
Informix Product Family
Informix
Version 12.10

IBM Informix
Database Design and Implementation
Guide

SC27-4511-00

���

Informix Product Family
Informix
Version 12.10

IBM Informix
Database Design and Implementation
Guide

SC27-4511-00

���

Note
Before using this information and the product it supports, read the information in “Notices” on page B-1.

Edition

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1996, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Introduction . vii
About this publication . vii

Types of users . vii
Software dependencies . vii
Assumptions about your locale. vii
Demonstration database . viii

What's new in Database Design and Implementation for IBM Informix, Version 12.10 viii
Example code conventions . viii
Additional documentation . ix
Compliance with industry standards . ix

Part 1. Basics of database design and implementation

Chapter 1. Plan a database. 1-1
Select a data model for your database . 1-1
Use ANSI-compliant databases. 1-2

Differences between ANSI-compliant and non-ANSI-compliant databases 1-2
Determine if an existing database is ANSI-compliant . 1-5

Use a customized language environment for your database (GLS) 1-5

Chapter 2. Build a relational data model . 2-1
Build a data model . 2-1
Overview of the entity-relationship data model . 2-1
Identify and define principal data objects . 2-2

Discover entities . 2-2
Define the relationships . 2-4
Identify attributes . 2-9

Diagram data objects . 2-10
How to read E-R diagrams . 2-11
Telephone directory example . 2-12

Translate E-R data objects into relational constructs . 2-13
Define tables, rows, and columns . 2-13
Determine keys for tables . 2-14

Resolve relationships . 2-17
Resolve m:n relationships . 2-17
Resolve other special relationships . 2-18

Normalize a data model . 2-19
First normal form. 2-19
Second normal form . 2-20
Third normal form . 2-21
Summary of normalization rules . 2-21

Chapter 3. Select data types . 3-1
Define the domains . 3-1
Data types . 3-1

Select a data type . 3-1
Numeric types . 3-3
Chronological data types. 3-8
BOOLEAN data type . 3-11
Character data types (GLS) . 3-11
Null values . 3-15

Default values . 3-15
Check constraints . 3-16
Referential constraints . 3-16

© Copyright IBM Corp. 1996, 2013 iii

Chapter 4. Implement a relational data model 4-1
Create the database . 4-1

Use CREATE DATABASE . 4-1
Use CREATE TABLE . 4-3
Use CREATE INDEX . 4-5
Use synonyms for table names. 4-6
Use synonym chains . 4-7
Use command scripts . 4-7

Populate the database. 4-8
Move data from other IBM Informix databases . 4-9
Load source data into a table . 4-9
Perform bulk-load operations . 4-9

Part 2. Managing databases

Chapter 5. Table fragmentation strategies . 5-1
What is fragmentation? . 5-1

Why use fragmentation? . 5-2
Whose responsibility is fragmentation? . 5-2
Fragmentation and logging . 5-2

Distribution schemes for table fragmentation . 5-2
Expression-based distribution scheme . 5-3
Round-robin distribution scheme . 5-4

Create a fragmented table . 5-5
Create a new fragmented table. 5-5
Create a fragmented table from nonfragmented tables . 5-5
Rowids in a fragmented table . 5-6
Fragment smart large objects . 5-7

Modify fragmentation strategies . 5-7
Reinitialize a fragmentation strategy . 5-7
Modify fragmentation strategies . 5-8

Grant and revoke privileges on fragments . 5-9

Chapter 6. Grant and limit access to your database 6-1
Use SQL to restrict access to data . 6-1
Control access to databases . 6-1
Grant privileges . 6-2

Database-level privileges. 6-2
Ownership rights . 6-4
Table-level privileges . 6-4
Column-level privileges . 6-6
Type-level privileges . 6-8
Routine-level privileges . 6-9
Language-level privileges . 6-9
Automate privileges . 6-10
Determine current role at runtime . 6-14

Use SPL routines to control access to data . 6-14
Restrict data reads . 6-14
Restrict changes to data. 6-15
Monitor changes to data . 6-15
Restrict object creation . 6-16

Views. 6-16
Create views . 6-17
Restrictions on views . 6-19
Modify with a view . 6-20

Privileges and views. 6-23
Privileges when creating a view . 6-23
Privileges when using a view. 6-23

Chapter 7. Distributed queries . 7-1

iv IBM Informix Database Design and Implementation Guide

Overview of distributed queries . 7-1
Distributed queries across databases of one Informix instance 7-1
Distributed queries across databases of two or more Informix instances 7-1
Coordinator and participant in a distributed query . 7-2

Configure the database server to use distributed queries . 7-2
Syntax of a distributed query . 7-3

Access a remote server and database. 7-3
Valid statements for accessing remote objects . 7-3
Access remote tables . 7-4
Other remote operations . 7-5

Monitor distributed queries . 7-5
Server environment and distributed queries . 7-5
Logging-type restrictions on distributed queries . 7-6
Transaction processing . 7-6

Isolation levels . 7-6
DEADLOCK_TIMEOUT and SET LOCK MODE . 7-7
Two-phase commit and recovery . 7-7

Part 3. Object-relational databases

Chapter 8. Create and use extended data types in Informix 8-1
IBM Informix data types . 8-1

Fundamental or atomic data types . 8-2
Predefined data types. 8-2
Other predefined data types . 8-3
Extended data types . 8-3

Smart large objects. 8-5
BLOB data type. 8-5
CLOB data type . 8-6
Use smart large objects . 8-6
Copy smart large objects . 8-7

Complex data types . 8-7
Collection data types . 8-8
Named row types . 8-12
Unnamed row types . 8-17

Chapter 9. Type and table inheritance . 9-1
What is inheritance? . 9-1
Type inheritance . 9-1

Define a type hierarchy . 9-1
Routine overloading for types in a type hierarchy . 9-3
Inheritance and type substitutability . 9-4
Drop named row types from a type hierarchy . 9-4

Table inheritance . 9-5
Relationship between type and table hierarchies . 9-5
Define a table hierarchy . 9-6
Inheritance of table behavior in a table hierarchy . 9-7
Modify table behavior in a table hierarchy . 9-8
SERIAL types in a table hierarchy . 9-9
Add a new table to a table hierarchy . 9-10
Drop a table in a table hierarchy . 9-11
Altering the structure of a table in a table hierarchy . 9-11
Query tables in a table hierarchy. 9-11
Create a view on a table in a table hierarchy. 9-12

Chapter 10. Create and use user-defined casts 10-1
What is a cast? . 10-1

User-defined casts . 10-1
Invoke casts . 10-2
Restrictions on user-defined casts . 10-2

Contents v

Cast row types . 10-3
Cast between named and unnamed row types . 10-3
Cast between unnamed row types . 10-4
Cast between named row types . 10-4
Explicit casts on fields . 10-4
Cast individual fields of a row type . 10-6

Cast collection data types . 10-6
Restrictions on collection-type conversions . 10-6
Collections with different element types . 10-7
Convert relational data to a MULTISET collection . 10-7

Cast distinct data types . 10-8
Explicit casts with distinct types . 10-8
Cast between a distinct type and its source type . 10-8
Add and drop casts on a distinct type . 10-9

Cast to smart large objects . 10-10
Create cast functions for user-defined casts . 10-10

An example of casting between named row types . 10-10
An example of casting between distinct data types . 10-11
Multilevel casting . 10-12

Part 4. Appendixes

Appendix. Accessibility . A-1
Accessibility features for IBM Informix products . A-1

Accessibility features . A-1
Keyboard navigation . A-1
Related accessibility information . A-1
IBM and accessibility. A-1

Dotted decimal syntax diagrams . A-1

Notices . B-1
Trademarks . B-3

Index . X-1

vi IBM Informix Database Design and Implementation Guide

Introduction

About this publication
This publication provides information to help you design, implement, and manage
your IBM® Informix® databases. It includes data models that illustrate different
approaches to database design and shows you how to use structured query
language (SQL) to implement and manage your databases.

This publication is one of several publications that discuss the IBM Informix
implementation of SQL. The IBM Informix Guide to SQL: Tutorial shows how to use
basic and advanced SQL and Stored Procedure Language (SPL) routines to access
and manipulate the data in your databases. The IBM Informix Guide to SQL: Syntax
contains all the syntax descriptions for SQL and SPL. The IBM Informix Guide to
SQL: Reference provides reference information for aspects of SQL other than the
language statements.

Types of users
This publication is written for the following users:
v Database administrators
v Database server administrators
v Database-application programmers

This publication assumes that you have the following background:
v A working knowledge of your computer, your operating system, and the utilities

that your operating system provides
v Some experience working with relational databases or exposure to database

concepts
v Some experience with computer programming

Software dependencies
This publication is written with the assumption that you are using IBM Informix,
Version 12.10.

Assumptions about your locale
IBM Informix products can support many languages, cultures, and code sets. All
the information related to character set, collation, and representation of numeric
data, currency, date, and time is brought together in a single environment, called a
Global Language Support (GLS) locale.

The examples in this publication are written with the assumption that you are
using the default locale, en_us.8859-1. This locale supports U.S. English format
conventions for date, time, and currency. In addition, this locale supports the ISO
8859-1 code set, which includes the ASCII code set plus many 8-bit characters such
as é, è, and ñ.

If you plan to use nondefault characters in your data or your SQL identifiers, or if
you want to conform to the nondefault collation rules of character data, you need
to specify the appropriate nondefault locale.

© Copyright IBM Corp. 1996, 2013 vii

For instructions on how to specify a nondefault locale, additional syntax, and other
considerations related to GLS locales, see the IBM Informix GLS User's Guide.

Demonstration database
The DB-Access utility, provided with the database server products, includes one or
more of the following demonstration databases:
v The stores_demo database illustrates a relational schema with information about

a fictitious wholesale sporting-goods distributor. Many examples in IBM
Informix publications are based on the stores_demo database.

v The sales_demo database illustrates a dimensional schema for data-warehousing
applications. For conceptual information about dimensional data modeling, see
Part 4 of this IBM Informix Database Design and Implementation Guide.

v The superstores_demo database illustrates an object-relational schema. The
superstores_demo database contains examples of extended data types, type and
table inheritance, and user-defined routines.

For information about how to create and populate the demonstration databases,
see the IBM Informix DB-Access User's Guide. For descriptions of the databases and
their contents, see the IBM Informix Guide to SQL: Reference.

The scripts that you use to install the demonstration databases reside in the
$INFORMIXDIR/bin directory on UNIX platforms and in the %INFORMIXDIR%\bin
directory in Windows environments.

What's new in Database Design and Implementation for IBM Informix,
Version 12.10

This publication includes information about new features and changes in existing
functionality.

For a complete list of what's new in this release, go to http://pic.dhe.ibm.com/
infocenter/informix/v121/topic/com.ibm.po.doc/new_features_ce.htm.

Table 1. What's New in IBM Informix Database Design and Implementation Guide for version 12.10.xC1

Overview Reference

Distributed query support for non-root installations of
Informix

You can run distributed queries with non-root
installations of Informix. Set trusted users with the
REMOTE_USERS_CFG configuration parameter or set
trusted hosts with the or REMOTE_SERVER_CFG
configuration parameters. Previously, distributed queries
required servers with root privileges.

“Configure the database server to use distributed queries”
on page 7-2

Example code conventions
Examples of SQL code occur throughout this publication. Except as noted, the code
is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by
semicolons. For instance, you might see the code in the following example:

viii IBM Informix Database Design and Implementation Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.po.doc/new_features_ce.htm
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.po.doc/new_features_ce.htm

CONNECT TO stores_demo
...

DELETE FROM customer
WHERE customer_num = 121

...

COMMIT WORK
DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules for
that product. For example, if you are using an SQL API, you must use EXEC SQL
at the start of each statement and a semicolon (or other appropriate delimiter) at
the end of the statement. If you are using DB–Access, you must delimit multiple
statements with semicolons.

Tip: Ellipsis points in a code example indicate that more code would be added in
a full application, but it is not necessary to show it to describe the concept being
discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the documentation for your product.

Additional documentation
Documentation about this release of IBM Informix products is available in various
formats.

You can access Informix technical information such as information centers,
technotes, white papers, and IBM Redbooks® publications online at
http://www.ibm.com/software/data/sw-library/.

Compliance with industry standards
IBM Informix products are compliant with various standards.

IBM Informix SQL-based products are fully compliant with SQL-92 Entry Level
(published as ANSI X3.135-1992), which is identical to ISO 9075:1992. In addition,
many features of IBM Informix database servers comply with the SQL-92
Intermediate and Full Level and X/Open SQL Common Applications Environment
(CAE) standards.

The IBM Informix Geodetic DataBlade® Module supports a subset of the data types
from the Spatial Data Transfer Standard (SDTS)—Federal Information Processing
Standard 173, as referenced by the document Content Standard for Geospatial
Metadata, Federal Geographic Data Committee, June 8, 1994 (FGDC Metadata
Standard).

Introduction ix

http://www.ibm.com/software/data/sw-library/

x IBM Informix Database Design and Implementation Guide

Part 1. Basics of database design and implementation

© Copyright IBM Corp. 1996, 2013

IBM Informix Database Design and Implementation Guide

Chapter 1. Plan a database

This chapter describes several issues that a database administrator (DBA) must
understand to effectively plan for a database. It contains information about
choosing a data model for your database, using ANSI-compliant databases, and
using a customized language environment for your database.

Select a data model for your database
Before you create a database with an IBM Informix product, you must decide what
type of data model you want to use to design your database. This manual
describes the following database models:

Relational data model
This data model typifies database design for online transaction processing
(OLTP). The purpose of OLTP is to process a large number of small
transactions without losing any of them. An OLTP database is designed to
handle the day-to-day requirements of a business, and database
performance is tuned for those requirements. Part 1, “Basics of database
design and implementation” of this manual, describes how to build and
implement a relational data model for OLTP. Part 2, “Managing databases,”
contains information about how to manage your databases.

Object-relational data model
IBM Informix supports object-relational databases that employ basic
relational design principles, but include features such as extended data
types, user-defined routines, user-defined casts, and user-defined
aggregates to extend the functionality of relational databases. Part 3,
“Object-relational databases” of this manual, contains information about
how to use the extensible features of Informix to extend the kinds of data
you can store in your database and to provide greater flexibility in how
you organize and access your data.

Dimensional data model
This data model is typically used to build data marts, which are a type of
data warehouse. In a data-warehousing environment, databases are
optimized for data retrieval and analysis. This type of informational
processing is known as online analytical processing (OLAP) or
decision-support processing.

The remainder of this chapter describes the implications of these decisions and
summarizes how the decisions that you make affect your database.

© Copyright IBM Corp. 1996, 2013 1-1

Related concepts:

Dimensional databases (Data Warehouse Guide)
Related tasks:

Building a dimensional data model (Data Warehouse Guide)

Use ANSI-compliant databases
You create an ANSI-compliant database when you use the MODE ANSI keywords
in the CREATE DATABASE statement. However, creating an ANSI-compliant
database does not ensure that this database remains ANSI-compliant. If you take a
non-ANSI action (such as CREATE INDEX) on an ANSI database, you will receive
a warning, but the application program does not forbid the action.

You might want to create an ANSI-compliant database for the following reasons:
v Privileges and access to objects

ANSI rules govern privileges and access to objects such as tables and synonyms.
v Name isolation

The ANSI table-naming scheme allows different users to create tables in a
database without name conflicts.

v Transaction isolation
v Data recovery

ANSI-compliant databases enforce unbuffered logging and implicit transactions
for IBM Informix.

You can use the same SQL statements with both ANSI-compliant databases and
non-ANSI-compliant databases.

Differences between ANSI-compliant and non-ANSI-compliant
databases

Databases that you designate as ANSI-compliant and databases that are not
ANSI-compliant behave differently in the following areas:

Transactions
A transaction is a collection of SQL statements that are treated as a single unit of
work. All the SQL statements that you issue in an ANSI-compliant database are
automatically contained in transactions. With a database that is not
ANSI-compliant, transaction processing is an option.

In a database that is not ANSI-compliant, a transaction is enclosed by a BEGIN
WORK statement and a COMMIT WORK or a ROLLBACK WORK statement.
However, in an ANSI-compliant database, the BEGIN WORK statement is
unnecessary, because all statements are automatically contained in a transaction.
You are required to indicate only the end of a transaction with a COMMIT WORK
or ROLLBACK WORK statement.

For more information about transactions, see Chapter 4, “Implement a relational
data model,” on page 4-1 and the IBM Informix Guide to SQL: Tutorial.

Transaction logging
ANSI-compliant databases run with unbuffered transaction logging. In an
ANSI-compliant database, you cannot change the logging mode to buffered
logging, and you cannot turn logging off.

1-2 IBM Informix Database Design and Implementation Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.whse.doc/ids_whse_100.htm#ids_whse_100
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.whse.doc/ids_ddi_360.htm#ids_ddi_360

Databases of IBM Informix that are not ANSI-compliant can run with either
buffered logging or unbuffered logging. Unbuffered logging provides more
comprehensive data recovery, but buffered logging provides better performance.

For more information, see the description of the CREATE DATABASE statement in
the IBM Informix Guide to SQL: Syntax.

Owner naming
In an ANSI-compliant database, owner naming is enforced. When you supply an
object name in an SQL statement, ANSI standards require that the name include
the prefix owner, unless you are the owner of the object. The combination of owner
and name must be unique in the database. If you are the owner of the object, the
database server supplies your user name as the default.

Databases that are not ANSI-compliant do not enforce owner naming. For more
information, see the Owner Name segment in the IBM Informix Guide to SQL:
Syntax.

Privileges on objects
ANSI-compliant databases and non-ANSI-compliant databases differ as to which
users are granted table-level privileges by default when a table in a database is
created. ANSI standards specify that the database server grants only the table
owner (and the DBA if they are not the same user) any table-level privileges. In a
database that is not ANSI-compliant, however, privileges are granted to PUBLIC.
In addition, the database server provides two table-level privileges, Alter and
Index, that are not included in the ANSI standards.

To run a user-defined routine, you must have the Execute privilege for that
routine. When you create an owner-privileged procedure for an ANSI-compliant
database, only the owner of the user-defined routine has the Execute privilege.
When you create an owner-privileged routine in a database that is not
ANSI-compliant, the database server grants the Execute privilege to PUBLIC by
default.

Setting the NODEFDAC environment variable to 'yes' causes a database that is not
ANSI-compliant to emulate the behavior of an ANSI-compliant database in not
granting privileges to PUBLIC automatically when a user creates a table or an
owner-privileged routine. For more information about privileges, see Chapter 6,
“Grant and limit access to your database,” on page 6-1 and the description of the
GRANT statement in the IBM Informix Guide to SQL: Syntax.

Default isolation level
The database isolation level specifies the degree to which your program is isolated
from the concurrent actions of other programs. The default isolation level for all
ANSI-compliant databases is Repeatable Read. The default isolation level for
non-ANSI-compliant databases that support transaction logging is Committed
Read. The default isolation level for non-ANSI-compliant databases that do not use
transaction logging is Uncommitted Read. For information about isolation levels,
see the IBM Informix Guide to SQL: Tutorial and the description of the SET
TRANSACTION and SET ISOLATION statements in the IBM Informix Guide to
SQL: Syntax.

Character data types
If a database is not ANSI-compliant, you get no error if a character field (CHAR,
CHARACTER, LVARCHAR, NCHAR, NVARCHAR, VARCHAR, CHARACTER
VARYING) receives a string that is longer than the specified length of the field.

Chapter 1. Plan a database 1-3

The database server truncates the extra characters without resulting in an error
message. Thus the semantic integrity of data for a CHAR(n) column or variable is
not enforced when the value inserted or updated exceeds n bytes.

In an ANSI-compliant database, you get an error if any character field (CHAR,
CHARACTER, LVARCHAR, NCHAR, NVARCHAR, VARCHAR, CHARACTER
VARYING) receives a string that is longer than the specified width of the field.

DECIMAL data type
If a database is not ANSI-compliant, a DECIMAL data type that you declare with a
precision but no scale can store floating point values of the specified precision. If
you specify neither precision nor scale, the default precision is 16.

In an ANSI-compliant database, all DECIMAL values are fixed-point and must be
declared with an explicit precision. If you specify no scale for the DECIMAL data
type, the scale = 0, and only integer values can be stored.

Escape characters
In an ANSI-compliant database, escape characters can only escape the special
significance of the percent (%) and underscore (_) characters. You can also use an
escape character to escape itself. For more information about escape characters, see
the Condition segment in the IBM Informix Guide to SQL: Syntax.

Cursor behavior
If a database is not ANSI-compliant, you must use the FOR UPDATE keywords
when you declare an update cursor for a SELECT statement. The SELECT
statement must also meet the following conditions:
v It selects from a single table.
v It does not include any aggregate functions.
v It does not include the DISTINCT, GROUP BY, INTO TEMP, ORDER BY,

UNION, or UNIQUE clauses and keywords.

In ANSI-compliant databases, the FOR UPDATE keywords are implicit when you
declare a cursor, and all cursors that meet the restrictions that the preceding list
describes are potentially update cursors. You can specify that a cursor is read-only
with the FOR READ ONLY keywords on the DECLARE statement.

For more information, see the description of the DECLARE statement in the IBM
Informix Guide to SQL: Syntax.

SQLCODE field of the SQL communications area
If no rows satisfy the search criteria of a DELETE, an INSERT INTO tablename
SELECT, a SELECT...INTO TEMP, or an UPDATE statement, the database server
sets SQLCODE to 100 if the database is ANSI-compliant and 0 if the database is
not ANSI-compliant.

For more information, see the descriptions of SQLCODE in the IBM Informix Guide
to SQL: Tutorial.

Synonym behavior
Synonyms are always private in an ANSI-compliant database. If you attempt to
create a public synonym or use the PRIVATE keyword to designate a private
synonym in an ANSI-compliant database, you receive an error.

For more information, see the description of the CREATE SYNONYM statement in
the IBM Informix Guide to SQL: Syntax.

1-4 IBM Informix Database Design and Implementation Guide

Determine if an existing database is ANSI-compliant
The following list describes two methods to determine whether a database is
ANSI-compliant:
v From the sysmaster database you can execute the following statement:

SELECT name,is_ansi FROM sysmaster:sysdatabases

The query returns the value 1 for ANSI-compliant databases and 0 for
non-ANSI-compliant databases for each database on your database server.

v If you are using an SQL API such as IBM Informix ESQL/C, you can test the
SQL Communications Area (SQLCA). Specifically, the third element in the
SQLCAWARN structure contains a W immediately after you open an
ANSI-compliant database with the DATABASE or CONNECT statement. For
information about SQLCA, see the IBM Informix Guide to SQL: Tutorial or your
SQL API manual.

Use a customized language environment for your database (GLS)
Global Language Support (GLS) permits you to use different locales. A GLS locale
is an environment that has defined conventions for a particular language or
culture.

By default, IBM Informix products use the U.S. English ASCII code set and
perform in the U.S. English environment with ASCII collation order. Set your
environment to accommodate a nondefault locale if you plan to use any of the
following functions:
v Non-ASCII characters in the data
v Non-ASCII characters in user-specified object names
v Conformity with the sorting and collation order of a non-default code set
v Culture-specific collation and sorting orders, such as those used in dictionaries

or phone books

IBM Informix supports the UTF-8 Unicode locale. Unlike other locales, UTF-8
enables a single database to store character strings from two or more natural
languages that use dissimilar code sets, such as the English, Russian, and Japanese
languages.

For descriptions of GLS environment variables and for detailed information about
how to implement non-default locales, see the IBM Informix GLS User's Guide.

Chapter 1. Plan a database 1-5

1-6 IBM Informix Database Design and Implementation Guide

Chapter 2. Build a relational data model

The first step in creating a relational database is to construct a data model: a
precise, complete definition of the data you want to store. This chapter provides an
overview of one way to model the data. For information about defining
column-specific properties of a data model, see Chapter 3, “Select data types,” on
page 3-1. To learn how to implement the data model that this chapter describes,
see Chapter 4, “Implement a relational data model,” on page 4-1.

To understand the material in this chapter, a basic understanding of SQL and
relational database theory are necessary.

Build a data model
You already have some idea about the type of data in your database and how that
data must be organized. This information is the beginning of a data model.
Building a data model with formal notation has the following advantages:
v You think through the data model completely.

A mental model often contains unexamined assumptions; when you formalize
the design, you discover these assumptions.

v The design is easier to communicate to other people.
A formal statement makes the model explicit, so that others can return
comments and suggestions in the same form.

Overview of the entity-relationship data model
More than one formal method for data modeling exists. Most methods force you to
be thorough and precise. If you know a method, by all means use it.

This chapter presents a summary of the entity-relationship (E-R) data model. The
E-R data-modeling method follows these steps:
1. Identify and define the principal data objects (entities, relationships, and

attributes).
2. Diagram the data objects using the E-R approach.
3. Translate the E-R data objects into relational constructs.
4. Resolve the logical data model.
5. Normalize the logical data model.

Steps 1 through 5 are explained in this chapter. Chapter 4, “Implement a relational
data model,” on page 4-1 contains information about the final step of converting
your logical data model to a physical schema.

The end product of data modeling is a fully-defined database design encoded in a
diagram similar to Figure 2-21 on page 2-20, which shows the final set of tables for
a personal telephone directory. The personal telephone directory is an example
developed in this chapter. It is used rather than the demonstration database
because it is small enough to be developed completely in one chapter but large
enough to show the entire method.

© Copyright IBM Corp. 1996, 2013 2-1

Identify and define principal data objects
To create a data model, you first identify and define the principal data objects:
entities, relationships, and attributes.

Discover entities
An entity is a principal data object that is of significant interest to the user. It is
usually a person, place, thing, or event to be recorded in the database. If the data
model were a language, entities would be nouns. The demonstration database
provided with your software contains the following entities:
v customer

v orders

v items

v stock

v catalog

v cust_calls

v call_type

v manufact

v state

Select possible entities
You can probably list several entities for your database immediately. Make a
preliminary list of all the entities you can identify. Interview the potential users of
the database for their opinions about what must be recorded in the database.
Determine basic characteristics for each entity, such as “at least one address must
be associated with a name.” All the decisions you make about the entities become
your business rules. The telephone directory example on page Figure 2-1 on page
2-3 provides some of the business rules for the example in this chapter.

Later, when you normalize your data model, some of the entities can expand or
become other data objects. For more information, see “Normalize a data model” on
page 2-19.

List of entities
When the list of entities seems complete, check the list to make sure that each
entity has the following qualities:
v It is significant.

List only entities that are important to your database users and that are worth
the trouble and expense of computer tabulation.

v It is generic.
List only types of things, not individual instances. For instance, symphony might
be an entity, but Beethoven's Fifth would be an entity instance or entity
occurrence.

v It is fundamental.
List only entities that exist independently and do not require anything else to
explain them. Anything you might call a trait, a feature, or a description is not
an entity. For example, a part number is a feature of the fundamental entity called
part. Also, do not list things that you can derive from other entities; for example,
avoid any sum, average, or other quantity that you can calculate in a SELECT
expression.

v It is unitary.

2-2 IBM Informix Database Design and Implementation Guide

Be sure that each entity you name represents a single class. It cannot be
separated into subcategories, each with its own features. In the telephone
directory example in Figure 2-1, the telephone number, an apparently simple
entity, actually consists of three categories, each with different features.

These choices are neither simple nor automatic. To discover the best choice of
entities, you must think carefully about the nature of the data you want to store.
Of course, that is exactly the point of a formal data model. The following section
describes the telephone directory example in detail.

Telephone directory example
Suppose that you create a database for a personal telephone directory. The
database model must record the names, addresses, and telephone numbers of
people and organizations that the user requires.

First define the entities. Look carefully at a page from a telephone directory to
identify the entities that it contains. The following figure shows a sample page
from a telephone directory.

The physical form of the existing data can be misleading. Do not let the layout of
pages and entries in the telephone directory mislead you into trying to specify an
entity that represents one entry in the book: an alphabetized record with fields for
name, number, and address. You want to model the data, not the medium.

Generic and significant entities: At first glance, the entities that are recorded in a
telephone directory include the following items:

Figure 2-1. Partial page from a telephone directory

Chapter 2. Build a relational data model 2-3

v Names (of persons and organizations)
v Addresses
v Telephone numbers

Do these entities meet the earlier criteria? They are clearly significant to the model
and are generic.

Fundamental entities: A good test is to ask if an entity can vary in number
independently of any other entity. A telephone directory sometimes lists people
who have no number or current address (people who move or change jobs) and
also can list both addresses and numbers that more than one person uses. All three
of these entities can vary in number independently; this fact strongly suggests that
they are fundamental, not dependent.

Unitary entities: Names can be split into personal names and corporate names.
You decide that all names should have the same features in this model; that is, you
do not plan to record different information about a company than you would
record about a person. Likewise, you decide that only one kind of address exists;
you are not required to treat home addresses differently from business addresses.

However, you also realize that more than one kind of telephone number exists.
Voice numbers are answered by a person, fax numbers connect to a fax machine,
and modem numbers connect to a computer. You decide that you want to record
different information about each kind of number, so these three types are different
entities.

For the personal telephone directory example, you decide that you want to keep
track of the following entities:
v Name
v Address (mailing)
v Telephone number (voice)
v Telephone number (fax)
v Telephone number (modem)

Diagram entities
Later in this chapter you can learn how to use the E-R diagrams. For now, create a
separate, rectangular box for each entity in the telephone directory example, as the
following figure shows. “Diagram data objects” on page 2-10 shows how to put the
entities together with relationships.

Define the relationships
After you select your database entities, you must consider the relationships
between them. Relationships are not always obvious, but all the ones worth
recording must be found. The only way to ensure that all the relationships are
found is to list all possible relationships exhaustively. Consider every pair of
entities A and B and ask, “What is the relationship between an A and a B?”

Figure 2-2. Entities in the personal telephone directory example

2-4 IBM Informix Database Design and Implementation Guide

A relationship is an association between two entities. Usually, a verb or preposition
that connects two entities implies a relationship. A relationship between entities is
described in terms of connectivity, existence dependency, and cardinality.

Connectivity
Connectivity refers to the number of entity instances. An entity instance is a
particular occurrence of an entity. The following figure shows that the three types
of connectivity are one-to-one (written 1:1), one-to-many (written 1:n), and
many-to-many (written m:n).

For instance, in the telephone directory example, an address can be associated with
more than one name. The connectivity for the relationship between the address
and name entities is one-to-many (1:n).

Existence dependency
Existence dependency describes whether an entity in a relationship is optional or
mandatory. Analyze your business rules to identify whether an entity must exist in
a relationship. For example, your business rules might dictate that an address must
be associated with a name. Such an association indicates a mandatory existence
dependency for the relationship between the name and address entities. An
example of an optional existence dependency can be a business rule that says a
person might or might not have children.

Cardinality
Cardinality places a constraint on the number of times an entity can appear in a
relationship. The cardinality of a 1:1 relationship is always one. But the cardinality
of a 1:n relationship is open; n can be any number. If you must place an upper
limit on n, you specify a cardinality for the relationship. For instance, in a store
sale example, you can limit the number of sale items that a customer can purchase
at one time. You usually use your application program or stored procedure
language (SPL) to place cardinality constraints.

Discover the relationships
A convenient way to discover the relationships is to prepare a matrix that names
all the entities on the rows and again on the columns. The matrix in Figure 2-4 on
page 2-6 reflects the entities for the personal telephone directory.

Figure 2-3. Connectivity in relationships

Chapter 2. Build a relational data model 2-5

You can ignore the shaded portion of the matrix. You must consider the diagonal
cells; that is, you must ask the question, “What is the relationship between an A
and another A?” In this model, the answer is always none. No relationship exists
between a name and a name or an address and another address, at least none that
you are required to record in this model. When a relationship exists between an A
and another A, you have found a recursive relationship. (See “Resolve other special
relationships” on page 2-18.)

For all cells for which the answer is clearly none, write none in the matrix.
Figure 2-5 shows the current matrix.

Although no entities relate to themselves in this model, this situation is not always
true in other models. A typical example is an employee who is the manager of
another employee. Another example occurs in manufacturing, when a part entity is
a component of another part.

In the remaining cells, write the connectivity relationship that exists between the
entity on the row and the entity on the column. The following kinds of
relationships are possible:

Figure 2-4. A matrix that reflects the entities for a personal telephone directory

Figure 2-5. A matrix with initial relationships included

2-6 IBM Informix Database Design and Implementation Guide

v One-to-one (1:1), in which not more than one entity A exists for one entity B and
not more than one B for one A.

v One-to-many (1:n), in which more than one entity A never exists, but several
entities B can be related to A (or vice versa).

v Many-to-many (m:n), in which several entities A can be related to one B and
several entities B can be related to one A.

One-to-many relationships are the most common. The telephone directory model
shows one-to-many and many-to-many relationships.

As Figure 2-5 on page 2-6 shows, the first unfilled cell represents the relationship
between names and addresses. What connectivity lies between these entities? You
might ask yourself, “How many names can be associated with an address?” You
decide that a name can have zero or one address but no more than one. You write
0-1 opposite name and below address, as Figure 2-6 shows.

Ask yourself how many addresses can be associated with a name. You decide that
an address can be associated with more than one name. For example, you can
know several people at one company or more than two people who live at the
same address.

Can an address be associated with zero names? That is, should it be possible for an
address to exist when no names use it? You decide that yes, it can. Below address
and opposite name, you write 0-n, as Figure 2-7 shows.

If you decide that an address cannot exist unless it is associated with at least one
name, you write 1-n instead of 0-n.

When the cardinality of a relationship is limited on either side to 1, it is a 1:n
relationship. In this case, the relationship between names and addresses is a 1:n
relationship.

Figure 2-6. Relationship between name and address

Figure 2-7. Relationship between address and name

Chapter 2. Build a relational data model 2-7

Now consider the next cell in Figure 2-5 on page 2-6: the relationship between a
name and a voice number. How many voice numbers can a name be associated
with, one or more than one? When you look at your telephone directory, you see
that you have often noted more than one telephone number for a person. A busy
salesperson might have a home number, an office number, a paging number, and a
car phone number. But you might also have names without associated numbers.
You write 0-n opposite name and below number (voice), as Figure 2-8 shows.

What is the other side of this relationship? How many names can be associated
with a voice number? You decide that only one name can be associated with a
voice number. Can a number be associated with zero names? You decide and are
not required to record a number unless someone uses it. You write 1 under
number (voice) and opposite name, as Figure 2-9 shows.

To fill out the rest of the matrix in the same fashion, take the following factors into
account:
v A name can be associated with more than one fax number; for example, a

company can have several fax machines. Conversely, a fax number can be
associated with more than one name; for example, several people can use the
same fax number.

v A modem number must be associated with exactly one name. (This is an
arbitrary decree to complicate the example; accept it as a requirement of the
design.) However, a name can have more than one associated modem number;
for example, a company computer can have several dial-up lines.

v Although some relationship exists between a voice number and an address, a
modem number and an address, and a fax number and an address in the real
world, none of these relationships must be recorded in this model. An indirect
relationship already exists through name.

Figure 2-10 on page 2-9 shows a completed matrix.

Figure 2-8. Relationship between name and number

Figure 2-9. Relationship between number and name

2-8 IBM Informix Database Design and Implementation Guide

Other decisions that the matrix reveals are that no relationships exist between a fax
number and a modem number, between a voice number and a fax number, or
between a voice number and a modem number.

You might disagree with some of these decisions (for example, that a relationship
between voice numbers and modem numbers is not supported). For the sake of
this example, these are our business rules.

Diagram relationships
For now, save the matrix that you created in this section. You will learn how to
create an E-R diagram in “Diagram data objects” on page 2-10.

Identify attributes
Entities contain attributes, which are characteristics or modifiers, qualities, amounts,
or features. An attribute is a fact or nondecomposable piece of information about
an entity. Later, when you represent an entity as a table, its attributes are added to
the model as new columns.

You must identify the entities before you can identify the database attributes. After
you determine the entities, ask yourself, “What characteristics am I required to
know about each entity?” For example, in an address entity, you probably require
information about street, city, and zip code. Each of these characteristics of the
address entity becomes an attribute.

Select attributes for entities
To select attributes, determine which ones have the following qualities:
v They are significant.

Include only attributes that are useful to the database users.
v They are direct, not derived.

An attribute that can be derived from existing attributes (for instance, through
an expression in a SELECT statement) should not be part of the model. Derived
data complicates the maintenance of a database.
At a later stage of the design, you can consider adding derived attributes to
improve performance, but at this stage exclude them. For information about how
to improve the performance of your database server, see your IBM Informix
Performance Guide.

Figure 2-10. A completed matrix for a telephone directory

Chapter 2. Build a relational data model 2-9

v They are nondecomposable.
An attribute can contain only single values, never lists or repeating groups.
Composite values must be separated into individual attributes.

v They contain data of the same type.
For example, you would want to enter only date values in a birthday attribute,
not names or telephone numbers.

The rules for how to define attributes are the same as those for how to define
columns. For information about how to define columns, see “Place constraints on
columns” on page 2-14.

The following attributes are added to the telephone directory example to produce
the diagram that Figure 2-15 on page 2-12 shows:
v Street, city, state, and zip code are added to the address entity.
v Birthdate, e-mail address, anniversary date, and children's first names are added

to the name entity.
v Type is added to the voice entity to distinguish car phones, home phones, and

office phones. A voice number can be associated with only one voice type.
v The hours that a fax machine is attended are added to the fax entity.
v Whether a modem supports 9,600-, 14,400-, or 28,800-baud rates is added to the

modem entity.

List attributes
For now, list the attributes for the telephone directory example with the entities
with which you think they belong. Your list should look like the following figure.

About entity occurrences
An additional data object is the entity occurrence. Each row in a table represents a
specific, single occurrence of the entity. For example, if customer is an entity, a
customer table represents the idea of customer; in it, each row represents one
specific customer, such as Sue Smith. Keep in mind that entities become tables,
attributes become columns, and entity occurrences become rows.

Diagram data objects
Now you know and understand the entities and relationships in your database,
which is the most important part of the relational-database design process. After
you determine the entities and relationships, a method that displays your thought
process during database design might be helpful.

Figure 2-11. Attributes for the telephone directory example

2-10 IBM Informix Database Design and Implementation Guide

Most data-modeling methods provide some way to graphically display the entities
and relationships. IBM Informix documentation uses the E-R diagram approach
that C. R. Bachman originally developed. E-R diagrams serve the following
purposes. They:
v Model the informational requirements of an organization
v Identify entities and their relationships
v Provide a starting point for data definition (data-flow diagrams)
v Provide an excellent source of documentation for application developers and

both database and system administrators
v Create a logical design of the database that can be translated into a physical

schema

Several different styles of E-R diagrams exist. If you already have a style that you
prefer, use it. Figure 2-12 shows a sample E-R diagram.

In an E-R diagram, a box represents an entity. A line represents the relationships
that connect the entities. In addition, Figure 2-13 shows how you use graphical
items to display the following features of relationships:
v A circle across a relationship link indicates optionality in the relationship (zero

instances can occur).
v A small bar across a relationship link indicates that exactly one instance of the

entity is associated with another entity (consider the bar to be a 1).
v The crow's-feet represent many in the relationship.

How to read E-R diagrams
You read the diagrams first from left to right and then from right to left. In the
case of the name-address relationship in following figure, you read the
relationships as follows: names can be associated with zero or exactly one address;
addresses can be associated with zero, one, or many names.

Figure 2-12. Symbols of an Entity-Relationship diagram

Figure 2-13. The parts of a relationship in an Entity-Relationship diagram

Chapter 2. Build a relational data model 2-11

Telephone directory example
The following figure shows the telephone directory example and includes the
entities, relationships, and attributes. This diagram includes the relationships that
you establish with the matrix. After you study the diagram symbols, compare the
E-R diagram in the following figure with the matrix in Figure 2-10 on page 2-9.
Verify for yourself that the relationships are the same in both figures.

A matrix such as Figure 2-10 on page 2-9 is a useful tool when you first design
your model, because when you fill it out, you are forced to think of every possible
relationship. However, the same relationships appear in a diagram such as the
following figure, and this type of diagram might be easier to read when you
review an existing model.

After the diagram is complete
The rest of this chapter describes how to perform the following tasks:
v Translate the entities, relationships, and attributes into relational constructs.
v Resolve the E-R data model.
v Normalize the E-R data model.

Chapter 4, “Implement a relational data model,” on page 4-1 shows you how to
create a database from the E-R data model.

Figure 2-14. Reading an entity-relationship diagram

Figure 2-15. Preliminary entity-relationship diagram of the telephone directory example

2-12 IBM Informix Database Design and Implementation Guide

Translate E-R data objects into relational constructs
All the data objects you have learned about so far (entities, relationships, attributes,
and entity occurrences) translate into SQL tables, joins between tables, columns,
and rows. The tables, columns, and rows of your database must fit the rules found
in “Define tables, rows, and columns.”

Before you normalize your data objects, check that they fit these rules. To
normalize your data objects, analyze the dependencies between the entities,
relationships, and attributes. Normalization is explained in “Normalize a data
model” on page 2-19.

After you normalize the data model, you can use SQL statements to create a
database that is based on your data model. Chapter 4, “Implement a relational data
model,” on page 4-1 describes how to create a database and provides the database
schema for the telephone directory example.

Each entity that you select is represented as a table in the model. The table stands
for the entity as an abstract concept, and each row represents a specific, individual
occurrence of the entity. In addition, each attribute of an entity is represented by a
column in the table.

The following ideas are fundamental to most relational data-model methods,
including the E-R data model. Follow these rules while you design your data
model to save time and effort when you normalize your model.

Define tables, rows, and columns
You are already familiar with the idea of a table that is composed of rows and
columns. But you must respect the following rules when you define the tables of a
formal data model:
v Rows must stand alone.

Each row of a table is independent and does not depend on any other row of
the same table. As a consequence, the order of the rows in a table is not
significant in the model. The model should still be correct even if all the rows of
a table are shuffled into random order.
After the database is implemented, you can tell the database server to store rows
in a certain order for the sake of efficiency, but that order does not affect the
model.

v Rows must be unique.
In every row, some column must contain a unique value. If no single column
has this property, the values of some group of columns taken as a whole must
be different in every row.

v Columns must stand alone.
The order of columns within a table has no meaning in the model. The model
should still be correct even if the columns are rearranged.
After the database is implemented, programs and stored queries that use an
asterisk to mean all columns are dependent on the final order of columns, but
that order does not affect the model.

v Column values must be unitary.
A column can contain only single values, never lists or repeating groups.
Composite values must be separated into individual columns. For example, if

Chapter 2. Build a relational data model 2-13

you decide to treat a person's first and last names as separate values, as the
examples in this chapter show, the names must be in separate columns, not in a
single name column.

v Each column must have a unique name.
Two columns within the same table cannot share the same name. However, you
can have columns that contain similar information. For example, the name table
in the telephone directory example contains columns for children's names. You
can name each column, child1, child2, and so on.

v Each column must contain data of a single type.
A column must contain information of the same data type. For example, a
column that is identified as an integer must contain only numeric information,
not characters from a name.

If your previous experience is only with data organized as arrays or sequential
files, these rules might seem unnatural. However, relational database theory shows
that you can represent all types of data with only tables, rows, and columns that
follow these rules. With a little practice, these rules become automatic.

Place constraints on columns
When you define your table and columns with the CREATE TABLE statement, you
constrain each column. These constraints specify whether you want the column to
contain characters or numbers, the form that you want dates to use, and other
constraints. A domain describes the constraints when it identifies the set of valid
values that attributes can assume.

Domain characteristics
You define the domain characteristics of columns when you create a table. A
column can contain the following domain characteristics:
v Data type (INTEGER, CHAR, DATE, and so on)
v Format (for example, yy/mm/dd)
v Range (for example, 1,000 to 5,400)
v Meaning (for example, serial number)
v Allowable values (for example, only grades S or U)
v Uniqueness
v Null support
v Default value
v Referential constraints

For information about how to define domains, see Chapter 3, “Select data types,”
on page 3-1. For information about how to create your tables and database, see
Chapter 4, “Implement a relational data model,” on page 4-1.

Determine keys for tables
The columns of a table are either key columns or descriptor columns. A key column
is one that uniquely identifies a particular row in the table. For example, a social
security number is unique for each employee. A descriptor column specifies the
nonunique characteristics of a particular row in the table. For example, two
employees can have the same first name, Sue. The first name Sue is a nonunique
characteristic of an employee. The main types of keys in a table are primary keys
and foreign keys.

2-14 IBM Informix Database Design and Implementation Guide

You designate primary and foreign keys when you create your tables. Primary and
foreign keys are used to relate tables physically. Your next task is to specify a
primary key for each table. That is, you must identify some quantifiable
characteristic of the table that distinguishes each row from every other row.

Primary keys
The primary key of a table is the column whose values are different in every row.
Because they are different, they make each row unique. If no one such column
exists, the primary key is a composite of two or more columns whose values, taken
together, are different in every row.

Every table in the model must have a primary key. This rule follows automatically
from the rule that all rows must be unique. If necessary, the primary key is
composed of all the columns taken together. You shouldn't use long character
strings as primary keys.

For efficiency, the primary key should be one of the following types:
v Numeric (INT or SMALLINT)
v Serial (BIGSERIAL, SERIAL, or SERIAL8)
v A short character string (as used for codes).

NULL values are never allowed in a primary-key column. NULL values are not
comparable; that is, they cannot be said to be alike or different. Hence, they cannot
make a row unique from other rows. If a column permits NULL values, it cannot
be part of a primary key. When you define a PRIMARY KEY constraint, the
database server also silently creates a NOT NULL constraint on the same column,
or on the same set of columns that make up the primary key.

Some entities have ready-made primary keys such as catalog codes or identity
numbers, which are defined outside the model. Sometimes more than one column
or group of columns can be used as the primary key. All columns or groups that
qualify to be primary keys are called candidate keys. All candidate keys are worth
noting because their property of uniqueness makes them predictable in a SELECT
operation.

Composite keys: Some entities lack features that are reliably unique. Different
people can have identical names; different books can have identical titles. You can
usually find a composite of attributes that work as a primary key. For example,
people rarely have identical names and identical addresses, and different books
rarely have identical titles, authors, and publication dates.

System-assigned keys: A system-assigned primary key is usually preferable to a
composite key. A system-assigned key is a number or code that is attached to each
instance of an entity when the entity is first entered into the database. The easiest
system-assigned keys to implement are serial numbers because the database server
can generate them automatically. IBM Informix database servers offer the SERIAL,
SERIAL8, and BIGSERIAL data types for serial numbers. However, the people who
use the database might not like a plain numeric code. Other codes can be based on
actual data; for example, an employee identification code can be based on a
person's initials combined with the digits of the date that they were hired. In the
telephone directory example, a system-assigned primary key is used for the name
table.

Foreign keys (join columns)
A foreign key is a column or group of columns in one table that contains values that
match the primary key in another table. Foreign keys are used to join tables. The

Chapter 2. Build a relational data model 2-15

following figure shows the primary and foreign keys of the customer and orders
tables from the demonstration database.

Tip: For ease in maintaining and using your tables, it is important to use names
for the primary and foreign keys so that the relationship is readily apparent. In
Figure 2-16, both the primary and foreign key columns have the same name,
customer_num. Alternatively, you might name the columns in Figure 2-16
customer_custnum and orders_custnum, so that each column has a distinct name.

Foreign keys are noted wherever they appear in the model because their presence
can restrict your ability to delete rows from tables. Before you can delete a row
safely, either you must delete all rows that refer to it through foreign keys, or you
must define the relationship with special syntax that allows you to delete rows
from primary-key and foreign-key columns with a single delete command. The
database server does not allow deletions that violate referential integrity.

To preserve referential integrity, delete all foreign-key rows before you delete the
primary key to which they refer. If you impose referential constraints on your
database, the database server does not permit you to delete primary keys with
matching foreign keys. It also does not permit you to add a foreign-key value that
does not reference an existing primary-key value. For more information about
referential integrity, see the IBM Informix Guide to SQL: Tutorial.

Add keys to the telephone directory diagram
The following figure shows the initial choices of primary and foreign keys. This
diagram reflects some important decisions.

For the name table, the primary key rec_num is selected. The data type for
rec_num is SERIAL. The values for rec_num are system generated. If you look at
the other columns (or attributes) in the name table, you see that the data types that
are associated with the columns are mostly character-based. None of these columns
alone is a good candidate for a primary key. If you combine elements of the table
into a composite key, you create a cumbersome key. The SERIAL data type gives
you a key that you can also use to join other tables to the name table.

The voice, fax, modem, and address tables are each joined to name through the
rec_num key.

For the voice, fax, and modem tables the telephone numbers are used as primary
keys. The address table contains a special column (id_num) that serves no other
purpose than to act as a primary key. This is done because if id_num did not exist
then all of the other columns would have to be used together as a composite key
in order to guarantee that no duplicate primary keys existed. Using all of the
columns as a primary key would be very inefficient and confusing.

customer orders
customer_num

Primary key Foreign key

order_num customer_num

Figure 2-16. Primary and foreign keys in the customer-order relationships

2-16 IBM Informix Database Design and Implementation Guide

Resolve relationships
The aim of a good data model is to create a structure that provides the database
server with quick access. To further refine the telephone directory data model, you
can resolve the relationships and normalize the data model. This section addresses
how and why to resolve your database relationships. Normalizing your data model
is explained in “Normalize a data model” on page 2-19.

Resolve m:n relationships
Many-to-many (m:n) relationships add complexity and confusion to your model and
to the application development process. The key to resolve m:n relationships is to
separate the two entities and create two one-to-many (1:n) relationships between
them with a third intersect entity. The intersect entity usually contains attributes
from both connecting entities.

To resolve a m:n relationship, analyze your business rules again. Have you
accurately diagrammed the relationship? The telephone directory example has a
m:n relationship between the name and fax entities, as Figure 2-17 shows. The
business rules say, “One person can have zero, one, or many fax numbers; a fax
number can be for several people.” Based on what we selected earlier as our primary
key for the voice entity, an m:n relationship exists.

A problem exists in the fax entity because the telephone number, which is
designated as the primary key, can appear more than one time in the fax entity;
this violates the qualification of a primary key. Remember, the primary key must
be unique.

To resolve this m:n relationship, you can add an intersect entity between the name
and fax entities, as Figure 2-18 on page 2-18 shows. The new intersect entity,
faxname, contains two attributes, fax_num and rec_num. The primary key for the
entity is a composite of both attributes. Individually, each attribute is a foreign key
that references the table from which it came. The relationship between the name
and faxname tables is 1:n because one name can be associated with many fax

Figure 2-17. Telephone directory diagram with primary and foreign keys added

Chapter 2. Build a relational data model 2-17

numbers; in the other direction, each faxname combination can be associated with
one rec_num. The relationship between the fax and faxname tables is 1:n because
each number can be associated with many faxname combinations.

Resolve other special relationships
You might encounter other special relationships that can hamper a smooth-running
database. The following describes these relationships:

Complex relationship
A complex relationship is an association among three or more entities. All
the entities must be present for the relationship to exist. To reduce this
complexity, reclassify all complex relationships as an entity, related through
binary relationships to each of the original entities.

Recursive relationship
A recursive relationship is an association between occurrences of the same
entity type. These types of relationships do not occur often. Examples of
recursive relationships are bills-of-materials (parts are composed of
subparts) and organizational structures (employee manages other
employees). You might not resolve recursive relationships. For an extended
example of a recursive relationship, see the IBM Informix Guide to SQL:
Tutorial.

Redundant relationship
A redundant relationship exists when two or more relationships represent
the same concept. Redundant relationships add complexity to the data
model and lead a developer to place attributes in the model incorrectly.
Redundant relationships might appear as duplicated entries in your E-R
diagram. For example, you might have two entities that contain the same
attributes. To resolve a redundant relationship, review your data model. Do
you have more than one entity that contains the same attributes? You
might be required to add an entity to the model to resolve the redundancy.
Your IBM Informix Performance Guide contains information about additional
topics that are related to redundancy in a data model.

Figure 2-18. Resolving a many-to-many (m:n) relationship

2-18 IBM Informix Database Design and Implementation Guide

Normalize a data model
The telephone directory example in this chapter appears to be a good model. You
can implement it at this point into a database, but this example might present
problems later with application development and data-manipulation operations.
Normalization is a formal approach that applies a set of rules to associate attributes
with entities.

When you normalize your data model, you can achieve the following goals. You
can:
v Produce greater flexibility in your design.
v Ensure that attributes are placed in the correct tables.
v Reduce data redundancy.
v Increase programmer effectiveness.
v Lower application maintenance costs.
v Maximize stability of the data structure.

Normalization consists of several steps to reduce the entities to more desirable
physical properties. These steps are called normalization rules, also referred to as
normal forms. Several normal forms exist; this chapter contains information about
the first three normal forms. Each normal form constrains the data more than the
last form. Because of this, you must achieve first normal form before you can
achieve second normal form, and you must achieve second normal form before
you can achieve third normal form.

First normal form
An entity is in the first normal form if it contains no repeating groups. In relational
terms, a table is in the first normal form if it contains no repeating columns.
Repeating columns make your data less flexible, waste disk space, and make it
more difficult to search for data. In the following telephone directory example, the
name table contains repeating columns, child1, child2, and child3.

You can see some problems in the current table. The table always reserves space on
the disk for three child records, whether the person has children or not. The
maximum number of children that you can record is three, but some of your
acquaintances might have four or more children. To look for a particular child, you
must search all three columns in every row.

To eliminate the repeating columns and bring the table to the first normal form,
separate the table into two tables. Put the repeating columns into one of the tables.
The association between the two tables is established with a primary-key and
foreign-key combination. Because a child cannot exist without an association in the
name table, you can reference the name table with a foreign key, rec_num.

Figure 2-19. Name entity before normalization

Chapter 2. Build a relational data model 2-19

Now check the telephone directory structure in Figure 2-17 on page 2-17 for groups
that are not in the first normal form. The name-modem relationship is not in the
first normal form because the columns b9600, b14400, and b28800 are considered
repeating columns. Add a new attribute called b_type to the modem table to
contain occurrences of b9600, b14400, and b28800. The following diagram shows
the data model normalized through the first normal form.

Second normal form
An entity is in the second normal form if all of its attributes depend on the whole
(primary) key. In relational terms, every column in a table must be functionally
dependent on the whole primary key of that table. Functional dependency
indicates that a link exists between the values in two different columns.

If the value of an attribute depends on a column, the value of the attribute must
change if the value in the column changes. The attribute is a function of the
column. The following explanations make this more specific:
v If the table has a one-column primary key, the attribute must depend on that

key.
v If the table has a composite primary key, the attribute must depend on the

values in all its columns taken as a whole, not on one or some of them.
v If the attribute also depends on other columns, they must be columns of a

candidate key; that is, columns that are unique in every row.

Figure 2-20. First normal form reached for name entity

Figure 2-21. The data model of a personal telephone directory

2-20 IBM Informix Database Design and Implementation Guide

If you do not convert your model to the second normal form, you risk data
redundancy and difficulty in changing data. To convert first-normal-form tables to
second-normal-form tables, remove columns that are not dependent on the primary
key.

Third normal form
An entity is in the third normal form if it is in the second normal form and all of
its attributes are not transitively dependent on the primary key. Transitive
dependence means that descriptor key attributes depend not only on the whole
primary key, but also on other descriptor key attributes that, in turn, depend on
the primary key. In SQL terms, the third normal form means that no column
within a table is dependent on a descriptor column that, in turn, depends on the
primary key.

To convert to third normal form, remove attributes that depend on other descriptor
key attributes.

Summary of normalization rules
The following normal forms are explained in this section:

First normal form
A table is in the first normal form if it contains no repeating columns.

Second normal form
A table is in the second normal form if it is in the first normal form and
contains only columns that are dependent on the whole (primary) key.

Third normal form
A table is in the third normal form if it is in the second normal form and
contains only columns that are nontransitively dependent on the primary
key.

When you follow these rules, the tables of the model are in the third normal form,
according to E. F. Codd, the inventor of relational databases. When tables are not
in the third normal form, either redundant data exists in the model, or problems
exist when you attempt to update the tables.

If you cannot find a place for an attribute that observes these rules, you have
probably made one of the following errors:
v The attribute is not well defined.
v The attribute is derived, not direct.
v The attribute is really an entity or a relationship.
v Some entity or relationship is missing from the model.

Chapter 2. Build a relational data model 2-21

2-22 IBM Informix Database Design and Implementation Guide

Chapter 3. Select data types

After you prepare your data model, you must implement it as a database and
tables. To implement your data model, you first define a domain, or set of data
values, for every column. This chapter contains information about the decisions
that you must make to define the column data types and constraints.

Chapter 4, “Implement a relational data model,” on page 4-1 contains information
about how the second step uses the CREATE DATABASE and CREATE TABLE
statements to implement the model and populate the tables with data.

Define the domains
To complete the data model that Chapter 2, “Build a relational data model,” on
page 2-1 describes, you must define a domain for each column. The domain of a
column describes the constraints and identifies the set of valid values that
attributes (columns) can assume.

The purpose of a domain is to guard the semantic integrity of the data in the model;
that is, to ensure that it reflects reality in a sensible way. The integrity of the data
model is at risk if you can substitute a name for a telephone number or if you can
enter a fraction where only integers are valid values.

To define a domain, specify the constraints that a data value must satisfy before it
can be part of the domain. To specify a column domain, use the following
constraints:
v Data types
v Default values
v Check constraints
v Referential constraints

Data types
The first constraint on any column is the one that is implicit in the data type for
the column. When you select a data type, you constrain the column so that it
contains only values that can be represented by that data type.

Each data type represents certain kinds of information and not others. The correct
data type for a column is the one that represents all the data values that are
appropriate for that column but contains as few as possible of the values that are
not appropriate for it.

This chapter describes built-in data types.

For information about the extended data types that IBM Informix supports, see
Chapter 8, “Create and use extended data types in Informix,” on page 8-1.

Select a data type
Every column in a table must have a data type. The choice of data type is
important for the following reasons:
v It establishes the set of valid data items that the column can store.

© Copyright IBM Corp. 1996, 2013 3-1

v It determines the kinds of operations that you can perform on the data.
For example, you cannot apply aggregate functions, such as SUM, to columns
that are defined on a character data type.

v It determines how much space each data item occupies on disk.
The space required to accommodate data items is not as important for small
tables as it is for tables with hundreds of thousands of rows. When a table
reaches that many rows, the difference between a 4-byte and an 8-byte data type
can be crucial.

The following figure shows a decision tree that summarizes the choices among
built-in data types. The choices are explained in the following sections.

Data items purely numeric? yes

no

Numbers all integral?
yes

no
yes

no

All numbers between
-(2 -1) and 2 -1?31 31

All numbers between
-(2 -1) and 2 -1?15 15

yes

no

SMALLINT

INTEGER

DECIMAL(p,0)

Number of fractional digits
is fixed

yes

no

At most 8 significant digits?
yes

no

At most 16 significant digits?
yes

no

DECIMAL(p,s)

SMALLFLOAT

FLOAT

DECIMAL(p)

yes

no
INT8

All numbers between
-(2 -1) and 2 -1?63 63

Figure 3-1. Select a data type

3-2 IBM Informix Database Design and Implementation Guide

Numeric types
Some numeric data types are best suited for counters and codes, some for
engineering quantities, and some for money.

Counters and codes: BIGINT, INT8, INTEGER, and SMALLINT
The INTEGER and SMALLINT data types hold small whole numbers. They are
suited for columns that contain counts, sequence numbers, numeric identity codes,
or any range of whole numbers when you know in advance the maximum and
minimum values to be stored.

Both data types are stored as signed binary integers. INTEGER values have 32 bits
and can represent whole numbers from –231–1 through 231–1.

Data is chronological?
yes

no Span of time or specific
point in time?

span

point

Precise only to nearest
day?

yes

no

Data is ASCII characters?
yes

no
No or little variance in
item lengths?

yes

no
Lengths under 32,767
bytes?

yes

no

Lengths exceed 255
bytes

no

INTERVAL

DATETIME
DATE

TEXT

BYTE

CHAR(n)

Data contains non-
English characters?

yes

no No or little variance in
item lengths?

yes

no

NVARCHAR(m,r)

NCHAR(n)

VARCHAR(m,r) or
CHARACTER VARYING(m,r)

Read or write to any portion
of the data?

yes

BLOBno

Read or write to any
portion of data

yes

CLOB
no

Data is boolean? yes

no BOOLEAN

yes

LVARCHAR

Figure 3-2. Select a data type (continued)

Chapter 3. Select data types 3-3

SMALLINT values have only 16 bits. They can represent whole numbers from
–32,767 through 32,767.

The INT and SMALLINT data types have the following advantages:
v They take up little space (2 bytes per value for SMALLINT and 4 bytes per

value for INTEGER).
v You can perform arithmetic expressions such as SUM and MAX and sort

comparisons on them.

The disadvantage to using INTEGER and SMALLINT is the limited range of
values that they can store. The database server does not store a value that exceeds
the capacity of an integer. Of course, such excess is not a problem when you know
the maximum and minimum values to be stored.

If you must store a broader range of values that will fill up an INTEGER, you can
use BIGINT or INT8. These data types have the following advantages:
v They hold a broad range of values. (Integers ranging from – (263 –1) through 263

–1.)
v You can perform arithmetic expressions such as SUM and MAX and sort

comparisons on them. BIGINT has storage and computational efficiency
advantages over INT8.

The disadvantage of using BIGINT or INT8 is that they use more disk space than
an INTEGER. The actual size depends on the word length of the platform. An
INT8 or SERIAL8 value requires 10 bytes of storage. BIGINT and BIGSERIAL
values require 8 bytes of storage.

Automatic sequences: BIGSERIAL, SERIAL, and SERIAL8
The SERIAL data type has the positive non-zero range of an INTEGER with a
special feature. Similarly, the BIGSERIAL and SERIAL8 data types have the
positive non-zero range of an INT8 with a special feature. Whenever a new row is
inserted into a table, the database server automatically generates a new value for
BIGSERIAL, SERIAL, or SERIAL8 columns.

A table can have no more than one SERIAL column, but it can have a SERIAL
column and either a SERIAL8 column or a BIGSERIAL column. Because the
database server generates the values, the serial values in new rows are always
different, even when multiple users are adding rows at the same time. This service
is useful because it is quite difficult for an ordinary program to coin unique
numeric codes under those conditions. (IBM Informix, however, also supports
sequence objects, which can also support this functionality through the CURRVAL
and NEXTVAL operators. For more information about sequence objects, see the
description of CREATE SEQUENCE in IBM Informix Guide to SQL: Syntax.

The SERIAL data type can yield up to 231–1 positive integers. Consequently, the
database server uses all the positive serial numbers by the time it inserts 231–1
rows in a table. For most users the exhaustion of the positive serial numbers is not
a concern, however, because a single application would have to insert a row every
second for 68 years, or 68 applications would have to insert a row every second for
a year, to use all the positive serial numbers. However, if all the positive serial
numbers were used, the database server would wrap around and start to generate
integer values that begin with a 1.

3-4 IBM Informix Database Design and Implementation Guide

The BIGSERIAL and SERIAL8 data types can yield up to 263 –1 positive integers.
With a reasonable starting value, it is virtually impossible to cause a value of these
types to wrap around during insertions.

For these data types, the sequence of generated numbers always increases. When
rows are deleted from the table, their serial numbers are not reused. Rows that are
sorted on columns of these types are returned in the order in which they were
created.

You can specify the initial value in a BIGSERIAL, SERIAL, or SERIAL8 column in
the CREATE TABLE statement. This makes it possible to generate different
subsequences of system-assigned keys in different tables. The stores_demo
database uses this technique. In stores_demo, the customer numbers begin at 101,
and the order numbers start at 1001. If this small business does not register more
than 899 customers, all customer numbers have three digits and order numbers
have four.

A BIGSERIAL, SERIAL, or SERIAL8 column is not automatically a unique column.
If you want to be perfectly sure that no duplicate serial numbers occur, you must
apply a unique constraint (see “Use CREATE TABLE” on page 4-3). If you define
the table using the interactive schema editor in DB-Access, it automatically applies
a unique constraint to any BIGSERIAL, SERIAL, or SERIAL8 column.

The BIGSERIAL, SERIAL, and SERIAL8 data types have the following advantages:
v They provide a convenient way to generate system-assigned keys.
v They produce unique numeric codes even when multiple users are updating the

table.
v Different tables can use different ranges of numbers.

The BIGSERIAL, SERIAL, and SERIAL8 data types have the following
disadvantages:
v A table can have no more than one column of the SERIAL data type, and no

more than one column of either the SERIAL8 or BIGSERIAL data type.
v These data types can produce only arbitrary non-NULL positive integer

numbers.

For information about the use and behavior of SERIAL, SERIAL8, and BIGSERIAL
data types in table hierarchies, see “SERIAL types in a table hierarchy” on page
9-9.

Alter the next BIGSERIAL, SERIAL, or SERIAL8 number:
The database server sets the starting value for a BIGSERIAL, SERIAL, or SERIAL8
column when it creates the column (see “Use CREATE TABLE” on page 4-3). You
can use the ALTER TABLE statement later to reset the next value, the value that is
used for the next inserted row.

You can set the next value to any value higher than the current maximum. Doing
this will create gaps in the sequence.

If you try to set the next value to a value smaller than the highest value currently
in the column you will not get an error but the value will not be set. Allowing the
next value to be set lower than some values in the column would cause duplicate
values in some situations and is therefore not allowed.

Chapter 3. Select data types 3-5

Approximate numbers: FLOAT and SMALLFLOAT
In scientific, engineering, and statistical applications, numbers are often known to
only a few digits of accuracy, and the magnitude of a number is as important as its
exact digits.

Floating-point data types are designed for these kinds of applications. They can
represent any numeric quantity, fractional or whole, over a wide range of
magnitudes from the cosmic to the microscopic. They can easily represent both the
average distance from the earth to the sun (1.5 x 1011 meters) or Planck's constant
(6.626 x 10-34 joule-seconds). For example,
CREATE TABLE t1 (f FLOAT);
INSERT INTO t1 VALUES (0.00000000000000000000000000000000000001);
INSERT INTO t1 VALUES (1.5e11);
INSERT INTO t1 VALUES (6.626196e-34);

Two sizes of floating-point data types exist. The FLOAT type is a double-precision,
binary floating-point number as implemented in the C language on your computer.
A FLOAT data type value usually takes up 8 bytes. The SMALLFLOAT (also
known as REAL) data type is a single-precision, binary floating-point number that
usually takes up 4 bytes. The main difference between the two data types is their
precision.

Floating-point numbers have the following advantages:
v They store very large and very small numbers, including fractional ones.
v They represent numbers compactly in 4 or 8 bytes.
v Arithmetic functions such as AVG, MIN, and sort comparisons are efficient on

these data types.

The main disadvantage of floating-point numbers is that digits outside their range
of precision are treated as zeros.

Adjustable-precision floating point: DECIMAL(p)
In a database that is not ANSI-compliant, the DECIMAL(p) data type is a
floating-point data type similar to FLOAT and SMALLFLOAT. The important
difference is that you specify how many significant digits it retains. The precision
you write as p can range from 1 to 32, from fewer than SMALLFLOAT up to twice
the precision of FLOAT. The magnitude of a DECIMAL(p) number can range from
10-130 to 10124. The storage space that DECIMAL(p) numbers use depends on their
precision; they occupy 1 + p/2 bytes (rounded up to a whole number, if necessary).

In an ANSI-compliant database, however, DECIMAL(p) is a fixed-point data type
with a scale of zero, so DECIMAL(p) always stores integer values of precision p, if
the data value has p or more significant digits. Any fractional part is truncated.

Do not confuse the DECIMAL(p) data type with the DECIMAL(p,s) data type,
which is explained in the next section. The DECIMAL(p) data type has only the
precision specified.

The DECIMAL(p) data type has the following advantages over FLOAT:
v Precision can be set to suit the application, from approximate to precise.
v Numbers with as many as 32 digits can be represented exactly.
v Storage is used in proportion to the precision of the number.
v Every IBM Informix database server supports the same precision and range of

magnitudes, regardless of the host operating system.

3-6 IBM Informix Database Design and Implementation Guide

The DECIMAL(p) data type has the following disadvantages:
v Performance of arithmetic operations and sorts on DECIMAL(p) values is

somewhat slower than on FLOAT values.
v Many programming languages do not support the DECIMAL(p) data format in

the same way that they support FLOAT and INTEGER. When a program
extracts a DECIMAL(p) value from the database, it might have to convert the
value to another format for processing.

v The format and value of a DECIMAL(p) data type depends on whether the
database is ANSI-compliant.

Fixed-precision numbers: DECIMAL and MONEY
Most commercial applications store numbers that have fixed numbers of digits on
the right and left of the decimal point. For example, amounts in U.S. currencies are
written with two digits to the right of the decimal point. Normally, you also know
the number of digits required on the left, depending on the kinds of transactions
that are recorded: perhaps 5 digits for a personal budget, 7 digits for a small
business, and 12 or 13 digits for a national budget.

These numbers are fixed-point numbers because the decimal point is fixed at a
specific place, regardless of the value of the number. The DECIMAL(p,s) data type
is designed to hold decimal numbers. When you specify a column of this type, you
write its precision (p) as the total number of digits that it can store, from 1 to 32.
You write its scale (s) as the number of those digits that fall to the right of the
decimal point. (The following figure shows the relation between precision and
scale.) Scale can be zero, meaning it stores only whole numbers. When only whole
numbers are stored, DECIMAL(p,s) provides a way of storing integers of up to 32
digits.

Like the DECIMAL(p) data type, DECIMAL(p,s) takes up space in proportion to its
precision. One value occupies (p +3)/2 bytes (if scale is even) or (p + 4)/2 bytes (if
scale is odd), rounded up to a whole number of bytes.

The MONEY type is identical to DECIMAL(p,s) but with one extra feature.
Whenever the database server converts a MONEY value to characters for display, it
automatically includes a currency symbol.

The advantages of DECIMAL(p,s) over INTEGER and FLOAT are that much
greater precision is available (up to 32 digits as compared to 10 digits for
INTEGER and 16 digits for FLOAT), and both the precision and the amount of
storage required can be adjusted to suit the application.

The disadvantages of DECIMAL(p,s) are that arithmetic operations are less efficient
and that many programming languages do not support numbers in this form.
Therefore, when a program extracts a number, it usually must convert the number
to another numeric form for processing.

Select a currency format:

Figure 3-3. The relation between precision and scale in a fixed-point number

Chapter 3. Select data types 3-7

To customize this currency format, select your locale appropriately or set the
DBMONEY environment variable. For more information, see the IBM Informix Guide to
SQL: Reference.

Global Language Support (GLS)

Each nation has its own way to display money values. When an IBM Informix
database server displays a MONEY value, it refers to a currency format that the
user specifies. The default locale specifies a U.S. English currency format of the
following form: $7,822.45

For non-English-language locales, you can use the MONETARY category of the
locale file to change the current format. For more information about how to use
locales, see the IBM Informix GLS User's Guide.

Chronological data types
The chronological data types record time.

The DATE data type stores a calendar date. DATETIME records a point in time to
any degree of precision from a year to a fraction of a second. The INTERVAL data
type stores a span of time, that is, a duration.
Related reference:

INTERVAL data type (SQL Reference)

Calendar dates: DATE
The DATE data type stores a calendar date. A DATE value is actually a signed
integer whose contents are interpreted as a count of full days since midnight on
December 31, 1899.

The DATE format has ample precision to carry dates into the far future (58,000
centuries). Negative DATE values are interpreted as counts of days before the
epoch date; that is, a DATE value of -1 represents December 30, 1899.

Because DATE values are integers, the values can be used in arithmetic
expressions. For example, you can take the average of a DATE column, or you can
add 7 or 365 to a DATE column. In addition, a rich set of functions exists
specifically for manipulating DATE values. For more information, see the IBM
Informix Guide to SQL: Syntax.

The DATE data type is compact, at 4 bytes per item. Arithmetic functions and
comparisons execute quickly on a DATE column.

Select a date format (GLS):
You can punctuate and order the components of a date in many ways. When an
application displays a DATE value, it refers to a date format that the user specifies.
The default locale specifies a U.S. English date format of the form: 10/25/2001

To customize this date format, select your locale appropriately or set the DBDATE
environment variable. For more information, see the IBM Informix Guide to SQL:
Reference.

For non-default locales, you can use the GL_DATE environment variable to specify
the date format. For more information about how to use locales, see the IBM
Informix GLS User's Guide.

3-8 IBM Informix Database Design and Implementation Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_123.htm#ids_sqr_123

Exact points in time: DATETIME
The DATETIME data type stores any moment in time in the era that began 1 A.D.
In fact, DATETIME is really a family of 28 data types, each with a different
precision. When you define a DATETIME column, you specify its precision. The
column can contain any sequence from the list:
v year
v month
v day
v hour
v minute
v second
v fraction

Thus, you can define a DATETIME column that stores only a year, only a month
and day, or a date and time that is exact to the hour or even to the millisecond.
The following table shows that the size of a DATETIME value ranges from 2 to 11
bytes depending on its precision.

The advantage of DATETIME is that it can store specific date and time values. A
DATETIME column typically requires more storage space than a DATE column,
depending on the DATETIME qualifiers. Datetime also has an inflexible display
format. For information about how to circumvent the display format, see “Force
the format of a DATETIME or INTERVAL value” on page 3-10.

Table 3-1. Precisions for the DATETIME data type

Precision

Size (When f
is odd, round
the size to the
next full byte) Precision

Size (When f
is odd, round
the size to the
next full byte)

year to year 3 day to hour 3

year to month 4 day to minute 4

year to day 5 day to second 5

year to hour 6 day to fraction(f) 5 + f/2

year to minute 7 hour to hour 2

year to second 8 hour to minute 3

year to fraction (f) 8 + f/2 hour to second 4

month to month 2 hour to fraction(f) 4 + f/2

month to day 3 minute to minute 2

month to hour 4 minute to second 3

month to minute 5 minute to fraction(f) 3 + f/2

month to second 6 second to second 2

month to fraction(f) 6 + f/2 second to fraction(f) 2 + f/2

day to day 2 fraction to fraction(f) 1 + f/2

Durations using INTERVAL:
The INTERVAL data type stores a duration, that is, a length of time. The difference
between two DATETIME values is an INTERVAL, which represents the span of
time that separates them. The following examples might help to clarify the
differences:

Chapter 3. Select data types 3-9

v An employee began working on January 21, 1997 (either a DATE or a
DATETIME).

v She has worked for 254 days (an INTERVAL value, the difference between the
TODAY function and the starting DATE or DATETIME value).

v She begins work each day at 0900 hours (a DATETIME value).
v She works 8 hours (an INTERVAL value) with 45 minutes for lunch (another

INTERVAL value).
v Her quitting time is 1745 hours (the sum of the DATETIME when she begins

work and the two INTERVALs).

Like DATETIME, INTERVAL is a family of data types with different precisions. An
INTERVAL value can represent a count of years and months, or it can represent a
count of days, hours, minutes, seconds, or fractions of seconds; 18 precisions are
possible. The size of an INTERVAL value ranges from 2 to 12 bytes, depending on
the formulas that Table 3-2 shows.

Table 3-2. Precisions for the INTERVAL data type.

Precision

Size (Round a
fractional size
to the next full
byte) Precision

Size (Round a
fractional size
to the next full
byte)

year(p) to year 1 + p/2 hour(p) to minute 2 + p/2

year(p) to month 2 + p/2 hour(p) to second 3 + p/2

month(p) to month 1 + p/2 hour(p) to fraction(f) 4 + (p + f)/2

day(p) to day 1 + p/2 minute(p) to minute 1 + p/2

day(p) to hour 2 + p/2 minute(p) to second 2 + p/2

day(p) to minute 3 + p/2 minute(p) to fraction(f) 3 + (p + f)/2

day(p) to second 4 + p/2 second(p) to second 1 + p/2

day(p) to fraction(f) 5 + (p + f)/2 second(p) to fraction(f) 2 + (p + f)/2

hour(p) to hour 1 + p/2 fraction to fraction(f) 1 + f/2

INTERVAL values can be negative or positive. You can add or subtract them, and
you can scale them by multiplying or dividing by a number. This is not true of
either DATE or DATETIME. You can reasonably ask, “What is one-half the number
of days until April 23?” but not, “What is one-half of April 23?”

Force the format of a DATETIME or INTERVAL value:
The database server always displays the components of an INTERVAL or
DATETIME value in the order year-month-day hour:minute:second.fraction. It
does not refer to the date format that is defined to the operating system, as it does
when it formats a DATE value.

You can write a SELECT statement that displays the date part of a DATETIME
value in the system-defined format. The trick is to isolate the component fields
with the EXTEND function and pass them through the MDY() function, which
converts them to a DATE. The following code shows a partial example:
SELECT ... MDY (

EXTEND (DATE_RECEIVED, MONTH TO MONTH),
EXTEND (DATE_RECEIVED, DAY TO DAY),
EXTEND (DATE_RECEIVED, YEAR TO YEAR))
FROM RECEIPTS ...

3-10 IBM Informix Database Design and Implementation Guide

Select a DATETIME format (GLS)
When an application displays a DATETIME value, it refers to a DATETIME format
that the user specifies. The default locale specifies a U.S. English DATETIME
format of the following form: 2001-10-25 18:02:13

For non-default locales, you can use the GL_DATETIME environment variable to
specify the DATETIME format. For more information about how to use locales, see
the IBM Informix GLS User's Guide.

To customize this DATETIME format, select your locale appropriately or set the
GL_DATETIME or DBTIME environment variable. For more information about these
environment variables, see the IBM Informix GLS User's Guide.

BOOLEAN data type
The BOOLEAN data type is a 1-byte data type. The legal values for Boolean are
true ('t'), false ('f'), or NULL. The values are not case sensitive.

You can compare a BOOLEAN column against another BOOLEAN column or
against Boolean values. For example, you might use these SELECT statements:
SELECT * FROM sometable WHERE bool_col = ’t’;
SELECT * FROM sometable WHERE bool_col IS NULL;

Character data types (GLS)
IBM Informix database servers support several character data types, including
CHAR, NCHAR, and NVARCHAR, the special-use character data type.

Character data: CHAR(n) and NCHAR(n)
The CHAR(n) data type contains a sequence of n bytes. These characters can be a
mixture of English-language and non-English-language characters and can be
either single byte or multibyte (Asian). The length n ranges from 1 to 32,767.

Whenever the database server retrieves or stores a CHAR(n) value, it transfers
exactly n bytes. If an inserted value is shorter than n, the database server extends
the value with single-byte ASCII space characters to make up n bytes. If an
inserted value exceeds n bytes, the database server truncates the extra characters
without returning an error message. Thus the semantic integrity of data for a
CHAR(n) column or variable is not enforced when the value that is inserted or
updated exceeds n bytes.

Data in CHAR columns is sorted in code-set order. For example, in the ASCII code
set, the character a has a code-set value of 97, b has 98, and so forth. The database
server sorts CHAR(n) data in this order.

The NCHAR(n) data type also contains a sequence of n bytes. These characters can
be a mixture of English-language and non-English-language characters and can be
either single byte or multibyte (Asian). The length of n has the same limits as the
CHAR(n) data type. Whenever an NCHAR(n) value is retrieved or stored, exactly
n bytes are transferred. The number of characters transferred can be fewer than the
number of bytes if the data contains multibyte characters. If an inserted value is
shorter than n, the database server extends the value with space characters to make
up n bytes.

The database server sorts data in NCHAR(n) columns according to the order that
the locale specifies. For example, the French locale specifies that the character ê is
sorted after the value e but before the value f. In other words, the sort order that

Chapter 3. Select data types 3-11

the French locale dictates is e, ê, f, and so on. For more information about how to
use locales, refer to the IBM Informix GLS User's Guide.

Tip: The only difference between CHAR(n) and NCHAR(n) data is how you sort
and compare the data. You can store non-English-language characters in a
CHAR(n) column. However, because the database server uses code-set order to
perform any sorting or comparison on CHAR(n) columns, you might not obtain
the results in the order that you expect.

A CHAR(n) or NCHAR(n) value can include tabs and spaces but normally contains
no other nonprinting characters. When you insert rows with INSERT or UPDATE,
or when you load rows with a utility program, no means exist for entering
nonprintable characters. However, when a program that uses embedded SQL
creates rows, the program can insert any character except the null (binary zero)
character. It is not a good idea to store nonprintable characters in a character
column because standard programs and utilities do not expect them.

The advantage of the CHAR(n) or NCHAR(n) data type is its availability on all
database servers. The only disadvantage of CHAR(n) or NCHAR(n) is its fixed
length. When the length of data values varies widely from row to row, space is
wasted.

Variable-length strings: CHARACTER VARYING(m,r),
VARCHAR(m,r), NVARCHAR(m,r), and LVARCHAR(m)
Often the data values in a character column are different lengths. That is, many are
an average length, and only a few are the maximum length. For the following data
types, m represents the maximum number of bytes and r represents a minimum
number of bytes that the column stores. These variable-length data types are
designed to save disk space when you store such data:

CHARACTER VARYING (m,r)
The CHARACTER VARYING (m,r) data type contains a sequence of, at
most, m bytes or at the least, r bytes. This data type is the ANSI-compliant
format for character data of varying length. CHARACTER VARYING (m,r),
supports code-set order for comparisons of its character data.

VARCHAR (m,r)
The VARCHAR (m,r) is an IBM Informix-specific data type for storing
character data of varying length. In functionality, it is the same as
CHARACTER VARYING(m,r).

NVARCHAR (m,r)
The NVARCHAR (m,r) is also an IBM Informix-specific data type for
storing character data of varying length. It compares character data in the
order that the locale specifies.

LVARCHAR(m)
The LVARCHAR is an IBM Informix-specific data type for storing character
data of varying length from 1 to 32,739 bytes. If no maximum size is
specified in the declaration of a column length, the default is 2,048 bytes.
LVARCHAR supports code-set order for collation, and is also used by the
database server for internal operations on character strings, whose
maximum size is operating-system dependent.

Tip: The difference in the way data is compared distinguishes NVARCHAR(m,r)
data from CHARACTER VARYING(m,r) or VARCHAR(m,r) data. For more
information about how the locale determines code-set and sort order, see
“Character data: CHAR(n) and NCHAR(n)” on page 3-11.

3-12 IBM Informix Database Design and Implementation Guide

In databases that are created as NLSCASE INSENSITIVE, only the NCHAR and
NVARCHAR data types are processed by the database server without regard to
letter-case variants, so that (for example) the NCHAR strings ’pH’ and ’Ph’ are
treated as duplicate values in ordering, sorting, and comparison operations.

When you define columns as variable-length data types, you can specify m as the
maximum number of bytes. If an inserted value consists of fewer than m bytes, the
database server does not extend the value with single-byte spaces (as with
CHAR(n) and NCHAR(n) values). Instead, it stores only the actual contents on
disk with a 1-byte length field. The limit on m is 254 bytes for indexed columns
and 255 bytes for non-indexed columns.

The second parameter, r, is an optional reserve length that sets a lower limit on the
number of bytes than a value being stored on disk requires. Even if a value
requires fewer than r bytes, r bytes are nevertheless allocated to hold it. The
purpose is to save time when rows are updated. (See “Variable-length execution
time.”) The LVARCHAR data type supports no reserve length.

The advantages of the CHARACTER VARYING(m,r), LVARCHAR(m), or
VARCHAR(m,r) data type over the CHAR(n) data type are as follows:
v They conserve disk space when the number of bytes that data items require

varies widely, or when only a few items require more bytes than average.
v Queries on the more compact tables can be faster.

These advantages also apply to the NVARCHAR(m,r) data type in comparison to
the NCHAR(n) data type.

The following are potential disadvantages of using varying-length data types:
v Except for LVARCHAR, they do not support lengths that exceed 255 bytes.
v Table updates can be slower in some circumstances.

Variable-length execution time
When you use any of the CHARACTER VARYING(m,r), VARCHAR(m,r), or
NVARCHAR(m,r) data types, the rows of a table have a varying number of bytes
instead of a fixed number of bytes. The speed of database operations is affected
when the rows of a table have varying numbers of bytes.

Because more rows fit in a disk page, the database server can search the table with
fewer disk operations than if the rows were of a fixed number of bytes. As a result,
queries can execute more quickly. Insert and delete operations can be a little
quicker for the same reason.

When you update a row, the amount of work the database server must perform
depends on the number of bytes in the new row as compared with the number of
bytes in the old row. If the new row uses the same number of bytes or fewer, the
execution time is not significantly different than it is with fixed-length rows.
However, if the new row requires a greater number of bytes than the old one, the
database server might have to perform several times as many disk operations.
Thus, updates of a table that use CHARACTER VARYING(m,r), VARCHAR(m,r), or
NVARCHAR(m,r) data can sometimes be slower than updates of a fixed-length
field.

To mitigate this effect, specify r as a number of bytes that encompasses a high
proportion of the data items. Then most rows use the reserve number of bytes, and

Chapter 3. Select data types 3-13

padding wastes only a little space. Updates are slow only when a value that uses
the reserve number of bytes is replaced with a value that uses more than the
reserve number of bytes.

Large character objects: TEXT
The TEXT data type stores a block of text. It is designed to store self-contained
documents: business forms, program source or data files, or memos. Although you
can store any data in a TEXT item, IBM Informix tools expect a TEXT item to be
printable, so restrict this data type to printable ASCII text.

TEXT values are not stored with the rows of which they are a part. They are
allocated in whole disk pages, usually in areas separate from rows. For more
information, see your IBM Informix Administrator's Guide.

The advantage of the TEXT data type over CHAR(n) and VARCHAR(m,r) is that
the size of a TEXT data item has no limit except the capacity of disk storage to
hold it. The disadvantages of the TEXT data type are as follows:
v It is allocated in whole disk pages, so a short item wastes space.
v Restrictions apply on how you can use a TEXT column in an SQL statement.

(For more information about this restriction, see “Use TEXT and BYTE data
types.”)

Binary objects: BYTE
The BYTE data type is designed to hold any data a program can generate: graphic
images, program object files, and documents saved by any word processor or
spreadsheet. The database server permits any kind of data of any length in a BYTE
column.

As with TEXT, BYTE data items usually are stored in whole disk pages in disk
areas separate from normal row data.

The advantage of the BYTE data type, as opposed to TEXT or CHAR(n), is that it
accepts any data. Its disadvantages are the same as those of the TEXT data type.

Use TEXT and BYTE data types
The database server stores and retrieves TEXT and BYTE columns. To fetch and
store TEXT or BYTE values, you normally use programs written in a language that
supports embedded SQL, such as IBM Informix ESQL/C. In such a program, you
can fetch, insert, or update a TEXT or BYTE value in a manner similar to the way
you read or write a sequential file.

In no SQL statement, interactive or programmed, can a TEXT or BYTE column be
used in the following ways:
v In arithmetic or Boolean expressions
v In a GROUP BY or ORDER BY clause
v In a UNIQUE test
v For indexing, either by itself or as part of a composite index

In a SELECT statement that you enter interactively or in a form or report, you can
perform the following operations on a TEXT or BYTE value:
v Select the column name, optionally with a subscript to extract part of it.
v Use LENGTH(column_name) to return the length of the column.
v Test the column with the IS [NOT] NULL predicate.

3-14 IBM Informix Database Design and Implementation Guide

In an interactive INSERT statement, you can use the VALUES clause to insert a
TEXT or BYTE value, but the only value that you can give that column is null.
However, you can use the SELECT form of the INSERT statement to copy a TEXT
or BYTE value from another table.

In an interactive UPDATE statement, you can update a TEXT or BYTE column to
null or to a subquery that returns a TEXT or BYTE column.

Change the data type
After the table is built, you can use the ALTER TABLE statement to change the
data type that is assigned to a column. Although such alterations are sometimes
necessary, you should avoid them for the following reasons:
v To change a data type, the database server must copy and rebuild the table. For

large tables, copying and rebuilding can take a lot of time and disk space.
v Some data type changes can cause a loss of information. For example, when you

change a column from a longer to a shorter character type, long values are
truncated; when you change to a less-precise numeric type, low-order digits are
truncated.

v Existing programs, forms, reports, and stored queries might also have to be
changed.

Null values
In most cases, columns in a table can contain null values. A null value means that
the value for the column can be unknown or not applicable. For example, in the
telephone directory example in Chapter 2, “Build a relational data model,” on page
2-1, the anniv column of the name table can contain null values; if you do not
know the person's anniversary, you do not specify it. Do not confuse null value
with zero or a blank value. For example, the following statement inserts a row into
the manufact table of the stores_demo database and specifies that the value for the
lead_time column is null:
INSERT INTO manufact VALUES (’DRM’, ’Drumm’, NULL)

Collection columns cannot contain null elements. Chapter 8, “Create and use
extended data types in Informix,” on page 8-1 describes collection data types.

Default values
A default value is the value that is inserted into a column when an explicit value is
not specified in an INSERT statement. A default value can be a literal character
string that you define or one of the following SQL constant expressions:
v USER
v CURRENT
v TODAY
v DBSERVERNAME

Not all columns require default values, but as you work with your data model,
you might discover instances where the use of a default value saves data-entry
time or prevents data-entry error. For example, the telephone directory model has
a state column. While you look at the data for this column, you discover that more
than 50 percent of the addresses list California as the state. To save time, specify
the string CA as the default value for the state column.

Chapter 3. Select data types 3-15

Check constraints
Check constraints specify a condition or requirement on a data value before data can
be assigned to a column during an INSERT or UPDATE statement. If a row
evaluates to false for any of the check constraints that are defined on a table during
an insert or update, the database server returns an error. However, the database
server does not report an error or reject the record when the check constraint
evaluates to NULL. For this reason, you might want to use both a check constraint
and a NOT NULL constraint when you create a table.

To define a constraint, use the CREATE TABLE or ALTER TABLE statements. For
example, the following requirement constrains the values of an integer domain to a
certain range:
Customer_Number >= 50000 AND Customer_Number <= 99999

To express constraints on character-based domains, use the MATCHES predicate
and the regular-expression syntax that it supports. For example, the following
constraint restricts a telephone domain to the form of a U.S. local telephone
number:
vce_num MATCHES ’[2-9][2-9][0-9]-[0-9][0-9][0-9][0-9]’

For additional information about check constraints, see the CREATE TABLE and
ALTER TABLE statements in the IBM Informix Guide to SQL: Syntax.

Referential constraints
You can identify the primary and foreign keys in each table to place referential
constraints on columns. Chapter 2, “Build a relational data model,” on page 2-1
contains information about how you identify these keys.

When you are trying to pick columns for primary and foreign keys, almost all data
type combinations must match. For example, if you define a primary key as a
CHAR data type, you must also define the foreign key as a CHAR data type.

However, when you specify a SERIAL data type on a primary key in one table,
you specify an INTEGER on the foreign key of the relationship. Similarly, when
you specify a SERIAL8 data type on a primary key in one table, you specify an
INT8 on the foreign key of the relationship; and when you specify a BIGSERIAL
data type on a primary key in one table, you specify a BIGINT data type on the
foreign key of the relationship.

The only data type combinations that you can mix in a relationship are as follows:
v SERIAL and INTEGER
v SERIAL8 and INT8
v BIGSERIAL and BIGINT

For information about how to create a table with referential constraints, see the
CREATE TABLE and ALTER TABLE statements in the IBM Informix Guide to SQL:
Syntax.

3-16 IBM Informix Database Design and Implementation Guide

Chapter 4. Implement a relational data model

This chapter shows how to use SQL syntax to implement the data model that
Chapter 2, “Build a relational data model,” on page 2-1 describes. In other words,
it shows you how to create a database and tables and populate the tables with
data. This chapter also contains information about database logging options, table
synonyms, and command scripts.

Create the database
Now you are ready to create the data model as tables in a database. You do this
with the CREATE DATABASE, CREATE TABLE, and CREATE INDEX statements.
The syntax for these statements is described in the IBM Informix Guide to SQL:
Syntax. This section contains information about how to use the CREATE
DATABASE and CREATE TABLE statements to implement a data model.

Remember that the telephone directory data model is used for illustrative purposes
only. For the sake of the example, it is translated into SQL statements.

You might have to create the same database model more than once. You can store
the statements that create the model and later re-execute those statements. For
more information, see “Use command scripts” on page 4-7.

When the tables exist, you must populate them with rows of data. You can do this
manually, with a utility program, or with custom programming.

Use CREATE DATABASE
A database is a container that holds all parts of a data model. These parts include
not only the tables but also views, indexes, synonyms, and other objects that are
associated with the database. You must create a database before you can create
anything else.

When the database server creates a database, it stores the locale of the database
that is derived from the DB_LOCALE environment variable in its system catalog. This
locale determines how the database server interprets character data that is stored
within the database. By default, the database locale is the U.S. English locale that
uses the ISO8859-1 code set. For information about how to use alternative locales,
see the IBM Informix GLS User's Guide.

When the database server creates a database, it sets up records that show the
existence of the database and its mode of logging. These records are not visible to
operating-system commands because the database server manages disk space
directly.

Avoid name conflicts
Normally, only one copy of the database server is running on a computer, and the
database server manages the databases that belong to all users of that computer.
The database server keeps only one list of database names. The name of your
database must be different from that of any other database that the database server
manages. (It is possible to run more than one copy of the database server. You can
create more than one copy of the database server, for example, to create a safe

© Copyright IBM Corp. 1996, 2013 4-1

environment for testing apart from the operational data. In this case, be sure that
you are using the correct database server when you create the database and again
when you access it later.)

Select a dbspace
The database server lets you create the database in a particular dbspace. A dbspace
is a named area of disk storage. Ask your database server administrator whether
you should use a particular dbspace. You can put a database in a separate dbspace
to isolate it from other databases or to locate it on a particular disk device. For
information about dbspaces and their relationship to disk devices, see your IBM
Informix Administrator's Guide.

Some dbspaces are mirrored (duplicated on two disk devices for high reliability).
You might put your database in a mirrored dbspace if its contents are of
exceptional importance.

Select the type of logging
To specify a logging or nonlogging database, use the CREATE DATABASE
statement. The database server offers the following choices for transaction logging:
v No logging at all.

This is not a recommended choice. If you lose the database because of a
hardware failure, you lose all data alterations since the last backup.
CREATE DATABASE db_with_no_log

When you do not select logging, BEGIN WORK and other SQL statements that
are related to transaction processing are not permitted in the database. This
situation affects the logic of programs that use the database.

v Regular (unbuffered) logging.
This choice is best for most databases. In the event of a failure, you lose only
uncommitted transactions.
CREATE DATABASE a_logged_db WITH LOG

v Buffered logging.
If you lose the database, you lose few or possibly none of the most recent
alterations. In return for this small risk, performance during alterations improves
slightly.
CREATE DATABASE buf_log_db WITH BUFFERED LOG

Buffered logging is best for databases that are updated frequently (so that speed
of updating is important), but you can re-create the updates from other data in
the event of a failure. Use the SET LOG statement to alternate between buffered
and regular logging.

v ANSI-compliant logging.
This logging is the same as regular logging, but the ANSI rules for transaction
processing are also enforced. For more information, see “Use ANSI-compliant
databases” on page 1-2.
CREATE DATABASE std_rules_db WITH LOG MODE ANSI

The design of ANSI SQL prohibits the use of buffered logging. When you create
an ANSI-compliant database, you cannot turn off transaction logging.

For databases that are not ANSI-compliant, the database server administrator
(DBA) can turn transaction logging on and off or change from buffered to
unbuffered logging. For example, you might turn logging off before inserting a
large number of new rows.

4-2 IBM Informix Database Design and Implementation Guide

You can use the ondblog and ontape utilities to change the logging status or
buffering mode. For information about these tools, see the IBM Informix
Administrator's Guide. You can also use the SET LOG statement to change between
buffered and unbuffered logging. For information about SET LOG, see your IBM
Informix Guide to SQL: Syntax.

Use CREATE TABLE
Use the CREATE TABLE statement to create each table that you design in the data
model. This statement has a complicated form, but it is basically a list of the
columns of the table. For each column, you supply the following information:
v The name of the column
v The data type (from the domain list you made)

The statement might also contain one or more of the following constraints:
v A primary-key constraint
v A foreign-key constraint
v A NOT NULL constraint (or a NULL constraint, allowing NULL values)
v A unique constraint
v A default constraint
v A check constraint

In short, the CREATE TABLE statement is an image, in words, of the table as you
drew it in the data-model diagram in Figure 2-21 on page 2-20. The following
example shows the statements for the telephone directory data model:
CREATE TABLE name

(
rec_num SERIAL PRIMARY KEY,
lname CHAR(20),
fname CHAR(20),
bdate DATE,
anniv DATE,
email VARCHAR(25)
);

CREATE TABLE child
(
child CHAR(20),
rec_num INT,
FOREIGN KEY (rec_num) REFERENCES NAME (rec_num)
);

CREATE TABLE address
(
id_num SERIAL PRIMARY KEY,
rec_num INT,
street VARCHAR (50,20),
city VARCHAR (40,10),
state CHAR(5) DEFAULT ’CA’,
zipcode CHAR(10),
FOREIGN KEY (rec_num) REFERENCES name (rec_num)
);

CREATE TABLE voice
(
vce_num CHAR(13) PRIMARY KEY,
vce_type CHAR(10),
rec_num INT,
FOREIGN KEY (rec_num) REFERENCES name (rec_num)
);

Chapter 4. Implement a relational data model 4-3

CREATE TABLE fax
(
fax_num CHAR(13),
oper_from DATETIME HOUR TO MINUTE,
oper_till DATETIME HOUR TO MINUTE,
PRIMARY KEY (fax_num)
);

CREATE TABLE faxname
(
fax_num CHAR(13),
rec_num INT,
PRIMARY KEY (fax_num, rec_num),
FOREIGN KEY (fax_num) REFERENCES fax (fax_num),
FOREIGN KEY (rec_num) REFERENCES name (rec_num)
);

CREATE TABLE modem
(
mdm_num CHAR(13) PRIMARY KEY,
rec_num INT,
b_type CHAR(5),
FOREIGN KEY (rec_num) REFERENCES name (rec_num)
);

In each of the preceding examples, the table data gets stored in the same dbspace
that you specify for the database because the CREATE TABLE statement does not
specify a storage option. You can specify a dbspace for the table that is different
from the storage location of the database or fragment the table into multiple
dbspaces. For information about the different storage options IBM Informix
database servers support, see the CREATE TABLE statement in the IBM Informix
Guide to SQL: Syntax. The following section shows one way to fragment a table
into multiple dbspaces.

Create a fragmented table
To control where data is stored at the table level, you can use a FRAGMENT BY
clause when you create the table. The following statement creates a fragmented
table that stores data according to a round-robin distribution scheme. In this
example, the rows of data are distributed more or less evenly across the fragments
dbspace1, dbspace2, and dbspace3.
CREATE TABLE name

(
rec_num SERIAL PRIMARY KEY,
lname CHAR(20),
fname CHAR(20),
bdate DATE,
anniv DATE,
email VARCHAR(25)
) FRAGMENT BY ROUND ROBIN IN dbspace1, dbspace2, dbspace3;

For more information about the different distribution schemes that you can use to
create fragmented tables, see Chapter 5, “Table fragmentation strategies,” on page
5-1.

Drop or modify a table
Use the DROP TABLE statement to remove a table with its associated indexes and
data. To change the definition of a table, for example, by adding a check constraint,
use the ALTER TABLE statement. Use the TRUNCATE statement to remove all

4-4 IBM Informix Database Design and Implementation Guide

rows from a table and all corresponding index data while preserving the definition
of the table. For information about these statements, see IBM Informix Guide to SQL:
Syntax.

Use CREATE INDEX
Use the CREATE INDEX statement to create an index on one or more columns in a
table and, optionally, to cluster the physical table in the order of the index. This
section describes some of the options available when you create indexes. For more
information about the CREATE INDEX statement, see the IBM Informix Guide to
SQL: Syntax.

Suppose you create table customer:
CREATE TABLE customer
(

cust_num SERIAL(101) UNIQUE
fname CHAR(15),
lname CHAR(15),
company CHAR(20),
address1 CHAR(20),
address2 CHAR(20),
city CHAR(15),
state CHAR(2),
zipcode CHAR(5),
phone CHAR(18)

);

The following statement shows how to create an index on the lname column of the
customer table:
CREATE INDEX lname_index ON customer (lname);

Composite indexes
You can create an index that includes multiple columns. For example, you might
create the following index:
CREATE INDEX c_temp2 ON customer (cust_num, zipcode);

Bidirectional traversal of indexes
The ASC and DESC keywords specify the order in which the database server
maintains the index. When you create an index on a column and omit the
keywords or specify the ASC keyword, the database server stores the key values in
ascending order. If you specify the DESC keyword, the database server stores the
key values in descending order.

Ascending order means that the key values are stored in order from the smallest
key to the largest key. For example, if you create an ascending index on the lname
column of the customer table, last names are stored in the index in the following
order: Albertson, Beatty, Currie.

Descending order means that the key values are stored in order from the largest
key to the smallest key. For example, if you create a descending index on the
lname column of the customer table, last names are stored in the index in the
following order: Currie, Beatty, Albertson.

The bidirectional traversal capability of the database server lets you create just one
index on a column and use that index for queries that specify sorting of results in
either ascending or descending order of the sort column.

Chapter 4. Implement a relational data model 4-5

Use synonyms for table names
A synonym is a name that you can use in place of another SQL identifier. You use
the CREATE SYNONYM statement to declare an alternative name for a table, a
view, or (for IBM Informix) a sequence object.

Typically, you use a synonym to refer to tables that are not in the current database.
For example, you might execute the following statements to create synonyms for
the customer and orders table names:
CREATE SYNONYM mcust FOR masterdb@central:customer;
CREATE SYNONYM bords FOR sales@boston:orders;

After you create the synonym, you can use it in many contexts where the original
table name is valid, as the following example shows:
SELECT bords.order_num, mcust.fname, mcust.lname

FROM mcust, bords
WHERE mcust.customer_num = bords.Customer_num
INTO TEMP mycopy;

The CREATE SYNONYM statement stores the synonym name in the system
catalog table syssyntable in the current database. The synonym is available to any
query made in that database. (If the USETABLENAME environment variable is set,
however, some DDL statements of SQL do not support synonyms in place of table
names.)

A short synonym makes it easier to write queries, but synonyms can play another
role. They allow you to move a table to a different database, or even to a different
computer, and keep your queries the same.

Suppose you have several queries that refer to the tables customer and orders. The
queries are embedded in programs, forms, and reports. The tables are part of the
demonstration database, which is kept on database server avignon.

Now you decide to make the same programs, forms, and reports available to users
of a different computer on the network (database server nantes). Those users have
a database that contains a table named orders that contains the orders at their
location, but they must have access to the table customer at avignon.

To those users, the customer table is external. Does this mean you must prepare
special versions of the programs and reports, versions in which the customer table
is qualified with a database server name? A better solution is to create a synonym
in the users' database, as the following example shows:
DATABASE stores_demo@nantes;
CREATE SYNONYM customer FOR stores_demo@avignon:customer;

When the stored queries are executed in your database, the name customer refers
to the actual table. When they are executed in the other database, the name is
resolved through the synonym into a reference to the table that exists on the
database server avignon. (In a database that is not ANSI-compliant, a synonym
must be unique among the names of synonyms, tables, views, and sequence objects
in the database. In an ANSI-compliant database, the owner.synonym combination
must be unique within the namespace of objects that have been registered in the
database with a tabid value.)

4-6 IBM Informix Database Design and Implementation Guide

Use synonym chains
To continue the preceding example, suppose that a new computer is added to your
network. Its name is db_crunch. The customer table and other tables are moved to
it to reduce the load on avignon. You can reproduce the table on the new database
server easily enough, but how can you redirect all access to it? One way is to
install a synonym to replace the old table, as the following example shows:
DATABASE stores_demo@avignon EXCLUSIVE;
RENAME TABLE customer TO old_cust;
CREATE SYNONYM customer FOR stores_demo@db_crunch:customer;
CLOSE DATABASE;

When you execute a query within stores_demo@avignon, a reference to table
customer finds the synonym and is redirected to the version on the new computer.
Such redirection also happens for queries that are executed from database server
nantes in the previous example. The synonym in the database
stores_demo@nantes still redirects references to customer to database
stores_demo@avignon; the new synonym there sends the query to database
stores_demo@db_crunch.

Chains of synonyms can be useful when, as in this example, you want to redirect
all access to a table in one operation. However, you should update the databases of
all users as soon as possible so their synonyms point directly to the table. If you do
not, you incur extra overhead when the database server handles the extra
synonyms, and the table cannot be found if any computer in the chain is down.

You can run an application against a local database and later run the same
application against a database on another computer. The program runs equally
well in either case (although it can run more slowly on the network database). If
the data model is the same, a program cannot tell the difference between one
database and another.

Use command scripts
You can enter SQL statements interactively to create the database and tables. In
some cases, you might have to create the database and tables two or more times.
For example, you might have to create the database again to make a production
version after a test version is satisfactory, or you might have to implement the
same data model on several computers. To save time and reduce the chance of
errors, you can put all the statements to create a database in a file and later
re-execute those statements.

Capture the schema
The dbschema utility is a program that examines the contents of a database and
generates all the SQL statements you require to re-create it. You can build the first
version of your database, making changes until it is exactly as you want it. Then
you can use dbschema to generate the SQL statements necessary to duplicate it.
For information about the dbschema utility, see the IBM Informix Migration Guide.

Execute the file
Programs that you use to enter SQL statements interactively, such as DB-Access,
can be run from a file of commands. You can start DB-Access to read and execute a
file of commands that you or dbschema prepared. For more information, see the
IBM Informix DB-Access User's Guide.

An example
Most IBM Informix database server products come with a demonstration database
(the database that most of the examples in this book use). The demonstration

Chapter 4. Implement a relational data model 4-7

database is delivered as an operating-system command script that calls IBM
Informix products to build the database. You can copy this command script and
use it as the basis to automate your own data model.

Populate the database
For your initial tests, the easiest way to populate the database is to type INSERT
statements in DB-Access. For example, to insert a row into the manufact table of
the demonstration database, enter the following command in DB-Access:
INSERT INTO manufact VALUES (’MKL’, ’Martin’, 15);

If you are preparing an application program, such as an application in C, you can
use the application to enter rows into a database table.

The following table lists IBM Informix tools that you can use for entering
information into your database. The acronyms in the Reference column are
explained after the table.

Tool Purpose Reference

dbaccessdemo Prepare and populate sample databases. DB-A, SQLR

DB-Access Edit a database by entering explicit commands. DB-A, SQLS

onunload & onload Copy an entire database or selected database
tables to or from files on tape or disk.

MG, AR

dbload Load data from one or more text files into one or
more existing tables.

MG

High-Performance
Loader

Copy an entire database, selected tables, or
selected columns of selected tables.

HPL

LOAD & UNLOAD Load data from (or into) a text file. SQLS

dbexport , dbimport Copy an entire database using text files. MG

Enterprise Replication Update selected databases each time a specified
table is updated.

ER

C application Use SQL commands embedded in a C program to
update databases.

ESQLC, DAPI,
DBDK

Java™ application Use SQL commands embedded in a Java program
to update databases.

Java, DBDK

Gateway applications Access data from databases that are not IBM
Informix .

GM, GU

Mnemonic
Explanation of References Column

SQLR IBM Informix Guide to SQL: Reference

SQLS IBM Informix Guide to SQL: Syntax

MG IBM Informix Migration Guide

AR IBM Informix Administrator's Reference

GM IBM Informix Enterprise Gateway Manager User Manual

GU IBM Informix Enterprise Gateway User Manual

DBDK
IBM DataBlade Developers Kit User's Guide

4-8 IBM Informix Database Design and Implementation Guide

ESQL/C
IBM Informix ESQL/C Programmer's Manual

Java J/Foundation Developer's Guide

HPL IBM Informix High-Performance Loader User's Guide

DB-A IBM Informix DB-Access User's Guide

ER IBM Informix Enterprise Replication Guide

DAPI IBM Informix DataBlade API Programmer's Guide

Move data from other IBM Informix databases
Often, the initial rows of a table can be derived from data that is stored in tables in
another IBM Informix database or in operating-system files. The following utilities
let you move large quantities of data:
v onunload and onload utilities
v dbexport and dbimport utilities
v dbload utility
v SQL LOAD statement
v High Performance Loader (HPL)

You can also select the data you want from the other database on another database
server as part of an INSERT statement in your database. As the following example
shows, you can select information from the items table in the demonstration
database to insert into a new table:
INSERT INTO newtable

SELECT item_num, order_num, quantity, stock_num,
manu_code, total_price

FROM stores_demo@otherserver:items;

Load source data into a table
When the data source is not an IBM Informix database, you must find a way to
convert it into a flat ASCII file; that is, a file of printable data in which each line
represents the contents of one table row.

After you have the data in an ASCII file, you can use the dbload utility to load it
into a table. For more information about dbload, see the IBM Informix Migration
Guide. The LOAD statement in DB-Access can also load rows from a flat ASCII file.
For information about the LOAD and UNLOAD statements, see the IBM Informix
Guide to SQL: Syntax.

After you have the data in a file, you can use external tables to load it into a table.
For more information about external tables, see your IBM Informix Administrator's
Guide.

Perform bulk-load operations
Inserting hundreds or thousands of rows goes much faster if you turn off
transaction logging. Logging these insertions makes no sense because, in the event
of a failure, you can easily re-create the lost work. The following list contains the
steps of a large bulk-load operation:
v If any chance exists that other users are using the database, exclude them with

the DATABASE EXCLUSIVE statement.
v Ask the administrator to turn off logging for the database.

Chapter 4. Implement a relational data model 4-9

The existing logs can be used to recover the database in its present state, and
you can run the bulk insertion again to recover those rows if they are lost.

v Perform the statements or run the utilities that load the tables with data.
v Back up the newly loaded database.

Either ask the administrator to perform a full or incremental backup or use the
onunload utility to make a binary copy of your database only.

v Restore transaction logging and release the exclusive lock on the database.

4-10 IBM Informix Database Design and Implementation Guide

Part 2. Managing databases

© Copyright IBM Corp. 1996, 2013

IBM Informix Database Design and Implementation Guide

Chapter 5. Table fragmentation strategies

This chapter describes the fragmentation strategies that your database server
supports and provides examples of the different fragmentation strategies. It
contains information about fragmentation, distribution schemes for table
fragmentation, creating and modifying fragmented tables, and providing privileges
for fragmented tables.

For information about how to formulate a fragmentation strategy to reduce data
contention and improve query performance, see your IBM Informix Performance
Guide.

What is fragmentation?
Fragmentation is a database server feature that allows you to control where data is
stored at the table level. Fragmentation enables you to define groups of rows or
index keys within a table according to some algorithm or scheme. You can store
each group or fragment (also referred to as a partition) in a separate dbspace
associated with a specific physical disk. You use SQL statements to create the
fragments and assign them to dbspaces.

The scheme that you use to group rows or index keys into fragments is called the
distribution scheme. The distribution scheme and the set of dbspaces in which you
locate the fragments together make up the fragmentation strategy. The decisions that
you must make to formulate a fragmentation strategy are explained in your IBM
Informix Performance Guide.

After you decide whether to fragment table rows, index keys, or both, and you
decide how the rows or keys should be distributed over fragments, you decide on
a scheme to implement this distribution. For a description of the distribution
schemes that IBM Informix database servers support, see “Distribution schemes for
table fragmentation” on page 5-2.

When you create fragmented tables and indexes, the database server stores the
location of each table and index fragment with other related information in the
system catalog table named sysfragments. You can use this table to access
information about your fragmented tables and indexes. If you use a user-defined
routine as part of the fragmentation expression, that information is recorded in
sysfragexprudrdep. For a description of the information that these system catalog
tables contain, see the IBM Informix Guide to SQL: Reference.

From the perspective of an end user or client application, a fragmented table is
identical to a nonfragmented table. Client applications do not require any
modifications to allow them to access the data in fragmented tables.

For some distribution schemes, the database server has information about which
fragments contain which data, so it can route client requests for data to the correct
fragment without accessing irrelevant fragments. (The database server cannot route
client requests for data to the correct fragment for round-robin and some
expression-based distribution schemes.) For more information, see “Distribution
schemes for table fragmentation” on page 5-2.)

© Copyright IBM Corp. 1996, 2013 5-1

Why use fragmentation?
Consider fragmenting your tables if improving at least one of the following is your
goal:
v Single-user response time
v Concurrency
v Availability
v Backup-and-restore characteristics
v Loading of data

Each of the preceding goals has its own implications for the fragmentation strategy
that you ultimately implement. Your primary fragmentation goal determines, or at
least influences, how you implement your fragmentation strategy. When you
decide whether to use fragmentation to meet any of the preceding goals, keep in
mind that fragmentation requires some additional administration and monitoring
activity.

For more information about the preceding goals and how to plan a fragmentation
strategy, see your IBM Informix Performance Guide.

Whose responsibility is fragmentation?
Some overlap exists between the responsibilities of the database server
administrator and those of the database administrator (DBA) with respect to
fragmentation. The DBA creates the database schema, which can include table
fragmentation. The database server administrator, however, is responsible for
allocating the disk space in which the fragmented tables will be located. Because
neither of these responsibilities can be performed in isolation from the other, to
implement fragmentation requires a cooperative effort between the DBA and the
database server administrator. This manual describes only those tasks that the DBA
performs to implement a fragmentation strategy. For information about the tasks
the database server administrator performs to implement a fragmentation strategy,
see your IBM Informix Administrator's Guide and IBM Informix Performance Guide.

Fragmentation and logging
Fragmented tables can belong to either a logging database or a nonlogging
database. As with nonfragmented tables, if a fragmented table is part of a
nonlogging database, a potential for data inconsistencies arises if a failure occurs.

Distribution schemes for table fragmentation
A distribution scheme is a method that the database server uses to distribute rows or
index entries to fragments. IBM Informix database servers support the following
distribution schemes:

Expression-based
This distribution scheme puts rows that contain specified values in the
same fragment. You specify a fragmentation expression that defines criteria
for assigning a set of rows to each fragment, either as a range rule or some
arbitrary rule. You can specify a remainder fragment that holds all rows that
do not match the criteria for any other fragment, although a remainder
fragment reduces the efficiency of the expression-based distribution
scheme.

Round-robin
This distribution scheme places rows one after another in fragments,

5-2 IBM Informix Database Design and Implementation Guide

rotating through the series of fragments to distribute the rows evenly. The
database server defines the rule internally.

For INSERT statements, the database server uses a hash function on a
random number to determine the fragment in which to place the row. For
INSERT cursors, the database server places the first row in a random
fragment, the second in the next sequential fragment, and so on. If one of
the fragments is full, it is skipped.

For complete descriptions of the SQL syntax you use to specify a distribution
scheme, see the CREATE TABLE and CREATE INDEX statements in the IBM
Informix Guide to SQL: Syntax. For an explanation about the performance aspects of
fragmentation, see your IBM Informix Performance Guide.

Expression-based distribution scheme
To specify an expression-based distribution scheme, use the FRAGMENT BY
EXPRESSION clause of the CREATE TABLE or CREATE INDEX statement. The
following example includes a FRAGMENT BY EXPRESSION clause to create a
fragmented table with an expression-based distribution scheme:
CREATE TABLE accounts (id_num INT, name char(15))
FRAGMENT BY EXPRESSION
id_num <= 100 IN dbspace_1,
id_num <100 AND id_num <= 200 IN dbspace_2,
id_num > 200 IN dbspace_3

When you use the FRAGMENT BY EXPRESSION clause of the CREATE TABLE
statement to create a fragmented table, you must supply one condition for each
fragment of the table that you are creating.

You can define range rules or arbitrary rules that indicate to the database server how
rows are to be distributed to fragments. The following sections describe the
different types of expression-based distribution schemes.

Range rule
A range rule uses SQL relational and logical operators to define the boundaries of
each fragment in a table. A range rule can contain the following restricted set of
operators:
v The relational operators >, <, >=, <=
v The logical operators AND and OR
v Algebraic expressions including built-in functions

A range rule can be based on a simple algebraic expression as shown in the
following example. In this example, the expression is a simple reference to a
column.
FRAGMENT BY EXPRESSION
id_num > 0 AND id_num <= 20 IN dbsp1,
id_num > 20 AND id_num <= 40 IN dbsp2,
id_num > 40 IN dbsp3

The expression in a range rule can be a conjunction or disjunction of more
algebraic expressions. The next example shows two algebraic expressions used to
define two sets of ranges. The first set of ranges is based on the algebraic
expression: "YEAR(Died) - YEAR(Born)"; the second set of ranges is based on
"MONTH(Born)."

Chapter 5. Table fragmentation strategies 5-3

FRAGMENT BY EXPRESSION
YEAR(Died) - YEAR(Born) < 21 AND MONTH(Born) >= 1 AND MONTH(Born) < 4 IN dbsp1,
YEAR(Died) - YEAR(Born) < 40 AND MONTH(Born) >= 4 AND MONTH(Born) < 7 IN dbsp2,

Arbitrary rule
An arbitrary rule uses SQL relational and logical operators. Unlike range rules,
arbitrary rules allow you to use any relational operator and any logical operator to
define the rule. In addition, you can reference any number of table columns in the
rule. Arbitrary rules typically include the use of the OR logical operator to group
data, as the following example shows:
FRAGMENT BY EXPRESSION
zip_num = 95228 OR zip_num = 95443 IN dbsp2,
zip_num = 91120 OR zip_num = 92310 IN dbsp4,
REMAINDER IN dbsp5

Use the MOD function
You can use the MOD function in a FRAGMENT BY EXPRESSION clause to map
each row in a table to a set of integers (hash values). The database server uses
these values to determine in which fragment it will store a given row. The
following example shows how you might use the MOD function in an
expression-based distribution scheme:
FRAGMENT BY EXPRESSION
MOD(id_num, 3) = 0 IN dbsp1,
MOD(id_num, 3) = 1 IN dbsp2,
MOD(id_num, 3) = 2 IN dbsp3

Insert and update rows
When you insert or update a row, the database server evaluates fragment
expressions, in the order specified, to see if the row belongs in any of the
fragments. If so, the database server inserts or updates the row in one of the
fragments. If the row does not belong in any of the fragments, the row is put into
the fragment that the remainder clause specified. If the distribution scheme does
not include a remainder clause, and the row does not match the criteria for any of
the existing fragment expressions, the database server returns an error.

Round-robin distribution scheme
To specify a round-robin distribution scheme, use the FRAGMENT BY ROUND
ROBIN clause of the CREATE TABLE statement. The following statement
illustrates a fragmented table with a round-robin distribution scheme:
CREATE TABLE account_2

...

...
FRAGMENT BY ROUND ROBIN IN dbspace1, dbspace2, dbspace3

When the database server receives a request to insert a number of rows into a table
that uses round-robin distribution, it distributes the rows in such a way that the
number of rows in each of the fragments remains approximately the same.
Round-robin distributions are also called even distributions because information is
distributed evenly among the fragments. The rule for distributing rows to tables
that use round-robin distribution is internal to the database server.

Important: You can use the round-robin distribution scheme only for table
fragmentation. You cannot fragment an index with this distribution scheme.

5-4 IBM Informix Database Design and Implementation Guide

Create a fragmented table
This section explains how to use SQL statements to create and manage fragmented
tables. You can fragment a table at the same time that you create it, or you can
fragment existing nonfragmented tables. An overview of both alternatives is given
in the following sections. For the complete syntax of the SQL statements that you
use to create fragmented tables, see the IBM Informix Guide to SQL: Syntax.

Before you create a fragmented table, you must decide on an appropriate
fragmentation strategy. For information about how to formulate a fragmentation
strategy, see your IBM Informix Performance Guide.

Create a new fragmented table
To create a fragmented table, use the FRAGMENT BY clause of the CREATE
TABLE statement. Suppose that you want to create a fragmented table similar to
the orders table of the stores_demo database. You decide on a round-robin
distribution scheme with three fragments and consult with your database server
administrator to set up three dbspaces, one for each of the fragments: dbspace1,
dbspace2, and dbspace3. The following SQL statement creates the fragmented
table:
CREATE TABLE my_orders (

order_num SERIAL(1001),
order_date DATE,
customer_num INT,
ship_instruct CHAR(40),
backlog CHAR(1),
po_num CHAR(10),
ship_date DATE,
ship_weight DECIMAL(8,2),
ship_charge MONEY(6),
paid_date DATE,
PRIMARY KEY (order_num),
FOREIGN KEY (customer_num) REFERENCES customer(customer_num))
FRAGMENT BY ROUND ROBIN IN dbspace1, dbspace2, dbspace3

You might decide instead to create the table with expression-based fragmentation.
Suppose that your my_orders table has 30,000 rows, and you want to distribute
rows evenly across three fragments stored in dbspace1, dbspace2, and dbspace3.
The following statement shows how you might use the order_num column to
define an expression-based fragmentation strategy:
CREATE TABLE my_orders (order_num SERIAL, ...)

FRAGMENT BY EXPRESSION
order_num < 10000 IN dbspace1,
order_num >= 10000 and order_num < 20000 IN dbspace2,
order_num >= 20000 IN dbspace3

Create a fragmented table from nonfragmented tables
You might be required to convert nonfragmented tables into fragmented tables in
the following circumstances:
v You have an application-implemented version of table fragmentation.

You will probably want to convert several small tables into one large fragmented
table. The following section tells you how to proceed when this is the case.
Follow the instructions in the section “More than one nonfragmented table” on
page 5-6.

v You have an existing large table that you want to fragment.

Chapter 5. Table fragmentation strategies 5-5

Follow the instructions in the section “Use a single nonfragmented table.”

Remember: Before you perform the conversion, you must set up an appropriate
number of dbspaces to contain the newly created fragmented tables.

More than one nonfragmented table
You can combine two or more nonfragmented tables into a single fragmented table.
The nonfragmented tables must have identical table structures and must be stored
in separate dbspaces. To combine nonfragmented tables, use the ATTACH clause of
the ALTER FRAGMENT statement.

For example, suppose that you have three nonfragmented tables, account1,
account2, and account3, and that you store the tables in dbspaces dbspace1,
dbspace2, and dbspace3, respectively. All three tables have identical structures, and
you want to combine the three tables into one table that is fragmented by the
expression on the common column acc_num.

You want rows with acc_num less than or equal to 1120 to be stored in dbspace1.
Rows with acc_num greater than 1120 but less than or equal to 2000 are to be
stored in dbspace2. Finally, rows with acc_num greater than 2000 are to be stored
in dbspace3.

To fragment the tables with this fragmentation strategy, execute the following SQL
statement:
ALTER FRAGMENT ON TABLE tab1 ATTACH

tab1 AS acc_num <= 1120,
tab2 AS acc_num > 1120 and acc_num <= 2000,
tab3 AS acc_num > 2000;

The result is a single table, tab1. The other tables, tab2 and tab3, were consumed
and no longer exist.

For information about how to use the ATTACH and DETACH clauses of the
ALTER FRAGMENT statement to improve performance, see your IBM Informix
Performance Guide.

Use a single nonfragmented table
To create a fragmented table from a nonfragmented table, use the INIT clause of
the ALTER FRAGMENT statement. For example, suppose you want to convert the
table orders to a table fragmented by round-robin. The following SQL statement
performs the conversion:
ALTER FRAGMENT ON TABLE orders INIT

FRAGMENT BY ROUND ROBIN IN dbspace1, dbspace2, dbspace3;

Any existing indexes on the nonfragmented table become fragmented with the
same fragmentation strategy as the table.

Rowids in a fragmented table
The term rowid refers to an integer that defines the physical location of a row. The
rowid of a row in a nonfragmented table is a unique and constant value. Rows in
fragmented tables, in contrast, are not assigned a rowid.

Important: Use primary keys as a method of access in your applications rather
than rowids. Because primary keys are defined in the ANSI specification of SQL,
using primary keys to access data makes your applications more portable.

5-6 IBM Informix Database Design and Implementation Guide

To accommodate applications that must reference a rowid for a fragmented table,
you can explicitly create a rowid column for a fragmented table. However, you
cannot use the WITH ROWIDS clause for typed tables.

To create the rowid column, use the following SQL syntax:
v The WITH ROWIDS clause of the CREATE TABLE statement
v The ADD ROWIDS clause of the ALTER TABLE statement
v The INIT clause of the ALTER FRAGMENT statement

When you create the rowid column, the database server takes the following
actions:
v Adds the 4-byte unique value to each row in the table
v Creates an internal index that it uses to access the data in the table by rowid
v Inserts a row in the sysfragments system catalog table for the internal index

Fragment smart large objects
You can specify multiple sbspaces in the PUT clause of the CREATE TABLE
statement to achieve round-robin fragmentation of smart large objects on a column.
If you specify multiple sbspaces for a CLOB or BLOB column, the database server
distributes the smart large objects for the column to the specified sbspaces in
round-robin fashion. Given the following CREATE TABLE statement, the database
server can distribute large objects from the cat_photo column to sbcat1, sbcat2,
and sbcat3 in round-robin fashion.
CREATE TABLE catalog (

catalog_num SERIAL,
stock_num SMALLINT,
manu_code CHAR(3),
cat_descr LVARCHAR,
cat_photo BLOB)

PUT cat_photo in (sbcat1, sbcat2, sbcat3;

Modify fragmentation strategies
You can make two general types of modifications to a fragmented table. The first
type consists of the modifications that you can make to a nonfragmented table.
Such modifications include adding a column, dropping a column, changing a
column data type, and so on. For these modifications, use the ALTER TABLE
statements that you would normally use on a nonfragmented table. The second
type of modification consists of changes to a fragmentation strategy. This section
explains how to use SQL statements to modify fragmentation strategies.

At times, you might be required to alter a fragmentation strategy after you
implement fragmentation. Most frequently, you will be required to modify your
fragmentation strategy when you use fragmentation with intraquery or interquery
parallelization. Modifying your fragmentation strategy in these circumstances is
one of several ways you can improve the performance of your database server
system.

Reinitialize a fragmentation strategy
You can use the ALTER FRAGMENT statement with an INIT clause to define and
initialize a new fragmentation strategy on a nonfragmented table or convert an
existing fragmentation strategy on a fragmented table. You can also use the INIT
clause to change the order of evaluation of fragment expressions.

Chapter 5. Table fragmentation strategies 5-7

The following example shows how you might use the INIT clause to reinitialize a
fragmentation strategy completely.

Suppose that you initially create the following fragmented table:
CREATE TABLE account (acc_num INTEGER, ...)

FRAGMENT BY EXPRESSION
acc_num <= 1120 in dbspace1,
acc_num > 1120 and acc_num < 2000 in dbspace2,
REMAINDER IN dbspace3;

Suppose that after several months of operation with this distribution scheme, you
find that the number of rows in the fragment contained in dbspace2 is twice the
number of rows that the other two fragments contain. This imbalance causes the
disk that contains dbspace2 to become an I/O bottleneck.

To remedy this situation, you decide to modify the distribution so that the number
of rows in each fragment is approximately even. You want to modify the
distribution scheme so that it contains four fragments instead of three fragments. A
new dbspace, dbspace2a, is to contain the new fragment that stores the first half of
the rows that previously were contained in dbspace2. The fragment in dbspace2
contains the second half of the rows that it previously stored.

To implement the new distribution scheme, first create the dbspace dbspace2a and
then execute the following statement:
ALTER FRAGMENT ON TABLE account INIT

FRAGMENT BY EXPRESSION
acc_num <= 1120 in dbspace1,
acc_num > 1120 and acc_num <= 1500 in dbspace2a,
acc_num > 1500 and acc_num < 2000 in dbspace2,
REMAINDER IN dbspace3;

As soon as you execute this statement, the database server discards the old
fragmentation strategy, and the rows that the table contains are redistributed
according to the new fragmentation strategy.

You can also use the INIT clause of ALTER FRAGMENT to perform the following
actions:
v Convert a single nonfragmented table into a fragmented table
v Convert a fragmented table into a nonfragmented table
v Convert a table fragmented by any strategy to any other fragmentation strategy

For more information, see the ALTER FRAGMENT statement in the IBM Informix
Guide to SQL: Syntax.

Modify fragmentation strategies
You can use the ADD, DROP, and MODIFY clauses to change the fragmentation
strategy on a table or index. For syntax information about these options, see the
ALTER FRAGMENT statement in the IBM Informix Guide to SQL: Syntax.

The ADD clause
When you define a fragmentation strategy, you may be required to add one or
more fragments. You can use the ADD clause of the ALTER FRAGMENT statement
to add a new fragment to a table. Suppose that you want to add a fragment to a
table that you create with the following statement:
CREATE TABLE sales (acc_num INT, ...)

FRAGMENT BY ROUND ROBIN IN dbspace1, dbspace2, dbspace3;

5-8 IBM Informix Database Design and Implementation Guide

To add a new fragment dbspace4 to the table sales, execute the following
statement:
ALTER FRAGMENT ON TABLE sales ADD dbspace4;

If the fragmentation strategy is expression based, the ADD clause of ALTER
FRAGMENT contains options to add a dbspace before or after an existing dbspace.

The DROP clause
When you define a fragmentation strategy, you must drop one or more fragments.
With IBM Informix, you can use the DROP clause of the ALTER FRAGMENT ON
TABLE statement to drop a fragment from a table. Suppose you want to drop a
fragment from a table that you create with the following statement:
CREATE TABLE sales (col_a INT), ...)

FRAGMENT BY ROUND ROBIN IN dbspace1, dbspace2, dbspace3;

The following ALTER FRAGMENT statement uses a DROP clause to drop the third
fragment dbspace3 from the sales table:
ALTER FRAGMENT ON TABLE sales DROP dbspace3;

When you issue this statement, all the rows in dbspace3 are moved to the
remaining dbspaces, dbspace1 and dbspace2.

The MODIFY clause
Use the ALTER FRAGMENT statement with the MODIFY clause to modify one or
more of the expressions in an existing fragmentation strategy.

Suppose that you initially create the following fragmented table:
CREATE TABLE account (acc_num INT, ...)

FRAGMENT BY EXPRESSION
acc_num <= 1120 IN dbspace1,
acc_num > 1120 AND acc_num < 2000 IN dbspace2,
REMAINDER IN dbspace3;

When you execute the following ALTER FRAGMENT statement, you ensure that
no account numbers with a value less than or equal to zero are stored in the
fragment that dbspace1 contains:
ALTER FRAGMENT ON TABLE account

MODIFY dbspace1 TO acc_num > 0 AND acc_num <=1120;

You cannot use the MODIFY clause to alter the number of fragments that your
distribution scheme contains. Use the INIT or ADD clause of ALTER FRAGMENT
instead.

Grant and revoke privileges on fragments
You must have a strategy to control data distribution if you want to grant useful
fragment privileges. One effective strategy is to fragment data records by
expression. The round-robin data-record distribution strategy, however, is not a
useful strategy because each new data record is added to the next fragment. A
round-robin distribution nullifies any clean method of tracking data distribution
and therefore eliminates any real use of fragment authority. Because of this
difference between expression-based distribution and round-robin distribution, the
GRANT FRAGMENT and REVOKE FRAGMENT statements apply only to tables
that have expression-based fragmentation.

Chapter 5. Table fragmentation strategies 5-9

When you create a fragmented table, no default fragment authority exists. Use the
GRANT FRAGMENT statement to grant insert, update, or delete authority on one
or more of the fragments. If you want to grant all three privileges simultaneously,
use the ALL keyword of the GRANT FRAGMENT statement. However, you cannot
grant fragment privileges by merely naming the table that contains the fragments.
You must name the specific fragments.

When you want to revoke insert, update, or delete privileges, use the REVOKE
FRAGMENT statement. This statement revokes privileges from one or more users
on one or more fragments of a fragmented table. If you want to revoke all
privileges that currently exist for a table, you can use the ALL keyword. If you do
not specify any fragments in the command, the permissions being revoked apply
to all fragments in the table that currently have permissions.

For more information, see the GRANT FRAGMENT, REVOKE FRAGMENT, and
SET statements in the IBM Informix Guide to SQL: Syntax.

5-10 IBM Informix Database Design and Implementation Guide

Chapter 6. Grant and limit access to your database

This chapter describes how you can control access to your database. In some
databases, all data is accessible to every user. In others, some users are denied
access to some or all the data.

Use SQL to restrict access to data
You can restrict access to data at the following levels:
v You can use the GRANT and REVOKE statements to give or deny access to the

database or to specific tables, and you can control the kinds of uses that people
can make of the database.

v You can use the CREATE PROCEDURE or CREATE FUNCTION statement to
write and compile a user-defined routine, which controls and monitors the users
who can read, modify, or create database tables.

v You can use the CREATE VIEW statement to prepare a restricted or modified
view of the data. The restriction can be vertical, which excludes certain columns,
or horizontal, which excludes certain rows, or both.

v You can combine GRANT and CREATE VIEW statements to achieve precise
control over the parts of a table that a user can modify and with what data.

v With IBM Informix, you can use the SET ENCRYPTION PASSWORD statement
and built-in encryption and decryption functions of SQL to implement
column-level encryption of sensitive data. Unauthorized users who succeed in
viewing an encrypted character, BLOB, or CLOB column value cannot recover
the plain text of your data without the DES or triple-DES encryption key, which
is not stored in the database.

Control access to databases
“Grant privileges” on page 6-2 contains information about how the normal
database-privilege mechanisms are based on the GRANT and REVOKE statements.
You can sometimes use the facilities of the operating system, however, as an
additional way to control access to a database.

No matter what access controls the operating system gives you, when the contents
of an entire database are highly sensitive, you might not want to leave it on a
public disk that is fixed to the computer. You can circumvent normal software
controls when the data must be secure.

When you or another authorized person is not using the database, it does not have
to be available online. You can make it inaccessible in one of the following ways,
which have varying degrees of inconvenience:
v Detach the physical medium from the computer and take it away. If the disk

itself is not removable, the disk drive might be removable.
v Copy the database directory to tape and take possession of the tape.
v Use an encryption utility to copy the database files. Keep only the encrypted

version.

Important: In the latter two cases, after making the copies, you must remember to
erase the original database files with a program that overwrites an erased file with
NULL data.

© Copyright IBM Corp. 1996, 2013 6-1

Instead of removing the entire database directory, you can copy and then erase the
files that represent individual tables. Do not overlook the fact that index files
contain copies of the data from the indexed column or columns. Remove and erase
the index and table files.

Grant privileges
The authorization to use a database is called an access privilege. For example, the
authorization to use a database is called the Connect privilege; authorization to
insert a row into a table is called the Insert privilege. Use the GRANT statement to
grant privileges on a database, table, view, or procedure, or to grant a role to a
user or another role. Use the REVOKE statement to revoke privileges on a database
or database object, or to revoke a role from a user or from another role.

A role is a classification of access privileges that the DBA assigns, such as payroll.
After a role is created with the CREATE ROLE statement, the DBA can use the
GRANT statement to assign access privileges to the role, and to assign the role to
individual users (or to other roles), so that users with similar work tasks can hold
the set of access privileges that their work tasks require. By assigning privileges to
roles and roles to users, you can simplify the management of privileges. See also
“External routines” on page 6-10 and “Roles” on page 6-11 for additional
information about the role of roles in managing access privileges.

The following groups of privileges control the actions a user can perform on data
and on database objects:
v Database-level privileges
v Ownership privileges
v Table-level privileges
v Column-level privileges
v Type-level privileges
v Routine-level privileges
v Language-level privileges
v Automating privileges

For the syntax of the GRANT and REVOKE statements, see the IBM Informix Guide
to SQL: Syntax.

Database-level privileges
The three levels of database privileges provide an overall means of controlling who
accesses a database. Only individual users, not roles, can hold database-level
privileges.

Connect privilege
The least of the privilege levels is Connect, which gives a user the basic ability to
query and modify tables.

Users with the Connect privilege can perform the following functions:
v Execute the SELECT, INSERT, UPDATE, and DELETE statements, provided that

they have the necessary table-level privileges.
v Execute an SPL routine, provided that they have the necessary table-level

privileges.
v Create views, provided that they are permitted to query the tables on which the

views are based.

6-2 IBM Informix Database Design and Implementation Guide

v Create temporary tables and create indexes on the temporary tables.

Before users can access a database, they must have the Connect privilege.
Ordinarily, in a database that does not contain highly sensitive or private data, you
give the GRANT CONNECT TO PUBLIC privilege shortly after you create the
database.

If you do not grant the Connect privilege to PUBLIC, the only users who can
access the database through the database server are those to whom you specifically
grant the Connect privilege. If limited users should have access, this privilege lets
you provide it to them and deny it to all others.
Related concepts:
“Database-administrator privilege”

Users and the public: Privileges are granted to single users by name or to all
users under the name of PUBLIC. Any privileges granted to PUBLIC serve as
default privileges.

Before executing a statement, the database server determines whether a user has
the necessary privileges. The information is in the system catalog. For more
information, see “Privileges in the system catalog tables” on page 6-5.

The database server looks first for privileges that are granted specifically to the
requesting user. If it finds such a grant, it uses that information. It then checks to
see if less restrictive privileges were granted to PUBLIC. If they were, the database
server uses the less restrictive privileges. If no grant has been made to that user,
the database server looks for privileges granted to PUBLIC. If it finds a relevant
privilege, it uses that one.

Thus, to set a minimum level of privilege for all users, grant privileges to PUBLIC.
You can override that, in specific cases, by granting higher individual privileges to
users.

Resource privilege
The Resource privilege carries the same authorization as the Connect privilege. In
addition, users with the Resource privilege can create new, permanent tables,
indexes, and SPL routines, thus permanently allocating disk space.
Related concepts:
“Database-administrator privilege”

Database-administrator privilege
The highest level of database privilege is database administrator, or DBA. When
you create a database, you are automatically the DBA.

Holders of the DBA privilege can perform the following functions:
v Execute the DROP DATABASE, START DATABASE, and ROLLFORWARD

DATABASE statements.
v Drop or alter any object regardless of who owns it.
v Create tables, views, and indexes to be owned by other users.
v Grant database privileges, including the DBA privilege, to another user.

Chapter 6. Grant and limit access to your database 6-3

Only the user informix can modify system catalog tables directly. If you are user
informix, IBM strongly recommends that you not modify the contents or schema
of any system catalog table, because such actions can affect the integrity of the
database.
Related concepts:

Database-level privileges (SQL Syntax)
“Connect privilege” on page 6-2
“Resource privilege” on page 6-3

Ownership rights
The database, and every table, view, index, procedure, and synonym in it, has an
owner. The owner of an object is usually the person who created it, although a
user with the DBA privilege can create objects to be owned by others.

The owner of a database object has all rights to that object and can alter or drop it
without additional privileges.

Table-level privileges
You can apply seven privileges, table by table, to allow nonowners the privileges
of owners. Four of them, the Select, Insert, Delete, and Update privileges, control
DML access to data in the table. The Index privilege controls index creation. The
Alter privilege gives authorization to change the table definition. The References
privilege gives authorization to specify referential constraints on a table.

In an ANSI-compliant database, only the table owner has any privileges. In other
databases, the database server, as part of creating a table, automatically grants to
PUBLIC all table privileges except Alter and References, unless the NODEFDAC
environment variable has been set to 'yes' to withhold all table privileges from
PUBLIC. When you allow the database server to automatically grant all table
privileges to PUBLIC, a newly created table is accessible to any user with the
Connect privilege. If this is not what you want (if users exist with the Connect
privilege who should not be able to access this table), you must revoke all
privileges on the table from PUBLIC after you create the table.

Access privileges
Four privileges govern how users can access a table. As the owner of the table, you
can grant or withhold the following privileges independently:
v Select allows selection, including selecting into temporary tables.
v Insert allows a user to add new rows.
v Update allows a user to modify existing rows.
v Delete allows a user to delete rows.

The Select privilege is necessary for a user to retrieve the contents of a table.
However, the Select privilege is not a precondition for the other privileges. A user
can have Insert or Update privileges without having the Select privilege.

For example, your application might have a usage table. Every time a certain
program is started, it inserts a row into the usage table to document that it was
used. Before the program terminates, it updates that row to show how long it ran
and perhaps to record counts of work its user performs.

6-4 IBM Informix Database Design and Implementation Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_0147.htm#ids_sqs_0147

If you want any user of the program to be able to insert and update rows in this
usage table, grant Insert and Update privileges on it to PUBLIC. However, you
might grant the Select privilege to only a few users.

Privileges in the system catalog tables:

Database-level and table-level privileges are recorded in the system catalog tables.
Any user with the Connect privilege can query the system catalog tables to
determine what privileges are granted and to whom.

Database-level privileges and roles are recorded in the sysusers system catalog
table, in which the primary key is the username column, and the usertype column
contains a single character C (for Connect), R (for Resource), or D (for DBA) that
specifies the highest database-level privilege that username holds, or G if
username is the authorization identifier of a role. The last column, defrole, stores
the default role if username holds a default role. (Neither a default role nor
database- level privileges can be granted to a role, but a role can hold other access
privileges, such as table-level privileges, and a role can be granted a non-default
role.) The username in the row that shows the highest database-level privilege
held by the PUBLIC group is public.

Table-level privileges are recorded in systabauth system catalog table, which uses a
composite primary key of the table number, grantor, and grantee. In the tabauth
column, the privileges are encoded in the list as follows.

Code Meaning
s unconditional select
u update
- ungranted privileges
i insert
d delete
x index
a alter
r references

A hyphen means an ungranted privilege, so that a grant of all privileges is shown
as su-idxar, and -u------ shows a grant of only Update. The code letters are
normally lowercase, but they are uppercase when the keywords WITH GRANT
OPTION are used in the GRANT statement.

When an asterisk (*) appears in the third position, some column-level privilege
exists for that table and grantee. The specific privilege is recorded in syscolauth.
Its primary key is a composite of the table number, the grantor, the grantee, and
the column number. The only attribute is a three-letter list that shows the type of
privilege: s, u, or r.

Index, alter, and references privileges
The Index privilege permits its holder to create and alter indexes on the table. The
Index privilege, similar to the Select, Insert, Update, and Delete privileges, is
granted automatically to PUBLIC when you create a table.

You can grant the Index privilege to anyone, but to exercise the privilege, the user
must also hold the Resource database privilege. So, although the Index privilege is
granted automatically (except in ANSI-compliant databases), users who have only
the Connect privilege to the database cannot exercise their Index privilege. Such a
limitation is reasonable because an index can fill a large amount of disk space.

Chapter 6. Grant and limit access to your database 6-5

The Alter privilege permits its holder to use the ALTER TABLE statement on the
table, including the power to add and drop columns, reset the starting point for
SERIAL columns, and so on. You should grant the Alter privilege only to users
who understand the data model well and whom you trust to exercise their power
carefully.

The References privilege allows you to impose referential constraints on a table. As
with the Alter privilege, you should grant the References privilege only to users
who understand the data model well.

Under privileges for typed tables
You can grant or revoke the Under privilege to control whether users can use a
typed table as a supertable in an inheritance hierarchy. The Under privilege is
granted to PUBLIC automatically when a table is created (except in
ANSI-compliant databases). In an ANSI-compliant database, the Under privilege
on a table is granted to the owner of the table. To restrict which users can define a
table as a supertable in an inheritance hierarchy, you must first revoke the Under
privilege for PUBLIC and then specify the users to whom you want to grant the
Under privilege. For example, to specify that only a limited group of users can use
the employee table as a supertable in an inheritance hierarchy, you might execute
the following statements:
REVOKE UNDER ON employee

FROM PUBLIC;

GRANT UNDER ON employee
TO johns, cmiles, paulz

For information about how to use the UNDER clause to create tables in an
inheritance hierarchy, see “Table inheritance” on page 9-5.

Privileges on table fragments
Use the GRANT FRAGMENT statement to grant insert, update, and delete
privileges on individual fragments of a fragmented table. The GRANT
FRAGMENT statement is valid only for tables that are fragmented with
expression-based distribution schemes.

Suppose you create a customer table that is fragmented by expression into three
fragments, which are located in the dbspaces dbsp1, dbsp2, and dbsp3. The
following statement shows how to grant insert privileges on the first two
fragments only (dbsp1 and dbsp2) to users jones, reed, and mathews.
GRANT FRAGMENT INSERT ON customer (dbsp1, dbsp2)

TO jones, reed, mathews

To grant privileges on all fragments of a table, use the GRANT statement or the
GRANT FRAGMENT statement.

For information about the GRANT FRAGMENT and REVOKE FRAGMENT
statements, see the IBM Informix Guide to SQL: Syntax.

Column-level privileges
You can qualify the Select, Update, and References privileges with the names of
specific columns. Naming specific columns allows you to grant specific access to a
table. You can permit a user to see only certain columns, to update only certain
columns, or to impose referential constraints on certain columns.

6-6 IBM Informix Database Design and Implementation Guide

You can use the GRANT and REVOKE statements to grant or restrict access to
table data. This feature solves the problem that only certain users should know the
salary, performance review, or other sensitive attributes of an employee. Suppose a
table of employee data is defined as the following example shows:
CREATE TABLE hr_data

(
emp_key INTEGER,
emp_name CHAR(40),
hire_date DATE,
dept_num SMALLINT,
user-id CHAR(18),
salary DECIMAL(8,2)
performance_level CHAR(1),
performance_notes TEXT
)

Because this table contains sensitive data, you execute the following statement
immediately after you create it:
REVOKE ALL ON hr_data FROM PUBLIC

For selected persons in the Human Resources department, and for all managers,
execute the following statement:
GRANT SELECT ON hr_data TO harold_r

In this way, you permit certain users to view all columns. (The final section of this
chapter contains information about a way to limit the view of managers to their
employees only.) For the first-line managers who carry out performance reviews,
you can execute a statement such as the following one:
GRANT UPDATE (performance_level, performance_notes)

ON hr_data TO wallace_s, margot_t

This statement permits the managers to enter their evaluations of their employees.
You would execute a statement such as the following one only for the manager of
the Human Resources department or whomever is trusted to alter salary levels:
GRANT UPDATE (salary) ON hr_data to willard_b

For the clerks in the Human Resources department, you can execute a statement
such as the following one:
GRANT UPDATE (emp_key, emp_name, hire_date, dept_num)

ON hr_data TO marvin_t

This statement gives certain users the ability to maintain the nonsensitive columns
but denies them authorization to change performance ratings or salaries. The
person in the MIS department who assigns computer user IDs is the beneficiary of
a statement such as the following one:
GRANT UPDATE (user_id) ON hr_data TO eudora_b

On behalf of all users who are allowed to connect to the database, but who are not
authorized to see salaries or performance reviews, execute statements such as the
following one to permit them to see the nonsensitive data:
GRANT SELECT (emp_key, emp_name, hire_date, dept_num, user-id)

ON hr_data TO george_b, john_s

These users can perform queries such as the following one:
SELECT COUNT(*) FROM hr_data WHERE dept_num IN (32,33,34)

Chapter 6. Grant and limit access to your database 6-7

However, any attempt to execute a query such as the following one produces an
error message and no data:
SELECT performance_level FROM hr_data

WHERE emp_name LIKE ’*Smythe’

Type-level privileges
IBM Informix supports user-defined data types (UDTs). When a user-defined data
type is created, only the DBA or owner of the data type can grant or revoke
type-level privileges that control who can use the UDT. IBM Informix supports the
two type-level privileges.

Usage privileges for user-defined types
To control who can use an opaque type, distinct type, or named row type, specify
the Usage privilege on the data type. The Usage privilege allows the DBA or
owner of the type to restrict a user's ability to assign a data type to a column,
program variable (or table or view for a named row type), or assign a cast to the
data type. The Usage privilege is granted to PUBLIC automatically when a data
type is created (except in ANSI-compliant databases). In an ANSI-compliant
database, the Usage privilege on a data type is granted to the owner of the data
type.

To limit who can use an opaque, distinct, or named row type, you must first
revoke the Usage privilege for PUBLIC and then specify the names of the users to
whom you want to grant the Usage privilege. For example, to limit the use of a
data type named circle to a group of users, you might execute the following
statements:
REVOKE USAGE ON circle

FROM PUBLIC;

GRANT USAGE ON circle
TO dawns, stevep, terryk, camber;

Under privileges for named row types
For named row types, you can grant or revoke the Under privilege, which controls
whether users can assign a named row type as the supertype of another named
row type in an inheritance hierarchy. The Under privilege is granted to PUBLIC
automatically when a named row type is created (except in ANSI-compliant
databases). In an ANSI-compliant database, the Under privilege on a named row
type is granted to the owner of the type.

To restrict certain users' ability to define a named row type as a supertype in an
inheritance hierarchy, you must first revoke the Under privilege for PUBLIC and
then specify the names of the users to whom you want to grant the Under
privilege. For example, to specify that only a limited group of users can use the
named row type person_t as a supertype in an inheritance hierarchy, you might
execute the following statements:
REVOKE UNDER ON person_t

FROM PUBLIC;

GRANT UNDER ON person_t
TO howie, jhana, alison

For information about how to use the UNDER clause to create named row types in
an inheritance hierarchy, see “Type inheritance” on page 9-1.

6-8 IBM Informix Database Design and Implementation Guide

Routine-level privileges
You can apply the Execute privilege on a user-defined routine (UDR) to authorize
nonowners to execute the UDR. If you create a UDR in a database that is not
ANSI-compliant, the default routine-level privilege is PUBLIC; you are not
required to grant the Execute privilege to specific users unless you have first
revoked it. If you create a routine in an ANSI-compliant database, no other users
have the Execute privilege by default; you must grant specific users the Execute
privilege. The following example grants the Execute privilege to the user orion so
that orion can use the UDR that is named read_address:
GRANT EXECUTE ON ROUTINE read_address TO orion;

The sysprocauth system catalog table records routine-level privileges. The
sysprocauth system catalog table uses a primary key of the routine number,
grantor, and grantee. In the procauth column, the execute privilege is indicated by
a lowercase “e”. If the execute privilege was granted with the WITH GRANT
option, the privilege is represented by an uppercase “E”.

For more information about routine-level privileges, see the IBM Informix Guide to
SQL: Tutorial.

Language-level privileges
IBM Informix supports UDRs written in the built-in Stored Procedure Language
(SPL) and also UDRs (referred to as external routines) that are written the C and
Java languages. To create any UDR, a user must hold the Resource privilege (or
else DBA privilege) on the database. In addition, to create a UDR, the user must
also receive the Usage privilege on the programming language from the
corresponding GRANT statement:
v GRANT USAGE ON LANGUAGE C for C routines
v GRANT USAGE ON LANGUAGE JAVA for Java l routines
v GRANT USAGE ON LANGUAGE SPL for SPL routines

In addition to holding the required language-level privileges, if the
IFX_EXTEND_ROLE configuration parameter has been enabled (either by default,
or by being set to 1 or to ON), only users to whom the DBSA has granted the
built-in EXTEND role can create, alter, or drop external routines.

SPL routines
By default, language usage privilege on SPL is granted to user informix and to
users who hold the DBA privilege. Only user informix, however, can grant
language usage privileges to other users. Users with the DBA privilege hold
language usage privileges, but cannot grant these privileges to other users. Usage
privilege to create SPL routines is granted to PUBLIC by default.

The following statement shows how user informix might revoke from PUBLIC but
grant to users mays, jones, and freeman permission to create UDRs in SPL:
REVOKE USAGE ON LANGUAGE SPL FROM PUBLIC
GRANT USAGE ON LANGUAGE SPL TO mays, jones, freeman

Suppose the default Usage privileges on an SPL routine have been revoked from
PUBLIC. The following statement shows how a user with the DBA privilege might
grant Usage privilege to register SPL routines to users franklin, reeves, and
wilson:
GRANT USAGE ON LANGUAGE SPL TO franklin, reeves, wilson

Chapter 6. Grant and limit access to your database 6-9

External routines
This release of IBM Informix does not support language-level privileges on
external routines that are written in the C or Java language. When the
IFX_EXTEND_ROLE configuration parameter to ON, however, equivalent
functionality is provided through the built-in EXTEND role, which is required for
any user to register, drop, or replace a UDR or a DataBlade module that is written
in the C or Java language.

Only the database server administrator (DBSA), by default user informix, can
grant the EXTEND role. In contrast with user-defined role names, built-in roles
such as EXTEND and DBSECADM are automatically active, and the privileges
conferred by the role cannot be modified. When the EXTEND role is enabled, only
users who have been granted the EXTEND role can create or drop a DataBlade
module or an external UDR.

The DBSA also has the option of disabling this restriction by setting the
IFX_EXTEND_ROLE configuration parameter to OFF, or to leave it unset. In this
case, any user who holds the RESOURCE privilege on the database can create a
UDR written in the C or Java language.

Automate privileges
This design might seem to force you to execute a tedious number of GRANT
statements when you first set up the database. Furthermore, privileges require
constant maintenance, as people change jobs. For example, if a clerk in Human
Resources is terminated, you want to revoke the Update privilege as soon as
possible, otherwise the unhappy employee might execute a statement such as the
following one:
UPDATE hr_data

SET (emp_name, hire_date, dept_num) = (NULL, NULL, 0)

Less dramatic, but equally necessary, privilege changes are required daily, or even
hourly, in any model that contains sensitive data. If you anticipate this
requirement, you can prepare some automated tools to help maintain privileges.

Your first step should be to specify privilege classes that are based on the jobs of
the users, not on the structure of the tables. For example, a first-line manager
requires the following privileges:
v The Select and limited Update privileges on the hypothetical hr_data table
v The Connect privilege to this and other databases
v Some degree of privilege on several tables in those databases

When a manager is promoted to a staff position or sent to a field office, you must
revoke all those privileges and grant a new set of privileges.

Define the privilege classes you support, and for each class specify the databases,
tables, and columns to which you must give access. Then devise two automated
routines for each class, one to grant the class to a user and one to revoke it.

Automate with a command script
Your operating system probably supports automatic execution of command scripts.
In most operating environments, interactive SQL tools such as DB-Access accept
commands and SQL statements to execute from the command line. You can
combine these two features to automate privilege maintenance.

6-10 IBM Informix Database Design and Implementation Guide

The details depend on your operating system and the version of the interactive
SQL tool that you are using. You must create a command script that performs the
following functions:
v Takes a user ID whose privileges are to be changed as its parameter
v Prepares a file of GRANT or REVOKE statements customized to contain that

user ID
v Invokes the interactive SQL tool (such as DB-Access) with parameters that tell it

to select the database and execute the prepared file of GRANT or REVOKE
statements

In this way, you can reduce the change of the privilege class of a user to one or
two commands.

Roles
Another way to avoid the difficulty of changing user privileges on a case-by-case
basis is to use roles. The concept of a role in the database environment is similar to
the group concept in an operating system. A role is a database feature that lets the
DBA standardize and change the access privileges of many users by treating them
as members of a class. (User-defined roles cannot be granted the database-level
privileges Connect, Resource, or DBA, but roles can hold discretionary access
privileges on database objects, including privileges on table objects, on fragments
of tables, on user-defined data types, on user-defined routines, and on
programming languages.)

For example, if you grant the Connect privilege to the PUBLIC group for each of
the databases that handle company news and messages, you can create a role
called news_mes to which you grant the Insert and Delete privileges on tables in
which employees who are granted that role can add or delete rows. When a new
employee arrives, you must only add that person to the news_mes role. By issuing
the SET ROLE news_mes statement to enable that role, the new employee acquires
the access privileges of the news_mes role. (Alternatively, you can define a
user.sysdbopen procedure in each database where those privileges are needed,
where user is the authorization identifier of the new employee, to execute the SET
ROLE news_mes statement automatically when the user connects to the database.)

This process also works in reverse. To change the discretionary access privileges of
everyone who has been granted the news_mes role, use the GRANT or REVOKE
statements to change the privileges of that role in each database where the
news_mes role is defined.

Note: Access privileges granted to individual users, however, or that users hold as
members of the PUBLIC group, are not affected when the same privileges are
revoked from a user-defined role that those users hold, or when the role is revoked
from them, or when the role is dropped.

Create a role:
To start the role creation process, determine the name of the role and the
connections and privileges that you want to grant to users who hold that role.
Although the connections and privileges are strictly in your domain, you must
consider some factors when you declare the name of a new role. For the name of a
user-defined role, do not use any of the following SQL keywords, access privileges,
or built-in roles:
v ALTER
v C
v CONNECT

Chapter 6. Grant and limit access to your database 6-11

v DBA
v DBSECADM
v DEFAULT
v DELETE
v EXECUTE
v EXTEND
v INDEX
v INSERT
v NONE
v NULL
v PUBLIC
v REFERENCES
v RESOURCE
v SELECT
v SETSESSIONAUTH
v SPL
v UPDATE

Because role names are authorization identifiers, rather than SQL identifiers, the
maximum length of a role name is 32 bytes.

A role name must be different from existing role names in the same database. A
role name must also be different from user names that are known to the operating
system, including network users known to the server computer. To make sure that
your new role name is unique, check the names of the users in the shared memory
structure who are currently using the database, and in the following system catalog
tables:
v sysusers

v systabauth

v syscolauth

v sysfragauth

v sysprocauth

v sysroleauth

v syssecpolicyexemptions

v sysxtdtypeauth

When the situation is reversed and you are adding a user to the database, check
that the user name is not the same as any of the existing role names.

After you approve the role name, use the CREATE ROLE statement to create a new
role. After the role is created, all privileges for role administration are, by default,
given to the DBA.

Important: The scope of a role is the current database only. When you execute the
SET ROLE statement, the specified role takes effect in the current database only. As
a security precaution, a user who holds access privileges only through a role
cannot access tables in a remote database through a view, trigger, or procedure.

Manipulate user privileges and grant roles to other roles:

6-12 IBM Informix Database Design and Implementation Guide

As DBA, you can use the GRANT statement to grant role privileges to users. You
can also give a user the option to grant privileges to other users. Use the WITH
GRANT OPTION clause of the GRANT statement to do this.

You can also use the WITH GRANT OPTION clause when granting privileges to
roles as in this example:
GRANT rol1 TO usr1 WITH GRANT OPTION;

The WITH GRANT OPTION clause is valid only for roles (and for access
privileges) that you grant to users. The database server issues an error if you
include the WITH GRANT OPTION keywords when the TO clause specifies a role,
or when it specifies the PUBLIC group.

When you grant role privileges, you can substitute a role name for the user name
in the GRANT statement. You can grant a role to another role. For example, say
that role A is granted to role B. When a user enables role B, the user gets privileges
from both role A and role B.

However, a cycle of role granting cannot be transitive. If role A is granted role B,
and role B is granted role C, then granting C to A returns an error.

If you must change privileges, use the REVOKE statement to delete the existing
privileges and then use the GRANT statement to add the new privileges.

Enable default roles and non-default roles:
After the DBA grants privileges and adds users to a role, there are two possible
ways to enable roles.
v The DBSA can specify a default role for PUBLIC or for individual users by using

the GRANT DEFAULT ROLE statement. This role is automatically activated as
the initial role setting when the user connects to the database.

v Any role that a user holds can also be activated when the user specifies that role
in the SET ROLE statement.

When a role is enabled, all privileges that have been granted to the role become
available, and all privileges explicitly granted to you or to PUBLIC.

Assigning privileges to a role, and then granting that role as the default role to
specified users is convenient for sessions in which those users run an application
that requires a specific set of access privileges. Use default roles when it is
impractical to recompile an application to include GRANT and SET ROLE
statements that specifically assign to users the necessary access privileges.

Confirm membership In roles and drop roles:
You can find yourself in a situation where you are uncertain which user is
included in a role. Perhaps you did not create the role, or the person who created
the role is unavailable. Issue queries against the sysroleauth and sysusers system
catalog tables to find who is authorized for which table and how many roles exist.

After you determine which users hold which roles, you might discover that some
roles are no longer useful. To remove a role, use the DROP ROLE statement. Before
you remove a role, the following conditions must be met:
v Only roles that are listed in the sysusers system catalog table as a role can be

deleted, but you cannot drop a built-in role (such as NONE or EXTEND).
v You must have DBA privileges, or you must be given the grantable option in the

role to drop a role.

Chapter 6. Grant and limit access to your database 6-13

Determine current role at runtime
If you experience unexpected errors with a role that was granted appropriate
access privileges, make sure that the role was enabled during runtime. To obtain
this information while you are connected to the database, you can use the onstat -g
sql or onstat -g ses command. To see only your own current role, use the
CURRENT_ROLE operator of SQL. To see your default role, use the
DEFAULT_ROLE operator of SQL.

Use SPL routines to control access to data
You can use an SPL routine to control access to individual tables and columns in
the database. Use a routine to accomplish various degrees of access control. A
powerful feature of SPL is the ability to designate an SPL routine as a
DBA-privileged routine. When you write a DBA-privileged routine, you can allow
users who have few or no table privileges to have DBA privileges when they
execute the routine. In the routine, users can carry out specific tasks with their
temporary DBA privilege. The DBA-privileged routine lets you accomplish the
following tasks:
v You can restrict how much information individual users can read from a table.
v You can restrict all the changes that are made to the database and ensure that

entire tables are not emptied or changed accidentally.
v You can monitor an entire class of changes made to a table, such as deletions or

insertions.
v You can restrict all object creation (data definition) to occur within an SPL

routine so that you have complete control over how tables, indexes, and views
are built.

For information about routines in SPL, see the IBM Informix Guide to SQL: Tutorial.

Restrict data reads
The routine in the following example hides the SQL syntax from users, but it
requires that users have the Select privilege on the customer table. If you want to
restrict what users can select, write your routine to work in the following
environment:
v You are the DBA of the database.
v The users have the Connect privilege to the database. They do not have the

Select privilege on the table.
v You use the DBA keyword to create the SPL routine (or set of SPL routines).
v Your SPL routine (or set of SPL routines) reads from the table for users.

If you want users to read only the name, address, and telephone number of a
customer, you can modify the procedure as the following example shows:
CREATE DBA PROCEDURE read_customer(cnum INT)
RETURNING CHAR(15), CHAR(15), CHAR(18);

DEFINE p_lname,p_fname CHAR(15);
DEFINE p_phone CHAR(18);

SELECT fname, lname, phone
INTO p_fname, p_lname, p_phone
FROM customer
WHERE customer_num = cnum;

6-14 IBM Informix Database Design and Implementation Guide

RETURN p_fname, p_lname, p_phone;

END PROCEDURE;

Restrict changes to data
When you use SPL routines, you can restrict changes made to a table. Channel all
changes through an SPL routine. The SPL routine makes the changes, rather than
users making the changes directly. If you want to limit users to deleting one row at
a time to ensure that they do not accidentally remove all the rows in the table, set
up the database with the following privileges:
v You are the DBA of the database.
v All the users have the Connect privilege to the database. They might have the

Resource privilege. They do not have the Delete privilege (for this example) on
the table being protected.

v You use the DBA keyword to create the SPL routine.
v Your SPL routine performs the deletion.

Write an SPL procedure similar to the following one, which uses a WHERE clause
with the customer_num that the user provides, to delete rows from the customer
table:
CREATE DBA PROCEDURE delete_customer(cnum INT)

DELETE FROM customer
WHERE customer_num = cnum;

END PROCEDURE;

Monitor changes to data
When you use SPL routines, you can create a record of changes made to a
database. You can record changes that a particular user makes, or you can make a
record each time a change is made.

You can monitor all the changes a single user makes to the database. Channel all
changes through SPL routines that keep track of changes that each user makes. If
you want to record each time the user acctclrk modifies the database, set up the
database with the following privileges:
v You are the DBA of the database.
v All other users have the Connect privilege to the database. They might have the

Resource privilege. They do not have the Delete privilege (for this example) on
the table being protected.

v You use the DBA keyword to create an SPL routine.
v Your SPL routine performs the deletion and records that a certain user makes a

change.

Write an SPL routine similar to the following example (for a UNIX platform),
which uses a customer number the user provides to update a table. If the user
happens to be acctclrk, a record of the deletion is put in the file updates.
CREATE DBA PROCEDURE delete_customer(cnum INT)

DEFINE username CHAR(8);

DELETE FROM customer
WHERE customer_num = cnum;

Chapter 6. Grant and limit access to your database 6-15

IF username = ’acctclrk’ THEN
SYSTEM ’echo Delete from customer by acctclrk >>

/mis/records/updates’ ;
END IF
END PROCEDURE;

To monitor all the deletions made through the procedure, remove the IF statement
and make the SYSTEM statement more general. The following procedure changes
the previous routine to record all deletions:
CREATE DBA PROCEDURE delete_customer(cnum INT)

DEFINE username CHAR(8);
LET username = USER ;
DELETE FROM tbname WHERE customer_num = cnum;

SYSTEM
’echo Deletion made from customer table, by ’||username
||’>>/hr/records/deletes’;

END PROCEDURE;

Restrict object creation
To put restraints on what objects are built and how they are built, use SPL routines
within the following setting:
v You are the DBA of the database.
v All the other users have the Connect privilege to the database. They do not have

the Resource privilege.
v You use the DBA keyword to create an SPL routine (or set of SPL routines).
v Your SPL routine (or set of SPL routines) creates tables, indexes, and views in

the way you define them. You might use such a routine to set up a training
database environment.

Your SPL routine might include the creation of one or more tables and associated
indexes, as the following example shows:
CREATE DBA PROCEDURE all_objects()

CREATE TABLE learn1 (intone SERIAL, inttwo INT NOT NULL,
charcol CHAR(10));

CREATE INDEX learn_ix ON learn1 (inttwo);
CREATE TABLE toys (name CHAR(15) NOT NULL UNIQUE,

description CHAR(30), on_hand INT);
END PROCEDURE;

To use the all_objects procedure to control additions of columns to tables, revoke
the Resource privilege on the database from all users. When users try to create a
table, index, or view with an SQL statement outside your procedure, they cannot
do so. When users execute the procedure, they have a temporary DBA privilege so
the CREATE TABLE statement, for example, succeeds, and you are guaranteed that
every column that is added has a constraint placed on it. In addition, objects that
users create are owned by those users. For the all_objects procedure, whoever
executes the procedure owns the two tables and the index.

Views
A view is a synthetic table. You can query it as if it were a table, and in some cases,
you can update it as if it were a table. However, it is not a table. It is a synthesis of
the data that exists in real tables and other views.

6-16 IBM Informix Database Design and Implementation Guide

The basis of a view is a SELECT statement. When you create a view, you define a
SELECT statement that generates the contents of the view at the time you access
the view. A user also queries a view with a SELECT statement. In some cases, the
database server merges the select statement of the user with the one defined for
the view and then actually performs the combined statements. For information
about the performance of views, see your IBM Informix Performance Guide.

Because you write a SELECT statement that determines the contents of the view,
you can use views for any of the following purposes:
v To restrict users to particular columns of tables

You name only permitted columns in the select list in the view.
v To restrict users to particular rows of tables

You specify a WHERE clause that returns only permitted rows.
v To constrain inserted and updated values to certain ranges

You can use the WITH CHECK OPTION (explained on page “Use the WITH
CHECK OPTION keywords” on page 6-21) to enforce constraints.

v To provide access to derived data without storing redundant data in the
database
You write the expressions that derive the data into the select list in the view.
Each time you query the view, the data is derived anew. The derived data is
always up to date, yet no redundancies are introduced into the data model.

v To hide the details of a complicated SELECT statement
You hide complexities of a multitable join in the view so that neither users nor
application programmers must repeat them.

Create views
The following example creates a view based on a table in the stores_demo
database:
CREATE VIEW name_only AS
SELECT customer_num, fname, lname FROM customer

The view exposes only three columns of the table. Because it contains no WHERE
clause, the view does not restrict the rows that can appear.

The following example is based on the join of two tables:
CREATE VIEW full_addr AS
SELECT address1, address2, city, state.sname,

zipcode, customer_num
FROM customer, state
WHERE customer.state = state.code

The table of state names reduces the redundancy of the database; it lets you store
the full state names only once, which can be useful for long state names such as
Minnesota. This full_addr view lets users retrieve the address as if the full state
name were stored in every row. The following two queries are equivalent:
SELECT * FROM full_addr WHERE customer_num = 105

SELECT address1, address2, city, state.sname,
zipcode, customer_num
FROM customer, state
WHERE customer.state = state.code AND customer_num = 105

Chapter 6. Grant and limit access to your database 6-17

However, be careful when you define views that are based on joins. Such views are
not modifiable; that is, you cannot use them with UPDATE, DELETE, or INSERT
statements. For an explanation of how to modify with views, see “Modify with a
view” on page 6-20.

The following example restricts the rows that can be seen in the view:
CREATE VIEW no_cal_cust AS

SELECT * FROM customer WHERE NOT state = ’CA’

This view exposes all columns of the customer table, but only certain rows. The
following example is a view that restricts users to rows that are relevant to them:
CREATE VIEW my_calls AS

SELECT * FROM cust_calls WHERE user_id = USER

All the columns of the cust_calls table are available but only in those rows that
contain the user IDs of the users who can execute the query.

Typed views
You can create a typed view when you want to distinguish between two views that
display data of the same data type. For example, suppose you want to create two
views on the following table:
CREATE TABLE emp
(name VARCHAR(30),

age INTEGER,
salary INTEGER);

The following statements create two typed views, name_age and name_salary, on
the emp table:
CREATE ROW TYPE name_age_t
(name VARCHAR(20),

age INTEGER);

CREATE VIEW name_age OF TYPE name_age_t AS
SELECT name, age FROM emp;

CREATE ROW TYPE name_salary_t
(name VARCHAR(20),

salary INTEGER);

CREATE VIEW name_salary OF TYPE name_salary_t AS
SELECT name, salary FROM emp

When you create a typed view, the data that the view displays is of a named row
type. For example, the name_age and name_salary views contain VARCHAR and
INTEGER data. Because the views are typed, a query against the name_age view
returns a column view of type name_age whereas a query against the name_salary
view returns a column view of type name_salary. Consequently, the database
server is able to distinguish between rows that the name_age and name_salary
views return.

In some cases, a typed view has an advantage over an untyped view. For example,
suppose you overload the function myfunc() as follows:
CREATE FUNCTION myfunc(aa name_age_t);
CREATE FUNCTION myfunc(aa name_salary_t);

Because the name_age and name_salary views are typed views, the following
statements resolve to the appropriate myfunc() function:

6-18 IBM Informix Database Design and Implementation Guide

SELECT myfunc(name_age) FROM name_age;
SELECT myfunc(name_salary) FROM name_salary;

You can also write the preceding SELECT statements using an alias for the table
name:
SELECT myfunc(p) FROM name_age p;
SELECT myfunc(p) FROM name_salary p;

If two views that contain the same data types are not created as typed views, the
database server cannot distinguish between the rows that the two views display.
For more information about function overloading, see IBM Informix User-Defined
Routines and Data Types Developer's Guide.

Duplicate rows from views
A view might produce duplicate rows, even when the underlying table has only
unique rows. If the view SELECT statement can return duplicate rows, the view
itself can appear to contain duplicate rows.

You can prevent this problem in two ways. One way is to specify DISTINCT in the
projection list in the view. However, when you specify DISTINCT, it is impossible
to modify with the view. The alternative is to always select a column or group of
columns that is constrained to be unique. (You can be sure that only unique rows
are returned if you select the columns of a primary key or of a candidate key.
Chapter 2, “Build a relational data model,” on page 2-1 contains information about
primary and candidate keys.)

Restrictions on views
Because a view is not really a table, it cannot be indexed, and it cannot be the
object of such statements as ALTER TABLE and RENAME TABLE. You cannot
rename the columns of a view with RENAME COLUMN. To change anything
about the definition of a view, you must drop the view and re-create it.

Because it must be merged with the user's query, the SELECT statement on which
a view is based cannot contain the following clauses or keywords:

INTO TEMP
The user's query might contain INTO TEMP; if the view also contains it,
the data would not know where to go.

ORDER BY
The user's query might contain ORDER BY. If the view also contains it, the
choice of columns or sort directions can be in conflict.

A SELECT statement on which you base a view can contain the UNION keyword.
In such cases, the database server stores the view in an implicit temporary table
where the unions are evaluated as necessary. The user's query uses this temporary
table as a base table.

When the basis of the view changes
The tables and views on which you base a view can change in several ways. The
view automatically reflects most of the changes.

When you drop a table or view, any views in the same database that depend on
that table or view are automatically dropped.

Chapter 6. Grant and limit access to your database 6-19

The only way to alter the definition of a view is to drop and re-create it. Therefore,
if you change the definition of a view on which other views depend, you must
also re-create the other views (because they all are dropped).

When you rename a table, any views in the same database that depend on that
table are modified to use the new name. When you rename a column, views in the
same database that depend on that table are updated to select the correct column.
However, the names of columns in the views themselves are not changed. For an
example, recall the following view on the customer table:
CREATE VIEW name_only AS

SELECT customer_num, fname, lname FROM customer

Now suppose that you change the customer table in the following way:
RENAME COLUMN customer.lname TO surname

To select surnames of customers directly, you must now select the new column
name. However, the name of the column as seen through the view is unchanged.
The following two queries are equivalent:
SELECT fname, surname FROM customer

SELECT fname, lname FROM name_only

When you drop a column to alter a table, views are not modified. If views are
used, error -217 (Column not found in any table in the query) occurs. The reason
views are not modified is that you can change the order of columns in a table by
dropping a column and then adding a column of the same name. Views based on
that table continue to work and they retain their original sequence of columns.

You can base a view on tables and views in external databases. Changes to tables
and views in other databases are not reflected in views. Such changes might not be
apparent until someone queries the view and gets an error because an external
table changed. For example, if a column in a remote object that is included in a
view is altered to have a different type, you must drop and re-create the view.

Modify with a view
You can modify views as if they were tables. Some views can be modified and
others not, depending on their SELECT statements. The restrictions are different,
depending on whether you use DELETE, UPDATE, or INSERT statements.

You can modify a view if the SELECT statement that defined it did not contain any
of the following items:
v A join of two or more tables
v An aggregate function or the GROUP BY clause
v The DISTINCT keyword or its synonym, UNIQUE
v The UNION keyword
v Calculated or literal values

When a view avoids all these restricted features, each row of the view corresponds
to exactly one row of one table. By using INSTEAD OF triggers, you can
circumvent these restrictions on the view if the trigger action modifies the base
table.

6-20 IBM Informix Database Design and Implementation Guide

Delete with a view
You can use a DELETE statement on a modifiable view as if it were a table. The
database server deletes the correct row of the underlying table.

Update a view
You can use an UPDATE statement on a modifiable view. However, the database
server does not support updating any derived column. A derived column is a
column produced by an expression in the select list of the CREATE VIEW
statement (for example, order_date + 30).

The following example shows a modifiable view that contains a derived column
and an UPDATE statement that can be accepted against it:
CREATE VIEW response(user_id, received, resolved, duration) AS

SELECT user_id, call_dtime, res_dtime, res_dtime - call_dtime
FROM cust_calls
WHERE user_id = USER;

UPDATE response SET resolved = TODAY
WHERE resolved IS NULL;

You cannot update the duration column of the view because it represents an
expression (the database server cannot, even in principle, decide how to distribute
an update value between the two columns that the expression names). But if no
derived columns are named in the SET clause, you can perform the update as if
the view were a table.

A view can return duplicate rows even though the rows of the underlying table are
unique. You cannot distinguish one duplicate row from another. If you update one
of a set of duplicate rows (for example, if you use a cursor to update WHERE
CURRENT), you cannot be sure which row in the underlying table receives the
update.

Insert into a view
You can insert rows into a view only if the view is modifiable and contains no
derived columns. The reason for the second restriction is that an inserted row must
provide values for all columns, but the database server cannot tell how to
distribute an inserted value through an expression. An attempt to insert into the
response view, as the previous example shows, would fail.

When a modifiable view contains no derived columns, you can insert into it as if it
were a table. The database server, however, uses NULL as the value for any
column that is not exposed by the view. If such a column does not allow NULL
values, an error occurs, and the insert fails.

Another mechanism for inserting rows (or performing UPDATE or DELETE
operations) on IBM Informix views, including complex views, is to create
INSTEAD OF triggers, as described in the IBM Informix Guide to SQL: Syntax.

Use the WITH CHECK OPTION keywords
You can insert into a view a row that does not satisfy the conditions of the view;
that is, a row that is not visible through the view. You can also update a row of a
view so that it no longer satisfies the conditions of the view.

To avoid updating a row of a view so that it no longer satisfies the conditions of
the view, add the WITH CHECK OPTION keywords when you create the view.
This clause asks the database server to test every inserted or updated row to

Chapter 6. Grant and limit access to your database 6-21

ensure that it meets the conditions set by the WHERE clause of the view. The
database server rejects the operation with an error if the conditions are not met.

Restriction: You cannot include the WITH CHECK OPTION keywords when a
UNION operator is included in the view definition.

In the previous example, the view named response is defined as the following
example shows:
CREATE VIEW response (user_id, received, resolved, duration) AS

SELECT user_id,call_dtime,res_dtime,res_dtime - call_dtime
FROM cust_calls
WHERE user_id = USER

You can update the user_id column of the view, as the following example shows:
UPDATE response SET user_id = ’lenora’

WHERE received BETWEEN TODAY AND TODAY - 7

The view requires rows in which user_id equals USER. If user tony performs this
update, the updated rows vanish from the view. You can create the view, however,
as the following example shows:
CREATE VIEW response (user_id, received, resolved,duration) AS

SELECT user_id, call_dtime, res_dtime, res_dtime - call_dtime
FROM cust_calls
WHERE user_id = USER

WITH CHECK OPTION

The preceding UPDATE operation by user tony is rejected as an error.

You can use the WITH CHECK OPTION feature to enforce any kind of data
constraint that can be stated as a Boolean expression. In the following example,
you can create a view of a table for which you express all the logical constraints on
data as conditions of the WHERE clause. Then you can require all modifications to
the table to be made through the view.
CREATE VIEW order_insert AS

SELECT * FROM orders O
WHERE order_date = TODAY -- no back-dated entries

AND EXISTS -- ensure valid foreign key
(SELECT * FROM customer C

WHERE O.customer_num = C.customer_num)
AND ship_weight < 1000 -- reasonableness checks
AND ship_charge < 1000

WITH CHECK OPTION

Because of EXISTS and other tests, which are expected to be successful when the
database server retrieves existing rows, this view displays data from orders
inefficiently. However, if insertions to orders are made only through this view (and
you do not already use integrity constraints to constrain data), users cannot insert
a back-dated order, an invalid customer number, or an excessive shipping weight
and shipping charge.

Re-execution of a prepared statement when the view definition
changes
The database server uses the definition of the view that exists when you prepare a
SELECT statement with that view. If the definition of a view changes after you
prepare a SELECT statement on that view, the execution of the prepared statement
gives incorrect results because it does not reflect the new view definition. No SQL
error is generated.

6-22 IBM Informix Database Design and Implementation Guide

Privileges and views
When you create a view, the database server tests your privileges on the underlying
tables and views. When you use a view, only your privileges with regard to the
view are tested.

Privileges when creating a view
The database server tests to make sure that you have all the privileges that are
required to execute the SELECT statement in the view definition. If you do not, the
database server does not create the view.

This test ensures that users cannot create a view on the table and query the view
to gain unauthorized access to a table.

After you create the view, the database server grants you, the creator and owner of
the view, at least the Select privilege on it. No automatic grant is made to PUBLIC,
as is the case with a newly created table.

The database server tests the view definition to see if the view is modifiable. If it
is, the database server grants you the Insert, Delete, and Update privileges on the
view, provided that you also have those privileges on the underlying table or view.
In other words, if the new view is modifiable, the database server copies your
Insert, Delete, and Update privileges from the underlying table or view and grants
them on the new view. If you have only the Insert privilege on the underlying
table, you receive only the Insert privilege on the view.

This test ensures that users cannot use a view to gain access to any privileges that
they did not already have.

Because you cannot alter or index a view, the Alter and Index privileges are never
granted on a view.

This section does not apply to views on remote tables. Permissions on remote
tables are not propagated automatically to views on those tables. To provide
PUBLIC with Select access to a view that includes one or more columns in a
remote table, for example, you must explicitly execute REVOKE ALL FROM
PUBLIC for the view, and then explicitly grant Select privilege on that view to
PUBLIC.

Privileges when using a view
When you attempt to use a view, the database server tests only the privileges that
you are granted on the view. It does not test your right to access the underlying
tables.

If you create the view, your privileges are the ones noted in the preceding section.
If you are not the creator, you have the privileges that the creator (or someone who
had the WITH GRANT OPTION privilege) granted you.

Therefore, you can create a table and revoke access of PUBLIC to it; then you can
grant limited access privileges to the table through views. Suppose you want to
grant access privileges on the following table:
CREATE TABLE hr_data

(
emp_key INTEGER,
emp_name CHAR(40),

Chapter 6. Grant and limit access to your database 6-23

hire_date DATE,
dept_num SMALLINT,
user-id CHAR(18),
salary DECIMAL(8,2),
performance_level CHAR(1),
performance_notes TEXT
)

The section “Column-level privileges” on page 6-6 shows how to grant access
privileges directly on the hr_data table. The examples that follow take a different
approach. Assume that when the table was created, this statement was executed:
REVOKE ALL ON hr_data FROM PUBLIC

(Such a statement is not necessary in an ANSI-compliant database.) Now you
create a series of views for different classes of users. For users who should have
read-only access to the nonsensitive columns, you create the following view:
CREATE VIEW hr_public AS

SELECT emp_key, emp_name, hire_date, dept_num, user_id
FROM hr_data

Users who are given the Select privilege for this view can see nonsensitive data
and update nothing. For Human Resources personnel who must enter new rows,
you create a different view, as the following example shows:
CREATE VIEW hr_enter AS

SELECT emp_key, emp_name, hire_date, dept_num
FROM hr_data

You grant these users both Select and Insert privileges on this view. Because you,
the creator of both the table and the view, have the Insert privilege on the table
and the view, you can grant the Insert privilege on the view to others who have no
privileges on the table.

On behalf of the person in the MIS department who enters or updates new user
IDs, you create still another view, as the following example shows:
CREATE VIEW hr_MIS AS

SELECT emp_key, emp_name, user_id
FROM hr_data

This view differs from the previous view in that it does not expose the department
number and date of hire.

Finally, the managers require access to all columns and they require the ability to
update the performance-review data for their own employees only. You can meet
these requirements by creating a table, hr_data, that contains a department number
and computer user IDs for each employee. Let it be a rule that the managers are
members of the departments that they manage. Then the following view restricts
managers to rows that reflect only their employees:
CREATE VIEW hr_mgr_data AS

SELECT * FROM hr_data
WHERE dept_num =

(SELECT dept_num FROM hr_data
WHERE user_id = USER)

AND NOT user_id = USER

The final condition is required so that the managers do not have update access to
their own row of the table. Therefore, you can safely grant the Update privilege to
managers for this view, but only on selected columns, as the following statement
shows:

6-24 IBM Informix Database Design and Implementation Guide

GRANT SELECT, UPDATE (performance_level, performance_notes)
ON hr_mgr_data TO peter_m

Chapter 6. Grant and limit access to your database 6-25

6-26 IBM Informix Database Design and Implementation Guide

Chapter 7. Distributed queries

This chapter provides an overview of distributed queries. Distributed queries allow
shared access to data across multiple databases within a network of IBM Informix
database servers. Different database servers can manage multiple databases, which
can be referenced in a single distributed query.

Overview of distributed queries
The IBM Informix database servers allows you to query more than one database of
the same database server or across multiple database servers. This type of query is
called a distributed query. The database servers can be located on a single host
computer, on different computers of the same network, or on a gateway. (In
general, most features and restrictions that this chapter describes for distributed
queries also apply to function calls and to distributed INSERT, DELETE, or
UPDATE operations that reference objects or data in more than one database.)

Distributed queries across databases of one Informix instance
Distributed operations across databases of the same IBM Informix instance are
subject to the following restrictions on returned data types:
v The query, DML operation, or function call can return any built-in data type,

including BLOB, BOOLEAN, CLOB, and LVARCHAR built-in opaque types.
v The query, DML operation, or function call cannot return DISTINCT or OPAQUE

data types unless these are explicitly cast to a built-in data type, and all the
DISTINCT and OPAQUE data types and all the explicit casts are defined in each
participating database that stores or receives the data types.

Distributed queries across databases of two or more Informix
instances

Distributed operations across databases of two or more IBM Informix instances are
subject to the following restrictions on returned data types:
v A query, DML operation, or function call can return any non-opaque built-in

data type, and the BOOLEAN data type, and the LVARCHAR data type.
v A query, DML operation, or function call can return DISTINCT data types that

are explicitly cast to a built-in data type, and whose base types are either
non-opaque built-in data types, BOOLEAN, or LVARCHAR data types.
Additionally, the base type can also be a DISTINCT data type whose base type
is a non-opaque built-in type, BOOLEAN, LVARCHAR, or another DISTINCT
data type that is based on one of these types.

You must define these explicit casts, functions, and DISTINCT data types in each
participating database of the distributed operation. If any participating database
servers are earlier versions that cannot support these data types in cross-server
operations, those servers return only data types that they support. A distributed
operation fails if that operation specifies an unsupported data type. Like
distributed operations across databases of the same IBM Informix server instance,
cross-server distributed operations require that all databases be of compatible
transaction logging types, as described in “Logging-type restrictions on distributed
queries” on page 7-6.

© Copyright IBM Corp. 1996, 2013 7-1

Coordinator and participant in a distributed query
To support distributed operations across multiple database servers, IBM Informix
servers maintain hierarchical relationships consisting of a coordinator and one or
more participants. Coordinator and participant are defined as follows:
v The coordinator directs the resolution of the query. It also decides whether the

query should be committed or cancelled.
v The participant directs the execution of the distributed query on one branch. The

branch is the part of the distributed query involving only that participant
database server.

The following examples refer to a multi-server environment where db is the local
database, db2 is an external database located on the same server, and master_db is
an external database on the remote server new_york.

The following example shows a query that can be used to access data on another
server using database db as the coordinator.
database db; select col1, col2 from db2:tab1, master_db@newyork:tab2;

A session will have only one local database, but can open multiple external
databases. Distributed queries must always originate on a coordinator.

Configure the database server to use distributed queries
To use multiple IBM Informix servers for distributed queries, you must make sure
that all of the database servers involved are configured to enable server-to-server
communications over the network.

Edit the following configuration files to allow distributed queries:
v The sqlhosts file to hold connectivity information about other servers
v The onconfig file to set DBSERVERALIASES, NETTYPE, REMOTE_USERS_CFG,

and REMOTE_SERVER_CFG configuration parameters
v The file specified by the REMOTE_USERS_CFG or REMOTE_SERVER_CFG

configuration parameter to configure network security
v The /etc/services and /etc/hosts files, or their equivalents managed via

network systems such as NIS+, for TCP/IP network configuration

Note: To configure network security, use the file you specify with the
REMOTE_USERS_CFG or REMOTE_SERVER_CFG configuration parameter instead
of the hosts.equiv or trusted users' rhosts files.

To set up several database servers to use distributed queries, use one of the
following ways to store the sqlhosts information for all the databases:
v In one sqlhosts file, pointed to by the INFORMIXSQLHOSTS environment variable
v In separate sqlhosts files in each database server directory
v In a centrally managed file on a network mounted, read-only file system, with

the sqlhosts file in each database server directory being a symbolic link to the
centrally managed file

Note: To use non-root installations of the database server for distributed queries,
you must set one of the following configuration parameters in the onconfig file:
v REMOTE_USERS_CFG, which specifies the alternative to using the rhosts file

for listing trusted users on a remote server.

7-2 IBM Informix Database Design and Implementation Guide

v REMOTE_SERVERS_CFG, which specifies the alternative to using the
etc/hosts.equiv file for listing trusted remote hosts.

Related concepts:

The sqlhosts file and the SQLHOSTS registry key (Administrator's Guide)
Related reference:

REMOTE_USERS_CFG configuration parameter (Administrator's Reference)

REMOTE_SERVER_CFG configuration parameter (Administrator's Reference)

INFORMIXSQLHOSTS environment variable (SQL Reference)

DBSERVERALIASES configuration parameter (Administrator's Reference)

NETTYPE configuration parameter (Administrator's Reference)

TCP/IP connectivity files (Administrator's Guide)

Syntax of a distributed query
This section describes how to specify a remote server, database, and database
object within a distributed query.

Access a remote server and database
The core element of any statement within a distributed query is the database
segment. Using the syntax of both of these segments, you can specify a remote
database server, database, or database object.

Database Name segment
The Database Name segment is used to specify the name of a database. The
following examples show different ways of specifying a remote database:
empinfo@personnel ’//personnel/empinfo’

Database Object Name segment
The Database Object Name segment is used to specify the name of a database
object, including constraints, indexes, triggers, any synonyms. The following
examples show how to access remote objects:
empinfo@personnel:markg.emp_names empinfo@personnel:emp_names

Valid statements for accessing remote objects
The following statements support remote objects as part of the Database and
Database Object segments and can be used within a distributed query:
v INSERT
v SELECT
v UPDATE
v DELETE
v CREATE VIEW
v CREATE SYNONYM
v CREATE DATABASE
v DATABASE
v LOAD
v UNLOAD
v LOCK

Chapter 7. Distributed queries 7-3

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.admin.doc/ids_admin_0152.htm#thesqlhostsfileandthesqlhostsregistrykey
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1124.htm#ids_adr_1124
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1123.htm#ids_adr_1123
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_268.htm#ids_sqr_268
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0044.htm#ids_adr_0044
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0114.htm#ids_adr_0114
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.admin.doc/ids_admin_0141.htm#ids_admin_0141

v UNLOCK
v INFO

Access remote tables
A remote table is a table on a database server other than the current server. You
can connect from your current server to a remote server.

At any time, there can be only one active connection from the local server to a
remote server. Informix does not support multiple active connections between the
same two database servers using different server aliases. Thus, if you use different
server aliases to connect to the same remote server, the initial connection is reused.

The general syntax for accessing a table on another server is:
database@server:[owner.]table

Here, a table can be a table name, view name or synonym. You have the option of
specifying the table owner. For the complete syntax options, see the documentation
of the Database and Database Object segments in the IBM Informix Guide to SQL:
Syntax.

The following example shows a query that accesses a remote table:
DATABASE locdb; SELECT l.name, r.assignment FROM rdb@rsys:rtab r,
loctab l WHERE l.empid = r.empid;

This query accesses the name and empid columns from the local table loctab, and
the assignment and empid columns from the remote table rtab. The data is joined
using empid as the join column.

The following example shows a query that accesses data on a remote table and
inserts it into a local table:
DATABASE locdb; INSERT INTO loctab SELECT * FROM rdb@rsys:rtab;

This query selects all data from the remote table rtab, and inserts it into the local
table loctab.

The following example creates a view in the local database using the empid and
priority columns from the remote database rdb.
DATABASE locdb; CREATE VIEW myview (empid, empprty)
AS SELECT empid, priority FROM rdb@rsys:rtab;

Table permissions
Permissions for accessing table in other databases and remote tables are controlled
at the table location. When accessing a remote server, the connection is made using
the login name and password of the user executing the query. To access remote
data, the user must have the correct permissions on the remote table.

When processing distributed queries, the database server ignores the active role on
the current local database when accessing a remote object. On the remote server,
the default role applied to each remote database is used. If a default role is not
defined, the user's privilege define the access permissions for the objects in each
remote database.

Qualify table references
References to tables may be qualified with the current database and server name. If
no qualification is specified, the current database and server context is implied. For

7-4 IBM Informix Database Design and Implementation Guide

example, if the current database is locdb and the current server is currsys, the
following references to loctab are equivalent:
locdb@currsys:loctab
locdb:loctab
loctab

Other remote operations
In addition to querying and updating data, there are other remote operations that
you can perform using the distributed query framework.

Open a remote database
By specifying a remote object in the DATABASE statement, you can open a remote
database as in the following examples:
DATABASE dbname@servername;
DATABASE "//servernam/database";

Create a remote database
You can create a remote database by qualifying the database name with a server
name when using the CREATE DATABASE statement.
CREATE DATABASE remfoo@rsys;

Create a synonym for a remote table
You can create a synonym for a remote table in another database or a remote table
using a qualified name in the CREATE SYNONYM statement. For example, the
following statement creates a synonym for rdb@srsys:rtab:
CREATE SYNONYM myrtab FOR rdb@rsys:rtab;

It is possible for a synonym to exist in both the local and remote server. In the
previous example, it is possible that rtab is itself a synonym for rdb2@rsys2:rtab2.
The chain of synonyms is followed when retrieving catalog information until the
physical database and server where the table is located are found. If a synonym
ultimately points back to itself, an error is returned.

Monitor distributed queries
Use the onstat -x command to display transaction information originating on the
coordinator of a distributed query.

The following flag codes in position 5 are used for distributed queries:

C Distributed query coordinator

S Distributed query participant

B Both distributed query coordinator and participant

For more information about using onstat -x see your IBM Informix Administrator's
Reference.
Related reference:

onstat -x command: Print database server transaction information
(Administrator's Reference)

Server environment and distributed queries
Set the DEADLOCK_TIMEOUT configuration parameter and the PDQPRIORITY
environment variable to specify information for distributed queries.

Chapter 7. Distributed queries 7-5

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0609.htm#ids_adr_0609
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0609.htm#ids_adr_0609

The DEADLOCK_TIMEOUT configuration parameter specifies the maximum
number of seconds that a database server thread can wait to acquire a lock. If a
distributed transaction is forced to wait longer than the number of seconds
specified, the thread that owns the transaction assumes that a multi-server
deadlock exists. The following error message is returned:
-143 ISAM error: deadlock detected.

The effective value of PDQPRIORITY for a session is sent to the remote site when a
connection is established. Subsequent changes to this parameter in the coordinator
are not reflected on the remote site. However, the exact behavior of this
environment variable depends on the role of the database server in the distributed
query (coordinator or participant).

PDQPRIORITY has different syntax and semantics for different server versions. For
information about setting PDQPRIORITY, see the IBM Informix Performance Guide for
your server.
Related reference:

DEADLOCK_TIMEOUT configuration parameter (Administrator's Reference)

PDQPRIORITY environment variable (SQL Reference)

Logging-type restrictions on distributed queries
To execute distributed queries in an IBM Informix database server environment, all
participating databases must be of compatible transaction-logging types:
v Distributed queries are supported on an ANSI-compliant database only if all of

the participating databases are also ANSI-compliant.
v Distributed queries on a database that does not support transaction logging are

supported only if all of the participating databases also do not use transaction
logging.

v Distributed queries on a database that is not ANSI-compliant but that uses
explicit transaction logging are supported if all of the other databases also use
explicit transaction logging.

In the last case, whether a participating database uses buffered or unbuffered
logging does not affect its ability to support distributed operations. In the X/Open
distributed transaction processing (DTP) environment, all databases must use
unbuffered logging. See the IBM Informix Administrator's Guide for more
information about database logging types and X/Open DTP.

Transaction processing
When using distributed queries in a transaction processing environment, be aware
of the effect of the isolation level of a transaction, the effect of the SET LOCK
MODE statement in conjunction with the DEADLOCK_TIMEOUT configuration
parameter, and the two-phase commit protocol.

Isolation levels
The isolation level of a transaction is sent to the remote server at the start of the
transaction at the remote site. If an isolation level changes during a transaction, the
new value is sent to the remote site.

7-6 IBM Informix Database Design and Implementation Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0050.htm#ids_adr_0050
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_292.htm#ids_sqr_292

DEADLOCK_TIMEOUT and SET LOCK MODE
When working with distributed queries, you can use the SET LOCK MODE
statement in conjunction with the DEADLOCK_TIMEOUT configuration parameter to
help prevent server deadlock.

When you request the WAIT option of SET LOCK MODE, the database server
protects against the possibility of a deadlock. However, if the database server
discovers that a deadlock can occur, it terminates the operation and returns an
error.

The DEADLOCK_TIMEOUT configuration parameter specifies the maximum number of
seconds that a database server thread can wait to acquire a lock. This value is the
default value used by the SET LOCK MODE WAIT statement. This value applies
only if you acquire locks on the current and remote database server within the
same transaction.
Related concepts:

Multiphase commit protocols (Administrator's Guide)
Related reference:

DEADLOCK_TIMEOUT configuration parameter (Administrator's Reference)

SET LOCK MODE statement (SQL Syntax)

Two-phase commit and recovery
The two-phase commit protocol is used to ensure that distributed queries are
uniformly committed or rolled back across multiple database servers. A database
server automatically uses the two-phase commit protocol for any transaction that
modifies data on multiple database servers.
Related concepts:

Multiphase commit protocols (Administrator's Guide)

Chapter 7. Distributed queries 7-7

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.admin.doc/ids_admin_1043.htm#ids_admin_1043
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0050.htm#ids_adr_0050
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_1171.htm#ids_sqs_1171
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.admin.doc/ids_admin_1043.htm#ids_admin_1043

7-8 IBM Informix Database Design and Implementation Guide

Part 3. Object-relational databases

© Copyright IBM Corp. 1996, 2013

IBM Informix Database Design and Implementation Guide

Chapter 8. Create and use extended data types in Informix

This chapter describes extended data types that you can use to build an
object-relational database. The term object-relational is not associated with a
particular method or model of database design, but instead refers to any database
that uses IBM Informix features to extend the functionality of the database.

An object-relational database is not antithetical to a relational database but rather is
an extension of functionality already present in a relational database. Typically, you
use some combination of features from Informix to extend the kinds of data that
your database can store and manipulate. These features include extended data
types, smart large objects, type and table inheritance, user-defined casts, and
user-defined routines (UDRs). The chapters in this section of the manual describe
many of these features. For information about UDRs, see IBM Informix User-Defined
Routines and Data Types Developer's Guide and the IBM Informix Guide to SQL:
Tutorial.

For an example of an object-relational database, you can create the
superstores_demo database, which contains examples of some of the features
available with Informix. For information about how to create the
superstores_demo database, see the IBM Informix DB-Access User's Guide.

IBM Informix data types
Figure 3-1 on page 3-2 provides a chart for selecting correct data types for the
columns of a table depending on the type of data that will be stored. The
following figure shows a hierarchy of data types that reflects how the database
server manages the data types.

© Copyright IBM Corp. 1996, 2013 8-1

Fundamental or atomic data types
All IBM Informix database servers support the fundamental, or atomic, data types.
These types are fundamental because they are the smallest units that you can
specify in a SELECT statement. Only IBM Informix supports extended and
predefined data types. The predefined data types are in a separate category
because they share certain characteristics with extended data types but are
provided by the database server.

For an explanation of the fundamental data types, see Chapter 3, “Select data
types,” on page 3-1.

Predefined data types
The database server provides the predefined data types, just as it provides the
fundamental data types. However, the predefined data types have certain
characteristics in common with the extended data types.

BOOLEAN and LVARCHAR data types
BOOLEAN and LVARCHAR data types behave like built-in data types
except that the system catalog tables define them as extended data types.

For more information, see Chapter 3, “Select data types,” on page 3-1 and
to the system catalog tables in the IBM Informix Guide to SQL: Reference.

IDSSECURITYLABEL data type
The IDSSECURITYLABEL data type stores a security label in a table that is
protected by a security policy. Only a user who holds the DBSECADM role
can create, alter, or drop a column of this data type. This is a built-in

Figure 8-1. IBM Informix data types

8-2 IBM Informix Database Design and Implementation Guide

DISTINCT OF VARCHAR(128) data type, but it is not classified as a
character data type because its use is restricted to label-based access
control.

For more information, see the system catalog tables in the IBM Informix
Guide to SQL: Reference and to IBM Informix Security Guide.

BLOB and CLOB data types
The BLOB and CLOB data types are not fundamental data types because
you can randomly access data from within the BLOB or CLOB. You can
create a table with BLOB and CLOB columns, but you cannot insert data
directly into the column. You must use functions to insert and manipulate
the data.

For more information, see “Smart large objects” on page 8-5.

Other predefined data types
With the exception of BLOB, BOOLEAN, CLOB, and LVARCHAR, the predefined
data types usually do not appear as data types for the columns of a table. Instead,
the following predefined data types are used with the functions associated with
complex and user-defined data types and user-defined routines:
v clientbinval
v ifx_lo_spec
v ifx_lo_stat
v impexp
v impexpbin
v indexkeyarray
v lolist
v pointer
v rtnparamtypes
v selfuncargs
v sendrecv
v stat
v stream

For more information about these predefined data types, see IBM Informix
User-Defined Routines and Data Types Developer's Guide.

Extended data types
Extended data types let you create data types to characterize data that cannot be
easily represented with the built-in data types. However, you cannot use extended
data types in distributed transactions. The following figure shows the extended
data types.

Chapter 8. Create and use extended data types in Informix 8-3

Complex data types
Complex data types describe either a collection of data objects, all of one type (LIST,
SET, and MULTISET), or groups of objects of different types (named and unnamed
rows.)

User-defined data types
A user-defined data type (UDT) is a data type that is not provided by the database
server. You must provide all of the information that the database server requires to
manage opaque data types or distinct data types.

Informix supports two categories of user-defined data types, distinct data types
and opaque data types.
Related reference:

User-Defined Data Type (SQL Syntax)

Distinct data types
A distinct data type is an encapsulated data type that you create with the CREATE
DISTINCT TYPE statement. A distinct data type has the same representation as,
but is distinct from, the data type on which it is based. You can create a distinct
data type from built-in types, opaque types, named row types, or other distinct
types. You cannot create a distinct data type from any of the following data types:
v BIGSERIAL, SERIAL, and SERIAL8
v Collection types
v Unnamed row types

DATA TYPES

Complex data types

User-defined data types

Distinct Opaque

MULTISET Unnamed Row Named Row

Collection types

LIST SET

Row types

Built-in data types Extended data types

DataBlade data types

Figure 8-2. Extended data types

8-4 IBM Informix Database Design and Implementation Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_0182.htm#ids_sqs_0182

When you create a distinct data type, you implicitly define the structure of the
data type because a distinct data type inherits the structure of its source data type.
You can also define functions, operators, and aggregates that operate on the
distinct data type.

For information about distinct data types, see “Cast distinct data types” on page
10-8, the IBM Informix Guide to SQL: Syntax, and the IBM Informix Guide to SQL:
Reference.

Opaque data types
An opaque data type is an encapsulated data type that you create with the CREATE
OPAQUE TYPE statement. When you create an opaque data type, you must
explicitly define the structure of the data type and the functions, operators, and
aggregates that operate on the opaque data type. You can use an opaque data type
to define columns and program variables in the same way that you use built-in
types.

For information about creating opaque data types, see IBM Informix User-Defined
Routines and Data Types Developer's Guide and the IBM Informix Guide to SQL:
Syntax.

DataBlade data types
The diagram in Figure 8-2 on page 8-4 includes DataBlade data types. A DataBlade
is a suite of user-defined data types and user-defined routines that provides tools
for a specialized application. For example, different DataBlade data types provide
tools for managing images, video, and geographical information. Such applications
often require opaque data types and other user-defined data types. For information
about developing a DataBlade module, see the IBM Informix DataBlade API
Programmer's Guide and the Informix DataBlade Developers Kit. For information
about the DataBlade modules that IBM provides, contact your customer
representative.

Smart large objects
Smart large objects are objects that are defined on a BLOB or CLOB data type. A
smart large object allows an application program to randomly access column data,
which means that you can read or write to any part of a BLOB or CLOB column in
any arbitrary order. You can create BLOB or CLOB columns to store binary data or
character data.

BLOB data type
You can use a BLOB data type to store any data that a program can generate:
graphic images, satellite images, video clips, audio clips, or formatted documents
saved by any word processor or spreadsheet. The database server permits any kind
of data of any length in a BLOB column.

Like CLOB objects, BLOB objects are stored in whole disk pages in separate disk
areas from normal row data.

The advantage of the BLOB data type, as opposed to CLOB, is that it accepts any
data. Otherwise, the advantages and disadvantages of the BLOB data type are the
same as for the CLOB data type.

Chapter 8. Create and use extended data types in Informix 8-5

CLOB data type
You can use the CLOB data type to store a block of text. It is designed to store
ASCII text data, including formatted text such as HTML or PostScript. Although
you can store any data in a CLOB object, IBM Informix tools expect a CLOB object
to be printable, so restrict this data type to printable ASCII text.

CLOB values are not stored with the rows of which they are a part. They are
allocated in whole disk pages, usually areas away from rows. (For more
information, see your IBM Informix Administrator's Guide.)

The CLOB data type is similar to the TEXT data type except that the CLOB data
type provides the following advantages:
v An application program can read from or write to any portion of the CLOB

object.
v Access times can be significantly faster because an application program can

access any portion of a CLOB object.
v Default characteristics are relatively easy to override. Database administrators

can override default characteristics for sbspace at the column level. Application
programmers can override some default characteristics for the column when
they create a CLOB object.

v You can use the equals operator (=) to test whether two CLOB values are equal.
v A CLOB object is recoverable in the event of a system failure and obeys

transaction isolation modes when the DBA or application programmer specifies
it. (Recovery of CLOB objects requires that your database system has the
necessary resources to provide buffers large enough to handle CLOB objects.)

v You can use the CLOB data type to provide large storage for a user-defined data
type.

v DataBlade developers can create indexes on CLOB data types.

The disadvantages of the CLOB data type are as follows:
v It is allocated in whole disk pages, so a short item wastes space.
v Restrictions apply on how you can use a CLOB column in an SQL statement.

(See “Use smart large objects.”)
v It is unavailable with all IBM Informix database servers.

Use smart large objects
To store columns of a BLOB or CLOB data type, you must allocate an sbspace. An
sbspace is a logical storage unit that stores BLOB and CLOB data in the most
efficient way possible. You can write IBM Informix ESQL/C programs that allow
users to fetch and store BLOB or CLOB data. Application programmers who want
to access and manipulate smart large objects directly can consult the IBM Informix
ESQL/C Programmer's Manual.

In any SQL statement, interactive or programmed, a BLOB or CLOB column
cannot be used in the following contexts:
v In arithmetic or Boolean expressions
v In a GROUP BY or ORDER BY clause
v In a LIKE or MATCHES condition
v In a UNIQUE test
v For indexing, as part of an IBM Informix B-tree index

DataBlade developers, however, can create indexes on CLOB columns.

8-6 IBM Informix Database Design and Implementation Guide

In a SELECT statement entered interactively, a BLOB or CLOB column can:
v Specify NULL values as a default when you create a table with the DEFAULT

NULL clause
v Disallow NULL values using the NOT NULL constraint when you create a table
v Be tested with the IS [NOT] NULL predicate

From an Informix ESQL/C program, you can use the ifx_lo_stat() function to
determine the length of BLOB or CLOB data.

Copy smart large objects
IBM Informix provides functions that you can call from within an SQL statement
to import and export smart large objects. The following table shows the
smart-large-object functions.

Table 8-1. SQL functions for smart large objects

Function Name Purpose

FILETOBLOB() Copies a file into a BLOB column

FILETOCLOB() Copies a file into a CLOB column

LOCOPY() Copies BLOB or CLOB data into another BLOB or CLOB
column

LOTOFILE() Copies BLOB or CLOB data into a file

For detailed information and the syntax of smart-large-object functions, see the
Expression segment in the IBM Informix Guide to SQL: Syntax.

Restriction: Casts between BLOB and CLOB data types are not permitted.

Complex data types
A complex data type is usually a composite of other existing data types. For
example, you might create a complex data type whose components include built-in
types, opaque types, distinct types, or other complex types. An important
advantage that complex data types have over user-defined types is that users can
access and manipulate the individual components of a complex data type.

In contrast, built-in types and user-defined types are self-contained (encapsulated)
data types. Consequently, the only way to access the component values of an
opaque data type is through functions that you define on the opaque type.

The following figure shows the complex data types that IBM Informix supports
and the syntax that you use to create the complex data types.

Figure 8-3. Complex Data Types

Chapter 8. Create and use extended data types in Informix 8-7

The complex data types that the previous figure illustrates provide the following
extended data type support:

Collection types
You can use a collection type whenever you must store and manipulate
collections of data within a table cell. You can assign collection types to
columns.

Row types
A row type typically contains multiple fields. When you want to store
more than one kind of data in a column or variable, you can create a row
type. Row types come in two kinds: named row types and unnamed row
types. You can assign an unnamed row type to columns and variables. You
can assign a named row type to columns, variables, tables, or views. When
you assign a named row type to a table, the table is a typed table. A
primary advantage of typed tables is that they can be used to define an
inheritance hierarchy.

For more information about how to perform SELECT, INSERT, UPDATE, and
DELETE operations on the complex data types that this chapter describes, see the
IBM Informix Guide to SQL: Tutorial.

Collection data types
Collection data types enable you to store and manipulate collections of data within a
single row of a table. A collection data type has two components: a type constructor,
which determines whether the collection type is a SET, MULTISET, or LIST, and an
element type, which specifies the type of data that the collection can contain. (The
SET, MULTISET, and LIST collection types are described in detail in the following
sections.)

The elements of a collection can be of most any data type. (For a list of exceptions,
see “Restrictions on collections” on page 8-11.) The elements of a collection are the
values that the collection contains. In a collection that contains the values: {’blue’,
’green’, ’yellow’, and ’red’}, ’blue’ represents a single element in the
collection. Every element in a collection must be of the same type. For example, a
collection whose element type is INTEGER can contain only integer values.

The element type of a collection can represent a single data type (column) or
multiple data types (row). In the following example, the col_1 column represents a
SET of integers:
col_1 SET(INTEGER NOT NULL)

To define a collection data type that contains multiple data types, you can use a
named row type or an unnamed row type. In the following example, the col_2
column represents a SET of rows that contain name and salary fields:
col_2 SET(ROW(name VARCHAR(20), salary INTEGER) NOT NULL)

Important: When you define a collection data type, you must include the NOT
NULL constraint as part of the type definition. No other column constraints are
allowed on a collection data type.

After you define a column as a collection data type, you can perform the following
operations on the collection:
v Select and modify individual elements of a collection (from Informix ESQL/C

programs only).
v Count the number of elements that a collection contains.

8-8 IBM Informix Database Design and Implementation Guide

v Determine if certain values are in a collection.

For information about the syntax that you use to create collection data types, see
the Data Type segment in the IBM Informix Guide to SQL: Syntax. For information
about how to convert a value of one collection type to another collection type, see
the IBM Informix Guide to SQL: Tutorial.

Null values in collections
A collection cannot contain NULL elements. However, when the collection is a row
type, you can insert NULL values for any or all fields of a row type that a
collection contains. Suppose you create the following table that has a collection
column:
CREATE TABLE tab1 (col1 INT,

col2 SET(ROW(a INT, b INT) NOT NULL));

The following statements are allowed because only the component fields of the
row type specify NULL values:
INSERT INTO tab1 VALUES (25,"SET{ROW(NULL, NULL)}");

INSERT INTO tab1 VALUES (35,"SET{ROW(4, NULL)}");

INSERT INTO tab1 VALUES (45,"SET{ROW(14, NULL), ROW(NULL,5)}");

UPDATE tab1 SET col2 = "SET{ROW(NULL, NULL)}" WHERE col1 = 45;

However, each of the following statements returns an error message because the
collection element specifies a NULL value:
INSERT INTO tab1 VALUES (45, "SET{NULL)}");

UPDATE tab1 SET col2 = "SET{NULL}" WHERE col1 = 55;

SET collection types
A SET is an unordered collection of elements in which each element is unique. You
define a column as a SET collection type when you want to store collections whose
elements have the following characteristics:
v The elements contain no duplicate values.
v The elements have no specific order associated with them.

To illustrate how you might use a SET, imagine that your human resources
department requires information about the dependents of each employee in the
company. You can use a collection type to define a column in an employee table
that stores the names of an employee's dependents. The following statement
creates a table in which the dependents column is defined as a SET:
CREATE TABLE employee
(

name CHAR(30),
address CHAR (40),
salary INTEGER,
dependents SET(VARCHAR(30) NOT NULL)

);

A query against the dependents column for any given row returns the names of all
the dependents of the employee. In this case, SET is the correct collection type
because the collection of dependents for each employee should not contain any
duplicate values. A column that is defined as a SET ensures that each element in a
collection is unique.

Chapter 8. Create and use extended data types in Informix 8-9

To illustrate how to define a collection type whose elements are a row type,
suppose that you want the dependents column to include the name and birthdate
of an employee's dependents. In the following example, the dependents column is
defined as a SET whose element type is a row type:
CREATE TABLE employee
(

name CHAR(30),
address CHAR (40),
salary INTEGER,
dependents SET(ROW(name VARCHAR(30), bdate DATE) NOT NULL)

);

Each element of a collection from the dependents column contains values for the
name and bdate. Each row of the employee table contains information about the
employee and a collection with the names and birthdates of the employee's
dependents. For example, if an employee has no dependents, the collection for the
dependents column is empty. If an employee has 10 dependents, the collection
should contain 10 elements.

MULTISET collection types
A MULTISET is a collection of elements in which the elements can have duplicate
values. For example, a MULTISET of integers might contain the collection
{1,3,4,3,3}, which has duplicate elements. You can define a column as a MULTISET
collection type when you want to store collections whose elements have the
following characteristics:
v The elements might not be unique.
v The elements have no specific order associated with them.

To illustrate how you might use a MULTISET, suppose that your human resources
department wants to keep track of the bonuses awarded to employees in the
company. To track each employee's bonuses over time, you can use a MULTISET to
define a column in a table that records all the bonuses that each employee receives.
In the following example, the bonus column is a MULTISET:
CREATE TABLE employee
(

name CHAR(30),
address CHAR (40),
salary INTEGER,
bonus MULTISET(MONEY NOT NULL)

);

You can use the bonus column in this statement to store and access the collection
of bonuses for each employee. A query against the bonus column for any given
row returns the dollar amount for each bonus that the employee has received.
Because an employee might receive multiple bonuses of the same amount
(resulting in a collection whose elements are not all unique), the bonus column is
defined as a MULTISET, which allows duplicate values.

LIST collection types
A LIST is an ordered collection of elements that allows duplicate values. A LIST
differs from a MULTISET in that each element in a LIST has an ordinal position in
the collection. The order of the elements in a list corresponds with the order in
which values are inserted into the LIST. You can define a column as a LIST
collection type when you want to store collections whose elements have the
following characteristics:
v The elements have a specific order associated with them.
v The elements might not be unique.

8-10 IBM Informix Database Design and Implementation Guide

To illustrate how you might use a LIST, suppose your sales department wants to
keep a monthly record of the sales total for each salesperson. You can use a LIST to
define a column in a table that contains the monthly sales totals for each
salesperson. The following example creates a table in which the month_sales
column is a LIST. The first entry (element) in the LIST, with an ordinal position of
1, might correspond to the month of January, the second element, with an ordinal
position of 2, February, and so forth:
CREATE TABLE sales_person
(

name CHAR(30),
month_sales LIST(MONEY NOT NULL)

);

You can use the month_sales column in this statement to store and access the
monthly sales totals for each salesperson. More specifically, you might perform
queries on the month_sales column to find out:
v The total sales that a salesperson generated during a specified month
v The total sales for every salesperson during a specified month

Nested collection types
A nested collection is a collection type that contains another collection type. You can
nest any collection type within another collection type. There is no practical limit
on how deeply you can nest a collection type. However, performing inserts or
updates on a collection that has been nested more than one or two levels can be
difficult.

The following example shows several ways in which you might create columns
that are defined on nested collection types:
col_1 SET(MULTISET(VARCHAR(20) NOT NULL) NOT NULL);

col_2 MULTISET(ROW(x CHAR(5), y SET(INTEGER NOT NULL))
NOT NULL);

col_3 LIST(MULTISET(ROW(a CHAR(2), b INTEGER) NOT NULL)
NOT NULL);

For information about how to access a nested collection, see the IBM Informix Guide
to SQL: Tutorial.

Add a collection type to an existing table
You can use the ALTER TABLE statement to add or drop a column that is a
collection type (or any other data type). For example, the following statement adds
the flowers column, which is defined as a SET, to the nursery table:
ALTER TABLE nursery ADD flower SET(VARCHAR(30) NOT NULL)

You cannot modify an existing column that is a collection type or convert a
non-collection type column into a collection type.

For more information about adding and dropping collection-type columns, see the
ALTER TABLE statement in the IBM Informix Guide to SQL: Syntax.

Restrictions on collections
You cannot use any of the following data types as the element type of a collection:
v TEXT
v BYTE
v SERIAL

Chapter 8. Create and use extended data types in Informix 8-11

v SERIAL8
v BIGSERIAL

You cannot use a CREATE INDEX statement to create an index on collection, nor
can you create a functional index for a collection column.

Named row types
A named row type is a group of fields that are defined under a single name. A field
refers to a component of a row type and should not be confused with a column,
which is associated with tables only. The fields of a named row type are analogous
to the fields of a C-language structure or members of a class in object-oriented
programming. After you create a named row type, the name that you assign to the
row type represents a unique type within the database. To create a named row
type, you specify a name for the row type and the names and data types of its
constituent fields. The following example shows how you might create a named
row type called person_t:
CREATE ROW TYPE person_t
(

name VARCHAR(30) NOT NULL,
address VARCHAR(20),
city VARCHAR(20),
state CHAR(2),
zip VARCHAR(9),
bdate DATE

);

The person_t row type contains six fields: name, address, city, state, zip, and
bdate. When you create a named row type, you can use it just as you would any
other data type. The person_t can occur anywhere that you might use any other
data type. The following CREATE TABLE statement uses the person_t data type:
CREATE TABLE sport_club
(

sport CHAR(20),
sportnum INT,
member person_t,
since DATE,
paidup BOOLEAN

)

You can use most data types to define the fields of a row type. For information
about data types that are not supported in row types, see “Restrictions on named
row types” on page 8-13.

For the syntax you use to create a named row type, see the CREATE ROW TYPE
statement in the IBM Informix Guide to SQL: Syntax. For information about how to
cast row type values, see Chapter 10, “Create and use user-defined casts,” on page
10-1.

When to use a named row type
A named row type is one way to create a new data type in IBM Informix. When
you create a named row type, you are defining a template for fields of data types
known to the database server. Thus the field definitions of a row type are
analogous to the column definitions of a table: both are constructed from data
types known to the database server.

You can create a named row type when you want a type that acts as a container
for component values that users must access. For example, you might create a

8-12 IBM Informix Database Design and Implementation Guide

named row type to support address values because users require direct access to
the individual component values of an address such as street, city, state, and zip
code. When you create the address type as a named row type, users always have
direct access to each of the fields.

In contrast, if you create an opaque data type to handle address values, a
C-language data structure stores all the address information. Because the
component values of an opaque type are encapsulated, you would have to define
functions to extract the component values for street, city, state, zip code. Thus, an
opaque data type is a more complicated type to define and use.

Before you define a data type, determine whether the type is just a container for a
group of values that users can access directly. If the type fits this description, use a
named row type.

Select a name for a named row type
You can give a named row type any name that you like provided that the name
does not violate the conventions established for the SQL identifiers. The
conventions for SQL identifiers are described in the Identifier segment in the IBM
Informix Guide to SQL: Syntax. To avoid confusing type and table names, the
examples in this manual designate named row types with the _t characters at the
end of the row type name.

You must have the Resource privilege to create a named row type. The name that
you assign to a named row type should not be the same as any other data type
that exists in the database because all data types share the same name space. In an
ANSI-compliant database, the combination owner.type must be unique within the
database. In a database that is not ANSI-compliant, the name must be unique
within the database.

Important: You must grant USAGE privileges on a named row type before other
users can use it. For information about granting and revoking privileges on named
row types, see Usage privileges for user-defined types (Database Design Guide).

Restrictions on named row types
This section describes the restrictions that apply when you use named row types.

Restrictions on data types:
You should use the BLOB or CLOB data types instead of the TEXT or BYTE data
types when you create a typed table that contains columns for large objects. For
compatibility with earlier version, you can create a named row type that contains
TEXT or BYTE fields and use that type to re-create an existing (untyped) table as a
typed table. However, although you can use a named row type that contains TEXT
or BYTE fields to create a typed table, you cannot use such a row type as a
column. You can assign a named row type that contains BLOB or CLOB fields to a
typed table or column.

Restrictions on constraints:
In a CREATE ROW TYPE statement, you can specify only the NOT NULL
constraint for the fields of a named row type. You must define all other constraints
in the CREATE TABLE statement. For more information, see the CREATE TABLE
statement in the IBM Informix Guide to SQL: Syntax.

Restrictions on indexes:

Chapter 8. Create and use extended data types in Informix 8-13

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.ddi.doc/ids_ddi_264.htm#ids_ddi_264

You cannot use a CREATE INDEX statement to create an index on a named row
type column. However, you can use a user-defined routine to create a functional
index for a row type column.

Restrictions on serial data types:

A named row type that contains a SERIAL, SERIAL8, or BIGSERIAL data type
cannot be used as a column type in a table.

The following statements return an error when the database server attempts to
create the table:
CREATE ROW TYPE row_t (s_col SERIAL)

CREATE TABLE bad_tab (col1 row_t)

However, you can use a named row type that contains a SERIAL, SERIAL8, or
BIGSERIAL data type to create a typed table.

For information about the use and behavior of SERIAL, SERIAL8, and BIGSERIAL
types in table hierarchies, see “SERIAL types in a table hierarchy” on page 9-9.

Use a named row type to create a typed table
You can create a table that is typed or untyped. A typed table is a table that has a
named row type assigned to it. An untyped table is a table that does not have a
named row type assigned to it. The CREATE ROW TYPE statement creates a
named row type but does not allocate storage for instances of the row type. To
allocate storage for instances of a named row type, you must assign the row type
to a table. The following example shows how to create a typed table:
CREATE ROW TYPE person_t
(

name VARCHAR(30),
address VARCHAR(20),
city VARCHAR(20),
state CHAR(2),
zip INTEGER,
bdate DATE

);

CREATE TABLE person OF TYPE person_t;

The first statement creates the person_t type. The second statement creates the
person table, which contains instances of the person_t type. More specifically, each
row in a typed table contains an instance of the named row type that is assigned
to the table. In the preceding example, the fields of the person_t type define the
columns of the person table.

Important: The order in which you create named row types is important because a
named row type must exist before you can use it to define a typed table.

Inserting data into a typed table is no different than inserting data into an untyped
table. When you insert data into a typed table, the operation creates an instance of
the row type and inserts it into the table. The following example shows how to
insert a row into the person table:
INSERT INTO person
VALUES (’Brown, James’, ’13 First St.’, ’San Carlos’, ’CA’, 94070,
’01/04/1940’)

8-14 IBM Informix Database Design and Implementation Guide

The INSERT statement creates an instance of the person_t type and inserts it into
the table. For more information about how to insert, update, and delete columns
that are defined on named row types, see the IBM Informix Guide to SQL: Tutorial.

You can use a single named row type to create multiple typed tables. In this case,
each table has a unique name, but all tables share the same type.

Restriction: You cannot create a typed table that is a temporary table.

For information about the advantages of using typed tables when you implement
your data model, see “Type inheritance” on page 9-1.

Change the type of a table
The primary advantage of typed tables over untyped tables is that typed tables can
be used in an inheritance hierarchy. In general, inheritance allows a table to acquire
the representation and behavior of another table. For more information, see “What
is inheritance?” on page 9-1.

The DROP and ADD clauses of the ALTER TABLE statement let you change
between typed and untyped tables. Neither the ADD nor DROP operation affects
the data that is stored in the table.

Convert an untyped table into a typed table:
If you want to convert an existing untyped table into a typed table, you can use
the ALTER TABLE statement. For example, consider the following untyped table:
CREATE TABLE manager
(

name VARCHAR(30),
department VARCHAR(20),
salary INTEGER

);

To convert an untyped table to a typed table, both the field names and the field
types of the named row type must match the column names and column types of
the existing table. For example, to make the manager table a typed table, you must
first create a named row type that matches the column definitions of the table. The
following statement creates the manager_t type, which contains field names and
field types that match the columns of the manager table:
CREATE ROW TYPE manager_t
(

name VARCHAR(30),
department VARCHAR(20),
salary INTEGER

);

After you create the named row type that you want to assign to the existing
untyped table, use the ALTER TABLE statement to assign the type to the table. The
following statement alters the manager table and makes it a typed table of type
manager_t:
ALTER TABLE manager ADD TYPE manager_t

The new manager table contains the same columns and data types as the old table
but now provides the advantages of a typed table.

Convert a typed table into an untyped table:
You also use the ALTER TABLE statement to change a typed table into an untyped
table:

Chapter 8. Create and use extended data types in Informix 8-15

ALTER TABLE manager DROP TYPE

Tip: Adding a column to a typed table requires three ALTER TABLE statements to
drop the type, add the column, and add the type to the table.

Use a named row type to create a column
Both typed and untyped tables can contain columns that are defined on named
row types. A column that is defined on a named row type behaves in the same
way whether the column occurs in a typed table or untyped table. In the following
example, the first statement creates a named row type address_t; the second
statement assigns the address_t type to the address column in the employee table:
CREATE ROW TYPE address_t
(

street VARCHAR(20),
city VARCHAR(20),
state CHAR(2),
zip VARCHAR(9)

);

CREATE TABLE employee
(

name VARCHAR(30),
address address_t,
salary INTEGER

);

In the preceding CREATE TABLE statement, the address column has the street,
city, state, and zip fields of the address_t type. Consequently, the employee table,
which has only three columns, contains values for name, street, city, state, zip, and
salary. Use dot notation to access the individual fields of a column that are defined
on a row type. For information about using dot notation to access fields of a
column, see the IBM Informix Guide to SQL: Tutorial.

When you insert data into a column that is assigned a row type, you must use the
ROW constructor to specify row literal values for the row type. The following
example shows how to use the INSERT statement to insert a row into the
employee table:
INSERT INTO employee
VALUES (’John Bryant’,

ROW(’10 Bay Street’, ’Madera’, ’CA’, 95400)::address_t, 55000);

Strong typing is not enforced for an insert or update on a named row type. To
ensure that the row values are of the named row type, you must explicitly cast to
the named row type to generate values of a named row type, as the previous
example shows. The INSERT statement inserts three values, one of which is a row
type value that contains four values. More specifically, the operation inserts unitary
values for the name and salary columns but it creates an instance of the address_t
type and inserts it into the address column.

For more information about how to insert, update, and delete columns that are
defined on row types, see the IBM Informix Guide to SQL: Tutorial.

Use a named row type within another row type
You can use a named row type as the data type of a field within another row type.
A nested row type is a row type that contains another row type. You can nest any
row type within any other row type. No practical limit exists on how deeply you
can nest row types. However, to perform inserts or updates on deeply nested row
types requires careful use of the syntax.

8-16 IBM Informix Database Design and Implementation Guide

For named row types, the order in which you create the row types is important
because a named row type must exist before you can use it to define a column or a
field within another row type. In the following example, the first statement creates
the address_t type, which is used in the second statement to define the type of the
address field of the employee_t type:
CREATE ROW TYPE address_t
(

street VARCHAR (20),
city VARCHAR(20),
state CHAR(2),
zip VARCHAR(9)

);

CREATE ROW TYPE employee_t
(

name VARCHAR(30) NOT NULL,
address address_t,
salary INTEGER

);

Important: You cannot use a row type recursively. If type_t is a row type, then
you cannot use type_t as the data type of a field contained in type_t.

Drop named row types
To drop a named row type, use the DROP ROW TYPE statement. You can drop a
type only if it has no dependencies. You cannot drop a named row type if any of
the following conditions are true:
v The type is currently assigned to a table.
v The type is currently assigned to a column in a table.
v The type is currently assigned to a field within another row type.

The following example shows how to drop the person_t type:
DROP ROW TYPE person_t restrict;

For information about how to drop a named row type from a type hierarchy, see
“Drop named row types from a type hierarchy” on page 9-4.

Unnamed row types
An unnamed row type is a group of typed fields that you create with the ROW
constructor. An important distinction between named and unnamed row types is
that you cannot assign an unnamed row type to a table. You use an unnamed row
type to define the type of a column or field only. In addition, an unnamed row
type is identified by its structure alone, whereas a named row type is identified by
its name. The structure of a row type consists of the number and data types of its
fields.

The following statement assigns two unnamed row types to columns of the
student table:
CREATE TABLE student
(

s_name ROW(f_name VARCHAR(20), m_init CHAR(1),
l_name VARCHAR(20) NOT NULL),

s_address ROW(street VARCHAR(20), city VARCHAR(20),
state CHAR(2), zip VARCHAR(9))

);

Chapter 8. Create and use extended data types in Informix 8-17

The s_name and s_address columns of the student table each contain multiple
fields. Each field of an unnamed row type can have a different data type. Although
the student table has only two columns, the unnamed row types define a total of
seven fields:
v f_name

v m_init

v l_name

v street

v city

v state

v zip

The following example shows how to use the INSERT statement to insert data into
the student table:
INSERT INTO student
VALUES (ROW(’Jim’, ’K’, ’Johnson’), ROW(’10 Grove St.’,
’Eldorado’, ’CA’, 94108))

For more information about how to modify columns that are defined on row types,
see the IBM Informix Guide to SQL: Tutorial.

The database server does not distinguish between two unnamed row types that
contain the same number of fields and that have corresponding fields of the same
type. Field names are irrelevant in type checking of unnamed row types. For
example, the database server does not distinguish between the following unnamed
row types:
ROW(a INTEGER, b CHAR(4));
ROW(x INTEGER, y CHAR(4));

For the syntax of unnamed row types, see the IBM Informix Guide to SQL: Syntax.
For information about how to cast row type values, see Chapter 10, “Create and
use user-defined casts,” on page 10-1.

The following data types cannot be field types in an unnamed row type:
v BIGSERIAL
v SERIAL
v SERIAL8
v BYTE
v TEXT

The database server returns an error when any of the preceding types are specified
in the field definition of an unnamed row type.

8-18 IBM Informix Database Design and Implementation Guide

Chapter 9. Type and table inheritance

This chapter describes type and table inheritance and shows how to create type
and table hierarchies to modify the types and tables within the respective
hierarchies.

What is inheritance?
Inheritance is the process that allows a type or a table to acquire the properties of
another type or table. The type or table that inherits the properties is called the
subtype or subtable. The type or table whose properties are inherited is called the
supertype or supertable. Inheritance allows for incremental modification so that a
type or table can inherit a general set of properties and add properties that are
specific to itself. You can use inheritance to make modifications only to the extent
that the modifications do not alter the inherited supertypes or supertables.

IBM Informix supports inheritance only for named row types and typed tables.
Informix supports only single inheritance. With single inheritance, each subtype or
subtable has only one supertype or supertable.

Type inheritance
Type inheritance applies to named row types only. You can use inheritance to
group named row types into a type hierarchy in which each subtype inherits the
representation (data fields) and the behavior (UDRs, aggregates, and operators) of
the supertype under which it is defined. A type hierarchy provides the following
advantages:
v It encourages modular implementation of your data model.
v It ensures consistent reuse of schema components.
v It ensures that no data fields are accidentally left out.
v It allows a type to inherit UDRs that are defined on another data type.

Define a type hierarchy
The following figure provides an example of a simple type hierarchy that contains
three named row types.

The supertype at the top of the type hierarchy contains a group of fields that all
underlying subtypes inherit. A supertype must exist before you can create its
subtype. The following example creates the person_t supertype of the type
hierarchy that Figure 9-1 shows:

Figure 9-1. Example of a type hierarchy

© Copyright IBM Corp. 1996, 2013 9-1

CREATE ROW TYPE person_t
(

name VARCHAR(30) NOT NULL,
address VARCHAR(20),
city VARCHAR(20),
state CHAR(2),
zip INTEGER,
bdate DATE

);

To create a subtype, specify the UNDER keyword and the name of the supertype
whose properties the subtype inherits. The following example illustrates how you
might define employee_t as a subtype that inherits all the fields of person_t. The
example adds salary and manager fields that do not exist in the person_t type.
CREATE ROW TYPE employee_t
(

salary INTEGER,
manager VARCHAR(30)

)
UNDER person_t;

Important: You must have the UNDER privilege on the supertype before you can
create a subtype that inherits the properties of the supertype. For information
about UNDER privileges, see Under privileges for named row types (Database
Design Guide).

In the type hierarchy in Figure 9-1 on page 9-1, sales_rep_t is a subtype of
employee_t, which is the supertype of sales_rep_t in the same way that person_t
is the supertype of employee_t. The following example creates sales_rep_t, which
inherits all fields from person_t and employee_t and adds four new fields. Because
the modifications on a subtype do not affect its supertype, employee_t does not
have the four fields that are added for sales_rep_t.
CREATE ROW TYPE sales_rep_t
(
rep_num INT8,
region_num INTEGER,
commission DECIMAL,
home_office BOOLEAN
)
UNDER employee_t;

The sales_rep_t type contains 12 fields: name, address, city, state, zip, bdate,
salary, manager, rep_num, region_num, commission, and home_office.

Instances of both the employee_t and sales_rep_t types inherit all the UDRs that
are defined for the person_t type. Any additional UDRs that are defined on
employee_t automatically apply to instances of the employee_t type and to
instances of its subtype sales_rep_t, but not to instances of person_t.

The preceding type hierarchy is an example of single inheritance because each
subtype inherits from a single supertype. Figure 9-2 on page 9-3 illustrates how
you can define multiple subtypes under a single supertype. Although single
inheritance requires that every subtype inherits from one and only one supertype,
no practical limit exists on the depth or breadth of the type hierarchy that you
define.

9-2 IBM Informix Database Design and Implementation Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.ddi.doc/ids_ddi_265.htm#ids_ddi_265
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.ddi.doc/ids_ddi_265.htm#ids_ddi_265

The topmost type of any hierarchy is referred to as the root supertype. In Figure 9-2,
person_t is the root supertype of the hierarchy. Except for the root supertype, any
type in the hierarchy can be potentially both a supertype and subtype at the same
time. For example, customer_t is a subtype of person_t and a supertype of
us_customer_t. A subtype at the lower levels of the hierarchy contains properties
of the root supertype but does not directly inherit its properties from the root
supertype. For example, us_customer_t has only one supertype, customer_t, but
because customer_t is itself a subtype of person_t, the fields and routines that
customer_t inherits from person_t are also inherited by us_customer_t.

Routine overloading for types in a type hierarchy
Routine overloading refers to the ability to assign one name to multiple routines and
specify different types of arguments on which the routines can operate. In a type
hierarchy, a subtype automatically inherits the routines that are defined on its
supertype. However you can define a new routine on a subtype to override the
inherited routine with the same name. For example, suppose you create a getinfo()
routine on type person_t that returns the last name and birthdate of an instance of
type person_t. You can register another getinfo() routine on type employee_t that
returns the last name and salary from an instance of employee_t. In this way, you
can overload a routine, so that you have a customized routine for every type in the
type hierarchy, as the following figure shows.

When you overload a routine so that routines are defined with the same name but
different arguments for different types in the type hierarchy, the argument that you
specify determines which routine executes. For example, if you call getinfo() with
an argument of type employee_t, a getinfo() routine defined on type employee_t
overrides the inherited routine of the same name. Similarly, if you define another
getinfo() on type sales_rep_t, a call to getinfo() with an argument of type
sales_rep_t overrides the routine that sales_rep_t inherits from employee_t.

Figure 9-2. Example of a type hierarchy that is a tree structure

Figure 9-3. Example of routine overloading in a type hierarchy

Chapter 9. Type and table inheritance 9-3

For information about how to create and register user-defined routines (UDRs), see
IBM Informix User-Defined Routines and Data Types Developer's Guide.

Inheritance and type substitutability
In a type hierarchy, a subtype automatically inherits all the routines defined on its
supertype. Consequently, if you call a routine with an argument of a subtype and
no routines are defined on the subtype, the database server can invoke a routine
that is defined on a supertype. Type substitutability refers to the ability to use an
instance of a subtype when an instance of a supertype is expected. As an example,
suppose that you create a routine p_info() that accepts an argument of type
person_t and returns the last name and birthdate of an instance of type person_t.
If no other p_info() routines are registered, and you invoke p_info() with an
argument of type employee_t, the routine returns the name and birthdate fields
(inherited from person_t) from an instance of type employee_t. This behavior is
possible because employee_t inherits the functions of its supertype, person_t.

In general, when the database server attempts to evaluate a routine, the database
server searches for a signature that matches the routine name and the arguments
that you specify when you invoke the routine. If such a routine is found, then the
database server uses this routine. If an exact match is not found, the database
server attempts to find a routine with the same name and whose argument type is
a supertype of the argument type that is specified when the routine is invoked. For
example, suppose that the database server searches for a routine that it can use
when a get() routine is called with an argument of the subtype sales_rep_t.
Although no get() routine has been defined on the sales_rep_t type, the database
server searches for a routine until it finds a get() routine that has been defined on
a supertype in the hierarchy. In this case, neither sales_rep_t nor its supertype
employee_t has a get() routine defined over it. However, because a routine is
defined for person_t, this routine is invoked to operate on an instance of
sales_rep_t.

The process in which the database server searches for a routine that it can use is
called routine resolution. For more information about routine resolution, see IBM
Informix User-Defined Routines and Data Types Developer's Guide.

Drop named row types from a type hierarchy
To drop a named row type from a type hierarchy, use the DROP ROW TYPE
statement. However, you can drop a type only if it has no dependencies. You
cannot drop a named row type if either of the following conditions is true:
v The type is currently assigned to a table.
v The type is a supertype of another type.

The following example shows how to drop the sales_rep_t type:

Figure 9-4. Example of how the database server searches for a routine in a type hierarchy

9-4 IBM Informix Database Design and Implementation Guide

DROP ROW TYPE sales_rep_t RESTRICT;

To drop a supertype, you must first drop each subtype that inherits properties
from the supertype. You drop types in a type hierarchy in the reverse order in
which you create the types. For example, to drop the person_t type that
“Inheritance and type substitutability” on page 9-4 shows, you must first drop its
subtypes in the following order:
DROP ROW TYPE sale_rep_t RESTRICT;
DROP ROW TYPE employee_t RESTRICT;
DROP ROW TYPE person_t RESTRICT;

Important: To drop a type, you must be the database administrator or the owner
of the type.

Table inheritance
Only tables that are defined on named row types support table inheritance. Table
inheritance is the property that allows a table to inherit the behavior (constraints,
storage options, triggers) from the supertable above it in the table hierarchy. A table
hierarchy is the relationship that you can define among tables in which subtables
inherit the behavior of supertables. A table inheritance provides the following
advantages:
v It encourages modular implementation of your data model.
v It ensures consistent reuse of schema components.
v It allows you to construct queries whose scope can be some or all of the tables

in the table hierarchy.

In a table hierarchy, a subtable automatically inherits the following properties from
its supertable:
v All constraint definitions (primary key, unique, and referential constraints)
v Storage option
v All triggers
v Indexes
v Access method

Relationship between type and table hierarchies
Every table in a table hierarchy must be assigned to a named row type in a
corresponding type hierarchy. The following figure shows an example of the
relationships that can exist between a type hierarchy and table hierarchy.

Figure 9-5. Example of the relationship between type hierarchy and table hierarchy

Chapter 9. Type and table inheritance 9-5

However, you can also define a type hierarchy in which the named row types do
not necessarily have a one-to-one correspondence with the tables in a table
hierarchy. The following figure shows how you might create a type hierarchy for
which only some of the named row types have been assigned to tables.

Define a table hierarchy
The type that you use to define a table must exist before you can create the table.
Similarly, you define a type hierarchy before you define a corresponding table
hierarchy. To establish the relationships between specific subtables and supertables
in a table hierarchy, use the UNDER keyword. The following CREATE TABLE
statements define the simple table hierarchy that Figure 9-5 on page 9-5 shows. The
examples in this section assume that the person_t, employee_t, and sales_rep_t
types already exist.
CREATE TABLE person OF TYPE person_t;

CREATE TABLE employee OF TYPE employee_t UNDER person;

CREATE TABLE sales_rep OF TYPE sales_rep_t UNDER employee;

The person, employee, and sales_rep tables are defined on the person_t,
employee_t, and sales_rep_t types, respectively. Thus, for every type in the type
hierarchy, a corresponding table exists in the table hierarchy. In addition, the
relationship between the tables of a table hierarchy must match the relationship
between the types of the type hierarchy. For example, the employee table inherits
from person table in the same way that the employee_t type inherits from the
person_t type, and the sales_rep table inherits from the employee table in the
same way that the sales_rep_t type inherits from the employee_t type.

Subtables automatically inherit all inheritable properties that are added to
supertables. Therefore, you can add or alter the properties of a supertable at any
time and the subtables automatically inherit the changes. For more information, see
“Modify table behavior in a table hierarchy” on page 9-8.

Important: You must have the UNDER privilege on the supertable before you can
create a subtable that inherits the properties of the supertable. For more
information, see “Under privileges for typed tables” on page 6-6.

Figure 9-6. Example of an inheritance hierarchy in which only some types have been
assigned to tables

9-6 IBM Informix Database Design and Implementation Guide

Inheritance of table behavior in a table hierarchy
When you create a subtable under a supertable, the subtable inherits all the
properties of its supertable, including the following ones:
v All columns of the supertable
v Constraint definitions
v Storage options
v Indexes
v Referential integrity
v Triggers
v The access method

In addition, if table c inherits from table b and table b inherits from table a, then
table c automatically inherits the behavior unique to table b and the behavior that
table b has inherited from table a. Consequently, the supertable that actually
defines behavior can be several levels distant from the subtables that inherit the
behavior. For example, consider the following table hierarchy:
CREATE TABLE person OF TYPE person_t
(PRIMARY KEY (name))
FRAGMENT BY EXPRESSION
name < ’n’ IN dbspace1,
name >= ’n’ IN dbspace2;

CREATE TABLE employee OF TYPE employee_t
(CHECK(salary > 34000))
UNDER person;

CREATE TABLE sales_rep OF TYPE sales_rep_t
LOCK MODE ROW
UNDER employee;

In this table hierarchy, the employee and sales_rep tables inherit the primary key
name and fragmentation strategy of the person table. The sales_rep table inherits
the check constraint of the employee table and adds a LOCK MODE. The
following table shows the behavior for each table in the hierarchy.

Table Table Behavior

person
PRIMARY KEY, FRAGMENT BY EXPRESSION

employee
PRIMARY KEY, FRAGMENT BY EXPRESSION, CHECK constraint

sales_rep
PRIMARY KEY, FRAGMENT BY EXPRESSION, CHECK constraint, LOCK
MODE ROW

A table hierarchy might also contain subtables in which behavior defined on a
subtable can override behavior (otherwise) inherited from its supertable. Consider
the following table hierarchy, which is identical to the previous example except
that the employee table adds a new storage option:
CREATE TABLE person OF TYPE person_t
(PRIMARY KEY (name))
FRAGMENT BY EXPRESSION
name < ’n’ IN person1,
name >= ’n’ IN person2;

CREATE TABLE employee OF TYPE employee_t
(CHECK(salary > 34000))

Chapter 9. Type and table inheritance 9-7

FRAGMENT BY EXPRESSION
name < ’n’ IN employ1,
name >= ’n’ IN employ2
UNDER person;

CREATE TABLE sales_rep OF TYPE sales_rep_t
LOCK MODE ROW
UNDER employee;

Again, the employee and sales_rep tables inherit the primary key name of the
person table. However, the fragmentation strategy of the employee table overrides
the fragmentation strategy of the person table. Consequently, both the employee
and sales_rep tables store data in dbspaces employ1 and employ2, whereas the
person table stores data in dbspaces person1 and person2.

Modify table behavior in a table hierarchy
After you define a table hierarchy, you cannot modify the structure (columns) of
the existing tables. However, you can modify the behavior of tables in the
hierarchy. Table 9-1 shows the table behavior that you can modify in a table
hierarchy and the syntax that you use to make modifications.

Table 9-1. Table behavior that you can modify in a table hierarchy

Table behavior Syntax Considerations

Constraint definitions ALTER TABLE To add or drop a constraint, use the ADD
CONSTRAINT or DROP CONSTRAINT clause. For
more information, see “Constraints on tables in a table
hierarchy.”

Indexes CREATE INDEX, ALTER INDEX For more information, see “Add indexes to tables in a
table hierarchy” on page 9-9 and the CREATE INDEX
and ALTER INDEX statements in the IBM Informix
Guide to SQL: Syntax.

Triggers CREATE/DROP TRIGGER You cannot drop an inherited trigger. However, you
can drop a trigger from a supertable or add a trigger
to a subtable to override an inherited trigger. For
information about how to modify triggers on
supertables and subtables, see “Triggers on tables in a
table hierarchy” on page 9-9. For information about
how to create a trigger, see the IBM Informix Guide to
SQL: Tutorial.

All existing subtables automatically inherit new table behavior when you modify a
supertable in the hierarchy.

Important: When you use the ALTER TABLE statement to modify a table in a
table hierarchy, you can use only the ADD CONSTRAINT, DROP CONSTRAINT,
MODIFY NEXT SIZE, and LOCK MODE clauses.

Constraints on tables in a table hierarchy
You can alter or drop a constraint only in the table on which it is defined. You
cannot drop or alter a constraint from a subtable when the constraint is inherited.
However, a subtable can add additional constraints. Any additional constraints that
you define on a table are also inherited by any subtables that inherit from the table
that defines the constraint. Because constraints are additive, all inherited and
current (added) constraints apply.

9-8 IBM Informix Database Design and Implementation Guide

Add indexes to tables in a table hierarchy
When you define an index on a supertable in a hierarchy, any subtables that you
define under that supertable also inherit the index. Suppose you have a table
hierarchy that contains the tables tab_a, tab_b, and tab_c where tab_a is a
supertable to tab_b, and tab_b is a supertable to tab_c. If you create an index on a
column of tab_b, then that index will exist on that column in both tab_b and
tab_c. If you create an index on a column of tab_a, then that index will span tab_a,
tab_b, and tab_c.

Important: An index that a subtable inherits from a supertable cannot be dropped
or modified. However, you can add indexes to a subtable.

Indexes, unique constraints, and primary keys are all closely related. When you
specify a unique constraint or primary key, the database server automatically
creates a unique index on the column. Consequently, a primary key or unique
constraint that you define on a supertable applies to all the subtables. For example,
suppose there are two tables (a supertable and subtable), both of which contain a
column emp_id. If the supertable specifies that emp_id has a unique constraint,
the subtable must contain emp_id values that are unique across both the subtable
and the supertable.

Restriction: You cannot define more than one primary key across a table hierarchy,
even if some of the tables in the hierarchy do not inherit the primary key.

Triggers on tables in a table hierarchy
You cannot drop an inherited trigger. However, you can create a trigger on a
subtable to override a trigger that the subtable inherits from a supertable. Unlike
constraints, triggers are not additive; only the nearest trigger on a supertable in the
hierarchy applies.

If you want to disable the trigger that a subtable inherits from its supertable, you
can create an empty trigger on the subtable to override the trigger from the
supertable. Because triggers are not additive, this empty trigger executes for the
subtable and any subtables under the subtable, which are not subject to further
overrides.

SERIAL types in a table hierarchy
A table hierarchy can contain columns of type SERIAL and BIGSERIAL or
SERIAL8. However, only one SERIAL and one BIGSERIAL or one SERIAL8 column
are allowed across a table hierarchy. Suppose you create the following type and
table hierarchy:
CREATE ROW TYPE parent_t (a INT);
CREATE ROW TYPE child1_t (s_col SERIAL) UNDER parent_t;
CREATE ROW TYPE child2_t (s8_col SERIAL8) UNDER child1_t;
CREATE ROW TYPE child3_t (d FLOAT) UNDER child2_t;

CREATE TABLE parent_tab of type parent_t;
CREATE TABLE child1_tab of type child1_t UNDER parent_tab;
CREATE TABLE child2_tab of type child2_t UNDER child1_tab;
CREATE TABLE child3_tab of type child3_t UNDER child2_tab;

The parent_tab table does not contain a SERIAL type. The child1_tab introduces a
SERIAL counter into the hierarchy. The child2_tab inherits the SERIAL column
from child1_tab and adds a SERIAL8 column. The child3_tab inherits both a
SERIAL and SERIAL8 column.

Chapter 9. Type and table inheritance 9-9

A 0 value inserted into the s_col or s8_col column for any table in the hierarchy
inserts a monotonically increasing value, regardless of which table takes the insert.

You cannot set a starting counter value for a SERIAL or SERIAL8 type in CREATE
ROW TYPE statements. To set a starting value for a SERIAL or SERIAL8 column in
a table hierarchy, you can use the ALTER TABLE statement. The following
statement shows how to alter a table to modify the next SERIAL and SERIAL8
values to be inserted anywhere in the table hierarchy:
ALTER TABLE child3_tab
MODIFY (s_col SERIAL(100), s8_col SERIAL8 (200))

Except for the previously described behavior, all the rules that apply to SERIAL,
BIGSERIAL, and SERIAL8 type columns in untyped tables also apply to SERIAL,
BIGSERIAL, and SERIAL8 type columns in table hierarchies. For more information,
see Chapter 3, “Select data types,” on page 3-1 and the IBM Informix Guide to SQL:
Reference.

Add a new table to a table hierarchy
After you define a table hierarchy, you cannot use the ALTER TABLE statement to
add, drop, or modify columns of a table within the hierarchy. However, you can
add new subtypes and subtables to an existing hierarchy provided that the new
subtype and subtable do not interfere with existing inheritance relationships. The
following figure illustrates one way that you might add a type and corresponding
table to an existing hierarchy. The dashed lines indicate the added subtype and
subtable.

The following statements show how you might add the type and table to the
inheritance hierarchy that Figure 9-7 shows:
CREATE ROW TYPE us_sales_rep_t (domestic_sales DECIMAL(15,2))
UNDER employee_t;

CREATE TABLE us_sales_rep OF TYPE us_sales_rep_t
UNDER sales_rep;

You can also add subtypes and subtables that branch from an existing supertype
and its parallel supertable. The following figure shows how you might add the
customer_t type and customer table to existing hierarchies. In this example, both
the customer table and the employee table inherit properties from the person

Figure 9-7. Example of how you might add a subtype and subtable to an existing inheritance
hierarchy

9-10 IBM Informix Database Design and Implementation Guide

table.

The following statements create the customer_t type and customer table under the
person_t type and person table, respectively:
CREATE ROW TYPE customer_t (cust_num INTEGER) UNDER person_t;

CREATE TABLE customer OF TYPE customer_t UNDER person;

Drop a table in a table hierarchy
If a table and its corresponding named row type have no dependencies (they are
not a supertable and supertype), you can drop the table and its type. You must
drop the table before you can drop the type. For general information about
dropping a table, see the DROP TABLE statement in the IBM Informix Guide to
SQL: Syntax. For information about how to drop a named row type, see “Drop
named row types” on page 8-17.

Altering the structure of a table in a table hierarchy
You cannot use the ALTER TABLE statement to add, drop, or modify the columns
of a table in a table hierarchy. You can use the ALTER TABLE statement to add,
drop, or modify constraints.

The process of adding, dropping, or modifying a column of a table in a table
hierarchy (or otherwise altering the structure of a table) can be a time-intensive
task.

To alter the structure of a table in a table hierarchy:
1. Download data from all subtables and the supertable that you want to modify.
2. Drop the subtables and subtypes.
3. Modify the unloaded data file.
4. Modify the supertable.
5. Recreate the subtypes and subtables.
6. Upload the data.

Query tables in a table hierarchy
A table hierarchy allows you to construct a SELECT, UPDATE, or DELETE
statement whose scope is a supertable and its subtables—in a single SQL
command. For example, a query against any supertable in a table hierarchy returns
data for all columns of the supertable and the columns that subtables inherit from
the supertable. To limit the results of a query to one table in the table hierarchy,

Figure 9-8. Example of Adding a Type and Table Under an Existing Supertype and Supertable

Chapter 9. Type and table inheritance 9-11

you must include the ONLY keyword in the query. For more information about
how to query and modify data from tables in a table hierarchy, see the IBM
Informix Guide to SQL: Tutorial.

Create a view on a table in a table hierarchy
You can create a view based upon any table in a table hierarchy. For example, the
following statement creates a view on the person table, which is the root
supertable of the table hierarchy that Figure 9-5 on page 9-5 shows:
CREATE VIEW name_view AS SELECT name FROM person

Because the person table is a supertable, the view name_view displays data from
the name column of the person, employee, and sales_rep tables. To create a view
that displays only data from the person table, use the ONLY keyword, as the
following example shows:
CREATE VIEW name_view AS SELECT name FROM ONLY(person)

Restriction: You cannot perform an insert or update on a view that is defined on a
supertable because the database server cannot know where in the table hierarchy
to put the new rows.

For information about how to create a typed view, see “Typed views” on page
6-18.

9-12 IBM Informix Database Design and Implementation Guide

Chapter 10. Create and use user-defined casts

This chapter describes user-defined casts and shows how to use run-time casts to
perform data conversions on extended data types.

What is a cast?
A cast is a mechanism that converts a value from one data type to another data
type. Casts allow you to make comparisons between values of different data types
or substitute a value of one data type for a value of another data type. IBM
Informix supports casts in the following types of expressions:
v Column expressions
v Constant expressions
v Function expressions
v SPL variables
v Host variables (ESQL)
v Statement local variable (SLV) expressions

To convert a value of one data type to another data type, a cast must exist in the
database or the database server. Informix supports the following types of casts:

Built-in cast
A built-in cast is a cast that is built into the database server. A built-in cast
performs automatic conversions between different built-in data types.

User-defined cast
A user-defined cast often requires a cast function to handle conversions
from one data type to another. To register and use a user-defined cast, you
must use the CREATE CAST statement.

A user-defined cast is explicit if you include the EXPLICIT keyword when you
create a cast with the CREATE CAST statement. (The default option is explicit.)
Explicit casts are never invoked automatically. To invoke an explicit cast, you must
use the CAST... AS keywords or the double colon (::) cast operator.

A user-defined cast is implicit if you include the IMPLICIT keyword when you
create a cast with a CREATE CAST statement. The database server automatically
invokes implicit casts at runtime to perform data conversions.

All casts are included in the syscasts system catalog table. For information about
syscasts, see the IBM Informix Guide to SQL: Reference.

User-defined casts
When the database server does not provide built-in casts to perform conversions
between two data types, you can create a user-defined cast to handle the data type
conversion. User-defined casts are typically used to provide data type conversions
for the following extended data types:

Opaque data types
Developers of opaque data types must define casts to handle conversions
between the internal/external representations of the opaque data type. For

© Copyright IBM Corp. 1996, 2013 10-1

information about how to create and register casts for opaque data types,
see IBM Informix User-Defined Routines and Data Types Developer's Guide.

Distinct data types
You cannot directly compare a distinct data type to its source type.
However, IBM Informix automatically registers explicit casts from the
distinct type to the source type and vice versa. A distinct type does not
inherit the casts that are defined on its source type. In addition, the
user-defined casts that you might define on a distinct type are unavailable
to its source type. For more information and examples that show how to
create and use casts on distinct types, see “Create cast functions for
user-defined casts” on page 10-10.

Named row types
In most cases, you can explicitly cast a named row type to another
row-type value without creating the cast. However, to convert between
values of a named row type and some other data type, you must first
create the cast to handle the conversion.

For an example of how to create and use a user-defined cast, see “An example of
casting between distinct data types” on page 10-11. For the syntax of the CREATE
CAST statement, see the IBM Informix Guide to SQL: Syntax.

Invoke casts
For built-in casts and user-defined implicit casts, the database server automatically
(implicitly) invokes the cast to handle the data conversion. For example, you can
compare a value of type INT with SMALLINT, FLOAT, or CHAR values without
explicitly casting the expression because the database server provides
system-defined casts to transparently handle conversions between these built-in
data types.

When you define an explicit user-defined cast to handle conversions between two
data types, you must explicitly invoke the cast with either the CAST...AS keywords
or the double-colon cast operator (::). The following partial examples show the two
ways that you can invoke an explicit cast:
... WHERE new_col = CAST(old_col AS newtype)

... WHERE new_col = old_col::newtype

Restrictions on user-defined casts
You cannot create a user-defined cast between two built-in data types. You also
cannot create a user-defined cast that includes any of the following data types:
v Collection data types: LIST, MULTISET, or SET
v Unnamed row types
v Smart-large-object data types: CLOB or BLOB
v Simple-large-object data types: TEXT or BYTE

In general, a cast between two data types requires that each data type represents
the same number of component values. For example, a cast between a row type
and an opaque data type is possible if each field in the row type has a
corresponding field in the opaque data type. When you want to perform
conversions between two data types that have the same storage structure, you can
use the CREATE CAST statement without a cast function. Otherwise, you must
create a cast function that you then register with a CREATE CAST statement. For

10-2 IBM Informix Database Design and Implementation Guide

an example of how to use a cast function to create a user-defined cast, see “Create
cast functions for user-defined casts” on page 10-10.

Cast row types
You can compare or substitute between values of any two row types (named or
unnamed) only when both row types have the same number of fields, and one of
the following conditions is also true:
v All corresponding fields of the two row types have the same data type.

Two row types are considered structurally equivalent when they have the same
number of fields and the data types of corresponding fields are the same.

v User-defined casts exist to perform the conversions when two named row types
are being compared.

v System-defined or user-defined casts exist to perform the necessary conversions
for corresponding field values that are not of the same data type.
When the corresponding fields are not of the same data type, you can use either
system-defined casts or user-defined casts to handle data conversions on the
fields.

If a built-in cast exists to handle data conversions on the individual fields, you can
explicitly cast the value of one row type to the other row type (unless the row
types are both unnamed row types, in which case an explicit cast is not necessary).

If a built-in cast does not exist to handle field conversions, you can create a
user-defined cast to handle the field conversions. The cast can be either implicit or
explicit.

In general, when a row type is cast to another row type, the individual field
conversions might be handled with explicit or implicit casts. When the conversion
between corresponding fields requires an explicit cast, the value of the field that is
cast must match the value of the corresponding field exactly, because the database
server applies no additional implicit casts on a value that has been explicitly cast.

Cast between named and unnamed row types
To compare values of a named row type with values of an unnamed row type, you
can use an explicit cast. Suppose that you create the following named row type
and tables:
CREATE ROW TYPE info_t (x CHAR(1), y CHAR(20))
CREATE TABLE customer (cust_info info_t)
CREATE TABLE retailer (ret_info ROW (a CHAR(1), b CHAR(20)))

The following INSERT statements show how to create row-type values for the
customer and retailer tables:
INSERT INTO customer VALUES(ROW(’t’,’philips’)::info_t)
INSERT INTO retailer VALUES(ROW(’f’,’johns’))

To compare or substitute data from the customer table with data from retailer
table, you must use an explicit cast to convert a value of one row type to the other
row type. In the following query, the ret_info column (an unnamed row type) is
explicitly cast to info_t (a named row type):
SELECT cust_info
FROM customer, retailer
WHERE cust_info = ret_info::info_t

Chapter 10. Create and use user-defined casts 10-3

In general, to perform a conversion between a named row type and an unnamed
row type, you must explicitly cast one row type to the other row type. You can
perform an explicit cast in either direction: you can cast the named row type to an
unnamed row type or cast the unnamed row type to a named row type. The
following statement returns the same results as the previous example. However,
the named row type in this example is explicitly cast to the unnamed row type:
SELECT cust_info
FROM customer, retailer
WHERE cust_info::ROW(a CHAR(1), b CHAR(20)) = ret_info

Cast between unnamed row types
You can compare two unnamed row types that are structurally equivalent without
an explicit cast. You can also compare an unnamed row type with another
unnamed row type, if both row types have the same number of fields, and casts
exist to convert values of corresponding fields that are not of the same data type.
In other words, the cast from one unnamed row type to another is implicit if all
the casts that handle field conversions are system-defined or implicit casts.
Otherwise, you must explicitly cast an unnamed row type to compare it with
another row type.

Suppose you create the following prices table:
CREATE TABLE prices
(col1 ROW(a SMALLINT, b FLOAT)
col2 ROW(x INT, y REAL))

The values of the two unnamed row types can be compared (without an explicit
cast) when built-in casts exist to perform conversions between corresponding
fields. Consequently, the following query does not require an explicit cast to
compare col1 and col2 values:
SELECT * FROM prices WHERE col1 = col2

In this example, the database server implicitly invokes a built-in cast to convert
field values of SMALLINT to INT and REAL to FLOAT.

If corresponding fields of two row types cannot implicitly cast to one another, you
can explicitly cast between the types, if a user-defined cast exists to handle
conversions between the two types.

Cast between named row types
A named row type is strongly typed, which means that the database server
recognizes two named row types as two separate types even if the row types are
structurally equivalent. For this reason you must create and register a user-defined
cast before you can perform comparisons between two named row types. For an
example of how to create and use casts to handle conversions between two named
row types, see “An example of casting between named row types” on page 10-10.

Explicit casts on fields
Before you can explicitly cast between two row types (named or unnamed), whose
fields contain different data types, a cast (either system-defined or user-defined)
must exist to handle conversions between the corresponding field data types.

When you explicitly cast between two row types, the database server automatically
invokes any explicit casts that are necessary to handle conversions between field
data types. In other words, when you perform an explicit cast on a row type value,

10-4 IBM Informix Database Design and Implementation Guide

you do not have to explicitly cast individual fields of the row type, unless more
than one level of casting is necessary to handle the data type conversion on the
field.

The row types and tables in the following example are used throughout this
section to show the behavior of explicit casts on named and unnamed row types:
CREATE DISTINCT TYPE d_float AS FLOAT;
CREATE ROW TYPE row_t (a INT, b d_float);

CREATE TABLE tab1 (col1 ROW (a INT, b d_float));
CREATE TABLE tab2 (col2 ROW (a INT, b FLOAT));
CREATE TABLE tab3 (col3 row_t);

Explicit casts on fields of an unnamed row type
When a conversion between two row types involves an explicit cast to convert
between particular field values, you can explicitly cast the row type value but are
not required to explicitly cast the individual field.

The following statement shows how to insert a value into the tab1 table:
INSERT INTO tab1 VALUES (ROW(3, 5.66::FLOAT::d_float))

To insert a value from col1 of tab1 into col2 of tab2, you must explicitly cast the
row value because the database server does not automatically handle conversions
between the d_float distinct type of tab1 to the FLOAT type of table tab2:
INSERT INTO tab2 SELECT col1::ROW(a INT, b FLOAT) FROM tab1

In this example, the cast that is used to convert the b field is explicit because the
conversion from d_float to FLOAT requires an explicit cast (to convert a distinct
type to its source type requires an explicit cast).

In general, to cast between two unnamed row types where one or more of the
fields uses an explicit cast, you must explicitly cast at the level of the row type, not
at the level of the field.

Explicit casts on fields of a named row type
When you explicitly cast a value as a named row type, the database server
automatically invokes any implicit or explicit casts that are used to convert field
values to the target data type. In the following statement, the explicit cast of col1
to type row_t automatically invokes the explicit cast that converts a field value of
type FLOAT to d_float:
INSERT INTO tab3 SELECT col2::row_t FROM tab2

The following INSERT statement includes an explicit cast to the row_t type. The
explicit cast to the row type also invokes an explicit cast to convert the b field of
type row_t from FLOAT to d_float. In general, an explicit cast to a row type also
invokes any explicit casts on the individual fields (one-level deep) that the row
type contains to handle conversions.
INSERT INTO tab3 VALUES (ROW(5, 6.55::FLOAT)::row_t)

The following statement is also valid and returns the same results as the preceding
statement. However, this statement shows all the explicit casts that are performed
to insert a row_t value into the tab3 table.
INSERT INTO tab3 VALUES (ROW(5, 6.55::float::d_float)::row_t)

In the preceding examples, the conversions between the b fields of the row types
require two levels of casting. The database server handles any value that contains a

Chapter 10. Create and use user-defined casts 10-5

decimal point as a DECIMAL type. In addition, no implicit casts exist between the
DECIMAL and d_float data types, so two levels of casting are necessary: a cast
from DECIMAL to FLOAT and a second cast from FLOAT to d_float.

Cast individual fields of a row type
If an operation on a field of a row type requires an explicit cast, you can explicitly
cast the individual field value without consideration of the row type with which
the field is associated. The following statement uses an explicit cast on the field
value to handle the conversion:
SELECT col1 from tab1, tab2 WHERE col1.b = col2.b::FLOAT::d_float

If an operation on a field of a row type requires an implicit cast, you can specify
the correct field value and the database server handles the conversion
automatically. In the following statement, which compares field values of different
data types, a built-in cast automatically converts between INT and FLOAT values:
SELECT col1 from tab1, tab2 WHERE col1.a = col2.b

Cast collection data types
In some cases, you can use an explicit cast to perform conversions between two
collections with different element types. To compare or substitute between values
of any two collection types, both collections must be of type SET, MULTISET, or
LIST.
v Two element types are equivalent when all component types are the same. For

example, if the element type of one collection is a row type, the other collection
type is also a row type with the same number of fields and the same field data
types.

v Casts exist in the database to perform conversions between any and all
components of the element types that are not of the same data type.
If the corresponding element types are not of the same data type, IBM Informix
can use either built-in casts or user-defined casts to handle data conversions on
the element types.

When the database server inserts, updates, or compares values of a collection data
type, type checking occurs at the level of the element data type. Consequently, in a
cast between two collection types, the data conversion occurs at the level of the
element type because the actual data stored in a collection is of a particular
element type.

The following type and tables are used in the collection casting examples in this
section:
CREATE DISTINCT TYPE my_int AS INT;

CREATE TABLE set_tab1 (col1 SET(my_int NOT NULL));
CREATE TABLE set_tab2 (col2 SET(INT NOT NULL));
CREATE TABLE set_tab3 (col3 SET(FLOAT NOT NULL));
CREATE TABLE list_tab (col4 LIST(INT NOT NULL));
CREATE TABLE m_set_tab(col5 MULTISET(INT NOT NULL));

Restrictions on collection-type conversions
Because each collection data type (SET, MULTISET, and LIST) has different
characteristics, conversions between collections with different collection types are
disallowed. For example, elements stored in a LIST collection have a specific order
associated with them. This order would be lost if the elements inserted into a LIST
collection can be inserted into a MULTISET collection. Consequently, you cannot

10-6 IBM Informix Database Design and Implementation Guide

insert or update elements from one collection with elements from a different
collection type even though the two collections might share the same element type.
The following INSERT statement returns an error because the column on which the
insert is performed is a MULTISET collection and the value being inserted is a
LIST collection:
INSERT INTO m_set_tab SELECT col4 FROM list_tab -- returns error

Collections with different element types
How you handle conversions between two collections that have the same collection
type but different element types depends on the element type of each collection
and the type of cast that the database server uses to convert one element type to
another when the element types are different, as follows:
v If a built-in cast or implicit user-defined cast exists to handle the conversion

between two element types, you are not required to explicitly cast between the
collection types.

v If an explicit cast exists to handle the conversion between element types, you
can perform an explicit cast on a collection.

Implicit cast between element types
When an implicit cast exists in the database to convert between different element
types of two collections, you are not required to use an explicit cast to insert or
update elements from one collection into another collection. The following INSERT
statement retrieves elements from the set_tab2 table and inserts the elements into
the set_tab3 table. Although the collection column from set_tab2 has an INT
element type and the collection column from set_tab3 has a FLOAT element type,
a built-in cast implicitly handles the conversion between INT and FLOAT values.
An explicit cast is unnecessary in this case.
INSERT INTO set_tab3 SELECT col2 FROM set_tab2

Explicit cast between element types
When a conversion between different element types of two collections is performed
with an explicit cast, you must explicitly cast one collection to the other collection
type. In the following example, the conversion between the element types (INT
and my_int) requires an explicit cast. (A cast between a distinct type and its source
type is always explicit).

The following INSERT statement retrieves elements from the set_tab2 table and
inserts the elements into the set_tab1 table. The collection column from set_tab2
has an INT element type, and the collection column from set_tab1 has a my_int
element type. Because the conversion between the element types (INT and my_int)
requires an explicit cast, you must explicitly cast the collection type.
INSERT INTO set_tab1 SELECT col2::SET(my_int NOT NULL)

FROM set_tab2

To perform an explicit cast on a collection type, you must include the constructor
(SET, MULTISET, or LIST), the element type, and the NOT NULL keyword.

Convert relational data to a MULTISET collection
When you have data from a relational table you can use a collection subquery to
cast a row value to a MULTISET collection. Suppose you create the following
tables:
CREATE TABLE tab_a (a_col INTEGER);
CREATE TABLE tab_b (ms_col MULTISET(ROW(a INT) NOT NULL));

Chapter 10. Create and use user-defined casts 10-7

The following example shows how you might use a collection subquery to convert
rows of INT values from the tab_a table to a MULTISET collection. All rows from
tab_a are converted to a MULTISET collection and inserted into the tab_b table.
INSERT INTO tab_b VALUES (

(MULTISET (SELECT a_col FROM tab_a)))

Cast distinct data types
A distinct type inherits none of the built-in casts of the built-in type that a distinct
type might use as its source type. Consequently, the built-in casts that exist to
implicitly convert a built-in data type to other data types are unavailable to the
distinct type that uses the built-in type as its source type. However, when you
create a distinct type on a built-in type, the database server provides two explicit
casts to handle conversions from the distinct type to the built-in type and from the
built-in type to the distinct type.

Explicit casts with distinct types
To compare or substitute between values of a distinct type and its source type, you
must explicitly cast one type to the other. For example, to insert into or update a
column of a distinct type with values of the source type, you must explicitly cast
the values to the distinct type.

Suppose you create a distinct type, int_type, that is based on the INTEGER data
type and a table with a column of type int_type, as follows:
CREATE DISTINCT TYPE int_type AS INTEGER;
CREATE TABLE tab_z(col1 int_type);

To insert a value into the tab_z table, you must explicitly cast the value for the
col1 column to int_type, as follows:
INSERT INTO tab_z VALUES (35::int_type)

Suppose you create a distinct type, num_type, that is based on the NUMERIC,
data type and a table with a column of type num_type, as follows:
CREATE DISTINCT TYPE num_type AS NUMERIC;
CREATE TABLE tab_x (col1 num_type);

The distinct num_type inherits none of the system-defined casts that exist for the
NUMERIC data type. Consequently, the following insert requires two levels of
casting. The first cast converts the value 35 from INT to NUMERIC and the second
cast converts from NUMERIC to num_type:
INSERT INTO tab_x VALUES (35::NUMERIC::num_type)

The following INSERT statement on the tab_x table returns an error because no
cast exists to convert directly from an INT type to num_type:
INSERT INTO tab_x VALUES (70::num_type) -- returns error

Cast between a distinct type and its source type
Although data of a distinct type has the same representation as its source type, a
distinct type cannot be compared directly to its source type. For this reason, when
you create a distinct data type, IBM Informix automatically registers the following
explicit casts:
v A cast from the distinct type to its source type
v A cast from the source type to the distinct type

10-8 IBM Informix Database Design and Implementation Guide

Suppose you create two distinct types: one to handle movie titles and the other to
handle music recordings. You might create the following distinct types that are
based on the VARCHAR data type:
CREATE DISTINCT TYPE movie_type AS VARCHAR(30);
CREATE DISTINCT TYPE music_type AS VARCHAR(30);

You can then create the entertainment table that includes columns of type
movie_type, music_type, and VARCHAR.
CREATE TABLE entertainment
(
video movie_type,
compact_disc music_type,
laser_disv VARCHAR(30)
);

To compare a distinct type with its source type or vice versa, you must perform an
explicit cast from one data type to the other. For example, suppose you want to
check for movies that are available on both video and laser disc. The following
statement requires an explicit cast in the WHERE clause to compare a value of a
distinct type (music_type) with a value of its source type (VARCHAR). In this
example, the source type is explicitly cast to the distinct type.
SELECT video FROM entertainment

WHERE video = laser_disc::movie_type

However, you might also explicitly cast the distinct type to the source type as the
following statement shows:
SELECT video FROM entertainment

WHERE video::VARCHAR(30) = laser_disc

To perform a conversion between two distinct types that are defined on the same
source type, you must make an intermediate cast back to the source type before
casting to the target distinct type. The following statement compares a value of
music_type with a value of movie_type:
SELECT video FROM entertainment

WHERE video = compact_disc::VARCHAR(30)::movie_type

Add and drop casts on a distinct type
To enforce strong typing on a distinct type, the database server provides explicit
casts to handle conversions between a distinct type and its source type. However,
the creator of a distinct type can drop the existing explicit casts and create implicit
casts, so that conversions between a distinct type and its source type do not
require an explicit cast.

Important: When you drop the explicit casts between a distinct type and its source
type that the database server provides, and instead create implicit casts to handle
conversions between these data types, you diminish the distinctiveness of the
distinct type.

The following DROP CAST statements drop the two explicit casts that were
automatically defined on the movie_type:
DROP CAST(movie_type AS VARCHAR(30));
DROP CAST(VARCHAR(30) AS movie_type);

After the existing casts are dropped, you can create two implicit casts to handle
conversions between movie_type and VARCHAR. The following CREATE CAST
statements create two implicit casts:

Chapter 10. Create and use user-defined casts 10-9

CREATE IMPLICIT CAST (movie_type AS VARCHAR(30));
CREATE IMPLICIT CAST (VARCHAR(30) AS movie_type);

You cannot create a cast to convert between two data types if such a cast already
exists in the database.

If you create implicit casts to convert between the distinct type and its source type,
you can compare the two types without an explicit cast. In the following statement,
the comparison between the video column and the laser_disc column requires a
conversion. Because an implicit cast has been created, the conversion between
VARCHAR and movie_type is implicit.
SELECT video FROM entertainment

WHERE video = laser_disc

Cast to smart large objects
The database server provides casts to allow the conversion of TEXT and BYTE
objects to BLOB and CLOB data types. This feature allows users to migrate BYTE
and TEXT data from legacy databases into BLOB and CLOB columns.

The following example shows how to use an explicit cast to convert a BYTE
column value from the catalog table in the stores_demo database to a BLOB
column value and update the catalog table in the superstores_demo database:
UPDATE catalog SET advert = ROW (
(SELECT cat_photo::BLOB FROM stores_demo:catalog

WHERE catalog_num = 10027),
advert.caption)

WHERE catalog_num = 10027

The database server does not provide casts to convert BLOB to BYTE values or
CLOB to TEXT values.

Create cast functions for user-defined casts
If your database contains opaque data types, distinct data types, or named row
types, you might want to create user-defined casts that allow you to convert
between the different data types. When you want to perform conversions between
two data types that have the same storage structure, you can use the CREATE
CAST statement without a cast function. However, in some cases you must create a
cast function that you then register as a cast. You must create a cast function under
the following conditions:
v The conversion is between two data types that have different storage structures
v The conversion involves the manipulation of values to ensure that data

conversions are meaningful

The following sections show how to create and use user-defined casts that require
cast functions.

An example of casting between named row types
Suppose you create the named row types and table shown in the next example.
Although the named row types are structurally equivalent, writer_t and editor_t
are unique data types.
CREATE ROW TYPE writer_t (name VARCHAR(30), depart CHAR(3));
CREATE ROW TYPE editor_t (name VARCHAR(30), depart CHAR(3));

CREATE TABLE projects

10-10 IBM Informix Database Design and Implementation Guide

(
book_title VARCHAR(20),
writer writer_t,
editor editor_t

);

To handle conversions between two named row types, you must first create a
user-defined cast. The following example creates a casting function and registers it
as a cast to handle conversions from type writer_t to editor_t:
CREATE FUNCTION cast_rt (w writer_t)

RETURNS editor_t
RETURN (ROW(w.name, w.depart)::editor_t);

END FUNCTION;

CREATE CAST (writer_t as editor_t WITH cast_rt);

After you create and register the cast, you can explicitly cast values of type
writer_t to editor_t. The following query uses an explicit cast in the WHERE
clause to convert values of type writer_t to editor_t:
SELECT book_title FROM projects

WHERE CAST(writer AS editor_t) = editor;

If you prefer, you can use the :: cast operator to perform the same cast, as the
following example shows:
SELECT book_title FROM projects

WHERE writer::editor_t = editor;

An example of casting between distinct data types
Suppose you want to define distinct types to represent dollar, yen, and sterling
currencies. Any comparison between two currencies must take the exchange rate
into account. Thus, you must create cast functions that not only handle the cast
from one data type to the other data type but also calculate the exchange rate for
the values that you want to compare.

The following example shows how you might define three distinct types on the
same source type, DOUBLE PRECISION:
CREATE DISTINCT TYPE dollar AS DOUBLE PRECISION;
CREATE DISTINCT TYPE yen AS DOUBLE PRECISION;
CREATE DISTINCT TYPE sterling AS DOUBLE PRECISION;

After you define the distinct types, you can create a table that provides the prices
that manufacturers charge for comparable products. The following example creates
the manufact_price table, which contains a column for the dollar, yen, and sterling
distinct types:
CREATE TABLE manufact_price
(
product_desc VARCHAR(20),
us_price dollar,
japan_price yen,
uk_price sterling
);

When you insert values into the manufact_price table, you can cast to the correct
distinct type for dollar, yen, and sterling values, as follows:
INSERT INTO manufact_price

VALUES (’baseball’, 5.00::DOUBLE PRECISION::dollar,
510.00::DOUBLE PRECISION::yen,
3.50::DOUBLE PRECISION::sterling);

Chapter 10. Create and use user-defined casts 10-11

Because a distinct type does not inherit any of the built-in casts available to its
source type, each of the preceding INSERT statements requires two casts. For each
INSERT statement, the inner cast converts from DECIMAL to DOUBLE
PRECISION and the outer cast converts from DOUBLE PRECISION to the correct
distinct type (dollar, yen, or sterling).

Before you can compare the dollar, yen, and sterling data types, you must create
cast functions and register them as casts. The following example creates SPL
functions that you can use to compare dollar, yen, and sterling values. Each
function multiplies the input value by a value that reflects the exchange rate.
CREATE FUNCTION dollar_to_yen(d dollar)

RETURN (d::DOUBLE PRECISION * 106)::CHAR(20)::yen;
END FUNCTION;

CREATE FUNCTION sterling_to_dollar(s sterling)
RETURNS dollar
RETURN (s::DOUBLE PRECISION * 1.59)::CHAR(20)::dollar;

END FUNCTION;

After you write the cast functions, you must use the CREATE CAST statement to
register the functions as casts. The following statements register the
dollar_to_yen() and sterling_to_dollar() functions as explicit casts:
CREATE CAST(dollar AS yen WITH dollar_to_yen);
CREATE CAST(sterling AS dollar WITH sterling_to_dollar);

After you register the function as a cast, use it for operations that require
conversions between the data types. For the syntax that you use to create a cast
function and register it as a cast, see the CREATE FUNCTION and CREATE CAST
statements in the IBM Informix Guide to SQL: Syntax.

In the following query, the WHERE clause includes an explicit cast that invokes the
dollar_to_yen() function to compare dollar and yen values:
SELECT * FROM manufact_price

WHERE CAST(us_price AS yen) < japan_price;

The following query uses the cast operator to perform the same conversion shown
in the preceding query:
SELECT * FROM manufact_price

WHERE us_price::yen < japan_price;

You can also use an explicit cast to convert the values that a query returns. The
following query uses a cast to return yen equivalents of dollar values. The WHERE
clause of the query also uses an explicit cast to compare dollar and yen values.
SELECT us_price::yen, japan_price FROM manufact_price

WHERE us_price::yen < japan_price;

Multilevel casting
A multilevel cast refers to an operation that requires two or more levels of casting in
an expression to convert a value of one data type to the target data type. Because
no casts exist between yen and sterling values, a query that compares the two data
types requires multiple casts. The first (inner) cast converts sterling values to dollar
values; the second (outer) cast converts dollar values to yen values.
SELECT * FROM manufact_price

WHERE japan_price < uk_price::dollar::yen

10-12 IBM Informix Database Design and Implementation Guide

You might add another cast function to handle yen to sterling conversions directly.
The following example creates the function yen_to_sterling() and registers it as a
cast. To account for the exchange rate, the function multiplies yen values by .01 to
derive equivalent sterling values.
CREATE FUNCTION yen_to_sterling(y yen)

RETURNS sterling
RETURN (y::DOUBLE PRECISION * .01)::CHAR(20)::sterling;

END FUNCTION;

CREATE CAST (yen AS sterling WITH yen_to_sterling);

With the addition of the yen to sterling cast, you can use a single-level cast to
compare yen and sterling values, as the following query shows:
SELECT japan_price::sterling, uk_price FROM manufact_price

WHERE japan_price::sterling) < uk_price;

In the SELECT statement, the explicit cast returns yen values as their sterling
equivalents. In the WHERE clause, the cast allows comparisons between yen and
sterling values.

Chapter 10. Create and use user-defined casts 10-13

10-14 IBM Informix Database Design and Implementation Guide

Part 4. Appendixes

© Copyright IBM Corp. 1996, 2013

IBM Informix Database Design and Implementation Guide

Appendix. Accessibility

IBM strives to provide products with usable access for everyone, regardless of age
or ability.

Accessibility features for IBM Informix products
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features
The following list includes the major accessibility features in IBM Informix
products. These features support:
v Keyboard-only operation.
v Interfaces that are commonly used by screen readers.
v The attachment of alternative input and output devices.

Keyboard navigation
This product uses standard Microsoft Windows navigation keys.

Related accessibility information
IBM is committed to making our documentation accessible to persons with
disabilities. Our publications are available in HTML format so that they can be
accessed with assistive technology such as screen reader software.

IBM and accessibility
See the IBM Accessibility Center at http://www.ibm.com/able for more information
about the IBM commitment to accessibility.

Dotted decimal syntax diagrams
The syntax diagrams in our publications are available in dotted decimal format,
which is an accessible format that is available only if you are using a screen reader.

In dotted decimal format, each syntax element is written on a separate line. If two
or more syntax elements are always present together (or always absent together),
the elements can appear on the same line, because they can be considered as a
single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read
punctuation. All syntax elements that have the same dotted decimal number (for
example, all syntax elements that have the number 3.1) are mutually exclusive
alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax can
include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

© Copyright IBM Corp. 1996, 2013 A-1

http://www.ibm.com/able

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, the word or symbol is preceded by
the backslash (\) character. The * symbol can be used next to a dotted decimal
number to indicate that the syntax element repeats. For example, syntax element
*FILE with dotted decimal number 3 is read as 3 * FILE. Format 3* FILE
indicates that syntax element FILE repeats. Format 3* * FILE indicates that
syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol that provides information about the syntax elements. For example, the lines
5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, that element is defined elsewhere.
The string following the % symbol is the name of a syntax fragment rather than a
literal. For example, the line 2.1 %OP1 refers to a separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:

? Specifies an optional syntax element. A dotted decimal number followed
by the ? symbol indicates that all the syntax elements with a
corresponding dotted decimal number, and any subordinate syntax
elements, are optional. If there is only one syntax element with a dotted
decimal number, the ? symbol is displayed on the same line as the syntax
element (for example, 5? NOTIFY). If there is more than one syntax element
with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if
you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that syntax
elements NOTIFY and UPDATE are optional; that is, you can choose one or
none of them. The ? symbol is equivalent to a bypass line in a railroad
diagram.

! Specifies a default syntax element. A dotted decimal number followed by
the ! symbol and a syntax element indicates that the syntax element is the
default option for all syntax elements that share the same dotted decimal
number. Only one of the syntax elements that share the same dotted
decimal number can specify a ! symbol. For example, if you hear the lines
2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the
default option for the FILE keyword. In this example, if you include the
FILE keyword but do not specify an option, default option KEEP is applied.
A default option also applies to the next higher dotted decimal number. In
this example, if the FILE keyword is omitted, default FILE(KEEP) is used.
However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP only applies to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword), and
does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* Specifies a syntax element that can be repeated zero or more times. A
dotted decimal number followed by the * symbol indicates that this syntax
element can be used zero or more times; that is, it is optional and can be

A-2 IBM Informix Database Design and Implementation Guide

repeated. For example, if you hear the line 5.1* data-area, you know that
you can include more than one data area or you can include none. If you
hear the lines 3*, 3 HOST, and 3 STATE, you know that you can include
HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is
only one item with that dotted decimal number, you can repeat that
same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item
from the list, but you cannot use the items more than once each. In the
previous example, you can write HOST STATE, but you cannot write HOST
HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax
diagram.

+ Specifies a syntax element that must be included one or more times. A
dotted decimal number followed by the + symbol indicates that this syntax
element must be included one or more times. For example, if you hear the
line 6.1+ data-area, you must include at least one data area. If you hear
the lines 2+, 2 HOST, and 2 STATE, you know that you must include HOST,
STATE, or both. As for the * symbol, you can repeat a particular item if it is
the only item with that dotted decimal number. The + symbol, like the *
symbol, is equivalent to a loop-back line in a railroad syntax diagram.

Appendix. Accessibility A-3

A-4 IBM Informix Database Design and Implementation Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

© Copyright IBM Corp. 1996, 2013 B-1

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,

B-2 IBM Informix Database Design and Implementation Guide

modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, and PostScript are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other
countries.

Intel, Itanium, and Pentium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Notices B-3

http://www.ibm.com/legal/copytrade.shtml

B-4 IBM Informix Database Design and Implementation Guide

Index

A
Access privileges 6-4
Accessibility A-1

dotted decimal format of syntax diagrams A-1
keyboard A-1
shortcut keys A-1
syntax diagrams, reading in a screen reader A-1

Aggregate functions, restrictions in modifiable view 6-20
ALTER FRAGMENT statement

ADD clause 5-8
DROP clause 5-9
INIT clause 5-7
MODIFY clause 5-9

Alter privilege 6-5
ALTER TABLE statement

changing column data type 3-15
converting to typed table 8-15
converting to untyped table 8-15
privilege for 6-5

ANSI-compliant database
buffered logging 4-2
character field length 1-3
cursor behavior 1-4
decimal data type 1-4
description 1-2
escape characters 1-4
identifying 1-5
isolation level 1-3
owner naming 1-3
privileges 1-3
reason for creating 1-2
SQLCODE 1-4
table privileges 6-4
transaction logging 1-2
transactions 1-2

Archive, and fragmentation 5-2
Attribute

identifying 2-9
important qualities 2-9
nondecomposable 2-9

Availability, improving with fragmentation 5-2

B
BIGINT data type 3-3
BIGSERIAL data type

description 3-4
initializing 3-4
referential constraints 3-16
restrictions 8-4, 8-11, 8-14, 8-17
table hierarchy 9-9

BLOB data type
description 8-5
restrictions in named row type 8-13
SQL restrictions 8-6

BOOLEAN data type 3-11
Buffered logging 4-2
Building a relational data model 2-12
BYTE data type

description 3-14

BYTE data type (continued)
restrictions 8-11, 8-17
using 3-14

C
Cardinality

constraint 2-5
in relationship 2-5

Cast operator 10-1
Casts

built-in 10-1
CAST AS keywords 10-1
collection data type 10-6
collection elements 10-7
description 10-1
distinct data type 10-1, 10-8
dropping 10-9
explicit, definition 10-1
implicit, definition 10-1
invoking 10-2
named row type 10-1, 10-5
operator 10-1
row type 10-3
unnamed row type fields 10-5
user-defined 10-1, 10-10

Chaining synonyms 4-7
CHAR data type 3-11
Character field length

ANSI vs. non-ANSI 1-3
CHARACTER VARYING data type 3-12
CLOB data type

description 8-6
restrictions in named row type 8-13
SQL restrictions 8-6

Codd, E. F. 2-21
Code sets

default 1-5
Collection data type

casting 10-6
casting restrictions 10-6
different element types 10-7
element typ 8-8
explicit cast 10-7
implicit cast 10-7
nested 8-11
restrictions 8-11
type checking 10-6
type constructor 8-8

Column-level encryption 6-1
Column-level privileges 6-6
Columns

defining 2-13
named row type 8-16
of fragmented table, modifying 5-7
unnamed row type 8-17

Command script, creating a database 4-7
Complex data types 8-7
compliance with standards ix
Composite key 2-15

© Copyright IBM Corp. 1996, 2013 X-1

Concurrency
improving with fragmentation 5-2
SERIAL and SERIAL8 values 3-4

Connect privilege 6-2
Connectivity in relationship 2-5
Constraints

cardinality 2-5
defining domains 3-1
named row type restrictions 8-13

CREATE DATABASE statement
in command script 4-7
relational data model 4-1

CREATE FUNCTION statement,
cast registration examples 10-11

CREATE INDEX statement 4-5
CREATE TABLE statement

description 4-3
in command script 4-7
with FRAGMENT BY EXPRESSION clause 5-3

CREATE VIEW statement
restrictions 6-19
using 6-17
WITH CHECK OPTION keywords 6-21

CURRENT_ROLE operator 6-14
Cursor behavior

ANSI vs. non-ANSI 1-4

D
Data

loading with dbload utility 4-9
loading with external tables 4-9

Data models
attribute 2-9
building 2-12
defining relationships 2-4
description 2-1
entity relationship 2-2
many-to-many relationship 2-5
one-to-many relationship 2-5
one-to-one relationship 2-5
relational 2-1
telephone directory example 2-3

Data types
BIGINT 3-3
BIGSERIAL 3-4
BLOB 8-5
BYTE 3-14
changing with ALTER TABLE statement 3-15
CHAR 3-11
CHARACTER VARYING 3-12
choosing 3-1
chronological 3-8
CLOB 8-6
collection types 8-7
complex types 8-7
DATE 3-8
DATETIME 3-9
DECIMAL 3-6, 3-7
distinct 8-4
fixed-point 3-7
floating-point 3-6
INT8 3-3
INTEGER 3-3
INTERVAL 3-9
MONEY 3-7
NCHAR 3-11

Data types (continued)
NVARCHAR 3-12
opaque types 8-5
REAL 3-6
referential constraints 3-16
row types 8-7
SERIAL 3-4
SERIAL, table hierarchies 9-9
SERIAL8 3-4
SMALLFLOAT 3-6
smart large objects 8-5
TEXT 3-14
VARCHAR 3-12

Database administrator (DBA) 6-3
Database Server Administrator (DBSA) 6-9, 6-10
Database-level privileges

Connect privilege 6-2
database-administrator privilege 6-3
description 6-2
Resource privilege 6-3

Databases
demonstration

superstores_demo 8-1
naming 4-1
populating new tables in 4-8
views on external database 6-19

DATE data type
description 3-8
display format 3-8

DATETIME data type
description 3-9
display format 3-10

DB-Access
creating database with 4-7
UNLOAD statement 4-9

DBDATE environment variable 3-8
dbexport utility 4-8
dbimport utility 4-8
dbload utility, loading data 4-9
DBMONEY environment variable 3-7
dbschema utility 4-7
dbspace

role in fragmentation 5-1
selecting 4-2

DBTIME environment variable 3-11
DECIMAL data type

fixed-point 3-7
floating-point 3-6

Default value, of a column 3-15
DEFAULT_ROLE operator 6-14
Delete privilege 6-4, 6-23
DELETE statements

applied to view 6-21
privilege 6-2
privilege for 6-4

Derived data, produced by view 6-16
Descriptor column 2-14
Disabilities, visual

reading syntax diagrams A-1
Disability A-1
Distinct data types

casting 10-1, 10-8
description 8-4

DISTINCT keyword, restrictions in modifiable view 6-20
Distribution scheme

changing the number of fragments 5-7
definition 5-1

X-2 IBM Informix Database Design and Implementation Guide

Distribution scheme (continued)
expression-based 5-2

using 5-3
with arbitrary rule 5-4
with range rule 5-3

hybrid 5-2
range 5-2
round-robin 5-2

using 5-4
system-defined hash 5-2

Domain
characteristics 2-14
column 3-1
defined 2-14

Dotted decimal format of syntax diagrams A-1
DROP CAST statement, using 10-9

E
Element type 8-8
Encrypted data 6-1
Entity

attributes 2-9
criteria for choosing 2-4
definition 2-2
occurrence 2-10
represented by a table 2-14
telephone directory example 2-4

Entity-relationship diagram
explained 2-10
reading 2-11

Environment variables
NODEFDAC 6-4
USETABLENAME 4-6

Environment, Non-U.S. English 1-5
Even distribution 5-4
Existence dependency 2-5
EXISTS keyword, use in condition subquery 6-21
Expression-based distribution scheme

arbitrary rule 5-4
description 5-2
using 5-3
with range rule 5-3

Expression, cast allowed in 10-1
EXTERNAL role 6-10
External tables, loading data with 4-9, 5-2

F
Field, in row types 8-12
First normal form 2-19
Fixed point 3-7
FLOAT data type 3-6
Floating point 3-6
Foreign key 2-15
Fragment

altering 5-9
changing the number of 5-7
description 5-1

FRAGMENT BY EXPRESSION clause 5-3
Fragmentation

backup-and-restore operations and 5-2
description 5-1
expressions, how evaluated 5-4
goals 5-2
logging and 5-2

Fragmentation (continued)
of smart large objects 5-7
reinitializing 5-7
types of distribution schemes 5-2

Fragmented table
creating 5-5
creating from one non-fragmented table 5-6
modifying 5-7

Functional dependency 2-20

G
Generalized-key index

ownership rights 6-4
GL_DATETIME environment variable 3-11
GRANT statement

database-level privileges 6-2
table-level privileges 6-3

GRANT USAGE ON LANGUAGE statement 6-9
GROUP BY keywords, restrictions in modifiable view 6-20

I
IFX_EXTEND_ROLE configuration parameter 6-9, 6-10
Index

bidirectional traversal 4-5
CREATE INDEX statement 4-5
named row type restrictions 8-13

Index privilege 6-5
industry standards ix
informix user name 6-3, 6-10
Inheritance 9-1

privileges in hierarchy 6-6
single 9-1
table hierarchy 9-5
type 9-1
type substitutability 9-4

INIT clause
ALTER FRAGMENT 5-7
in a fragmentation scheme 5-7

Insert privilege 6-4, 6-23
INSERT statements

privileges 6-2, 6-4
with a view 6-21

INSTEAD OF trigger 6-21
INT8 data type 3-3
INTEGER data type 3-3
INTERVAL data type

description 3-9
display format 3-10

INTO TEMP keywords, restrictions in view 6-19
Isolation level, ANSI vs. non-ANSI 1-3

J
Join, restrictions in modifiable view 6-20

K
Key

composite 2-15
foreign 2-15
primary 2-15

Key column 2-14

Index X-3

L
Language privileges 6-9
LIST collection type 8-10
literal values

restrictions in modifiable view 6-20
Loading data

dbload utility 4-9
external tables 4-9

Locales 1-5
Logging, types 4-2

M
Mandatory entity in relationship 2-5
Many-to-many relationship 2-5, 2-17
MODE ANSI keywords, logging 4-2
MODIFY clause of ALTER FRAGMENT 5-9
Modifying fragmented tables 5-7
MONEY data type

description 3-7
display format 3-7

MULTISET collection type 8-10

N
Named row type

casting 10-1
column definition 8-16
creating a typed table 8-14
description 8-12
dropping 8-17
example 8-12
naming conventions 8-13
restrictions 8-13
when to use 8-12

NCHAR data type 3-11
Nesting

collection types 8-11
row types 8-16

NODEFDAC environment variable 6-4
Nondecomposable attributes 2-9
Normal form 2-19
Normalization

benefits 2-19
first normal form 2-19
of data model 2-19
rules 2-19, 2-21
second normal form 2-20
third normal form 2-21

NOT NULL keywords, use in CREATE TABLE statement 4-3
Null values

defined 3-15
restrictions in primary key 2-15

NVARCHAR data type 3-12

O
ondblog utility 4-2
One-to-many relationship 2-5
One-to-one relationship 2-5
onload utility 4-8
onstat utility 6-14
ontape utility 4-2
onunload utility 4-8

Opaque data types
casting 10-1
description 8-5

Optional entity in relationship 2-5
ORDER BY keywords, restrictions in view 6-19
Owner naming

ANSI vs. non-ANSI 1-3
Ownership 6-4

P
Performance, buffered logging 4-2
Populating tables 4-8
Predefined data types 8-3
Primary key

composite 2-15
definition 2-15
system assigned 2-15

Privilege
ANSI vs. non_ANSI 1-3
automating 6-9, 6-10
column-level 6-6
Connect 6-2
database-administrator 6-3
database-level 6-2
Delete 6-4, 6-23
encoded in system catalog 6-5
Execute 6-9
granting 6-2
Index 6-5
Insert 6-4, 6-23
language 6-9
needed to create a view 6-23
on a view 6-23
Resource 6-3
routine-level 6-9
Select 6-4, 6-6, 6-23
table-level 6-4
typed tables 6-6
Update 6-4, 6-23
users and the public 6-3
views and 6-23

PUBLIC keyword, privilege granted to all users 6-3

R
Recursive relationship 2-5, 2-18
Redundant relationship 2-18
References privilege 6-5
Referential constraint

data type considerations 3-16
Referential integrity, defining primary and foreign keys 2-15
Relational model

description 2-1
resolving relationships 2-17
rules for defining tables, rows, and columns 2-13

Relationship
attribute 2-9
cardinality 2-5
cardinality constraint 2-5
complex 2-18
connectivity 2-5
defining in data model 2-4
entity 2-2
existence dependency 2-5
mandatory 2-5

X-4 IBM Informix Database Design and Implementation Guide

Relationship (continued)
many-to-many 2-5
many-to-many, resolving 2-17
one-to-many 2-5
one-to-one 2-5
optional 2-5
recursive 2-18
redundant 2-18
using matrix to discover 2-5

Resource privilege 6-3
REVOKE statement, granting privileges 6-2
Role

CREATE ROLE statement 6-11
definition 6-11
GRANT DEFAULT ROLE statement 6-13
granting privileges 6-13
rules for naming 6-11
SET ROLE statement 6-13
sysroleauth system catalog table 6-13
sysusers system catalog table 6-13

Round-robin distribution scheme
description 5-2
using 5-4

Routine overloading 9-3
Routine resolution 9-4
Routine-level privileges 6-9
ROW data types

casting 10-3, 10-6
categories 8-7
nested 8-16

ROWID 5-6
Rows

defining 2-13
in relational model 2-13

S
sbspaces 8-6
Screen reader

reading syntax diagrams A-1
Second normal form 2-20
Security

constraining inserted values 6-16, 6-21
database-level privileges 6-1
making database inaccessible 6-1
restricting access 6-16, 6-17, 6-23
table-level privileges 6-6
using operating-system facilities 6-1
with user-defined routines 6-1

Select privilege
column level 6-6
definition 6-4
with a view 6-23

SELECT statements
in modifiable view 6-20
on a view 6-22
privilege for 6-2, 6-4

Semantic integrity 3-1
SERIAL data type

as primary key 2-15
description 3-4
initializing 3-4
referential constraints 3-16
reset starting point 6-5
restrictions 8-4, 8-11, 8-14, 8-17
table hierarchy 9-9

SERIAL8 data type
description 3-4
initializing 3-4
referential constraints 3-16
restrictions 8-4, 8-11, 8-14, 8-17
table hierarchy 9-9

SET collection type 8-9
SET ENCRYPTION PASSWORD statement 6-1
SET ROLE statement 6-11
Shortcut keys

keyboard A-1
Single inheritance 9-1
SMALLFLOAT data type 3-6
SMALLINT data type 3-3
Smart large objects

description 8-5
fragmenting 5-7
functions for copying 8-7
importing and exporting 8-7
sbspace storage 8-6
SQL interactive uses 8-6
SQL restrictions 8-6

SQLCODE, ANSI vs. non-ANSI 1-4
standards ix
Substitutability 9-4
Subtable 9-1
Subtype 9-1
superstores_demo database 8-1
Supertable 9-1
Supertype 9-1
Synonym

chains 4-7
in ANSI-compliant database 1-4

Synonyms for table names 4-6
Syntax diagrams

reading in a screen reader A-1
sysdbopen procedure 6-11
sysfragexprudrdep system catalog table 5-1
sysfragments system catalog table 5-1
syssyntable system catalog table 4-6
System catalog tables

privileges 6-5
syscolauth 6-5
sysfragexprudrdep 5-1
sysfragments 5-1
systabauth 6-5
sysusers 6-5

T
Table

composite key, defined 2-15
converting to untyped table 8-15
converting untyped to typed 8-15
creating a table 4-3
descriptor column 2-14
dropping 4-4
foreign key, defined 2-15
index, creating 4-5
key column 2-14
loading data into 4-9
names, synonyms 4-6
ownership 6-4
primary key in 2-15
privileges 6-4
relational model 2-13
represents an entity 2-14

Index X-5

Table hierarchy
adding new tables 9-10
defining 9-6
description 9-5
inherited properties 9-6
modifying table behavior 9-8
SERIAL types 9-9
triggers 9-9

Table inheritance, definition 9-5
Table-level privileges

access privileges 6-4
Alter privilege 6-5
definition and use 6-4
Index privilege 6-5
References privilege 6-5

TEXT data type
description 3-14
restrictions 8-11, 8-17
using 3-14

Third normal form 2-21
Transaction logging

ANSI vs. non-ANSI 1-2
buffered 4-2
establishing with CREATE DATABASE statement 4-1
turning off for faster loading 4-9

Transactions
ANSI vs. non-ANSI 1-2
definition 1-2

Transitive dependency 2-21
Type constructor 8-8
Type hierarchy

creating 9-1
description 9-1
dropping row types from 9-4
overloading routines 9-1

Type inheritance, description 9-1
Type substitutability 9-4
Typed table

creating from an untyped table 8-15
definition 8-14

U
UNION keyword

in a view definition 6-19
restrictions in modifiable view 6-20

UNIQUE keyword
constraint in CREATE TABLE statement 4-3
restrictions in modifiable view 6-20

Unnamed row type
description 8-17
example 8-17
restrictions 8-17

Untyped table
converting to a typed table 8-15
definition 8-14

Update privilege
definition 6-4
with a view 6-23

UPDATE statements
applied to view 6-21
privilege for 6-2, 6-4

USER keyword 6-21
User-defined casts

between data types 10-8
User-defined data types

casting 10-1

User-defined data types (continued)
description 8-4

User-defined roles 6-11
User-defined routines

granting privileges on 6-9
security purposes 6-1

USETABLENAME environment variable 4-6
Utility program

dbload 4-9

V
VARCHAR data type 3-12
View

creating 6-17
deleting rows 6-21
description 6-16
dropped when basis is dropped 6-19
effect of changing basis 6-19
effects when changing the definition of 6-22
inserting rows in 6-21
modifying 6-20
null inserted in unexposed columns 6-21
privileges 6-23
restrictions on modifying 6-20
typed 6-18
updating duplicate rows 6-21
using WITH CHECK OPTION keywords 6-21
virtual column 6-21

views
remote tables 6-23

Visual disabilities
reading syntax diagrams A-1

W
WHERE keyword, enforcing data constraints 6-21
WITH CHECK OPTION keywords, CREATE VIEW

statement 6-21

X-6 IBM Informix Database Design and Implementation Guide

����

Printed in USA

SC27-4511-00

	Contents
	Introduction
	About this publication
	Types of users
	Software dependencies
	Assumptions about your locale
	Demonstration database

	What's new in Database Design and Implementation for IBM Informix, Version 12.10
	Example code conventions
	Additional documentation
	Compliance with industry standards

	Part 1. Basics of database design and implementation
	Chapter 1. Plan a database
	Select a data model for your database
	Use ANSI-compliant databases
	Differences between ANSI-compliant and non-ANSI-compliant databases
	Transactions
	Transaction logging
	Owner naming
	Privileges on objects
	Default isolation level
	Character data types
	DECIMAL data type
	Escape characters
	Cursor behavior
	SQLCODE field of the SQL communications area
	Synonym behavior

	Determine if an existing database is ANSI-compliant

	Use a customized language environment for your database (GLS)

	Chapter 2. Build a relational data model
	Build a data model
	Overview of the entity-relationship data model
	Identify and define principal data objects
	Discover entities
	Select possible entities
	List of entities
	Telephone directory example
	Diagram entities

	Define the relationships
	Connectivity
	Existence dependency
	Cardinality
	Discover the relationships
	Diagram relationships

	Identify attributes
	Select attributes for entities
	List attributes
	About entity occurrences

	Diagram data objects
	How to read E-R diagrams
	Telephone directory example
	After the diagram is complete

	Translate E-R data objects into relational constructs
	Define tables, rows, and columns
	Place constraints on columns
	Domain characteristics

	Determine keys for tables
	Primary keys
	Foreign keys (join columns)
	Add keys to the telephone directory diagram

	Resolve relationships
	Resolve m:n relationships
	Resolve other special relationships

	Normalize a data model
	First normal form
	Second normal form
	Third normal form
	Summary of normalization rules

	Chapter 3. Select data types
	Define the domains
	Data types
	Select a data type
	Numeric types
	Counters and codes: BIGINT, INT8, INTEGER, and SMALLINT
	Automatic sequences: BIGSERIAL, SERIAL, and SERIAL8
	Approximate numbers: FLOAT and SMALLFLOAT
	Adjustable-precision floating point: DECIMAL(p)
	Fixed-precision numbers: DECIMAL and MONEY

	Chronological data types
	Calendar dates: DATE
	Exact points in time: DATETIME
	Select a DATETIME format (GLS)

	BOOLEAN data type
	Character data types (GLS)
	Character data: CHAR(n) and NCHAR(n)
	Variable-length strings: CHARACTER VARYING(m,r), VARCHAR(m,r), NVARCHAR(m,r), and LVARCHAR(m)
	Variable-length execution time
	Large character objects: TEXT
	Binary objects: BYTE
	Use TEXT and BYTE data types
	Change the data type

	Null values

	Default values
	Check constraints
	Referential constraints

	Chapter 4. Implement a relational data model
	Create the database
	Use CREATE DATABASE
	Avoid name conflicts
	Select a dbspace
	Select the type of logging

	Use CREATE TABLE
	Create a fragmented table
	Drop or modify a table

	Use CREATE INDEX
	Composite indexes
	Bidirectional traversal of indexes

	Use synonyms for table names
	Use synonym chains
	Use command scripts
	Capture the schema
	Execute the file
	An example

	Populate the database
	Move data from other IBM Informix databases
	Load source data into a table
	Perform bulk-load operations

	Part 2. Managing databases
	Chapter 5. Table fragmentation strategies
	What is fragmentation?
	Why use fragmentation?
	Whose responsibility is fragmentation?
	Fragmentation and logging

	Distribution schemes for table fragmentation
	Expression-based distribution scheme
	Range rule
	Arbitrary rule
	Use the MOD function
	Insert and update rows

	Round-robin distribution scheme

	Create a fragmented table
	Create a new fragmented table
	Create a fragmented table from nonfragmented tables
	More than one nonfragmented table
	Use a single nonfragmented table

	Rowids in a fragmented table
	Fragment smart large objects

	Modify fragmentation strategies
	Reinitialize a fragmentation strategy
	Modify fragmentation strategies
	The ADD clause
	The DROP clause
	The MODIFY clause

	Grant and revoke privileges on fragments

	Chapter 6. Grant and limit access to your database
	Use SQL to restrict access to data
	Control access to databases
	Grant privileges
	Database-level privileges
	Connect privilege
	Resource privilege
	Database-administrator privilege

	Ownership rights
	Table-level privileges
	Access privileges
	Index, alter, and references privileges
	Under privileges for typed tables
	Privileges on table fragments

	Column-level privileges
	Type-level privileges
	Usage privileges for user-defined types
	Under privileges for named row types

	Routine-level privileges
	Language-level privileges
	SPL routines
	External routines

	Automate privileges
	Automate with a command script
	Roles

	Determine current role at runtime

	Use SPL routines to control access to data
	Restrict data reads
	Restrict changes to data
	Monitor changes to data
	Restrict object creation

	Views
	Create views
	Typed views
	Duplicate rows from views

	Restrictions on views
	When the basis of the view changes

	Modify with a view
	Delete with a view
	Update a view
	Insert into a view
	Use the WITH CHECK OPTION keywords
	Re-execution of a prepared statement when the view definition changes

	Privileges and views
	Privileges when creating a view
	Privileges when using a view

	Chapter 7. Distributed queries
	Overview of distributed queries
	Distributed queries across databases of one Informix instance
	Distributed queries across databases of two or more Informix instances
	Coordinator and participant in a distributed query

	Configure the database server to use distributed queries
	Syntax of a distributed query
	Access a remote server and database
	Database Name segment
	Database Object Name segment

	Valid statements for accessing remote objects
	Access remote tables
	Table permissions
	Qualify table references

	Other remote operations
	Open a remote database
	Create a remote database
	Create a synonym for a remote table

	Monitor distributed queries
	Server environment and distributed queries
	Logging-type restrictions on distributed queries
	Transaction processing
	Isolation levels
	DEADLOCK_TIMEOUT and SET LOCK MODE
	Two-phase commit and recovery

	Part 3. Object-relational databases
	Chapter 8. Create and use extended data types in Informix
	IBM Informix data types
	Fundamental or atomic data types
	Predefined data types
	Other predefined data types
	Extended data types
	Complex data types
	User-defined data types
	Distinct data types
	Opaque data types
	DataBlade data types

	Smart large objects
	BLOB data type
	CLOB data type
	Use smart large objects
	Copy smart large objects

	Complex data types
	Collection data types
	Null values in collections
	SET collection types
	MULTISET collection types
	LIST collection types
	Nested collection types
	Add a collection type to an existing table
	Restrictions on collections

	Named row types
	When to use a named row type
	Select a name for a named row type
	Restrictions on named row types
	Use a named row type to create a typed table
	Change the type of a table
	Use a named row type to create a column
	Use a named row type within another row type
	Drop named row types

	Unnamed row types

	Chapter 9. Type and table inheritance
	What is inheritance?
	Type inheritance
	Define a type hierarchy
	Routine overloading for types in a type hierarchy
	Inheritance and type substitutability
	Drop named row types from a type hierarchy

	Table inheritance
	Relationship between type and table hierarchies
	Define a table hierarchy
	Inheritance of table behavior in a table hierarchy
	Modify table behavior in a table hierarchy
	Constraints on tables in a table hierarchy
	Add indexes to tables in a table hierarchy
	Triggers on tables in a table hierarchy

	SERIAL types in a table hierarchy
	Add a new table to a table hierarchy
	Drop a table in a table hierarchy
	Altering the structure of a table in a table hierarchy
	Query tables in a table hierarchy
	Create a view on a table in a table hierarchy

	Chapter 10. Create and use user-defined casts
	What is a cast?
	User-defined casts
	Invoke casts
	Restrictions on user-defined casts

	Cast row types
	Cast between named and unnamed row types
	Cast between unnamed row types
	Cast between named row types
	Explicit casts on fields
	Explicit casts on fields of an unnamed row type
	Explicit casts on fields of a named row type

	Cast individual fields of a row type

	Cast collection data types
	Restrictions on collection-type conversions
	Collections with different element types
	Implicit cast between element types
	Explicit cast between element types

	Convert relational data to a MULTISET collection

	Cast distinct data types
	Explicit casts with distinct types
	Cast between a distinct type and its source type
	Add and drop casts on a distinct type

	Cast to smart large objects
	Create cast functions for user-defined casts
	An example of casting between named row types
	An example of casting between distinct data types
	Multilevel casting

	Part 4. Appendixes
	Appendix. Accessibility
	Accessibility features for IBM Informix products
	Accessibility features
	Keyboard navigation
	Related accessibility information
	IBM and accessibility

	Dotted decimal syntax diagrams

	Notices
	Trademarks

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

