
Informix Product Family
Informix DataBlade Developers Kit
Version 4.20

IBM Informix DataBlade Module
Development Overview

GC27-5555-00

���

Informix Product Family
Informix DataBlade Developers Kit
Version 4.20

IBM Informix DataBlade Module
Development Overview

GC27-5555-00

���

Note
Before using this information and the product it supports, read the information in “Notices” on page D-1.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this publication should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1996, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Introduction . v
About this publication . v

Types of users . v
Software compatibility . v

Example code conventions. v
Additional documentation . vi
Compliance with industry standards . vi
How to provide documentation feedback . vi

Chapter 1. DataBlade module concepts . 1-1
What are DataBlade modules? . 1-1

Why extend your Informix database server? . 1-1
Why create a DataBlade module? . 1-3
Why use the DataBlade Developers Kit? . 1-3

DataBlade modules and the database server . 1-4
DataBlade module programming languages . 1-5
Internal architecture of the database server . 1-7
IBM Informix Client Software Development Kit . 1-8
Client objects and programs . 1-8

DataBlade module components . 1-8
Aggregates . 1-9
Data types . 1-9
Routines . 1-15
Casts . 1-16
Interfaces . 1-17
Errors. 1-17
Unit tests . 1-18
Functional tests . 1-18
Imported SQL files . 1-18
Imported client files . 1-18

Chapter 2. Build a DataBlade module . 2-1
DataBlade Developers Kit tools . 2-1

BladeSmith . 2-1
BladePack . 2-2
BladeManager . 2-2
DBDK Visual C++ Add-In and IfxQuery . 2-3

How to create a DataBlade module . 2-4
DataBlade module development resources . 2-5

The DataBlade Developers Kit Tutorial . 2-5
Example DataBlade modules . 2-6

Appendix A. DataBlade module documentation A-1
Publication overview . A-1
Title-to-topic reference . A-2
Topic-to-title reference . A-3

Appendix B. Informix DataBlade modules . B-1
IBM Informix Excalibur Text Search DataBlade Module . B-1

Extensions to Informix . B-1
IBM Informix Web DataBlade Module . B-2

Extensions to Informix . B-2

© Copyright IBM Corp. 1996, 2013 iii

Appendix C. Accessibility . C-1
Accessibility features for IBM Informix products . C-1

Accessibility features . C-1
Keyboard navigation . C-1
Related accessibility information . C-1
IBM and accessibility . C-1

Dotted decimal syntax diagrams . C-1

Notices . D-1
Privacy policy considerations . D-3
Trademarks . D-3

Index . X-1

iv IBM Informix DataBlade Module Development Overview

Introduction

This introduction provides an overview of the information in this publication and
describes the conventions it uses.

About this publication
This publication is an overview of the IBM® Informix® DataBlade® module
development process. A DataBlade module extends the functionality of IBM
Informix to handle data with user-defined routines or to handle nontraditional
kinds of data, such as full text, images, video, spatial data, and time series.

Types of users
This publication servers as an overview for anyone interested in learning about
DataBlade modules, including managers, developers who plan to create DataBlade
modules, and developers who plan to create applications that use DataBlade
modules. However, you should be familiar with SQL and basic programming
concepts.

In contrast, the IBM DataBlade Developers Kit User's Guide provides technical
information specifically for developers who are ready to develop DataBlade
modules.

Software compatibility
For complete system requirements, see the IBM Informix Read Me First sheet for the
IBM Informix DataBlade Developers Kit (DBDK).

Example code conventions
Examples of SQL code occur throughout this publication. Except as noted, the code
is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by
semicolons. For instance, you might see the code in the following example:
CONNECT TO stores_demo
...

DELETE FROM customer
WHERE customer_num = 121

...

COMMIT WORK
DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules for
that product. For example, if you are using an SQL API, you must use EXEC SQL
at the start of each statement and a semicolon (or other appropriate delimiter) at
the end of the statement. If you are using DB–Access, you must delimit multiple
statements with semicolons.

Tip: Ellipsis points in a code example indicate that more code would be added in
a full application, but it is not necessary to show it to describe the concept that is
being discussed.

© Copyright IBM Corp. 1996, 2013 v

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the documentation for your product.

Additional documentation
Documentation about this release of IBM Informix products is available in various
formats.

You can access Informix technical information such as information centers,
technotes, white papers, and IBM Redbooks® publications online at
http://www.ibm.com/software/data/sw-library/.

Compliance with industry standards
IBM Informix products are compliant with various standards.

IBM Informix SQL-based products are fully compliant with SQL-92 Entry Level
(published as ANSI X3.135-1992), which is identical to ISO 9075:1992. In addition,
many features of IBM Informix database servers comply with the SQL-92
Intermediate and Full Level and X/Open SQL Common Applications Environment
(CAE) standards.

How to provide documentation feedback
You are encouraged to send your comments about IBM Informix user
documentation.

Use one of the following methods:
v Send email to docinf@us.ibm.com.
v In the Informix information center, which is available online at

http://www.ibm.com/software/data/sw-library/, open the topic that you want
to comment on. Click the feedback link at the bottom of the page, complete the
form, and submit your feedback.

v Add comments to topics directly in the information center and read comments
that were added by other users. Share information about the product
documentation, participate in discussions with other users, rate topics, and
more!

Feedback from all methods is monitored by the team that maintains the user
documentation. The feedback methods are reserved for reporting errors and
omissions in the documentation. For immediate help with a technical problem,
contact IBM Technical Support at http://www.ibm.com/planetwide/.

We appreciate your suggestions.

vi IBM Informix DataBlade Module Development Overview

http://www.ibm.com/software/data/sw-library/
mailto://docinf@us.ibm.com
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/planetwide/

Chapter 1. DataBlade module concepts

What are DataBlade modules?
A DataBlade module is a software package that extends the functionality of IBM
Informix.

The package includes SQL statements and supporting code written in an external
language or Informix SPL. DataBlade modules can also contain client components.

A DataBlade module adds user-defined database objects that extend the SQL syntax
and commands you can use with your Informix database server. A database object
is an SQL entity, such as a data type, routine, or database table. Your Informix
database server handles DataBlade module objects as built-in objects. When it
handles a user-defined database object, it executes the associated source code
provided with the DataBlade module.

Extensions to your database server belong to two main categories:

Types of data
This category includes extended data types that are not built into the
database server. Extended data types can contain multiple elements (row,
collection, and opaque data types) and data types that support inheritance
(distinct and row data types). The internal structure of opaque data types
is not accessible through built-in SQL commands, but it can be accessed
through user-defined routines and opaque data type support routines.

Routines
This category includes user-defined routines, aggregates, data type support
routines, cast support routines, and routines that support user-defined
access methods.

If you are unfamiliar with DataBlade module technology and the DataBlade
Developers Kit, you might have the following questions:
v Why should I extend my database server?
v Why should I use a DataBlade module to extend my database server?
v Why should I use the DataBlade Developers Kit to create a DataBlade module?

Each of these questions is addressed in the following subsections.

Why extend your Informix database server?
The primary advantages of using the extensibility of IBM Informix over using
traditional relational databases and applications are better performance, simpler
applications, transaction control, and scalability.

Better performance
Your IBM Informix database server improves the performance of your applications
in the following ways:
v User-defined routines are optimized.

When you put your custom routines in the database server, the query optimizer
can calculate when to run them during queries.

v Indexes increase query speed.

© Copyright IBM Corp. 1996, 2013 1-1

Indexes, created with secondary access methods, can efficiently find and
compare values. Secondary access methods build and manipulate index
structures on data. With your Informix database server, you can create indexes
on data that cannot be sorted in a standard relational database. You can
implement your data as extended data types and create functional indexes to
speed sorting. A functional index sorts information about the data, instead of the
data itself.
For example, if your data is images, you can index features of the images. Then,
when you run a query to match an image, the index runs much faster than
comparing the binary files of each image.

v Network traffic is reduced.
When you use user-defined routines and other extensibility features, you
perform more processing on the data within the database server. Therefore, you
send less data to the client application.

Simpler applications
Using DataBlade modules simplifies applications in the following ways:
v DataBlade modules handle code for manipulating and storing data so the

application does not have to.
v DataBlade module routines and data types can be accessed by using SQL.

SQL is a standard language and does not require complex application code or
programming languages.

v DataBlade modules are easy to upgrade
When you change a DataBlade module, you do not need to relink existing
applications; all changes are handled within the database server.

v All data is stored and processed in the same database server.
For example, with a geospatial DataBlade module, geographic coordinates are
analyzed and processed by the database server instead of in a complex
application. In addition, the geospatial data is easily integrated with other types
of data in a relational database.

v DataBlade modules are easy to combine.
You can combine DataBlade modules that handle different kinds of data in the
same database. You can then create one application to integrate all the data.
For example, if a broadcast news company wanted to integrate video, images,
audio, and text data for its programs, it could store all the data in one database
and use a DataBlade module for each type of data. Then the company could use
an application that employs the IBM Informix Web DataBlade Module to access
information and display it in a web browser.

Transaction control
DataBlade modules become part of the database. Therefore, all operations carried
out by DataBlade module routines are supported by database services, such as
backup, rollback, and recovery. You can safely store your data, which you formerly
stored in files, in the database by using smart large objects.

Scalability
DataBlade extensions to IBM Informix scale to many users and the database server
itself.

1-2 IBM Informix DataBlade Module Development Overview

Why create a DataBlade module?
You can extend your IBM Informix database server without creating a DataBlade
module by executing the SQL statements to create each object individually.
However, the advantages of packaging extended database objects in a DataBlade
module are control and code reuse.

Control

DataBlade modules contain all related extended objects, enabling you to easily
install, upgrade, and remove a whole module at once. If you need to fix a problem
or add a feature to a program, you only have to do it in one place—the DataBlade
module. Because a DataBlade module is a package ready to be distributed
commercially or internally, these changes can be easily extended to any application
that uses the DataBlade module. In addition, DataBlade modules make it easy for
you to maintain version information about the software.

Code reuse

DataBlade modules can use the functionality of other DataBlade modules through
interfaces. Interfaces are references to other DataBlade modules. When you include
an interface in a DataBlade module, you create a dependency so that your
DataBlade module can be used only if the DataBlade module that provides the
interface is installed in the database server.

Some DataBlade modules are designed as foundation DataBlade modules.
Foundation DataBlade modules are not usually intended to be used alone. For
example, the IBM Informix Large Object Locator DataBlade Module handles the
location of the large objects that other DataBlade modules use to store their data.

Why use the DataBlade Developers Kit?
Although you can create a DataBlade module manually, you can reduce
development time considerably if you use the DataBlade Developers Kit.

Three graphical user interfaces are provided for DataBlade module development:

BladeSmith
Creates your DataBlade module

BladePack
Packages your DataBlade module

BladeManager
Makes your DataBlade module available in a database

In addition, the DataBlade Developers Kit provides the following tools for
debugging your DataBlade module on Windows:

DBDK Visual C++ Add-In
Debugs your DataBlade module within Microsoft Visual C++

IfxQuery
Executes SQL debugging tests from within Microsoft Visual C++

The DataBlade Developers Kit reduces development time because it:
v uses wizards to guide you through complex SQL object creation options
v generates the following types of files:

– Complete SQL definitions for your database objects

Chapter 1. DataBlade module concepts 1-3

– Complete code, or code entry points for C, C++, and Java™ source code
– Unit tests for debugging user-defined routines, opaque data type support

routines, and cast support functions
– Functional tests for validating user-defined routines, opaque data type

support routines, and cast support functions
v automates creating an interactive installation program for UNIX and Windows

operating systems

The source code generated by the DataBlade Developers Kit follows good coding
practices for your IBM Informix database server and ensures consistency among
your user-defined routines.

DataBlade modules and the database server
This section describes the overall architecture of the IBM Informix database server,
how DataBlade modules affect database server processes, and the application
programming interfaces you can use in your DataBlade modules and client
applications.

The following figure illustrates the following components of the Informix database
server architecture when it includes DataBlade modules:
v DataBlade modules, which extend the capabilities of the database server
v DataBlade module application programming interfaces, which allow DataBlade

modules access to data stored in a database
v The database server, which includes virtual processors that your Informix

database server uses to process tasks, the shared memory that these virtual
processors use, and the Java virtual machine to process routines written in Java

v The IBM Informix Client Software Development Kit, which includes client-side
APIs that enable you to write client applications that access data stored in a
database

v DataBlade module ActiveX and Java value objects, which enable you to provide
client-side interfaces to extended data types and their support routines

v Client visualization tools, which enable you to view and manipulate data
retrieved from DataBlade modules with third-party applications

v Client applications, which allow the user access to DataBlade module functions
and data stored in a database

1-4 IBM Informix DataBlade Module Development Overview

The close integration of DataBlade modules with the database server means that
the database server treats new, extended data types in the same way that it treats
its own built-in data types.

Important: You must use the IBM Informix Dynamic Server with J/Foundation
option of IBM Informix to enable services that use Java. For more information
about J/Foundation, see the J/Foundation Developer's Guide.

DataBlade module programming languages
The DataBlade Developers Kit supports the following languages for programming
DataBlade modules:
v C, using the DataBlade API
v C++, using the DataBlade API
v Java, using IBM Informix JDBC Driver
v Stored Procedure Language (SPL)

For more information about programming language options and restrictions, see
the IBM DataBlade Developers Kit User's Guide.

C language
The IBM Informix DataBlade Developers Kit (DBDK) enables you to create
database objects in C. You can create user-defined routines, cast support functions,
aggregates, and opaque data type support routines in C.

The code generated for C by the DataBlade Developers Kit uses DataBlade API
routines to communicate with the database server. The DataBlade API is the

Figure 1-1. IBM Informix with DataBlade modules

Chapter 1. DataBlade module concepts 1-5

primary API for the database server. The DataBlade API provides routines to
manage database connections, send SQL command strings, process query results,
manage database server events and errors, create database server routines, manage
database server memory, and so on. The DataBlade API provides a subset of IBM
Informix ESQL/C and IBM Informix GLS routines that you can use in your
DataBlade module code. For more information about the DataBlade API, see the
IBM Informix DataBlade API Programmer's Guide.

C++ language
The IBM Informix DataBlade Developers Kit (DBDK) currently allows you to write
opaque data type support routines in C++.

You can also create ActiveX value objects to represent opaque data types on a
client computer. If you want to include other database objects in your DataBlade
module, the DataBlade Developers Kit allows you to code them in C or Java.

The C++ support routines use DataBlade API routines to process opaque data
types in the database server. For more information about the DataBlade API, see
the IBM Informix DataBlade API Programmer's Guide.

Important: It is recommended that developers create DataBlade modules in C++
only for client projects and for server projects that use Informix on Windows only.

Java language
The IBM Informix DataBlade Developers Kit (DBDK) enables you to create
database objects in Java.

You can create user-defined routines, cast support functions, aggregates, and
opaque data type support routines in Java. You can also create Java value objects to
represent opaque data types on a client computer. You cannot create Java routines
that take row or collection data types.

The code generated for Java by the DataBlade Developers Kit uses IBM Informix
JDBC Driver methods to communicate with the database server. IBM Informix
JDBC Driver supports the JDBC 2.0 API. You can use the JDBC 2.0 API to create
database applications in Java.

For more information about IBM Informix JDBC Driver, see the IBM Informix JDBC
Driver Programmer's Guide.

For a complete discussion about creating user-defined routines in Java, see the
J/Foundation Developer's Guide.

Important: You must use the IBM Informix Dynamic Server with J/Foundation to
upgrade IBM Informix to enable services that use Java. For more information about
J/Foundation, see the J/Foundation Developer's Guide.

Informix Stored Procedure Language
You can use IBM Informix Stored Procedure Language (SPL) statements to write
routines, and you can store these SPL routines in the database.

Informix SPL is an extension to SQL that provides flow control, such as looping
and branching. SPL routines can execute routines written in C or other external
languages, and external routines can execute SPL routines.

1-6 IBM Informix DataBlade Module Development Overview

You can use SPL routines to perform any task that you can perform in SQL and to
expand what you can accomplish with SQL alone. SPL routines are parsed and
optimized when they are created. The DataBlade Developers Kit enables you to
include SPL statements to create routines. For more information about SPL, see the
IBM Informix Guide to SQL: Tutorial.

Internal architecture of the database server
If you want to add user-defined routines to your IBM Informix database server,
you must understand the internal architecture of the database server and how
DataBlade module routines can affect the database system.

The following aspects of the internal architecture of your Informix database server
are affected the most by DataBlade modules:
v Virtual processors
v Memory management
v Java virtual machine

DataBlade modules and virtual processors
The internal architecture of your IBM Informix database server contains virtual
processors.

Virtual processors are operating system tasks that execute requests. Virtual
processors are separated into virtual processor classes. Each of the virtual processor
classes provided in the database server handles a different type of task, such as
executing queries and routines, fetching data from disk, and administering
network connections. You can create user-defined virtual processors to handle tasks
you define.

One of the critical virtual processors is the CPU VP, which acts as a router and
handles basic administrative tasks, processes certain user requests, and delegates
other requests to the appropriate processor. Tasks thus participate in a highly
distributed environment that is optimized for performance and scalability.

By default, all user-defined routines execute in the CPU VP; however, if your
DataBlade module routine uses certain system services, you must assign it to a
user-defined virtual processor. A user-defined VP is created by the system
administrator and executes only those routines assigned to it. For more information
about the system services that require a user-defined VP, see the IBM Informix
Administrator's Guide.

DataBlade module memory allocation
Another important aspect of the internal architecture of your IBM Informix
database server is that virtual processors communicate with one another through
shared memory. Therefore, when you write code for user-defined routines, you
cannot use standard memory allocation functions. To manage memory for
DataBlade modules, you must use the memory management functions provided by
the DataBlade API or the JDBC 2.0 API.

See the IBM Informix DataBlade API Programmer's Guide or the J/Foundation
Developer's Guide for complete information.

Java virtual machine
IBM Informix executes UDRs written in Java in its specialized virtual processors,
called a Java virtual processor (JVP). A JVP embeds a Java virtual machine (JVM) in
its code.

Chapter 1. DataBlade module concepts 1-7

The JVPs are responsible for executing all UDRs written in Java. Although the JVPs
are used for Java-related computation, they have the same capabilities as a
user-defined VP, and they can process all types of SQL queries. This embedded
VM architecture avoids the cost of shipping Java-related queries back and forth
between CPU VPs and JVPs.

For more information about how the database server handles Java code, see the
J/Foundation Developer's Guide.

IBM Informix Client Software Development Kit
The IBM Informix Client Software Development Kit (Client SDK) is a set of APIs
you can use to develop applications for your Informix database server; they handle
communication between the database server and the client application.

Client APIs allow you to write applications in the following languages:
v C
v Java
v ESQL/C

The Client SDK provides several connectivity products for ODBC-compliant
applications and a global language support API.

For a list of current APIs, see the IBM Informix Client Products Installation Guide.

Client objects and programs
You can use the following types of client objects and programs with your
DataBlade module applications:

ActiveX value objects
An ActiveX value object encapsulates data retrieved from an IBM Informix
database server about an opaque type and its support routines for use by a
client application. The DataBlade Developers Kit generates code for
ActiveX value objects. You can use ActiveX value objects in a Microsoft
Visual Basic program.

Java value objects
A Java value object encapsulates data retrieved from an IBM Informix
database server about an opaque type and its support routines for use by a
client application. The DataBlade Developers Kit generates code for Java
value objects.

Client visualization tools
A visualization tool enables you to view and manipulate data retrieved by
DataBlade modules with third-party applications.

DataBlade module components
You can include the following objects in the DataBlade module project you create
with the DataBlade Developers Kit:

Aggregates
Perform user-defined computations on data

Data types
Characterize data to the database server (either built-in data types or new
data types)

1-8 IBM Informix DataBlade Module Development Overview

Routines
Operate on or return data

Casts Convert data from one type to another

Interfaces
Create dependencies between DataBlade modules

Errors Create messages raised by user-defined routines that appear as standard
database server messages

Unit tests
Test your database objects during the coding and debugging cycle

Functional tests
Validate your completed DataBlade module routines

Imported SQL files
Include custom SQL statements to create tables, user-defined access
methods, and other database objects in your DataBlade module

Imported client files
Include client components, such as query tools and ActiveX value objects,
in your DataBlade module package

The DataBlade Developers Kit generates the SQL for each of the objects that you
define or include.

Important: Not all database objects and options described in this section are
available with all versions of IBM Informix. For more information, see the IBM
DataBlade Developers Kit User's Guide.

Aggregates
An aggregate is a set of functions that returns information about a set of query
results.

For example, the built-in SUM aggregate adds the values returned from a query
and returns the result. An aggregate is invoked in SQL as a single function, but it
is implemented as one or more support functions.

You can define two types of aggregates:
v Built-in aggregates whose support functions are overloaded to work with

extended data types
v New, user-defined aggregates that implement user-defined routines.

The built-in aggregates are AVG, COUNT, MAX, MIN, SUM, RANGE, STDEV, and
VARIANCE. The COUNT aggregate is defined for all data types. For more
information about these aggregates, see the IBM Informix Guide to SQL: Syntax.

For more information about defining aggregates, see the IBM DataBlade Developers
Kit User's Guide.

Data types
The database server uses data types to determine how to store and retrieve
different kinds of data.

Chapter 1. DataBlade module concepts 1-9

The following table lists the categories of data types available to you when you
create a DataBlade module. You must define some of these data types; others you
can use just as they are.

Data type
You
define? Code needed? Description

Built-in No No A native IBM Informix data type
that comes with the database server

Qualified built-in Yes No A built-in data type that takes one
or more parameters, such as storage
size, range of values, or precision

Built-in opaque No No (except for
LVARCHAR)

A built-in data type that cannot be
accessed in distributed queries by a
different server instance.

User-defined opaque Yes Yes (the basic
code needed to
implement an
opaque type is
generated by
BladeSmith)

A data type whose internal
members cannot be accessed
directly by using SQL statements

Distinct Yes No A user-defined name for an existing
built-in or extended type

Collection Yes No A group of elements of the same
data type

Row Yes No A structured data type whose
internal members can be directly
accessed through SQL statements

An extended data type is a data type that is not built into IBM Informix. Extended
data types include opaque data types, distinct data types, collection data types,
and row data types. Extended data types are described in the IBM Informix
User-Defined Routines and Data Types Developer's Guide.

Collection and row data types are extended data types built from a combination of
other data types; their components are accessed through SQL statements.

Built-in data types
Built-in data types include character, numeric, time, large object, and Boolean data
types. You can use built-in data types as building blocks in opaque, distinct, row,
and collection data types.

Built-in data types are automatically included in your DataBlade module project
file as imported objects.

For a complete list and descriptions of built-in data types, see the IBM Informix
Guide to SQL: Reference.

Qualified built-in data types
A qualified data type is a built-in data type that has an added qualification that
specifies information about the storage size, range of values, or precision of the
type.

You must define a qualified data type by specifying its qualifications.

1-10 IBM Informix DataBlade Module Development Overview

For example, the DECIMAL(p,s) data type can take qualifiers for precision (the
total number of digits) and scale (the total number of digits following the decimal
point). So, the DECIMAL(6,3) data type has six digits, with three digits to the right
of the decimal point; for example, 123.456.

For a complete list of qualified data types and their parameters, see the IBM
Informix Guide to SQL: Reference.

Distinct data types
A distinct data type is an existing data type to which you assign a unique name.

The distinct data type inherits all routines from the source data type, but it cannot
be directly compared to the source data type without an explicit cast.

Use a distinct data type if you want to create routines that do not work on the
source data type. You can use a distinct data type to control how the data type is
cast, or converted, to other data types.

You can use distinct data types to create inheritance hierarchies, which allow you
to write selective routines. A distinct data type can be passed to all routines
defined for the source; however, the source data type cannot be passed to routines
defined for the distinct data type.

Example

You can create two distinct data types based on the MONEY type: lira and
us_dollar. To determine the dollar value of a specified lira value, you can create an
explicit cast between lira and us_dollar by writing a function that multiplies the
value of lira by the exchange rate. Using the cast allows you to perform arithmetic
operations involving both distinct data types and to return a meaningful result.

For a description of distinct data types, see the IBM Informix User-Defined Routines
and Data Types Developer's Guide.

Collection data types
A collection data type is a group of values of a single data type in a column. Each
value is referred to as an element.

A collection data type is defined by using a type constructor and an element data
type. Type constructors determine whether the database server checks for duplicate
elements or orders the elements. The following table describes the collection type
constructors.

Type constructor Duplicates allowed? Ordered?

SET No No

MULTISET Yes No

LIST Yes Yes

For a SET, the database server prevents insertion of duplicate elements. For a
MULTISET, the database server takes no special actions. For a LIST, the database
server orders the elements.

Chapter 1. DataBlade module concepts 1-11

Elements can be almost any data type, including other extended data types and
built-in data types such as smart large objects. You can access any element in a
collection individually through SQL statements.

The number of elements in a collection is not mandated. You can change the
number of elements in a collection without reinserting it into a table, and different
rows can have different numbers of elements in their collections.

The following diagram illustrates a collection data type by using a SET constructor
and the LVARCHAR data type in a column called Dependents.

Instead of putting information about dependents in a separate table, all the
information is contained in one row with collection data type. You can add or
remove elements without altering the columns of the table.

You can use collection data types to reconfigure a table with awkwardly long rows
by grouping data into a single column. Use a collection if you have data of the
same data type that can be naturally grouped into a single column. You can group
data even further by creating a collection of row types or other collections.

Collections are also useful as returned values: for example, a group of values from
many rows in a column or fields in a row type. For example, if you want to obtain
a list of every city in which your employees live from the sample collection data
type in Figure 1-2, you could create a collection on the Location column to return a
set of values.

The following function types can return collections:
v A user-defined function that returns a collection
v An iterator function that returns a single value at a time but is called repeatedly

to assemble a collection

For a description of collection data types, see the IBM Informix Guide to SQL:
Tutorial.

Row data types
A row data type can be thought of as a row of columns, of varying data types,
stored in a single database table column.

Row data types follow essentially the same rules as database tables. The columns
within a row data type are called fields. They can be almost any data type,
including other extended data types and built-in data types, such as smart large
objects. You can access fields individually by using SQL statements.

Figure 1-2. Sample collection data type

1-12 IBM Informix DataBlade Module Development Overview

To create a row data type, you specify:
v a unique name for the whole row type
v a unique name for each field
v a data type for each field.

The following diagram illustrates a row type named address_t in a column named
Address.

Instead of having additional columns in the Address table, the row data type
groups data that is most often accessed together in one column. The table Address
consists of the columns Name(LVARCHAR(30)), Address(address_t), and
Dependents(SET(LVARCHAR)). The row data type address_t consists of the
named fields Street(LVARCHAR(20)), City(LVARCHAR(20)), State(CHAR(2)), and
Zip_code(INTEGER).

Like collection data types, row data types allow you to reconfigure your database
table. Use a row type if you have data of differing data types that group naturally
into a single column. You can further group your data if you include a collection
or another row data type as a field within your row data type.

Row data types can be useful for handling smart large objects. For example, if a
row data type has a field that is an opaque data type containing an image in a
smart large object, the other fields of the row data type could contain additional
information about the image.

For best performance, use row data types if most user queries access all or most of
the fields of the row data type.

You can use row data types to create inheritance hierarchies, allowing you to write
selective routines. A child row data type inherits the fields of its parent and can be
passed to all routines defined for the parent; however, the parent data type cannot
be passed to routines defined for the child data type.

For a discussion about row data types, see the IBM Informix Guide to SQL: Tutorial.

Opaque data types
An opaque data type is a user-defined data structure.

To successfully interpret opaque data types, the database server requires that the
DataBlade module provide opaque data type support routines. You must provide
support routines for your opaque data type.

Figure 1-3. Sample row data type

Chapter 1. DataBlade module concepts 1-13

BladeSmith generates boilerplate code for opaque data type support routines. You
can write additional code in C or Java to implement the functionality your opaque
data type requires. If you provide ActiveX value objects as a client-side interface to
your opaque data types, you can write the underlying support routines for the
opaque data type in C++. See “Opaque data type support routines” on page 1-15
for more information.

Opaque data types typically contain more than one member, so they are similar to
row data types, except that the database server can only operate on the individual
components with support routines you define in the DataBlade module.

The following diagram illustrates an opaque data type called circle, based on a
structure called circle_t, in a column called circle_col.

The table circle_tab consists of the columns circle_id(SERIAL),
color(VARCHAR(15)), and circle_col(circle). The opaque data type circle is defined
as a C structure, circle_t, which contains a radius member and another structure,
point_t. The point_t structure contains x and y members. To the database server,
however, the whole circle_t structure is indivisible, unless you provide accessor
functions.

Use an opaque type to extend SQL to address fundamentally new data types and
allow operations on them. Such data types are typically indivisible or made up of
components to which you want to control access.

For example, geographic data and many sorts of rich media data (images, audio,
text, and so on) are have been represented by the use of opaque types. Opaque
data types often contain smart large objects. Smart large objects are logically stored
in a column in a database table but physically stored in a file. For example, an
opaque data type for images could have a smart large object member containing
the image and other members containing metadata about the image.

Opaque types require more work to create than other data types because you must
write all the routines that support them.

Figure 1-4. Sample opaque type

1-14 IBM Informix DataBlade Module Development Overview

Opaque data type support routines:

BladeSmith enables you to generate support routine code for opaque data types.
You might have to add code to implement the functionality your opaque data type
requires.

The following table describes the support routines you can create and indicates the
categories of opaque types for which they are recommended

Function Recommended for Description

Text input and
output

All opaque types Convert between external and internal
representations.

Send and receive All opaque types Convert between internal representation on the
database server and client computers. Not
available for Java.

Text import and
export

All opaque types Process opaque types for bulk loading and
unloading as textual data to and from a file.

Import binary and
export binary

All opaque types Process opaque types for bulk loading and
unloading as binary data to and from a file. Not
available for Java.

Assign() and
Destroy()

Large objects and
multi-
representational
types

Stores or deletes data on disk just before a commit:
for example, to ensure proper reference counting
on smart large objects. Not available for ActiveX.

LOhandles() Large objects and
multi-
representational
types

Returns the large object handle or list of
large-object handles in opaque types that contain
smart large objects. Not available for ActiveX.

Compare() Opaque data types
sorted by a B-tree
or R-tree index

Sorts opaque type data within SQL statements and
supports the B-tree and R-tree access method.

Statistics support All opaque types Compile information about the values in an
opaque data type column that the optimizer can
use to create a query plan. Not available for Java
or ActiveX.

For a description of creating opaque types and their support routines, see the IBM
DataBlade Developers Kit User's Guide or the IBM Informix User-Defined Routines and
Data Types Developer's Guide.

Routines
A routine is a stored collection of programming statements that allows you to
manipulate data.

A routine can be a function, which returns values, or a procedure, which does not.
You can write routines in the IBM Informix Stored Procedure Language (SPL), or
in an external language, such as C or Java.

Important: Not all routine options are available for SPL and Java. For more
information, see the IBM DataBlade Developers Kit User's Guide.

Routine overloading, or polymorphism, refers to writing a routine that performs
the same task and has the same name as an existing routine—but one that takes a
different data type as an argument. When you create opaque, collection, or row

Chapter 1. DataBlade module concepts 1-15

types, you can overload existing routines for your new data type. When the
overloaded routine is called, your Informix database server determines which
variant of the routine to use by examining the argument. BladeSmith creates a
template for the overloaded routine; however, you must complete the code to
enable the routine to complete the assigned task.

You can overload built-in and operator functions for all data types except built-in
data types. You can create user-defined routines for all categories of data types.
You can create support routines for all extended data types. You must create
support routines for opaque data types (see “Opaque data type support routines”
on page 1-15).

Built-in functions and operator functions
Built-in functions perform arithmetic and other basic operations when included in
SQL statements. Operator functions are built-in functions that are bound to
operator symbols.

For example, the plus() function is bound to the + operator. Some of the arithmetic
functions take a single argument, such as the root() function, which calculates the
square root of its argument; others take two arguments, such as the pow()
function, which raises one argument to the power of the second.

When you overload a built-in or operator function, you must specify what the
function does and what it returns. For example, if you overload the plus() function
on a row type, you can choose to:
v add the respective field values and return a row type with the same number of

fields as the input row types
v return a row type that contains all the fields of the first input row type followed

by all the fields of the second input row type

There are also built-in functions that do not take arguments and that you cannot
overload, such as the today() function, which returns the current date and time.

For more information, see the IBM Informix User-Defined Routines and Data Types
Developer's Guide.

User-defined routines
Typically, user-defined routines perform operations specific to the data or
application for which they are created and are not based on routines provided with
your IBM Informix database server.

Users call user-defined routines within SQL statements or through the DataBlade
API. BladeSmith has a wizard to help you define the parameters for user-defined
routines.

Casts
A cast is a rule that converts one data type into another.

Casts work in only one direction: from the source data type to the target data type.
You can, however, define two casts for the same two data types to support
conversion in both directions.

For some data types, you can choose whether the database server or the user
controls casting.

1-16 IBM Informix DataBlade Module Development Overview

Create an implicit cast if you want the database server to automatically convert the
source data type.

Create an explicit cast if you want the user to specify the cast within an SQL
statement.

If you are creating a cast between two data types that have different internal
structures, you must write a cast support function. A straight cast, between two
data types that have the same internal structure, does not require a cast support
function; however, you can supply one to perform a conversion operation. You
typically define straight casts to allow implicit casting from a distinct data type to
its source data type (but not from a source data type to the distinct data type
based on it).

You can use a built-in type as a source or target data type in a cast, but not as
both. Built-in types have system-defined casts between each other that the database
server invokes automatically.

A distinct type inherits all the casts of the source type. The database server
automatically creates an explicit cast between the distinct type and the source type.

For more information about casting, see the IBM Informix User-Defined Routines and
Data Types Developer's Guide.

Interfaces
An interface is a way to reference another DataBlade module within your
DataBlade module.

Using an interface creates a dependency on the DataBlade module that provides
the interface. You cannot register a DataBlade module that uses an interface unless
the DataBlade module that provides the interface is already installed in the
database server.

You can import an interface from another DataBlade module to facilitate
development of your module. Similarly, you can build a DataBlade module that
provides an interface for other DataBlade modules to use.

For more information, see the IBM DataBlade Developers Kit User's Guide.

Errors
You can define error or trace messages for your DataBlade module.

An error or trace consists of a unique five-character code, a locale (for translation),
and a message. If you are developing a DataBlade module as a commercial
product, qualify its name with a three-character DataBlade module prefix such as
"USR" to create unique error codes and other DataBlade module objects.

To globalize your error messages, define multiple messages by using the same
error code, a different locale, and the message text for that locale. Which message
the user sees is controlled by the value of the locale environment variables.

For more information, see the IBM DataBlade Developers Kit User's Guide.

Chapter 1. DataBlade module concepts 1-17

Unit tests
BladeSmith generates unit tests for your opaque data type support routines,
user-defined routines, and cast support functions.

BladeSmith adds data to test boundary conditions for your data types. Use unit
tests while you debug your DataBlade module by using Microsoft Visual C++ on
Windows. Run unit tests with the DBDK Visual C++ Add-In and IfxQuery (see
“DBDK Visual C++ Add-In and IfxQuery” on page 2-3).

For more information, see the IBM DataBlade Developers Kit User's Guide.

Functional tests
BladeSmith generates functional tests for your opaque data type support routines,
user-defined routines, and cast support functions.

You must supply input data, the expected output data (if applicable), or an error
code (if the input data is not valid) in BladeSmith. Run functional tests on UNIX
after you finish coding your DataBlade module.

For more information, see the IBM DataBlade Developers Kit User's Guide.

Imported SQL files
You can include custom SQL statements in your DataBlade module to perform
tasks such as creating and dropping user-defined access methods, support tables,
or SPL routines.

You can include custom SQL statements by typing them in the SQL File wizard or
by referencing a file.

You can specify dependencies between objects in your DataBlade module and your
custom SQL. These dependencies determine the sequence in which the SQL
statements are executed when you register the DataBlade module.

For more information, see the IBM DataBlade Developers Kit User's Guide.

Imported client files
After your customers install a DataBlade module on a database server, they might
download any client files included in your DataBlade module to client computers.

The types of client files you can package with your DataBlade module include:
v graphical user interfaces
v documentation and help files
v shared object files, dynamic link libraries, or header files containing DataBlade

module routines executed in the client address space.

Your customers use BladeManager to download the client files to their client
computers.

For more information, see the IBM DataBlade Developers Kit User's Guide.

1-18 IBM Informix DataBlade Module Development Overview

Chapter 2. Build a DataBlade module

DataBlade Developers Kit tools
The DataBlade Developers Kit includes graphical user interfaces for creating,
packaging, and registering DataBlade modules, and tools for debugging DataBlade
modules on Windows.

BladeSmith
You use BladeSmith to begin creating your DataBlade module, such as defining its
contents and generating files and source code.

BladeSmith guides you through object definition with wizard pages. BladeSmith
automates many of the tasks of object creation, such as writing the SQL statements
necessary to define objects in the database.

Using BladeSmith, you create a project for your DataBlade module and then add
or define the following types of objects for your module:

User-defined objects
Includes aggregates, casts, errors, interfaces, routines, and data types.

Files Can be custom SQL statements or files necessary for a client.

Imported objects
Includes built-in data types and interfaces from other DataBlade modules.

After you specify the user-defined objects, imported objects, and files you want to
include in your DataBlade module, use BladeSmith to generate the files you need
for compiling a shared object file or dynamic link library, managing a DataBlade
module in your IBM Informix database server, testing object functionality, and
creating installation packaging files. These categories of files are described in the
following table.

Type of generated file Description

Source code You use these files to create a shared library file. They can
include source code files, header files, Visual C++ workspace
and project files, and makefiles.

SQL script These files contain the SQL statements that support the
DataBlade modules in the database system tables. They include
prepare scripts that describe the DataBlade module and object
scripts that describe the DataBlade objects.

Test You use unit test files to test your database objects while you
code and debug your DataBlade module on Windows.

You use functional test files to test the positive and negative
operation of user-defined routines, opaque data type support
routines, and casts when your DataBlade module is complete.

Packaging You use these files with BladePack to generate installation and
executable files.

The generated source code files contain routine definitions. BladeSmith generates
complete code for some routines, such as basic opaque data type support routines.

© Copyright IBM Corp. 1996, 2013 2-1

BladeSmith generates code templates for other types of routines, such as
user-defined routines. You must add code to these routines to implement the
functionality you require. The areas of the generated source code that need
modification are marked with TO DO: comments.

When your code is complete, you compile it into a file that the database server can
interpret.

For instructions, see the IBM DataBlade Developers Kit User's Guide or the tutorial in
the information center.

BladePack
You use BladePack to create an installable DataBlade module package.

BladePack uses the packaging project file created by BladeSmith as the basis for
the installation package. The packaging file references the SQL scripts, shared
object file, and other files required by the DataBlade module. The installation
scripts ensure that all DataBlade modules created with the DataBlade Developers
Kit can be installed in a similar way.

You can create installation packages for a UNIX installation or a Windows
installation for InstallShield 3.1 or InstallShield 5.1. The options you have for your
installation package vary with each type of installation. For information about your
options, see the IBM DataBlade Developers Kit User's Guide.

You can perform the following tasks with BladePack:
v Add files to your DataBlade module

For example, you can include documentation, online help, and example files.
v Include several BladePack projects in an installation package

For example, you can include DataBlade modules that facilitate similar financial
calculations into a single installation package.

v Divide files into separate components, subcomponents, and shared components
You can designate the components and subcomponents to include in typical and
compact installations. You can also allow users to customize their installations
by choosing the components and subcomponents they want to install. Shared
components can belong to more than one component, and they are always
installed with components to which they belong.

v Include custom installation routines
You can add custom DLL routines, dialog boxes, and programs for Windows
InstallShield 3.1 installations and custom programs for UNIX installations. You
can also include readme files for any type of installation.

v Generate disk images or a directory tree for interactive installations
On UNIX platforms, an interactive installation includes install and uninstall
shell scripts. On Windows, an interactive InstallShield installation includes the
Setup program and, for InstallShield 3.1, the Uninstall program.

For more information, see the IBM DataBlade Developers Kit User's Guide.

BladeManager
You use BladeManager to register or unregister your DataBlade module in a
database and to install or uninstall DataBlade module client files.

2-2 IBM Informix DataBlade Module Development Overview

After you install a DataBlade module on a database server, you must register it in
every database that uses the module. Registration involves executing the DataBlade
SQL scripts to create DataBlade objects in the database and making the DataBlade
shared object or dynamic link library available to the database server.

BladeManager checks for dependencies between DataBlade modules. If you have
imported an interface from another DataBlade module, BladeManager registers
your DataBlade module only after it confirms that the interface is registered in the
database.

If you are upgrading your DataBlade module, BladeManager automatically
unregisters the previous version.

You can also unregister any module by using BladeManager. BladeManager does
not allow you to unregister a DataBlade module if there is another DataBlade
module that depends on it or if any of its objects are in use by the database.

For more information, see the IBM Informix DataBlade Module Installation and
Registration Guide.

DBDK Visual C++ Add-In and IfxQuery
The IBM Informix DataBlade Developers Kit (DBDK) provides the DBDK Visual
C++ Add-In and IfxQuery tools for debugging C and C++ code on Windows.

The DBDK Visual C++ Add-In is a toolbar you add to Microsoft Visual C++,
Version 6.0, to aid in debugging. You must have Informix on the same computer as
the DataBlade Developers Kit to use the debugging features of the add-in.

The IfxQuery tool is launched by the add-in from within Visual C++. IfxQuery
runs the SQL unit test file in the active window in Visual C++.

The add-in and IfxQuery automate many of the steps necessary for debugging a
DataBlade module. After you compile your DataBlade module in Visual C++ and
set breakpoints in your source code, you can click Debug DataBlade Module.

The Debug DataBlade Module command performs the following steps:
1. Checks if the DataBlade module is compiled (and compiles it, if necessary)
2. If necessary, creates a directory for the DataBlade module under the

INFORMIXDIR\extend directory
3. Installs the DataBlade module shared library file and SQL scripts in the

INFORMIXDIR\extend\project.0 directory
4. Shuts down the database server
5. Starts the Visual C++ debugger and the database server attached to the Visual

C++ debugger
6. Launches IfxQuery, if the active window contains an SQL file
7. If necessary, creates the database specified by the add-in
8. Connects to the database specified by the add-in
9. Registers the DataBlade module

10. Executes the SQL statements from the unit test file
11. Writes the results to an HTML file
12. Launches the default HTML browser for your computer
13. Displays the SQL results in the HTML browser

Chapter 2. Build a DataBlade module 2-3

The first time you run the Debug DataBlade Module command for a DataBlade
module project, the Properties dialog box appears, in which you specify the
database server and database you want to use for debugging. You can also access
the Properties dialog box with the Run Properties dialog box button of the add-in.

How to create a DataBlade module
While the IBM Informix DataBlade Developers Kit (DBDK) tools run only on
Windows, you can create DataBlade modules for both Windows and UNIX
operating systems for the C, C++, and Java languages. The tools you use on each
operating system and for each programming language vary.

The following table describes, in order, the tasks needed to create a DataBlade
module and the tools you use to complete the tasks.

To perform this task Use this tool on UNIX Use this tool on Windows

Write the design and functional specifications. Your word-processing
program

Your word-processing program

Create your DataBlade module:

v Set up a project for your DataBlade module.

v Import objects from other DataBlade modules.

v Define new objects for your DataBlade module.

v Add validation test data for your new routines,
opaque types, and casts.

v Generate source code, SQL scripts, installation
files, and unit and functional test files.

BladeSmith

Edit the source code to add C, C++, or Java code
for routines, as needed.

Your development tool or text
editor

For C or C++ code: Microsoft
Visual C++

For Java code: your
development tool or text editor

Compile your source code. For C or C++ code: your
compiler

For Java code: JDK 1.1
compiler

For C or C++ code: Microsoft
Visual C++

For Java code: JDK 1.1.x
compiler

Install your DataBlade module. Operating system copy
command or FTP

For C or C++ code: DBDK
Visual C++ Add-In

For Java code: operating
system copy of FTP

Register your DataBlade module in your test
database.

For all code:

v BladeManager

v Informix1

For C or C++ code:

v DBDK Visual C++ Add-In

v Informix

For Java code:

v BladeManager

v Informix1

2-4 IBM Informix DataBlade Module Development Overview

To perform this task Use this tool on UNIX Use this tool on Windows

Debug your DataBlade module by running unit
tests.

For C or C++ code:

v a debugging utility

v DB-Access or a client
application

v Informix

For Java code:

v the Java log file

v DB-Access or a client
application

v Informix1

For C or C++ code:

v Microsoft Visual C++

v DBDK Visual C++ Add-In

v IfxQuery or other SQL query
tool

v Informix

For Java code:

v the Java log file

v an SQL query tool

v Informix1

Validate your DataBlade module with functional
tests.

For all code:

v DB-Access

v Informix1

For all code:

v MKS Toolkit

v DB-Access

v Informix1

Package your DataBlade module:

v Add examples, online help files, and any other
files you want to include to the project.

v Define any additional components for a selective
installation.

v Perform optional customizations for installation
packages.

v Build the installation package.

BladePack

Transfer files to the installation media. Your operating system Your operating system

Document your DataBlade module with a users
guide, release notes, examples, and online help, as
needed.

Your word-processing
program

Your word-processing program

Notes:

1. You must use the IBM Informix Dynamic Server with J/Foundation upgrade to
IBM Informix to enable services that use Java. For more information about
J/Foundation, see the J/Foundation Developer's Guide.

DataBlade module development resources
The DataBlade Developers Kit includes various resources to help you learn about
and develop DataBlade modules.

The DataBlade Developers Kit Tutorial
The DataBlade Developers Kit Tutorial is a set of HTML documents that you access
through the information center.

The tutorial consists of step-by-step exercises that demonstrate how to create
DataBlade modules that extend your IBM Informix database server.

The first exercise demonstrates a simple DataBlade module so that you can focus
on learning the mechanics of BladeSmith and the DBDK Visual C++ Add-In
without complex coding. All tutorial users start with Exercise 1.

Chapter 2. Build a DataBlade module 2-5

Each subsequent exercise is more complex than the previous one; you can choose
to either work through the exercises sequentially or pick the ones that interest you.

Example DataBlade modules
Example DataBlade modules are included with the DataBlade Developers Kit
software.

Example DataBlade modules are in the %INFORMIXDIR%\dbdk\examples directory.
The information center has descriptions of the example DataBlade modules with
links to readme files and source code.

The example DataBlade modules are frequently updated. The topics you might
find covered in the example DataBlade modules include:
v Client. Using extended data types with ESQL/C and C++ client programs.
v Routines. Using user-defined routines written with the DataBlade API and using

MMX technology.
v Types. Using extended data types that have support routines written with the

DataBlade API, use MMX technology, are implemented as ActiveX value objects,
and create user-defined statistics.

2-6 IBM Informix DataBlade Module Development Overview

Appendix A. DataBlade module documentation

This section is a reference to current IBM Informix documentation pertaining to
DataBlade modules.

This section is divided into three sections:
v Publication overview, a survey of the documentation set, arranged by concept
v Title-to-topic reference, a descriptive catalog of the documents, arranged

alphabetically by title
v Topic-to-title reference, an alphabetical list of topics concerning DataBlade

modules, with references to the document or documents that contain detailed
information about each topic

For other DataBlade module resources, see “DataBlade module development
resources” on page 2-5.

Publication overview
In the following table, the publications mentioned in the IBM Informix DataBlade
Module Development Overview are arranged into basic categories.

Category Publication Title

DataBlade module
concepts

IBM Informix User-Defined Routines and Data Types Developer's Guide

IBM DataBlade Developers Kit User's Guide

J/Foundation Developer's Guide

DataBlade module
development tools

IBM DataBlade Developers Kit User's Guide

IBM Informix DataBlade Module Installation and Registration Guide

APIs IBM Informix DataBlade API Programmer's Guide

IBM Informix DataBlade API Function Reference

IBM Informix JDBC Driver Programmer's Guide

IBM Informix GLS User's Guide

IBM Informix ESQL/C Programmer's Manual

IBM Informix IBM Informix Administrator's Guide

IBM Informix Performance Guide

SQL IBM Informix Guide to SQL: Reference

IBM Informix Guide to SQL: Syntax

IBM Informix Guide to SQL: Tutorial

© Copyright IBM Corp. 1996, 2013 A-1

Title-to-topic reference
In the following table, the publications mentioned in the IBM Informix DataBlade
Module Development Overview are listed alphabetically by title, with a brief
description of each.

Publication title Description

J/Foundation Developer's Guide Describes how Java is implemented in the IBM Informix database server.
Describes a library of classes and interfaces that allow programmers to create
and execute Java user-defined routines that access Informix database servers.

IBM Informix DataBlade API
Programmer's Guide

IBM Informix DataBlade API
Function Reference

Provide a complete reference for the DataBlade API, which is used to develop
applications that interact with your Informix database server.

IBM DataBlade Developers Kit User's
Guide

Describes how to develop and package DataBlade modules by using the
DataBlade Developers Kit.

IBM Informix DataBlade Module
Installation and Registration Guide

Explains how to install DataBlade modules and use BladeManager to register,
upgrade, and unregister DataBlade modules in Informix databases.

IBM Informix User-Defined Routines
and Data Types Developer's Guide

Explains how to extend existing data types, define new data types, and define
your own functions and procedures for an Informix database.

Describes the tasks you must perform to extend operations on data types, to
create new casts, to extend operator classes for secondary access methods, and
to write opaque data types.

Defines common considerations for SPL and external routines and describes
how to create user-defined aggregates.

IBM Informix R-Tree Index User's
Guide

Describes the Informix R-tree secondary access method and how use its
components. It describes how to create an R-tree index on appropriate data
types and how to create an operator class that uses the R-tree access method to
index a user-defined data type.

IBM Informix GLS User's Guide Describes IBM Informix GLS, an application programming interface available
in IBM Informix products. GLS provides ESQL/C and DataBlade module
developers the ability to write programs (or change existing programs) to
handle different languages, cultural conventions, and code sets.

IBM Informix ESQL/C Programmer's
Manual

Explains how to use IBM Informix ESQL/C to create client applications with
database management capabilities. This publication is a complete guide to the
features of ESQL/C that allow you to gain access to Informix databases,
manipulate the data in your program, interact with the database server, and
check for errors.

IBM Informix Guide to SQL:
Reference

Describes the Informix system catalog tables, common environment variables
that you might need to set, and the built-in data types that your Informix
database server supports.

IBM Informix Guide to SQL: Syntax This publication contains syntax descriptions for the Structured Query
Language (SQL) and Stored Procedure Language (SPL) statements that your
Informix database server supports.

IBM Informix Guide to SQL: Tutorial Includes instructions for using basic and advanced Structured Query Language
(SQL), as well as for designing and managing your database.

IBM Informix Administrator's Guide Describes how to install, configure, and use the features of your Informix
database server.

IBM Informix Performance Guide Explains how to configure and operate your database server to improve overall
system performance as well as the performance of SQL queries.

A-2 IBM Informix DataBlade Module Development Overview

Publication title Description

IBM Informix JDBC Driver
Programmer's Guide

Describes the JDBC driver that implements the Java interfaces and classes that
programmers use to connect to an Informix database server.

Topic-to-title reference
The following table provides an alphabetical list of DataBlade module
development topics, with references to the publications in which each topic is
documented.

Topic Detail/publication title

ActiveX value objects IBM DataBlade Developers Kit User's Guide

Aggregates IBM Informix DataBlade API Programmer's Guide

IBM DataBlade Developers Kit User's Guide

APIs DataBlade API: IBM Informix DataBlade API Programmer's Guide

IBM Informix ESQL/C: IBM Informix ESQL/C Programmer's Manual

IBM Informix GLS: IBM Informix GLS User's Guide

IBM Informix JDBC Driver: IBM Informix JDBC Driver Programmer's Guide

BladeManager IBM Informix DataBlade Module Installation and Registration Guide

IBM DataBlade Developers Kit User's Guide

BladePack IBM DataBlade Developers Kit User's Guide

BladeSmith IBM DataBlade Developers Kit User's Guide

Casts IBM Informix User-Defined Routines and Data Types Developer's Guide

IBM Informix Guide to SQL: Tutorial

Coding standards IBM Informix DataBlade API Programmer's Guide

J/Foundation Developer's Guide

IBM DataBlade Developers Kit User's Guide

Compiling source code IBM DataBlade Developers Kit User's Guide

Data types Using with user-defined routines: IBM Informix DataBlade API Programmer's Guide

Built-in: IBM Informix Guide to SQL: Reference

Qualified built-in: IBM Informix Guide to SQL: Reference

Opaque: IBM Informix User-Defined Routines and Data Types Developer's Guide

Distinct: IBM Informix User-Defined Routines and Data Types Developer's Guide

Collection: IBM Informix Guide to SQL: Tutorial

Row: IBM Informix Guide to SQL: Tutorial

DBDK Visual C++ Add-In IBM DataBlade Developers Kit User's Guide

Dependencies between
DataBlade modules

IBM Informix DataBlade Module Installation and Registration Guide

Error messages IBM DataBlade Developers Kit User's Guide

IBM Informix DataBlade API Programmer's Guide

Appendix A. DataBlade module documentation A-3

Topic Detail/publication title

Example DataBlade modules Information center

Java value objects IBM DataBlade Developers Kit User's Guide

Importing files IBM DataBlade Developers Kit User's Guide

Inheritance IBM Informix Guide to SQL: Tutorial

Installing DataBlade modules IBM Informix DataBlade Module Installation and Registration Guide

IBM DataBlade Developers Kit User's Guide

Interfaces to DataBlade modules IBM DataBlade Developers Kit User's Guide

DataBlade Developers Kit Tutorial

Memory management IBM Informix DataBlade API Programmer's Guide

Operator class support functions IBM Informix User-Defined Routines and Data Types Developer's Guide

IBM Informix R-Tree Index User's Guide

Packaging a DataBlade module IBM DataBlade Developers Kit User's Guide

Performance issues IBM Informix Performance Guide

IBM Informix User-Defined Routines and Data Types Developer's Guide

IBM Informix DataBlade API Programmer's Guide

Polymorphism IBM Informix User-Defined Routines and Data Types Developer's Guide

Registering a DataBlade module IBM Informix DataBlade Module Installation and Registration Guide

Routines IBM Informix DataBlade API Programmer's Guide

IBM Informix DataBlade API Function Reference

IBM Informix User-Defined Routines and Data Types Developer's Guide

J/Foundation Developer's Guide

IBM DataBlade Developers Kit User's Guide

Secondary access methods IBM Informix Performance Guide

IBM Informix R-Tree Index User's Guide

Server architecture IBM Informix Administrator's Guide

Shared memory IBM DataBlade Developers Kit User's Guide

IBM Informix Administrator's Guide

Smart large objects IBM Informix DataBlade API Programmer's Guide

IBM Informix Database Extensions User's Guide

IBM Informix Guide to SQL: Tutorial

SQL IBM Informix Guide to SQL: Reference

IBM Informix Guide to SQL: Syntax

IBM Informix Guide to SQL: Tutorial

Storage of DataBlade modules IBM Informix Administrator's Guide

Stored Procedure Language IBM Informix User-Defined Routines and Data Types Developer's Guide

IBM Informix Guide to SQL: Syntax

A-4 IBM Informix DataBlade Module Development Overview

Topic Detail/publication title

Testing and debugging
DataBlade modules

IBM DataBlade Developers Kit User's Guide

Unit tests IBM DataBlade Developers Kit User's Guide

Virtual processors IBM DataBlade Developers Kit User's Guide

IBM Informix Administrator's Guide

Appendix A. DataBlade module documentation A-5

A-6 IBM Informix DataBlade Module Development Overview

Appendix B. Informix DataBlade modules

IBM Informix DataBlade modules serve as examples of the type of functionality
DataBlade modules can provide.

IBM Informix Excalibur Text Search DataBlade Module
The IBM Informix Excalibur Text Search DataBladeModule enables you to search
your data in ways that are faster and more sophisticated than the keyword
matching that SQL provides.

Excalibur text search capabilities include phrase matching, exact and fuzzy
searches, compensation for misspelling, and synonym matching. The Informix
Excalibur Text Search DataBlade Module can search any type of text.

The Informix Excalibur Text Search DataBlade Module uses dynamic links in the
Excalibur class library, or text search engine, to perform the text search section of
the SELECT statement instead of having the database server perform a traditional
search. The text search engine is designed to perform sophisticated and fast text
searches. It runs in one of the database server-controlled virtual processes.

Extensions to Informix
The IBM Informix Excalibur Text Search DataBladeModule provides four kinds of
objects to extend your Informix database server: the etx access method, the filter
utility, the etx_contains() operator, and text search routines.

The etx access method allows you to call on the Excalibur Text Retrieval Library to
create indexes that support sophisticated searches on table columns that contain
text. The indexes that you create with the etx access method are called etx indexes.

To take advantage of the etx access method, you must store the data you want to
search—called search text—in a column of type IfxDocDesc, BLOB, CLOB, CHAR,
VARCHAR, or LVARCHAR. The first data type in this list, IfxDocDesc, is a data
type designed specifically for use with text access methods. The most popular data
types for large documents are BLOB and CLOB.

When you store your documents in a column, you do not need to convert them
from their proprietary format into ASCII when creating an etx index; the Informix
Excalibur Text Search DataBlade Module does this for you. One of the components
of the Informix Excalibur Text Search DataBlade Module is a filtering utility that
recognizes a number of document formats and converts them into ASCII form
whenever needed.

You use the etx_contains() operator within SELECT statements to perform searches
of etx indexes.

In addition to the etx_contains() operator, the Informix Excalibur Text Search
DataBlade Module supplies several routines that you can use to perform tasks such
as creating and dropping synonym and stopword lists.

For more information, see the Excalibur Text Search DataBlade Module User's Guide.

© Copyright IBM Corp. 1996, 2013 B-1

IBM Informix Web DataBlade Module
The IBM Informix Web DataBlade Module enables you to create web applications
that incorporate data retrieved dynamically from an IBM Informix database.

Using the Informix Web DataBlade module, you do not need to develop a
Common Gateway Interface (CGI) application to dynamically access database data.
Instead, you create HTML pages that include Informix Web DataBlade module tags
and functions that dynamically execute the SQL statements you specify and format
the results. These pages are called application pages (AppPages). The types of data
you retrieve can include traditional data types, HTML, image, audio, and video
data.

Extensions to Informix
The IBM Informix Web DataBlade Module consists of three main components:

Webdriver
As a client application to your IBM Informix database server, Webdriver
builds the SQL queries that execute the WebExplode function to retrieve
AppPages from the database. Webdriver returns the HTML resulting from
calls to the WebExplode function to the web server.

WebExplode function
The WebExplode function builds dynamic HTML pages based on data
stored in the database. WebExplode parses AppPages that contain Informix
Web DataBlade module tags within HTML and dynamically builds and
executes the SQL statements and processing instructions embedded in the
Informix Web DataBlade module tags. WebExplode formats the results of
these SQL statements and processing instructions and returns the resulting
HTML page to the client application (usually Webdriver). The SQL
statements and processing instructions are specified by using
SGML-compliant processing tags.

Informix Web DataBlade module tags and attributes
The Informix Web DataBlade module includes its own built-in set of
SGML-compliant tags and attributes that enable SQL statements to be
executed dynamically within AppPages.

The following diagram illustrates the architecture of the Informix Web DataBlade
module.

B-2 IBM Informix DataBlade Module Development Overview

When a web address contains a Webdriver request, the web browser makes a
request to the web server to start Webdriver. Based on configuration information
from both a file on the operating system file system (web.cnf) and Webdriver
configuration information stored in a database, Webdriver composes an SQL
statement to retrieve the requested AppPage and then executes the WebExplode
function. WebExplode retrieves the requested AppPage from the web application
table (stored in the database), executes the SQL statements within that AppPage by
expanding the Informix Web DataBlade module tags, and formats the results.
WebExplode returns the resulting HTML to Webdriver. Webdriver returns the
HTML to the web server, which returns the HTML to be rendered by the web
browser.

Webdriver also enables you to retrieve large objects, such as images, directly from
the database when you specify a path that identifies a large object stored in the
database.

For more information, see the IBM Informix Web DataBlade Module Application
Developer's Guide.

Figure B-1. Informix Web DataBlade module architecture

Appendix B. Informix DataBlade modules B-3

B-4 IBM Informix DataBlade Module Development Overview

Appendix C. Accessibility

IBM strives to provide products with usable access for everyone, regardless of age
or ability.

Accessibility features for IBM Informix products
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features
The following list includes the major accessibility features in IBM Informix
products. These features support:
v Keyboard-only operation.
v Interfaces that are commonly used by screen readers.
v The attachment of alternative input and output devices.

Keyboard navigation
This product uses standard Microsoft Windows navigation keys.

Related accessibility information
IBM is committed to making our documentation accessible to persons with
disabilities. Our publications are available in HTML format so that they can be
accessed with assistive technology such as screen reader software.

IBM and accessibility
For more information about the IBM commitment to accessibility, see the IBM
Accessibility Center at http://www.ibm.com/able.

Dotted decimal syntax diagrams
The syntax diagrams in our publications are available in dotted decimal format,
which is an accessible format that is available only if you are using a screen reader.

In dotted decimal format, each syntax element is written on a separate line. If two
or more syntax elements are always present together (or always absent together),
the elements can appear on the same line, because they can be considered as a
single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read
punctuation. All syntax elements that have the same dotted decimal number (for
example, all syntax elements that have the number 3.1) are mutually exclusive
alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax can
include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

© Copyright IBM Corp. 1996, 2013 C-1

http://www.ibm.com/able

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, the word or symbol is preceded by
the backslash (\) character. The * symbol can be used next to a dotted decimal
number to indicate that the syntax element repeats. For example, syntax element
*FILE with dotted decimal number 3 is read as 3 * FILE. Format 3* FILE
indicates that syntax element FILE repeats. Format 3* * FILE indicates that
syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol that provides information about the syntax elements. For example, the lines
5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, that element is defined elsewhere.
The string that follows the % symbol is the name of a syntax fragment rather than a
literal. For example, the line 2.1 %OP1 refers to a separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:

? Specifies an optional syntax element. A dotted decimal number followed
by the ? symbol indicates that all the syntax elements with a
corresponding dotted decimal number, and any subordinate syntax
elements, are optional. If there is only one syntax element with a dotted
decimal number, the ? symbol is displayed on the same line as the syntax
element (for example, 5? NOTIFY). If there is more than one syntax element
with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if
you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that syntax
elements NOTIFY and UPDATE are optional; that is, you can choose one or
none of them. The ? symbol is equivalent to a bypass line in a railroad
diagram.

! Specifies a default syntax element. A dotted decimal number followed by
the ! symbol and a syntax element indicates that the syntax element is the
default option for all syntax elements that share the same dotted decimal
number. Only one of the syntax elements that share the same dotted
decimal number can specify a ! symbol. For example, if you hear the lines
2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the
default option for the FILE keyword. In this example, if you include the
FILE keyword but do not specify an option, default option KEEP is applied.
A default option also applies to the next higher dotted decimal number. In
this example, if the FILE keyword is omitted, default FILE(KEEP) is used.
However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP only applies to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword), and
does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* Specifies a syntax element that can be repeated zero or more times. A
dotted decimal number followed by the * symbol indicates that this syntax
element can be used zero or more times; that is, it is optional and can be

C-2 IBM Informix DataBlade Module Development Overview

repeated. For example, if you hear the line 5.1* data-area, you know that
you can include more than one data area or you can include none. If you
hear the lines 3*, 3 HOST, and 3 STATE, you know that you can include
HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is
only one item with that dotted decimal number, you can repeat that
same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item
from the list, but you cannot use the items more than once each. In the
previous example, you can write HOST STATE, but you cannot write HOST
HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax
diagram.

+ Specifies a syntax element that must be included one or more times. A
dotted decimal number followed by the + symbol indicates that this syntax
element must be included one or more times. For example, if you hear the
line 6.1+ data-area, you must include at least one data area. If you hear
the lines 2+, 2 HOST, and 2 STATE, you know that you must include HOST,
STATE, or both. As for the * symbol, you can repeat a particular item if it is
the only item with that dotted decimal number. The + symbol, like the *
symbol, is equivalent to a loop-back line in a railroad syntax diagram.

Appendix C. Accessibility C-3

C-4 IBM Informix DataBlade Module Development Overview

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

© Copyright IBM Corp. 1996, 2013 D-1

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,

D-2 IBM Informix DataBlade Module Development Overview

modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at http://www.ibm.com/legal/copytrade.shtml.

Notices D-3

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, and PostScript are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other
countries.

Intel, Itanium, and Pentium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

D-4 IBM Informix DataBlade Module Development Overview

Index

A
Accessibility C-1

dotted decimal format of syntax diagrams C-1
keyboard C-1
shortcut keys C-1
syntax diagrams, reading in a screen reader C-1

ActiveX value objects 1-6, 1-8
Aggregates

defined 1-9
where documented A-3

API. 1-5
Application programming interface

DataBlade API 1-5
JDBC 1-6
supplied in Client SDK 1-8
where documented A-3

Applications, simplifying with DataBlade modules 1-2

B
BladeManager

defined 2-3
registering DataBlade modules with 2-4

BladePack
DataBlade module packaging tasks 2-4
defined 2-2
packaging options 2-2

BladeSmith
aggregates, creating with 1-9
casts, creating with 1-16
client files, importing with 1-18
collection data types

creating with 1-11
data type categories in 1-10
DataBlade module creation tasks 2-4
defined 2-1
distinct data types

creating with 1-11
errors, creating with 1-17
functional tests, generating with 1-18
generated files from 2-1
interfaces

creating with 1-17
opaque data type support routines

creating with 1-15
opaque data types, creating with 1-13
overloading routines with 1-15
qualified data types, specifying with 1-10
routines

creating with 1-15
row data types, creating with 1-12
SQL files, importing with 1-18
unit tests, generating with 1-18

Built-in data types 1-10
Built-in routines 1-16

C
C code in DataBlade modules 1-5
C++ code in DataBlade modules 1-6

Casts
defined 1-16
where documented A-3

Client files, adding with BladeSmith 1-18
Client objects

using with DataBlade modules 1-8
Client Software Development Kit 1-8
Client visualization tools 1-8
Codes for errors 1-17
Coding standards, documentation of A-3
Collection data types

defined 1-11
elements of 1-11
illustration of 1-11
LIST type constructor for 1-11
MULTISET type constructor for 1-11
return values, using as 1-11
SET type constructor for 1-11
where documented A-3

Combining DataBlade modules 1-2
Compiling source code

tools for 2-4
where documented A-3

compliance with standards vi
Constructors. 1-11
Converting data types 1-16
Creating DataBlade modules 2-4

D
Data types

built-in 1-10
categories of 1-10
collection 1-11
converting 1-16
defined 1-10
distinct 1-11
documentation of A-3
opaque 1-13
qualified built-in 1-10
row 1-12

DataBlade API 1-5
DataBlade Developers Kit

example DataBlade modules 2-6
overview 1-3
tools in 2-1
tutorial 2-5

DataBlade modules
advantages 1-3
aggregates in 1-9
C code for 1-5
C++ code for 1-6
casts in 1-16
client files with 1-18
client objects in 1-8
combining 1-2
compiling source code for 2-4
components 1-8
components of 1-18
creation task list for 2-4
data types in 1-10, 1-12

© Copyright IBM Corp. 1996, 2013 X-1

DataBlade modules (continued)
debugging 2-4
defined 1-1
dependencies between A-3
development resources for 2-5
documenting 2-4
editing source code for 2-4
errors in 1-17
examples of A-3
extending IBM Informix with 1-1
foundation, using as 1-3
functional tests for 1-18
IBM Informix B-1, B-2
imported files in 1-18
installation files for 2-1
installing 2-4, A-3
interfaces in 1-3, 1-17
Java code for 1-6
location of examples of 2-6
memory allocation for 1-7
programming languages for 1-5
registering in a database 2-3
routines in 1-15
server architecture, role within 1-4
simplifying applications with 1-2
source code for 2-1
SQL scripts for 2-1
storage for A-3
Stored Procedure Languages, in 1-6
test files 2-1
testing 2-4, A-3
transaction control for 1-2
tutorial for 2-5
unit tests for 1-18
virtual processors, using with 1-7

DBDK Visual C++ Add-In
debugging a DataBlade module with 2-4
defined 2-3
documentation of A-3
registering DataBlade modules with 2-4

Debug DataBlade Module command 2-3
Debugging DataBlade modules

on UNIX 2-4
on Windows 2-3, 2-4

Development resources for creating DataBlade modules 2-5
Disabilities, visual

reading syntax diagrams C-1
Disability C-1
Distinct data types 1-11
Documentation

list of A-1, A-3
Tutorial 2-5

Documenting a DataBlade module 2-4
Dotted decimal format of syntax diagrams C-1

E
Editing source code 2-4
Elements, of collections 1-11
Errors

defined 1-17
where documented A-3

Example DataBlade modules 2-6
Excalibur Text Search DataBlade module B-1
Explicit casts 1-16

F
Fields

row data types 1-12
Files generated by BladeSmith 2-1
Files imported into DataBlade modules 1-18
Foundation DataBlade modules

defined 1-3
Functional indexes 1-1
Functional tests for DataBlade modules 1-18
Functions 1-15

G
Generated files from BladeSmith 2-1

I
IBM Informix

advantages of extending 1-1
architecture of 1-4, A-3
components 1-4
extended by DataBlade modules 1-1
improving performance 1-1
memory allocation for DataBlade modules in 1-7
transaction control for DataBlade modules in 1-2
using Client SDK with 1-8
virtual processors in 1-7

IBM Informix Web DataBlade module B-2
IfxQuery 2-3
Illustrations

collection data type 1-11
IBM Informix architecture 1-4
opaque data type 1-13
row data type 1-12

Implicit cast 1-16
Imported files

defined 1-18
where documented A-3

Indexes, functional 1-1
industry standards vi
Inheritance

in row data types 1-12
where documented A-3

Installation files for DataBlade modules 2-1
Installation packaging options 2-2
Installing a DataBlade module

tools for 2-4
where documented A-3

Interfaces
defined 1-3
importing 1-17
where documented A-3

J
Java code in DataBlade modules 1-6
Java value objects

about 1-6, 1-8
where documented A-3

JDBC API 1-6

L
Large objects. A-3
LIST type constructor 1-11

X-2 IBM Informix DataBlade Module Development Overview

Locales for errors 1-17

M
Memory allocation

for DataBlade modules 1-7
where documented A-3

MULTISET type constructor 1-11

O
Opaque data types

ActiveX value objects, implemented as 1-6
defined 1-13
illustrated 1-13
Java value objects, implementing as 1-6
rich media data, using for 1-13
smart large objects in 1-13
support functions for 1-15
where documented A-3

Operator class support functions A-3
Operator functions 1-16
Overloading routines

defined 1-15
where documented A-3

P
Packaging DataBlade modules

options for 2-2
using BladePack for 2-4
where documented A-3

Performance
improving with DataBlade modules 1-1
where documented A-3

Polymorphism 1-15
Procedures 1-15
Programming languages for DataBlade modules 1-5

Q
Qualified built-in data types 1-10

R
Registering DataBlade modules

defined 2-3
where documented A-3
with BladeManager 2-4
with the DBDK Visual C++ Add-In 2-4

Routines
adding code to 2-1
built-in 1-16
categories of 1-15
defined 1-15
opaque type support 1-15
operator 1-16
overloading 1-15
returning collections with 1-11
user-defined 1-16
where documented A-3

Row data types
defined 1-12
fields in 1-12
illustration of 1-12

Row data types (continued)
inheritance for 1-12
smart large objects in 1-12

S
Screen reader

reading syntax diagrams C-1
Secondary access methods

defined 1-1
example of B-1
where documented A-3

SET type constructor 1-11
Shared memory

defined 1-7
where documented A-3

Shortcut keys
keyboard C-1

Smart large objects
in opaque data types 1-13
in row data types 1-12
where documented A-3

Source code
compiling 2-4
editing 2-4
files for DataBlade modules 2-1

SPL. 1-6
SQL

documentation of A-3
files included in DataBlade modules 1-18
scripts for DataBlade modules 2-1

standards vi
Storage for DataBlade modules A-3
Stored Procedure Languages

using in DataBlade modules 1-6
where documented A-3

Straight casts 1-16
Support functions

for casts 1-16
for opaque data types 1-15

Syntax diagrams
reading in a screen reader C-1

T
Test files for DataBlade modules 2-1
Testing a DataBlade module

tools for 2-4
Unit tests

where documented A-3
Virtual processors

where documented A-3
where documented A-3

Text Search DataBlade module B-1
Tutorial 2-5
Type constructors

LIST 1-11
MULTISET 1-11
SET 1-11

U
Unit tests

defined 1-18
executing with IfxQuery 2-3
using during debugging 2-4

Index X-3

Unregistering a DataBlade module 2-3
Upgrading a DataBlade module 2-3
User-defined routines 1-16
User-defined virtual processors 1-7

V
Virtual processors

defined 1-7
Visual disabilities

reading syntax diagrams C-1

W
Web DataBlade module B-2

X-4 IBM Informix DataBlade Module Development Overview

����

Printed in USA

GC27-5555-00

	Contents
	Introduction
	About this publication
	Types of users
	Software compatibility

	Example code conventions
	Additional documentation
	Compliance with industry standards
	How to provide documentation feedback

	Chapter 1. DataBlade module concepts
	What are DataBlade modules?
	Why extend your Informix database server?
	Better performance
	Simpler applications
	Transaction control
	Scalability

	Why create a DataBlade module?
	Why use the DataBlade Developers Kit?

	DataBlade modules and the database server
	DataBlade module programming languages
	C language
	C++ language
	Java language
	Informix Stored Procedure Language

	Internal architecture of the database server
	DataBlade modules and virtual processors
	DataBlade module memory allocation
	Java virtual machine

	IBM Informix Client Software Development Kit
	Client objects and programs

	DataBlade module components
	Aggregates
	Data types
	Built-in data types
	Qualified built-in data types
	Distinct data types
	Collection data types
	Row data types
	Opaque data types

	Routines
	Built-in functions and operator functions
	User-defined routines

	Casts
	Interfaces
	Errors
	Unit tests
	Functional tests
	Imported SQL files
	Imported client files

	Chapter 2. Build a DataBlade module
	DataBlade Developers Kit tools
	BladeSmith
	BladePack
	BladeManager
	DBDK Visual C++ Add-In and IfxQuery

	How to create a DataBlade module
	DataBlade module development resources
	The DataBlade Developers Kit Tutorial
	Example DataBlade modules

	Appendix A. DataBlade module documentation
	Publication overview
	Title-to-topic reference
	Topic-to-title reference

	Appendix B. Informix DataBlade modules
	IBM Informix Excalibur Text Search DataBlade Module
	Extensions to Informix

	IBM Informix Web DataBlade Module
	Extensions to Informix

	Appendix C. Accessibility
	Accessibility features for IBM Informix products
	Accessibility features
	Keyboard navigation
	Related accessibility information
	IBM and accessibility

	Dotted decimal syntax diagrams

	Notices
	Privacy policy considerations
	Trademarks

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	J
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	V
	W

