Database Object Name

segment; see IBM

Informix Guide to SQL:

Syntax.

Usage

The RESTRICT keyword is required. You cannot drop an access method if tables

exist that use that access method.

If a transaction is in progress, the database server waits to drop the access method

until the transaction is committed or rolled back. No other users can execute the

access method until the transaction has completed.

You must own the access method or have the DBA privilege to use the DROP

ACCESS_METHOD statement.

References

See the descriptions of:

v CREATE ACCESS_METHOD (+) and ALTER ACCESS_METHOD (+) statements

in this chapter

v Keyword RESTRICT in the IBM Informix Guide to SQL: Syntax

v Privileges in the IBM Informix Database Design and Implementation Guide or the

GRANT statement in the IBM Informix Guide to SQL: Syntax

6-6 IBM Informix Virtual-Table Interface Programmer’s Guide

Purpose Options

The database server recognizes a registered access method as a set of attributes,

including the access-method name and options called purposes. The CREATE

PRIMARY ACCESS_METHOD and ALTER ACCESS_METHOD statements specify

purpose attributes with the following syntax.

Syntax

Purpose Option:

 purpose function = function name

purpose value

=

string value

numeric value

purpose flag

 Element Purpose Restrictions Syntax

purpose function A keyword that specifies a task

and the corresponding

access-method function

The interface specifies the

predefined purpose-function

keywords to which you can assign

UDR names. You cannot name a

UDR with the same name as the

keyword.

Function purpose

category; see Table 6-1

on page 6-8.

purpose value A keyword that identifies

configuration information

The interface specifies the

predefined configuration keywords

to which you can assign values.

Value purpose category;

see Table 6-1 on page

6-8.

purpose flag A keyword that indicates

which feature a flag enables

The interface specifies flag names. Flag purpose category;

see Table 6-1 on page

6-8.

function

name

The user-defined function that

performs the tasks of the

specified purpose function

A CREATE FUNCTION statement

must register the function in the

database.

Database Object Name

segment; see IBM

Informix Guide to SQL:

Syntax.

string value An indicator that is expressed

as one or more characters

None Quoted String segment;

see IBM Informix Guide

to SQL: Syntax.

numeric value A value that can be used in

computations

None A numeric literal.

Usage

Each purpose-name keyword corresponds to a column name in the sysams system

catalog table. The database server uses the following types of purpose attributes:

v Purpose functions

A purpose-function attribute maps the name of a user-defined function to one of

the prototype purpose functions that Table 1-1 on page 1-8 describes.

v Purpose flags

Each flag indicates whether an access method supports a particular SQL

statement or keyword.

v Purpose values

These string, character, or numeric values provide configuration information that

a flag cannot supply.

Chapter 6. SQL Statements for Access Methods 6-7

You specify purpose options when you create an access method with the CREATE

PRIMARY ACCESS_METHOD statement. To change the purpose options of an

access method, use the ALTER ACCESS_METHOD statement.

 To enable a purpose function:

1. Register the access-method function that performs the appropriate tasks with a

CREATE FUNCTION statement.

2. Set the purpose-function name equal to a registered UDR name.

For example, Figure 6-2 on page 6-4 sets the am_getnext purpose-function

name to the UDR name textfile_getnext. This example creates a new access

method.

The example in Figure 6-1 on page 6-3 adds a purpose function to an existing

access method.

To enable a purpose flag, specify the purpose name without a corresponding value.

To clear a purpose-option setting in the sysams system catalog table, use the DROP

clause of the ALTER ACCESS_METHOD statement.

Settings Purpose Functions, Flags, and Values

Table 6-1 on page 6-8 describes the possible settings for the sysams columns that

contain purpose-function names, purpose flags, and purpose values. The items in

Table 6-1 appear in the same order as the corresponding sysams columns.

 Table 6-1. Purpose Functions, Purpose Flags, and Purpose Values

Purpose-Name

Keyword Explanation

Purpose

category

Default

Setting

am_sptype A character that specifies what type of storage space the access

method supports For a user-defined access method, am_sptype can

have any of the following settings:

v X indicates that the access method accesses only extspaces

v S indicates that the access method accesses only sbspaces

v A indicates that the access method can provide data from extspaces

and sbspaces

You can specify am_sptype only for a new access method. You

cannot change or add an am_sptype value with ALTER

ACCESS_METHOD. Do not set am_sptype to D or attempt to store a

virtual table in a dbspace.

Value A

am_cluster A flag that you set if the access method supports clustering of tables Flag Not set

am_rowids A flag that you set if the primary access method can retrieve a row

from a specified address

Flag Not set

am_readwrite A flag that you set if the access method supports data changes The

default setting for this flag, not set, indicates that the virtual data is

read-only. Unless you set this flag, an attempt to write data can cause

the following problems:

v An INSERT, DELETE, UPDATE, or ALTER FRAGMENT statement

causes an SQL error.

v The database server does not execute am_insert, am_delete, or

am_update.

Flag Not set

6-8 IBM Informix Virtual-Table Interface Programmer’s Guide

Table 6-1. Purpose Functions, Purpose Flags, and Purpose Values (continued)

Purpose-Name

Keyword Explanation

Purpose

category

Default

Setting

am_parallel A flag that the database server sets to indicate which purpose

functions can execute in parallel If set, the hexadecimal am_parallel

flag contains one or more of the following bit settings:

v The 1 bit is set for parallelizable scan.

v The 2 bit is set for parallelizable delete.

v The 4 bit is set for parallelizable update.

v The 8 bit is set for parallelizable insert.

Flag Not set

am_costfactor A value by which the database server multiplies the cost that the

am_scancost purpose function returns An am_costfactor value from

0.2 to 0.9 reduces the cost to a fraction of the value that am_scancost

calculates. An am_costfactor value of 1.1 or greater increases the

am_scancost value.

Value 1.0

am_create The name of a user-defined function that adds a virtual table to the

database

Function None

am_drop The name of a user-defined function that drops a virtual table Function None

am_open The name of a user-defined function that makes a fragment, extspace,

or sbspace available

Function None

am_close The name of a user-defined function that reverses the initialization

that am_open performs

Function None

am_insert The name of a user-defined function that inserts a row Function None

am_delete The name of a user-defined function that deletes a row Function None

am_update The name of a user-defined function that changes the values in a row Function None

am_stats The name of a user-defined function that builds statistics based on

the distribution of values in storage spaces

Function None

am_scancost The name of a user-defined function that calculates the cost of

qualifying and retrieving data

Function None

am_check The name of a user-defined function that tests the physical structure

of a table

Function None

am_beginscan The name of a user-defined function that sets up a scan Function None

am_endscan The name of a user-defined function that reverses the setup that

AM_BEGINSCAN initializes

Function None

am_rescan The name of a user-defined function that scans for the next item from

a previous scan to complete a join or subquery

Function None

am_getbyid The name of a user-defined function that fetches data from a specific

physical address

Function None

am_getnext The name of the required user-defined function that scans for the

next item that satisfies the query

Function None

The following rules apply to the purpose-option specifications in the CREATE

PRIMARY ACCESS_METHOD and ALTER ACCESS_METHOD statements:

v To specify multiple purpose options in one statement, separate them with

commas.

v The CREATE PRIMARY ACCESS_METHOD statement must specify a routine

name for the am_getnext purpose function.

The ALTER ACCESS_METHOD statement cannot drop am_getnext but can

modify it.

Chapter 6. SQL Statements for Access Methods 6-9

v The ALTER ACCESS_METHOD statement cannot add, drop, or modify the

am_sptype value.

References

In this publication, see the following topics:

v “Managing Storage Spaces” on page 3-9

v “Executing in Parallel” on page 3-22

v “Registering Purpose Functions” on page 2-5 and “Registering the Access

Method” on page 2-6

v “Calculating Statement-Specific Costs” on page 3-21

v Chapter 4, “Purpose-Function Reference,” on page 4-1

In the IBM Informix Guide to SQL: Syntax, see the descriptions of:

v Database Object Name segment (for a routine name), Quoted String segment,

and Literal Number segment

v CREATE FUNCTION statement

6-10 IBM Informix Virtual-Table Interface Programmer’s Guide

Chapter 7. Using XA-Compliant External Data Sources

The Dynamic Server Transaction Manager recognizes XA-compliant external data

sources, which can participate in two-phase commit transactions. You can invoke

support routines for each XA-compliant, external data source that participates in a

distributed transaction at a particular transactional event, such as prepare, commit,

or rollback. This interaction conforms to X/Open XA interface standards.

Creating a Virtual-Table Interface for XA Data Sources

You can create a virtual-table interface to provide data access mechanisms for

external data from XA data sources. The interaction between Dynamic Server and

external data sources is through a set of purpose routines, such as xa_open(),

xa_start(), xa_prepare(), xa_rollback(), xa_commit(), xa_recover(), xa_complete(

), xa_forget(), xa_close(), and xa_end() For more information these purpose

functions, see the IBM Informix DataBlade API Programmer’s Guide.

You can create and drop XA-compliant data source types and instances of

XA-compliant data sources. After you create an external XA-compliant data source,

transactions can register and unregister the data source using the

mi_xa_register_xadatasource() or ax_reg() and mi_xa_unregister_xadatasource()

or ax_unreg() functions. For information on creating and dropping XA-compliant

data source types and instances of XA-compliant data sources and information on

the functions that transactions use to register and unregister the data source, see

the IBM Informix DataBlade API Programmer’s Guide and the IBM Informix DataBlade

API Function Reference .

The MQ DataBlade module is an example of a set of user-defined routines that

provide data access mechanisms for external data from XA data sources and

provides XA-support functions to provide transactional support for the interaction

between Dynamic Server and IBM Websphere MQ. For more information, see the

IBM Informix Database Extensions User’s Guide.

© Copyright IBM Corp. 1996, 2008 7-1

7-2 IBM Informix Virtual-Table Interface Programmer’s Guide

Appendix. Accessibility

IBM strives to provide products with usable access for everyone, regardless of age

or ability.

Accessibility features for IBM Informix Dynamic Server

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use information technology products successfully.

Accessibility Features

The following list includes the major accessibility features in IBM Informix

Dynamic Server. These features support:

v Keyboard-only operation.

v Interfaces that are commonly used by screen readers.

v The attachment of alternative input and output devices.

Tip: The IBM Informix Dynamic Server Information Center and its related

publications are accessibility-enabled for the IBM Home Page Reader. You can

operate all features using the keyboard instead of the mouse.

Keyboard Navigation

This product uses standard Microsoft® Windows® navigation keys.

Related Accessibility Information

IBM is committed to making our documentation accessible to persons with

disabilities. Our publications are available in HTML format so that they can be

accessed with assistive technology such as screen reader software. The syntax

diagrams in our publications are available in dotted decimal format. For more

information about the dotted decimal format, go to “Dotted Decimal Syntax

Diagrams.”

You can view the publications for IBM Informix Dynamic Server in Adobe Portable

Document Format (PDF) using the Adobe Acrobat Reader.

IBM and Accessibility

See the IBM Accessibility Center at http://www.ibm.com/able for more information

about the commitment that IBM has to accessibility.

Dotted Decimal Syntax Diagrams

The syntax diagrams in our publications are available in dotted decimal format,

which is an accessible format that is available only if you are using a screen reader.

In dotted decimal format, each syntax element is written on a separate line. If two

or more syntax elements are always present together (or always absent together),

the elements can appear on the same line, because they can be considered as a

single compound syntax element.

© Copyright IBM Corp. 1996, 2008 A-1

http://www.ibm.com/able

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To

hear these numbers correctly, make sure that your screen reader is set to read

punctuation. All syntax elements that have the same dotted decimal number (for

example, all syntax elements that have the number 3.1) are mutually exclusive

alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax can

include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a

syntax element with dotted decimal number 3 is followed by a series of syntax

elements with dotted decimal number 3.1, all the syntax elements numbered 3.1

are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add

information about the syntax elements. Occasionally, these words and symbols

might occur at the beginning of the element itself. For ease of identification, if the

word or symbol is a part of the syntax element, the word or symbol is preceded by

the backslash (\) character. The * symbol can be used next to a dotted decimal

number to indicate that the syntax element repeats. For example, syntax element

*FILE with dotted decimal number 3 is read as 3 * FILE. Format 3* FILE

indicates that syntax element FILE repeats. Format 3* * FILE indicates that

syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax

elements, are shown in the syntax just before the items they separate. These

characters can appear on the same line as each item, or on a separate line with the

same dotted decimal number as the relevant items. The line can also show another

symbol that provides information about the syntax elements. For example, the lines

5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the

LASTRUN and DELETE syntax elements, the elements must be separated by a comma.

If no separator is given, assume that you use a blank to separate each syntax

element.

If a syntax element is preceded by the % symbol, this identifies a reference that is

defined elsewhere. The string following the % symbol is the name of a syntax

fragment rather than a literal. For example, the line 2.1 %OP1 means that you

should refer to a separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:

? Specifies an optional syntax element. A dotted decimal number followed

by the ? symbol indicates that all the syntax elements with a

corresponding dotted decimal number, and any subordinate syntax

elements, are optional. If there is only one syntax element with a dotted

decimal number, the ? symbol is displayed on the same line as the syntax

element (for example, 5? NOTIFY). If there is more than one syntax element

with a dotted decimal number, the ? symbol is displayed on a line by

itself, followed by the syntax elements that are optional. For example, if

you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that syntax

elements NOTIFY and UPDATE are optional; that is, you can choose one or

none of them. The ? symbol is equivalent to a bypass line in a railroad

diagram.

! Specifies a default syntax element. A dotted decimal number followed by

the ! symbol and a syntax element indicates that the syntax element is the

default option for all syntax elements that share the same dotted decimal

number. Only one of the syntax elements that share the same dotted

decimal number can specify a ! symbol. For example, if you hear the lines

A-2 IBM Informix Virtual-Table Interface Programmer’s Guide

2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the

default option for the FILE keyword. In this example, if you include the

FILE keyword but do not specify an option, default option KEEP is applied.

A default option also applies to the next higher dotted decimal number. In

this example, if the FILE keyword is omitted, default FILE(KEEP) is used.

However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1

(DELETE), the default option KEEP only applies to the next higher dotted

decimal number, 2.1 (which does not have an associated keyword), and

does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* Specifies a syntax element that can be repeated zero or more times. A

dotted decimal number followed by the * symbol indicates that this syntax

element can be used zero or more times; that is, it is optional and can be

repeated. For example, if you hear the line 5.1* data-area, you know that

you can include more than one data area or you can include none. If you

hear the lines 3*, 3 HOST, and 3 STATE, you know that you can include

HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is

only one item with that dotted decimal number, you can repeat that

same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items

have that dotted decimal number, you can use more than one item

from the list, but you cannot use the items more than once each. In the

previous example, you could write HOST STATE, but you could not write

HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax

diagram.

+ Specifies a syntax element that must be included one or more times. A

dotted decimal number followed by the + symbol indicates that this syntax

element must be included one or more times. For example, if you hear the

line 6.1+ data-area, you must include at least one data area. If you hear

the lines 2+, 2 HOST, and 2 STATE, you know that you must include HOST,

STATE, or both. As for the * symbol, you can only repeat a particular item if

it is the only item with that dotted decimal number. The + symbol, like the

* symbol, is equivalent to a loop-back line in a railroad syntax diagram.

Appendix. Accessibility A-3

A-4 IBM Informix Virtual-Table Interface Programmer’s Guide

Notices

IBM may not offer the products, services, or features discussed in this document in

all countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

© Copyright IBM Corp. 1996, 2008 B-1

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject

to change without notice. Dealer prices may vary.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

 COPYRIGHT LICENSE:

 This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

B-2 IBM Informix Virtual-Table Interface Programmer’s Guide

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

 © (your company name) (year). Portions of this code are derived from IBM

Corp. Sample Programs. © Copyright IBM Corp. (enter the year or years). All

rights reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of

International Business Machines Corporation in the United States, other countries,

or both. These and other IBM trademarked terms are marked on their first

occurrence in this information with the appropriate symbol (® or

™), indicating US

registered or common law trademarks owned by IBM at the time this information

was published. Such trademarks may also be registered or common law

trademarks in other countries. A current list of IBM trademarks is available on the

Web at http://www.ibm.com/legal/copytrade.shtml.

Adobe, Acrobat, Portable Document Format (PDF), and PostScript are either

registered trademarks or trademarks of Adobe Systems Incorporated in the United

States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,

Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or

registered trademarks of Intel Corporation or its subsidiaries in the United States

and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,

Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, or service names may be trademarks or service marks of

others.

Notices B-3

http://www.ibm.com/legal/copytrade.shtml

B-4 IBM Informix Virtual-Table Interface Programmer’s Guide

Index

A
Access method

attributes 6-7

choosing features 2-2

configuring 6-7

database renaming restrictions 2-12

defined 6-7

developing, steps in 2-1

documenting 3-27

dropping 2-12

privileges needed
to alter 6-2

to drop 6-6

to register 6-4

purpose options 6-7

registering 2-6, 6-4

sysams system catalog table settings 6-7

testing and using 2-8

accessibility A-1

keyboard A-1

shortcut keys A-1

Accessibility
dotted decimal format of syntax diagrams A-1

syntax diagrams, reading in a screen reader A-1

ALTER ACCESS_METHOD statement
privileges needed 6-2

syntax 6-2

ALTER FRAGMENT statement
access-method support for 3-8

am_delete purpose function 4-14

am_insert purpose function 4-20

am_readwrite purpose flag 6-8

purpose-function flow 4-2

am_beginscan purpose function
allocating memory 3-3

buffer setup 3-23, 5-57

syntax 4-9

usage 2-4

am_check purpose function
creating output 5-43

macros 4-10

syntax 4-10

am_close purpose function, syntax 4-12

am_cluster purpose flag
description 6-8

error related to 3-28

am_costfactor purpose value
setting 6-9

usage 4-23

am_create purpose function
syntax 4-13

usage 2-3

with fragments 4-4

am_delete purpose function
design decisions 3-24

parallel execution 3-23

purpose flags required for 4-14

syntax 4-14

usage 2-5

am_drop purpose function
syntax 4-15

am_drop purpose function (continued)
usage 2-3

am_endscan purpose function
syntax 4-16

usage 2-4

am_getbyid purpose function
purpose flag required for 4-17

syntax 4-17

usage 2-4, 3-13

am_getnext purpose function
design decisions 3-24

mi_tab_setnext() function 5-56

number of rows to fetch 5-51

parallel execution 3-23

syntax 4-18

usage 2-4

am_insert purpose function
design decisions 3-24

parallel execution of 3-23

purpose flags required for 4-20

syntax 4-20

am_open purpose function
allocating memory 3-3

buffer setup 3-23, 5-57

syntax 4-21

usage 2-3

am_parallel purpose flag, description 6-9

am_readwrite purpose flag
description 6-8

purpose functions that require 4-14, 4-17, 4-20, 4-27

am_rescan purpose function
detecting qualification changes 5-35

syntax 4-22

usage 2-4

am_rowids purpose flag
description 6-8

purpose functions that require 4-27

required to use index 3-13

am_scancost purpose function
factors to calculate 4-23

functions to call 5-14, 5-29

syntax 4-23

usage 2-4, 3-22

am_sptype purpose value
description 6-8

error related to 2-10

am_stats purpose function
syntax 4-25

usage 2-4, 3-22

am_truncate purpose function 4-26

am_update purpose function
design decisions 3-24

parallel execution of 3-23

purpose flags required for 4-27

syntax 4-27

usage 2-5

API, defined 1-3

B
Backup and restore in sbspaces 3-11

© Copyright IBM Corp. 1996, 2008 X-1

Buffering multiple results
filling buffer with mi_tab_setnextrow() function 5-56

specifying number to return 3-23

C
Callback function

defined 3-6

for end-of-transaction 3-26

for unsupported features 3-27

registering 3-6

Callback handle 3-7

Clustering
error related to 3-28

specifying support for 6-8

Column data type, example 5-37

Configuration parameters
documenting 3-29

retrieving 5-42

usage 3-12

Converting data type 4-9

CREATE FUNCTION statement
PARALLELIZABLE routine modifier in 2-5, 2-6

privileges needed 2-5

registering purpose functions 2-5

CREATE PRIMARY ACCESS_METHOD statement
syntax 6-4

usage 2-6

CREATE SECONDARY ACCESS_METHOD statement
usage 2-6

CREATE TABLE statement
access-method support for 3-8

example 2-10

fragmentation example 2-10

purpose functions for 4-13

specifying an extspace in 2-10

Customization 3-12

D
Data definition statements 3-8

Data distributions 4-23

Data type conversion 4-9

DataBlade API functions
for callback 3-6

for end-of-transaction 3-26

for error messages 3-7

for FastPath UDR execution 3-19

DELETE statements
am_delete purpose function 4-14

parallel execution of 3-23

purpose-function flow 4-5

Development process 2-1

Disabilities, visual
reading syntax diagrams A-1

disability A-1

Disk file, extspace for 2-9

Dotted decimal format of syntax diagrams A-1

DROP ACCESS_METHOD statement
privileges needed 6-6

syntax 6-6

usage 2-12

DROP DATABASE or TABLE statement
purpose function for 4-15

purpose-function flow 4-5

E
Error messages

creating 3-7

from oncheck utility 5-43

Event-handling 3-6

External software, using 3-21

extspace
adding to system catalog tables 4-13

creating 2-9

defined 2-9

determining location 5-6

determining name 5-60

fragments 2-10

extspace-only access method, specifying 3-9

F
FastPath, defined 3-19

Fragment
defined 3-12

partnum (fragment identifier) 5-6, 5-54

Fragmentation
specifying in CREATE statement 2-10

testing for 3-7

usage 2-10

Fragments, number of 5-52

Function descriptor 3-19

I
ifxgls.h 5-7

IN clause
determining space type 5-7

errors from 2-10

specifying storage space 2-10

Include files 5-7

Indexed-table requirements 3-13

Indexes on remote tables 4-23

INSERT statements
am_insert purpose function 4-20

parallel execution of 3-23

purpose-function flow 4-5

internationalization 5-7

Isolation level
definitions of each 3-24

determining 3-8, 5-5, 5-6

documenting 3-29

retrieving 5-33, 5-47

J
Join, purpose function for 4-22

L
Locks

for extspaces 3-12

for sbspaces 3-11

retrieving type 3-8, 5-5, 5-34

Logging
checking for 3-8, 5-6

enabling for sbspaces 3-11

extspaces 3-12

sbspaces 3-11

X-2 IBM Informix Virtual-Table Interface Programmer’s Guide

M
memdur.h 5-7

Memory allocation
for user data 4-21, 5-58

functions for 3-2

Memory deallocation 4-16

Memory duration
changing 3-3

keywords for specifying 3-2

MI_AM_QUAL_DESC structure 5-3

MI_AM_SCAN_DESC structure 5-5

MI_AM_TABLE_DESC structure 5-6

MI_AM_TSTATS_DESC structure 5-6

mi_dalloc() function 3-3

mi_db_error_raise() function 3-7

mi_eval_am_qual() function
syntax 5-8

usage 4-18

MI_EVENT_END_XACT event 3-26

MI_Exception event
callback function 3-7

mi_file_* functions 3-9

MI_FUNC_DESC structure 3-19

mi_init_am_qual() function, syntax 5-9

mi_lo_* functions 3-9

MI_LO_ATTR_LOG flag 3-11

MI_NO_MORE_RESULTS return value 4-18

mi_qual_column() function, syntax 5-11

mi_qual_commuteargs() function, syntax 5-12

mi_qual_const_depends_hostvar() function, syntax 5-18

mi_qual_const_depends_outer() function, syntax 5-19

mi_qual_constant_nohostvar() function, syntax 5-14

mi_qual_constant() function, syntax 5-13

mi_qual_constisnull_nohostvar() function, syntax 5-17

mi_qual_constisnull() function, syntax 5-16

mi_qual_depends_hostvar() function, syntax 5-18

mi_qual_funcid() function, syntax 5-20

mi_qual_funcname() function
example 3-19

syntax 5-21

mi_qual_handlenull() function, syntax 5-22

mi_qual_issimple() function
example 3-21

syntax 5-23

mi_qual_needoutput() function
syntax 5-24

mi_qual_negate() function
syntax 5-25

mi_qual_nquals() function
syntax 5-26

usage 5-27

mi_qual_qual() function, syntax 5-27

mi_qual_setoutput() function, syntax 5-28

mi_qual_setreopt() function, syntax 5-29

mi_qual_setvalue() function, syntax 5-30

mi_qual_value() function, syntax 5-31

mi_register_callback() function 3-6

mi_routine_exec() function 3-19

mi_row_create() function 3-26, 4-17

MI_ROW_DESC structure 5-5

mi_scan_forupdate() function
syntax 5-32

mi_scan_isolevel() function
syntax 5-33

usage 3-8

mi_scan_locktype() function
syntax 5-34

mi_scan_locktype() function (continued)
usage 3-8

mi_scan_nprojs() function
syntax 5-36, 5-37

usage 3-26

mi_scan_projs() function
syntax 5-37

usage 3-26

mi_scan_quals() function
syntax 5-38

mi_scan_setuserdata() function
syntax 5-39

usage 3-4

mi_scan_table() function
syntax 5-40

mi_scan_userdata() function
syntax 5-41

usage 3-4

MI_SQL exception level 5-43

mi_switch_mem_duration() function 3-3

mi_tab_amparam() function
syntax 5-42

mi_tab_check_msg() function, syntax 5-43

mi_tab_id() function, syntax 5-46

mi_tab_isolevel() function
syntax 5-47

usage 3-8

mi_tab_istable() function
syntax 5-48

mi_tab_mode() function
syntax 5-49

usage 3-8

mi_tab_name() function
syntax 5-50

mi_tab_niorows() function
syntax 5-51

usage 3-24

mi_tab_numfrags() function
SQL- error detection 3-7

syntax 5-52

mi_tab_owner() function
syntax 5-53

mi_tab_param_exist() function
syntax 5-54

mi_tab_partnum() function, syntax 5-54

mi_tab_rowdesc() function, syntax 5-55

mi_tab_setnextrow() function, syntax 5-56

mi_tab_setniorows() function
syntax 5-57

usage 3-23

mi_tab_setuserdata() function
syntax 5-58

usage 3-4

mi_tab_spaceloc() function, syntax 5-59

mi_tab_spacename() function, syntax 5-60

mi_tab_spacetype() function
syntax 5-62

usage 3-12

mi_tab_update_stat_mode() function, syntax 5-63

mi_tab_userdata() function
syntax 5-64

usage 3-4

mi_transition_type() function 3-26

mi_tstats_setnpages() function, syntax 5-65

mi_tstats_setnrows() function, syntax 5-66

mi.h 5-7

miami.h 5-7

Index X-3

Multiple-row read-write
example 3-24

get next row for 5-56

number in memory 5-51

setup 3-23, 5-57

O
oncheck utility

documenting output from 3-29

implementing 4-10

options 4-10

output for 5-43

purpose-function flow 4-7

ONCONFIG file setting for sbspace 3-10

onspaces utility
creating storage spaces with 2-8, 2-9

extspace creation 2-9

required for sbspace fragments 3-29

sbspace creation 2-8

Optimization 3-21

OUT keyword
defined 3-16

setting 5-24

P
Parallel execution 2-6

Parallelizable purpose functions 3-23

Parallelizable purpose functions, requirements for 3-23

PARALLELIZABLE routine modifier 2-6, 3-23

Parallelizable UDR
defined 3-22

restrictions on 3-5

PER_COMMAND memory 3-3

PER_ROUTINE memory 3-2

PER_STMT_EXEC memory 1-5, 1-6, 3-3, 4-12, 4-21, 5-40, 5-58,

5-64

PER_STMT_PREP memory 3-3, 4-12, 4-21, 5-40, 5-58, 5-64

Performance considerations
creating parallelizable UDRs 2-6

optimizing queries 2-4

returning multiple rows 3-23

Projection clause, usage 3-14

Projection, defined 3-14

Purpose flags
adding and deleting 6-2

list of 6-8

Purpose functions
adding, changing, and dropping 6-2

characteristics of 1-4

choosing and writing 2-2

defined 1-7

flow diagrams 4-1

for SQL statements 4-1

naming 4-7

parallel execution 3-23

parallel-execution indicator 6-9

registering 2-5

registering as parallelizable 2-5, 2-6

setting names for 6-9

SQL errors from 3-28

syntax reference 4-7

Purpose values
adding, changing, and dropping 6-2

valid settings 6-8

Purpose, defined 6-7

Q
Qualification

Boolean 5-10

column number in 5-11

constant value in 5-13

defined 3-15

host variable needed 5-18

NOT operator in 5-25

NULL constant in 5-16, 5-17

OUT value needed 5-18, 5-24, 5-28

OUT value, setting 5-28

outer join in 5-19

result value
retrieving 5-31

setting 5-30

routine identifier for 5-20

simple predicate 5-23

Qualification descriptor
accessor functions 5-3

array size 5-26

changed for rescan 5-35

complex 3-15

defined 3-15

nested structure 3-15

NULL-valued pointer to 5-38

reinitializing 5-9

retrieving 5-38

retrieving pointer to 5-38

Qualification evaluation
by external software 3-21

by the access method 3-18

by the database server 3-18

Query
complex examples 3-19

external software evaluates 3-21

number of columns to project 5-36

projection operator 3-14

returning only projected values 5-37

selection operator 3-14

Query plans
components 4-23

cost 4-23

defined 3-21

R
Reoptimize 5-29

Row descriptor
description 5-5

retrieving 5-55

usage 5-37

ROWIDS, specifying support for 6-8

Rows, creating from source data 3-26, 4-17

S
SBSPACENAME parameter 3-10

sbspaces
creating 2-8

creating a default 3-10

creating for fragmentation 2-10

enabling logging 3-11

in fragmented table 3-29

X-4 IBM Informix Virtual-Table Interface Programmer’s Guide

sbspaces (continued)
retrieving the name 5-60

using the default 2-9

Scan descriptor
accessor functions for 5-5

NULL-valued pointer in 5-38

relationship to Projection clause 3-14

user data 3-3

Scans
cleanup 4-16

fetch routine 4-18

isolation level for 3-8, 5-5

lock type for 3-8, 5-5

setup 4-9

Screen reader
reading syntax diagrams A-1

SELECT statements
defined 3-14

INTO TEMP clause 3-23

parallel execution 3-23

purpose functions for 4-9, 4-16, 4-18, 4-23

purpose-function flow 4-6

Selection, defined 3-14

shortcut keys
keyboard A-1

Simple predicate, defined 3-16

SQL errors
avoiding 2-10, 2-11, 3-28

causes of 3-27

missing purpose function 2-5, 4-14, 4-20, 4-27

unsupported storage space 3-9

SQL statements
executing inside access method 3-4

extensions 1-6

for data definition 3-8

for data retrieval and manipulation 3-24

unsupported by VTI 3-29

SQLSTATE status value 5-43

Statistics descriptor, accessor functions for 5-6

Storage-space type
access-method support for 3-9

retrieving 5-62

Subquery, purpose function for 4-22

Syntax diagrams
reading in a screen reader A-1

sysams system catalog table
columns in 6-7

setting values in 6-1

sysindexes system catalog tables
adding an index 4-13

systables system catalog table
adding a table 4-13

deleting a table 4-15

statistics for 4-25

System catalog tables
querying 3-4

T
Table

identifier 5-46

mode, determining 5-49

number of pages in 5-65

number of rows in 5-66

owner 5-53

Table descriptor
accessor functions for 5-6

Table descriptor (continued)
defined 3-8

retrieving a pointer to 5-40

Tape-device extspace 2-9

Testing 2-8

Transaction management
determining commit success 3-26

for sbspaces 3-11

U
UDRs

defined 1-4

executing 3-19

UPDATE statements
am_delete purpose function 4-14

am_insert purpose function 4-20

am_update purpose function 4-27

parallel execution of 3-23

purpose-function flow 4-5

specifying support for 6-8

UPDATE STATISTICS statement
described 3-22

purpose function for 4-25

User data
declaring structure for 3-3

defined 3-3

for scan
retrieving 5-41

storing 5-39

for statement
retrieving 5-64

storing 5-58

table-state memory 5-58

User guide 3-27

User-defined routines
executing across databases 3-5

USING clause
configuration parameters in 3-13, 5-6

specifying access method 2-10

V
Visual disabilities

reading syntax diagrams A-1

W
WHERE clause

defined 3-14

qualifications in 3-15, 3-17

usage 3-14

X
XA-compliant external data sources 7-1

XML documents 1-3

Index X-5

X-6 IBM Informix Virtual-Table Interface Programmer’s Guide

����

Printed in USA

SC23-9440-00

Sp
in
e
in
fo
rm
at
io
n:

 IB
M

In

fo
rm

ix

Ve
rs

io
n

11
.5

0
IB

M

In

fo
rm

ix

Vi

rtu
al

-T
ab

le

In

te
rfa

ce

Pr

og
ra

m
m

er
’s

Gu

id
e

�
�

�

	Contents
	Introduction
	In This Introduction
	About This Publication
	Types of Users
	Software Dependencies
	Assumptions About Your Locale
	Demonstration Databases

	Documentation Conventions
	Typographical Conventions
	Feature, Product, and Platform Markup
	Example Code Conventions

	Additional Documentation
	Compliance with Industry Standards
	Syntax Diagrams
	How to Read a Command-Line Syntax Diagram
	Keywords and Punctuation
	Identifiers and Names

	How to Provide Documentation Feedback

	Chapter 1. Access Methods
	In This Chapter
	Built-in Access Methods
	User-Defined Access Methods
	Access to Storage Spaces
	Seamless Use of SQL

	Access-Method Components
	Components That the IBM Informix Database Server Provides
	Virtual-Table Interface
	DataBlade API
	SQL Extensions
	API Libraries

	Components That You Provide
	Purpose Functions
	User-Defined Routines and Header Files
	User Messages and Documentation

	Access Method Flow
	Locating Purpose Functions
	Invoking Purpose Functions
	Calling Functions From a Purpose Function
	Improving An Access Method

	Chapter 2. Developing an Access Method
	In This Chapter
	Choosing Features
	Writing Purpose Functions
	Starting and Ending Processing
	Creating and Dropping Database Objects
	Optimizing Queries
	Providing Optimizer Information
	Splitting a Scan

	Inserting, Deleting, and Updating Data

	Registering Purpose Functions
	Supplying Routine Modifiers

	Registering the Access Method
	Testing the Access Method
	Creating and Specifying Storage Spaces
	Using Internal Storage
	Using External Storage
	Using Fragments
	Avoiding Storage-Space Errors

	Inserting, Querying, and Updating Data
	Checking Data Integrity

	Dropping an Access Method
	Cannot Rename Databases That Have Virtual Tables

	Chapter 3. Design Decisions
	In This Chapter
	Storing Data in Shared Memory
	Functions That Allocate and Free Memory
	Memory-Duration Options
	Persistent User Data

	Accessing Database and System Catalog Tables
	No Label-Based Access Control on Virtual Tables
	Executing a UDR Across Databases of the Same Database Server Instance
	Handling the Unexpected
	Using Callback Functions
	Using Error Messages

	Supporting Data Definition Statements
	Interpreting the Table Descriptor
	Managing Storage Spaces
	Choosing DataBlade API Functions
	Setting the am_sptype Value
	Creating a Default Storage Space
	Ensuring Data Integrity
	Checking Storage-Space Type
	Supporting Fragmentation

	Providing Configuration Keywords
	Leveraging Indexes on Virtual Tables

	Processing Queries
	Interpreting the Scan Descriptor
	Interpreting the Qualification Descriptor
	Simple Functions
	Runtime Values as Arguments
	Negation
	Complex Boolean Expressions

	Qualifying Data
	Qualification by the Database Server
	Qualification by the Access Method
	Qualification by External Software
	Supporting Query Plan Evaluation

	Enhancing Performance
	Executing in Parallel
	Buffering Multiple Results

	Supporting Data Retrieval, Manipulation, and Return
	Checking Isolation Levels
	Converting to and from Row Format
	Determining Transaction Success or Failure

	Supplying Error Messages and a User Guide
	Avoiding Database Server Exceptions
	Statements That the Access Method Does Not Support
	Keywords That the Access Method Does Not Support
	Storage Spaces and Fragmentation
	SQL Restrictions

	Notifying the User About Access-Method Constraints
	Documenting Nonstandard Features

	Chapter 4. Purpose-Function Reference
	In This Chapter
	Purpose-Function Flow
	ALTER FRAGMENT Statement Interface
	CREATE Statement Interface
	DROP Statement Interface
	INSERT, DELETE, and UPDATE Statement Interface
	SELECT...WHERE Statement Interface
	oncheck Utility Interface

	Purpose-Function Syntax
	am_beginscan
	am_check
	am_close
	am_create
	am_delete
	am_drop
	am_endscan
	am_getbyid
	am_getnext
	am_insert
	am_open
	am_rescan
	am_scancost
	am_stats
	am_truncate
	am_update

	Chapter 5. Descriptor Function Reference
	In This Chapter
	Descriptors
	Qualification Descriptor
	Row Descriptor
	Scan Descriptor
	Statistics Descriptor
	Table Descriptor
	Include Files

	Accessor Functions
	mi_eval_am_qual()
	mi_init_am_qual()
	mi_qual_boolop()
	mi_qual_column()
	mi_qual_commuteargs()
	mi_qual_constant()
	mi_qual_constant_nohostvar()
	mi_qual_constisnull()
	mi_qual_constisnull_nohostvar()
	mi_qual_const_depends_hostvar()
	mi_qual_const_depends_outer()
	mi_qual_funcid()
	mi_qual_funcname()
	mi_qual_handlenull()
	mi_qual_issimple()
	mi_qual_needoutput()
	mi_qual_negate()
	mi_qual_nquals()
	mi_qual_qual()
	mi_qual_setoutput()
	mi_qual_setreopt()
	mi_qual_setvalue()
	mi_qual_value()
	mi_scan_forupdate()
	mi_scan_isolevel()
	mi_scan_locktype()
	mi_scan_newquals()
	mi_scan_nprojs()
	mi_scan_projs()
	mi_scan_quals()
	mi_scan_setuserdata()
	mi_scan_table()
	mi_scan_userdata()
	mi_tab_amparam()
	mi_tab_check_msg()
	mi_tab_createdate()
	mi_tab_id()
	mi_tab_isolevel()
	mi_tab_istable()
	mi_tab_mode()
	mi_tab_name()
	mi_tab_niorows()
	mi_tab_numfrags()
	mi_tab_owner()
	mi_tab_partnum()
	mi_tab_rowdesc()
	mi_tab_setnextrow()
	mi_tab_setniorows()
	mi_tab_setuserdata()
	mi_tab_spaceloc()
	mi_tab_spacename()
	mi_tab_spacetype()
	mi_tab_update_stat_mode()
	mi_tab_userdata()
	mi_tstats_setnpages()
	mi_tstats_setnrows()

	Chapter 6. SQL Statements for Access Methods
	In This Chapter
	ALTER ACCESS_METHOD (+)
	CREATE ACCESS_METHOD (+)
	DROP ACCESS_METHOD (+)
	Purpose Options

	Chapter 7. Using XA-Compliant External Data Sources
	Creating a Virtual-Table Interface for XA Data Sources

	Appendix. Accessibility
	Accessibility features for IBM Informix Dynamic Server
	Accessibility Features
	Keyboard Navigation
	Related Accessibility Information
	IBM and Accessibility

	Dotted Decimal Syntax Diagrams

	Notices
	Trademarks

	Index

