
Informix Product Family
Informix
Version 12.10

IBM Informix
JSON Compatibility Guide

SC27-5556-05

IBM

Informix Product Family
Informix
Version 12.10

IBM Informix
JSON Compatibility Guide

SC27-5556-05

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page B-1.

This edition replaces SC27-5556-04.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2013, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Introduction .. v
About This Publication .. v

Types of Users. .. v
Assumptions about your locale .. v
Demonstration databases .. vi

What's new in JSON, Version 12.10 .. vi
Java technology dependencies .. xiii
Example code conventions .. xiv
Additional documentation .. xv
Compliance with industry standards .. xv
How to read the syntax diagrams .. xv
How to provide documentation feedback .. xvii

Chapter 1. About the Informix JSON compatibility 1-1
Getting started with Informix JSON .. 1-2
Software dependencies for JSON compatibility .. 1-2
MongoDB to Informix term mapping .. 1-3
Support for dots in field names .. 1-4
Manipulate BSON data with SQL statements .. 1-5

Chapter 2. Wire listener .. 2-1
Configuring the wire listener for the first time .. 2-1
The wire listener configuration file .. 2-3
Wire listener command line options .. 2-32
Starting the wire listener .. 2-33
Running multiple wire listeners .. 2-35
Modifying the wire listener configuration file .. 2-36
Stopping the wire listener .. 2-36
Wire listener logging. .. 2-37
User authentication with the wire listener .. 2-37

Configuring MongoDB authentication .. 2-38
Configuring database server authentication with PAM (UNIX, Linux) 2-39

Running SQL commands by using a MongoDB API .. 2-40
Running MongoDB operations on relational tables. .. 2-42
Running join queries by using the wire listener .. 2-43
High availability support in the wire listener .. 2-45

Chapter 3. JSON data sharding .. 3-1
Preparing shard servers .. 3-1
Creating a shard cluster with MongoDB commands. .. 3-2
Shard-cluster definitions for distributing data .. 3-3

Defining a sharding schema with a hash algorithm .. 3-4
Defining a sharding schema with an expression .. 3-5

Shard cluster management .. 3-8
Changing the definition for a shard cluster .. 3-8
Viewing shard-cluster participants .. 3-10

Chapter 4. MongoDB API and commands 4-1
Language drivers .. 4-1
Command utilities and tools .. 4-1
Collection methods .. 4-1
Index creation .. 4-3
Database commands .. 4-4
Informix JSON commands .. 4-11

© Copyright IBM Corp. 2013, 2015 iii

Operators .. 4-18
Query and projection operators .. 4-18
Update operators .. 4-20
Informix query operators .. 4-22
Aggregation framework operators .. 4-22

Chapter 5. REST API .. 5-1
REST API syntax .. 5-1

Chapter 6. Create time series through the wire listener 6-1
Time series collections and table formats .. 6-2
Example: Create a time series through the wire listener 6-6
Example queries of time series data by using the wire listener 6-10

Chapter 7. Monitoring collections .. 7-1

Chapter 8. Troubleshooting Informix JSON compatibility 8-1

Appendix. Accessibility .. A-1
Accessibility features for IBM Informix products .. A-1

Accessibility features .. A-1
Keyboard navigation .. A-1
Related accessibility information .. A-1
IBM and accessibility. .. A-1

Dotted decimal syntax diagrams .. A-1

Notices .. B-1
Privacy policy considerations .. B-3
Trademarks .. B-3

Index .. X-1

iv IBM Informix JSON Compatibility

Introduction

This introduction provides an overview of the information in this publication and
describes the conventions that this publication uses.

About This Publication
This publication contains information about using the IBM® Informix® JSON
capability.

This section discusses the intended audience for this publication and the associated
software products that you must have to use the administrative utilities.

Types of Users
This publication is written for the following users:
v Database administrators
v System administrators
v Performance engineers

This publication is written with the assumption that you have the following
background:
v A working knowledge of your computer, your operating system, and the utilities

that your operating system provides
v Some experience working with relational databases or exposure to database

concepts
v Some experience with database server administration, operating-system

administration, or network administration

You can access the Informix information centers, as well as other technical
information such as technotes, white papers, and IBM Redbooks publications
online at http://www.ibm.com/software/data/sw-library/.

Assumptions about your locale
IBM Informix products can support many languages, cultures, and code sets. All
the information related to character set, collation and representation of numeric
data, currency, date, and time that is used by a language within a given territory
and encoding is brought together in a single environment, called a Global
Language Support (GLS) locale.

The IBM Informix OLE DB Provider follows the ISO string formats for date, time,
and money, as defined by the Microsoft OLE DB standards. You can override that
default by setting an Informix environment variable or registry entry, such as
GL_DATE.

If you use Simple Network Management Protocol (SNMP) in your Informix
environment, note that the protocols (SNMPv1 and SNMPv2) recognize only
English code sets. For more information, see the topic about GLS and SNMP in the
IBM Informix SNMP Subagent Guide.

The examples in this publication are written with the assumption that you are
using one of these locales: en_us.8859-1 (ISO 8859-1) on UNIX platforms or

© Copyright IBM Corp. 2013, 2015 v

http://www.ibm.com/software/data/sw-library/

en_us.1252 (Microsoft 1252) in Windows environments. These locales support U.S.
English format conventions for displaying and entering date, time, number, and
currency values. They also support the ISO 8859-1 code set (on UNIX and Linux)
or the Microsoft 1252 code set (on Windows), which includes the ASCII code set
plus many 8-bit characters such as é and ñ.

You can specify another locale if you plan to use characters from other locales in
your data or your SQL identifiers, or if you want to conform to other collation
rules for character data.

For instructions about how to specify locales, additional syntax, and other
considerations related to GLS locales, see the IBM Informix GLS User's Guide.

Demonstration databases
The DB-Access utility, which is provided with your IBM Informix database server
products, includes one or more of the following demonstration databases:
v The stores_demo database illustrates a relational schema with information about

a fictitious wholesale sporting-goods distributor. Many examples in IBM
Informix publications are based on the stores_demo database.

v The superstores_demo database illustrates an object-relational schema. The
superstores_demo database contains examples of extended data types, type and
table inheritance, and user-defined routines.

For information about how to create and populate the demonstration databases,
see the IBM Informix DB-Access User's Guide. For descriptions of the databases and
their contents, see the IBM Informix Guide to SQL: Reference.

The scripts that you use to install the demonstration databases are in the
$INFORMIXDIR/bin directory on UNIX platforms and in the %INFORMIXDIR%\bin
directory in Windows environments.

What's new in JSON, Version 12.10
This publication includes information about new features and changes in existing
functionality.

For a complete list of what's new in this release, go to http://www.ibm.com/
support/knowledgecenter/SSGU8G_12.1.0/com.ibm.po.doc/new_features_ce.htm.

vi IBM Informix JSON Compatibility

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.po.doc/new_features_ce.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.po.doc/new_features_ce.htm

Table 1. What's new in JSON for IBM Informix Version 12.10.xC6

Overview Reference

Parallel sharded queries

You can now run SELECT statements in sharded queries in
parallel instead of serially on each shard. Parallel sharded queries
return results faster, but also have the following benefits:

v Reduced memory consumption: Table consistency is enforced
on the shard servers, which eliminates the processing of data
dictionary information among the shard servers.

v Reduced network traffic: Client connections are multiplexed
over a common pipe instead of being created individual
connections between each client and every shard server. Client
connections are authenticated on only one shard server instead
of on every shard server. Network traffic to check table
consistency is eliminated.

To enable parallel sharded queries, set the new SHARD_ID
configuration parameter in the onconfig file to a unique value on
each shard server in the shard cluster. Also set the new
sharding.parallel.query.enable=true and sharding.enable=true
parameters in the wire listener configuration file for each shard
server. You can customize how shared memory is allocated for
parallel sharded queries on each shard server by setting the new
SHARD_MEM configuration parameter. You can reduce latency
between shard servers by increasing the number of pipes for SMX
connections with the new SMX_NUMPIPES configuration
parameter.

If you plan to upgrade your existing shard cluster from a
previous version of Informix 12.10, upgrade and set the
SHARD_ID configuration parameter on all the shard servers to
enable parallel sharded queries.

Chapter 3, “JSON data sharding,” on page 3-1

Introduction vii

Table 1. What's new in JSON for IBM Informix Version 12.10.xC6 (continued)

Overview Reference

MongoDB 2.6 and 3.0 compatibility

Informix now supports the following MongoDB commands:

v The following database management commands:

– The query and write operation commands insert, update,
and delete.

– The instance administration commands createIndexes,
listCollections, and listIndexes.

– The user management commands, for MongoDB 2.6 and
later, createUser, updateUser, dropUser,
dropAllUserFromDatabase, grantRolesToUser,
revokeRolesFromUser, and usersInfo.

– The role management commands: createRole, updateRole,
dropRole, dropAllRolesFromDatabase,
grantPrivilegesToRole, revokePrivilegesFromRole,
grantRolesToRole, revokeRolesFromRole, and rolesInfo.

v The query and projection command $eq.

v The field update operators $mul, $min, $max, and
$currentDate.

v The pipeline aggregation operator $out.

You can authenticate MongoDB clients with the MongoDB 3.0
SCRAM-SHA-1 authentication method. You must upgrade the
user schema for existing users.

You upgrade to MongoDB 3.0 by setting the new
mongo.api.version parameter to 3.0 in the wire listener
configuration file.

“Query and projection operators” on page 4-18

“Database commands” on page 4-4

“Aggregation framework operators” on page 4-22

“Configuring MongoDB authentication” on page
2-38

viii IBM Informix JSON Compatibility

Table 1. What's new in JSON for IBM Informix Version 12.10.xC6 (continued)

Overview Reference

Wire listener enhancements

The wire listener has the following new parameters that you can
set to customize the wire listener.

MongoDB compatibility
Specify the version of MongoDB API compatibility with
the mongo.api.version parameter.

Security
Disable commands with the command.blacklist
parameter.

Specify the authentication type with the
db.authentication parameter.

Specify an IP address as the administrative host with the
listener.admin.ipAddress parameter.

Set authentication timeout with the
listener.authentication.timeout parameter.

Add information to HTTP headers with the
listener.http.headers parameter.

Resource management
Configure a memory monitor to reduce resource usage
with the listener.memoryMonitor parameters.

Create a separate thread pool for administrative
connections with the listener.pool.admin.enable
parameter.

Specify the timeout periods for socket connections with
the listener.socket.accept.timeout and
listener.socket.read.timeout parameters.

Suppress pooled connection checking with the
pool.lenient.return.enable and the
pool.lenient.dispose.enable parameters.

Specify the number of maintenance threads for
connection pools with the pool.service.threads
parameter.

“The wire listener configuration file” on page 2-3

Authenticate wire listener connections with Informix

You can configure the database server to authenticate MongoDB
client users, who connect through the wire listener, with a
pluggable authentication module (PAM). Because you administer
user accounts through the database server, you can audit user
activities and configure fine-grained access control. In contrast, if
you use MongoDB authentication, MongoDB clients connect to
the database server as the wire listener user that is specified by
the url parameter.

“Configuring database server authentication with
PAM (UNIX, Linux)” on page 2-39

Starting the wire listener for the REST API

You no longer need to provide the path to tomcat when you start
the wire listener for the REST API.

“Starting the wire listener” on page 2-33

Introduction ix

Table 2. What's new in JSON for IBM Informix Version 12.10.xC5

Overview Reference

High availability for MongoDB and REST clients

You can provide high availability to MongoDB and REST clients
by running a wire listener on each server in your Informix
high-availability cluster.

You can also provide high availability between the wire listener
and the Informix database server. Connect the wire listener to the
database server through the Connection Manager or specify an
sqlhosts file in the url parameter in the wire listener properties
file.

“High availability support in the wire listener”
on page 2-45

Wire listener configuration enhancements

You can set these new or updated parameters in the wire listener
properties file:

v url parameter can include JDBC environment variables.

v New: listener.hostName parameter can specify the listener
host name to control the network adapter or interface to which
the wire listener connects.

v New: collection.informix.options parameter can specify table
options to automatically add shadow columns or enable
auditing when you create a JSON collection.

v New: command.listDatabases.sizeStrategy parameter can
specify a strategy for computing the size of a database when
you run the MongoDB listDatabases command.

v New: fragment.count parameter can specify the number of
fragments to create for a collection.

v New: jdbc.afterNewConnectionCreation parameter can specify
SQL statements, for example, SET ENVIRONMENT statements,
to run after connecting to the database server.

“The wire listener configuration file” on page 2-3

Wire listener query support

The wire listener now supports these types of queries:

v Join queries on JSON data, relational data, or both JSON and
relational data.

v Array queries on JSON data with the MongoDB $elemMatch
query operator.

“Running join queries by using the wire listener”
on page 2-43

“Query and projection operators” on page 4-18

Enhanced account management through the wire listener

You can control user authorization to Informix databases through
the wire listener by locking and unlocking user accounts or
individual databases with the new Informix JSON lockAccount
and unlockAccounts commands.

“Informix JSON commands” on page 4-11

x IBM Informix JSON Compatibility

Table 2. What's new in JSON for IBM Informix Version 12.10.xC5 (continued)

Overview Reference

Manipulate JSON and BSON data with SQL statements

You can use SQL statements to manipulate BSON data. You can
create BSON columns with the SQL CREATE TABLE statement.
You can manipulate BSON data in a collection that was created
by a MongoDB API command. You can use the CREATE INDEX
statement to create an index on a field in a BSON column. You
can insert data with SQL statements or Informix utilities. You can
view BSON data by casting the data to JSON format or running
the new BSON value functions to convert BSON field values into
standard SQL data types, such as INTEGER and LVARCHAR. You
can use the new BSON_GET and BSON_UPDATE functions to
operate on field-value pairs.

“Manipulate BSON data with SQL statements” on
page 1-5

Table 3. What's new in JSON for IBM Informix Version 12.10.xC4W1

Overview Reference

Support for CORS requests in the REST API (12.10.xC4W1)

You can now set up cross-origin resource sharing (CORS) with the
REST API. To do so, set the following optional parameters that
were added to the jsonListener.properties file:

v listener.http.accessControlAllowCredentials

v listener.http.accessControlAllowHeaders

v listener.http.accessControlAllowMethods

v listener.http.accessControlAllowOrigin

v listener.http.accessControlExposeHeaders

v listener.http.accessControlMaxAge

Use these parameters to configure the HTTP headers of all
responses. The HTTP headers provide access to JSON fields that
are required by synchronous JavaScript + XML (AJAX)
applications in a web browser when these applications access the
REST listener.

“The wire listener configuration file” on page 2-3

Table 4. What's new in JSON for IBM Informix Version 12.10.xC4

Overview Reference

Basic text searching support for JSON and BSON data

You can now create a basic text search index on columns that
have JSON or BSON data types. You can create the basic text
search index on JSON or BSON data types through SQL with the
CREATE INDEX statement or on BSON data types through the
Informix extension to MongoDB with the createTextIndex
command. You can control how JSON and BSON columns are
indexed by including JSON index parameters when you create
the basic text search index. You can run a basic text query on
JSON or BSON data with the bts_contains() search predicate in
SQL queries or the $ifxtext query operator in JSON queries.

“Informix JSON commands” on page 4-11

“Informix query operators” on page 4-22

Introduction xi

Table 4. What's new in JSON for IBM Informix Version 12.10.xC4 (continued)

Overview Reference

Enhanced JSON compatibility

Informix now supports the following MongoDB 2.4 features:

v Cursor support so that you can query large volumes of data.

v Text search of string content in collections and tables.

v Geospatial indexes and queries.

v Pipeline aggregation operators.

v The array update modifiers: $each, $slice, $sort.

You can perform the following new tasks that extend MongoDB
functionality in your JSON application:

v Import and export data directly with the wire listener by using
the Informix JSON commands exportCollection and
importCollection.

v Configure a strategy for calculating the size of your database
by using the Informix extension to the MongoDB listDatabases
command: sizeStrategy option or
command.listDatabases.sizeStrategy property.

You can customize the behavior of the wire listener by setting
new properties. For example, you can control logging, caching,
timeout, memory pools, and the maximum size of documents.

“Database commands” on page 4-4

“Query and projection operators” on page 4-18

“Update operators” on page 4-20

“Aggregation framework operators” on page 4-22

“Informix JSON commands” on page 4-11

“The wire listener configuration file” on page 2-3

Access Informix from REST API clients

You can now directly connect applications or devices that
communicate through the REST API to Informix. You create
connections by configuring the wire listener for the REST API.
With the REST API, you can use MongoDB and SQL queries
against JSON and BSON document collections, traditional
relational tables, and time series data. The REST API uses
MongoDB syntax and returns JSON documents.

Chapter 5, “REST API,” on page 5-1

Create a time series with the REST API or the MongoDB API

If you have applications that handle time series data, you can
now create and manage a time series with the REST API or the
MongoDB API. Previously, you created a time series by running
SQL statements. For example, you can program sensor devices
that do not have client drivers to load time series data directly
into the database with HTTP commands from the REST API.

You create time series objects by adding definitions to time series
collections. You interact with time series data through a virtual
table.

Chapter 6, “Create time series through the wire
listener,” on page 6-1

Table 5. What's new in JSON for IBM Informix Version 12.10.xC3

Overview Reference

Use the Mongo API to access relational data

You can write a hybrid MongoDB application that can access both
relational data and JSON collections that are stored in Informix.
You can work with records in SQL tables as though they were
documents in JSON collections by either referencing the tables as
you would collections, or by using the $sql operator on an
abstract collection.

Chapter 1, “About the Informix JSON
compatibility,” on page 1-1

“Running SQL commands by using a MongoDB
API” on page 2-40

“Running MongoDB operations on relational
tables” on page 2-42

xii IBM Informix JSON Compatibility

Table 5. What's new in JSON for IBM Informix Version 12.10.xC3 (continued)

Overview Reference

Improved JSON compatibility

Informix now supports the following MongoDB features:

v The findAndModify command, which performs multiple
operations at the same time.

v The MongoDB authentication methods for adding users and
authenticating basic roles, such as read and write permissions
for database and system level users.

“Collection methods” on page 4-1

“Database commands” on page 4-4

“The wire listener configuration file” on page 2-3

Java technology dependencies
IBM Informix software supports Java™ Platform Standard Edition (Java SE) to
create and run Java applications, including user-defined routines (UDRs). Java SE 7
is supported as of Informix 12.10.xC5, while Java SE 6 is supported in earlier fix
packs.

Important:

v Check the machine notes to learn about Java technology exceptions and other
requirements for specific operating system platforms. The machine notes are
available on the product media and in the online release information.

v In general, any application that ran correctly with earlier versions of Java
technology will run correctly with this version. If you encounter problems,
recompile the application with the next available fix pack or version. However,
because there are frequent Java fixes and updates, not all of them are tested.

v To develop Java UDRs for the database server, use the supported Java software
development kit or an earlier version according to Java compatibility guidelines.
The supported version provides a known and reliable Java environment for
UDRs in this database server release.

For details about Java requirements, check the following sections:
“Java runtime environment”
“Software development kit for Java” on page xiv
“Java Database Connectivity (JDBC) specification” on page xiv

Java runtime environment

On most supported operating system platforms, the Informix installation
application bundles a Java runtime environment that it requires. However, check
the machine notes for your operating system platform to determine whether the
installation application requires a particular Java runtime environment to be
preinstalled.

Also, IBM Runtime Environment, Java Technology Edition is supported for general
use of the database server. It is installed on most operating system platforms by
default in the following directory: $INFORMIXDIR/extend/krakatoa/jre/.

MongoDB API and REST API access supports IBM Runtime Environment, Java
Technology Edition, Version 7.

Introduction xiii

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.relnotes.doc/relnotes.htm

Software development kit for Java

The following products and components require a software development kit for
Java, but one is not installed:
v Informix DataBlade® Developers Kit (DBDK)
v IBM Informix JDBC Driver
v J/Foundation component
v Spatial Java API
v TimeSeries Java API

The software development kit that you use must be compatible with the supported
Java runtime environment. Informix does not support OpenJDK. You can
download a development kit from the following web sites:
v Recommended for AIX and Linux: IBM SDK, Java Technology Edition

(http://www.ibm.com/developerworks/java/jdk/)
v Recommended for HP-UX: HP-UX 11i Java Development Kit for the Java 2

Platform Standard Edition (https://h20392.www2.hp.com/portal/swdepot/
displayProductInfo.do?productNumber=HPUXJAVAHOME)

v Oracle Java Platform, Standard Edition Development Kit (JDK)
(http://www.oracle.com/technetwork/java/javase/downloads/index.html)

Java Database Connectivity (JDBC) specification

Informix products and components support the Java Database Connectivity (JDBC)
3.0 specification.

Example code conventions
Examples of SQL code occur throughout this publication. Except as noted, the code
is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by
semicolons. For instance, you might see the code in the following example:
CONNECT TO stores_demo
...

DELETE FROM customer
WHERE customer_num = 121

...

COMMIT WORK
DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules for
that product. For example, if you are using an SQL API, you must use EXEC SQL
at the start of each statement and a semicolon (or other appropriate delimiter) at
the end of the statement. If you are using DB–Access, you must delimit multiple
statements with semicolons.

Tip: Ellipsis points in a code example indicate that more code would be added in
a full application, but it is not necessary to show it to describe the concept that is
being discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the documentation for your product.

xiv IBM Informix JSON Compatibility

http://www.ibm.com/developerworks/java/jdk/
https://h20392.www2.hp.com/portal/swdepot/displayProductInfo.do?productNumber=HPUXJAVAHOME
https://h20392.www2.hp.com/portal/swdepot/displayProductInfo.do?productNumber=HPUXJAVAHOME
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Additional documentation
Documentation about this release of IBM Informix products is available in various
formats.

You can access Informix technical information such as information centers,
technotes, white papers, and IBM Redbooks® publications online at
http://www.ibm.com/software/data/sw-library/.

Compliance with industry standards
IBM Informix products are compliant with various standards.

IBM Informix SQL-based products are fully compliant with SQL-92 Entry Level
(published as ANSI X3.135-1992), which is identical to ISO 9075:1992. In addition,
many features of IBM Informix database servers comply with the SQL-92
Intermediate and Full Level and X/Open SQL Common Applications Environment
(CAE) standards.

How to read the syntax diagrams
Syntax diagrams use special components to describe the syntax for SQL statements
and commands.

Read the syntax diagrams from left to right and top to bottom, following the path
of the line.

The double right arrowhead and line symbol ►►── indicates the beginning of a
syntax diagram.

The line and single right arrowhead symbol ──► indicates that the syntax is
continued on the next line.

The right arrowhead and line symbol ►── indicates that the syntax is continued
from the previous line.

The line, right arrowhead, and left arrowhead symbol ──►◄ symbol indicates the
end of a syntax diagram.

Syntax fragments start with the pipe and line symbol |── and end with the ──|
line and pipe symbol.

Required items appear on the horizontal line (the main path).

►► required_item ►◄

Optional items appear below the main path.

►► required_item
optional_item

►◄

If you can choose from two or more items, they appear in a stack.

Introduction xv

http://www.ibm.com/software/data/sw-library/

If you must choose one of the items, one item of the stack appears on the main
path.

►► required_item required_choice1
required_choice2

►◄

If choosing one of the items is optional, the entire stack appears below the main
path.

►► required_item
optional_choice1
optional_choice2

►◄

If one of the items is the default, it will appear above the main path, and the
remaining choices will be shown below.

►► required_item
default_choice

optional_choice
optional_choice

►◄

An arrow returning to the left, above the main line, indicates an item that can be
repeated. In this case, repeated items must be separated by one or more blanks.

►► required_item ▼ repeatable_item ►◄

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

►► required_item ▼

,

repeatable_item ►◄

A repeat arrow above a stack indicates that you can make more than one choice
from the stacked items or repeat a single choice.

SQL keywords appear in uppercase (for example, FROM). They must be spelled
exactly as shown. Variables appear in lowercase (for example, column-name). They
represent user-supplied names or values in the syntax.

If punctuation marks, parentheses, arithmetic operators, or other such symbols are
shown, you must enter them as part of the syntax.

Sometimes a single variable represents a syntax segment. For example, in the
following diagram, the variable parameter-block represents the syntax segment
that is labeled parameter-block:

►► required_item parameter-block ►◄

xvi IBM Informix JSON Compatibility

parameter-block:

parameter1
parameter2 parameter3

parameter4

How to provide documentation feedback
You are encouraged to send your comments about IBM Informix product
documentation.

Add comments about documentation to topics directly in IBM Knowledge Center
and read comments that were added by other users. Share information about the
product documentation, participate in discussions with other users, rate topics, and
more!

Feedback is monitored by the team that maintains the user documentation. The
comments are reserved for reporting errors and omissions in the documentation.
For immediate help with a technical problem, contact IBM Software Support at
http://www.ibm.com/planetwide/.

We appreciate your suggestions.

Introduction xvii

http://www.ibm.com/planetwide/

xviii IBM Informix JSON Compatibility

Chapter 1. About the Informix JSON compatibility

You can combine relational and JSON data into a single query by using the
Informix JSON compatibility features.

Applications that use the JSON-oriented query language can interact with
relational and non-relational data that is stored in Informix databases by using the
wire listener. The Informix database server also provides built-in JSON and BSON
(binary JSON) data types. You can use MongoDB community drivers and the REST
API to insert, update, and query JSON documents in Informix.

With Informix, you can use both SQL and MongoDB drivers to access SQL tables,
JSON collections, time series data, and WebSphere® MQ data. You can join two
JSON collections with each other or with relational tables.

Table 1-1. Relational data and JSON collection access by API type

API type Relational table access JSON collection access

SQL API Uses SQL language and
standard ODBC, JDBC.NET,
OData, and so on.

Uses direct SQL access,
dynamic views, and row
types.

MongoDB API Uses MongoDB APIs for
Java, JavaScript, C++, C#,
and so on.

Uses MongoDB APIs for
Java, JavaScript, C++, C#,
and so on.

The JSON document format provides a way to transfer object information in a way
that is language neutral, similar to XML. Language-neutral data transmission is a
requirement for working in a web application environment, where data comes
from various sources and software is written in various languages. With Informix,
you can choose which parts of your application data are better suited unstructured,
non-relational storage, and which parts are better suited in a traditional relational
framework.

You can enable dynamic scaling and high-availability for data-intensive
applications by taking the following steps:
v Define a sharded cluster to easily add or remove servers as your requirements

change.
v Use shard keys to distribute subsets of data across multiple servers in a sharded

cluster.
v Query the correct servers in a sharded cluster and return the consolidated results

to the client application.
v Use secondary servers (similar to subordinates in MongoDB) in the sharded

cluster to maximize availability and throughput. Secondary servers also have
update capability.

You can choose to authenticate MongoDB clients in the wire listener with a
MongoDB authentication method, or in the database server, with a pluggable
authentication module.

© Copyright IBM Corp. 2013, 2015 1-1

Getting started with Informix JSON
You can begin using the Informix JSON features after installing Informix.

If you create the Informix server instance as a part of your installation, the wire
listener is automatically started and connected to the MongoDB API and the
database server with the default operational instance. You can use the MongoDB
shell and any of the standard MongoDB command utilities and tools. To use the
REST API, you must modify the default configuration.

If you create the Informix server instance outside of the installation process, you
must configure and start the wire listener manually.
Related concepts:
Chapter 4, “MongoDB API and commands,” on page 4-1
Chapter 5, “REST API,” on page 5-1
Related tasks:
“Modifying the wire listener configuration file” on page 2-36
“Configuring the wire listener for the first time” on page 2-1

Software dependencies for JSON compatibility
Informix JSON compatibility is based on MongoDB version 2.4, 2.6, and 3.0, and
has specific software dependencies.

Informix JSON compatibility requires IBM Informix version 12.10.xC2 or later, with
the J/Foundation component, which enables services that use Java.

You must use a supported Java runtime environment .

1-2 IBM Informix JSON Compatibility

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.common.doc/ids_cm_java.htm

You set the version of the MongoDB API that the wire listener uses by setting the
mongo.api.version parameter in the wire listener configuration file. The MongoDB
API version affects the type of authentication that you can use. For example,
MongoDB version 3.0 supports the MongoDB SCRAM-SHA-1 authentication
method, but does not support database server authentication or connections with
the REST API.

MongoDB to Informix term mapping
The commonly used MongoDB terminology and concepts are mapped to the
equivalent Informix terminology and concepts.

The following table provides a summary of commonly used MongoDB terms and
their Informix conceptual equivalents.

Table 1-2. MongoDB concepts mapped to one or more Informix concepts.

MongoDB concept Informix concept Description

collection table This is the same concept. In
Informix this type of
collection is sometimes
referred to as a JSON
collection. A JSON collection
is similar to a relational
database table, except it does
not enforce a schema.

document record This is the same concept. In
Informix, this type of
document is sometimes
referred to as a JSON
document.

field column This is the same concept.

master / slave primary server / secondary
server

This is the same concept.
However, Informix
secondary servers have
additional capabilities. For
example, data on a
secondary server can be
updated and propagated to
primary servers.

replica set high-availability cluster This is the same concept.
However, when the replica
set is updated, it is then sent
to all servers, not only to the
primary server.

sharded cluster shard cluster This is the same concept. In
Informix, a shard cluster is a
group of servers (sometimes
called shard servers) that
contain sharded data.

shard key shard key This is the same concept.

Chapter 1. About the Informix JSON compatibility 1-3

Support for dots in field names
Unlike MongoDB, which does not allow dots, (.), in JSON or BSON field names,
IBM Informix conforms to the JSON standard and allows dots. For example:
{"user.fn" : "Jake"}. However, you cannot run a query or an operation directly on a
field that has a dot in its name. In queries, a dot in between field names indicates a
hierarchy.

Here the rules of using field names with dots in them with Informix:
v You can insert a document that has a field name with a dot in it. You do not get

an error.
v You cannot use a field name with a dot in it in a query or operation. Informix

ignores the field. The query does not return the matching document. The
operation does not affect the value of the field.

v You can return a document that includes a field name with a dot in it by
querying on a field name in the same document that does not have a dot in it.

Allowing dots in field names is useful when you do not have control over the field
names because your data comes from external sources, for example, the Google
API. You still want to store those documents in your database, even though some
fields might have dots in their names.

The following examples to illustrate how dots in field names work in Informix.
The table name is tab1 and the column that contains JSON data is named data.

Suppose that you have the following document:
{user : {fn : "Bob", ln : "Smith"}, "user.fn" : "Jake"}

You run the following statement to update a field:
SELECT data::json FROM tab1 WHERE BSON_UPDATE(data, ’$set : {"user.fn" :

"John:}}’);

The following document is returned:
{user : {fn : "John", ln : "Smith"}, "user.fn" : "Jake"}

The value of the fn field that is in a subdocument to the user field is updated. The
value of the user.fn field is not updated, but the value is returned. You cannot
update the value of a field with a dot in its name, but you can retrieve the value.

Suppose that you have the following document:
{"user.firstname" : "Jake"}

You run this query to return the value of the user.firstname field:
SELECT data::json FROM tab1 WHERE BSON_KEYS_EXIST(data,

"user.firstname");

No documents are returned.

If you have documents where all the fields have dots in their names, you must run
a query to return all documents in the database to see them: for example:
SELECT data::json FROM tab1;

1-4 IBM Informix JSON Compatibility

Manipulate BSON data with SQL statements
As an alternative to using the MongoDB API, you can use Informix SQL to
manipulate BSON data. However, if you plan to query JSON and BSON data
through the wire listener, you must create your database objects, such as
collections and indexes, through the wire listener. You can use SQL statements to
query JSON and BSON data whether you created your database objects through
the wire listener or with SQL statements.

You might have an existing application on relational tables that uses SQL to access
the data, but you want to add BSON data to your database. You can create a table
with a BSON column, insert the data, and manipulate the data with SQL
statements. BSON documents that you insert through SQL statements or Informix
utilities do not contain generated ObjectId field-value pairs or other MongoDB
metadata.

Alternatively, you might use a MongoDB client for daily data processing, but need
the querying capabilities of SQL for data analysis. For example, you can use SQL
statements to join tables that have BSON columns with other tables based on
BSON field values. You can create views that have columns of BSON field values.
You can run warehouse queries on BSON data with Informix Warehouse
Accelerator. If you have spatial, time series, or spatiotemporal data, you can use
the corresponding specialized SQL routines to analyze the data.

You can use BSON processing functions to manipulate BSON data in SQL
statements. The BSON value functions convert BSON field values to standard SQL
data types, such as INTEGER and LVARCHAR. The BSON_GET and
BSON_UPDATE functions manipulate field-value pairs. You can convert all or part
of a relational table to a BSON document with the genBSON function.

Example: Using SQL to query a collection

In the following example, a table that is named people is created with names and
ages fields that are inserted by using the interactive JavaScript shell interface to
MongoDB:
db.createCollection("people");
db.people.insert({"name":"Anne","age":31});
db.people.insert({"name":"Bob","age":39});
db.people.insert({"name":"Charlie","age":29});

For SQL statements, the table name is people and the BSON column name is data.
When you create a collection through a MongoDB API command, the name of the
BSON column is set to data.

The following statement selects the name and age fields with dot notation and
displays the results in a readable format by casting the results to JSON:
> SELECT data.name::JSON, data.age::JSON FROM people;

(expression) {"name":"Anne"}
(expression) {"age":31}

(expression) {"name":"Bob"}
(expression) {"age":39}

(expression) {"name":"Charlie"}
(expression) {"age":29}

3 row(s) retrieved.

Chapter 1. About the Informix JSON compatibility 1-5

Related information:
BSON and JSON built-in opaque data types
BSON processing functions

1-6 IBM Informix JSON Compatibility

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_1770.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2313.htm

Chapter 2. Wire listener

The wire listener is a mid-tier gateway server that enables communication between
MongoDB applications and the Informix database server.

The wire listener is a Java application and is provided as an executable JAR file,
$INFORMIXDIR/bin/jsonListener.jar, that is included with the database server. The
JAR file provides access to the MongoDB API and REST API.

MongoDB API access
You can connect to a JSON collection with the MongoDB API by using the
MongoDB Wire Protocol.

When a MongoDB client is connected to the wire listener and requests a
connection to a database, the wire listener creates a connection.

REST API access
You can connect to a JSON collection by using the REST API.

When a client is connected to the wire listener by using the REST API,
each database is registered. The wire listener registers to receive session
events such as create or drop a database. If a REST request refers to a
database that exists but is not registered, the database is registered and a
redirect to the root of the database is returned.

The wire listener connection properties file, named jsonListener.properties by
default, defines every operational characteristic.

When you create a database or a table through the wire listener, automatic location
and fragmentation are enabled. Databases are stored in the dbspace that is chosen
by the server. Tables are fragmented among dbspaces that are chosen by the server.
More fragments are added when tables grow.

The default logging mechanism for the wire listener is Logback. Logback is
pre-configured and installed along with the JSON components.
Related information:
SQL administration API portal: Arguments by privilege groups
Managing automatic location and fragmentation

Configuring the wire listener for the first time
You must configure the wire listener by specifying an authorized user and
customizing the wire listener configuration file.

Before you begin

The wire listener JAR file is included in the database server installation.

About this task

If you create a server instance as a part of the Informix installation process, the
wire listener is configured with default properties and started:
v A wire listener configuration file, $INFORMIXDIR/etc/jsonListener.properties, is

created.

© Copyright IBM Corp. 2013, 2015 2-1

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_147.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_1470.htm

v The ifxjson user, which has REPLICATION privilege group access, is created
and added to the url parameter in the wire listener configuration file. This user
ID is used by the wire listener to connect to Informix.

v The wire listener is started and connected to the MongoDB API and the database
server.

If you want to use the REST API, or make other changes, edit the wire listener
configuration file and restart the wire listener.

Procedure

To configure the wire listener for the first time:
1. Choose an authorized user. An authorized user is required in wire listener

connections to the database server. The authorized user must have access to the
databases and tables that are accessed through the MongoDB API and REST
API.
v Windows: Specify an operating system user.
v UNIX or Linux: Specify an operating system user or a database user. For

example, here is the argument to create a database user in UNIX or Linux:
CREATE USER userID WITH PASSWORD ’password’ ACCOUNT unlock PROPERTIES
USER daemon;

2. Optional: If you want to shard data, grant the user REPLICATION privilege by
running the admin or task SQL administration API command with the grant
admin argument. The ifxjson user has REPLICATION privilege. For example:
EXECUTE FUNCTION task(’grant admin’,’userID’,’replication’);

3. Create a wire listener configuration file in $INFORMIXDIR/etc with the
.properties file extension. You can use the $INFORMIXDIR/etc/jsonListener-
example.properties file as a template. For more information, see “The wire
listener configuration file” on page 2-3.

4. Customize the wire listener configuration file to your needs. To include
parameters in the wire listener, uncomment the row and customize the
parameter. The url parameter is required. All other parameters are optional.

Tip: Review the defaults for the following parameters and verify that they are
appropriate for your environment: mongo.api.verion,authentication.enable,
listener.type, listener.port, and listener.hostName.

5. If you are using a Dynamic Host Configuration Protocol (DHCP) on your IPv6
host, you must verify that the connection information between JDBC and
Informix is compatible.
For example, you can connect from the IPv6 host through an IPv4 connection
by using the following steps:
a. Add a server alias to the DBSERVERALIASES configuration parameter for

the wire listener on the local host. For example: lo_informix1210.
b. Add an entry to the sqlhosts file for the database server alias to the

loopback address 127.0.0.1. For example:
lo_informix1210 onsoctcp 127.0.0.1 9090

c. In the wire listener configuration file, update the url entry with the wire
listener alias. For example:
url=jdbc:informix-sqli://localhost:9090/sysmaster:
INFORMIXSERVER=lo_informix1210;

2-2 IBM Informix JSON Compatibility

What to do next

Start the wire listener.
Related concepts:
Chapter 3, “JSON data sharding,” on page 3-1
Related tasks:
“Running SQL commands by using a MongoDB API” on page 2-40
Related information:
CREATE USER statement (UNIX, Linux)
grant admin argument: Grant privileges to run SQL administration API commands

What is JDBC?

The wire listener configuration file
The settings that control the wire listener and the connection between the client
and database server are set in the wire listener configuration file.

The default name for the configuration file is $INFORMIXDIR/etc/
jsonListener.properties. You can rename this file, but the suffix must be
.properties.

If you create a server instance during the installation process, a configuration file
that is named jsonListener.properties is automatically created with default
properties, otherwise you must manually create the configuration file. You can use
the $INFORMIXDIR/etc/jsonListener-example.properties file as a template.

In the configuration file that is created during installation, and in the template file,
all of the parameters are commented out by default. To enable a parameter, you
must uncomment the row and customize the parameter.

Important: The url parameter is required. All other parameters are optional.
v Required

– “url” on page 2-6
v Setup and configuration

– “documentIdAlgorithm” on page 2-6
– “include” on page 2-7
– “listener.onException” on page 2-7
– “listener.hostName” on page 2-8
– “listener.port” on page 2-8
– “listener.type” on page 2-8
– “response.documents.count.default” on page 2-8
– “response.documents.count.maximum” on page 2-8
– “response.documents.size.maximum” on page 2-9
– “sharding.enable” on page 2-9
– “sharding.parallel.query.enable” on page 2-9

v Command and operation configuration
– “collection.informix.options” on page 2-9
– “command.listDatabases.sizeStrategy” on page 2-10

Chapter 2. Wire listener 2-3

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_1821.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_145.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.jdbc_pg.doc/ids_jdbc_011.htm

– “update.client.strategy” on page 2-11
– “update.mode” on page 2-11

v Database resource management
– “database.buffer.enable” on page 2-11
– “database.create.enable” on page 2-12
– “database.dbspace” on page 2-12
– “database.locale.default” on page 2-12
– “database.log.enable” on page 2-12
– “database.share.close.enable” on page 2-12
– “database.share.enable” on page 2-13
– “dbspace.strategy” on page 2-13
– “fragment.count” on page 2-13
– “jdbc.afterNewConnectionCreation” on page 2-14

v MongoDB compatibility
– “compatible.maxBsonObjectSize.enable” on page 2-14
– “mongo.api.version” on page 2-14
– “update.one.enable” on page 2-14

v Performance
– “delete.preparedStatement.cache.enable” on page 2-15
– “insert.batch.enable” on page 2-15
– “insert.batch.queue.enable” on page 2-16
– “insert.batch.queue.flush.interval” on page 2-16
– “index.cache.enable” on page 2-16
– “index.cache.update.interval” on page 2-16
– “insert.preparedStatement.cache.enable” on page 2-17
– “preparedStatement.cache.enable” on page 2-17
– “preparedStatement.cache.size” on page 2-17

v Security
– “authentication.enable” on page 2-17
– “authentication.localhost.bypass.enable” on page 2-18
– “command.blacklist” on page 2-18
– “db.authentication” on page 2-18
– “listener.admin.ipAddress” on page 2-18
– “listener.authentication.timeout” on page 2-18
– “listener.http.accessControlAllowCredentials” on page 2-19
– “listener.http.accessControlAllowHeaders” on page 2-19
– “listener.http.accessControlAllowMethods” on page 2-19
– “listener.http.accessControlAllowOrigin” on page 2-20
– “listener.http.accessControlExposeHeaders” on page 2-20
– “listener.http.accessControlMaxAge” on page 2-20
– “listener.http.headers” on page 2-21
– “listener.rest.cookie.domain” on page 2-21
– “listener.rest.cookie.httpOnly” on page 2-21
– “listener.rest.cookie.length” on page 2-21
– “listener.rest.cookie.name” on page 2-21

2-4 IBM Informix JSON Compatibility

– “listener.rest.cookie.path” on page 2-22
– “listener.rest.cookie.secure” on page 2-22
– “listener.ssl.algorithm” on page 2-22
– “listener.ssl.ciphers” on page 2-22
– “listener.ssl.enable” on page 2-23
– “listener.ssl.key.alias” on page 2-23
– “listener.ssl.key.password” on page 2-23
– “listener.ssl.keyStore.file” on page 2-23
– “listener.ssl.keyStore.password” on page 2-23
– “listener.ssl.keyStore.type” on page 2-23
– “listener.ssl.protocol” on page 2-24
– “security.sql.passthrough” on page 2-24

v Wire listener resource management
– “listener.idle.timeout” on page 2-24
– “listener.input.buffer.size” on page 2-24
– “listener.memoryMonitor.enable” on page 2-25
– “listener.memoryMonitor.allPoint” on page 2-25
– “listener.memoryMonitor.diagnosticPoint” on page 2-25
– “listener.memoryMonitor.zeroPoint” on page 2-25
– “listener.output.buffer.size” on page 2-25
– “listener.pool.admin.enable” on page 2-25
– “listener.pool.keepAliveTime” on page 2-26
– “listener.pool.queue.size” on page 2-26
– “listener.pool.size.core” on page 2-26
– “listener.pool.size.maximum” on page 2-26
– “listener.socket.accept.timeout” on page 2-26
– “listener.socket.read.timeout” on page 2-27
– “pool.connections.maximum” on page 2-27
– “pool.idle.timeout” on page 2-27
– “pool.idle.timeunit” on page 2-27
– “pool.lenient.return.enable” on page 2-28
– “pool.lenient.dispose.enable” on page 2-28
– “pool.semaphore.timeout” on page 2-28
– “pool.semaphore.timeunit” on page 2-28
– “pool.service.interval” on page 2-29
– “pool.service.threads” on page 2-29
– “pool.service.timeunit” on page 2-29
– “pool.size.initial” on page 2-30
– “pool.size.minimum” on page 2-30
– “pool.size.maximum” on page 2-30
– “pool.type” on page 2-30
– “pool.typeMap.strategy” on page 2-31
– “response.documents.size.minimum” on page 2-31

Chapter 2. Wire listener 2-5

Required parameter

You must configure the url parameter before using the wire listener.

url
This required parameter specifies the host name, database server, user ID, and
password that are used in connections to the database server.

You must specify the sysmaster database in the url parameter. That database is
used for administrative purposes by the wire listener.

►► url= jdbc:informix-sqli://hostname:portnum /sysmaster: ►

►
USER=userid; PASSWORD=password NONCE=value

►◄

You can include additional JDBC properties in the url parameter such as
INFORMIXCONTIME, INFORMIXCONRETRY, LOGINTIMEOUT, and
IFX_SOC_TIMEOUT. For a list of Informix environment variables that are
supported by the JDBC driver, see Informix environment variables with the
IBM Informix JDBC Driver.

hostname:portnum
The host name and port number of your computer. For example,
localhost:9090.

USER=userid
This optional attribute specifies the user ID that is used in connections to
the Informix database server. If you plan to use this connection to establish
or modify collection shards by using the Informix sharding capability, the
specified user must be granted the REPLICATION privilege group access.

If you do not specify the user ID and password, the JDBC driver uses
operating system authentication and all wire listener actions are run by
using the user ID and password of the operating system user who runs the
wire listener start command.

PASSWORD=password
This optional attribute specifies the password for the specified user ID.

NONCE=value
This optional attribute specifies a 16-character value that consists of
numbers and the letters a, b, c, d, e, and f. This property triggers password
encoding when a pluggable authentication module is configured for the
wire listener. Applicable only if the db.authentication parameter is set to
informix-mongodb-cr.

Setup and configuration

These parameters provide setup and configuration options.

documentIdAlgorithm
This optional parameter determines the algorithm that is used to generate the
unique Informix identifier for the ID column that is the primary key on the
collection table. The _id field of the document is used as the input to the
algorithm. The default value is documentIdAlgorithm=ObjectId.

2-6 IBM Informix JSON Compatibility

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.jdbc_pg.doc/ids_jdbc_040.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.jdbc_pg.doc/ids_jdbc_040.htm

►► documentIdAlgorithm=
ObjectId
SHA-1
SHA-256
SHA-512

►◄

ObjectId
Indicates that the string representation of the ObjectId is used if the _id
field is of type ObjectId; otherwise, the MD5 algorithm is used to compute
the hash of the contents of the _id field.
v The string representation of an ObjectId is the hexadecimal

representation of the 12 bytes that comprise an ObjectId.
v The MD5 algorithm provides better performance than the secure hashing

algorithms (SHA).

ObjectId is the default value and it is suitable for most situations.

Important: Use the default unless a unique constraint violation is reported
even though all documents have a unique _id field. In that case, you might
need to use a non-default algorithm, such as SHA-256 or SHA-512.

SHA-1
Indicates that the SHA-1 hashing algorithm is used to derive an identifier
from the _id field.

SHA-256
Indicates that the SHA-256 hashing algorithm is used to derive an
identifier from the _id field.

SHA-512
Indicates that the SHA-512 hashing algorithm is used to derive an
identifier from the _id field. This option generates the most unique values,
but uses the most processor resources.

include
This optional parameter specifies the properties file to reference. The path can
be absolute or relative. For more information, see “Running multiple wire
listeners” on page 2-35.

►► include= properties_file ►◄

listener.onException
This optional parameter specifies an ordered list of actions to take if an
exception occurs that is not handled by the processing layer.

►► listener.onException=
reply
closeSession
shutdownListener

►◄

reply
When an unhandled exception occurs, reply with the exception message.
This is the default value.

closeSession
When an unhandled exception occurs, close the session.

shutdownListener
When an unhandled exception occurs, shut down the wire listener.

Chapter 2. Wire listener 2-7

listener.hostName
This optional parameter specifies the host name of the wire listener. The host
name determines the network adapter or interface that the wire listener binds
the server socket to.

Tip: If you enable the wire listener to be accessed by clients on remote hosts,
turn on authentication by using the authentication.enable parameter.

►► listener.hostName=
localhost
hostname
*

►◄

localhost
Bind the wire listener to the localhost address. The wire listener is not
accessible from clients on remote machines. This is the default value.

hostname
The host name or IP address of host machine where the wire listener binds
to.

* The wire listener can bind to all interfaces or addresses.

listener.port
This optional parameter specifies the port number to listen on for incoming
connections from MongoDB clients. This value can be overridden from the
command line by using the -port argument. The default value is 27017.

Important: If you specify a port number that is less than 1024, the user that
starts the wire listener might require additional operating system privileges.

►► listener.port=
27017
port_number ►◄

listener.type
This optional parameter specifies the type of wire listener to start.

►► listener.type=
mongo
rest ►◄

mongo
Connect the wire listener to the MongoDB API. This is the default value.

rest
Connect the wire listener to the REST API.

response.documents.count.default
This optional parameter specifies the default number of documents in a single
response to a query. The default value is 100.

►► response.documents.count.default=
100
default_docs ►◄

response.documents.count.maximum
This optional parameter specifies the maximum number of documents in a
single response to a query. The default value is 10000.

2-8 IBM Informix JSON Compatibility

►► response.documents.count.maximum=
10000
max_docs ►◄

response.documents.size.maximum
This optional parameter specifies the maximum size, in bytes, of all documents
in a single response to a query. The default value is 1048576.

►► response.documents.size.maximum=
1048576
max_size ►◄

sharding.enable
This optional parameter indicates whether to enable the use of commands and
queries on sharded data.

►► sharding.enable=
false
true ►◄

false
Do not enable the use of commands and queries on sharded data. This is
the default value.

true
Enable the use of commands and queries on sharded data.

sharding.parallel.query.enable
This optional parameter indicates whether to enable the use of parallel sharded
queries. Parallel sharded queries require that the SHARD_ID configuration
parameter be set to unique IDs on all shard servers. The sharding.enable
parameter must also be set to true.

►► sharding.parallel.query.enable=
false
true ►◄

false
Do not enable parallel sharded queries. This is the default value.

true
Enable parallel sharded queries.

Command and operation configuration

These parameters provide configuration options for JSON commands and
operations.

collection.informix.options
This optional parameter specifies which table options for shadow columns or
auditing to use when creating a JSON collection.

►► ▼

,

collection.informix.options=[]
"audit"
"crcols"
"erkey"
"replcheck"
"vercols"

►◄

Chapter 2. Wire listener 2-9

audit
Use the AUDIT option of the CREATE TABLE statement to create a table to
be included in the set of tables that are audited at the row level if selective
row-level is enabled.

crcols
Use the CRCOLS option of the CREATE TABLE statement to create two
shadow columns that Enterprise Replication uses for conflict resolution.

erkey
Use the ERKEY option of the CREATE TABLE statement to create the
ERKEY shadow columns that Enterprise Replication uses for a replication
key.

replcheck
Use the REPLCHECK option of the CREATE TABLE statement to create
the ifx_replcheck shadow column that Enterprise Replication uses for
consistency checking.

vercols
Use the VERCOLS option of the CREATE TABLE statement to create two
shadow columns that Informix uses to support update operations on
secondary servers.

command.listDatabases.sizeStrategy
This optional parameter specifies a strategy for calculating the size of your
database when the MongoDB listDatabases command is run. The listDatabases
command estimates the size of all collections and collection indexes for each
database. However, relational tables and indexes are excluded from this size
calculation.

Important: The MongoDB listDatabases command performs expensive and
CPU-intensive computations on the size of each database in the database
server instance. You can decrease the expense by using the
command.listDatabases.sizeStrategy parameter.

►►
estimate

command.listDatabases.sizeStrategy= {estimate:n}
compute
none
perDatabaseSpace

►◄

estimate
Estimate the size of the database by sampling documents in every
collection. This is the default value. This strategy is the equivalent of
{estimate: 1000}, which takes a sample size of 0.1% of the documents in
every collection. This is the default value.
command.listDatabases.sizeStrategy=estimate

estimate: n
Estimate the size of the database by sampling one document for every n
documents in every collection. The following example estimates the
collection size by using sample size of 0.5% or 1/200th of the documents:
command.listDatabases.sizeStrategy={estimate:200}

compute
Compute the exact size of the database.
command.listDatabases.sizeStrategy=compute

2-10 IBM Informix JSON Compatibility

none
List the databases but do not compute the size. The database size is listed
as 0.
command.listDatabases.sizeStrategy=none

perDatabaseSpace
Calculate the size of a database by adding the sizes for all dbspaces,
sbspaces, and blobspaces that are assigned to the tenant database.

Important: The perDatabaseSpace option applies only to tenant databases
that are created by the multi-tenancy feature.

update.client.strategy
This optional parameter specifies the method that is used by the wire listener
to send updates to the database server. When the wire listener does the update
processing, it queries the server for the existing document and then updates
the document.

►►
updatableCursor

update.client.strategy= deleteInsert ►◄

updatableCursor
Updates are sent to the database server by using an updatable cursor. This
is the default value.

deleteInsert
The original document is deleted when the updated document is inserted.

Important: If the collection is sharded, you must use this method.

update.mode
This optional parameter determines where document updates are processed.
The default value is update.mode=client.

►►
client

update.mode= mixed ►◄

client
Use the wire listener to process updates. For example, if your document
updates are complicated or use document replacement, you can use client
to process these updates by using the wire listener. This is the default
value.

mixed
Attempt to process updates on the database server first, then fallback to
the wire listener. For example, if your document updates consist mainly of
single operation updates on a single field (for example, $set, $inc), you can
use mixed to process these updates directly on the server.

Database resource management

These parameters provide database resource management options.

database.buffer.enable

Prerequisite: database.log.enable=true
This optional parameter indicates whether to enable buffered logging when
you create a database by using the wire listener.

Chapter 2. Wire listener 2-11

►► database.buffer.enable=
true
false ►◄

true
Enable buffered logging. This is the default value.

false
Do not enable buffered logging.

database.create.enable
This optional parameter indicates whether to enable the automatic creation of a
database, if a database does not exist.

►► database.create.enable=
true
false ►◄

true
If a database does not exist, create a database. This is the default value.

false
If a database does not exist, do not create a database. With this option, you
can access only existing databases.

database.dbspace

Prerequisite: dbspace.strategy=fixed
This optional parameter specifies the name of the dbspace databases that are
created. The default value is database.dbspace=rootdbs.

►► database.dbspace=
rootdbs
dbspace_name ►◄

database.locale.default
This optional parameter specifies the default locale to use when a database is
created by using the wire listener. The default value is en_US.utf8.

►► database.locale.default=
en_US.utf8
locale ►◄

database.log.enable
This optional parameter indicates whether to create databases that are enabled
for logging.

►► database.log.enable=
true
false ►◄

true
Create databases that are enabled for logging. This is the default value. Use
the database.buffer.enable parameter to enable buffered logging.

false
Do not create databases that are enabled for logging.

database.share.close.enable

2-12 IBM Informix JSON Compatibility

Prerequisite: database.share.enable=true
This optional parameter indicates whether to close a shared database and its
associated resources, including connection pools, when the number of active
sessions drops to zero.

►► database.share.close.enable=
true
false ►◄

true
Close a shared database when the number of active sessions drops to zero.
This is the default value.

false
Keep the shared database open when the number of active sessions drops
to zero.

Important: If shared databases are enabled and this property is set to false,
the connection pool associated with a database is never closed.

database.share.enable
This optional parameter indicates whether to share database objects and
associated resources. For example, you can share connection pools between
sessions.

►► database.share.enable=
true
false ►◄

true
Share database objects and associated resources. Use the
database.share.enable parameter to control when to close the shared
database. This is the default value.

false
Do not share database objects and associated resources.

dbspace.strategy
This optional parameter specifies the strategy to use when determining the
location of new databases, tables, and indexes.

►► dbspace.strategy=
autolocate
fixed ►◄

autolocate
The database server automatically determines the dbspace for the new
databases, tables, and indexes. This is the default value.

fixed
Use a specific dbspace, as specified by the database.dbspace property.

fragment.count
This optional parameter specifies the number of fragments to use when
creating a collection. If you specify 0, the database server determines the
number of fragments to create. If you specify a fragment_num greater than 0,
that number of fragments are created when the collection is created. The
default value is 0.

Chapter 2. Wire listener 2-13

►► fragment.count=
0
fragment_num ►◄

jdbc.afterNewConnectionCreation
This optional parameter specifies one or more SQL commands to run after a
new connection to the database is created.

►► ▼

,

jdbc.afterNewConnectionCreation=["sql_command"] ►◄

For example, to accelerate queries run through the wire listener by using
Informix Warehouse Accelerator:
jdbc.afterNewConnectionCreation=["SET ENVIRONMENT USE_DWA ’ACCELERATE ON’"]

MongoDB compatibility

These parameters provide options for MongoDB compatibility.

compatible.maxBsonObjectSize.enable
This optional parameter indicates whether the maximum BSON object size is
compatible with MongoDB.

Tip: If you insert a BSON document by using an SQL operation, Informix
supports a maximum document size of 2 GB.

►► compatible.maxBsonObjectSize.enable=
false
true ►◄

false
Use a maximum document size of 256 MB with the wire listener. This is
the default value.

true
Use a maximum document size of 16 MB. The maximum document size
for MongoDB is 16 MB.

mongo.api.version
This optional parameter specifies the MongoDB API version with which the
wire listener is compatible. The version affects authentication methods as well
as MongoDB commands.

►► mongo.api.version=
2.6
2.4
3.0

►◄

Important: Do not set mongo.api.version=3.0 if you want to use the REST API
or database server authentication. See “User authentication with the wire
listener” on page 2-37.

update.one.enable
This optional parameter indicates whether to enable support for updating a
single JSON document.

2-14 IBM Informix JSON Compatibility

Important: The update.one.enable parameter applies to JSON collections only.
For relational tables, the MongoDB multi-parameter is ignored and all
documents that meet the query criteria are updated.

►► update.one.enable=
false
true ►◄

false
All collection updates are treated as multiple JSON document updates.
This is the default value.

With the update.one.enable=false setting, the MongoDB
db.collection.update multi-parameter is ignored and all documents that
meet the query criteria are updated.

true
Allow updates on collections to a single document or multiple documents.

With the update.one.enable=true setting, the MongoDB
db.collection.update multi-parameter is accepted. The db.collection.update
multi-parameter controls whether you can update a single document or
multiple documents.

Performance

These parameters provide performance options for databases and collections.

delete.preparedStatement.cache.enable
This optional parameter indicates whether to cache prepared statements that
delete documents for reuse.

►► delete.preparedStatement.cache.enable=
true
false ►◄

true
Use a prepared statement cache for statements that delete documents. This
is the default value.

false
Do not use a prepared statement cache for statements that delete
documents. A new statement is prepared for each query.

insert.batch.enable
If multiple documents are sent as a part of a single INSERT statement, this
optional parameter indicates whether to batch document inserts operations into
collections.

►► insert.batch.enable=
true
false ►◄

true
Batch document inserts into collections by using JDBC batch calls to
perform the insert operations. This is the default value.

false
Do not batch document insert operations into collections.

Chapter 2. Wire listener 2-15

insert.batch.queue.enable
This optional parameter indicates whether to queue INSERT statements into
larger batches. You can improve insert performance by queuing INSERT
statements, however, there is decreased durability.

This parameter batches all INSERT statements, even a single INSERT
statement. These batched INSERT statements are flushed at the interval that is
specified by the insert.batch.queue.flush.interval parameter, unless another
operation arrives on the same collection. If another operation arrives on the
same collection, the batch inserts are immediately flushed to the database
server before proceeding with the next operation.

►► insert.batch.queue.enable=
false
true ►◄

false
Do not queue INSERT statements. This is the default.

true
Queue INSERT statements into larger batches. Use the
insert.batch.queue.flush.interval parameter to specify the amount of
time between insert queue flushes.

insert.batch.queue.flush.interval

Prerequisite: insert.batch.queue.enable=true
This optional parameter specifies the number of milliseconds between flushes
of the insert queue to the database server. The default value is
insert.batch.queue.flush.interval=100.

►► insert.batch.queue.flush.interval=
100
flush_interval_time ►◄

index.cache.enable
This optional parameter indicates whether to enable index caching on
collections. To write the most efficient queries, the wire listener must be aware
of the existing BSON indexes on your collections.

►► index.cache.enable=
true
false ►◄

true
Cache indexes on collections. This is the default value.

false
Do not cache indexes on collections. The wire listener queries the database
for indexes each time a collection query is translated to SQL.

index.cache.update.interval
This optional parameter specifies the amount of time, in seconds, between
updates to the index cache on a collection table. The default value is
index.cache.update.interval=120.

►► index.cache.update.interval=
120
cache_update_interval ►◄

2-16 IBM Informix JSON Compatibility

insert.preparedStatement.cache.enable
This optional parameter indicates whether to cache the prepared statements
that are used to insert documents.

►► insert.preparedStatement.cache.enable=
true
false ►◄

true
Cache the prepared statements that are used to insert documents. This is
the default value.

false
Do not cache the prepared statements that are used to insert documents.

preparedStatement.cache.enable
This optional parameter indicates whether to cache prepared statements for
reuse.

►► preparedStatement.cache.enable=
true
false ►◄

true
Use a prepared statement cache. This is the default value.

false
Do not use a prepared statement cache. A new statement is prepared for
each query.

preparedStatement.cache.size
This optional parameter specifies the size of the least-recently used (LRU) map
that is used to cache prepared statements. The default value is
preparedStatement.cache.size=20.

►► preparedStatement.cache.enable=
20
LRU_size ►◄

Security

The parameters provide security enablement options.

authentication.enable
This optional parameter indicates whether to enable user authentication.

You can choose to authenticate MongoDB clients in the wire listener with a
MongoDB authentication method, or in the database server, with a pluggable
authentication module.

►► authentication.enable=
false
true ►◄

false
Do not authenticate users. This is the default value.

true
Authenticate users. Use the authentication.localhost.bypass.enable
parameter to control the type of authentication.

Chapter 2. Wire listener 2-17

authentication.localhost.bypass.enable

Prerequisite: authentication.enable=true
If you connect from the localhost to the Informix admin database, and the
admin database contains no users, this optional parameter indicates whether to
grant full administrative access. The Informix admin database is similar to the
MongoDB admin database. The Informix
authentication.localhost.bypass.enable parameter is similar to the
MongoDB enableLocalhostAuthBypass parameter.

►► authentication.localhost.bypass.enable=
true
false ►◄

true
Grant full administrative access to the user. This is the default value.

false
Do not grant full administrative access to the user.

command.blacklist
This optional parameter lists commands that are removed from the command
registry and cannot be called. By default, the black list is empty.

►► ▼

,

command.blacklist=[command] ►◄

db.authentication
This optional parameter specifies the user authentication method. See “User
authentication with the wire listener” on page 2-37.

►► db.authentication=
mongodb-cr
informix-mongodb-cr ►◄

mongdb-cr
Authenticate through the wire listener with a MongoDB authentication
method. The MongoDB authentication method depends on the setting of
the mongo.api.version parameter.

informix-mongodb-cr
Authenticate through the database server with a pluggable authentication
module.

listener.admin.ipAddress
This optional parameter specifies the IP address for the administrative host.
Must be a loopback IP address. The default value is 127.0.0.1.

Important: If you specify an address that is not a loopback IP address, an
attacker might perform a remote privilege escalation and obtain administrative
privileges without knowing a user password.

►► listener.admin.ipAddress=ip_address ►◄

listener.authentication.timeout
This optional parameter specifies the number of milliseconds that the wire

2-18 IBM Informix JSON Compatibility

listener waits for a client connection to authenticate. The default value is 0,
which indicates that the wire listener waits indefinitely for client connections to
authenticate.

►► listener.authentication.timeout=milliseconds ►◄

listener.http.accessControlAllowCredentials
This optional parameter indicates whether to display the response to the
request when the omit credentials flag is not set. When this parameter is part
of the response to a preflight request, it indicates that the actual request can
include user credentials.

►► listener.http.accessControlAllowCredentials=
true
false ►◄

true
Display the response to the request. This is the default value.

false
Do not display the response to the request.

listener.http.accessControlAllowHeaders
This optional parameter, which is part of the response to a preflight request,
specifies the header field names that are used during the actual request. You
must specify the value by using a JSON array of strings. Each string in the
array is the case-insensitive header field name. The default value is
listener.http.accessControlAllowHeaders=["accept","cursorId","content-
type"].

►► listener.http.accessControlAllowHeaders= ►

► ▼

"accept","cursorId","content-type"
,

[" header_field_name "] ►◄

For example, to allow the headers foo and bar in a request:
listener.http.accessControlAllowHeaders=["foo","bar"]

listener.http.accessControlAllowMethods
This optional parameter, which is part of the response to a preflight request,
specifies the REST methods that are used during the actual request. You must
specify the value by using a JSON array of strings. Each string in the array is
the name of an HTTP method that is allowed. The default value is
listener.http.accessControlAllowMethods=["GET","PUT","POST","DELETE",
"OPTIONS"].

►► listener.http.accessControlAllowMethods= ►

Chapter 2. Wire listener 2-19

► ▼

"GET","PUT","POST","DELETE","OPTIONS"
,

[" rest_method "] ►◄

listener.http.accessControlAllowOrigin
This optional parameter specifies which uniform resource identifiers (URI) are
authorized to receive responses from the REST listener when processing
cross-origin resource sharing (CORS) requests. You must specify the value by
using a JSON array of strings, with a separate string in the array for each
value for the HTTP Origin header in a request. The values that are specified in
this parameter are validated to ensure that they are identical to the Origin
header.

HTTP requests include an Origin header that specifies the URI that served the
resource that processes the request. When a resource from a different origin is
accessed, the resource is validated to determine whether sharing is allowed.

The default value, listener.http.accessControlAllowOrigin={"$regex":".*"},
means that any origin is allowed to perform a CORS request.

►► listener.http.accessControlAllowOrigin=
"$regex":".*"

{ authorized_URI } ►◄

Here are some usage examples:
v Grant access to the localhost:

listener.http.accessControlAllowOrigin="http://localhost"

v Grant access to all hosts in the subnet 10.168.8.0/24. The first 3 segments are
validated as 10, 168, and 8, and the fourth segment is validated as a value 1
- 255:
listener.http.accessControlAllowOrigin={"$regex":"^
http://10\\\\.168\\\\.8\\\\.([01]?\\\\
d\\\\d?|2[0-4]\\\\d|25[0-5])$" }

v Grant access to all hosts in the subnet 10.168.8.0/24. The first 3 segments are
validated as 10, 168, and 8, and the fourth segment must contain one or
more digits:
listener.http.accessControlAllowOrigin={"$regex":
"^http://10\\\\.168\\\\.8\\\\.\\\\d+$" }

listener.http.accessControlExposeHeaders
This optional parameter specifies which headers of a CORS request to expose
to the API. You must specify the value by using a JSON array of strings. Each
string in the array is the case-insensitive name of a header to be exposed. The
default value is listener.http.accessControlExposeHeaders=["cursorId"].

►► listener.http.accessControlExposeHeaders=
["cursorId"]
CORS_headers ►◄

For example, to expose the headers foo and bar to a client:
listener.http.accessControlExposeHeaders=["foo","bar"]

listener.http.accessControlMaxAge
This optional parameter specifies the amount of time, in seconds, that the
result of a preflight request is cached in a preflight result cache. A value of 0
indicates that the Access-Control-Max-Age header is not included in the

2-20 IBM Informix JSON Compatibility

response to a preflight request. A value greater than 0 indicates that the
Access-Control-Max-Age header is included in the response to a preflight
request.

The default value is listener.http.accessControlMaxAge=0.

►► listener.http.accessControlMaxAge=
0
preflight_result_cache_time ►◄

listener.http.headers
This optional parameter specifies the information to include in the HTTP
headers of responses, as a JSON document. The default value is no additional
information in the HTTP headers.

►► listener.http.headers=JSON_document ►◄

For example, you set this parameter to the following value:
listener.http.headers={ "Access-Control-Allow-Origin" : "http://192.168.0.1",
"Access-Control-Allow-Credentials" : "true" }

Then the HTTP headers for all responses look like this:
Access-Control-Allow-Origin : http://192.168.0.1
Access-Control-Allow-Credentials : true

listener.rest.cookie.domain
This optional parameter specifies the name of the cookie that is created by the
REST wire listener. If not specified, the domain is the default value as
determined by the Apache Tomcat web server.

►► listener.rest.cookie.domain=
rest_cookie_name

►◄

listener.rest.cookie.httpOnly
This optional parameter indicates whether to set the HTTP-only flag.

►► listener.rest.cookie.httpOnly=
true
false ►◄

true
Set the HTTP-only flag. This flag helps to prevent cross-site scripting
attacks. This is the default value.

false
Do not set the HTTP-only flag.

listener.rest.cookie.length
This optional parameter specifies the length, in bytes, of the cookie value that
is created by the REST wire listener, before Base64 encoding. The default value
is listener.rest.cookie.length=64.

►► listener.rest.cookie.length=
64
rest_cookie_length ►◄

listener.rest.cookie.name
This optional parameter specifies the name of the cookie that is created by the

Chapter 2. Wire listener 2-21

REST wire listener to identify a session. The default value is
listener.rest.cookie.name=informixRestListener.sessionId.

►► listener.rest.cookie.name=
informixRestListener.sessionId
rest_cookie_name ►◄

listener.rest.cookie.path
This optional parameter specifies the path of the cookie that is created by the
REST wire listener. The default value is listener.rest.cookie.path=/.

►► listener.rest.cookie.path=
/
rest_cookie_path ►◄

listener.rest.cookie.secure
This optional parameter indicates whether the cookies that are created by the
REST wire listener have the secure flag on. The secure flag prevents the
cookies from being used over an unsecure connection.

►► listener.rest.cookie.secure=
false
true ►◄

false
Turn off the secure flag. This is the default value.

true
Turn on the secure flag.

listener.ssl.algorithm
This optional parameter specifies the Service Provider Interface (SPI) for the
KeyManagerFactory that is used to access the network encryption keystore. On
an Oracle Java Virtual Machine (JVM), this value is typically SunX509. On an
IBM JVM, this value is typically IbmX509. The default value is no SPI.

Important: Do not set this property if you are not familiar with Java
Cryptography Extension (JCE).

►► listener.ssl.algorithm=SPI ►◄

listener.ssl.ciphers
This optional parameter specifies a list of Secure Sockets Layer (SSL) or
Transport Layer Security (TLS) ciphers to use with network encryption. The
default value is no ciphers, which means that the default list of enabled ciphers
for the JVM are used.

Important: Do not set this property if you are not familiar with Java
Cryptography Extension (JCE) and the implications of using multiple ciphers.
Consult a security expert for advice.

►► ▼

,

listener.ssl.ciphers= cipher ►◄

You can include spaces between ciphers.

For example, you can set the following ciphers:

2-22 IBM Informix JSON Compatibility

listener.ssl.ciphers=TLS_RSA_WITH_AES_128_CBC_SHA, TLS_RSA_WITH_AES_256_CBC_SHA,
TLS_EMPTY_RENEGOTIATION_INFO_SCSV

listener.ssl.enable
This optional parameter enables SSL or TLS network encryption on the socket
for client connections.

►► listener.ssl.enable=
false
true ►◄

false
Disable network encryption. This is the default.

true
Allow network encryption.

listener.ssl.key.alias
This optional parameter specifies the alias, or identifier, of the entry into the
keystore. The default value is no alias, which indicates that the keystore
contains one entry. If the keystore contain more than one entry and a key
password is needed to unlock the keystore, set this parameter to the alias of
the entry that unlocks the keystore.

►► listener.ssl.key.alias=alias ►◄

This parameter is effective when the listener.ssl.enable parameter is set to true.

listener.ssl.key.password
This optional parameter specifies the password to unlock the entry into the
keystore, which is identified by the listener.ssl.key.alias parameter. The default
value is no password, which means to use the keystore password. If the entry
into the keystore requires a password that is different from the keystore
password, set this parameter to the entry password.

►► listener.ssl.key.password=password ►◄

This parameter is effective when the listener.ssl.enable parameter is set to true.

listener.ssl.keyStore.file
This optional parameter specifies the fully-qualified path and file name of the
Java keystore file to use for network encryption. The default value is no file.

►► listener.ssl.keyStore.file=file_path ►◄

This parameter is effective when the listener.ssl.enable parameter is set to true.

listener.ssl.keyStore.password
This optional parameter specifies the password to unlock the Java keystore file
for network encryption. The default value is no password.

►► listener.ssl.keyStore.password=password ►◄

This parameter is effective when the listener.ssl.enable parameter is set to true.

listener.ssl.keyStore.type
This optional property specifies the provider identifier for the network
encryption keystore SPI. The default value is JKS.

Chapter 2. Wire listener 2-23

Important: Do not set this property if you are not familiar with Java
Cryptography Extension (JCE).

►► listener.ssl.keyStore.type=SPI ►◄

This parameter is effective when the listener.ssl.enable parameter is set to true.

listener.ssl.protocol
This optional parameter specifies the SSL or TLS protocols. The default value is
TLS.

►► ▼

,

listener.ssl.protocol= protocol ►◄

This parameter is effective when the listener.ssl.enable parameter is set to true.

security.sql.passthrough
This optional parameter indicates whether to enable support for issuing SQL
statements by using JSON documents.

►► security.sql.passthrough=
false
true ►◄

false
Disable the ability to issue SQL statements by using the MongoDB API.
This is the default.

true
Allow SQL statements to be issued by using the MongoDB API.

Wire listener resource management

These parameters provide wire listener resource management options.

listener.idle.timeout
This optional parameter specifies the amount of time, in milliseconds, that a
client connection to the wire listener can idle before it is forcibly closed. You
can use this parameter to close connections and free associated resources when
clients are idle. The default value is 0 milliseconds.

Important: When set to a nonzero value, the wire listener socket that is used
to communicate with a MongoDB client is forcibly closed after the specified
time. To the client, the forcible closure appears as an unexpected disconnection
from the server the next time there is an attempt to write to the socket.

►► listener.idle.timeout=
0
idle_time ►◄

listener.input.buffer.size
This optional parameter specifies the size, in MB, of the input buffer for each
wire listener socket. The default value is 8192 MB.

►► listener.input.buffer.size=
8192
input_buffer_size ►◄

2-24 IBM Informix JSON Compatibility

listener.memoryMonitor.enable
This optional parameter enables the wire listener memory monitor. When
memory usage for the wire listener is high, the memory monitor attempts to
reduce resources, such as removing cached JDBC prepared statements,
removing idle JDBC connections from the connection pools, and reducing the
maximum size of responses.

►► listener.memoryMonitor.enable=
true
false ►◄

true
Enable the memory monitor. This is the default.

false
Disable the memory monitor.

listener.memoryMonitor.allPoint
This optional parameter specifies the maximum percentage of heap usage
before the memory monitor reduces resources. The default value is 80.

►► listener.memoryMonitor.allPoint=percentage ►◄

This parameter is effective when the listener.memoryMonitor.enable
parameter is set to true.

listener.memoryMonitor.diagnosticPoint
This optional parameter specifies the percentage of heap usage before
diagnostic information about memory usage is logged. The default value is 99.

►► listener.memoryMonitor.diagnosticPoint=percentage ►◄

This parameter is effective when the listener.memoryMonitor.enable
parameter is set to true.

listener.memoryMonitor.zeroPoint
This optional parameter specifies the percentage of heap usage before the
memory manager reduces resource usage to the lowest possible levels. The
default value is 95.

►► listener.memoryMonitor.zeroPoint=percentage ►◄

This parameter is effective when the listener.memoryMonitor.enable
parameter is set to true.

listener.output.buffer.size
This optional parameter specifies the size, in MB, of the output buffer for each
listener socket. The default value is 8192 MB.

►► listener.output.buffer.size=
8192
output_buffer_size ►◄

listener.pool.admin.enable
This optional parameter enables a separate thread pool for connections from
the administrative IP address, which is set by the listener.admin.ipAddress

Chapter 2. Wire listener 2-25

parameter. The default value is false. A separate thread pool ensures that
administrative connections succeed even if the listener thread pool lacks
available resources.

►►
false

listener.pool.admin.enable= true ►◄

false
Prevents a separate thread pool. This is the default.

false
Creates a separate thread pool for administrative connections.

listener.pool.keepAliveTime
This optional parameter specifies the amount of time, in seconds, that threads
above the core pool size are allowed to idle before they are removed from the
wire listener JDBC connection pool. The default value is 60 seconds.

►► listener.pool.keepAliveTime=
60
thread_idle ►◄

listener.pool.queue.size
This optional parameter specifies the number of requests to queue above the
core wire listener pool size before expanding the pool size up to the maximum.
A positive integer specifies the queue size to use before expanding the pool
size up to the maximum.

►► listener.pool.queue.size=
0
-1 ►◄

0 Do not allocate a queue size for tasks. All new sessions are either run on
an available or new thread up to the maximum pool size, or are rejected if
the maximum pool size is reached. This is the default value.

-1 Allocate an unlimited queue size for tasks.

listener.pool.size.core
This optional parameter specifies the maximum sustained size of the thread
pool that listens for incoming connections from MongoDB clients. The default
value is 128.

►► listener.pool.size.core=
128
max_thread_size ►◄

listener.pool.size.maximum
This optional parameter specifies the maximum peak size of the thread pool
that listens for incoming connections from MongoDB clients. The default value
is 1024.

►► listener.pool.size.maximum=
1024
max_peak_thread_size ►◄

listener.socket.accept.timeout
This optional parameter specifies the number of milliseconds that a server

2-26 IBM Informix JSON Compatibility

socket waits for an accept() function. The default value is 1024. The value of 0
indicates to wait indefinitely. The value of this parameter can affect how
quickly the wire listener shuts down.

►► listener.socket.accept.timeout=milliseconds ►◄

listener.socket.read.timeout
This optional parameter specifies the number of milliseconds to block when
calling a read() function on the socket input stream. The default value is 1024.
A value of 0 might prevent the wire listener from shutting down because the
threads that poll the socket might never unblock.

►► listener.socket.read.timeout=milliseconds ►◄

pool.connections.maximum
This optional parameter specifies the maximum number of active connections
to a database. The default value is 50.

►► pool.connections.maximum=
50
max_active_connect ►◄

pool.idle.timeout
This optional parameter specifies the minimum amount of time that an idle
connection is in the idle pool before it is closed. The default value is 60 and the
default time unit is seconds.

Important: Set the unit of time in the pool.idle.timeunit parameter. The
default value is seconds.

►► pool.idle.timeout=
60
min_idle_pool ►◄

pool.idle.timeunit

Prerequisite: pool.idle.timeout=time
This optional parameter specifies the unit of time that is used to scale the
pool.idle.timeout parameter.

►► pool.idle.timeunit=
SECONDS
NANOSECONDS
MICROSECONDS
MILLISECONDS
MINUTES
HOURS
DAYS

►◄

SECONDS
Use seconds as the unit of time. This is the default value.

NANOSECONDS
Use nanoseconds as the unit of time.

MICROSECONDS
Use microseconds as the unit of time.

Chapter 2. Wire listener 2-27

MILLISECONDS
Use milliseconds as the unit of time.

MINUTES
Use minutes as the unit of time.

HOURS
Use hours as the unit of time.

DAYS
Use days as the unit of time.

pool.lenient.return.enable
This optional parameter suppresses the following checks on a connection that
is being returned that might throw exceptions:
v An attempt to return a pooled connection that is already returned.
v An attempt to return a pooled connection that is owned by another pool.
v An attempt to return a pooled connection that is an incorrect type.

►►
false

pool.lenient.return.enable= true ►◄

false
Connection checks are enabled. This is the default.

false
Connection checks are disabled.

pool.lenient.dispose.enable
This optional parameter suppresses the checks on a connection that is being
disposed of that might throw exceptions.

►►
false

pool.lenient.dispose.enable= true ►◄

false
Connection checks are enabled. This is the default.

false
Connection checks are disabled.

pool.semaphore.timeout
This optional parameter specifies the amount of time to wait to acquire a
permit for a database connection. The default value is 5 and the default time
unit is seconds.

Important: Set the unit of time in the pool.semaphore.timeunit parameter.

►► pool.semaphore.timeout=
5
wait_time ►◄

pool.semaphore.timeunit

Prerequisite: pool.semaphore.timeout=wait_time
This optional parameter specifies the unit of time that is used to scale the
pool.semaphore.timeout parameter.

2-28 IBM Informix JSON Compatibility

►► pool.semaphore.timeunit=
SECONDS
NANOSECONDS
MICROSECONDS
MILLISECONDS
MINUTES
HOURS
DAYS

►◄

SECONDS
Use seconds as the unit of time. This is the default value.

NANOSECONDS
Use nanoseconds as the unit of time.

MICROSECONDS
Use microseconds as the unit of time.

MILLISECONDS
Use milliseconds as the unit of time.

MINUTES
Use minutes as the unit of time.

HOURS
Use hours as the unit of time.

DAYS
Use days as the unit of time.

pool.service.interval
This optional parameter specifies the amount of time to wait between scans of
the idle connection pool. The idle connection pool is scanned for connections
that can be closed because they have exceeded their maximum idle time. The
default value is 30.

Important: Set the unit of time in the pool.service.timeunit parameter.

►► pool.service.interval=
30
wait_time ►◄

pool.service.threads
This optional parameter specifies the number of threads to use for the
maintenance of connection pools that share a common service thread pool. The
default value is 1.

►► pool.service.threads=number ►◄

pool.service.timeunit

Prerequisite: pool.service.interval=wait_time
This optional parameter specifies the unit of time that is used to scale the
pool.service.interval parameter.

Chapter 2. Wire listener 2-29

►► pool.service.timeunit=
SECONDS
NANOSECONDS
MICROSECONDS
MILLISECONDS
MINUTES
HOURS
DAYS

►◄

SECONDS
Use seconds as the unit of time. This is the default value.

NANOSECONDS
Use nanoseconds as the unit of time.

MICROSECONDS
Use microseconds as the unit of time.

MILLISECONDS
Use milliseconds as the unit of time.

MINUTES
Use minutes as the unit of time.

HOURS
Use hours as the unit of time.

DAYS
Use days as the unit of time.

pool.size.initial
This optional parameter specifies the initial size of the idle connection pool.
The default value is 0.

►► pool.size.initial=
0
idle_pool_initial_size ►◄

pool.size.minimum
This optional parameter specifies the minimum size of the idle connection
pool. The default value is 0.

►► pool.size.minimum=
0
idle_pool_min_size ►◄

pool.size.maximum
This optional parameter specifies the maximum size of the idle connection
pool. The default value is 50.

►► pool.size.maximum=
50
idle_pool_max_size ►◄

pool.type
This optional parameter specifies the type of pool to use for JDBC connections.
The available pool types are:

2-30 IBM Informix JSON Compatibility

►► pool.type=
basic
none
advanced
perThread

►◄

basic
Thread pool maintenance of idle threads is run each time that a connection
is returned. This is the default value.

none
No thread pooling occurs. Use this type for debugging purposes.

advanced
Thread pool maintenance is run by a separate thread.

perThread
Each thread is allocated a connection for its exclusive use.

pool.typeMap.strategy
This optional parameter specifies the strategy to use for distribution and
synchronization of the JDBC type map for each connection in the pool.

►► pool.typeMap.strategy=
copy
clone
share

►◄

copy
Copy the connection pool type map for each connection. This is the default
value.

clone
Clone the connection pool type map for each connection.

share
Share a single type map between all connections. You must use this
strategy with a thread-safe type map.

response.documents.size.minimum
This optional parameter specifies the number of bytes for the lower threshold
for the maximum response size, which is set by the
response.documents.size.maximum parameter. The memory manager can
reduce the response size to this size when resources are low. The default value
is 65536 bytes.

►► response.documents.size.minimum=bytes ►◄

This parameter is effective when the listener.memoryMonitor.enable
parameter is set to true.

Related tasks:
“Configuring database server authentication with PAM (UNIX, Linux)” on page
2-39
Related reference:
“Collection methods” on page 4-1
“REST API syntax” on page 5-1

Chapter 2. Wire listener 2-31

Wire listener command line options
You can use command line options to control the wire listener.

Syntax

►► java -cp pathToListener com.ibm.nosql.server.ListenerCLI ▼ -config properties_file ►

► -start
-logfile log_file error 27017

-loglevel warn -port port_number
info
debug
trace

-stop
10

-wait wait_time

►

►
-version -buildInformation

►◄

Argument Purpose

-cp pathToListener Specifies the fully qualified or relative path to the jsonListener.jar file.

com.ibm.nosql.server
.ListenerCLI

Specifies the Java main method for the JSON wire listener.

-config properties_file Specifies the name of the wire listener configuration file to run. This argument is
required to start or stop the wire listener.

-start Starts the wire listener. You must also specify the configuration file.

-stop Stops the wire listener. You must also specify the configuration file. The stop command
is similar to the MongoDB shutdown command.

-logfile log_file Specifies the name of the log file that is used. If this option is not specified, the log
messages are sent to std.out.
Important: If you have customized the Logback configuration or specified another
logging framework, the settings for -loglevel and -logfile are ignored.

-loglevel Specifies the logging level.

error
Errors are sent to the log file. This is the default value.

warn
Errors and warnings are sent to the log file.

info
Informational messages, warnings, and errors are sent to the log file.

debug
Debug, informational messages, warnings, and errors are sent to the log file.

trace
Trace, debug, informational messages, warnings, and errors are sent to the log file.

Important: If you have customized the Logback configuration or specified another
logging framework, the settings for -loglevel and -logfile are ignored.

-port port_number Specifies the port number. If a port is specified on the command line, it overrides the
port properties set in the wire listener configuration file. The default port is 27017.

2-32 IBM Informix JSON Compatibility

Argument Purpose

-wait wait_time Specifies the amount of time, in seconds, to wait for any active sessions to complete
before the wire listener is stopped. The default is 10 seconds. To force an immediate
shutdown, set the wait_time to 0 seconds.

-version Prints the wire listener version.

-buildInformation Prints the wire listener build information.

Examples

In this example, the wire listener is started and the log is specified as
$INFORMIXDIR/jsonListener.log:
java -cp $INFORMIXDIR/bin/jsonListener.jar
com.ibm.nosql.informix.server.ListenerCLI

-config $INFORMIXDIR/etc/jsonListener.properties
-logfile $INFORMIXDIR/jsonListener.log -start

In this example, the wire listener is started with the log level set to debug:
java -cp $INFORMIXDIR/bin/jsonListener.jar
com.ibm.nosql.informix.server.ListenerCLI

-config $INFORMIXDIR/etc/jsonListener.properties
–loglevel debug -start

In this example, port 6388 is specified:
java –cp $INFORMIXDIR/bin/jsonListener.jar
com.ibm.nosql.informix.server.ListenerCLI

-config $INFORMIXDIR/etc/jsonListener.properties
–port 6388 -start

In this example, the wire listener is paused 10 seconds before the wire listener is
stopped:
java –cp $INFORMIXDIR/bin/jsonListener.jar
com.ibm.nosql.informix.server.ListenerCLI

-config $INFORMIXDIR/etc/jsonListener.properties
–wait 10 -stop

In this example, the wire listener version is printed:
java –cp $INFORMIXDIR/bin/jsonListener.jar
com.ibm.nosql.informix.server.ListenerCLI

–version

In this example, the wire listener build information is printed:
java –cp $INFORMIXDIR/bin/jsonListener.jar
com.ibm.nosql.informix.server.ListenerCLI

–buildInformation

Related reference:
“Wire listener logging” on page 2-37

Starting the wire listener
You can start the wire listener for the REST API or the MongoDB API by using the
start command.

Chapter 2. Wire listener 2-33

Before you begin
v Stop all wire listeners that are currently running. If you create a server instance

during the installation process, the MongoDB API wire listener is started
automatically and connected to the MongoDB API.

v If you plan to customize the Logback logger or another custom Simple Logging
Facade for Java (SLF4J) logger, you must configure the logger before starting the
wire listener.

v “Configuring the wire listener for the first time” on page 2-1
v “Software dependencies for JSON compatibility” on page 1-2

Procedure

To start the wire listener, run the wire listener command with the -start option. For
example:
java -cp $INFORMIXDIR/bin/jsonListener.jar
com.ibm.nosql.server.ListenerCLI

-config $INFORMIXDIR/etc/jsonListener.properties -start

The listener.type property in the configuration file that you specify defines
whether to start the wire listener for the MongoDB API or the REST API.

Results

The wire listener starts.

Examples

In the following example, the wire listener is started with the configuration file
specified as jsonListener_mongo.properties, the log file specified as
jsonListener_mongo.log, and the log level specified as info:
java -cp $INFORMIXDIR/bin/jsonListener.jar
com.ibm.nosql.server.ListenerCLI

-config $INFORMIXDIR/etc/jsonListener_mongo.properties
-logfile $INFORMIXDIR/jsonListener_mongo.log
-loglevel info -start

Here is the output from starting the wire listener:
starting mongo listener on port 27017

In the following example, the wire listener is started with the configuration file
specified as jsonListener_rest.properties:
java -cp $INFORMIXDIR/bin/jsonListener.jar
com.ibm.nosql.server.ListenerCLI

-config $INFORMIXDIR/etc/jsonListener_rest.properties -start

Here is the output from starting the REST API wire listener:
starting rest listener on port 27017

Related concepts:
Chapter 5, “REST API,” on page 5-1
Related tasks:
“Running multiple wire listeners” on page 2-35
Related reference:
“Wire listener logging” on page 2-37
Related information:

2-34 IBM Informix JSON Compatibility

start json listener argument: Start the API wire listener

Running multiple wire listeners
You can run multiple wire listeners.

About this task

By running multiple wire listeners, you can use both the REST API and the
MongoDB API. For example, you can create a configuration file to start the
MongoDB API and a configuration file to start the REST API.

Procedure
1. Create the individual configuration files in the $INFORMIXDIR/etc directory. You

can use the $INFORMIXDIR/etc/jsonListener-example.properties file as a
template.

2. Customize each configuration file and assign a unique name.

Important: The url parameter must be specified, either in each individual
configuration file or in the file that is referenced by the include parameter.
a. Specify the include parameter to reference an additional configuration file.

The path can be relative or absolute. If you have multiple configuration
files, you can avoid duplicating parameter settings in the multiple
configuration files by specifying a subset of shared parameters in a single
configuration file, and the unique parameters in the individual
configuration files.

3. Start the wire listeners.

Example: Running multiple wire listeners that share parameter
settings

In this example, the same url, authentication.enable, and
security.sql.passthrough parameters are used to run two wire listeners:
1. Create a configuration file named shared.properties that includes the

following parameters:
url=jdbc:informix-sqli://localhost:9090/sysmaster:
INFORMIXSERVER=lo_informix1210;
authentication.enable=true
security.sql.passthrough=true

2. Create a configuration file for use with the MongoDB API that is named
mongo.properties, with the parameter include=shared.properties set:
include=shared.properties
listener.type=mongo
listener.port=27017

3. Create a configuration file for use with the REST API that is named
rest.properties, with the parameter include=shared.properties set:
include=shared.properties
listener.type=rest
listener.port=8080

4. From the command line, run the start command. Include separate -config
arguments for each wire listener API type.
java -cp $INFORMIXDIR/bin/jsonListener.jar:pathname/
tomcat-embed-core.jar com.ibm.nosql.server.ListenerCLI
-config json.properties
-config rest.properties -start

Chapter 2. Wire listener 2-35

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_158.htm

Related tasks:
“Starting the wire listener” on page 2-33
Related reference:
“REST API syntax” on page 5-1
“Wire listener command line options” on page 2-32

Modifying the wire listener configuration file
You can modify the wire listener connection properties that are set in the
configuration file.

About this task

The wire listener configuration file, named %INFORMIXDIR%\etc\
jsonListener.properties by default, controls the wire listener and the connection
between the client and database server.

Procedure

To modify the wire listener configuration file:
1. Stop the wire listener.
2. Update the wire listener configuration file.
3. Start the wire listener.
Related tasks:
“Stopping the wire listener”
Related reference:
“The wire listener configuration file” on page 2-3

Stopping the wire listener
You can stop the wire listener by using the stop command.

About this task

You must stop the wire listener before you modify any configuration settings.

Procedure

From the command line, run the stop command with the configuration file
specified. For example:
java -cp $INFORMIXDIR/bin/jsonListener.jar -config
$INFORMIXDIR/etc/jsonListener.properties -stop

Important: You must specify the -config argument to stop the wire listener from
the command line.

Results

The wire listener is stopped.
Related information:
stop json listener: Stop the wire listener

2-36 IBM Informix JSON Compatibility

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_159.htm

Wire listener logging
The wire listener can output trace, debug, informational messages, warnings, and
error information to a log.

The default logging mechanism for the wire listener is Logback. Logback is
pre-configured and installed along with the JSON components. For more
information on how to customize Logback, see http://logback.qos.ch/.

If you start the MongoDB API wire listener from the command line, you can
specify the amount of detail, name, and location of your log file by using the
-loglevel and -logfile command-line arguments.

Important: If you have customized the Logback configuration or specified another
logging framework, the settings for -loglevel and -logfile are ignored.

If the MongoDB API wire listener is started automatically after you create a server
instance or if you run the SQL administration API task() or admin() function with
the start json listener argument, errors are sent to a log file:
v UNIX: The log file is in $INFORMIXDIR/jsonListener.log.
v Windows: The log file is named servername_jsonListener.log and is in your

home directory. For example, C:\Users\ifxjson\
ol_informix1210_1_jsonListener.log.

Related tasks:
“Starting the wire listener” on page 2-33
Related reference:
“Wire listener command line options” on page 2-32

User authentication with the wire listener
You can configure authentication for MongoDB clients. You can choose to
authenticate users with MongoDB authentication or with the database server,
through a pluggable authentication module (PAM).

MongoDB authentication

The wire listener authenticates users with the MongoDB authentication method
outside of the database server environment. MongoDB clients connect to the
database server as the wire listener user that is specified by the url parameter. The
database server cannot access MongoDB user account information. The type of
authentication depends on the MongoDB version:

MongoDB 2.4
The MONGODB-CR challenge-response method. User information and
privileges are stored in the system_users collection in each database.

MongoDB 2.6
The MONGODB-CR challenge-response method. User information and
privileges are stored in the system.users collection in the admin database.

MongoDB 3.0
The SCRAM-SHA-1 two-step conversation method. User information and
privileges are stored in the system.users collection in the admin database.

Important: Do not use the MongoDB 3.0 authentication method with the
REST API. HTTP protocols do not support SCRAM authentication.

Chapter 2. Wire listener 2-37

http://logback.qos.ch/

If you are upgrading your MongoDB version and you have existing users, you
must upgrade your user schema.

Database server authentication with a PAM

The database server performs authentication through a PAM that implements the
MONGODB-CR challenge-response method. The database server controls all user
accounts and privileges. You can audit user activities and configure fine-grained
access control.

Important: Database server authentication is not compatible with MongoDB
version 3.0.

Configuring MongoDB authentication
You can configure the wire listener to use MongoDB authentication.

Before you begin

If you are upgrading your MongoDB version and you have existingMongoDB
users, you must upgrade your user schema.

Procedure

To configure MongoDB authentication:
1. Set the following parameters in the wire listener configuration file:
v Enable authentication: Set authentication.enable=true.
v Specify MongoDB authentication: Set db.authentication=mongodb-cr.
v Specify the MongoDB connection pool: Set

database.connection.strategy=mongodb-cr.
v Set the MongoDB version: Set mongo.api.version to the version that you

want.

Important: Do not set mongo.api.version=3.0 if you want to use the REST
API. HTTP protocols do not support SCRAM authentication.

v Optional. Specify the authentication timeout period: Set the
listener.authentication.timeout parameter to the number of milliseconds for
authentication timeout.

2. Restart the wire listener.
3. If necessary, upgrade your user schema by running the authSchemaUpgrade

command in the admin database. For example:
use admin
db.runCommand({authSchemUpgrade : 1})

The authSchemaUpgrade command upgrades the user schema to the
MongoDB version that is specified by the mongo.api.version parameter.

Related tasks:
“Starting the wire listener” on page 2-33
“Stopping the wire listener” on page 2-36
Related reference:
“The wire listener configuration file” on page 2-3

2-38 IBM Informix JSON Compatibility

Adding users
Procedure

To add authorized users:
1. Start the wire listener with authentication turned off: Set

authentication.enable=false in the wire listener configuration file.
2. Add users:
v For MongoDB version 2.4, run the addUser command for each user in each

database.
v For MongoDB version 2.6 and 3.0, run the createUser command for each

user.
3. Turn on authentication: Set authentication.enable=true in the wire listener

configuration file.
4. Restart the wire listener.

Configuring database server authentication with PAM (UNIX,
Linux)

You can configure the database server to authenticate MongoDB client users with a
pluggable authentication module (PAM).

About this task

You create a user for the wire listener for PAM connections. The wire listener uses
the PAM user to look up system catalog-related information before sending client
connection requests to the database server for authentication. The database server
authenticates the client users through PAM.

Procedure

To configure PAM authentication for MongoDB clients:
1. Set the IFMXMONGOAUTH environment variable. For example:

setenv IFMXMONGOAUTH 1

2. Create a PAM service file that is named /etc/pam.d/pam_mongo and has the
following contents:
auth required $INFORMIXDIR/lib/pam_mongo.so file=mongohash
account required $INFORMIXDIR/lib/pam_mongo.so

Replace $INFORMIXDIR with the value of the $INFORMIXDIR environment
variable.

3. On IBM AIX® 64-bit computers, create a symbolic link that is named 64 that
points to the lib directory by running the following commands:
cd $INFORMIXDIR/lib
ln -s . 64

4. Edit the sqlhosts file to add a connection that uses PAM. Include the s=4
option. Specify the PAM service pam_mongo with the pam_serv option. Specify
the password authentication mode with the pamauth option. For example:
ol_informix1210 onsoctcp myhost 8777 s=4,pam_serv=pam_mongo,pamauth=password

5. Enable connections from mapped users by setting the USERMAPPING
configuration parameter to BASIC or ADMIN in the onconfig file.

6. Set up mapping to an operating system user that has no privileges. For
example, on a typical Linux system, the user nobody is appropriate. Add the
following line to the /etc/informix/allowed.surrogates file:

Chapter 2. Wire listener 2-39

users:nobody

7. Restart the database server.
8. Create a PAM user for the wire listener. The user must be internally

authenticated and map to the user nobody. For example, create a user that is
named mongo by running the following SQL in the sysmaster database:
CREATE USER ’mongo’ WITH PASSWORD ’aPassword’

PROPERTIES USER ’nobody’;
GRANT CONNECT TO ’mongo’;

9. Verify the creation of the user by running the following statement:
SELECT * FROM sysuser:sysmongousers

WHERE username=’mongo’;

The result of the query shows the user and hashed password:
username mongo
hashed_password bbb8f9630d5c6e094b9aedd945893faf

10. Set the following parameters in the wire listener configuration file:
v Enable authentication: Set authentication.enable=true.
v Specify PAM authentication: Set db.authentication=informix-mongodb-cr.
v Specify the PAM connection pool: Set

database.connection.strategy=informix-mongodb-cr.
v Set the MongoDB version: Set mongo.api.version=2.6 or

mongo.api.version=2.4. The PAM authentication method is not compatible
with MongoDB version 3.0.

v Optional. Specify the authentication timeout period: Set the
listener.authentication.timeout parameter to the number of milliseconds for
authentication timeout.

v Specify the mapped user and password for connections and specify to
encode and hash the password: Set the url parameter. Include the NONCE
property set to a 16 character string. For example:
url=jdbc:informix-sqli://10.168.8.135:40000/sysmaster:USER=mongo;

PASSWORD=aPassword;NONCE=0123456789abcdef

11. Restart the wire listener.
12. Create users that the database server authenticates with PAM by running the

SQL statement CREATE USER. If you have existing MongoDB users, you must
re-create those users in the database server.

Related reference:
“The wire listener configuration file” on page 2-3
Related information:
sqlhosts file and SQLHOSTS registry key options
IFMXMONGOAUTH environment variable
Pluggable authentication modules (UNIX or Linux)
CREATE USER statement (UNIX, Linux)
USERMAPPING configuration parameter (UNIX, Linux)
Internal users (UNIX, Linux)

Running SQL commands by using a MongoDB API
You can run SQL statements by using the MongoDB API and retrieve results back.
The results of the SQL statements are treated like they are documents in a JSON
collection.

2-40 IBM Informix JSON Compatibility

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_0175.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqlr.doc/ids_sqr_512.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sec.doc/ids_am_002.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_1821.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_1101.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sec.doc/ids_am_045.htm

Before you begin

You must enable SQL operations by setting security.sql.passthrough=true in the
wire listener properties file.

Procedure

From the MongoDB API, use the abstract system collection system.sql as the
collection name and $sql as the query operator in the MongoDB shell command,
followed by the SQL statement. For example:
> db.getCollection("system.sql").find({ "$sql": "sql_statement" })

Examples

Create an SQL table by using the MongoDB API
In this example, an SQL table is created by running the Informix CREATE
TABLE command by using the MongoDB API:
> db.getCollection("system.sql").find({ "$sql": "create table foo
(c1 int)" })

Drop an SQL table by using the MongoDB API
In this example, an SQL table is dropped by running the Informix DROP
TABLE command by using the MongoDB API:
> db.getCollection("system.sql").find({"$sql": "drop table foo" })

Delete SQL customer call records that are more than 5 years old by using the
MongoDB API

In this example, customer call records stored in SQL tables are deleted by
running the Informix DELETE command by using the MongoDB API:
> db.getCollection("system.sql").findOne({ "$sql": "delete from
cust_calls where (call_dtime + interval(5) year to year) < current" })

Result: 7 rows were deleted.
{ "n" : 7 }

Delete SQL customer call records that are more than 5 years old by using the
MongoDB API

In this example, customer call records stored in SQL tables are deleted by
running the Informix DELETE command by using the MongoDB API:
> db.getCollection("system.sql").findOne({ "$sql": "delete
from cust_calls where (call_dtime + interval(5) year to year) < current" })

Result: 7 rows were deleted.
{ "n" : 7 }

Join JSON collections
In this example, a query counts the number of orders a customer has
placed by using an outer join to include the customers who have not
placed orders.
> db.getCollection("system.sql").find({ "$sql": "select
c.customer_num,o.customer_num as order_cust,count(order_num) as
order_count from customer c left outer join orders o on
c.customer_num = o.customer_num group by 1, 2 order by 2" })

Result:

Chapter 2. Wire listener 2-41

{ "customer_num" : 113, "order_cust" : null, "order_count" : 0 }
{ "customer_num" : 114, "order_cust" : null, "order_count" : 0 }
{ "customer_num" : 101, "order_cust" : 101, "order_count" : 1 }
{ "customer_num" : 104, "order_cust" : 104, "order_count" : 4 }
{ "customer_num" : 106, "order_cust" : 106, "order_count" : 2 }

Related tasks:
“Configuring the wire listener for the first time” on page 2-1
Related reference:
“The wire listener configuration file” on page 2-3

Running MongoDB operations on relational tables
You can run MongoDB operations on relational tables by using the MongoDB API.

About this task

Use the MongoDB database methods to run read and write operations on a
relational table as if the table were a collection. The wire listener examines the
database and if the accessed entity is a relational table, it converts the basic
operations on that table to SQL and converts the returned values into a JSON
document. At the first access to an entity, the wire listener caches the name and
type of that entity. The first access results in an extra call to the Informix server,
but subsequent operations do not.

Procedure

From the MongoDB API, enter the relational table name as the collection name in
the MongoDB collection method. For example:
>db.getCollection("tablename");

Examples

The following examples use the customer table in the stores_demo sample
database. All of the tables in the stores_demo database are relational tables, but
you can use the same MongoDB collection methods to access and modify the
tables, as if they were collections.

Get the customer count
In this example, the number of customers is returned.
> db.customer.count()
28

Query for a particular customer
In this example, a specific customer record is retrieved.
> db.customer.find({customer_num:101})
{ "customer_num" : 101, "fname" : "Ludwig", "lname" : "Pauli", "company" :
"All Sports Supplies", "address1" : "213 Erstwild Court", "address2" :
null, "city" : "Sunnyvale", "state" : "CA", "zipcode" : "94086",
"phone" : "408-555-8075" }

Update a customer phone number
In this example, the customer phone number is updated.
> db.customer.update({"customer_id":101}, {"$set":{"phone":"408-555-1234"}})

Related reference:
“Collection methods” on page 4-1

2-42 IBM Informix JSON Compatibility

Running join queries by using the wire listener
You can use the wire listener to run join queries on JSON and relational data. The
syntax supports collection-to-collection joins, relational-to-relational joins, and
collection-to-relational joins. Join queries are not supported in sharded
environments.

About this task

Join queries in the wire listener are done by submitting a join query document to
the system.join pseudo table.
v Wire listener join queries support the sort, limit, skip, and explain options that

you can set on a MongoDB cursor.
v Fields that are specified in the sort clause must also be included in the projection

clause.
v The $hint operator is not supported.

Procedure
1. Create a join query document. The join query document has the following

syntax:

►► { $collections :
" "

►

► ▼

,

{ "table_or_collection_name":{"$project":{specifications} }
,"$where":{filter}

►

►

▼

, "$condition":{ "tabName1.column":"tabName2.column" } }
,

"tabName1.column":["tabName2.column"]

►◄

$collections
This required Informix JSON operator defines the two or more collections
or relational tables, which are separated by commas, that are included in
the join.

$project
This required MongoDB JSON operator applies a projection clause to the
table_or_collection_name that is specified.

$where
This optional MongoDB JSON operator applies a query filter to the table or
relational table. You can use any of the supported query operators that are
listed here: “Query and projection operators” on page 4-18.

$condition
This required Informix JSON operator defines how the specified collections
or tables are joined. You can specify a condition by mapping a single table
column to another single table column, or a single table column to multiple
other table columns.

2. Run a find query against a pseudo table that is named system.join with the
join query document specified. For example, in the MongoDB shell:
> db.system.join.find({join_query_document})

Chapter 2. Wire listener 2-43

Results

The query results are returned.

Examples of join query document syntax

This example retrieves customer orders that total more than $100. The join query
document joins the customer and orders tables, on the customer_num field where
the order total is greater than 100. The same query document works if the
customers and orders tables are collections, relational tables, or a combination of
the two.
{"$collections":

{
"customers":

{"$project":{customer_num:1,name:1,phone:1}},
"orders":

{"$project":{order_num:1,nitems:1,total:1,_id:0},
"$where":{total:{"$gt":100}}}

},
"$condition":

{"customers.customer_num":"orders.customer_num"}
}

This example retrieves the order, shipping, and payment information for order
number 1093. The array syntax is used in the $condition syntax of the join query
document.
{"$collections":

{
"orders":

{"$project":{order_num: 1,nitems: 1,total: 1,_id:0},
"$where":{order_num:1093}},

"shipments":
{"$project":{shipment_date:1,arrival_date:1}},

"payments":
{"$project":{payment_method:1,payment_date:1}}

},
"$condition":
{"orders.order_num":["shipments.order_num","payments.order_num"]}

}

This example retrieves the order and customer information for orders that total
more than $1000 and that are shipped to the postal code 10112.
{"$collections":

{
"orders":

{"$project":{order_num:1,nitems:1,total:1,_id:0},
"$where":{total:{$gt:1000}}},

"shipments":
{"$project":{shipment_date:1,arrival_date:1,_id:0},
"$where":{address.zipcode:10112},

"customer":
{"$project":{customer_num:1,name:1,company:1,_id:0}}

},
"$condition":

{
"orders.order_num":"shipments.order_num",

"orders.customer_num":"customer.customer_num",
}

}

2-44 IBM Informix JSON Compatibility

High availability support in the wire listener
The wire listener provides high availability support.

To provide high availability to client applications, use the appropriate method:
v For REST clients, you can use a reverse proxy for multiple wire listeners.
v For MongoDB clients, use a high-availability cluster configuration for your

Informix database servers. For each database server in the cluster, run a wire
listener that is directly connected to that database server. Each wire listener must
be on the same computer as the database server that it is connected to and all
wire listeners must run on the port 27017. For more information, see
http://docs.mongodb.org/meta-driver/latest/legacy/connect-driver-to-replica-
set/.

To provide high availability between the wire listener and the Informix database
server, use one of the following methods:
v Route the connection between the wire listener and the database server through

the Connection Manager.
v Configure the url parameter in the wire listener configuration file to use one of

the Informix JDBC Driver methods of connecting to a high-availability cluster.
For more information, see Dynamically reading the Informix sqlhosts file or
Properties for connecting directly to an HDR pair of servers.

Related information:
Dynamically reading the sqlhosts file

Chapter 2. Wire listener 2-45

http://docs.mongodb.org/meta-driver/latest/legacy/connect-driver-to-replica-set/
http://docs.mongodb.org/meta-driver/latest/legacy/connect-driver-to-replica-set/
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.jdbc_pg.doc/ids_jdbc_041.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.jdbc_pg.doc/ids_jdbc_049.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.jdbc_pg.doc/ids_jdbc_041.htm

2-46 IBM Informix JSON Compatibility

Chapter 3. JSON data sharding

You can shard data with IBM Informix. Documents from a collection or rows from
a table can be sharded across a cluster of database servers, reducing the number of
documents or rows and the size of the index for the database of each server. When
you shard data across database servers, you also distribute performance across
hardware. As your database grows in size, you can scale up by adding more shard
servers to your shard cluster.

Documents or rows that are inserted on a shard server are distributed to the
appropriate shard servers in a shard cluster based on the sharding schema. Queries
on a sharded table automatically retrieve data from all relevant shard servers in a
shard cluster. When data is sharded based on a field or column that specifies
certain segmentation characteristics, queries can skip shard servers that do not
contain relevant data.

A shard cluster of Informix database servers is a special form of Enterprise
Replication. You can create a shard cluster with Enterprise Replication commands
or with MongoDB commands.

Informix shard cluster architecture is very flexible:
v Shard servers can run on different hardware and operating systems.
v Shard servers can run different version of Informix. For example, you can

upgrade Informix on shard servers individually.
v Shard servers can have high-availability secondary servers from which users can

query the sharded table.

To start sharding data:
1. Prepare shard servers for sharding.
2. Create a shard cluster.
3. Define a schema for sharding data against an existing table.
Related tasks:
“Configuring the wire listener for the first time” on page 2-1
Related information:
Shard cluster setup
Sharded queries

Preparing shard servers
You must prepare shard servers before you can shard data.

Procedure

To set up shard servers:
1. On each shard server, set the SHARD_ID configuration parameter to a positive

integer value that is unique in the shard cluster by running the following
command:
onmode -wf SHARD_ID=unique_positive_integer

© Copyright IBM Corp. 2013, 2015 3-1

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.erep.doc/ids_erp_646.htm

If the SHARD_ID configuration parameter is already set to a positive integer,
you can change the value by editing the onconfig file and then restarting the
database server. You can also set the SHARD_MEM configuration parameter to
customize the number of memory pools that are used during shard queries.

2. Specify trusted hosts information for all shard servers. On each shard server,
use one of the following methods to add trusted host information about all the
other shard servers:
v Use the OpenAdmin Tool (OAT) for Informix. Go to the Server

Administration > Configuration page, and click the Trusted Hosts tab.
v Run the SQL administration API task() or admin() function with the cdr add

trustedhost argument and include the appropriate host values for all the
other shard servers. You must be a Database Server Administrator (DBSA) to
run these functions.

3. On each shard server, edit the wire listener configuration file:
a. Set the sharding.enable parameter to true.
b. Set the sharding.query.parallel.enable parameter to true.
c. Set the update.client.strategy parameter to deleteInsert.
d. Set the USER attribute in the url parameter to a user who has the

REPLICATION privilege. If you created a database server instance during
installation, the ifxjson user, who has the REPLICATION privilege, is
automatically set as the value of the USER attribute. Otherwise, see
“Configuring the wire listener for the first time” on page 2-1 for
instructions.

4. On each shard server, restart the wire listener.
Related information:
cdr add trustedhost argument: Add trusted hosts (SQL administration API)
cdr list trustedhost argument: List trusted hosts (SQL administration API)
Starting the wire listener
onmode -wf, -wm: Dynamically change certain configuration parameters
SHARD_ID configuration parameter
SHARD_MEM configuration parameter

Creating a shard cluster with MongoDB commands
You create a shard cluster by adding shard servers with the The MongoDB
sh.addShard shell command or the db.runCommand command with the addShard
syntax.

Before you begin

The shard servers must be prepared for sharding. See “Preparing shard servers” on
page 3-1.

Procedure

To create a shard cluster from the MongoDB shell:
1. Run the mongo command to start the MongoDB shell.
2. Run one of the following commands with the host name and port that is

specified for the Informix server that you want to add. The specified port must
run the Informix network-based listener, for example the onsoctcp protocol.
a. Run the sh.addShard command.

3-2 IBM Informix JSON Compatibility

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_155.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_157.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0439.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.erep.doc/ids_erp_650.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.erep.doc/ids_erp_651.htm

b. Run the db.runCommand with the addShard command syntax. You can
include the fully qualified domain name of the server instead of the host
name. You can specify multiple servers.

Results

A shard cluster is created with the specified shard servers. Each shard server is set
up with Enterprise Replication and assigned an Enterprise Replication group name
in its sqlhosts file. The default Enterprise Replication group name for a database
server is the database server name with a suffix of g_. For example, the default
Enterprise Replication group name for a database server that is named myserver is
g_myserver.

Examples

Add a server to a shard cluster with addShard
The following command adds the database server that is at port 9202 of
myhost2.ibm.com to a shard cluster:
> sh.addShard("myhost2.ibm.com:9202")

Add a server to a shard cluster with db.runCommand and addShard
The following command adds the database server that is at port 9204 of
myhost4.ibm.com to a shard cluster.
> db.runCommand({"addShard":"myhost4.ibm.com:9204"})

Add multiple servers to a shard cluster
This example adds the database servers that are at port 9205 of
myhost5.ibm.com, port 9206 of myhost6.ibm.com, and port 9207 of
myhost7.ibm.com to a shard cluster.
> db.runCommand({"addShard":["myhost5.ibm.com:9205",

"myhost6.ibm.com:9206","myhost7.ibm.com:9207"]})

Related reference:
“Database commands” on page 4-4
Related information:
cdr define shardCollection
cdr add trustedhost argument: Add trusted hosts (SQL administration API)
cdr remove trustedhost argument: Remove trusted hosts (SQL administration API)
cdr list trustedhost argument: List trusted hosts (SQL administration API)

Shard-cluster definitions for distributing data
A cluster of shard servers uses a definition to distribute data across shard servers.

You must create a shard-cluster definition to distribute data across the shard
servers. The definition contains the following information:
v The Informix Enterprise Replication group name of each participating shard

server.
v The name of the database and collection or table that is distributed across the

shard servers of a shard cluster.
v The field or column that is used as a shard key for distributing data. Shard key

values determine which shard server a document or row is stored on.
v The sharding method by which documents or rows are distributed to specific

shard servers. The sharding method is either a hash-based or expression-based.
Related information:

Chapter 3. JSON data sharding 3-3

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.erep.doc/ids_erp_640.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_155.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_156.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_157.htm

cdr change shardCollection
cdr delete shardCollection

Defining a sharding schema with a hash algorithm
The shardCollection command in the MongoDB shell creates a definition for
distributing data across the database servers of a shard cluster.

Procedure

To create a shard-cluster definition that uses a hash algorithm for distributing data
across database servers:
1. Run the mongo command. The command starts the MongoDB shell.
2. Run the shardCollection command. There are two ways to run the command:
v Run the sh.shardCollection MongoDB command. For example:

> sh.shardCollection("database1.collection1",
{customer_name:"hashed"})

v Run the db.runCommand from the MongoDB shell, with shardCollection
command syntax. For example:
> db.runCommand({"shardCollection":"database2.collection_2",

key:{customer_name:"hashed"}})

The shardCollection command syntax for using a hash algorithm is shown
in the following diagram:

►► db.runCommand ({"shardCollection":"database. collection ",
table

►

► key:{ field :"hashed"}})
column

►◄

Element Description Restrictions

database The name of the database that contains the collection
that is distributed across database servers.

The database must exist.

collection The name of the collection that is distributed across
database servers.

The collection must exist.

column The shard key that is used to distribute data across the
database servers of a shard cluster.

The column must exist.

Composite shard keys are
not supported.

field The shard key that is used to distribute data across the
database servers of a shard cluster.

The field must exist.

Composite shard keys are
not supported.

table The name of the table that is distributed across
database servers.

The table must exist.

3. For optimal query performance, connect to the wire listener and run the
MongoDB ensureIndex command on the shard key of each of a cluster's shard
servers. The ensureIndex command ensures that an index for the collection or
table is created on the shard server.

3-4 IBM Informix JSON Compatibility

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.erep.doc/ids_erp_641.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.erep.doc/ids_erp_642.htm

Results

The name of a shard-cluster definition that is created by a shardCollection
command that is run through the wire listener is:

►► sh_database_ collection
table

►◄

Example

The following command defines a shard cluster that uses a hash algorithm on the
shard key value year to distribute data across multiple database servers.
> sh.shardCollection("mydatabase.mytable",{year:"hashed"})

The name of the created shard-cluster definition is sh_mydatabase_mytable.
Related reference:
“Database commands” on page 4-4
Related information:
cdr change shardCollection
cdr delete shardCollection

Defining a sharding schema with an expression
The MongoDB shell db.runCommand command with shardCollection command
syntax creates a definition for distributing data across the database servers of a
shard cluster.

Procedure

To create a shard-cluster definition that uses an expression for distributing data
across database servers:
1. Run the mongo command. The command starts the MongoDB shell.
2. Run the db.runCommand from the MongoDB shell, with shardCollection

command syntax.
The shardCollection command syntax for using an expression is shown in the
following diagram:

►► db.runCommand ({"shardCollection":"database. collection ",
table

►

► key:{ column :1},expressions:{
field

►

► ▼

,

" ER_group_name ": expression " ►

Chapter 3. JSON data sharding 3-5

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.erep.doc/ids_erp_641.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.erep.doc/ids_erp_642.htm

► " ER_group_name ":" remainder " }) ►◄

Element Description Restrictions

collection The name of the collection that is distributed
across database servers.

The collection must exist.

column The shard key that is used to distribute data across
the database servers of a shard cluster.

The column must exist.

Composite shard keys are
not supported.

database The name of the database that contains the
collection that is distributed across database
servers.

The database must exist.

ER_group_name The Enterprise Replication group name of a
database server that receives copied data.

The default Enterprise Replication group name for
a database server is the database server's name
prepended with g_. For example, the default
Enterprise Replication group name for a database
server that is named myserver is g_myserver.

None.

expression The expression that is used to select documents by
shard key value.

None.

field The shard key that is used to distribute data across
the database servers of a shard cluster.

The field must exist.

Composite shard keys are
not supported.

remainder Specifies a database server that receives documents
with shard key values that are not selected by
expressions. The remainder expression is required.

table The name of the table that is distributed across
database servers.

The table must exist.

3. For optimal query performance, connect to the wire listener and run the
MongoDB ensureIndex command on the shard key of each of a cluster's shard
servers. The ensureIndex command ensures that an index is created for the
collection or table on the shard server.

Results

The name of a shard-cluster definition that is created by a shardCollection
command that is run through the wire listener is:

►► sh_database_ collection
table

►◄

Examples

Define a shard cluster that uses an expression to distribute data across multiple
database servers

The following command defines a shard cluster that uses an expression on
the field value state for distributing collection1 across multiple database
servers.

3-6 IBM Informix JSON Compatibility

> db.runCommand({"shardCollection":"database1.collection1",
key:{state:1},expressions:{"g_shard_server_1":"in (’KS’,’MO’)",
"g_shard_server_2":"in (’CA’,’WA’)","g_shard_server_3":"remainder"}})

The name of the created shard-cluster definition is
sh_database1_collection1.
v Inserted documents with KS and MO values in the state field are sent to

g_shard_server_1.
v Inserted documents with CA and WA values in the state field are sent to

g_shard_server_2.
v All inserted documents that do not have KS, MO, CA, or WA values in

the state field are sent to g_shard_server_3.

Define a shard cluster that uses an expression to distribute data across multiple
database servers

The following command defines a shard cluster that uses an expression on
the column value animal for distributing table2 across multiple database
servers.
> db.runCommand({"shardCollection":"database1.table2",

key:{animal:1},expressions:{"g_shard_server_1":"in (’dog’,’coyote’)",
"g_shard_server_2":"in (’cat’)","g_shard_server_3":"in (’rat’)",
"g_shard_server_4":"remainder"}})

The name of the created shard-cluster definition is sh_database2_table2.
v Inserted rows with dog or coyote values in the animal column are sent

to g_shard_server_1.
v Inserted rows with cat values in the animal column are sent to

g_shard_server_2.
v Inserted rows with rat data values in the animal column are sent to

g_shard_server_3.
v All inserted rows that do not have dog, coyote, cat, or rat values in the

animal column are sent to g_shard_server_4.

Define a shard cluster that uses an expression to distribute collections across
multiple database servers

The following command defines a shard cluster that uses an expression on
the field value year for distributing collection3 across multiple database
servers.
> db.runCommand({"shardCollection":"database1.collection3",

key:{year:1},expressions:{"g_shard_server_1":"between 1980 and 1989",
"g_shard_server_2":"between 1990 and 1999",
"g_shard_server_3":"between 2000 and 2009",
"g_shard_server_4":"remainder"}})

The name of the created shard-cluster definition is
sh_database3_collection3.
v Inserted documents with values of 1980 to 1989 in the year field are sent

to g_shard_server_1.
v Inserted documents with values of 1990 to 1999 in the year field are sent

to g_shard_server_2.
v Inserted documents with values of 1980 to 1989 in the year field are sent

to g_shard_server_3.
v Inserted documents with values below 1980 or above 2009 in the year

field are sent to g_shard_server_4.
Related reference:

Chapter 3. JSON data sharding 3-7

“Database commands” on page 4-4

Shard cluster management
You can display information about shard cluster participants and about the shard
cache on each shard server. You can add or remove shard servers from a shard
cluster.

To display information about shard cluster participants, run the db.runCommand
from the MongoDB shell, with listShard command syntax.

To display information about shard caches, run the onstat -g shard command.

Add a shard server

To add a shard server to the shard cluster, prepare the new shard server and add it
to the shard cluster with the addShard command. Make sure to add the trusted
host information for the new shard server to the existing shard servers.

Remove a shard server

To remove a shard server, run the db.runCommand from the MongoDB shell, with
removeShard command syntax.

Change the sharding definition

After you add or remove a shard server, you might need to update the sharding
definition:
v A definition that uses a hash algorithm to shard data is modified automatically.
v You must modify a sharding definition that uses an expression by running the

changeShardCollection command.

When you change the sharding definition, existing data on shard servers is
redistributed to match the new definition.
Related tasks:
“Preparing shard servers” on page 3-1
“Creating a shard cluster with MongoDB commands” on page 3-2
Related information:
cdr list trustedhost argument: List trusted hosts (SQL administration API)
onstat -g shard command

Changing the definition for a shard cluster
The db.runCommand command with changeShardCollection command syntax
changes the definition for a shard cluster.

Before you begin

If the shard cluster uses an expression for distributing data across multiple
database servers, you must add database servers to a shard cluster and remove
database servers from a shard cluster by running the changeShardCollection
command. If the shard-cluster definition uses a hash algorithm, database servers
are automatically added to the shard cluster when you run the sh.addShard
MongoDB shell command.

3-8 IBM Informix JSON Compatibility

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_157.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_1177.htm

If you change a shard-cluster definition to include a new shard server, that server
must first be added to a shard cluster by running the db.runCommand command
with addShard command syntax.

When a shard-cluster definition changes, existing data on shard servers is
redistributed to match the new definition.

About this task

The following steps apply to changing the definition for shard cluster that uses an
expression for distributing documents in a collection across multiple database
servers.

Procedure

To change the definition for a shard cluster:
1. Run the mongo command. The command starts the MongoDB shell.
2. Change the shard-cluster definition by running the changeShardCollection

command. You must redefine all expressions for all shard servers, not just
newly added or changed shard servers.

►► db.runCommand ({"changeShardCollection":"database. collection ",
table

►

► ▼

,

expressions:{ " ER_group_name ":" expression " ►

► ,"ER_group_name":"remainder" }) ►◄

Element Description Restrictions

collection The name of the collection that is distributed across database
servers.

The collection must
exist.

database The name of the database that contains the collection that is
distributed across database servers.

The database must
exist.

ER_group_name The Enterprise Replication group name of a database server
that receives copied data.

The default Enterprise Replication group name for a database
server is the database server's name prepended with g_. For
example, the default Enterprise Replication group name for a
database server that is named myserver is g_myserver.

None.

expression The expression that is used to select documents by shard key
value.

None.

remainder The database server that receives documents with shard key
values that are not selected by expressions.

table The name of the table that is distributed across database
servers.

The table must exist.

Chapter 3. JSON data sharding 3-9

3. For optimal query performance, connect to the wire listener and run the
MongoDB ensureIndex command on the shard key each of a cluster's shard
servers. The ensureIndex command ensures that an index for the collection or
table is created on the shard server.

Example

You have a shard cluster that is composed of three database servers, and the shard
cluster is defined by the following command:
> db.runCommand({"shardCollection":"database1.collection1",

expressions:{"g_shard_server_1":"in (’KS’,’MO’)",
"g_shard_server_2":"in (’CA’,’WA’)","g_shard_server_3":"remainder"})

To add g_shard_server_4 and g_shard_server_5 to the shard cluster and change
where data is sent to, run the following command:
> db.runCommand({"changeShardCollection":"database1.collection1",

expressions:{"g_shard_server_1":"in (’KS’,’MO’)",
"g_shard_server_2":"in (’TX’,’OK’)","g_shard_server_3":"in (’CA’,’WA’)",
"g_shard_server_4":"in (’OR’,’ID’)","g_shard_server_5":"remainder"})

The new shard cluster contains five database servers:
v Inserted documents with a state field value of KS or MO are sent to

g_shard_server_1.
v Inserted documents with a state field value of TX or OK are sent to

g_shard_server_2.
v Inserted documents with a state field value of CA or WA are sent to

g_shard_server_3.
v Inserted documents with a state field value of OR or ID are sent to

g_shard_server_4.
v Inserted documents with a state field value that is not in the expression are sent

to g_shard_server_5.

To then remove g_shard_server_2 and change where the data that was on
g_shard_server_2 is sent to, run the following command:
> db.runCommand({"changeShardCollection":"database1.collection1",

expressions:{"g_shard_server_1":"in (’KS’,’MO’)",
"g_shard_server_3":"in (’TX’,’CA’,’WA’)",
"g_shard_server_4":"in (’OK’,’OR’,’ID’)",
"g_shard_server_5":"remainder"})

The new shard cluster contains four database servers.
v Inserted documents with a state field value of TX are now sent to

g_shard_server_3.
v Inserted documents with a state field value of OK are now sent to

g_shard_server_4.

Existing data on shard servers is redistributed to match the new definition.

Viewing shard-cluster participants
Run the db.runCommand MongoDB shell command with listShards syntax to list
the Enterprise Replication group names, hosts, and port numbers of all shard
servers in a shard cluster.

3-10 IBM Informix JSON Compatibility

Procedure
1. Run the mongo command. The command starts the MongoDB shell.
2. Run the listShards command:

db.runCommand({listShards:1})

Results

The listShards command produces output in the following structure:
{

"serverUsed" : "server_host/IP_address",
"shards" : [

{
"_id" : "ER_group_name_1",
"host" : "host_1:port_1"

},
{

"_id" : "ER_group_name_2",
"host" : "host_2:port_2"

},
{

"_id" : "ER_group_name_x",
"host" : "host_x:port_x"

}
],
"ok" : 1

}

ER_group_name
The Enterprise Replication group name of a shard server.

host The host for a shard-cluster participant. The host can be a localhost name
or a full domain name.

IP_address
The IP address of the database server that the listener is connected to.

port The port number that a shard-cluster participant uses to communicate with
other shard-cluster participants.

server_host
The host for the database server that the listener is connected to. The host
can be a localhost name or a full domain name.

Example

For this example, you have a shard cluster defined by the following command:
prompt> db.runCommand({"addShard":["myhost1.ibm.com:9201",

"myhost2.ibm.com:9202","myhost3.ibm.com:9203",
"myhost4.ibm.com:9204","myhost5.ibm.com:9205"]})

The following example output is shown when the listShards command is run in
the MongoDB shell, and the listener is connected to the database server at
myhost1.ibm.com.

Chapter 3. JSON data sharding 3-11

Related reference:
“Database commands” on page 4-4
Related information:
cdr list trustedhost argument: List trusted hosts (SQL administration API)
Installing the OpenAdmin Tool for Informix with the Client SDK
cdr list shardCollection
onstat -g shard command: Print information about the shard cache

{
"serverUsed" : "myhost1.ibm.com/192.0.2.0:9200",
"shards" : [

{
"_id" : "g_myserver1",
"host" : "myhost1.ibm.com:9200"

},
{

"_id" : "g_myserver2",
"host" : "myhost2.ibm.com:9202"

},
{

"_id" : "g_myserver3",
"host" : "myhost3.ibm.com:9203"

}
{

"_id" : "g_myserver4",
"host" : "myhost4.ibm.com:9204"

}
{

"_id" : "g_myserver5",
"host" : "myhost5.ibm.com:9205"

}
],
"ok" : 1

}

Figure 3-1. listShards command output for a shard cluster

3-12 IBM Informix JSON Compatibility

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_157.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.cpi.doc/ids_cpi_027.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.erep.doc/ids_erp_643.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_1177.htm

Chapter 4. MongoDB API and commands

The Informix support for MongoDB application programming interfaces and
commands are described here.

Language drivers
The wire listener parses messages that are based on the MongoDB Wire Protocol.

You can use the MongoDB community drivers to store, update, and query JSON
documents with Informix as a JSON data store. These drivers can include Java,
C/C++, Ruby, PHP, PyMongo, and so on.

Download the MongoDB drivers for the programming languages at
http://docs.mongodb.org/ecosystem/drivers/.

Command utilities and tools
You can use the MongoDB shell and any of the standard MongoDB command
utilities and tools.

The supported MongoDB shell is version 2.4, 2.6, and 3.0.

You can run the MongoDB mongodump and mongoexport utilities against
MongoDB to export data from MongoDB to Informix.

You can run the MongoDB mongorestore and mongoimport utilities against
Informix to import data from MongoDB to Informix.

Collection methods
Informix supports a subset of the MongoDB collection methods.

The collection methods are run on a JSON collection or a relational table. The
syntax for collection methods in the mongo shell is
db.collection_name.collection_method(), where db refers to the current database,
collection_name is the name of the JSON collection or relational table,
collection_method is the MongoDB collection method. For example,
db.cartype.count() determines the number of documents that are contained in the
cartype collection.

Table 4-1. Supported collection methods

Collection method
JSON
collections

Relational
tables Details

aggregate No No

count Yes Yes

createIndex Yes Yes For more information, see “Index creation” on page 4-3.

dataSize Yes No

distinct Yes Yes

drop Yes Yes

© Copyright IBM Corp. 2013, 2015 4-1

http://docs.mongodb.org/ecosystem/drivers/

Table 4-1. Supported collection methods (continued)

Collection method
JSON
collections

Relational
tables Details

dropIndex Yes Yes

dropIndexes Yes No

ensureIndex Yes Yes For more information, see “Index creation” on page 4-3.

find Yes Yes

findAndModify Yes Yes For relational tables, findAndModify is supported only for tables
that have a primary key. This method is not support sharded data.

findOne Yes Yes

getIndexes Yes No

getShardDistribution No No

getShardVersion No No

getIndexStats No No

group No No

indexStats No No

insert Yes Yes

isCapped Yes Yes This command returns false because capped collections are not
supported in Informix.

mapReduce No No

reIndex No No

remove Yes Yes The justOne option is not supported. This command deletes all
documents that match the query criteria.

renameCollection No No

save Yes No

stats Yes No

storageSize Yes No

totalSize Yes No

update Yes Yes The multi option is supported for JSON collections if
update.one.enable=true in the wire listener properties file. For
relational tables, the multi-parameter is ignored and all documents
that meet the query criteria are updated. If
update.one.enable=false, all documents that match the query
criteria are updated.

validate No No

For more information about the MongoDB features, see http://docs.mongodb.org/
manual/reference/.
Related tasks:
“Running MongoDB operations on relational tables” on page 2-42
Related reference:
“The wire listener configuration file” on page 2-3

4-2 IBM Informix JSON Compatibility

http://docs.mongodb.org/manual/reference/
http://docs.mongodb.org/manual/reference/

Index creation
Informix supports the creation of indexes on collections and relational tables by
using the MongoDB API and the wire listener.
v “Index creation by using the MongoDB syntax”
v “Index creation for a specific data type by using the Informix extended syntax”
v “Index creation for text, geospatial, and hashed” on page 4-4

Index creation by using the MongoDB syntax

For JSON collections and relational tables, you can use the MongoDB createIndex
and ensureIndex syntax to create an index that works for all data types. For
example:
db.collection.createIndex({ zipcode: 1 })
db.collection.createIndex({ state: 1, zipcode: -1})

Tip: If you are creating an index for a JSON collection on a field that has a fixed
data type, you can get the best query performance by using the Informix extended
syntax.

The following options are supported:
v name
v unique

The following options are not supported:
v background
v default_language
v dropDups
v expireAfterSeconds
v language_override
v sparse
v v
v weights

Index creation for a specific data type by using the Informix
extended syntax

You can use the Informix createIndex or ensureIndex syntax on collections to create
an index for a specific data type. For example:
db.collection.createIndex({ zipcode : [1, “$int”] })
db.collection.createIndex({ state: [1, “$string”], zipcode: [-1, “$int”] })

This syntax is supported for collections only. It not supported for relational tables.

Tip: If you are creating an index on a field that has a fixed data type, you can get
better query performance by using the Informix createIndex or ensureIndex syntax.

The following data types are supported:
v $binary
v $boolean
v $date
v $double2

Chapter 4. MongoDB API and commands 4-3

v $int3

v $integer3

v $lvarchar1

v $number2

v $string1

v $timestamp
v $varchar

Notes:

1. $string and $lvarchar are aliases and create lvarchar indexes.
2. $number and $double are aliases and create double indexes.
3. $int and $integer are aliases.

Index creation for text, geospatial, and hashed

Text indexes
Text indexes are supported. You can search string content by using text
search in documents of a collection.

You can create text indexes by using the MongoDB or Informix syntax. For
example, here is the MongoDB syntax:
db.articles.ensureIndex({ abstract: "text" })

The Informix syntax provides additional support for the Informix basic text
search functionality. For more information, see “createTextIndex” on page
4-11.

Geospatial indexes
2dsphere indexes are supported by using the GeoJSON objects, but not the
MongoDB legacy coordinate pairs.

2d indexes are not supported.

Hashed indexes
Hashed indexes are not supported. If a hashed index is specified, a regular
untyped index is created.

For more information about the MongoDB features, see http://docs.mongodb.org/
manual/reference/.

Database commands
Informix supports a subset of the MongoDB database commands.

The basic syntax for database commands in the mongo shell is db.command(), where
db refers to the current database, and command is the database command. You can
use the mongo shell helper method db.runCommand() to run database commands on
the current database.
v “User commands” on page 4-5
v “Database operations” on page 4-6

4-4 IBM Informix JSON Compatibility

http://docs.mongodb.org/manual/reference/
http://docs.mongodb.org/manual/reference/

User commands

Aggregation commands

Table 4-2. Aggregation commands

MongoDB command
JSON
collections

Relational
tables Details

aggregate Yes Yes The wire listener supports version 2.4 of the MongoDB
aggregate command, which returns a command result. For
more information, see “Aggregation framework operators” on
page 4-22.

count Yes Yes

distinct Yes Yes

group No No

mapReduce No No

Geospatial commands

Table 4-3. Geospatial commands

MongoDB command
JSON
collections

Relational
tables Details

geoNear Yes No Supported by using the GeoJSON format. The MongoDB
legacy coordinate pairs are not supported.

geoSearch No No

geoWalk No No

Query and write operation commands

Table 4-4. Query and write operation commands

MongoDB command
JSON
collections

Relational
tables Details

delete Yes Yes

eval No No

findAndModify Yes Yes For relational tables, the findAndModify command is
supported only for tables that have a primary key. This
command does not support sharded data.

getLastError Yes Yes

getPrevError No No

insert Yes Yes

resetError No No

text No No Text queries are supported by using the $text or $ifxtext
query operators, not through the text command.

update Yes Yes

Chapter 4. MongoDB API and commands 4-5

Database operations

Authentication commands

Table 4-5. Authentication commands

Name Supported Details

authenticate Yes

authSchemaUpgrade Yes This command upgrades user data to MongoDB API version 2.6
or higher.

logout Yes

getnonce Yes

User management commands

Table 4-6. User management commands

Name Supported Details

createUser Yes Supported for MongoDB API version 2.6 or higher.

dropAllUsersFromDatabase Yes Supported for MongoDB API version 2.6 or higher.

dropUser Yes Supported for MongoDB API version 2.6 or higher.

grantRolesToUser Yes Supported for MongoDB API version 2.6 or higher.

revokeRolesFromUser Yes Supported for MongoDB API version 2.6 or higher.

updateUser Yes Supported for MongoDB API version 2.6 or higher.

usersInfo Yes Supported for MongoDB API version 2.6 or higher.

Role management commands

Table 4-7. Role management commands

Name Supported Details

createRole Yes Supported for MongoDB API version 2.6 or higher.

dropAllRolesFromDatabase Yes Supported for MongoDB API version 2.6 or higher.

dropRole Yes Supported for MongoDB API version 2.6 or higher.

grantPrivilegesToRole Yes Supported for MongoDB API version 2.6 or higher.

grantRolesToRole Yes Supported for MongoDB API version 2.6 or higher.

invalidateUserCache No

rolesInfo Yes Supported for MongoDB API version 2.6 or higher.

revokePrivilegesFromRole Yes Supported for MongoDB API version 2.6 or higher.

revokeRolesFromRole Yes Supported for MongoDB API version 2.6 or higher.

updateRole Yes Supported for MongoDB API version 2.6 or higher.

Diagnostic commands

Table 4-8. Diagnostic commands

Name Supported Details

buildInfo Yes Whenever possible, the Informix output fields are identical to MongoDB.
There are additional fields that are unique to Informix.

collStats Yes The value of any field that is based on the collection size is an estimate,
not an exact value. For example, the value of the field 'size' is an estimate.

connPoolStats No

4-6 IBM Informix JSON Compatibility

Table 4-8. Diagnostic commands (continued)

Name Supported Details

cursorInfo No

dbStats Yes The value of any field that is based on the collection size is an estimate,
not an exact value. For example, the value of the field 'dataSize' is an
estimate.

features Yes

getCmdLineOpts Yes

getLog No

hostInfo Yes The memSizeMB, totalMemory, and freeMemory fields indicate the amount of
memory that is available to the Java virtual machine (JVM) that is running,
not the operating system values.

indexStats No

listCommands Yes

Chapter 4. MongoDB API and commands 4-7

Table 4-8. Diagnostic commands (continued)

Name Supported Details

listDatabases Yes The value of any field that is based on the collection size is an estimate,
not an exact value. For example, the value of the field 'sizeOnDisk' is an
estimate.

The listDatabases command estimates the size of all collections and
collection indexes for each database. However, relational tables and
indexes are excluded from this size calculation.
Important: The listDatabases command performs expensive and
CPU-intensive computations on the size of each database in the Informix
instance. You can decrease the expense by using the sizeStrategy option.

sizeStrategy
You can use this option to configure the strategy for calculating
database size when the listDatabases command is run.

►►
estimate

sizeStrategy: {estimate:n}
compute
none
perDatabaseSpace

►◄

estimate
Estimate the size of the documents in the collection by using 1000 (or
0.1%) of the documents. This is the default value.

The following example estimates the collection size by using the
default of 1000 (or 0.1%) of the documents:

db.runCommand({listDatabases:1,
sizeStrategy:"estimate"})

estimate: n
Estimate the size of the documents in a collection by sampling one
document for every n documents in the collection.

The following example estimates the collection size by using sample
size of 0.5% or 1/200th of the documents:

db.runCommand({listDatabases:1,
sizeStrategy:{estimate:200}})

compute
Compute the exact size of each database.

db.runCommand({listDatabases:1,
sizeStrategy:"compute"})

none
List the databases but do not compute the size. The database size is
listed as 0.

db.runCommand({listDatabases:1,
sizeStrategy:"none"})

perDatabaseSpace
Calculate the size of a database by adding the sizes for all dbspaces,
sbspaces, and blobspaces that are assigned to the tenant database.
Important: The perDatabaseSpace option applies only to tenant
databases that are created by the multi-tenancy feature.

db.runCommand({listDatabases:1 ,
sizeStrategy:"perDatabaseSpace"})

ping Yes

4-8 IBM Informix JSON Compatibility

Table 4-8. Diagnostic commands (continued)

Name Supported Details

serverStatus Yes

top No

whatsmyuri Yes

Instance administration commands

Table 4-9. Instance administration commands

Name JSON collections Relational tables Details

clone No No

cloneCollection No No

cloneCollectionAsCapped No No

collMod No No

compact No No

convertToCapped No No

copydb No No

create Yes No Informix does not support the
following flags:

v capped

v autoIndexID

v size

v max

createIndexes Yes Yes

drop Yes Yes Informix does not lock the database
to block concurrent activity.

dropDatabase Yes Yes

dropIndexes Yes No The MongoDB deleteIndexes
command is equivalent.

filemd5 No No

fsync No No

getParameter No No

listCollections Yes Yes The includeRelational and
includeSystem flags are supported to
include or exclude relational or
system tables in the results.

Default is includeRelational=true and
includeSystem=false.

listIndexes Yes Yes

logRotate No No

reIndex No No

renameCollection No No

repairDatabase No No

setParameter No No

Chapter 4. MongoDB API and commands 4-9

Table 4-9. Instance administration commands (continued)

Name JSON collections Relational tables Details

shutdown Yes Yes The timeoutSecs flag is supported. In
the Informix, the timeoutSecs flag
determines the number of seconds
that the wire listener waits for a busy
client to stop working before forcibly
terminating the session.

The force flag is not supported.

touch No No

Replication commands

Table 4-10. Replication commands

Name Supported

isMaster Yes

replSetFreeze No

replSetGetStatus No

replSetInitiate No

replSetMaintenance No

replSetReconfig No

replSetStepDown No

replSetSyncFrom No

Resync No

Sharding commands

Table 4-11. Replication commands

Name
JSON
collections

Relational
tables Details

addShard Yes Yes The MongoDB maxSize and name options are not
supported.

In addition to the MongoDB command syntax for adding a
single shard server, you can use the Informix specific
syntax to add multiple shard servers in one command by
sending the list of shard servers as an array. For more
information, see “Creating a shard cluster with MongoDB
commands” on page 3-2.

enableSharding Yes Yes This action is not required for Informix and therefore this
command has no affect for Informix.

flushRouterConfig No No

isdbgrid Yes Yes

listShards Yes Yes The equivalent Informix command is cdr list server.

movePrimary No No

removeShard No No

4-10 IBM Informix JSON Compatibility

Table 4-11. Replication commands (continued)

Name
JSON
collections

Relational
tables Details

shardCollection Yes Yes The equivalent Informix command is cdr define
shardCollection.

The MongoDB unique and numInitialChunks options are
not supported.

shardingState No No

split No No

For more information about the MongoDB features, see http://docs.mongodb.org/
manual/reference/.
Related tasks:
“Defining a sharding schema with an expression” on page 3-5
“Viewing shard-cluster participants” on page 3-10
“Creating a shard cluster with MongoDB commands” on page 3-2
“Defining a sharding schema with a hash algorithm” on page 3-4

Informix JSON commands
The Informix JSON commands are available in addition to the supported
MongoDB commands. These commands enable functionality that is supported by
Informix and they are run by using the MongoDB API.
v “createTextIndex”
v “exportCollection” on page 4-12
v “importCollection” on page 4-14
v “lockAccounts” on page 4-15
v “transaction” on page 4-16
v “unlockAccounts” on page 4-17

createTextIndex

Create Informix bts indexes.

Important: If you create text indexes by using the Informix createTextIndex
command, you must query them by using the Informix $ifxtext query operator. If
you create text indexes by using the MongoDB syntax for text indexes, you must
query them by using the MongoDB $text query operator.

►► createTextIndex: " collection_name " , name: " indexName " ►

► options: { }
(1)

btx index parameters

►

►

▼

,

key: { " column " }

►◄

Chapter 4. MongoDB API and commands 4-11

http://docs.mongodb.org/manual/reference/
http://docs.mongodb.org/manual/reference/

Notes:

1 See bts access method syntax.

createTextIndex
This required parameter specifies the name of the collection or relational table
where the bts index is created.

name
This required parameter specifies the name of the bts index.

options
This required parameter specifies the name-value pairs for the bts parameters
that are used when creating the index. If no parameter values are required, you
can specify an empty document.

Use bts index parameters to customize the behavior of the index and how text
is indexed. Include JSON index parameters to control how JSON and BSON
documents are indexed. For example, you can index the documents as field
name-value pairs instead of as unstructured text so that you can search for text
by field. The name and values of the bts index parameters in the options
parameter are the same as the syntax for creating a bts access method with the
SQL CREATE INDEX statement.

key
This parameter is required if you are indexing relational tables, but optional if
you are indexing collections. This parameter specifies which columns to index
for relational tables.

The following example creates an index named myidx in the mytab relational
table on the title and abstract columns:
db.runCommand({
createTextIndex:“mytab”,
name:”myidx”,
key:{“title”:”text”,“abstract”:”text”},
options:{}})

The following example creates an index named articlesIdx on the articles
collection by using the bts paramter all_json_names="yes".
db.runCommand({
createTextIndex:“articles”,
name:”articlesIdx”,
options:{all_json_names:"yes"}})

exportCollection

Export JSON collections from the wire listener to a file.

►► exportCollection: " collection_name " , file: " filepath " , ►

►

▼

▼

json
format: " "

"jsonArray" ,

, fields: { " filter " }
,

" csv " , fields: { " filter " }

►

4-12 IBM Informix JSON Compatibility

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.dbext.doc/ids_dbxt_020.htm

►
, query: { " query_document " }

►◄

exportCollection
This required parameter specifies the collection name to export.

file
This required parameter specifies the output file path on the host machine
where the wire listener is running. For example:
v UNIX is file:"/tmp/export.out"
v Windows is file:"C:/temp/export.out"

format
This required parameter specifies the exported file format.

json
The .json file format. One JSON-serialized document per line is exported.
This is the default value.

The following command exports all documents from the collection that is
named c by using the json format:
> db.runCommand({exportCollection:"c",file:"/tmp/export.out"
,format:"json"})

{
"ok":1,
"n":1000,
"millis":NumberLong(119),
"rate":8403.361344537816

}

Where "n" is the number of documents that are exported, "millis" is the
number of milliseconds it took to export, and "rate" is the number of
documents per second that are exported.

jsonArray
The .jsonArray file format. This format exports an array of JSON-serialized
documents with no line breaks. The array format is JSON-standard.

The following command exports all documents from the collection c by
using the jsonArray format:
> db.runCommand({exportCollection:"c",file:"/tmp/export.out"
, format:"jsonArray"})

{
"ok":1,
"n":1000,
"millis":NumberLong(81),
"rate":12345.67901234568

}

Where "n" is the number of documents that are exported, "millis" is the
number of milliseconds it took to export, and "rate" is the number of
documents per second that are exported.

csv
The .csv file format. Comma-separated values are exported. You must
specify which fields to export from each document. The first line of the
.csv file contains the fields and all subsequent lines contain the
comma-separated document values.

Chapter 4. MongoDB API and commands 4-13

fields
This parameter specifies which fields are included in the output file. This
parameter is required for the csv format, but optional for the json and
jsonArray formats.

The following command exports all documents from the collection that is
named c by using the csv format, only output the "_id" and "name" fields:
> db.runCommand({exportCollection:"c",file:"/tmp/export.out"
,format:"csv",fields:{"_id":1 ,"name":"1"}})

{
"ok":1,
"n":1000,
"millis":NumberLong(57),
"rate":17543.859649122805

}

Where "n" is the number of documents that are exported, "millis" is the
number of milliseconds it took to export, and "rate" is the number of
documents per second that are exported.

query
This optional parameter specifies a query document that identifies which
documents are exported. The following example exports all documents from
the collection that is named c that have a "qty" field that is less than 100:
> db.runCommand({exportCollection:"c",file:"/tmp/export.out"
,format:"json",query:{"qty":{"$lt":100}}})

{"ok":1,"n":100,"millis":NumberLong(5),"rate":20000}

importCollection

Import JSON collections from the wire listener to a file.

►► importCollection: " collection_name " , file: " filepath " , ►

►
json

format: " jsonArray "
csv

►◄

importCollection
The required parameter specifies the collection name to import.

file
This required parameter specifies the input file path. For example, file:
"/tmp/import.json".

Important: The input file must be located on the same host machine where the
wire listener is running.

format
This required parameter specifies the imported file format.

json
The .json file format. This is the default value.

The following example imports documents from the collection that is
named c by using the json format:
> db.runCommand({importCollection:"c",file:"/tmp/import.out"
,format:"json"})

4-14 IBM Informix JSON Compatibility

jsonArray
The .jsonArray file format.

The following example imports documents from the collection c by using
the jsonArray format:
> db.runCommand({exportCollection:"c",file:"/tmp/import.out"
,format:"jsonArray"})

csv
The .csv file format.

lockAccounts

Lock a database or user account.

Important:

v To run this command, you must be the instance administrator.
v If you specify the lockAccounts:1 command without specifying a db or user

argument, all accounts in all databases are locked.

►►

▼

▼

▼

▼

lockAccounts: 1,
db: "database_name" "

,

["database_name"]
{"$regex":"json_document"}

,

{ "include": "database_name" }
,

["database_name"]
{"$regex":"json_document"}

"exclude": "database_name"
,

["database_name"]
{"$regex":"json_document"}

user: "user_name"
"json_document"

►◄

lockAccounts:1
This required parameter locks a database or user account.

db This optional parameter specifies the database name of an account to lock. For
example, to lock all accounts in database that is named foo:
> db.runCommand({lockAccounts:1,db:"foo"})

exclude
This optional parameter specifies the databases to exclude. For example, to
lock all accounts on the system except those in the databases named alpha
and beta:
> db.runCommand({lockAccounts:1,db:{"exclude":["alpha","beta"]})

include
This optional parameter specifies the databases to include. For example, to
lock all accounts in the databases named delta and gamma:
> db.runCommand({lockAccounts:1,db:{"include":["delta","gamma"]})

$regex
This optional MongoDB evaluation query operator selects values from a
specified JSON document. For example, to lock accounts for databases that
begin with the character a. and end in e:

Chapter 4. MongoDB API and commands 4-15

> db.runCommand({lockAccounts:1,db:{"$regex":"a.*e"})

user
This optional parameter specifies the user accounts to lock. For example, to
lock the account of all users that are not named alice:
> db.runCommand({lockAccounts:1,user:{$ne:"alice"}});

transaction

Enable or disable transaction support for a session. This command binds or
unbinds a connection to the current MongoDB session in a database. The
relationship between a MongoDB session and the Informix JDBC connection is not
static.

Important: This command is not supported for queries that are run on shard
servers.

►► transaction: " "
enable

commit
rollback

disable
status

►◄

enable
This optional parameter enables transaction mode for the current session in the
current database. The following example shows how to enable transaction
mode:
> db.runCommand({transaction:"enable"})
{"ok":1}

commit
If transactions are enabled, this optional parameter commits the current
transaction. If transactions are disabled, an error is shown. The following
example shows how to commit the current transaction:
> db.c.insert({a:1})
> db.runCommand({transaction:"commit"})
{"ok":1}

rollback
If transactions are enabled, this optional parameter rolls back the current
transaction. If transactions are disabled, an error is shown. The following
example shows how to roll back the current transaction:
> db.c.insert({a:2})
> db.c.find()
{"_id":ObjectId("52a8f9c477a0364542887ed4"),"a":1}
{"_id":ObjectId("52a8f9e877a0364542887ed5"),"a":2}
> db.runCommand({transaction:"rollback"})
{"ok":1}

disable
This optional parameter disables transaction mode for the current session in
the current database. The following example shows how to disable for
transaction mode:
> db.c.find()
{"_id":ObjectId("52a8f9c477a0364542887ed4"),"a":1}
> db.runCommand({transaction:"disable"})
{"ok":1}

4-16 IBM Informix JSON Compatibility

status
This optional parameter prints status information to indicate whether
transaction mode is enabled, and if transactions are supported by the current
database. The following example shows how to print status information:
> db.runCommand({transaction:"status"})
{"enabled":true,"supports":true,"ok":1}

unlockAccounts

Unlock a database or user account.

Important:

v To run this command, you must be the instance administrator.
v If you specify the unlockAccounts:1 command without specifying a db or user

argument, all accounts in all databases are unlocked.

►►

▼

▼

▼

▼

unlockAccounts: 1,
db: "database_name" "

,

["database_name"]
{"$regex":"json_document"}

,

{ "include": "database_name" }
,

["database_name"]
{"$regex":"json_document"}

"exclude": "database_name"
,

["database_name"]
{"$regex":"json_document"}

user: "user_name"
"json_document"

►◄

unlockAccounts:1
This required parameter unlocks a database or user account.

db This optional parameter specifies the database name of an account to unlock.
For example, to unlock all accounts in database that is named foo:
> db.runCommand({unlockAccounts:1,db:"foo"})

exclude
This optional parameter specifies the databases to exclude. For example, to
unlock all accounts on the system except those in the databases named
alpha and beta:
> db.runCommand({unlockAccounts:1,db:{"exclude":["alpha","beta"]})

include
This optional parameter specifies the databases to include. For example, to
unlock all accounts in the databases named delta and gamma:
> db.runCommand({unlockAccounts:1,db:{"include":["delta","gamma"]})

$regex
This optional MongoDB evaluation query operator selects values from a
specified JSON document. For example, to unlock accounts for databases
that begin with the character a. and end in e:
> db.runCommand({unlockAccounts:1,db:{"$regex":"a.*e"})

Chapter 4. MongoDB API and commands 4-17

user
This optional parameter specifies the user accounts to unlock. For example, to
unlock the account of all users that are not named alice:
> db.runCommand({unlockAccounts:1,user:{$ne:"alice"}});

Operators
The MongoDB operators that are supported by Informix are sorted into logical
areas.

MongoDB read and write operations on existing relational tables are run as if the
table were a collection. The wire listener determines whether the accessed entity is
a relational table and converts the basic MongoDB operations on that table to SQL,
and then converts the returned values back into a JSON document. The initial
access to an entity results in an extra call to the Informix server. However, the wire
listener caches the name and type of an entity so that subsequent operations do
not require an extra call.

MongoDB operators are supported on both JSON collections and relational tables,
unless explicitly stated otherwise.

Query and projection operators
Informix supports a subset of the MongoDB query and projection operators.

You can refine your queries with the MongoDB query and projection operators. For
example, in the mongo shell, to find members of the cartype collection with an age
greater than 10, you can use the $gt operator:
db.cartype.find({"age":{"$gt":10.0}}).

The JSON wire listener supports the skip, limit, and sort query options. You can
set these options by using the mongo shell or MongoDB drivers.
v “Query selectors”
v “Projection operators” on page 4-20

Query selectors

Use query selectors to select specific data from queries.

Array query operators

Table 4-12. Array query operators

MongoDB command
JSON
collections

Relational
tables Details

$elemMatch Yes No

$size Yes No

Comparison query operators

Table 4-13. Comparison query operators

MongoDB command
JSON
collections

Relational
tables Details

$all Yes Yes Supported for primitive values and simple queries only. The
operator is only supported when it is the only condition in
the query document.

4-18 IBM Informix JSON Compatibility

Table 4-13. Comparison query operators (continued)

MongoDB command
JSON
collections

Relational
tables Details

$gt Yes Yes

$gte Yes Yes

$in Yes Yes

$lt Yes Yes

$lte Yes Yes

$ne Yes Yes

$nin Yes Yes

$query Yes Yes

Element query operators

Table 4-14. Element query operators

MongoDB command
JSON
collections

Relational
tables Details

$exists Yes No

$type Yes No

Evaluation

Table 4-15. Evaluation query operators

MongoDB command
JSON
collections

Relational
tables Details

$mod Yes Yes

$regex Yes Yes Supported for string matching, similar to queries that use
the SQL LIKE condition. Pattern matching that uses
regular expression special characters is not supported.

$text Yes Yes The $text query operator support is based on MongoDB
version 2.6.

You can customize your text index and take advantage of
additional text query options by creating a basic text
search index with the createTextIndex command. For more
information, see “Informix JSON commands” on page 4-11.

$where No No

Geospatial query operators
Geospatial queries are supported by using the GeoJSON format. The legacy
coordinate pairs are not supported.

Table 4-16. Geospatial query operators

MongoDB command
JSON
collections

Relational
tables Details

$geoWithin Yes No

$geoIntersects Yes No

$near Yes No

$nearSphere Yes No

Chapter 4. MongoDB API and commands 4-19

JavaScript query operators
The JavaScript query operators are not supported.

Logical query operators

Table 4-17. Logical query operators

MongoDB command
JSON
collections

Relational
tables Details

$and Yes Yes

$or Yes Yes

$not Yes Yes

$nor Yes Yes

Projection operators

Use projection operators to select specific data from a document.

Comparison query operators

Table 4-18. Comparison query operators

MongoDB command
JSON
collections

Relational
tables Details

$ No No

$elemMatch Yes No

$eq Yes Yes

$comment No No

$explain Yes Yes

$hint Yes No

$maxScan No No

$max No No

$meta Yes Yes

$min No No

$orderby Yes Yes

$returnkey No No

$showdiskLoc No No

$slice No No

$snapshot No No

For more information about the MongoDB features, see http://docs.mongodb.org/
manual/reference/.

Update operators
Informix supports a subset the MongoDB update operators.

You can use update operators to modify or add data in your database. For
example, in the mongo shell, to change the username to atlas in the document with
the _id of 101 in the users collection, you can use the $set operator:
db.users.update({"_id":101},{"$set":{"username":"atlas"}}).

4-20 IBM Informix JSON Compatibility

http://docs.mongodb.org/manual/reference/
http://docs.mongodb.org/manual/reference/

Array update operators

Table 4-19. Array update operators

MongoDB command
JSON
collections

Relational
tables Details

$ No No

$addToSet Yes No Supported for primitive values only. The operator is not
supported on arrays and objects.

$pop Yes No

$pullAll Yes No Supported for primitive values only. The operator is not
supported on arrays and objects.

$pull Yes No Supported for primitive values only. The operator is not
supported on arrays and objects.

$pushAll Yes No

$push Yes No

Array update operators modifiers

Table 4-20. Array update modifiers

MongoDB command
JSON
collections

Relational
tables Details

$each Yes No

$slice Yes No

$sort Yes No

$position No No

Bitwise update operators

Table 4-21. Bitwise update operators

MongoDB command
JSON
collections

Relational
tables Details

$bit Yes No

Field update operators

Table 4-22. Field update operators

MongoDB command
JSON
collections

Relational
tables Details

$currentDate Yes Yes

$inc Yes Yes

$max Yes Yes

$min Yes Yes

$mul Yes Yes

$rename Yes No

$setOnInsert Yes No

$set Yes Yes

$unset Yes Yes

Chapter 4. MongoDB API and commands 4-21

Isolation update operators
The isolation update operators are not supported.

For more information about the MongoDB features, see http://docs.mongodb.org/
manual/reference/.

Informix query operators
The Informix query operators are extensions to the MongoDB API.

You can use the Informix query operators in all MongoDB functions that accept
query operators, for example find() or findOne().

$ifxtext
The $ifxtext query operator is similar to the MongoDB $text operator, except
that it passes the search string as-is to the bts_contains() function.

When using relational tables, the MongoDB $text and Informix $ifxtext query
operators both require a column name, specified by $key, in addition to the
$search string.

The search string can be a word or a phrase as well as optional query term
modifiers, operators, and stopwords. You can include field names to search in
specific fields. The syntax of the search string in the $ifxtext query operator is
the same as the syntax of the search criteria in the bts_contains() function that
you include in an SQL query.

In the following example, a single-character wildcard search is run for the
strings text or test:
db.collection.find({ "$ifxtext" : { "$search" : "te?t” } })

$like
The $like query operator tests for matching character strings and maps to the
SQL LIKE query operator. For more information about the SQL LIKE query
operator, see LIKE Operator.

In the following example, a wildcard search is run for strings that contain
Informix:
db.collection.find({ "$like" : "%Informix%")

Related information:
Basic Text Search query syntax

Aggregation framework operators
The MongoDB aggregation framework operators that are supported by Informix
are sorted into logical areas.

You can use aggregation framework operators to aggregate and manipulate
documents as they move through the aggregation pipeline stages.
v “Pipeline operators” on page 4-23
v “Expression operators” on page 4-23

4-22 IBM Informix JSON Compatibility

http://docs.mongodb.org/manual/reference/
http://docs.mongodb.org/manual/reference/
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_1388.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.dbext.doc/ids_dbxt_182.htm

Pipeline operators

Table 4-23. Pipeline operators

MongoDB command
JSON
collections

Relational
tables Details

$project Partial Partial v You can use $project to include fields from the original
document, for example { $project : { title : 1 ,
author : 1 }}.

v You cannot use $project to insert computed fields,
rename fields, or create and populate fields that hold
subdocuments.

v Projection operators are not supported.

$match Yes Yes

$redact No No

$limit Yes Yes

$skip Yes Yes

$unwind Yes No

$group Yes Yes

$sort Yes Yes

$geoNear Yes No v Supported by using the GeoJSON format. The MongoDB
legacy coordinate pairs are not supported.

v You cannot use dot notation for the distanceField and
includeLocs parameters.

$out Yes Yes

Expression operators

$group operators

Table 4-24. $group operators

MongoDB
command JSON collections Relational tables

$addToSet Yes No

$first Yes Yes

$last Yes Yes

$max Yes Yes

$min Yes Yes

$avg Yes Yes

$push Yes No

$sum Yes Yes

For more information about the MongoDB features, see http://docs.mongodb.org/
manual/reference/.

Chapter 4. MongoDB API and commands 4-23

http://docs.mongodb.org/manual/reference/
http://docs.mongodb.org/manual/reference/

4-24 IBM Informix JSON Compatibility

Chapter 5. REST API

The REST API provides an alternative method for accessing JSON collections in
Informix and provides driverless access to your data.

With the REST API, you can use MongoDB and SQL queries against JSON and
BSON document collections, traditional relational tables, and time series data. The
REST API uses MongoDB syntax and returns JSON documents.

The jsonListener.jar file is the executable file that includes the wire listener
configuration file, named jsonListener.properties by default, which defines the
operational characteristics for theMongoDB API and REST API.

Related tasks:
“Starting the wire listener” on page 2-33

REST API syntax
A subset of the HTTP methods are supported by the REST API. These methods are
DELETE, GET, POST, and PUT.
v “POST” on page 5-2
v “PUT” on page 5-3
v “GET” on page 5-4
v “DELETE” on page 5-6

The examples shown in this topic contain line breaks for page formatting; however,
the REST API does not allow line breaks.

© Copyright IBM Corp. 2013, 2015 5-1

POST

The POST method maps to the MongoDB insert or create command.

Table 5-1. Supported POST method syntax

Method Path Description

POST / Create a database.

POST /databaseName Create a collection.

databaseName
The database name.

POST /databaseName/collectionName Create a document.

databaseName
The database name.

collectionName
The collection name.

Create a database
This example creates a database with the locale specified.

Request:
Specify the POST method:
POST /

Data: Specify database name mydb and an English UTF-8 locale:
{name:"mydb",locale:"en_us.utf8"}

Response:
The following response indicates that the operation was successful:
{"msg":"created db ’mydb’","ok":true}

Create a collection
This example creates a collection in the mydb database.

Request:
Specify the POST method and the database name as mydb:
POST /mydb

Data: Specify the collection name as bar:
{name:"bar"}

Response:
The following response indicates that the operation was successful:
{"msg":"created collection mydb.bar","ok":true}

Create a relational table
This example creates a relational table in an existing database.

Request:
Specify the POST method and stores_mydb as the database:
POST /stores_mydb

Data: Specify the table attributes:
{ name: "rel",

options: {
columns:[{name:"id",type:"int",primaryKey:true,},

5-2 IBM Informix JSON Compatibility

{name:"name",type:"varchar(255)"},
{name:"age",type:"int",notNull:false}]

}
}

Response:
The following response indicates that the operation was successful:
{msg: "created collection stores_mydb.rel" ok: true}

Insert a single document
This example inserts a document into an existing collection.

Request:
Specify the POST method, mydb database, and people collection:
POST /mydb/people

Data: Specify John Doe age 31:
{firstName:"John",lastName:"Doe",age:31}

Response:
Here is a successful response:
{"n":1,"ok":true}

Insert multiple documents into a collection
This example inserts multiple documents into a collection.

Request:
Specify the POST method, mydb database, and people collection:
POST /mydb/people

Data: Specify John Doe age 31 and Jane Doe age 31:
[{firstName:"John",lastName:"Doe",age:31},
{firstName:"Jane",lastName:"Doe",age:31}]

Response:
Here is a successful response:
{"n":2,"ok":true}

PUT

The PUT method maps to the MongoDB update command.

Table 5-2. Supported PUT method syntax

Method Path Description

PUT /databaseName/
collectionName?queryParameters

Update a document.

databaseName
The database name.

collectionName
The collection name.

queryParameters
The supported Informix
queryParameters are query, upsert, and
multiupdate. These map to the
equivalent MongoDB query, insert, and
multi query parameters, respectively.

Update a document in a collection
This example updates the value for Larry in an existing collection, from
age 49 to 25:

Chapter 5. REST API 5-3

[{"_id":{"$oid":"536d20f1559a60e677d7ed1b"},"firstName":"Larry"
,"lastName":"Doe","age":49},{"_id":{"$oid":"536d20f1559a60e677d7ed1c"}
,"firstName":"Bob","lastName":"Doe","age":47}]

Request:
Specify the PUT method and query the name Larry:
PUT /mydb/people?query={firstName:"Larry"}

Data: Specify the MongoDB $set operator with age 25:
{"$set":{age:25}}

Response:
Here is a successful response:
{"n":1,"ok":true}

GET

The GET method maps to the MongoDB query command.

Table 5-3. Supported GET method syntax

Method Path Description

GET / List databases

GET /databaseName List collections

databaseName
The database name.

GET /databaseName/
collectionName?queryParameters

Query the collection.

databaseName
The database name.

collectionName
The collection name.

queryParameters
The query parameters.

The supported Informix queryParameters
are batchSize, query, fields, and sort.
These map to the equivalent MongoDB
batchSize, query, fields, and sort
parameters.

GET /databaseName/
$cmd?query={command_document}

Run the Informix or MongoDB JSON
command.

databaseName
The database name.

command_document
The Informix or MongoDB JSON
command document. Specify the
command document in the same format
that is used by the db.runCommand() in
the mongo shell.

List databases
This example lists all of the databases on the server.

Request:
Specify the GET method and forward slash (/):
GET /

5-4 IBM Informix JSON Compatibility

Data: None.

Response:
Here is a successful response:
["mydb" , "test"]

List all collections
This example lists all of the collections in a database.

Request:
Specify the GET method and mydb database:
GET /mydb

Data: None.

Response:
Here is a successful response:
["bar"]

Query a collection and sort the results in ascending order
This example sorts the query results in ascending order by age.

Request:
Specify the GET method, mydb database, people collection, and
query with the sort parameter. The sort parameter specifies
ascending order (age:1), and filters id (_id:0) and last name
(lastName:0) from the response:
GET /mydb/people?sort={age:1}&fields={_id:0,lastName:0}

Data: None.

Response:
The first names are displayed in ascending order with the _id and
lastName filtered from the response:
[{"firstName":"Sherry","age":31},
{"firstName":"John","age":31},
{"firstName":"Bob","age":47},
{"firstName":"Larry","age":49}]

Run the collStats command to get statistics about a collection
This example submits the MongoDB collStats command by using the REST
API to get statistics about the jsonlog collection.

Here is the MongoDB shell syntax:
db.runCommand({collStats:"jsonlog"})

Request:
Specify the GET method, mydb database, and the collStats
command document as the query:
GET /mydb/$cmd?query={collStats:"jsonlog"}

Data: None.

Response:
[

{
"ns":"mydb.jsonlog",
"count":1000,
"size":322065,
"avgObjSize":322,
"storageSize":323584,
"numExtents":158,
"nindexes":1,
"lastExtentSize":2048,

Chapter 5. REST API 5-5

"paddingFactor":0,
"flags":1,
"indexSizes":
{

"_id_":49152
},
"totalIndexSize":49152,
"ok":1

}
]

DELETE

The DELETE method maps to the MongoDB delete command.

Table 5-4. Supported DELETE method syntax

Method Path Description

DELETE / Delete all databases.

DELETE /databaseName Delete a database.

databaseName
The database name.

DELETE /databaseName/collectionName Delete a collection.

databaseName
The database name.

collectionName
The collection name.

DELETE /databaseName/
collectionName?queryParameter

Delete all documents that satisfy the query
from a collection.

databaseName
The database name.

collectionName
The collection name.

queryParameters
The query parameters.

The supported Informix queryParameter
is query. This map to the equivalent
MongoDB query parameter.

Delete a database
This example deletes a database called mydb.

Request:
Specify the DELETE method and the mydb database:
DELETE /mydb

Data: None.

Response:
Here is a successful response:
{msg: "dropped database", ns: "mydb", ok: true}

Delete a collection
This example deletes a collection from a database.

Request:
Specify the DELETE method, mydb database, and bar collection:

5-6 IBM Informix JSON Compatibility

DELETE /mydb/bar

Data: None.

Response:
Here is a successful response:
{"msg":"dropped collection", "ns":"mydb.bar", "ok":true}

Delete documents from a collection
This example deletes documents from a collection that contains the user
"bob".

Request:
Specify the DELETE method, mydb database, people collection,
and the query condition:
DELETE /mydb/people?query={user:"bob"}

Data: None.

Response:
Here is a successful response where n indicates the number of
documents deleted.
{"n":1,"ok":true}

Related concepts:
Chapter 6, “Create time series through the wire listener,” on page 6-1
Related tasks:
“Running multiple wire listeners” on page 2-35
Related reference:
“The wire listener configuration file” on page 2-3

Chapter 5. REST API 5-7

5-8 IBM Informix JSON Compatibility

Chapter 6. Create time series through the wire listener

You can create and manage time series with the REST API or the MongoDB API
through the wire listener. You create time series objects by adding definitions to
time series collections. You interact with time series data through a virtual table.
For example, you can program sensor devices that do not have client drivers to
load time series data directly into the database with HTTP commands from the
REST API.

Prerequisites

Before you create a time series, you must understand time series concepts, the
properties of your data, and how much storage space your data requires. For an
overview of time series concepts and guidance on how to design your time series
solution, see Informix TimeSeries solution.

You must also configure the wire listener for the REST API or the MongoDB API.

Restrictions

The following restrictions apply when you create a time series through the wire
listener:
v You cannot define hertz or compressed time series.
v You cannot define rolling window containers.
v You cannot load time series data through a loader program. You must load time

series data through a virtual table.
v You cannot run time series SQL routines or methods from the time series Java

class library. You operate on the data through a virtual table.

Creating a time series

To create a time series through the wire listener:
1. Choose a predefined calendar from the system.timeseries.calendar collection

or create a calendar by adding a document to the system.timeseries.calendar
collection.

2. Create a TimeSeries row type by adding a document to the
system.timeseries.rowType collection.

3. Create a container by adding a document to the system.timeseries.container
collection.

4. Create a time series table with the time series table format syntax.
5. Instantiate the time series by creating a virtual table with the time series virtual

table format syntax.
6. Load time series data by inserting documents into the virtual table.

After you create and load a time series, you query and update the data though the
virtual table.
Related reference:
“REST API syntax” on page 5-1

© Copyright IBM Corp. 2013, 2015 6-1

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.tms.doc/ids_tms_010.htm

Time series collections and table formats
You can add, view, and remove documents from the time series collections with
REST API and MongoDB API methods to create and manage your time series. You
must use a specific format to create time series tables and virtual tables that are
based on time series tables.

For the REST API, use the GET, POST, and DELETE methods to view, insert, or
delete data in the time series collections.

For the MongoDB API, use the query, create, or remove methods to view, insert, or
delete data in the time series collections.

The time series collections are virtual collections that are used to manage the
objects that are required to store time series data in a database.
v “system.timeseries.calendar collection”
v “system.timeseries.rowType collection” on page 6-3
v “system.timeseries.container collection” on page 6-3
v “Time series table format” on page 6-4
v “Virtual table format” on page 6-5

system.timeseries.calendar collection

The system.timeseries.calendar collection stores the definitions of predefined and
user-defined calendars. A calendar controls the times at which time series data can
be stored. The calendar definition embeds the calendar pattern definition. For
details and restrictions about calendars, see Calendar data type. For a list of
predefined calendars, see Predefined calendars.

Use the following format to add a calendar to the system.timeseries.calendar
collection.

calendar

►► { name: "calendar_name" , calendarStart: "start_date" , ►

► patternStart: "pattern_date" , pattern: { type: "interval" ►

► , intervals: ►

► ▼

,

[{ duration: "num_intervals" , on: true }] }
false

} ►◄

name The name of the calendar.

calendarStart
The start date of the calendar.

6-2 IBM Informix JSON Compatibility

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.tms.doc/ids_tms_059.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.tms.doc/ids_tms_365.htm

patternStart
The start date of the calendar pattern.

pattern
The calendar pattern definition.

type The time interval. Valid values for interval are: second, minute,
hour, day, week, month, year.

intervals
The description of when to record data.

duration
The number of intervals, as a positive integer.

on Whether to record data during the interval:

true = Recording is on.

false = Recording is off.

system.timeseries.rowType collection

The system.timeseries.rowType collection stores TimeSeries row type definitions.
The TimeSeries row type defines the structure for the time series data within a
single column in the database. For details and restrictions on TimeSeries row
types, see TimeSeries data type.

Use the following format to add a TimeSeries row type to the
system.timeseries.rowType collection.

►► { name: "rowtype_name" , fields: [►

► ▼

,

{ name: "field_name" , type: "data_type" }] } ►◄

name The rowtype_name is the name of the TimeSeries row type.

fields

name The name of the field in the row data type. The field_name must be
unique for the row data type. The number of fields in a row type
is not restricted.

type Must be datetime year to fraction(5) for the first field, which
contains the time stamp.

The data type of the field. Most data types are valid for fields after
the time stamp field.

system.timeseries.container collection

The system.timeseries.container collection stores container definitions. Time
series data is stored in containers. For details and restrictions on containers, see
TSContainerCreate procedure. Rolling window container syntax is not supported.

Use the following format to add a container to the system.timeseries.container
collection.

Chapter 6. Create time series through the wire listener 6-3

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.tms.doc/ids_tms_060.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.tms.doc/ids_tms_222.htm

►► { name: "container_name" , dbspaceName: "dbspace_name" , ►

► rowTypeName: "rowtype_name" , firstExtent: extent_size , ►

► nextExtent: next_extent_size } ►◄

name The container_name is the name of the container. The container name must
be unique.

dbspaceName
The dbspace_name is the name of the dbspace for the container.

rowTypeName
The rowtype_name is the name of an existing TimeSeries row type in the
system.timeseries.rowType collection.

firstExtent
The extent_size is a number that represents the first extent size for the
container, in KB.

nextExtent
The next_extent_size is a number that represents the increments by which
the container grows, in KB. The value must be equivalent to at least 4
pages.

Time series table format

A time series table must have a primary key column that does not allow null
values. The last column in the time series table must be the TimeSeries column.
For details and restrictions on time series tables, see Create the database table.

The following format describes the simplest structure of a time series table. You
can include other options and columns in a time series table.

►► { collection: "table_name" , options: { columns: ►

► [{ name: "col_name" , type: "data_type" , primaryKey:true , ►

► notNull:true } , { name: "col_name" , ►

► type: "timeseries(rowtype_name)" }] } } ►◄

collection
The table_name is the name of the time series table.

options
The collection definition.

columns
The column definitions.

name The col_name is the name of the column.

type The data_type is the data type of the column.

For the TimeSeries column, the rowtype_name is the name
of an existing TimeSeries row type in the
system.timeseries.rowType collection.

primaryKey
true = The column is the primary key.

6-4 IBM Informix JSON Compatibility

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.tms.doc/ids_tms_078.htm

notNull
true = The column does not allow null values.

Virtual table format

You use a virtual table that is based on the time series table to insert and query
time series data.

►► { collection: "virtualtable_name" , ►

► options: { timeseriesVirtualTable: { baseTableName: "table_name" , ►

► newTimeSeries: " calendar (calendar_name) , origin (origin) , ►

► container (container_name)
, irregular

regular
,

►

► , virtualTableMode:mode , timeseriesColumnName: "col_name" } } } ►◄

collection
The virtualtable_name is the name of the virtual table.

options

timeseriesVirtualTable
The definition of the virtual table.

baseTableName
The table_name is the name of the time series table.

newTimeseries
The time series definition.

calendar
The calendar_name is the name of a
calendar in the
system.timeseries.calendar collection.

origin The origin is the first time stamp in the
time series. The data type is DATETIME
YEAR TO FRACTION(5).

container
The container_name is the name of a
container in the
system.timeseries.container collection.

regular
Default. The time series is regular.

irregular
The time series is irregular.

virtualTableMode
The mode is the integer value of the
TSVTMode parameter that controls the
behavior and display of the virtual table

Chapter 6. Create time series through the wire listener 6-5

for time series data. For the settings of the
TSVTMode parameter, see The TSVTMode
parameter.

timeseriesColumnName
The col_name is the name of the TimeSeries
column.

Example: Create a time series through the wire listener
This example shows how to create, load, and query a time series with the
MongoDB API or the REST API through the wire listener.

Before you begin

Before you start this example, ensure these tasks are complete:
v Connect to a database in which to create the time series table. You run all

methods in the database.
v Configure the wire listener for the MongoDB API or the REST API. For more

information, see “Configuring the wire listener for the first time” on page 2-1.
v Define a dbspace that is named dbspace1. For more information, see Dbspaces.

About this task

In this example, you create a time series that contains sensor readings about the
temperature and humidity in a house. Readings are taken every 10 minutes. The
following table lists the time series properties that are used in this example.

Table 6-1. Time series properties used in this example

Time series property Definition

Timepoint size 10 minutes

When timepoints are valid Every 10 minutes

Data in the time series The following data:

v Timestamp

v A float value that represents temperature

v A float value that represents humidity

Time series table The following columns:

v A meter ID column of type INTEGER

v A TimeSeries data type column

Origin 2014-01-01 00:00:00.00000

Regularity Regular

Where to store the data In a container that you create

How to load the data Through a virtual table

How to access the data Through a virtual table

Procedure

To create a time series with the MongoDB API mongo shell or the REST API:

6-6 IBM Informix JSON Compatibility

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.tms.doc/ids_tms_108.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.tms.doc/ids_tms_108.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_0486.htm

1. Create a time series calendar. The time series calendar is named ts_10min, with
a calendar and pattern start date of 2014-01-01 00:00:00, a calendar pattern that
is defined with intervals of minutes, and data is recorded in 10 minute
increments after the origin.

MongoDB API
Add to the predefined system.timeseries.calendar collection.
db.system.timeseries.calendar.insert({"name":"ts_10min",
"calendarStart":"2014-01-01 00:00:00",
"patternStart":"2014-01-01 00:00:00",
"pattern":{"type":"minute",

"intervals":[{"duration":"1","on":"true"},
{"duration":"9","on":"false"}]}})

REST API

Request:
Specify the POST method and the system.timeseries.calendar
collection:
POST /stores_demo/system.timeseries.calendar

Data: Specify the calendar attributes:
{"name":"ts_10min",
"calendarStart":"2014-01-01 00:00:00",
"patternStart":"2014-01-01 00:00:00",
"pattern":{"type":"minute",

"intervals":[{"duration":1,"on":true},
{"duration":9,"on":false}]}}

Response:
The following response indicates that the operation was
successful:
[{"ok":true}]

2. Create a TimeSeries row type. The row type is named reading and includes
fields for timestamp, temperature, and humidity.

MongoDB API
Add to the predefined system.timeseries.rowType collection.
db.system.timeseries.rowType.insert({"name":"reading",
"fields":
[{"name":"tstamp","type":"datetime year to fraction(5)"},

{"name":"temp","type":"float"},
{"name":"hum","type":"float"}]})

REST API

Request:
Specify the POST method and the system.timeseries.rowType
collection:
POST /stores_demo/system.timeseries.rowType

Data: Specify the row type attributes:
{"name":"reading",
"fields":
[{"name":"tstamp","type":"datetime year to fraction(5)"},

{"name":"temp","type":"float"},
{"name":"hum","type":"float"}]}

Response:
The following response indicates that the operation was
successful:
[{"ok":true}]

Chapter 6. Create time series through the wire listener 6-7

3. Create a container. The container is named c_0 and is created in the dbspace1
dbspace, in the reading time series row, with a first extent size of 1000, and
with growth increments of 500.

MongoDB API
Add to the predefined system.timeseries.container collection.
db.system.timeseries.container.insert({"name":"c_0",
"dbspaceName":"dbspace1",
"rowTypeName":"reading",
"firstExtent":1000,
"nextExtent":500})

REST API

Request:
Specify the POST method and the system.timeseries.container
collection:
POST /stores_demo/system.timeseries.container

Data: Specify the container attributes:
{"name":"c_0",
"dbspaceName":"dbspace1",
"rowTypeName":"reading",
"firstExtent":1000,
"nextExtent":500}

Response:
The following response indicates that the operation was
successful:
[{"ok":true}]

4. Create a time series table. The time series table is named ts_data1 and includes
id and ts columns.

MongoDB API
Create the ts_data1 time series table:
db.runCommand({"create":"ts_data1",
"columns":[{"name":"id","type":"int","primaryKey":"true",

"notNull":"true"},
{"name":"ts","type":"timeseries(reading)"}]})

REST API

Request:
Specify the GET method:
GET /stores_demo/$cmd?query={create:"ts_data1",

"columns":[{"name":"id","type":"int","primaryKey":true,
"notNull":true},

{"name":"ts","type":"timeseries(reading)"}]}

Data: None.

Response:
The following response indicates that the operation was
successful:
[{"ok":true}]

5. Create a virtual table. The virtual table is named ts_data1_v and is based on
the time series table that is named ts_data1 and its timeseries column ts, using
the ts_10min calendar, starting on 2014-01-01 00:00:00.00000, in the time series
container c_0, with the virtualTableMode parameter set to 0 (default).

Important: This example contains line breaks for page formatting, however,
JSON does not allow line breaks within strings.

6-8 IBM Informix JSON Compatibility

MongoDB API
Create the ts_data1_v virtual table:
db.runCommand({"create":"ts_data1_v",
"timeseriesVirtualTable":

{"baseTableName":"ts_data1",
"newTimeseries":"calendar(ts_10min),origin(2014-01-01

00:00:00.00000),container(c_0)",
"virtualTableMode":0,
"timeseriesColumnName":"ts"}})

REST API

Request:
Specify the GET method:
GET /stores_demo/$cmd?query={"create":"ts_data1_v",
"timeseriesVirtualTable":

{"baseTableName":"ts_data1",
"newTimeseries":"calendar(ts_10min),

origin(2014-01-01 00:00:00.00000),
container(c_0)",
"virtualTableMode":0,
"timeseriesColumnName":"ts"}}

Data: None.

Response:
The following response indicates that the operation was
successful:
[{"ok":true}]

6. Load records into the time series by inserting documents into the ts_data1_v
virtual table.
Because this time series is regular, you are not required to include the time
stamp. The first record is inserted for the origin of the time series, 2014-01-01
00:00:00.00000. The second record has the time stamp 2014-01-01 00:10:00.00000,
and the third record has the time stamp 2014-01-01 00:20:00.00000.

MongoDB API
Add documents to the ts_data1_v virtual table:
db.ts_data1_v.insert([{"id":1,"temp":15.0,"hum":20.0},
{"id":1,"temp":16.2,hum:19.0},{id:1,temp:16.5,hum:22.0}])

REST API

Request:
Specify the POST method:
POST /stores_demo/ts_data1_v

Data: Specify the documents to load:
[{"id":1,"temp":15.0,"hum":20.0},
{"id":1,"temp":16.2,"hum":19.0},
{"id":1,"temp":16.5,"hum":22.0}]

Response:
The following response indicates that the operation was
successful:
{"ok":true}

7. Query the time series data by using the ts_data1_v virtual table.

MongoDB API
Query the ts_data1_v virtual table:

Chapter 6. Create time series through the wire listener 6-9

db.ts_data1_v.find()

Results:
> db.ts_data1_v.find()
{"id":1,"tstamp":ISODate("2014-01-01T06:00:00Z"),"temp":15,"hum":20}
{"id":1,"tstamp":ISODate("2014-01-01T06:10:00Z"),"temp":16.2,"hum":19}
{"id":1,"tstamp":ISODate("2014-01-01T06:20:00Z"),"temp":16.5,"hum":22}

REST API

Request:
GET /stores_demo/ts_data1_v

Data: None.

Response:
The following response indicates that the operation was
successful:
[{"id":1,"tstamp":{"$date":1388556000000},
"temp":15.0,"hum":20.0},
{"id":1,"tstamp":{"$date":1388556600000},
"temp":16.2,"hum":19.0},
{"id":1,"tstamp":{"$date":1388557200000},
"temp":16.5,"hum":22.0}]

Example queries of time series data by using the wire listener
These examples show how to query time series data by using the MongoDB API or
the REST API.

Before using these examples, you must configure the wire listener for the
MongoDB or REST API. For more information, see “Configuring the wire listener
for the first time” on page 2-1. These examples are run against the stores_demo
database. For more information, see dbaccessdemo command: Create
demonstration databases. These examples query the ts_data_v virtual table that
stores the device ID in the loc_esi_id column.
v “List all device IDs”
v “List device IDs that have a value greater than 10” on page 6-11
v “Find the data for a specific device ID” on page 6-11
v “Find and sort data with multiple qualifications” on page 6-12
v “Find all data for a device in a specific date range” on page 6-13
v “Find the latest data point for a specific device” on page 6-13
v “Find the 100th data point for a specific device” on page 6-14

List all device IDs

This query returns all unique device IDs.

MongoDB API
Run a distinct command on the ts_data_v virtual table:
db.ts_data_v.distinct("loc_esi_id")

Results:
["4727354321000111","4727354321046021","4727354321090954",...]

REST API

Request:
Specify the GET method on the stores_demo database with the
query parameter specified:

6-10 IBM Informix JSON Compatibility

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.dba.doc/ids_dba_015.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.dba.doc/ids_dba_015.htm

GET /stores_demo/$cmd?query={"distinct":"ts_data_v",
"key":"loc_esi_id"}

Data: None.

Response:
The following response indicates that the operation was successful:
[{"values":["4727354321000111","4727354321046021",
"4727354321090954",...],"ok":1.0}]

List device IDs that have a value greater than 10

This query returns the list of device IDs that have at least one measured value in
the time series that is greater than 10.

MongoDB API
Run a distinct command on the ts_data_v table, with $gt value comparison
operator specified:
db.ts_data_v.distinct("loc_esi_id",{"value":{"$gt":10}})

Results:
["4727354321046021","4727354321132574","4727354321289322",...]

REST API

Request:
Specify the GET method with the query condition on the ts_data_v
table and the $gt value comparison operator specified:
GET /stores_demo/$cmd?query={"distinct":"ts_data_v",
"key":"loc_esi_id","query":{"value":{"$gt":10}}}

Data: None.

Response:
The following response indicates that the operation was successful:
[{"values":["4727354321046021","4727354321132574",
"4727354321289322",...],"ok":1.0}]

Find the data for a specific device ID

This query returns the data for the device with the ID of 4727354321046021.

MongoDB API
Run a find command on the ts_data_v virtual table with the loc_esi_id
value specified:
db.ts_data_v.find({"loc_esi_id":4727354321046021})

Results:
{"loc_esi_id":"4727354321046021","measure_unit":"KWH",
"direction":"P","tstamp":ISODate("2010-11-10T06:00:00Z"),
"value":0.041}
{"loc_esi_id":"4727354321046021","measure_unit":"KWH",
"direction":"P","tstamp":ISODate("2010-11-10T06:15:00Z"),
"value":0.041}
{"loc_esi_id":"4727354321046021","measure_unit":"KWH",
"direction":"P","tstamp":ISODate("2010-11-10T06:30:00Z"),
"value":0.04}

...]

REST API

Chapter 6. Create time series through the wire listener 6-11

Request:
Specify the GET method on the ts_data_v virtual table, with the
loc_esi_id specified on the query operator:
GET /stores_demo/ts_data_v?query=
{"loc_esi_id":4727354321046021}

Data: None.

Response:
The following response indicates that the operation was successful:
[{"loc_esi_id":"4727354321046021","measure_unit":"KWH",
"direction":"P","tstamp":{"$date":1289368800000},"value":0.041},
{"loc_esi_id":"4727354321046021","measure_unit":"KWH",
"direction":"P","tstamp":{"$date":1289369700000},"value":0.041},
{"loc_esi_id":"4727354321046021","measure_unit":"KWH",
"direction":"P","tstamp":{"$date":1289370600000},"value":0.040},
...]

Find and sort data with multiple qualifications

This query finds all data for the device with the ID of 4727354321046021 with a
value greater than 10.0 and a direction of P. The query returns the tstamp and
value fields, and sorts the results in descending order by the value field.

To query for specific dates when using the REST API, convert the dates to
milliseconds since the epoch. For example:
v 2011-01-01 00:00:00 = 1293861600000
v 2011-01-02 00:00:00 = 1293948000000

MongoDB API
Run a find command on the ts_data_v table, with the $and boolean logical
operator specified:
db.ts_data_v.find({"$and":[{"loc_esi_id":4727354321046021},
{"value":{"$gt":10.0}},{"direction":"P"}]},
{"tstamp":1,"value":1}).sort({"value":-1})

Results:
{"tstamp":ISODate("2011-01-25T16:15:00Z"),"value":14.58}
{"tstamp":ISODate("2011-01-26T00:45:00Z"),"value":12.948}
{"tstamp":ISODate("2011-01-26T02:30:00Z"),"value":12.768}
...

REST API

Request:
Specify the GET method on the ts_data_v table, with the $and
boolean logical operator specified:
GET /stores_demo/ts_data_v?query={"$and":[{"loc_esi_id":
4727354321046021},{"value":{"$gt":10.0}},{"direction":"P"}]}
&fields={"tstamp":1,"value":1}&sort={"value":-1}

Data: None.

Response:
The following response indicates that the operation was successful:
[{"tstamp":{"$date":1295972100000},"value":14.580},
{"tstamp":{"$date":1296002700000},"value":12.948},
{"tstamp":{"$date":1296009000000},"value":12.768},
...]

6-12 IBM Informix JSON Compatibility

Find all data for a device in a specific date range

This query returns the data from midnight January 1, 2011 to January 2, 2011 for
device ID 4727354321000111. The date that is queried is greater than 1293861600000
and less than 1293948000000. The query returns the tstamp and value fields.

MongoDB API
Run a find command on the ts_data_v table, with values specified for the
$and boolean logical query operator:
db.ts_data_v.find({"$and":[{"loc_esi_id":"4727354321000111"},
{"tstamp":{"$gte":ISODate("2011-01-01 00:00:00")}},
{"tstamp":{"$lt":ISODate("2011-01-02 00:00:00")}}]},
{"tstamp":"1","value":"1"})

Results:
{"tstamp":ISODate("2011-01-01T00:00:00Z"),"value":0.343 }
{"tstamp":ISODate("2011-01-01T00:15:00Z"),"value":0.349 }
{"tstamp":ISODate("2011-01-01T00:30:00Z"),"value":1.472 }

...]

REST API

Request:
Specify the GET method on the ts_data_v table in the stores_demo
database, with values specified for the $and boolean logical query
operator:
GET /stores_demo/ts_data_v?query={"$and":
[{"loc_esi_id":4727354321000111},{"tstamp":{"$gte":
{"$date":1293861600000}}},{"tstamp":{"$lt":
{"$date":1293948000000}}}]}&fields={"tstamp":1,"value":1}

Data: None.

Response:
The following response indicates that the operation was successful:
[{"tstamp":{"$date":1293840000000},"value":0.343},
{"tstamp":{"$date":1293840900000},"value":0.349},
{"tstamp":{"$date":1293841800000},"value":1.472},
...]

Find the latest data point for a specific device

This query sets the sort parameter to order the tstamp field in descending order
and sets the limit parameter to 1 to return only the latest value. The device ID is
4727354321000111 and the query returns the tstamp and value fields.

MongoDB API
Run a find command on the ts_data_v table, with sort and limit values
specified:
db.ts_data_v.find({"loc_esi_id":"4727354321000111"},
{"tstamp":"1","value":"1"}).sort({"tstamp":-1}).limit(1)

Results:
{"tstamp":ISODate("2011-02-08T05:45:00Z"),"value":1.412 }

REST API

Request:
Specify the GET method on the ts_data_v table, with sort and limit
values specified in the query parameter:
GET /stores_demo/ts_data_v?query={"loc_esi_id":4727354321000111}
&fields={"tstamp":1,"value":1}&sort={"tstamp":-1}&limit=1

Chapter 6. Create time series through the wire listener 6-13

Data: None.

Response:
The following response indicates that the operation was successful:
[{"tstamp":{"$date":1297143900000},"value":1.412}]

Find the 100th data point for a specific device

This query sets the sort parameter to order the tstamp field in ascending order and
sets the skip parameter to 100 to return the 100th value. The device ID is
4727354321000111 and the query returns the tstamp and value field.

MongoDB API
Run the find command on the ts_data_v table, with values specified for
sort, limit and skip:
db.ts_data_v.find({"loc_esi_id":4727354321000111},
{"tstamp":1,"value":1}).sort({"tstamp":1}).limit(1).skip(100)

Results:
{"tstamp":ISODate("2010-11-11T07:00:00Z"),"value":0.013}

REST API

Request:
Specify the GET method on the ts_data_v table, with values
specified for sort, limit, and skip in the query parameter:
GET /stores_demo/ts_data_v?query={"loc_esi_id":4727354321000111}
&fields={"tstamp":1,"value":1}&sort={"tstamp":1}&limit=1&skip=100

Data: None.

Response:
The following response indicates that the operation was successful:
[{"tstamp":{"$date":1289458800000},"value":0.013}]

6-14 IBM Informix JSON Compatibility

Chapter 7. Monitoring collections

You can use the IBM OpenAdmin Tool (OAT) for Informix to monitor collections in
the Informix database.

Youc can view collections by using the IBM Informix JSON Plug-in for
OpenAdmin Tool (OAT) or by using the IBM Informix Schema Manager Plug-in
for OpenAdmin Tool (OAT).

See the OAT help for more information.
Related information:
cdr list trustedhost argument: List trusted hosts (SQL administration API)
Installing the OpenAdmin Tool for Informix with the Client SDK
cdr list shardCollection
onstat -g shard command: Print information about the shard cache

© Copyright IBM Corp. 2013, 2015 7-1

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_157.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.cpi.doc/ids_cpi_027.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.erep.doc/ids_erp_643.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_1177.htm

7-2 IBM Informix JSON Compatibility

Chapter 8. Troubleshooting Informix JSON compatibility

Several troubleshooting techniques, tools, and resources are available for resolving
problems that you encounter with Informix JSON compatibility.

Problem Solution

How do I start the wire
listener?

If the wire listener does not automatically start:

1. Verify that the user was created. For more information, see
“Configuring the wire listener for the first time” on page
2-1.

2. Manually start the wire listener. For more information, see
“Starting the wire listener” on page 2-33.

How can I debug wire
listener problems?

From the wire listener command line, run the -loglevel level
command, where level is the logging level. Log level options
are:

v error

v warn

v info

v debug

v trace

For more information, see “Wire listener command line options”
on page 2-32.

Where is the wire listener
log file?

UNIX: The log file is in $INFORMIXDIR/jsonListener.log.

Windows: The log file is named servername_jsonListener.log
and is in your home directory. For example,
C:\Users\ifxjson\ol_informix1210_1_jsonListener.log.

How can I view all of the
current properties for the
wire listener properties
file?

From the wire listener command line, you can run the
-listProperties command. This command prints all of the
supported properties and their default values. For more
information, see “The wire listener configuration file” on page
2-3.

How do I access the wire
listener help?

You can view a list of available command line options by
running the -help command.

© Copyright IBM Corp. 2013, 2015 8-1

8-2 IBM Informix JSON Compatibility

Appendix. Accessibility

IBM strives to provide products with usable access for everyone, regardless of age
or ability.

Accessibility features for IBM Informix products
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features
The following list includes the major accessibility features in IBM Informix
products. These features support:
v Keyboard-only operation.
v Interfaces that are commonly used by screen readers.
v The attachment of alternative input and output devices.

Keyboard navigation
This product uses standard Microsoft Windows navigation keys.

Related accessibility information
IBM is committed to making our documentation accessible to persons with
disabilities. Our publications are available in HTML format so that they can be
accessed with assistive technology such as screen reader software.

IBM and accessibility
For more information about the IBM commitment to accessibility, see the IBM
Accessibility Center at http://www.ibm.com/able.

Dotted decimal syntax diagrams
The syntax diagrams in our publications are available in dotted decimal format,
which is an accessible format that is available only if you are using a screen reader.

In dotted decimal format, each syntax element is written on a separate line. If two
or more syntax elements are always present together (or always absent together),
the elements can appear on the same line, because they can be considered as a
single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read
punctuation. All syntax elements that have the same dotted decimal number (for
example, all syntax elements that have the number 3.1) are mutually exclusive
alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax can
include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

© Copyright IBM Corp. 2013, 2015 A-1

http://www.ibm.com/able

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, the word or symbol is preceded by
the backslash (\) character. The * symbol can be used next to a dotted decimal
number to indicate that the syntax element repeats. For example, syntax element
*FILE with dotted decimal number 3 is read as 3 * FILE. Format 3* FILE
indicates that syntax element FILE repeats. Format 3* * FILE indicates that
syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol that provides information about the syntax elements. For example, the lines
5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, that element is defined elsewhere.
The string that follows the % symbol is the name of a syntax fragment rather than a
literal. For example, the line 2.1 %OP1 refers to a separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:

? Specifies an optional syntax element. A dotted decimal number followed
by the ? symbol indicates that all the syntax elements with a
corresponding dotted decimal number, and any subordinate syntax
elements, are optional. If there is only one syntax element with a dotted
decimal number, the ? symbol is displayed on the same line as the syntax
element (for example, 5? NOTIFY). If there is more than one syntax element
with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if
you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that syntax
elements NOTIFY and UPDATE are optional; that is, you can choose one or
none of them. The ? symbol is equivalent to a bypass line in a railroad
diagram.

! Specifies a default syntax element. A dotted decimal number followed by
the ! symbol and a syntax element indicates that the syntax element is the
default option for all syntax elements that share the same dotted decimal
number. Only one of the syntax elements that share the same dotted
decimal number can specify a ! symbol. For example, if you hear the lines
2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the
default option for the FILE keyword. In this example, if you include the
FILE keyword but do not specify an option, default option KEEP is applied.
A default option also applies to the next higher dotted decimal number. In
this example, if the FILE keyword is omitted, default FILE(KEEP) is used.
However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP only applies to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword), and
does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* Specifies a syntax element that can be repeated zero or more times. A
dotted decimal number followed by the * symbol indicates that this syntax
element can be used zero or more times; that is, it is optional and can be

A-2 IBM Informix JSON Compatibility

repeated. For example, if you hear the line 5.1* data-area, you know that
you can include more than one data area or you can include none. If you
hear the lines 3*, 3 HOST, and 3 STATE, you know that you can include
HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is
only one item with that dotted decimal number, you can repeat that
same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item
from the list, but you cannot use the items more than once each. In the
previous example, you can write HOST STATE, but you cannot write HOST
HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax
diagram.

+ Specifies a syntax element that must be included one or more times. A
dotted decimal number followed by the + symbol indicates that this syntax
element must be included one or more times. For example, if you hear the
line 6.1+ data-area, you must include at least one data area. If you hear
the lines 2+, 2 HOST, and 2 STATE, you know that you must include HOST,
STATE, or both. As for the * symbol, you can repeat a particular item if it is
the only item with that dotted decimal number. The + symbol, like the *
symbol, is equivalent to a loop-back line in a railroad syntax diagram.

Appendix. Accessibility A-3

A-4 IBM Informix JSON Compatibility

Notices

This information was developed for products and services offered in the U.S.A.
This material may be available from IBM in other languages. However, you may be
required to own a copy of the product or product version in that language in order
to access it.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 2013, 2015 B-1

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

B-2 IBM Informix JSON Compatibility

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details in the
section entitled “Cookies, Web Beacons and Other Technologies”, and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at http://www.ibm.com/legal/copytrade.shtml.

Notices B-3

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, and PostScript are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other
countries.

Intel, Itanium, and Pentium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

B-4 IBM Informix JSON Compatibility

Index

Special characters
$group

operators 4-22

A
Accessibility A-1

dotted decimal format of syntax diagrams A-1
keyboard A-1
shortcut keys A-1
syntax diagrams, reading in a screen reader A-1

addShard command 3-2, 3-3
admin() functions

cdr add trustedhost argument 3-1
aggregation framework operators

$group 4-22
pipeline 4-22
supported 4-22

authentication
authentication.enable 2-38
MongoDB 2-38
user access 2-38

Authentication
MongoDB 2-37
PAM 2-37, 2-39

authentication.enable
properties file 2-3

authentication.localhost.bypass.enable
properties file 2-3

B
bts

$ifxtext 4-22
$text 4-22
query 4-22

C
cdr add trustedhost argument 3-1
changeShardCollection command 3-3, 3-8
collection methods

collection 4-1
db.collection 4-1
supported 4-1
unsupported 4-1

Collections
monitoring 7-1

Collections for configuring time series 6-2
command line

arguments 2-32
command.listDatabases.sizeStrategy

properties file 2-3
commands

buildinformation 2-32
command line 2-32
config 2-32
database 4-4
logfile 2-32

commands (continued)
loglevel 2-32
port 2-32
projection 4-18
query 4-18
start 2-32
stop 2-32
update 4-20
version 2-32
wait 2-32

compatible.maxBsonObjectSize.enable
properties file 2-3

compliance with standards xv
Concepts

MongoDB and Informix 1-3
configuration file

authorized user 2-1
configuring 2-1
creating 2-1
DBSERVERALIASES 2-1
dynamic host IPv6 2-1
ifxjson 2-1
installing 2-1
modify 2-36
MongoDB 2-1
REST API 2-1
sample 2-1
sharding 2-1
template 2-1

copy
properties file 2-3

D
database commands

aggregation 4-4
diagnostic 4-4
instance administration 4-4
query and write operation 4-4
replication 4-4
sharding 4-4
supported 4-4
unsupported 4-4

database.buffer.enable
properties file 2-3

database.cache.enable
properties file 2-3

database.create.enable
properties file 2-3

database.dbspace
properties file 2-3

database.locale.default
properties file 2-3

database.log.enable
properties file 2-3

database.share.close.enable
properties file 2-3

database.share.enable
properties file 2-3

dbspace.strategy
properties file 2-3

© Copyright IBM Corp. 2013, 2015 X-1

DELETE
example 5-1
REST API 5-1
support 5-1

deleteInsert
properties file 2-3

Disabilities, visual
reading syntax diagrams A-1

Disability A-1
documentIdAlgorithm

properties file 2-3
Dotted decimal format of syntax diagrams A-1

E
ensureIndex command 3-4, 3-5, 3-8

F
files

configuration file 2-36
properties file 2-36

Files
.properties 3-1

fragment.count
properties file 2-3

Functions, SQL administration API
cdr add trustedhost argument 3-1

G
GET

example 5-1
REST API 5-1
support 5-1

H
high availability

JSON 2-45
wire listener 2-45

Horizontal partitioning 3-1, 3-2, 3-3, 3-5, 3-8, 3-11

I
IFMXMONGOAUTH environment variable 2-39
ifxjson

configuration file 2-1
properties file 2-1
replication 2-1
sharding 2-1
user permissions 2-1

import
collections 4-1
data 4-1

index
create 4-3
createIndex

supported options 4-3
ensureIndex

supported options 4-3
supported options 4-3

index.cache.enable
properties file 2-3

index.cache.update.interval
properties file 2-3

industry standards xv
Informix configuration parameters

REMOTE_SERVER_CFG 3-1
Informix REST API listener

querying time series 6-10
Informix wire listener

creating time series 6-6
insert.batch.enable

properties file 2-3
insert.batch.queue.enable

properties file 2-3
insert.batch.queue.flush.interval

properties file 2-3
insert.preparedStatement.cache.enable

properties file 2-3
IPv4

configuration 2-1
IPv6

configuration 2-1

J
Java 1-2

dependencies xiii
Java Database Connectivity specification xiii
Java requirement 2-1
Java runtime environment

dependencies xiii
Java software development kit

dependencies xiii
JDBC specification xiii
JDK xiii
JRE xiii
JSON

dots in field names 1-4
SQL access 2-41

JSON compatibility
about 1-1
MongoDB 1-1

JSON plug-in 7-1
jsonListener.log

location 8-1

L
listener.http.accessControlAllowCredentials

properties file 2-3
listener.http.accessControlAllowHeaders

properties file 2-3
listener.http.accessControlAllowMethods

properties file 2-3
listener.http.accessControlAllowOrigin

properties file 2-3
listener.http.accessControlExposeHeaders

properties file 2-3
listener.http.accessControlMaxAge

properties file 2-3
listener.idle.timeout

properties file 2-3
listener.input.buffer.size

properties file 2-3
listener.onException

properties file 2-3

X-2 IBM Informix JSON Compatibility

listener.output.buffer.size
properties file 2-3

listener.pool.keepAliveTime
properties file 2-3

listener.pool.queue.size
properties file 2-3

listener.pool.size.core
properties file 2-3

listener.pool.size.maximum
properties file 2-3

listener.port
properties file 2-3

listener.rest.cookie.domain
properties file 2-3

listener.rest.cookie.httpOnly
properties file 2-3

listener.rest.cookie.length
properties file 2-3

listener.rest.cookie.name
properties file 2-3

listener.rest.cookie.path
properties file 2-3

listener.rest.cookie.secure
properties file 2-3

listener.type
MongoDB 2-3
REST API 2-3

listShards command 3-11
log file

about 2-37
jsonListener.log 8-1
location 2-37
logging level 2-32
settings 2-32, 2-37

Logback 2-37

M
methods

mongo shell 4-1
collection 4-1

mongo.api.version
properties file 2-3

MongoDB
dependencies 1-2
supported version 1-2

MongoDB API
creating time series 6-6
querying time series 6-10
relational tables 2-42
SQL 2-42

MongoDB API wire listener
start 2-34

MongoDB authentication 2-37
MongoDB commands

addShard 3-2, 3-3
changeShardCollection 3-3, 3-8
ensureIndex 3-4, 3-5, 3-8
listShards 3-11
shardCollection 3-4, 3-5

MongoDB concepts 1-3
MongoDB language drivers 4-1
MongoDB shell

version 4-1
MongoDB utilities

mongodump 4-1
mongoexport 4-1

MongoDB utilities (continued)
mongoimport 4-1
mongorestore 4-1

Monitoring collections 7-1

N
non-root install

considerations 8-1

O
OAT 7-1
onstat -g shard 3-8
operators

aggregation framework
$group 4-22
pipeline 4-22

Informix support 4-18
MongoDB 4-18
projection 4-18
query 4-18
supported 4-18
unsupported 4-18
update 4-20

P
PAM authentication 2-37, 2-39
pipeline

operators 4-22
Pluggable authentication module 2-39
pool.connections.maximum

properties file 2-3
pool.idle.timeout

properties file 2-3
pool.idle.timeunit

properties file 2-3
pool.semaphore.timeout

properties file 2-3
pool.semaphore.timeunit

properties file 2-3
pool.service.interval

properties file 2-3
pool.service.timeunit

properties file 2-3
pool.size.initial

properties file 2-3
pool.size.maximum

properties file 2-3
pool.size.minimum

properties file 2-3
pool.type

properties file 2-3
pool.typeMap.strategy

properties file 2-3
POST

example 5-1
REST API 5-1
support 5-1

preparedStatement.cache.enable
properties file 2-3

preparedStatement.cache.size
properties file 2-3

projection operators
supported 4-18

Index X-3

projection operators (continued)
unsupported 4-18

properties file 3-1
configuring 2-1
creating 2-1
DBSERVERALIASES 2-1
dynamic host IPv6 2-1
MongoDB 2-1
optional 2-3
parameters 2-3
required

url 2-3
REST API 2-1
sample 2-1
sharding 2-1, 2-3
template 2-1
view all properties 8-1

properties file parameters
properties file parameters

sharding.parallel.query.enable 3-1
url 3-1

sharding.enable 3-1
url 3-1

Q
query operators

supported 4-18
unsupported 4-18

R
relational database

$sql 2-41
run commands using MongoDB 2-41
run MongoDB operations 2-42
system.sql 2-41

REMOTE_SERVER_CFG configuration parameter 3-1
response.documents.count.maximum

properties file 2-3
response.documents.size.maximum

properties file 2-3
REST API

configuring 2-1
creating time series 6-6
DELETE 5-1
examples 5-1
GET 5-1
listener.type 2-1
POST 5-1
querying time series 6-10
syntax 5-1

REST API listener
querying time series 6-10

REST API wire listener
start 2-34

S
Schema Manager plug-in 7-1
SCRAM-SHA-1 authentication 2-37
Screen reader

reading syntax diagrams A-1
SDK for Java xiii
search

bts 4-22

search (continued)
text 4-22

security.sql.passthrough
properties file 2-3

Shard cluster
viewing participants 3-11

shard clusters 3-1
Shard clusters 3-1, 3-2
shard servers

adding 3-8
deleting 3-8
listing 3-8

Shard servers 3-1
Shard-cluster definition

changing 3-3, 3-8
creating 3-2, 3-3, 3-4, 3-5

shardCollection command 3-4, 3-5
sharding

authorized user 2-1
enable 3-1
ifxjson 2-1
JSON 3-1, 3-2, 3-3, 3-4, 3-5, 3-8, 3-11
properties file 2-1
Relational data 3-4, 3-5, 3-8
shard-cluster creation 3-2
shard-cluster defining 3-3, 3-4, 3-5, 3-8
shard-cluster viewing 3-11
update.client.strategy 2-3
wire listener 3-1

sharding.enable
properties file 2-3

sharding.enable configuration parameter 3-1
sharding.parallel.query.enable configuration parameter 3-1
Shortcut keys

keyboard A-1
software requirement 1-2
SQL

$sql 2-41
JSON access 2-41
system.sql 2-41
using MongoDB API 2-41

SQL administration API functions
cdr add trustedhost argument 3-1

standards xv
start MongoDB API wire listener

command line 2-34
listener.type 2-34

start REST API wire listener
command line 2-34
listener.type 2-34

stop wire listener
command line 2-36

Syntax diagrams
reading xv
reading in a screen reader A-1

T
task() functions

cdr add trustedhost argument 3-1
Time series

collections 6-2
creating with MongoDB API 6-6
creating with REST API 6-6
example for wire listener 6-6
MongoDB API 6-1
query example for MongoDB API listener 6-10

X-4 IBM Informix JSON Compatibility

Time series (continued)
query example for REST API listener 6-10
query with MongoDB API 6-10
query with REST API 6-10
REST API 6-1
wire listener 6-1

U
updatableCursor

properties file 2-3
update operators

supported 4-20
unsupported 4-20

update.client.strategy
properties file 2-3

update.mode
properties file 2-3

update.one.enable
properties file 2-3

url configuration parameter 3-1
urljdbc.afterNewConnectionCreation

properties file 2-3
user permission

grant access 2-1
required access 2-1
sharding 2-1

V
version

wire listener 2-32
Visual disabilities

reading syntax diagrams A-1

W
wire listener

build information 2-32
change 2-36
debug 8-1
help 8-1
Java version 2-1
log file 8-1
modify 2-36
MongoDB 2-1
REST 2-1, 5-1
stop 2-36
using 2-1
version 2-32

Wire listener
creating time series 6-6

wire listener parameters 2-3
Wire listener parameters

sharding.enable 3-1
sharding.parallel.query.enable 3-1
url 3-1

Index X-5

X-6 IBM Informix JSON Compatibility

IBM®

Printed in USA

SC27-5556-05

	Contents
	Introduction
	About This Publication
	Types of Users
	Assumptions about your locale
	Demonstration databases

	What's new in JSON, Version 12.10
	Java technology dependencies
	Example code conventions
	Additional documentation
	Compliance with industry standards
	How to read the syntax diagrams
	How to provide documentation feedback

	Chapter 1. About the Informix JSON compatibility
	Getting started with Informix JSON
	Software dependencies for JSON compatibility
	MongoDB to Informix term mapping
	Support for dots in field names
	Manipulate BSON data with SQL statements

	Chapter 2. Wire listener
	Configuring the wire listener for the first time
	The wire listener configuration file
	Wire listener command line options
	Starting the wire listener
	Running multiple wire listeners
	Modifying the wire listener configuration file
	Stopping the wire listener
	Wire listener logging
	User authentication with the wire listener
	Configuring MongoDB authentication
	Adding users

	Configuring database server authentication with PAM (UNIX, Linux)

	Running SQL commands by using a MongoDB API
	Running MongoDB operations on relational tables
	Running join queries by using the wire listener
	High availability support in the wire listener

	Chapter 3. JSON data sharding
	Preparing shard servers
	Creating a shard cluster with MongoDB commands
	Shard-cluster definitions for distributing data
	Defining a sharding schema with a hash algorithm
	Defining a sharding schema with an expression

	Shard cluster management
	Changing the definition for a shard cluster
	Viewing shard-cluster participants

	Chapter 4. MongoDB API and commands
	Language drivers
	Command utilities and tools
	Collection methods
	Index creation
	Database commands
	Informix JSON commands
	Operators
	Query and projection operators
	Update operators
	Informix query operators
	Aggregation framework operators

	Chapter 5. REST API
	REST API syntax

	Chapter 6. Create time series through the wire listener
	Time series collections and table formats
	Example: Create a time series through the wire listener
	Example queries of time series data by using the wire listener

	Chapter 7. Monitoring collections
	Chapter 8. Troubleshooting Informix JSON compatibility
	Appendix. Accessibility
	Accessibility features for IBM Informix products
	Accessibility features
	Keyboard navigation
	Related accessibility information
	IBM and accessibility

	Dotted decimal syntax diagrams

	Notices
	Privacy policy considerations
	Trademarks

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

