Informix Product Family
Informix
Version 11.70

IBM Informix DataBlade API
Programmer’s Guide

<||IH

Informix Product Family
Informix
Version 11.70

IBM Informix DataBlade API
Programmer’s Guide

..ll

Note
FBefore using this information and the product it supports, read the information in|[“Notices” on page C-1]

This edition replaces SC27-3525-00.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this publication must not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1996, 2012.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Introduction. . Xi
About this publication . . xi
Types of users . xi
Software compatlblhty . xi
Assumptions about your locale . . xi
Demonstration databases . . . xii
What's new in DataBlade API Programmer s Gulde for Informlx Ver510n 11 70. . xii
Function syntax conventions . xiii
Example code conventions . . xiii
Additional documentation . . xiv
Compliance with industry standards . xiv
How to provide documentation feedback . . xiv
Part 1. DataBlade APl overview
Chapter 1. The DataBlade API .11
The DataBlade API module . 11
User-defined routine (Server) 141
The client LIBMI application . 1-4
Compatibility of client and server DataBlade API modules . 1-4
DataBlade API components . .14
Header files . .14
Public data types .17
Regular public functions . 1-13
Advanced features (Server) . 117
Internationalization of DataBlade API modules (GLS) . 117
Chapter 2. Access SQL data types . 21
Type identifiers . . 2-1
Type descriptors . .22
Type-structure conversion . . . 2-3
Data type descriptors and column type descrlptors . 2-4
Character data types . . 2-6
The mi_charl and mi uns1gned charl data types . 2-6
The mi_char and mi_string data types . .27
The mi_lvarchar data type . .27
Character data in a smart large ob]ect .29
Character processing . . .29
Varying-length data type structures . 2-11
A varying-length structure. . . 2-12
Memory management for a varying- length structure . . 2-12
Access a varying-length structure . 2-15
Byte data types . . 2-26
The mi_bitvarying data type . . 2-26
Byte data in a smart large object. . 2-27
Byte processing . 2-27
Boolean data types . 2-28
Boolean text representation . 2-28
Boolean binary representation . 2-28
Pointer data types (Server). . 2-29
Simple large objects . . 2-30
The MI_DATUM data type . . . 2-30
Contents of an MI_DATUM structure . .o . 2-31
Address calculations with MI_DATUM values . . 2-33
© Copyright IBM Corp. 1996, 2012 iii

Uses of MI_DATUM structures . . 2-33
The NULL constant . . 2-34
SQL NULL value . . 2-34
NULL-valued pointer . 2-35
Part 2. Data manipulation
Chapter 3. Numeric data types . . 3-1
Integer data . .31
Integer text representatlon . . 3-1
Integer binary representations . .31
Fixed-point data . . 37
Fixed-point text representatlons . 3-8
Fixed-point binary representations . .39
Transfer fixed-point data (Server) . 3-13
Convert decimal data . 3-13
Perform operations on decimal data . 3-15
Obtain fixed-point type information . 3-15
Floating-point data . 3-16
Floating-point text representat1on . 3-16
Floating-point binary representations . . 3-16
Transfer floating-point data (Server) . 3-18
Convert floating-point decimal data . 3-19
Obtain floating-point type information. . 3-19
Format numeric strings . . 3-20
Chapter 4. Date and time data types . 41
Date data . . 4-1
Date text representatlon . .41
Date binary representation . . 4-1
Transfers of date data (Server) . . 42
Conversion of date representations 4-2
Operations on date data . .44
Date-time or interval data . .44
Date-time or interval text representatlon . 4-5
Date-time or interval binary representation . 4-6
The datetime.h header file . . 4-8
Retrieval and insertion of DATETIME and INTERVAL Values . .49
Transfers of date-time or interval data (Server) . . 4-11
Conversion of date-time or interval representations . 4-12
Operations on date and time data . 4-14
Functions to obtain information on date and tlme data . 4-15
Chapter 5. Complex data types . 5-1
Collections . . 5-1
Collection text representatlon . . 5-1
Collection binary representation . 5-1
Create a Collection. . 5-3
Open a collection . . 53
Access the elements of a collectlon . .55
Releasing collection resources. . 5-14
The listpos() UDR . 5-14
Row types . . . 5-26
Row-type text representatlon . 5-26
Row-type binary representation . . 527
Create a row type . 5-31
Access a row type . 5-34
Copying a row structure . 5-34
Releasing row resources . 5-36

iV IBM Informix DataBlade API Programmer’s Guide

Chapter 6. Smart large objects . . 6-1
Smart large objects. . 6-1
Parts of a smart large ob]ect 6-2
Information about a smart large object . . .63
Storing a smart large object in a database. . 6-13
Valid data types . . 6-13
Access to a smart large ob]ect . 6-14
The smart-large-object interface . . . 6-15
Smart-large-object data type structures. . 6-16
Smart-large-object functions . 6-20
Creating a smart large object . . . 625
Obtain the LO-specification structure . . 6-26
Choosing storage characteristics . . . 6-29
Initialize an LO handle and an LO file descrrptor . . 6-41
Write data to a smart large object . . 6-43
Storing an LO handle . 6-44
Free resources . . 6-44
Sample code to create a new smart large ob]ect . 6-45
Accessing a smart large object . 6-47
Selecting the LO handle . 6-48
Open a smart large object . . 6-49
Read data from a smart large object . 6-50
Free a smart large object . 6-50
Sample code to select an existing smart large ob]ect . 6-51
Modify a smart large object . 6-52
Updating a smart large object. . 6-52
Alter storage characteristics . 6-53
Obtaining status information for a smart large ob]ect . 6-53
Obtain a valid LO file descriptor . 6-54
Initialize an LO-status structure . . 6-54
Obtain status information . . 6-55
Free an LO-status structure . 6-57
Delete a smart large object. . 6-57
Manage the reference count . 6-58
Free LO file descriptors. . . 6-60
Convert a smart large object to a flle or buffer . . 6-60
Operating-system files . . 6-61
User-defined buffers . . . 6-61
Convert an LO handle between bmary and text . 6-61
Binary and text representations of an LO handle . 6-62
DataBlade API functions for LO-handle conversion . 6-62
Transfer an LO handle between computers (Server) . 6-62
Using byte-range locking . . 6-63
Pass a NULL connection (Server) . 6-64
Part 3. Database access
Chapter 7. Connection handllng .71
Session management . . 7-1
Client connection . . 7-1
UDR connection (Server). .72
Connection descriptor .72
Initializing a client connection . . 7-3
Connection parameters . 7-4
Database parameters . . 7-6
Session parameters. . . 7-8
Set connection parameters for a chent cormectlon .79
Establish a connection . L 7-11
Establish a UDR connection (Server) . 7-11
Establish a client connection . . 7-14

Contents V

Associate user data with a connection .
Initialize the DataBlade API
Close a connection

Chapter 8. Execute SQL statements .
Execute SQL statements . .
Choose a DataBlade API functlon
Execute basic SQL statements .
Execute prepared SQL statements
Execute multiple SQL statements
Process statement results .
Execute the mi_get_result() loop .
Example: The get_results() function.
Retrieving query data
Obtain row information.
Obtain column information
Retrieve rows .
Obtain column values
Complete execution .
Finish execution .
Interrupt execution . .o
Inserting data into the database .
Assemble an insert string .
Send the insert statement .
Process insert results.
Save sets. .
Create a save set . .
Inserting rows into a save set.
Building a save set
Free a save set.

Chapter 9. Execute user-defined routines
Access MI_FPARAM routine-state information
Check routine arguments
Access return-value information .
Saving a user state. .
Obtain additional routine 1nformat10n
Call UDRs within a DataBlade API module .
Call a UDR through an SQL statement.
Call a UDR directly (Server) .
Named parameters and UDRs
Call UDRs with the Fastpath interface .
Obtain a function descriptor . .
Obtain information from a function descrlptor .
Execute the routine . .
A user-allocated MI_ FPARAM structure
Release routine resources .

Obtain trigger execution information and HDR database server status .

Trigger information .
HDR status information

Chapter 10. Exceptions and events.
DataBlade API event types
Event-handling mechanisms .
Invoke a callback .
Default behavior.
Callback functions . .
Declare a callback functlon .
Write a callback function .
Database server exceptions .

vi IBM Informix DataBlade API Programmer’s Guide

. 7-16
. 717
. 7-18

. 8-1

.81
. 82

. 8-10
. 832
. 833
. 8-34
. 8-38
. 840
. 8-40
. 8-41
. 841
. 843
. 8-58
. 8-58
. 8-59
. 8-60
. 8-60
. 8-60
. 8-60
. 8-61
. 8-61
. 8-62
. 8-62
. 8-65

. 9-1

.92
. 95
. 9-8

. 9-11
. 9-12
. 9-12
. 9-12
. 9-13
. 9-14
. 917
. 9-23
. 9-26
. 9-35
. 9-38
. 9-38
. 9-38
. 9-39

. 10-1
. 10-1

. 10-2
.. 103
. 10-10

. 10-12

. 10-12

. 10-15

. 10-19

Understanding database server exceptions . . 10-19
Overriding the default exception handling . . 10-24
Return error information to the caller. . 10-32
Handling multiple exceptions . 10-37
Raise an exception . . 10-39
State-transition events . . . 10-48
Understanding state-transition events . 10-48
Providing state-transition handling . 10-49
Client LIBMI errors. . 10-54
Chapter 11. XA-compliant external data sources . . 1141
Overview of integrating XA-compliant data sources in transactions . . 11-1
Support for the two-phase commit protocol . . 11-1
XA-compliant data sources and data source types . . . 11-2
Infrastructure for creating support routines for XA routines. 112
Global transaction IDs . . 11-2
System catalog tables S . 11-3
Files containing necessary components. . 11-3
Create user-defined XA-support routines . . 11-3
The xa_open() function . . 11-3
The xa_close() function . . 114
The xa_start() function . . 11-5
The xa_end() function . 11-5
The xa_prepare() function . . 11-6
The xa_rollback() function . . 11-6
The xa_commit() function . . 11-7
The xa_recover() function . . 11-7
The xa_forget() function . 11-8
The xa_complete() function .o . 11-8
Create and drop XA data sources and data source types . . 119
Create an XA data source type . 119
Drop an XA data source type L 11-11
Create an XA data source . . 11-11
Drop an XA data source . . . L 11-11
Register and unregister XA-comphant data sources . . 11-12
The ax_reg() function . . 11-12
The ax_unreg() function . . 11-13
The mi_xa_register_xadatasource() functlon . 11-14
The mi_xa_unregister_xadatasource() function . . 11-15
Get the XID structure . . 11-15
Get the resource manager ID . 11-16
Monitor integrated transactions. . 11-16
Part 4. Create user-defined routines
Chapter 12. Develop a user-defined routine . . 121
Designing a UDR. . 12-1
Development tools . 12-1
Uses of a C UDR . L1222
Portability . . . 12-3
Insert and update operatlons . 12-4
Creating UDR code . . 124
Variable declaration . . 124
Session management. . 12-5
SQL statement execution . 12-8
Routine-state information . . 12-9
Event handling . 12-9
Well-behaved routines . . 12-10
Compile a C UDR . . 12-10
Compile options. . 12-10

Contents Vil

Creating a shared-object file .
Register a C UDR
EXTEND role required to reglster a C UDR
The external name . o
The UDR language .
Routine modifiers
Parameters and return Values
Privileges for the UDR.
Execute a UDR .
Routine resolution .
The routine manager
Debug a UDR .
Attaching to the database server process w1th the debugger .
Running a debugging session o
Tracing . .
Change a UDR .
Alter a routine
Unload a shared-object f11e

Chapter 13. Write a user-defined routine
Code a C UDR .

Define routine parameters .

Obtain argument values

Define a return value .

Code the routine body.

Virtual processors . .
Create a well-behaved routlne .
Manage virtual processors

Control the VP environment. .
Obtain VP-environment information .
Change the VP environment.

Lock a UDR .

Perform input and output
Access to a stream (Server) .

Access to operating-system files
Sample file-access UDR .

Access the UDR execution environment .
Access the session environment.
Access the server environment .

Chapter 14. Manage memory
Shared memory .
Access shared memory
Choose the memory duration.
Manage shared memory .
Manage user memory .
Manage named memory .
Monitor shared memory .
Manage stack space
Manage stack usage
Increase stack space

Chapter 15. Create special- purpose UDRs.
Write an end-user routine .
Write a cast function.
Registering a C UDR as a cast functlon
Write an iterator function .
Implementing an iterator functlon w1th a C user—defmed functlon
Initialize the iterations .
Return one active-set item .

viii IBM Informix DataBlade API Programmer’s Guide

. 12-11
. 12-13
. 12-13
. 12-14
. 12-15
. 12-15
. 12-16
. 12-17
. 1217
. 12-18
. 12-18
. 12-24
. 12-24
. 12-26
. 12-27
. 12-35
. 12-35
. 12-35

. 131
. 13-1

. 13-1
.. 134
. 13-10
. 13-15
. 13-15
. 13-16
. 13-35
. 13-37
. 13-38
. 13-39
. 13-40
. 13-41
. 1341
. 13-51
. 13-55
. 13-57
. 13-57
. 13-58

. 141
. 14-1

. 14-1
.. 144
. 14-18
. 14-19
. 14-24
. 14-33
. 14-35
. 14-35
. 14-36

. 1541
. 15-1
. 15-1
. 15-2
. 152
. 153
. 15-6
. 15-8

Release iteration resources . . . 15-10
Call an iterator function from an SQL statement . . 15-10
Write an aggregate function . . 15-12
Extending a built-in aggregate . . 15-13
Creating a user-defined aggregate . . 15-17
Provide UDR-optimization functions . . 15-55
Write selectivity and cost functions . . 15-56
implementing a negator function with a C user—defmed functlon . 15-62
Implementing a commutator function with a C user-defined function . . 15-62
Creating parallelizable UDRs . 15-63
Chapter 16. Extend data types. . 16-1
Create an Opaque Data Type . . 16-1
Design an opaque data type . . 16-1
Write opaque-type support functions . . 16-8
Registering an opaque data type . l6-41
Provide statistics data for a column . 16-42
Collect statistics data . . 16-42
User-defined statistics . . 16-50
Optimize queries . 16-52
Query plans . . 16-53
Selectivity functions . 1l6-54
Part 5. Appendixes
Appendix A. Write a client LIBMI appllcatlon . . A-1
Manage memory in client LIBMI applications . A-1
Allocate user memory . A-1
Deallocate user memory. . A-2
Access operating-system files in chent LIBMI apphcatlons . A3
Handling transactions . A3
Appendix B. Accessibility . . B-1
Accessibility features for IBM Informix products. . B-1
Accessibility features . . B-1
Keyboard navigation . . . B-1
Related accessibility lnformatlon . . B-1
IBM and accessibility . . B-1
Dotted decimal syntax diagrams . . B-1
Notices . . C1
Trademarks . . C-3
Index . . X-1

Contents

ix

X IBM Informix DataBlade API Programmer’s Guide

Introduction

This introduction provides an overview of the information in this publication and
describes the conventions it uses.

About this publication

This publication contains information about the DataBlade® API, the C-language
application programming interface (API) provided with IBM® Informix®. You can
use the DataBlade API to develop client LIBMI applications and C user-defined
routines (UDRs) that access data in an IBM Informix database.

This publication explains how to use the DataBlade API functions. The companion
publication, the IBM Informix DataBlade API Function Reference, describes the
functions in alphabetical order.

This section discusses the intended audience, the software that you need to use the
DataBlade API, localization, and demonstration databases.

Types of users
This publication is for the following users:
* Database-application programmers
* DataBlade developers
* Developers of C UDRs

To understand this publication, you need to have the following background:

* A working knowledge of your computer, your operating system, and the utilities
that your operating system provides

* Some experience working with relational databases or exposure to database
concepts

* Some experience with computer programming in the C programming language

* Some experience with database design and the optimization of database queries

You can access the Informix information centers and other technical information
such as technotes, white papers, and IBM Redbooks® publications online at
lhttp:/ /www.ibm.com /software /data/sw-library /|

Software compatibility

For information about software compatibility, see the IBM Informix release notes.

Assumptions about your locale

IBM Informix products can support many languages, cultures, and code sets. All
the information related to character set, collation and representation of numeric
data, currency, date, and time that is used by a language within a given territory
and encoding is brought together in a single environment, called a Global
Language Support (GLS) locale.

© Copyright IBM Corp. 1996, 2012 xi

http://www.ibm.com/software/data/sw-library/

The IBM Informix OLE DB Provider follows the ISO string formats for date, time,
and money, as defined by the Microsoft OLE DB standards. You can override that
default by setting an Informix environment variable or registry entry, such as
DBDATE.

If you use Simple Network Management Protocol (SNMP) in your Informix
environment, note that the protocols (SNMPv1 and SNMPv2) recognize only
English code sets. For more information, see the topic about GLS and SNMP in the
IBM Informix SNMP Subagent Guide.

The examples in this publication are written with the assumption that you are
using one of these locales: en_us.8859-1 (ISO 8859-1) on UNIX platforms or
en_us.1252 (Microsoft 1252) in Windows environments. These locales support U.S.
English format conventions for displaying and entering date, time, number, and
currency values. They also support the ISO 8859-1 code set (on UNIX and Linux)
or the Microsoft 1252 code set (on Windows), which includes the ASCII code set
plus many 8-bit characters such as §é, ¢, and f.

You can specify another locale if you plan to use characters from other locales in
your data or your SQL identifiers, or if you want to conform to other collation
rules for character data.

For instructions about how to specify locales, additional syntax, and other
considerations related to GLS locales, see the IBM Informix GLS User’s Guide.

Demonstration databases

The DB-Access utility, which is provided with your IBM Informix database server
products, includes one or more of the following demonstration databases:

¢ The stores_demo database illustrates a relational schema with information about
a fictitious wholesale sporting-goods distributor. Many examples in IBM
Informix publications are based on the stores_demo database.

* The superstores_demo database illustrates an object-relational schema. The
superstores_demo database contains examples of extended data types, type and
table inheritance, and user-defined routines.

For information about how to create and populate the demonstration databases,
see the IBM Informix DB-Access User's Guide. For descriptions of the databases and
their contents, see the IBM Informix Guide to SQL: Reference.

The scripts that you use to install the demonstration databases are in the
$INFORMIXDIR/bin directory on UNIX platforms and in the %SINFORMIXDIR%\bin
directory in Windows environments.

What's new in DataBlade APl Programmer’s Guide for Informix,

Version 11.70

This publication includes information about new features and changes in existing
functionality.

The following changes and enhancements are relevant to this publication. For a
complete list of what's new in this release, see the release notes or the information
center at |http:/ /publib.boulder.ibm.com/infocenter/ idshelp/v117 /topic/ |
fcom.ibm.po.doc/new_features.htm|

Xii IBM Informix DataBlade API Programmer’s Guide

http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.po.doc/new_features.htm
http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.po.doc/new_features.htm

The following table lists the new features for Version 11.70.xCé.

Table 1. What's New in IBM Informix DataBlade API Programmer’s Guide for Version 11.70.xC6

Overview

Reference

Support for the same XID for transactions on different databases |[“Global transaction IDs” on page 11-2|

You can use your databases as the domain for transactions
instead of the server. Set the
IFX_XA_UNIQUEXID_IN_DATABASE configuration parameter to
enable the transaction manager to use the same XID to represent
global transactions on different databases in the same database

server instance.

Function syntax conventions

This publication uses the following conventions to specify DataBlade API function
syntax:

* Brackets ([]) surround optional items.
¢ Braces({ }) surround items that can be repeated.
* A vertical line (|) separates alternatives.

* Function parameters are italicized; arguments that you must specify as shown
are not italicized.

Example code conventions

Examples of SQL code occur throughout this publication. Except as noted, the code
is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by
semicolons. For instance, you might see the code in the following example:

CONNECT TO stores_demo

DELETE FROM customer
WHERE customer_num = 121

COMMIT WORK
DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules for
that product. For example, if you are using an SQL API, you must use EXEC SQL
at the start of each statement and a semicolon (or other appropriate delimiter) at
the end of the statement. If you are using DB-Access, you must delimit multiple
statements with semicolons.

Tip: Ellipsis points in a code example indicate that more code would be added in
a full application, but it is not necessary to show it to describe the concept being

discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the documentation for your product.

Introduction Xiii

Additional documentation

Documentation about this release of IBM Informix products is available in various
formats.

You can access or install the product documentation from the Quick Start Guide
CD that is shipped with Informix products. To get the most current information,
see the Informix information centers at ibm.com®. You can access the information
centers and other Informix technical information such as technotes, white papers,
and IBM Redbooks publications online at |http:/ /www.ibm.com/software/data/ |

Compliance with industry standards

IBM Informix products are compliant with various standards.

IBM Informix SQL-based products are fully compliant with SQL-92 Entry Level
(published as ANSI X3.135-1992), which is identical to ISO 9075:1992. In addition,
many features of IBM Informix database servers comply with the SQL-92
Intermediate and Full Level and X/Open SQL Common Applications Environment
(CAE) standards.

The IBM Informix Geodetic DataBlade Module supports a subset of the data types
from the Spatial Data Transfer Standard (SDTS)—Federal Information Processing
Standard 173, as referenced by the document Content Standard for Geospatial
Metadata, Federal Geographic Data Committee, June 8, 1994 (FGDC Metadata
Standard).

How to provide documentation feedback

xiv

You are encouraged to send your comments about IBM Informix user
documentation.

Use one of the following methods:

* Send email to|docinf@us.ibm.com|

¢ In the Informix information center, which is available online at
|http: / /www.ibm.com /software /data/sw-library / |, open the topic that you want
to comment on. Click the feedback link at the bottom of the page, fill out the
form, and submit your feedback.

* Add comments to topics directly in the information center and read comments
that were added by other users. Share information about the product
documentation, participate in discussions with other users, rate topics, and
more!

Feedback from all methods is monitored by the team that maintains the user
documentation. The feedback methods are reserved for reporting errors and
omissions in the documentation. For immediate help with a technical problem,
contact IBM Technical Support at fhttp:/ /www.ibm.com /planetwide /|

We appreciate your suggestions.

IBM Informix DataBlade API Programmer’s Guide

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/
mailto://docinf@us.ibm.com
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/planetwide/

Part 1. DataBlade API overview

© Copyright IBM Corp. 1996, 2012

IBM Informix DataBlade API Programmer’s Guide

Chapter 1. The DataBlade API

The IBM Informix DataBlade API is the application programming interface (API)
for IBM Informix. You can use DataBlade API functions in DataBlade modules to
access data stored in an Informix database.

This section provides the following information:

* A description of the different kinds of DataBlade API modules you can write
with the DataBlade API

e A summary of the basic parts of the DataBlade API

For information about how to develop DataBlade modules, see the IBM DataBlade
Developers Kit User’s Guide.

The DataBlade APl module

A DataBlade API module is a C-language module that uses the functions of the
DataBlade API to communicate with IBM Informix.

You can use the DataBlade API in either of the following DataBlade API modules:

C UDR
A user-defined routine that is written in C.

Client LIBMI application
A client application written in C.

Tip: This publication uses the term DataBlade API module generically to refer to
either a client LIBMI application or a user-defined routine (UDR).

To provide portability for applications, most of the DataBlade API functions behave
identically in a UDR and a client LIBMI application. In cases where syntax or
semantics differ, this publication uses qualifying paragraphs to distinguish between
server-side and client-side behavior of the DataBlade APL

If neither the server-specific or client-specific qualifying paragraphs appear, you
can assume that the functionality is the same in both the server-side and client-side
implementations of the .

You can dynamically determine the kind of DataBlade API module with the
mi_client() function.

User-defined routine (Server)

A user-defined routine (UDR) is a routine that you can start within an SQL
statement or another UDR. UDRs are building blocks for the development of
DataBlade modules.

Possible uses for a UDR are:

* Support function for an opaque data type

* Cast function to cast data from one data type to another

* End-user routine for use in SQL statements

* Operator function to implement an operation on a particular data type

© Copyright IBM Corp. 1996, 2012 1-1

1-2

When you write a UDR in an external language (a language other than SPL), the
UDR is called an external routine. An external routine that is written in the C
language is called a C UDR. A C UDR uses the server-side implementation of the
DataBlade API to communicate with the database server.

For general information about UDRs, see the IBM Informix User-Defined Routines
and Data Types Developer’s Guide.

Related reference:
[“Uses of a C UDR” on page 12-2|

Types of UDRs
You can write the following types of C UDRs.

Type of UDR Description C implementation
User-defined Returns one or more values and therefore can be A C function that
function used in SQL expressions returns some data

type other than
For example, the following query returns the results void (usually a

of a UDR named area() as part of the query results: DataBlade API data
SELECT diameter, area(diameter) type)

FROM shapes
WHERE diameter > 6;

User-defined Does not return any values and cannot be used in A C function that
procedure SQL expressions because it does not return a value returns void

You can call a user-defined procedure directly,
however, as the following example shows:

EXECUTE PROCEDURE myproc(l, 5);

Differences between C UDRs and UDRs written in SPL

There are several advantages of using C UDRs over UDRs written in the SPL
language. Also, there are advantages in using UDRs written in SPL over C UDR.

Advantages of C UDRs over UDRs written in the SPL language
* Performance, efficiency, and flexibility of C code

C UDRs are compiled to machine code. You can use the C programming
language to manipulate data at the level of bytes and bits and access data in
efficient data structures such as array, hash, linked list, or tree.

» Access to the DataBlade API (DAPI) and other C libraries

DAPI provides many functions that are not available in SPL or SQL, including
the IBM Informix ESQL/C function library for manipulating data in C. Any C
library that follows the guidelines of the DataBlade API can also be included.
For example, a C UDR has random access to data within a smart large object.

* Greater dynamic SQL support in C routines

C UDRs can dynamically build arbitrary SQL query strings at runtime and
execute them. In SPL, the CLOSE, DECLARE, EXECUTE IMMEDIATE, FETCH,
FREE, OPEN, and PREPARE statements support runtime replacement of
question mark (?) placeholders with specific input parameter values, but some
dynamic SQL syntax features and some cursor management statements of
ESQL/C are not supported in SPL. For example, IBM Informix Version 11.50
only supports sequential cursors. C UDRs can have other types of cursors such
as scroll and hold. The FOREACH statement of SPL declares a direct cursor, but
its associated SQL statement must have hardcoded names of database objects,
such as tables, columns, and functions because SPL variables can only represent

IBM Informix DataBlade API Programmer’s Guide

values, not SQL identifiers. (The EXEC Bladelet also supports some dynamic
SQL features in SPL routines, but its programming interface is more complex
and less intuitive than when SPL is used directly.)

* Extending the server

You can use C UDRs to define user-defined data types (UDTs), user-defined
aggregates, and user-defined access methods (for example, to access stream data
outside IBM Informix) to return data on the selectivity and cost of another UDR
to the optimizer and to access data of a ROW type that was unknown at compile
time.

Advantages of UDRs written in SPL over C UDRs

* SPL routines typically require less coding SPL is a higher-level language than C
and can therefore accomplish a given task in fewer lines of code

For example, in SPL it takes only a few lines to execute SQL and fetch results in
a loop. In C, it takes many lines to define and prepare the statement, execute it
with a cursor, fetch rows, fetch columns, close the cursor, close the statement,
and check for errors during the process.

* All SQL statements in SPL routines are automatically prepared

In SPL, any embedded SQL statements are parsed, prepared, and optimized
when the SPL routine is created and compiled. In a C UDR, if you want to
execute SQL repeatedly and efficiently, you must prepare it explicitly. (SPL can
only use the PREPARE statement to prepare a query or a call to a routine, but it
can then use EXECUTE IMMEDIATE to execute the prepared statement.)

e SPL routines are easier to write

A C UDR must follow the documented guidelines of the DataBlade API in areas
that include yielding the processor, allocating memory and variables, performing
I/0, and making system calls that block. Failure to follow the guidelines can
cause problems for the IBM Informix instance, although you can mitigate this
risk by registering the C UDR to run on a user-defined VP class.

* Support for noncursor EXECUTE..INTO statement

Beginning with IBM Informix Version 11.50, SPL supports only an EXECUTE
IMMEDIATE noncursor statement that does not return any row. However,
ESQL/C also supports the noncursor EXECUTE ... INTO statement. The query in
this statement can return a single row that is assigned to the SPL variables listed
after the INTO clause. Although SPL in IBM Informix Version 11.50, or later does
not support multiple statements within the noncursor EXECUTE IMMEDIATE
statement, this restriction reduces the risk of the insertion of unwanted SQL
statements.

Write a UDR in C

You can write a UDR in C by using the DataBlade API functions to communicate
with the database server. You can also write subroutines in C that a UDR calls as it
executes. These subroutines must follow the same rules as the UDR with respect to
the use of DataBlade API functions.

Tip: Because of the subject matter of these topics, the topics use the terms C UDR
and UDR interchangeably.

You compile UDRs into shared-object files. You then register the UDR in the
system catalog tables so that the database server can locate the code at run time.
The database server dynamically loads the shared-object files into memory when
the UDR executes.

Chapter 1. The DataBlade API 1-3

Related reference:

[Chapter 12, “Develop a user-defined routine,” on page 12-1|

[Chapter 13, “Write a user-defined routine,” on page 13-1|

Chapter 14, “Manage memory,” on page 14-1|

Chapter 15, “Create special-purpose UDRs,” on page 15-1|

The client LIBMI application

A client LIBMI application is a stand-alone client application that uses the
client-side implementation of the DataBlade API to communicate with the database
server. The application might be written in C, C++, or Visual Basic.

Important: Support is provided for client LIBMI applications for compatibility
with existing applications. For the development of new C client applications, use
another IBM Informix C-language product such as IBM Informix ODBC.

Compatibility of client and server DataBlade APl modules

You can execute a UDR from an SQL statement and from a client application with
little or no modification to the code. Any function that does not require interactive
input from the client application can be written as a UDR. However, not all
application code are in a C UDR. You must balance the load between the client
and the database server to achieve optimal performance.

To avoid interfering with the operation of the database server, you can develop
functions on the client side even if they are intended to run from the server
process eventually. When you develop a C UDR on a client computer, you can use
the same DataBlade API functions on the client and the server computers, in most
cases, without changing the code. Almost all of the DataBlade API functions
behave identically in a client LIBMI application and a C UDR to provide
portability for DataBlade API modules. If you are writing code that might execute
in either a C UDR or a client LIBMI application, you can use the mi_client()
function to determine at run time where the code is running.

DataBlade APl components

1-4

The DataBlade API contains the header files, public data type structures, and pubic
functions for the development of DataBlade API modules.

Header files

The following categories of header files are provided for use in a DataBlade API
module:

e DataBlade API header files that define the DataBlade API data types and
functions.

* IBM Informix ESQL/C header files define that the IBM Informix ESQL/C library
functions and data types.

* The IBM Informix GLS header file provides the ability to internationalize your
DataBlade API module.

* Private header files, which you create, can support the DataBlade API module.

DataBlade API header files
The DataBlade API header files begin with the mi prefix. The DataBlade API
provides public header files for use in DataBlade API modules.

IBM Informix DataBlade API Programmer’s Guide

Header file

Description

mi.h

The main DataBlade API header file

It includes other DataBlade API public header files: milib.h, milo.h,
and mitrace.h.

The mi.h header file does not automatically include mistrmtype.h. To
use the stream I/0O functions of the DataBlade APIL, you must explicitly
include mistrmtype.h.

milib.h

Defines function prototypes for the public entry points and public
declarations of required data type structures and related macros

The mi.h header file automatically includes miTib.h.

mitypes.h

Defines all DataBlade API simple data types, accessor macros for these
data types, and directly related value macros

The mitypes.h header file automatically includes the Informix ESQL/C
header files: datetime.h, decimal.h, and int8.h.

The mi1ib.h header file automatically includes mitypes.h.

milo.h

Defines the data type structures, values, and function prototypes for the
smart-large-object interface (functions that have names starting with
mi_lo_)

The mi.h header file automatically includes milo.h.

mistream.h

Contains definitions for stream data structures, error constants, and
generic stream I/0O functions

The mistrmtype.h and mistrmutil.h header files automatically include
mistream.h.

mistrmtype.h

Contains definitions for the type-specific stream-open functions that the
DataBlade API provides

The mistrmtype.h header file automatically includes mistream.h;
however, the mi.h header file does not include mistrmtype.h. You must
explicitly include mistrmtype.h to use the stream I/O functions of the
DataBlade APIL.

mistrmutil.h

Contains definitions for the stream-conversion functions that the
DataBlade API provides for use in streamwrite() and streamread()
opaque-type support functions

The mistrmutil.h header file automatically includes mistream.h;
however, the mi.h header file does not include mistrmutil.h. You must
explicitly include mistrmutil.h to use the stream-conversion functions
of the DataBlade API.

mitrace.h Defines the data type structures, values, and function prototypes for the
DataBlade API trace facility
The mi.h header file automatically includes mitrace.h.

miconv.h Contains convention definitions, including on/off switches based on

architecture, compiler type, and so on

Other parts of the code use these switches to define data types
correctly.

The mitypes.h header file automatically includes miconv.h.

Chapter 1. The DataBlade API 1-5

1-6

Header file Description

memdur. h Contains the definition of the MI_MEMORY_DURATION data type,
which enumerates valid public memory durations

The mi1ib.h header file automatically includes memdur.h.

The mi.h header file provides access to most of the DataBlade API header files in
the preceding table. Include this header file in your DataBlade API module to
obtain declarations of most DataBlade API functions and data types.

The DataBlade API provides the following advanced header files for the use of
advanced features in C UDRs.

Header file Description

minmmem. h Includes the minmdur.h and minmprot.h header files, which are necessary
for access to advanced memory durations and memory-management
functions

Neither the mi.h nor milib.h header file automatically includes
minmmem.h. You must explicitly include minmmem.h to use advanced
memory durations or memory-management functions.

minmdur.h Contains definitions for the advanced memory durations

The minmmem.h header file automatically includes minmdur.h. You must
explicitly include minmmem.h to use advanced memory durations.

minmprot.h Contains definitions for the advanced DataBlade API functions

The minmmem.h header file automatically includes minmdur.h. You must
explicitly include minmmem.h to use advanced functions.

The mi.h and milib.h header files cannot provide access to the advanced header
files. To use the advanced features, include the minmmem.h header file in your
DataBlade API module to obtain declarations of DataBlade API functions and data

types.

Tip: For a complete list of header files, check the inc1/public subdirectory of the
INFORMIXDIR directory.

ESQL/C header files
Header files are provided to support some of the functions and data types of the
IBM Informix ESQL/C library.

Header file Contents

datetime.h Structure and macro definitions for DATETIME and INTERVAL data
types

decimal.h Structure and macro definitions for DECIMAL and MONEY data types

int8.h Declarations for structure and Informix ESQL/C library functions for
the INTS8 data type

sqlca.h Structure definition that Informix ESQL/C uses to store error-status
codes

This structure enables you to check for the success or failure of SQL
statements.

IBM Informix DataBlade API Programmer’s Guide

Header file Contents

sqlda.h Structure definition for value pointers and descriptions of dynamically
defined variables

sqlhdr.h Function prototypes of all Informix ESQL/C library functions

sqlstype.h Definitions of strings that correspond to SQL statements

Informix ESQL/C uses these strings when your program contains a
DESCRIBE statement.

sqltypes.h Integer constants that correspond to Informix ESQL/C language and
SQL data types

ESQL/C uses these constants when your program contains a
DESCRIBE statement.

sqlxtype.h Integer constants that correspond to C language and SQL data types
that Informix ESQL/C uses in X/Open mode, when your program
contains a DESCRIBE statement

varchar.h Macros that you can use with the VARCHAR data type

Important: The mitypes.h header file automatically includes the datetime.h,
decimal.h, and int8.h header files. In turn, the miTib.h header file automatically
includes mitypes.h, and mi.h automatically includes miTib.h. Therefore, you
automatically have access to the information in these Informix ESQL/C header
files when you include mi.h in your DataBlade API module.

Related concepts:

[“The int8.h header file” on page 3-5|

[“The decimal.h header file” on page 3-10|

[“The datetime.h header file” on page 4-8|

Informix GLS header file

A header file is provided to support the IBM Informix GLS library. If you use the
Informix GLS library in your DataBlade API module, include its header file,
ifxgls.h, in your source code.

Related concepts:

[“Internationalization of DataBlade API modules (GLS)” on page 1-17]

Private header files

If you define any opaque data types, you must include their header file in your
DataBlade API source code. An opaque-type header file usually contains the
declaration of the internal format for the opaque data type.

Related reference:

[“Create an Opaque Data Type” on page 16-1|

Public data types

The DataBlade API provides support for the following public data types:

e DataBlade API data types, which provide support for standard C, IBM Informix
ESQL/C, and SQL data types

* DataBlade API support data types, which provide support for functions of the
DataBlade API

¢ DataBlade API data type structures, which provide access to information that
functions of the DataBlade API use

Chapter 1. The DataBlade API 1-7

DataBlade API data types

To ensure portability across dissimilar computer architectures, the DataBlade API
provides a set of data types, which begin with the mi_ prefix. Most of these data

types correspond to common SQL or C-language data types.

Table 1-1. DataBlade API, C, and SQL data types

DataBlade API data type

Standard C or ESQL/C data type

SQL data type

Character data types:

mi_char C: char CHAR, VARCHAR,

IDSSECURITYLABEL,

GLS: NCHAR, NVARCHAR
mi_charl C: char CHAR(1)
mi_unsigned_charl C: unsigned char None
mi_wechar (deprecated) C: unsigned two-byte integer None
mi_string C: char * CHAR, VARCHAR,

GLS: NCHAR, NVARCHAR

mi_lvarchar

IBM Informix ESQL/C: lvarchar (though
lvarchar is null-terminated and
mi_lvarchar is not)

LVARCHAR

Within C UDRs: for CHAR, NCHAR,
TEXT, VARCHAR, and NVARCHAR

arguments and return value

Integer numeric data types:

mi_sintl C: signed one-byte integer None

mi_intl C: unsigned one-byte integer, char None

mi_smallint C: signed two-byte integer (short integer SMALLINT
on many systems)

mi_unsigned_smallint C: unsigned two-byte integer None

mi_integer

C: signed four-byte integer

(long integer on many systems)

INTEGER, SERIAL

mi_unsigned_integer

C: unsigned four-byte integer

None

mi_int8

C: signed eight-byte integer; Informix
ESQL/C: int8, ifx_int8_t

INTS, SERIALS

mi_unsigned_int8

C: unsigned eight-byte integer; Informix
ESQL/C: int8, ifx_int8_t

None

mi_bigint

C: unsigned eight-byte integer

BIGINT, BIGSERIAL

mi_unsigned_bigint

C: unsigned eight-byte integer

None

Fixed-point numeric data types:

mi_decimal, mi_numeric

Informix ESQL/C: decimal, dec_t

DECIMAL(p,s) (fixed-point)

mi_money

Informix ESQL/C: decimal, dec_t

MONEY

Floating-point numeric data types:

mi_decimal Informix ESQL/C: decimal, dec_t DECIMAL(p) (floating-point)

mi_real C: float SMALLFLOAT, REAL

mi_double_precision C: double FLOAT, DOUBLE PRECISION

Date and time data types:

1-8 IBM Informix DataBlade API Programmer’s Guide

Table 1-1. DataBlade API, C, and SQL data types (continued)

DataBlade API data type

Standard C or ESQL/C data type

SQL data type

mi_date C: four-byte integer; Informix ESQL/C: DATE

date
mi_datetime Informix ESQL/C: datetime, dtime_t DATETIME
mi_interval Informix ESQL/C: interval, intrvl_t INTERVAL

Varying-length data types:

mi_lvarchar

C: void *

Informix ESQL/C: lvarchar (though
lvarchar is null-terminated and
mi_lvarchar is not)

LVARCHAR, Opaque types

Within C UDRs: for CHAR, NCHAR,
TEXT, VARCHAR, and NVARCHAR
arguments and return value

mi_sendrecv C: void * SENDRECYV, opaque-type support
functions: send, receive

mi_impexp C: void * IMPEXP, opaque-type support
functions: import, export

mi_impexpbin C: void * IMPEXPBIN, opaque-type support
functions: importbin, exportbin

mi_bitvarying C: void * BITVARYING

Complex data types:

MI_COLLECTION C: void * SET, LIST, MULTISET

MI_ROW C: void * ROW (unnamed row type), Named

row type

Other data types:

mi_boolean C: charInformix ESQL/C: boolean BOOLEAN
mi_pointer C: void * POINTER
MI_LO_HANDLE None CLOB, BLOB

Smart large objects

Important: To make your DataBlade API module portable, it is recommended that
you use the DataBlade API platform-independent data types (such as mi_integer,
mi_smallint, mi_real, mi_boolean, and mi_double_precision) instead of their
C-language counterparts. These data types handle the different sizes of numeric
values across computer architectures.

Server only: [Table 1-1 on page 1-§ lists the DataBlade API data types and SQL
data types. However, when you pass some of these data types to and from C
UDRs, you must pass them as pointers rather than as values. For more
information, see [“Mechanism for passing MI_DATUM values” on page 12-22|

The following table shows where you can find information about how DataBlade

API data types correspond to SQL data types.

Table 1-2. Correspondence of SQL data types to DataBlade API data types

SQL data type

Information about corresponding DataBlade API data types

BITVARYING ['The mi_bitvarying data type” on page 2-26
BLOB [Chapter 6, “Smart large objects,” on page 6-1|
BOOLEAN [‘Boolean data types” on page 2-28§|

Chapter 1. The DataBlade API 1-9

Table 1-2. Correspondence of SQL data types to DataBlade API data types (continued)

SQL data type

Information about corresponding DataBlade API data types

BYTE

[‘Simple large objects” on page 2-30)

CHAR |‘Character data types” on page 2-6|

CLOB [Chapter 6, “Smart large objects,” on page 6-1|
DATE [Chapter 4, “Date and time data types,” on page 4-1|
DATETIME [Chapter 4, “Date and time data types,” on page 4-1|
DECIMAL [Chapter 3, “Numeric data types,” on page 3-1
Distinct [Chapter 16, “Extend data types,” on page 16-1]
FLOAT [Chapter 3, “Numeric data types,” on page 3-1
INTS [Chapter 3, “Numeric data types,” on page 3-1|
INTEGER [Chapter 3, “Numeric data types,” on page 3-1
INTERVAL [Chapter 4, “Date and time data types,” on page 4-1]
LIST [Chapter 5, “Complex data types,” on page 5-1
LVARCHAR [Varying-length data type structures” on page 2-11
MONEY [Chapter 3, “Numeric data types,” on page 3-1
MULTISET [Chapter 5, “Complex data types,” on page 5-1
NCHAR |“Character data types” on page 2-6|

NVARCHAR |“Character data types” on page 2-6|

Opaque [Chapter 16, “Extend data types,” on page 16-1
POINTER [“Pointer data types (Server)” on page 2-29)|

ROW [Chapter 5, “Complex data types,” on page 5-1
SERIAL [Chapter 3, “Numeric data types,” on page 3-1
SERIALS [Chapter 3, “Numeric data types,” on page 3-1

SET [Chapter 3, “Numeric data types,” on page 3-1
SMALLFLOAT [Chapter 3, “Numeric data types,” on page 3-1
SMALLINT [Chapter 3, “Numeric data types,” on page 3-1
TEXT ['Simple large objects” on page 2-30|

VARCHAR |‘Character data types” on page 2-6|

DataBlade API support data types

The DataBlade API provides additional data types that DataBlade API functions
use. These data types are usually enumerated data types that restrict valid values
for an argument or return value of a DataBlade API function. Most of these data
types start with the MI_ prefix.

Table 1-3. DataBlade API support data types

Support data type Location of description

MI_CALLBACK_STATUS

Purpose

“Return value of a callback function” on|
[page 10-1g

|“Position the cursor” on page 5-5|

Enumerates valid return values of a
callback function

MI_CURSOR_ACTION Enumerates movements through a

cursor

|“Fetch rows into a cursor” on page 8-23]

MI_EVENT_TYPE Classifies an event [“DataBlade API event types” on page 10-1]

1-10 IBM Informix DataBlade API Programmer’s Guide

Table 1-3. DataBlade API support data types (continued)

Support data type Purpose Location of description

MI_FUNCARG Enumerates kinds of arguments that a |*The ML FUNCARG data type” on page|
companion UDR might receive 15-58]

mi_funcid Holds a routine identifier [“Routine resolution” on page 12-18]

MI_ID Enumerates the kinds of identifiers that Description of mi_get_id() in the IBM

the mi_get_id() function can obtain Informix DataBlade API Function Reference

Enumerates values of the iterator-status [“Write an iterator function” on page 15-2|
constant, which the database server can
return to a UDR through the

mi_fp_request() function

MI_SETREQUEST

MI_TRANSITION_TYPE “Understanding state-transition events” onl|

[page 10—4§

Description of mi_routine_get_by_typeid()
in the IBM Informix DataBlade API Function
Reference

Enumerates types of state transitions in
a transition descriptor

Enumerates the kind of UDR for which
the mi_routine_get_by_typeid()
function obtains a function descriptor

MI_UDR_TYPE

DataBlade API data type structures

Many DataBlade API functions provide information for DataBlade API modules in
special data type structures. The names of these data type structures begin with the
MI_ prefix.

The following table lists the data type structures, their purposes, and where you
can find detailed descriptions of them.

Table 1-4. DataBlade API data type structures
DataBlade API data type

structure

Purpose

More information

MI_COLL_DESC

Collection descriptor, which describes the
structure of a collection

|“A collection descriptor” on page 5-2|

MI_COLLECTION

Collection structure, which contains the
elements of a collection

[“A collection structure” on page 5-2|

MI_CONNECTION

Connection descriptor, which contains the
execution context for a connection

[“Establish a connection” on page 7-11

MI_CONNECTION_INFO

Connection-information descriptor, which
contains connection parameters for an
open connection

[“Connection parameters” on page 7-4|

MI_DATABASE_INFO

Database-information descriptor, which
contains database parameters for an open
connection

[“Database parameters” on page 7-6|

MI_DATUM

Datum, which provides a transport
mechanism to pass data of an SQL data
type by value or by reference

“The MI_DATUM data type” on page]
2-30

MI_ERROR_DESC

Error descriptor, which describes an
exception

[“Event information” on page 10-16]

MI_FPARAM Function-parameter structure, which holds [“Access MI_FPARAM routine-state]
information about a UDR that the routine [information” on page 9-1|
can access during its execution

MI_FUNCARG Function-argument structure, which holds [“The MI_ FUNCARG data type” on|

information about the argument of a
companion UDR

[page 15-5§

Chapter 1. The DataBlade API

1-11

Table 1-4. DataBlade API data type structures (continued)

DataBlade API data type
structure

Purpose

More information

MI_FUNC_DESC

Function descriptor, which describes a
UDR that is to be invoked with the
Fastpath interface

“Obtain a function descriptor” on page|
9-1

MI_LO_FD

LO file descriptor, which describes an
open smart large object

“Obtain an LO file descriptor” on page]
6-43

MI_LO_HANDLE

LO handle, which identifies the location
of a smart large object in its sbspace

|“Obtain an LO handle” on page 6-42|

MI_LO_SPEC LO-specification structure, which contains [“Obtain the LO-specification structure”|
storage characteristics for a smart large on page 6-26|
object

MI_LO_STAT LO-status structure, which contains status [“Obtaining status information for al

information for a smart large object

smart large object” on page 6-53

MI_PARAMETER_INFO

Parameter-information descriptor, which
specifies whether callbacks are enabled or
disabled and whether pointers are
checked in client LIBMI applications

[“Session parameters” on page 7-8]

MI_ROW

Row (or row structure), which contains
either the column values of a table row or
field values of a row type

“Retrieve rows” on page 8-41|[A row|
structure” on page 5-30|

MI_ROW_DESC

Row descriptor, which describes the
structure of a row

“Obtain row information” on page 8-40)
“A row descriptor” on page 5-28]

MI_SAVE_SET

Save-set descriptor, which describes a
save set

[“Create a save set” on page 8-61]

MI_STATEMENT

Statement descriptor, which describes a
prepared SQL statement

“Execute prepared SQL statements” on|
page 8-10

mi_statret Statistics-return structure (C language “SET_END in statcollect()” on page]
structure), which holds the collected 16—42]
statistics for a user-defined data type

MI_STREAM Stream descriptor, which describes an

open stream

A stream is an object that can be written
to or read from. The DataBlade API has
functions for the following predefined
stream classes:

¢ File stream
* String stream

* Varying-length-data stream

MI_TRANSITION_DESC

Transition descriptor, which describes a
state transition

“Understanding state-transition events”]

on page 10-48|

MI_TYPEID

Type identifier, which uniquely identifies
a data type within a database

|“Type identifiers” on page 2-1|

MI_TYPE_DESC

Type descriptor, which provides
information about a data type

|“Type descriptors” on page 2-2|

The DataBlade API provides constructor and destructor functions for most of these
public data type structures. These functions handle memory allocation of these
data type structures, as follows:

1-12

IBM Informix DataBlade API Programmer’s Guide

* The constructor function for a DataBlade API data type structure creates a new
instance of the data type structure.

A constructor function usually returns a pointer to the DataBlade API data type
structure and allocates memory for the structure.

Server only: The memory allocation is in the current memory duration, which is
PER_ROUTINE by default. For more information, see [‘Choose the memory|
[duration” on page 14-4)

¢ The destructor function for a DataBlade API data type structure frees the
instance of the data type structure.

You specify a pointer to the DataBlade API data type structure to the destructor
function. The destructor function deallocates memory for the specified data type
structure. Call destructor functions only for DataBlade API data type structures
that you explicitly allocated with the corresponding constructor function.

Regular public functions
The DataBlade API provides support for the functions in a DataBlade API module.

The following functions are supported:
¢ DataBlade API functions that provide access to the database server.
* IBM Informix ESQL/C functions that provide operations on certain data types.

* IBM Informix GLS functions that provide the ability to internationalize your
DataBlade API module.

DataBlade API functions
The DataBlade API functions begin with the mi_ prefix. The miTib.h header file
declares most of these DataBlade API functions.

The mi.h header file automatically includes milib.h. You must include mi.h in any
DataBlade API module that uses a DataBlade API function.

The functions of the DataBlade API function library can be divided into the
following categories.

Category of DataBlade API functions More information

Data handling:

Obtaining type information [“Type identifiers” on page 2-1|

[“Type descriptors” on page 2-2|

Transferring data types between computers “Conversion of opaque-type data with|
(database server only) computer-specific data types” on page 16-22|
Converting data to a different data type “DataBlade API functions for date]

conversion” on page 4-3

“DataBlade API functions for date-time or|
interval conversion” on page 4-12|

“DataBlade API functions for decimal|
conversion” on page 3-14|

“DataBlade API functions for string|
conversion” on page 2-9

Handling collections: sets, multisets, and lists |“Collections” on page 5-1|

Chapter 1. The DataBlade API 1-13

Category of DataBlade API functions

More information

Converting between code sets (database
server only)

“Internationalization of DataBlade AP]|
modules (GLS)” on page 1-17]

Handling collections

[“Collections” on page 5-1]

Managing varying-length structures

“Varying-length data type structures” on|

[page 2-11|

Obtaining SERIAL values

|“Process insert results” on page 8-60|

Handling NULL values

[“SQL NULL value” on page 2-34|

Session, thread, and transaction management:

Obtaining connection information

[“Connection parameters” on page 7-4|

|“Database parameters” on page 7-6|

|“Session parameters” on page 7-8|

Establishing a connection

|“Establish a connection” on page 7-11]

Initializing the DataBlade API

[“Initialize the DataBlade API” on page 7-17|

Managing IBM Informix threads (database
server only)

|“Yield the CPU VP” on page 13-19

[“Manage stack usage” on page 14-35|

Obtaining transaction and server-processing
state changes

|“A transition descriptor” on page 10-18|

SQL statement processing:

Sending SQL statements

|“Execute basic SQL statements” on page 8-5|

“Execute prepared SQL statements” on page]
8-10

Obtaining statement information

|“Return a statement descriptor” on page 8-14|

“Obtain input-parameter information” on|

[page 8—15|

Obtaining result information

|”Process statement results” on page 8-33|

Retrieving rows and row data (also row
types and row-type data)

|“Obtain row information” on page 8-40|

|“Retrieve rows” on page 8-41|

Retrieving columns

[“Obtain column information” on page 8-41|

|“Obtain column values” on page 8-43|

Using save sets

|“Save sets” on page 8-61]

Executing user-defined-routines:

Accessing an MI_FPARAM structure

“Access MI_FPARAM routine—state|
information” on page 9-1|

Allocating an MI_FPARAM structure

“A user-allocated MI_FPARAM structure” on|

page 9-35|

Using the Fastpath interface

“Call UDRs with the Fastpath interface” on|

page 9-14]

Accessing a function descriptor

“Obtain information from a function|
descriptor” on page 9-23|

Executing selectivity and cost functions:

“Write selectivity and cost functions” on]

page 15-5§|

Memory management:

IBM Informix DataBlade API Programmer’s Guide

Category of DataBlade API functions

More information

Managing user memory

[“Manage user memory” on page 14-19|

Managing named memory (database server
only)

[“Manage named memory” on page 14-24f

Exception handling;:

Raising a database exception

|“Raise an exception” on page 10-39|

Accessing an error descriptor

|“An error descriptor” on page 10-16)

“Handling multiple exceptions” on page

10-37]

Using callback functions

|“Invoke a callback” on page 10-3|

Smart-large-object interface:

Creating a smart large object

“Functions that create a smart large object”]

on page 6—20|

Performing I/O on a smart large object

“Functions that perform input and output on]
a smart large object” on page 6-20|

Moving smart large objects to and from
operating-system files

“Functions that move smart large objects to|
and from operating-system files” on page]
6-24

Manipulating LO handles

“Functions that manipulate an LO handle”|

on page 6-21]

Handling LO-specification structures

“Functions that access an LO-specification|
structure” on page 6-22|

Handling smart-large-object status

“Functions that access an LO-statug
structure” on page 6-24|

Operating-system file interface:

“ Access to operating-system files” on page|
13-51

Tracing (database server):

|“Tracing” on page 12-27|

For a complete list of DataBlade API functions in each of these categories, see the
IBM Informix DataBlade API Function Reference, which provides descriptions of the
regular public and advanced functions, in alphabetical order. For more information
about advanced functions of the DataBlade API, see [“Advanced features (Server)’]

If an error occurs while a DataBlade API function executes, the function usually
indicates the error with one of the following return values.

Way to indicate an error

More information

Functions that return a pointer return the
NULL-valued pointer

[“NULL-valued pointer” on page 2-35|

Functions that return an mi_integer value (or other

integer) return the MI_ERROR status code

“Handling errors from DataBlade AP]|
functions” on page 10-26|

Functions that raise an exception

“Handling errors from DataBlade AP]|
functions” on page 10-26|

Informix ESQL/C functions

In a DataBlade API module, you can use some of the functions in the IBM
Informix ESQL/C library functions to perform conversions and operations on

Chapter 1. The DataBlade API 1-15

1-16

different data types. The Informix ESQL/C functions do not begin with the mi_
prefix. Various header files declare these functions.

For more information, see ["ESQL/C header files” on page 1-6]

The functions of the Informix ESQL/C function library that are valid in a
DataBlade API module can be divided into the following categories.

Category of DataBlade API

function More information
Byte handling [“Manipulate byte data” on page 2-28|
Character processing [“ESQL/C functions for string conversion” on page 2-10|

[“Operations on character values” on page 2-11|

DECIMAL-type and MONEY-type |“ESQL/C functions for decimal conversion” on page|
processing 3-14

[“Perform operations on decimal data” on page 3-15|

DATE-type processing [“ESQL/C functions for date conversion” on page 4-3

[“Operations on date data” on page 4-4|

DATETIME-type processing and “ESQL/C functions for date, time, and interval|
INTERVAL-type processing conversion” on page 4-13

[“Operations on date and time data” on page 4-14

INT8-byte processing [“Convert INT8 values” on page 3-6|

[“Perform operations on eight-byte values” on page 3-7|

Processing for other C-language [“Format numeric strings” on page 3-20|
data types

For a complete list of Informix ESQL/C functions in each of these categories, see
the IBM Informix DataBlade API Function Reference, which provides descriptions of
these public functions, in alphabetical order.

Informix GLS functions

The IBM Informix GLS library is an API that lets developers of DataBlade API
modules create internationalized applications. This library is a threadsafe library.
The macros and functions of IBM Informix GLS provide access to the GLS locales,
which contain culture-specific information.

The Informix GLS library contains functions that provide the following capabilities:
* Process single-byte and multibyte characters

These functions are useful for processing character data in the NCHAR and
NVARCHAR data types, which can contain locale-specific information.

* Format date, time, and numeric data to locale-specific formats

These functions provide the ability to handle end-user formats for the DATE,
DATETIME, DECIMAL, and MONEY data types.

The mi.h header file does not automatically include the Informix GLS library.

IBM Informix DataBlade API Programmer’s Guide

Related concepts:

[“Internationalization of DataBlade API modules (GLS)”|

Advanced features (Server)

The DataBlade API provides a set of advanced features to handle specialized needs
of a UDR or DataBlade module that the regular public features cannot handle.

The following table lists the advanced DataBlade API features.

Table 1-5. Advanced features of the DataBlade API

Advanced feature

Description

More information

Named memory

Enables a UDR to obtain a memory
address through a name assigned
to the memory block

“Manage named memory” on|

page 14—24_L|

Memory durations

Provides a UDR with memory
durations that exceed its lifetime

“Advanced memory]|

durations” on page 14-13|

Session-duration
connection descriptor

Enables a UDR to cache connection
information for the length of a
session

“Obtain a session-duration|

connection descriptor” on page|

7-1

Session-duration
function descriptor

Enables a UDR to cache function
descriptors in named memory so
that many UDRs can execute the
same UDR through Fastpath

“Reuse a function descriptor”]

on page 9-30|

Controlling the VP
environment

Enables a UDR to obtain
dynamically information about the
VP and VP class in which it
executes and to make some
changes to this environment

“Control the VP environment”

on page 13-32]

Setting the row and
column identifier in
the MI_FPARAM
structure of a UDR

Enables a UDR to change the row
associated with a UDR

Descriptions of
mi_fp_setcolid() and
mi_fp_setrow() in the IBM
Informix DataBlade API Function
Reference

Obtaining the current
MI_FPARAM address

Enables a UDR to obtain
dynamically the address of its own
MI_FPARAM structure

Description of
mi_fparam_get_current() in
the IBM Informix DataBlade API
Function Reference

Microseconds
component of
last-modification time
for a smart large
object

Enables UDRs to maintain the
microseconds component of
last-modification time, which the
database server does not maintain

Description of mi_lo_utimes()
in the IBM Informix DataBlade
API Function Reference

Important: These DataBlade API features can adversely affect your UDR if you use
them incorrectly. Use them only when the public DataBlade API features cannot
perform the tasks you need done.

Internationalization of DataBlade APl modules (GLS)

For your DataBlade API module to work in any IBM Informix locale, you must
implement your DataBlade API module so that it is internationalized. That is, the
module must not make any assumptions about the locale in which it will execute.

Chapter 1. The DataBlade API

1-17

Server only: A C UDR inherits the server-processing locale as its current
processing locale. The database server dynamically creates a server-processing
locale for a particular session when a client application establishes a connection.
The database server uses the client locale, database locale, the server locale, and
information from the client application to determine the server-processing locale.
For more information about how the database server determines the
server-processing locale, see the IBM Informix GLS User’s Guide.

Client only: A client LIBMI application performs its I/O tasks in the client locale.
Any database requests that the application makes execute on the database server in
the server-processing locale.

This section provides the following information about how to internationalize a C
UDR and the support that the DataBlade API provides for internationalized UDRs.

1-18

An internationalized C UDR must handle the following GLS considerations.

GLS consideration for an internationalized UDR

DataBlade API function

What considerations must the C UDR take when
copying character data?

None

How can the C UDR access GLS locales?

IBM Informix GLS function library

How does the UDR handle code-set conversion?

mi_get_string(), mi_put_string()

IBM Informix GLS function library

How does the UDR handle locale-specific end-user
formats?

mi_date_to_string(),
mi_decimal_to_string(),
mi_interval_to_string(),
mi_money_to_string(),
mi_string_to_date(),
mi_string_to_decimal(),
mi_string_to_interval(),
mi_string to_money()

How can the C UDR access internationalized
exception messages?

mi_db_error_raise()

How can the C UDR access internationalized tracing
messages?

GL_DPRINTFE, gl_tprintf()

How do opaque-type support functions handle
locale-sensitive data?

mi_get_string(), mi_put_string()

How to you obtain names of the different locales
from within a C UDR?

mi_client_locale(),
mi_get_connection_info()

For more information about how to handle these GLS considerations within a C
UDR, see the section on database servers in the IBM Informix GLS User’s Guide.

Related reference:

“Informix GLS header file” on page 1-7]

“Informix GLS functions” on page 1-16|

IBM Informix DataBlade API Programmer’s Guide

Chapter 2. Access SQL data types

This section provides an overview of the data types that the DataBlade API
supports.

It also describes DataBlade API support for the following types of data:

* Text and strings

* Varying-length structures

* Byte data

* Miscellaneous SQL data types: POINTER, BOOLEAN, and simple large objects
e The MI_DATUM structure

* The NULL constant

For references to discussions of different SQL data types in these topics, see
[Table 1-2 on page 1-9|

[Table 1-1 on page 1-8|lists the correspondences between SQL and DataBlade API
data types. To declare a variable for an SQL data type, use the appropriate
DataBlade API predefined data type or structure for the variable. The mi.h header
file includes the header files for the definitions of all DataBlade API data types.
Include mi.h in all DataBlade API modules that use DataBlade API data types.

The DataBlade API represents the SQL data type of a column value with the
following data type structures:

* A short name, called the type identifier, which identifies only the data type

* A long name, called the type descriptor, which provides the data type and
information about this type

Server only: Type descriptors and type identifiers do not have an associated
memory duration. The DataBlade API allocates them from a special data type
cache.

Type identifiers

A type identifier, MI_TYPEID, is a DataBlade API data type structure that
identifies a data type uniquely. For extended data types, the type identifier is
database-dependent; that is, the same type identifier might identify different data
types for different databases.

You can determine the data type that a type identifier represents with the
following DataBlade API functions.

Type-identifier check DataBlade API function
Are two type identifiers equal? mi_typeid_equals()

Does the type identifier represent a built-in data type? mi_typeid_is_builtin()
Does the type identifier represent a collection (SET, mi_typeid_is_collection()

MULTISET, LIST) data type?

Does the type identifier represent a complex data type (row mi_typeid_is_complex()
type or collection)?

© Copyright IBM Corp. 1996, 2012 2-1

Type-identifier check DataBlade API function

Does the type identifier represent a distinct data type? mi_typeid_is_distinct()

Does the type identifier represent a LIST data type? mi_typeid_is_list()

Does the type identifier represent a MULTISET data type? mi_typeid_is_multiset()

Does the type identifier represent a row type (named or mi_typeid_is_row()
unnamed)?

Does the type identifier represent a SET data type? mi_typeid_is_set()

Restriction: To a DataBlade API module, the type identifier (MI_TYPEID) is an
opaque C data structure. Do not access its internal fields directly. The internal
structure of a type identifier might change in future releases. Therefore, to create
portable code, always use the accessor functions for this structure to determine

data type.

The DataBlade API uses type identifiers in the following situations.

Type identifier usage

DataBlade API function

More information

To indicate a column type in

a row descriptor

mi_column_type_id()

‘Obtain columﬁl

information” on page 8-41|

To indicate data type of
arguments in a user-defined
routine (UDR)

mi_fp_argtype(),
mi_fp_setargtype()

‘Determine the data type|

of UDR arguments” on|

page 9—2|

To indicate data type of
return type of a UDR

mi_fp_rettype(),
mi_fp_setrettype()

"Determine the data type|

of UDR return values” on|

page 9—5|

To indicate data type of a

column with which an input

parameter in a prepared
statement is associated

mi_parameter_type_id()

‘Obtain input-parameter|

information” on page 8-15

To identify a UDR by the
data types of its arguments
to generate its function
descriptor

mi_routine_get_by_typeid()

"Look up a UDR” on page|

0-1

To identify a cast function
by the source and target
data types to generate its
function descriptor

mi_cast_get()

"Look up cast functions”|

on page 9-20

To identify the element type
of a collection

mi_collection_create()

‘Create a Collection” o]

page 5-3|

Related concepts:

[“Determine the data type of UDR arguments” on page 9-2|

Type descriptors

A type descriptor, MI_TYPE_DESC, is a DataBlade API data type structure that
contains information about an SQL data type. For built-in data types, this
information comes from the syscolumns table. For extended data types, it contains
the information in the sysxtdtypes table.

2-2

The following table lists the DataBlade API accessor functions that obtain
information from a type descriptor.

IBM Informix DataBlade API Programmer’s Guide

Table 2-1. Data type information in a type descriptor

Data type information

DataBlade API accessor function

The alignment, in number of bytes, of the data

type mi_type_align()

Whether a value of the data type is passed by reference

or passed by value

mi_type_byvalue()

A type descriptor for the element type of a collection

data type

mi_type_element_typedesc()

The full name (owner.type_name) of the data type

mi_type_full_name()

The length of the data type

mi_type_length()

The maximum length of the data type

mi_type_maxlength()

The owner of the data type

mi_type_owner()

The precision (total number of digits) of the data type

mi_type_precision()

The qualifier of a DATETIME or INTERVAL data type

mi_type_qualifier()

The scale of a data type

mi_type_scale()

The short name (no owner) of the data type

mi_type_typedesc()

The type identifier for the data type

mi_typedesc_typeid()

Restriction: To a DataBlade API module, the type descriptor (MI_TYPE_DESC) is
an opaque C data structure. Do not access its internal fields directly. The internal

structure of MI_TYPE_DESC might change in future releases. Therefore, to create
portable code, always use the accessor functions in to obtain values from

this structure.

The DataBlade API uses type descriptors in the following situations.

Type descriptor usage

More information

To indicate a column type in a row
descriptor

Description of mi_column_typedesc() in the
IBM Informix DataBlade API Function Reference

|“Obtain column information” on page 8-41|

To obtain the source type of a distinct type

Description of mi_get_type_source_type() in
the IBM Informix DataBlade API Function
Reference

To process returned row data, especially
when not all the rows returned by a query
have the same size and structure

Description of
mi_get row_desc_from_type_desc() in the
IBM Informix DataBlade API Function Reference

To identify a cast function by the source and
target data types to generate its function
descriptor

Description of mi_td_cast_get() in the IBM
Informix DataBlade API Function Reference

|“Look up cast functions” on page 9-20|

Type-structure conversion

You can use the following DataBlade API
type identifier.

functions to obtain a type descriptor or

Convert from Convert to

DataBlade API function

Type identifier

Type descriptor

Description of mi_type_typedesc()
in the IBM Informix DataBlade API
Function Reference

Chapter 2. Access SQL data types ~ 2-3

2-4

Convert from Convert to DataBlade API function

Type descriptor Type identifier Description of mi_typedesc_typeid()
in the IBM Informix DataBlade API
Function Reference

Type name (as mi_lvarchar) Type identifier Description of mi_typename_to_id()
in the IBM Informix DataBlade API
Function Reference

Type name (as mi_lvarchar) Type descriptor Description of
mi_typename_to_typedesc() in the
IBM Informix DataBlade API Function
Reference

Type name (as string: char *) Type identifier Description of mi_typestring_to_id()
in the IBM Informix DataBlade API
Function Reference

Type name (as string: char *) Type descriptor Description of
mi_typestring_to_typedesc() in the
IBM Informix DataBlade API Function
Reference

Data type descriptors and column type descriptors

A type descriptor for a data type and a type descriptor for a column use the same
accessor functions and share the same underlying data type structures. These
descriptors differ, however, in the handling of parameterized data types (such as
DATETIME, INTERVAL, DECIMAL, and money), as follows:

* A data type descriptor holds unparameterized information, which is general
information about the data type.

* A column type descriptor holds parameterized information, which is the
information for the data type of a particular column.

[Table 2-1 on page 2-3|lists the DataBlade API accessor functions that obtain
information from a type descriptor. When you use type-descriptor accessor
functions on parameterized data types, the results depend on which kind of type
descriptor you pass into the accessor function.

For example, the following code fragment shows a named row type with fields
that have parameterized data types.

CREATE ROW TYPE row_type
(time_f1d DATETIME YEAR TO SECOND,
dec_f1d DECIMAL(6,3));

Figure 2-1. Sample named row type with parameterized fields

The following code fragment obtains a data type descriptor and a column type
descriptor for the first field (time_fld) from the row descriptor (row_desc) for the
row_type row type.

type_id = mi_column_type_id(row_desc, 0);
type_desc = mi_type_typedesc(conn, type id);
col_type _desc = mi_column_type_desc(row_desc, 0);

Figure 2-2. Type descriptor and column type descriptor for DATETIME field

IBM Informix DataBlade API Programmer’s Guide

For the DATETIME data type of the time_fld column, the type-descriptor accessor
functions obtain different qualifier information for each kind of type descriptor, as
follows:

* The data type descriptor, type_desc, stores the unparameterized type
information for the DATETIME data type.

The following code fragment calls the mi_type_typename() and
mi_type_qualifier() accessor functions on the type_desc type descriptor (which
[Figure 2-2 on page 2-4|defines):

type_string = mi_type_typename(type_desc);

type_scale = mi_type qualifier(type_desc);

The call to mi_type_typename() returns the string datetime as the
unparameterized name of the data type. The call to mi_type_qualifier() returns
zero as the type qualifier.

* The column type descriptor, col_type_desc, stores the parameterized type
information for the DATETIME field of row_type.
The following code fragment calls the mi_type_typename() and

mi_type_qualifier() accessor functions on the col_type_desc type descriptor
(which [Figure 2-2 on page 2-4| defines):

type_string = mi_type_typename(col_type_desc);

type_scale = mi_type_qualifier(col_type desc);

The call to mi_type_typename() returns the string datetime year to second as
the parameterized name of the data type. The call to mi_type_qualifier(returns
the actual DATETIME qualifier of 3594, which is the encoded qualifier value for:

TU_DTENCODE (TU_YEAR, TU_SECOND)

Similarly, for DECIMAL and MONEY data types, the type-descriptor accessor
functions can obtain scale and precision information from a column type descriptor
but not a data type descriptor. The following figure shows a code fragment that
obtains a data type descriptor and a column type descriptor for the second field
(dec_fld) from the row descriptor (row_desc) for the row_type row type.

type id2 = mi_column_type id(row_desc, 1);
type_desc2 = mi_type_typedesc(conn, type id2);
col_type desc2 = mi_column_type desc(row_desc, 1);

Figure 2-3. Type descriptor and column type descriptor for DECIMAL field

For the DECIMAL data type of the dec_fld column, the results from the
type-descriptor accessor functions depend on which type descriptor you pass into
the accessor function, as follows:

* The data type descriptor, type_desc2, stores the unparameterized type
information for DECIMAL.

The following code fragment calls the mi_type_precision() and mi_type_scale()

accessor functions on the type_desc2 type descriptor (which |[Figure 2-3{ defines):

type_prec = mi_type_precision(type_desc2);
type_scale = mi_type_scale(type_desc2);

Both the mi_type_precision() and mi_type_scale() functions return zero for the
precision and scale.

* The column type descriptor, col_type_desc, stores the parameterized type
information for the DECIMAL field of row_type.

The following code fragment calls the mi_type_precision() and mi_type_scale()
accessor functions on the col_type_desc2 type descriptor (which
defines):

Chapter 2. Access SQL data types 2-5

type_prec = mi_type_precision(col_type_desc2);

type_scale = mi_type_scale(col_type_desc2);

The mi_type_precision() function returns the actual precision of the DECIMAL
column, 6. The mi_type_scale() function returns the actual precision scale of the
DECIMAL column, 3.

Character data types

2-6

The DataBlade API supports the following data types that can hold character data
in a DataBlade API module.

DataBlade API character

data type Description SQL character data type

mi_charl One-byte character None

mi_unsigned_charl Unsigned one-byte character None

mi_char, mi_string Character string or array CHAR, VARCHAR,
NCHAR, NVARCHAR,
IDSSECURITYLABEL

mi_lvarchar Varying-length structure to hold LVARCHAR

varying-length character data
MI_LO_HANDLE LO handle to a smart large object that CLOB

holds character data

Tip: The database server also supports the TEXT data type for character data. It
stores TEXT character data as a simple large object. However, the DataBlade API
does not directly support simple large objects.

Related concepts:

[“Simple large objects” on page 2-30|

The mi_char1 and mi_unsigned_char1 data types

The mi_charl and mi_unsigned_charl data types hold a single-byte character.
These data types can also hold an integer quantity within C code so you can also
use mi_unsigned_charl to hold unsigned one-byte integer values.

Important: To make your DataBlade API module portable, it is recommended that
you use the DataBlade API data type mi_charl for single-character values instead
of the native C-language counterpart, char. The mi_charl data type ensures a
consistent size across computer architectures.

For IBM Informix GLS, the mi_charl and mi_unsigned_charl data types assume
that one character uses one byte of storage. Therefore, do not use these data types
to hold multibyte characters (which can require up to four bytes of storage).
Instead, use the mi_char, mi_string, or mi_lvarchar data type. For more
information about multibyte characters, see the IBM Informix GLS User’s Guide.

The mi_charl and mi_unsigned_charl data types are guaranteed to be one byte on
all computer architectures. Therefore, they can fit into an MI_DATUM structure
and can be passed by value in C UDRs.

All data types, including mi_charl and mi_unsigned_charl, must be passed by
reference in client LIBMI applications.

IBM Informix DataBlade API Programmer’s Guide

The mi_char and mi_string data types

The mi_char and mi_string data types are the DataBlade API equivalents of the
char C-language data type. These two data types are exactly the same in both
storage and functionality. Use them to declare character strings in your DataBlade
API module.

You can use the mi_char or mi_string data type to hold CHAR, VARCHAR, or
IDSSECURITYLABEL data, as long as this data is not an argument or return value
of a C UDR.

For IBM Informix GLS, you can use the mi_char and mi_string data types to store
multibyte characters (NCHAR and NVARCHAR columns). However, your code
must track how many bytes each character contains. You can use the IBM Informix
GLS interface to assist with this process. For more information aboutmultibyte
characters, see the IBM Informix GLS User’s Guide.

The mi_char and mi_string data types cannot fit into an MI_DATUM structure.
They must be passed by reference within C UDRs.

All data types, including mi_char and mi_string, must be passed by reference
within client LIBMI applications.

Related concepts:
[“Character data in C UDRs (Server)” on page 2-8

The mi_lvarchar data type
The mi_lvarchar data type has the following uses:
* Holds data of an LVARCHAR column

* Holds character data that is passed to or received from an SQL statement when
the query is in binary mode

* Holds data for character arguments and return values of C UDRs (Server only)

* Holds the external format of an opaque data type (Server only)

The following sections summarize each of these uses of an mi_lvarchar.
Related reference:

[‘Varying-length data type structures” on page 2-11

The SQL LVARCHAR data type

The LVARCHAR data type of SQL stores variable-length character strings whose
length can be up to 32,739 bytes. LVARCHAR is a built-in opaque data type that is
valid in distributed queries of tables, views, and synonyms of databases outside
the local server.

The DataBlade API supports the LVARCHAR data type with the mi_lvarchar data
type, which is implemented in the DataBlade API as a varying-length structure.

Tip: The SQL data type LVARCHAR and the DataBlade API data type mi_lvarchar
are not the same. Although you use mi_lvarchar to hold LVARCHAR data,
mi_lvarchar is also used for other purposes.

If you declare no maximum size for an LVARCHAR column, the default size is 2

KB. The maximum valid size is 32,739 bytes, but the maximum row size in a
database table is limited to 32 KB. (In addition, no more than 195 columns in the

Chapter 2. Access SQL data types ~ 2-7

2-8

same database table can be of varying-length data types, named or unnamed ROW
data types, collection data types, or simple large object data types, regardless of the
declared size of individual columns.)

If you attempt to insert more than the declared maximum size into an LVARCHAR
column, the result depends on the data type of the data:

e If the value comes from a built-in type (such as CHAR or VARCHAR), the
database server truncates the data to the declared column size.

* The database server does not truncate data strings that come from an
mi_lvarchar structure, but the database server does return an error.

Tip: If you need to store more than 32,739 bytes of text data in a database of the
local database server, use the CLOB data type. With the CLOB data type, you can
store the text data outside the database table, in an sbspace.

Related reference:

(Chapter 6, “Smart large objects,” on page 6-1|

Character data in binary mode of a query
When the database server processes a query, it might handle character data in the
following cases:

* Character data that is passed as an input parameter to an SQL statement
* Character data that an SQL statement returns (for example, as a column value)

When a query has a control mode of binary, the database server stores character
data in an mi_lvarchar varying-length structure.

Related reference:

[“Control modes for query data” on page 8-8|

Character data in C UDRs (Server)

You must use the mi_lvarchar data type if your UDR expects any of the SQL
character data types as an argument or a return value. Within an MI_DATUM
structure, the routine manager passes character data to and from a C UDR as a
pointer to an mi_lvarchar varying-length structure. Therefore, a C UDR must
handle text data as mi_lvarchar values when it receives arguments or returns data
of an SQL character data type, as follows:

* If the C UDR receives an argument of an SQL character data type, it must
declare its corresponding parameter as a pointer to an mi_lvarchar data type.

 If a C UDR returns a value of an SQL character data type, it must return a
pointer to an mi_lvarchar data type.

Related concepts:

“The mi_char and mi_string data types” on page 2-7|

“Handling character arguments” on page 13-5|

“Return character values” on page 13-12|

“Simple large objects” on page 2-30|

External representation of an opaque data type (Server)

The database server stores the external representation of an opaque data type in an
mi_lvarchar varying-length structure. The external representation is a text
representation of the opaque-type data. Therefore, the input and output support
functions of an opaque type handle the external representation as an mi_lvarchar.

IBM Informix DataBlade API Programmer’s Guide

Related reference:

[‘The input and output support functions” on page 16-11|

Character data in a smart large object

You can use a smart large object to store very large amounts of character data. The
MI_LO_HANDLE data type has a structure, called an LO handle, that identifies the
location of smart-large-object data in a separate database partition, called an
sbspace.

For smart-large-object data that is character data, use the SQL CLOB data type. The
CLOB data type allows you to store varying-length character data that is
potentially larger than 32 KB. The CLOB data type is a predefined opaque type (an
opaque data type that IBM Informix defines).

Related reference:

(Chapter 6, “Smart large objects,” on page 6-1|

Character processing

The DataBlade API library provides the transfer, conversion, and operation
functions to process character data.

For IBM Informix GLS, you can use these character-processing functions on
NCHAR and NVARCHAR data. You can also use the character processing that the
IBM Informix GLS interface provides to handle multibyte characters.

Transfer character data (Server)
To transfer character data between different computer architectures, the DataBlade
API provides functions that handle type alignment.

mi_get_string()
Copies a character string, converting any difference in alignment on the
client computer to that of the server computer

mi_put_string()
Copies a character string, converting any difference in alignment on the
server computer to that of the client computer

The mi_get_string() and mi_put_string() functions are useful in the send and
receive support function of an opaque data type that contains character data (such
as mi_string or mi_char). They ensure that character data remains aligned when
transferred to and from client applications.

Related reference:

[“Conversion of opaque-type data with computer-specific data types” on page 16-22|

Convert character data
Both the DataBlade API library and the IBM Informix ESQL/C library provide
functions that convert between the binary and text representation of values.

DataBlade API functions for string conversion:

Many DataBlade API functions expect to manipulate character data as an
mi_lvarchar value. In addition, all SQL character data types are passed into a C
UDR as an mi_lvarchar value. The DataBlade API provides the following functions
to allow for conversion between a text (null-terminated string) representation of
character data and its binary (internal) equivalent. The binary representation of
character data is a varying-length structure (mi_lvarchar) equivalent.

Chapter 2. Access SQL data types 2-9

2-10

mi_lvarchar_to_string()
Creates a null-terminated string from the data in a varying-length structure

mi_string to_lvarchar()
Creates a varying-length structure to hold a string

The mi_lvarchar_to_string() and mi_string_to_lvarchar() functions are useful for
converting between null-terminated strings and varying-length structures (whose
data is not null-terminated).

Server only: The mi_lvarchar_to_string() and mi_string_to_lvarchar() functions
are also useful in the input and output support functions of an opaque data type
that contains mi_lvarchar values. They allow you to convert a string between its
external format (text) and its internal format (mi_lvarchar) when transferred to and
from client applications. For more information, see [“Conversion of opaque-typd
[data between text and binary representations” on page 16-16

For more information about the structure of an mi_lvarchar value, see
[“Varying-length data type structures” on page 2-11)

In addition, the DataBlade API library provides the following functions to convert
text representation of values to their binary representations.

Type of string More information

Decimal strings [DataBlade API functions for decimal conversion” on page 3-14
Date strings [’DataBlade API functions for date conversion” on page 4-3|
Date and time strings, DataBlade API functions for date-time or interval conversion”|

Interval strings on page 4—12|

Related reference:

[“Varying-length data and null termination” on page 2-16|

ESQL/C functions for string conversion:

The IBM Informix ESQL/C function library provides the following functions that
facilitate conversion of values in character data types (such as mi_string or
mi_char) to and from some C-language data types.

rstod() Converts a string to a double type
rstoi() Converts a null-terminated string to a two-byte integer (int2)
rstol() Converts a string to a four-byte integer (int4)

In addition, the Informix ESQL/C library provides the following functions to
convert text representation of values to their binary representation.

Type of string More information

INTS strings [“Convert INT8 values” on page 3-§

Decimal strings ["ESQL/C functions for decimal conversion” on page 3-14|
Date strings [“ESQL/C functions for date conversion” on page 4-3|

Date and time strings [“ESQL/C functions for date, time, and interval conversion” on page]|
4-1

IBM Informix DataBlade API Programmer’s Guide

Operations on character values
The IBM Informix ESQL/C function library provides the following functions to
perform operations on null-terminated strings.

Function name Description

Idchar() Copies a fixed-length string to a null-terminated string
rdownshift() Converts all letters to lowercase

rupshift() Converts all letters to uppercase

stcat() Concatenates one null-terminated string to another
stchar() Copies a null-terminated string to a fixed-length string
stempr() Compares two null-terminated strings

stcopy() Copies one null-terminated string to another string
stleng() Counts the number of bytes in a null-terminated string

Character type information
The DataBlade API provides functions to obtain the following information about a
character (CHAR, VARCHAR, and IDSSECURITYLABEL) data type:

* The data type: its type name (string), type descriptor, or type identifier
* The precision: the maximum number of characters in the data type

The DataBlade API provides the following functions to obtain the type and
precision of a character data type.

DataBlade API functions

Type name, type identifier, or

Source type descriptor Precision

For a basic data type mi_type_typedesc(), mi_type_precision()
mi_type_typename()

For a UDR argument mi_fp_argtype(), mi_fp_argprec(),
mi_fp_setargtype() mi_fp_setargprec()

For a UDR return value mi_fp_rettype(), mi_fp_retprec(),
mi_fp_setrettype() mi_fp_setretprec()

For a column mi_column_type_id(), mi_column_precision()

mi_column_typedesc()

For an input parameter =~ mi_parameter_type_id(), mi_parameter_precision()
in a prepared statement mi_parameter_type_name()

Varying-length data type structures

A varying-length data type structure can hold data whose length varies from one
instance to the next. The database server uses varying-length structures extensively
to manage data transfer for DataBlade API modules.

This section provides the following information about varying-length data type
structures:

* How to use a varying-length structure
* How to manage memory for a varying-length structure

* How to access data in a varying-length structure

Chapter 2. Access SQL data types 2-11

2-12

Related concepts:

[‘The mi_lvarchar data type” on page 2-7]

A varying-length structure

The DataBlade API provides the following data types to support varying-length
data.

DataBlade API SQL varying-length
data type data type More information

mi_lvarchar LVARCHAR [“The mi_lvarchar data type” on page 2-7|

“The input and output support functions” on|

[page 16-11|

mi_bitvarying BITVARYING [‘The mi_bitvarying data type” on page 2-26|

mi_sendrecv SENDRECV “The send and receive support functions” on|
page 16—12]

mi_impexp IMPEXP [“External unload representation” on page 16-23)|

mi_impexpbin IMPEXPBIN [“Internal unload representation” on page 16-30)

All these DataBlade API data types have the same underlying structure. For more
information about the structure of a varying-length data type, see
varying-length structure.”|

In IBM Informix SE, these varying-length data types (mi_lvarchar, mi_bitvarying,
mi_sendrecv, mi_impexp, mi_impexpbin, and varying-length opaque types)
cannot fit into an MI_DATUM structure. Therefore, they must be passed by
reference to and from C UDRs.

All data types, including mi_lvarchar, must be passed by reference within client
LIBMI applications.

Memory management for a varying-length structure

The following table summarizes the memory operations for a varying-length
structure.

Memory duration Memory operation Function name

Current memory Constructor mi_new_var(), mi_streamread_lvarchar(),

duration mi_string_to_lvarchar(), mi_var_copy()
Destructor mi_var_free()

This section describes the DataBlade API functions that allocate and deallocate a
varying-length structure.

Restriction: Do not use either the DataBlade API memory-management functions
(such as mi_alloc() and mi_free()) or the operating-system memory-management
functions (such as malloc() and free()) to handle allocation of varying-length
structures.

Create a varying-length structure
The following table lists the DataBlade API functions that create a varying-length
structure. These functions are constructor functions for a varying-length structure.

IBM Informix DataBlade API Programmer’s Guide

Table 2-2. DataBlade API allocation functions for varying-length structures

Accessor function name Description

mi_new_var() Creates a new varying-length structure with a data portion
of the specified size

mi_streamread_lvarchar() Reads a varying-length structure (mi_lvarchar) value from
a stream and copies the value to a buffer

mi_string_to_lvarchar() Creates a new varying-length structure and puts the
specified null-terminated string into the data portion

The data does not contain a null terminator once it is
copied to the data portion.

mi_var_copy() Allocates and creates a copy of an existing varying-length
structure

The copy contains its own data portion with the same
varying-length data as the original varying-length
structure.

The varying-length structure is not contiguous. The allocation functions in
able 2-2| allocate this structure in two parts:

* The varying-length descriptor is a fixed-length structure that stores the metadata
for the varying-length data.
The allocation functions allocate the varying-length descriptor and set the data
length and the data pointer in this descriptor.

* The data portion contains the actual varying-length data.

The allocation functions allocate the data portion with the length that is
specified in the varying-length descriptor. They then set the data pointer in the
varying-length descriptor to point to this data portion.

Important: The varying-length data itself is in a separate structure; it is not
actually in the varying-length descriptor.

For example, suppose you call the mi_new_var() function that the following code
shows.

mi_lvarchar *new_lvarch;

new_lvarch = mi_new var(200);

Figure 2-4. A sample mi_new_var() call

The following figure shows the varying-length structure that this mi_new_var()
call allocates. This structure consists of both a descriptor and a data portion of 200
bytes. The mi_new_var() function returns a pointer to this structure, which the

code in [Figure 2-4] assigns to the new_lvarch variable.

Chapter 2. Access SQL data types 2-13

2-14

Descriptor

new_lvarch ﬁ

length ‘ 200

- Data portion
\ data pointer / > P

200 bytes

of
memory

Figure 2-5. Memory allocated for a varying-length structure

Server only: The allocation functions in [Table 2-2 on page 2-13| allocate the
varying-length structure with the current memory duration. By default, the current
memory duration is PER_ROUTINE. For PER_ROUTINE memory, the database
server automatically deallocates a varying-length structure at the end of the UDR
in which it was allocated. If your varying-length structure requires a longer
memory duration, call the mi_switch_mem_duration() function before the call to
one of the allocation functions in [Table 2-2 on page 2-13

The allocation functions in [Table 2-2 on page 2-13|return the newly allocated
varying-length structure as a pointer to an mi_lvarchar data type. For example, the
call to mi_new_var() in [Figure 2-4 on page 2-13 allocates a new mi_lvarchar
structure with a data portion of 200 bytes.

To allocate other varying-length data types, cast the mi_lvarchar pointer that the
allocation function returns to the appropriate varying-length data type. For
example, the following call to mi_new_var() allocates a new mi_sendrecv
varying-length structure with a data portion of 30 bytes:

mi_sendrecv *new_sndrcv;

new_sndrcv = (mi_sendrecv *)mi_new_var(30);

This cast is not strictly required, but many compilers recommend it and it does
improve clarity of purpose.

Deallocate a varying-length structure

A varying-length structure has a default memory duration of the current memory
duration. To conserve resources, use the mi_var_free() function to explicitly
deallocate the varying-length structure when your DataBlade API module no
longer needs it.

The mi_var_free() function is the destructor function for a varying-length structure.
It frees both parts of a varying-length structure: the varying-length descriptor and
the data portion.

Restriction: Do not use the DataBlade API memory-management function
mi_free() to deallocate a varying-length structure. The mi_free() function does not
deallocate both parts of a varying-length structure.

IBM Informix DataBlade API Programmer’s Guide

Use mi_var_free() to deallocate varying-length structures that you have allocated
with mi_new_var() or mi_var_copy(). Do not use it to deallocate any
varying-length structure that the DataBlade API has allocated.

The mi_var_free() function accepts as an argument a pointer to an mi_lvarchar
value. The following call to mi_var_free() deallocates the mi_lvarchar
varying-length structure that [Figure 2-4 on page 2-13 allocates:

mi_var_free(new_lvarch);

To deallocate other varying-length data types, cast the mi_lvarchar argument of
mi_var_free() to the appropriate varying-length type, as the following code
fragment shows:

mi_sendrecv *new_sndrcv;
new_sndrcv = (mi_sendrecv *)mi_new_var(30);

mi_var_free((mi_Tvarchar *)new_sndrcv);

This cast is not strictly required, but many compilers recommend it and it does
improve clarity of purpose.

Access a varying-length structure
A varying-length structure contains the following information:
* Private members, which are not revealed to the DataBlade API programmer
* Public members, which you can access with DataBlade API functions

After you allocate a varying-length structure, you can access the public members of
this structure with the DataBlade API accessor functions in the following table.

Table 2-3. Varying-length accessor functions

Accessor function name Description

mi_get_varlen() Obtains from the varying-length descriptor the length of
the varying-length data

mi_get_vardata() Obtains from the varying-length descriptor the data
pointer to the data contained in the data portion

mi_get_vardata_align() Obtains from the varying-length descriptor the data
pointer to the data contained in the data portion,
adjusting for any initial padding required to align the
data on a specified byte boundary

mi_set_varlen() Sets the length of the varying-length data in the
varying-length descriptor

mi_set_vardata() Sets the data in the data portion of the varying-length
structure

mi_set_vardata_align() Sets the data in the data portion of the varying-length

structure, adding any initial padding required to align the
data on a specified byte boundary

mi_set_varptr() Sets the data pointer in the varying-length descriptor to
the location of a data portion that you allocate

Restriction: To a DataBlade API module, the varying-length structure is an opaque
C data structure. Do not access its internal fields directly. The internal structure of

Chapter 2. Access SQL data types 2-15

2-16

the varying-length structure might change in future releases. Therefore, to create
portable code, always use the accessor functions for this structure to obtain and
store values.

Varying-length data and null termination
When you work with varying-length data, keep the following restrictions in mind:

* Do not assume that the data in a varying-length structure is null-terminated.

* Do not assume that you can use any DataBlade API functions or system calls
that operate on a null-terminated string to operate on varying-length data.

Instead, always use the data length (which you can obtain with the
mi_get_varlen() function) for all operations on varying-length data.

The varying-length accessor functions in [Table 2-3 on page 2-15 do not
automatically interpret a null-terminator character. Instead, they transfer the
number of bytes that the data length in the varying-length descriptor specifies, as
follows:

* The mi_set_vardata() and mi_set_vardata_align() functions copy the number of
bytes that the data length specifies from their string argument to a
varying-length structure.

* The mi_get vardata() and mi_get_vardata_align() functions obtain the data
pointer from the varying-length descriptor. Use the data length to move through
the varying-length data.

To convert between null-terminated strings and an mi_lvarchar structure, use the
mi_string to_lvarchar() and mi_lvarchar_to_string() functions.

Related concepts:

[“Store a null-terminated string” on page 2-18|

[“Obtain the data pointer” on page 2-24|

Related reference:

[‘DataBlade API functions for string conversion” on page 2-9)

Storage of varying-length data
This section provides the following information about how to store varying-length
data:

* How to store data in a varying-length structure
* How to store a null-terminated string in a varying-length structure
* How to set the data pointer of a varying-length structure

Store data in a varying-length structure:
The mi_set_vardata() and mi_set_vardata_align() functions copy data into an
existing data portion of a varying-length structure. These functions assume that the

data portion is large enough to hold the data being copied.

The following code fragment uses mi_set_vardata() to store data in the existing
data portion of the varying-length structure that new_lvarch references.

IBM Informix DataBlade API Programmer’s Guide

#define TEXT_LENGTH 200

mi_lvarchar *new_lvarch;
mi_char *Tocal_var;

/* Allocate a new varying-length structure with a 200-byte
* data portion

*/

new_lvarch = mi_new_var(TEXT_LENGTH);

/* Allocate memory for null-terminated string */
Tocal_var = (char *)mi_alloc(TEXT_LENGTH + 1);

/* Create the varying-length data to store */

sprintf(local var, "%s %s %s", "A varying-length structure ",
"stores data in a data portion, which is separate from ",
"the varying-Tength structure.");

/* Update the data length to reflect the string length =/
mi_set_varlen(new_lvarch, stleng(local var));

/* Store the varying-length data in the varying-length
* structure that new_lvarch references
*/

mi_set_vardata(new_lvarch, local_var);

Figure 2-6. Storing data in existing data portion of a varying-length structure

In the preceding code fragment, the call to mi_new_var() creates a new
varying-length structure and sets the length field to 200. This call also allocates the
200-byte data portion (see [Figure 2-5 on page 2-14).

The following figure shows the format of the varying-length structure that
new_lvarch references after the call to mi_set_vardata() successfully completes.

Descriptor
new_lvarch »

length ‘ 110

Data portion

data pointer‘ >

A varying-length structure stores
data in a data portion, which is
separate from the varying length
structure.

90 bytes of
memory remain

Figure 2-7. Format of a varying-length structure

The mi_set_vardata() function copies from the local_var buffer the number of bytes
that the data length specifies. Your code must ensure that the data-length field
contains the number of bytes you want to copy. In the code fragment in
the data-length field was last set by the call to mi_set_varlen() to 110 bytes.
However, if the mi_set_varlen() function executed after the mi_set_vardata() call,

Chapter 2. Access SQL data types 2-17

2-18

the data length would still have been 200 bytes (set by mi_new_var()). In this case,
mi_set_vardata() would try to copy 200 bytes starting at the location of the
local_var variable. Because the actual local_var data only occupies 110 bytes of
memory, 90 unused bytes remain in the data portion.

The mi_set_vardata() function aligns the data that it copies on four-byte
boundaries. If this alignment is not appropriate for your varying-length data, use
the mi_set_vardata_align() function to store data on a byte boundary that you
specify. For example, the following call to mi_set_vardata_align() copies data into
the var_struc varying-length structure and aligns this data on eight-byte
boundaries:

char *buff;
mi_lvarchar *var_struc;

mi_set_vardata_align(var_struc, buff, 8);

You can determine the alignment of a data type from its type descriptor with the
mi_type_align() function.

Tip: You can also store data in a varying-length structure through the data pointer
that you obtain with the mi_get_vardata() or mi_get_vardata_align() function.

The mi_set_vardata_align() function copies the number of bytes that the
data-length field specifies.

Related concepts:

[“Obtain the data pointer” on page 2-24|

Store a null-terminated string: The mi_string_to_lvarchar() function copies a
null-terminated string into a varying-length structure that it creates. This function
performs the following steps:

1. Allocates a new varying-length structure.

The mi_string to_lvarchar() function allocates the varying-length descriptor,
setting the data length and data pointer appropriately. Both the data length and
the size of the data portion are the length of the null-terminated string without
its null terminator.

Server only: The mi_string_to_lvarchar() function allocates the varying-length
structure that it creates with the current memory duration.

2. Copies the data of the null-terminated string into the newly allocated data
portion.
The mi_string_to_lvarchar() function does not copy the null terminator of the
string.

3. Returns a pointer to the newly allocated varying-length structure.

The following code fragment uses mi_string_to_lvarchar() to store a
null-terminated string in the data portion of a new varying-length structure:

char *Tocal_var;
mi_Tlarchar =lvarch;

/* Allocate memory for null-terminated string */
Tocal_var = (char *)mi_alloc(200);

/* Create the varying-length data to store */

sprintf(local_var, "%s %s %s", "A varying-length structure ",
"stores data in a data portion, which is separate from ",
"the varying-length structure.");

IBM Informix DataBlade API Programmer’s Guide

/* Store the null-terminated string as varying-length data */
Tvarch = mi_string_to_lvarchar(local var);

The following figure shows the format of the varying-length structure that lvarch
references after the preceding call to mi_string_to_lvarchar() successfully
completes.

Descriptor
Ivarch >
length ‘ 110
— Data portion
data pointer ’ >

A varying-length structure
stores data in a data
portion, which is separate
from the varying-length
structure.

(no null terminator)

Figure 2-8. Copying a null-terminated string into a varying-length structure

The lvarch varying-length structure in:Fiéure 2-8| has a data length of 110. The null
terminator is not included in the data length because the mi_string_to_lvarchar()
function does not copy the null terminator into the data portion.

If your DataBlade API module needs to store a null terminator as part of the
varying-length data, you can take the following steps:

1. Increment the data length accordingly and save it in the varying-length
descriptor with the mi_set_varlen() function.

2. Copy the data, including the null terminator, into the varying-length structure
with the mi_set_vardata() or mi_set_vardata_align() function.

These functions copy in the null terminator because the data length includes
the null-terminator byte in its count. These functions assume that the data
portion is large enough to hold the string and any null terminator.

After you perform these steps, you can obtain the null terminator as part of the
varying-length data.

Important: If you choose to store null terminators as part of your varying-length
data, your code must keep track that this data is null-terminated. The DataBlade
API functions that handle varying-length structures do not track the presence of a
null terminator.

The following code fragment stores a string plus a null terminator in the
varying-length structure that lvarch references:

#define TEXT_LENGTH 200

mi_Tvarchar *Tvarch;
char xvar_text;
mi_integer var_len;

Chapter 2. Access SQL data types 2-19

/% Allocate memory for null-terminated string x/
var_text = (char *)mi_alloc(TEXT_LENGTH);

/* Create the varying-length data to store */

sprintf(var_text, "%s %s %s", "A varying-length structure ",
"stores data in a data portion, which is separate from ",
"the varying-Tength structure.");

var_len = stleng(var_text) + 1

/% Allocate a varying-length structure to hold the
* null-terminated string (with its null terminator)
*/

Tvarch = mi_new_var(var_len);

/* Copy the number of bytes that the data length specifies
% (which includes the null terminator) into the

* varying-length structure

*/

mi_set_vardata(lvarch, var_text);

The following figure shows the format of this varying-length structure after the
preceding call to mi_set_vardata() successfully completes.

Descriptor
Ivarch >
length \ 111
: Data portion
data pointer ‘ >

A varying-length structure
stores data in a data
portion, which is separate
from the varying length
structure.

(null terminated)

Figure 2-9. Copying a null-terminated string into a varying-length structure

Related reference:

[“Varying-length data and null termination” on page 2-16|

Set the data pointer:

The mi_set_varptr() function enables you to set the data pointer in a
varying-length structure to memory that you allocate.

The following code fragment creates an empty varying-length structure, which is a
varying-length structure that has no data portion allocated:

#define VAR_MEM_SIZE 20
mi_Tvarchar *new_Tvarch;
char xvar_text;
mi_integer var_len;

/* Allocate PER_COMMAND memory for varying-length data */
var_text = (char *)mi_dalloc(VAR_MEM_SIZE, PER_COMMAND);

/* Allocate an empty varying-length structure x/

2-20 IBM Informix DataBlade API Programmer’s Guide

(void)mi_switch_mem_duration(PER_COMMAND) ;
new_lvarch = mi_new_var(0);

/* Store the varying-length data in the var_text buffer

* with the fi11_buffer() function (which you have coded).
* This function returns the actual Tength of the nonnull-
* terminated string. It does NOT put a null terminator at
* the end of the data.

*/

var_len = fill_buffer(var_text);

The following figure shows the format of the varying-length structure that
new_lvarch references after the fill_buffer() function successfully completes.

Descriptor

new_lvarch

length | ‘0

data pointer ’ NULL

text ———»
vartex 20 bytes of

PER_COMMAND memory
(no null terminator at end of data)

Figure 2-10. Empty varying-length structure

The varying-length structure in [Figure 2-10]is empty because it has the following
characteristics:

* Data length of zero
* NULL-valued pointer as its data pointer

After you have an empty varying-length structure, you can use the mi_set_varptr()
function to set the data pointer to the PER_COMMAND memory duration, as the
following code fragment shows:

/* Set the length of the new varying-length data */
mi_set_varlen(new_lvarch, VAR MEM SIZE);

/* Set the pointer to the data portion of the

* varying-Tength structure to the PER_COMMAND memory
* that 'var_text' references.

*/

mi_set_varptr(new_lvarch, var_text);

The preceding call to mi_set_varlen() updates the length in the varying-length
structure to the length of 20 bytes. The following figure shows the format of the
varying-length structure that new_lvarch references after the preceding call to
mi_set_varptr() successfully completes.

Chapter 2. Access SQL data types 2-21

Descriptor

new_Ivarch s

length ‘ 20

: Data portion
data pointer ‘ »
20 bytes of
PER_COMMAND memory
(no null terminator at

var_text end of data)

Figure 2-11. Setting the data-portion pointer in a varying-length structure

Server only: Make sure that you allocate the data-portion buffer with a memory
duration appropriate to the use of the data portion.

Related reference:

[Chapter 14, “Manage memory,” on page 14-1|

Information about varying-length data
Use the following DataBlade API accessor functions to obtain information about
varying-length data from a varying-length structure.

Varying-length information DataBlade API accessor function
Length of varying-length data mi_get_varlen()
Data portion mi_lvarchar_to_string(), mi_var_to_buffer(),

mi_var_copy()

Data pointer mi_get_vardata(), mi_get_vardata_align()

Obtain the data length:

The mi_get_varlen() function returns the data length from a varying-length
descriptor.

Keep in mind the following restrictions about data length:
* Do not assume that the data in a varying-length structure is null-terminated.

Always use the data length to determine the end of the varying-length data
when you perform operations on this data.

* When you increase the length of the data with mi_set_varlen(), this function
does not automatically increase the amount of memory allocated to the data
portion.

You must ensure that there is sufficient space in the data portion to hold the
varying-length data. If there is insufficient space, allocate a new data portion
with a DataBlade API memory-management function (such as mi_dalloc()) and
assign a pointer to this new memory to the data pointer of your varying-length
structure.

For the varying-length structure in |[Figure 2-5 on page 2-14} a call to

mi_get_varlen() returns 200. For the varying-length structure that

age 2-17|shows, a call to mi_get_varlen() returns 110.

2-22 IBM Informix DataBlade API Programmer’s Guide

Obtain data as a null-terminated string;:

The mi_lvarchar_to_string() function obtains the data from a varying-length
structure and converts it to a null-terminated string.

This function performs the following steps:
1. Allocates a new buffer to hold the null-terminated string

Server only: The mi_lvarchar_to_string() function allocates the string that it
creates with the current memory duration.

2. Copies the data in the data portion of the varying-length structure to the newly
allocated buffer

The mi_lvarchar_to_string() function automatically copies the number of bytes
that the data length in the varying-length descriptor specifies. It then appends a
null terminator to the string.

3. Returns a pointer to the newly allocated null-terminated string

Suppose you have the varying-length structure that [Figure 2-8 on page 2-19 shows.
The following code fragment uses the mi_lvarchar_to_string() function to obtain
this varying-length data as a null-terminated string:

mi_Tvarchar *Tvarch;
char xvar_str;

var_str = mi_lvarchar_to_string(lvarch);

The code fragment does not need to allocate memory for the var_str string because
the mi_lvarchar_to_string() function allocates memory for the new string. After the
call to mi_lvarchar_to_string() completes successfully, the var_str variable contains
the following null-terminated string:

A varying-Tength structure stores data in a data portion, which is separate
from the varying-length structure.

Copy data into a user-allocated buffer:

The mi_var_to_buffer() function copies the data of an existing varying-length
structure into a user-allocated buffer. The function copies data up to the data
length specified in the varying-length descriptor. You can obtain the current data
length with the mi_get_varlen() function.

The following code fragment copies the contents of the varying-length structure in
[Figure 2-8 on page 2-19|into the my_buffer user-allocated buffer

mi_Tvarchar *Tvarch;
char *my_buffer;

my_buffer = (char *)mi_alloc(mi_get _varlen(lvarch));
mi_var_to_buffer(lvarch, my buffer);

After the successful completion of mi_var_to_buffer(), the my_buffer variable
points to the following string, which is not null terminated:

A varying-length structure stores data in a data portion, which is separate
from the varying-length structure.

Important: Do not assume that the data in the user-allocated buffer is null

terminated. The mi_var_to_buffer() function does not append a null terminator to
the data in the character buffer.

Chapter 2. Access SQL data types 2-23

2-24

Copy data into a new varying-length structure:

The mi_var_copy() function copies data from an existing varying-length structure
into a new varying-length structure.

This function performs the following steps:
1. Allocates a new varying-length structure.

For the new varying-length structure, the mi_var_copy() function allocates a
data portion whose size is that of the data in the existing varying-length
structure.

Server only: The mi_var_copy() function allocates the varying-length structure
that it creates with the current memory duration.

2. Copies the data in the data portion of the existing varying-length structure to
the data portion of the newly allocated varying-length structure.

The mi_var_copy() function automatically copies the number of bytes that the
data length in the existing varying-length descriptor specifies.

3. Returns a pointer to the newly allocated varying-length structure as a pointer
to an mi_lvarchar value

Suppose you have the varying-length structure that[Figure 2-8 on page 2-19 shows.
The following code fragment uses the mi_var_copy() function to create a copy of
this varying-length structure:

mi_lvarchar *1varch, *1varch_copy;

Tvarch_copy = mi_var_copy(Tvarch);

After the call to mi_var_copy() completes successfully, the lvarch_copy variable
points to a new varying-length structure, as The following figure shows. The
varying-length structure that lvarch_copy references is a completely separate
structure from the structure that lvarch references.

Descriptor
Ivarch_copy >

length ‘ 110

: Data portion
data pointer ‘ -

A varying-length structure
stores data in a data
portion, which is separate
from the varying-length
structure.

(no null terminator)

Figure 2-12. Copying a varying-length structure

Obtain the data pointer:

The mi_get_vardata() and mi_get_vardata_align() functions obtain the actual data
pointer from the varying-length descriptor. Through this data pointer, you can
directly access the varying-length data.

IBM Informix DataBlade API Programmer’s Guide

The following code fragment uses the mi_get_vardata() function to obtain the data
pointer from the varying-length structure in [Figure 2-7 on page 2-17}

mi_Tvarchar *new_Tvarch;
char xvar_ptr;

/* Get the data pointer of the varying-length structure */
var_ptr = mi_get_vardata(new_Tvarch);

The following figure shows the format of the varying-length structure that

new_lvarch references after the preceding call to mi_get_vardata() successfully
completes.

Descriptor

new_lvarch

length \1 10

Data portion

data pointer ‘

\A 4

A varying-length structure stores
data in a data portion, which is
separate from the varying-length
structure.

90 bytes of
memory remain

var_ptr

Figure 2-13. Getting the data pointer from a varying-length structure

You can then access the data through the var_ptr data pointer, as the following
code fragment shows:

mi_lvarchar *new_lvarch;

mi_integer var_len, i;

mi_char one_char;

mi_char =*var_ptr;

var_ptr = mi_get_vardata(new_lvarch);
var_len = mi_get varlen(new_lvarch);
for (i=0; i<var_len; i++)

{

one_char = var_ptr[i];

/* process the character as needed */

Server only:

The database server passes text data to a UDR as an mi_lvarchar structure.
[Figure 13-3 on page 13-7| shows the implementation of a user-defined function
named initial_cap(), which ensures that the first letter of a character string is
uppercase and that subsequent letters are lowercase.

The initial_cap() function uses mi_get_vardata() to obtain each character from the
data portion of the varying-length structure. This data portion contains the
character value that the function receives as an argument. The function checks each
letter to ensure that it has the correct case. If the case is incorrect, initial_cap() uses

Chapter 2. Access SQL data types 2-25

the data pointer to update the appropriate letter. The function then returns a new
mi_lvarchar structure that holds the result.

The varying-length structure aligns data on four-byte boundaries. If this alignment
is not appropriate for your varying-length data, use the mi_get_vardata_align()
function to obtain the data aligned on a byte boundary that you specify. You can
determine the alignment of a data type from its type descriptor with the
mi_type_align() function.

Tip: When you obtain aligned data from a varying-length structure that is
associated with an extended data type, specify an alignment value to
mi_get_vardata_align() that is appropriate for the extended data type.

The mi_get_vardata_align() function obtains the number of bytes that the
data-length field specifies.

Related concepts:

[“Store data in a varying-length structure” on page 2-16|

[“Handling character arguments” on page 13-5|

Related reference:

[“Varying-length data and null termination” on page 2-16|

[“Specify the memory alignment of an opaque type” on page 16-6|

Byte data types

2-26

The DataBlade API supports the following data types that can hold byte data in a
DataBlade API module.

DataBlade API character

data type Description SQL character data type
mi_bitvarying Varying-length structure to hold None

varying-length byte data
MI_LO_HANDLE LO handle to identify a smart large BLOB

object that holds byte data

Tip: The database server also supports the BYTE data type for byte data. It stores
BYTE data as a simple large object. However, the DataBlade API does not directly
support simple large objects.

Related concepts:

[‘Simple large objects” on page 2-30|

The mi_bitvarying data type

The SQL BITVARYING data type stores variable-length byte data that is potentially
larger than 255 bytes. The BITVARYING data type is a predefined opaque type (an
opaque data type that IBM Informix defines). The DataBlade API supports the
BITVARYING data type with the mi_bitvarying data type, which the DataBlade
API implements as a varying-length structure.

Tip: The SQL data type BITVARYING and the DataBlade API data type
mi_bitvarying are not exactly the same. Although you use the mi_bitvarying
varying-length structure to hold BITVARYING data, you can also use a
varying-length structure for other varying-length data.

IBM Informix DataBlade API Programmer’s Guide

For a BITVARYING column, the maximum size of the data is two kilobytes. This
limitation is not inherent to the BITVARYING data type; however, the maximum
row size in a database table is 32 KB. If a BITVARYING column were to use the
full supported size of 32 KB, the table can contain only one column: a single
BITVARYING column.

Tip: If you need to store more than 2 KB of byte data, use the BLOB data type.
The BLOB data type enables you to store the byte data outside the database table
in-an sbspace. For more information, see [Chapter 6, “Smart large objects,” on page]
6-1.

You can use an mi_bitvarying varying-length structure to store large amounts of
byte data. For more information, see |[“Varying-length data type structures” on pagel
ﬁ-ll

The routine manager uses an mi_bitvarying structure to hold data for an argument
or return value of a C UDR when this data is a varying-length opaque type. For
more information, see [“Determine the passing mechanism for an opaque type” on|
|o: e 16-7.

Server only:

You must use the mi_bitvarying data type if your UDR expects any varying-length
data type as an argument or a return value. Within an MI_DATUM structure, the
routine manager passes varying-length opaque-type data to and from a C UDR as
a pointer to an mi_bitvarying varying-length structure. Therefore, a C UDR must
handle this data as mi_bitvarying values when it receives arguments or returns
data of a varying-length opaque data type, as the following table describes.

Handling character data More information
If the C UDR receives an argument of a “Handling varying-length opaque-type|
varying-length opaque data type, it must arguments” on page 13-9|

declare its corresponding parameter as a pointer
to an mi_bitvarying data type.

If a C UDR returns a value of a varying-length [“Return opaque-type values” on page|
opaque data type, it must return a pointer to an [13-13]
mi_bitvarying data type.

Byte data in a smart large object
You can use a smart large object to store very large amounts of byte data.

The MI_LO_HANDLE data type holds a structure, called an LO handle, that
identifies the location of smart-large-object data in a separate database partition,
called an sbspace. For smart-large-object data that is byte data, use the SQL BLOB
data type. The BLOB data type allows you to store varying-length byte data of up
to four terabytes. The BLOB data type is a predefined opaque type (an opaque
data type that IBM Informix defines).

Related reference:

(Chapter 6, “Smart large objects,” on page 6-1|

Byte processing

The DataBlade API provides support for IBM Informix ESQL/C functions that
operate on byte data and DataBlade API functions that transfer byte data.

Chapter 2. Access SQL data types ~ 2-27

Manipulate byte data
The DataBlade API supports the following byte functions from the IBM Informix
ESQL/C library to perform operations on byte data.

bycmpr()
Compares two groups of contiguous bytes

bycopy()
Copies bytes from one area to another

byfill()
Fills the specified area with a character

byleng()
Counts the number of bytes in a string

Transfer byte data (Server)
To transfer byte data between different computer architectures, the DataBlade API
provides the following functions that handle type alignment and byte order.

mi_get_bytes()
Copies an aligned number of bytes, converting any difference in alignment
or byte order on the client computer to that of the server computer

mi_put_bytes()
Copies an aligned number of bytes, converting any difference in alignment
or byte order on the server computer to that of the client computer

The mi_get_bytes() and mi_put_bytes() functions are useful in the send and
receive support function of an opaque data type that contains uninterpreted bytes.
They ensure that byte data remain aligned when transferred to and from client
applications.

Related reference:

“Conversion of opaque-type data between text and binary representations” on|

page 16—16|

Boolean data types

2-28

Boolean data holds values to indicate two states: true and false. The DataBlade API
provides support for boolean values in both their text and binary representations.

Boolean text representation

The DataBlade API supports a Boolean value in text representation as a character
enclosed in single quotation marks, with the format that the following table shows.

Table 2-4. Text representation of Boolean data

Boolean value Text representation
True 't or 'T'
False f or 'F

A Boolean value in its text representation is often called a Boolean string.

Boolean binary representation

The SQL BOOLEAN data type holds the internal (binary) format of a Boolean
value. This value is a single-byte representation of Boolean data, as the following
table shows.

IBM Informix DataBlade API Programmer’s Guide

Boolean value Binary representation
True \1
False \0

The BOOLEAN data type is a predefined opaque type (an opaque data type that
IBM Informix defines). Its external format is the Boolean text representation that
[Table 2-4 on page 2-28|shows. Its internal format consists of the values that the
preceding table shows.

Tip: The internal format of the BOOLEAN data type is often referred to as its
binary representation.

The DataBlade API supports the SQL BOOLEAN data type with the mi_boolean
data type. Therefore, the mi_boolean data type also holds the binary
representation of a Boolean value.

An mi_boolean value is one byte on all computer architectures; therefore, it can fit
into an MI_DATUM structure. You can pass mi_boolean data by value in C UDRs.

In client LIBMI applications, you must pass all data by reference, including
mi_boolean values.

In a Windows environment, because an mi_boolean value is smaller than the size
of an MI_DATUM structure, the DataBlade API cast promotes the value to the size
of MI_DATUM when you copy the value into an MI_DATUM structure. When
you obtain the mi_boolean value from an MI_DATUM structure, you need to
reverse the cast promotion to ensure that your value is correct.

MI_DATUM datum;
mi_boolean bool_val;

bool_val = (char) datum;

Alternatively, you can declare an mi_integer value to hold the Boolean value.
Related reference:

[# [BOOLEAN data type (Guide to SQL: Reference)]

Pointer data types (Server)

The SQL POINTER data type is the SQL equivalent of a generic pointer. This data
type is used in the routine registration of a UDR to indicate that some data type
has no equivalent SQL data type. The DataBlade API represents the POINTER data
type with the mi_pointer data type.

Use the mi_pointer data type only for communications between UDRs. The
POINTER data type is a predefined opaque type (an opaque data type that IBM
Informix defines). However, no opaque-type support functions for this data type
are included.

Important: Because the POINTER data type does not include opaque-type support

functions, you cannot pass this type between the database server and a client
application. Also, do not define columns to be of type POINTER.

Chapter 2. Access SQL data types 2-29

http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_099.htm#ids_sqr_099

The mi_pointer data type is guaranteed to be the size of the C type void * on all
computer architectures. The C type void * is usually equivalent to a long type,
which is usually four bytes in length.

On 64-bit platforms, void * is eight bytes in length, so mi_pointer is also eight
bytes.

An mi_pointer value can fit into an MI_DATUM structure and can be passed by
value to and from C UDRs. Keep in mind that because mi_pointer actually
contains an address to a value, passing an mi_pointer by value is actually the
same as passing the value to which mi_pointer points by reference.

Important: When you use mi_pointer, make sure that the value that the
mi_pointer references is allocated with a memory duration appropriate to the use
of the value.

Related concepts:

[“Choose the memory duration” on page 14-4|

Simple large objects

The DataBlade API does not provide direct support for simple large objects.
Therefore, it cannot directly access TEXT and BYTE columns. However, the
database server provides the following cast functions between simple and smart
large objects.

Type conversion SQL cast function
From the TEXT data type to the CLOB data type TextToClob()
From the BYTE data type to the BLOB data type ByteToBlob()

C UDRs can accept TEXT data as arguments because the database server passes all
character data in the mi_lvarchar data type. C UDRs can also accept BYTE data as
long as they declare and handle this data as a smart large object. The database
server converts the BYTE data to BLOB data when it passes this data to the UDR.

Related concepts:
[‘Character data in C UDRs (Server)” on page 2-8|
Related reference:

[‘Character data types” on page 2-6

[‘Byte data types” on page 2-26|

[[Expression (Guide to SQL: Syntax)|
(Chapter 6, “Smart large objects,” on page 6-1|

The MI_DATUM data type

2-30

The DataBlade API handles a generic data value as an MI_DATUM value, also
called a datum. A datum is stored in a chunk of memory that can fit into a
computer register.

In the C language, the void * type is a typeless way to point to any object and will
hold any integer value. This type is usually equivalent to the long int type and is
usually four bytes in length, depending on the computer architecture. MI_DATUM
is defined as a void * type. The MI_DATUM data type is guaranteed to be the size
of the C type void * on all computer architectures.

IBM Informix DataBlade API Programmer’s Guide

http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqls.doc/ids_sqs_1425.htm#ids_sqs_1425

On 64-bit platforms, void * is eight bytes in length, so an MI_DATUM value is
stored in eight bytes.

Contents of an MI_DATUM structure

A datum in an MI_DATUM structure can describe a value of any SQL data type.
You can use an MI_DATUM structure to transport a value of an SQL data type
between the database server and the DataBlade API module.

Related concepts:

(“Column-value array” on page 5-32|

“Parameter-value array” on page 8-2§|

“Obtain normal values” on page 8-45|

MI_DATUM in a C UDR (Server)
In a C UDR, the contents of an MI_DATUM structure depend on the SQL data
type of the value, as follows:

* For most data types, the MI_DATUM structure contains a pointer to the data
type.
The actual value of most data types is too large to fit within an MI_DATUM
structure. For such data types, the DataBlade API passes the value using the
pass-by-reference mechanism. Use the contents of the MI_DATUM structure as a
pointer to access the actual value.

* For a few small data types, the MI_DATUM structure contains the actual data
value.

shows the few data types whose value can always fit in an
MI_DATUM structure. For these data types, the DataBlade API passes the value
using the pass-by-value mechanism. Use the contents of the MI_DATUM
structure as the actual data value.

Table 2-5. Types of values that fit in an MI_DATUM structure (Passed by value)

DataBlade API data types Length SQL data types

Data types that can hold four-byte integers, 4 The SQL INTEGER data type
including mi_integer and mi_unsigned_integer

mi_date 4 The SQL DATE data type

Data types that can hold two-byte integers, 2 The SQL SMALLINT data type
including mi_smallint and mi_unsigned_smallint

Data types that can hold a one-byte character, 1 The SQL CHAR(1) data type

including mi_charl and mi_unsigned_charl

(Multicharacter values must be passed by
reference.)

mi_boolean

1 The SQL BOOLEAN data type

mi_pointer size of (void *) The SQL POINTER data type

C data structure for the internal format of an Depends on the An opaque data type whose CREATE
opaque data type when the structure size can fit size of the C data OPAQUE TYPE statement specifies the
into an MI_DATUM structure structure PASSEDBYVALUE modifier

For all data types thatlists, the DataBlade API passes the value in an
MI_DATUM structure by value unless the variable is declared as pass by
reference. For example, in the following sample function signature, the arg2
variable would be passed by reference to the my_func() UDR because it is declared
as a pointer:

Chapter 2. Access SQL data types 2-31

2-32

mi_integer my_func(argl, arg2)
mi_integer argl; /+ passed by value */
mi_integer xarg2; /x passed by reference x/

Values of data types with sizes smaller than or equal to the size of void * can be
passed by value because they can fit into an MI_DATUM structure. A value
smaller than the size of MI_DATUM is cast promoted to the MI_DATUM size
with whatever byte position is appropriate for the computer architecture. When
you obtain a smaller passed-by-value value from an MI_DATUM structure, you
need to reverse the cast promotion to ensure that your value is correct.

For example, an mi_boolean value is a one-byte value. To pass it by value, the
DataBlade API performs something like the following example when it puts the
mi_boolean value into an MI_DATUM structure:

datum = (void *((char) bool))

In the preceding cast promotion, datum is an MI_DATUM structure and bool is an
mi_boolean value.

When you obtain the mi_boolean value from the MI_DATUM structure, reverse
the cast-promotion process with something like the following example:

mi_boolean bool_val;
MI_DATUM datum;

bool_val = (char) datum;

To avoid the cast promotion situation, it is recommended that you declare small
pass-by-value SQL types as mi_integer.

For all data types not listed in [Table 2-5 on page 2-31} the DataBlade API passes
the value in an MI_DATUM structure by reference; that is, the MI_DATUM
structure contains a pointer to the actual data type.

Important: Do not assume that any data type of length 1, 2, or 4 is passed by
value. Not all one-, two-, or four-byte datums are passed by value. For example,
the mi_real data type is passed by reference. Always check the data type or use
the mi_type_byvalue() function to determine the passing mechanism.

UDRs store the data types of their arguments in an MI_FPARAM structure. You
can check the type identifier of an argument to determine if it is passed by value
or by reference, as the following code fragment shows:
my_type_id = mi_fp_argtype(my_fparam, 1);
my_type_desc = mi_type_typedesc(conn, my_type id);
if (mi_type_byvalue(my_type desc) == MI_TRUE)

{

/* Argument is passed by value: extract one-, two-, or

* four-byte item from argument

*/

1

else

{

/* Argument is passed by reference: it contains a pointer
* to the actual value
*/

}

However, a UDR that hardcodes a type identifier in a switch or if statement to
determine actions can handle only built-in data types. It cannot handle all possible
user-defined types because not all of them have unique, type-specific identifiers.

IBM Informix DataBlade API Programmer’s Guide

Related concepts:

[‘Column values passed back to a C UDR (Server)” on page 8-46|

MI_DATUM in a client LIBMI application

The preceding rules for passing values in MI_DATUM structures by reference and
by value do not apply to client LIBMI applications. In client LIBMI applications,
pass values of all data types in MI_DATUM structures by reference.

Address calculations with MI_DATUM values

In performing address calculations with datums, do not use char * as the type.
This practice can lead to problems. Instead, calculate addresses with the size_t data

type.

To increment a datum by an arbitrary length, use the following equation:
void *ptr = (void *)((size_t)datum + (size_t)length)

In performing address calculations with an MI_DATUM value, it is common
practice to use char * as an intermediate type because arithmetic operators are not
allowed on the void * type. The ANSI C standard explicitly says that void * and
char * have the same representation.

For example, the following code increments an MI_DATUM value by an arbitrary
length:

MI_DATUM ptr = (MI_DATUM) ((char *)(datum) + (ptrdiff_t)(Tength))

In the preceding formula, ptrdiff_t is defined in the ANSI C header file, stddef.h,
and is a signed integer data type.

Another addressing scheme follows:
void *ptr = ((char *)datum) + length

Uses of MI_DATUM structures

An MI_DATUM structure holds a value that is transferred to or from the database
server. DataBlade API functions handle MI_DATUM structures consistently. The
following table lists uses of MI_DATUM structures.

Use of MI_DATUM

structures Description More information
Routine arguments for a When a UDR is called, the routine manager passes “The MI_DATUM arguments’]
UDR UDR arguments as datums. The data type of each on page 13-2]

argument determines whether the routine manager
passes the argument by reference or by value.

Return value from a
user-defined function

When a user-defined function exits, the routine “Return a value” on page|
manager passes the return value as a datum. The 13—10|

return-value data type determines whether the routine
manager passes the return value by reference or by

value.
OUT parameter from a When a user-defined function sets an OUT parameter, [“An OUT parameter” on page|
user-defined function the routine manager passes the parameter back as a 13—13|

datum. The routine manager always passes an OUT
parameter by reference.

Chapter 2. Access SQL data types 2-33

Use of MI_DATUM

structures Description More information
Routine arguments for a When you execute a UDR with the Fastpath interface, “Pass in argument values” or|
UDR that you execute with the mi_routine_exec() function passes UDR arguments [page 9-27]
the Fastpath interface as datums. The data type of each argument determines
whether this function passes the argument by reference
or by value.
Return value from a UDR ~ When a user-defined function that you execute with the [“Receive the return value” on|
that you execute with the Fastpath interface returns, the mi_routine_exec() page 9—22]
Fastpath interface function passes the return value as a datum. The

return-value data type determines whether this function
passes the return value by reference or by value.

Column values returned or When the mi_value() or mi_value_by_name() function [‘Obtain column values” on
inserted in SQL statements returns a column value for a query in binary page 8-43]
representation, it returns this value as a datum.

When the mi_row_create() function creates a row
structure, it accepts column values as datums.

Element values retrieved or When the mi_collection_fetch() function fetches an “Access the elements of a
inserted in SQL collections element from a collection, it represents the element as a [collection” on page 5-5|
datum.

When the mi_collection_insert() function inserts an
element from a collection, it represents the element as a

datum.
Input-parameter values in ~ When the mi_exec_prepared_statement() or " Assign values to input|
a prepared SQL statement mi_open_prepared_statement() function provides arameters” on page 8-27

input-parameter values, it represents them as datums.

The NULL constant

The DataBlade API supports two different uses of a NULL constant: the SQL
NULL value and the NULL-valued pointer. The DataBlade API NULL-valued
pointer is not the same as the SQL NULL value.

SQL NULL value

The SQL NULL value represents a null or empty value in a database column. The
NULL value is distinct from all valid values for a given data type.

For example, the INTEGER data type holds a four-byte integer. This four-byte data
type can hold 232 (or 4,294,967,296) values:

* zero

* positive values: 1 to 2,147,483,647

* negative values: -1 to -2,147,483,647

* NULL value: 2,147,483,648 (the maximum negative number)

Because the representation of the NULL value is unique to each data type, the
DataBlade API provides the following functions to assist in determining whether a
value is the SQL NULL value.

2-34 IBM Informix DataBlade API Programmer’s Guide

Handling the SQL NULL value DataBlade API function

Can a column hold NULL values? mi_column_nullable(),

mi_parameter_nullable()
(Was the NOT NULL constraint used to defined the

column?)

Does the value represent a NULL value? mi_fp_argisnull(),
mi_fp_setargisnull(),
mi_fp_returnisnull(),
mi_fp_setreturnisnull()

Does the UDR handle NULL arguments? mi_func_handlesnulls()

(Has the UDR been registered to indicate that it
contains code to handle NULL values as arguments?)

Does an expensive-UDR argument hold a NULL mi_funcarg_isnull()
value?

NULL-valued pointer

The NULL-valued pointer, as defined in the stddef.h header file, is a DataBlade
API constant that represents an initialized pointer.

NULL is usually represented as zero for a C pointer. However zero does not
always represent NULL. Use the keyword NULL in your DataBlade API code to
initialize pointers, as the following line shows:

MI_ROW *row = NULL;

In addition, the DataBlade API uses the NULL-value pointer for the following:
* To signify a default value for arguments in many DataBlade API functions

* To indicate an unsuccessful execution of a DataBlade API function that, when
successful, returns a pointer to some value

Chapter 2. Access SQL data types 2-35

2-36 IBM Informix DataBlade API Programmer’s Guide

Part 2. Data manipulation

© Copyright IBM Corp. 1996, 2012

IBM Informix DataBlade API Programmer’s Guide

Chapter 3. Numeric data types

This section describes these numeric data types and the functions that the
DataBlade API supports to process numeric data.

The DataBlade API provides support for the following numeric data types.

Numeric data type DataBlade API numeric data type

Integer data types mi_sintl, mi_intl, mi_smallint, mi_unsigned_smallint,
mi_integer, mi_unsigned_integer, mi_int8,
mi_unsigned_int8

Fixed-point data types mi_decimal, mi_numeric, mi_money

Floating-point data types mi_decimal, mi_double_precision, mi_real

Related concepts:

[“Determine the data type of UDR arguments” on page 9-2|

Integer data

Integer data is a value with no digits to the right of the decimal point. The
DataBlade API provides support for integer values in both their text and binary
representations.

Integer text representation

The DataBlade API supports an integer value in text representation as a quoted
string that contains the following characters.

Contents of integer string Character
Digits 0-9
Thousands separator: symbol between every three digits , (comma)

An integer value in its text representation is often called an integer string. For
example, the following integer string contains the value for 1,345:

"1,345"
In an integer string, the thousands separator is optional.

A locale defines the end-user format for numeric values. The end-user format is the
format in which data appears in a client application when the data is a literal
string or character variable. The preceding integer string is the end-user format for
the default locale, US English. A nondefault locale can define an end-user format
that is particular to a country or culture outside the US. For more information, see
the IBM Informix GLS User’s Guide.

Integer binary representations

The DataBlade API provides the following data types to support the binary
representations of integer values.

© Copyright IBM Corp. 1996, 2012 3-1

SQL integer data

Integer data DataBlade API data type type

One-byte integers mi_sintl, mi_intl None

Two-byte integers mi_smallint, mi_unsigned_smallint SMALLINT

Four-byte integers mi_integer, mi_unsigned_integer INTEGER, SERIAL

Eight-byte integers mi_int8, mi_unsigned_int8, mi_bigint, INTS, SERIALS,
mi_unsigned_bigint BIGINT, BIGSERIAL

Tip: The internal format of integer data types is often referred to as their binary
representation.

One-byte integers
The DataBlade API supports the following data types for one-byte integer values.

DataBlade API one-byte integer Description
mi_sintl Signed one-byte (eight bits) value
mi_intl Unsigned one-byte (eight bits) value

To hold unsigned one-byte integers, you can also use the mi_unsigned_charl data

type.

Tip: The one-byte integer data types have names that are not consistent with those
of other integer data types. The mi_intl data type is for an unsigned one-byte
integer while the mi_smallint, mi_integer, and mi_int8 data types are for the
signed version of the two-, four-, and eight-byte integers, respectively. Use the
mi_sintl data type to hold a signed one-byte integer value.

The DataBlade API ensures that these integer data types are one byte on all
computer architectures. There is no corresponding SQL data type for one-byte
integers.

Values of the mi_intl and mi_sintl data types can fit into an MI_DATUM
structure. They can be passed by value within C user-defined routines (UDRs).

All data types, including mi_intl and mi_sintl, must be passed by reference
within client LIBMI applications.

Two-byte integers
The DataBlade API supports the following data types for two-byte integer values.

DataBlade API two-byte integers Description
mi_smallint Signed two-byte integer value
mi_unsigned_smallint Unsigned two-byte integer value

Use these integer data types to hold values for the SQL SMALLINT data type,
which stores two-byte integer numbers that range from -32,767 - 32,767.

The mi_smallint and mi_unsigned_smallint data types hold the internal (binary)
format of a SMALLINT value. The DataBlade API ensures that the mi_smallint
and mi_unsigned_smallint data types are two bytes on all computer architectures.
Use these integer data types instead of the native C types (such as short int). If

3-2 IBM Informix DataBlade API Programmer’s Guide

you access two-byte values stored in a SMALLINT in the database, but use the C
short int type, conversion errors might arise if the two types are not the same size.

Important: To make your DataBlade API module portable across different
architectures, it is recommended that you use the DataBlade API data type
mi_smallint for two-byte integer values instead of the native C-language
counterpart. The mi_smallint data type handles the different sizes of integer values
across computer architectures.

Values of the mi_smallint and mi_unsigned_smallint data types can fit into an
MI_DATUM structure. They can be passed by value within C UDRs.

All data types, including mi_smallint and mi_unsigned_smallint, must be passed
by reference within client LIBMI applications.

To transfer two-byte integers between different computer architectures, the
DataBlade API provides the following functions that handle type alignment and
byte order.

mi_get_smallint()
Copies an aligned two-byte integer, converting any difference in alignment
or byte order on the client computer to that of the server computer

mi_put_smallint()
Copies an aligned two-byte integer, converting any difference in alighment
or byte order on the server computer to that of the client computer

mi_fix_smallint()
Converts the specified two-byte integer to or from the type alignment and
byte order of the client computer

These DataBlade API functions are useful in the send and receive support
functions of an opaque data type that contains mi_smallint values. They ensure
that two-byte integer (SMALLINT) values remain consistent when transferred to
and from client applications.

Related reference:

[‘Conversion of opaque-type data with computer-specific data types” on page 16-22|

[# [SMALLINT data type (Guide to SQL: Reference)]

Four-byte integers
The DataBlade API supports the following data types for four-byte integer values.

DataBlade API four-byte integers Description
mi_integer Signed four-byte integer value
mi_unsigned_integer Unsigned four-byte integer value

Use these integer data types to hold values for the following SQL four-byte integer
data types:

* The SQL INTEGER data type can hold integer values in the range -2,147,483,647
- 2,147,483,647.

* The SQL SERIAL data type holds four-byte integer values that the database
server automatically assigns when a value is inserted in the column.

The mi_integer and mi_unsigned_integer data types hold the internal (binary)
format of an INTEGER or SERIAL value. The DataBlade API ensures that the

Chapter 3. Numeric data types ~ 3-3

http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_144.htm#ids_sqr_144

mi_integer and mi_unsigned_integer data types are four bytes on all computer
architectures. Use these integer data types instead of the native C types (such as
int or long int). If you access four-byte values stored in a INTEGER in the
database, but use the C int type, conversion errors might arise if the two types are
not the same size.

Important: To make your DataBlade API module portable across different
architectures, it is recommended that you use of the DataBlade API data type
mi_integer for four-byte integer values instead of the native C-language
counterpart. The mi_integer data type handles the different sizes of integer values
across computer architectures.

Values of the mi_integer and mi_unsigned_integer data types can fit into an
MI_DATUM structure. They can be passed by value within a C UDR.

All data types, including mi_integer and mi_unsigned_integer, must be passed by
reference within client LIBMI applications.

To transfer four-byte integers between different computer architectures, the
DataBlade API provides the following functions that handle type alignment and
byte order.

mi_get_integer()
Copies an aligned four-byte integer, converting any difference in alignment
or byte order on the client computer to that of the server computer

mi_put_integer()
Copies an aligned four-byte integer, converting any difference in alignment
or byte order on the server computer to that of the client computer

mi_fix_integer()
Converts the specified four-byte integer to or from the alignment and byte
order of the client computer

The mi_get_integer() and mi_put_integer() functions are useful in the send and
receive support functions of an opaque data type that contains mi_integer values.
They ensure that four-byte integer (INTEGER) values remain consistent when
transferred to and from client applications.

Related reference:

[‘Conversion of opaque-type data with computer-specific data types” on page 16-22|
[# [INTEGER data type (Guide to SQL: Reference)]
[[SERIAL(n) data type (Guide to SQL: Reference)|

Eight-byte integers
The DataBlade API supports the following data types for eight-byte integer values.

DataBlade API eight-byte integers Description

mi_int8 Signed eight-byte integer value
mi_unsigned_int8 Unsigned eight-byte integer value
mi_bigint Signed eight-byte integer value
mi_unsigned_bigint Unsigned eight-byte integer value

3-4 IBM Informix DataBlade API Programmer’s Guide

http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_122.htm#ids_sqr_122
http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_138.htm#ids_sqr_138

The DataBlade API ensures that these integer data types are eight bytes on all
computer architectures. Use these integer data types to hold values for the
following SQL eight-byte integer data types:

* The SQL INTS8 data type and the BIG INT data type can hold integer values in
the range -9,223,372,036,854,775,807 - 9,223,372,036,854,775,807 [or -(2°-1) - 2%-1].

* The SQL SERIALS8 and BIGSERIAL data types hold eight-byte integer values that
the database server automatically assigns when a value is inserted in the
column.

The mi_int8 and mi_unsigned_int8 data types hold the internal (binary) format of
an INT8 or SERIALS value. The mi_bigint and mi_unsigned_bigint data types
hold the internal (binary) format of an BIGINT or BIGSERIAL value.

Values of the mi_int8, mi_unsigned_int8, mi_bigint, and mi_unsigned_bigint data
types cannot fit into an MI_DATUM structure. They must be passed by reference
within C UDRs.

All data types, including mi_int8, mi_unsigned_int8, mi_bigint, and
mi_unsigned_bigint must be passed by reference within client LIBMI applications.

Related reference:

[# [BIGINT data type (Guide to SOL: Reference)

[# [BIGSERIAL data type (Guide to SOL: Reference)
[# INT8 (Guide to SQL: Reference)|

[# [SERTALS(n) data type (Guide to SQL: Reference)

The int8.h header file: The int8.h header file contains the following declarations
for use with the INTS8 data type:

¢ The ifx_int8_t structure
* The INT8-type functions of the IBM Informix ESQL/C library

The mitypes.h header file automatically includes int8.h. In turn, the miTib.h
header file automatically includes mitypes.h, and mi.h automatically includes
milib.h. Therefore, you automatically have access to the ifx_int8_t structure, the
mi_int8 data type, or any of the Informix ESQL/C INT8-type functions when you
include mi.h in your DataBlade API module.

Related reference:
[“ESQL/C header files” on page 1-6|

Internal INTS format:
The INTS data type stores eight-byte integers in a proprietary internal format for
IBM Informix: the ifx_int8_t structure. This structure allows the database to store

eight-byte integers in a computer-independent format.

Tip: The internal format of the INTS8 data type is often referred to as its binary
representation.

The mi_int8 data type uses the ifx_int8_t structure to hold the binary
representation of an INTS8 value.

Chapter 3. Numeric data types ~ 3-5

http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_096.htm#ids_sqr_096
http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_097.htm#ids_sqr_097
http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_121.htm#ids_sqr_121
http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_139.htm#ids_sqr_139

3-6

Restriction: The ifx_int8_t structure is an opaque C data structure to DataBlade
API modules. Do not access its internal fields directly. The internal structure of
ifx_int8_t might change in future releases.

ESQL/C INT8-type functions:

Because the binary representation of an INT8 (and mi_int8) value is a proprietary
format for IBM Informix, you cannot use standard system functions to perform
integer calculations on mi_int8 values. Instead, the DataBlade API provides
support for the following categories of Informix ESQL/C functions on the INT8
data type.

* Conversion functions
* Arithmetic-operation functions

Any other operations, modifications, or analyses can produce unpredictable results.
Related reference:

[“Convert INT8 values’]

[“Perform operations on eight-byte values” on page 3-7]

Transfer eight-byte integers (Server):

To transfer eight-byte integers between different computer architectures, the
DataBlade API provides the following functions that handle type alignment and
byte order.

DataBlade API Description

mi_get_int8() or mi_get_bigint() Copies an aligned eight-byte integer,
converting any difference in alignment or
byte order on the client computer to that of
the server computer

mi_put_int8() or mi_put_bigint() Copies an aligned eight-byte integer,
converting any difference in alignment or
byte order on the server computer to that of
the client computer

The mi_get_int8() and mi_put_int8() functions are useful in the send and receive
support function of an opaque data type that contains mi_int8 values. The
mi_get_bigint() and mi_put_bigint() functions are useful in the send and receive
support function of an opaque data type that contains mi_bigint values. These
functions ensure that eight-byte integer (INT8) values remain alignhed when
transferred to and from client applications.

Related reference:

[“Conversion of opaque-type data with computer-specific data types” on page 16-22|

Convert INT8 values:

The IBM Informix ESQL/C library provides the following functions that facilitate
conversion of the binary representation of INT8 (mi_int8) values to and from some
C-language data types.

Function name Description

ifx_int8cvasc() Converts a C char type value to an mi_int8
type value

ifx_int8cvdbl() Converts a C double (mi_double_precision)
type value to an mi_int8 type value

IBM Informix DataBlade API Programmer’s Guide

Function name

Description

ifx_int8cvdec()

Converts a mi_decimal type value to an
mi_int8 type value

ifx_int8cvflt()

Converts a C float (mi_real) type value to an
mi_int8 type value

ifx_int8cvint()

Converts a C two-byte integer value to an
mi_int8 type value

ifx_int8cvlong()

Converts a C four-byte integer value to an
mi_int8 type value

ifx_int8toasc()

Converts an mi_int8 type value to a text
string

ifx_int8todbl()

Converts an mi_int8 type value to a C
double (mi_double_precision) type value

ifx_int8todec()

Converts an mi_int8 type value to a
mi_decimal type value

ifx_int8toflt()

Converts an mi_int8 type value to a C float
(mi_real) type value

ifx_int8toint()

Converts an mi_int8 type value to a C
two-byte integer value

ifx_int8tolong()

Converts an mi_int8 type value to a C
four-byte integer value

Related reference:

[“ESQL/C INTS-type functions” on page 3-§

Perform operations on eight-byte values:

Use the following IBM Informix ESQL/C library functions to perform arithmetic

operations on INT8 (mi_int8) type values.

Function name

Description

ifx_int8add()

Adds two mi_int8 numbers

ifx_int8cmp()

Compares two mi_int8 numbers

ifx_int8copy()

Copies an mi_int8 number

ifx_int8div()

Divides two mi_int8 numbers

ifx_int8mul()

Multiplies two mi_int8 numbers

ifx_int8sub()

Subtracts two mi_int8 numbers

Any other operations, modifications, or analyses can produce unpredictable results.

Related reference:

[“ESQL/C INTS-type functions” on page 3-6

Fixed-point data

Fixed-point data is a decimal value with a fixed number of digits to the right and
left of the decimal point. The fixed number of digits to the right of the decimal
point is called the scale of the value. The total number of digits in the fixed-point

value is called the precision of the value.

The DataBlade API provides support for the following kinds of fixed-point data
(which correspond to existing SQL data types).

Chapter 3. Numeric data types ~ 3-7

3-8

Type of fixed-point value SQL data type
Decimal DECIMAL(p,s)
Monetary MONEY(p)

Each of these kinds of fixed-point values has a text and a binary representation.

Fixed-point text representations

The text representation of a fixed-point value is a quoted string that contains a
series of digits. The DataBlade API supports a text representation for both decimal
and monetary values.

Decimal text representation
The DataBlade API supports a decimal value in text representation as a quoted
string that contains the characters that the following table shows.

Contents of fixed-point string Character
Digits 0-9
Thousands separator: symbol between every three digits , (comma)
Decimal separator: symbol between the integer and fraction portions of the . (period)
number

A decimal value in its text representation is often called a decimal string. For
example, the following decimal string contains the value for 1,345.77:

"1,345.77"
In a decimal string, the thousands separator is optional.

A locale defines the end-user format for numeric values. The end-user format is the
format in which data appears in a client application when the data is a literal
string or character variable. The preceding decimal string is the end-user format
for the default locale, US English. A nondefault locale can define an end-user
format that is particular to a country or culture outside the US. For more
information, see the IBM Informix GLS User’s Guide.

Monetary text representation
The DataBlade API supports a monetary value in text representation as a quoted
string that contains the characters that the following table shows.

Contents of fixed-point string Character
Digits 0-9
Thousands separator: symbol between every three digits , (comma)

Decimal separator: symbol between the integer and fraction portions of . (period)
the number

Currency symbol: symbol that identifies the units of currency (can $ (dollar sign)
appear in front of or at the end of the monetary value)

A monetary value in its text representation is often called a monetary string. For
example, the following money string contains the value for $1,345.77:

"$1,345.77"

IBM Informix DataBlade API Programmer’s Guide

In a monetary string, the thousands separator and the currency symbol are
optional. You can change the format of the monetary string with the DBMONEY
environment variable.

A locale defines the end-user format for monetary values. The end-user format is
the format in which data appears in a client application when the data is a literal
string or character variable. The preceding monetary string is the end-user format
for the default locale, US English. A nondefault locale can define monetary
end-user formats that are particular to a country or culture outside the US. For
more information, see the IBM Informix GLS User’s Guide.

Fixed-point binary representations

The DataBlade API provides the following data types to support the binary
representations of SQL fixed-point data types.

DataBlade API data type SQL fixed-point data type
mi_decimal, mi_numeric DECIMAL
mi_money MONEY

Both the DECIMAL and MONEY data types use the same internal format to store
a fixed-point value.

Related reference:

[“Internal fixed-point decimal format” on page 3-11|

DECIMAL data type: Fixed-point data

When you define a column with the DECIMAL(p,s) data type, the syntax of this
definition specifies a fixed-point value for the column. This value has a total of p
(<= 32) significant digits (the precision) and s (<= p) digits to the right of the
decimal point (the scale).

Tip: The DECIMAL data type can also declare a floating-point value with the
syntax DECIMAL(p).

The SQL DECIMAL data type holds the internal (binary) format of a decimal
value. This value is a computer-independent method that represents numbers of
up to 32 significant digits, with valid values in the range 10" - 10"'*.

Tip: The internal format of the DECIMAL data type is often referred to as its
binary representation.

The DataBlade API supports the SQL DECIMAL data type with the mi_decimal
data type. Therefore, the mi_decimal data type also holds the binary representation

of a decimal value. The mi_numeric data type is a synonym for mi_decimal.

Values of the mi_decimal data type cannot fit into an MI_DATUM structure. They
must be passed by reference within C UDRs.

All data types, including mi_decimal, must be passed by reference within client
LIBMI applications.

Chapter 3. Numeric data types ~ 3-9

3-10

Related concepts:
['DECIMAL data type: Floating-point data” on page 3-17
Related reference:

[“Internal fixed-point decimal format” on page 3-11|
[+ [DECIMAL (Guide to SQL: Reference)|
MONEY data type

When you define a column with the MONEY(p) data type, it has a total of p (<=
32) significant digits (the precision) and a scale of 2 digits.

The default value that the database server uses for scale is locale-dependent. The
default locale specifies a default scale of two. For nondefault locales, if the scale is
omitted from the declaration, the database server creates MONEY values with a
locale-specific scale. For more information, see the IBM Informix GLS User’s Guide.

You can also specify a scale with the MONEY(p,s) syntax, where s represents the
scale. For a complete description of the MONEY data type, see the IBM Informix
Guide to SQL: Reference.

Tip: The internal format of the MONEY data type is often referred to as its binary
representation.

The DataBlade API supports the SQL MONEY data type with the mi_money data
type. The mi_money data type holds the internal (binary) format of a MONEY
value. This binary representation of the MONEY data type has the same structure
as the fixed-point DECIMAL data type.

Values of the mi_money data type cannot fit into an MI_DATUM structure. They
must be passed by reference within C UDRs.

All data types, including mi_money, must be passed by reference within client
LIBMI applications.

Related reference:

[* MONEY (p,s) data type (Guide to SOL: Reference)|

The decimal.h header file
The decimal.h header file contains definitions for use with the DECIMAL and
MONEY data types.

This header file defines the following items:

e The dec_t typedef

¢ The decimal macros

* The DECIMAL-type functions of the Informix ESQL/C library

The mitypes.h header file automatically includes decimal.h. In turn, the milib.h
header file automatically includes mitypes.h, and mi.h automatically includes
milib.h. Therefore, you automatically have access to the dec_t structure, the
mi_decimal and mi_money data types, any of the decimal macros, or any of the
IBM Informix ESQL/C DECIMAL-type functions when you include mi.h in your
DataBlade API module.

IBM Informix DataBlade API Programmer’s Guide

http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_112.htm#ids_sqr_112
http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_126.htm#ids_sqr_126

Related reference:
['ESQL/C header files” on page 1-6|

Internal fixed-point decimal format:

The DECIMAL and MONEY data types store fixed-point values in a proprietary
internal format for IBM Informix: the dec_t structure. This structure holds the
internal (binary) format of a DECIMAL or MONEY value.

The following code fragment shows how the dec_t structure holds the internal
(binary) format of a DECIMAL or MONEY value.

#define DECSIZE 16

struct decimal
{
short dec_exp;
short dec_pos;
short dec_ndgts;
char dec_dgts[DECSIZE];
1s

typedef struct decimal dec_t;

This dec_t structure stores the number in pairs of digits. Each pair is a number in
the range 00 - 99. (Therefore, you can think of a pair as a base-100 digit.) The
following table shows the four parts of the dec_t structure.

Table 3-1. Fields in the dec_t structure

Field Description

dec_exp The exponent of the normalized dec_t type number

The normalized form of this number has the decimal point at the left of
the leftmost digit. This exponent represents the number of digit pairs to
count from the left to position the decimal point (or as a power of 100 for
the number of base-100 numbers).

dec_pos The sign of the dec_t type number

The dec_pos can assume any one of the following three values:
1 When the number is zero or greater

0 When the number is less than zero

-1 When the value is null

dec_ndgts The number of digit pairs (number of base-100 significant digits) in the
dec_t type number

This value is also the number of entries in the dec_dgts array.

dec_dgtsl] A character array that holds the significant digits of the normalized dec_t
type number, assuming dec_dgts[0] != 0

Each byte in the array contains the next significant base-100 digit in the
dec_t type number, proceeding from dec_dgts[0] to dec_dgts[dec_ndgts].

The following table shows some sample dec_t values.

Chapter 3. Numeric data types 3-11

Table 3-2. Sample decimal values

The dec_t structure field values

Value dec_exp dec_pos dec_ndgts dec_dgtsl]

-12345.6789 3 0 5 dec_dgts[0] = 01
dec_dgts[1] = 23
dec_dgts[2] = 45
dec_dgts[3] = 67
dec_dgts[4]= 89

1234.567 2 1 4 dec_dgts[0] = 12
dec_dgts[1] = 34
dec_dgts[2] = 56
dec_dgts[3] = 70
-123.456 2 0 4 dec_dgts[0] = 01
dec_dgts[1] = 23
dec_dgts[2] = 45
dec_dgts[3] = 60
480 2 1 2 dec_dgts[0] = 04
dec_dgts[1] = 80
152 0 1 2 dec_dgts[0] = 15
dec_dgts[1] = 20
-6 1 0 1 dec_dgts[0] = 06

The mi_decimal data type uses the dec_t structure to hold the binary
representation of a DECIMAL value. The mi_money data type uses the dec_t
structure to hold the binary representation of a MONEY value.

Related concepts:

“DECIMAL data type: Fixed-point data” on paw
“DECIMAL data type: Floating-point data” on page 3-17
Related reference:

[“Fixed-point binary representations” on page 3-9|

The decimal macros:
The decimal.h header file also includes the following macros that might be useful
in a DataBlade API module.

Decimal macro Description

DECLEN(p, s) Calculates the minimum number of bytes
required to hold the DECIMAL(p,s) value

DECPREC(size) Calculates a default precision given the
number of bytes (size) used to store the
number

PRECTOT(dec) Returns the total precision of the dec value

PRECDEC(dec) Returns the scale of the dec value

PRECMAKE(p, s) Creates a precision value from the specified

total precision (p) and scale (s)

For a complete list of decimal macros,
consult the decimal.h header file that is
installed with your database server. This
header file is in the inc1/public subdirectory
of the INFORMIXDIR directory.

3-12 IBM Informix DataBlade API Programmer’s Guide

ESQL/C DECIMAL-type functions:

Because the binary representation of DECIMAL (mi_decimal) and MONEY
(mi_money) values is a proprietary format for IBM Informix, you cannot use
standard system functions to perform decimal operations on mi_decimal and
mi_money values. Instead, the DataBlade API provides support for the following
Informix ESQL/C functions on the DECIMAL and MONEY data types.

¢ Conversion functions

¢ Arithmetic-operation functions

Any other operations, modifications, or analyses can produce unpredictable results.
Related reference:

[“ESQL/C functions for decimal conversion” on page 3-14|

[“Perform operations on decimal data” on page 3-15

Transfer fixed-point data (Server)

To transfer fixed-point data between different computer architectures, the
DataBlade API provides the following functions that handle type alignment and
byte order.

DataBlade API function Description

mi_get_decimal() Copies an aligned mi_decimal value,
converting any difference in alignment or
byte order on the client computer to that of
the server computer

mi_get_money() Copies an aligned mi_money value,
converting any difference in alignment or
byte order on the client computer to that of
the server computer

mi_put_decimal() Copies an aligned mi_decimal value,
converting any difference in alignment or
byte order on the server computer to that of
the client computer

mi_put_money() Copies an aligned mi_money value,
converting any difference in alignment or
byte order on the server computer to that of
the client computer

The mi_get_decimal(), mi_get_money(), mi_put_decimal(), and mi_put_money()
functions are useful in the send and receive support function of an opaque data
type that contains mi_decimal or mi_money values. They ensure that fixed-point
(DECIMAL or MONEY) values remain aligned when transferred to and from client
applications.

Related reference:

[“Conversion of opaque-type data with computer-specific data types” on page 16-22|

Convert decimal data

Both the DataBlade API library and the IBM Informix ESQL/C library provide
functions that convert the binary representation for DECIMAL (mi_decimal) or
MONEY (mi_money) values.

Chapter 3. Numeric data types ~ 3-13

3-14

Related reference:

[“Convert floating-point decimal data” on page 3-19

[‘Format numeric strings” on page 3-20|

DataBlade API functions for decimal conversion

The DataBlade API library provides the following functions that convert between a
text (string) representation of a decimal or monetary value and its binary (internal)
equivalent.

DataBlade API Function Converts from Converts to
mi_decimal_to_string() DECIMAL (mi_decimal) Decimal string
mi_money_to_string() MONEY (mi_money) Interval string
mi_string_to_decimal() Decimal string DECIMAL (mi_decimal)
mi_string_to_money() Monetary string MONEY (mi_money)

Server only: The mi_decimal_to_string(), mi_money_to_string(),

mi_string to_decimal(), and mi_string to_money() functions are useful in the
input and output support function of an opaque data type that contains
mi_decimal or mi_money values. They allow you to convert fixed-point
(DECIMAL or MONEY) values between their external format (text) and their
internal format (dec_t) when transferred to and from client applications.

The mi_decimal_to_string(), mi_money_to_string(), mi_string_to_decimal(), and
mi_string to_money() functions use the current processing locale to handle
locale-specific formats in the decimal or monetary string. For more information, see
the IBM Informix GLS User's Guide.

Related reference:

“Conversion of opaque-type data between text and binary representations” on|

page 16-16|

ESQL/C functions for decimal conversion
The IBM Informix ESQL/C function library provides the following functions to
convert a DECIMAL (or MONEY) value to and from some C-language data types.

Function name Description

deccvasc() Converts a C char type to an mi_decimal
type value

deccvdbl() Converts a C double (mi_double_precision)
type to an mi_decimal type value

deccvint() Converts a C two-byte integer value to an
mi_decimal type value

deccvlong() Converts a C four-byte integer value to an
mi_decimal type value

dececvt() and decfcvt() Converts an mi_decimal type value to text

dectoasc() Converts an mi_decimal type value to text

dectodbl() Converts an mi_decimal type value to a C

double (mi_double_precision) type value

dectoint() Converts an mi_decimal type value to a C
two-byte integer value

IBM Informix DataBlade API Programmer’s Guide

Function name

Description

dectolong()

Converts an mi_decimal type value to a C
four-byte integer value

The Informix ESQL/C library also provides
functions to convert some numeric data types
to formatted strings.

Related reference:

“ESQL/C DECIMAL-type functions” on page 3-13|

“Format numeric strings” on page 3-20)|

Perform operations on decimal data

The IBM Informix ESQL/C function library provides functions to perform
arithmetic operations on DECIMAL (mi_decimal) and MONEY (mi_money)

values.

Table 3-3. Informix ESQL/C functions that perform arithmetic operations on DECIMAL and

MONEY values

Function name Description

decadd() Adds two mi_decimal numbers
deccmp() Compares two mi_decimal numbers
deccopy() Copies a mi_decimal number
decdiv() Divides two mi_decimal numbers
decmul() Multiplies two mi_decimal numbers
decround() Rounds an mi_decimal number
decsub() Subtracts two mi_decimal numbers
dectrunc() Truncates an mi_decimal number

Any other operations, modifications, or analyses can produce unpredictable results.

Related reference:

[“ESQL /C DECIMAL-type functions” on page 3-13|

Obtain fixed-point type information

The DataBlade API provides functions to obtain the scale and precision of a
fixed-point (DECIMAL and MONEY) data type.

Table 3-4. DataBlade API functoins that obtain the scale and precision of a fixed-point data

type

Source

DataBlade API functions

For a data type

mi_type_precision(), mi_type_scale()

For a UDR argument

mi_fp_argprec(), mi_fp_setargprec(), mi_fp_argscale(),
mi_fp_setargscale()

For a UDR return value

mi_fp_retprec(), mi_fp_setretprec(), mi_fp_retscale(),
mi_fp_setretscale()

For a column in a row (or field in
a row type)

mi_column_precision(), mi_column_scale()

For an input parameter in a
prepared statement

mi_parameter_precision(), mi_parameter_scale()

Chapter 3. Numeric data types 3-15

Floating-point data

A floating-point value is a large decimal value that is stored in a fixed field width.
Because the field width is fixed, a floating-point number that is larger than the
field width only retains its most significant digits. That is, digits that do not fit into
the fixed width are dropped (rounded or truncated).

The DataBlade API provides support for the following floating-point data, which
correspond to existing SQL data types.

Table 3-5. DataBlade API support for floating-point data

Type of floating-point value SQL data type
Decimal DECIMAL(p)
True floating-point SMALLFLOAT, FLOAT

These floating-point values have both text and binary representations.

Floating-point text representation

The DataBlade API supports a floating-point value in text representation as a
quoted string that contains the following characters.

Contents of integer string Character
Digits 0-9
Thousands separator: symbol between every three digits , (comma)
Decimal separator: symbol between the integer and fraction portions of the . (period)
number

For example, the following integer string contains the value for 1,345.77431:
"1,345.77431"

In a floating-point string, the thousands separator is optional.

Important: Because floating-point numbers retain only their most significant digits,
the number that you enter in this type of column and the number the database
server displays can differ slightly.

A locale defines the end-user format for numeric values. The end-user format is the
format in which data appears in a client application when the data is a literal
string or character variable. The preceding floating-point string is the end-user
format for the default locale, US English. A nondefault locale can define an
end-user format that is particular to a country or culture outside the US. For more
information, see the IBM Informix GLS User’s Guide.

Floating-point binary representations

The DataBlade API provides data types to support the binary representations of
floating-point values.

3-16 IBM Informix DataBlade API Programmer’s Guide

Table 3-6. DataBlade API data types that support SQL floating-point data types

SQL floating-point data type DataBlade API data type
DECIMAL mi_decimal
SMALLFLOAT mi_real

FLOAT mi_double_precision

DECIMAL data type: Floating-point data
When you define a column with the DECIMAL(p) data type, the syntax of this
definition specifies a floating-point value for the column. This value has a total of p

(<= 32) significant digits (its precision). DECIMAL(p) has an absolute value range
10—130 _ 10124'

Tip: The DECIMAL data type can also declare a fixed-point value with the syntax
DECIMAL(p,s)..

The mi_decimal data type stores floating-point DECIMAL values and fixed-point
values. Therefore, information about mi_decimal in [“Fixed-point data” on page 3-7]
also applies to mi_decimal when it contains a floating-point value. In particular,
the following statements are true.

Decimal information More information

The mi_decimal data type stores values in an internal [“Internal fixed-point decimall
(binary) format. format” on page 3-11|

All the IBM Informix ESQL/C library functions that “ESQL/C DECIMAL-typd

handle fixed-point values in mi_decimal can also functions” on page 3-13]

handle mi_decimal when it contains floating-point

values.

All DataBlade API functions that accept fixed-point “Transfer fixed-point data (Server)”]
values in mi_decimal also accept mi_decimal when it |on page 3-13[and [“Convert decimall
contains a floating-point value. data” on page 3-13|

Values of the mi_decimal data type cannot fit into an MI_DATUM structure. They
must be passed by reference within C UDRs.

All data types, including mi_decimal, must be passed by reference within client
LIBMI applications.

Related concepts:
["'DECIMAL data type: Fixed-point data” on page 3-9|
Related reference:

[“Internal fixed-point decimal format” on page 3-11|

[[DECIMAL (Guide to SQL: Reference)|

SMALLFLOAT data type

The SQL SMALLFLOAT data type can hold single-precision floating-point values.
The DataBlade API supports the SMALLFLOAT data type with the mi_real data
type. The mi_real data type stores internal SMALLFLOAT values, as 32-bit
floating-point values.

Server only:

Chapter 3. Numeric data types 3-17

http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_112.htm#ids_sqr_112

3-18

Although an mi_real value can fit into an MI_DATUM structure, values of this
data type are always passed by reference. Unlike other four-byte values, mi_real
values cannot be passed by value. All values greater than four bytes are passed by
reference.

Therefore, if a UDR is called from an SQL statement, the database server passed a
pointer to any mi_real arguments; it does not pass the actual value. Similarly, if a
user-defined function returns an mi_real value to an SQL statement, you must
allocate space for the value, fill this space, and return a pointer to this space.

DataBlade API modules that are not invoked from SQL statements might pass
mi_real values by value. However, for consistency, you might want to pass them
by reference.

Client only: All data types, including mi_real, must be passed by reference within
client LIBMI applications.

Important: To make your DataBlade API module portable across different
architectures, it is recommended that you use the DataBlade API data type,
mi_real, instead of the native C-language counterpart, float. The mi_real data type
handles the different sizes of small floating-point values across computer
architectures.

The FLOAT data type

The SQL FLOAT data type can hold double-precision floating-point values. The
DataBlade API supports the FLOAT data type with the mi_double_precision data
type. The mi_double_precision data type stores internal FLOAT values, as 64-bit
floating-point values.

Values of the mi_double_precision data type cannot fit into an MI_DATUM
structure. They must be passed by reference within C UDRs.

All data types, including mi_double_precision, must be passed by reference within
client LIBMI applications.

Important: To make your DataBlade API module portable across different
architectures, it is recommended that you use the DataBlade API data type,
mi_double_precision, instead of the native C-language counterpart, double. The
mi_double_precision data type handles the different sizes of large floating-point
values across computer architectures.

Transfer floating-point data (Server)

To transfer floating-point data between different computer architectures, the
DataBlade API provides functions that handle type alignment and byte order.

Table 3-7. DataBlade API functions that handle type alignment and byte order

DataBlade API function Description

mi_get_decimal() Copies an aligned mi_decimal value, converting any
difference in alignment or byte order on the client
computer to that of the server computer

mi_get_double_precision() Copies an aligned mi_double_precision value,
converting any difference in alignment or byte order on
the client computer to that of the server computer

IBM Informix DataBlade API Programmer’s Guide

Table 3-7. DataBlade API functions that handle type alignment and byte order (continued)

DataBlade API function Description

mi_get_real() Copies an aligned mi_real value, converting any
difference in alignment or byte order on the client
computer to that of the server computer

mi_put_decimal() Copies an aligned mi_decimal value, converting any
difference in alignment or byte order on the server
computer to that of the client computer

mi_put_double_precision() Copies an aligned mi_double_precision value,
converting any difference in alignment or byte order on
the server computer to that of the client computer

mi_put_real() Copies an aligned mi_real value, converting any
difference in alignment or byte order on the server
computer to that of the client computer

The mi_get_decimal(), mi_get_double_precision(), mi_get_real(),
mi_put_decimal(), mi_put_double_precision(), and mi_put_real() functions are
useful in the send and receive support function of an opaque data type that
contains mi_decimal, mi_double_precision, or mi_real values. They ensure that
floating-point (DECIMAL, FLOAT, or SMALLFLOAT) values remain aligned when
transferred to and from client applications.

Related reference:

[“Conversion of opaque-type data with computer-specific data types” on page 16-22|

Convert floating-point decimal data

Both the DataBlade API library and the IBM Informix ESQL/C library provide
functions that convert between floating-point decimal strings and internal
DECIMAL formats.

Related reference:

[“Convert decimal data” on page 3-13]

Obtain floating-point type information

The DataBlade API provides functions to obtain the precision of a floating-point
DECIMAL (DECIMAL(p)).

Table 3-8. DataBlade API functions that obtain the precision of a floating-point DECIMAL

Source DataBlade API functions

For a data type mi_type_precision()

For a UDR argument mi_fp_argprec(), mi_fp_setargprec()
For a UDR return value mi_fp_retprec(), mi_fp_setretprec()
For a column mi_column_precision()

For an input parameter in a prepared statement mi_parameter_precision()

Tip: The FLOAT and SMALLFLOAT data types do not have precision and scale
values.

Chapter 3. Numeric data types ~ 3-19

Format numeric strings

3-20

The IBM Informix ESQL/C library provides special functions that enable you to
format numeric expressions as strings.

These numeric-formatting functions apply a given formatting mask to a numeric
value to allow you to line up decimal points, right- or left-aligned the number,
enclose a negative number in parentheses, and so on. The Informix ESQL/C
library includes the following functions that support numeric-formatting masks for
numeric values.

rfmtdec()
Converts an mi_decimal value to a string

rfmtdouble()
Converts a C-language double value to a string

rfmtlong()
Converts a C-language long integer value to a string

Both the Informix ESQL/C library and the DataBlade API library provide
functions to convert between mi_decimal values and other C-language
data types.

This section describes the characters that you can use to create a numeric-
formatting mask. It also provides extensive examples that show the results of
applying these masks to numeric values. A numeric-formatting mask specifies a
format to apply to some numeric value. This mask is a combination of the
following formatting characters:

Formatting

character Description

* This character fills with asterisks any positions in the display field that
would otherwise be blank.

& This character fills with zeros any positions in the display field that would
otherwise be blank.

This character changes leading zeros to blanks. Use this character to specify
the maximum leftward extent of a field.

< This character left-justifies the numbers in the display field. It changes
leading zeros to a null string.

, This character indicates the symbol that separates groups of three digits

(counting leftward from the units position) in the whole-number part of the
value. By default, this symbol is a comma. You can set the symbol with the
DBMONEY environment variable. In a formatted number, this symbol appears

only if the whole-number part of the value has four or more digits.

This character indicates the symbol that separates the whole-number part of
a money value from the fractional part. By default, this symbol is a period.
You can set the symbol with the DBMONEY environment variable. You can
have only one period in a format string.

- This character is a literal. It appears as a minus sign when expr1 is less than
zero. When you group several minus signs in a row, a single minus sign
floats to the rightmost position that it can occupy; it does not interfere with
the number and its currency symbol.

IBM Informix DataBlade API Programmer’s Guide

Formatting
character Description

+ This character is a literal. It appears as a plus sign when expr1 is greater
than or equal to zero and as a minus sign when expr1 is less than zero.
When you group several plus signs in a row, a single plus or minus sign
floats to the rightmost position that it can occupy; it does not interfere with
the number and its currency symbol.

(This character is a literal. It appears as a left parenthesis to the left of a
negative number. It is one of the pair of accounting parentheses that replace
a minus sign for a negative number. When you group several in a row, a
single left parenthesis floats to the rightmost position that it can occupy; it
does not interfere with the number and its currency symbol.

) This is one of the pair of accounting parentheses that replace a minus sign
for a negative value.

$ This character displays the currency symbol that appears at the front of the
numeric value. By default, the currency symbol is the dollar ($) sign. You
can set the currency symbol with the DBMONEY environment variable. When
you group several dollar signs in a row, a single currency symbol floats to
the rightmost position that it can occupy; it does not interfere with the
number.

Any other characters in the formatting mask are reproduced literally in the result.

When you use the following characters within a formatting mask, the characters
float; that is, multiple occurrences of the character at the left of the pattern in the
mask appear as a single character as far to the right as possible in the formatted
number (without removing significant digits):

A~ —~ + 1

For example, if you apply the mask $$$,$$$.## to the number 1234.56, the result is
$1,234.56.

When you use rfmtdec(), rfmtdouble(), or rfmtlong() to format MONEY values,
the function uses the currency symbols that the DBMONEY environment variable
specifies. If you do not set this environment variable, the numeric-formatting
functions use the currency symbols that the client locale defines. The default locale,
US English, defines currency symbols as if you set DBMONEY to §, .. For more
information about locales, see the IBM Informix GLS User’s Guide.

The following table shows sample format strings for numeric expressions. The
character b represents a blank or space.

Table 3-9. Sample format patterns and their results

Formatting mask Numeric value Formatted result
U 0 bbbbb
"&&&&&" 0 00000

"$556S" 0 bbbb$

Wopspsp s 0 A

RS<Ze 0 (null string)

Chapter 3. Numeric data types ~ 3-21

Table 3-9. Sample format patterns and their results (continued)

Formatting mask

Numeric value

Formatted result

“HHE HEHE 12345 12,345
VT 1234 b1,234

"t HHE 123 bbb123
"t HHHE 12 bbbb12
"HHE AHHE 1 bbbbb1
UHHE R -1 bbbbb1
"t HHHE 0 bbbbbb
"& &, &&&" 12345 12,345

"& &, &&&" 1234 01,234

"& &, &&&" 123 000123

"& &, &&&" 12 000012

"& &, &&&" 1 000001

"& &, & & &" -1 000001

"& &, &&&" 0 000000
"$$,$$$" 12345 ekt (overflow)
"$$,$$$" 1234 $1,234
"$$,5" 123 bb$123
"$$,$$%" 12 bbb$12
"$$,$$$" 1 bbbb$1
"$5,$$%" -1 bbbb$1
"$$,$$%" 0 bbbbb$
"$$,$%$" 1234 DM1,234
(DBMONEY set to DM)

1 12345 12,345

1 e 1234 *1,234

Tk ekt 123 #2103

Mk 12 #E%] D
"*’(‘,’(‘*’(‘" 1 ’(‘*’(‘*’(‘1

Mk ok 0 rr——

"HHE HHEAHE 12345.67 12,345.67
HHE HHEAHE 1234.56 b1,234.56
" A 123.45 bbb123.45
"HHE A 12.34 bbbb12.34
"t HHEAHE 1.23 bbbbb1.23
U 0.12 bbbbbb.12
"HHE A 0.01 bbbbbb.01
"HHE HHHEAHE -0.01 bbbbbb.01
" A -1 bbbbb1.00
"& &, &&& . &&" .67 000000.67
"& &, &&& . &&" 1234.56 01,234.56
"& &, &&&.&&" 123.45 000123.45
"& &, &&&.&&" 0.01 000000.01
"$$,$55.98" 12345.67 (overflow)
"$$,$$%.9%" 1234.56 $1,234.56
"5, 555 H##" 0.00 bbbbb$.00
"$$,$$S H#" 1234.00 $1,234.00
"$$,$55.&&" 0.00 bbbbb$.00
"$$,$%$.&&" 1234.00 $1,234.00

3-22 IBM Informix DataBlade API Programmer’s Guide

Table 3-9. Sample format patterns and their results (continued)

Formatting mask

Numeric value

Formatted result

A A A -12345.67 -12,345.67
"4 A A -123.45 -bbb123.45
" A A -12.34 -bbbb12.34
" A -12.34 b-bbb12.34
R -12.34 bb-bb12.34
o -12.34 bbbb-12.34
Mo A -12.34 bbbb-12.34
A -1.00 b-bbbb1.00
T -1.00 bbbbb-1.00
" 12345.67 b12,345.67
A A A 1234.56 bb1,234.56
A A A 123.45 bbbb123.45
A A A 12.34 bbbbb12.34
" A 12.34 bbbbb12.34
R 12.34 bbbbb12.34
o 12.34 bbbbb12.34
e e 1.00 bbbbbb1.00
-.01 bbbbbb-.01
e & & -.01 bbbbbb-.01
"-$$$,$$%.&&" -12345.67 -$12,345.67
"-$$$,$$%$.&&" -1234.56 -b$1,234.56
"-$$$,$$%$.&&" -123.45 -bbb$123.45
"-$$,$$$.&&" -12345.67 -$12,345.67
"-$$,$$$.&&" -1234.56 b-$1,234.56
"-$$,$$$.&&" -123.45 b-bb$123.45
"-$$,$$$.&&" -12.34 b-bbb$12.34
"-$$,$$$.&&" -1.23 b-bbbb$1.23
e $ & & -12345.67 -$12,345.67
e - $ & & -1234.56 b-$1,234.56
e $. & & -123.45 bbb-$123.45
e $ & & -12.34 bbbb-$12.34
e & & -1.23 bbbbb-$1.23
e - $ & & -12 bbbbbb-$.12
NG Qe & 12345.67 $*12,345.67
G R Qe & 1234.56 $**1,234.56
Gt Q& 123.45 $*+++123.45
NG Qe R 12.34 G120 34
”$>(->H-’>(-*=(-.&&” 123 $>(->(->H—*>(—1.23
"$>(->(->(-,>(->(->(-.&&” 12 $>(->(->(->(->(->(->{-.12
"($$$,$$%$.&&)" -12345.67 ($12,345.67)
"($$$,$5%$.&&)" -1234.56 (b$1,234.56)
"($$$,$$%$.&&)" -123.45 (bbb$123.45)
"(($$,$$$.&&)" -12345.67 ($12,345.67)
"((5$,$5%.&&)" -1234.56 b($1,234.56)
"(($$,$$%.&&)" -123.45 b(bb$123.45)
"(($$,$$$.&&)" -12.34 b(bbb$12.34)
"(($$,$$$.&&)" -1.23 b(bbbb$1.23)
"(C(($-&&)" -12345.67 ($12,345.67)
"(C(($-&&)" -1234.56 b($1,234.56)
"((($-&&)" -123.45 bbb($123.45)
"((($-&&)" -12.34 bbbb($12.34)
"(C(($-&&)" -1.23 bbbbb($1.23)
"(((((3-&&)" -12 bbbbbb($.12)

Chapter 3. Numeric data types

3-23

3-24

Table 3-9. Sample format patterns and their results (continued)

Formatting mask

Numeric value

Formatted result

"($$$,$$$.&&)" 12345.67 b$12,345.67
"($$$,$$$.&&)" 1234.56 bb$1,234.56
"($$$,$$$.&&)" 123.45 bbbb$123.45
"(($%$,$$$.&&)" 12345.67 b$12,345.67
"(($%$,9$$.&&)" 1234.56 bb$1,234.56
"(($$,$%%.&&)" 123.45 bbbb$123.45
"(($%,%5%. &&)" 12.34 bbbbb$12.34
"(($%,$$%.&&)" 1.23 bbbbbb$1.23
(5 -&&)" 12345.67 b$12,345.67
(5 -&&)" 1234.56 bb$1,234.56
"((G($-&&)" 123.45 bbbb$123.45
"(((C(3-&&)" 12.34 bbbbb$12.34
(5 -&&)" 1.23 bbbbbb$1.23
"((G($-&&)" 12 bbbbbbb$.12
Mg, <<<" 12345 12,345

g, <<<" 1234 1,234

g, <<<" 123 123

<< <<<" 12 12

Related reference:

“ESQL/C functions for decimal conversion” on page 3-14|

“Convert decimal data” on page 3-13]

[+ |DBMONEY environment variable (Guide to SQL: Reference)|

IBM Informix DataBlade API Programmer’s Guide

http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_218.htm#ids_sqr_218

Chapter 4. Date and time data types

This section describes the date and time data types and the functions that the
DataBlade API supports to process date and time data.

The DataBlade API provides support for the following date and time data types.

SQL date and time Standard C or ESQL/C date and DataBlade API date and time
data type time data type data type
DATE C: four-byte integer IBM Informix mi_date
ESQL/C: date
DATETIME IBM Informix ESQL/C: datetime, mi_datetime
dtime_t
INTERVAL IBM Informix ESQL/C: interval, mi_interval
intrvl_t

Date data

Date data is a calendar date. The DataBlade API provides support for date values
in both their text and binary representations.

Date text representation

The DataBlade API supports a date value in text representation as a quoted string
with the following format:

"mm/dd/yyyy"
mm The 2-digit month.
dd The 2-digit day of the month.

yyyy The 4-digit year.

A date value in its text representation is often called a date string. For example, the
following date string contains the value for July 12, 1999 (for the default locale):

"7/12/1999"
You can change the format of the date string with the DBDATE environment variable.

A locale defines the end-user format of a date. The end-user format is the format
in which data appears in a client application when the data is a literal string or
character variable. The preceding date string is the end-user format for the default
locale, US English. A nondefault locale can define an end-user format that is
particular to a country or culture outside the US. You can also customize the
end-user format of a date with the GL_DATE environment variable. For more
information, see the IBM Informix GLS User’s Guide.

Date binary representation

The SQL DATE data type holds the internal (binary) format of a decimal value.
This value is an integer value that represents the number of days since December
31, 1899. Dates before December 31, 1899, are negative numbers, while dates after
December 31, 1899, are positive numbers.

© Copyright IBM Corp. 1996, 2012 4-1

Tip: The internal format of the DATE data type is often referred to as its binary
representation.

The DataBlade API supports the SQL DATE data type with the mi_date data type.
Therefore, the mi_date data type also holds the binary representation of a date
value.

The mi_date data type is guaranteed to be four bytes on all computer
architectures. All mi_date values can fit into an MI_DATUM structure and can be
passed by value within C UDRs.

All data types, including mi_date, must be passed by reference within client LIBMI
applications.

Because the binary representation of a DATE (and mi_date) value is an
Informix-proprietary format, you cannot use standard system functions to obtain
date information from mi_date values. Instead, the DataBlade API provides the
following support for the DATE data type.

¢ Conversion functions
e Operation functions
Related reference:

[“Conversion of date representations”|

[“Operations on date data” on page 4-4|
[+ [DATE data type (Guide to SQL: Reference)|

Transfers of date data (Server)

For date data to be portable when transferred across different computer
architectures, the DataBlade API provides functions to handle type alignment and
byte order.

mi_get_date()
Copies an aligned mi_date value, converting any difference in alignment
or byte order on the client computer to that of the server computer

mi_put_date()
Copies an aligned mi_date value, converting any difference in alignment
or byte order on the server computer to that of the client computer

The mi_get_date() and mi_put_date() functions are useful in the send and receive
support function of an opaque data type that contains mi_date values. They enable
you to ensure that DATE values remain aligned when transferred to and from
client applications, which possibly have unaligned data buffers.

Related reference:

[“Conversion of opaque-type data with computer-specific data types” on page 16-22|

Conversion of date representations

Both the DataBlade API library and the IBM Informix ESQL/C library provide
functions that convert from the text (string) representation of a date value to the
binary (internal) representation for DATE.

4-2 IBM Informix DataBlade API Programmer’s Guide

http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_109.htm#ids_sqr_109

Related concepts:

[‘Date binary representation” on page 4-1]

DataBlade API functions for date conversion

The DataBlade API provides functions for conversion between text and binary
representations of date data.

Table 4-1. DataBlade API functions for date conversion

DataBlade API function Convert from Convert to
mi_date_to_string() DATE (mi_date) Date string
mi_string_to_date() Date string DATE (mi_date)

Server only: The mi_date_to_string() and mi_string_to_date() functions are useful
in the input and output support functions of an opaque data type that contains
mi_date values. They allow you to convert DATE values between their external
format (text) and their internal (binary) format when transferred to and from client
applications.

The mi_date_to_string() and mi_string_to_date() functions use the current
processing locale to handle locale-specific formats in the date string. For more
information, see the IBM Informix GLS User’s Guide.

Related reference:

“Conversion of opaque-type data between text and binary representations” on|

page 16—16|

ESQL/C functions for date conversion

The IBM Informix ESQL/C function library provides functions to convert a DATE
(mi_date) value to and from char strings.

Table 4-2. Informix ESQL/C functions for date conversion

Function name Description
rdatestr() Converts an internal format to string
rdefmtdate() Converts a string to an internal format using

a formatting mask

rfmtdate() Converts an internal format to a string using
a formatting mask

rstrdate() Converts a string to an internal format

The rdatestr() and rstrdate() functions convert mi_date values to and from a date
string that is formatted with the DBDATE environment variable.

These functions also examine the GL_DATE environment variable for the format of
the date string. When you use a nondefault locale and do not set the DBDATE or
GL_DATE environment variable, rdatestr() uses the date end-user format that the
client locale defines. For more information, see the IBM Informix GLS User’s Guide.

The rdefmtdate() and rfmtdate() functions convert mi_datetime values to and from
a date-time string using a date-formatting mask. A date-formatting mask specifies
a format to apply to some date value. This mask is a combination of the following
formats.

dd Day of the month as a two-digit number (01 - 31)

Chapter 4. Date and time data types 4-3

ddd Day of the week as a three-letter abbreviation (Sun through Sat)
mm Month as a two-digit number (01 - 12)

mmm Month as a three-letter abbreviation (Jan through Dec)

yy Year as a two-digit number in the 1900s (00 - 99)

yyyy Year as a four-digit number (0001 - 9999)

Any other characters in the formatting mask are reproduced literally in the result.

When you use a nondefault locale whose dates contain eras, you can use
extended-format strings in a numeric-formatting mask. For more information, see
the IBM Informix GLS User’s Guide.

When you use rfmtdate() or rdefmtdate() to format DATE values, the function
uses the date end-user formats that the GL_DATE or DBDATE environment variable
specifies. If neither of these environment variables is set, these date-formatting
functions use the date end-user formats for the locale. The default locale, US
English, uses the format mm/dd/yyyy. For a discussion of GL_DATE and DBDATE, see
the IBM Informix GLS User's Guide.

Operations on date data

The IBM Informix ESQL/C library provides functions to perform operations on
DATE (mi_date) values.

Table 4-3. Informix ESQL/C functions that perform operations on date data

Function name Description

rdayofweek() Returns the day of the week

rjulmdy() Returns month, day, and year from an
internal format

rleapyear() Determines whether a specified year is a leap
year

rmdyjul() Returns an internal format from month, day,
and year

rtoday() Returns a system date in internal format

Any other operations, modifications, or comparisons can produce unpredictable
results.

Related concepts:

[“Date binary representation” on page 4-1|

Date-time or interval data

4-4

The DataBlade API provides support for date-time or interval data in both text and
binary representations.

The DataBlade API provides support for the following fixed-point data, which
correspond to existing SQL data types.

Type of fixed-point value

SQL data type

Date and time, date, or time

DATETIME

Year and month interval or day and time interval INTERVAL

IBM Informix DataBlade API Programmer’s Guide

Date-time data is an instant in time that is expressed as a calendar date and time
of day, just a calendar date, or just a time of day. A date-time value can also have a
precision and a scale. The precision is the number of digits required to store the
value. The scale is the end qualifier of the date-time value, such as YEAR TO
HOUR.

Interval data is a span of time that is expressed as the number of units in either of
the following interval classes:

Year-month intervals
A year-month interval value specifies the number of years and months,
years, or months that have passed.

Day-time intervals
A day-time interval value specifies the number of days and hours, days, or
hours that have passed.

Date-time or interval text representation

The text representation of a date-time or interval value is a quoted string that
contains a series of digits and symbols.

The DataBlade API supports a text representation for date-time or interval values
as quoted strings with the formats that the following table shows.

Table 4-4. Text representation for date-time or interval values

SQL data type Text representation
DATETIME Date-time string:

The date-time string must match the
qualifier of the DATETIME column. The
default format of the date-time string for the
largest DATETIME column is:

"yyyy-mm-dd HH:MM:SS .FFFF"
INTERVAL Interval string:

The interval string must match the qualifiers
of the INTERVAL column. INTERVAL
columns have two classes. The default
format of an interval string for the largest
year-month interval follows:

Ilyyyy_mmll
The default format of an interval string for

the largest day-time interval follows:
"dd HH:SS.FFFF"

The text representations in the preceding table use the following abbreviations:

yyyy The 4-digit year (for a DATETIME) or the number of years (for an
INTERVAL).

mm The 2-digit month (for a DATETIME) or the number of months (for an
INTERVAL).

dd The 2-digit day of the month (for a DATETIME) or the number of days (for
an INTERVAL).

Chapter 4. Date and time data types ~ 4-5

4-6

HH The 2-digit hour (for a DATETIME) or the number of hours (for an

INTERVAL).

MM The 2-digit minute (for a DATETIME) or the number of minutes (for an
INTERVAL).

5SS The 2-digit second (for a DATETIME) or the number of seconds (for an
INTERVAL).

FFFF A fraction of a second (for a DATETIME) or the number of years (for an
INTERVAL). Fractions can ran 1 - 5 digits.

A date-time value in its text representation is often called a date-time string. For
example, the following date-time string contains the value for 2 p.m. on July 12,
1999, with a qualifier of year to minute:

"1999-07-12 14:00:00"

Usually, a date-time string must match the qualifier of the date-time binary
representation with which the string is associated.

The following interval string indicates a passage of three years and three months:
I|03_06II

A locale defines the end-user format of a date or time or interval value. The
end-user format is the format in which data appears in a client application when
the data is a literal string or character variable. The preceding strings are the
end-user formats for the default locale, US English. A nondefault locale can define
date or time end-user formats that are particular to a country or culture outside the
US. You can also customize the end-user format of a date with the GL_DATETIME
environment variable. For more information, see the IBM Informix GLS User’s
Guide.

Date-time or interval binary representation

The DataBlade API supports SQL data types that can hold information about
date-time or interval values.

Table 4-5. DataBlade API and SQL date and time data types

DataBlade API date and time data type SQL date and time data type
mi_datetime DATETIME
mi_interval INTERVAL

The DATETIME data type

The SQL DATETIME data type provides the internal (binary) format of a date-time
value. This data type stores an instant in time expressed as a calendar date and
time of day, a calendar date, or a time of day. You choose how precisely a
DATETIME value is stored with a qualifier. The precision can range from a year to
a fraction of a second.

Tip: The internal format of the DATETIME data type is often referred to as its
binary representation.

The DATETIME data type uses a computer-independent method to encode the
date or time qualifiers. It stores the information in the dtime_t structure, as
follows:

IBM Informix DataBlade API Programmer’s Guide

typedef struct dtime {
short dt_qual;
dec_t dt_dec;

} dtime_t;

The dtime structure and dtime_t typedef have two parts:

dt_qual
The qualifier of the datetime value

dt_dec The digits of the fields of the datetime value

This field is a decimal value.

The DataBlade API supports the SQL DATETIME data type with the mi_datetime
data type. Therefore, the mi_datetime data type holds the binary representation of
a date and/or time value.

Values of the mi_datetime data type cannot fit into an MI_DATUM structure.
They must be passed by reference within C UDRs.

All data types, including mi_datetime, must be passed by reference within client
LIBMI applications.

Because the binary representation of a DATETIME (mi_datetime) value is a
proprietary format of IBM Informix, you cannot use standard system functions to
perform operations on mi_datetime values. Instead, the DataBlade API provides
the following support for the DATETIME data type.

e Conversion functions
* Arithmetic-operation functions
Related reference:

[‘Conversion of date-time or interval representations” on page 4-12|

[“Operations on date and time data” on page 4-14|

[[DATETIME data type (Guide to SQL: Reference)

The INTERVAL data type

The SQL INTERVAL data type holds the internal (binary) format of an interval
value. It encodes a value that represents a span of time. INTERVAL types are
divided into two classes: year-month intervals and day-time intervals. A year-month
interval can represent a span of years and months, and a day-time interval can
represent a span of days, hours, minutes, seconds, and fractions of a second.

Tip: The internal format of the INTERVAL data type is often referred to as its
binary representation.

The INTERVAL data type uses a computer-independent method to encode the
interval qualifiers. It stores the information in the intrvl_t structure, as follows:
typedef struct intrvl {

short in_qual;

dec_t in_dec;
}ointrvl_t;

The intrvl structure and intrvl_t typedef have the two parts that the following
table shows.
in_qual

The qualifier of the interval value

Chapter 4. Date and time data types 4-7

http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_110.htm#ids_sqr_110

4-8

in_dec The digits of the fields of the interval value

This field is a decimal value.

The DataBlade API supports the SQL INTERVAL data type with the mi_interval
data type. Therefore, an mi_interval data type holds the binary representation of
an interval value.

Values of the mi_interval data type cannot fit into an MI_DATUM structure. They
must be passed by reference within C UDRs.

All data types, including mi_interval, must be passed by reference within client
LIBMI applications.

Because the binary representation of an INTERVAL (mi_interval) value is a
proprietary format of IBM Informix, you cannot use standard system functions to
perform operations on mi_interval values. Instead, the DataBlade API provides the
following support for the INTERVAL data type.

e Conversion functions
* Arithmetic-operation functions
Related reference:

[“Conversion of date-time or interval representations” on page 4-12|

[“Operations on date and time data” on page 4-14]

[+ [[NTERVAL data type (Guide to SQL: Reference)

The datetime.h header file

The datetime.h header file contains definitions for use with the DATETIME and
INTERVAL data types.

The header file datetime.h contains the declarations for the date, time, and interval
data types, as follows:

* The internal format represents DATETIME and mi_datetime values with the
dtime_t structure.

* The internal format represents INTERVAL and mi_interval values with the
intrvl_t structure.

In addition to these data structures, the datetime.h file defines the constants and
macros for date and time qualifiers that the following table shows.

Table 4-6. Qualifier macros and constants for mi_datetime and mi_interval data types

Name of macro Description

TU_YEAR The time unit for the YEAR qualifier field

TU_MONTH The time unit for the MONTH qualifier field

TU_DAY The time unit for the DAY qualifier field

TU_HOUR The time unit for the HOUR qualifier field

TU_MINUTE The time unit for the MINUTE qualifier field

TU_SECOND The time unit for the SECOND qualifier field

TU_FRAC The time unit for the leading qualifier field of FRACTION

TU_Fn The names for mi_datetime ending fields of FRACTION(n), for n
from1-5

IBM Informix DataBlade API Programmer’s Guide

http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_123.htm#ids_sqr_123

Table 4-6. Qualifier macros and constants for mi_datetime and mi_interval data
types (continued)

Name of macro Description

TU_START(g) Returns the leading field number from qualifier g

TU_END(g) Returns the trailing field number from qualifier g

TU_LEN(g) Returns the length in digits of the qualifier g

TU_FLEN(f) Returns the length in digits of the first field, f, of an interval
qualifier

TU_ENCODE(p f,t) Creates a qualifier from the first field number f with precision p

and trailing field number ¢

TU_DTENCODE(f,t) Creates an mi_datetime qualifier from the first field number f and
trailing field number ¢

TU_IENCODE(p,ft) Creates an mi_interval qualifier from the first field number f with
precision p and trailing field number ¢

Tip: For a complete list of date and time macros, consult the datetime.h header
file that is installed with your database server. This header file is in the
inc1/public subdirectory of the INFORMIXDIR directory.

[Table 4-6 on page 4-8 shows the macro definitions that you can use to compose
qualifier values. You need these macros only when you work directly with
qualifiers in binary form. For example, if your program does not provide an
mi_interval qualifier in the variable declaration, you need to use the mi_interval
qualifier macros to initialize and set the mi_interval variable, as the following
example shows:

/* Use the variable that was declared intvll. x/
mi_interval intvll;

/* Set the interval qualifier for the variable */
intvl11l.in_qual = TU_IENCODE(2, TU DAY, TU SECOND);

/* Assign a value to the variable */
incvasc ("5 2:10:02", &intv1l);

In the previous example, the mi_interval variable gets a day to second qualifier.
The precision of the largest field in the qualifier, day, is set to 2.

In addition to the declaration of the dtime_t typedef and the preceding date and
time macros, the datetime.h header file declares the DATETIME-type functions of
the IBM Informix ESQL/C library. The mitypes.h header file automatically
includes datetime.h. In turn, the milib.h header file automatically includes
mitypes.h and mi.h automatically includes milib.h. Therefore, you automatically
have access to the dtime_t and intrvl_t structures, the mi_datetime and
mi_interval data types, any of the date or time macros, or any of the Informix
ESQL/C DATETIME-type functions when you include mi.h in your DataBlade API
module.

Related reference:
[“ESQL/C header files” on page 1-6|

Retrieval and insertion of DATETIME and INTERVAL values

When an application retrieves or inserts a DATETIME or INTERVAL value, the
DataBlade API module must ensure that the qualifier field of the variable is valid.

Chapter 4. Date and time data types 4-9

4-10

When an application fetches a DATETIME value into an mi_datetime variable or
inserts a DATETIME value from an mi_datetime variable, the application must
ensure that the dt_qual field of the dtime_t structure is valid.

When an application fetches an INTERVAL value into an mi_interval variable or
inserts an INTERVAL value from an mi_interval variable, the application must
ensure that the in_qual field of the intrvl_t structure is valid.

Fetch or Insert into an mi_datetime variable

When a DataBlade API module uses an mi_datetime variable to fetch or insert a
DATETIME value, the module must find a valid qualifier in the mi_datetime
variable.

The DataBlade API takes one of the following actions, based on the value of the
dt_qual field in the dtime_t structure that is associated with the variable:

* When the dt_qual field contains a valid qualifier, the DataBlade API extends the
column value to match the dt_qual qualifier.

Extending is the operation of adding or dropping fields of a DATETIME value to
make it match a given qualifier. You can explicitly extend DATETIME values
with the SQL EXTEND function and the dtextend() function.

* When the dt_qual field does not contain a valid qualifier, the DataBlade API
takes different actions for a fetch and an insert:

— For a fetch, the DataBlade API uses the DATETIME column value and its
qualifier to initialize the mi_datetime variable.

Zero is an invalid qualifier. Therefore, if you set the dt_qual field to zero, you
can ensure that the DataBlade API uses the qualifier of the DATETIME
column.

— For an insert, the DataBlade API cannot perform the insert or update
operation.

The DataBlade API sets the SQLSTATE status variable to an error-class code
(and SQLCODE to a negative value) and the update or insert operation on
the DATETIME column fails.

Fetch or insert into an mi_interval variable

When a DataBlade API module uses an mi_interval variable to fetch or insert an
INTERVAL value, the DataBlade API must find a valid qualifier in the mi_interval
variable.

The DataBlade API takes one of the following actions, based on the value of the
in_qual field the intrvl_t structure that is associated with the variable:

* When the in_qual field contains a valid qualifier, the DataBlade API checks it for
compatibility with the qualifier from the INTERVAL column value.

The two qualifiers are compatible if they belong to the same interval class: either
year to month or day to fraction. If the qualifiers are incompatible, the
DataBlade API sets the SQLSTATE status variable to an error-class code (and
SQLCODE is set to a negative value) and the select, update, or insert operation
fails.

If the qualifiers are compatible but not the same, the DataBlade API extends the
column value to match the in_qual qualifier. Extending is the operation of
adding or dropping fields within one of the interval classes of an INTERVAL
value to make it match a given qualifier. You can explicitly extend INTERVAL
values with the invextend() function.

IBM Informix DataBlade API Programmer’s Guide

* When the in_qual field does not contain a valid qualifier, the DataBlade API
takes different actions for a fetch and an insert:

— For a fetch, if the in_qual field contains zero or is not a valid qualifier, the
DataBlade API uses the INTERVAL column value and its qualifier to initialize
the mi_interval variable.

— For an insert, if the in_qual field is not compatible with the INTERVAL
column or if it does not contain a valid value, the DataBlade API cannot
perform the insert or update operation.

The DataBlade API sets the SQLSTATE status variable to an error-class code
(and SQLCODE is set to a negative value) and the update or insert operation
on the INTERVAL column fails.

Implicit data conversion

You can select a DATETIME or INTERVAL column value into a character variable.
The DataBlade API converts the DATETIME or INTERVAL column value to a
character string before it stores it in the character variable. This character string
conforms to the ANSI SQL standards for DATETIME and INTERVAL values.

Important: IBM Informix products do not support automatic data conversion from
DATETIME and INTERVAL column values to numeric (mi_double_precision,
mi_integer, and so on) variables.

You can also insert a DATETIME or INTERVAL column value from a character
variable. The DataBlade API uses the data type and qualifiers of the column value
to convert the character value to a DATETIME or INTERVAL value. It expects the
character string to contain a DATETIME or INTERVAL value that conforms to
ANSI SQL standards.

If the conversion fails, the DataBlade API sets the SQLSTATE status variable to an
error-class code (and SQLCODE status variable to a negative value) and the
update or insert operation fails.

Important: IBM Informix products do not support automatic data conversion from
numeric and mi_date variables to DATETIME and INTERVAL column values.

Transfers of date-time or interval data (Server)

For date-time or interval values to be portable when transferred across different
computer architectures, the DataBlade API provides functions to handle type
alignment and byte order.

Table 4-7. DataBlade API functions that handle type alignment and byte order

DataBlade API function Description

mi_get_datetime() Copies an aligned mi_datetime value,
converting any difference in alignment or
byte order on the client computer to that of
the server computer

mi_get_interval() Copies an aligned mi_interval value,
converting any difference in alignment or
byte order on the client computer to that of
the server computer

mi_put_datetime() Copies an aligned mi_datetime value,
converting any difference in alignment or
byte order on the server computer to that of
the client computer

Chapter 4. Date and time data types ~ 4-11

Table 4-7. DataBlade API functions that handle type alignment and byte order (continued)

DataBlade API function Description

mi_put_interval() Copies an aligned mi_interval value,
converting any difference in alignment or
byte order on the server computer to that of
the client computer

The mi_get_datetime(), mi_get_interval(), mi_put_datetime(), and
mi_put_interval() functions are useful in the send and receive support function of
an opaque data type that contains mi_datetime or mi_interval values. They allow
you to ensure that DATETIME or INTERVAL values remained aligned when
transferred to and from client applications.

Related reference:

[‘Conversion of opaque-type data with computer-specific data types” on page 16-22|

Conversion of date-time or interval representations

Both the DataBlade API library and the IBM Informix ESQL/C library provide
functions that convert from the text (string) representation of a date, time, or
interval value to the binary (internal) representation for DATETIME or INTERVAL.

Related concepts:
“The DATETIME data type” on page 4-6|
“The INTERVAL data type” on page 4-7|

DataBlade API functions for date-time or interval conversion
The DataBlade API provides functions for conversion between text and binary
representations of date-time or interval data.

Table 4-8. DataBlade API functions for date-time or interval conversion

DataBlade API function Convert from Convert to

mi_datetime_to_string() DATETIME Date-time string
(mi_datetime)

mi_interval_to_string() INTERVAL Interval string
(mi_interval)

mi_string_to_datetime() Date-time string DATETIME (mi_datetime)

mi_string_to_interval() Interval string INTERVAL (mi_interval)

The mi_datetime_to_string(), mi_interval_to_string(), mi_string_to_datetime(),
and mi_string to_interval() functions convert DATETIME and INTERVAL values
to and from the ANSI SQL standards formats for these data types.

Server only: The mi_datetime_to_string(), mi_interval_to_string(),

mi_string to_datetime(), and mi_string to_interval() functions are useful in the
input and output support functions of an opaque data type that contains
mi_datetime and mi_interval values, as long as these values use the ANSI SQL
formats. They enable you to convert DATETIME and INTERVAL values between
their external format (text) and their internal (binary) format when transferred to
and from client applications.

4-12 IBM Informix DataBlade API Programmer’s Guide

Related reference:

“Conversion of opaque-type data between text and binary representations” on|

page 16-16|

ESQL/C functions for date, time, and interval conversion
The IBM Informix ESQL/C function library provides functions for conversion
between text and binary representations of date, time, and interval data.

Data conversion for DATETIME values:

The IBM Informix ESQL/C library provides functions that convert internal
DATETIME (mi_datetime) values to and from char strings.

Table 4-9. Informix ESQL/C functions for data conversion for DATETIME values

Function name Description

dtcvasc() Converts an ANSI-compliant character string
to an mi_datetime value

dtcvfmtasc() Converts a character string to an
mi_datetime value

dtextend() Changes the qualifier of an mi_datetime
value

dttoasc() Converts an mi_datetime value to an

ANSI-compliant character string

dttofmtasc() Converts an mi_datetime value to a
character string

The dttoasc() and dtcvasc() functions convert mi_datetime values to and from the
ANSI SQL standard values for DATETIME strings. The ANSI SQL standards
specify qualifiers and formats for character representations of DATETIME and
INTERVAL values. The standard qualifier for a DATETIME value is YEAR TO
SECOND, and the standard format is as follows:

YYYY-MM-DD HH:MM:SS

The dttofmtasc() and dtcvfmtasc() functions convert mi_datetime values to and
from a date-time string using a time-formatting mask. This time-formatting mask
contains the same formatting directives that the DBTIME environment variable
supports.

The dtextend() function extends an mi_datetime value to a different qualifier. You
can use it to convert between DATETIME and DATE values.

Related reference:

(& [DBTIME environment variable (Guide to SQL: Reference)|

Converting a DATETIME value to a DATE value:
To convert a DATETIME value to a DATE value:

1. Use dtextend() to adjust the DATETIME qualifier to year to day.
2. Apply dttoasc() to create a character string in the form yyyy-mm-dd.

3. Use rdefmtdate() with a pattern argument of yyyy-mm-dd to convert the string
to a DATE value.

Converting a DATE value into a DATETIME value:
To convert a DATE value into a DATETIME value:

Chapter 4. Date and time data types 4-13

http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_230.htm#ids_sqr_230

1. Declare a variable with a qualifier of year to day (or initialize the qualifier with
the value that the TU_DTENCODE (TU_YEAR,TU_DAY) macro returns).

2. Use rfmtdate() with a pattern of yyyy-mm-dd to convert the DATE value to a
character string.

3. Use dtcvasc() to convert the character string to a value in the prepared
DATETIME variable.

4. If necessary, use dtextend() to adjust the DATETIME qualifier.

Data conversion for INTERVAL values:

The IBM Informix ESQL/C library provides functions that convert internal
INTERVAL (mi_interval) values to and from char text.

Table 4-10. Informix ESQL/C functions for data conversion for INTERVAL values

Function name Description

incvasc() Converts an ANSI-compliant character string
to an interval value

incvfmtasc() Converts a character string to an interval
value

intoasc() Converts an interval value to an

ANSI-compliant character string

intofmtasc() Converts an interval value to a string
invextend() Copies an interval value under a different
qualifier

The intoasc() and incvasc() functions convert mi_interval values to and from the
ANSI SQL standards for INTERVAL strings. The ANSI SQL standards specify
qualifiers and formats for character representations of DATETIME and INTERVAL
values. The standards for an INTERVAL value specify the following two classes of
intervals:
* The YEAR TO MONTH class has the following format: YYYY-MM

A subset of this format is also valid: for example, just a month interval.
* The DAY TO FRACTION class has the following format: DD HH:MM:SS.F

Any subset of contiguous fields is also valid: for example, MINUTE TO
FRACTION.

The intofmtasc() and incvfmtasc() functions convert mi_interval values to and
from an interval string using a time-formatting mask. This time-formatting mask
contains the same formatting directives that the DBTIME environment variable
supports.

Related reference:

(& [DBTIME environment variable (Guide to SQL: Reference)|

Operations on date and time data

You can use IBM Informix ESQL/C and DataBlade API functions to perform
operations on date and time data.

The IBM Informix ESQL/C library provides functions to perform operations on
DATETIME (mi_datetime) and INTERVAL (mi_interval) values.

4-14 IBM Informix DataBlade API Programmer’s Guide

http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_230.htm#ids_sqr_230

Table 4-11. Informix ESQL/C function that perform operations on date and time data

Function name Description

dtaddinv() Adds an mi_interval value to a mi_datetime
value

dtcurrent() Gets current date and time

dtsub() Subtracts one mi_datetime value from
another

dtsubinv() Subtracts an mi_interval value from a

mi_datetime value

invdivdbl() Divides an mi_interval value by a numeric
value

invdivinv() Divides an mi_interval value by an
mi_interval value

invmuldbl() Multiplies an mi_interval value by a numeric
value

Any other operations, modifications, or analyses can produce unpredictable results.
Related concepts:

“The DATETIME data type” on page 4-6|

“The INTERVAL data type” on page 4-7|

Related reference:

[|The mi_datetime_compare() function (DataBlade API Function Reference)|

[|The mi_interval_compare() function (DataBlade API Function Reference)l

Functions to obtain information on date and time data

The following table shows the DataBlade API functions that obtain qualifier
information for a DATETIME (mi_datetime) or INTERVAL (mi_interval) value.

Table 4-12. DataBlade API functions that obtain DATETIME or INTERVAL information
Source DataBlade API functions

For a data type mi_type_qualifier(),
mi_type_precision(), mi_type_scale()

For a UDR argument mi_fp_argprec(), mi_fp_setargprec(),
mi_fp_argscale(),
mi_fp_setargscale()

For a UDR return value mi_fp_retprec(), mi_fp_setretprec(),
mi_fp_retscale(), mi_fp_setretscale()

For a column in a row (or field in a row type) mi_column_precision(),
mi_column_scale()

For an input parameter in a prepared statement mi_parameter_precision(),
mi_parameter_scale()

Suppose you have a table with a single column, dt_col, of type DATETIME YEAR
TO SECOND. If row_desc is a row descriptor for a row in this table, the following
code fragment obtains the name, qualifier, precision, and scale for this column
value.

Chapter 4. Date and time data types 4-15

http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.dapif.doc/ids_dapif_553.htm#ids_dapif_553
http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.dapif.doc/ids_dapif_554.htm#ids_dapif_554

4-16

MI_TYPE_DESC *col_type_desc;
MI_ROW_DESC *row_desc;
mi_string *type_name;
mi_integer type _qual;

col_type_desc = mi_column_typedesc(row_desc, 0);

type _name = mi_type_typename(col_type desc);
type_qual = mi_type_qualifier(col_type_desc);
type_prec = mi_type precision(col_type desc);

type_scale = mi_type_scale(col_type_desc);
sprintf(type_buf,
"column=%d: type name=%s, qualifier=%d precision=%d \
scale=%d\n",
i, type_name, type_qual, type prec, type scale);

Figure 4-1. Obtaining type information for a DATETIME value

In the preceding code fragment, the value in the type_buf buffer would be as
follows:

column=0, type name=datetime year to second, qualifier=3594 precision=14 scale=10

Qualifier of a date-time or interval data type

The mi_type_qualifier() function returns the encoded qualifier of a DATETIME or
INTERVAL data type from a type descriptor. This qualifier is the internal value
that the database server uses to track the complete qualifier range, from the
starting field to the end field. It is the value stored in the collength column of the
syscolumns table for DATETIME and INTERVAL columns.

You can use the qualifier macros and constants (see [Table 4-6 on page 4-8) to
interpret this encoded value.

In the value in type_qual contains the encoded integer qualifier (3594)
for the dt_col column. You can obtain the starting qualifier for the DATETIME

value from the encoded qualifier with the TU_START macro, as follows:
TU_START(type_qual)

This TU_START call yields 0, which is the value of the TU_YEAR constant in the
datetime.h header file. You can obtain also the ending qualifier for the DATETIME
value from the encoded qualifier with the TU_END macro, as follows:

TU_END(type_qual)

This TU_END call yields 10, which is the value of the TU_SECOND constant in the
datetime.h header file. Therefore, the encoded qualifier 3594 represents the
qualifier year to second.

Precision of a date-time or interval data type
For the DATETIME and INTERVAL data types, the precision is the number of
digits required to store a value with the specified qualifier.

In the call to the mi_type_precision() function saves in type_prec the
precision for the dt_col column from its type descriptor. This precision has a value

of 14 because a DATETIME YEAR TO SECOND value requires 14 digits:
YYYYMMDDHHMMSS

YYYY The 4-digit year.
MM The 2-digit month.
DD The 2-digit day of the month.

IBM Informix DataBlade API Programmer’s Guide

HH The 2-digit hour.
MM The 2-digit minute.
SS The 2-digit second.

The DataBlade API also provides functions that obtain DATETIME or INTERVAL
precision of a column associated with an input parameter, a UDR argument, UDR
return value, or a row column. For a list of these functions, see |Table 4-12 on pagel

Scale of a date-time or interval data type
For the DATETIME and INTERVAL data types, the scale is the encoded integer
value for the end qualifier

In[Figure 4-1 on page 4-16| the call to the mi_type_scale() function stores in
type_scale the scale for the dt_col column. This precision has a value of 10 because
the end qualifier for the DATETIME YEAR TO SECOND data type is SECOND,
whose encoded value (TU_SECOND) is 10.

The DataBlade API also provides functions that obtain DATETIME or INTERVAL
scale of an input parameter, a UDR argument, UDR return value, or column. For a
list of these functions, see [Table 4-12 on page 4-15|

Chapter 4. Date and time data types 4-17

4-18 IBM Informix DataBlade API Programmer’s Guide

Chapter 5. Complex data types

This section describes the complex data types and the functions that the DataBlade
API supports to process collection and row-type data.

The DataBlade API provides support for the following complex data types.

Complex data type DataBlade API data type

Collection data types: MI_COLLECTION, MI_COLL_DESC
e LIST

* MULTISET

e SET

Row types: MI_ROW, MI_ROW_DESC
* Named

e Unnamed

Collections

A collection is a complex data type that is made up of elements, each of which has
the same data type. A collection is similar to an array in the C language. The
DataBlade API provides support for collections in both their text and binary
representations.

Related reference:

[“A collection in binary representation” on page 8-54|

Collection text representation

The DataBlade API supports a collection in text representation as a quoted string
with the following format:

"coll_typef{elmnt_value, elmnt_value, ...}"

coll_type
The type of the collection: SET, MULTISET, or LIST.

elmnt_value
The text representation of the element value.

A collection in its text representation is often called a collection string. For
example, the following collection string provides the text representation for a SET
of integer values:

"SET{1, 6, 8, 3}"

Related reference:

[[Literal Collection (Guide to SQL: Syntax)|

[“A collection in text representation” on page 8-53|

Collection binary representation

The database server supports the following collections data types.

LIST An ordered group of elements that can contain duplicate elements

© Copyright IBM Corp. 1996, 2012 5-1

http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqls.doc/ids_sqs_1597.htm#ids_sqs_1597

5-2

MULTISET
An unordered group of elements that can contain duplicate elements

SET An unordered group of elements that cannot contain duplicate elements
All collection data types use the same internal format to store their values.

Tip: The internal format of a collection data type is often referred to as its binary
representation.

The DataBlade API supports the following SQL collection data types and data type
structures:

* A collection structure (MI_COLLECTION) holds the binary representation of the
collection.

* A collection descriptor (MI_COLL_DESC) provides information about the
collection.

Related concepts:

[+ [Collection Data Types (Guide to SQL: Reference)

A collection structure

A collection structure, MI_COLLECTION, is a DataBlade API structure that holds
the collection (LIST, MULTISET, or SET) and its elements. The following table
summarizes the memory operations for a collection structure.

Memory duration Memory operation Function name

Current memory duration Constructor mi_collection_copy(),
mi_collection_create(),
mi_streamread_collection()

Destructor mi_collection_free()

The following DataBlade API functions return an existing collection structure.

mi_value(), mi_value_by_name()
Returns a collection structure as a column value when the function returns
an MI_COLLECTION_VALUE value status

A collection descriptor
A collection descriptor, MI_COLL_DESC, is a DataBlade API structure that
contains a collection cursor to access elements of a collection.

The following table summarizes the memory operations for a collection descriptor.

Memory duration Memory operation Function name

Current memory duration Constructor mi_collection_opend(),
mi_collection_open_with_options()

Destructor mi_collection_close()

Restriction: To a DataBlade API module, the collection descriptor
(MI_COLL_DESC) is an opaque C data structure. Do not access its internal fields
directly. The internal structure of a collection descriptor might change in future
releases. Therefore, to create portable code, always use the functions that access
collection elements.

IBM Informix DataBlade API Programmer’s Guide

http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_161.htm#ids_sqr_161

Create a Collection

To create a collection, use the mi_collection_create() function. The
mi_collection_create() function is the constructor function for the collection
structure (MI_COLLECTION). The collection structure includes the type of
collection (LIST, MULTISET, or SET) and the element data type.

The following code shows an example of how to use the mi_collection_create()
function to create a list of integers:

/*
* Create a LIST collection with INTEGER elements
*/

MI_CONNECTION =conn;

MI_TYPEID *typeid;

MI_COLLECTION =coll;

typeid = mi_typestring_to_id(conn, "lTist(integer not null)");
if (typeid != NULL)

coll = mi_collection_create(conn, typeid);

Open a collection

After you have a collection structure for a collection, you can open the collection
with one of the following functions:

Table 5-1. DataBlade API functions to open a collection

DataBlade API Function Use
mi_collection_open() Opens a collection in a read/write scroll cursor
mi_collection_open_with_options() Opens a collection in either of the following

open modes:
* Read only
* Nonscrolling

Both of the functions in the preceding table are constructor functions for a
collection descriptor. Use this collection descriptor in calls to DataBlade API
functions that access the collection.

When one of the functions in the preceding table opens a collection, it creates a
collection cursor, which is an area of memory that serves as a holding place for
collection elements. This cursor has an associated cursor position, which points to
one element of the collection cursor. When these functions complete, the cursor
position points to the first element of the collection.

The difference between the mi_collection_open() and
mi_collection_open_with_options() functions is the open mode that they create for
the collection cursor.

Open a collection with mi_collection_open()

When you open a collection with mi_collection_open(), you obtain an update
scroll cursor to hold the collection elements. Therefore, you can perform operations
on a collection opened with mi_collection_open().

Cursor attribute Valid operations

Read /write cursor Insert, delete, update, fetch

Chapter 5. Complex data types ~ 5-3

5-4

Cursor attribute Valid operations

Scroll cursor Fetch forward and backward through the
collection elements

All Fetch operations are valid. (See

The following code fragment shows an example of using the mi_collection_open()
function to create and open a LIST collection with INTEGER elements.

/*

* Create and open a collection

*/

MI_CONNECTION =*conn;

MI_COLL_DESC =*coll_desc;

MI_COLLECTION *colT ptr;

MI_TYPEID *type id;

type_id = mi_typestring_to_id(conn, "Tist(integer not null)");

coll_ptr = mi_collection_create(conn, type id);
coll _desc = mi_collection_open(conn, coll _ptr);

The following figure shows the cursor position after the mi_collection_open() call.

. Collection cursor
Cursor position >

Figure 5-1. Collection cursor after the collection is opened

Open a collection with mi_collection_open_with_options()
When you open a collection with mi_collection_open_with_options(), you can
override the cursor characteristics that mi_collection_open() uses.

The control argument of mi_collection_open_with_options() can create a collection
cursor with any of the cursor characteristics in the following table.

Cursor attribute Control flag Valid operations

Read-only cursor MI_COLL_READONLY Fetch only

Sequential MI_COLL_NOSCROLL Fetch forward only

(nonscrolling) cursor (MI_CURSOR_NEXT) through the

collection elements

Any fetch operation that moves the
cursor position backward in the cursor is
not valid.

Most collections need the capabilities of the read/write scroll cursor that
mi_collection_open() creates. However, the database server can perform a special
optimization for a collection from a collection subquery if you use a read-only
sequential cursor to hold the collection subquery. It can fetch each row of the
subquery on demand. That is, you can fetch the elements one at a time with
mi_collection_fetch(). You can use mi_collection_open() or

IBM Informix DataBlade API Programmer’s Guide

mi_collection_open_with_options() to create some other type of cursor for a
collection subquery. However, if a collection subquery is in some other type of
cursor, the database server fetches all the rows of the subquery and puts them in
the collection cursor.

To create a collection subquery, preface the query with the MULTISET keyword.
For example, the following SQL statement creates a collection subquery of order
numbers for customer 120 and then sends them to the check_orders() user-defined
function (which expects a MULTISET argument):
SELECT check_orders(
MULTISET(SELECT ITEM order_num FROM orders
WHERE customer_num = 120))

FROM customer
WHERE customer_num = 120;

To have the database server perform the collection-subquery optimization, use the
following call to mi_collection_open_with_options() when you open a collection
subquery:
mi_collection_open_with_options(conn, coll ptr,

(MI_COLL_READONLY | MI_COLL _NOSCROLL));

Access the elements of a collection

The DataBlade API provides functions for accessing collection data types.

Table 5-2. DataBlade API functions that access collection data types

DataBlade API collection function Description

mi_collection_copy() Creates a copy of an existing open collection
mi_collection_delete() Deletes an element from a collection
mi_collection_fetch() Fetches an element from a collection
mi_collection_insert() Inserts a new element into an open collection
mi_collection_update() Updates an element in an open collection

Position the cursor
When you open a collection cursor with mi_collection_open(), the cursor position
points to the first element of the collection.

The cursor position identifies the current element in the collection cursor. The
DataBlade API functions that access a collection must specify where in the
collection to perform the operation. To specify location, these functions all have an
action argument of type MI_CURSOR_ACTION, which supports the cursor-action
constants in the following table.

Table 5-3. Valid cursor-action constants

Valid cursor types

Cursor movement Cursor-action constant Sequential Scroll
Move the cursor position one element MI_CURSOR_NEXT Yes Yes
forward within the cursor

Move the cursor position one element MI_CURSOR_PRIOR No Yes
backward within the cursor

Move the cursor position to the MI_CURSOR_FIRST Only if the cursor Yes

beginning of the cursor, at the first
element

position does not
move backward

Chapter 5. Complex data types

5-5

Table 5-3. Valid cursor-action constants (continued)

Valid cursor types

Cursor movement Cursor-action constant Sequential Scroll
Move the cursor position to the end of =~ MI_CURSOR_LAST Yes Yes
the cursor, at the last element

Move the cursor to the absolute position MI_CURSOR_ABSOLUTE Yes Yes

within the cursor, where the first

. . . As long as collection is a LIST because
element in the cursor is at position 1.

only LISTs have ordered elements

Move the cursor forward or back a MI_CURSOR_RELATIVE Only if relative Yes
specified number of elements from the position is a) »
current position. positive value Relative position

can be a negative or
positive value

As long as collection is a LIST because
only LISTs have ordered elements

Leave the cursor position at its current ~ MI_CURSOR_CURRENT Yes Yes
location.

The following code fragment uses the mi_collection_fetch() function to fetch a
VARCHAR element from a collection:

/*
% Fetch next VARCHAR() element from a collection.
*/

MI_CONNECTION =*conn;
MI_COLL_DESC =*colldesc;
MI_ROW_DESC =*rowdesc;
MI_COLLECTION *nest_collp;
MI_DATUM value;

mi_integer ret_code, ret_len;
char xbuf;

/* Fetch a VARCHAR() type */
ret_code = mi_collection_fetch(conn, colldesc,
MI_CURSOR_NEXT, 0, &value, &ret_len);

switch (ret_code)

{

case MI_NORMAL_VALUE:
buf = mi_get_vardata((mi_lvarchar *)value);
DPRINTF("trace_class", 15, ("Value: %s", buf));
break;

case MI_NULL_VALUE:
DPRINTF("trace class", 15, ("NULL"));
break;

case MI_ROW_VALUE:
rowdesc = (MI_ROW_DESC =*)value;
break;
case MI_COLLECTION_VALUE:
nested_collp = (MI_COLLECTION *)value;
break;

case MI_END_OF_DATA:

5-6 IBM Informix DataBlade API Programmer’s Guide

DPRINTF("trace_class", 15,
("End of collection reached"));
return (100);
}

Insert an element

You insert an element into an open collection with the mi_collection_insert()
function. You can perform an insert operation only on a read/write cursor. An
insert is not valid on a read-only cursor.

The mi_collection_insert() function uses an MI_DATUM value to represent an
element that it inserts into a collection. The contents of the MI_DATUM structure
depend on the passing mechanism that the function used, as follows:

* In a C user-defined routine (UDR), when mi_collection_insert() inserts an
element value, it can pass the value by reference or by value, depending on the
data type of the column value. If the function passes the element value by value,
the MI_DATUM structure contains the value. If the function passes the element
value by reference, the MI_DATUM structure contains a pointer to the value.

* In a client LIBMI application, when mi_collection_insert() inserts an element
value, it always passes the value in an MI_DATUM structure by reference. Even
for values that you can pass by value in a C UDR (such as an INTEGER values),
this function passes the element value by reference. The MI_DATUM structure
contains a pointer to the value.

The mi_collection_insert() function inserts the new element at the location in the
collection cursor that its action argument specifies. For a list of valid cursor-action
flags, see [Table 5-3 on page 5-5|

Server only: The following call to mi_collection_insert() can pass in an actual
value because it inserts an INTEGER element into a LIST collection and integer
values are passed by value in a C UDR:

MI_CONNECTION =*conn;
MI_DATUM datum;
MI_COLL_DESC =*colldesc;

datum=6;
mi_collection_insert(conn, colldesc, datum,
MI_CURSOR ABSOLUTE, 1);

datum=3;
mi_collection_insert(conn, colldesc, datum,
MI_CURSOR_ABSOLUTE, 2);

datum=15;
mi_collection_insert(conn, colldesc, datum,
MI_CURSOR_ABSOLUTE, 3);

datum=1;
mi_collection_insert(conn, colldesc, datum,
MI_CURSOR _ABSOLUTE, 4);

datum=4;
mi_collection_insert(conn, colldesc, datum,
MI_CURSOR_ABSOLUTE, 5);

datum=8;

mi_collection_insert(conn, colldesc, datum,
MI_CURSOR_ABSOLUTE, 6);

Chapter 5. Complex data types ~ 5-7

5-8

The following figure shows the cursor position after the preceding calls to
mi_collection_insert() complete.

Collection cursor
6

s (=

Cursor position ———p-

Figure 5-2. Collection cursor after inserts complete

These mi_collection_insert() calls specify absolute addressing
(MI_CURSOR_ABSOLUTE) for the collection because the collection is defined as a
LIST. Only LIST collections have ordered position assigned to their elements. SET
and MULTISET collections do not have ordered position of elements.

Fetch an element
You fetch an element from an open collection with the mi_collection_fetch()
function. You can perform a fetch operation on a read/write or a read-only cursor.

To fetch a collection element, you must specify:
e The connection with which the collection is associated

* The collection descriptor for the collection from which you want to fetch
elements

* The location of the cursor position at which to begin the fetch
* A variable that holds a single fetched element and one that holds its length

Move through a cursor: The mi_collection_fetch() function obtains the element
specified by its action argument from the collection cursor. For a list of valid
cursor-action flags, see [Table 5-3 on page 5-5| You can move the cursor position
back to the beginning of the cursor with the mi_collection_fetch() function, as the
following example shows:

mi_collection_fetch(conn, coll_desc, MI_CURSOR _FIRST, 0,
coll_element, element_len);

if (((mi_integer)coll_element != 1) ||
(element_len != sizeof(mi_integer)))
/* raise an error */

This function moves the cursor i osition backward with respect to its position after

a call to mi_collection_insert() (Figure 5-2). The mi_collection_fetch() function is
valid only for the following cursors:

* Sequential collection cursors, if the cursor position does not move backward
* Scroll collection cursors

Only scroll cursors provide the ability to move the cursor position forward and
backward.

The following figure shows the cursor position and coll_element value after the
preceding call to mi_collection_fetch().

IBM Informix DataBlade API Programmer’s Guide

Collection cursor
Cursor position ————p| 6

Figure 5-3. Collection cursor after fetch first

coll_element

[6]

The following figure shows the cursor position and value of coll_element after the

following mi_collection_fetch() call:

mi_collection_fetch(conn, coll_desc, MI_CURSOR NEXT, 0O,

coll_element, element_len);

Collection cursor

Cursor position ——| 3

Figure 5-4. Collection cursor after fetch next

coll_element

The following figure shows the cursor position and value of coll_element after the

following mi_collection_fetch() call:

mi_collection_fetch(conn, coll_desc, MI_CURSOR RELATIVE, 3,

coll _element, element Ten);

Collection cursor

1
Cursor position ————- 4
8

coll_element

Figure 5-5. Collection Cursor After Fetch Relative 3

The preceding mi_collection_fetch() call is valid only if the collection is a LIST.
Only LIST collections are ordered. Therefore relative fetches, which specify the

number of elements to move forward or backward, can only be used on LIST
collections. If you try to perform a relative fetch on a SET or MULTISET,
mi_collection_fetch() generates an error.

The following figure shows the cursor position and value of coll_element after the

following mi_collection_fetch() call:

mi_collection_fetch(conn, coll_desc, MI_CURSOR_RELATIVE, -2,

coll_element, element len);

Chapter 5. Complex data types

5-9

Collection cursor coll_element

6
Cursor position ———» 15

1

4

8

Figure 5-6. Collection cursor after fetch relative -2

Because the preceding mi_collection_fetch() call moves the cursor position
backward, the call is valid only if the collection cursor is a scroll cursor. When you
open a collection with mi_collection_open(), you get a read/write scroll collection
cursor. However, if you open the collection with
mi_collection_open_with_options() and the MI_COLL_NOSCROLL option,
mi_collection_fetch() generates an error.

The following figure shows the cursor position and value of coll_element after the
following mi_collection_fetch() call:

mi_collection_fetch(conn, coll_desc, MI_CURSOR_ABSOLUTE, 6,
coll _element, element len);

Collection cursor coll_element
G
3
15
1
4
Cursor position ——p-| 8

Figure 5-7. Collection cursor after fetch absolute 6

The preceding mi_collection_fetch() call is valid only if the collection is a LIST.
Because absolute fetches specify a position within the collection by number, they
can only be used on an ordered collection (a LIST). If you try to perform an
absolute fetch on a SET or MULTISET, mi_collection_fetch() generates an error.

Because only six elements are in this collection, the absolute fetch of 6 positions the
cursor on the last element in the collection. This result is the same as if you had
issued the following mi_collection_fetch():

mi_collection_fetch(conn, coll _desc, MI_CURSOR LAST, 0,
coll_element, element_len);

The fetch last is useful when you do not know the number of elements in a
collection and want to obtain the last one.

Obtain the element value: The mi_collection_fetch() function uses an
MI_DATUM value to represent an element that it fetches from a collection. You
must pass in a pointer to the value buffer in which mi_collection_fetch() puts the
element value. However, you do not have to allocate memory for this buffer. The
mi_collection_fetch() function handles memory allocation for the MI_DATUM
value that it passes back.

The contents of the MI_DATUM structure that holds the retrieved element
depends on the passing mechanism that the function used, as follows:

5-10 IBM Informix DataBlade API Programmer’s Guide

* In a C UDR, when mi_collection_fetch() passes back an element value, it passes
back the value by reference or by value, depending on the data type of the
column value. If the function passes back the element value by value, the
MI_DATUM structure contains the value. If the function passes back the
element value by reference, the MI_DATUM structure contains a pointer to the
value.

* In a client LIBMI application, when mi_collection_fetch() passes back an
element value, it always passes back the value by reference. Even for values that
you can pass by value in a C UDR (such as an INTEGER value), this function
passes back the element value by reference. The MI_DATUM structure contains
a pointer to the value.

Important: The difference in behavior of mi_collection_fetch() between C UDRs
and client LIBMI applications means that collection-retrieval code is not completely
portable between these two types of DataBlade API modules. When you move
your DataBlade API code from one of these uses to another, you must change the
collection-retrieval code to use the appropriate passing mechanism for element
values that mi_collection_fetch() returns.

You declare a value buffer for the fetched element and pass in the address of this
buffer to mi_collection_fetch(). You can declare the buffer in either of the
following ways:
* If you know the data type of the field value, declare the value buffer of this data
type.
Declare the value buffer as a pointer to the field data type, regardless of whether
the data type is passed by reference or by value.

 If you do not know the data type of the field value, declare the value buffer to
have the MI_DATUM data type.

Your code can dynamically determine the field type with the
mi_column_type_id() or mi_column_typedesc() function. You can then convert
(or cast) the MI_DATUM value to a data type that you need.

[Figure 5-3 on page 5-9| through [Figure 5-7 on page 5-10| fetch elements from a LIST
collection of INTEGER values. To fetch elements from this LIST, you can declare
the value buffer as follows:

mi_integer *coll_element;
Server only:

Because you can pass INTEGER values by value in a C UDR, you access the
MI_DATUM structure that these calls to mi_collection_fetch() pass back as the
actual value, as follows:

int_element = (mi_integer)coll_element;

If the element type is a data type that must be passed by reference, the contents of
the MI_DATUM structure that mi_collection_fetch() passes back is a pointer to
the actual value. The following call to mi_collection_fetch() also passes in the
value buffer as a pointer. However, it passes back an MI_DATUM value that
contains a pointer to a FLOAT (mi_double_precision) value:

mi_double_precision *coll_element, f1t_element;
/* Fetch a FLOAT value in a C UDR =*/
mi_collection_fetch(conn, coll_desc, action, jump,

&coll_element, &retlen);
f1t_element = *coll_element;

Chapter 5. Complex data types ~ 5-11

Client only:

For the fetches in [Figure 5-3 on page 5-9| through [Figure 5-7 on page 5-10} a client
LIBMI application declares the value buffer in the same way as a C UDR.
However, because all data types are passed back by reference, the MI_DATUM
structure that mi_collection_fetch() passes back contains a pointer to the INTEGER
value, not the actual value itself:

mi_integer *coll_element, int_element;

/* Fetch an INTEGER value in a client LIBMI application */

mi_collection_fetch(conn, coll_desc, action, jump,
&coll_element, &retlen);

int_element = *coll_element;

Update a collection

You update an element in an open collection with the mi_collection_update()
function. You can perform an update operation only on a read/write cursor. An
update is not valid on a read-only cursor.

The mi_collection_update() function uses an MI_DATUM value to represent the
new value for the element it updates in a collection. The contents of this
MI_DATUM structure depend on the passing mechanism that the function used,
as follows:

* In a C UDR, when mi_collection_update() updates an element value, it can pass
the value by reference or by value, depending on the data type of the column
value. If the function passes back the element value by value, the MI_DATUM
structure contains the value. If the function passes back the element value by
reference, the MI_DATUM structure contains a pointer to the value.

* In a client LIBMI application, when mi_collection_update() updates an element
value, it always passes the value by reference. Even for values that you can pass
by value in a C UDR (such as an INTEGER value), these functions return the
column value by reference. The MI_DATUM structure contains a pointer to the
value.

The mi_collection_update() function updates the element at the location in the
collection cursor that its action argument specifies. For a list of valid cursor-action
flags, see [Table 5-3 on page 5-5|

Server only: The following code shows an example of using the
mi_collection_update() function to update the first element in a collection:

/*
* Update position 1 in the collection to contain 3.0
* Note that single-precision value is passed by REFERENCE.
*
/
MI_CONNECTION =*conn;
MI_COLL_DESC *colldesc;
MI_DATUM val;
mi_integer ret, jump;
mi_real value;

/* Update 1st element to 3.0 */
value = 3.0;
val = (MI_DATUM)&value;
Jump = 1
DPRINTF("trc_class", 11,
("Update set value %d @%d", value, jump));

/* Pass single-precision values by reference */
ret = mi_collection_update(conn, colldesc, val,

5-12 IBM Informix DataBlade API Programmer’s Guide

MI_CURSOR_ABSOLUTE, jump);

if (ret != MI_OK)
{
DPRINTF("trc_class", 11,
("Update @%d value %d MI_CURSOR ABSOLUTE\
failed", jump, value));

}

Delete an element
You delete an element from an open collection with the mi_collection_delete()

function. You can perform a delete operation only on a read/write cursor. A delete
is not valid on a read-only cursor.

The mi_collection_delete() function deletes the element at the location in the
collection cursor that its action argument specifies. For a list of valid cursor-action
flags, see [Table 5-3 on page 5-5|

The following code shows an example of using the mi_collection_delete() function
to delete the last element of a collection:
/*
* Delete last element in the collection
*/
MI_CONNECTION =conn;
MI_COLL_DESC =*coll_desc;
mi_integer ret;

ret = mi_collection_delete(conn, coll_desc,
MI_CURSOR_LAST, 0);

Determine the cardinality of a collection
The DataBlade API provides the mi_collection_card() function for obtaining the
number of elements in a collection (its cardinality).

The following code fragment uses the mi_collection_card() function to perform
separate actions based on whether a collection is NULL or has elements (possibly 0
elements):

MI_COLLECTION =*collp;
mi_integer cardinality;
mi_boolean isnull;

/* Attach collp to a collection */

cardinality = mi_collection_card(collp, &isnull);
if (isnull == MI_TRUE)
{
mi_db_error_raise(conn, MI_MESSAGE, "Warning: Collection is NULL.");

}

else

{

if (cardinality > 0)
{
/* Open collection and perform action on individual elements */
}

}

Chapter 5. Complex data types 5-13

5-14

Releasing collection resources

When your DataBlade API module no longer needs a collection, you can release
the resources that it uses with the mi_collection_close() and mi_collection_free()
functions.

The mi_collection_close() function closes the collection cursor and frees the
collection descriptor. The mi_collection_free() function frees the collection
structure.

Close a collection

A collection descriptor contains a collection cursor. The scope of the collection

descriptor and its associated collection cursor is from the time they are created, by

mi_collection_open_with_options() or mi_collection_open(), until one of the

following events occurs:

e The mi_collection_close() function frees the collection descriptor, thereby closing
and freeing the associated collection cursor.

e The current memory duration expires. (Server only)
* The mi_close() function closes the connection.

To conserve resources, use the mi_collection_close() function to free the collection
descriptor as soon as your DataBlade API module no longer needs it. This function
also explicitly closes and frees the associated collection cursor. The
mi_collection_close() function is the destructor function for the collection
descriptor as well as for its associated cursor.

Free the collection structure

The collection structure holds the collection elements. The scope of this structure is
from the time it is created, by mi_collection_create() or mi_collection_copy(), until
one of the following events occurs:

* The mi_collection_free() function frees the collection structure.
* The current memory duration expires. (Server only)

¢ The mi_close() function closes the connection.

To conserve resources, use the mi_collection_free() function to free the collection
structure once your DataBlade API module no longer needs it. The
mi_collection_close() function is the destructor function for the collection structure.

The listpos() UDR

The sample listpos() UDR consists of the following parts:

* The SQL statements that register the function, create a table, and run the
listpos() user-defined function

* The C code to implement the listpos() UDR

¢ Sample output from the 1istpos.trc trace file that the listpos() UDR generates

SQL statements

The SQL statements for the following tasks handle the database objects that the
listpos() function requires:

1. Register the user-defined function named listpos():

CREATE FUNCTION Tlistpos()

RETURNS INTEGER

EXTERNAL NAME '$USERFUNCDIR/sql_listpos.udr'
LANGUAGE C;

2. Create a table named tab2:

IBM Informix DataBlade API Programmer’s Guide

CREATE TABLE tab2 (a INT);
INSERT INTO tab2 VALUES (1);

3. Add the trace class that the DPRINTF statements in listpos() use:

INSERT INTO informix.systraceclasses(name)
VALUES ('trace_class');

4. Run the listpos() UDR:
SELECT Tistpos() FROM tab2;
5. Clean up the resources:

DROP FUNCTION Tistpos;
DROP TABLE tab2;

C-language implementation
The following C file contains the functions that implement the listpos()
user-defined function:

/* C file (listpos.c) contents:
* Examples of mi_collection_x() functions

*/

#include <stdio.h>
#include <mi.h>
#include <sqltypes.h>

void do_fetch(
MI_CONNECTION =*conn,
MI_COLL_DESC =*colldesc,
MI_CURSOR_ACTION action,
mi_integer type,
mi_integer jump,
MI_DATUM expected);

mi_integer create collection(
MI_CONNECTION =*conn,
char *typestring,
MI_COLLECTION =**ret_coll_struc,
MI_COLL_DESC #**ret_coll_desc);

mi_integer 1ist_int_ins(MI_CONNECTION *conn);
mi_integer Tist_char_ins(MI_CONNECTION xconn);
mi_integer 1ist_float_ins(MI_CONNECTION =*conn);

/*‘k**‘k‘k**‘k**‘k‘k*‘k‘k**‘k‘k*‘k‘k**‘k‘k*****‘k**‘k******‘k‘k*‘k****‘k*‘k**

% Function: The listpos() user-defined routine

* Purpose: Run inserts on three types of LIST collections:
* LIST of INTEGER: Tist_int_ins()

* LIST of CHAR: 1ist_char_ins()
* LIST of FLOAT: 1ist_float_ins()
* Results are printed to a trace file named 'listpos.trc',
* which is the file that the mi_tracefile_set() function
* specifies.
* Return Values:
* 0 Success
* -1 No valid connection descriptor
* =50 Unable to convert data type to type identifer
* =51 Unable to create specified collection
* =52 Unable to open new collection
*
/
mi_integer listpos()
{

MI_CONNECTION =conn;
mi_integer ret_code, error;

/* Obtain a UDR connection descriptor and verify that it
* is valid

Chapter 5. Complex data types

5-15

*/

/*

*

*/

/*

/*

/*

b/

[**
*
*
*

L T

*/

conn = mi_open(NULL, NULL, NULL);
if (conn == NULL)
return (-1);

Turn on tracing of trace class "trace_class" and set the
trace file to listpos.trc.

mi_tracelevel_set("trace_class 20");
mi_tracefile_set("/usr/local/udrs/colls/listpos.trc");

Run Tist_int_ins() to insert INTEGER values into the LIST =*/
error = 0;
ret_code = list_int_ins(conn);
if (ret_code)
error = ret_code;

Run Tist_char_ins() to insert CHAR values into the LIST x/
1ist_char_ins(conn);
if (ret_code)

error = ret_code;

Run Tist_float_ins() to insert FLOAT values into the LIST =/
1ist_float_ins(conn);
if (ret_code)

error = ret_code;

return (ret_code);
* end Tistpos() */

KEAKRKA AR A RKREAAKREAARA AR A AR A AR A AR A A hhhhdhhddhddhhdhhdixsk
Function: Tist_int_ins()
Purpose:
1. insert 3 INTEGER values into a LIST
2. verify each inserted value
3. update first element
Return Values:
0 Success
-50 Unable to convert data type to type identifer
-51 Unable to create specified collection
-52 Unable to open new collection
(status of steps in trace file)

mi_integer 1ist_int_ins(MI_CONNECTION *conn)

{

/*

/*

L

MI_COLLECTION =*1ist;
MI_COLL_DESC =*colldesc;

MI_CURSOR_ACTION action;
mi_integer jump, value, ret_code;

Create the LIST of INTEGERs =/

ret_code = create_collection(conn, "list(int not null)",
&list, &colldesc);

if (ret_code !=0)
return (ret_code);

action = MI_CURSOR_ABSOLUTE;

Insert three INTEGER values

position 1: 1

position 2: 2

position 3: 3
INTEGER datums are passed by value. Normally one would use
an action of MI_CURSOR_NEXT (jump is ignored), but this
function inserts at positions.

5-16 IBM Informix DataBlade API Programmer’s Guide

*/

/*

value = jump = 1;

DPRINTF("trace class", 15,
("Insert %d into LIST of INTEGER @%d", value,

jump)) s

ret_code = mi_collection_insert(conn, colldesc,
(MI_DATUM) value, action, jump);

if (ret_code != MI_OK)
{
DPRINTF("trace class", 15,

("1ist_int_ins: insert MI_CURSOR_ABSOLUTE %d @%d
value, jump));

value = jump = 2;

DPRINTF("trace_class", 15,
("Insert %d into LIST of INTEGER @%d", value,

jump));

ret_code = mi_collection_insert(conn, colldesc,
(MI_DATUM) value, action, jump);

if (ret_code != MI_OK)
{
DPRINTF("trace_class", 15,

("1ist_int_ins: insert MI_CURSOR_ABSOLUTE %d @%d
value, jump));

}

value = jump = 3;

DPRINTF("trace class", 15,
("Insert %d into LIST of INTEGER @%d", value,

jump)) s

ret_code = mi_collection_insert(conn, colldesc,
(MI_DATUM) value, action, jump);

if (ret_code != MI_OK)
{
DPRINTF("trace class", 15,

("1ist_int_ins: insert MI_CURSOR_ABSOLUTE %d @%d
value, jump));

}

failed",

failed",

failed",

Fetch each inserted INTEGER value from the collection,

comparing it against the value actually inserted.

Use a jump equal to the data value to simplify the

validation.

dofetch(conn, colldesc, MI_CURSOR_ABSOLUTE, SQLINT, 1,

(MI_DATUM) 1);

dofetch(conn, colldesc, MI_CURSOR_ABSOLUTE, SQLINT, 3,

(MI_DATUM) 3);

dofetch(conn, colldesc, MI_CURSOR_ABSOLUTE, SQLINT, 2,

(MI_DATUM) 2);
dofetch(conn, colldesc, MI_CURSOR_PRIOR, SQLINT,
(MI_DATUM) 1);

1,

dofetch(conn, colldesc, MI_CURSOR _LAST, SQLINT, 3,

(MI_DATUM) 3);
dofetch(conn, colldesc, MI_CURSOR FIRST, SQLINT,
(MI_DATUM) 1);

1,

dofetch(conn, colldesc, MI_CURSOR_RELATIVE, SQLINT, 2,

(MI_DATUM) 3);

dofetch(conn, colldesc, MI_CURSOR_RELATIVE, SQLINT, -2,

(MI_DATUM) 1);

Update 1st element to 3. */
Jump=1;
value=3;
DPRINTF("trace_class", 15,
("Update %d into LIST of INTEGER @%d", value,

Chapter 5. Complex data types

5-17

jump));

ret_code = mi_collection_update(conn, colldesc,
(MI_DATUM) value, action, jump);

if (ret_code != MI_OK)

DPRINTF("trace_class", 15,
("Tist_int_ins: update MI_CURSOR_ABSOLUTE @%d failed",
?ump));

/* Fetch the updated element back and validate it */
dofetch(conn, colldesc, MI_CURSOR_ABSOLUTE, SQLINT, 1,
(MI_DATUM) 3);

/* Free collection resources */
mi_collection_close(conn, colldesc);
mi_collection_free(conn, Tlist);

return 0;
} /* end Tist_int_ins() */

[gk ok A kKK I I IR hhhh Ik I I h* kKK * ok kkKxxhhhhhh AR *K*A *
* Function: 1list float ins()
* Purpose:
* 1. insert 3 FLOAT values into a LIST
* 2. verify each inserted value
* 3. update first element
* Return Values:
* 0 Success
* -50 Unable to convert data type to type identifer
* =51 Unable to create specified collection
* =52 Unable to open new collection
* (status of steps in trace file)
*
/
mi_integer list float_ins(MI_CONNECTION xconn)
{

MI_COLLECTION *1ist;
MI_COLL_DESC *colldesc;

MI_CURSOR_ACTION action;
mi_integer jump, value, ret_code;
mi_double_precision vall, val2, val3, val4;

/* Create the LIST of FLOATs =/
ret_code = create_collection(conn,
"Tist(float not null)", &list, &colldesc);
if (ret_code !=0)
return (ret_code);

action = MI_CURSOR_ABSOLUTE;

/* Insert three FLOAT values
* position 1: 1.1
position 2: -2.2
position 3: 3.3
FLOAT datums are passed by reference.

* * X

*/
vall = 1.1;
val2 = -2.2;
val3 = 3.3;
jump = 1;

DPRINTF("trace class", 15,
("Insert %f into LIST of FLOAT @%d", vall, jump));
ret_code = mi_collection_insert(conn, colldesc,
(MI_DATUM) &vall, action, jump);

5-18 IBM Informix DataBlade API Programmer’s Guide

if (ret_code != MI_OK)
{
DPRINTF("trace class", 15,

("1ist_float_ins: insert MI_CURSOR_ABSOLUTE %f @%d failed",

vall, jump));
}

Jump = 23
DPRINTF("trace_class", 15,
("Insert %f into LIST of FLOAT @%d", val2, jump));
ret_code = mi_collection_insert(conn, colldesc,
(MI_DATUM) &val2, action, jump);
if (ret_code != MI_OK)
{
DPRINTF("trace class", 15,

("Tist_float_ins: insert MI_CURSOR_ABSOLUTE %f @%d failed",

val2, jump));
}

jump = 3;
DPRINTF("trace _class", 15,
("Insert %f into LIST of FLOAT @%d", val3, jump));
ret_code = mi_collection_insert(conn, colldesc,
(MI_DATUM) &val3, action, jump);
if (ret_code != MI_OK)

{
DPRINTF("trace_class", 15,

("Tist_float_ins: insert MI_CURSOR_ABSOLUTE %f @%d failed",

/*

*

*/

/*

val3, jump));
}

Fetch each inserted FLOAT value from the collection,
comparing it against the value actually inserted.

dofetch(conn, colldesc, MI_CURSOR ABSOLUTE, SQLFLOAT, 1,
(MI_DATUM) &vall);

dofetch(conn, colldesc, MI_CURSOR_ABSOLUTE, SQLFLOAT, 3,
(MI_DATUM) &val3);

dofetch(conn, colldesc, MI_CURSOR_ABSOLUTE, SQLFLOAT, 2,
(MI_DATUM) &val2);

dofetch(conn, colldesc, MI_CURSOR_PRIOR, SQLFLOAT, 1,
(MI_DATUM) &vall);

dofetch(conn, colldesc, MI_CURSOR_LAST, SQLFLOAT, 3,
(MI_DATUM) &val3);

dofetch(conn, colldesc, MI_CURSOR FIRST, SQLFLOAT, 1,
(MI_DATUM) &vall);

dofetch(conn, colldesc, MI_CURSOR RELATIVE, SQLFLOAT, 2,
(MI_DATUM) &val3);

dofetch(conn, colldesc, MI_CURSOR RELATIVE, SQLFLOAT, -2,
(MI_DATUM) &vall);

Update 1st element to 44E-4. =/
Jump=1;
val4=44e-4;
DPRINTF("trace class", 15,
("Update %f into LIST of FLOAT @%d", val4, jump));
ret_code = mi_collection_update(conn, colldesc,
(MI_DATUM) &val4, action, jump);
if (ret_code != MI_OK)
{
DPRINTF("trace _class", 15,
("1ist_float_ins: update MI_CURSOR_ABSOLUTE @%d failed",
;ump));

Fetch the updated element back and validate it */
dofetch(conn, colldesc, MI_CURSOR_ABSOLUTE, SQLFLOAT, 1,

Chapter 5. Complex data types

5-19

(MI_DATUM) &vald);

/* Free collection resources =*/
mi_collection_close(conn, colldesc);
mi_collection_free(conn, Tlist);

return 0;
} /* end Tist_float_ins() */

/***
* Function: Tist_char_ins()

* Purpose:

* 1. insert 3 CHAR values into a LIST

* 2. verify each inserted value
* 3. update first element
* Return Values:
* 0 Success
* -50 Unable to convert data type to type identifer
* =51 Unable to create specified collection
* =52 Unable to open new collection
* (status of steps in trace file)
*
/
mi_integer list_char_ins(MI_CONNECTION *conn)
{

MI_COLLECTION *1ist;
MI_COLL_DESC =*colldesc;

MI_CURSOR_ACTION action;

MI_DATUM val;

mi_integer retlen, jump, ret code;
mi_Tvarchar =*lvc;

char *buf;

char *vall, *val2, *val3;

/* Create the LIST of CHAR(10)s =/
ret_code = create_collection(conn,
"Tist(char(10) not null)", &list, &colldesc);
if (ret_code !=0)
return (ret_code);

action = MI_CURSOR_ABSOLUTE;

/* Insert three CHAR(10) values:

* position 1: "1234567689"

* position 2: "abcdefghij"

* position 3: "three"

* CHAR datums are passed by reference in an mi_lvarchar
* structure.

vall = "1234567689";
val2 = "abcdefghij";
val3 = "three";

Tvc = mi_new_var(10);
buf = mi_get_vardata(lvc);

jump = 1;
strcpy(buf, vall);
DPRINTF("trace_class", 15,
("Insert '%s' into LIST of CHAR @%d",
buf, jump));
ret_code = mi_collection_insert(conn, colldesc,
(MI_DATUM)1vc, action, jump);
if (ret_code != MI_OK)
{
DPRINTF("trace_class", 15,

5-20 IBM Informix DataBlade API Programmer’s Guide

/*

*

*/

/*

/*

("1ist_char_ins: insert MI_CURSOR_ABSOLUTE @%d failed",

jump));
}
jump = 2;

strcpy (buf, val2);

DPRINTF("trace_class", 15,
("Insert '%s' into LIST of CHAR @%d",
buf, jump));

ret_code = mi_collection_insert(conn, colldesc,
(MI_DATUM)1vc, action, jump);

if (ret_code != MI_OK)

DPRINTF("trace_class", 15,
("1ist_char_ins: insert MI_CURSOR_ABSOLUTE @%d failed",
;ump));

jump = 3;

strcpy(buf, val3);

DPRINTF("trace _class", 15,
("Insert '%s' into LIST of CHAR @%d",
buf, jump));

ret_code = mi_collection_insert(conn, colldesc,
(MI_DATUM)1vc, action, jump);

if (ret_code != MI 0K)

DPRINTF("trace_class", 15,
("1ist_char_ins: insert MI_CURSOR_ABSOLUTE @%d failed",
?ump));

Fetch each inserted CHAR value from the collection,
comparing it against the value actually inserted.

dofetch(conn, colldesc, MI_CURSOR_ABSOLUTE, SQLCHAR, 1,
don:lﬁ%éonn, colldesc, MI_CURSOR ABSOLUTE, SQLCHAR, 3,
doféila%éonn, colldesc, MI_CURSOR_ABSOLUTE, SQLCHAR, 2,
dof;ilﬁ%éonn, colldesc, MI_CURSOR_PRIOR, SQLCHAR, 1,
donilﬁ%éonn, colldesc, MI_CURSOR_LAST, SQLCHAR, 3,
donilﬁ%éonn, colldesc, MI_CURSOR_FIRST, SQLCHAR, 1,
donilPll)(t;:onn, colldesc, MI_CURSOR RELATIVE, SQLCHAR, 2,
doni%EEéonn, colldesc, MI_CURSOR_RELATIVE, SQLCHAR, -2,
vall);

Update 1st element to "mnopgrstuv". =*/

jump=1;

strcpy(buf, "mnopgrstuv");

DPRINTF("trace_class", 15,
("Update '%s' into LIST of CHAR @ %d", buf, jump));

ret_code = mi_collection_update(conn, colldesc,
(MI_DATUM)1vc, action, jump);

if (ret_code != MI_OK)

{
DPRINTF("trace class", 15,

("1ist_char_ins: update MI_CURSOR_ABSOLUTE @%d failed",
;ump));

Fetch the updated element back and validate it =/

Chapter 5. Complex data types

5-21

5-22

dofetch(conn, colldesc, MI_CURSOR_FIRST, SQLCHAR, 1,
buf);

/* Free collection resources */
mi_collection_close(conn, colldesc);
mi_collection_free(conn, Tist);

return 0;
} /* end Tist_char_ins() =/

/***
* Function: do_fetch()
* Purpose: Fetch specified element from a collection and

* compare it with the specified expected value
* Return Values: NONE
*/

void do_fetch(
MI_CONNECTION =conn,
MI_COLL_DESC =*colldesc,
MI_CURSOR_ACTION action,
mi_integer type,
mi_integer jump,
MI_DATUM expected)

MI_DATUM val;
mi_integer retlen, ret_code;
char *actionstr, *buf;

switch (action)
{
case MI_CURSOR_NEXT:
actionstr="MI_CURSOR_NEXT";
break;

case MI_CURSOR_PRIOR:
actionstr="MI_CURSOR_PRIOR";
break;

case MI_CURSOR_FIRST:
actionstr="MI_CURSOR_FIRST";
break;

case MI_CURSOR_LAST:
actionstr="MI_CURSOR_LAST";
break;

case MI_CURSOR_ABSOLUTE:
actionstr="MI_CURSOR_ABSOLUTE";
break;

case MI_CURSOR_RELATIVE:
actionstr="MI_CURSOR_RELATIVE";
break;

default:
actionstr="UNKNOWN";
1

DPRINTF("trace_class", 15,
("Fetch %s @ jump=%d:", actionstr, jump));

/* Print what is the expected value */
switch (type)
{

case SQLINT:
DPRINTF("trace_class", 15,

IBM Informix DataBlade API Programmer’s Guide

(" should get %d: ", expected));
break;

case SQLCHAR:
DPRINTF("trace_class", 15,
(" should get '%s': ", expected));
break;

case SQLFLOAT:
DPRINTF("trace class", 15,
(" should get %f: ", *(double *)expected));
break;

default:
DPRINTF("trace_class", 15,
(" type not handled: %d", type));
1

/* Fetch collection element at position 'jump' into 'val' */
ret_code = mi_collection_fetch(conn, colldesc, action,
jump, &val, &retlen);
if (ret_code !'= MI_NORMAL_VALUE)
{
DPRINTF("trace class", 15,
("do_fetch: %s @%d failed", actionstr, jump));
return;

}

/* Compare fetched value with expected value */
switch (type)
{

case SQLINT:
if (expected != val)

DPRINTF("trace_class", 15,

("do_fetch: fetch value not expected; got %d",
val));
}

else

{
DPRINTF("trace_class", 15,
(" got %d, fetch succeeded", val));

break;

case SQLCHAR:
buf = mi_get_vardata((mi_lvarchar *)val);
if (strcmp(buf, (char x)expected) != 0)
{

DPRINTF("trace class", 15,

("do_fetch: fetch value not expected; got %s",
buf));
}

else

DPRINTF("trace_class", 15,
(" got '%s', fetch succeeded", buf));

break;

case SQLFLOAT:
if (*(double *)expected != *(double *)val)

{
DPRINTF("trace class", 15,
("do_fetch: fetch value not expected; got %f",
*(double *)val));
}

Chapter 5. Complex data types

5-23

else
{
DPRINTF("trace_class", 15,
(" got %f, fetch succeeded",
*(double *)val));
}

break;

default:
DPRINTF("trace class", 15,
("do_fetch: %d type not handled", type));

}
} /* end do_fetch() */

[k gk ke kok A T T *kkkkkkkkkhkhkhhkk
* Function: create _collection()

* Purpose: create a collection of the specified type

* Return Values:

* thru parameters:
* ret_coll_desc: address of collection descriptor
* ret_coll_struc: address of collection structure
* thru return value:
* 0 Success
* -50 Unable to convert data type to type identifer
* -51 Unable to create specified collection
* -52 UnabTle to open new collection
*
/

mi_integer create_collection(
MI_CONNECTION =*conn,
char *typestring,
MI_COLLECTION =**ret_coll_struc,
MI_COLL_DESC **ret coll_desc)

MI_TYPEID *typeid;
MI_COLLECTION =*collstruc;
MI_COLL_DESC *colldesc;

/* Convert data type string to type identifier =/
typeid = mi_typestring_to_id(conn, typestring);
if (typeid == NULL)

{
DPRINTF("trace class", 15,
("create_collection: mi_typestring_to_id() failed"));
return (-50);
}

/* Create collection whose elements have the data type
* indicated by the specified type identifer
*/
if ((collstruc =
mi_collection_create(conn, typeid)) == NULL)
{

DPRINTF("trace_class", 15,

("create_collection: mi_collection create() failed"));
return (-51);
}

/* Open the collection */
if ((colldesc =
mi_collection_open(conn, collstruc)) == NULL)

DPRINTF("trace_class", 15,
("mi_collection open() failed"));
return -52;

}

5-24 IBM Informix DataBlade API Programmer’s Guide

/* Return through the parameters the addresses of:
* the collection descriptor: ret_coll_desc
* the collection structure: ret_coll_struc
*/
*xret_coll_desc = colldesc;
*xret_coll_struc = collstruc;

/* Return a status of zero to indicate success =/

return 0;
/* end create _collection() */

Sample listpos() trace output

When the listpos() user-defined function executes successfully, it produces the

following output in the listpos.trc file:

Tracing session: 18 on 03/16/2000

13:12:24 Insert 1 into LIST of INTEGER @1
13:12:24 Insert 2 into LIST of INTEGER @2
13:12:24 Insert 3 into LIST of INTEGER @3
13:12:24 Fetch MI_CURSOR_ABSOLUTE @ jump=1:
13:12:24 should get 1

13:12:24 got 1, fetch succeeded

13:12:24 Fetch MI_CURSOR_ABSOLUTE @ jump=3:
13:12:24 should get 3

13:12:24 got 3, fetch succeeded

13:12:24 Fetch MI_CURSOR_ABSOLUTE @ jump=2:
13:12:24 should get 2

13:12:24 got 2, fetch succeeded

13:12:24 Fetch MI_CURSOR_PRIOR @ jump=1:
13:12:24 should get 1

13:12:24 got 1, fetch succeeded

13:12:24 Fetch MI_CURSOR_LAST @ jump=3:
13:12:24 should get 3

13:12:24 got 3, fetch succeeded

13:12:24 Fetch MI_CURSOR_FIRST @ jump=1:
13:12:24 should get 1

13:12:24 got 1, fetch succeeded

13:12:24 Fetch MI_CURSOR_RELATIVE @ jump=2:
13:12:24 should get 3

13:12:24 got 3, fetch succeeded

13:12:24 Fetch MI_CURSOR_RELATIVE @ jump=-2:
13:12:24 should get 1

13:12:24 got 1, fetch succeeded

13:12:24 Update 3 into LIST of INTEGER @1
13:12:24 Fetch MI_CURSOR_ABSOLUTE @ jump=1:
13:12:24 should get 3

13:12:24 got 3, fetch succeeded

13:12:24 Insert '1234567689' into LIST of CHAR @1
13:12:24 Insert 'abcdefghij' into LIST of CHAR @2
13:12:24 Insert 'three' into LIST of CHAR @3
13:12:24 Fetch MI_CURSOR_ABSOLUTE @ jump=1:
13:12:24 should get '1234567689'

13:12:24 got '1234567689', fetch succeeded
13:12:24 Fetch MI_CURSOR_ABSOLUTE @ jump=3:
13:12:24 should get 'three'

13:12:24 got 'three', fetch succeeded
13:12:24 Fetch MI_CURSOR_ABSOLUTE @ jump=2:
13:12:24 should get 'abcdefghij'

13:12:24 got 'abcdefghij', fetch succeeded
13:12:24 Fetch MI_CURSOR_PRIOR @ jump=1:
13:12:24 should get '1234567689'

13:12:24 got '1234567689', fetch succeeded
13:12:24 Fetch MI_CURSOR_LAST @ jump=3:
13:12:24 should get 'three'

Chapter 5. Complex data types

5-25

13:12:24 got 'three', fetch succeeded
13:12:24 Fetch MI_CURSOR_FIRST @ jump=1:
13:12:24 should get '1234567689'

13:12:24 got '1234567689', fetch succeeded
13:12:24 Fetch MI_CURSOR_RELATIVE @ jump=2:
13:12:24 should get 'three'

13:12:24 got 'three', fetch succeeded
13:12:24 Fetch MI_CURSOR_RELATIVE @ jump=-2:
13:12:24 should get '1234567689'

13:12:24 got '1234567689', fetch succeeded
13:12:24 Update 'mnopgrstuv' into LIST of CHAR @1
13:12:24 Fetch MI_CURSOR_FIRST @ jump=1:
13:12:24 should get 'mnopgrstuv'

13:12:24 got 'mnopqrstuv', fetch succeeded
13:12:24 Insert 1.100000 into LIST of FLOAT @1
13:12:24 Insert -2.200000 into LIST of FLOAT @2
13:12:24 Insert 3.300000 into LIST of FLOAT @3
13:12:24 Fetch MI_CURSOR_ABSOLUTE @ jump=1:
13:12:24 should get 1.100000

13:12:24 got 1.100000, fetch succeeded
13:12:24 Fetch MI_CURSOR_ABSOLUTE @ jump=3:
13:12:24 should get 3.300000

13:12:24 got 3.300000, fetch succeeded
13:12:24 Fetch MI_CURSOR_ABSOLUTE @ jump=2:
13:12:24 should get -2.200000

13:12:24 got -2.200000, fetch succeeded
13:12:24 Fetch MI_CURSOR_PRIOR @ jump=1:
13:12:24 should get 1.100000

13:12:24 got 1.100000, fetch succeeded
13:12:24 Fetch MI_CURSOR_LAST @ jump=3:
13:12:24 should get 3.300000

13:12:24 got 3.300000, fetch succeeded
13:12:24 Fetch MI_CURSOR_FIRST @ jump=1:
13:12:24 should get 1.100000

13:12:24 got 1.100000, fetch succeeded
13:12:24 Fetch MI_CURSOR_RELATIVE @ jump=2:
13:12:24 should get 3.300000

13:12:24 got 3.300000, fetch succeeded
13:12:24 Fetch MI_CURSOR_RELATIVE @ jump=-2:
13:12:24 should get 1.100000

13:12:24 got 1.100000, fetch succeeded
13:12:24 Update 0.004400 into LIST of FLOAT @1
13:12:24 Fetch MI_CURSOR_ABSOLUTE @ jump=1:
13:12:24 should get 0.004400

13:12:24 got 0.004400, fetch succeeded

Row types

A row type is a complex data type that is made up of a sequence of one or more
elements called fields. Each field has a name and a data type. A row type is similar
to a C struct data type. The DataBlade API provides support for row types in both
their text and binary representations.

Row-type text representation

The DataBlade API supports a text representation for row types as a quoted string
with the formats that the following list shows.

Unnamed
"ROW(fld_valuel, fld_value2, ...)"

Named
"row_type(fld_valuel, fld_value2, ...)"

The text representations in the preceding list use the following abbreviations:

5-26 IBM Informix DataBlade API Programmer’s Guide

fld_valuel, fld_value2
are the text representations of the field values.

row_type
is the name of the named row type.

A row type in its text representation is often called a row-type string. For example,
suppose you have the following unnamed row type defined:

ROW(f1d1 INTEGER, f1d2 CHAR(20))

The following row-type string provides the text representation for this unnamed
row type:

"ROW(7, 'Dexter')"
Related concepts:

[[Fetching Cursors that have Keywords as Names (Guide to SQL: Syntax)|
Related reference:

[“Create the row descriptor” on page 5-31

Row-type binary representation

The database server supports the following row types.

Named row type
A named row type is identified by its name. With the CREATE ROW TYPE
statement, you create a template of a row type. You can then use this
template to take the following actions:

¢ Use type inheritance

* Define columns that all have the same row type

* Assign a named row type to a table with the OF TYPE clause of the
CREATE TABLE statement

Unnamed row type
An unnamed row type is identified by its structure. With the ROW
keyword, you create a row type. This row type contains fields but has no
user-defined name. Therefore, if you want a second column to have the
same row type, you must specify all fields.

All row types use the same internal format to store their values. For more
information, see the IBM Informix Guide to SQL: Reference.

Tip: The internal format of a row type is often referred to as its binary
representation.

The DataBlade API supports the SQL row types with the following data type
structures:

* A row descriptor (MI_ROW_DESC) provides information about the row type.

* A row structure (MI_ROW) holds the binary representation of the field values in
the row type.

Important: The fields of a row type are comparable to the columns in the row of a

table. This similarity means that you use the same DataBlade API data type
structures to access row types that you do to access columns in a row.

Chapter 5. Complex data types ~ 5-27

http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqls.doc/ids_sqs_1680.htm#ids_sqs_1680

A row descriptor
A row descriptor, MI_ROW_DESC, is a DataBlade API structure that describes the
type of data in each field of a row type.

The following table summarizes the memory operations for a row descriptor.

Memory duration Memory operation Function name
Current memory duration Constructor mi_row_desc_create()
Destructor mi_row_desc_free()

Tip: A row descriptor can describe a row type or a row in a table. Therefore, you
use the same DataBlade API functions to handle memory operations for a row
descriptor when it describes a row type or a table row.

Server only:

In a C UDR, the row structure and row descriptor are part of the same data type
structure. The row structure is just a data buffer in the row descriptor that holds
the column values of a row. A one-to-one correspondence exists between the row
descriptor (which mi_row_desc_create() allocates) and its row structure (which
mi_row_create() allocates). Therefore:

* When the mi_row_desc_create() function creates a row descriptor, it assigns a
NULL-valued pointer to the data buffer.

* The mi_row_desc_free() function frees both the row descriptor and its associated
row structure.

Client only: In a client LIBMI application, a row structure and a row descriptor
are separate data type structures. A one-to-many correspondence can exist between
a row descriptor and its associated row structures. When you call
mi_row_desc_free(), you free only the specified row descriptor.

The following table lists the DataBlade API accessor functions that obtain
information about fields of a row type (or columns of a row) from the row
descriptor.

Table 5-4. Field and column information in the row descriptor

DataBlade API accessor
Column information functions

The number of columns and/or fields in the row descriptor mi_column_count()

The name of the column or field, given its position in the row mi_column_name()

The column identifier, which is the position of the column or ~ mi_column_id()
field within the row, given its name

The precision (total number of digits) of a column or field data mi_column_precision()
type
The scale of a column or field data type mi_column_scale()

Whether a column or field in the row descriptor has the NOT ~ mi_column_nullable()
NULL constraint

The type identifier of the column or field data type mi_column_type_id()

The type descriptor of the column or field data type mi_column_typedesc()

Default value of the column, if the column is defined with a mi_column_default()
default value

5-28 IBM Informix DataBlade API Programmer’s Guide

Table 5-4. Field and column information in the row descriptor (continued)

DataBlade API accessor
Column information functions

Default value of the column in text format mi_column_default_string()

Restriction: To DataBlade API modules, the row descriptor (MI_row_DESC) is an
opaque C data structure. Do not access its internal fields directly. The internal
structure of MI_ROW_DESC might change in future releases. Therefore, to create
portable code, always use the accessor functions for this structure to obtain column
information.

The row descriptor stores column information in several parallel arrays.

Column array Contents
Column-type ID array Each element is a pointer to a type identifier
(MI_TYPEID) that indicates the data type of the column.
Column-type-descriptor array Each element is a pointer to a type descriptor
(MI_TYPE_DESC) that describes the data type of the
column.
Column-scale array Each element is the scale of the column data type.
Column-precision array Each element is the precision of the column data type.
Column-nullable array Each element has either of the following values:
¢ MI_TRUE: The column can contain SQL NULL
values.
e MI_FALSE: The column cannot contain SQL NULL
values.

All of the column arrays in the row descriptor have zero-based indexes. Within the
row descriptor, each column has a column identifier, which is a zero-based position
of the column (or field) in the column arrays. When you need information about a

column (or field), specify its column identifier to one of the row-descriptor accessor
functions in [Table 5-4 on page 5-28]

Tip: The system catalog tables refer to the unique number that identifies a column
definition as its column identifier. However, the DataBlade API refers to this
number as a column number and the position of a column within the row
structure as a column identifier. These two terms do not refer to the same value.

The following figure shows how the information at index position 1 of these arrays
holds the column information for the second column in a row descriptor.

Chapter 5. Complex data types ~ 5-29

Type identifiers Type descriptors ~ Scales Precisions NULL values

0 0 0 0 0

1 L1 1 " 1 1 o |
2 N2 2 2 27

n n n n

All information for the second column
(at index position 1)

Figure 5-8. Column arrays in the row descriptor

To access information for the nth column, provide an index value of n-1 to the
appropriate accessor function in [Table 5-4 on page 5-28 The following calls to the
mi_column_type_id() and mi_column_nullable() functions obtain from a row
descriptor that row_desc identifies the type identifier (col_type) and whether the
column is nullable (col_nullable) for the second column:

MI_ROW_DESC *row_desc;

MI_TYPEID =*col_type;

mi_integer col_nullable;

col_type = mi_column_type_id(row_desc, 1);
col_nullable = mi_column_nullable(row_desc, 1);

To obtain the number of columns in the row descriptor (which is also the number
of elements in the column arrays), use the mi_column_count() function.

A row structure
The DataBlade API always holds fields of a row type in a row structure (MI_ROW

structure). Each row structure stores the data from a single row-type column in a
table.

The following table summarizes the memory operations for a row structure.

Memory duration Memory operation Function name

Current memory duration Constructor mi_row_create(),
mi_streamread_row()

Destructor mi_row_free()

Tip: A row structure can hold values for the fields of a row type or the columns of
a row in a table. Use the same DataBlade API functions to handle memory
operations for a row structure when it holds values for a row type or a table row.

Server only:

In a C UDR, the row structure and row descriptor are part of the same data type
structure. The mi_row_create() function just adds a data buffer, which holds the
column values of a row, to the row descriptor. A one-to-one correspondence exists
between the row descriptor (which mi_row_desc_create() allocates) and its row
structure (which mi_row_create() allocates).

If you call mi_row_create() twice with the same row descriptor, the second call
overwrites the row values of the first call.

5-30 IBM Informix DataBlade API Programmer’s Guide

The mi_row_free() function frees the memory associated with the data buffer and
assigns a NULL-valued pointer to this buffer in the row descriptor.

Cleint only: In a client LIBMI application, a row structure and a row descriptor
are separate data type structures. A one-to-many correspondence exists between a
row descriptor and its associated row structures. When you call mi_row_create() a
second time with the same row descriptor, you obtain a second row structure. The
mi_row_free() function frees a row structure.

The following DataBlade API functions obtain field values from an existing row
structure.

mi_value(), mi_value_by_name()
Returns a row structure as a column value when the function returns an
MI_ROW_VALUE value status

The row structure holds the fields of the row type.

Tip: A row structure can hold the fields of a row type or the columns of a
database row. You use the same DataBlade API functions to handle memory
operations for a row structure when it holds row-type fields as when it describes
columns of a row.

Related concepts:

[“Obtain column values” on page 8-43|

Create a row type
To create a row type, you create a row structure (MI_ROW) that holds the row
type.

The mi_row_create() function is the constructor function for the row structure
(MI_ROW). To create a row type with mi_row_create(), you must provide the
following information to the function:

¢ A row descriptor that describes the fields of the row type (or columns of a row)

* The values of the row-type fields (or row columns)

Create the row descriptor
You create a row descriptor for a row type with the mi_row_desc_create() function.

The mi_row_desc_create() is the constructor function for a row descriptor. You
provide this function with the type identifier of the row type for which you want
the row descriptor. If you do not know the type identifier for your row type, use
the mi_type_typename() function or mi_typestring_to_id() to create a type
identifier based on the type name. The type name for a row type is its text
representation.

Related tasks:

[“Copying a row structure” on page 5-34|

Related reference:

[“‘Row-type text representation” on page 5-26

Assign the field values
To provide values for the columns (or fields) of a row structure, you pass
information for the columns in column-value arrays or column-value null arrays.

Chapter 5. Complex data types 5-31

5-32

These column-value arrays are similar to the column arrays in the row descriptor
(see [Figure 5-8 on page 5-30)). They have an element for each column in the row
descriptor. The column-value arrays are different from the column arrays in the
row descriptor, in the following ways:

¢ The column-value arrays describe the value for a column.
Column arrays describe the column data type.
* You must allocate and manage the column-value arrays.

The DataBlade API does not provide accessor functions for these column-value
arrays. For each column, your DataBlade API module must declare, allocate, and
assign values to these arrays.

All of the column-value arrays have zero-based indexes. The following figure
shows how the information at index position 1 of these arrays holds the
column-value information for the second column of a row.

Values Nulls

0 0
[1] 1 |
2 A 2 4

All information for the second column
(at index position 1)

Figure 5-9. Arrays for initialization of column

The following sections provide additional information about each of the
column-value arrays.

Column-value array:

The column-value array, col_values, is the third argument of the mi_row_create()
function.

Each element of the column-value array is a pointer to an MI_DATUM structure
that holds the value for each column. The format of this value depends on whether
the MI_DATUM value is passed by reference or by value:

* (Server only) For C UDRs, the data type of the value determines the passing
mechanism. If the function passes the value by value, the MI_DATUM structure
contains the value. If the function passes value by reference, the MI_DATUM
structure contains a pointer to the value.

* (Client only) For client LIBMI applications, pass all values (regardless of data
type) by reference. The MI_DATUM structure contains a pointer to the value.

Important: The difference in behavior of mi_row_create() between C UDRs and
client LIBMI applications means that row-creation code is not completely portable
between these two types of DataBlade API module. When you move your
DataBlade API code from one of these uses to another, you must change the
row-creation code to use the appropriate passing mechanism for column values
that mi_row_create() accepts.

IBM Informix DataBlade API Programmer’s Guide

Related reference:
[“Contents of an MI_DATUM structure” on page 2-31]

Column-value null array:

The column-value null array, col_nulls, is the fourth argument of the
mi_row_create() function.

Each element of the column-value null array is either:
* MI_FALSE

The column value is not an SQL NULL value.
* MI_TRUE

The column value is an SQL NULL value.

Example: Creating a row type
Suppose you have the row type that the following SQL statement creates:

CREATE ROW TYPE rowtype_ t

(
id INTEGER,
name CHAR(20)

)3

Server only

The following code shows how to use the mi_row_create() function to create a new

row type of type rowtype_t:
/*
* Create a row structure for the 'rowtype t' row type

*/

MI_CONNECTION *conn;
MI_ROW_DESC =*rowdesc;
MI_ROW *row;

MI_DATUM =values;
mi_boolean *nulls;
mi_integer num_cols;

/* Allocate a row descriptor for the 'rowtype t' row type */
rowdesc = mi_row_desc_create(
mi_typestring_to_id(conn, "rowtype t"));

/* Assume number of columns is known */
num_cols = 2;

/* Allocate the 'col values' and 'col nulls' arrays */
values = mi_alloc(num_cols *sizeof(MI_DATUM));
nulls = mi_alloc(num_cols *sizeof(mi_boolean));

/* Populate the 'col_values' and 'col_nulls' arrays =/
/* Initialize value for field 1: 'id' =/
values[0] = 1;
null1s[0] = MI_FALSE;
/* Initialize value for field 2: 'name' x/
values[1] = mi_string_to_lvarchar("Dexter");
nulls[1] = MI_FALSE;

/* Create row structure for 'name_t' =*/
row = mi_row_create(conn, rowdesc, values, nulls);

Chapter 5. Complex data types

5-33

5-34

When this code completes, the row variable points to a row structure that contains
the following field values.

Field name Field value
fname "Dexter"
middle "M"

Iname "Haven"
Client only

If the preceding code fragment were part of a client LIBMI application, it would
require changes to the way the values are addressed in the values array. For
example, the INTEGER value would require the following cast to create a copy of
the column value:

mi_integer col_val;

/* Initialize value for field 1: 'id' =/
col_val = 1;

values[0] = &col val;

nulls[0] = MI_FALSE;

This different kind of addressing is required because in client LIBMI applications,
mi_row_create() passes values for all data types by reference. Therefore, the
contents of the MI_DATUM structure is always a pointer to the actual value, never
the value itself.

Access a row type

When a row type (named or unnamed) is used as a column of a table, its fields can
be accessed in exactly the same ways that the columns of a row are accessed.

That is, you create a series of nested loops that use the following functions:

* The mi_next_row() function controls a loop that iterates through each retrieved

row type.
* The mi_value() or mi_value_by_name() function controls a loop that iterates
through each field value.

Related concepts:

[‘Obtain row values” on page 8-5(|

Copying a row structure

To create a copy of a row structure, you must:
* Create a new row descriptor that describes the row type.

* Copy the row values from the old row structure into the col_values and col_nulls
arrays to be used for the new row structure.

¢ Create the new row structure with the values in the col_values and col_nulls
arrays.

The following code fragment copies a row structure:

MI_CONNECTION =conn;

MI_ROW_DESC *rowdesc, *new_rowdesc;
mi_integer num_cols, i, len;
MI_DATUM =values;

mi_boolean *nulls;

MI_ROW *new_row;

IBM Informix DataBlade API Programmer’s Guide

/* Allocate a new row descriptor for the 'name_t' row type */

new_rowdesc = mi_row_desc_create(
mi_typestring_to_id(conn, "name_t"));

/* Determine number of columns needed =/
num_cols = mi_column_count(new_rowdesc);

/* Allocate the 'col values' and 'col nulls' arrays */
values = mi_alloc(num_cols * sizeof(MI_DATUM));
nulls = mi_alloc(num_cols * sizeof(mi_boolean));

/* Populate the 'col_values' and 'col_nulls' arrays =/
for (i=0; i < num_cols; i++)

{
nulls[i] = MI_FALSE; /* assume non-NULL value */

/* Put field value from original row type ('rowdesc')
* into 'values' array for new row type ('new_rowdesc'
*/

switch (mi_value(rowdesc, i, &values[i], &len))

{

case MI_ERROR:
/* Unable to get field value. Raise an error */
break;

case MI_NULL_VALUE:
/* Field value is an SQL NULL value. Set 'nulls'
* array for new row type ('new_rowdesc')
*/
nulls[i] = MI_TRUE;
break;

case MI_NORMAL_VALUE:
/* No action needed: mi_value() call has already
* copied field value into 'values' array
*/
break;

case MI_COLLECTION_VALUE:
/* Need to add code to handle collection =*/
break;

case MI_ROW_VALUE:
/* Need to add code to handle nested rows =*/
break;

default:
/* Handle error */
break;
} /% end switch */
} /* end for x/

/* Create new row type with values copied from old row type */

new_row = mi_row_create(conn, new_rowdesc, values, nulls);

/* Deallocate memory for 'values' and 'nulls' arrays */
mi_free(values);
mi_free(nulls);

After this code fragment executes, the new_row row structure contains a copy of

the values in the row row structure.

Chapter 5. Complex data types

5-35

5-36

Related reference:

[“Create the row descriptor” on page 5-31]

Releasing row resources

When your DataBlade API module no longer needs the row type (or row) that you
allocated, you need to assess whether you can release resources that the row is
using, specifically the row descriptor and the row structure.

Free a row structure
A row structure has the current memory duration. A row remains valid until one
of the following events occurs:

¢ The mi_row_free() function frees the row.
¢ The current memory duration expires. (Server only)
e The mi_close() function closes the current connection.

To conserve resources, use the mi_row_free() function to explicitly deallocate the
row once your DataBlade API module no longer needs it. The mi_row_free()
function is the destructor function for a row structure. It frees the row and any
resources that are associated with it.

Server only:

In a C UDR, the row structure and row descriptor are part of the same data type
structure. The mi_row_create() function just adds a data buffer, which holds the
column values of a row, to the row descriptor. The mi_row_free() function drops
the row structure from the row descriptor. It is useful for big rows where the data
you want has already been examined.

However, the mi_row_desc_free() function frees a row descriptor and the
associated row structure. After mi_row_desc_free() frees the row descriptor, you
no longer have access to the row structure. Examine the contents of a row structure
before you deallocate the row descriptor with mi_row_desc_free().

Client only: In a client LIBMI application, a row structure and a row descriptor
are separate data type structures. When you free a row descriptor with
mi_row_desc_free(), the associated row structure is not freed. You must explicitly
free the row structure with mi_row_free().

Important: Use mi_row_free() only for row structures that you have explicitly
allocated with mi_row_create(). Do not use this function to free row structures that
other DataBlade API functions (such as mi_next_row()) allocate.

Free a row descriptor
A row descriptor has the current memory duration. A row descriptor remains valid
until one of the following events occurs:

¢ The mi_row_desc_free() function frees the row.
* The current memory duration expires. (Server only)

¢ The mi_close() function closes the current connection.

To conserve resources, use the mi_row_desc_free() function to explicitly deallocate
the row descriptor once your DataBlade API module no longer needs it. The
mi_row_desc_free() function is the destructor function for a row descriptor. It frees
the row descriptor and any resources that are associated with it.

IBM Informix DataBlade API Programmer’s Guide

Server only: In a C UDR, the row structure and row descriptor are part of the
same data type structure. The mi_row_create() function just adds a data buffer,
which holds the column values of a row, to the row descriptor. The
mi_row_desc_free() function frees a row descriptor and the associated row
structure. After mi_row_desc_free() frees the row descriptor, you no longer have
access to the row structure.

Client only: In a client LIBMI application, a row structure and a row descriptor
are separate data type structures. When you free a row descriptor with
mi_row_desc_free(), the associated row structure is not freed. You must explicitly
free the row structure with mi_row_free().

Important: Use mi_row_desc_free() only for row descriptors that you have
explicitly allocated with mi_row_desc_create(). Do not use this function to free row
structures that other DataBlade API functions (such as
mi_get_row_desc_without_row()) allocate.

Chapter 5. Complex data types ~ 5-37

5-38 IBM Informix DataBlade API Programmer’s Guide

Chapter 6. Smart large objects

This section describes smart large objects and provides information about
performing the following tasks:

Storing a smart large object in a database

Using the smart-large-object interface

Creating a smart large object

Accessing a smart large object

Modifying a smart large object

Obtaining status information for a smart large object
Deleting a smart large object

Converting a smart large object to a file or buffer
Converting an LO handle to text or binary representation
Using byte-range locking

Passing a NULL connection

Related concepts:

[“Simple large objects” on page 2-30|

[“Access smart large objects” on page 8-48

Related reference:

[“The SQL LVARCHAR data type” on page 2-7|

[‘Character data in a smart large object” on page 2-9|

[“Byte data in a smart large object” on page 2-27|

Smart large objects

A smart large object is a large object with the following features:

A smart large object can hold a very large amount of data.

Currently, a single smart large object can hold up to four terabytes of data. This
data is stored in a separate disk space called an sbspace.

A smart large object is recoverable.

The database server can log changes to smart large objects and therefore can
recover smart-large-object data in the event of a system or hardware failure.
Logging of smart large objects is not the default behavior.

A smart large object supports random access to its data.

Access to a simple large object (BYTE or TEXT) is on an “all or nothing” basis;
that is, the database server returns all of the simple-large-object data that you
request at one time. With smart large objects, you can seek to a desired location
and read or write the desired number of bytes.

You can customize storage characteristics of a smart large object.

When you create a smart large object, you can specify storage characteristics for
the smart large object, such as the following characteristics:

— Whether the database server logs the smart large object in accordance with
the current database logging mode

— Whether the database server keeps track of the last time the smart large object
was accessed

© Copyright IBM Corp. 1996, 2012 6-1

6-2

— Whether the database server uses page headers to detect data corruption

The rest of this section describes the parts of a smart large object and the
information that the database server keeps about a smart large object.

Parts of a smart large object

Each smart large object has two parts: the sbspace, which stores the data of the
smart large object, and an LO handle, which identifies the location of the
smart-large-object data in its sbspace.

Suppose you store the picture of an employee as a smart large object. The

following figure shows how the LO handle contains information about the location
of the actual employee picture in the sbspacel_100 sbspace.

Picture for
employee

sbspace1_100

LO handle »

Disk 100

Figure 6-1. Parts of a smart large object

The sbspace
An sbspace is a logical storage area that contains one or more chunks and stores
only smart large objects.

The sbspace can contain the following parts:
* A metadata area

The database server writes the following information to the metadata area of an
sbspace:

— Internal information that helps the smart-large-object optimizer manage the
data efficiently

— Storage characteristics for the smart large object
— Status information for the smart large object
* A user-data area

User applications write smart-large-object data to the user-data area of an
sbspace.

In the sbspacel_100 sbspace holds the actual employee image that the
LO handle identifies.

The onspaces database utility creates and drops sbspaces for the database server.
Important: Smart large objects can only be stored in sbspaces. They cannot be

stored in dbspaces. You must create an sbspace before you attempt to insert smart
large objects into the database.

IBM Informix DataBlade API Programmer’s Guide

Related concepts:

[[Disk Structures and Storage (Administrator's Reference)

Related reference:

[[The onspaces utility (Administrator's Reference)|

The LO handle

An LO handle is an opaque C data structure that identifies the location of the
smart-large-object data in its sbspace. Because a smart large object is potentially
very large, the database server stores only its LO handle in a database table; it can
then use this LO handle to locate the actual data of the smart large object in the
sbspace. This arrangement minimizes the table size.

Applications obtain the LO handle from the database and use it to locate the
smart-large-object data and to open the smart large object for read and write
operations. In [Figure 6-1 on page 6-2} the LO handle identifies the location of the
actual employee image in the sbspacel_100 sbspace. You can store this LO handle
in a database column to save this reference for future use.

Related reference:

[“Access to a smart large object” on page 6-14|

Information about a smart large object

The database server keeps storage characteristics and status information about a
smart large object: The database server stores this information in a metadata area
of the sbspace for the smart large object.

Storage characteristics
The storage characteristics tell the database server how to manage a smart large
object in an sbspace.

Three groups of information make up the storage characteristics for a smart large
object:

* Disk-storage information
* Attribute information

* Open-mode information

You can specify storage characteristics at three points.

When specified Method of specification

When an sbspace is created Options of onspaces utility

When a database table is created Keywords in PUT clause of CREATE TABLE
statement

When a smart large object is created DataBlade API functions

The following topics describe the three groups of storage characteristics.
Related tasks:

[“Choosing storage characteristics” on page 6-29|

Related reference:

[“Lo-specification structure” on page 6-17|

Disk-storage information:

Chapter 6. Smart large objects 6-3

http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_0279.htm#ids_adr_0279
http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_0460.htm#ids_adr_0460

6-4

Disk-storage information helps the smart-large-object optimizer of the database

server determine how to manage the smart large object most efficiently on disk.
The smart-large-object optimizer manages the allocation of and access to smart

large objects in an sbspace.

Each smart-large-object has the following disk-storage information:
¢ Allocation-extent information

An allocation extent is a collection of contiguous bytes within an sbspace that
the smart-large-object optimizer allocates to the smart large object at one time.
Information about allocation extents is as follows:

— Extent size

The smart-large-object optimizer allocates storage for the smart large object in
the amount of the extent size.

— Next-extent size

The smart-large-object optimizer attempts to allocate an extent as a single,
contiguous region in a chunk. If no single extent is large enough for the smart
large object, the optimizer uses multiple extents as necessary to satisfy the
current write request. After the initial extent fills, the smart-large-object
optimizer attempts to allocate another extent of contiguous disk space. This
process is called next-extent allocation.

* Sizing information

— Average size of smart large objects in the sbspace

— Estimated number of bytes in the new smart large object

- Maximum number of bytes to which the smart large object can grow
* Location

The name of the sbspace identifies the location at which to store the smart large
object.

The smart-large-object optimizer uses the disk-storage information to determine
how best to size, allocate, and manage the extents of the sbspace. It can calculate
all disk-storage information for a smart large object except the sbspace name.

Important: For most applications, use the values that the smart-large-object
optimizer calculates for the disk-storage information.

For special situations, you can set disk-storage information for a smart large object
as part of its storage characteristics.

Related concepts:

[+ [Disk Structures and Storage (Administrator's Reference)
Related tasks:
[“Choosing storage characteristics” on page 6-29|

Related reference:

[“Access disk-storage information” on page 6-36|

Attribute information: Attribute information tells the database server what
options, or attributes, to assign to the smart large object:

* Logging indicators, which tell the database server whether to log changes to the
smart large object in the system log file.

¢ Last-access-time indicators, which tell the database server whether to save the
last-access time for a smart large object.

IBM Informix DataBlade API Programmer’s Guide

http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_0279.htm#ids_adr_0279

 Data-integrity indicators, which tell the database server how to format the pages
in the sbspace of the smart large object.

Related reference:

[‘Storage-characteristics hierarchy” on page 6-30|

Logging: When a database performs logging, smart large objects might result in
long transactions for the following reasons:

* Smart large objects can be very large, even several gigabytes in size.
The amount of log storage needed to log user data can easily overflow the log.

¢ Smart large objects might be used in situations where the data collection process
can be quite long.
For example, if a smart large object holds low-quality audio recording, the

amount of data collection might be modest but the recording session might be
quite long.

A simple workaround is to divide a long transaction into multiple smaller
transactions. If this solution is not acceptable, you can control when the database
server performs logging of smart large objects. [Table 6-10 on page 6-32|shows how
you can control the logging behavior for a smart large object.

When logging is enabled, the database server logs changes to the user data of a
smart large object. It performs this logging in accordance with the current database
log mode. For a database that is not ANSI compliant, the database server does not
guarantee that log records that pertain to smart large objects are flushed at
transaction commit. However, the metadata is always restorable to an
action-consistent state; that is, to a state that ensures no structural inconsistencies
exist in the metadata (control information of the smart large object, such as
reference counts).

An ANSI-compliant database uses unbuffered logging. When smart-large-object
logging is enabled, all log records (metadata and user-data) that pertain to smart
large objects are flushed to the log at transaction commit. However, user data is
not guaranteed to be flushed to its stable storage location at commit time.

When logging is disabled, the database server does not log changes to user data
even if the database server logs other database changes. However, the database
server always logs changes to the metadata. Therefore, the database server can still
restore the metadata to an action-consistent state.

Important: Consider carefully whether to enable logging for a smart large object.
The database server incurs considerable overhead to log smart large objects. You
must also ensure that the system log file is large enough to hold the value of the
smart large object. The logical-log size must exceed the total amount of data that
the database server logs while the update transaction is active.

Write your DataBlade API modules so that any transactions with smart large
objects that have potentially long updates do not cause other transactions to wait.
Multiple transactions can access the same smart-large-object instance if the
following conditions are satisfied:

e The transaction can access the database row that contains an LO handle for the
smart large object.

Multiple references can exist on the same smart large object if more than one
column holds an LO handle for the same smart large object.

* Another transaction does not hold a conflicting lock on the smart large object.

Chapter 6. Smart large objects 6-5

6-6

The best update performance and fewest logical-log problems result when you
disable the logging feature when you load a smart large object and re-enable it
after the load operation completes. If logging is turned on, you might want to turn
logging off before a bulk load and then perform a level-0 backup.

By default, the database server does not log the user data of a smart large object.
You can control the logging behavior for a smart large object as part of its storage
characteristics.

Related concepts:

[“Locking modes” on page 6-10|
Related tasks:

[“Choosing storage characteristics” on page 6-29|

Last-access time:

The last-access time of a smart large object is the system time at which the
database server last read or wrote to the smart large object. The last-access time
records access to the user data and metadata of a smart large object. The database
server stores this system time as number of seconds since January 1, 1970, in the
metadata area of the sbspace.

Tip: The database server automatically tracks the last-change and last-modification
time for a smart large object in the status information.

By default, the database server does not save the last access time. You can choose
to track the last-access time for a smart large object as part of its storage
characteristics.

Important: Consider carefully whether to track last-access time for a smart large
object. To maintain last-access times for smart large objects, the database server
incurs considerable overhead in logging and concurrency.

Related tasks:

[‘Choosing storage characteristics” on page 6-29|

Related reference:

[‘Status information” on page 6-12|

Data integrity:

The structure of an sbpage in the sbspace determines how much data integrity the
database server can provide. An sbpage is the unit of allocation for
smart-large-object data, which is stored in the user-data area of an sbspace.

The database server supports the following levels of data integrity:

¢ High integrity, which tells the database server to use both a page header and a
page trailer in each sbpage

The database server uses the page header and trailer to detect incomplete writes
and data corruption. This option detects incomplete writes and data corruption.

* Moderate integrity, which tells the database server to use a page header, but no
page trailer, in each sbpage.

This option cannot compare the page header with the page trailer to detect
incomplete writes and data corruption.

Moderate integrity provides the following benefits:

IBM Informix DataBlade API Programmer’s Guide

¢ It eliminates an additional data copy operation that is necessary when an sbpage
has page headers and page trailers.

* It preserves the user data alignments on pages.

Moderate integrity might be useful for smart large objects that contain large
amounts of audio or video data that is moved through the database server and
that does not require a high data integrity.

By default, the database server uses high integrity (page headers and page trailers)
for sbspace pages. You can control the data integrity for a smart large object as part
of its storage characteristics.

Important: Consider carefully whether to use moderate integrity for sbpages of a
smart large object. Although moderate integrity takes less disk space per page, it
also reduces the ability of the database server to recover information if disk errors
occur.

Related concepts:

(& [Disk Structures and Storage (Administrator's Reference)
Related tasks:
[“Choosing storage characteristics” on page 6-29|

Open-mode information:

When you open a smart large object, you can specify the open mode for the data.
The open mode describes the context in which the I/O operations on the smart
large object are performed.

It includes the following information:

* The access mode for the smart large object: read-only, dirty-read, read /write,
write-only, or write-append

* The access method for the smart large object: random or sequential

* The buffering mode for the data to and from the smart large object: buffered or
unbuffered

¢ The locking mode for the smart large object: lock-all or byte-range mode

The database server uses the following system default open mode when it opens a
smart large object.

Open-mode information Default open mode
Access mode Read-only

Access method Random

Buffering Buffered access
Locking Whole-object locks

If your smart large object usually requires certain access capabilities when it is
opened, you can associate a default open mode with the smart large object. The
database server stores this default open mode with other storage characteristics of
the smart large object. To override the default open mode, you can specify an open
mode for a particular smart large object when you open it.

Chapter 6. Smart large objects 67

http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_0279.htm#ids_adr_0279

6-8

Related concepts:

[‘Open a smart large object” on page 6-49|

Related tasks:

[‘Choosing storage characteristics” on page 6-29|

Related reference:

[“Lo file descriptor” on page 6-18]

Access modes:

The smart-large-object open mode includes an access mode, which determines
which read and write operations are valid on the open smart large object.

The following table shows the access modes for a smart large object.

Table 6-1. Access modes for smart large objects

Access mode

Purpose

Read-only Only read operations are valid on the data.

mode

Dirty-read You can read uncommitted data pages for the smart large object. No locks

mode are requested on the data. You cannot write to a smart large object after
you set the mode to MI_LO_DIRTY_READ. When you set this flag, you
reset the current transaction isolation mode to dirty read for this smart
large object.

Write-only Only write operations are valid on the data.

mode

Write/append Any data you write is appended to the end of the smart large object. By

mode itself, it is equivalent to write-only mode followed by a seek to the end of
the smart large object. Read operations fail.
When you open a smart large object in write/append mode only, the smart
large object is opened in write-only mode. Seek operations move the seek
position, but read operations to the smart large object fail, and the LO seek
position remains unchanged from its position just before the write. Write
operations occur at the LO seek position, and then the seek position is
moved.

Read /write Both read and write operations are valid on the data.

mode

Truncate Delete any existing data in the smart large object and move the LO seek

position to the start of the smart large object (byte 0). If the smart large
object does not contain data, this access mode has no effect.

Access methods:

The smart-large-object open mode includes the access method, which determines
whether to access the smart-large-object data sequentially or with random access.

The following table shows the access methods for a smart large object.

IBM Informix DataBlade API Programmer’s Guide

Table 6-2. Access methods for a smart large object

Method of access

Purpose

Random access

Indicates that I/O is random

When you plan to read in nonsequential locations in the smart large
object, the smart-large-object optimizer does not read ahead a few

pages.

Sequential access

Indicates that reads are sequential in either forward or reverse
direction

When you read a smart large object sequentially, the
smart-large-object optimizer can read ahead a few pages.

Forward Indicates that the direction of sequential access is
forward

If you do not specify a direction, the default is
forward.

Reverse Indicates that the direction of sequential access is
reverse

The default access method is random, although the smart-large-object optimizer
might change this default based on a particular read pattern.

Buffering modes:

The smart-large-object open mode includes a buffering mode, which determines
how read and write operations on the open smart large object are buffered.

The following table shows the buffering modes for a smart large object.

Table 6-3. Buffering modes for a smart large object

Buffering mode

Purpose

Buffered access

Indicates that I/O of the smart-large-object data goes through the
buffer pool of the database server

This method of access is called buffered 1/O. Buffered 1/0 tells the
optimizer that someone might be planning to reread the same LO

page.

Unbuffered access

Indicates that I/O of the smart-large-object data does not use the
buffer pool

This method of access is called lightweight I/O. Lightweight I/O tells
the smart-large-object optimizer to use private buffers instead of the
buffer pool for these I/O operations. These private buffers are
allocated out of the session pool of the database server. With
lightweight I/O, you bypass the overhead of the buffer pool
management when the database server performs a sequential scan.

Keep the following issues in mind when you use lightweight I/0O:

* Be sure that you close smart large objects that use lightweight I/0O.

Otherwise, the memory that has been allocated to the private buffers remains
allocated. This private-buffer memory is only deallocated when you close the

smart large object.

Chapter 6. Smart large objects 6-9

6-10

* Be careful about using lightweight I/O when you open the same smart large
object many times and concurrently access this object in the same transaction.

All opens of the same smart large object share the same lightweight I/O buffers.
Potentially, an operation can cause the pages in the buffer to be flushed while
other operations might still expect these pages to exist.

Important: In general, if read and write operations to the smart large objects are
less than 8080 bytes, do not use lightweight I/O. In other words, if you are reading
or writing short blocks of data, such as two kilobytes or four kilobytes, the default
buffered 1/O operations provide better performance.

The smart-large-object optimizer imposes the following restrictions when you
switch from lightweight /O to buffered I/0O for a given smart large object:

* You can alter the buffering mode of a smart large object that was created with
lightweight 1/O to buffered 1/O as long as no open instances exist for that smart
large object.

However, you cannot alter the buffering mode from buffered 1/O to one with
lightweight 1/0.

* You must specify lightweight I/O when you open a smart large object that was
created with lightweight 1/0.

If an open smart large object specifies buffered 1/0, the smart-large-object
optimizer ignores any attempt to open it with lightweight /0. However, if you
first change the buffering mode from lightweight I/O to buffered 1/O, you can
then specify buffered I/O when you open the smart large object.

* You can specify lightweight I/O when you open a smart large object that was
created with buffered I/O only if you open the smart large object in read-only
mode.

In this case, the smart-large-object optimizer does not allow write operations on
the smart large object. Attempts to do so generate an error. To write to the smart
large object, you must close it then reopen it with buffered I/O and an access
mode that enables write operations.

These limitations ensure consistency of the smart-large-object buffers without
imposing processing overhead for I/O operations.

If you do not specify a buffering mode, the default is buffered 1/0. The
smart-large-object optimizer determines the default buffering mode for a smart
large object.

Locking modes:

The smart-large-object open mode includes a lock mode, which determines the kind
of the lock requests made on a smart large object.

To prevent simultaneous access to smart-large-object data, the smart-large-object
optimizer obtains a lock on this data when you open the smart large object. This
smart-large-object lock is distinct from the following kinds of locks:

¢ Row locks

A lock on a smart large object does not lock the row in which the smart large
object resides. However, if you retrieve a smart large object from a row and the
row is still current, the database server might hold a row lock as well as a
smart-large-object lock. Locks are held on the smart large object instead of on
the row because many columns can be accessing the same smart-large-object
data.

IBM Informix DataBlade API Programmer’s Guide

* Locks of different smart large objects in the same row of a table

A lock on one smart large object does not affect other smart large objects in the
row.

The following table shows the lock modes that a smart large object can support.

Table 6-4. Lock modes for a smart large object

Lock mode Purpose Description

Lock-all Lock the entire smart large Indicates that lock requests apply to all data
object for the smart large object

Byte-range Lock only specified Indicates that lock requests apply only to
portions of the smart large the specified number of bytes of
object smart-large-object data

When the smart-large-object optimizer opens a smart large object, it uses the
following information to determine the lock mode of the smart large object:

* The access mode of the smart large object
The database server obtains a lock as follows:

— In share mode, when you open a smart large object for reading (read-only or
dirty read)

— In update mode, when you open a smart large object for writing (write-only,
read-write, write/append, truncate)

When a write operation (or some other update) is actually performed on the
smart large object, the database server upgrades this lock to an exclusive lock.

e The isolation level of the current transaction

If you have selected an isolation mode of repeatable read, the smart-large-object
optimizer does not release any locks that it obtains on a smart large object until
the end of the transaction.

By default, the smart-large-object optimizer chooses the lock-all lock mode. You
can request locks on the data of a smart large object at the byte level with a
byte-range lock.

The smart-large-object optimizer retains the lock as follows:

* It holds share-mode locks and update locks (which have not yet been upgraded
to exclusive locks) until one of the following events occurs:

— The closing of the smart large object
— The end of the transaction
— An explicit request to release the lock (for a byte-range lock only)

* It holds exclusive locks until the end of the transaction even if you close the
smart large object.

When one of the preceding conditions occurs, the smart-large-object optimizer
releases the lock on the smart large object.

Important: You lose the lock at the end of a transaction even if the smart large
object remains open. When the smart-large-object optimizer detects that a smart
large object has no active lock, it automatically obtains a new lock when the first
access occurs to the smart large object. The lock that it obtains is based on the
original access mode of the smart large object.

Chapter 6. Smart large objects ~ 6-11

6-12

The smart-large-object optimizer releases the lock when the current transaction
terminates. However, the optimizer obtains the lock again when the next function
that needs a lock executes. If this behavior is undesirable, use BEGIN WORK
transaction blocks and place a COMMIT WORK or ROLLBACK WORK statement
after the last statement that needs to use the lock.

Related concepts:
[“Logging” on page 6-5
Related reference:

[“Access the default open flag” on page 6-39)

“Free a smart large object” on page 6-50|

“Pass a NULL connection (Server)” on page 6-64|

Status information
The following table shows the status information that the database server
maintains for a smart large object.

Table 6-5. Status information for a smart large object

Status Information Description
Last-access time The time, in seconds, that the smart large object was last
accessed

This value is available only if the last-access time attribute is
enabled for the smart large object.

Storage characteristics The storage characteristics for the smart large object

Last-change time The time, in seconds, of the last change in status for the smart
large object

A change in status includes changes to metadata and user data
(data updates and changes to the number of references). This
system time is stored as number of seconds since January 1,
1970.

Last-modification time The time, in seconds, that the smart large object was last
modified

A modification includes only changes to user data (data
updates). This system time is stored as number of seconds since
January 1, 1970.

On some platforms, the last-modification time might also have
a microseconds component, which can be obtained separately
from the seconds component.

Reference count The number of references (LO handles) to the smart large object

Size The size, in bytes, of the smart large object

The database server stores the status information in the metadata area of the
sbspace.

Tip: The time values (such as last-access time and last-change time) might differ
slightly from the system time. This difference is due to the algorithm that the
database server uses to obtain the time from the operating system.

IBM Informix DataBlade API Programmer’s Guide

Related concepts:

[“Last-access time” on page 6-6
Related tasks:

[“Obtaining status information for a smart large object” on page 6-53

Storing a smart large object in a database

To store a smart large object in a database, you must save its LO handle in a
column. This section describes the valid data types to hold an LO handle and how
to access a smart large object.

Valid data types

In the database, you can use either of the following ways to store a smart large
object in a column:

* For direct access to the smart large object, create a column of the CLOB or BLOB
data type.

* To hide the smart large object within an atomic data type, create an opaque type
that holds a smart large object.

CLOB and BLOB data types

You can store a smart large object directly in a column that has one of the
following data types:

* The CLOB data type holds text data.

* The BLOB data type can store any kind of binary data in an undifferentiated
byte stream.

The CLOB or BLOB column holds an LO handle for the smart large object.
Therefore, when you select a CLOB or BLOB column, you do not obtain the actual
data of the smart large object, but the LO handle that identifies this data. The
BLOB and CLOB data types have identical internal representation. Externally, an
LO handle is represented as a flat array of bytes with a length of MI_LO_SIZE.

Suppose an employee table has a BLOB column named emp_picture to hold the
picture of an employee. The following figure shows that in a row of the employee
table, the emp_picture column contains an LO handle. This LO handle contains
information about the location of the actual employee picture in the sbspacel_100

sbspace.
BLOB column: Picture for
emp_picture employee
employee sbspace1_100
empno emp_picture LO handle
1234
1235
Disk 100
Database A

Figure 6-2. A smart large object in a database column

The CLOB and BLOB data types are often referred to collectively as
smart-large-object data types.

Chapter 6. Smart large objects 6-13

6-14

Related reference:
[[BLOB data type (Guide to SQL: Reference)]
[[CLOB data type (Guide to SQL: Reference)|

Opaque data type

An opaque data type is a user-defined atomic data type. You can define a field of
an opaque data type to be a smart large object. The support functions of the
opaque type must perform the conversion between the LO handle in the opaque
type and the smart-large-object data in the sbspace.

In[Figure 6-2 on page 6-13| the emp_picture column can be an opaque data type
named picture instead of a BLOB data type. The picture data type can hold the
image in a smart large object in one field of its internal structure and other
information about the picture in other fields.

Related concepts:

[“Manage the reference count” on page 6-58

(& [Opaque Data Types (Guide to SQL: Reference)

(& [Opaque data types (UDR and Data Type Developer's Guide)|

Access to a smart large object

The DataBlade API provides the smart-large-object interface for access to smart
large objects. This interface contains a set of functions and data types to provide
access to smart large objects.

The smart-large-object interface provides access to the smart large object through
its LO handle, as follows:

* After you select a column that contains an LO handle, you can use this handle
to access the smart-large-object data in an sbspace.

* To store a new smart large object, you create a new LO handle, write the data to
the sbspace, and store the LO handle in the column.

Related concepts:
[“The LO handle” on page 6-3|

[‘The smart-large-object interface” on page 6-15|

Selecting a smart large object

A SELECT statement on a CLOB, BLOB, or opaque-type column retrieves an LO
handle for a smart large object. It does not retrieve the actual data for the smart
large object because this data is in an sbspace.

To select a smart large object:

1. Use a SELECT statement to retrieve the LO handle from the CLOB, BLOB, or
opaque-type column.

The LO handle identifies the location of the smart large object on disk.
2. Read the smart-large-object data from the sbspace of the smart large object.

The LO handle identifies the smart large object to open. After you open the
smart large object, you obtain an LO file descriptor, which you can use to read
data from the sbspace of the smart large object.

Storing a smart large object
Because a smart large object can be quite large, it is not practical to store it directly
in the database table. Instead, the INSERT and UPDATE statements store the LO

IBM Informix DataBlade API Programmer’s Guide

http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_098.htm#ids_sqr_098
http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_107.htm#ids_sqr_107
http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_165.htm#ids_sqr_165
http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.udr.doc/ids_udr_161.htm#ids_udr_161

handle of the smart large object in the CLOB, BLOB, or opaque-type column. The
data of the smart large object is in an sbspace.

To save a smart large object in a CLOB, BLOB, or opaque-type column:

1. For a new smart large object, ensure that the smart large object has an sbspace
specified for its data.

For most smart large objects, the sbspace name is the only storage characteristic
that you need to specify. The smart-large-object optimizer can calculate values
for all other storage characteristics. You can set particular storage characteristics
to override these calculated values. However, most applications do not need to
set storage characteristics at this level of detail. For more information, see
[“Obtaining storage characteristics” on page 6-29.|

2. Create a new LO handle for the smart large object and open the smart large
object.

When you create a smart large object, you obtain an LO handle and an LO file
descriptor for the new smart large object.

3. Write the smart-large-object data to the sbspace of the smart large object.

Use the LO file descriptor to identify the smart large object whose data you
want to write to the sbspace.

4. Use the INSERT or UPDATE statement to store the LO handle into the CLOB,
BLOB, or opaque-type column.

The LO handle for the smart large object identifies the location of the smart
large object on disk. After you have written the data to the smart large object,
provide its LO handle to the INSERT or UPDATE statement to save it in the
database. The smart-large-object data remains in the sbspace.

Important: The sbspace for the smart large object must exist before the INSERT
statement executes.

When you store an LO handle in the database, the database server can ensure that
the smart large objects are only freed when no more database columns reference
them. For more information, see ["Delete a smart large object” on page 6-57.| For
information about how to insert a smart large object from within a DataBlade API
module, see [‘Creating a smart large object” on page 6-25

The smart-large-object interface

The smart-large-object interface contains a set of functions and data types to
provide access to smart large objects.

It enables you to access the data of a smart large object in much the same way as
you would access an operating-system file on UNIX, Linux, or Windows. The
interface provides the following:

¢ Smart-large-object functions

¢ Smart-large-object data type structures

The miTo.h header file defines the functions and data type structures of the
smart-large-object interface. The mi.h header file automatically includes the milo.h
header file. You must include either mi.h or milo.h in any DataBlade API routine
that calls a smart-large-object function or declares one of the smart-large-object
data type structures.

Chapter 6. Smart large objects 6-15

6-16

Topics in this section describe how to use the smart-large-object interface to
perform the following operations on a smart large object.

Smart-large-object operation

More information

Create a new smart large object

“Creating a smart|

large object” onl
age 6-25

Access data in an existing smart large object

“ Accessing a smar]

Modify an existing smart large object

large object” on|
age 6-4

Obtain status information about an existing smart large object “Obtaining status|

information for a
smart large object”]

on page 6-53|

Delete a smart large object

“Delete a smar
large object” on|

page 6—52|

Related reference:

[“Access to a smart large object” on page 6-14|

Smart-large-object data type structures

The smart-large-object interface provides data type structures that store

information about a smart large object.

The following table summarizes the data type structures of the smart-large-object

interface.

Table 6-6. Data types of the smart-large-object interface

Smart-large-object data type
structure Data type

Description

The LO-specification structure MI_LO_SPEC

Holds storage characteristics for
a smart large object

The LO handle MI_LO_HANDLE

Identifies the location of the
smart large object; analogous to
the file name of an
operating-system file

The LO file descriptor MI_LO_FD

Identifies an open smart large
object; analogous to the file
descriptor of an
operating-system file

The LO-status structure MI_LO_STAT

Holds status information about a
smart large object

These structures are all opaque to a DataBlade API module; that is, you do not
access their fields directly but instead use accessor functions that the

smart-large-object interface provides.

IBM Informix DataBlade API Programmer’s Guide

Lo-specification structure

The LO-specification structure, MI_LO_SPEC, defines the storage characteristics
for an existing or a new smart large object. The storage characteristics provide
information about features of the smart large object and how to store it on disk.

The following table summarizes the memory operations for an LO-specification
structure.

Memory duration Memory operation Function name
Current memory duration Constructor mi_lo_spec_init()
Destructor mi_lo_spec_free()

To access an LO-specification structure in a DataBlade API module, declare a
pointer to an MI_LO_SPEC structure. For example, the following line shows the
valid syntax of a variable that accesses an LO-specification structure:

MI_LO_SPEC *myspec; /* valid syntax */

Declaration of a flat LO-specification structure generates a compile error. The
following line shows invalid syntax for an LO-specification structure:

MI_LO_SPEC myspec; /* INVALID syntax */

The milo.h header file defines the MI_LO_SPEC data type. Therefore, you must
include the milo.h (or mi.h) file in DataBlade API modules that access this
structure.

Related concepts:

[‘Storage characteristics” on page 6-3]

Related reference:

[‘Obtain the LO-specification structure” on page 6-26|

LO handle

A LO handle, MI_LO_HANDLE, serves as a reference to a smart large object. It is
analogous to the file name of an operating-system file in that it is a unique
identifier of a smart large object. The LO handle contains encoded information
about the smart large object, such as its physical disk location and other
security-related information. After a smart large object is created, an associated LO
handle is a valid reference for the life of that smart large object.

The following table summarizes the memory operations for an LO handle.

Memory duration Memory operation Function name

Current memory duration Constructor mi_get_lo_handle(), mi_lo_copy(),
mi_lo_create(), mi_lo_expand(),
mi_lo_from_buffer(),
mi_lo_from_string(),
mi_streamread_lo()

Destructor mi_lo_delete_immediate(),
mi_lo_release()

To access an LO handle in a user-defined routine (UDR), declare it in one of the
following ways:

¢ As a pointer to the MI_LO_HANDLE data type:
MI_LO HANDLE *my LOhndl; /* an LO-handle pointer =/

Chapter 6. Smart large objects 6-17

6-18

When you declare an LO handle in this way, you must allocate memory for it
before you use it.

e As a flat MI_LO_HANDLE structure:
MI_LO_HANDLE my_flat_LOhnld; /* a flat LO handle %/

When you declare a flat MI_LO_HANDLE structure, you do not need to
allocate memory for it. This flat structure is useful when you need to embed an
LO handle within an opaque data type.

The miTo.h header file defines the MI_LO_HANDLE data type. Therefore, you
must include the milo.h (or mi.h) file in DataBlade API modules that access this
handle.

Related concepts:

[“Initialize an LO-specification structure” on page 6-2|
Related tasks:

[“Selecting the LO handle” on page 6-4|

Related reference:

[“Obtain an LO handle” on page 6-42|

Lo file descriptor

The LO file descriptor, MI_LO_FD, is a reference to an open smart large object. An
LO file descriptor is similar to a file descriptor for an operating-system file. It is an
integer number that serves as a transient descriptor for performing I/O on the data
of the smart large object.

A LO file descriptor provides the following information about an open smart large
object:

* The LO seek position, the current position at which read and write operations
occur.

When you first open a smart large object, the seek position is at byte zero.

* The open mode of the smart large object, which determines which operations
can be performed on the data and how to buffer the data for I/O operations.

You specify the open mode when you open a smart large object.

The following table summarizes the memory operations for an LO file descriptor.

Memory duration Memory operation Function name

Not allocated from memory-duration pools Constructor mi_lo_copy(),
mi_lo_create(),
mi_lo_expand(),
mi_lo_from_file(),
mi_lo_open()

Destructor mi_lo_close()

To access an LO file descriptor in a DataBlade API module, declare a variable with
the MI_LO_FD data type. For example, the following line declares the variable
my_lofd that is an LO file descriptor:

MI_LO_FD my_Tofd;

The miTo.h header file defines the MI_LO_FD data type. Therefore, you must
include the miTo.h (or mi.h) file in DataBlade API modules that access this handle.

IBM Informix DataBlade API Programmer’s Guide

Tip: Other smart-large-object data type structures require that you declare a
pointer to them because the DataBlade API handles memory allocation for these
structures. However, you can declare an LO file descriptor directly.

Server only:

Because you declare an LO file descriptor directly, its scope is that of the variable
you declare to hold it. When you assign an LO file descriptor to a local variable,
the LO file descriptor is deallocated when the function that declares it ends. If you
want to keep the LO file descriptor longer, you can allocate user memory with the
memory duration you want (up to the advanced duration of PER_SESSION) and
copy the LO file descriptor into this memory. For example, you can assign the LO
file descriptor to PER_COMMAND memory and copy it into the user state of the
MI_FPARAM structure.

Important: Although the scope of an LO file descriptor is determined by its
declaration, the scope of the open smart large object (which the LO file descriptor
identifies) is the entire session. Make sure you explicitly close a smart large object
before the scope of its LO file descriptor expires.

Related concepts:

[“Open-mode information” on page 6-7]

[“Initialize an LO-specification structure” on page 6-28

[“Saving a user state” on page 9-§|

[“Manage the memory duration” on page 14-21|

Related reference:

[“Free a smart large object” on page 6-50)

Lo-status structure
The LO-status structure, MI_LO_STAT, contains the status information for an
existing smart large object.

The following table summarizes the memory operations for an LO-status structure.

Memory duration Memory operation Function name
Current memory duration Constructor mi_lo_stat()
Destructor mi_lo_stat_free()

To access an LO-status structure in a DataBlade API module, declare a pointer to
an MI_LO_STAT structure. For example, the following line declares the variable
mystat that points to an LO-specification structure:

MI_LO_STAT =mystat; /+ valid syntax =/

Declaration of a flat LO-status structure generates a compile error. The following
line shows invalid syntax for an LO-status structure:

MI_LO_STAT mystat; /* INVALID syntax */
The milo.h header file defines the MI_LO_STAT data type. Therefore, you must

include the milo.h (or mi.h) file in DataBlade API modules that access this
structure.

Chapter 6. Smart large objects 6-19

Related reference:

[‘Obtain status information” on page 6-55|

Smart-large-object functions

The smart-large-object interface includes functions that provide the following
operations on a smart large object:

* Creating a smart large object

* Performing input and output (I/O) on smart-large-object data
* Manipulating LO handles

* Accessing storage characteristics

* Obtaining status information

* Moving smart large objects to and from operating-system files

Most of the smart-large-object function names begin with the string mi_lo_. The
IBM Informix DataBlade API Function Reference contains an alphabetical list of all
DataBlade API functions, including the smart-large-object functions.

Functions that create a smart large object
The smart-large-object creation functions create a smart large object, open it, and
return a new LO handle and LO file descriptor for it.

The following table lists the smart-large-object creation functions.

Table 6-7. Smart-large-object creation functions

Smart-large-object

creation function Description

mi_lo_create() Creates a new, empty smart large object

mi_lo_copy() Creates a new smart large object that is a copy of an existing
smart large object

mi_lo_expand() Creates a new smart large object from existing

(deprecated) multirepresentational data

mi_lo_from_file() Creates a new smart large object from data in an operating-system
file

Related tasks:
[“Creating a smart large object” on page 6-25|

Functions that perform input and output on a smart large object
The smart-large-object interface for IBM Informix includes functions that provide
basic file operations such as create, open, seek, read, write, alter, and truncate.

These routines bypass the query processor, executor, and optimizer, and give the
application direct access to a smart large object. These functions use an LO file
descriptor to identify the open smart large object.

The following table shows the basic file-like operations on a smart large object

with the smart-large-object function that performs them and the analogous
operating-system calls for file operations.

6-20 IBM Informix DataBlade API Programmer’s Guide

Table 6-8. Main DataBlade API functions of the smart-large-object interface

Smart-large-object

Smart-large-object operation function Operating-system call
Open the smart large object that the =~ mi_lo_open() open()

LO handle identifies: the open

operation generates an LO file

descriptor for the smart large object.

Seek to the desired LO seek position ~ mi_lo_seek() seek()

to begin a read or write operation.

Obtain the current LO seek position. ~ mi_lo_tell() tell()

Lock the specified number of bytes of mi_lo_lock() lock()

data.

Perform the read or write operation
for the specified number of bytes.

mi_lo_read(),
mi_lo_readwithseek(),
mi_lo_write(),
mi_lo_writewithseek()

read(), write()

Unlock the specified number of bytes mi_lo_unlock() unlock()
of data.
Obtain status information about a mi_lo_stat() stat()

particular smart large object.

Truncate smart-large-object data ata ~ mi_lo_truncate() truncate()
specified location.
Close the smart large object and free mi_lo_close() close()

the LO file descriptor.

Related concepts:

[“Open a smart large object” on page 6-49|

Functions that manipulate an LO handle
The following table shows the smart-large-object functions that act on an LO
handle, not on the smart large object that it identifies.

DataBlade API function

Purpose

mi_get_lo_handle()

Obtains an LO handle from a user-defined
buffer

mi_lo_alter()

Alters the storage characteristics of the smart
large object that the LO handle identifies

mi_lo_copy()

Copies the contents of a smart large object
(that an LO handle identifies) into a new
smart large object and initializes the LO
handle of the new smart large object

mi_lo_create()

Creates a new smart large object and
initializes its LO handle

mi_lo_decrefcount()

Decrements the reference count of the smart
large object that the LO handle identifies

mi_lo_expand() (deprecated)

Copies multirepresentational data into a new
smart large object and initializes the LO
handle

mi_lo_filename()

Returns the name of the file where the
mi_lo_to_file() function would store the

smart large object that the LO handle
identifies

Chapter 6. Smart large objects 6-21

6-22

DataBlade API function

Purpose

mi_lo_from_buffer()

Copies a specified number of bytes from a
user-defined buffer into a smart large object
that the LO handle identifies

mi_lo_from_file()

Copies the contents of an operating-system
file to a smart large object that the LO handle
identifies

mi_lo_from_string()

Converts an LO handle from its text
representation to its binary representation

mi_lo_increfcount()

Increments the reference count of the smart
large object that the LO handle identifies

mi_lo_invalidate()

Marks an LO handle as invalid

mi_lo_lolist_create()

Converts an array of LO handles into an
MI_LO_LIST structure

mi_lo_open()

Opens the smart large object that the LO
handle identifies

mi_lo_ptr_cmp()

Compares two LO handles to see if they
identify the same smart large object

mi_lo_release()

Releases resources held by a transient smart
large object, including its LO handle

mi_lo_to_buffer()

Copies a specified number of bytes from a
smart large object that the LO handle
identifies into a user-defined buffer

mi_lo_to_file()

Copies the smart large object that the LO
handle identifies to an operating-system file

mi_lo_to_string()

Converts an LO handle from its binary
representation to its text representation

mi_lo_validate()

Checks whether an LO handle is valid

mi_put_lo_handle()

Puts an LO handle into a user-defined buffer
Restriction: The LO handle,
MI_LO_HANDLE, is an opaque structure to
DataBlade API modules. Do not access its
internal structure directly. There is no
guarantee that the internal structure of
MI_LO_HANDLE will not change. To create
portable code, use the appropriate DataBlade
API function to access this structure.

Related reference:

[“Obtain an LO handle” on page 6-42]

Functions that access an LO-specification structure
The following table shows the smart-large-object functions that access the

LO-specification structure.

DataBlade API Function

Purpose

mi_lo_alter()

Alters the storage characteristics of an existing smart
large object

mi_lo_colinfo_by_ids()

Updates the LO-specification structure with the
column-level storage characteristics for a column
identified by a row descriptor

IBM Informix DataBlade API Programmer’s Guide

DataBlade API Function

Purpose

mi_lo_colinfo_by_name()

Updates the LO-specification structure with the
column-level storage characteristics for a column
identified by name

mi_lo_copy()

Copies the contents of the smart large object into a
new smart large object, whose storage characteristics
the LO-specification structure contains

mi_lo_create()

Creates a new smart large object that has the storage
characteristics in the LO-specification structure

mi_lo_expand() (deprecated)

Copies multirepresentational data into a new smart
large object, whose storage characteristics the
LO-specification structure contains

mi_lo_from_file()

Copies the contents of an operating-system file to a
smart large object, whose storage characteristics the
LO-specification structure contains

mi_lo_spec_free()

Frees the resources of the LO-specification structure

mi_lo_spec_init()

Allocates and initializes an LO-specification
structure

mi_lo_specget_def_open_flags()

Retrieves the default open mode from the
LO-specification structure

mi_lo_specget_estbytes()

Retrieves the estimated number of bytes from the
LO-specification structure

mi_lo_specget_extsz()

Accessor function to get the allocation extent size
from the LO-specification structure

mi_lo_specget_flags()

Accessor function to get the attributes flag from the
LO-specification structure

mi_lo_specget_maxbytes()

Accessor function to get the maximum number of
bytes from the LO-specification structure

mi_lo_specget_sbspace()

Accessor function to get the name of the sbspace
from the LO-specification structure

mi_lo_specset_def_open_flags()

Accessor function to set the default open mode in
the LO-specification structure

mi_lo_specset_estbytes()

Accessor function to set the estimated number of
bytes in the LO-specification structure

mi_lo_specset_extsz()

Accessor function to set the allocation extent size in
the LO-specification structure

mi_lo_specset_flags()

Accessor function to set the attribute flags in the
LO-specification structure

mi_lo_specset_maxbytes()

Accessor function to set the maximum number of
bytes in the LO-specification structure

mi_lo_specset_sbspace()

Accessor function to set the name of the sbspace in
the LO-specification structure

mi_lo_stat_cspec()

Returns a pointer to the LO-specification structure
that contains the storage characteristics obtained
from the LO-status structure of an existing smart
large object

Restriction: The LO-specification structure, MI_LO_SPEC, is an opaque structure
to DataBlade API modules. Do not access its internal structure directly. The

Chapter 6. Smart large objects ~ 6-23

internal structure of MI_LO_SPEC might change in future releases. Therefore, to
create portable code, always use the LO-specification accessor functions to obtain
and store values in this structure.

Related tasks:
[“Choosing storage characteristics” on page 6-29|

Related reference:

[“Obtain the LO-specification structure” on page 6-26]|

Functions that access an LO-status structure
The following table shows the smart-large-object functions that access the
LO-status structure.

DataBlade API function Purpose

mi_lo_stat() Allocates and initializes an LO-status structure with status
information of an open smart large object

mi_lo_stat_atime() Accessor function to get the last-access time

mi_lo_stat_cspec() Accessor function to get the storage characteristics

mi_lo_stat_ctime() Accessor function to get the last-change time

mi_lo_stat_free() Frees the resources of the LO-status structure

mi_lo_stat_mtime_sec() Accessor function to get the seconds component of the
last-modification time

mi_lo_stat_mtime_usec() Accessor function to get the microseconds component of the
last-modification time

mi_lo_stat_refent() Accessor function to get the reference count

mi_lo_stat_size() Accessor function to get the size of smart large object

Restriction: LO-status structure, MI_LO_STAT, is an opaque structure to
DataBlade API modules. Do not access its internal structure directly. The internal
structure of MI_LO_STAT might change in future releases. Therefore, to create
portable code, always use the LO-status accessor functions to obtain and store
values from this structure.

Related reference:

[‘Obtain status information” on page 6-55|

Functions that move smart large objects to and from
operating-system files

The following table shows the smart-large-object functions that move smart large
objects to and from operating-system files.

DataBlade API Function Purpose
mi_file_to_file() Copies the contents of one operating-system file to another
mi_lo_from_file() Copies the contents of an operating-system file to a new

smart large object

mi_lo_from_file_by_lofd() Copies the contents of an operating-system file to an
existing smart large object

mi_lo_to_file() Copies the contents of a smart large object to a new
operating-system file

6-24 IBM Informix DataBlade API Programmer’s Guide

Related reference:

[“Operating-system files” on page 6-61|

Creating a smart large object

To create a smart large object and save its LO handle in the database, you need to

take the following steps.

Step Task Smart-large-object function

More information

1. Obtain an LO-specification structure to mi_lo_spec_init(), mi_lo_stat_cspec()
hold the storage characteristics for the
new smart large object.

“Obtain the
LO-specificatio

structure” on page|

6-26

2. Ensure that the LO-specification structure System-specified storage characteristics:
contains the desired storage mi_lo_spec_init()
characteristics for the new smart large
object. Column-level storage characteristics:

mi_lo_colinfo_by_name(),
mi_lo_colinfo_by_ids()

User-specified storage characteristics:
Table 6-14 on page 6-36} [Table 6-15 on page]

“Choosing storagel

characteristics” on|

[page 6—29|

6-3
3. Create an LO handle for the new smart mi_lo_create(), mi_lo_expand(), “Initialize an LO|
large object and open the smart large mi_lo_copy(), mi_lo_from_file() handle and an LO|
object. file descriptor” on|
[page 6—41|
4. Write a specified number of bytes from a mi_lo_write(), mi_lo_writewithseek() “Write data to 5]
user-defined buffer to the open smart smart large object”|
large object. on page 6-43|
5. Pass the LO handle as the column value C Casting
for an INSERT or UPDATE statement.
6. Execute an INSERT or UPDATE mi_exec(), mi_exec_prepared_statement(),
statement to save the LO handle of the mi_value()
smart large object in a database column.
7. Close the smart large object. mi_lo_close() “Free a smart large|
object” on pa
6-50
8. Free resources. mi_lo_spec_free(), mi_lo_release()

“Free resources”
on page 6-4

The following figure shows the first six of these steps that a DataBlade API module
uses to insert the smart-large-object data into the emp_picture column of the

employee table (Figure 6-2 on page 6-13).

Chapter 6. Smart large objects ~ 6-25

BLOB
INSERT INTO employee 0

, column:
(emp_picture) VALUES LO handle emp_picture
/ DataBlade routine \ é Server A \@ employee
'_®_ DAP|)r========== -=-=-%(1IDS == empno emp_picture
: [== ———— 2(5) N— 1234
Smart-
1 create
1 |large-object p = = = = -LO handle 1235
| [interface \\@
v 3 OMR . Database A
1 N 4 < write sbspace1_100
1@ IR
LO-specification LO file descriptors Ol h
ST 001 Y—— I
e @ Disk 100
Smart-large-object
K User-defined buffer J Data:employee image

Figure 6-3. Inserting into a BLOB column

Related reference:

[“Functions that create a smart large object” on page 6-20|
[“Obtain a valid LO file descriptor” on page 6-54|

Obtain the LO-specification structure

Before you create a smart large object, obtain a valid LO-specification structure to
hold its storage characteristics.

You can obtain an LO-specification structure in either of the following ways:

e Create a new LO-specification structure to hold the storage characteristics of a
new smart large object with the mi_lo_spec_init() function.

* Obtain an LO-specification structure that holds the storage characteristics of an
existing smart large object with the mi_lo_stat_cspec() function.

Related concepts:

[“Initialize an LO handle and an LO file descriptor” on page 6-41]

Related reference:

[“Lo-specification structure” on page 6-17|

[‘Functions that access an LO-specification structure” on page 6-22|

Specify new storage characteristics

The mi_lo_spec_init() function is the constructor for the LO-specification structure.

This function performs the following tasks to create a LO-specification structure:

1. It allocates a new LO-specification structure when you provide a NULL-valued
pointer as an argument.

2. It initializes all fields of the LO-specification structure (disk-storage information
and attributes flag) to the appropriate null values.

Restriction: Do not handle memory allocation for an LO-specification structure
with system memory-allocation routines (such as malloc() or mi_alloc()) or by
direct declaration. You must use the LO-specification constructor,

mi_lo_spec_init(), to allocate a new LO-specification structure.

Allocating memory for an LO-specification structure:

6-26 IBM Informix DataBlade API Programmer’s Guide

When you pass a NULL-valued pointer as the second argument of the
mi_lo_spec_init() function, this function allocates an LO-specification structure.

Server only: This new LO-specification structure has the current memory duration.

The following code fragment declares a pointer named myspec and initializes this
pointer to NULL:

MI_LO_SPEC *myspec;
MI_CONNECTION =conn;

/* Allocate a new LO-specification structure */

myspec = NULL;

if (' mi_lo_spec_init(conn, &myspec) != MI_OK)
handle_error();

/* Perform tasks with LO-specification structure */

/* Once finished with LO-specification structure, free it */
if (mi_lo_spec_free(conn, myspec)!= MI 0K)
handle_error();

After the execution of mi_lo_spec_init(), the myspec variable points to the newly
allocated LO-specification structure.

If you provide a second argument that does not point to NULL, the
mi_lo_spec_init() function assumes that this pointer references an existing
LO-specification structure that a previous call to mi_lo_spec_init() has allocated.
An LO-specification pointer that is not NULL allows a DataBlade API module to
reuse an LO-specification structure. The following code fragment reuses the
LO-specification structure that the LO_spec pointer references when the first_time
flag is false:

MI_CONNECTION =conn;

MI_LO_SPEC #LO_spec = NULL;

mi_integer first_time = 1;

if (first_time)
{

LO_spec = NULL; /= tell interface to allocate memory */
first _time = 0; /* set "first_time" flag to false */

if (mi_lo_spec_init(conn, &LO0_spec) != MI _OK)
{

/* error */

}
Important: Before you use an LO-specification structure, make sure that you either
call mi_lo_spec_init() with the LO-specification pointer set to NULL, or that you

have initialized this pointer with a previous call to mi_lo_spec_init().

After you have a valid LO-specification structure, you can use the accessor
functions to obtain the storage characteristics from this LO-specification structure.

For the syntax of mi_lo_spec_init(), see the IBM Informix DataBlade API Function
Reference.

Chapter 6. Smart large objects ~ 6-27

6-28

Related concepts:

[‘Define user-specified storage characteristics” on page 6-36|
Related tasks:

[‘Choosing storage characteristics” on page 6-29|

Initialize an LO-specification structure:

The mi_lo_spec_init() function initializes the LO-specification structure with values
that obtain the system-specified storage characteristics. The system-specified
storage characteristics are the defaults that the database server uses. They are the
storage characteristics at the bottom of the storage-characteristics hierarchy.

After this initialization, you can change the values in the LO-specification
structure:

¢ The new smart large object inherits column-level storage characteristics of a
CLOB or BLOB column.

* You provide user-specified storage characteristics for the new smart large object.
Related tasks:

[“Choosing storage characteristics” on page 6-29|

Related reference:
[“LO handle” on page 6-17]
[“Lo file descriptor” on page 6-18|

Copy storage characteristics from an existing smart large object
The mi_lo_stat_cspec() function copies the created specification storage
characteristics from an existing smart large object to a flags field that can then be
passed to mi_lo_create() to create a smart large object. This function is used when
you want a new smart large object to have the same characteristics as an existing
smart large object.

The LO_stat structure in the following example holds status information for an
existing smart large object. You initialize an LO-status structure with the
mi_lo_stat() function.

The following code fragment assumes that the old_LOfd variable has already been
initialized as the LO file descriptor of an existing smart large object. This code
fragment uses the storage characteristics of the existing smart large object (which
the mi_lo_stat() function puts into the MI_LO_STAT structure that LO_stat
specifies) as the create time storage characteristics for the new smart large object
that the mi_lo_create() function creates.

MI_LO_HANDLE *LO_hd1 = NULL;

MI_LO_STAT *LO stat = NULL;

MI_LO_SPEC *LO_spec;

MI_LO_FD new LOfd, old_LOfd;

mi_integer flags;

if (mi_lo_stat(conn, old_LOfd, &LO_stat) != MI_OK)
{
/* handle error and exit */
}
LO_spec = mi_Tlo_stat_cspec(LO stat);
new_LOfd = mi_lo_create(conn, LO_spec, flags, &L0_hdl);

IBM Informix DataBlade API Programmer’s Guide

Related reference:

[‘Obtain status information” on page 6-55|

Choosing storage characteristics

After initializing an LO-specification structure, you need to ensure that this
structure contains the appropriate values for the storage characteristics you want
the smart large object to have.

Then you pass this LO-specification structure to one of the smart-large-object
creation functions (Table 6-7 on page 6-20) so that the smart-large-object optimizer
can obtain the storage characteristics to use for the new smart large object.

To choose storage characteristics for a new smart large object:

1. Use the system-specified storage characteristics as a basis for obtaining the
storage characteristics of a smart large object.

The system-specified storage characteristics are the default storage
characteristics for a smart large object.

2. Customize the storage characteristics.

You can override the system-specified storage characteristics with one of the

following levels of the storage-characteristics hierarchy:

* Storage characteristics defined for a particular CLOB or BLOB column in
which you want to store the smart large object

Storage characteristics that are unique to a particular CLOB or BLOB column
are called column-level storage characteristics.

» User-specified storage characteristics.

Special storage characteristics that you define for this smart large object only
are called user-specified storage characteristics.

Important: For most applications, use the system-specified values for the
disk-storage information. Most DataBlade API modules need to ensure correct
storage characteristics only for an sbspace name (the location of the smart large
object) and for the smart-large-object attributes.

Related concepts:

[‘Storage characteristics” on page 6-3]

[‘Disk-storage information” on page 6-3|

[‘Data integrity” on page 6-6|

[‘Logging” on page 6-5|
“Last-access time” on page 6-6

“Open-mode information” on page 6-7]

"“Initialize an LO-specification structure” on page 6—28|

“ Allocating memory for an LO-specification structure” on page 6-26|

Related reference:

[“Functions that access an LO-specification structure” on page 6-22

Obtaining storage characteristics

For most smart large objects, all you need to do is obtain the system-specified
storage characteristics. When you obtain these storage characteristics for a smart
large object, you can specify a location for it and override system-specified
attributes.

To obtain system-specified storage characteristics:

Chapter 6. Smart large objects ~ 6-29

6-30

1. Use the mi_lo_spec_init() function to allocate an LO-specification structure and
to initialize this structure to the appropriate null values.

When a storage characteristic in the LO-specification structure has the
appropriate null value (zero or a NULL-valued pointer), the smart-large-object
optimizer obtains the system-specified value for the storage characteristic. The
smart-large-object optimizer calculates the system-specified values for
disk-storage storage characteristics. Most applications can use these
system-specified values. For more information, see [‘System-specified storage
[characteristics” on page 6-33)

2. Specify the location of the smart large object to override the default location.
You can specify the location as one of the following:

¢ The name of the sbspace associated with the CLOB or BLOB column in
which you want to store the smart large object

To store a new smart large object in a CLOB or BLOB column, use the
mi_lo_colinfo_by_name() or mi_lo_colinfo_by_ids() function. These
functions obtain the column-level storage characteristics for this column. One
of the storage characteristics they obtain is the sbspace name for the column.
For more information, see [“Obtain column-level storage characteristics” on|

* The name of some other sbspace

You might want to specify an sbspace name for a new smart large object that
is embedded in an opaque data type. The mi_lo_specset_sbspace() accessor
function sets the name of the sbspace in the LO-specification structure. For
more information, see [“Define user-specified storage characteristics” on page|
6-36.
3. Optional: Override any attributes for the smart large object with the
mi_lo_specset_flags() accessor function.

The system-specified attributes have both logging and last-access time disabled.
You might want to enable one or more attributes for the new smart large object.
The mi_lo_specset_flags() function sets the attributes flag in the
LO-specification structure. For more information, see [‘Define user-specified|
[storage characteristics” on page 6-36.|

4. Pass this LO-specification structure to one of the smart-large-object creation
functions (mi_lo_create(), mi_lo_copy(), mi_lo_expand(), or mi_lo_from_file())
to create the smart large object.

The smart-large-object creation function creates a smart large object that has

storage characteristics that the LO-specification structure indicates. For more
information, see |[“Initialize an LO-specification structure” on page 6-28

You would probably want to modify the storage characteristics of the new smart
large object in the following cases:

* Your application needs to obtain extra performance.

You can use other LO-specification accessor functions to change the disk-storage
information of a new smart large object. For more information, see
[user-specified storage characteristics” on page 6-36.|

* You want to use the storage characteristics of an existing smart large object.

The mi_lo_stat_cspec() function can obtain the storage characteristics of an open
smart large object through its LO-status structure. For more information, see
[“Copy storage characteristics from an existing smart large object” on page 6-28 |

Storage-characteristics hierarchy
IBM Informix uses the storage-characteristics hierarchy to obtain the storage
characteristics for a new smart large object.

IBM Informix DataBlade API Programmer’s Guide

The following figure shows the storage-characteristics hierarchy.

Database server storage characteristics
(system defaults)

System-specified
storage characteristics

Shspace storage characteristics

(assigned when the shspace is created with the onspaces utility
or when you change the shspace with onspaces -ch)

Column-level storage characteristics

(assigned when the table is created with the CREATE TABLE statement
or when you change the table with the ALTER TABLE statement)

4

User-specified storage characteristics

(assigned when the smart large object is created with a DataBlade API
mi_lo_create() function or ESQL/C ifx_lo_create() function)

Figure 6-4. Storage-characteristics hierarchy

For a given storage characteristic, any value defined at the column level overrides
the system-specified value, and any user-level value overrides the column-level
value. The following table summarizes the ways to specify disk-storage
information for a smart large object.

Table 6-9. Specifying disk-storage information

System-specified storage characteristics

System default

Specified by onspaces

Column-level
storage
characteristics

Specified by the
PUT clause of

User-specified
storage
characteristics

Specified by a
DataBlade API

Disk-storage information value utility CREATE TABLE function
Size of extent Calculated by EXTENT_SIZE EXTENT SIZE Yes
smart-large-object
optimizer
Size of next extent Calculated by NEXT_SIZE No No
smart-large-object
optimizer
Minimum extent size Four kilobytes MIN_EXT_SIZE No No
Size of smart large object ~ Calculated by Average size of all No Estimated size of a
smart-large-object smart large objects in particular smart
optimizer sbspace: large object
AVG_LO_SIZE
Maximum size of a
particular smart
large object
Maximum size of I/O Calculated by MAX_IO_SIZE No No
block smart-large-object
optimizer

Chapter 6. Smart large objects

6-31

Table 6-9. Specifying disk-storage information (continued)

Column-level User-specified
storage storage
System-specified storage characteristics characteristics characteristics
Specified by the Specified by a
System default Specified by onspaces PUT clause of DataBlade API
Disk-storage information value utility CREATE TABLE function
Name of sbspace SBSPACENAME -S option Name of an existing Yes

sbspace that stores
a smart large object:
IN clause

For most applications, use the values for the disk-storage information that the
smart-large-object optimizer determines. If you know the size of the smart large
object, it is recommended that you specify this size as a user-specified storage
characteristic, instead of as a system-specified or column-level storage
characteristic.

For more information about any of the disk-storage information in [Table 6-9 on|
lpage 6-31] see[“Disk-storage information” on page 6-3.

The following table summarizes the ways to specify attribute information for a
smart large object.

Table 6-10. Specifying attribute information

System-specified storage Column-level storage User-specified storage
characteristics characteristics characteristics

Specified by a

System default Specified by the Specified by the PUT DataBlade API
Attribute information value onspaces utility clause of CREATE TABLE function
Logging OFF LOGGING LOG, NO LOG Yes
Last-access time OFF ACCESSTIME KEEP ACCESS TIME Yes

NO KEEP ACCESS TIME

Buffering mode OFF BUFFERING No Yes
Lock mode Lock entire smart LOCK_MODE No Yes
large object
Data integrity High integrity No HIGH INTEG, MODERATE Yes
INTEG

For more information about any of the attributes in [Table 6-10} see [“Attribute
linformation” on page 6-4.|

The following table summarizes the ways to specify open-mode information for a
smart large object.

6-32 IBM Informix DataBlade API Programmer’s Guide

Table 6-11. Specifying open-mode information

Storage characteristic

Open-mode
information

System-specified storage Column-level storage User-specified storage
characteristics characteristics characteristics

Specified by a

System default Specified by the Specified by the PUT DataBlade API
value onspaces utility clause of CREAT TABLE function
Default open No No Yes

mode

Related concepts:

[“Attribute information” on page 6-4|

System-specified storage characteristics: The Database Administrator (DBA)
establishes system-specified storage characteristics when he or she initializes the
database server and creates an sbspace with the onspaces utility, as follows:

* If the onspaces utility has specified a value for a particular storage characteristic,
the smart-large-object optimizer uses the onspaces value as the system-specified
storage characteristic.

* If the onspaces utility has not specified a value for a particular storage
characteristic, the smart-large-object optimizer uses the system default as the
system-specified storage characteristic.

The system-specified storage characteristics apply to all smart large objects that are
stored in the sbspace, unless a smart large object specifically overrides them with
column-level or user-specified storage characteristics.

The onspaces utility establishes storage characteristics for an sbspace. For the
storage characteristics that onspaces can set as well as the system defaults, see
[Table 6-9 on page 6-31|and [Table 6-10 on page 6-32} For example, the following call
to the onspaces utility creates an sbspace named sb1 in the /dev/sbspacel
partition:

onspaces -c -S shl -p /dev/sbspacel -o 500 -s 2000
-Df "AVG_LO_SIZE=32"

The following table shows the system-specified storage characteristics for all smart
large objects in the sb1 sbspace.

Table 6-12. System-specified storage characteristics for the sb1 sbspace

Specified by the
Storage characteristic System-specified value onspaces utility

Disk-storage information:

Size of extent Calculated by system default
smart-large-object optimizer

Size of next extent Calculated by system default
smart-large-object optimizer

Minimum extent size Calculated by system default
smart-large-object optimizer

Size of smart large object 32 KB (smart-large-object AVG_LO_SIZE
optimizer uses as size
estimate)

Maximum size of 1/O block Calculated by system default

smart-large-object optimizer

Chapter 6. Smart large objects 6-33

6-34

Table 6-12. System-specified storage characteristics for the sb1 sbspace (continued)

Specified by the

Storage characteristic System-specified value onspaces utility
Name of sbspace sb1 -S option
Attribute information:
Logging OFF system default
Last-access time OFF system default

For a smart large object that has system-specified storage characteristics, the
smart-large-object optimizer calculates values for all disk-storage information
except the sbspace name. The DBA can specify a default sbspace name with the
SBSPACENAME configuration parameter in the onconfig file. However, you must
ensure that the location (the name of the sbspace) is correct for the smart large
object that you create. If you do not specify an sbspace name for a new smart large
object, the database server stores it in this default sbspace. This arrangement can
quickly lead to space constraints.

Important: For new smart large objects, use the system-specified values of all
disk-storage information except the sbspace name. The smart-large-object optimizer
can best determine most of the values of the storage characteristics. Most
applications only need to specify an sbspace name for their disk-storage
information.

Obtain column-level storage characteristics: The DBA can establish column-level
storage characteristics for a database table with the CREATE TABLE statement. If
the table contains a CLOB or BLOB column, the PUT clause of CREATE TABLE
can specify the storage characteristics that [Table 6-9 on page 6-31|and [Table 6-10 on|
show. This statement stores column-level storage characteristics in the
syscolattribs system catalog table.

The column-level storage characteristics apply to all smart large objects whose LO
handles are stored in the column, unless a smart large object specifically overrides
them with user-specified storage characteristics. Column-level storage

characteristics override any corresponding system-specified storage characteristics.

For example, if the sb1 sbspace was defined as [Table 6-12 on page 6-33|shows, the
following CREATE TABLE statement specifies column-level storage characteristics
of a location and last-access time for the cat_descr column:

CREATE TABLE catalog2
(

catalog_num INTEGER,
cat_descr CLOB
) PUT cat_descr IN (sbl) (KEEP ACCESS TIME);

The following table shows the storage characteristics for all smart large objects in
the cat_descr column.

Table 6-13. Storage characteristics for the cat_descr column

Specified by PUT clause
Storage characteristic Column-level value of CREATE TABLE

Disk-storage information:

IBM Informix DataBlade API Programmer’s Guide

Table 6-13. Storage characteristics for the cat_descr column (continued)
Specified by PUT clause

Storage characteristic Column-level value of CREATE TABLE

Size of extent Calculated by system-specified
smart-large-object
optimizer

Size of next extent Calculated by system-specified
smart-large-object
optimizer

Minimum extent size Calculated by system-specified
smart-large-object
optimizer

Size of smart large object 32 KB (smart-large-object ~ system-specified
optimizer uses as size
estimate)

Maximum size of I/O block Calculated by system-specified
smart-large-object
optimizer

Name of sbspace sb1 IN (sb1)

Attribute information:
Logging OFF system-specified
Last-access time ON KEEP LAST ACCESS

The following DataBlade API functions obtain column-level storage characteristics
for a specified CLOB or BLOB column:

¢ The mi_lo_colinfo_by_name() function allows you to identify the column by the
table and column name.

¢ The mi_lo_colinfo_by_ids() function allows you to identify the column by an
MI_ROW structure and the relative column identifier.

Both these functions store the column-level storage characteristics for the specified
column in an existing LO-specification structure. When a smart-large-object
creation function receives this LO-specification structure, it creates a new
smart-large-object instance that has these column-level storage characteristics.

Tip: When you use the column-level storage characteristics, you do not usually
need to override the name of the sbspace for the smart large object. The sbspace
name is specified in the PUT clause of the CREATE TABLE statement.

For example, the following code fragment obtains the column-level storage
characteristics for the emp_picture column of the employee table (Figure 6-2 on|
page 6-13) and puts them in the LO-specification structure that LO_spec references:

MI_LO_SPEC *LO_spec = NULL;
MI_CONNECTION =conn;

mi_lo_spec_init(conn, &LO_spec);
mi_lo_colinfo_by name(conn, "employee.emp_picture",
LO_spec);

The call to mi_lo_colinfo_by_name() overwrites the system-specified storage
characteristics that the call to mi_lo_spec_init() put in the LO-specification
structure. The LO-specification structure that LO_spec references now contains the
column-level storage characteristics for the emp_picture column.

Chapter 6. Smart large objects 6-35

Related reference:

[[CREATE TABLE statement (Guide to SQL: Syntax)]

Define user-specified storage characteristics:

You can define user-specified storage characteristics when you create a smart large
object.

DataBlade API functions can specify the storage characteristics that
lpage 6-31|and [Table 6-10 on page 6-32| show. The user-specified storage
characteristics apply only to the particular smart-large-object instance that is being
created. They override any corresponding column-level or system-specified storage
characteristics.

After you have an LO-specification structure allocated, you can use the appropriate
LO-specification accessor functions to set fields of this structure. Accessor functions
also exist to retrieve storage-characteristic values from the LO-specification
structure. When a smart-large-object creation function receives the LO-specification
structure, it creates a smart-large-object instance that has these user-specified
storage characteristics.

Restriction: The LO-specification structure, MI_LO_SPEC, is an opaque structure
to DataBlade API modules. Do not access its internal structure directly. The
internal s