
IBM Informix Web
DataBlade Module
Application Developer’s Guide
Version 4.13
December 2001
Part No. 000-8673



ii IBM Informix Web Da
This document contains proprietary information of IBM. It is provided under a license agreement and is
protected by copyright law. The information contained in this publication does not include any product
warranties, and any statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2001. All rights reserved.

US Government User Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Note:
Before using this information and the product it supports, read the information in the
appendix entitled “Notices.”
taBlade Module Application Developer’s Guide



Table of Contents

Table of
Contents
Introduction
In This Introduction . . . . . . . . . . . . . . . . . 3
About This Manual . . . . . . . . . . . . . . . . . . 3

Organization of This Manual . . . . . . . . . . . . . 4
Types of Users . . . . . . . . . . . . . . . . . . 5
Software Dependencies . . . . . . . . . . . . . . . 5
Assumptions About Your Locale. . . . . . . . . . . . 6

Documentation Conventions . . . . . . . . . . . . . . 6
Typographical Conventions . . . . . . . . . . . . . 7
Icon Conventions . . . . . . . . . . . . . . . . . 9
Screen-Illustration Conventions . . . . . . . . . . . . 10

Additional Documentation . . . . . . . . . . . . . . . 10
Printed Documentation . . . . . . . . . . . . . . . 10
Online Documentation . . . . . . . . . . . . . . . 12

IBM Welcomes Your Comments . . . . . . . . . . . . . 13

Chapter 1 Overview
In This Chapter . . . . . . . . . . . . . . . . . . . 1-3
What Is the Web DataBlade Module? . . . . . . . . . . . 1-3
Product Architecture . . . . . . . . . . . . . . . . . 1-4

Webdriver . . . . . . . . . . . . . . . . . . . 1-4
The WebExplode() Function . . . . . . . . . . . . . 1-5
Tags and Attributes . . . . . . . . . . . . . . . . 1-5
Architecture Diagram . . . . . . . . . . . . . . . 1-6

Enterprise Replication . . . . . . . . . . . . . . . . . 1-8
Converting from a 9.2x Server . . . . . . . . . . . . 1-8
Reverting to a 9.2x Server . . . . . . . . . . . . . . 1-9

Product Features . . . . . . . . . . . . . . . . . . 1-9
Before You Begin . . . . . . . . . . . . . . . . . . 1-11



iv IBM In
Chapter 2 Web DataBlade Module Tutorial
In This Chapter . . . . . . . . . . . . . . . . . . . 2-3
Overview of the Process . . . . . . . . . . . . . . . . 2-3
Creating an Application with APB . . . . . . . . . . . . 2-4

Step 1: Add a Project . . . . . . . . . . . . . . . 2-4
Step 2: Create User-Defined Dynamic Tags . . . . . . . . 2-5
Step 3: Create the First AppPage of Your Application . . . . 2-8
Step 4: Create the Second AppPage of Your Application . . . 2-11
Step 5: Create the Third AppPage of Your Application . . . . 2-13
Step 6: Invoke the Application . . . . . . . . . . . . 2-14

Chapter 3 Basics of AppPage Development
In This Chapter . . . . . . . . . . . . . . . . . . . 3-3
AppPage Elements . . . . . . . . . . . . . . . . . 3-4
Where AppPage Objects Are Stored . . . . . . . . . . . . 3-5

The wbExtensions Table . . . . . . . . . . . . . . 3-5
Adding a New Extension to the wbBinaries Table . . . . . . . 3-8
How to Invoke AppPages . . . . . . . . . . . . . . . 3-9

Using MIpath and MIextension . . . . . . . . . . . . 3-11
How to Link AppPages . . . . . . . . . . . . . . . . 3-11

Linking AppPages with the ANCHOR Tag . . . . . . . . 3-12
Linking AppPages with the FORM Tag . . . . . . . . . 3-12
Example of Using FORM Tag Links . . . . . . . . . . 3-13

How to Retrieve Large Objects . . . . . . . . . . . . . 3-15
Retrieving Large Objects By Name. . . . . . . . . . . 3-15
Retrieving Large Objects By Large Object Handles . . . . . 3-15

Chapter 4 Using AppPage Builder
In This Chapter . . . . . . . . . . . . . . . . . . . 4-3
Overview of AppPage Builder . . . . . . . . . . . . . 4-3
Registering AppPage Builder in Your Database . . . . . . . . 4-4
Invoking AppPage Builder . . . . . . . . . . . . . . . 4-5

Using the URL Prefix Specially Created to Invoke APB. . . . 4-6
Using Any URL Prefix . . . . . . . . . . . . . . . 4-6

Creating Web Applications in AppPage Builder . . . . . . . 4-7
Multimedia Content. . . . . . . . . . . . . . . . 4-8
Administration Features . . . . . . . . . . . . . . 4-9
Adding an Extension . . . . . . . . . . . . . . . 4-10
formix Web DataBlade Module Application Developer’s Guide



Chapter 5 Using Variables in AppPages
In This Chapter . . . . . . . . . . . . . . . . . . 5-3
Web DataBlade Module Variables . . . . . . . . . . . . 5-3

User-Defined Variables . . . . . . . . . . . . . . 5-4
Vector Variables. . . . . . . . . . . . . . . . . 5-4
Web DataBlade Module System Variables . . . . . . . . 5-8
Web Server and Web Browser Variables . . . . . . . . 5-8
Session Variables . . . . . . . . . . . . . . . . 5-11
How Session Management Assigns an ID to a Browser Instance 5-12
Setting Session Variables . . . . . . . . . . . . . 5-13
Examples of Using Session Variables . . . . . . . . . 5-14

Error Handling with the MI_DRIVER_ERROR Variable . . . . 5-17

Chapter 6 Using Tags in AppPages
In This Chapter . . . . . . . . . . . . . . . . . . 6-3
AppPage Tags . . . . . . . . . . . . . . . . . . . 6-3
MISQL Tag . . . . . . . . . . . . . . . . . . . . 6-5

Using System Variables to Format the SQL Results . . . . 6-7
WINSTART Attribute. . . . . . . . . . . . . . . 6-14
WINSIZE Attribute . . . . . . . . . . . . . . . 6-15
RESULTS Attribute . . . . . . . . . . . . . . . 6-15
DATASET Attribute . . . . . . . . . . . . . . . 6-17
CACHERESULTS Attribute . . . . . . . . . . . . 6-18
SERIAL and SERIAL8 Attributes . . . . . . . . . . . 6-20
PREPARE Attribute . . . . . . . . . . . . . . . 6-21
Generating XML-Formatted Data . . . . . . . . . . 6-23

MIVAR Tag . . . . . . . . . . . . . . . . . . . 6-27
NAME Attribute . . . . . . . . . . . . . . . . 6-28
DEFAULT Attribute . . . . . . . . . . . . . . . 6-28
COND Attribute . . . . . . . . . . . . . . . . 6-29
ERR Attribute . . . . . . . . . . . . . . . . . 6-29

MIBLOCK Tag . . . . . . . . . . . . . . . . . . 6-29
ERR Attribute . . . . . . . . . . . . . . . . . 6-31
COND Attribute . . . . . . . . . . . . . . . . 6-31
Loop Processing . . . . . . . . . . . . . . . . 6-32

MIELSE Tag . . . . . . . . . . . . . . . . . . . 6-38
Table of Contents v



vi IBM In
MIERROR Tag . . . . . . . . . . . . . . . . . . . 6-40
TAG Attribute . . . . . . . . . . . . . . . . . . 6-41
ERR Attribute . . . . . . . . . . . . . . . . . . 6-42
Creating a Generic Error Handler . . . . . . . . . . . 6-43
Creating a Specific Error Handler . . . . . . . . . . . 6-43
Handling Error Conditions . . . . . . . . . . . . . 6-44
Processing Errors with Webdriver . . . . . . . . . . . 6-46

MICOMMENT Tag . . . . . . . . . . . . . . . . . 6-49
Special Characters in AppPage Tags . . . . . . . . . . . 6-51

Special HTML Characters . . . . . . . . . . . . . . 6-51
Special Formatting Characters . . . . . . . . . . . . 6-52

Chapter 7 Using Advanced AppPage Tags
In This Chapter . . . . . . . . . . . . . . . . . . . 7-3
MIFUNC Tag . . . . . . . . . . . . . . . . . . . 7-3

FUNCTION Attribute . . . . . . . . . . . . . . . 7-4
DLL Attribute . . . . . . . . . . . . . . . . . . 7-5
INTERNAL Attribute . . . . . . . . . . . . . . . 7-5

MIDEFERRED Tag . . . . . . . . . . . . . . . . . 7-7
The defer. Prefix . . . . . . . . . . . . . . . . . 7-8

The MIEXEC Tag . . . . . . . . . . . . . . . . . . 7-9
SERVICE Attribute . . . . . . . . . . . . . . . . 7-10
Using the MIEXEC Tag in an AppPage . . . . . . . . . 7-11
Examples of Using the MIEXEC Tag . . . . . . . . . . 7-13
Sample Perl Program SERVE.pl . . . . . . . . . . . . 7-15

Chapter 8 Using Variable-Processing Functions in AppPages
In This Chapter . . . . . . . . . . . . . . . . . . . 8-3
Variable-Processing Functions . . . . . . . . . . . . . . 8-3
Using Variable Expressions in AppPages . . . . . . . . . . 8-10

Using Arithmetic Functions in Variable Expressions. . . . . 8-10
Using SEPARATE and REPLACE in Variable Expressions . . . 8-11
Using Variable Expressions to Format Output Conditionally. . 8-13

Special Characters in Variable Expressions . . . . . . . . . 8-17
formix Web DataBlade Module Application Developer’s Guide



Chapter 9 Using Dynamic Tags in AppPages
In This Chapter . . . . . . . . . . . . . . . . . . 9-3
What Are Dynamic Tags? . . . . . . . . . . . . . . . 9-3
Specifying Dynamic Tags in AppPages . . . . . . . . . . 9-4
Where Dynamic Tags Are Stored . . . . . . . . . . . . 9-5
Dynamic Tag WebExplode() Variables . . . . . . . . . . 9-7
Using System Dynamic Tags . . . . . . . . . . . . . . 9-8

CHECKBOXLIST . . . . . . . . . . . . . . . . 9-8
RADIOLIST . . . . . . . . . . . . . . . . . . 9-11
SELECTLIST . . . . . . . . . . . . . . . . . . 9-15

Creating User-Defined Dynamic Tags . . . . . . . . . . 9-17
Adding User-Defined Dynamic Tags with AppPage Builder . 9-18
Example of Creating a User-Defined Dynamic Tag. . . . . 9-19
Special Characters in Dynamic Tags . . . . . . . . . . 9-21

Chapter 10 Using UDR Tags in AppPages
In This Chapter . . . . . . . . . . . . . . . . . . 10-3
What Is a User-Defined Routine (UDR) Tag? . . . . . . . . 10-3
Where Are UDR Tags Stored? . . . . . . . . . . . . . 10-4
Specifying a UDR Tag in an AppPage . . . . . . . . . . 10-6
Creating a UDR Tag . . . . . . . . . . . . . . . . . 10-8

Chapter 11 Using the HTML Data Type
In This Chapter . . . . . . . . . . . . . . . . . . 11-3
The HTML Data Type . . . . . . . . . . . . . . . . 11-3
Functions That Use or Return the HTML Data Type . . . . . 11-4
Example of Using an HTML Data Type . . . . . . . . . . 11-5

Chapter 12 Using DataBlade Module Functions in AppPages
In This Chapter . . . . . . . . . . . . . . . . . . 12-3

WebExplode() . . . . . . . . . . . . . . . . . 12-4
WebLint() . . . . . . . . . . . . . . . . . . . 12-8
WebRelease() . . . . . . . . . . . . . . . . . 12-11
WebUnHTML() . . . . . . . . . . . . . . . . . 12-12
WebURLDecode() . . . . . . . . . . . . . . . . 12-14
WebURLEncode() . . . . . . . . . . . . . . . . 12-15
FileToHTML() . . . . . . . . . . . . . . . . . 12-17
WebRmtShutdown() . . . . . . . . . . . . . . . 12-19
Table of Contents vii



viii IBM
Chapter 13 Using Other Webdriver Features
In This Chapter . . . . . . . . . . . . . . . . . . . 13-3
Adding HTTP Headers to AppPages . . . . . . . . . . . 13-3

Retrieving Non-HTML Pages . . . . . . . . . . . . 13-3
Using Cookies . . . . . . . . . . . . . . . . . . 13-4

Uploading Client Files . . . . . . . . . . . . . . . . 13-7
Setting the Directory . . . . . . . . . . . . . . . 13-8
Example . . . . . . . . . . . . . . . . . . . . 13-9

Passing Image Map Coordinates . . . . . . . . . . . . . 13-12
IMG Tag . . . . . . . . . . . . . . . . . . . . 13-12
FORM Tag . . . . . . . . . . . . . . . . . . . 13-14

Two-Pass Query Processing . . . . . . . . . . . . . . 13-15

Chapter 14 Using DataBlade Module API Functions in AppPages
In This Chapter . . . . . . . . . . . . . . . . . . . 14-3
The Web DataBlade Module API Functions . . . . . . . . . 14-3

WebHtmlToBuf() . . . . . . . . . . . . . . . . . 14-5
WebBufToHtml() . . . . . . . . . . . . . . . . . 14-8

Appendix A Debugging Web DataBlade Module Applications

Appendix B AppPage Builder Schema

Appendix C Web DataBlade Module Variables

Appendix D Notices

Glossary

Index
 Informix Web DataBlade Module Application Developer’s Guide



Introduction
Introduction
In This Introduction . . . . . . . . . . . . . . . . . . 3

About This Manual . . . . . . . . . . . . . . . . . . . 3
Organization of This Manual . . . . . . . . . . . . . . 4
Types of Users . . . . . . . . . . . . . . . . . . . 5
Software Dependencies . . . . . . . . . . . . . . . . 5
Assumptions About Your Locale . . . . . . . . . . . . . 6

Documentation Conventions . . . . . . . . . . . . . . . 6
Typographical Conventions . . . . . . . . . . . . . . 7

Case-Sensitive Text . . . . . . . . . . . . . . . . 7
Case-Insensitive Text . . . . . . . . . . . . . . . 8

Icon Conventions . . . . . . . . . . . . . . . . . . 9
Comment Icons . . . . . . . . . . . . . . . . . 9
Platform Icons . . . . . . . . . . . . . . . . . . 9

Screen-Illustration Conventions . . . . . . . . . . . . . 10

Additional Documentation . . . . . . . . . . . . . . . . 10
Printed Documentation . . . . . . . . . . . . . . . . 10
Online Documentation . . . . . . . . . . . . . . . . 12

Release Notes and Documentation Notes . . . . . . . . 12

IBM Welcomes Your Comments . . . . . . . . . . . . . . 13



2 IBM In
formix Web DataBlade Module Application Developer’s Guide



In This Introduction
This chapter introduces the IBM Informix Web DataBlade Module Application
Developer’s Guide. Read this chapter for an overview of the information
provided in this manual and for an understanding of the conventions used
throughout.

About This Manual
The IBM Informix Web DataBlade Module Application Developer’s Guide explains
how to use the IBM Informix Web DataBlade module to create Web applica-
tions that dynamically retrieve data from a database managed by
IBM Informix Dynamic Server.

The manual provides information about the features provided by the Web
DataBlade module to assist you in developing Web-enabled database appli-
cations. These features include tags specific to the Web DataBlade module,
variable-processing functions, a special HTML data type to store application
pages, DataBlade module functions, and so on.

To use this manual, you or the database administrator must have previously
performed certain administrative tasks, such as installing the Web DataBlade
module on your database server, registering the DataBlade module in a
database, and configuring Webdriver for your database. For more infor-
mation on performing these administrative tasks, refer to the IBM Informix
Web DataBlade Module Administrator’s Guide.

This section discusses the organization of the manual, the intended audience,
and the associated software products that you must have to develop applica-
tions using the Web DataBlade module.
Introduction 3



Organization of This Manual
Organization of This Manual
This manual includes the following chapters:

■ Chapter 1, “Overview,” provides an overview of the architecture and
features of the Web DataBlade module.

■ Chapter 2, “Web DataBlade Module Tutorial,” describes the process
of creating a Web-enabled database application using the
IBM Informix Web DataBlade module and AppPage Builder (APB).

■ Chapter 3, “Basics of AppPage Development,” describes the basic
elements of AppPages, the HTML pages that make up your Web-
enabled database application. These basic elements include how to
invoke an AppPage, how to link one AppPage to another, and how
to retrieve large objects currently stored in a database table into an
AppPage.

■ Chapter 4, “Using AppPage Builder,” describes how to create and
maintain Web DataBlade module applications using AppPage
Builder.

■ Chapter 5, “Using Variables in AppPages,” describes how to use
Web DataBlade module variables to create Web-enabled
applications.

■ Chapter 6, “Using Tags in AppPages,” describes how to use Web
DataBlade module tags to create Web-enabled applications.

■ Chapter 7, “Using Advanced AppPage Tags,” describes the
AppPage tags and attributes that are used for specialized processing
and critical optimization features of your Web application.

■ Chapter 8, “Using Variable-Processing Functions in AppPages,”
describes how to use variable-processing functions to create variable
expressions within AppPages.

■ Chapter 9, “Using Dynamic Tags in AppPages,” describes how to
use dynamic tags to share AppPage segments among multiple
AppPages.

■ Chapter 10, “Using UDR Tags in AppPages,”describes how to
directly invoke a UDR in a AppPage without using the SQL statement
EXECUTE FUNCTION.

■ Chapter 11, “Using the HTML Data Type,” describes the HTML data
type that you use to store the AppPages that make up your Web-
enabled database application.
4 IBM Informix Web DataBlade Module Application Developer’s Guide



Types of Users
■ Chapter 12, “Using DataBlade Module Functions in AppPages,”
describes the WebExplode() function and additional server
functions you can use to simplify AppPage design.

■ Chapter 13, “Using Other Webdriver Features,” describes Webdriver
features, including adding HTTP headers to your AppPages,
uploading client files, and passing image map coordinates.

■ Chapter 14, “Using DataBlade Module API Functions in AppPages,”
describes the IBM Informix Web DataBlade module API routines.

■ Appendix A, “Debugging Web DataBlade Module Applications,”
describes debugging techniques for the Web DataBlade module.

■ Appendix B, “AppPage Builder Schema,” describes the schema for
AppPage Builder.

■ Appendix C, “Web DataBlade Module Variables,” lists all Webdriver
and WebExplode() function variables.

A Notices appendix describes IBM products, features, and services. A
glossary of relevant terms follows the chapters, and an index directs you to
areas of particular interest.

Types of Users
This guide is written for Web application designers who are familiar with
HTML (including tables and forms), SQL, and database installation and
system administration.

Software Dependencies
To use the IBM Informix Web DataBlade module, you must use IBM Informix
Dynamic Server as your database server. Check the release notes for specific
version compatibility. The release notes also list the Web servers that have
been certified for this release of the Web DataBlade module.
Introduction 5



Assumptions About Your Locale
Assumptions About Your Locale
IBM Informix products can support many languages, cultures, and code sets.
All culture-specific information is brought together in a single environment,
called a GLS (Global Language Support) locale.

The examples in this manual are written with the assumption that you are
using the default locale, en_us.8859-1. This locale supports U.S. English
format conventions for date, time, and currency. In addition, this locale
supports the ISO 8859-1 code set, which includes the ASCII code set plus
many 8-bit characters, such as é, è, and ñ.

If you plan to use nondefault characters in your data or your SQL identifiers,
or if you want to conform to the nondefault collation rules of character data,
you need to specify the appropriate nondefault locale.

Documentation Conventions
This section describes the conventions that this manual uses. These conven-
tions make it easier to gather information from this and other volumes in the
documentation set.

The following conventions are discussed:

■ Typographical conventions

■ Icon conventions

■ Screen-illustration conventions
6 IBM Informix Web DataBlade Module Application Developer’s Guide



Typographical Conventions
Typographical Conventions
This manual uses the following standard set of conventions to introduce new
terms, illustrate screen displays, describe command syntax, and so forth.

Tip: When you are instructed to “enter” characters or to “execute” a command,
immediately press RETURN after the entry. When you are instructed to “type” the
text or to “press” other keys, no RETURN is required.

Case-Sensitive Text

Variable names used in the IBM Informix Web DataBlade module are case
sensitive, are preceded by a dollar sign ( $ ), and consist of alphanumeric and
underscore characters. Variables that begin with an underscore are reserved
for system use.

Convention Meaning

KEYWORD All primary elements in a programming language statement
(keywords) appear in uppercase letters in a serif font.

italics
italics
italics

Within text, new terms and emphasized words appear in italics.
Within syntax and code examples, variable values that you are
to specify appear in italics.

boldface
boldface

Names of program entities (such as classes, events, and tables),
environment variables, file and pathnames, and interface
elements (such as icons, menu items, and buttons) appear in
boldface.

monospace
monospace

Information that the product displays and information that you
enter appear in a monospace typeface.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans
serif font.

♦ This symbol indicates the end of product- or platform-specific
information.

➞ This symbol indicates a menu item. For example, “Choose
Tools➞ Options” means choose the Options item from the
Tools menu.
Introduction 7



Typographical Conventions
Case-Insensitive Text

Tags identify the elements of an HTML page and specify the structure and
formatting for that page. The IBM Informix Web DataBlade module includes
a set of tags that are processed by the WebExplode() function.

The Web DataBlade module tags use the SGML processing instruction tag
format, <?tag_info>, <?/tag_info>. An SGML processor ignores tags that it does
not recognize, including Web DataBlade module tags. Like other SGML
processing tags, the Web DataBlade module tags and attributes are not case
sensitive. You can use uppercase letters, lowercase letters, or any combi-
nation of the two.

The text and many of the examples in this manual show function and data
type names in mixed lettercasing (uppercase and lowercase). Because
IBM Informix Dynamic Server is case insensitive, you do not need to enter
function names exactly as shown: you can use uppercase letters, lowercase
letters, or any combination of the two.
8 IBM Informix Web DataBlade Module Application Developer’s Guide



Icon Conventions
Icon Conventions
Throughout the documentation, you will find text that is identified by several
different types of icons. This section describes these icons.

Comment Icons

Comment icons identify three types of information, as the following table
describes. This information always appears in italics.

Platform Icons

Platform icons identify paragraphs that contain platform-specific
information.

These icons can apply to a row in a table, one or more paragraphs, or an entire
section. A ♦  symbol indicates the end of the platform-specific information.

Icon Label Description

Warning: Identifies paragraphs that contain vital instructions,
cautions, or critical information

Important: Identifies paragraphs that contain significant
information about the feature or operation that is
being described

Tip: Identifies paragraphs that offer additional details or
shortcuts for the functionality that is being described

Icon Description

Identifies information that is specific to Windows
operating systems

Identifies information that is specific to UNIX operating
systems

Windows

UNIX
Introduction 9



Screen-Illustration Conventions
Screen-Illustration Conventions
The illustrations in this manual represent a generic rendition of various
windowing environments. The details of dialog boxes, controls, and
windows have been deleted or redesigned to provide this generic look.
Therefore, the illustrations in this manual depict Web browser output a little
differently than the way it appears on your screen.

Additional Documentation
This section describes the Web DataBlade module documentation available
from Informix:

■ Printed documentation

■ Online documentation

Printed Documentation
The following Informix manuals are part of the IBM Informix Web DataBlade
module documentation set and provide more information about the
DataBlade module:

■ The IBM Informix Web DataBlade Module Application Developer’s Guide
describes how to develop Web-enabled database applications that
dynamically retrieve data from the Informix database.

■ The IBM Informix Web DataBlade Module Administrator’s Guide
describes how to administer Web applications that use the Web
DataBlade module to dynamically retrieve data from an Informix
database. The manual describes topics such as how to configure the
Web DataBlade module for your database server, how to configure
the NSAPI, Apache, CGI, and ISAPI Webdrivers, how to implement
security in your Web applications, and how to increase the perfor-
mance of your Web applications.
10 IBM Informix Web DataBlade Module Application Developer’s Guide



Printed Documentation
The following related IBM Informix documents complement the information
in this manual:

■ Data Director for Web is a set of Windows tools that allows you to
develop and manage Informix-based Web sites and that provides an
interface to the Web DataBlade module. For detailed information
about Data Director for Web, refer to the IBM Informix Data Director for
Web User’s Guide.

■ Before you can use the IBM Informix Web DataBlade module, you
must install and configure IBM Informix Dynamic Server. The admin-
istrator’s guide for your database server provides information about
how to configure the server and also contains information about how
it interacts with DataBlade modules.

■ Once you have installed the Web DataBlade module, you must use
BladeManager to register it into the database where the DataBlade
module will be used. See the DataBlade Module Installation and Regis-
tration Guide for details on registering DataBlade modules.

■ If you have never used Structured Query Language (SQL), read the
IBM Informix Guide to SQL: Tutorial. It provides a tutorial on SQL as it
is implemented by IBM Informix products. It also describes the
fundamental ideas and terminology for planning and implementing
a object-relational database.

■ A companion volume to the Tutorial, the IBM Informix Guide to SQL:
Reference, includes details of the IBM Informix system catalog tables,
describes IBM Informix and common environment variables that you
should set, and describes the column data types that IBM Informix
database servers support.

■ An additional companion volume to the Reference, the IBM Informix
Guide to SQL: Syntax, provides a detailed description of all the SQL
statements supported by Informix products. This guide also
provides a detailed description of Stored Procedure Language (SPL)
statements.

■ The DB-Access User’s Manual describes how to invoke the DB-Access
utility to access, modify, and retrieve information from IBM Informix
database servers.

■ The performance guide for your database server provides infor-
mation on how to improve the performance of your SQL queries.
Introduction 11



Online Documentation
■ If you plan to develop your own DataBlade modules using the Web
DataBlade module as a foundation, read the DataBlade Developers Kit
User’s Guide. This manual describes how to develop DataBlade
modules using BladeSmith, BladePack, and BladeManager.

■ When errors occur, you can look them up by number and learn their
cause and solution in the IBM Informix Error Messages manual. If you
prefer, you can look up the error messages in the online message file
described in the introduction to the IBM Informix Error Messages
manual.

Online Documentation
The online documentation for the Web DataBlade module includes release
notes and documentation notes.

Release Notes and Documentation Notes

In addition to printed documentation, the following sections describe the
online files that supplement the information in this manual. Examine these
files before you begin using the IBM Informix Web DataBlade module. They
contain vital information about application and performance issues.

On UNIX platforms, the following online files appear in the
$INFORMIXDIR/extend/web.version directory, where version refers to the
current version of the IBM Informix Web DataBlade module.

Online File Purpose

WEBDOC.TXT Describes features that are not covered in the manual or that
have been modified since publication

WEBREL.TXT Describes any special actions that are required to configure and
use the Web DataBlade module on your computer

This file also describes new features and feature differences
from earlier versions of the Web DataBlade module and how
these differences might affect current products. Additionally,
this file contains information about any bugs and their
workarounds.

♦

UNIX
12 IBM Informix Web DataBlade Module Application Developer’s Guide



IBM Welcomes Your Comments
The following items appear in the Informix folder. To display this folder,
choose Start➞ Programs➞ Informix from the task bar.

IBM Welcomes Your Comments
To help us with future versions of our manuals, we want to know about any
corrections or clarifications that you would find useful. Include the following
information:

■ The name and version of your manual

■ Any comments that you have about the manual

■ Your name, address, and phone number

Send electronic mail, to our address:

doc@informix.com

We appreciate your suggestions.

Program Group Item Description

Documentation Notes This item includes additions or corrections to manuals,
along with information about features that might not be
covered in the manuals or that have been modified since
publication.

Release Notes This item describes feature differences from earlier
versions of IBM Informix products and how these
differences might affect current products. This file also
contains information about any known problems and
their workarounds.

♦

Windows
Introduction 13





1
Chapter
Overview
In This Chapter . . . . . . . . . . . . . . . . . . . . 1-3

What Is the Web DataBlade Module? . . . . . . . . . . . . 1-3

Product Architecture . . . . . . . . . . . . . . . . . . 1-4
Webdriver . . . . . . . . . . . . . . . . . . . . 1-4
The WebExplode() Function . . . . . . . . . . . . . . 1-5
Tags and Attributes . . . . . . . . . . . . . . . . . 1-5
Architecture Diagram . . . . . . . . . . . . . . . . 1-6

Enterprise Replication . . . . . . . . . . . . . . . . . . 1-8
Converting from a 9.2x Server. . . . . . . . . . . . . . 1-8
Reverting to a 9.2x Server . . . . . . . . . . . . . . . 1-9

Product Features . . . . . . . . . . . . . . . . . . . 1-9

Before You Begin . . . . . . . . . . . . . . . . . . . 1-11



1-2 IBM
 Informix Web DataBlade Module Application Developer’s Guide



In This Chapter
This chapter provides an overview of the IBM Informix Web DataBlade
module. It includes the following topics:

■ “What Is the Web DataBlade Module?,” following

■ “Product Architecture” on page 1-4

■ “Product Features” on page 1-9

What Is the Web DataBlade Module?
The Web DataBlade module is a collection of SQL functions, data types, tags,
and client applications that enables you to create Web applications that
dynamically retrieve data from an Informix database.

In typical Web database applications, most of the logic is in gateway appli-
cation code written in Perl, Tcl, or C. This Common Gateway Interface (CGI)
application connects to a database, builds and executes SQL statements, and
formats the results.

Using the Web DataBlade module, you need not develop a CGI application to
dynamically access database data. Instead, you create HTML pages that
include Web DataBlade module specific tags (also called AppPage tags) and
functions that dynamically execute the SQL statements you specify and
format the results. These pages are called Application Pages (AppPages). The
types of data you retrieve can include traditional data types, as well as HTML,
image, audio, and video data.
Overview 1-3



Product Architecture
AppPages are themselves stored in the database. A Web application that uses
the Web DataBlade module, therefore, first retrieves the AppPage from the
database, then passes the AppPage through an SQL function that interprets
the special AppPage tags and functions, typically to retrieve or update data
from database tables and to format the results.

Product Architecture
The Web DataBlade module consists of three main components:

■ Webdriver

■ The WebExplode() function

■ Tags and attributes

These components are described in the following sections. The section
“Architecture Diagram” on page 1-6 provides an illustration of the archi-
tecture of the Web DataBlade module and how the main components work
together.

Webdriver
Webdriver is a database client application that builds the SQL queries that
execute the WebExplode() function to retrieve AppPages from your
database. Webdriver returns the HTML that results from calls to the WebEx-
plode() function to the Web server.

The Web DataBlade module includes four implementations of Webdriver:

■ NSAPI Webdriver. This implementation of Webdriver is written with
the Netscape Server API and is used only with Netscape Web servers.

■ Apache Webdriver. This implementation of Webdriver is written
with the Apache API and is used only with Apache Web servers.

■ ISAPI Webdriver. This implementation of Webdriver is written with
the Microsoft Internet Information Server API and is used only with
Microsoft Internet Information Web servers.

■ CGI Webdriver. This implementation of Webdriver is a standard CGI
program that can be executed by all Web servers.
1-4 IBM Informix Web DataBlade Module Application Developer’s Guide



The WebExplode() Function
For optimal performance, you should use the implementation of Webdriver
written for your specific Web server. You should only use the CGI Webdriver
for Web servers that do not have their own implementation of Webdriver.

Tip: This guide uses the term “Webdriver,” without a preceding qualifier, to refer to
Webdriver functionality that is present in all implementations of Webdriver. The
guide uses a qualified term, such as “NSAPI Webdriver,” to refer to a specific imple-
mentation of Webdriver.

The WebExplode() Function
The WebExplode() function is an SQL function that builds dynamic HTML
pages based on data stored in your database. The WebExplode() function
parses AppPages that contain AppPage tags within HTML and dynamically
builds and executes the SQL statements and processing instructions
embedded in the AppPage tags. The WebExplode() function formats the
results of these SQL statements and processing instructions and returns the
resulting HTML page to the client application, Webdriver. The SQL statements
and processing instructions are specified using SGML-compliant processing
tags.

Tags and Attributes
The Web DataBlade module includes a built-in set of SGML-compliant tags
and attributes that enable SQL statements to be executed dynamically within
AppPages. These tags are referred to as AppPage tags.

For example, the MISQL tag allows you to execute an SQL statement, such as
SELECT, and format the results of the statement in your AppPage. The MISQL
tag has its own attributes, such as SQL, COND, and ERR.
Overview 1-5



Architecture Diagram
Architecture Diagram
The following diagram illustrates the architecture of the Web DataBlade
module.

The sequence of events starts with a user typing a URL in a browser and ends
with the AppPage rendered in the browser as follows:

1. A user enters a URL with a Webdriver request and the name of an
AppPage in a browser, as shown in the following example:

http://ariel:8080/hr_map/?MIval=/welcome.html

The browser makes a request to the Web server.

2. The Web server uses its configuration files and information from its
environment to determine how to invoke Webdriver. Depending on
the type of Webdriver that has been configured for your Web
DataBlade module installation, the Web server can execute a CGI
program (CGI Webdriver), call a Netscape API shared object (NSAPI
Webdriver), call an Apache API object (Apache Webdriver), and so
on.

Figure 1-1
Web DataBlade Module Architecture

Web browser

URL: http://...

IDS ORDBMS

Webdriver

Web server

Web server
environment

AppPage table

WebExplode() function

HTML page
with dynamic

data

HTML page
with MISQL

tags

Webdriver configuration tableLookup connection
1 2

Lookup configuration

Webdriver

Build SQL statement

Look up connection

web.cnf file

Look up configuration

3

4

5

66
1-6 IBM Informix Web DataBlade Module Application Developer’s Guide



Architecture Diagram
3. Webdriver refers to the web.cnf file on the operating system for
information on how to connect to an Informix database server, the
database to which to connect, the user to connect to the database as,
and the Webdriver configuration to use once a connection has been
made to the database. Webdriver establishes a connection to the
appropriate database with this information.

4. Once Webdriver has established a connection to a database, it looks
up the Webdriver configuration in the WebConfigs system table. The
Webdriver configuration describes, among other things, the
AppPage table that contains the AppPage the user requested in the
URL originally entered in the browser.

5. Using this schema-related information, Webdriver builds a SELECT
statement to retrieve the requested AppPage from the Web appli-
cation table. The SELECT statement executes the WebExplode()
function on the AppPage at the same time that it retrieves the
AppPage. The WebExplode() function expands the AppPage tags
within the AppPage and formats the results, resulting in a standard
HTML page.

6. Finally, Webdriver returns this HTML page to the Web server, which
in turn returns the HTML page to be rendered by the Web browser.

Webdriver also enables you to retrieve large objects, such as images, directly
from the database when you specify a path that identifies a large object stored
in the database.
Overview 1-7



Enterprise Replication
Enterprise Replication
The IBM Informix Web DataBlade module contains enterprise replication
(ER) support for the HTML data type. The necessary support functions are
automatically created in your database when you register the Web DataBlade
module on a Version 9.30, or later, server.

Please refer to the Guide to IBM Informix Enterprise Replication for information
on how to design your replication system as well as how to administer and
manage data replication throughout your enterprise.

If you are using a tool like Application Page Builder 2.0 (APB20), you must
install the tool in each of the replicated sites and set up the tables that contain
the HTML content (the wbPages) as well as the User Dynamic Tags and other
supporting tables for replication.

If you are using the Administrator’s Tool (adminTool), you must install the
adminTool in each of the replicated sites and you must manually update the
webconfigs table with the adminTool at each site.

Important: It is your responsibility to maintain consistent system information
throughout your enterprise. This means that you must ensure that all copies of the
tables that your applications utilize are synchronized at all times.

Converting from a 9.2x Server
If you register this version of the Web DataBlade module in a database on a
Version 9.2x server and then subsequently convert your server to Version 9.30
or later and want to use ER, you must use BladeManager and repeat the regis-
tration of the Web DataBlade module in your database, in order to enable ER
support. Repeat the registration procedure as follows:

% blademgr

myserver> register web.version mydatabase

where version is the current version of the Web DataBlade module and
mydatabase is the database in which you want to register it.
1-8 IBM Informix Web DataBlade Module Application Developer’s Guide



Reverting to a 9.2x Server
Reverting to a 9.2x Server
If you have registered the Web DataBlade module on a Version 9.30 server
and you want to revert your server to Version 9.2x, you must run the
revert93to92.sql script to drop the Web DataBlade module ER support
functions, as follows:

cd $INFORMIXDIR/extend/web.version

dbaccess my_database revert93to92.sql

Run the revert93to92.sql script on each database in which you have regis-
tered the Web DataBlade module.

Product Features
The Web DataBlade module includes the following features:

■ AppPage tags identify the elements of an HTML page and specify the
structure and formatting for that page. They enable you to:

❑ Embed SQL statements directly within AppPages.

❑ Handle errors within AppPages.

❑ Execute statements conditionally within AppPages.

❑ Manipulate variables within AppPages using variable-
processing functions.

❑ Use other advanced query processing and formatting
techniques.

■ Web DataBlade module dynamic tags allow you to reuse existing
AppPage segments to simplify the construction and maintenance of
your Web applications:

❑ The Web DataBlade module provides system dynamic tags that
simplify the creation of check box lists, radio button lists, and
selection lists.

❑ You can also create user dynamic tags. A user dynamic tag is a tag
that you create and register in the database.
Overview 1-9



Product Features
■ Webdriver allows you to customize Web applications using infor-
mation from its configuration file, the Webdriver configurations
stored in the database, the Web server environment, URLs, HTML
forms, and your own Web application variables, without additional
CGI programming. Webdriver also allows you to track persistent
session variables between AppPages.

■ AppPage Builder (APB), a development tool that is packaged with the
Web DataBlade module, provides a user interface to create and
update AppPages and to manage multimedia database content. APB
is itself a Web DataBlade module application made up of linked
AppPages.

APB uses the same database schema as IBM Informix Data Director
for Web. Data Director for Web is a set of Windows tools that allows
you to develop and manage Informix-based Web sites and that pro-
vides an interface to the Web DataBlade module. For detailed
information about Data Director for Web, refer to the IBM Informix
Data Director for Web User’s Guide.

■ The NSAPI, ISAPI, and Apache implementations of Webdriver allow
you to use the proprietary features of the Netscape Web server,
Microsoft Internet Information Server, and Apache Web Server,
respectively, and they eliminate CGI process overhead.

■ The Web DataBlade Module Administration Tool, a Web DataBlade
module application, provides a user interface to create and update
Webdriver mappings and configurations.

■ A subset of the examples in this guide and the IBM Informix Web
DataBlade Module Administrator’s Guide are available in the directory
INFORMIXDIR/extend/web.version/examples, where INFORMIXDIR
refers to the main Informix directory and version refers to the current
version of the Web DataBlade module installed on your computer.

Important: In some examples in this guide, long lines of code wrap to accommodate
the fonts used in the guide rather than at the most logical places for the code.
Therefore, it is not recommended that you follow these examples exactly when you
write your code.
1-10 IBM Informix Web DataBlade Module Application Developer’s Guide



Before You Begin
Before You Begin
Before you begin developing AppPages, you or your Web DataBlade module
administrator must have previously performed certain administrative tasks
to set up the correct development environment.

In particular, this guide is written with the assumption that you or your Web
DataBlade module administrator have:

■ Installed the Web DataBlade module on your database server

■ Created a database with logging enabled

■ Registered the Web DataBlade module in your database

■ Registered and configured the Web DataBlade Module Adminis-
tration Tool in your database

■ Registered AppPage Builder (APB) in the database.

Although you are not required to use APB to develop AppPages, this
guide refers to it in its examples and assumes that you are using it to
build AppPages

■ Created the necessary Webdriver mappings and Webdriver configu-
rations to begin development

■ Invoked both APB and the Web DataBlade Module Administration
Tool in your browser to ensure that the DataBlade module is
correctly configured for your database

For detailed information on performing the preceding tasks, refer to the
IBM Informix Web DataBlade Module Administrator’s Guide.
Overview 1-11





2
Chapter
Web DataBlade Module Tutorial
In This Chapter . . . . . . . . . . . . . . . . . . . . 2-3

Overview of the Process . . . . . . . . . . . . . . . . . 2-3

Creating an Application with APB . . . . . . . . . . . . . 2-4
Step 1: Add a Project . . . . . . . . . . . . . . . . . 2-4
Step 2: Create User-Defined Dynamic Tags . . . . . . . . . 2-5
Step 3: Create the First AppPage of Your Application. . . . . . 2-8
Step 4: Create the Second AppPage of Your Application. . . . . 2-11
Step 5: Create the Third AppPage of Your Application . . . . . 2-13
Step 6: Invoke the Application . . . . . . . . . . . . . 2-14



2-2 IBM
 Informix Web DataBlade Module Application Developer’s Guide



In This Chapter
This chapter introduces you to the process of creating a Web-enabled
database application using the IBM Informix Web DataBlade module and
AppPage Builder (APB). This chapter assumes you can invoke APB in your
browser. For instructions on how to invoke APB in your browser, see
“Invoking AppPage Builder” on page 4-5.

The application you create in the following tutorial consists of three linked
AppPages. The application queries the database for user tables, and, for each
user table, shows the columns of the selected table.

Overview of the Process
This tutorial consists of six steps:

1. Add a project.

2. Create a user dynamic tag.

3. Create the first AppPage: welcome page.

4. Create the second AppPage: shows system catalog tables.

5. Create the third AppPage: shows names of requested tables.

6. Invoke the application.

The following sections explain each step.
Web DataBlade Module Tutorial 2-3



Creating an Application with APB
Creating an Application with APB
AppPage Builder (APB) is a Web DataBlade module application that enables
you to create and maintain the AppPages that make up your Web applica-
tions. You can use APB to create AppPages with any Web browser that
supports forms and tables, as defined in the HTML 3.0 specification. For more
information on APB, refer to “Using AppPage Builder” on page 4-1.

Step 1: Add a Project
If you want to create a Web-enabled application using APB, you must first
add a project. A project contains all of the AppPages and other objects
associated with your Web application.

When you first invoke APB, the browser displays the following AppPage.

Figure 2-1
APB: Main Menu

Web Browser - [APB - Main Menu]

URL: http://domain:port/hr_app/?MIval=/APB20/apb.html

Main Menu
Add Object

Edit Object

Add a new object to the database.

Edit, delete, and view objects stored in the database.

Admin Menu Manage user accounts and projects.

User Name:
default

User Level:

Default Project:

Default Object:
AppPage

TEXTAREA Width:

TEXTAREA Height:
20

80
Versioning:

WebLint Checking:
Off

Off

0

2-4 IBM Informix Web DataBlade Module Application Developer’s Guide



Step 2: Create User-Defined Dynamic Tags
To create a project in APB

1. From the Main Menu, click Admin Menu.

2. From the Admin Menu, click Add Project.

3. On the Add Project AppPage, type getting_started as the name of
the project in the Project text box.

4. Type a description of the getting_started project in the Description
text area.

5. Click Save.

The Add Project AppPage appears and displays a message that the
getting_started project was created.

After getting_started has been successfully added as a project, use the
following procedure to make getting_started your default project.

To make getting_started your default project

1. Click Admin Menu.

2. Click Edit User.

3. Select getting_started from the Default Project list box and click
Save.

Step 2: Create User-Defined Dynamic Tags
User-defined dynamic tags allow you to specify standard components that
appear on every AppPage, such as headers and footers. In this step, you
create a header and footer for your application. For more information on how
to use dynamic tags, refer to “Using Dynamic Tags in AppPages” on
page 9-1.

Create a Header

Use the following procedure to create a header tag.

To create a header tag

1. Click Add Object.
Web DataBlade Module Tutorial 2-5



Step 2: Create User-Defined Dynamic Tags
2. Click Dynamic Tag.

The Add Dynamic Tag AppPage appears.

Figure 2-2
APB: Add Dynamic

Tag

Web Browser - [APB - Add Dynamic Tag]

URL: http://domain:port/hr_app/?MIval=/APB20/apb.html

Add Dynamic Tag

Main Menu

CONTINUE

You can base this new tag on an existing tag to copy from the list below:

SAVE

User Name:
default

User Level:

Default Project:

Default Object:
AppPage

TEXTAREA Width:

TEXTAREA Height:
20

80
Versioning:

WebLint Checking:
Off

Add Object Edit Object Admin Menu

Base Tag: OLD_DYNTAG

getting_started Off

0

Project:

Description:

Dynamic Tag:

Class:Tag ID:

Parameters:

getting_started
2-6 IBM Informix Web DataBlade Module Application Developer’s Guide



Step 2: Create User-Defined Dynamic Tags
3. Type my_header in the Tag ID text box.

4. Type &TITLE in the Parameters text box.

5. Type a description of the dynamic tag in the Description text box.

6. Type the following HTML code in the Dynamic Tag text area:
<html>
<head>
<title>@TITLE@</title>
</head>
<body>

7. Click Save.

Create a Footer

Use the following procedure to create a footer tag.

To create a footer tag

1. Click Add Object.

2. Click Dynamic Tag.

3. Type my_footer in the Tag ID text box.

4. Type a description of the dynamic tag in the Description text box.

5. Type the following HTML code in the Dynamic Tag text area:
<br>
<br>
<br>
<br>
<HR WIDTH=90%>
<CENTER>
<FONT SIZE=-1><A HREF="http://www.informix.com">
Copyright of INFORMIX SOFTWARE, INC.</A></FONT>
</CENTER>

</body>
</html>

6. Click Save.
Web DataBlade Module Tutorial 2-7



Step 3: Create the First AppPage of Your Application
Step 3: Create the First AppPage of Your Application
The first AppPage of your Web-enabled application welcomes users. Follow
these steps to create it.

To create the first page of the application

1. On the Add Dynamic Tag AppPage, click Add Object.

The Add Object AppPage appears, showing the getting_started
project as your default project.

Figure 2-3
APB: Add Object

Web Browser - [APB - Add Object]

URL: http://domain:port/hr_app/?MIval=/APB20/apb.html

Add Object

Main Menu

Select the type of object you wish from the list below:

User Name:
default

User Level:

Default Project:

Default Object:
AppPage

TEXTAREA Width:

TEXTAREA Height:
20

80
Versioning:

WebLint Checking:
Off

Add Object Edit Object Admin Menu

getting_started Off

0

AppPage
Audio
Document
Dynamic Tag
Image
User Defined Routine Tag
Video
2-8 IBM Informix Web DataBlade Module Application Developer’s Guide



Step 3: Create the First AppPage of Your Application
2. Click AppPage.

The Add AppPage AppPage appears.

Figure 2-4
APB-Add AppPage

Web Browser - [APB - Add AppPage]

URL: http://domain:port/hr_app/?MIval=APB20/apb.html

Add AppPage

Main Menu

CONTINUE

You can base this new AppPage on an existing AppPage to copy from the list below:

SAVE

User Name:
default

User Level:

Default Project:

Default Object:
AppPage

TEXTAREA Width:

TEXTAREA Height:
20

80
Versioning:

WebLint Checking:
Off

Add Object Edit Object Admin Menu

Path: /APB20

getting_started Off

0

Description:

AppPage:

Path:

CONTINUEProject: APB 2.0

CONTINUE

Enter filename to import AppPage from:

/

Page ID: apb Extension: html

Page ID: Extension:

Project:
getting_started

Read Level:
0

html
Web DataBlade Module Tutorial 2-9



Step 3: Create the First AppPage of Your Application
Your getting_started project should be selected as the default project.

3. Type the name of your AppPage, welcome, in the Page ID text box.

Be sure Path is set to / and Extension is set to html.

4. Type the following HTML code in the AppPage text area:
<?my_header TITLE="Web Applications, Inc">

<center>
<h1>Welcome to Web Applications, Inc.</h1>
</center>
You can click
<a href=<?MIVAR>$WEB_HOME<?/MIVAR>?MIval=/page2.html>here
</a> to see a list of all the non-system tables in your database.

<hr>

Or enter the name of a table in the text box to see its columns.<br>
<FORM METHOD=post ACTION=<?MIVAR>$WEB_HOME<?/MIVAR>>
<?MIVAR NAME=table><?/MIVAR>
<?MIVAR><INPUT TYPE=INPUT SIZE=40 NAME=table VALUE=$table><?/MIVAR>
<INPUT TYPE=SUBMIT VALUE="See columns">
<INPUT TYPE=HIDDEN NAME=MIval VALUE=/page3.html>
</FORM>

<?my_footer>

5. Click Save.

Notice the syntax in the previous HTML for invoking the my_header and
my_footer dynamic tags in the AppPage.

Also notice that this AppPage has two methods of linking to a subsequent
AppPage: the ANCHOR tag and the FORM tag.

The ANCHOR tag method uses the following syntax:

You can click
<a href=<?MIVAR>$WEB_HOME<?/MIVAR>?MIval=/page2.html>here
</a> to see a list of all the non-system tables in your database.

The FORM tag method uses the following syntax:

Or enter the name of a table in the text box to see its columns.<br>
<FORM METHOD=post ACTION=<?MIVAR>$WEB_HOME<?/MIVAR>>
<?MIVAR NAME=table><?/MIVAR>
<?MIVAR><INPUT TYPE=INPUT SIZE=40 NAME=table VALUE=$table><?/MIVAR>
<INPUT TYPE=SUBMIT VALUE="See columns">
<INPUT TYPE=HIDDEN NAME=MIval VALUE=/page3.html>
</FORM>
2-10 IBM Informix Web DataBlade Module Application Developer’s Guide



Step 4: Create the Second AppPage of Your Application
For more information on linking AppPages using the ANCHOR and FORM
tags, refer to “How to Link AppPages” on page 3-11.

For more information on using the MIVAR tag, refer to “MIVAR Tag” on
page 6-27.

Step 4: Create the Second AppPage of Your Application
The second AppPage of your application is linked to the first page by the
ANCHOR tag. It displays all the system catalog tables in an HTML table.

If you clicked the word here in the /welcome.html AppPage, you used the
ANCHOR tag method to link to a second AppPage. If you entered a specific
table name in the text box and clicked See columns, you used the FORM tag
method to link directly from your /welcome.html AppPage to a third
AppPage. This section describes how to create that second AppPage.

To create the second AppPage of the application

1. Click Add Object.

The Add Object AppPage appears, showing getting_started as your
default project.

2. To add a second AppPage to your getting_started project, click
AppPage.

The Add AppPage AppPage appears.

Your getting_started project should be selected as the default project.

3. Type the name of your AppPage, page2, in the Page ID text box.

Be sure Path is set to / and Extension is set to html.
Web DataBlade Module Tutorial 2-11



Step 4: Create the Second AppPage of Your Application
4. Type the following HTML code in the AppPage text area:
<?my_header TITLE="Web Applications, Inc">

Here's a list of all your tables; click on the table name to see its
columns:<br><br>
<table border=1 cell_padding=0>
<tr>
<td><b>Table Name</b></td>
<td><b>Table Owner</b></td>
<td><b>Table Type</b></td>
</tr>
<?MISQL SQL="select tabname, owner, tabtype from systables where tabname
not like 'sys%' and
tabtype IN ('T', 'V', 'P', 'S')
order by tabname;">
<tr>
<td>
<a href="$WEB_HOME?MIval=/page3.html&table=$1">$1</a></td>
<td>$2</td>
<td>
<?MIVAR COND=$(EQ,$3,T)>Table<?/MIVAR>
<?MIVAR COND=$(EQ,$3,V)>View<?/MIVAR>
<?MIVAR COND=$(EQ,$3,S)>Synonym<?/MIVAR>
<?MIVAR COND=$(EQ,$3,P)>Private Synonym<?/MIVAR>
</td>
</tr>
<?/MISQL>
</table>

<?my_footer>

5. Click Save.

Notice the following features in the /page2.html AppPage:

■ The MISQL tag “inside” a table. For every table returned by the SQL
statement, an anchor tag is created:

<?MISQL SQL="select tabname, owner, tabtype from systables
where tabname not like 'sys%' and
tabtype IN ('T', 'V', 'P', 'S')
order by tabname;">

For more information on using the MISQL tag, refer to “MISQL Tag”
on page 6-5.
2-12 IBM Informix Web DataBlade Module Application Developer’s Guide



Step 5: Create the Third AppPage of Your Application
■ The MIVAR tag with a variable-processing function to convert a
returned “T” into “Table”:

<?MIVAR COND=$(EQ,$3,T)>Table<?/MIVAR>
<?MIVAR COND=$(EQ,$3,V)>View<?/MIVAR>
<?MIVAR COND=$(EQ,$3,S)>Synonym<?/MIVAR>
<?MIVAR COND=$(EQ,$3,P)>Private Synonym<?/MIVAR>

For more information on using the MIVAR tag, refer to “MIVAR Tag”
on page 6-27.

For more information on using variable-processing functions, refer
to “Using Variable-Processing Functions in AppPages” on page 8-1.

■ When you call the /page3.html AppPage, you are passing the table
user-defined variable:

<td>
<a href="$WEB_HOME?MIval=/page3.html&table=$1">$1</a></td>
<td>$2</td>
<td>

Step 5: Create the Third AppPage of Your Application
The third AppPage of your application is linked to the first page by the FORM
tag and to the second page by the table variable. It shows the column names
of the requested table.

If you click a specific table in the /page2.html AppPage, you link to a third
AppPage that shows the column names of the requested table. If you type a
specific table name in the text box and click See columns on the welcome
AppPage, you use the FORM tag to link directly to your third AppPage. This
section describes how to create that third AppPage.

To create the third AppPage of the application

1. Click Add Object.

The Add Object AppPage appears with getting_started as your
default project.

2. Click AppPage.

The Add AppPage AppPage is displayed.

Your getting_started project should be selected as the default project.

3. Type the name of your AppPage, page3, in the Page ID text box.
Web DataBlade Module Tutorial 2-13



Step 6: Invoke the Application
4. Be sure Path is set to / and Extension to html.

5. Type the following HTML code in the AppPage text area:
<?my_header TITLE="Web Applications, Inc">

Here are the columns of the table
<b><?MIVAR>$table<?/MIVAR></b>:<br>
<br><table border=1 cell_padding=0>
<tr>
<td><b>Column Name</b></td>
</tr>

<?MISQL SQL="select c.colname from syscolumns c, systables
t where c.tabid = t.tabid and t.tabname = '$table';">
<tr>
<td>$1</td>
</tr><?/MISQL>
</table>
<br>

<?my_footer>

6. Click Save.

Notice that the passed user-defined variable $table is used in the MISQL tag
to retrieve the columns of the passed table name:

<?MISQL SQL="select c.colname from syscolumns c, systables t where
c.tabid = t.tabid and t.tabname = '$table';">

Step 6: Invoke the Application
There are two ways you can invoke your Web application once you have
created all the pages and saved them in the database.

The first way is to use APB by following the steps provided next.

To invoke the application from APB

1. Click Edit Object.

2. Click the /welcome.html AppPage.

3. Click Run.

The /welcome.html AppPage appears in a browser. You can now
link to the rest of your application’s AppPages.
2-14 IBM Informix Web DataBlade Module Application Developer’s Guide



Step 6: Invoke the Application
The second way to invoke your Web application is to call it directly in a
browser by entering a URL similar to this one:

http://domain:port/mapping/?MIval=/welcome.html

For more information on URLs, refer to “Basics of AppPage Development” on
page 3-1.

For more information on Webdriver mapping, refer to the IBM Informix Web
DataBlade Module Administrator’s Guide.
Web DataBlade Module Tutorial 2-15





3
Chapter
Basics of AppPage
Development
In This Chapter . . . . . . . . . . . . . . . . . . . . 3-3

AppPage Elements . . . . . . . . . . . . . . . . . . . 3-4

Where AppPage Objects Are Stored . . . . . . . . . . . . . 3-5
The wbExtensions Table . . . . . . . . . . . . . . . . 3-5

Adding a New Extension to the wbBinaries Table . . . . . . . . 3-8

How to Invoke AppPages . . . . . . . . . . . . . . . . 3-9
Using MIpath and MIextension . . . . . . . . . . . . . 3-11

How to Link AppPages . . . . . . . . . . . . . . . . . 3-11
Linking AppPages with the ANCHOR Tag . . . . . . . . . 3-12
Linking AppPages with the FORM Tag . . . . . . . . . . 3-12
Example of Using FORM Tag Links . . . . . . . . . . . . 3-13

How to Retrieve Large Objects . . . . . . . . . . . . . . . 3-15
Retrieving Large Objects By Name . . . . . . . . . . . . 3-15
Retrieving Large Objects By Large Object Handles . . . . . . 3-15



3-2 IBM
 Informix Web DataBlade Module Application Developer’s Guide



In This Chapter
This chapter describes some basic elements of AppPages, the HTML pages
that make up your Web-enabled database application. In addition, it
describes how AppPages are extracted from the database and how they are
connected to create a flow to your Web application. It includes the following
topics:

■ “AppPage Elements” on page 3-4

■ “Where AppPage Objects Are Stored” on page 3-5

■ “How to Invoke AppPages” on page 3-9

■ “How to Link AppPages” on page 3-11

■ “How to Retrieve Large Objects” on page 3-15
Basics of AppPage Development 3-3



AppPage Elements
AppPage Elements
An AppPage is an HTML page that dynamically executes SQL statements that
query the database and that formats the results. You can retrieve traditional
data types into an AppPage, as well as HTML, image, audio, and video data.

An AppPage can include the following elements in addition to standard
HTML tags:

■ Variables. Variables are named storage spaces that can be used
within an AppPage. Variables can also be configured using the Web
DataBlade Module Administration Tool. See “Web DataBlade
Module Variables” on page 5-3 for more information.

■ Dynamic tags. Dynamic tags are segments of AppPages that are
stored in a database table and can be shared among multiple
AppPages. Dynamic tags allow you to standardize components of
multiple AppPages, such as the headers and footers that appear on
multiple AppPages in your Web application. Dynamic tags reduce
maintenance costs and centralize the source of updates to Web appli-
cations. See “Using Dynamic Tags in AppPages” on page 9-1 for
more information.

■ AppPage tags. AppPage tags are provided with the Web DataBlade
module and are processed by the WebExplode() function. The
AppPage tags identify elements of an HTML page and specify the
structure and formatting for that page. See “AppPage Tags” on
page 6-3 for more information.

■ Variable-processing functions. Variable-processing functions
enable calculations to be performed using variables that are passed
into an AppPage, generated within the AppPage, or returned from
your database. See “Variable-Processing Functions” on page 8-3 for
more information.

■ User-defined routine (UDR) tag. A user-defined routine tag is a tag
in an AppPage that directly executes an existing user-defined routine
and places the output of the execution of the routine within the
AppPage. See “What Is a User-Defined Routine (UDR) Tag?” on
page 10-3 for more information on user-defined routines.
3-4 IBM Informix Web DataBlade Module Application Developer’s Guide



Where AppPage Objects Are Stored
■ Error handling. The Web DataBlade module provides tags and
variables to handle error conditions such as SQL errors, undefined
variables, and incorrect constructs. See “Error Handling with the
MI_DRIVER_ERROR Variable” on page 5-17, “MISQL Tag” on
page 6-5, and “MIERROR Tag” on page 6-40 for more information on
error handling.

Where AppPage Objects Are Stored
AppPages are stored in a table in the database for easy retrieval. If you use
AppPage Builder (APB) to create your application, an AppPage is stored in
the wbPages table. An object like an image or an audio clip is stored as a large
object in the wbBinaries table. A dynamic tag is a dynamically expanded
AppPage fragment that can be easily shared among multiple AppPages.
Dynamic tags are stored in the wbTags table.

The wbExtensions Table
The wbExtensions table, required by the Web DataBlade module, stores
information about the tables in which you store your AppPages, images,
dynamic tags, and so on. Each type of object has an extension; for example,
AppPages use the .html extension. In the wbExtensions table, the row in
which the extensions column describes the table, stores the object.

The wbExtensions table is composed of the following column names and
data types.

Column Name Data Type (Length) Description

extension VARCHAR(12) The file extension; for example,
.html or .gif

name VARCHAR(30) The name of the extension; for
example, Application Page or GIF
Image

source_table VARCHAR(18) The name of the table in which the
resource is stored

 (1 of 2)
Basics of AppPage Development 3-5



The wbExtensions Table
The following table shows the default extensions and the columns used by
the wbExtensions table. These extensions are added to the wbExtensions
table when you install APB into your database.

super_type VARCHAR(18) The MIME supertype of the
extension; for example, text or image

sub_type VARCHAR(18) The MIME subtype of the extension;
for example, HTML or GIF

ID_column VARCHAR(18) The name of the column containing
the resource identifier; for example,
ID

content_column VARCHAR(18) The name of the column containing
the resource content; for example,
object

retrieval_method INTEGER The retrieval method used by
Webdriver when retrieving the type:
1=Retrieve with WebExplode()
2=Retrieve as text
3=Retrieve as large object

path_column VARCHAR(18) The name of the column containing
the resource path information

Column Name Data Type (Length) Description

 (2 of 2)

ex
te

ns
io

n

na
m

e

so
ur

ce
_t

ab
le

su
pe

r_
ty

pe

su
b_

ty
pe

id
_c

ol
um

n

co
nt

en
t_

co
lu

m
n

re
tr

ie
va

l_
m

et
ho

d

pa
th

_c
ol

um
n

html Application
page

wbPages text html ID object 1 path

htm Application
page

wbPages text html ID object 1 path

txt Text
document

wbPages text plain ID object 2 path

 (1 of 2)
3-6 IBM Informix Web DataBlade Module Application Developer’s Guide



The wbExtensions Table
For example, this table shows that an object with the extension .doc is stored
in wbBinaries, the ID of the document is stored in the id column, and the
path of the document is stored in the path column.

gif GIF image wbBinaries image gif ID object 3 path

jpg JPEG image wbBinaries image jpeg ID object 3 path

jpeg JPEG image wbBinaries image jpeg ID object 3 path

bmp Bitmap image wbBinaries image bmp ID object 3 path

doc Microsoft
Word
document

wbBinaries application ms-word ID object 3 path

ppt Microsoft
PowerPoint
presentation

wbBinaries application ms-ppt ID object 3 path

xls Microsoft
Excel
worksheet

wbBinaries application ms-excel ID object 3 path

pdf Adobe
Acrobat
document

wbBinaries application pdf ID object 3 path

wav WAV sound wbBinaries audio x-wav ID object 3 path

qt QuickTime
movie

wbBinaries video quicktime ID object 3 path

mov QuickTime
movie

wbBinaries video quicktime ID object 3 path

avi Microsoft
video

wbBinaries video x-msvideo ID object 3 path

vrml VRML model wbPages x-world vrml ID object 2 path

ex
te

ns
io

n

na
m

e

so
ur

ce
_t

ab
le

su
pe

r_
ty

pe

su
b_

ty
pe

id
_c

ol
um

n

co
nt

en
t_

co
lu

m
n

re
tr

ie
va

l_
m

et
ho

d

pa
th

_c
ol

um
n

 (2 of 2)
Basics of AppPage Development 3-7



Adding a New Extension to the wbBinaries Table
Adding a New Extension to the wbBinaries Table
If you have other resources that your AppPage uses such as plug-ins or appli-
cations that are not stored in your database, you can create a table and map
to these resources using the ID, path, and extension associated with the
resource. Use DB-Access or any client tool to create the table. Use APB to add
a new extension that maps to your new table. The extension links to the
wbExtensions table, where you find the corresponding object and MIME
type. If you do create a new extension for a new resource, the extension must
be unique.

For more information on how to add a new extension using APB, see
“Creating Web Applications in AppPage Builder” on page 4-7.

As described in the previous section, the wbExtensions table contains
default extensions that correspond to standard objects that can be included
in an AppPage: HTML, GIFs, Microsoft Word documents, and so on. These
default extensions probably cover most of the types of objects you might
want to include in an AppPage.

If, however, you want to include an object in your AppPage that is not
described by a row in the wbExtensions table, you can add a new extension
to the table that describes the object. For example, you might have a new
video object that is stored in a format not described by any row in the
wbExtensions table.

Use APB to add a new extension to the wbExtensions table. For the procedure
on adding an extension, see“Adding an Extension” on page 4-10. When you
create a new extension, you specify the source table that stores the objects, the
MIME supertype and subtype, and so on.

When you specify the source table, you can specify one of the existing APB
tables such as wbPages or wbBinaries. Store text type objects (like HTML) in
the wbPages table and binary objects (such as video) in the wbBinaries table.

You can also specify that the source table be a completely new table that you
have previously created with DB-Access or SQL editor. Be sure that your table
has the following two columns to identify your object:

■ ID: the name of the object

■ Path: the path of the object
3-8 IBM Informix Web DataBlade Module Application Developer’s Guide



How to Invoke AppPages
If you store objects in a new table, only objects of the associated extension can
be stored in the new table. In other words, you cannot store more than one
extension type in a new table. You can, however, store more than one
extension type in the wbPages and wbBinaries table.

Refer to the wbBinaries table definition in “AppPage Builder Schema” on
page B-1 for a sample schema of a table that stores AppPage objects.

How to Invoke AppPages
When you invoke an AppPage, you retrieve it from a table in the database
into your browser. You can invoke an AppPage by typing a URL in a browser
or specifying a URL in an AppPage to show a subsequent AppPage in your
browser.

A URL provides a general-purpose naming scheme for specifying Internet
resources using a string of printable ASCII characters. The following syntax
shows a generic URL used to invoke an AppPage if you use NSAPI or Apache
Webdriver:

http://domain:port/webdriver_mapping/?MIval=/path/appage_id.extension

The following syntax shows a generic URL used to invoke an AppPage if you
use ISAPI Webdriver:

http://domain:port/webdriver_mapping/drvisapi.dll?MIval=/path/
appage_id.extension

The following syntax shows a generic URL used to invoke an AppPage if you
use the CGI Webdriver:

http://domain:port/webdriver_mapping/webdriver?MIval=/path/
appage_id.extension
Basics of AppPage Development 3-9



How to Invoke AppPages
The following table describes the elements of the previous URL example.

To invoke an AppPage called /welcome.html, you type the following URL
into your browser:

http://ariel:8080/hr_app/?MIval=/pages/welcome.html

In the previous example, the Webdriver mapping is /hr_app, the path is
/pages, the appage_id is welcome, and the extension is html.

URL Element Description

http Which Internet protocol the browser should use when
accessing a resource on a server

domain The domain name for the Web server

:port The port number of the Web server process

A colon (:) is used as a separator between the domain and
the port.

Defaults to port 80 if blank

webdriver_mapping The name of the Webdriver mapping you are using to
connect to the database

?MIval= The Webdriver variable that is used to specify the AppPage

path The value in the path column of the table that stores your
AppPages

For the APB schema, this column is called path.

appage_id The actual name of the AppPage stored in the ID column
of your AppPage table

extension The value in the extension column of the wbPages table
3-10 IBM Informix Web DataBlade Module Application Developer’s Guide



Using MIpath and MIextension
Using MIpath and MIextension
You can set the MIpath and MIextension Webdriver variables to default
paths and extensions. For example, use the Web DataBlade Module Admin-
istration Tool to set MIpath to / and MIextension to html.

If you set these, you do not have to specify a path or extension in the URL. For
example, you can enter the following URL in your browser to invoke the
/welcome.html AppPage:

http://domain:port/hr_app/?MIval=welcome

This technique is useful if you have a pre-4.0 version application that you do
not want to rewrite by adding explicit paths and extensions.

How to Link AppPages
Web applications typically have more information than can fit on one
AppPage. Your Web application should provide you the ability to navigate
from one page to another. Linking AppPages requires placement of an
identifier in one AppPage that permits a connection with another AppPage.

There are two methods for linking AppPages within an IBM Informix Web
DataBlade module application. You can:

■ Link AppPages with the ANCHOR tag.

■ Link AppPages with the FORM tag.

Each method is described next.
Basics of AppPage Development 3-11



Linking AppPages with the ANCHOR Tag
Linking AppPages with the ANCHOR Tag
The anchor variable in an AppPage is a variable whose value is generated by
Webdriver based on the URL prefix used to invoke the AppPage. Anchor
variables are used to link together one or more AppPages in the same Web
application.

Use the HREF attribute of the ANCHOR tag to link AppPages in your Web
application to each other. Use the WEB_HOME anchor variable and the
MIVAR AppPage tag to dynamically generate these links.

The following example shows a generic method to link to an AppPage using
the ANCHOR tag:

<a href=<?MIVAR>$WEB_HOME<?/MIVAR>?MIval=/path/id.ext

Linking AppPages with the FORM Tag
Another way to link the AppPages in your Web application is to create a
hidden INPUT button in an HTML form. The FORM tag for the button must
specify WEB_HOME as the action. For example:

<FORM METHOD=POST ACTION=<?MIVAR>$WEB_HOME<?/MIVAR>>

When you submit the form, the following INPUT tag causes the
/display_table.html AppPage to be invoked:

<INPUT TYPE=HIDDEN NAME=MIval VALUE=/display_table.html>
3-12 IBM Informix Web DataBlade Module Application Developer’s Guide



Example of Using FORM Tag Links
Example of Using FORM Tag Links
The following /select_table.html AppPage allows you to type a table name
into the table_name text field and then submit the form. When you submit
the form, Webdriver invokes the /display_table.html AppPage and performs
a SELECT statement from the specified table; the browser then displays the
output. The following example shows the /select_table.html AppPage:

<HTML>
<HEAD><TITLE>Select from Table</TITLE></HEAD>
<BODY>
<FORM METHOD=POST ACTION=<?MIVAR>$WEB_HOME<?/MIVAR>>
<?MIVAR NAME=$table_name><?/MIVAR>
Select from table: <HR>
<?MIVAR>
<INPUT TYPE=INPUT SIZE=40 NAME=table_name VALUE=$table_name>
<?/MIVAR>
<INPUT TYPE=SUBMIT VALUE=Select>
<INPUT TYPE=HIDDEN NAME=MIval VALUE=/display_table.html>
</FORM>
</BODY>
</HTML>

For information on the MIVAR tag used in this example, see “MIVAR Tag” on
page 6-27.

The following illustration shows sample Web browser output for the
/select_table.html AppPage. The value departments has been entered in the
text box.

Figure 3-1
Select from Table

Web Browser - [Select from Table]

URL: http://domain:port/hr_app/?MIval=/select_table.html

Select from table:

Selectdepartments
Basics of AppPage Development 3-13



Example of Using FORM Tag Links
The /display_table.html AppPage is invoked when you submit the form
displayed by select_table. The /display_table.html AppPage retrieves the
column headers for the specified table in the submitted table_name field
from the syscolumns and systables system catalog tables and displays the
column headers and the rows of the specified table within an HTML table.
The following example is the /display_table.html AppPage:

<HTML>
<HEAD><TITLE>Display Table Data</TITLE></HEAD>
<BODY>
<TABLE BORDER>
<TR>
<?MISQL SQL="select a.colname, colno from syscolumns

a, systables b where a.tabid = b.tabid and
b.tabname = trim('$table_name')
order by colno;"><TH>$1</TH>

<?/MISQL>
</TR>
<?MISQL SQL="select * from $table_name;">
<TR> { <TD>$*</TD> } </TR><?/MISQL>
</TABLE>
</BODY>
</HTML>

For more information on the MISQL tag used in this example, see “MISQL
Tag” on page 6-5.

The following illustration shows sample Web browser output for the
/display_table.html AppPage.

Figure 3-2
Display Table Data

Web Browser - [Display Table Data]

URL: http://domain:port/hr_map

sales

manufacturing

Sales Department

Manufacturing Department

50000

30000

CA

PH

marketing Marketing for all products 70000 CA

name description budget state
3-14 IBM Informix Web DataBlade Module Application Developer’s Guide



How to Retrieve Large Objects
How to Retrieve Large Objects
The Web DataBlade module provides built-in support for objects typically
found in Web applications, such as images, audio, and video. These objects
are called large objects. As with AppPages, you store large objects in a table in
the database. Similarly to invoking AppPages, you can also invoke or retrieve
large objects from the table where they are stored. APB provides a table to
store large objects in, called wbBinaries.

You can either retrieve large objects by specifying the names by which they
are stored in the wbBinaries table or by using their large object handles
(unique identifiers within the database in which they are stored.)

Retrieving Large Objects By Name
The following syntax shows how a large object is retrieved within an
AppPage by specifying its name:

<IMG SRC=<?MIVAR>$WEB_HOME</?MIVAR>?MIval=/path/id.extension

For example, to retrieve a large object called flower with an extension type of
.gif, you include the following code in your AppPage:

<IMG SRC=<?MIVAR>$WEB_HOME</?MIVAR>?MIval=/images/flower.gif

Retrieving Large Objects By Large Object Handles
This section describes how you can retrieve a large object into your AppPage
based on its large object handle. This method is particularly useful when
retrieving large objects that are not stored in the wbBinaries table.

You can retrieve large objects by their large object handles when you dynam-
ically retrieve the results of a SELECT statement:
Basics of AppPage Development 3-15



Retrieving Large Objects By Large Object Handles
1. Use the Web DataBlade Module Administration Tool to set the
following Webdriver variable in your Webdriver configuration.

2. Use the MISQL AppPage tag in your AppPage to select the large
object from the table.

3. Use the LO Webdriver variable combined with WEB_HOME to
specify the selected large object handle and retrieve the large object
into your AppPage.

Important: Do not set the LO Webdriver variable in your Webdriver configuration,
because this forces Webdriver to ignore the MIval Webdriver variable. Only specify
the LO Webdriver variable in the URL you use to retrieve the large object.

For example, assume you have stored images in the object column of a table
called webImages. The following AppPage retrieves one of the images using
its large object handle:

<HTML>
<HEAD><TITLE>Retrieving Large Objects</TITLE></HEAD>
<BODY>
<H3>Display the image</H3>
<HR>
<?MISQL SQL="select object from webImages where ID = 'flower';">
<IMG SRC=$WEB_HOME?LO=$1><BR>
<?/MISQL>
</BODY>
</HTML>

For instructions on changing the query string if you want to add security to
large objects, see the IBM Informix Web DataBlade Module Administrator’s Guide.

For more information about large objects, see the IBM Informix Guide to SQL:
Reference.

Webdriver
Variable Mandatory? Description

MItypeObj Yes MIME type and subtype used to export the
large object, such as image/gif

Be sure to check the Overwrite checkbox
when you add this variable to your
Webdriver configuration.
3-16 IBM Informix Web DataBlade Module Application Developer’s Guide



4
Chapter
Using AppPage Builder
In This Chapter . . . . . . . . . . . . . . . . . . . . 4-3

Overview of AppPage Builder . . . . . . . . . . . . . . . 4-3

Registering AppPage Builder in Your Database . . . . . . . . . 4-4

Invoking AppPage Builder . . . . . . . . . . . . . . . . 4-5
Using the URL Prefix Specially Created to Invoke APB . . . . . 4-6
Using Any URL Prefix . . . . . . . . . . . . . . . . 4-6

Creating Web Applications in AppPage Builder . . . . . . . . . 4-7
Multimedia Content . . . . . . . . . . . . . . . . . 4-8
Administration Features. . . . . . . . . . . . . . . . 4-9
Adding an Extension . . . . . . . . . . . . . . . . . 4-10



4-2 IBM
 Informix Web DataBlade Module Application Developer’s Guide



In This Chapter
This chapter includes the following topics about AppPage Builder:

■ “Overview of AppPage Builder,” following

■ “Registering AppPage Builder in Your Database” on page 4-4

■ “Invoking AppPage Builder” on page 4-5

■ “Creating Web Applications in AppPage Builder” on page 4-7

Overview of AppPage Builder
AppPage Builder (APB) is a Web DataBlade module application that enables
you to create and maintain the AppPages that make up your Web applica-
tions. You can use APB to create AppPages with any Web browser that
supports forms and tables, as defined in the HTML 3.0 specification. If you
use a Web browser that supports client file upload, you can also use APB to
manage multimedia content in the database.
Using AppPage Builder 4-3



Registering AppPage Builder in Your Database
Registering AppPage Builder in Your Database
This section describes how to register APB in your database, if it has not
already been registered as part of the initial Web DataBlade module setup for
your database with the websetup utility.

To find out whether APB is currently registered in your database, execute the
following SQL statement:

SELECT * FROM wbpages WHERE id = 'apb' and path = '/APB20' and extension=
'html';

If the SELECT statement returns a value, APB is registered in your database.

Typically, the owner of a database registers APB in the database.

To register APB in your database

1. Create an sbspace in your database to store the AppPages that make
up the APB application.

Be sure to enable logging for the sbspace.

You may use an existing sbspace, such as the default sbspace pointed
to by the SBSPACENAME parameter in the ONCONFIG file.

To create a new sbspace, use the onspaces utility. For detailed infor-
mation on using the onspaces utility, refer to the Administrator’s
Guide for your database server.

2. At the operating system prompt, change to the directory that
contains the APB utilities and data.

This directory is $INFORMIXDIR/extend/web.version/apb2, where
$INFORMIXDIR refers to the main Informix directory and version
refers to the current version of the Web DataBlade module installed
on your computer.

For example, if $INFORMIXDIR is set to /local/informix for your
database server and the current Web DataBlade module version is
web.4.13.UC1, the UNIX command to change to the correct directory
is:

cd /local/informix/extend/web.4.13.UC1/apb2
4-4 IBM Informix Web DataBlade Module Application Developer’s Guide



Invoking AppPage Builder
3. Create the APB schema by executing the schema_create utility,
passing it the name of your database and the name of the sbspace in
which the APB AppPage are stored.

For example, to create the APB schema in a database called web40
and store the AppPages in the sbsp1 sbspace, execute the following
command at the operating system prompt:

createAPB2O_DDW20schema web40 sbsp1

4. Load the APB data, which includes AppPages and GIF, into the
database by executing the loadAPB20application utility.

For example, to load the APB data into the web40 database, execute
the following command at the operating system prompt:

loadAPB20application web40

For detailed information on these utilities, refer to the IBM Informix Web
DataBlade Module Administrator’s Guide.

Invoking AppPage Builder
There are two ways to invoke APB in your browser:

■ Specify the URL prefix specially created to invoke APB in your URL.
This URL prefix maps to a Webdriver mapping that specifies the apb
Webdriver configuration.

■ Use any URL prefix that maps to any Webdriver mapping (other than
the Webdriver mapping used to invoke the Web DataBlade Module
Administration Tool) and specify the text ?MIval=/APB20/apb.html
in the URL.

Both methods are described in the following sections.
Using AppPage Builder 4-5



Using the URL Prefix Specially Created to Invoke APB
Using the URL Prefix Specially Created to Invoke APB
Typically, when the Web DataBlade module is initially configured for your
database with the websetup utility, the Web DataBlade module adminis-
trator creates a special URL prefix that maps to the Webdriver mapping that
specifies the apb2 Webdriver configuration. The apb2 Webdriver configu-
ration is automatically registered in your database as part of the registration
of the Web DataBlade Module Administration Tool. The special URL prefix to
invoke APB is typically /apb2.

If the Web DataBlade module administrator has set up this special URL prefix,
specify it in your URL to invoke the main APB AppPage.

For example, assume the name of your Web server computer is ariel, the port
number of the Web process is 8080, and the URL prefix to invoke APB is
/apb2. Use the following URL to invoke APB in your browser:

http://ariel:8080/apb2/

Tip: Many Web servers require you add the “extra” slash at the end of the URL.

For detailed information on URL prefixes, Webdriver mappings, and
Webdriver configurations, refer to the IBM Informix Web DataBlade Module
Administrator’s Guide.

Using Any URL Prefix
If the Web DataBlade module administrator has not created a special URL
prefix to invoke APB directly, you can use any URL prefix that maps to a
Webdriver mapping to invoke APB. Specify ?MIval=/APB20/apb.html after
the URL prefix.

For example, assume the name of your Web server computer is ariel and the
port number of the Web process is 8080. Further assume that the URL prefix
/hr_map maps to a Webdriver mapping that specifies a Webdriver configu-
ration in the web40 database. The following URL invokes APB for the web40
database:

http://ariel:8080/hr_map/?MIval=/APB20/apb.html

Tip: You cannot use the URL prefix that invokes the Web DataBlade Module Admin-
istration Tool to invoke APB. You can only use this URL prefix to invoke the Web
DataBlade Module Administration Tool.
4-6 IBM Informix Web DataBlade Module Application Developer’s Guide



Creating Web Applications in AppPage Builder
For detailed information on URL prefixes, Webdriver mappings, and
Webdriver configurations, refer to the IBM Informix Web DataBlade Module
Administrator’s Guide.

Creating Web Applications in AppPage Builder
When you invoke APB, the browser displays the following AppPage. Use
APB to create and maintain AppPages and other multimedia objects that
make up your Web applications.

Figure 4-1
APB-Main Menu

Web Browser - [APB - MainMenu]

URL: http://domain:port/hr_app/?MIval=/APB20/apb.html

Main Menu
Add Object

Edit Object

Add a new object to the database.

Edit, delete, and view objects stored in the database.

Admin Menu Manage user accounts and projects.

User Name:
default

User Level:

Default Project:

Default Object:
AppPage

TEXTAREA Width:

TEXTAREA Height:
20

80
Versioning:

WebLint Checking:
Level2

doc Off

0

Using AppPage Builder 4-7



Multimedia Content
The following table describes the APB options displayed in Figure 4-1.

You can add or edit AppPages by typing or pasting into the text area or by
uploading a client file. You can add and edit multimedia objects by uploading
a client file.

The Admin Menu option is described in more detail in “Administration
Features” on page 4-9.

Multimedia Content
The following table lists the multimedia object types that you can use with
APB. The Table column indicates the table where the objects are stored in the
database.

Appendix B, “AppPage Builder Schema,” describes the complete APB
schema and information on adding new object types and MIME types.

Option Action

Add Object Add a new AppPage, dynamic tag, audio, document, image,
video, or other Web application object.

Edit Object Edit, delete, or view a Web application object.

Admin Menu Edit or delete a user account, project, extension type, or object
type.

Object Type Supported Formats Table

AppPage HTML wbPages

Dynamic tag HTML wbTags

Audio AU, WAV, and AIFF wbBinaries

Document MS Word, MS PowerPoint, and Adobe PDF wbBinaries

Image GIF and JPEG wbBinaries

Video Quicktime, MPEG, and AVI wbBinaries
4-8 IBM Informix Web DataBlade Module Application Developer’s Guide



Administration Features
Administration Features
When you invoke the Admin Menu option of APB, the browser displays the
following AppPage.

The following table describes APB administrative features.

Figure 4-2
APB: Admin Menu

Web Browser - [APB - Admin Menu]

URL: http://domain:port/hr_app/?MIval=/APB20/apb_admin.html

Admin Menu
Edit User

Add Project

Edit Project

Add Object Type

Edit Object Type

Add Extension

Edit Extension

Edit and delete users in the database.

Add a new project to the database.

Edit and delete project stored in the database.

Add a new object type to the database.

Edit and delete object types stored in the database.

Add a new extension to the database.

Edit and delete an extension stored in the
database.

Main Menu Add Object Edit Object

Admin Menu

Option Action

Edit User Modify user preferences, including changing the user
password, changing the default project or object type,
changing the TEXTAREA height or width, turning
AppPage versioning on or off, and changing the level of
WebLint checking for syntax errors.

Add Project Add a new project. A project contains all of the AppPages
and other objects associated with a particular Web
application.

Edit Project Change the owner or the description of a project.

 (1 of 2)
Using AppPage Builder 4-9



Adding an Extension
Adding an Extension
When you initially install AppPage Builder in your database, the wbExten-
sions table contains a default set of extensions for most object types you need
to invoke in an AppPage. Use the following procedure to add a new
extension to the wbExtensions table.

To add a new extension to the wbExtensions table using APB

1. Click Admin Menu.

2. Click Add Extension.

3. On the Add Extension AppPage, fill in the following text boxes with
the appropriate information for your new extension.

Add Object Type Add a new multimedia object type to APB.

Edit Object Type Modify the page suffix for an object type.

Add Extension Add a new extension.

Edit Extension Edit an existing extension.

Text Box Description

Extension The file extension

Name The name of the extension

Source Table The name of the table that stores objects of this type

Super Type The MIME supertype of the extension

Sub Type The MIME subtype of the extension

ID Column The column in the storage table that identifies the
object

Content Column The column in the storage table that contains the object

Path Column The column that contains the object’s path information

Option Action

 (2 of 2)
4-10 IBM Informix Web DataBlade Module Application Developer’s Guide



Adding an Extension
4. Click the WebExplode, Text, or Blob button to indicate the retrieval
method you prefer for your new object.

5. Click Save.
Using AppPage Builder 4-11





5
Chapter
Using Variables in AppPages
In This Chapter . . . . . . . . . . . . . . . . . . . . 5-3

Web DataBlade Module Variables . . . . . . . . . . . . . . 5-3
User-Defined Variables . . . . . . . . . . . . . . . . 5-4
Vector Variables . . . . . . . . . . . . . . . . . . 5-4

Creating and Assigning Values to Vector Variables . . . . . 5-5
Looping Through a Vector Variable . . . . . . . . . . 5-6
Manipulating a Vector Variable . . . . . . . . . . . . 5-6
Forms and Variable Vectors . . . . . . . . . . . . . 5-7

Web DataBlade Module System Variables. . . . . . . . . . 5-8
Web Server and Web Browser Variables . . . . . . . . . . 5-8
Session Variables . . . . . . . . . . . . . . . . . . 5-11
How Session Management Assigns an ID to a Browser Instance . . 5-12
Setting Session Variables . . . . . . . . . . . . . . . 5-13
Examples of Using Session Variables . . . . . . . . . . . 5-14

Error Handling with the MI_DRIVER_ERROR Variable . . . . . . 5-17



5-2 IBM
 Informix Web DataBlade Module Application Developer’s Guide



In This Chapter
This chapter describes how to use Web DataBlade module variables within
AppPage tags to customize your Web application.

The following topics are covered in this chapter:

■ “Web DataBlade Module Variables,” following

■ “Error Handling with the MI_DRIVER_ERROR Variable” on
page 5-17

Web DataBlade Module Variables
The following list describes Web DataBlade module variables:

■ Variables are case sensitive.

■ A variable must be preceded by a $ when used in a variable
expression.

■ Variables preceded by $MI_ are reserved for the portion of the Web
DataBlade module that runs within the database. The portion that
does not run within the database is Webdriver.

■ A variable starts with an alpha character (a-z or A-Z). Subsequent
characters include alphanumeric characters (a-z, A-Z, or 0-9), dots (.),
and underscores (_).

Variables are global in scope within an AppPage and can be called recur-
sively from an AppPage using the WebExplode() function. To pass variable
values between AppPages that are not called recursively with the WebEx-
plode() function, you must explicitly pass the variables in a URL or an HTML
form. For information on calling the WebExplode() function, see “WebEx-
plode()” on page 12-4.
Using Variables in AppPages 5-3



User-Defined Variables
Important: Variables are only interpreted within MISQL, MIVAR, and MIERROR
tags, as well as within the COND attribute of the MIBLOCK tag.

There are five different kinds of variables in AppPages, described in the
following subsections:

■ “User-Defined Variables,” following

■ “Vector Variables” on page 5-4

■ “Web DataBlade Module System Variables” on page 5-8

■ “Web Server and Web Browser Variables” on page 5-8

■ “Session Variables” on page 5-11

User-Defined Variables
You can create user-defined variables and assign default values to them by
using the Web DataBlade Module Administration Tool or by setting them
using the NAME attribute of the MIVAR tag within an AppPage. You can
override default values for existing user-defined variables in an MIVAR tag,
an HTML form, or a URL that invokes an AppPage. For more information on
how to assign and display variables using the MIVAR tag, see “MIVAR Tag”
on page 6-27.

For more information on setting user-defined variables with the Web
DataBlade Module Administration Tool, refer to the IBM Informix Web
DataBlade Module Administrator’s Guide.

Vector Variables
A vector variable is a list of values with the same variable name. Vector
variables are similar to arrays. You reference each element in the vector
variable by specifying the name of the vector variable and an index number
within brackets. The first element in the vector variable has an index of 1.

You create and display vector variables with the MIVAR tag, just as you create
and display simple user-defined variables. A simple user-defined variable is
a vector variable with a single value rather than a list of values. This means
that the following two variable specifications are equivalent:
<?MIVAR>$myvar<?/MIVAR> and <?MIVAR>$myvar[1]<?/MIVAR>.
5-4 IBM Informix Web DataBlade Module Application Developer’s Guide



Vector Variables
The following sections describe how to create and manipulate vector
variables.

Creating and Assigning Values to Vector Variables

Use the MIVAR AppPage tag to create a vector variable. Use the SETVAR
variable-processing function to assign values to the vector variable. Finally,
use the MIVAR AppPage tag to display an element of the vector variable.

The following example creates a vector variable called $flowers, assigns it
four values, and displays the second value:

<?MIVAR NAME=flowers><?/MIVAR>

<?MIVAR>$(SETVAR,$flowers[1],rose)<?/MIVAR>
<?MIVAR>$(SETVAR,$flowers[2],hyacinth)<?/MIVAR>
<?MIVAR>$(SETVAR,$flowers[3],marigold)<?/MIVAR>
<?MIVAR>$(SETVAR,$flowers[4],)<?/MIVAR>

<?MIVAR>This is the second element in the array: $flowers[2]<?/MIVAR>

The value of the fourth element is a 0-length string.

Use the DEFAULT attribute to set a default value for a particular element in
the vector array.

Use the UNSETVAR variable-processing function to remove a vector variable,
as shown in the following example:

<?MIVAR>$(UNSETVAR,$flowers)<?/MIVAR>

An AppPage that tries to access a vector variable that has been unset returns
an error.
Using Variables in AppPages 5-5



Vector Variables
Looping Through a Vector Variable

The example in the previous section shows how to use the MIVAR AppPage
tag to display a single element in a vector variable by specifying the appro-
priate index number within brackets.

If you want to display each element in a vector variable, use the MIBLOCK
AppPage tag with the FOREACH attribute in combination with the MIVAR
AppPage tag, as shown in the following example:

<?MIVAR NAME=vec[1]>hard<?/MIVAR>
<?MIVAR NAME=vec[2]>green<?/MIVAR>
<?MIVAR NAME=vec[3]>expensive<?/MIVAR>
<?MIBLOCK INDEX=$fred FOREACH=$vec >

<?MIVAR> Characteristics of product:$fred <?/MIVAR>
<?/MIBLOCK>

In this example, the $vec vector variable has three elements. The MIBLOCK
AppPage tag loops through the vector variable three times and displays each
corresponding value.

Manipulating a Vector Variable

You can use the following four variable-processing functions to manipulate
a vector variable:

■ VECAPPEND

■ VECSIZE

■ REPLACE

■ SEPARATE

Use the VECAPPEND variable-processing function to add a new value to the
end of the vector variable. Use the VECSIZE variable-processing function to
determine the size of a vector variable.
5-6 IBM Informix Web DataBlade Module Application Developer’s Guide



Vector Variables
The following example shows how to use the VECAPPEND and VECSIZE
variable-processing functions:

<?MIVAR NAME=flowers><?/MIVAR>

<?MIVAR>$(SETVAR,$flowers[1],rose)<?/MIVAR>
<?MIVAR>$(SETVAR,$flowers[2],hyacinth)<?/MIVAR>
<?MIVAR>$(SETVAR,$flowers[3],marigold)<?/MIVAR>

<?MIVAR>$(VECAPPEND,$flowers,daisy)<?/MIVAR>
The vector has <?MIVAR>$(VECSIZE,$flowers)<?/MIVAR> elements. <p>
The last element is <?MIVAR>$flowers[$(VECSIZE,$flowers)]<?/MIVAR>

Use the SEPARATE and REPLACE variable-processing functions to separate
the elements in a vector variable and replace the values with something else.
For detailed examples of using these two variable-processing functions, refer
to “Using SEPARATE and REPLACE in Variable Expressions” on page 8-11.

Forms and Variable Vectors

If you use a form on your AppPage that uses the TYPE=CHECKBOX attribute of
the INPUT tag to create a check box for users to make multiple selections, you
can specify that the form variables be stored in a vector variable. Do this by
making sure that each NAME attribute specifies the same variable name.

Then, in the AppPage that is invoked when the user clicks the Submit button,
use the MIBLOCK AppPage tag with the FOREACH attribute to loop through
the passed vector variable, as shown in “Looping Through a Vector Variable”
on page 5-6.

The following example shows how to store check box form variables in a
vector variable called $mycheckbox:

<form method=post>
<input type=hidden name=MIval value=myform>
<input type=hidden name=process value=true>
<br>
Please check one or more options:
<br>
<input type=checkbox name=mycheckbox value=option1 checked>Option 1
<input type=checkbox name=mycheckbox value=option2>Option 2
<input type=checkbox name=mycheckbox value=option3 checked>Option 3
<hr>
<input type=submit>
</form>
Using Variables in AppPages 5-7



Web DataBlade Module System Variables
If you use the SELECT tag with the MULTIPLE attribute to specify a selectable
list of options in your form, the selected options are also passed to the called
AppPage as a vector variable.

Vector variables are automatically used if you use the CHECKBOXLIST system
dynamic tag and the SELECTLIST system dynamic tag with the MULTIPLE
attribute. Refer to “Using System Dynamic Tags” on page 9-8 for detailed
information on using the CHECKBOXLIST and SELECTLIST system dynamic
tags.

Important: You can only use the POST method to pass vector variables from a form
to an AppPage. Using the GET method with vector variables is not supported.

Web DataBlade Module System Variables
Web DataBlade module system variables are set by the database server when
an SQL statement is executed within the MISQL tag.

For more information on using these variables, see “Using System Variables
to Format the SQL Results” on page 6-7.

Web Server and Web Browser Variables
By default, the following Web server and Web browser variables are available
to the WebExplode() function when you use Webdriver:

■ AUTH_TYPE

■ HTTP_USER_AGENT

■ HTTP_REFERER

■ HTTP_HOST

■ HTTP_URI

■ REMOTE_ADDR

■ REQUEST_METHOD

■ SERVER_PROTOCOL

■ QUERY_STRING

■ REMOTE_USER

■ MI_WEBACCESSLEVEL

■ MI_WEBGROUPLEVEL
5-8 IBM Informix Web DataBlade Module Application Developer’s Guide



Web Server and Web Browser Variables
To access these Web browser and Web server variables in an AppPage, you
must explicitly add them as user variables in the Webdriver configuration
you use to access your Web application. This procedure is described later in
this section.

When you add a Web browser or Web server variable to your Webdriver
configuration, you can set the variable to one of the following two possible
values:

If you set the Web browser or Web server variable for your Webdriver config-
uration to +defer, you must refer to the variable in your AppPage by
prepending it with the defer keyword and enclosing it in the <?MIDEFERRED>
<?/MIDEFERRED> tags.

For example, to refer to the HTTP_USER_AGENT Web browser variable in
your AppPage, you must use the following syntax:

<?MIDEFERRED>
<?MIVAR>The value of HTTP_USER_AGENT is $defer.HTTP_USER_AGENT<?/MIVAR>
<?/MIDEFERRED>

For more information about the MIDEFERRED tag using the defer keyword,
refer to “MIDEFERRED Tag” on page 7-7.

The following env_var AppPage displays the value for the
HTTP_USER_AGENT Web browser variable:

<HTML>
<HEAD><TITLE>Display a Variable</TITLE></HEAD>
<BODY>
<HR>The value of the HTTP_USER_AGENT environment variable is

<?MIVAR>$HTTP_USER_AGENT<?/MIVAR><HR>
</BODY>
</HTML>

+ Indicates that you are not going to enable AppPage caching for the
AppPages that access the Web browser or Web server variable.

+defer Indicates that you are going to enable AppPage caching for the
AppPages that access the Web browser or Web server variable, and
you must always access the variable as a deferred variable.
Using Variables in AppPages 5-9



Web Server and Web Browser Variables
The following sample output is returned to the client:

<HTML>
<HEAD><TITLE>Display a Variable</TITLE></HEAD>
<BODY>
<HR>The value of the HTTP_USER_AGENT environment variable is

Mozilla/3.0 (WinNT;I)<HR>
</BODY>
</HTML>

The following is sample Web browser output.

To add a Web browser or Web server variable to your Webdriver configuration

1. Invoke the Web DataBlade Module Administration Tool in your
browser.

For detailed information on this step, refer to the IBM Informix Web
DataBlade Module Administrator’s Guide.

2. Display the details of your Webdriver configuration.

For detailed information on this step, refer to the IBM Informix Web
DataBlade Module Administrator’s Guide.

3. Go to the Add User Variable AppPage.

For detailed information on this step, refer to the IBM Informix Web
DataBlade Module Administrator’s Guide.

4. Type the name of the Web browser or Web server variable in the
Variable Name text box.

Figure 5-1
Display a Variable

Web Browser - [Display a Variable]

URL: http://domain:port/hr_app/?MIval=/env_var.html

The value of the HTTP_USER_AGENT environment variable is Mozilla/3.0 (WinNT;I)
5-10 IBM Informix Web DataBlade Module Application Developer’s Guide



Session Variables
5. Enter one of the following two values in the Value text box,
depending on how you are going to use the variable:

■ If you are not going to use AppPage caching, enter +.

■ If you are going to use AppPage caching, enter +defer.

6. Finish adding the user variable as described in the IBM Informix Web
DataBlade Module Administrator’s Guide.

Session Variables
A typical Web application needs a location to place search results, user
preferences, shopping cart, and other data generated by users in the course
of their interactions with the application. The maintenance of user-private
spaces for the duration of a user’s interaction with a Web-based system is
often called session management.

Typically, each user’s session is distinguished by a unique session ID,
generated at the beginning of the session and embedded into the forms (or
URLs) in all of the subsequent HTML pages returned to the client. Whenever
the user submits a form or clicks a button, the session ID is passed in as part
of the request so users can continue where they previously stopped.
Webdriver uses information returned by the WebExplode() function to
record the current values of session variables and reload them on each subse-
quent request from the same browser.

Session management allows a Web DataBlade application to assign a unique
ID to a browser instance. This allows Webdriver to identify that particular
browser instance on subsequent requests.

Currently, session management gives you persistent variables. A variable can
be set on one page and retrieved on another. These variables are available as
long as the session remains active and does not time out.
Using Variables in AppPages 5-11



How Session Management Assigns an ID to a Browser Instance
How Session Management Assigns an ID to a Browser
Instance
There are three methods of assigning a unique ID to a browser:

■ Cookies

■ URL

■ Auto

The first method is through the use of cookies. On the first request from a
browser, Webdriver sends a cookie called session.ID to the browser. This ID
has been given a unique value by Webdriver. When the browser makes
another request, it sends with it that cookie, enabling Webdriver to re-
establish the session.

Cookies are the best approach to maintaining a session between browser
interaction with the Web server and Webdriver.

The second method requires anchoring the session ID within the page itself
so that any URLs pointing to subsequent pages that the user may select
contain the ID within their path. This method requires more configuration by
the user and has implications when using the AppPage cache mechanism.
For more information on AppPage caching, refer to the IBM Informix Web
DataBlade Module Administrator’s Guide.

The second method also requires that the browser always hit up an anchor
string that contains the session.ID. As soon as a URL is selected that does not
contain this ID, the session information is lost.

The third method provides a way that always chooses cookies but can revert
to URL-based capture if the browser is ignoring cookies. This way combines
the two methods on first invocation. When the browser receives a subsequent
request with the ID in both the cookie and the URL, it abandons the URL and
continues processing as if just cookie had been set. If it sees only a URL ID, it
continues as if URL session management had been selected. This method is
known as auto.
5-12 IBM Informix Web DataBlade Module Application Developer’s Guide



Setting Session Variables
Setting Session Variables
To enable the use of session variables in your AppPages, use the Web
DataBlade Module Administration Tool to set the following Webdriver
variables.

Variable Mandatory? Description

session Yes This variable allows you to select the method for binding a session
ID to the browser. This variable can have values of url, cookie, or
auto. If set to url, then the session ID is bound to any dynamic
anchor variable contained within the page. Typically, this variable
would be $WEB_HOME. If set to cookie, the session ID is tracked
with a variable sent back to the browser as a cookie. If you select
auto, Webdriver automatically determines which method is best to
use.

session_home Yes, if using
auto or url

This variable identifies which configuration file variable is used by
your application to anchor HREF tags. For example, if your appli-
cation uses WEB_HOME as its anchor, WEB_HOME is the value
set for this variable. If multiple values are required for this variable,
they should be separated by commas.

session_location Yes This variable describes how the persistent state is handled. If the
session code is going to run within the same process, this variable
needs to refer to the full path of the directory to create session state
files. This directory must be created and owned by the same user
that owns the Web server. If the code is going to run as a separate
process, the variable needs to refer to a port and IP address in the
form port@ip-address.

session_buckets No This variable is used to define the number of subdirectories that are
available to hash the session data if the site is exceptionally large. It
is only required if session management is being controlled within
the same process. The default is 100.

session_life No This variable is used to define the amount of time a session is
allowed to continue. It measures time from the last update to the
session stack (if a session stack exists) or time from session creation.
Granularity is in seconds (default), hours (h) or days (d) and uses
the same syntax as cache_page_life. For more information about
AppPage caching, refer to the IBM Informix Web DataBlade Module
Administrator’s Guide.
Using Variables in AppPages 5-13



Examples of Using Session Variables
Important: If you are using the ISAPI Webdriver in conjunction with session
variables and have set the session Webdriver variable to url, you must attach the
ISAPI filter library to the Microsoft Internet Information server service. For detailed
information, refer to the chapter on the ISAPI Webdriver in the “Informix Web
DataBlade Module Administrator's Guide.”

Examples of Using Session Variables
To specify a session variable in an AppPage, you add the prefix session. to
the front of the variable.

In the following example, an AppPage contains a reference to a session
variable session.test. The first time this AppPage is invoked, the URL does
not contain a session ID. The following example shows the syntax for setting
the session.test variable:

<?MIVAR NAME=session.test>xyz<?/MIVAR><br>

Webdriver generates a new session ID, which is passed through to the
WebExplode() function as two variables. The first is a dynamically allocated
variable session.ID, and the second is a modified anchor variable
WEB_HOME.

Since WEB_HOME is used in subsequent pages to anchor other pages to the
same application as the user hits these references, the session ID continues to
be available to Webdriver. On future pages, this session.ID is used to access
session variables created or modified in previous pages.

The following AppPage gets the value of the session variable session.test.
The URL used to call this AppPage uses a session ID, which Webdriver inter-
prets to produce the variable value:

<?MIVAR>$session.test<?/MIVAR>. <br>

To unset the session.test session variable, use the following syntax:

Unsetting $session.test session variable:
<?MIVAR>$(UNSETVAR,$session.test<?/MIVAR>
5-14 IBM Informix Web DataBlade Module Application Developer’s Guide



Examples of Using Session Variables
The following example shows an AppPage that uses three different session
variables: session.item, session.description, and session.count. The session
variables are populated by a SELECT statement. Since these session variables
survive for the duration of the session, subsequent AppPages do not need to
keep selecting from a table; they can simply refer to the existing variables.
Using session variables can thereby notably increase performance:

<?MIBLOCK COND=$(NXST,$driver.session)>
<PRE>Hummm,  No driver.session indicates that you have not got
session management configured correctly,  or you did not hit up
this page with
a session_home anchor variable.
<?/MIBLOCK>

<?MIVAR>
$(SETVAR,myindex,0)
<?/MIVAR>
<?MISQL SQL="select item_code, description, count from
sestesttab;">
$<?MIVAR>
$(SETVAR,myindex,$(+,$myindex,1))
$(SETVAR,session.item_code[$myindex],$1)
$(SETVAR,session.description[$myindex],$(URLENCODE,$2))
$(SETVAR,session.count[$myindex],$3)
<?/MIVAR>
<?/MISQL>

<?MIVAR>$myindex rows inserted into session array<?/MIVAR>
<PRE><?MIVAR>
<BR><A HREF=$WEB_HOME?MIval=/example_menu.html>Return to
example_menu</A>
<?/MIVAR>

The following example shows the browser output:

<4 rows inserted into session array

The output shows that the table contained four rows.
Using Variables in AppPages 5-15



Examples of Using Session Variables
The following AppPage example shows how to print the value of the session
variables:

<?MIBLOCK COND=$(NXST,$session.item_code[1])>
Don't detect expected variable...  need to run read_table first!
<?MIELSE>
<?MIVAR>$(SETVAR,myindex,1)<?/MIVAR>
<PRE><?MIBLOCK INDEX=item_code FOREACH=$session.item_code>
<?MIVAR>$session.item_code[$myindex],
$session.description[$myindex], $session.count[$myindex]
$(SETVAR,myindex,$(+,$myindex,1))<?/MIVAR><?/MIBLOCK>
<?/MIBLOCK>

<PRE><?MIVAR>
<BR><A HREF=$WEB_HOME?MIval=/example_menu.html>Return to
example_menu</A>
<?/MIVAR>

The following example shows the browser output:

100025, Linux Getting Started, 4
100039, History of the World, part I, 1
100042, 100 ways to avoid paying tax & duty, 3
100099, Informix Universal Server Guide, 10

The output is the contents of the sestesttab table.

For detailed information on how to configure variables or how to change the
configuration of variables using the Web DataBlade Module Administration
Tool, refer to the IBM Informix Web DataBlade Module Administrator’s Guide.
5-16 IBM Informix Web DataBlade Module Application Developer’s Guide



Error Handling with the MI_DRIVER_ERROR Variable
Error Handling with the MI_DRIVER_ERROR Variable
You can handle Webdriver error conditions with error messages that are
more descriptive than the standard browser error messages by selecting a
page in the database to be the error-catching page. Set the following
Webdriver variables with the Web DataBlade Module Administration Tool to
modify the error messages seen by the browser as different types of errors are
encountered.

If error_page is set, Webdriver calls this page, and all error handling is
processed on that page.

The following table lists the errors provided for post-AppPage execution.

Variable Mandatory? Content

show_exceptions No Set to on or off. When on, Webdriver displays the database exception
returned by the WebExplode() function. When off, Webdriver
displays the HTTP/1.0 500 Server error message. Default is off.

redirect_url No Set to the URL to redirect users to if they do not have access to the
AppPage they attempt to retrieve.

error_page No Set to the value of the AppPage that contains error handling routines.

Error Condition Error Message

QRYTIMEOUT Query exceeded the query_timeout value

NOTFOUND No page exists in the database (404 Not Found)

NOACCESS No access permissions

TRUNCATED Results exceeded max_html_size
Using Variables in AppPages 5-17



Error Handling with the MI_DRIVER_ERROR Variable
The following table lists the errors provided for pre-AppPage execution.

For error handling, the variables show_exceptions, redirect_url, and
error_page may be set or not set in various combinations. This affects what is
received by the browser and what is executed by the WebExplode() function.
The following sections discuss the post-AppPage errors when the variables
show_exceptions, redirect_url, and error_page are set or not set in various
combinations.

If the Webdriver variable error_page is set to an AppPage that might be
called myerror_page, the following error handling occurs:

■ NOTFOUND goes to myerror_page, and MI_DRIVER_ERROR is set
to NOTFOUND.

■ NOACCESS goes to myerror_page, and MI_DRIVER_ERROR is set to
NOACCESS.

■ TRUNCATED goes to myerror_page, and MI_DRIVER_ERROR is set
to TRUNCATED.

■ QRYTIMEOUT goes to myerror_page, and MI_DRIVER_ERROR is set
to QRYTIMEOUT.

If show_exceptions, redirect_url, and error_page Webdriver variables have
not been configured, the following error messages are returned to the
browser:

■ NOTFOUND returns 404 Asset not found.

■ NOACCESS returns 403 Access not allowed.

■ TRUNCATED returns 500 Server Error.

■ QRYTIMEOUT returns 500 Server Error.

Error Condition Error Message

SESSION TIMEOUT Session exceeded session_life

SESSION INVALID Bogus session ID passed to session manager

SESSION MANAGER Session manager not running (external process)

SESSION ERROR General failure in session code
5-18 IBM Informix Web DataBlade Module Application Developer’s Guide



Error Handling with the MI_DRIVER_ERROR Variable
If the Webdriver variable show_exceptions is set to on, and redirect_url and
error_page are not, the following error messages are returned to the browser:

■ NOTFOUND returns 404 Asset not found.

■ NOACCESS returns 403 Access not allowed.

■ TRUNCATED returns an HTML error message explaining that the
output has exceeded the value specified by the max_html_size
variable.

■ QRYTIMEOUT returns an HTML error message explaining that the
query had exceeded the time limit specified by the query_timeout
variable.

If the Webdriver variable show_exceptions is set to on, redirect_url is set to
http://www.yoursite.com, and error_page is not set, the following error
messages are returned to the browser:

■ NOTFOUND goes to http://www.yoursite.com.

■ NOACCESS goes to http://www.yoursite.com.

■ TRUNCATED returns an HTML error message explaining that the
output has exceeded the value specified by the max_html_size
variable.

■ QRYTIMEOUT returns an HTML error message explaining that the
query has exceeded the time limit specified by the query_timeout
variable.

If the Webdriver variable redirect_url is set to http://www.yoursite.com,
and show_exceptions and error_page are not set, the following actions take
place:

■ NOTFOUND goes to http://www.yoursite.com.

■ NOACCESS goes to http://www.yoursite.com.

■ TRUNCATED returns 500 Server Error.

■ QRYTIMEOUT returns 500 Server Error.
Using Variables in AppPages 5-19





6
Chapter
Using Tags in AppPages
In This Chapter . . . . . . . . . . . . . . . . . . . . 6-3

AppPage Tags . . . . . . . . . . . . . . . . . . . . 6-3

MISQL Tag . . . . . . . . . . . . . . . . . . . . . 6-5
Using System Variables to Format the SQL Results . . . . . . 6-7

Specifying Column and Row Formatting Information . . . . 6-7
Displaying Processing Information . . . . . . . . . . 6-11
Specifying Replacement Values for NULL or

No-Value Columns . . . . . . . . . . . . . 6-13
WINSTART Attribute . . . . . . . . . . . . . . . . 6-14
WINSIZE Attribute . . . . . . . . . . . . . . . . . 6-15
RESULTS Attribute . . . . . . . . . . . . . . . . . 6-15
DATASET Attribute . . . . . . . . . . . . . . . . . 6-17
CACHERESULTS Attribute . . . . . . . . . . . . . . 6-18

Clearing the Cache . . . . . . . . . . . . . . . . 6-19
ISTAR and Caching Results . . . . . . . . . . . . . 6-19
Maximum Size of a Results Cache . . . . . . . . . . . 6-19
Disabling the Cache While Updating Tables . . . . . . . 6-20

SERIAL and SERIAL8 Attributes. . . . . . . . . . . . . 6-20
PREPARE Attribute . . . . . . . . . . . . . . . . . 6-21
Generating XML-Formatted Data . . . . . . . . . . . . 6-23

Using Your Own XML Tags . . . . . . . . . . . . . 6-24
Using Attributes of the MISQL AppPage Tag . . . . . . . 6-25

MIVAR Tag . . . . . . . . . . . . . . . . . . . . . 6-27
NAME Attribute . . . . . . . . . . . . . . . . . . 6-28
DEFAULT Attribute . . . . . . . . . . . . . . . . . 6-28
COND Attribute . . . . . . . . . . . . . . . . . . 6-29
ERR Attribute . . . . . . . . . . . . . . . . . . . 6-29



6-2 IBM
MIBLOCK Tag . . . . . . . . . . . . . . . . . . . . 6-29
ERR Attribute . . . . . . . . . . . . . . . . . . . 6-31
COND Attribute . . . . . . . . . . . . . . . . . . 6-31
Loop Processing . . . . . . . . . . . . . . . . . . 6-32

FOR Loop Processing . . . . . . . . . . . . . . . 6-33
FOREACH Loop Processing . . . . . . . . . . . . . 6-35
WHILE Loop Processing . . . . . . . . . . . . . . 6-37

MIELSE Tag . . . . . . . . . . . . . . . . . . . . . 6-38

MIERROR Tag . . . . . . . . . . . . . . . . . . . . 6-40
TAG Attribute . . . . . . . . . . . . . . . . . . . 6-41
ERR Attribute . . . . . . . . . . . . . . . . . . . 6-42
Creating a Generic Error Handler . . . . . . . . . . . . 6-43
Creating a Specific Error Handler . . . . . . . . . . . . 6-43
Handling Error Conditions . . . . . . . . . . . . . . . 6-44
Processing Errors with Webdriver . . . . . . . . . . . . 6-46

MICOMMENT Tag . . . . . . . . . . . . . . . . . . . 6-49

Special Characters in AppPage Tags . . . . . . . . . . . . . 6-51
Special HTML Characters . . . . . . . . . . . . . . . 6-51
Special Formatting Characters . . . . . . . . . . . . . . 6-52
 Informix Web DataBlade Module Application Developer’s Guide



In This Chapter
This chapter discusses the AppPage tags and attributes that are included
with the Web DataBlade module and used to create AppPages.

The following tags are covered in this chapter:

■ “MISQL Tag” on page 6-5

■ “MIVAR Tag” on page 6-27

■ “MIBLOCK Tag” on page 6-29

■ “MIELSE Tag” on page 6-38

■ “MIERROR Tag” on page 6-40

■ “MICOMMENT Tag” on page 6-49

AppPage Tags
AppPage tags identify the elements of an HTML page and specify the
structure and formatting for that page. The Web DataBlade module includes
a set of tags that are processed by the WebExplode() function. Use the tags
and tag attributes described in this chapter to create AppPages stored in the
database.

Tip: The AppPage tags use the SGML processing instruction tag format,
<?tag_info>, <?/tag_info>. An SGML processor ignores tags that it does not
recognize, including AppPage tags.
Using Tags in AppPages 6-3



AppPage Tags
The following table lists the AppPage tags.

Important: You can nest all AppPage tags within the MIBLOCK tag. You can also
nest an MISQL tag within another MISQL tag.

Tag Description

<?MISQL><?/MISQL> Contains SQL statements and formatting
specifications for the data retrieved

<?MIVAR><?/MIVAR> Creates, assigns, and displays variables

<?MIBLOCK><?/MIBLOCK> Delimits logical blocks of HTML

<?MIELSE> Works in conjunction with an MIBLOCK
tag that has a COND attribute

<?MIERROR><?/MIERROR> Manages error processing

<?MIFUNC><?/MIFUNC> Allows the execution of user-written
HTTP server modules invoked by the
NSAPI or ISAPI Webdriver from an
AppPage

<?MIDEFERRED><?/MIDEFERRED> Enables partial page caching

<?MIEXEC><?/MIEXEC> Enables you to execute a Perl program in
your AppPage
6-4 IBM Informix Web DataBlade Module Application Developer’s Guide



MISQL Tag
MISQL Tag
Use the MISQL tag to execute SQL statements and to format the results of
those statements in AppPages. The expansion of SQL takes place in the
database server before the resulting HTML is returned to the client.

The MISQL tag has the following tag attributes.

Attribute Mandatory? Description

SQL Yes Specifies a single SQL statement

The statement must be executable inside a trans-
action block.

NAME No Specifies the name of the variable to which the
formatted results of the MISQL tag are assigned

If NAME is not specified, the results are output.

COND No Specifies if the tag is executed only if this condition
evaluates to TRUE (nonzero)

If the COND attribute is not present, the tag is
executed.

ERR No Specifies how an error should be processed

Because multiple errors can occur on an AppPage,
use the ERR attribute to link the error processing to
a particular MIERROR tag.

WINSTART No Specifies the first row in the current data set to
process

See “WINSTART Attribute” on page 6-14.

WINSIZE No Specifies the maximum number of rows to be
processed

See “WINSIZE Attribute” on page 6-15.

RESULTS No Specifies the name used in accessing the set of rows
returned from a SELECT statement

The scope of the RESULT attribute does not extend
beyond the MISQL tag. See “RESULTS Attribute” on
page 6-15.
Using Tags in AppPages 6-5



MISQL Tag
For more information on the ERR attribute, see “MIERROR Tag” on
page 6-40. For more information on the COND attribute, see “MIBLOCK Tag”
on page 6-29.

Specify the SQL statement to retrieve or modify database data in the SQL
attribute of the MISQL tag. Specify formatting information, which indicates
how to display the results of the SQL statement, between the start and end
MISQL tags. In the following example of an MISQL tag, $1 refers to the first
column returned by the SELECT statement (in this case, name), and $2 refers
to the second column (in this case, company):

<?MISQL SQL="select name, company from customers;">$1 $2<?/MISQL>

The following section describes how to format the results of the SQL
statement executed in the MISQL tag.

DATASET No Specifies how many rows can be fetched per
iteration through the MISQL tag

DEFAULT No Default value for any unassigned variables between
the start and end MISQL tags

This value can be another variable.

CACHE
RESULTS

No Allows you to cache the results of a call to a SQL
statement within an MISQL AppPage tag

PREPARE No Sets up an SQL statement for dynamic execution; the
variables are substituted with real values at runtime

See “PREPARE Attribute” on page 6-21.

Attribute Mandatory? Description
6-6 IBM Informix Web DataBlade Module Application Developer’s Guide



Using System Variables to Format the SQL Results
Using System Variables to Format the SQL Results
For each row the SQL statement returns, the output is formatted according to
the specifications between the start and end MISQL tags. The following
sections describe the system variables you can use to format SQL output:

■ “Specifying Column and Row Formatting Information,” following

■ “Displaying Processing Information” on page 6-11

■ “Specifying Replacement Values for NULL or No-Value Columns”
on page 6-13

Specifying Column and Row Formatting Information

To specify a column variable, use the format $#, where # is a column number
from 1 up to the maximum number of columns in the row, column variables
are $1 for the first column, $2 for the second column, and so on. To specify all
the columns, use an asterisk ( $* ), as described later in this section.

Important: If you execute the XST and NXST variable-processing functions on
column variables, the functions return 0 and 1, respectively. Although these values
seem to indicate that the column variables do not exist, they do in fact exist. This
behavior of the XST and NXST variable-processing functions is only true for column
variables; when used on all other types of Web DataBlade module variables the
functions behave as expected.

The following /select1.html AppPage illustrates the use of column variables:

<HTML>
<HEAD><TITLE>Simple Select 1</TITLE></HEAD>
<BODY>
<?MISQL SQL="select first_name, last_name, title

from staff;">
<B>$1 $2</B>, $3<BR><?/MISQL>
</BODY>
</HTML>
Using Tags in AppPages 6-7



Using System Variables to Format the SQL Results
The WebExplode() function returns the following sample output to the
client:

<HTML>
<HEAD><TITLE>Simple Select 1</TITLE></HEAD>
<BODY>
<B>John Somebody</B>, Senior Consultant<BR>
<B>Joe Average</B>, Consultant<BR>
<B>Mark Markup</B>, Software Development Engineer<BR>
</BODY>
</HTML>

The following illustration shows sample Web browser output.

Specifying a Row Index

To specify a row index, use the format [#], where # is a number from 1 to the
maximum number of rows in the result set. If you do not specify a row index,
[1] is assumed. The highest row index dictates the size of the data window
that is displayed. The following /select2.html AppPage illustrates column
and row formatting specifications and the corresponding output:

<HTML>
<HEAD><TITLE>Simple Select 2</TITLE></HEAD>
<BODY>
<TABLE BORDER>
<?MISQL SQL="select first_name, last_name from staff;">
<TR> <TD> $1 $2 </TD><TD> $1[2] $2[2] </TD> </TR>
<?/MISQL>
</TABLE>
</BODY>
</HTML>

Figure 6-1
Simple Select 1

Web Browser - [Simple Select 1]

URL: http://domain:port/hr_app/?MIval=/select1.html

John Somebody, Senior Consultant
Joe Average, Consultant
Mark Markup, Software Development Engineer
6-8 IBM Informix Web DataBlade Module Application Developer’s Guide



Using System Variables to Format the SQL Results
The WebExplode() function returns the following sample output to the
client:

<HTML>
<HEAD><TITLE>Simple Select 2</TITLE></HEAD>
<BODY>
<TABLE BORDER>
<TR> <TD> John Somebody </TD><TD> Joe Average</TD> </TR>
<TR> <TD> Mark Markup </TD><TD> NOVALUE NOVALUE</TD> </TR>
</TABLE>
</BODY>
</HTML>

The following illustration shows sample Web browser output.

The WebExplode() function processes the preceding data set two rows at a
time because [2] is the highest row index specified. If [3] was the highest
row index specified, the data would be processed three rows at a time, and so
on.

Displaying Rows with No Value

When you process multiple rows at a time, you might need to display rows
with no value for the columns. See “Specifying Replacement Values for
NULL or No-Value Columns” on page 6-13 for more information.

Figure 6-2
Simple Select 2

Web Browser - [Simple Select 2]

URL: http://domain:port/hr_app/?MIval=/select2.html

John Somebody

Mark Markup

Joe Average

NOVALUE NOVALUE
Using Tags in AppPages 6-9



Using System Variables to Format the SQL Results
Display Repeated Items

To display items that are repeated with every column, use $* within curly
braces ( { } ). This formatting technique is useful when you do not know the
number of rows or columns to be retrieved for display. The /select3.html
AppPage displays each column in a separate table cell:

<HTML>
<HEAD><TITLE>Simple Select 3</TITLE></HEAD>
<BODY>
<TABLE BORDER>
<?MISQL SQL="select * from staff;">
<TR> {<TD> $* </TD>} </TR>
<?/MISQL>
</TABLE>
</BODY>
</HTML>

The WebExplode() function returns the following sample output to the
client:

<HTML>
<HEAD><TITLE>Simple Select 3</TITLE></HEAD>
<BODY>
<TABLE BORDER>
<TR> <TD> John </TD><TD> Somebody </TD><TD> Senior Consultant </TD> </TR>
<TR> <TD> Joe </TD><TD> Average </TD><TD> Consultant </TD> </TR>
<TR> <TD> Mark </TD><TD> Markup </TD><TD> Software Development Engineer
</TD> </TR>
</TABLE>
</BODY>
</HTML>

The following illustration shows sample Web browser output.

Figure 6-3
Simple Select 3

Web Browser - [Simple Select 3]

URL: http://domain:port/hr_app/?MIval=/select3.html

John

Joe

Somebody

Average

Mark Markup

Senior Consultant

Consultant

Software Development Engineer
6-10 IBM Informix Web DataBlade Module Application Developer’s Guide



Using System Variables to Format the SQL Results
Displaying Processing Information

The following table lists additional system variables set by the database
server when The WebExplode() function executes an SQL statement within
the MISQL tag. You can use these processing variables to display more infor-
mation about the results of the SQL statement.

Variable When Set? Description

MI_COLUMNCOUNT On execution Number of columns retrieved in the SQL statement

MI_CURRENTROW On current row Current formatted row being displayed during execution of
the SQL statement

Set to the number of formatted rows displayed after the
MISQL tag has been executed.

MI_ERRORCODE On error Error code returned from the SQL statement

All WebExplode() errors return an error code of -937. For
explanations of error codes, see IBM Informix Error Messages.
For more information on handling errors, see “MIERROR
Tag” on page 6-40.

MI_ERRORSTATE On error SQLSTATE returned from the SQL statement when an error
occurs

For more information on handling errors, see “MIERROR
Tag” on page 6-40.

MI_ERRORMSG On error Error message returned from the SQL statement

For more information on handling errors, see “MIERROR
Tag” on page 6-40.

MI_ROWCOUNT After execution Number of rows retrieved in the SQL statement

Updated after processing is complete.

MI_SQL On execution SQL statement executed
Using Tags in AppPages 6-11



Using System Variables to Format the SQL Results
The following /select4.html AppPage displays the number of rows returned
by the last query executed:

<HTML>
<HEAD><TITLE>Simple Select 4</TITLE></HEAD>
<BODY>
<TABLE BORDER>
<?MISQL SQL="select * from staff;">
<TR> {<TD> $* </TD>} </TR>
<?/MISQL>
</TABLE>
<HR>
<B>This query retrieved:</B>
<?MIVAR> $MI_ROWCOUNT <?/MIVAR> <B> rows </B>
</BODY>
</HTML>

The following illustration shows sample Web browser output.

Tip: System variables maintain their values and can be redisplayed until the next
MISQL tag is executed.

Figure 6-4
Simple Select 4

Web Browser - [Simple Select 4]

URL: http://domain:port/hr_app/?MIval=/select4.html

This query retrieved: 3 rows

John

Joe

Somebody

Average

Mark Markup

Senior Consultant

Consultant

Software Development Engineer
6-12 IBM Informix Web DataBlade Module Application Developer’s Guide



Using System Variables to Format the SQL Results
Specifying Replacement Values for NULL or No-Value Columns

When you format your SQL output, NULL is displayed by default if a column
has a null value. NOVALUE is displayed by default if you specify a column
variable greater than the number of columns in the row or if there is no value
for a column when the output is formatted to display multiple rows on the
same line.

■ Use the MI_NULL variable to specify the text to be displayed when a
null value is retrieved.

■ Use the MI_NOVALUE variable to specify the text to be displayed
when no value is retrieved.

In the following /select5.html AppPage, the MI_NULL and MI_NOVALUE
variables are assigned to a blank space:

<HTML>
<HEAD><TITLE>Simple Select 5</TITLE></HEAD>
<BODY>
<TABLE BORDER>
<?MIVAR NAME=$MI_NOVALUE> <?/MIVAR>
<?MIVAR NAME=$MI_NULL> <?/MIVAR>
<?MISQL SQL="select first_name, last_name from celebrities;">
<TR> <TD> $1 $2 </TD><TD> $1[2] $2[2] </TD> </TR> <?/MISQL>
</TABLE>
</BODY>
</HTML>

The WebExplode() function returns the following sample output to the
client:

<HTML>
<HEAD><TITLE>Simple Select 5</TITLE></HEAD>
<BODY>
<TABLE BORDER>
<TR> <TD> Jerry Lewis </TD><TD> Frank Sinatra </TD> </TR>
<TR> <TD> Dean Martin </TD><TD> Cher   </TD> </TR>
<TR> <TD> Madonna   </TD><TD>    </TD> </TR>
</TABLE>
</BODY>
</HTML>
Using Tags in AppPages 6-13



WINSTART Attribute
The following illustration shows sample Web browser output.

A blank space replaces the null values of last_name for Cher and Madonna.
Because the query retrieves an odd number of rows, a blank space also
replaces the columns that have no value in the last table cell.

WINSTART Attribute
The WINSTART attribute of the MISQL tag indicates the first row in the current
result set to process. WINSTART can be assigned a value or can be designated
a value by a variable. The value of WINSTART increments to begin with the
next consecutive row number following the last row number that was
retrieved. If you have set the WINSIZE attribute to 20, the WINSTART value is
0 for the first iteration through the relevant portion of the AppPage. The
second iteration through the AppPage sets the WINSTART value to 20. The
third iteration through the AppPage sets the WINSTART value to 40. This
continues until the WebExplode() function retrieves all rows. For an example
of how to use WINSTART and WINSIZE to create a “walking window,” see
“Example of a Walking Window” on page 8-15.

Figure 6-5
Simple Select 5

Web Browser - [Simple Select 5]

URL: http://domain:port/hr_app/?MIval=/select5.html

Jerry Lewis

Dean Martin

Frank Sinatra

Cher

Madonna
6-14 IBM Informix Web DataBlade Module Application Developer’s Guide



WINSIZE Attribute
WINSIZE Attribute
The WINSIZE attribute limits the maximum number of rows that are
displayed in the output of the MISQL tag. Use WINSIZE to limit the size of the
result set being returned across the network if the queries you are executing
might return a very large number of rows. Setting this attribute limits the
system resources required to execute the query and return the results to the
client. The following example limits the result set to 20 formatted rows:

<?MISQL WINSIZE=20 SQL="select * from staff;"> { $* } <BR>
<?/MISQL>

Important: If WINSIZE prevents all of the rows in the result set from being retrieved,
MI_ROWCOUNT is not updated.

For an example of how to use the WINSTART and WINSIZE attributes in an
AppPage, refer to “Example of a Walking Window” on page 8-15.

RESULTS Attribute
MISQL statements can be nested within one another when the RESULTS
attribute is included in an MISQL statement. The RESULTS attribute defines a
location where the SQL result set for a variable is bound. This location is also
known as a namespace. To access the results value, use the column number
with the RESULTS attribute, separated by a dot (.).

If you set RESULTS to myoutput, then the following example shows how to
access the second column of the resulting set of rows:

$myoutput.2
Using Tags in AppPages 6-15



RESULTS Attribute
If a namespace is declared, the data is accessible only through that
namespace. If you have declared a namespace with the RESULTS attribute,
you should not write into that namespace. The following table lists the
variables that should not be used with the RESULTS attribute within an MISQL
statement.

If, for example, you used the RESULTS attribute and the MI_CURRENTROW
variable within a single MISQL statement, an undefined variable error is
returned or the MI_CURRENTROW is returned from a previous MISQL tag
without the RESULTS attribute.

For an example of a nested MISQL statement, consider the following two
tables.

Variable When Set? Description

MI_COLUMNCOUNT On execution Number of columns retrieved in the SQL statement

MI_CURRENTROW On current row Current formatted row being displayed during execution of
the SQL statement

Set to the number of formatted rows displayed after the
MISQL tag has been executed.

MI_ROWCOUNT After execution Number of rows retrieved in the SQL statement

Updated after processing is complete.

MI_SQL On execution SQL statement executed

Name Money

Joe 10

Mary 11

Item Cost

Food 4

Art 5
6-16 IBM Informix Web DataBlade Module Application Developer’s Guide



DATASET Attribute
The nested MISQL statement might look like this:

<?MISQL SQL="select item, cost from TABLE2;" RESULTS=tab2>
             <?MISQL SQL="select name, money from TABLE1;"RESULTS=tab1>
                  $tab2.1 $tab2.2 $tab1.1 $tab1.2
             <?/MISQL>
         **** next iteration  ****
   <?/MISQL>

The results of this MISQL statement are as follows:

Food   4  Joe 10
Food   4  Mary 11
**** next iteration ****
Art 5 Joe 10
Art 5 Mary 11
**** next iteration ****

DATASET Attribute
The DATASET attribute indicates how many rows can be retrieved per
iteration through the body of an MISQL tag. The following example shows the
DATASET attribute, indicating that two rows are fetched:

<HTML>
<HEAD><TITLE>Simple Select 2</TITLE></HEAD>
<BODY>
<TABLE BORDER>
<?MISQL SQL="select first_name, last_name from staff;" DATASET=2>
<TR> <TD> $1 $2 </TD><TD> $1[2] $2[2] </TD> </TR>
<?/MISQL>
</TABLE>
</BODY>
</HTML>
Using Tags in AppPages 6-17



CACHERESULTS Attribute
CACHERESULTS Attribute
You use the CACHERESULTS attribute to cache the results of a call to an SQL
statement within an MISQL AppPage tag. For example, assume that your Web
DataBlade module application executes a query against a small static
database table many times. The results from this query never change, thus
caching by using the CACHERESULTS attribute would improve the perfor-
mance of your application.

The following example shows how to use the CACHERESULTS attribute:

<?MISQL SQL="SELECT catptionText FROM mc_Caption
WHERE captionID = 42 AND locale = 'fr_fr'"

CACHERESULTS>
$1
<?/MISQL>

Whenever the WebExplode() function encounters an MISQL AppPage tag
with a CACHERESULTS attribute, the function searches the results cache for
an entry with the same SQL statement, and if it is a prepared statement, it also
searches for the same statement input parameters. If the WebExplode()
function finds a matching entry, then the function returns the contents of the
cache to the AppPage. Otherwise, the function executes the SQL statement as
usual and saves the results in the cache.

The WebExplode() function replaces all variables and parameters in an SQL
statement before it searches the results cache for a match. For example, the
following MISQL call contains both a parameter and a variable:

<?MISQL SQL="SELECT catptionText FROM mc_Caption
WHERE captionID = @ID@ AND locale = '$LOCALE'"

CACHERESULTS>
$1
<?/MISQL>

The WebExplode() function replaces both the parameter @ID@ and the
variable $LOCALE before searching or creating a cache. The DataBlade
module maintains a separate cache for each combination of @ID@ and
$LOCALE.

The CACHERESULTS attribute is designed to work with queries that return a
small number of small rows. As the result sets get larger, the caching
mechanism works more slowly and uses more memory. Therefore, it is
recommended that you not use this attribute with queries that return large
amounts of data.
6-18 IBM Informix Web DataBlade Module Application Developer’s Guide



CACHERESULTS Attribute
Clearing the Cache

The WebExplode() function does not automatically update the results cache
when the underlying table is updated. You must explicitly clear the cache if
you change the underlying table in any way.

To clear the results cache, execute the WebClearResultsCache() routine, as
shown in the following example:

execute function WebClearResultsCache('mc_caption');

In this case, the routine deletes all entries in the cache whose SQL string
contain the string mc_caption.

You can execute the WebClearResultsCache() routine with no arguments, in
which case, all entries in the cache are deleted.

It is recommended that you not use the CACHERESULTS attribute on tables
that are frequently updated. This is because you must clear the results cache
each time the table is updated, which could result in poorer overall perfor-
mance than if you did not use results caching at all.

ISTAR and Caching Results

A results cache is attached to the database that executes the MISQL AppPage
tag that has a CACHERESULTS attribute. In an ISTAR query, the data in the
cache might come from many different databases. This means that if the
underlying table in one database changes, the cache must be cleared in all
other databases that reference the changed table, or the returned data might
be out of date. Due to the probability of error in such maintenance, it is
recommended that you do not use the CACHERESULTS attribute with ISTAR
queries.

Maximum Size of a Results Cache

Each results cache has a maximum size. If the total size of all entries in a cache
has reached the maximum, then the least recently used entry is thrown out
until there is room for a new entry. The default maximum size of a cache is
32 KB.
Using Tags in AppPages 6-19



SERIAL and SERIAL8 Attributes
To change the maximum size, insert a new row in the wbInfo table, setting
the name column to WebResultsCacheSize and the value column to the
desired maximum size.

If the database does not have a wbInfo table or the wbInfo table does not
have a WebResultsCacheSize row, then the WebExplode() function uses the
default 32 KB maximum size.

Disabling the Cache While Updating Tables

It is not possible to implement all the standard isolation levels with the
results cache. For this reason it is recommended that you disable the results
cache feature while a table is being updated. Do this by changing the
maximum cache size to 0 in the wbInfo table, then setting it back after the
update is finished.

SERIAL and SERIAL8 Attributes
You use the SERIAL and SERIAL8 attributes to return the value that the
database server automatically inserts into a SERIAL or SERIAL8 column after
you execute an appropriate INSERT statement with the MISQL AppPage tag.

Within the MISQL AppPage tag, set the SERIAL or SERIAL8 attribute to the
name of a variable that you can subsequently query to find out what serial
number was inserted into the column.

For example, assume you have previously created a table with the following
SQL statement:

CREATE TABLE serialtest (
id      SERIAL,
id8     SERIAL8,
name    VARCHAR(20)

);
6-20 IBM Informix Web DataBlade Module Application Developer’s Guide



PREPARE Attribute
The following sample HTML shows how to use the MISQL AppPage tag to
insert a row into the serialtest table and then use the MIVAR AppPage tag to
return the values that the database server automatically inserted into the two
serial columns:

<?MISQL SERIAL8=serial8var SERIAL=serialvar
    SQL="insert into serialtest (name) values ('whatever');">
<?/MISQL>
<?MIVAR> Value of serial column was $serialvar<?/MIVAR><p>
<?MIVAR> Value of the serial8 column was $serial8var <?/MIVAR>

PREPARE Attribute
You use the PREPARE attribute to set up an SQL statement for dynamic
execution. You embed variables in your query, designated by question
marks, which are substituted by real values at runtime.

There are many reasons why you might want to prepare an SQL statement
first and substitute actual values when you run the statement. This section
illustrates how to use the PREPARE attribute by describing two situations; the
first example reduces errors, and the second enhances security.

Your web site may use HTML <FORM> tags to receive user input. Typically,
the page takes the <INPUT> of the form, assembles an SQL statement string,
and executes it to select or update data. If a text entry in a form contains any
single quotes, the resulting SQL query can result in a syntax error. For
example:

Original form:

<INPUT TYPE="text" NAME="name">

Receiving (target) page:

<?MISQL SQL="
INSERT into person (name)
VALUES ('$name')
;">Person inserted.

<?/MISQL>

The user types the following text into the name field: O’Brien
Using Tags in AppPages 6-21



PREPARE Attribute
This results in an incorrect SQL VALUES clause, that raises error: -16306:
“Found a quote for which there is no matching quote.”

VALUES ('O'Brien')

Consider another situation; a hacker who knows that <INPUT> fields become
part of a SQL string could enter data into any field (text or otherwise) to
change the syntax and function of an SQL statement. For example:

Original form:

<INPUT TYPE="text" NAME="custid">

Receiving (target) page:

<?MISQL SQL="
SELECT date, amount, payee
FROM transactions
WHERE custid = $custid
ORDER BY 1
;">$1 $2 $3

><?/MISQL>

The hacker enters into custid field: 12345 OR 1=1

The resulting SQL WHERE clause is WHERE custid = 12345 OR 1=1, which
allows the hacker to see all customer transactions.

To prevent these problems, you can use either of the following methods:

■ Validate non-text fields and escape quotation marks for all variables
coming from text form fields in your SQL statement:
<?MISQL SQL="INSERT INTO FOO VALUES (

'$(REPLACE,$name','', ...)'
'$(REPLACE,$address','', ...)'

;">

■ Use the PREPARE attribute to put the users input into placeholders
for literals in the query. For example:
<?MIVAR>

$(SETVAR,val[1],$name)
$(SETVAR,val[2],$address)
...

<?/MIVAR>
<?MISQL SQL="INSERT INTO FOO

VALUES (?, ?, ...);" PREPARE="$val">
6-22 IBM Informix Web DataBlade Module Application Developer’s Guide



Generating XML-Formatted Data
Generating XML-Formatted Data
You can use the MISQL AppPage tag to generate XML-formatted data based
on rows in a table. You can do this in two ways:

■ Use the MISQL AppPage tag to retrieve only data from the table and
specify your own XML tags.

■ Use XML-specific attributes of the MISQL AppPage tag to generate
default XML tags as well as retrieve data from the table.

Both methods are discussed in the following sections.

AppPages that create XML-formatted data must use the extension xml in
their names; you must have an xml extension in the wbExtensions table in
your database. You can check whether this exists by invoking AppPage
Builder (APB) and clicking Admin Menu and Edit Extension. Look for the
xml extension in the list box.

If there is no xml extension in the list, then you must add one to the wbExten-
sions table.

To add an xml extension to the wbExtensions table

1. In APB, click Add Extension from the admin menu AppPage and
type the values for the text boxes shown in the following table.

TextBox Value

Extension XML

Name XML Page

Source Table wbPages

Super Type text

Sub Type xml

ID Column ID

Content Column object

Path Column path

Retrieval Method WebExplode
Using Tags in AppPages 6-23



Generating XML-Formatted Data
2. Click Save.

APB adds the xml extension to the wbExtensions table and you are
ready to create an AppPage that generates XML-formatted data.

Important: Currently, the only browser that can use XML data is Microsoft Internet
Explorer, Version 5.

The examples in the following sections use this table and data:

CREATE TABLE people
(

id      INTEGER,
name    VARCHAR(30)

);

INSERT INTO people VALUES (1, 'Mary Smith');
INSERT INTO people VALUES (2, 'John Grant');

Using Your Own XML Tags

The following AppPage shows how you can generate XML-formatted data
from the data in the people table:

<?xml version="1.0" ?>
<TABLE_DATA>
<?MISQL SQL="select id, name from people;">

<ROW_DATA ID="$MI_CURRENTROW">
<ID_DATA>$1</ID_DATA>
<NAME_DATA>$2</NAME_DATA>
</ROW_DATA>

<?/MISQL>
</TABLE_DATA>

When you invoke this AppPage, the WebExplode() function generates the
following XML:

<?xml version="1.0" ?>
<TABLE_DATA>

<ROW_DATA ID="1">
<ID_DATA>1</ID_DATA>
<NAME_DATA>Mary Smith</NAME_DATA>
</ROW_DATA>

<ROW_DATA ID="2">
<ID_DATA>2</ID_DATA>
<NAME_DATA>John Grant</NAME_DATA>
</ROW_DATA>

</TABLE_DATA>
6-24 IBM Informix Web DataBlade Module Application Developer’s Guide



Generating XML-Formatted Data
In this example, you specify all the XML tags, such as <ROW_DATA> and
<TABLE_DATA>, in the standard way of using the MISQL AppPage tag.

Using Attributes of the MISQL AppPage Tag

Starting with Version 4.00.UC2 of the Web DataBlade module, you can use
XML-specific attributes of the MISQL AppPage tag to automatically generate
an XML stream with default XML tags. The following table describes these
XML-specific attributes.

The following AppPage snippet shows how to use these attributes to
generate an XML stream similar to that in the previous section:

<?MISQL SQL="select id, name from people;"
XMLDOC=TABLE_DATA XMLROW=ROW_DATA><?/MISQL>

When you invoke this AppPage, the WebExplode() function generates the
following XML:

<?xml version="1.0" ?>
<TABLE_DATA>

<ROW_DATA ID="1">
<id>1</id>
<name>Mary Smith</name>
</ROW_DATA>
<ROW_DATA ID="2">
<id>2</id>
<name>John Grant</name>
</ROW_DATA>

</TABLE_DATA>

MISQL Attribute Description

XMLDOC Specifies the DOC type of the generated XML stream

You must specify this attribute for the WebExplode()
function to generate an XML stream.

XMLROW Specifies the name of the XML tag that delineates rows

If you do not specify this attribute, the WebExplode()
function generates the default <ROW> and </ROW> tags.

XMLVERSION Specifies the version of XML

If you do not specify this attribute, the default is 1.0.
Using Tags in AppPages 6-25



Generating XML-Formatted Data
Note that in the preceding XML, the XML tags that delineate the columns have
the same name as the columns themselves. If you want to change the name
of the tags that delineate the columns, use the AS keyword in your SELECT
statement, as in:

<?MISQL SQL="select id as ID_DATA, name AS NAME_DATA from people;"
XMLDOC=TABLE_DATA XMLROW=ROW_DATA><?/MISQL>

When you invoke this AppPage, the WebExplode() function generates the
following XML:

<?xml version="1.0" ?>
<TABLE_DATA>

<ROW_DATA>
<id_data>1</id_data>
<name_data>Mary Smith</name_data>
</ROW_DATA>
<ROW_DATA>
<id_data>2</id_data>
<name_data>John Grant</name_data>
</ROW_DATA>

</TABLE_DATA>
6-26 IBM Informix Web DataBlade Module Application Developer’s Guide



MIVAR Tag
MIVAR Tag
The MIVAR tag enables you to assign and display variables. Use variables
with AppPage tags to dynamically generate and format the results of SQL
statements and to process errors.

The following table lists the MIVAR tag attributes.

For more information on the ERR attribute, see “ERR Attribute” on page 6-29.
For more information on the COND attribute see, “COND Attribute” on
page 6-31.

Attribute Mandatory? Description

NAME No Specifies the name of the variable specified by the
text between the start and end MIVAR tags. If
NAME is not specified, the text between the start
and end MIVAR tags is output. Variables within the
text are expanded.

DEFAULT No Specifies the default value for any unassigned
variables between the start and end MIVAR tags.
This value can be another variable.

COND No Tag is enabled only if this condition evaluates to
TRUE (nonzero). If the COND attribute is not
present, it is executed.

ERR No Specifies how an error should be processed. Because
multiple errors can occur on an AppPage, use the
ERR attribute to link the error processing to a
particular MIERROR tag.
Using Tags in AppPages 6-27



NAME Attribute
NAME Attribute
Use the NAME attribute to assign the value of the text between the start and
end MIVAR tags to that variable name. The following /var1.html AppPage
demonstrates how to assign variables:

<HTML>
<HEAD><TITLE>Variable Assignment 1</TITLE></HEAD>
<BODY>
<?MIVAR NAME=$TITLE>Entrepreneur<?/MIVAR>
<?MIVAR NAME=$SALUTATION> Dear $TITLE: <?/MIVAR>
<?MIVAR>$SALUTATION <BR> You are a sweepstakes winner!<?/MIVAR>
</BODY>
</HTML>

When you do not specify the NAME attribute, the text between the tags is
output. Variables between the tags are expanded. As a result of the preceding
AppPage, the WebExplode() function returns the following output to the
client:

<HTML>
<HEAD><TITLE>Variable Assignment 1</TITLE></HEAD>
<BODY>
Dear Entrepreneur: <BR> You are a sweepstakes winner!
</BODY>
</HTML>

Important: Within the NAME attribute assignment (NAME=$varname), the $ in
front of the variable name is optional. In all other occurrences, you must precede the
variable name with a $.

DEFAULT Attribute
Use the DEFAULT attribute to specify a default value for any unassigned
variables between the start and end MIVAR tags. In the following /var2.html
AppPage, the DEFAULT attribute is used to replace any unassigned variables
between the start and end MIVAR tags with the value specified in the
DEFAULT attribute:

<HTML>
<HEAD><TITLE>Variable Assignment 2</TITLE></HEAD>
<BODY>
<?MIVAR NAME=$TITLE DEFAULT="Sir or Madam"> $INPUT_TITLE <?/MIVAR>
<?MIVAR> Dear $TITLE: <BR> You are a sweepstakes winner! <?/MIVAR>
</BODY>
</HTML>
6-28 IBM Informix Web DataBlade Module Application Developer’s Guide



COND Attribute
If the INPUT_TITLE variable is unassigned, the preceding AppPage returns
the following output to the client:

<HTML>
<HEAD><TITLE>Variable Assignment 2</TITLE></HEAD>
<BODY>
Dear Sir or Madam: <BR> You are a sweepstakes winner!
</BODY>
</HTML>

If the INPUT_TITLE variable is assigned elsewhere—for example, in the
calling URL or in an HTML form—that value overrides the default value.

COND Attribute
The COND attribute specifies a condition that is evaluated before the tag is
processed. If the condition is true, the tag is processed. Conditions are
variables or variable expressions that are false if 0 and true if nonzero.

ERR Attribute
The ERR attribute links an MISQL, MIVAR, MIBLOCK, or dynamic tag with an
MIERROR tag to be invoked if an error occurs in the processing of that tag.
Specify an ERR attribute in an MISQL, MIVAR, or MIBLOCK tag to invoke an
MIERROR tag with a matching ERR attribute when an error occurs.

MIBLOCK Tag
The MIBLOCK tag enables you to delimit logical blocks of HTML to be
executed in a variety of conditions. Extensions to the MIBLOCK tag, for
example, determine how many times a statement between <?MIBLOCK> and
<?/MIBLOCK> can be iterated. The MIBLOCK tag can also be used for loop
processing. Later sections within this MIBLOCK explanation describe how to
use loop processing with the MIBLOCK tag.

Important: You can nest MIBLOCK tags within MIBLOCK tags and MISQL tags
within MISQL tags. Variables are interpreted only within MISQL, MIVAR, MIELSE,
and MIERROR tags and within the COND attribute of the MIELSE or MIBLOCK tag.
Using Tags in AppPages 6-29



MIBLOCK Tag
The following table lists the MIBLOCK tag attributes.

Attribute Dependency Description

COND None The MIBLOCK tag is enabled only if this
condition is true (nonzero)

ERR None Specifies how an error should be processed

Because multiple errors can occur on an AppPage,
use the ERR attribute to link the error processing
to a particular MIERROR tag.

INDEX FROM and
FOREACH

Used as a loop counter

Required if either the FROM or the FOREACH
attribute is specified.

FROM FOR Specifies the initial value of the INDEX attribute
in a FOR loop

TO FOR Specifies the maximum value of the INDEX
attribute value

STEP None Specifies the increment or decrement of the
INDEX attribute

The default is 1.

FOREACH None Used in the FOREACH loop to specify that a
variable that can be, but is not necessarily, a vector
variable

A vector variable consists of multiple variables
with the same name, passed into the AppPage
using check boxes or the MULTIPLE attribute of
selection lists. If the variable is not a vector
variable, the loop is processed one time; if it is a
vector variable, the body is processed the vector
variable length number of times.

WHILE None Used in the WHILE loop to determine if the body
is processed

If this attribute is not equal to 0, the body is
processed.
6-30 IBM Informix Web DataBlade Module Application Developer’s Guide



ERR Attribute
ERR Attribute
A vector variable consists of multiple variables with the same name, passed
into the AppPage using check boxes or the MULTIPLE attribute of selection
lists. The ERR attribute of the MIBLOCK tag is invoked only if an error occurs
when the WebExplode() function evaluates the condition specified by the
COND attribute. For more information on the ERR attribute, see “MIERROR
Tag” on page 6-40.

COND Attribute
The COND attribute specifies a condition that is evaluated before the tag is
processed. If the condition is true, the tag is processed. Conditions are
variables or variable expressions that are false if 0 and true if nonzero.

The following /cond_display.html AppPage uses the COND attribute within
an MIBLOCK tag to conditionally display text according to the value of a
variable:

<HTML>
<HEAD><TITLE>Conditional Display</TITLE></HEAD>
<BODY>
<?MIVAR COND=$(NXST,$VAR1) NAME=$VAR1>0<?/MIVAR>
This is always displayed.<BR>
<?MIBLOCK COND=$VAR1>

This is conditionally displayed if VAR1 is nonzero.<BR>
<B>The value of VAR1 is: <?MIVAR>$VAR1<?/MIVAR></B><BR>

<?/MIBLOCK>
This is always displayed.
</BODY>
</HTML>

If the condition in the MIBLOCK tag evaluates to true—that is, if the VAR1
variable has been assigned a value other than 0 in the URL that calls it or in
an HTML form—the value of the variable is displayed. The AppPage might
be called with the following URL:

http://myhost/hr-map/?MIval=/cond_display.html&VAR1=1,
Using Tags in AppPages 6-31



Loop Processing
The preceding AppPage returns the following output to the client:

<HTML>
<HEAD><TITLE>Conditional Display</TITLE></HEAD>
<BODY>
This is always displayed.<BR>

This is conditionally displayed if VAR1 is nonzero.<BR>
<B>The value of VAR1 is: 1</B><BR>

This is always displayed.
</BODY>
</HTML>

If the VAR1 variable is undefined, the preceding AppPage returns the
following output to the client:

<HTML>
<HEAD><TITLE>Conditional Display</TITLE></HEAD>
<BODY>
This is always displayed.<BR>
This is always displayed.
</BODY>
</HTML>

NXST and other variable-processing functions you can use to create variable
expressions are described in Chapter 8, “Using Variable-Processing
Functions in AppPages.”

Loop Processing
This section describes the three classes of loop processing you can use with
the MIBLOCK tag:

■ FOR—Loop over a sequence of numbers.

■ FOREACH—Loop over the values in a vector variable.

■ WHILE—Loop until the evaluation of COND results in a value of 0.
6-32 IBM Informix Web DataBlade Module Application Developer’s Guide



Loop Processing
FOR Loop Processing

The FOR loop uses the following attributes of the MIBLOCK tag.

The value of the STEP attribute determines loop processing, as follows.

Once the loop starts, all statements within the body of the MIBLOCK tag are
executed and the INDEX attribute value is added to the TO attribute. Either
the statements in the loop execute again (based on the same test that caused
the loop to execute initially) or the loop is exited and processing continues at
the end tag.

This is an example of a FOR loop that starts at 10 and counts down to 0:

<?MIBLOCK INDEX=idx TO=0 FROM=10 STEP=-1>
<?MIVAR> $idx iterations left<?/MIVAR>
<?/MIBLOCK>

Important: Changing the value of the INDEX, TO, or STEP attributes does not affect
loop processing after it has commenced.

Attribute Description

INDEX Variable used as a loop counter

FROM Initial value of INDEX

TO Final value of INDEX

STEP (optional) Amount INDEX is changed each time through the loop

If not specified, STEP defaults to 1. This value can be either
a positive or negative integer.

Value Descriptions

Positive or 0 INDEX is less than or equal to TO.

Negative INDEX is greater than or equal to TO.
Using Tags in AppPages 6-33



Loop Processing
The following flowchart illustrates the program logic for the FOR loop.

Figure 6-6
FOR Loop

Processing

INDEX & FROM
attributes valid?

STEP
specified?

STEP ≥ 0?

Done

INDEX ≥ TO?INDEX ≤ TO?

Process
body of

loop

Increment/
decrement

INDEX by STEP

STEP=1

Raise
error

No

Yes

Yes

No

No

NoNo

Yes

Yes Yes

Start
6-34 IBM Informix Web DataBlade Module Application Developer’s Guide



Loop Processing
FOREACH Loop Processing

The FOREACH loop uses the following two attributes of the MIBLOCK tag.

The FOREACH loop is entered if the attribute is present. Once the loop is
entered, the entire body of the MIBLOCK tag is processed for the first element
in the vector variable. Then, as long as there are more elements in the
variable, the body of the MIBLOCK tag is processed. When there are no more
elements in the variable, the loop is exited and execution continues at the
terminating tag.

The following example uses the MIVAR tag to first create a vector variable
called vec that has three elements: hard green expensive. The example
then loops through the body of the MIBLOCK tag three times, once for each
element in the vector variable.

<?MIVAR NAME=vec[1]>hard<?/MIVAR>
<?MIVAR NAME=vec[2]>green<?/MIVAR>
<?MIVAR NAME=vec[3]>expensive<?/MIVAR>
<?MIBLOCK INDEX=$fred FOREACH=$vec >

<?MIVAR> Characteristics of product:$fred <?/MIVAR>
<?/MIBLOCK>

The result of executing this AppPage is as follows:

Characteristics of product: hard
Characteristics of product: green
Characteristics of product: expensive

Attribute Description

INDEX Variable used to iterate through the elements of the vector
variable.

FOREACH Name of vector variable

If it is a normal variable, then it is treated as a vector
variable with one element.
Using Tags in AppPages 6-35



Loop Processing
The following flowchart illustrates the program logic for the FOREACH loop.

Figure 6-7
FOREACH Loop

Processing

INDEX
attribute
valid?

FOREACH
variable exist?

Unprocessed
element in vector

variable?

Done

Move next
element of

vectorvariable
to INDEX

Raise
error

No

Yes

Yes

No

No

Start

Processbody
of loop

Yes
6-36 IBM Informix Web DataBlade Module Application Developer’s Guide



Loop Processing
WHILE Loop Processing

The WHILE loop uses the following attribute of the MIBLOCK tag.

The WHILE variable expression evaluates to a numeric value. If the variable
expression is nonzero, all statements are executed within the body of the
MIBLOCK tag. Control then returns to the WHILE attribute, and the variable
expression is checked again. If the variable expression evaluates to nonzero,
the process is repeated. If the variable is 0, processing resumes with the end
tag.

The following example writes out 10 messages with the test variable
descending toward 0:

<?MIVAR NAME=test>10<?/MIVAR>
<?MIBLOCK WHILE=$test>
This will iterate<?MIVAR>$test<?/MIVAR> more times.
   <?MIVAR NAME=test>$(-,$test,1)<?/MIVAR>
<?/MIBLOCK>

Attribute Description

WHILE Variable expression that evaluates to a numeric value
Using Tags in AppPages 6-37



MIELSE Tag
The following flowchart illustrates the program logic for the WHILE loop.

MIELSE Tag
The MIELSE tag works in conjunction with the MIBLOCK tag. MIELSE has the
following optional attribute.

The MIELSE tag is used within the body of an MIBLOCK tag. Statements
within an MIBLOCK body that contain an MIELSE tag are executed if the most
recently unmatched COND attribute of MIBLOCK is 0. The body of the
MIBLOCK is skipped to the MIELSE. The contents of the MIELSE is processed
to the close of the most recent unclosed MIBLOCK or the next MIELSE. This is
similar to Visual Basic “if then else” processing.

Figure 6-8
WHILE Loop

Processing

Attribute Description

COND If the value of COND is true, the body of the MIELSE is
processed to the next MIBLOCK or MIELSE.

WHILE
attribute exist?

WHILE
attribute = 0? Done

Processbody
of loop

No

Yes

Yes

No

Start
6-38 IBM Informix Web DataBlade Module Application Developer’s Guide



MIELSE Tag
The following example shows a simple application of an MIELSE tag used
within an MIBLOCK tag:

<?MISQL SQL="select foreign_language from languages where name =
'John Doe';">$1<?/MISQL>
<?MIBLOCK COND=$MI_ROWCOUNT>
You are an american
<?MIELSE>
You are multilingual
<?/MIBLOCK>

MIBLOCK tags can be embedded within one another. The following example
shows how the MIELSE tag with a COND attribute might be used within
embedded MIBLOCK tags:

<?MISQL SQL="select foreign_language from languages where name =
'John Doe';">
$1<?/MISQL>
<?MIBLOCK COND=$MI_ROWCOUNT>
   american
 <?MIELSE>
    <?MIBLOCK COND="$(=,$MI_ROWCOUNT,1)">
     bilingual
    <?MIELSE COND="$(=,$MI_ROWCOUNT,2)">
     multilingual
    <?MIELSE>
     polyglot
    <?/MIBLOCK>
<?/MIBLOCK>
Using Tags in AppPages 6-39



MIERROR Tag
MIERROR Tag
Use the MIERROR tag to specify the processing that takes place when the
WebExplode() function encounters an error within other AppPage tags.
Errors can occur if the database server cannot successfully process an SQL
statement, if you try to access an unassigned variable, or if you use an
incorrect tag construct.

Important: The placement of MIERROR tags is significant. You must specify
MIERROR tags within an AppPage prior to invoking them.

The following table lists the MIERROR tag attributes.

For more information on the COND attribute, see “MIBLOCK Tag” on
page 6-29.

Attribute Mandatory? Description

TAG No Specifies the type of processing when an error occurs

This attribute must be assigned to an MISQL,
MIVAR, or dynamic tag. If you make the TAG=MISQL
attribute assignment, the SQL attribute must also be
specified. If you make the TAG=MIVAR attribute
assignment, the tag is equivalent to an MIVAR tag
with no NAME attribute, and the text between start
and end tags is output. Default is TAG=MIVAR.

COND No Tag is enabled only if this condition evaluates to true
(nonzero)

ERR No Specifies how an error should be processed

Because multiple errors can occur on an AppPage,
use the ERR attribute to link the error processing to
a particular MIERROR tag.
6-40 IBM Informix Web DataBlade Module Application Developer’s Guide



TAG Attribute
The following table lists the variables that become active when the body of
the MIERROR tag is executed.

TAG Attribute
When an error occurs and the WebExplode() function invokes an MIERROR
tag, the tag behaves like an MISQL, MIVAR, or dynamic tag, depending on the
TAG attribute. Use the TAG=MISQL attribute assignment to execute the SQL
statement specified in the SQL attribute.

The following example shows how to use the TAG attribute. The SELECT
statement specified in the SQL attribute is performed when the MIERROR tag
is invoked. This error handler retrieves an error message from the
my_weberr_catalog table. The error handler assumes that the table already
exists.

<?MIERROR TAG=MISQL SQL="select error_msg from my_weberr_catalog
where error_id='$MI_ERRORCODE';">$1<?/MIERROR>

This is equivalent to executing the following MISQL tag:

<?MISQL SQL="select error_msg from my_weberr_catalog
where error_id='$MI_ERRORCODE';">$1<?/MISQL>

Important: When an error occurs during the processing of an AppPage, the entire
transaction is rolled back. Therefore an INSERT, UPDATE, or any other update
performed by the SQL statement in the MIERROR tag is also rolled back.

Variable When Set Description

MI_ERRORCODE On error Error code returned from the SQL
statement

All WebExplode() errors return an
error code of -937. For explanations
of error codes, see IBM Informix Error
Messages.

MI_ERRORSTATE On error SQLSTATE returned from the SQL
statement when an error occurs

MI_ERRORMSG On error Error message returned from the
SQL statement
Using Tags in AppPages 6-41



ERR Attribute
An MIERROR tag with the TAG=MIVAR attribute assignment behaves like an
MIVAR tag with no NAME attribute. Use the TAG=MIVAR attribute assignment
to output an error message. For example, when the following MIERROR tag
is invoked, the text between the start and end tags is output:

<?MIERROR TAG=MIVAR>
<B>Please contact your Web Administrator.</B><BR><?/MIERROR>

This is equivalent to executing the following MIVAR tag:

<?MIVAR><B>Please contact your Web Administrator.</B><BR><?/MIVAR>

ERR Attribute
The ERR attribute links an MISQL, MIVAR, MIBLOCK, or dynamic tag with an
MIERROR tag to be invoked if an error occurs in the processing of that tag.
Specify an ERR attribute in an MISQL, MIVAR, or MIBLOCK tag to invoke an
MIERROR tag with a matching ERR attribute when an error occurs. For
example, define an MIERROR tag as follows:

<?MIERROR ERR=BADTABLENAME TAG=MISQL SQL="select error_msg
from my_weberr_catalog where error_id='BADTABLENAME';">$1<?/MIERROR>

The WebExplode() function invokes this error handler if an error occurs
during the processing of an MISQL or MIVAR tag, the COND attribute of an
MIBLOCK tag, or dynamic tag with the same ERR attribute assignment
(ERR=BADTABLENAME). If the following MISQL tag generates an error when it
is executed, the preceding MIERROR tag, with the matching ERR attribute, is
invoked:

<?MISQL ERR=BADTABLENAME SQL="select count(*) from
$TABLE_NAME">$1<BR><?/MISQL>

If no MIERROR tag with a matching ERR attribute precedes the MISQL, MIVAR,
MIBLOCK, or dynamic tag that generates an error in the AppPage, the
WebExplode() function invokes the generic error handler, described in the
following section.
6-42 IBM Informix Web DataBlade Module Application Developer’s Guide



Creating a Generic Error Handler
Creating a Generic Error Handler
A generic error handler is an MIERROR tag without an ERR attribute. Create
a generic error handler to be invoked if an error occurs during the processing
of a tag that has no ERR attribute or an invalid ERR attribute. The following
example of a generic error handler logs an error message to the trace file:

<?MIERROR TAG=MIVAR>$(TRACEMSG,An error occurred on page:
$MIval.)<?/MIERROR>

A single MIERROR AppPage tag in an AppPage acts as a generic error
handler, even if it has an ERR attribute to link it to specific AppPage tag
execution.

For more information on the TRACEMSG variable processing function, see
“Enabling WebExplode() Tracing” on page A-6.

Creating a Specific Error Handler
The following example shows how to use the ERR attribute of the MIERROR
tag to link an MIERROR tag to an error produced by a specific AppPage tag:

<?MIERROR ERR=CM_ERROR_HANDLER>
  An error has occured while serving your request. Please contact
  system administrator and pass on the following details:<BR>
    Error Code: $MI_ERRORCODE<BR>
    Error State: $MI_ERRORSTATE<BR>
    Error Message: $MI_ERRORMSG<BR>
    SQL Statement: $MI_SQL<BR>
<?/MIERROR>
<?MISQL ERR=CM_ERROR_HANDLER SQL="select id from
your_table;">$1<?/MISQL>

In the example, the your_table table does not exist. The ERR attribute of the
MISQL tag specifies the exact MIERROR tag that should be called, in this case,
labeled with the CM_ERROR_HANDLER label.
Using Tags in AppPages 6-43



Handling Error Conditions
Handling Error Conditions
When the WebExplode() function first encounters an MIERROR tag on an
AppPage, only the COND and ERR attributes are evaluated. Variables
between the start and end tags are not evaluated until the error condition is
encountered. Since the condition is evaluated only the first time the WebEx-
plode() function encounters the MIERROR tag, you must call the
WebExplode() function recursively to handle specific error conditions that
must be evaluated after an error occurs. The /enter_table.html AppPage
allows you to type a table name into the TABLE text-entry field in the
following HTML form:

<HTML>
<HEAD><TITLE>Enter Table Name</TITLE></HEAD>
<BODY>
<H2>Enter table name:<H2>
<?MIVAR NAME=$TABLE><?/MIVAR>
<?MIVAR>
<FORM METHOD=POST ACTION="$WEB_HOME">
<INPUT TYPE=TEXT NAME=TABLE VALUE=$TABLE>
<INPUT TYPE=HIDDEN NAME=MIval VALUE="/count_rows.html">
<INPUT TYPE=SUBMIT VALUE="Count Rows"><HR>
<?/MIVAR>
</BODY>
</HTML>

The following illustration shows sample Web browser output.

Figure 6-9
Enter Table Name

Web Browser - [Enter Table Name]

URL: http://webserver/hr-map?MIval=/enter_table.html

Enter table name:
oops Count Rows
6-44 IBM Informix Web DataBlade Module Application Developer’s Guide



Handling Error Conditions
The following /count_rows.html AppPage processes the preceding form.
This processing AppPage contains a generic error handler that uses the
WebExplode() function to call the /error_handler.html AppPage if an error
occurs:

<HTML>
<HEAD><TITLE>Count Rows</TITLE></HEAD>
<BODY>
<!-- count the number of rows in the table  -->
<!-- specified, call the error_handler page -->
<!-- if an error occurs on this page.       -->
<?MIERROR TAG=MISQL SQL="select WebExplode(object, '')

 from wbPages where ID='error_handler' and path='/'
and extension='html';">$1<?/MIERROR>

<?MISQL SQL="select count(*) from $TABLE;">
<BR><B>Number of rows in table $TABLE:
</B>$(FIX,$1)<BR><?/MISQL>
</BODY>
</HTML>

If an error occurs in the /count_rows.html AppPage, the WebExplode()
function invokes the preceding MIERROR tag, and the error_handler
AppPage is executed. The /error_handler.html AppPage evaluates the error
code:

<HTML>
<HEAD><TITLE>Error Processing Page</TITLE></HEAD>
<BODY>
<?MIVAR NAME=$done>NO<?/MIVAR>
<?MIBLOCK COND=$(EQ,$MI_ERRORCODE,-206)>

We regret to inform you that table:
<?MIVAR>$TABLE<?/MIVAR> does not exist.
<?MIVAR NAME=done>YES<?/MIVAR>

<?/MIBLOCK>
<?MIBLOCK COND=$(EQ,$MI_ERRORCODE,-201)>

You entered one or more blank spaces as a table name.  Please go
back and enter a table name.
<?MIVAR NAME=done>YES<?/MIVAR>

<?/MIBLOCK>
<?MIBLOCK COND=$(AND,$(EQ,$MI_ERRORCODE,-937),$(EQ,$MI_ERRORSTATE,UWEB1))>

You have not specified a table. Please go back and enter
a table name.
<?MIVAR NAME=done>YES<?/MIVAR>

<?/MIBLOCK>
<?MIBLOCK COND=$(EQ,$done,NO)>

You received an unexpected error:
<?MIVAR>$MI_ERRORMSG<?/MIVAR> <BR>
Please contact your administrator.

<?/MIBLOCK>
<HR>
</BODY>
</HTML>
Using Tags in AppPages 6-45



Processing Errors with Webdriver
The following sample Web browser output shows what happens when the
user specifies a nonexistent table.

Processing Errors with Webdriver
The database server executes each AppPage within a single transaction.
When the WebExplode() function encounters an exception during execution
of an AppPage, all of the SQL statements on that AppPage are rolled back.
The WebExplode() function raises an exception when you execute a tag with
an unassigned variable or incorrect tag construct. The database server raises
an exception when an SQL error is generated.

If an MIERROR tag is invoked for the exception that occurs, the WebExplode()
function returns a XUWEA1 error code along with the text of the MIERROR
message. Webdriver displays the message text of the MIERROR tag returned
by the WebExplode() function (up to an 8 KB buffer limit).

In the following /catch_error.html AppPage, a generic error handler returns
a message to the user if the TEST_VAR variable is unassigned:

<HTML>
<HEAD><TITLE>Error Processing Page</TITLE></HEAD>
<BODY>
<?MIERROR TAG=MIVAR><HTML>
<HEAD><TITLE>Process Errors</TITLE></HEAD>
<BODY><B>Unable to proceed.</B><HR></BODY></HTML><?/MIERROR>
The value of $$TEST_VAR is <?MIVAR>$TEST_VAR<?/MIVAR>
</BODY>
</HTML>

Tip: Only HTML within the MIERROR tag is returned to the client.

Figure 6-10
Error Processing

Page

Web Browser - [Error Processing Page]

URL: http://domain:port/hr_app/webdriver

We regret to inform you that table: oops does not exist
6-46 IBM Informix Web DataBlade Module Application Developer’s Guide



Processing Errors with Webdriver
The following illustration shows sample Web browser output.

If no MIERROR tag exists to handle the error that occurs, Webdriver output
depends on the setting of the show_exceptions variable.

If you set the show_exceptions variable to on and the WebExplode() function
does not invoke an MIERROR tag for the exception that occurs, the database
exception message returned by the WebExplode() function is displayed by
Webdriver. If you set the show_exceptions variable to off and the WebEx-
plode() function does not invoke an MIERROR tag for the exception that
occurs, Webdriver displays the HTTP/1.0 500 Server error message.

The following /process_error.html AppPage has no MIERROR tag:

<HTML>
<HEAD><TITLE>Error Processing Page</TITLE></HEAD>
<BODY>
The value of $TEST_VAR is <?MIVAR>$TEST_VAR<?/MIVAR>
</BODY>
</HTML>

Figure 6-11
MIERROR Tag

Output

Web Browser - [Process Errors]

URL: http://domain:port/hr_app/?MIval=/catch_error.html

Unable to proceed.

Variable Mandatory? Content

show_exceptions No Use the Web DataBlade Module Administration
Tool to set the show_exceptions variable to on or
off. When on, Webdriver displays the database
exception returned by WebExplode(). When off,
Webdriver displays the HTTP/1.0 500 Server
error message. Default is off.
Using Tags in AppPages 6-47



Processing Errors with Webdriver
The following illustration shows sample output when the TEST_VAR
variable has not been assigned and show_exceptions is set to on.

The following illustration shows sample output when the TEST_VAR
variable has not been assigned and show_exceptions is set to off.

Figure 6-12
Show Exceptions On

Web Browser - [http://webserver/hr-map/webdriver?MIval=process_err]

URL: http://domain:port/hr_app/?MIval=/process_error.html

Exception from Informix: XUWEB1:-937:Undefined variable:$TEST_VAR

Figure 6-13
Show Exceptions

Off

Web Browser - [Webdriver Error Message]

URL: http://domain:port/hr_app/?MIval=/process_error.html

HTTP/1.0 500 Server error.
6-48 IBM Informix Web DataBlade Module Application Developer’s Guide



MICOMMENT Tag
MICOMMENT Tag
Use the MICOMMENT AppPage tag to add comments to an AppPage. The
WebExplode() function removes all text between the beginning and end
MICOMMENT AppPage tag before it returns the resulting HTML to
Webdriver. The MICOMMENT AppPage tag does not have any attributes.

The following example shows how to use the MICOMMENT AppPage tag in
an AppPage:

<HTML>
<TITLE>Welcome Page</TITLE>
<BODY>
Hello!
<?MICOMMENT>This is a comment that won't appear in the browser.
<?/MICOMMENT>
</BODY>
</HTML>

After exploding the AppPage, the WebExplode() function returns the
following HTML to Webdriver:

<HTML>
<TITLE>Welcome Page</TITLE>
<BODY>
Hello!
</BODY>
</HTML>

You can nest MICOMMENT AppPage tags; the WebExplode() function
removes all the text between the outermost beginning and end AppPages
tags. For example, the following AppPage uses nested MICOMMENT
AppPage tags:

<HTML>
<TITLE>Welcome Page</TITLE>
<BODY>
Welcome to my page.
<?MICOMMENT>This is the first comment.
      <?MICOMMENT> This is the second comment.
      <?/MICOMMENT>
<?/MICOMMENT>
This is the end.
</BODY>
</HTML>
Using Tags in AppPages 6-49



MICOMMENT Tag
After exploding the AppPage, the WebExplode() function returns the
following HTML to Webdriver:

<HTML>
<TITLE>Welcome Page</TITLE>
<BODY>
Welcome to my page.
This is the end.
</BODY>
</HTML>

Important: As with any AppPage tag, be sure to always specify an end tag. If an end
MICOMMENT tag is missing, the WebExplode() function removes all text from
the beginning tag to the end of the AppPage. For example, the following AppPage
does not contain an end MICOMMENT AppPage tag:

<HTML>
<TITLE>Welcome Page</TITLE>
<BODY>
Hello!
<?MICOMMENT>This is a comment.
This is supposed to be the body of the AppPage.
Unfortunately, it is going to be removed by WebExplode().
</BODY>
</HTML>

After exploding the AppPage, the WebExplode() function returns the
following HTML to Webdriver:

<HTML>
<TITLE>Welcome Page</TITLE>
<BODY>
Hello!

Note that the WebExplode() function removed all text after the beginning
MICOMMENT AppPage tag.
6-50 IBM Informix Web DataBlade Module Application Developer’s Guide



Special Characters in AppPage Tags
Special Characters in AppPage Tags
Replacement characters within your AppPages are described in the
following sections:

■ “Special HTML Characters,” following

■ “Special Formatting Characters” on page 6-52

Special HTML Characters
An entity reference is a way to instruct the browser to look up symbols as it
renders an AppPage and replace them with equivalent characters. You must
replace the double quote character with its entity reference if the character
occurs within AppPage tags (between angle brackets).

For example, the double quotes in the following SQL statement must be
replaced by their entity reference when they are included in a Web DataBlade
module tag:

insert into staff values ('Walt "Speedy"','Wait','Engineer');

The syntax of the MISQL tag includes the &quot entity reference:

<?MISQL SQL="insert into staff values
('Walt &quot;Speedy&quot;','Wait','Engineer');"> 1 row inserted.
<?/MISQL>

Character Entity Reference

" &quot;
Using Tags in AppPages 6-51



Special Formatting Characters
Special Formatting Characters
You must replace characters that normally specify formatting information
with the following replacements when they occur within formatting specifi-
cations (between the start and end tags).

For example, in the following MIVAR tag, the $ character has been replaced:

<?MIVAR>You may have won $$1,000,000.00!<?/MIVAR>

This returns the following output to the client:

You may have won $1,000,000.00!

Character Replacement

{ {{

} }}

$ $$
6-52 IBM Informix Web DataBlade Module Application Developer’s Guide



7
Chapter
Using Advanced AppPage Tags
In This Chapter . . . . . . . . . . . . . . . . . . . . 7-3

MIFUNC Tag . . . . . . . . . . . . . . . . . . . . . 7-3
FUNCTION Attribute . . . . . . . . . . . . . . . . 7-4
DLL Attribute . . . . . . . . . . . . . . . . . . . 7-5
INTERNAL Attribute . . . . . . . . . . . . . . . . 7-5

The cache_admin Variable. . . . . . . . . . . . . . 7-5
The session_admin Function . . . . . . . . . . . . . 7-6

MIDEFERRED Tag . . . . . . . . . . . . . . . . . . . 7-7
The defer. Prefix . . . . . . . . . . . . . . . . . . 7-8

The MIEXEC Tag . . . . . . . . . . . . . . . . . . . 7-9
SERVICE Attribute . . . . . . . . . . . . . . . . . 7-10
Using the MIEXEC Tag in an AppPage. . . . . . . . . . . 7-11
Examples of Using the MIEXEC Tag . . . . . . . . . . . 7-13
Sample Perl Program SERVE.pl . . . . . . . . . . . . . 7-15



7-2 IBM
 Informix Web DataBlade Module Application Developer’s Guide



In This Chapter
This chapter discusses AppPage tags and attributes that are used for
specialized processing features of your Web application.

The following tags are covered in this chapter:

■ “MIFUNC Tag,” following

■ “MIDEFERRED Tag” on page 7-7

■ “The MIEXEC Tag” on page 7-9

MIFUNC Tag
The MIFUNC tag allows you to execute user-written HTTP server modules
invoked by the NSAPI or ISAPI Webdriver from an AppPage. Before you use
the MIFUNC tag in an AppPage, you must create a shared object or DLL for a
specific Webdriver implementation and register it with the Web server. You
can also invoke two functions that are internal to Webdriver. These functions
are used for administering session management and AppPage caching.

For details on using the MIFUNC tag within the NSAPI or ISAPI Webdriver, see
the NSAPI or ISAPI chapters in the IBM Informix Web DataBlade Module Admin-
istrator’s Guide.
Using Advanced AppPage Tags 7-3



FUNCTION Attribute
When the WebExplode() function encounters an MIFUNC tag in an AppPage,
the WebExplode() function passes the function name to Webdriver.
Webdriver then executes the user-written function and returns the results
back to the WebExplode() function. Within the MIFUNC tag, you must
include the variables to be imported and exported (passed by reference) as
name/value pairs.

FUNCTION Attribute
Use the FUNCTION attribute to locate the Webdriver function on the Web
server. Assign the value of the FUNCTION attribute to the name of the
Webdriver function.

When the MIFUNC tag is executed, all AppPage processing stops until the
Webdriver function has completed execution. Everything between the
MIFUNC tags is executed, using the variables that have been modified by
reference in the Webdriver function, as well as all the variables originally
supplied to the AppPage. The following AppPage example invokes the
example_onstat() function:

<?MIBLOCK COND=$(NXST,$opt)><?MIVAR>$(SETVAR,$opt,"-l
/tmp")<?/MIVAR><?/MIBLOCK>

<?MIFUNC FUNCTION=example_dir OPTIONS=$opt RESULTS="">
<?MIVAR>$(HTTPHEADER,Content-type,text/plain)$RESULTS<?/MIVAR>
<?/MIFUNC>

Attribute Mandatory? Description

FUNCTION Yes Specifies the location of the Webdriver function in
the Web server and names the routine requested

OPTIONS No Specifies a user-defined function that has to
provide a usage description of inputs and outputs

DLL No Specifies the dynamically linked library (DLL) that
contains the function pointed to by the
FUNCTION attribute

INTERNAL No Specifies one of two internal Webdriver functions

Can be set to session_admin or cache_admin.
7-4 IBM Informix Web DataBlade Module Application Developer’s Guide



DLL Attribute
Important: If two MIFUNC tags are run in the same AppPage, be sure that the name
space variables are different. MIFUNC tags can be nested, but for best performance,
nesting is not recommended.

DLL Attribute
The DLL attribute points to the dynamically-linked library (DLL) that
contains the function pointed to by the FUNCTION attribute. You use the DLL
attribute only in MIFUNC tags in AppPages invoked with the ISAPI
Webdriver. Other implementations of Webdriver ignore this attribute.

You can either specify the full pathname of the DLL in the DLL attribute, or be
sure that the directory that contains the DLL is in your Windows PATH system
environment variable.

INTERNAL Attribute
You can invoke two functions that are internal to Webdriver when you use
the INTERNAL attribute of the MIFUNC tag. These two functions are used for
administering AppPage caching and session management and are described
in the following sections.

The cache_admin Variable

The Webdriver variable cache_admin allows you to set the name of a page
that can call the cache_admin function. Set the Webdriver variable
cache_admin with the Web DataBlade Module Administration Tool to use
the cache administration page provided by the Web DataBlade module. Use
the cache_admin function to create your own cache administration page
rather than use the one provided by the Web DataBlade module. The
following syntax shows how to use the INTERNAL attribute with the
cache_admin function:

<?MIFUNC INTERNAL=cache_admin option1=value1 [option2=value2]>
deferred html
<?/MIFUNC>
Using Advanced AppPage Tags 7-5



INTERNAL Attribute
The following table shows the possible name-value pairs.

See the IBM Informix Web DataBlade Module Administrator’s Guide for an expla-
nation of the cache administration AppPage and examples of AppPage
caching.

The session_admin Function

The session_admin() function gives AppPages execution of some session
management activities related to the current session. The following example
shows the proper syntax to use for the INTERNAL attribute with the
session_admin() function:

<MIFUNC INTERNAL=session_admin option=value>
deferred html
<?/MIFUNC>

The following table shows the possible name-value pair.

Option Possible Values

cache_mode enable, disable, purge, view

matchlist name-value pairs separated by & (for example,
name=Joe&id=3)

app_page Name of an AppPage

cache_password Password, if required, to administer caching

message Name of variable to return result

Option Possible Value

session_mode clear, end
7-6 IBM Informix Web DataBlade Module Application Developer’s Guide



MIDEFERRED Tag
MIDEFERRED Tag
The MIDEFERRED tag enables partial page caching for AppPages that contain
both static and dynamic sections and that have already been configured for
Webdriver AppPage caching. Use the MIDEFERRED tag to mark the dynamic
content of an AppPage, deferring its execution for each request. The
MIDEFERRED tag has no attributes.

To use the MIDEFERRED tag in an AppPage, you must have enabled AppPage
caching for the AppPage. See the IBM Informix Web DataBlade Module Adminis-
trator’s Guide for more information on partial AppPage caching.

When Webdriver calls the WebExplode() function in the database and the
AppPage that is being parsed contains a deferred section, Webdriver caches
the AppPage, adding a .def extension to the file. A second call to the WebEx-
plode() function is required to complete the request the first time the
AppPage is called.

<?MIVAR>Non-deferred section<?/MIVAR>
<?MIDEFERRED>
<?MIVAR>Deferred section<?/MIVAR>
<?/MIDEFERRED>

The first time the WebExplode() function calls this AppPage, it writes the
results to the cache directory and assigns a .def extension:

/local0/pagecache/mydb.mypage/CP232.647484-848493.def

The WebExplode() function parsing results are as follows:

Non-deferred section
<?MIVAR>Deferred section<?/MIVAR>

When the page is subsequently called (with a matching value list), the cached
page is called and passed to the WebExplode() function, using the EXECUTE
FUNCTION syntax. The parsing results are as follows:

Non-deferred section
Deferred section

Subsequent matching requests require processing of only the deferred
section.
Using Advanced AppPage Tags 7-7



The defer. Prefix
The defer. Prefix
When Webdriver caches an AppPage, it uses variables sent to the AppPage
as a key to create the name of the file that is stored in the cache directory.
Variables in the dynamic content of the MIDEFERRED tag, however, might
change each time the AppPage is called. These types of variables, therefore,
should not be part of the key used to create and find files in the AppPage
cache. To specify to Webdriver that a variable should not be used in the key,
prefix the variable with the defer. keyword.

For example, the following /test_page.html AppPage uses the MIDEFERRED
tag:

<?MIVAR>Page is $MIval<?/MIVAR>
<?MIDEFERRED>
<?MIVAR>Total is $defer.total<?/MIVAR>
<?/MIDEFERRED>

Assume the page is requested in succession with the following URLs:

/url_mapped_path/webdriver?MIval=test_page&defer.total=100
/url_mapped_path/webdriver?MIval=test_page&defer.total=101
/url_mapped_path/webdriver?MIval=test_page&defer.total=102

All three URLs reference the same cached page, but each request causes the
deferred section to be re-executed with a unique value of defer.total. The
results are as follows:

Page is test_page
Total is 100
Page is test_page
Total is 101
Page is test_page
Total is 102

Important: Nesting of the MIDEFERRED tag is not allowed.
7-8 IBM Informix Web DataBlade Module Application Developer’s Guide



The MIEXEC Tag
The MIEXEC Tag
The MIEXEC tag enables you to execute a Perl program in your AppPage.

You pass parameters to the Perl program by specifying user-defined
attributes to the MIEXEC tag. You pass text to the Perl program by including
it between the <?MIEXEC> and <?/MIEXEC> tags.

If the Perl program returns information, the WebExplode() function replaces
the full MIEXEC tag specification in the AppPage with the returned infor-
mation before the WebExplode() function passes the rendered AppPage to
Webdriver.

Although you can write your own Perl program to use with the MIEXEC tag,
it is recommended that you start with the sample Perl program presented in
“Sample Perl Program SERVE.pl” on page 7-15 and modify it to fit your
needs.

Important: To use the MIEXEC tag in your AppPages, you must have previously
started a WEB virtual processor. You start a virtual processor by updating the
ONCONFIG file with the appropriate VPCLASS entry and restarting the database
server.

For detailed information on adding the WEB virtual processor to your database
server, refer to the “IBM Informix Web DataBlade Module Administrator’s Guide.”

The MIEXEC tag has the following tag attributes.

Attribute Mandatory? Description

SERVICE Yes Specifies how to invoke the Perl program you want
to execute

For detailed information about using the SERVICE
attribute, refer to “Using the MIEXEC Tag in an
AppPage” on page 7-11.

NAME No Specifies the name of the variable to which the
formatted results of the MIEXEC tag are assigned

If NAME is not specified, the results are output.

 (1 of 2)
Using Advanced AppPage Tags 7-9



SERVICE Attribute
For more information on the NAME attribute, see “NAME Attribute” on
page 6-28.

For more information on the COND attribute, see “MIBLOCK Tag” on
page 6-29.

For more information on the ERR attribute, see “MIERROR Tag” on
page 6-40.

Important: All the examples in the description of the MIEXEC tag use Perl. However,
any program that can communicate via sockets can be used, including Python and
Rexx.

SERVICE Attribute
The SERVICE attribute of the MIEXEC tag specifies the Perl program you want
to execute from your AppPage. In particular, the attribute specifies the
commands needed to first change to the directory that contains the Perl
program and then execute the program with the Perl binary.

For detailed instructions on using the SERVICE attribute of the MIEXEC tag,
refer to “Using the MIEXEC Tag in an AppPage,” following.

COND No Tag is enabled only if this condition evaluates to true
(nonzero)

ERR No Specifies how an error should be processed

Because multiple errors can occur on an AppPage,
use the ERR attribute to link the error processing to
a particular MIERROR tag.

user_attribute1 No Specifies the name of a user-defined attribute that is
passed to the Perl program specified by the
SERVICE attribute

You can specify more than one user-defined
attribute.

Attribute Mandatory? Description

 (2 of 2)
7-10 IBM Informix Web DataBlade Module Application Developer’s Guide



Using the MIEXEC Tag in an AppPage
The first time you specify a Perl program with the SERVICE attribute, the
specified Perl program is started, and it remains available for the life of the
database server. This means that subsequent uses of the MIEXEC tag in your
AppPages do not need to include the SERVICE attribute; the Web DataBlade
module automatically uses the Perl program previously started.

This also means that, by default, your AppPages can only use one Perl
program with each MIEXEC tag: specifically, the Perl program pointed to by
the first use of the MIEXEC tag in an AppPage. If you need different MIEXEC
tags to specify different Perl programs, you must shut down the currently
running Perl program so that the new Perl program is allowed to start.

To shut down the currently running Perl program in an AppPage, use the
MISQL tag to execute the WebRmtShutdown() function. Add the MISQL tag
to your AppPages before each MIEXEC tag that uses a different Perl program
from the one that is currently running. The following example shows how to
execute the WebRmtShutdown() function with the MISQL tag:

<?MISQL SQL="EXECUTE FUNCTION WebRmtShutdown();">$1<?/MISQL>

For more information on the WebRmtShutdown() function, refer to
Chapter 12, “Using DataBlade Module Functions in AppPages.”

Using the MIEXEC Tag in an AppPage
This section describes the steps you must take to execute a Perl program in
your AppPage with the MIEXEC tag.

To execute a Perl program in your AppPage with the MIEXEC tag

1. Create a Perl program that uses sockets to communicate with the
Web DataBlade module.

Although you can write your own Perl program, it is highly recom-
mended that you start with the sample Perl program called
SERVE.pl, described in “Sample Perl Program SERVE.pl” on
page 7-15, and modify it to fit your needs.

2. Move the Perl program to a directory that is accessible to the user
who owns the Informix database server processes. Set the permis-
sions on the Perl program so that the same user can read it.
Using Advanced AppPage Tags 7-11



Using the MIEXEC Tag in an AppPage
3. Locate the Perl binary that executes Perl programs. The Perl binary
is usually called perl.

On UNIX, use the which command, as shown in the following
example:

which perl

The command returns the name of a directory, such as
/usr/local/bin/perl.

4. Be sure that you or your database administrator have previously
started a WEB virtual processor.

You start a virtual processor by updating the ONCONFIG file with
the appropriate VPCLASS entry and restarting the database server.
For detailed information about adding and starting the WEB virtual
processor, refer to the IBM Informix Web DataBlade Module Administra-
tor’s Guide.

5. In your AppPage, add an MIEXEC tag that sets the SERVICE attribute
to the commands needed to find and execute the Perl program.

Specifically, set the SERVICE attribute to the command needed to
change to the directory that contains the Perl program you want to
execute, and then to the command needed to execute the Perl pro-
gram. Use the full pathname of the perl binary.

Use user-defined attributes to the MIEXEC tag to specify parameters
to the Perl program.

The following example shows how to use the MIEXEC tag in an
AppPage:

<?MIVAR NAME=SRVC>cd /local/perlscripts ;
/usr/local/bin/perl ./SERVE.pl<?/MIVAR>
<?MIEXEC SERVICE=$SRVC REQUEST=UPPER>
This text, when part of the MIEXEC tag, is in MiXeD cAsE.
<?/MIEXEC>

For a detailed explanation of this example and other examples of
using the MIEXEC tag in an AppPage, refer to the next section.
7-12 IBM Informix Web DataBlade Module Application Developer’s Guide



Examples of Using the MIEXEC Tag
Examples of Using the MIEXEC Tag
This section provides examples of using the MIEXEC tag in an AppPage to
execute the SERVE.pl sample Perl program.

The SERVE.pl Perl program is described in detail in “Sample Perl Program
SERVE.pl” on page 7-15. Familiarize yourself with the program before you
continue with this section.

The SERVE.pl Perl program accepts the following requests, specified with the
REQUEST user-defined attribute of the MIEXEC tag:

■ RAWPERL. Executes the text between the <?MIEXEC> and
<?/MIEXEC> tags as Perl code

■ UPPER. Converts the text between the <?MIEXEC> and <?/MIEXEC>

tags to uppercase

In each example:

■ The name of the directory that contains the SERVE.pl Perl program is
/local/perlscripts.

■ The perl binary that executes Perl programs is located in the
directory /usr/local/bin.

The following example shows how to use the SERVE.pl Perl program to
convert the text between the <?MIEXEC> and <?/MIEXEC> tags to uppercase:

<?MIVAR NAME=SRVC>cd /local/perlscripts ; /usr/local/bin/perl
./SERVE.pl<?/MIVAR>

<?MIEXEC SERVICE=$SRVC REQUEST=UPPER>
This text, when part of the MIEXEC tag, is in MiXeD cAsE.
<?/MIEXEC>

The above sample AppPage returns the following text to the browser:

THIS TEXT, WHEN PART OF THE MIEXEC TAG, IS IN MIXED CASE.

In this example, the SERVICE attribute specifies how to find and execute the
SERVE.pl program. The REQUEST attribute specifies that the parameter
REQUEST, with a value of UPPER, be sent to the SERVE.pl program. The body
of the MIEXEC tag, “This text, when part of the MIEXEC tag, is in

MiXeD cAsE” is sent to the SERVE.pl program and is converted to uppercase.
The output of the SERVE.pl program is then sent to the browser via
Webdriver.
Using Advanced AppPage Tags 7-13



Examples of Using the MIEXEC Tag
The following example shows how to send Perl code embedded in the
MIEXEC tags to the SERVE.pl Perl program:

<?MIVAR NAME=SRVC>cd /local/perlscripts ; /usr/local/bin/perl
./SERVE.pl<?/MIVAR>
<?MIEXEC SERVICE=$SRVC REQUEST=RAWPERL>
print "This is Perl output. \n";
<?/MIEXEC>

The above sample AppPage returns the following text to the browser:

This is Perl output.

In this example, the REQUEST attribute of the MIEXEC tag specifies RAWPERL.
This tells the SERVE.pl program to take the text between the MIEXEC tags and
execute it as if it were a Perl program.

The following example also shows how to pass Perl code to the SERVE.pl
program along with two user-defined attributes. The example also shows
how the Perl program can pass variables back to the AppPage.

<?MIVAR NAME=SRVC>cd /local/perlscripts ; /usr/local/bin/perl
./SERVE.pl<?/MIVAR>
<?MIVAR NAME=INVAR>This was set via MIVAR<?/MIVAR>
<?MIEXEC SERVICE=$SRVC REQUEST=RAWPERL STRONE="Hello" STRTWO=$INVAR>
    print uc($attributes{"STRONE"});
    $results{"OUTVALUE"} = length($attributes{"STRTWO"});
<?/MIEXEC>
<?MIVAR>The length of $$INVAR is $OUTVALUE<?/MIVAR>

This sample AppPage returns the following text to the browser:

HELLO The length of $INVAR is 22

In the example, the two user-defined attributes are STRONE and STRTWO.
The Perl program interprets these attributes with the $attributes{} hash
variable. The results of calculating the length of the STRTWO attribute, which
is the value of the $INVAR variable, are returned to the AppPage as the
$OUTVALUE variable via the $results{} hash variable. The contents of the
$OUTVALUE variable are accessible with the MIVAR tag.
7-14 IBM Informix Web DataBlade Module Application Developer’s Guide



Sample Perl Program SERVE.pl
Sample Perl Program SERVE.pl
This section provides the sample Perl program called SERVE.pl that is used
in all the examples of this section.

Although you can write your own Perl program to use with the MIEXEC tag,
it is recommended that you start with the SERVE.pl program in this section
and modify it to fit your needs.

The SERVE.pl program uses sockets to communicate with the Web DataBlade
module, as must all programs called by the MIEXEC tag.

The following example shows how to specify the SERVE.pl program in an
MIEXEC tag and pass it Perl code:

<?MIVAR NAME=SRVC>cd /local/perlscripts ; /usr/local/bin/perl
./SERVE.pl<?/MIVAR>
<?MIEXEC SERVICE=$SRVC REQUEST=RAWPERL>
print "This is Perl output. \n";
<?/MIEXEC>

In the example, the SERVE.pl Perl program is located in the directory
/local/perlscripts, and the Perl executable is located in the directory
/user/local/bin.
Using Advanced AppPage Tags 7-15



Sample Perl Program SERVE.pl
The following code makes up the SERVE.pl program:

#
# This is a SAMPLE perl program that fields requests generated
# within the Web DataBlade module using the MIEXEC tag.
# To run on NT, comment out the line: $UNIX_OS = 1;
#

require 5.002;
BEGIN { $ENV{PATH} = '/usr/ucb:/bin'} ;

#
# Specify modules
use Socket;
use Carp;
use FileHandle;
use English;
#
#
# Forward references
sub REAPER;
sub executeCommand;
sub processRequest;
#
# Comment out the next line to run correctly on NT
$UNIX_OS = 1;

# Setup exit handler
$SIG{CHLD} = \&REAPER;# set exit handler

#
# Declare and
my ($iaddr,$paddr,$proto,$line);
my $port = shift || @ARGV;
                                # note: Had one system where this value
                                # had to be hardwired to the node name.
my $remote = shift || 'localhost';

if ($port =~ /\D/) {
    $port = getservbyname($port,'tcp');
}

if (!$port) {
    print "NO PORT : To use as service use :\n\t\tSERVE.pl <portNum>\n";
    die "No port" ;
}

#
# Time to fork for the parent can return to database
# server and processing can continue.
#
if (defined($UNIX_OS)) {
    my $pid ;
7-16 IBM Informix Web DataBlade Module Application Developer’s Guide



Sample Perl Program SERVE.pl
    if (!defined($pid = fork)) {
        exit;
    } elsif ($pid) {
        exit;                   # # parent must leave
    }
}
# this is the child

    $iaddr = inet_aton($remote);
    $paddr = sockaddr_in($port, $iaddr);
    $proto = getprotobyname('name');
    socket(SOCK,PF_INET,SOCK_STREAM,$proto) or die "socket: $!";
    connect(SOCK,$paddr)        or die "connect: $!";
    SOCK->autoflush();

    print SOCK "This is the first message from the child client\n";
    SOCK->autoflush();
    $continue = 1;
#
# Main processing loop
#    Fetch Request :
#         - get length of request attributes
#         - get request attributes
#         - get length of body
#         - get body
#    Process Request :
#         - do someing based upon $attributes{'REQUEST'}
#         - Put value we want to appear as variables into %results
#           a hash type.
#         - Put the value that we want in appear in the 'body'
#           in the variable ($bodyResult).
#    Generate Response :
#         - convert the %result hash to string -> $stagedResults
#           The hash is converted to name value pairs
#         - send length($stageResults) + ':' + $stagedResults
#         - send length($bodyResult) : ':' + $bodyResult
#
    while ($continue) {
        undef($results);
        undef(%results);

        $attrHead=<SOCK>;       # get length of input
        defined($attrHead) || die "Connection to server dropped";

        $attrHead =~ /([0-9]*):/ ||
            print "Could not derive length from header : $attrHead\n" ;
        $attrLen = $1;          # put length in a reasonible place
        my $attr;
        while (<SOCK> ) {
            $attr .= $_;
            if (length($attr) >= $attrLen) {
                last;
            }
        }
        $attributes = $attr;
        $bodyHead=<SOCK>;
        defined($bodyHead) || die "Connection to server dropped";
Using Advanced AppPage Tags 7-17



Sample Perl Program SERVE.pl
        $bodyHead =~ /([0-9]*):/ ||
            die "Could not derive length from header : $bodyHeader" ;
        $bodyLen = $1;          # put lenght in a reasonible place

        my $body;
        while (<SOCK> ) {
            $body .= $_;
            if (length($body) >= $bodyLen) {
                last;
            }
        }
        chop($body);    # remove terminating CR sender added
        $execute = $body;
        %vec = split /&/, $attributes;
        foreach (%vec) {
            ($name,$value) = /(.*)=(.*)/;
            $attributes{$name}=$value;
        }
        undef($results);        # clear out return data region

##
## got the request : execute the request
##
            processRequest();
##
## send the results : execution is finished
##
        if (defined(%results)) { # convert results vector back
            undef($stagedResults);
            while (($name, $value) = each(%results)) {
                $stagedResults .= $name . "=" . $value . "&";
            }
            chop($stagedResults);
            $results = length($stagedResults) . ":" . $stagedResults . ":";
        } else {
            $results = '0::';
        }
        print SOCK "$results\n";

        $results = length($bodyResult) . ":" . $bodyResult;
        print SOCK "$results\n";
    }                           #  end of infinite loop.
    close(LOG);
    close(SOCK);
# end of child code.
1;                              #

#
#  The support routines
#

sub executeCommand {
    my $fileName = shift;       # shift off of @_
    my $attr = shift;
    my $cmd = shift;            #
7-18 IBM Informix Web DataBlade Module Application Developer’s Guide



Sample Perl Program SERVE.pl
    %vec = split /&/, $attr;    # variable to hash
    foreach (%vec) {
        ($name,$value) = /(.*)=(.*)/;
        $attributes{$name}=$value;
    }

    my $fileCreate = "+>".$fileName; # create the file
    open(TMPFIL,$fileCreate) || die "open failed $fileName";

    my $oldHandle = select(TMPFIL);#
        $|=1;

    eval " $cmd \n";# executes command use quotes # execute
        select($oldHandle);
    seek(TMPFIL,0, 0) || die "seek failed";
    TMPFIL;
}

sub REAPER {
    $waitedpid = wait;
    $SIG{CHLD} = \&REAPER;
}

# processRequest
#    INPUT :
#         %attributes : variables/attributes passed in
#         $body : the body of the tag
#    OUTPUT :
#         %results : variables to return
#         $body : bodyResutl
#    NOTE : input and output are going through global name space.
sub processRequest {

    $_ = $attributes{"REQUEST"};
    undef($bodyResult);
  SWITCH: {
      /^UPPER/ && do {
          $bodyResult = uc($execute);
          last SWITCH;
      };
      /^RAWPERL/ && do {
          $fileName = '/tmp/' . $port . '.tmp';
          $execute .= "\n";
          undef(%results);# $execute string may create results
              $fileHandle = &executeCommand($fileName, $attributes,

$execute);

          while ( <$fileHandle> ) { # # send back results
              $bodyResult .= $_;
          }
          close $fileHandle;
Using Advanced AppPage Tags 7-19



Sample Perl Program SERVE.pl
          last SWITCH;
      };
      $bodyResult = " REQUEST \"$_\" is unknown";
  }
}

7-20 IBM Informix Web DataBlade Module Application Developer’s Guide



8
Chapter
Using Variable-Processing
Functions in AppPages
In This Chapter . . . . . . . . . . . . . . . . . . . . 8-3

Variable-Processing Functions . . . . . . . . . . . . . . . 8-3

Using Variable Expressions in AppPages . . . . . . . . . . . 8-10
Using Arithmetic Functions in Variable Expressions . . . . . . 8-10
Using SEPARATE and REPLACE in Variable Expressions . . . . 8-11

Example of SEPARATE and REPLACE . . . . . . . . . 8-11
Using Variable Expressions to Format Output Conditionally . . . 8-13

Example of Conditional Output . . . . . . . . . . . . 8-13
Example of a Walking Window . . . . . . . . . . . . 8-15

Special Characters in Variable Expressions. . . . . . . . . . . 8-17



8-2 IBM
 Informix Web DataBlade Module Application Developer’s Guide



In This Chapter
This chapter describes how variable-processing functions enable you to
perform calculations using variables that are passed into an AppPage,
generated within the AppPage, or returned from the database. It includes the
following topics:

■ “Variable-Processing Functions,” following

■ “Using Variable Expressions in AppPages” on page 8-10

■ “Special Characters in Variable Expressions” on page 8-17

Variable-Processing Functions
Variables are identified by a dollar sign ($) followed by alphanumeric and
underscore characters. Variable expressions start with a $ character followed by
the expression within parentheses, $(expression). Variable-processing functions
allow you to evaluate and manipulate variables within variable expressions.
Variable expressions can contain other variable expressions.

You should always enclose variable-processing functions used in any
attribute of an AppPage tag in double quotes.

For example, the following MISQL AppPage tag includes a variable-
processing function enclosed in double quotes in its COND attribute:

<?MISQL COND="$(>,val1,val2)" SQL="select * from staff;">

The following example uses a table in the superstores_demo demonstration
database provided with IBM Informix Dynamic Server (the scripts to create
this database are under $INFORMIXDIR/demo/dbaccess/demo_ud).

<?MISQL COND="$(XST,$rep_num)"
SQL="select * from sales_reps where rep_num = $rep_num ;">
Using Variable-Processing Functions in AppPages 8-3



Variable-Processing Functions
Important: Variables and variable expressions are interpreted only within MISQL,
MIVAR, and MIERROR tags, and within the COND attribute of the MIBLOCK
tag.

The following functions can be performed on Web DataBlade module
variables.

Function Returns

$(+,val1,val2,...,valn) Returns the sum of the numbers
val1,val2,...,valn

$(-,val1,val2,...,valn) Returns the results of subtracting the
numbers val2 through valn from val1

$(*,val1,val2,...,valn) Returns the result of multiplying the
numbers val1,val2,...,valn

$(/,val1,val2,...,valn) Returns the results of dividing the
number val1 by val2,...,valn

$(=,val1,val2) If the numbers val1 and val2 are equal,
returns 1; otherwise, returns 0.

$(<,val1,val2) If the number val1 is less than val2,
returns 1; otherwise, returns 0.

$(>,val1,val2) If the number val1 is greater than val2,
returns 1; otherwise, returns 0.

$(!=,val1,val2) If the numbers val1 and val2 are not equal,
returns 1; otherwise, returns 0.

$(<=,val1,val2) If the number val1 is less than or equal to
val2, returns 1; otherwise, returns 0.

$(>=,val1,val2) If the number val1 is greater than or equal
to val2, returns 1; otherwise, returns 0.

$(AND,val1,val2,...,valn) Returns the logical AND of the integers
val1 through valn

Processing halts when a false condition is
reached.

$(CONCAT,arg1,arg2) Concatenates arg1 and arg2

 (1 of 6)
8-4 IBM Informix Web DataBlade Module Application Developer’s Guide



Variable-Processing Functions
$(DEFER,udtname,name,val,[name,val]...) When using modified URLs, a cached
page must be modified before being
transmitted by WebDriver. This requires
that the Web DataBlade module replace a
key in the output stream. The parameter
udtname is mapped to the output stream.
When Webdriver finds an AppPage in
the cache, it scans and replaces keys on
the AppPage and transmits the AppPage
to the browser.

$(EC,string1,string2) If string1 and string2 are identical,
regardless of lettercase, returns 1;
otherwise, returns 0.

$(EQ,string1,string2) If string1 and string2 are identical,
including lettercase, returns 1; otherwise,
returns 0.

$(EVAL, $varname) Evaluates the variable passed as the first
parameter

On success, outputs the resultant string.
On failure, raises an exception. The name
of a previously defined variable is
$varname.

$(EXIT,depth) Exits a control body of an MIBLOCK,
MIVAR, or MISQL tag

The depth indicates the number of levels
to exit from.

$(FIX,value) Truncates the real number value to an
integer by discarding any fractional part

$(HTTPHEADER,name,value) Adds the HTTP header name with the
value to an AppPage

For more information, see “Adding
HTTP Headers to AppPages” on
page 13-3.

$(IF,expr,dotrue) If expr is nonzero, evaluates and returns
dotrue

Function Returns

 (2 of 6)
Using Variable-Processing Functions in AppPages 8-5



Variable-Processing Functions
$(IF,expr,dotrue,dofalse) If expr is nonzero, dotrue is evaluated and
returned. Otherwise, evaluates and
returns dofalse. The branch not chosen by
expr is not evaluated.

$(INDEX,which,string) The parameter string is assumed to
contain one or more values, delimited by
a comma. The numeric value which
selects one of these values to be extracted.
Numbering of the items in string begins
with 0.

$(ISNOVALUE,$num) Determines if column $num has no value

$(ISNULL,$num) Determines if column $num current value
is null

$(ISINT,$value) If value is an integer, returns 1; otherwise,
returns 0. (A number that is of equal
value to an integer, such as 1.0,
evaluates to 1.)

$(ISNUM,value) If value is numeric, returns 1; otherwise,
returns 0.

$(LOWER,string) Returns string, converted to lowercase
letters

$(MOD,value1,value2) Returns the remainder of value1 divided
by value2, and thus returns 0 when value2
divides value1 exactly

$(NC,string1,string2) If string1 and string2 are not identical,
regardless of lettercase, returns 1;
otherwise, returns 0.

$(NE,string1,string2) If string1 and string2 are not identical,
including lettercase, returns 1; otherwise,
returns 0.

$(NOT,value) Returns the logical negation of value

Function Returns

 (3 of 6)
8-6 IBM Informix Web DataBlade Module Application Developer’s Guide



Variable-Processing Functions
$(NTH,which,arg0,arg1,...,argN) Evaluates and returns the argument
selected by which

If which is 0, returns arg0, and so on. Note
the difference between $(NTH) and
$(INDEX); $(NTH) returns one of a series
of arguments to the function while
$(INDEX) extracts a value from a comma-
delimited string passed as a single
argument

Does not evaluate arguments not selected
by which

$(NXST,varname) If variable varname does not exist (has not
been assigned a numeric or string value),
returns 1; otherwise returns 0.

$(OR,val1,val2,...,valn) Returns the logical OR of the integers val1
through valn

Processing halts when a true condition is
reached.

$(PARSE-HTML,string) Used with server-side includes

The parameter string may be either
DYNAMIC or SHARED. For DYNAMIC, use
the Web DataBlade Module Adminis-
tration Tool to set the
parse_html_directory variable to a path.
If string is SHARED, the AppPage is used
from cache. For more information on
server-side includes, see the IBM Informix
Web DataBlade Module Administrator’s
Guide.

$(POSITION,string1,string2,valn) Returns the starting position of string2
within string1

If string2 is not found, returns 0. The
parameter valn is a numeric offset and
gives the start location within the first
input string. If valn is less than or equal to
0, returns 0.

Function Returns

 (4 of 6)
Using Variable-Processing Functions in AppPages 8-7



Variable-Processing Functions
$(REPLACE,string1,string2,string3) Replaces all instances of string2 with
string3 within string1

$(ROUND, value, digit) Returns the numeric value rounded to no
more than digit number of digits

$(SEPARATE,varvector,string) Separates items in the vector variable
varvector with the string value string

$(SETVAR,varname,value) Sets the variable varname to the numeric
or string value

$(STRFILL,string,ncopies) Returns the result of concatenating
ncopies number of copies of string

$(STRLEN,string) Returns the length of string

$(SUBSTR,string,start,length) Returns the substring of string starting at
character start and extending for length
characters

Characters in the string are numbered
from 1. If length is omitted, returns the
entire remaining length of the string.

$(TRACEMSG,string) Writes the message string to a trace file

For more information, see “Enabling
WebExplode() Tracing” on page A-6.

$(TRIM,string) Removes leading and trailing blank
spaces from string

$(TRUNC, value, digit) Returns the numeric value truncated to no
more than digit number of digits

$(UNSETVAR,varname) Unsets the variable varname

No error is generated if varname is not set.

$(UPPER,string) Returns string, converted to uppercase
letters

Function Returns

 (5 of 6)
8-8 IBM Informix Web DataBlade Module Application Developer’s Guide



Variable-Processing Functions
Important: Arithmetic functions accept decimal or integer arguments and perform
all calculations in decimal arithmetic. Arithmetic functions that allow more than two
arguments allow a maximum of 10.

Tip: Spaces are significant in the evaluation of variable expressions. For example, the
variable expression $(EQ,$var1,$var2) is not equivalent to $(EQ, $var1,$var2)
because the latter expression has a space before the string $var1.

$(URLDECODE,string) Returns string with all hexadecimal
values replaced with their nonalphanu-
meric ASCII characters

For a description of this functionality
implemented as a server function, see
“WebURLDecode()” on page 12-14.

$(URLENCODE,string) Returns string with all nonalphabetic
ASCII characters replaced with their
hexadecimal values. For a description of
this functionality implemented as a
server function, see “WebURLEncode()”
on page 12-15.

$(VECSIZE,$vec) Returns the number of elements in a
vector

$(VECAPPEND,$vec,value) Appends a value to the end of the vector

$(WEBUNHTML,string) Returns string with special HTML
characters replaced with their entity
reference for display by a Web browser.
For a description of this functionality
implemented as a server function, see
“WebUnHTML()” on page 12-12.

$(XOR,val1,val2,...,valn) Returns the logical XOR of the integers
val1 through valn

$(XST,varname) If variable varname exists (has been
assigned a numeric or string value),
returns 1; otherwise, returns 0.

Function Returns

 (6 of 6)
Using Variable-Processing Functions in AppPages 8-9



Using Variable Expressions in AppPages
Using Variable Expressions in AppPages
A variable expression contains multiple variable-processing functions. The
following sections show uses for variable-processing functions to create
simple and complex variable expressions. It includes the following topics:

■ “Using Arithmetic Functions in Variable Expressions,” following

■ “Using SEPARATE and REPLACE in Variable Expressions” on
page 8-11

■ “Using Variable Expressions to Format Output Conditionally” on
page 8-13

Using Arithmetic Functions in Variable Expressions
The following /varexp1.html AppPage uses the + (plus) function and shows
an example of variable-processing within an MIVAR tag:

<HTML>
<HEAD><TITLE>Adding Two Variables</TITLE></HEAD>
<BODY>
<?MIVAR NAME=NUMA>10<?/MIVAR>
<?MIVAR NAME=NUMB>20<?/MIVAR>
<?MIVAR><B>The sum of $NUMA and $NUMB is</B> $(+,$NUMA,$NUMB).
<?/MIVAR>
</BODY>
</HTML>

The WebExplode() function returns the following output to the client:

<B>The sum of 10 and 20 is</B> 30.

The following figure shows sample Web browser output.

Figure 8-1
Adding Two

Variables

Web Browser - [Adding Two Variables]

URL: http://domain:port/hr_app/?MIval=/varexp1.html

The sum of 10 and 20 is 30.
8-10 IBM Informix Web DataBlade Module Application Developer’s Guide



Using SEPARATE and REPLACE in Variable Expressions
Using SEPARATE and REPLACE in Variable Expressions
Use the SEPARATE variable-processing function to separate elements in a
vector variable. A vector variable consists of multiple variables with the same
name, passed into the AppPage using check boxes or the MULTIPLE attribute
of selection lists.

Use the REPLACE variable-processing function to specify a string to be
replaced within text. For example, you must replace single quotes with two
single quotes so that single quotes can be inserted into the database. If this
replacement is not made and the text being inserted into the database
contains single quotes, the INSERT statement is not built correctly.

Example of SEPARATE and REPLACE

The following /table_prog.html AppPage uses both the SEPARATE and
REPLACE variable-processing functions:

<HTML>
<HEAD><TITLE> Select from Table</TITLE></HEAD>
<BODY>
<!--- Show columns of employees table in a form --->
<!--- with multi-value check box. Turn checked  --->
<!--- columns into a comma-separated list.      --->
<?MIVAR NAME=$column_headers> <?/MIVAR>
<HR>
<STRONG>Select Columns from Employees Table</STRONG><BR>
<?MIVAR><FORM METHOD=POST ACTION="$WEB_HOME"><?/MIVAR>
<?MISQL SQL="select a.colname, colno from syscolumns a, systables b

where a.tabid = b.tabid and b.tabname = 'employees' order by colno;">
<INPUT TYPE=CHECKBOX NAME=column_list VALUE="$1">$1<?/MISQL>
<INPUT TYPE=HIDDEN NAME=MIval VALUE="/table_prog.html">
<INPUT TYPE=SUBMIT VALUE="Get Rows"><HR>
</FORM>
<!--- On the second time through the form,     --->
<!--- retrieve the selected columns from the   --->
<!--- database, display in table format.       --->
<?MIVAR COND=$(NXST,$column_list) NAME=$column_list><?/MIVAR>
<?MIBLOCK COND=$(NOT,$(EQ,$column_list,))>

<?MIVAR NAME=$select_list>$(SEPARATE,$column_list,",")<?/MIVAR>
<?MIVAR

NAME=$column_headers>$(REPLACE,$select_list,",",</TH><TH>)<?/MIVAR>
<TABLE BORDER>
<TR><TH><?MIVAR>$column_headers<?/MIVAR></TH></TR>
<?MISQL SQL="select $select_list from employees order by 1;">
<TR>{<TD>$*</TD>}</TR>
<?/MISQL>
</TABLE>

<?/MIBLOCK>
</BODY>
</HTML>
Using Variable-Processing Functions in AppPages 8-11



Using SEPARATE and REPLACE in Variable Expressions
The columns of the employees table are displayed as a check box list. You
check one or more columns of the employees table to be retrieved; then
submit the form to post it to the same /table_prog.html AppPage. On the
second call to the AppPage, the SQL statement that retrieves the checked
columns of the employees table is built by the WebExplode() function, using
the SEPARATE variable-processing function to place commas between the
selected columns in the SELECT statement. The REPLACE variable is then
used to replace the commas separating items in the vector variable with TH

tags to create an HTML table row. Finally, the WebExplode() function builds
the output in an HTML table.

The following figure shows sample Web browser output.

Figure 8-2
Select from Table

Web Browser - [Select from Table]

URL: http://domain:port/hr_app/?MIval=/table_prog.html

first_name

Beth

last_name

Hume

Betty Pen

Select Columns from Employees Table:

first_name last_name title Get Rowsonsite department

Craig

Gonzo

Kermit

Sarah

Simon

Wilma

Wallace

Babbage

French

Dun

Smith

Jones

title

Product Manager

Senior Line Worker

Line Worker

Product Manager

Event Co-ordinator

Event Co-ordinator

Senior Salesman

Salesman
8-12 IBM Informix Web DataBlade Module Application Developer’s Guide



Using Variable Expressions to Format Output Conditionally
Using Variable Expressions to Format Output Conditionally
You can also use variable-processing functions to format output
conditionally.

Example of Conditional Output

The following /varexp2.html AppPage illustrates how a variable expression
can be used to process the results of a SELECT statement:

<HTML>
<HEAD><TITLE>Conditional Output</TITLE></HEAD>
<BODY>
<B>Display employee names by department: </B>
<?MIVAR NAME=LAST><?/MIVAR>
<TABLE BORDER=1>
<?MISQL SQL="select b.name, a.first_name, a.last_name from

employees a , departments b where a.department = b.name
order by b.name, a.last_name;">

<TR>
<TD>$(IF,$(NE,$1,$LAST),$1)</TD>
<TD> $2 $3</TD> $(SETVAR,$LAST,$1)
</TR>
<?/MISQL>
</TABLE>
</BODY>
</HTML>

This AppPage queries the employees and departments tables and displays
the employees by department. The department name is not output when the
name has not changed from the previous row retrieved.
Using Variable-Processing Functions in AppPages 8-13



Using Variable Expressions to Format Output Conditionally
The following figure shows sample Web browser output.

Figure 8-3
Conditional Output

Web Browser - [Conditional Output]

URL: http://domain:port/hr_app/?MIval=/varexp2.html

manufacturing Betty Pen

Craig Wallace

sales

Gonzo Babbage

Display employee names by department:

Sarah Dun

Kermit French

Beth Hume

marketing

Wilma Jones

Simon Smith
8-14 IBM Informix Web DataBlade Module Application Developer’s Guide



Using Variable Expressions to Format Output Conditionally
Example of a Walking Window

A walking window shows only a portion of total responses. For example, a
query might return 100 rows, but you want only 20 at a time to appear in your
Web browser. In this case, you would have five windows and can walk
forward and backwards through these five windows.

The following /winstart.html AppPage uses variable-processing functions to
format output conditionally:

<HTML>
<HEAD><TITLE>WINSTART</TITLE></HEAD>
<BODY>
<!--- Initialization --->
<?MIVAR NAME=WINSIZE DEFAULT=4>$WINSIZE<?/MIVAR>
<?MIVAR NAME=BEGIN DEFAULT=1>$START<?/MIVAR>

<!--- Definition of Ranges ---->
<?MIVAR NAME=BEGIN>$(IF,$(<,$BEGIN,1),1,$BEGIN)<?/MIVAR>
<?MIVAR NAME=END>$(+,$BEGIN,$WINSIZE)<?/MIVAR>
<!--- Execution --->
<TABLE BORDER>
<?MISQL WINSTART=$BEGIN WINSIZE=$WINSIZE

SQL="select tabname from systables where tabname like 'wb%'
order by tabname;">

<TR><TD>$1</TD></TR>
<?/MISQL>
</TABLE>
<BR>
<?MIBLOCK COND="$(>,$BEGIN,1)">

<?MIVAR>
<A HREF=$WEB_HOME?MIval=/walking1.html&START=$(-

,$BEGIN,$WINSIZE)&WINSIZE=$WINSIZE>
Previous $WINSIZE Rows </A> $(IF,$(<,$MI_ROWCOUNT,$WINSIZE),

No More Rows,  )
<?/MIVAR>

<?/MIBLOCK>
<?MIBLOCK
COND="$(AND,$(>,$END,$WINSIZE),$(>=,$MI_ROWCOUNT,$WINSIZE))">

<?MIVAR>
<A

HREF=$WEB_HOME?MIval=/walking1.html&START=$END&WINSIZE=$WINSIZE>
Next $WINSIZE Rows  </A>
<?/MIVAR>

<?/MIBLOCK>
</BODY>
</HTML>
Using Variable-Processing Functions in AppPages 8-15



Using Variable Expressions to Format Output Conditionally
This example queries the systables table and displays only the rows that are
within the current data window. The WebExplode() function suppresses the
display of a row when the row is not within the current data window.

The following figure shows the Web browser output for the first set of rows
retrieved.

The following figure shows the Web browser output for the next set of rows
retrieved.

Figure 8-4
Walking Window 1

Web Browser - [Walking Window]

URL: http://domain:port/hr_app/?MIval=/walking.html

wbExtensions

wbPages

wbPageVersions

wbBinaries

Next 4 Rows

Figure 8-5
Walking Window 2

Web Browser - [Walking Window]

URL: http:/domain:port/hr_app/?MIval=/walking.html

wbBinaryVersions

wbResProjects

wbTagVersions

wbPreviews

Previous 4 Rows Next 4 Rows
8-16 IBM Informix Web DataBlade Module Application Developer’s Guide



Special Characters in Variable Expressions
The following figure shows the Web browser output for the final set of rows
retrieved.

Special Characters in Variable Expressions
Quotation marks can be used to suppress evaluation of selected sequences of
characters that otherwise would be interpreted as part of a variable
expression. For example, in the following expression, double quotes are
placed around the string Hello, Citizen to prevent the comma from being
treated as a parameter separator:

<?MIVAR>$(SUBSTR,"Hello, Citizen",5)<?/MIVAR>

Double quotes may be included as part of a variable expression by placing
them within another set of double quotes.

Additionally, since a blank space terminates an attribute assignment, you
must place double quotes around any variable expression containing a space,
as in the following example:

<?MIVAR NAME=var1>x y<?/MIVAR>
<?MIBLOCK COND="$(EQ,x y,$var1)">Values are equal.<?/MIBLOCK>

Figure 8-6
Walking Window 3

Web Browser - [Walking Window]

URL: http://domain:port/hr_app/?MIval=/walking.html

wbTags

wbinfo

Previous 4 Rows

wbusers
Using Variable-Processing Functions in AppPages 8-17



Special Characters in Variable Expressions
Since a greater-than character ( > ) terminates a tag, you must also place
double quotes around any variable expression containing it:

<?MIVAR NAME=x>100<?/MIVAR>
<?MIVAR NAME=y>50<?/MIVAR>
<?MIBLOCK COND="$(>,$x,$y)">X is greater than Y.<?/MIBLOCK>

In general, it is a good idea to keep expressions within quotes, even if you are
not aware of any special characters that need to be suppressed.
8-18 IBM Informix Web DataBlade Module Application Developer’s Guide



9
Chapter
Using Dynamic Tags in
AppPages
In This Chapter . . . . . . . . . . . . . . . . . . . . 9-3

What Are Dynamic Tags? . . . . . . . . . . . . . . . . 9-3

Specifying Dynamic Tags in AppPages . . . . . . . . . . . . 9-4

Where Dynamic Tags Are Stored . . . . . . . . . . . . . . 9-5

Dynamic Tag WebExplode() Variables . . . . . . . . . . . . 9-7

Using System Dynamic Tags . . . . . . . . . . . . . . . 9-8
CHECKBOXLIST . . . . . . . . . . . . . . . . . . 9-8
RADIOLIST . . . . . . . . . . . . . . . . . . . . 9-11
SELECTLIST. . . . . . . . . . . . . . . . . . . . 9-15

Creating User-Defined Dynamic Tags . . . . . . . . . . . . 9-17
Adding User-Defined Dynamic Tags with AppPage Builder . . . 9-18
Example of Creating a User-Defined Dynamic Tag . . . . . . 9-19
Special Characters in Dynamic Tags. . . . . . . . . . . . 9-21



9-2 IBM
 Informix Web DataBlade Module Application Developer’s Guide



In This Chapter
This chapter describes system and user-defined tags. It includes the
following topics:

■ “What Are Dynamic Tags?” following

■ “Specifying Dynamic Tags in AppPages” on page 9-4

■ “Where Dynamic Tags Are Stored” on page 9-5

■ “Dynamic Tag WebExplode() Variables” on page 9-7

■ “Using System Dynamic Tags” on page 9-8

■ “Creating User-Defined Dynamic Tags” on page 9-17

What Are Dynamic Tags?
Dynamic tags are segments of AppPages that are stored in a database table
and can be shared among multiple AppPages.

Dynamic tags allow you to standardize components of multiple AppPages,
such as the headers and footers that appear on multiple AppPages in your
Web application. Since the WebExplode() function expands dynamic tags,
changes made to a dynamic tag are automatically applied to all AppPages
that include the dynamic tag. Dynamic tags reduce maintenance costs and
centralize the source of updates to Web applications.
Using Dynamic Tags in AppPages 9-3



Specifying Dynamic Tags in AppPages
For example, assume your Web application contains many AppPages. Each
AppPage has similar footer information, such as a company logo, infor-
mation about the application, and an email address. Instead of copying the
common HTML into the footer of each AppPage, you can create a dynamic
tag that stores the common HTML in a table, and then invoke the tag in the
footer of each AppPage. Then, if you need to change any information in the
footer, you need only update the dynamic tag, instead of updating every
AppPage in your application. The next time you invoke an AppPage in your
application, Webdriver automatically invokes the new dynamic tag in the
AppPage with the updated information.

There are two types of dynamic tags: system dynamic tags and user-defined
dynamic tags.

System dynamic tags are dynamic tags provided by the IBM Informix Web
DataBlade module to simplify the creation of graphical objects in your
AppPages, such as check box lists, radio button lists, and selection lists. The
system dynamic tags are described in detail in “Using System Dynamic Tags”
on page 9-8.

User-defined dynamic tags are dynamic tags that you create yourself using
AppPage Builder. The section “Creating User-Defined Dynamic Tags” on
page 9-17 describes in detail how to create a user-defined dynamic tag.

Specifying Dynamic Tags in AppPages
You specify a dynamic tag (both system and user-defined) in an AppPage
using the SGML-like syntax <?tag_name>. Specify parameters to dynamic tags
as tag attributes.

The following example contains the display_image user-defined dynamic
tag:

These are the employees in department 20:<HR>
<CENTER>
<?display_image NAME=$emp_name DEPT=20>
</CENTER>

The display_image dynamic tag has two attributes, NAME and DEPT.
9-4 IBM Informix Web DataBlade Module Application Developer’s Guide



Where Dynamic Tags Are Stored
You must have previously created a user-defined dynamic tag before you
specify it in an AppPage. For detailed instructions, refer to “Creating User-
Defined Dynamic Tags” on page 9-17.

Dynamic tags accept variables, variable expressions, and constants as
parameter values. The COND attribute of AppPage tags, described in
“COND Attribute” on page 6-29, is also a valid attribute for a dynamic tag.
The COND attribute specifies a condition that is evaluated before the tag is
processed. If the condition is true, the WebExplode() function processes the
tag.

Where Dynamic Tags Are Stored
When the WebExplode() function processes an AppPage and encounters a
dynamic tag, the WebExplode() function substitutes the body of the dynamic
tag in place of the tag identifier in the AppPage. The WebExplode() function
searches for the body of dynamic tags in one of the following two tables,
depending on the development tool you use to create your AppPages and
user-defined dynamic tags:

■ webTags

If you use the AppPage Builder application provided in Version 3.3
and earlier of the Web DataBlade module to develop your Web appli-
cations, AppPage Builder stores your user-defined dynamic tags in
the webTags system table. The webTags system table is created at the
time you register the Web DataBlade module in your database.

The webTags system table is the default table for storing dynamic
tags. If you have not set any of the dynamic tag Webdriver variables
(described in “Dynamic Tag WebExplode() Variables” on page 9-7) in
your Webdriver configuration, the WebExplode() function always
searches the webTags system table for dynamic tags.
Using Dynamic Tags in AppPages 9-5



Where Dynamic Tags Are Stored
■ wbTags

If you use the AppPage Builder application provided in Version 4.0
and later of the Web DataBlade module or IBM Informix Data Direc-
tor for Web to develop your Web applications, both applications store
your user-defined dynamic tags in the wbTags table. The wbTags
table is created when you install the appropriate version of AppPage
Builder or Data Director for Web in your database.

Since the wbTags table is not the default dynamic tag storage table,
you must let the WebExplode() function know that your dynamic
tags are stored in the wbTags table. You do this by setting the Web-
driver variable MI_WEBTAGSTABLE to wbTags in your Webdriver
configuration.

When the WebExplode() function is looking for a dynamic tag, it first deter-
mines whether you have set the MI_WEBTAGSTABLE variable in your
Webdriver configuration. If you have, it searches for the dynamic tag in the
specified table. Otherwise, the WebExplode() function searches the webTags
table.

Both the webTags and wbTags table contain copies of all three system
dynamic tags.

If you specify a dynamic tag in your AppPage that is not defined in the
appropriate dynamic tags table (either webTags or wbTags,) the WebEx-
plode() function does not generate an error. Instead, the WebExplode()
function returns the dynamic tag specification unaffected in the WebEx-
plode() function output.

For a detailed description of the webTags system table, refer to the
IBM Informix Web DataBlade Module Administrator’s Guide.

For more information on the wbTags table, refer to Appendix B, “AppPage
Builder Schema.”
9-6 IBM Informix Web DataBlade Module Application Developer’s Guide



Dynamic Tag WebExplode() Variables
Dynamic Tag WebExplode() Variables
The following table describes the dynamic tag WebExplode() variables that
you can set in your Webdriver configuration. Use the Web DataBlade
Module Administration Tool to set these variables.

Variable Mandatory? Description

MI_WEBTAGSTABLE No Specifies the database table that the WebExplode() function
searches for the body of a dynamic tag

This variable can be set to the following two values: webTags or
wbTags. The default value if this variable is not set is webTags.

You must set the MI_WEBTAGSTABLE variable to wbTags in
your Webdriver configuration if you developed your Web appli-
cation using the APB application included in Version 4.0 or later
of the Web DataBlade module or Version 2.0 of Data Director for
Web.

MI_WEBTAGSSQL No Specifies a user-defined SELECT statement that the WebEx-
plode() function runs to retrieve the body of a dynamic tag

Never set the MI_WEBTAGSSQL variable in your Webdriver
configuration. The variable should only be set for Web applica-
tions that were developed with Version 1.1 or earlier of Data
Director for Web.

The MI_WEBTAGSTABLE variable takes precedence over the
MI_WEBTAGSSQL variable. This means that if you have both
variables set in your Webdriver configuration, the WebExplode()
function searches for the dynamic tag in the table specified by the
MI_WEBTAGSTABLE variable.

 (1 of 2)
Using Dynamic Tags in AppPages 9-7



Using System Dynamic Tags
Using System Dynamic Tags
The CHECKBOXLIST, RADIOLIST, and SELECTLIST system dynamic tags
simplify the creation of check box lists, radio button lists, and selection lists.
You can also create your own user-defined dynamic tags, as described in
“Creating User-Defined Dynamic Tags” on page 9-17.

CHECKBOXLIST
The CHECKBOXLIST system dynamic tag creates an HTML list check box
based on the attributes you specify. CHECKBOXLIST has the following
attributes.

MI_WEBTAGSCACHE No Specifies whether the WebExplode() function should cache
dynamic tags or not

This variable should be set to on to turn on caching or off to turn
off caching.

The default value is on.

Turn off dynamic tag caching when you are developing your
AppPages to ensure that you always see the latest version of the
dynamic tag and not the cached version. When you deploy your
application to a production environment, however, you should
turn on dynamic tag caching to increase the performance of your
Web application.

Variable Mandatory? Description

 (2 of 2)

Attribute Mandatory? Description

NAME Yes Specifies the value of the NAME attribute of the
check boxes in the check box list

SQL Yes Specifies the SQL statement that returns a list of
items to compose the check box list

 (1 of 2)
9-8 IBM Informix Web DataBlade Module Application Developer’s Guide



CHECKBOXLIST
The example of CHECKBOXLIST displays information about employees based
on the following employees table schema:

create table employees
(
first_name      varchar(40),
last_name       varchar(40),
title           varchar(40),
onsite          boolean,
department      varchar(40));

CHECKED No Specifies the SQL statement that returns a list of
items that are initially checked

CHECKONE No Specifies the value of a single item initially checked

PRE No Specifies text that precedes every check box field

POST No Specifies text that follows every check box field

Default is <BR>.

Attribute Mandatory? Description

 (2 of 2)
Using Dynamic Tags in AppPages 9-9



CHECKBOXLIST
The following example is the /checkboxlist.html AppPage:

<HTML>
<HEAD> <TITLE> CHECKBOXLIST Example </TITLE></HEAD>
<BODY>
<?MIBLOCK COND=$(XST,$action)>

<!--- Block to perform update when submitting form ---!>
<?MIVAR NAME=where>$(SEPARATE,$names,"', '")<?/MIVAR>
<?MIVAR NAME=sql_statement1>update employees set onsite='t'

where first_name in ('$where');<?/MIVAR>
<?MISQL SQL="$sql_statement1"><?/MISQL>
<?MIVAR NAME=sql_statement2>update employees set onsite='f'

where first_name not in ('$where');<?/MIVAR>
<?MISQL SQL="$sql_statement2"><?/MISQL>

<?/MIBLOCK>
<H3> Employees that work onsite: </H3>
<FORM METHOD=POST ACTION=<?MIVAR>$WEB_HOME<?/MIVAR>>
<!--- Hidden Fields ---!>
<INPUT TYPE=hidden NAME=action VALUE=on>
<INPUT TYPE=hidden NAME=MIval VALUE=/checkboxlist.html>
<!--- SQL to generate check box list ---!>
<?CHECKBOXLIST NAME=names SQL="select first_name from employees order by

first_name" CHECKED="select first_name from employees where onsite='t'">
<P>
Control-click names to toggle on and off. Then choose Submit.
<P>
<INPUT TYPE=SUBMIT VALUE="Submit">
<INPUT TYPE=RESET VALUE="Reset">
</FORM>
<HR>
<?MIVAR COND=$(XST,$action)>
   SQL executed:  <I>$sql_statement2</I><?/MIVAR>
<P>
<?MIVAR COND=$(XST,$action)>
   SQL executed:  <I>$sql_statement1</I><?/MIVAR>
<P>
</BODY>
</HTML>
9-10 IBM Informix Web DataBlade Module Application Developer’s Guide



RADIOLIST
The following figure is sample Web browser output.

RADIOLIST
The RADIOLIST system dynamic tag creates an HTML radio button list based
on the attributes you specify. RADIOLIST has the following tag attributes.

Figure 9-1
CHECKBOXLIST
Browser Output

Web Browser - [CHECKBOXLIST Example]

URL: http://domain:port/hr_app/?MIval=/checkboxlist.html

Beth
Betty
Craig
Gonzo
Kermit
Sarah
Simon
Wilma

Control-click names to toggle on and off. Then choose Submit.

Employees that work onsite:

Reset

SQL executed: update employees set onsite=’f’ where first_name not in (‘Betty’,
‘Gonzo’);

SQL executed: update employees set onsite=’t’ where first_name in (‘Betty’,
‘Gonzo’);

Submit

Attribute Mandatory? Description

NAME Yes Specifies the value of the NAME attribute of the
radio buttons in the radio button list

SQL Yes Specifies the SQL statement that returns a list of
items to compose the radio button list

CHECKED No Specifies the SQL statement that returns a single
item that is initially checked

 (1 of 2)
Using Dynamic Tags in AppPages 9-11



RADIOLIST
Tip: By definition, a radio button list can have only one item selected at a time.

The following example illustrates the use of RADIOLIST to display infor-
mation about employees based on the following employees table schema:

create table employees
(
first_name      varchar(40),
last_name       varchar(40),
title           varchar(40),
onsite          boolean,
department      varchar(40));

CHECKONE No Specifies the value of a single item initially checked

PRE No Specifies text that precedes every radio button field

POST No Specifies text that follows every radio button field

Default is <BR>.

Attribute Mandatory? Description

 (2 of 2)
9-12 IBM Informix Web DataBlade Module Application Developer’s Guide



RADIOLIST
The following example is the /radiolist.html AppPage:

<HTML>
<HEAD> <TITLE> RADIOLIST Example </TITLE></HEAD>
<BODY>
<?MIBLOCK COND=$(XST,$action)>

<!--- Block to perform update when submitting form --->
<H3> Details for Employee <?MIvar>$name<?/MIVAR>: </H3>
<?MIVAR NAME=sql_statement> select * from employees

where first_name = '$name';<?/MIVAR>
<?MISQL SQL="$sql_statement">
<B> Name: </B> $1 $2 <BR>
<B> Title: </B> $3 <BR>
<B> Onsite: </B> $4 <BR>
<B> Department: </B> $5 <BR>
<?/MISQL>

<?/MIBLOCK>
<FORM METHOD=POST ACTION=<?MIVAR>$WEB_HOME<?/MIVAR>>
<H3> Choose an Employee </H3>
<!--- Hidden Fields --->
<INPUT TYPE=hidden NAME=action VALUE=on>
<INPUT TYPE=hidden NAME=MIval VALUE=/radiolist.html>
<?MIVAR NAME=name DEFAULT="">$name<?/MIVAR>
<!--- SQL to generate radio button list --->
<?RADIOLIST NAME=name SQL="select first_name from employees

order by first_name" CHECKONE="Betty">
<P>
Select a name.  Then choose Submit.
<P>
<INPUT TYPE=SUBMIT VALUE="Submit">
<INPUT TYPE=RESET VALUE="Reset">
</FORM>
<HR>
<?MIVAR COND=$(XST,$action)>

SQL executed:  <I>$sql_statement</I><?/MIVAR>
<P>
</BODY>
</HTML>
Using Dynamic Tags in AppPages 9-13



RADIOLIST
The following figure is sample Web browser output.

Figure 9-2
RADIOLIST Browser

Output

Web Browser - [RADIOLIST Example]

URL: http://domain:port/hr_app/?MIval=/radiolist.html

Beth
Betty
Craig
Gonzo
Kermit
Sarah
Simon
Wilma

Select a name. Then choose Submit.

Choose an Employee

Reset

Details for Employee Betty:

Name: Betty Pen
Title: Senior Line Worker
Onsite: t
Department: manufacturing

Submit
9-14 IBM Informix Web DataBlade Module Application Developer’s Guide



SELECTLIST
SELECTLIST
The SELECTLIST system dynamic tag creates an HTML selection list based on
the attributes you specify. SELECTLIST has the following attributes.

The following example illustrates the use of SELECTLIST to display infor-
mation about employees based on the following employees table schema:

create table employees
(
first_name      varchar(40),
last_name       varchar(40),
title           varchar(40),
onsite          boolean,
department      varchar(40));

Attribute Mandatory? Description

NAME Yes Specifies the value of the NAME attribute of the
items in the selection list

SQL Yes Specifies the SQL statement that returns a list of
items to compose the selection list

MULTIPLE No If specified, users can make multiple selections

SELECTED No Specifies the SQL statement that returns a list of
items that are initially selected

SELECTONE No Specifies the value of a single item initially selected

SIZE No Specifies the number of visible choices
Using Dynamic Tags in AppPages 9-15



SELECTLIST
The following example is the /selectlist.html AppPage:

<HTML>
<HEAD> <TITLE> SELECTLIST Example </TITLE></HEAD>
<BODY>
<?MIBLOCK COND=$(XST,$action)>

<!--- Block to perform update when submitting form ---!>
<?MIVAR NAME=where>$(SEPARATE,$names,"', '")<?/MIVAR>
<?MIVAR NAME=sql_statement1>update employees set

onsite='t' where first_name in ('$where');<?/MIVAR>
<?MISQL SQL="$sql_statement1"><?/MISQL>
<?MIVAR NAME=sql_statement2>update employees set

onsite='f' where first_name not in ('$where');<?/MIVAR>
<?MISQL SQL="$sql_statement2"><?/MISQL>

<?/MIBLOCK>
<H3> Employees that work onsite: </H3>
<FORM METHOD=POST ACTION=<?MIVAR>$WEB_HOME<?/MIVAR>>
<!--- Hidden Fields ---!>
<INPUT TYPE=hidden NAME=action VALUE=on>
<INPUT TYPE=hidden NAME=MIval VALUE=/selectlist.html>
<!--- SQL to generate selection list ---!>
<?SELECTLIST NAME=names SIZE=8 MULTIPLE

SQL="select first_name from employees order by first_name"
SELECTED="select first_name from employees where onsite='t'">

<P>
Control-click names to toggle on and off. Then choose Submit.
<P>
<INPUT TYPE=SUBMIT VALUE="Submit">
<INPUT TYPE=RESET VALUE="Reset">
</FORM>
<HR>
<?MIVAR COND=$(XST,$action)>
   SQL executed:  <I>$sql_statement2</I><?/MIVAR>
<P>
<?MIVAR COND=$(XST,$action)>
   SQL executed:  <I>$sql_statement1</I><?/MIVAR>
<P>
</BODY>
</HTML>
9-16 IBM Informix Web DataBlade Module Application Developer’s Guide



Creating User-Defined Dynamic Tags
The following figure is sample Web browser output.

Creating User-Defined Dynamic Tags
Use AppPage Builder to add, edit, and delete user-defined dynamic tags.
Once you have created a user-defined dynamic tag, you can specify it in any
AppPage, as described in “Specifying Dynamic Tags in AppPages” on
page 9-4.

The AppPage Builder application provided in Version 4.0 and later of the
Web DataBlade module stores dynamic tags in the wbTags table. The
AppPage Builder application provided in Version 3.32 and earlier of the
DataBlade module stores dynamic tags in the webTags table. This guide is
written with the assumption that you are using the latest version of AppPage
Builder and that you are storing your dynamic tags in the wbTags table.

Important: You cannot use AppPage Builder to edit or delete system dynamic tags.

Figure 9-3
SELECTLIST

Browser Output

Web Browser - [SELECTLIST Example]

URL: http://domain:port/hr_app/?MIval=/selectlist.html

Control-click names to toggle on and off. Then choose Submit.

Employees that work onsite:

Reset

SQL executed: update employees set onsite=’f’ where first_name not in (‘Betty’);

SQL executed: update employees set onsite=’t’ where first_name in (‘Betty’);

Beth
Betty
Craig
Gonzo
Kermit
Sarah
Simon
Wilma

Submit
Using Dynamic Tags in AppPages 9-17



Adding User-Defined Dynamic Tags with AppPage Builder
Adding User-Defined Dynamic Tags with AppPage Builder
Figure 9-4 shows the Add Dynamic Tag AppPage from AppPage Builder
that you use to add user-defined dynamic tags.

Figure 9-4
APB-Add Dynamic

Tag

Web Browser - [APB - Add Dynamic Tag]

URL: http://domain:port/hr_app/?MIval=APB20/apb.html

Add Dynamic Tag

Main Menu

CONTINUE

You can base this new tag on an existing tag to copy from the list below:

SAVE

User Name:
default

User Level:

Default Project:

Default Object:
AppPage

TEXTAREA Width:

TEXTAREA Height:
20

80
Versioning:

WebLint Checking:
Off

Add Object Edit Object Admin Menu

Base Tag: OLD_DYNTAG

getting_started Off

0

Project:

Description:

Dynamic Tag:

Class:Tag ID:

Parameters:

getting_started
9-18 IBM Informix Web DataBlade Module Application Developer’s Guide



Example of Creating a User-Defined Dynamic Tag
When you enter parameters in the Parameters text box, separate multiple
parameters by specifying an ampersand ( & ). You can assign a default value
to a parameter by specifying the parameter and its value as a name-value
pair, for example, param1=value1. A parameter that does not need a default
value is specified by the parameter followed by an equal sign ( = ) with no
value following; for example, param1=.

Delimit parameters by using a “commercial at” ( @ ) before and after the
parameter name within the body of the dynamic tag.

When you insert or update a dynamic tag in the wbTags table, AppPage
Builder verifies the tag to check that all of the parameters in the content
column (delimited by the @ character) are also listed in the parameters
column. When the WebExplode() function encounters a dynamic tag in an
AppPage, the function verifies the tag to check that all parameters requiring
a value are assigned a value.

Example of Creating a User-Defined Dynamic Tag
The following IMG dynamic tag, which invokes the standard HTML IMG tag
based on information retrieved in a SELECT statement of the wbBinaries
table that stores images, displays the image identified by the mandatory SRC
parameter. The parameters to the IMG dynamic tag are ID, path, and
extension. Each parameter has a default value.
Using Dynamic Tags in AppPages 9-19



Example of Creating a User-Defined Dynamic Tag
Figure 9-5
Example of a User-

Defined Dynamic
Tag

Web Browser - [APB - Add Dynamic Tag]

URL: http://domain:port/hr_app/?MIval=APB20/apb.html

Add Dynamic Tag

Main Menu

CONTINUE

You can base this new tag on an existing tag to copy from the list below:

SAVE

User Name:
default

User Level:

Default Project:

Default Object:
AppPage

TEXTAREA Width:

TEXTAREA Height:
20

80
Versioning:

WebLint Checking:
Off

Add Object Edit Object Admin Menu

Base Tag: OLD_DYNTAG

getting_started Off

0

Project:

Description:

Dynamic Tag:

Class:Tag ID:

Parameters:

getting_started

IMG beginner

ID=default_image&path=/&extension=gif

My own image tag.

<?MISQL SQL=”select height, width, description, extension from wbBinaries where
ID=’@ID@ and path=’@path@’ and extension=’@extension@’;”>
<IMG BORDER=0 $(IF,$(!=,$1,0),HEIGHT=$1,) $(IF,$(!=,$2,0),WIDTH=$2,) ALT=”$3” SRC=
“$WEB_HOME?MIval=@path@$(IF,$(NE,@path@,/),/)@ID@.@extension@”><?/MISQL>
9-20 IBM Informix Web DataBlade Module Application Developer’s Guide



Special Characters in Dynamic Tags
If, in your AppPage, you specify the dynamic tag <?IMG ID=my_image>,
sample output to the client is:

<IMG BORDER=0 HEIGHT=40 WIDTH=332 ALT="My Image" SRC=/hr-
map/?MIval=/my_image.gif>

Because the IMG dynamic tag in the AppPage did not specify a value for the
path and extension parameters, the WebExplode() function substituted the
default values for the parameters in the body of the dynamic tag (the forward
slash ( / ) and gif, respectively).

If, in your AppPage, you specify the dynamic tag
<?IMG ID=my_image extension=jpeg ALIGN=CENTER>, sample output to
the client is:

<IMG BORDER=0 HEIGHT=40 WIDTH=332 ALT="My Image" SRC=/hr-
map/?MIval=/my_image.jpeg
ALIGN=CENTER>

In the previous two examples, /hr-map is the value of WEB_HOME automat-
ically generated by Webdriver.

If your AppPage contains the dynamic tag
<?IMG ID=my_image COND=$(XST,$DISPLAY)>, the WebExplode() function
generates the IMG tag only if the DISPLAY variable has been assigned a value
within that AppPage.

Warning: The body of a dynamic tag can contain another dynamic tag. However, do
not call the same dynamic tag recursively, or you might consume your system
resources.

Special Characters in Dynamic Tags
An entity reference instructs the browser to look up symbols as it renders an
AppPage and replace them with equivalent characters. You must replace the
@ character with its entity reference if the character occurs within your
dynamic tag content.

Character Entity Reference

@ &#64;
Using Dynamic Tags in AppPages 9-21



Special Characters in Dynamic Tags
9-22 IBM Informix Web DataBlade Module Application Developer’s Guide



10
Chapter
Using UDR Tags in AppPages
In This Chapter . . . . . . . . . . . . . . . . . . . . 10-3

What Is a User-Defined Routine (UDR) Tag? . . . . . . . . . . 10-3

Where Are UDR Tags Stored? . . . . . . . . . . . . . . . 10-4

Specifying a UDR Tag in an AppPage . . . . . . . . . . . . 10-6

Creating a UDR Tag . . . . . . . . . . . . . . . . . . 10-8



10-2 IBM
 Informix Web DataBlade Module Application Developer’s Guide



In This Chapter
This chapter describes user-defined routine (UDR) tags. It includes the
following topics:

■ “What Is a User-Defined Routine (UDR) Tag?” following

■ “Where Are UDR Tags Stored?” on page 10-4

■ “Specifying a UDR Tag in an AppPage” on page 10-6

■ “Creating a UDR Tag” on page 10-8

What Is a User-Defined Routine (UDR) Tag?
A user-defined routine (UDR) tag is a tag in an AppPage that directly executes
an existing UDR in the database.

Directly executing UDRs in your AppPages can increase the performance of
your Web application. By specifying the UDR in a UDR tag, the WebExplode()
function bypasses the database server parser facility when it executes the
UDR. If your Web application executes many UDRs, you can noticeably
increase the performance of your application by executing them in UDR tags.

A UDR is a routine that you create and register in the database. UDRs can be
written in C, SPL, or Java. You typically execute UDRs with an SQL statement,
as shown in the following example:

EXECUTE FUNCTION webupper('Hello World');

The UDR in the example is called webupper() and it takes one parameter. The
UDR returns the value of the parameter in uppercase: HELLO WORLD.
Using UDR Tags in AppPages 10-3



Where Are UDR Tags Stored?
If you want to execute the webupper() UDR in an AppPage, you could use
the MISQL AppPage tag, as shown in the following example:

<HTML>
<?MIVAR NAME=in>Hello World<?/MIVAR>
<?MISQL SQL="execute function webupper('$in');">$1<?/MISQL>
</HTML>

A more efficient way of executing the webupper() UDR in an AppPage,
however, is to invoke it directly with a UDR tag, as shown in the following
example:

<HTML>
<?MIVAR NAME=in>Hello World<?/MIVAR>
<?webupper NAME=out text=$in>
<?MIVAR>$out<?/MIVAR>
</HTML>

In the example, <?webupper NAME=out text=$in> is the UDR tag. The
NAME=out attribute of the UDR tag specifies that the WebExplode() function
should place the output of the UDR tag in a variable called out. The text=$in
attribute specifies the single parameter to the webupper() UDR.

This guide does not explain how to create UDRs. For a complete discussion of
creating a UDR and registering a UDR in the database, refer to Creating User-
Defined Routines and User-Defined Data Types.

Where Are UDR Tags Stored?
UDR tags are stored in the WebUdrs system table.

You create UDR tags with AppPage Builder, as described in “Creating a UDR
Tag” on page 10-8.

The WebUdrs system table does not store the UDR itself. Instead, it stores a
reference to an existing UDR in the sysprocedures table. This means that
before you create a UDR tag, you must be sure that the corresponding UDR
referenced by the UDR tag already exists.
10-4 IBM Informix Web DataBlade Module Application Developer’s Guide



Where Are UDR Tags Stored?
The following table describes the columns of the WebUdrs system table.

Column Name Data Type Description

id VARCHAR(40) Unique identifier of the routine

Specify this identifier when you invoke the routine in an
AppPage with the tag <?udrname...>.

The value in this column does not have to match the corre-
sponding value in the sysprocedures system table.

parameters LVARCHAR The parameters passed to the routine

Parameters in the parameters column are separated by an
ampersand (&).

You can assign a default value to a parameter by specifying the
parameter and its value as a name-value pair: for example,
param1=value1.

A parameter that does not need a default value is specified by the
parameter followed by an equal sign (=) with no value following:
for example, param=.

procid INTEGER Unique identifier of the routine as specified in the procid column
of the sysprocedures system table

The value in the procid column of the WebUdrs system table
must exactly match the corresponding value in the procid
column in the sysprocedures system table for the specified
routine.

procname VARCHAR(128) Unique name of the routine as specified in the procname column
of the sysprocedures system table

The value in the procname column of the WebUdrs system table
must exactly match the corresponding value in the procname
column in the sysprocedures system table for the specified
routine.

numargs INTEGER Number of arguments of the routine

The value in the numargs column of the WebUdrs system table
must exactly match the corresponding value in the numargs
column in the sysprocedures system table for the specified
routine.

 (1 of 2)
Using UDR Tags in AppPages 10-5



Specifying a UDR Tag in an AppPage
Specifying a UDR Tag in an AppPage
Specifying UDR tags in an AppPage is very similar to specifying dynamic
tags in an AppPage.

Use the following syntax to invoke a UDR tag that takes arguments:

<?udrname NAME=out COND=condition param1=value1 param2=value2...>

You must specify the parameters of the UDR tag in the same order as the
parameters of the corresponding UDR are listed in the sysprocedures table.
You can specify a maximum of 20 parameters.

If a UDR has no parameters, or you want to use the default value of the
parameters stored in the WebUdrs table, use the following syntax:

<?udrname NAME=out COND=condition>

paramtypes LVARCHAR Comma-delimited string specifying the data type of each
argument

The number of delimited data types must match the number of
arguments specified by the numargs column.

An example is html,html,integer.

description VARCHAR(250) Description of the routine

class VARCHAR(40) Class of the routine

For example, you can specify beginning, expert, or any other
class name.

If you specify the class name system, you cannot use AppPage
Builder to delete the routine from the WebUdrs system table.

Column Name Data Type Description

 (2 of 2)
10-6 IBM Informix Web DataBlade Module Application Developer’s Guide



Specifying a UDR Tag in an AppPage
The following table describes the elements of the two previous syntax
specifications.

For example, assume you have added a webupper UDR tag to the WebUdrs
system table that executes the webupper() UDR. The webupper() routine
takes one argument, of data type HTML, and returns an HTML data type in
uppercase characters. The following example demonstrates how the
webupper UDR tag can be invoked in an AppPage:

<HTML>
<?MIVAR NAME=in>Hello World<?/MIVAR>
<?webupper NAME=out text=$in>
<?MIVAR>$out<?/MIVAR>
</HTML>

Element Description

udrname Specifies the name of the UDR tag being invoked. This must
match the name in the id column of the WebUdrs table

NAME Specifies that the results of the UDR tag invocation should be
stored in the out variable

The results are stored as a string. If you do not specify an out
variable, then the UDR tag writes the results directly to the
AppPage.

COND Specifies that the UDR tag is invoked only if condition evaluates
to true (nonzero)

paramN The name of the Nth parameter of the UDR

Parameters are passed to the UDR in the same order in which
they appear in the UDR tag invocation.

valueN The value of the parameter paramN

The element valueN is either a variable containing the value to be
sent to the UDR or the value itself (with no embedded spaces).

... Indicates more name-value pairs of the form param=value where
param is the name of the parameter of the UDR and value is the
value of the parameter.
Using UDR Tags in AppPages 10-7



Creating a UDR Tag
When you invoke this AppPage in a browser, the browser displays the
following text:

HELLO WORLD

Creating a UDR Tag
Once you have created the UDR and registered it in the database, you create
a UDR tag that executes the UDR by inserting a reference to the UDR into the
WebUdrs table. You use AppPage Builder to insert the reference to the UDR
into the WebUdrs table.

Important: A routine must exist in the sysprocedures table before you use AppPage
Builder to add a UDR tag the WebUdrs table.

AppPage Builder ensures that the values of the procid, procname, param-
types, and numargs columns for the UDR in the sysprocedures table match
the corresponding columns in the WebUdrs table.

To create a UDR tag with APB

1. Invoke APB.

For detailed information on this step, refer to “Using AppPage
Builder” on page 4-1.

2. Click Add Object from Main Menu.

3. Click User Defined Routine Tag.

The Add Dynamic Routine AppPage appears, as shown in
Figure 10-1.

Select a UDR from the Routine/Signature list box.

AppPage Builder uses the sysprocedures table to create this list box.
The items in the list box are all the UDRs that have been created in the
database.
10-8 IBM Informix Web DataBlade Module Application Developer’s Guide



Creating a UDR Tag
Figure 10-1
Inserting a UDR into

the WebUdrs Table

Web Browser - [APB - Add a User Defined Routine Tag]

URL: http://domain:port/apb

Add a User Defined Routine Tag

Main Menu

User Name:
default

User Level:

Default Project:

Default Object:
AppPage

TEXTAREA Width:

TEXTAREA Height:
20

80
Versioning:

WebLint Checking:
Off

Add Object Edit Object Admin Menu

APB 2.0 Off

0

Tag ID:

Description:

ParamTypes:

Routine type:

Location:

Class:

Owner:

webupper

html

Function

$INFORMIXDIR/extend/web.4.13.UC1/web.bld(WebUpper)

informix

CONTINUE

Choose a Routine you wish to register in webudrs:

SAVE

Routine/Signature: webupper(html)

Parameters:

p1
Using UDR Tags in AppPages 10-9



Creating a UDR Tag
4. Click Continue.

APB populates the AppPage with UDR information from the syspro-
cedures table. You cannot update some of the text boxes, such as
Param Types, Routine Type, Owner, and Location.

5. If you want to change the name of the UDR tag to be different from
its corresponding UDR, enter the new name in the Routine ID text
box.

6. Enter the class in the Class text box.

For information on the class, see the table describing the WebUdrs
system table on page 10-5.

7. Enter the list of parameters to the UDR tag.

For information on specifying parameters, see the table describing
the WebUdrs system table on page 10-5.

8. Enter a description of the UDR in the Description text box.

9. Click Save.

APB inserts the reference to the UDR into the WebUdrs table.

APB manages only the contents of the WebUdrs table, not the contents of the
sysprocedures table. When you delete a reference to a UDR from the
WebUdrs table, you do not also delete the corresponding UDR in the syspro-
cedures table.

If you drop and re-create a UDR with the DROP ROUTINE, CREATE
FUNCTION, and CREATE PROCEDURE SQL statements, the new UDR in the
sysprocedures table has a new procid different from the procid of the
reference to the UDR in the WebUdrs system table. APB shows this inconsis-
tency by placing an asterisk before the UDR.

To bring the WebUdrs table up to date, use APB to delete the reference to the
UDR from the WebUdrs table and then use APB to re-insert the reference with
the new procid.
10-10 IBM Informix Web DataBlade Module Application Developer’s Guide



11
Chapter
Using the HTML Data Type
In This Chapter . . . . . . . . . . . . . . . . . . . . 11-3

The HTML Data Type . . . . . . . . . . . . . . . . . . 11-3

Functions That Use or Return the HTML Data Type . . . . . . . 11-4

Example of Using an HTML Data Type . . . . . . . . . . . . 11-5



11-2 IBM
 Informix Web DataBlade Module Application Developer’s Guide



In This Chapter
This chapter discusses the HTML data type and its uses and how to generate
XML-formatted data. It includes the following topics:

■ “The HTML Data Type,” following

■ “Functions That Use or Return the HTML Data Type” on page 11-4

■ “Example of Using an HTML Data Type” on page 11-5

The HTML Data Type
Use the HTML data type to store AppPages in an Informix database.

HTML is a multirepresentational data type. This means that the way the data
is internally stored varies, depending on the size of the data. If the HTML
object is smaller than 7500 bytes, the data type is internally stored in the row,
similar to how a VARCHAR data type is stored. If the HTML object is larger
than 7500 bytes, the database server creates a smart large object to store the
portion of the HTML object that is greater than 7500 bytes.

Because at least a portion of an HTML data type data is stored in a row, you
cannot use smart large object functions of the DataBlade API against the
HTML object. See “The Web DataBlade Module API Functions” on page 14-3
for detailed information on how to manipulate an HTML object.

Important: The implementation of this feature is transparent to the user. The Web
DataBlade module determines internally whether a particular HTML object is stored
entirely in the row or extended into a smart large object, and it only retrieves the
contents of the smart large object when necessary.
Using the HTML Data Type 11-3



Functions That Use or Return the HTML Data Type
Use the HTML data type the same way you use the VARCHAR data type. For
example, you can use the standard SQL statements (such as SELECT, INSERT,
UPDATE, DELETE, and LOAD) to view and update the HTML data type
columns.

Because there is a cast from the HTML data type to the CHARACTER data type,
you can also use the standard string functions, such as CONCAT() and
TRIM(), on the HTML data type columns.

Typically, you use AppPage Builder (APB) to create and edit AppPages. If,
however, you use a different application to create and edit AppPages by
manipulating columns of data type HTML, you must first execute the
ifx_allow_newline(‘t’) procedure. Otherwise, you cannot enter new lines in
your AppPages and store as the HTML data type.

For example, in DB-Access, execute the following syntax to enable entry of
new lines:

EXECUTE PROCEDURE ifx_allow_newline('t');

To disallow new lines, use the following syntax:

EXECUTE PROCEDURE ifx_allow_newline('f');

Functions That Use or Return the HTML Data Type
The following Web DataBlade functions take the HTML data type as an
argument:

■ WebExplode(HTML, HTML). See “WebExplode()” on page 12-4.

■ WebUnHTML(HTML). See “WebUnHTML()” on page 12-12.

■ FileToHTML(HTML). See “FileToHTML()” on page 12-17.

■ WebURLDecode(HTML). See “WebURLDecode()” on page 12-14.

■ WebURLEncode(HTML). See “WebURLEncode()” on page 12-15.

■ WebLint(HTML, integer). See “WebLint()” on page 12-8.
11-4 IBM Informix Web DataBlade Module Application Developer’s Guide



Example of Using an HTML Data Type
The following Web DataBlade functions return HTML to the caller:

■ WebExplode()

■ WebUnHTML()

■ FileToHTML()

■ WebURLDecode()

■ WebURLEncode()

Example of Using an HTML Data Type
This example shows how to use DB-Access to create a simple table that
contains a column of data type HTML for storing AppPages. The following
simple AppPage is then inserted into the table:

<HTML>
<TITLE>This is the Title.</TITLE>
<BODY>
This is the body
</BODY>
</HTML>

First, create the table:

CREATE TABLE AppPageTable
(

id VARCHAR(20),
objectHTML

);

Then execute the ifx_allow_newline() procedure:

EXECUTE PROCEDURE ifx_allow_newline('t');
Using the HTML Data Type 11-5



Example of Using an HTML Data Type
Finally, insert the AppPage:

EXECUTE PROCEDURE ifx_allow_newline('t');

INSERT INTO AppPageTable
VALUES ( 'mainpage',

'<HTML>
<TITLE> This is the title. </TITLE>
<BODY>
This is the body.
</HTML>' );
11-6 IBM Informix Web DataBlade Module Application Developer’s Guide



12
Chapter
Using DataBlade Module
Functions in AppPages
In This Chapter . . . . . . . . . . . . . . . . . . . . 12-3
WebExplode() . . . . . . . . . . . . . . . . . . . 12-4
WebLint() . . . . . . . . . . . . . . . . . . . . . 12-8
WebRelease() . . . . . . . . . . . . . . . . . . . 12-11
WebUnHTML() . . . . . . . . . . . . . . . . . . . 12-12
WebURLDecode() . . . . . . . . . . . . . . . . . . 12-14
WebURLEncode() . . . . . . . . . . . . . . . . . . 12-15
FileToHTML() . . . . . . . . . . . . . . . . . . . 12-17
WebRmtShutdown() . . . . . . . . . . . . . . . . . 12-19



12-2 IBM
 Informix Web DataBlade Module Application Developer’s Guide



In This Chapter
This chapter describes the Web DataBlade module server functions that are
provided with the Web DataBlade module. These are the functions most
commonly required by Web application designers. They are described in the
following sections:

■ “WebExplode()” on page 12-4

■ “WebLint()” on page 12-8

■ “WebRelease()” on page 12-11

■ “WebUnHTML()” on page 12-12

■ “WebURLDecode()” on page 12-14

■ “WebURLEncode()” on page 12-15

■ “FileToHTML()” on page 12-17

■ “WebRmtShutdown()” on page 12-19

You can write additional database server functions to simplify Web appli-
cation design. For detailed information on writing your own database server
functions, refer to Creating User-Defined Routines and User-Defined Data Types.
Using DataBlade Module Functions in AppPages 12-3



WebExplode()
WebExplode()
The WebExplode() function expands AppPage tags within an AppPage and
retrieves SQL results dynamically. If you use the WebExplode() function in an
AppPage to execute the same AppPage, there is no explicit limit to the
number of recursive WebExplode() function calls. The number of recursive
WebExplode() function calls is determined by your platform, operating
system, and system memory.

Tip: Because the WebExplode() function is a server function, it executes all SQL
statements within an AppPage as a single transaction block.

Syntax
The WebExplode() function has the following signature:

WebExplode(HTML, HTML) returns HTML;

The following table describes the arguments to the WebExplode() function.

Important: When you call the WebExplode() function, all variable assignments are
inherited from the parent process (usually Webdriver). Variables are global in scope.
Therefore, if you override the assignment of a variable in the second argument of your
call to the WebExplode() function or within the AppPage you execute, that variable
assignment is retained until you reassign it elsewhere.

Argument Data Type Description

HTML HTML The first HTML argument is an AppPage.

HTML HTML The second HTML argument specifies any
variables passed to the WebExplode() function by
calling application as name-value pairs (for
example, name1=value1&name2=value2...).
12-4 IBM Informix Web DataBlade Module Application Developer’s Guide



WebExplode()
Example
The following procedure illustrates the use of the WebExplode() function.

To create an AppPage table and retrieve data dynamically using the WebExplode()
function

1. Create the web_apps table to store AppPages:
create table web_apps
(
app_id      varchar(40) NOT NULL,
app_desc    varchar(64),
app_frm     html,
primary key (app_id)
);

2. Create the employees table to store employee data:
create table employees
(
first_name      varchar(40),
last_name       varchar(40),
title           varchar(40),
onsite          boolean,
department      varchar(40));

3. Load data into the employees table.

4. Execute the following procedure for each session to store new lines
as the HTML data type:

EXECUTE PROCEDURE ifx_allow_newline('t');

If you want to disallow new lines, execute the following procedure:
EXECUTE PROCEDURE ifx_allow_newline('f');
Using DataBlade Module Functions in AppPages 12-5



WebExplode()
5. Insert an AppPage into the web_apps table.

The emp_list AppPage contains an MISQL tag that retrieves data
from the employees table, as shown here:

EXECUTE PROCEDURE ifx_allow_newline('t');

insert into web_apps values
(
'emp_list',
'employee listing',
'<HTML>
<HEAD><TITLE>Employee List</TITLE></HEAD>
<BODY>
<H2>Current list of employees and job titles:</H2>
<?MISQL SQL="select first_name, last_name, title from

employees;">
<B>$1 $2</B> $3 <BR>
<?/MISQL>
</BODY>
</HTML>'
);

6. Retrieve the AppPage using the WebExplode() function.

The WebExplode() function executes the query within the MISQL tag
and formats the results according to the specifications in the MISQL
tag:

SELECT WebExplode(app_frm, '') FROM web_apps
WHERE app_id = 'emp_list';

The WebExplode() function returns the following HTML:
<HTML>
<HEAD><TITLE>Employee List</TITLE></HEAD>
<BODY>
<H2>Current list of employees and job titles:</H2>
<B>Gonzo Babbage</B> Product Manager <BR>
<B>Betty Pen</B> Senior Line Worker <BR>
<B>Craig Wallace</B> Line Worker <BR>
<B>Sarah Dun</B> Event Co-ordinator <BR>
<B>Kermit French</B> Event Co-ordinator <BR>
<B>Wilma Jones</B> Salesman <BR>
<B>Simon Smith</B> Senior Salesman <BR>
<B>Beth Hume</B> Product Manager <BR>
</BODY>
</HTML>
12-6 IBM Informix Web DataBlade Module Application Developer’s Guide



WebExplode()
The following figure shows sample Web browser output.

Figure 12-1
WebExplode()

Web Browser - [Employee List]

URL: http://domain:port/hr_app/?MIval=/emp_list.html

Current list of employees and job titles:
Wilma Jones Salesperson
Simon Smith Senior Salesperson
Craig Wallace Line Worker
Betty Pen Senior Line Worker
Beth Hume Product Manager
Gonzo Babbage Product Manager
Sarah Dun Event Coordinator
Kermit French Event Coordinator
Using DataBlade Module Functions in AppPages 12-7



WebLint()
WebLint()
The WebLint function scans an AppPage and reports syntax errors within
AppPage tags.

Important: WebLint() does not evaluate dynamic tags.

Syntax
The WebLint() function has the following signature:

WebLint(HTML, INTEGER) returns LVARCHAR;

The following table describes the arguments to the WebLint() function.

Levels of INTEGER argument checking are described in the following table.

Argument Data Type Description

HTML HTML The HTML argument is the name of
an AppPage.

INTEGER INTEGER The INTEGER argument represents
the level of checking to be
performed.

Level Description

0 Returns PASS or FAIL

Checking stops as soon as an error is encountered.

1 Returns PASS or error text describing the first error encountered

2 Returns PASS or error text describing all errors encountered

3 Same error processing as level 2, with additional checks on
variables

Issues a warning if a value is not assigned to a variable within the
AppPage.
12-8 IBM Informix Web DataBlade Module Application Developer’s Guide



WebLint()
Example
The following SELECT statement executes the WebLint() function against the
/welcome.html AppPage in the wbPages table:

select WebLint(object, 1) from wbPages
where ID = 'welcome' and path = '/' and extension='html';

Suppose the /welcome.html AppPage contains the following HTML content,
with a missing slash ( / ) in the end MIVAR tag:

<TITLE>
<?MIVAR>$title<?MIVAR>
</TITLE>

The following error message is displayed by WebLint() when the level of
checking is greater than 0.

Tip: You can attempt to execute an AppPage even if WebLint() reports errors in the
AppPage.

You can execute the WebLint() function on the file that contains an AppPage
directly from the operating system prompt. Execute the weblint command
from the INFORMIXDIR/extend/web.version/utils directory, or add the
INFORMIXDIR/extend/web.version/utils directory to your path. Then enter
the following command:

weblint [level] < AppPage_file

Figure 12-2
WebLint

Web Browser - [APB - Add Application Page]

URL: http://domain:port/hr_app

(1) error: Tag <MIVAR> begins before
previous tag <MIVAR> ends
<?MIVAR>$title<?MIVAR>
----------------------^

VIEW EDIT
Using DataBlade Module Functions in AppPages 12-9



WebLint()
Alternately, you can enter this command:

cat AppPage_file | weblint [level]
12-10 IBM Informix Web DataBlade Module Application Developer’s Guide



WebRelease()
WebRelease()
The WebRelease() function returns the version of the Web DataBlade
module.

Syntax
WebRelease() returns LVARCHAR;

Arguments
None.

Example
The following /webrelease.html AppPage calls the WebRelease() function to
display the version number and date of the Web DataBlade module:

<HTML>
<HEAD><TITLE>WebRelease Example</TITLE></HEAD>
<BODY>
<B>The current version of the Web DataBlade module is:</B>
<?MISQL SQL="execute function WebRelease();">$1<?/MISQL>
</BODY>
</HTML>

The following figure shows sample Web browser output.

Figure 12-3
WebRelease

Web Browser - [WebRelease Example]

URL: http:/domain:port/hr_app/?MIval=/webrelease.html

The current version of the Web DataBlade module is: Version web.4.13.UC1 --
31-Mar-1999
Using DataBlade Module Functions in AppPages 12-11



WebUnHTML()
WebUnHTML()
The WebUnHTML() function replaces certain characters with their entity
reference. WebUnHTML() scans the AppPage and makes the following
replacements.

These substitutions allow the HTML tag information to be displayed by a Web
browser. If this action is not taken, the browser uses these characters in its
attempt to render the HTML tags as formatting information.

Syntax
WebUnHTML(HTML) returns HTML;

Arguments
The argument is HTML.

Character Entity Reference

< &lt;

> &gt;

" &quot;

& &amp;
12-12 IBM Informix Web DataBlade Module Application Developer’s Guide



WebUnHTML()
Example
The following /unhtml.html AppPage uses the WebUnHTML() function to
display HTML tags within the AppPage:

<HTML>
<HEAD><TITLE>WebUnHTML Example</TITLE></HEAD>
<BODY>
To display the horizontal rule HTML tag: <BR>
<?MISQL SQL="execute function WebUnHTML('<HR>');">$1<?/MISQL>
<BR>
you can use the <B>WebUnHTML</B> function.  <BR> <BR>
Otherwise, the tag will be interpreted, and a horizontal rule:
<HR>
will be displayed.
</BODY>
</HTML>

The following figure shows sample Web browser output.

Figure 12-4
WebUnHTML()

Web Browser - [WebUnHTML Example]

URL: http://domain:port/hr_app/?MIval=/unhtml.html

To display the horizontal rule HTML tag:
<HR>
you can use the WebUnHTML function.

Otherwise, the tag will be interpreted, and a horizontal rule:

will be displayed.
Using DataBlade Module Functions in AppPages 12-13



WebURLDecode()
WebURLDecode()
The WebURLDecode() function replaces hexadecimal values with nonalpha-
numeric ASCII characters and replaces plus signs ( + ) with spaces.

Syntax
WebURLDecode(HTML) returns HTML;

Arguments
The argument is HTML.

Example
Since the WebExplode() function decodes information passed in URLs, you
do not normally need to decode the URL yourself.
12-14 IBM Informix Web DataBlade Module Application Developer’s Guide



WebURLEncode()
WebURLEncode()
The WebURLEncode() function replaces nonalphabetic ASCII characters
with hexadecimal values and replaces spaces with plus signs ( + ).

Syntax
WebURLEncode(HTML) returns HTML;

Arguments
The argument is HTML.

Example
The following encode AppPage uses the WebURLEncode() function to
encode job titles, which may contain spaces, for use in URLs:

<HTML>
<HEAD> <TITLE>WebURLEncode Example</TITLE> </HEAD>
<BODY>
<H2>Select a job title:</H2>
<?MISQL SQL="select distinct title, WebURLEncode(title)

from employees order by title;">
<A HREF=$WEB_HOME?MIval=/encode.html&title=$2>$1</A><BR>
<?/MISQL>
<?MIBLOCK COND=$(XST,$title)>
<?MISQL SQL="select distinct department from employees

where title='$title';">
<BR>The $title position is in the <B>$1</B> department.<BR>
<?/MISQL>
<?/MIBLOCK>
</BODY>
</HTML>

If you do not encode text within links and the text contains spaces, the links
do not function properly.
Using DataBlade Module Functions in AppPages 12-15



WebURLEncode()
The following figure shows sample Web browser output.

Figure 12-5
WebURLEncode

Web Browser - [WebURLEncode Example]

URL: http://domain:port/hr_app/?MIval=/encode&title.html

Select a job title:
Event Coordinator
Line Worker
Product Manager
Salesman
Senior Line Worker
Senior Salesman

The Event Coordinator position is in the marketing department.
12-16 IBM Informix Web DataBlade Module Application Developer’s Guide



FileToHTML()
FileToHTML()
The FileToHTML() function converts a file on the operating system file
system into an HTML data type.

You typically use the FileToHTML() function in an INSERT or UPDATE
statement to insert the contents of a file into an HTML column in the database
table that contains AppPages.

Syntax
The FileToHTML() function has the following two signatures:

FileToHTML (filename) returns HTML;
FileToHTML (filename, locale) returns HTML;

The following table describes the arguments to the FileToHTML() function.

Argument Data Type Description

filename LVARCHAR Specifies the full pathname of the file on the
operating system file system that you want to
convert to HTML and insert into a table.

The database server always looks for the file on
the client computer.

locale LVARCHAR Specifies the client locale of the client
application.

Client locale refers to the language, territory,
and code set that the client application uses to
perform read and write operations on the
client computer.

If you are using the default client locale (U.S.
English), then you do not need to specify a
client locale and can use the first version of the
FileToHTML() function, which takes just one
argument.
Using DataBlade Module Functions in AppPages 12-17



FileToHTML()
Example
Assume the table in which you store your AppPages is called webAppPages
and has the following simple schema:

CREATE TABLE webAppPages
(

id VARCHAR(10),
apppageHTML

);

The following AppPage shows how to use the FileToHTML() function in an
INSERT statement to insert the contents of the file /tmp/myfile.txt into the
HTML column of the webAppPages table:

<HTML>
<HEAD><TITLE>FileToHTML Example</TITLE></HEAD>
<BODY>
<?MISQL SQL="INSERT INTO webAppPages VALUES
            ('benefits' ,
FileToHTML('/tmp/myfile.txt'));"><?/MISQL>
</BODY>
</HTML>
12-18 IBM Informix Web DataBlade Module Application Developer’s Guide



WebRmtShutdown()
WebRmtShutdown()
The WebRmtShutdown() function shuts down the currently running Perl
program that was previously started by the MIEXEC tag.

Syntax
WebRmtShutdown()

Arguments
None.

Returns
WebRmtShutdown returns 0 if the currently running Perl program has been
successfully shut down and 1 if not.

Example
The following /webrmt.html AppPage calls the WebRmtShutdown()
function:

<HTML>
<HEAD><TITLE>WebRmtShutdown Example</TITLE></HEAD>
<BODY>
<B>To shut down the currently running Perl program,
execute the WebRmtShutdown function.</B>
<?MISQL SQL="EXECUTE FUNCTION WebRmtShutdown();"><?/MISQL>
</BODY>
</HTML>
Using DataBlade Module Functions in AppPages 12-19





13
Chapter
Using Other Webdriver Features
In This Chapter . . . . . . . . . . . . . . . . . . . . 13-3

Adding HTTP Headers to AppPages. . . . . . . . . . . . . 13-3
Retrieving Non-HTML Pages . . . . . . . . . . . . . . 13-3
Using Cookies . . . . . . . . . . . . . . . . . . . 13-4

Setting Cookies . . . . . . . . . . . . . . . . . 13-4
accept_cookie Webdriver Variable . . . . . . . . . . . 13-5
Converting Cookies into Web DataBlade Module Variables . . 13-5

Uploading Client Files. . . . . . . . . . . . . . . . . . 13-7
Setting the Directory . . . . . . . . . . . . . . . . . 13-8

Submitting the Form . . . . . . . . . . . . . . . 13-8
Example . . . . . . . . . . . . . . . . . . . . . 13-9

Passing Image Map Coordinates . . . . . . . . . . . . . . 13-12
IMG Tag . . . . . . . . . . . . . . . . . . . . . 13-12
FORM Tag . . . . . . . . . . . . . . . . . . . . 13-14

Two-Pass Query Processing . . . . . . . . . . . . . . . . 13-15



13-2 IBM
 Informix Web DataBlade Module Application Developer’s Guide



In This Chapter
This chapter explains Webdriver features that enable you to add HTTP
headers to AppPages to retrieve non-HTML pages and use cookies, to upload
client files for Web browsers that support the ENCTYPE attribute of the FORM
tag, and to pass image map coordinates. It includes the following topics:

■ “Adding HTTP Headers to AppPages,” following

■ “Uploading Client Files” on page 13-7

■ “Passing Image Map Coordinates” on page 13-12

Adding HTTP Headers to AppPages
Webdriver enables you to use HTTP headers in your AppPages to retrieve
non-HTML pages and to use cookies.

Retrieving Non-HTML Pages
You can retrieve non-HTML pages by changing the content type of an
AppPage and adding an HTTP header to the AppPage.

To change the content type of an AppPage, add an HTTP header to the
AppPage to replace the default text/html content type header. Use the
following syntax within a variable expression to set the content type:

$(HTTPHEADER,content-type,mimetype/subtype)

Webdriver adds a content-length header to the page, because only
Webdriver can determine the size of the page.
Using Other Webdriver Features 13-3



Using Cookies
The following example is a sample plain-text page, stored in your Web appli-
cation table:

This is a plain text page.
<?MIVAR>$(HTTPHEADER,content-type,text/plain)<?/MIVAR>
It is displayed without rendering any HTML tags,
so that characters such as "<HR>" appear normally,
and are not treated as markup tags.

The resulting HTTP response to the Web browser is as follows:

Content-length: 222
Content-type: text/plain

This is a plain text page.

It is displayed without rendering any HTML tags,
so that characters such as "<HR>" appear normally,
and are not treated as markup tags.

Tip: The HTTPHEADER variable expression can be placed anywhere within the
AppPage.

Using Cookies
Cookies are a mechanism used by Webserver-side connections (such as
Webdriver) to store and retrieve information on the client side of the
connection (such as your Web browser). You can set cookies in your
AppPages and then convert cookies into Web DataBlade module variables.

Setting Cookies

You can set cookies on any AppPage by adding an HTTP header to the
AppPage, as follows:

$(HTTPHEADER,set-cookie,name=value)

You can set additional attributes in the second parameter to the
HTTPHEADER variable expression, as follows:

$(HTTPHEADER,set-cookie,name=value; expires=DATE; path=PATH;
domain=DOMAIN_NAME)

For more information on cookies, see http://home.netscape.com/newsref/
std/cookie_spec.html.
13-4 IBM Informix Web DataBlade Module Application Developer’s Guide



Using Cookies
accept_cookie Webdriver Variable

Use the accept_cookie Webdriver variable if you use AppPage caching and
other applications in the same domain that are not used by your Web
DataBlade module application.

Converting Cookies into Web DataBlade Module Variables

When a cookie is set for a Web browser, the cookie is passed back to the Web
server for each request made by that same Web browser. The Web DataBlade
module automatically takes any cookies it receives and converts them into
Web DataBlade module variables. The Web server environment variable
HTTP_COOKIE is detected by Webdriver and parsed into variables so that the
HTTP_COOKIE variable is never seen in an AppPage.

Variable Mandatory? Description

accept_cookie No Use the Web DataBlade Module Administration
Tool to set the accept_cookie Webdriver variable to
the name of cookies that your Web DataBlade
module application uses. All other cookies are
ignored by Webdriver. Multiple cookie names are
separated by commas.

If you do not use this variable, Webdriver assumes
all cookies in the browser are part of the Web
application.
Using Other Webdriver Features 13-5



Using Cookies
The following cookie AppPage determines whether or not the Web browser
has retrieved this AppPage previously. The first time the Web browser
retrieves the cookie AppPage, the AppPage sends a cookie to the Web
browser, which the Web browser keeps even if it retrieves other HTML pages
before retrieving this AppPage again. On any subsequent retrieval of this
AppPage, the browser displays the Welcome Back! message:

<HTML>
<HEAD><TITLE>Has the user been here before?</TITLE></HEAD>
<BODY>
<H2>Has the user been here before?</H2><HR>
<!--- See if the flag variable has been set --->
<?MIBLOCK COND=$(XST,$flag)>

<!--- Flag variable has been set --->
<B>Welcome Back! You have been here before!</B>

<?/MIBLOCK>
<?MIBLOCK COND=$(NXST,$flag)>

<!--- Flag variable has NOT been set --->
<!--- Set a cookie                   --->
<?MIVAR>$(HTTPHEADER,set-cookie,flag=yes)<?/MIVAR>
<B>This is the first time you have been to this page!</B>

<?/MIBLOCK>
</BODY>
</HTML>

The following figure shows sample Web browser output the first time the
cookie AppPage is retrieved.

Figure 13-1
Cookie—First

Request

Web Browser - [Has the user been here before?]

URL: http:/domain:port/hr_app/?MIval=/cookie.html

Has the user been here before?

This is the first time you have been to this page!
13-6 IBM Informix Web DataBlade Module Application Developer’s Guide



Uploading Client Files
The following figure shows sample Web browser output on any subsequent
retrieval of the cookie AppPage.

Uploading Client Files
If you use a Web browser that supports client file upload, you can use
Webdriver to upload files from your client computer.

The following example HTML form retrieves an image file into the
input_image1 variable. The HTML form is processed by the
/process_file.html AppPage:

<FORM ENCTYPE=multipart/form-data METHOD=POST
ACTION=<?MIVAR>$WEB_HOME<?/MIVAR>>
<INPUT TYPE=TEXT NAME=file_name>
<INPUT TYPE=FILE NAME=input_image1>
<INPUT TYPE=SUBMIT VALUE="Send File">
<INPUT TYPE=HIDDEN NAME=MIval VALUE=/process_file.html>
</FORM>

Figure 13-2
Cookie—

Subsequent
Request

Web Browser - [Has the user been here before?]

URL: http://domain:port/hr_app/?MIval=/cookie.html

Has the user been here before?

Welcome Back! You have been here before!
Using Other Webdriver Features 13-7



Setting the Directory
Setting the Directory
Use the Web DataBlade Module Administration Tool to set the following
Webdriver variable to upload client files.

Set upload_directory to the directory on the Web server computer where the
uploaded files are to be placed. In the preceding example, if
upload_directory is set to /local/Web/uploads, Webdriver creates the file
/local/Web/uploads/input_image1.PID (where PID is the process ID for the
Webdriver process) when the form is submitted. If upload_directory is not
set, the uploaded files are placed in the /tmp directory by default. After
Webdriver finishes processing the AppPage, the uploaded file is removed
from the upload_directory directory.

Submitting the Form

When you submit the form, you can access the following variables in the
AppPage that processes the form.

Variable Mandatory? Content

upload_directory No Directory on the Web server
machine in which uploaded files
are placed

Default is /tmp.

Variable Name Description

input_file Full pathname of the uploaded file on the Web
server machine

input_file_name Full pathname of the client file

input_file_type MIME type of the uploaded file (may be unknown)
13-8 IBM Informix Web DataBlade Module Application Developer’s Guide



Example
In the preceding example, if the client file is named D:\images\
input_image.gif, the following variables are accessible in the process_file
AppPage.

Use the FileToBlob() function to create a large object from the uploaded
image. For more information about large objects, see IBM Informix Guide to
SQL: Reference.

If Webdriver is unable to write the file to the directory specified by
upload_directory, it sets the value of the file variable to MI_ERROR.

Example
The following example illustrates the use of client file upload in which
uploaded files are stored in the uploads table with the schema:

CREATE TABLE uploads
(
name            varchar(40),
object_type     varchar(40),
object          blob,
local_file      varchar(100))
put object in (sbspace1);

Variable Name Assignment

input_image1 /local/Web/uploads/input_image1.PID

input_image1_name D:\images\input_image.gif

input_image1_type image/gif
Using Other Webdriver Features 13-9



Example
The following example shows the upload_file AppPage:

<HTML>
<HEAD><TITLE>File Upload Form</TITLE></HEAD>
<BODY>
<HR>
<FORM ENCTYPE=multipart/form-data METHOD=POST
ACTION=<?MIVAR>$WEB_HOME<?/MIVAR>>
<INPUT TYPE=HIDDEN NAME=MIval VALUE=/upload_file.html>
<INPUT TYPE=HIDDEN NAME=action VALUE=on>
<TABLE>
<TR><TD>Name: </TD><TD><INPUT NAME=name SIZE=40 TYPE=TEXT>
</TD></TR>
<TR><TD>File: </TD><TD><INPUT NAME=upload SIZE=40 TYPE=FILE>
</TD></TR>
</TABLE>
<HR>
<INPUT TYPE=SUBMIT VALUE="Insert New Object">
</FORM>
<?MIBLOCK COND=$(XST,$action)>

<HR>
<?MIVAR NAME=sql_statement>
INSERT into uploads VALUES
('$name', '$upload_type',

FileToBlob('$upload','client','uploads','object'),
'$upload_name');

<?/MIVAR>
<?MISQL SQL="$sql_statement">
Inserted $MI_ROWCOUNT new objects.<P><?/MISQL>
<?MIVAR>The SQL executed was <I>$sql_statement</I>.<P><?/MIVAR>

<?/MIBLOCK>
<B> Here are all of the uploaded objects:</B>
<TABLE>
<?MISQL SQL="select name, object, object_type, local_file from uploads;">
<TR><TD><A HREF="$WEB_HOME?LO=$2&type=$3">$1</A>
</TD><TD>$4</TD></TR>
<?/MISQL>
</TABLE>
</BODY>
</HTML>
13-10 IBM Informix Web DataBlade Module Application Developer’s Guide



Example
The following example shows sample Web browser output.

Figure 13-3
File Upload Form

Web Browser - [File Upload Form]

URL: http://domain:port/hr_app

Insert New Object

graylogo

C:\LOGOS\GRAYLOGO.gif

Name:

File:

Inserted 1 new objects.

The SQL executed was INSERT into uploads VALUES (‘graylogo’, ‘image/gif’,
FileToBlob('/tmp/upload.008987','client','uploads','object'), 'C:\LOGOS\GRAYLOGO.gif');

Here are all of the uploaded objects:

bookmark C:\NETSCAPE\Program\Bookmark.htm
graylogo C:\LOGOS\GRAYLOGO.gif

Browse...
Using Other Webdriver Features 13-11



Passing Image Map Coordinates
Passing Image Map Coordinates
Set the MImap variable to enable image map coordinates to be passed to
AppPages.

Important: MImap must be set in the URL that invokes the AppPage. MImap must
not be set as a Webdriver variable in a Webdriver configuration.

There are two ways to pass image map coordinates within a Web DataBlade
module application. You can pass coordinates with Webdriver by using:

■ The ISMAP attribute of the IMG tag

■ An HTML form

These methods are described in the following sections.

IMG Tag
To pass x- and y-coordinates through Webdriver, set the MImap variable to
on in the URL that calls the AppPage to which the coordinates are passed.
This prevents the coordinates from being overridden in the URL when you
use the ISMAP attribute of the IMG tag to create an image map.

When the MImap variable is set to on in PATH_INFO (the portion of a URL
consisting of name-value pairs following the pathname and preceding the ?),
Webdriver parses QUERY_STRING (the portion of a URL following the ?) into
two variables, called x_value and y_value, which hold the values from the
image map. An example image map URL is as follows:

http://myhost:port/hr-map/webdriver/MImap=on&MIval=image_example?100,13

Variable Mandatory? Content

MImap Yes Set to on or off. When on, the URL
is treated as an image map, and the
values are passed as x- and y-
coordinates. Default is off.
13-12 IBM Informix Web DataBlade Module Application Developer’s Guide



IMG Tag
You can then access x_value and y_value (in this example, 100 and 13, respec-
tively) in the same way that you access other variables. The following
/image_ismap.html AppPage illustrates the use of image maps with the IMG
tag:

<HTML>
<HEAD><TITLE>Standard Image Map Example</TITLE></HEAD>
<BODY>
<H2>Click on the image:</H2>
<TABLE BORDER>
<TR><TD VALIGN="top">
<!--- Display the image as an image map --->
<A HREF= "<?MIVAR>$WEB_HOME<?/MIVAR>MImap=on&MIval=/image_ismap.html">
<IMG BORDER=0

SRC="<?MIVAR>$WEB_HOME<?/MIVAR>?MIval=/sun.gif" ISMAP></A>
</TD></TR></TABLE><HR>
<!--- Show resulting coordinates from the image --->
<!--- Output values x_value and y_value --->
<!--- if the standard image is clicked. --->
<?MIBLOCK COND=$(XST,$x_value)>

Output from Standard Image Map:<BR>
<?MIVAR>x_value = $x_value<?/MIVAR><BR>
<?MIVAR>y_value = $y_value<?/MIVAR>

<?/MIBLOCK>
</BODY>
</HTML>

The following figure shows sample Web browser output.

Figure 13-4
Standard Image

Map

Web Browser - [Standard Image Map Example]

URL: http://domain:port/hr_app/webdriver/MImap=on&MIval=image_ismap?31,31

Click on the image:

Output from Standard Image Map:
x_value=31
y_value=31
Using Other Webdriver Features 13-13



FORM Tag
FORM Tag
The following /image_form.html AppPage illustrates the use of image maps
with an HTML form:

<HTML>
<HEAD><TITLE>Form Image Map Example</TITLE></HEAD>
<BODY>
<H2>Click on the image:</H2>
<TABLE BORDER>
<TR><TD VALIGN="top">
<!-- Display the image as an input for a form --->
<FORM METHOD="POST" ACTION="<?MIVAR>$WEB_HOME<?/MIVAR>">
<INPUT TYPE=HIDDEN NAME=MIval VALUE="/image_form.html">
<INPUT NAME="imagemap" TYPE="image" BORDER=0

SRC="<?MIVAR>$WEB_HOME<?/MIVAR>?MIval=/sun.gif">
</FORM>
</TD></TR>
</TABLE>
<!--- Output imagemap.x and imagemap.y if a form  --->
<HR>
<?MIBLOCK COND=$(XST,$imagemap.x)>

Output from Form Variables:<BR>
<?MIVAR>imagemap.x = $imagemap.x<?/MIVAR><BR>
<?MIVAR>imagemap.y = $imagemap.y<?/MIVAR>

<?/MIBLOCK>
</BODY>
</HTML>

The following figure shows sample Web browser output.

Figure 13-5
Form Image Map

Web Browser - [Form Image Map Example]

URL: http://domain:port/hr_app/?MIval=/image_form.html

Output from Form Variables:
imagemap.x=32
imagemap.y=24

Click on the image:
13-14 IBM Informix Web DataBlade Module Application Developer’s Guide



Two-Pass Query Processing
Two-Pass Query Processing
Webdriver generates an SQL statement to retrieve an AppPage by building a
call to the WebExplode() function, as described in IBM Informix Web DataBlade
Module Administrator’s Guide. The SQL statement looks something like the
following example:

SELECT WebExplode (object, 'name=value&name2=value2')
FROM wbPages WHERE ID='mypage' and path='/' and extension='html';

The preceding query successfully retrieves the requested AppPage in all but
the following two cases:

■ The AppPage contains an MISQL tag that attempts to update the
table in which the AppPage is stored. In the preceding example, this
table is wbPages.

In this case, the following error is returned:
Exception from Informix: XIX000:-7435:This statement references a
table that is used in the parent queries.

■ The AppPage contains an MISQL tag that issues a data-definition
language (DDL) statement. And example of a DDL statement is the
DROP TABLE statement. You cannot issue a DDL statement inside a
user-defined routine (in this case, the WebExplode() function)
because the user-defined routine is executed as part of a data-manip-
ulation language (DML) statement.

In this case, the following error is generated:
Exception from Informix: XIX000:-7502:Illegal SQL statement in
user-defined routine: 'drop table mytable;'

The workaround for the preceding situations is to inform Webdriver, via the
MIqry2pass Webdriver variable, that it must use a two-pass method to
execute the query. This means the query is broken up into two parts, executed
one after the other.

Variable Mandatory? Description

MIqry2pass No Specifies a query to be executed in two parts

MIqry2pass selects an object and then executes a
function. Used only in a URL. Default is set to OFF.
Using Other Webdriver Features 13-15



Two-Pass Query Processing
First, Webdriver retrieves the AppPage with the following SQL statement:

select object from wbpages where ID='mypage'and path='/' and
extension='html';

Then Webdriver executes the WebExplode() function on the retrieved
AppPage that has been cached in Webdriver’s memory:

execute function WebExplode('<?MISQL>...','name=value&name2=value2');

To enable two-pass query processing, set the MIqry2pass Webdriver variable
to ON. By default, MIqry2pass is set to OFF.

You cannot set the MIqry2pass Webdriver variable with the Web DataBlade
Module Administration Tool, because this variable is never stored as part of
a Webdriver configuration. You must set the MIqry2pass Webdriver variable
as part of the URL used to retrieve the AppPage.

The following URL invokes the /special_page.html AppPage and sets the
MIqry2pass Webdriver variable to ON so that the AppPage is retrieved using
the two-pass method:

/hr_app/?MIval=/special_page.html&MIqry2pass=on

AppPage Builder (APB) uses this technique to allow you to insert rows into
the same table from which it selects AppPages.

Important: Since the two-pass method has a performance penalty, set the
MIqry2pass Webdriver variable to ON only when necessary.
13-16 IBM Informix Web DataBlade Module Application Developer’s Guide



14
Chapter
Using DataBlade Module API
Functions in AppPages
In This Chapter . . . . . . . . . . . . . . . . . . . . 14-3

The Web DataBlade Module API Functions . . . . . . . . . . 14-3
WebHtmlToBuf() . . . . . . . . . . . . . . . . . . 14-5
WebBufToHtml() . . . . . . . . . . . . . . . . . . 14-8



14-2 IBM
 Informix Web DataBlade Module Application Developer’s Guide



In This Chapter
This chapter describes the IBM Informix Web DataBlade module API routines.
It includes the following chapters:

■ “The Web DataBlade Module API Functions,” following

■ “WebHtmlToBuf()” on page 14-5

■ “WebBufToHtml()” on page 14-8

The Web DataBlade Module API Functions
As described in other chapters of this guide, you store AppPages in columns
of data type HTML, a Web-DataBlade-module-specific data type. The HTML
data type is a multirepresentational data type, which means that the way the
data is internally stored varies, depending on the size of the data. Sometimes
the entire AppPage is stored in the table row, other times part of the AppPage
is stored in a smart large object. The implementation of this feature is trans-
parent to the user; it is the Web DataBlade module that determines how the
AppPage is stored.

Because at least a portion of an HTML data type data is always stored in a row,
you cannot use smart large object functions of the DataBlade API, such as
mi_lo_open() and mi_lo_read(), to access the HTML object. For this reason,
the Web DataBlade module provides the following two API functions so you
can manipulate the contents of an HTML data type in your C programs:
WebHtmlToBuf() and WebBufToHtml().
Using DataBlade Module API Functions in AppPages 14-3



The Web DataBlade Module API Functions
Use the WebHtmlToBuf() function to copy the contents of an HTML object
(an AppPage) into an object of type MI_LVARCHAR in your C program. You
can then use standard DataBlade API functions to manipulate the
MI_LVARCHAR object. Then use the WebBufToHtml() function to copy the
contents of the MI_LVARCHAR object back into an HTML object so you can
update or insert the AppPage back into the table that stores AppPages.

The following sections describe in more detail how to use the two Web
DataBlade module API functions.

For more information on the HTML data type, refer to Chapter 11, “Using the
HTML Data Type.”
14-4 IBM Informix Web DataBlade Module Application Developer’s Guide



WebHtmlToBuf()
WebHtmlToBuf()
The WebHtmlToBuf() API function copies the contents of an HTML object
into an MI_LVARCHAR object.

Syntax
MI_LVARCHAR *
WebHtmlToBuf (HTML *html_object)

Usage
In your C program, do not call the WebHtmlToBuf() API function directly;
rather, use the mi_routine_get(), mi_routine_exec(), and mi_routine_end()
DataBlade API functions instead.

First use the mi_routine_get() DataBlade API function to look up the
WebHtmlToBuf() function by its signature and to fetch its function
descriptor.

Then use the mi_routine_exec() DataBlade API routine to execute the
WebHtmlToBuf() function. Pass the pointer to the HTML object to the
mi_routine_exec() function, which returns contents of the HTML object as a
MI_DATUM object. In your C program, cast this MI_DATUM object to an
MI_LVARCHAR object.

Remember to use the mi_routine_end() DataBlade API function to release the
resources associated with the mi_routine_get() function.

See the sample C program at the end of this section for an example of using
these API functions.

For detailed information on the functions and data types of the DataBlade
API, refer to the DataBlade API Programmer’s Manual.

html_object A pointer to the HTML object to be converted into an
MI_LVARCHAR data type.
Using DataBlade Module API Functions in AppPages 14-5



WebHtmlToBuf()
Return Values
A pointer to the MI_LVARCHAR object that contains the contents of the
converted HTML object.

Example
The following example C program shows how to use the WebHtmlToBuf()
API routine to convert the contents of the HTML object html into an
MI_LVARCHAR object.

The example uses the DataBlade API routines mi_routine_get(),
mi_routine_exec(), and mi_routine_end():

#include <stdio.h>
#include <ctype.h>
#include <string.h>
#include <stdlib.h>
#include <mi.h>
#include <alloca.h>
#include <assert.h>

/*****************************************************************
 *htmlToLVarchar( conn, html)
 *    Takes in an HTML data type and converts it to an LVARCHAR.
 *
 *  Input :
 *    MI_CONNECTION : an open connection
 *    html : the HTML data to be converted into an LVARCHAR
 *  Returns either:
 *    NULL - error during conversion
 *    mi_lvarchar : the HTML data converted into an LVARCHAR
 * Notes :
 *   This example uses the WebHtmlToBuf() function that is registered
 *   with the database server at the same time that the Web DataBlade
 *   Module is registered.
 */

 mi_lvarchar *
htmlToLVarchar(MI_CONNECTION *conn, mi_lvarchar *html) {
    MI_FUNC_DESC *routineFunctDesc;
    MI_DATUM *data;
    mi_integer error;

     routineFunctDesc = mi_routine_get(conn, 0, "function
WebHtmlToBuf(html)");

    if (routineFunctDesc == NULL)
{
printf("mi_routine_get() returned NULL\n");
return(NULL);
}

    data = mi_routine_exec(conn, routineFunctDesc, &error, html);
    if (error == MI_ERROR)

{

14-6 IBM Informix Web DataBlade Module Application Developer’s Guide



WebHtmlToBuf()
printf("execution encountered an error\n");
return(NULL);
}

    mi_routine_end(conn, routineFunctDesc); /* release resources */
    return((mi_lvarchar *)data);
}

Using DataBlade Module API Functions in AppPages 14-7



WebBufToHtml()
WebBufToHtml()
The WebBufToHtml() API function copies the contents of an MI_LVARCHAR
object into an HTML object.

Syntax
HTML *
WebBufToHtml (MI_LVARCHAR *lvarchar_object)

Usage
In your C program, do not call the WebBufToHtml() API function directly;
rather, use the mi_routine_get(), mi_routine_exec(), and mi_routine_end()
DataBlade API functions instead.

First use the mi_routine_get() DataBlade API function to look up the
WebBufToHtml() function by its signature and to fetch its function
descriptor.

Then use the mi_routine_exec() DataBlade API routine to execute the
WebBufToHtml() function. Pass the pointer to the MI_LVARCHAR object to
the mi_routine_exec() function, which returns the data converted into an
HTML object.

Remember to use the mi_routine_end() DataBlade API function to release the
resources associated with the mi_routine_get() function.

See the sample C program at the end of this section for an example of using
these API functions.

For detailed information on the functions and data types of the DataBlade
API, refer to the DataBlade API Programmer’s Manual.

lvarchar_object A pointer to the MI_LVARCHAR object to be converted into
an HTML data type.
14-8 IBM Informix Web DataBlade Module Application Developer’s Guide



WebBufToHtml()
Return Values
A pointer to the HTML object that contains the contents of the converted
MI_LVARCHAR object.

Example
The following example C program shows how to use the WebBufToHtml()
API routine to convert the contents of the MI_LVARCHAR object buf into an
HTML object.

The example uses the DataBlade API routines mi_routine_get(),
mi_routine_exec(), and mi_routine_end():

#include <stdio.h>
#include <ctype.h>
#include <string.h>
#include <stdlib.h>
#include <mi.h>
#include <alloca.h>
#include <assert.h>

/*****************************************************************
 *lVarcharToHtm(conn, buf)
 *    Takes in an LVARCHAR and converts it to an HTML data type.
 *
 *  Input:
 *    MI_CONNECTION : an open connection
 *    mi_lvarchar : a buffer to be converted into an HTML data type
 *  Returns either:
 *    NULL - error in conversion
 *    mi_lvarchar : the input buffer converted into an HTML data type
 * Notes :
 *   This example uses the WebBufToHtml() function that is registered
 *   with the database server at the same time that the Web DataBlade
 *   Module is registered.
 */
mi_lvarchar *
lVarcharToHtml(MI_CONNECTION *conn, mi_lvarchar *buf) {
    MI_FUNC_DESC *routineFunctDesc;
    MI_DATUM *data;
    mi_integer error;

     routineFunctDesc = mi_routine_get(conn, 0, "function
WebBufToHtml(lvarchar)");

    if (routineFunctDesc == NULL)
{
return(NULL);
}

    data = mi_routine_exec(conn, routineFunctDesc, &error, buf);
    if (error == MI_ERROR)

{
return(NULL);
Using DataBlade Module API Functions in AppPages 14-9



WebBufToHtml()
}
    mi_routine_end(conn, routineFunctDesc); /* release resources */
    return((mi_lvarchar *)data);
}

14-10 IBM Informix Web DataBlade Module Application Developer’s Guide



A
Appendix
Debugging Web
DataBlade Module
Applications

The Web DataBlade module is one of many components of your
Web-enabled applications. Other components are your Web
browser, your Web server, and the Informix database. You can
use a variety of techniques to resolve problems with creation,
configuration, or execution of Web applications:

■ To debug Web applications as you are developing them:

❑ Use RAW mode to get more information about your
Webdriver environment.

❑ Use the WebLint() function to find syntax errors
within AppPage tags.

■ To obtain more information when an error occurs:

❑ Enable Web DataBlade module tracing.

❑ Check the appropriate log files.

■ To determine which component of your installation is
failing, retrieve your AppPage directly by running CGI
Webdriver interactively, bypassing your Web browser
and Web server.

The following sections describe these techniques.



Using RAW Mode with Webdriver
Using RAW Mode with Webdriver
Webdriver allows you to enable RAW mode to help develop and debug Web
applications. When you enable RAW mode, you can:

■ Display the AppPage as stored in the database without expanding
the AppPage tags.

■ Display variables and identify where variable assignments are made.

To enable RAW mode, set the following Webdriver configuration file variable
using the Web DataBlade Module Administration Tool.

You can retrieve the unexpanded AppPage by specifying
RAW=value_of_raw_password in a URL. Webdriver returns the unexpanded
AppPage as stored in the database, including the AppPage tags. RAW mode
also displays all variables and where they were assigned. The following URL
retrieves the /testit.html AppPage in RAW mode:

http://myhost:port/hr_app/?MIval=/testit.html&RAW=topsecret

In the example, /hr_app refers to the URL prefix that maps to a Webdriver
mapping.

Variable Mandatory? Content

raw_password Yes Password to enable RAW mode
A-2 IBM Informix Web DataBlade Module Application Developer’s Guide



Using RAW Mode with Webdriver
The following illustrations show sample RAW mode output.

Figure A-1
Webdriver RAW
Mode Output 1

Web Browser - [Webdriver RAW Output]

URL: http://domain:port/hr_app/?MIval=testit&RAW=topsecret

(RAW Mode activated - document fetched without exploding SQL)

<HTML>
<HEAD>
<TITLE> My First Web DataBlade Module Application </TITLE>
</HEAD>
<BODY>
<?MIVAR> Hello, World <?/MIVAR>
</BODY>
</HTML>

(End of RAW document)

SQL To fetch Page:

SELECT WebUnHTML(object) FROM webPages WHERE ID=’testit’;

Environment:
Debugging Web DataBlade Module Applications A-3



Using RAW Mode with Webdriver
The following environment variable information is an example of what is
shown in the preceding figure:

MIval : query string : rw : yes : testit

Each of the columns is described in the following subsections.

Figure A-2
Webdriver RAW
Mode Output 2

Web Browser - [Webdriver RAW Output]

URL: http://webserver/hr-map/?MIval=testit&RAW=17

HTTP_URI : rq->reqpb : ro : no : /develop/apb
MIval : uri : ro : yes : apb
PATH : rq->vars : ro : no : /tmp/apb
QUERY_STRING : rq->reqpb : ro : no : RAW=17
RAW : query string : ro : yes : 17
REQUEST_METHOD : rq->reqpb : ro : no : GET
WEB_HOME : config table : ro : yes : /develop/

Environment:
A-4 IBM Informix Web DataBlade Module Application Developer’s Guide



Using RAW Mode with Webdriver
Name of the Variable

The first field in the environment variable list shows the name of the variable:
in this case, MIval. The second value identifies where the variable has been
set, with the following meanings.

Environment Setting Where Set?

config table webconfigs table

query string QUERY_STRING environment variable

path info PATH_INFO environment variable

cookie Web browser cookie

post METHOD=POST in the calling HTML form

uri NSAPI URL (NSAPI only)

environment Web server environment (CGI only)

rq->vars Web server environment (NSAPI only)

rq->headers Web server environment (NSAPI only)

rq->reqpb Web server environment (NSAPI only)

sn->client Web server environment (NSAPI only)

iis cblock Web server environment (ISAPI only)

iis filter Web server environment (ISAPI only)

session Session variable

driver_err MI_DRIVER_ERROR

apache hdrs Web server environment (APACHE only)

apache req Web server environment (APACHE only)
Debugging Web DataBlade Module Applications A-5



Using WebLint()
Variable Mode

The third field shows the mode of the variable. The mode can be either rw or
ro. The rwmode means that the value can be overridden, and romode means
that the value cannot be overridden.

Variable Passed

The fourth field can be set to yes or no; it tells whether or not Webdriver
passes the variable to the WebExplode() function.

Current Value

The final field is the current value of the variable.

Using WebLint()
Use the WebLint() function to find syntax errors within AppPage tags.
WebLint() is described in “WebLint()” on page 12-8.

Enabling WebExplode() Tracing
Use the Web DataBlade Module Administration Tool to set the following
variables for your Webdriver configuration to enable logging of the WebEx-
plode() function trace information.

Variable Mandatory? Content

MI_WEBEXPLEVEL Yes Enables WebExplode() function
tracing.

MI_WEBEXPLOG No File to which WebExplode()
messages are written.
A-6 IBM Informix Web DataBlade Module Application Developer’s Guide



MI_WEBEXPLEVEL Trace Settings
MI_WEBEXPLEVEL Trace Settings
The following table lists the MI_WEBEXPLEVEL trace settings.

The granularity trace values in the preceding table can be applied to each of
the components listed in the following table.

Trace Value Information Displayed

1 Lowest granularity

HTML output on entry into major routines such as WebExplode().

2 Medium granularity

Message output on entry to all functions.

4 Highest granularity

Message output for internal loops.

Trace Value Information Displayed

8 Watches variable access

16 Traces extended variable-processing functions

32 Shows details of user-defined tags usage

Includes cache hits.

64 Shows SQL statement being executed by MISQL tag

128 Shows messages communicated to Webdriver

256 Reserved for system usage

1024 Watches how MIDEFERRED and deferred variables are being used

2048 Traces direct UDR invocation

4096 Traces MI_EXEC
Debugging Web DataBlade Module Applications A-7



MI_WEBEXPLOG Trace File
The trace value is additive; therefore, you can turn on multiple settings
simultaneously. For example, if you set MI_WEBEXPLEVEL to 40, the WebEx-
plode() function generates trace information for both tags and variable
access. Add 1 to the value of MI_WEBEXPLEVEL to generate output within
your AppPages as HTML comments. The output contains the session ID. The
WebExplode() function writes the output to the trace file.

Important: If you add 1 to the value of MI_WEBEXPLEVEL to generate output
within your AppPages as HTML comments, the additional text within your HTML
might change how the Web browser renders your AppPage.

MI_WEBEXPLOG Trace File
When you enable tracing, the WebExplode() function writes the information
to the trace file specified by the MI_WEBEXPLOG variable. If you do not set
MI_WEBEXPLOG (or if the server cannot write to the specified file), the server
creates a file in the /tmp directory with a .trc file extension. You can also write
your own message to the trace file using the TRACEMSG variable-processing
function. For example, you can log errors to the trace file within your
AppPages as follows:

<?MIVAR>$(TRACEMSG, You encountered the error: $MI_ERRORMSG)<?/MIVAR>
A-8 IBM Informix Web DataBlade Module Application Developer’s Guide



Enabling Webdriver Tracing
Enabling Webdriver Tracing
To enable Webdriver tracing, set the Webdriver variables debug_file and
debug_level in the Global section of the web.cnf file. The following table
describes each variable.

debug_level Variable
You can also set the debug_level Webdriver variable for your Webdriver
configuration using the Web DataBlade Module Administration Tool. The
value of the debug_level Webdriver variable, if set for your Webdriver
configuration, overrides the value of the variable in the Global section of the
web.cnf file.

For detailed information on using the Web DataBlade Module Adminis-
tration Tool to set Webdriver variables, refer to IBM Informix Web DataBlade
Module Administrator’s Guide.

Variable Description

debug_level Enables Webdriver tracing to the log file specified by the
debug_file variable

For a full list of possible values for this variable, refer to the table
on page A-10.

debug_file Specifies the full pathname of the log file to which Webdriver
writes messages
Debugging Web DataBlade Module Applications A-9



debug_level Variable
The following table lists the possible trace settings for the debug_level
Webdriver variable.

Trace Value Information Displayed

1 Logs all pblocks (NSAPI only)

pblocks contain the name-value pairs passed from
the Web browser to the Netscape Web server.

2 Logs callbacks including errors

4 Logs Webdriver query requests to the database
server, such as calls to the WebExplode() function or
authorization requests

8 Logs large object requests

16 Logs AppPage headers

32 Logs large object headers

64 Logs client file upload information

128 Logs information as AppPages are added and
retrieved from the disk cache

256 Logs request variables.

512 Logs information similar to the information logged
by the NSAPI driver (CGI only)

1024 Logs connection pool information

2048 Logs session management information, such as
persistent variables being updated and new sessions
being created

4096 Logs parameters sent to the WebExplode() function
in a decoded format

8192 Logs parameters sent to the WebExplode() function
in an encoded format

16384 Time stamps each request of Webdriver

32768 Logs callback messages
A-10 IBM Informix Web DataBlade Module Application Developer’s Guide



The debug_file Variable
The trace value is additive; therefore, you can turn on multiple settings
simultaneously.

The debug_file Variable
When you enable tracing, Webdriver writes the information to the trace file
specified by the debug_file variable in the Global section of the web.cnf file.
If the trace file does not exist, Webdriver creates it. If the trace file exists,
Webdriver appends additional messages to it.

The following example shows a Global section of a web.cnf file:

<Global>
dbconnmax 10
anchorvar WEB_HOME
debug_file /disk1/webdriver.log
debug_level 4
maxcharsize 2
</Global>

In the example, Webdriver writes tracing messages to the file
/disk1/webdriver.log. Webdriver writes only messages about query
requests to the database server, such as calls to the WebExplode() function or
authorization requests.

Checking Log Files
Be sure to check your Web server error log files for any additional infor-
mation when you encounter an error.
Debugging Web DataBlade Module Applications A-11



Running CGI Webdriver Interactively
Running CGI Webdriver Interactively
To debug configuration issues, you must first determine which component of
your installation is failing. If you are unsure whether it is the Web server or
Webdriver that is failing when you attempt to retrieve an AppPage, bypass
the Web browser and Web server and call Webdriver interactively.

Important: This works only for the CGI implementation of Webdriver.

To run Webdriver interactively

1. Log in as the owner of your Web server (HTTPD).

2. Move to the directory in which the Webdriver executable file is
located:

cd /disk6/netscape/ns-home/cgi

3. Set the following variables in your UNIX environment:

SCRIPT_NAME

QUERY_STRING

SCRIPT_NAME is the relative path of the Webdriver CGI program.
For example, if you configured your Web server to have a CGI direc-
tory /cgi and the Webdriver CGI program resides in that directory,
then set SCRIPT_NAME to /cgi/webdriver:

setenv SCRIPT_NAME/cgi/webdriver

QUERY_STRING should include the setting for the MIval Webdriver
variable and any other variables you would normally set in the URL
when you invoke the AppPage:

setenv QUERY_STRING "MIval=mypage"
A-12 IBM Informix Web DataBlade Module Application Developer’s Guide



Running CGI Webdriver Interactively
4. Invoke Webdriver:
webdriver

The output is similar to the following example:
Content-type: text/html
Content-length: 3703
<HTML>
.....

Webdriver generates an appropriate error message if the AppPage
cannot be retrieved. The following example specifies the name of an
AppPage that does not exist:

setenv MIval wrong

Webdriver prints an error within the following output:
webdriver

 Content-type: text/html
 Content-length: 225
<HTML> <HEAD><TITLE> Error Message</TITLE>
<HEAD> <BODY>
<H2>HTTP/1.0 404 Not Found</H2>
<B>Error from Informix:</B><HR>
 The resource you requested was not found.<P>
 Zero rows were returned from the server
</BODY> </HTML>
Debugging Web DataBlade Module Applications A-13





B
Appendix
AppPage Builder Schema
AppPage Builder (APB) provides a flexible and extensible base
for developing Web applications with the Web DataBlade
module. APB has built-in support for common multimedia
objects, such as images, audio clips, video clips, and documents.

APB uses the same database schema as IBM Informix Data
Director for Web (DDW). DDW is a set of Windows tools also used
for developing Web applications with the Web DataBlade
module.

This appendix describes the following tables that make up APB
database schema:

■ wbExtensions

■ wbPages

■ wbPageVersions

■ wbBinaries

■ wbBinaryVersions

■ wbTags

■ wbTagVersions

■ wbPreviews

■ wbProjects

■ wbResProjects

■ wbInfo

■ wbUsers

■ wbObjectTypes



The wbExtensions Table
The wbExtensions Table
The wbExtensions table contains a row for each type of file extension you can
specify when invoking an object in an AppPage. Examples of extensions are
html, gif, and doc.

The row for each extension describes the table that stores objects of this type
(source_table), the column in the storage table that identifies the object
(ID_column), the column in the storage table that contains the object
(content_column), and the object’s MIME super type and subtype
(super_type and sub_type).

When you initially install AppPage Builder in your database, the wbExten-
sions table contains a default set of extensions that include most types of
objects you should ever need to invoke in an AppPage. For a complete list of
default extensions, see “The wbExtensions Table” on page 3-5. You can,
however, add a new extension to the wbExtensions table if the default set is
not adequate. For detailed information on how to add a new extension, see
“Adding an Extension” on page 4-10.

The following CREATE TABLE statement describes the schema of the
wbExtensions table:

CREATE TABLE wbExtensions
(

extension               VARCHAR(12),
name                    VARCHAR(30),
source_table            VARCHAR(18),
super_type              VARCHAR(18),
sub_type                VARCHAR(18),
ID_column               VARCHAR(18),
content_column          VARCHAR(18),
retrieval_method        INTEGER,
path_column             VARCHAR(18),

PRIMARY KEY (extension) CONSTRAINT wb_extension
);
B-2 IBM Informix Web DataBlade Module Application Developer’s Guide



The wbPages Table
The wbPages Table
The wbPages table stores your AppPages.

The ID, path, and extension columns uniquely identify an AppPage.
AppPages always have an extension of html or htm. You can also store
simple text files (extension txt) in the wbPages table. The AppPage itself is
stored in the object column, which is of data type HTML.

AppPage Builder also stores other information about the AppPage, such as a
description of the AppPage, when it was last changed, and the user who last
changed it.

The following CREATE TABLE statement describes the schema of the
wbPages table:

CREATE TABLE wbPages
(

ID                      VARCHAR(30),
path                    VARCHAR(178),
extension               VARCHAR(12),
description             VARCHAR(254),
author                  VARCHAR(30),
keywords                VARCHAR(254),
current_version         INTEGER,
last_changed            datetime year to second,
last_changed_by         VARCHAR(30),
read_level              INTEGER,
last_locked             datetime year to second,
last_locked_by          VARCHAR(30),
object                  HTML,

PRIMARY KEY (ID,path,extension) CONSTRAINT wbPageId,
FOREIGN KEY (extension) REFERENCES wbExtensions (extension)
) PUT object in ($2);
AppPage Builder Schema B-3



The wbPageVersions Table
The wbPageVersions Table
The wbPageVersions table stores previous versions of AppPages.

The wbPageVersions table has a schema similar to the wbPages table but
with a few extra columns used to store versioning information.

The following CREATE TABLE statement describes the schema of the wbPage-
Versions table:

CREATE TABLE wbPageVersions
(

version_ID              SERIAL,
ID                      VARCHAR(30),
path                    VARCHAR(178),
extension               VARCHAR(12),
description             VARCHAR(254),
author                  VARCHAR(30),
keywords                VARCHAR(254),
current_version         INTEGER,
last_changed            datetime year to second,
last_changed_by         VARCHAR(30),
read_level              INTEGER,
last_locked             datetime year to second,
last_locked_by          VARCHAR(30),
delete_status           INTEGER DEFAULT 0,
version_label           VARCHAR(80),
version_comment         VARCHAR(254),
object                  HTML,

PRIMARY KEY (version_ID) CONSTRAINT wbPageVersionId,
FOREIGN KEY (extension) REFERENCES wbExtensions
) PUT object in ($2);
B-4 IBM Informix Web DataBlade Module Application Developer’s Guide



The wbBinaries Table
The wbBinaries Table
The wbBinaries table stores binary data, such as images, Microsoft Word
files, video clips, and bitmaps.

The ID, path, and extension columns uniquely identify a binary object. The
extension of the binary object determines what type of object it is, based on
information in the wbExtensions table. For example, the extensions gif and
jpeg indicate that the object is an image, and the extension doc indicates that
the object is a Microsoft Word document. The binary object itself is stored in
the object column, which is of data type BLOB.

AppPage Builder also stores other information about the binary object, such
as a description of the object, when it was last changed, and the user who last
changed it.

The following CREATE TABLE statement describes the schema of the wbBin-
aries table:

CREATE TABLE wbBinaries
(
ID                      VARCHAR(30),
path                    VARCHAR(178),
extension               VARCHAR(12),
description             VARCHAR(254),
height                  INTEGER,
width                   INTEGER,
current_version         INTEGER,
last_changed            datetime year to second,
last_changed_by         VARCHAR(30),
read_level              INTEGER,
last_locked             datetime year to second,
last_locked_by          VARCHAR(30),
object                  BLOB,

PRIMARY KEY (ID,path,extension) CONSTRAINT wbBinId,
FOREIGN KEY (extension) REFERENCES wbExtensions (extension)
)   PUT object IN ($2);
AppPage Builder Schema B-5



The wbBinaryVersions Table
The wbBinaryVersions Table
The wbBinaryVersions table stores previous versions of binary objects.

The wbBinaryVersions table has a schema similar to the wbBinaries table
but with a few extra columns used to store versioning information.

The following CREATE TABLE statement describes the schema of the wbBin-
aryVersions table:

CREATE TABLE wbBinaryVersions
(
version_ID              SERIAL,
ID                      VARCHAR(30),
path                    VARCHAR(178),
extension               VARCHAR(12),
description             VARCHAR(254),
height                  INTEGER,
width                   INTEGER,
current_version         INTEGER,
last_changed            datetime year to second,
last_changed_by         VARCHAR(30),
read_level              INTEGER,
last_locked             datetime year to second,
last_locked_by          VARCHAR(30),
delete_status           INTEGER DEFAULT 0,
version_label           VARCHAR(80),
version_comment         VARCHAR(254),
object                  BLOB,

PRIMARY KEY (version_ID) CONSTRAINT wbBinaryVersionID,
FOREIGN KEY (extension) REFERENCES wbExtensions
)   PUT object IN ($2);
B-6 IBM Informix Web DataBlade Module Application Developer’s Guide



The wbTags Table
The wbTags Table
The wbTags table stores system and user-defined dynamic tags.

The ID column stores the unique identifier of the dynamic tag. You specify
this identifier in your AppPage with the syntax <?tag_id> when you want
to invoke a dynamic tag. The dynamic tag itself is stored in the object
column, which is of data type HTML.

The wbTags table is similar to the webTags system table in that they both
store dynamic tags. The webTags system table is created when you register
the Web DataBlade module in your database and is the default table for
storing dynamic tags. This means that, by default, the WebExplode()
function looks in the webTags table when it invokes a dynamic tag. AppPage
Builder, however, stores dynamic tags in the wbTags table. For this reason, if
you use AppPage Builder to create your AppPages and user-defined
dynamic tags, you must set the variable MI_WEBTAGSTABLE to wbTags in
your Webdriver configuration. This ensures that the WebExplode() function
looks in the wbTags table, and not the webTags table, for dynamic tags.

The webTags system table is described in the IBM Informix Web DataBlade
Module Administrator’s Guide.

The following CREATE TABLE statement describes the schema of the wbTags
table:

CREATE TABLE wbTags
(

ID                      VARCHAR(30),
description             VARCHAR(254),
parameters              VARCHAR(254),
class                   VARCHAR(64),
current_version         INTEGER,
last_changed            datetime year to second,
last_changed_by         VARCHAR(30),
last_locked             datetime year to second,
last_locked_by          VARCHAR(30),
object                  HTML,
wizData                 BLOB,

PRIMARY KEY (ID) CONSTRAINT wbTagId
) PUT object in ($2), wizData in ($2);
AppPage Builder Schema B-7



The wbTagVersions Table
The wbTagVersions Table
The wbTagVersions table stores previous versions of dynamic tags.

The wbTagVersions table has a schema similar to the wbTags table but with
a few extra columns used to store versioning information.

The following CREATE TABLE statement describes the schema of the wbTag-
Versions table:

CREATE TABLE wbTagVersions
(

version_ID              SERIAL,
ID                      VARCHAR(30),
description             VARCHAR(254),
parameters              VARCHAR(254),
class                   VARCHAR(64),
current_version         INTEGER,
last_changed            datetime year to second,
last_changed_by         VARCHAR(30),
last_locked             datetime year to second,
last_locked_by          VARCHAR(30),
delete_status           INTEGER DEFAULT 0,
version_label           VARCHAR(80),
version_comment         VARCHAR(254),
object                  HTML,
wizData                 BLOB,

PRIMARY KEY (version_ID) CONSTRAINT wbTagVersionID
) PUT object in ($2) , wizData in ($2);
B-8 IBM Informix Web DataBlade Module Application Developer’s Guide



The wbPreviews Table
The wbPreviews Table
The wbPreviews table stores configuration variables that IBM Informix Data
Director for Web uses during development.

The wbPreviews table is used by Data Director for Web only; AppPage
Builder does not use this table. For more information about Data Director for
Web, refer to the IBM Informix Data Director for Web User’s Guide.

The following CREATE TABLE statement describes the schema of the wbPre-
views table:

CREATE TABLE wbPreviews
(

ID                      VARCHAR(30),
object                  HTML,

PRIMARY KEY (ID) CONSTRAINT wbPreviewName
) PUT object in ($2);
AppPage Builder Schema B-9



The wbProjects Table
The wbProjects Table
The wbProjects table stores AppPage Builder projects.

When you use AppPage Builder to create a Web application, you can
logically group the AppPages and binary objects that make up the appli-
cation into a project for easier management of the application. The
wbProjects table stores information about all existing projects.

The following CREATE TABLE statement describes the schema of the wbPre-
views table:

CREATE TABLE wbProjects
(

name                    VARCHAR(30),
description             VARCHAR(254),
owner                   VARCHAR(30),
last_locked             datetime year to second,
last_locked_by          VARCHAR(30),
last_deployed           datetime year to second,
last_deployed_by        VARCHAR(30),
deployed_db             VARCHAR(18),
deployed_server         VARCHAR(18),
deployed_project        VARCHAR(30),
preview                 VARCHAR(30),

PRIMARY KEY (name) CONSTRAINT wbProjectName,
FOREIGN KEY (preview) REFERENCES wbPreviews (ID)
);
B-10 IBM Informix Web DataBlade Module Application Developer’s Guide



The wbResProjects Table
The wbResProjects Table
The wbResProjects table describes the many-to-many relationship between
the projects stored in the wbProjects table and the objects in a Web appli-
cation (AppPages stored in the wbPages table and binary objects stored in
the wbBinaries table).

A project can include many AppPages and binary objects, and a particular
AppPage or binary object can be associated with many projects. However,
each row in the wbResProjects table describes a single relationship.

For example, assume the /pages/welcome.html AppPage is used in two
projects: hr_project and sales_project. Further assume that the hr_project
project also contains a binary object /images/logo.gif. The wbResProjects
table contains the following three rows to describe these relationships.

The following CREATE TABLE statement describes the schema of the
wbResProject table:

CREATE TABLE wbResProjects
(

ID                      VARCHAR(30),
path                    VARCHAR(178),
extension               VARCHAR(12),
project                 VARCHAR(30),

PRIMARY KEY (ID,path,extension,project) CONSTRAINT wbResProjId,
FOREIGN KEY (project) REFERENCES wbProjects (name)
);

ID path extension project

welcome /pages html hr_project

welcome /pages html sales_project

logo /images gif hr_project
AppPage Builder Schema B-11



The wbInfo Table
The wbInfo Table
The wbInfo table stores information about the AppPage Builder database
schema and the versioning model used to version AppPages, binary objects,
and dynamic tags.

The following CREATE TABLE statement describes the schema of the wbInfo
table:

CREATE TABLE wbInfo
(

name                    VARCHAR(80),
value                   VARCHAR(254),
description             VARCHAR(254),

PRIMARY KEY (name) CONSTRAINT wbInfoName
);
B-12 IBM Informix Web DataBlade Module Application Developer’s Guide



The wbUsers Table
The wbUsers Table
The wbUsers table stores information about users, such as their password,
their level of security when reading AppPages, their default project, and so
on.

The following CREATE TABLE statement describes the schema of the wbUsers
table:

CREATE TABLE wbUsers
(

name                    VARCHAR(40) NOT NULL,
password                VARCHAR(40) NOT NULL,
security_level          INTEGER     NOT NULL,
default_project         VARCHAR(30) NOT NULL REFERENCES wbProjects,
def_object_type         VARCHAR(40) NOT NULL,
textarea_width          INTEGER     DEFAULT 80,
textarea_height         INTEGER     DEFAULT 20,
versioning              CHAR        DEFAULT 't',
web_lint                INTEGER     DEFAULT 2,
PRIMARY KEY        (name)

);
AppPage Builder Schema B-13



The wbObjectTypes Table
The wbObjectTypes Table
The wbObjectTypes table stores the types of objects you can add to your Web
application using AppPage Builder.

The Add Object AppPage of AppPage Builder lists seven types of objects
you can add to your application: AppPage, Audio, Document, Dynamic
Tag, Image, User-Defined Routine, and Video. Each of these object types
corresponds to a single row in the wbObjectTypes table. Each of these object
types, in turn, maps to one or more rows in the wbExtensions table, based on
the MIME supertype of each extension.

AppPage Builder uses these relations between the wbObjectTypes and
wbExtensions tables to determine which extensions correspond to a
particular object type. For example, the Image object type can have the
following four extensions: bmp, jpeg, jpg, or gif.

The following CREATE TABLE statement describes the schema of the wbUsers
table:

CREATE TABLE wbObjectTypes
(

object_type             VARCHAR(40) NOT NULL,
super_type              VARCHAR(40) NOT NULL,
page_suffix             VARCHAR(40) NOT NULL,
PRIMARY KEY         (object_type)

);
B-14 IBM Informix Web DataBlade Module Application Developer’s Guide



C
Appendix
Web DataBlade Module
Variables
This appendix provides the full list of Webdriver and WebEx-
plode() variables. The appendix is organized into the following
sections:

■ “Webdriver Variables Stored in the web.cnf File” on
page C-2

■ “Webdriver Variables Stored in the Database” on
page C-6

■ “WebExplode() Variables” on page C-27

Use the Web DataBlade Module Administration Tool to set the
Webdriver and WebExplode() variables that are stored in the
database as part of your Webdriver configuration.

Many Webdriver variable names changed in Version 4.0 of the
Web DataBlade module. This appendix also provides, where
applicable, the old name of the Webdriver variable.

For detailed information about using the Web DataBlade
Module Administration Tool, refer to the IBM Informix Web
DataBlade Module Administrator’s Guide.



Webdriver Variables Stored in the web.cnf File
Webdriver Variables Stored in the web.cnf File
This section describes the Webdriver variables that are stored in the Global,
Setvar, and Map sections of the web.cnf file.

The Global Section of the web.cnf File
The following table lists all the variables you can set in the Global section of
the web.cnf file.

Variable Mandatory? Description

dbconnmax No Specifies the maximum number of connections to the database

The default value is 16.

anchorvar Yes Specifies the name of the anchor variable used when an AppPage calls
another AppPage

This variable is mandatory. For the NSAPI and Apache Webdrivers,
anchorvar should always be set to WEB_HOME, with a trailing forward
slash ( / ). For the ISAPI Webdriver, the variable should be set to
WEB_HOME/drvisapi.dll. For the CGI Webdriver, the variable should
be set to WEB_HOME/webdriver.

Since anchorvar is always set to WEB_HOME, you can always use
WEB_HOME as an anchor variable in any AppPage.

driverdir No Specifies the directory that Webdriver uses to internally coordinate its
interaction with the Web server

The default value of this variable is /tmp.

This variable is only used by the Apache and CGI implementations of
Webdriver.

debug_file No Specifies the full pathname of the log file to which Webdriver
messages are written

debug_level No Enables Webdriver tracing to the log file specified by the debug_file
variable

You can override the value of the debug_level variable in the Global
section of the web.cnf file by setting it in your Webdriver configu-
ration using the Web DataBlade Module Administration Tool.

 (1 of 2)
C-2 IBM Informix Web DataBlade Module Application Developer’s Guide



The Global Section of the web.cnf File
maxcharsize No When set to a value greater than 1, each character sent to the WebEx-
plode() function is URL-encoded.

If this variable is not set, Webdriver URL-encodes only special
characters (such as &) before sending it to the WebExplode() function.

It is recommended that you set this variable to a value greater than 1
only if you are using a multibyte character set. This is because you
might see a degradation in performance if Webdriver is forced to
URL-encode every character before sending it to the WebExplode()
function.

You can override the value of this variable for your Webdriver
mapping by adding it as a Webdriver variable to the appropriate
Webdriver configuration.

config_user No The name of the user who is allowed to use the Web DataBlade
Module Administration Tool.

Add this variable to the web.cnf file only with the webconfig utility.

config_password No The password of the config_user user.

Add this variable to the web.cnf file only with the webconfig utility.

dbconntimeout No Sets the maximum time (in seconds) that a Webdriver connection to
the database is allowed to be idle. Webdriver automatically closes any
database connections that have been idle for longer than the value of
dbconntimeout.

The following sample shows how to set dbconntimeout to 120
seconds:

<GLOBAL>
debug_file      /tmp/driver.log
debug_level     -1
dbconntimeout   120
dbconnmax       128
anchorvar       WEB_HOME/
</GLOBAL>

If no database request is made on a connection for 2 minutes, then
Webdriver closes the connection.

Variable Mandatory? Description

 (2 of 2)
Web DataBlade Module Variables C-3



The Setvar Section of the web.cnf File
The Setvar Section of the web.cnf File
You set Informix environment variables in the Setvar section of the web.cnf
file.

The following Informix environment variables are discussed in the
IBM Informix Web DataBlade Module Administrator’s Guide:

■ INFORMIXSERVER

■ INFORMIXDIR

For a complete list of the Informix environment variables you can set in the
Setvar section of the web.cnf file, refer to IBM Informix Guide to SQL: Reference.

Important: Do not set the Informix environment variables DBDATE and
DBCENTURY in your web.cnf file. Their settings will be ignored. Instead, set them
in your environment before you register the DataBlade module in your database.

The Map Section of the web.cnf File
The following table lists all the variables that can be included in the Map
section of the web.cnf file.

Map Variable Mandatory? Description

database Yes The name of the database to which Webdriver connects when a URL
prefix specifies this Webdriver mapping

user Yes The name of the user who connects to the database specified by the
database variable

password Yes The encrypted password of the user specified by the user variable

password_key Yes The key that Webdriver uses to decrypt the password specified by the
password variable.

 (1 of 2)
C-4 IBM Informix Web DataBlade Module Application Developer’s Guide



The Map Section of the web.cnf File
server No The Informix database server to use when making the connection to
the database

If this variable is not set, the connection is made using the INFOR-
MIXSERVER database server.

config_name Yes The name of the Webdriver configuration to use

The Webdriver configuration is stored in the WebConfigs system
table in the database specified by the database variable.

config_security No When set to ON, security is enabled for this Webdriver mapping, which
means that only the user specified by the config_user variable in the
Global section of the web.cnf file can use this Webdriver mapping.

The config_security variable should appear only in Webdriver
mappings used to invoke the Web DataBlade Module Administration
Tool.

Map Variable Mandatory? Description

 (2 of 2)
Web DataBlade Module Variables C-5



Webdriver Variables Stored in the Database
Webdriver Variables Stored in the Database
This section describes the Webdriver variables that are stored in the database
as part of a Webdriver configuration. These include both schema-related
Webdriver variables and feature-related Webdriver variables.

Managing Webdriver Connections to the Database
To modify the behavior of Webdriver connections to the database for specific
Webdriver configurations, use the Web DataBlade Module Administration
Tool to set the Webdriver variables described in the following table.

Webdriver Variable
Name of Variable in
Versions 3.3 and Previous Mandatory? Description

connection_life MI_WEBRECONNECT No Specifies the life of a connection, or in
other words, the maximum number of
requests (an integer value) that
Webdriver makes to the database before
the connection is shut down and
reestablished

The default value is 100.

You should set this Webdriver variable
to another value only under the
guidance of Technical Support.

connection_wait MI_WEBDBCONNWAIT No Specifies the amount of time, in milli-
seconds, that Webdriver yields and
waits to establish a connection if
Webdriver was unable to make the
initial connection due to the maximum
number of database connections having
already been reached

The maximum number of Webdriver
connections to the database server is
specified by the dbconnmax Webdriver
variable in the Global section of web.cnf
file.

 (1 of 4)
C-6 IBM Informix Web DataBlade Module Application Developer’s Guide



Managing Webdriver Connections to the Database
connect_as_user MI_USER_REMOTE No When set to ON, specifies that Webdriver
establish the connection to the database
as the user specified by the
REMOTE_USER Web browser variable
and not as the user specified in the Map
section of the web.cnf file

By default, if this Webdriver variable is
not set, Webdriver always establishes
connections to the database as the user
specified by the user Webdriver variable
in the appropriate Map section of the
web.cnf file.

This Webdriver variable applies only to
the NSAPI, ISAPI, and Apache imple-
mentations of Webdriver. In addition,
you can only use this Webdriver variable
if you have enabled user authentication
for the corresponding Web server.

connect_user_max MI_USER_DBCONNMAX No Specifies the maximum number of
connections that Webdriver establishes
as the user specified by the
REMOTE_USER Web browser variable

The default value of this Webdriver
variable is 1.

The connect_user_max Webdriver
variable can only be set in conjunction
with the connect_as_user Webdriver
variable.

This Webdriver variable applies only to
the NSAPI, ISAPI, and Apache imple-
mentations of Webdriver. In addition,
you can only use this Webdriver variable
if you have enabled user authentication
for the corresponding Web server.

query_timeout MI_WEBQRYTIMEOUT No Specifies the maximum number of
seconds that Webdriver allows a query
to run before Webdriver interrupts the
query

Webdriver Variable
Name of Variable in
Versions 3.3 and Previous Mandatory? Description

 (2 of 4)
Web DataBlade Module Variables C-7



Managing Webdriver Connections to the Database
keepalive MI_WEBKEEPALIVE No Specifies the interval in seconds at which
Webdriver checks the Web browser
connection

If the browser is no longer connected
because a STOP or CANCEL signal has
been sent by the browser, the running
query is interrupted, and the Web server
is freed to execute the next query
request.

This variable applies only to the NSAPI,
ISAPI, and Apache implementations of
Webdriver.

init_sql MI_WEBINITIALSQL No Specifies that Webdriver send initial
SQL statements to the database server
when Webdriver makes a connection to
the database

Set this Webdriver variable to one or
more SQL statements, separated by
semicolons and terminated by a carriage
return. Do not include quotes.

For example, if you want to set the
isolation level of the connection to the
database to Dirty Read, set the init_sql
Webdriver variable to the value SET
ISOLATION TO DIRTY READ;

Webdriver Variable
Name of Variable in
Versions 3.3 and Previous Mandatory? Description

 (3 of 4)
C-8 IBM Informix Web DataBlade Module Application Developer’s Guide



Managing Webdriver Connections to the Database
max_html_size MI_WEBMAXHTMLSIZE No Specifies the largest AppPage, in bytes,
that Webdriver sends to the browser

AppPages larger than this size are not
sent to the browser.

The default value for this Webdriver
variable is 128 KB. The maximum value
is 232 KB.

maxcharsize New in Version 4.0 No When set to a value greater than 1, each
character sent to the WebExplode()
function is URL-encoded.

If this variable is not set, Webdriver
URL-encodes only special characters
(such as &) before sending it to the
WebExplode() function.

Informix recommends you set this
variable to a value greater than 1 only if
you are using a multibyte character set.
This is because you might see a degra-
dation in performance if Webdriver is
forced to URL-encode every character
before sending it to the WebExplode()
function.

You can specify the maxcharsize
variable in the Global section of the
web.cnf file if you want to specify
globally that characters should be URL-
encoded. By adding the variable to a
Webdriver configuration, however, you
can control this behavior for a single
Webdriver configuration and not for the
whole database server.

Webdriver Variable
Name of Variable in
Versions 3.3 and Previous Mandatory? Description

 (4 of 4)
Web DataBlade Module Variables C-9



Using Server-Side Includes in AppPages with the Apache or NSAPI Webdriver
Using Server-Side Includes in AppPages with the Apache or
NSAPI Webdriver
To use server-side includes in your AppPages with the DYNAMIC option to the
PARSE-HTML variable-processing function, you must use the Web DataBlade
Module Administration Tool to set the Webdriver variable described in the
following table.

Webdriver Variable Mandatory? Description

parse_html_directory Yes Specifies the full pathname of the
directory on the Web server computer
where Webdriver temporarily stores the
AppPage to be subsequently read by the
Web server

Webdriver does not create this directory,
so be sure the directory exists before you
use server-side includes in an AppPage.
C-10 IBM Informix Web DataBlade Module Application Developer’s Guide



Resetting User Name/Password Combinations
Resetting User Name/Password Combinations
To reset user name/password combinations so users can change their
passwords within a Web application, use the Web DataBlade Module Admin-
istration Tool to set the Webdriver variable listed in the following table.

Variable
Name of Variable in
Versions 3.3 and Previous Mandatory? Description

auth_cache MI_WEBAUTHCACHE Yes Allows you to reset user name and
password combinations so users can
change their passwords within an
application

You can set the auth_cache Webdriver
variable to three values: on, off, and
check. The default value is on.

If you set the variable to on, Webdriver
always uses the password value in the
Web server cache. If you set the variable
to off, Webdriver always uses the
password value in the database. If you
set the variable to check, and the value
in the Web server cache is different from
the Web browser value, Webdriver
updates the Web server cache with the
password value in the database.
Web DataBlade Module Variables C-11



Enabling NSAPI, ISAPI, and Apache Security
Enabling NSAPI, ISAPI, and Apache Security
To use the security features of the Netscape Web server, Microsoft Internet
Information Server, or Apache Web Server, use the Web DataBlade Module
Administration Tool to set the Webdriver variables listed in the following
table.

Variable Name
Name of Variable in
Versions 3.3 and Previous Mandatory? Content

MIusertable Same Yes Name of the table that contains user
access information

MIusername Same Yes Name of the VARCHAR column in the
user access table (MIusertable) that
contains the name of the database user

MIuserpasswd Same Yes Name of the VARCHAR column of the
user access table (MIusertable) that
contains the password of the database
user

MIuserlevel Same Yes Name of the INTEGER column of the
user access table (MIusertable) that
contains the access level of the
database user

MIpagelevel Same Yes Name of the INTEGER column of the
table that stores your AppPage that
contains the access level of the
AppPage

MIusergroup Same No Name of the INTEGER column of the
user access table (MIusertable) that
contains the group access level of the
user

iis_nt_user MI_WEBNTUSER Yes (ISAPI Webdriver only) Name of a
valid Windows NT user

 (1 of 2)
C-12 IBM Informix Web DataBlade Module Application Developer’s Guide



Enabling NSAPI, ISAPI, and Apache Security
iis_nt_password MI_WEBNTPASSWORD Yes (ISAPI Webdriver only) Password of a
valid Windows NT user

redirect_url MI_WEBREDIRECT No URL to redirect users to if they do not
have access to the AppPage they
attempt to retrieve

auth_crypt_udr New in Version 4.0 No Enables password encryption when set
to ON

If password encryption is enabled,
Webdriver encrypts the password
entered by the user and compares it to
the encrypted password in the
MIusertable table. If they match, then
the user is authenticated.

If set to OFF (default value), then
Webdriver does not encrypt the
password.

Variable Name
Name of Variable in
Versions 3.3 and Previous Mandatory? Content

 (2 of 2)
Web DataBlade Module Variables C-13



Enabling Basic AppPage-Level Security
Enabling Basic AppPage-Level Security
To configure AppPage-level authorization, use the Web DataBlade Module
Administration Tool to set the Webdriver variables listed in the following
table.

Variable
Name of Variable in
Versions 3.3 and Previous Mandatory? Description

MIpagelevel Same Yes Specifies the name of the INTEGER
column of the table that stores
AppPages that contains the access
level of the AppPage

MI_WEBACCESSLEVEL Same Yes Specifies the access level of all
users for a particular Webdriver
configuration

redirect_url MI_WEBREDIRECT No Specifies the URL to redirect users
to if they do not have access to the
AppPage they attempt to retrieve

error_page MI_WEBERRORPAGE No Set to the value of the AppPage
that contains error-handling
routines
C-14 IBM Informix Web DataBlade Module Application Developer’s Guide



Customizing the Query to Retrieve Large Objects
Customizing the Query to Retrieve Large Objects
To customize the query that Webdriver uses to retrieve large objects, add the
Webdriver variables described in the following table to your Webdriver
configuration using the Web DataBlade Module Administration Tool.

Variable
Name of Variable in
Versions 3.3 and Previous Mandatory? Content

lo_query_string MI_WEBLOQUERY Yes Contains the SQL statement that is
used to query the database for a
large object

Use standard C language variable
syntax ‘%s’ to specify a parameter
string.

lo_query_params MI_WEBLOPARAMS Yes Specifies the variables that are
substituted for the parameters in the
SQL statement specified by the
lo_query_string variable

You must use the variable name
MIvalObj to specify the name of the
large object you want to retrieve.

lo_error_zerorows MI_WEBLOZEROROWS No Specifies the integer error number
that Webdriver should return if the
SQL statement that Webdriver uses
to retrieve large objects, specified by
the lo_query_string variable,
returned zero rows

lo_error_sql MI_WEBLOSQLERROR No Specifies the integer error number
that Webdriver should return if an
SQL error occurs when Webdriver
retrieves a large object using the SQL
statement specified by the
lo_query_string variable
Web DataBlade Module Variables C-15



Enabling AppPage Caching
Enabling AppPage Caching
To set AppPage caching for your Webdriver configuration, use the Web
DataBlade Module Administration Tool to set the Webdriver variables listed
in the following table.

Webdriver Variable
Name of Variable in Versions 3.3
and Previous Mandatory? Description

cache_page MI_WEBCACHEPAGE Yes Specifies whether AppPage
caching is enabled or disabled

Set to ON to enable AppPage
caching and OFF to disable
AppPage caching.

The default value is OFF.

cache_directory  MI_WEBCACHEDIR Yes Specifies the full pathname of
the directory on the Web server
computer in which cached
AppPages and large objects are
placed

If this variable is not set, neither
AppPages nor large objects are
cached.

cache_page_buckets New in Version 4.0 No Specifies the number of subdi-
rectories per AppPage created
under the directory specified
by cache_directory. The default
is one subdirectory per
AppPage

Set this variable only if you
intend on caching AppPages
that might have over 1000
different versions.

 (1 of 4)
C-16 IBM Informix Web DataBlade Module Application Developer’s Guide



Enabling AppPage Caching
cache_page_life MI_WEBPAGELIFE No Specifies the length of time
after which an AppPage is
refreshed from the database

Set cache_page_life in units of
seconds (s or S), hours (h or H),
or days (d or D). For example,
the value 5d indicates five days.

cache_admin MI_WEBCACHEADMIN No Specifies the name of the Cache
Administration AppPage

The Cache Administration
AppPage is not stored in the
database, but is an internal
AppPage managed by
Webdriver.

When MIval is set to this value,
Webdriver invokes this
AppPage so you can add,
delete, purge, or view cache
entries in the cache_directory
directory.

The default value is
cacheadmin.

Webdriver Variable
Name of Variable in Versions 3.3
and Previous Mandatory? Description

 (2 of 4)
Web DataBlade Module Variables C-17



Enabling AppPage Caching
cache_admin_password MI_WEBCACHEPASSWORD No Specifies that cache adminis-
tration requests are processed
only if the password entered in
the Cache Administration
AppPage matches this value

cache_page_timestamp New in Version 4.0 No Specifies that Webdriver, when
invoking an AppPage for
which AppPage caching has
been enabled, adds time stamp
information at the bottom of
the page

The time stamp is enclosed in
an HTML comment and thus is
only seen if a user views the
HTML source of the AppPage
in their browser.

The default value is OFF. To
enable this feature, set this
Webdriver variable to ON.

Webdriver Variable
Name of Variable in Versions 3.3
and Previous Mandatory? Description

 (3 of 4)
C-18 IBM Informix Web DataBlade Module Application Developer’s Guide



Enabling AppPage Caching
cache_page_debug New in Version 4.0 No Specifies that Webdriver
invokes AppPages that contain
deferred sections (delimited
with the MIDEFERRED tag)
without returning an error,
even if AppPage caching has
not been enabled

This Webdriver variable is used
to debug problems with partial
AppPage caching.

The cache_page_debug
Webdriver variable can be set
to two values: show_defer and
execute_defer.

When set to show_defer and
you invoke an AppPage with a
deferred section, Webdriver
returns the deferred section in
its original form. If the
Webdriver variable is set to
execute_defer, Webdriver
executes the deferred section
when you invoke the AppPage.

Webdriver Variable
Name of Variable in Versions 3.3
and Previous Mandatory? Description

 (4 of 4)
Web DataBlade Module Variables C-19



Enabling Large Object Caching
Enabling Large Object Caching
To set large object caching, use the Web DataBlade Module Administration
Tool to set the Webdriver variables listed in the following table.

Enabling Webdriver Tracing
The following table describes each variable for enabling Webdriver tracing.

Webdriver Variable
Name of Variable in
Versions 3.3 and Previous Mandatory? Description

cache_directory MI_WEBCACHEDIR Yes Specifies the directory on the Web server
computer in which cached large objects are
placed

If not set, large objects are not cached.

cache_buckets MI_WEBCACHESUB No Specifies the number of subdirectories per
database created under the directory
specified by cache_directory

The default is one subdirectory per
database.

cache_maxsize MI_WEBCACHEMAXLO No Specifies the maximum size in bytes of
large objects to be cached

The default is 64 KB.

Variable
Name of Variable in
Versions 3.3 and Previous Description

debug_level MI_WEBDRVLEVEL Enables Webdriver tracing to the log file specified by the
debug_file variable

debug_file New in Version 4.0 Specifies the full pathname of the log file to which Webdriver
messages are written
C-20 IBM Informix Web DataBlade Module Application Developer’s Guide



Enabling Use of Session Variables in AppPages
Enabling Use of Session Variables in AppPages
To enable the use of session variables in your AppPages use the Web
DataBlade Module Administration Tool to set the following Webdriver
variables.

Variable
Name of Variable in
Versions 3.3 and Previous Mandatory? Description

session MI_WEBSESSION Yes This variable allows you to select the
method for binding a session ID to the
browser. This variable can have values
of url, cookie, or auto. If set to url,
then the session ID is bound to any
dynamic anchor variable contained
within the page. Typically, this variable
would be $WEB_HOME. If set to
cookie, the session ID is tracked with
a variable sent back to the browser as a
cookie. If you select auto, Webdriver
automatically determines which
method is best to use.

session_home MI_WEBSESSIONHOME Yes, if using
auto or url

This variable identifies which configu-
ration file variable is used by your
application to anchor HREF tags. For
example, if your application uses
WEB_HOME as its anchor,
WEB_HOME is the value set for this
variable. If multiple values are
required for this variable, they should
be separated by commas.

 (1 of 2)
Web DataBlade Module Variables C-21



Enabling Use of Session Variables in AppPages
session_location MI_WEBSESSIONLOC Yes This variable describes how the
persistent state is handled. If the
session code is going to run within the
same process, this variable needs to
refer to the full path of the directory to
create session state files. This directory
must be created and owned by the
same user who owns the Web server. If
the code is going to run as a separate
process, the variable needs to refer to a
port and IP address in the form
port@ip-address.

session_buckets MI_WEBSESSIONSUB No This variable is used to define the
number of subdirectories that are
available to hash the session data if the
site is exceptionally large. It is only
required if session management is
being controlled within the same
process. The default is 100.

session_life MI_WEBSESSIONLIFE No This variable is used to define the
amount of time a session is allowed to
continue. It measures time from the last
update to the session stack (if a session
stack exists) or time from session
creation. Granularity is in seconds
(default), hours (h) or days (d) and uses
the same syntax as cache_page_life.
For more information about AppPage
caching, refer to the IBM Informix Web
DataBlade Module Administrator’s Guide.

Variable
Name of Variable in
Versions 3.3 and Previous Mandatory? Description

 (2 of 2)
C-22 IBM Informix Web DataBlade Module Application Developer’s Guide



Handling Errors with the MI_DRIVER_ERROR Variable
Handling Errors with the MI_DRIVER_ERROR Variable
Set the following Webdriver variables with the Web DataBlade Module
Administration Tool to modify the error messages seen by the browser as
different types of errors are encountered.

Variable
Name of Variable in Versions 3.3
and Previous Mandatory? Content

show_exceptions MI_WEBSHOWEXCEPTIONS No Set to on or off. When on,
Webdriver displays the database
exception returned by the WebEx-
plode() function. When off,
Webdriver displays the HTTP/1.0
500 Server error message.
Default is off.

redirect_url MI_WEBREDIRECT No Set to the URL to redirect users to if
they do not have access to the
AppPage they attempt to retrieve.

error_page MI_WEBERRORPAGE No Set to the value of the AppPage that
contains error handling routines.
Web DataBlade Module Variables C-23



Displaying Database Errors in a Browser
Displaying Database Errors in a Browser
To display database errors in your browser, instead of the generic HTTP/1.0
500 Server error error, use the Web DataBlade Module Administration
Tool to set the following Webdriver variable for your Webdriver
configuration.

Managing Cookies
Use the Web DataBlade Module Administration Tool to set the following
Webdriver variable to specify the cookies that Webdriver recognizes.

Variable
Name of Variable in Versions 3.3
and Previous Mandatory? Content

show_exceptions MI_WEBSHOWEXCEPTIONS No Use the Web DataBlade Module
Administration Tool to set the
show_exceptions variable to on or
off. When on, Webdriver displays
the database exception returned by
WebExplode(). When off,
Webdriver displays the HTTP/1.0
500 Server error message. Default
is off.

Variable

Name of Variable in
Versions 3.3 and
Previous Mandatory? Description

accept_cookie MI_WEBACCEPTCKI No Use the Web DataBlade Module Administration
Tool to set the accept_cookie Webdriver variable
to the name of cookies that your Web DataBlade
module application uses. All other cookies are
ignored by Webdriver. Multiple cookie names
are separated by commas.

If you do not use this variable, Webdriver
assumes all cookies in the browser are part of the
Web application.
C-24 IBM Informix Web DataBlade Module Application Developer’s Guide



Uploading Client Files
Uploading Client Files
Use the Web DataBlade Module Administration Tool to set the following
Webdriver variable to upload client files.

Passing Image Map Coordinates
Set the MImap variable to enable image map coordinates to be passed to
AppPages.

Two-Pass Query Processing
Use the Web DataBlade Module Administration Tool to set the following
Webdriver variable to specify that Webdriver execute a query in two parts.

Variable
Name of Variable in
Versions 3.3 and Previous Mandatory? Content

upload_directory MI_WEBUPLOADDIR No Directory on the Web server machine in
which uploaded files are placed. Default is
/tmp.

Variable Mandatory? Content

MImap Yes Set to on or off. When on, the URL
is treated as an image map, and the
values are passed as x- and y-
coordinates. Default is off.

Variable Mandatory? Description

MIqry2pass No Specifies a query to be executed in two parts.
MIqry2pass selects an object and then executes a
function. Used only in a URL. Default is set to OFF.
Web DataBlade Module Variables C-25



Using RAW Mode with Webdriver
Using RAW Mode with Webdriver
To enable RAW mode, use the Web DataBlade Module Administration Tool
to set the following Webdriver variable in your Webdriver configuration.

Caching Information in the wbExtensions Table
Use the Web DataBlade Module Administration Tool to set the extensions
Webdriver variable to control whether Webdriver caches the information
contained in the wbExtensions table.

When you are developing AppPages and possibly adding new extension
types to the wbExtensions table, you do not want Webdriver to cache this
information but instead to retrieve it each time it is needed, in case the infor-
mation has changed.

After you deploy your application to a production environment, you should
improve performance by caching the information in the wbExtensions table.
To enable extension information caching, set the extensions Webdriver
variable to cache.

Variable
Name of Variable in
Versions 3.3 and Previous Mandatory? Content

raw_password MI_RAWPASSWORD Yes Password to enable RAW mode

Variable
Name of Variable in
Versions 3.3 and Previous Mandatory? Content

extensions MI_WEBEXTENSIONS No Default setting is nocache. Set to cache to
enable caching.
C-26 IBM Informix Web DataBlade Module Application Developer’s Guide



Using the New AppPage Builder or Data Director for Web
Using the New AppPage Builder or Data Director for Web
If you use the version of AppPage Builder included in Version 4.12.UC1 or
later of the IBM Informix Web DataBlade module, or you use Data Director for
Web, to develop AppPages, you must set the schema_version Webdriver
variable to the value wb. This Webdriver variable is automatically included in
the apb2 and ddw Webdriver configurations when you install the Web
DataBlade Module Administration Tool in your database.

If you use Version 3.32 or earlier of AppPage Builder to develop AppPages,
you should not include the schema_version variable in your Webdriver
configuration.

WebExplode() Variables
This section describes the WebExplode() variables. These variables are stored
in the database as part of a Webdriver configuration.

Enabling WebExplode() Tracing
Use the Web DataBlade Module Administration Tool to set the following
variables for your Webdriver configuration to enable logging of WebEx-
plode() function trace information.

Variable
Name of Variable in
Versions 3.3 and Previous Mandatory? Content

schema_version MI_WEBSCHEMADEF No Set to wb if you are using Version 4.12.UC1
or later of the IBM Informix Web DataBlade
module or Data Director for Web.

Variable Mandatory? Content

MI_WEBEXPLEVEL Yes Enables WebExplode() function
tracing

MI_WEBEXPLOG No File to which WebExplode()
messages are written
Web DataBlade Module Variables C-27



Managing Dynamic Tags
Managing Dynamic Tags
Use the Web DataBlade Module Administration Tool to set the following
dynamic tag WebExplode() variables.

Variable Mandatory? Description

MI_WEBTAGSTABLE No Specifies the database table that the WebExplode() function
searches for the body of a dynamic tag

This variable can be set to the following two values: webTags or
wbTags.

The default value if this variable is not set is webTags.

You must set the MI_WEBTAGSTABLE variable to wbTags in
your Webdriver configuration if you developed your Web appli-
cation using the APB application included in Version 4.0 or later
of the Web DataBlade module or Version 2.0 of Data Director for
Web.

MI_WEBTAGSSQL No Specifies a user-defined SELECT statement that the WebEx-
plode() function runs to retrieve the body of a dynamic tag

Never set the MI_WEBTAGSSQL variable in your Webdriver
configuration. The variable should only be set for Web applica-
tions that were developed with Version 1.1 or earlier of Data
Director for Web.

The MI_WEBTAGSTABLE variable takes precedence over the
MI_WEBTAGSSQL variable. This means that if you have both
variables set in your Webdriver configuration, the WebExplode()
function searches for the dynamic tag in the table specified by the
MI_WEBTAGSTABLE variable.

MI_WEBTAGSCACHE No Specifies whether the WebExplode() function should cache
dynamic tags or not

This variable should be set to on to turn on caching or off to turn
off caching.

The default value is on.

Turn off dynamic tag caching when you are developing your
AppPages to ensure that you always see the latest version of the
dynamic tag and not the cached version. When you deploy your
application to a production environment, however, you should
turn on dynamic tag caching to increase the performance of your
Web application.
C-28 IBM Informix Web DataBlade Module Application Developer’s Guide



Limiting Loop Processing With the MIBLOCK Tag
Limiting Loop Processing With the MIBLOCK Tag
Use the Web DataBlade Module Administration Tool to set the
MI_LOOP_MAX variable for your Webdriver configuration to limit the
number of loops executed when you use the FOR, FOREACH, and WHILE
attributes of the MIBLOCK AppPage tag. During loop processing, if the
maximum number of loops is reached, the WebExplode() function raises an
exception and stops loop processing.

For example, assume you have set MI_LOOP_MAX to 100 in your
Webdriver configuration and you execute the following AppPage:

<?MIBLOCK WHILE=1>
We are in an infinite loop
<?/MIBLOCK>

Although logically the previous MIBLOCK statement results in an infinite
loop, processing stops as soon as 100 loops have been executed, and you
receive an error in your AppPage.

Limiting The Number Of Times an AppPage Can Call Itself
Recursively
Use the MI_WEBEXPLODE_DEPTH variable to set the maximum number
of times an AppPage can call itself recursively. You recursively call an
AppPage by explicitly executing the WebExplode() function on the AppPage
with the MISQL tag.

Use the Web DataBlade Module Administration Tool to set the
MI_WEBEXPLODE_DEPTH variable for your Webdriver configuration.

Variable Mandatory? Content

MI_LOOP_MAX No Limits the number of loops
executed when you use the FOR,
FOREACH, and WHILE attributes
of the MIBLOCK AppPage tag
Web DataBlade Module Variables C-29



Limiting The Number Of Times an AppPage Can Call Itself Recursively
For example, assume you invoke the following AppPage called
/recurse.html, passing it the name/value pair $DEPTH=10:

<?MIVAR NAME=DEPTH>$(-,$DEPTH,1)<?/MIVAR>
<?MIVAR>DEPTH : $DEPTH<?/MIVAR>

<?MISQL SQL="select WebExplode(object, 'DEPTH=$DEPTH') from wbpages
             where id = 'recurse' and path = '/' and extension = 'html'";>
$1
<?/MISQL>

This AppPage calls itself recursively. If the MI_WEBEXPLODE_DEPTH
variable has not been set, then the AppPage calls itself recursively until all
database server resources have been used. If, however, you set
MI_WEBEXPLODE_DEPTH to 100, the AppPage calls itself 100 times, and
then stops.

Variable Mandatory? Content

MI_WEBEXPLODE_DEPTH No Limits the number of times an
AppPage can call itself recursively.
C-30 IBM Informix Web DataBlade Module Application Developer’s Guide



D
Appendix
Notices
IBM may not offer the products, services, or features discussed
in this document in all countries. Consult your local IBM repre-
sentative for information on the products and services currently
available in your area. Any reference to an IBM product,
program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does
not infringe any IBM intellectual property right may be used
instead. However, it is the user’s responsibility to evaluate and
verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering
subject matter described in this document. The furnishing of this
document does not give you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information,
contact the IBM Intellectual Property Department in your
country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan



The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not
apply to you.

This information could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein; these
changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Corporation
J74/G4
555 Bailey Ave
P.O. Box 49023
San Jose, CA 95161-9023
U.S.A.

Such information may be available, subject to appropriate terms and condi-
tions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equiv-
alent agreement between us.
D-2 IBM Informix Web DataBlade Module Application Developer’s Guide



Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environ-
ments may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measure-
ments will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for
their specific environment.

Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to
change or withdrawal without notice, and represent goals and objectives
only.

This information contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names
and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language,
which illustrate programming techniques on various operating platforms.
You may copy, modify, and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested
under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for
the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.
Notices D-3



Trademarks
Each copy or any portion of these sample programs or any derivative work,
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs. © Copyright IBM Corp. (enter the
year or years). All rights reserved.

If you are viewing this information softcopy, the photographs and color illus-
trations may not appear.

Trademarks
AIX; DB2; DB2 Universal Database; Distributed Relational Database
Architecture; NUMA-Q; OS/2, OS/390, and OS/400; IBM Informix ;
C-ISAM ; Foundation.2000TM; IBM Informix  4GL; IBM Informix

DataBlade  Module; Client SDKTM; CloudscapeTM; CloudsyncTM;
IBM Informix  Connect; IBM Informix  Driver for JDBC; Dynamic
ConnectTM; IBM Informix Dynamic Scalable ArchitectureTM (DSA);
IBM Informix  Dynamic ServerTM; IBM Informix  Enterprise Gateway
Manager (Enterprise Gateway Manager); IBM Informix  Extended Parallel
ServerTM; i.Financial ServicesTM; J/FoundationTM; MaxConnectTM; Object
TranslatorTM; Red Brick Decision ServerTM; IBM Informix SE;
IBM Informix SQL; InformiXMLTM; RedBack ; SystemBuilderTM; U2TM;
UniData ; UniVerse ; wintegrate are trademarks or registered trademarks
of International Business Machines Corporation.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other
countries.

Windows, Windows NT, and Excel are either registered trademarks or trade-
marks of Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through X/Open Company Limited.

Other company, product, and service names used in this publication may be
trademarks or service marks of others.
D-4 IBM Informix Web DataBlade Module Application Developer’s Guide



Glossary
Glossary
anchor variable Variable in an AppPage whose value is based on the URL prefix
used to invoke the AppPage. You do not set the anchor variable
in your AppPage; rather, Webdriver automatically generates the
value. You can use anchor variables to link one or more App-
Pages in the same Web application.

WEB_HOME is the Web DataBlade module anchor variable.

Apache
Webdriver

The implementation of Webdriver that uses the Apache API to
connect to databases and execute AppPages.

See also Webdriver, CGI Webdriver, ISAPI Webdriver, NSAPI Web-
driver.

AppPage An HTML page that includes AppPage tags and functions that
dynamically execute SQL statements to query the database and
format the results.

AppPage Builder
(APB)

A development tool packaged with the Web DataBlade module
that allows you to create and update AppPages. APB is itself a
Web DataBlade module application made up of linked App-
Pages.

AppPage tags Tags that are provided with the Web DataBlade module and are
processed by the WebExplode() function. The tags identify ele-
ments of an HTML page and specify the structure and formatting
for that page.

CGI Webdriver The implementation of Webdriver that uses a CGI program to
connect to databases and execute AppPages.

See also Webdriver, Apache Webdriver, ISAPI Webdriver, NSAPI
Webdriver.



code set A set of unique bit patterns that are mapped to the characters contained in a
specific natural language, which include the alphabet, digits, punctuation,
and diacritical marks. There can be more than one code set for a language: for
example, the code sets for the English language include ASCII, ISO8895-1,
and Microsoft 1252. You specify the code set that your database server uses
when you set the GLS locale.

See also multibyte code set, Global Language Support (GLS), locale.

deployment Moving a Web application from a development environment to a production
environment.

directive An entry in a Web server’s configuration file, that identifies the steps in the
Web server’s request-response processes that handle HTTP transactions.
Examples of directives in Netscape’s obj.conf file are NameTrans and Ser-
vice.

dynamic tag An HTML tag that allows multiple AppPages to share AppPage segments.
For example, a TITLE dynamic tag might contain a standard title AppPage
segment common to all the AppPages that make up a particular Web appli-
cation. Each AppPage then uses the same TITLE dynamic tag for its title.

See also system dynamic tag, user-defined dynamic tag.

Global Language
Support (GLS)

An application environment that allows Informix application-programming
interfaces (APIs) and database servers to handle different languages, cultural
conventions, and code sets. Developers use the GLS libraries to manage all
string, currency, date, and time data types in their code. Using GLS, you can
add support for a new language, character set, and encoding by editing
resource files, without access to the original source code, and without
rebuilding the DataBlade module or client software.

INFORMIXDIR The Informix environment variable that specifies the directory in which
Informix products are installed.

INFORMIX-
SERVER

The Informix environment variable that specifies the name of the Informix
database server to which you want to connect.

ISAPI Webdriver The implementation of Webdriver that uses the Microsoft Windows NT Inter-
net Information Server API to connect to databases and execute AppPages.

See also Webdriver, Apache Webdriver, CGI Webdriver, NSAPI Webdriver.
2 IBM Informix Web DataBlade Module Application Developer’s Guide



large object A data object that exceeds 255 bytes in length. A large object is logically
stored in a table column but physically stored independently of the column,
because of its size. Large objects can contain non-ASCII data.

locale A set of files that define the native-language behavior of the program at run-
time. The rules are usually based on the linguistic customs of the region or
the territory. The locale can be set through an environment variable that dic-
tates output formats for numbers, currency symbols, dates, and time as well
as collation order for character strings and regular expressions.

See also Global Language Support (GLS).

MI_DRIVER
_ERROR

A variable, accessible in AppPages, that contains a description of a Web-
driver error. By querying the contents of this variable, an error-handling
AppPage can determine the exact error that occurred and take appropriate
action.

MI_WEBCONFIG A Web DataBlade module environment variable that contains the full path-
name of the web.cnf file. This variable is used by the NSAPI, ISAPI, and
Apache implementations of Webdriver to locate the file when they create
connections to an Informix database server.

multibyte code
set

A code set that is made up of both single-byte and multibyte characters.
Examples of multibyte code sets are EUC and Shift JIS.

See also code set.

multirepresenta-
tional data type

A data type whose storage location varies depending on the size of the data.

The Web DataBlade module HTML data type is an example of a multirepre-
sentational data type. The first 7500 bytes of the HTML object are stored in the
row; any portion of the HTML object that exceeds 7500 bytes is stored as a
smart large object.

NSAPI Webdriver The implementation of Webdriver that uses the Netscape API to connect to
databases and execute AppPages.

See also Webdriver, Apache Webdriver, CGI Webdriver, ISAPI Webdriver.

ONCONFIG file The file that contains parameters for configuring the Informix database
server. An example of a parameter in the ONCONFIG file is SBSPACENAME.
Glossary 3



processing
variable

A variable in an AppPage that contains processing information about the
execution of an SQL statement, such as the number of rows or columns
returned from a SELECT statement. An AppPage accesses processing vari-
ables after an MISQL tag executes its SQL statement.

RAW Mode A way to display an AppPage stored in the database without expanding the
AppPage tags. You can also display the variables in an AppPage and identify
where variable assignments are made. RAW mode is useful for debugging.

sbspace A logical storage area that contains one or more chunks that store only smart
large object data.

server-side
includes

A mechanism for including dynamic text in AppPages. Server-side includes
are special command codes that are recognized and interpreted by the Web
server; their output is placed in the AppPage before the AppPage is sent to
the browser. Server-side includes can be used, for example, to include a date
or time stamp in the text of the AppPage.

smart large
object

A large object that:

■ Is stored in an sbspace, a logical storage area that contains one or more
chunks

■ Has read, write, and seek properties similar to a UNIX file

■ Is recoverable

■ Obeys transaction isolation modes

■ Can be retrieved in segments by an application

Smart large objects include CLOB and BLOB data types.

sqlhosts file An Informix file that contains information that lets a client application locate
and connect to an Informix database server anywhere on a network.

system dynamic
tag

Dynamic tags provided by the Web DataBlade module that allow you to
reuse existing HTML to simplify the construction and maintenance of Web
applications. Examples of system dynamic tags are CHECKBOXLIST, RADI-
OLIST, and SELECTLIST.

See also dynamic tag, user-defined dynamic tag.

UDR tag See user-defined routine tag.
4 IBM Informix Web DataBlade Module Application Developer’s Guide



URL prefix Part of a URL that client applications send to the Web server to invoke HTML
pages, execute CGI programs (such as the CGI Webdriver,) call Web server
plug-ins (such as the NSAPI, Apache, or ISAPI Webdriver), and so on. The Web
server interprets the URL prefix to perform the appropriate action depending
on how you have configured your Web server.

user-defined
dynamic tag

A dynamic tag you create to reuse existing HTML to simplify the construction
and maintenance of Web applications.

See also dynamic tag, system dynamic tag.

user-defined
routine

A routine, written in one of the languages that IBM Informix Dynamic Server
supports, that provides added functionality for data types or encapsulates
application logic.

user-defined
routine tag

Tag in an AppPage that directly executes an existing user-defined routine and
places the output of the execution of the routine within the AppPage.

variable
expression

An expression in an AppPage that starts with a $ character followed by a
variable-processing function and two or more variables within parentheses.
For example, the variable expression $(+,$NUMA,$NUMB) adds the two vari-
ables $NUMA and $NUMB.

See also variable-processing function.

variable-
processing
function

An AppPage function used in a variable expression to evaluate or manipu-
late variables. For example, the variable-processing function “+” in the vari-
able expression $(+,$NUMA,$NUMB) adds the two variables $NUMA and
$NUMB.

See also variable expression.

vector variable A set of variables with the same name that are passed into the AppPage using
check boxes or the MULTIPLE attribute of selection lists.

virtual processor One of the multithreaded processes that make up the Informix database
server and are similar to the hardware processors in the computer. For exam-
ple, in the Web DataBlade module, you must add a WEB virtual processor to
use the MIEXEC tag in an AppPage.

walking window Two or more linked AppPages in which each AppPage displays a subset of
the entire set of rows returned from a SELECT statement. You can navigate
through the set of returned rows by clicking buttons on the AppPages.
Glossary 5



web.cnf file The default name of the Webdriver configuration file that describes the con-
nection between the Web server and the Informix database server.

Web DataBlade
Module
Administration
Tool

A Web DataBlade module application used to add, update, or delete Web-
driver mappings and Webdriver configurations for the database to which
you are connected.

Webdriver A client application that connects to an Informix database, at the request of a
Web server, and retrieves AppPages from a table. Webdriver passes the
retrieved AppPage to the WebExplode() function and returns the resulting
HTML to the Web server.

See also Apache Webdriver, CGI Webdriver, ISAPI Webdriver, NSAPI Webdriver.

Webdriver
configuration

The name given to a set of Webdriver variables and user-defined variables
associated with a particular Web DataBlade module application. Webdriver
configurations are stored in the WebCMConfigs system table in the database.

Webdriver
configuration file

See web.cnf file.

Webdriver
mapping

The name given to the set of Webdriver variables in a single Map section of
the web.cnf file that Webdriver uses to connect to a particular database. Web-
driver mappings have the same name as the corresponding URL prefixes
defined for a Web server and the Web DataBlade module application stored
in a database.

See URL prefix.

Webdriver
variable

A variable that Webdriver uses to connect to a database and to obtain infor-
mation about a Web DataBlade module application. There are two types of
Webdriver variables: those that reside in the web.cnf file (collectively known
as Webdriver mappings) and those that reside in the database (collectively
known as Webdriver configurations).

See also Webdriver mapping, Webdriver configuration.

WebExplode()
function

An Informix database server function that builds dynamic HTML pages
based on data stored in a database. The WebExplode() function parses App-
Pages that contain AppPage tags and dynamically builds and executes the
SQL statements embedded in the tags. The WebExplode() function returns
the HTML page to the client application, usually Webdriver.
6 IBM Informix Web DataBlade Module Application Developer’s Guide



@

Index

O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Index
Numerics
9.2x server 1-8

A
accept_cookie Webdriver

variable 13-5
Anchor tag

linking AppPages 3-12
Anchor variable,

WEB_HOME 2-10, 3-11, C-2
anchorvar Webdriver variable C-2
AND variable-processing

function 8-4
API functions 14-3
AppPage Builder B-1

adding a project using 2-4
administration features of 4-9
creating an application using 2-4
creating AppPage using 2-8
creating user-defined tag

using 2-5
creating web applications

with 4-7
description of 1-10
invoking 4-5
invoking an application

using 2-14
linking AppPages using 2-10
overview of 4-3
registering 4-4
using multimedia content

with 4-8
using URL prefix to invoke 4-6

AppPage Builder (APB) C-27

AppPage caching
Webdriver variables to

enable C-16
AppPage tags

MICOMMENT 6-49
MIDEFERRED C-19

AppPage-level security
configuring C-14
Webdriver variables to

enable C-14
AppPages

accessing Web server variables
in 5-8

and WebExplode() function 1-4,
1-5

calling recursively C-29
creating with AppPage

Builder 4-7
elements of 3-4
in architecture diagram 1-6
securing with NSAPI

Webdriver C-12
specifying largest C-9
tags 1-9
using tags and attributes in 1-5

Arithmetic variable-processing
functions 8-3, 8-10

auth_cache Webdriver
variable C-11

auth_crypt_udr Webdriver
variable C-13

AUTH_TYPE Web server
variable 5-8



O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
B
Boldface type Intro-7

C
CACHERESULTS attribute

of MISQL tag 6-6, 6-18
cache_admin Webdriver

variable 7-5, C-17
cache_admin_password Webdriver

variable C-18
cache_buckets Webdriver

variable C-20
cache_directory Webdriver

variable C-16, C-20
cache_maxsize Webdriver

variable C-20
cache_page Webdriver

variable C-16
cache_page_buckets Webdriver

variable C-16
cache_page_debug Webdriver

variable C-19
cache_page_life Webdriver

variable C-17
cache_page_timestamp Webdriver

variable C-18
Caching 6-18, C-26
CHECKBOXLIST system dynamic

tag 9-8
Client file upload 13-7
Column variables 6-7
Comment icons Intro-9
Commercial at (@) in dynamic

tags 9-19, 9-21
Common Gateway Interface

(CGI) 1-3
COND attribute

of dynamic tag 9-5
of MIBLOCK tag 6-30, 6-31
of MISQL tag 6-5
of MIVAR tag 6-27

Conditional output using variable
expressions 8-13

Conditional statements 6-29, 6-31
config_name Webdriver

variable C-5

config_password Webdriver
variable C-3

config_security Webdriver
variable C-5

config_user Webdriver
variable C-3

Connections to the database
specifying maximum C-2

connection_life Webdriver
variable C-6

connection_wait Webdriver
variable C-6

connect_as_user Webdriver
variable C-7

connect_user_max Webdriver
variable C-7

Contact information Intro-13
Cookies 13-4

converting into WebBlade
variables 13-5

setting 13-4
Counting columns 6-11
Counting rows 6-11

D
Data Director for Web 1-10, C-27
database Webdriver variable C-4
DATASET attribute

of MISQL tag 6-6
dbconnmax Webdriver

variable C-2
dbconntimeout Webdriver

variable C-3
Debugging Webdriver A-2, A-12,

C-2, C-20
debug_file Webdriver variable C-2,

C-20
debug_level Webdriver

variable C-2, C-20
DEFAULT attribute

of MISQL tag 6-6
of MIVAR tag 6-28

Default locale Intro-6
Dependencies, software Intro-5
Display repeated items 6-10
Displaying rows with no value 6-9
Documentation notes Intro-13

Double quotes
in variable expressions 8-17
in Web DataBlade module

tags 6-51
Downgrading to a 9.2x server 1-9
driverdir Webdriver variable C-2
Dynamic tags 9-3

definition of 9-3
system 9-8
user-defined 9-17
where stored 9-5

E
EC variable-processing

function 8-5
Encrypting passwords C-13
ENCTYPE attribute of FORM

tag 13-7
Enterprise replication (ER) 1-8
Entity reference

for " 6-51
for @ 9-21

Environment variables Intro-7
INFORMIXSERVER C-5

en_us.8859-1 locale Intro-6
EQ variable-processing

function 8-5
ERR attribute

of MIBLOCK tag 6-30
of MIERROR tag 6-42
of MISQL tag 6-5
of MIVAR tag 6-27

Error handling
MI_DRIVER_ERROR 5-17
MI_ERRORCODE variable 6-11,

6-41
MI_ERRORMSG variable 6-11,

6-41
MI_ERRORSTATE variable 6-11,

6-41
using ERR attribute 6-42
using generic error handler 6-43
using Webdriver 6-46

error_page Webdriver
variable 5-17, C-14, C-23

Extension
adding with APB 3-8, 4-10
2 IBM Informix Web DataBlade Module Application Developer’s Guide



O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
extensions Webdriver
variable C-26

F
File upload 13-7

Client file upload 4-3
FileToHTML() function 12-17
FIX variable-processing

function 8-5
FOREACH attribute

of MIBLOCK tag 6-30
FORM tag

linking AppPages 3-12
uploading files in an HTML

form 13-7
Formatting characters in Web

DataBlade module tags 6-52
FROM attribute

of MIBLOCK tag 6-30
FUNCTION attribute of MIFUNC

tag 7-4
Functions

API 14-3
arithmetic 8-3, 8-10
FileToHTML() 12-17
server 12-3
string 8-3
variable-processing 8-3
WebExplode() 1-4, 5-8, C-3, C-9
WebLint() 12-8
WebRelease() 12-11
WebRmtShutdown() 12-19
WebUnHTML() 12-12
WebURLDecode() 12-14
WebURLEncode() 12-15

G
Global Language Support

(GLS) Intro-6

H
HTML data type 11-3
HTTP headers 13-3

HTTPHEADER variable-
processing function 8-5, 13-3

HTTP_HOST Web server
variable 5-8

HTTP_REFERER Web server
variable 5-8

HTTP_URI Web server variable 5-8
HTTP_USER_AGENT Web server

variable 5-8

I
Icons

Important Intro-9
Tip Intro-9
Warning Intro-9

IF variable-processing function 8-5
ifx_allow_newline(’t’)

procedure 11-4
iis_nt_password Webdriver

variable C-13
iis_nt_user Webdriver

variable C-12
Image maps 13-12
IMG tag 13-12
Important paragraphs, icon

for Intro-9
INDEX attribute

of MIBLOCK tag 6-30
INDEX variable-processing

function 8-6
Informix Data Director for

Web 1-10
INFORMIXSERVER environment

variable C-5
init_sql Webdriver variable C-8
Interrupting a query C-7
Invoking AppPages

using Apache 3-9
using CGI 3-9
using ISAPI 3-9
using NSAPI 3-9

ISINT variable-processing
function 8-6

ISNUM variable-processing
function 8-6

ISO 8859-1 code set Intro-6

ISTAR
and caching 6-19

K
keepalive Webdriver variable C-8

L
Large object handles 3-15
Large objects

retrieving 3-15
uploading with Webdriver 13-9

Linking AppPages 3-11
ANCHOR tag 2-10, 3-12
FORM tag 2-10, 3-12

Locale Intro-6
Loop Processing

FOR loop 6-33
FOREACH loop 6-35
WHILE loop 6-37

LOWER variable-processing
function 8-6

lo_error_sql Webdriver
variable C-15

lo_error_zerorows Webdriver
variable C-15

lo_query_params Webdriver
variable C-15

lo_query_string Webdriver
variable C-15

M
maxcharsize Webdriver

variable C-3, C-9
max_html_size Webdriver

variable C-9
MIBLOCK tag 6-29

limiting looping C-29
loop processing 6-32

MICOMMENT tag 6-49
MIDEFERRED AppPage tag C-19
MIDEFERRED tag

defer. prefix 7-7
enable page caching with 5-9
partial page caching 7-7
Index 3



@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
MIELSE tag 6-38
MIERROR tag 6-40 to 6-48
MIEXEC tag

ERR attribute 7-10
NAME attribute 7-9
Perl program 7-9
SERVICE attribute 7-9, 7-10
user-defined attribute 7-10

MIextension Webdriver
variable 3-11

MIFUNC tag 7-3
MImap variable 13-12, C-25
MIME types 13-3
MIpagelevel Webdriver

variable C-12, C-14
MIpath Webdriver variable 3-11
MIqry2pass Webdriver

variable 13-15
MISQL tag 1-5, 6-5 to 6-15

formatting the SQL
results 6-7 to 6-14

MItypeObj Webdriver
variable 3-16

MIusergroup Webdriver
variable C-12

MIuserlevel Webdriver
variable C-12

MIusername Webdriver
variable C-12

MIuserpasswd Webdriver
variable C-12

MIusertable Webdriver
variable C-12

MIVAR tag 6-27 to 6-28
MIWEBTAGSSQL 9-7, C-28
MI_COLUMNCOUNT

variable 6-11, 6-16
MI_CURRENTROW variable 6-11,

6-16
MI_ERRORCODE variable 6-11,

6-41
MI_ERRORMSG variable 6-11,

6-41
MI_ERRORSTATE variable 6-11,

6-41
MI_LOOP_MAX WebExplode()

variable C-29
MI_NOVALUE variable 6-13
MI_NULL variable 6-13

MI_RAWPASSWORD Webdriver
variable C-26

MI_ROWCOUNT variable 6-11,
6-16

MI_SQL variable 6-11, 6-16
MI_USER_DBCONNMAX

Webdriver variable C-7
MI_USER_REMOTE Webdriver

variable C-7
MI_WEBACCEPTCKI Webdriver

variable C-24
MI_WEBACCESSLEVEL

Webdriver variable 5-8, C-14
MI_WEBAUTHCACHE Webdriver

variable C-11
MI_WEBCACHEADMIN

Webdriver variable C-17
MI_WEBCACHEDIR Webdriver

variable C-16, C-20
MI_WEBCACHEMAXLO

Webdriver variable C-20
MI_WEBCACHEPAGE Webdriver

variable C-16
MI_WEBCACHEPASSWORD

Webdriver variable C-18
MI_WEBCACHESUB Webdriver

variable C-20
MI_WEBDBCONNWAIT

Webdriver variable C-6
MI_WEBDRVLEVEL Webdriver

variable C-20
MI_WEBERRORPAGE Webdriver

variable C-14, C-23
MI_WEBEXPLEVEL variable A-6
MI_WEBEXPLODE_DEPTH

WebExplode() variable C-29
MI_WEBEXPLOG variable A-6
MI_WEBEXTENSIONS Webdriver

variable C-26
MI_WEBGROUPLEVELWebdriver

variable 5-8
MI_WEBINITIALSQL Webdriver

variable C-8
MI_WEBKEEPALIVE Webdriver

variable C-8
MI_WEBLOPARAMS Webdriver

variable C-15
MI_WEBLOQUERY Webdriver

variable C-15

MI_WEBLOSQLERROR Webdriver
variable C-15

MI_WEBLOZEROROWS
Webdriver variable C-15

MI_WEBMAXHTMLSIZE
Webdriver variable C-9

MI_WEBNTPASSWORD
Webdriver variable C-13

MI_WEBNTUSER Webdriver
variable C-12

MI_WEBPAGELIFE Webdriver
variable C-17

MI_WEBQRYTIMEOUT
Webdriver variable C-7

MI_WEBRECONNECT Webdriver
variable C-6

MI_WEBREDIRECT Webdriver
variable C-13, C-14, C-23

MI_WEBSCHEMADEF Webdriver
variable C-27

MI_WEBSESSION Webdriver
variable C-21

MI_WEBSESSIONHOME
Webdriver variable C-21

MI_WEBSESSIONLIFE Webdriver
variable C-22

MI_WEBSESSIONLOC Webdriver
variable C-22

MI_WEBSESSIONSUB Webdriver
variable C-22

MI_WEBSHOWEXCEPTIONS
variable 6-46

MI_WEBSHOWEXCEPTIONS
Webdriver variable C-23, C-24

MI_WEBTAGSCACHE 9-8, C-28
MI_WEBTAGSTABLE 9-7, C-28
MI_WEBUPLOADDIR Webdriver

variable C-25
MOD variable-processing

function 8-6
Multibyte character sets C-3, C-9
Multimedia object types 4-8

N
NAME attribute

of MISQL tag 6-5
of MIVAR tag 6-27, 6-28
4 IBM Informix Web DataBlade Module Application Developer’s Guide



O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
NC variable-processing
function 8-6

NE variable-processing
function 8-6

Non-HTML pages
retrieving 13-3

NOT variable-processing
function 8-6

NTH variable-processing
function 8-7

NXST variable-processing
function 8-7

O
Object types 4-10
OR variable-processing

function 8-7

P
parse_html_directory Webdriver

variable C-10
password Webdriver variable C-4
password_key Webdriver

variable C-4
PATH_INFO Web server

environment variable 13-12
Performance

caching 6-18
Perl programming 7-9
POSITION variable-processing

function 8-7
PREPARE attribute

of MISQL tag 6-6, 6-21
Processing variables 6-11
Program groups

Documentation notes Intro-13
Release notes Intro-13

Projects
adding 4-9
editing 4-9

Q
QUERY_STRING Web server

environment variable 13-12

QUERY_STRING Web server
variable 5-8

query_timeout Webdriver
variable C-7

Quotes
in variable expressions 8-17
in Web DataBlade module

tags 6-51

R
RADIOLIST system dynamic

tag 9-11
RAW mode A-2
raw_password Webdriver

variable A-2
Recursive calls C-29
redirect_url Webdriver

variable 5-17, C-13, C-14, C-23
Release notes, program

item Intro-13
REMOTE_ADDR Web server

variable 5-8
REMOTE_USER Web browser

variable C-7
REMOTE_USER Web server

variable 5-8
REPLACE variable-processing

function 8-8, 8-11
Replication, of data 1-8
REQUEST_METHOD Web server

variable 5-8
RESULTS attribute

of MISQL tag 6-5
RESULTS Attribute of MISQL

tag 6-15
Retrieving large objects 3-15
revert93to92.sql script 1-9
Row variables 6-7

S
schema_version Webdriver

variable C-27
Scope of variables 5-3, 12-4
Security

of Web DataBlade Module
Administration Tool C-3

SELECTLIST system dynamic
tag 9-15

Sending initial SQL statements to
the database server C-8

SEPARATE variable-processing
function 8-8, 8-11

Server functions 12-3
server Webdriver variable C-5
SERVER_PROTOCOL Web server

variable 5-8
Session Variables

session 5-13, C-21
session_buckets 5-13, C-22
session_home 5-13, C-21
session_life 5-13, C-22
session_location 5-13, C-22
setting 5-13

session_admin() function 7-6
SETVAR variable-processing

function 8-8
SGML tags 1-5, 6-3, 9-4
show_exceptions Webdriver

variable 5-17, C-23
Software dependencies Intro-5
Special characters

in dynamic tags 9-21
in variable expressions 8-17
in Web DataBlade module

tags 6-51, 6-52
Specifying a row index 6-8
Specifying largest AppPage C-9
Specifying URL-encoded

characters C-9
SQL attribute

of MISQL tag 6-5
SQL attribute of MISQL tag 6-6
STEP attribute

of MIBLOCK tag 6-30
STRFILL variable-processing

function 8-8
String variable processing

functions 8-3
STRLEN variable-processing

function 8-8
SUBSTR variable-processing

function 8-8
Syntax errors

WebLint() 12-8
Index 5



@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
System dynamic tags
CHECKBOXLIST 9-8
RADIOLIST 9-11
SELECTLIST 9-15

System requirements
database Intro-5
software Intro-5

System tables
WebConfigs C-5

System variables 6-7 to 6-14

T
TAG attribute of MIERROR

tag 6-41
Tags

CHECKBOXLIST 9-8
dynamic 9-3
FORM 13-14
IMG 13-12
MIBLOCK 6-29
MIELSE 6-38
MIERROR 6-40 to 6-48
MIEXEC 7-9
MIFUNC 7-3
MISQL 6-5 to 6-15
MIVAR 6-27 to 6-28
RADIOLIST 9-11
SELECTLIST 9-15
SGML 1-5, 6-3, 9-4
system dynamic 9-8
tracing A-6
user-defined routine (UDR) 10-3
Web DataBlade module 1-5, 1-9,

5-3, 6-3, 7-3
XML 6-23

Tip icons Intro-9
TO attribute

of MIBLOCK tag 6-30
TRACEMSG variable-processing

function 6-43, 8-8, A-6
Tracing Web DataBlade module

tags A-6
Tracing Webdriver errors C-2
TRIM variable-processing

function 8-8
Troubleshooting Webdriver A-2,

A-12

Two-pass query processing 13-15

U
UDR

user-defined routine 10-3
UNSETVAR variable-processing

function 8-8
Upgrading from a 9.2x server 1-8
Uploading client files 13-7
UPPER variable-processing

function 8-8
URL prefix 4-6
URLDECODE variable-processing

function 8-9
See also WebURLDecode function.

URLENCODE variable-processing
function 8-9

See also WebURLEncode function.
user Webdriver variable C-4
Utilities

webconfig C-3

V
Variable expressions 6-29, 6-31, 8-3
Variable-processing functions

AND 8-4
arithmetic 8-3, 8-10
CONCAT 8-4
conditional output 8-13
DEFER 8-5
EC 8-5
EQ 8-5
EVAL 8-5
EXIT 8-5
FIX 8-5
HTTPHEADER 8-5, 13-3
IF 8-5, 8-6
INDEX 8-6
ISINT 8-6
ISNOVALUE 8-6
ISNULL 8-6
ISNUM 8-6
LOWER 8-6
MOD 8-6
NC 8-6
NE 8-6

NOT 8-6
NTH 8-7
NXST 8-7
OR 8-7
PARSE-HTML 8-7
POSITION 8-7
REPLACE 8-8, 8-11
ROUND 8-8
SEPARATE 8-8, 8-11
SETVAR 8-8
STRFILL 8-8
string 8-3
STRLEN 8-8
SUBSTR 8-8
TRACEMSG 6-43, 8-8, A-6
TRIM 8-8
TRUNC 8-8
UNSETVAR 8-8
UPPER 8-8
URLDECODE 8-9
URLENCODE 8-9
VECAPPEND 8-9
VECSIZE 8-9
WEBUNHTML 8-9
XOR 8-9
XST 8-9

Variables
case sensitivity 5-3
column 6-7
conditional expression 6-29, 6-31
debug_file A-9
debug_level A-9
error_page 5-17, C-23
MI_DRIVER_ERROR 5-17
MI_LOOP_MAX C-29
MI_NOVALUE 6-13
MI_NULL 6-13
MI_WEBEXPLEVEL A-6, C-27
MI_WEBEXPLOG A-6, C-27
naming 5-3
processing 6-11
raw_password A-2, C-26
redirect_url 5-17, C-23
row 6-7
scope 5-3, 12-4
show_exceptions 5-17, 6-47, C-23,

C-24
system 6-7 to 6-14
Web DataBlade module 5-3
6 IBM Informix Web DataBlade Module Application Developer’s Guide



O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
where interpreted 5-3
where set 5-3
See also  Webdriver variables.

W
Walking window 8-15
Warning icons Intro-9
wbBinaries table 3-8, 3-9, 3-15
wbExtensions table 3-5, 3-6, 3-8,

6-23, C-26
wbInfo table 6-20
wbPages table 3-5
Web browser variables

REMOTE_USER C-7
Web DataBlade module

architecture of 1-4, 1-6
components of 1-4
description of 1-3
dynamic tags 1-9
features of 1-9
tags 1-5

Web DataBlade Module
Administration Tool

description of 1-10
securing C-3
setting Web server variables

with 5-10
user allowed to use C-3

Web server environment
variable 5-9

Web server variables
accessing in an AppPage 5-9
AUTH_TYPE 5-8
HTTP_HOST 5-8
HTTP_REFERER 5-8
HTTP_URI 5-8
HTTP_USER_AGENT 5-8
QUERY_STRING 5-8
REMOTE_ADDR 5-8
REMOTE_USER 5-8
REQUEST_METHOD 5-8
SERVER_PROTOCOL 5-8
setting with Web DataBlade

Module Administration
Tool 5-10

WebBufToHtml() function 14-8

WebClearResultsCache()
routine 6-19

webconfig utility
adding config_user Webdriver

variable with C-3
WebConfigs system table C-5
Webdriver

adding HTTP headers 13-3
coordinating interaction with

Web server C-2
database connected to C-4
debugging A-2, A-12, C-2, C-20
description of 1-4, 1-10
error handling 6-46
implementations of 1-4
interactively running A-2, A-12
passing image map

coordinates 13-12
tracing errors with C-2
troubleshooting A-2, A-12
uploading files in an HTML

form 13-7
URL encoding characters C-3,

C-9
use of term in guide 1-5
using RAW mode A-2

Webdriver variables
accept_cookie 13-5
anchorvar C-2
auth_cache C-11
auth_crypt_udr C-13
cache_admin C-17
cache_admin_password C-18
cache_buckets C-20
cache_directory C-16, C-20
cache_maxsize C-20
cache_page C-16
cache_page_buckets C-16
cache_page_debug C-19
cache_page_life C-17
cache_page_timestamp C-18
config_name C-5
config_password C-3
config_security C-5
config_user C-3
connection_life C-6
connection_wait C-6
connect_as_user C-7
connect_user_max C-7

database C-4
dbconnmax C-2
dbconntimeout C-3
debug_file C-2, C-20
debug_level C-2, C-20
driverdir C-2
error_page 5-17, C-14, C-23
extensions C-26
iis_nt_password C-13
iis_nt_user C-12
init_sql C-8
keepalive C-8
lo_error_sql C-15
lo_error_zerorows C-15
lo_query_params C-15
lo_query_string C-15
maxcharsize C-3, C-9
max_html_size C-9
MIextension 3-11
MIpagelevel C-12, C-14
MIpath 3-11
MIqry2pass 13-15
MItypeObj 3-16
MIusergroup C-12
MIuserlevel C-12
MIusername C-12
MIuserpasswd C-12
MIusertable C-12
MI_RAWPASSWORD C-26
MI_USER_DBCONNMAX C-7
MI_USER_REMOTE C-7
MI_WEBACCEPTCKI C-24
MI_WEBACCESSLEVEL 5-8,

C-14
MI_WEBAUTHCACHE C-11
MI_WEBCACHEADMIN C-17
MI_WEBCACHEDIR C-16, C-20
MI_WEBCACHEMAXLO C-20
MI_WEBCACHEPAGE C-16
MI_WEBCACHEPASSWORD

C-18
MI_WEBCACHESUB C-20
MI_WEBDBCONNWAIT C-6
MI_WEBDRVLEVEL C-20
MI_WEBERRORPAGE C-14,

C-23
MI_WEBEXTENSIONS C-26
MI_WEBGROUPLEVEL 5-8
MI_WEBINITIALSQL C-8
Index 7



@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
MI_WEBKEEPALIVE C-8
MI_WEBLOPARAMS C-15
MI_WEBLOQUERY C-15
MI_WEBLOSQLERROR C-15
MI_WEBLOZEROROWS C-15
MI_WEBMAXHTMLSIZE C-9
MI_WEBNTPASSWORD C-13
MI_WEBNTUSER C-12
MI_WEBPAGELIFE C-17
MI_WEBQRYTIMEOUT C-7
MI_WEBRECONNECT C-6
MI_WEBREDIRECT C-13, C-14,

C-23
MI_WEBSCHEMADEF C-27
MI_WEBSESSION C-21
MI_WEBSESSIONHOME C-21
MI_WEBSESSIONLIFE C-22
MI_WEBSESSIONLOC C-22
MI_WEBSESSIONSUB C-22
MI_WEBSHOWEXCEPTIONS

C-23, C-24
MI_WEBUPLOADDIR C-25
parse_html_directory C-10
password C-4
query_timeout C-7
redirect_url 5-17, C-13, C-14, C-23
schema_version C-27
server C-5
show_exceptions 5-17, C-23
user C-4

WebExplode() function 6-44, 12-4
description of 1-4, 1-5
server function 12-4
URL-encoding characters C-3,

C-9
Web server variables available

to 5-8
WebExplode() tracing A-6
WebExplode() variables

MI_LOOP_MAX C-29
MI_WEBEXPLODE_DEPTH

C-29
WebHtmlToBuf() function 14-5
WebLint() function 4-9, 12-8
WebRelease() function 12-11
WebResultsCacheSize value 6-20
WebUnHTML() function 12-12

See also WEBUNHTML variable
processing function.

WEBUNHTML variable-processing
function 8-9

See also WebUnHTML function.
WebURLDecode() function 12-14

See also URLDECODE variable
processing function.

WebURLEncode() function 12-15
See also URLENCODE variable

processing function.
WEB_HOME anchor variable C-2
WHILE attribute

of MIBLOCK tag 6-30
WINSIZE attribute of MISQL

tag 6-5, 6-15
WINSTART attribute of MISQL

tag 6-5, 6-14

X
xml extension 6-23
XMLDOC attribute

of MISQL tag 6-25
XML-Formatted Data 6-23
XMLROW attribute

of MISQL tag 6-25
XMLVERSION attribute

of MISQL tag 6-25
XOR variable-processing

function 8-9
XST variable-processing

function 8-9

Symbols
" character

in variable expressions 8-17
in Web DataBlade module

tags 6-51
& in dynamic tags 9-19
@ in dynamic tags 9-19, 9-21
8 IBM Informix Web DataBlade Module Application Developer’s Guide


	Informix Online Documentation
	Table of Contents
	Introduction
	In This Introduction
	About This Manual
	Organization of This Manual
	Types of Users
	Software Dependencies
	Assumptions About Your Locale

	Documentation Conventions
	Typographical Conventions
	Case-Sensitive Text
	Case-Insensitive Text

	Icon Conventions
	Comment Icons
	Platform Icons

	Screen-Illustration Conventions

	Additional Documentation
	Printed Documentation
	Online Documentation
	Release Notes and Documentation Notes


	IBM Welcomes Your Comments

	Overview
	In This Chapter
	What Is the Web DataBlade Module?
	Product Architecture
	Webdriver
	The WebExplode() Function
	Tags and Attributes
	Architecture Diagram

	Enterprise Replication
	Converting from a 9.2x Server
	Reverting to a 9.2x Server

	Product Features
	Before You Begin

	Web DataBlade Module Tutorial
	In This Chapter
	Overview of the Process
	Creating an Application with APB
	Step 1: Add a Project
	Step 2: Create User-Defined Dynamic Tags
	Step 3: Create the First AppPage of Your Application
	Step 4: Create the Second AppPage of Your Application
	Step 5: Create the Third AppPage of Your Application
	Step 6: Invoke the Application


	Basics of AppPage Development
	In This Chapter
	AppPage Elements
	Where AppPage Objects Are Stored
	The wbExtensions Table

	Adding a New Extension to the wbBinaries Table
	How to Invoke AppPages
	Using MIpath and MIextension

	How to Link AppPages
	Linking AppPages with the ANCHOR Tag
	Linking AppPages with the FORM Tag
	Example of Using FORM Tag Links

	How to Retrieve Large Objects
	Retrieving Large Objects By Name
	Retrieving Large Objects By Large Object Handles


	Using AppPage Builder
	In This Chapter
	Overview of AppPage Builder
	Registering AppPage Builder in Your Database
	Invoking AppPage Builder
	Using the URL Prefix Specially Created to Invoke APB
	Using Any URL Prefix

	Creating Web Applications in AppPage Builder
	Multimedia Content
	Administration Features
	Adding an Extension


	Using Variables in AppPages
	In This Chapter
	Web DataBlade Module Variables
	User-Defined Variables
	Vector Variables
	Creating and Assigning Values to Vector Variables
	Looping Through a Vector Variable
	Manipulating a Vector Variable
	Forms and Variable Vectors

	Web DataBlade Module System Variables
	Web Server and Web Browser Variables
	Session Variables
	How Session Management Assigns an ID to a Browser Instance
	Setting Session Variables
	Examples of Using Session Variables

	Error Handling with the MI_DRIVER_ERROR Variable

	Using Tags in AppPages
	In This Chapter
	AppPage Tags
	MISQL Tag
	Using System Variables to Format the SQL Results
	Specifying Column and Row Formatting Information
	Displaying Processing Information
	Specifying Replacement Values for NULL or No-Value Columns

	WINSTART Attribute
	WINSIZE Attribute
	RESULTS Attribute
	DATASET Attribute
	CACHERESULTS Attribute
	Clearing the Cache
	ISTAR and Caching Results
	Maximum Size of a Results Cache
	Disabling the Cache While Updating Tables

	SERIAL and SERIAL8 Attributes
	PREPARE Attribute
	Generating XML-Formatted Data
	Using Your Own XML Tags
	Using Attributes of the MISQL AppPage Tag


	MIVAR Tag
	NAME Attribute
	DEFAULT Attribute
	COND Attribute
	ERR Attribute

	MIBLOCK Tag
	ERR Attribute
	COND Attribute
	Loop Processing
	FOR Loop Processing
	FOREACH Loop Processing
	WHILE Loop Processing


	MIELSE Tag
	MIERROR Tag
	TAG Attribute
	ERR Attribute
	Creating a Generic Error Handler
	Creating a Specific Error Handler
	Handling Error Conditions
	Processing Errors with Webdriver

	MICOMMENT Tag
	Special Characters in AppPage Tags
	Special HTML Characters
	Special Formatting Characters


	Using Advanced AppPage Tags
	In This Chapter
	MIFUNC Tag
	FUNCTION Attribute
	DLL Attribute
	INTERNAL Attribute
	The cache_admin Variable
	The session_admin Function


	MIDEFERRED Tag
	The defer. Prefix

	The MIEXEC Tag
	SERVICE Attribute
	Using the MIEXEC Tag in an AppPage
	Examples of Using the MIEXEC Tag
	Sample Perl Program SERVE.pl


	Using Variable-Processing Functions in AppPages
	In This Chapter
	Variable-Processing Functions
	Using Variable Expressions in AppPages
	Using Arithmetic Functions in Variable Expressions
	Using SEPARATE and REPLACE in Variable Expressions
	Example of SEPARATE and REPLACE

	Using Variable Expressions to Format Output Conditionally
	Example of Conditional Output
	Example of a Walking Window


	Special Characters in Variable Expressions

	Using Dynamic Tags in AppPages
	In This Chapter
	What Are Dynamic Tags?
	Specifying Dynamic Tags in AppPages
	Where Dynamic Tags Are Stored
	Dynamic Tag WebExplode() Variables
	Using System Dynamic Tags
	CHECKBOXLIST
	RADIOLIST
	SELECTLIST

	Creating User-Defined Dynamic Tags
	Adding User-Defined Dynamic Tags with AppPage Builder
	Example of Creating a User-Defined Dynamic Tag
	Special Characters in Dynamic Tags


	Using UDR Tags in AppPages
	In This Chapter
	What Is a User-Defined Routine (UDR) Tag?
	Where Are UDR Tags Stored?
	Specifying a UDR Tag in an AppPage
	Creating a UDR Tag

	Using the HTML Data Type
	In This Chapter
	The HTML Data Type
	Functions That Use or Return the HTML Data Type
	Example of Using an HTML Data Type

	Using DataBlade Module Functions in AppPages
	In This Chapter
	WebExplode()
	WebLint()
	WebRelease()
	WebUnHTML()
	WebURLDecode()
	WebURLEncode()
	FileToHTML()
	WebRmtShutdown()


	Using Other Webdriver Features
	In This Chapter
	Adding HTTP Headers to AppPages
	Retrieving Non-HTML Pages
	Using Cookies
	Setting Cookies
	accept_cookie Webdriver Variable
	Converting Cookies into Web DataBlade Module Variables


	Uploading Client Files
	Setting the Directory
	Submitting the Form

	Example

	Passing Image Map Coordinates
	IMG Tag
	FORM Tag

	Two-Pass Query Processing

	Using DataBlade Module API Functions in AppPages
	In This Chapter
	The Web DataBlade Module API Functions
	WebHtmlToBuf()
	WebBufToHtml()


	Debugging Web DataBlade Module Applications
	AppPage Builder Schema
	Web DataBlade Module Variables
	Notices
	Glossary
	Index

