Informix Product Family
Informix
Version 12.10

IBM Informix Performance Guide

<||IH

Informix Product Family
Informix
Version 12.10

IBM Informix Performance Guide

<||IH

Note
FBefore using this information and the product it supports, read the information in ['Notices” on page C-1]

This edition replaces SC27-4530-03.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1996, 2015.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Introduction.

About this publication .
Topics beyond the scope of thls pubhcatlon
Types of users .o L.
Software dependencies
Assumptions about your locale.
Demonstration databases .

What's new in performance for Informlx version 12 10

Example code conventions .

Additional documentation.

Compliance with industry standards

How to provide documentation feedback.

Chapter 1. Performance basics
Developing a basic approach to performance measurement and tuning .
Quick start for acceptable performance on a small database .
Performance goals . .
Measurements of performance .

Throughput .

Response time .

Cost per transaction .
Resource utilization and performance

Resource utilization

CPU utilization .

Memory utilization .

Disk utilization .
Factors that affect resource utlhzatlon .
Maintenance of good performance .

Chapter 2. Performance monitoring and the tools you use .
Evaluate the current configuration
Create a performance history . .

The importance of a performance hlstory .

Tools that create a performance history . .
Monitor performance with the OpenAdmin Tool (OAT) for Informlx .
Monitor database server resources .

Monitor resources that impact CPU utlhzatlon

Monitor memory utilization.

Monitor disk I/0O utilization
Monitor transactions. .o

Using the onlog utility to momtor transactlons .

Using the onstat utility to monitor transactions .

Monitor sessions and queries . .

Monitoring memory usage for each session .

Using the SET EXPLAIN statement .

Chapter 3. Effect of configuration on CPU utilization.
UNIX configuration parameters that affect CPU utilization
UNIX semaphore parameters
UNIKX file-descriptor parameters .
UNIX memory configuration parameters .
Windows configuration parameters that affect CPU utlhzatlon . .
Configuration parameters and environment variables that affect CPU utrhzatron .
Specifying virtual processor class information.
Setting the MULTIPROCESSOR configuration parameter when usmg multlple CPU VPS

© Copyright IBM Corp. 1996, 2015

Xi
Xi

Xi
Xii
Xii
Xii
xiii
xiii
Xvii
XViii
Xviii
XViii

1-1
1-1
1-2

1-3
1-3
1-4
1-7

1-8
1-9
1-10
1-11
1-12
1-13

2-1
2-1
2-2
2-2

2-6
2-6
2-6
2-7
2-9
2-11
2-11
2-12
2-12
2-12
2-13

3-1
3-1
3-1
3-2

3-3
3-3
3-4
3-9

iii

Setting the SINGLE_CPU_VP conflguratlon parameter when using one CPU VP.
Optimizing access methods . . .o e
Limiting PDQ resources in queries . .

Limiting the performance impact of CPU- 1nten51ve querles

Limiting the number of PDQ scan threads that can run concurrently
Configuring poll threads

Enabling fast polling.

Network buffer pools
Network buffers .

Support for private network buffers
Network buffer size .

Virtual processors and CPU utlhzatlon
Adding virtual processors .

Monitoring virtual processors.
Private memory caches .

Connections and CPU utilization
Multiplexed connections and CPU utlhzatlon
MaxConnect for multiple connections UNIX.

Chapter 4. Effect of configuration on memory utilization .
Shared memory.
Resident portion of shared memory
Virtual portion of shared memory
Message portion of shared memory .
Buffer pool portion of shared memory .
Estimating the size of the resident portion of shared memory
Estimating the size of the virtual portion of shared memory .
Estimating the size of the message portion of shared memory
Configuring UNIX shared memory .
Freeing shared memory with onmode -F .
Configuration parameters that affect memory utilization . .
Setting the size of the buffer pool, logical-log buffer, and phys1ca1 log buffer
The LOCKS configuration parameter and memory utilization . .
The RESIDENT configuration parameter and memory utilization .

The SHMADD and EXTSHMADD configuration parameters and memory utlhzatlon .

The SHMTOTAL configuration parameter and memory utilization
The SHMVIRTSIZE configuration parameter and memory utilization
The SHMVIRT_ALLOCSEG configuration parameter and memory utlhzatlon
The STACKSIZE configuration parameter and memory utilization .
Configure and monitor memory caches
Data-dictionary cache
Data-distribution cache . . .
Monitor and tune the SQL statement cache .
Session memory . .
Data-replication buffers and memory utlhzatlon
Memory latches
Monitoring latches w1th command hne ut111t1es
Monitoring latches with SMI tables .
Encrypted values .

Chapter 5. Effect of conflguratlon on I/O actlwty
Chunk and dbspace configuration
Associate disk partitions with chunks
Associate dbspaces with chunks .
Placing system catalog tables with database tables .
I/0 for cooked files for dbspace chunks
Direct I/O (UNIX) . o
Direct I/O (Windows)
Concurrent I/0 (AIX only) .
Enabling the direct I/O or concurrent I / @) optlon (UNIX)

iV IBM Informix Performance Guide

3-10
3-10
3-11
3-12
3-12
3-13
3-16
3-16
3-17
3-18
3-18
3-19
3-19
3-19
3-22
3-23
3-23
3-24

4-1

4-2
4-2
43
4-3

4-4
4-6
4-6
4-7

49
4-15
4-17
4-17
4-18
4-19
4-19
4-20
4-21
4-23
4-24
4-26
4-39
4-40
4-40
4-40
4-41
4-41

5-1
5-2
5-2
5-2
5-2
5-3
5-3

5-4

Confirming the use of the direct or concurrent I/O option (UNIX).
Placement of critical data e
Consider separate disks for Cr1t1ca1 data components
Consider mirroring for critical data components .
Configuration parameters that affect critical data
Configure dbspaces for temporary tables and sort files.
Creating temporary dbspaces . .
Specify temporary tables in the DBSPACETEMP conflguratlon parameter .
Override the DBSPACETEMP configuration parameter for a session .
Estimating temporary space for dbspaces and hash joins.
PSORT_NPROCS environment variable .
Configure sbspaces for temporary smart large objects.
Creating temporary sbspaces . .
Specify which sbspaces to use for temporary storage
Placement of simple large objects
Advantage of blobspaces over dbspaces
Blobpage size considerations .
Factors that affect I/O for smart large ob]ects
Disk layout for sbspaces
Configuration parameters that affect sbspace 1/ O
onspaces options that affect sbspace I/0 .
Table 1/0 .
Sequential scans .
Light scans .
Unavailable data .
Configuration parameters that affect table 1/ O
How DATASKIP affects table I/O
Background I/0O activities . .
Configuration parameters that affect Checkpomts .
Configuration parameters that affect logging.
Configuration parameters that affect page cleaning
Configuration parameters that affect backup and restore.
Configuration parameters that affect rollback and recovery .
Configuration parameters that affect data replication and aud1t1ng
LRU tuning.

Chapter 6. Table performance considerations.
Placing tables on disk.

Isolating high-use tables . .

Placing high-use tables on middle part1t10ns of dlSkS

Using multiple disks . .

Backup and restore con51derat10ns when placmg tables on dlsks .

Factors affecting the performance of nonfragmented tables and table fragments
Estimating table size .

Estimating data pages .

Estimating pages that simple large ob]ects occupy . .o .
Managing the size of first and next extents for the tblspace tblspace
Managing sbspaces . .

Estimating pages that smart large ob]ects occupy .

Improving metadata I/O for smart large objects

Monitoring sbspaces .

Changing storage characterlstlcs of smart large ob]ects
Managing extents. .o

Choosing table extent sizes

Monitoring active tblspaces .

Monitoring the upper limit on extents and extent 1nter1eav1ng

Reclaiming unused space within an extent .

Managing extent deallocation with the TRUNCATE keyword

Defragment partitions to merge extents R
Storing multiple table fragments in a single dbspace .

Displaying a list of table and index partitions

Contents

5-4
5-5
5-5
5-5
5-7

5-10
5-11
5-11
5-12
5-13
5-13
5-14
5-15
5-15
5-15
5-16
5-19
5-20
5-20
5-21
5-24
5-24
5-25
5-26
5-26
5-26
5-27
5-27
5-32
5-38
5-40
5-41
5-42
5-44

6-2

6-10
6-10
6-10
6-12
6-13
6-17
6-20
6-20
6-23
6-24
6-27
6-28
6-28
6-29
6-29

v

Changing tables to improve performance .
Loading and unloading tables
Dropping indexes for table-update eff1c1ency .
Creating and enabling referential constraints eff1c1ently
Attaching or detaching fragments
Altering a table definition . . S
Denormalize the data model to 1mprove performance
Shortening rows .
Expelling long strings
Splitting wide tables.
Redundant data
Reduce disk space in tables wrth varlable length rOws
Reduce disk space by compressing tables and fragments.

Chapter 7. Indexes and index performance considerations .

Types of indexes
B-tree indexes
Forest of trees indexes
R-tree indexes
Indexes that DataBlade modules provrde
Estimating index pages .
Index extent sizes . .
Estimating conventional mdex pages
Managing indexes .
Space costs of indexes
Time costs of indexes .
Unclaimed index space
Indexes on columns .
Nonunique indexes .
Improve query performance w1th a forest of trees 1ndex
Detecting root node contention .
Creating a forest of trees index
Disabling and enabling a forest of trees mdex
Performing a range scan on a forest of trees index.
Determining if you are using a forest of trees index

Finding the number of hashed columns and subtrees in a forest of trees 1ndex

Creating and dropping an index in an online environment .
When you cannot create or drop indexes online
Creating attached indexes in an online environment .
Limiting memory allocation while creating indexes online .

Improving performance for index builds .

Estimating memory needed for sorting
Estimating temporary space for index builds

Storing multiple index fragments in a single dbspace.

Improving performance for index checks .

Indexes on user-defined data types .

Defining indexes for user-defined data types
Using an index that a DataBlade module provides.
Choosing operator classes for indexes .

Chapter 8. Lockmg
Locks .

Locking granularrty

Row and key locks

Page locks

Table locks

Database locks . .
Configuring the lock mode .
Setting the lock mode to wait .
Locks with the SELECT statement

vi IBM Informix Performance Guide

6-29
6-29
6-32
6-32
6-34
6-35
6-42
6-42
6-43
6-44
6-45
6-46
6-46

7-1
7-1
7-1

7-4
7-4

7-4
7-5
7-8
7-8

7-9
7-10
7-12
7-13
7-13
7-14
7-15
7-15
7-16
7-16
7-16
7-17
7-18
7-18
7-18
7-19
7-20
7-20
7-20
7-21
7-22
7-27
7-27

8-1
8-1
8-1
8-2

8-3
8-4

8-5

Isolation level . .
Locking nonlogging tables .
Update cursors .

Locks placed with INSERT, UPDATE and DELETE statements

The internal lock table .

Monitoring locks . . .
Configuring and managmg lock usage
Monitoring lock waits and lock errors .
Monitoring the number of free locks
Monitoring deadlocks .
Monitoring isolation levels that sessions use .

Locks for smart large objects .

Byte-range locking
Lock promotion .
Dirty Read isolation level and smart large ob]ects .

Chapter 9. Fragmentation guidelines
Planning a fragmentation strategy
Fragmentation goals . .
Examining your data and queries.
Considering physical fragmentation factors
Distribution schemes .
Choosing a distribution scheme
Designing an expression-based dlstrrbut1on scheme
Suggestions for improving fragmentation .
Strategy for fragmenting indexes
Attached indexes .
Detached indexes.
Restrictions on indexes for fragmented tables
Strategy for fragmenting temporary tables
Distribution schemes that eliminate fragments . .
Fragmentation expressions for fragment elimination .
Query expressions for fragment elimination .
Effectiveness of fragment elimination .

Improve the performance of operations that attach and detach fragments .

Improving ALTER FRAGMENT ATTACH performance .

Improving ALTER FRAGMENT DETACH performance .

Forcing out transactions when altering table fragments .
Monitoring fragment use

Monitoring fragmentation w1th the onstat -g ppf command

Monitoring fragmentation with SET EXPLAIN output

Chapter 10. Queries and the query optlmlzer
The query plan
The access plan
The join plan .
Example of query-plan execut1on
Query plans that include an index self-j]om path
Query plan evaluation .
Report that shows the query plan chosen by the opt1m1zer
Sample query plan reports . e
XML query plans in IBM Data Studlo
Factors that affect the query plan .
Statistics held for the table and index.
Filters in the query .
Indexes for evaluating a fllter
Effect of PDQ on the query plan .
Effect of OPTCOMPIND on the query plan
Effect of available memory on the query plan .
Time costs of a query .

Contents

8-5

8-8

8-8
8-10
8-10
8-11
8-12
8-13
8-14
8-14
8-15
8-16
8-16
8-19
8-19

9-1
9-1
9-2
9-4
9-5
9-6
9-7
9-8
9-9

9-10

9-10

9-12

9-13

9-13

9-14

9-14

9-15

9-16

9-19

9-20

9-26

9-27

9-29

9-29

9-29

10-1
10-1
10-1
10-2
10-4
10-8
10-9
10-9

10-12

10-19

10-19

10-20

10-20

10-21

10-22

10-22

10-23

10-23

vii

Memory-activity costs .

Sort-time costs

Row-reading costs .

Sequential access costs.

Nonsequential access costs

Index lookup costs .

In-place ALTER TABLE costs

View costs. ..

Small-table costs.

Data-mismatch costs

Encrypted-value costs .

GLS functionality costs

Network-access costs .
Optimization when SQL is w1th1n an SPL routme

SQL optimization .

Execution of an SPL routme .

SPL routine executable format stored in UDR cache
Trigger execution .

Performance 1mphcat10ns for trlggers

Chapter 11. Optimizer directives .
What optimizer directives are. .
Optimizer directives that are embedded in querles
External optimizer directives .
Reasons to use optimizer directives .
Preparation for using directives .
Guidelines for using directives . .
Types of optimizer directives that are supported in SQL statements .

Access-method directives .

Join-order directives .

Join-method directives .

Optimization-goal directives .

Star-join directives

EXPLAIN directives . .

Example of directives that can alter a query plan .
Configuration parameters and environment variables for optmuzer d1rect1ves
Optimizer directives and SPL routines .
Avoiding index or prepared object exceptions by forced reoptlmlzatlon
External optimizer directives. .

Creating and saving external dlrectrves .

Enabling external directives .

Deleting external directives .

Chapter 12. Parallel database query (PDQ)
What PDQ is .
Structure of a PDQ query .
Database server operations that use PDQ

Parallel update and delete operations .

Parallel insert operations

Parallel index builds.

Parallel user-defined routines.

Hold cursors that use PDQ .o

SQL operations that do not use PDQ

Update statistics operations affected by PDQ

SPL routines and triggers and PDQ.

Correlated and uncorrelated subqueries

OUTER index joins and PDQ .

Remote tables used with PDQ
The Memory Grant Manager . .
The allocation of resources for parallel database querles .

viil IBM Informix Performance Guide

10-24
10-24
10-25
10-26
10-26
10-26
10-27
10-27
10-28
10-28
10-29
10-29
10-29
10-31
10-31
10-33
10-33
10-34
10-35

11-1
11-1
11-1
11-1
11-2
11-3
11-3
11-3
11-4
11-5
11-6
11-7
11-8
11-8

11-10

11-12

11-13

11-13

11-15

11-15

11-16

11-17

12-1
12-1
12-1
12-2
12-2
12-2
12-3
12-4
12-4
12-4
12-5
12-5
12-5
12-5
12-6
12-6
12-7

Limiting the priority of decision-support queries .
Adjusting the amount of memory for DSS and PDQ querles .
Limiting the number of concurrent scans o
Limiting the maximum number of PDQ queries .

Managing PDQ queries .
Analyzing query plans with SET EXPLAIN output .
Influencing the choice of a query plan .

Setting the PDQ priority dynamically. .
Enabling the database server to allocate PDQ memory
User control of PDQ resources . . .
DBA control of resources for PDQ and DSS quer1es .

Monitoring resources used for PDQ and DSS queries
Monitoring PDQ resources by using the onstat Utility .
Identifying parallel scans in SET EXPLAIN output

Chapter 13. Improving individual query performance .

Test queries using a dedicated test system
Display the query plan .
Improve filter selectivity
Filters with user-defined routmes
Avoid some filters . .
Use join filters and post-join fllters .
Automatic statistics updating .
How AUS works .
AUS expiration policies.
Viewing AUS statements .
Prioritizing databases in AUS
Rescheduling AUS .
Disabling AUS . .
Update statistics when they are not generated automatlcally
Update the statistics for the number of rows
Drop data distributions if necessary when upgrading
Creating data distributions
Updating statistics for join columns .
Updating statistics for columns with user—defmed data types
Update statistics in parallel on very large databases .

Adjust the amount of memory and disk space for UPDATE STATISTICS

Data sampling during update statistics operatlons

Display data distributions . .
Improve performance by adding or removmg 1ndexes .

Replace autoindexes with permanent indexes .

Use composite indexes .

Indexes for data warehouse apphcatrons

Configure B-tree scanner information to improve transactlon processmg

Determine the amount of free space in an index page
Optimizer estimates of distributed queries .

Buffer data transfers for a distributed query

The query plan of a distributed query
Improve sequential scans . o
Enable view folding to improve query performance .
Reduce the join and sort operations

Avoid or simplify sort operations .

Use parallel sorts . .o

Use temporary tables to reduce sortmg scope .

Configuring memory for queries with hash joins, aggregates and other memory 1ntens1ve elements

Optimize user-response time for queries.
Optimization level .
Optimization goals . . .
Optimize queries for user-defined data types .
Parallel UDRs
Selectivity and cost functlons

12-7
12-10
12-11
12-12
12-12
12-12
12-13
12-13
12-13
12-15
12-15
12-16
12-16
12-18

13-1
13-1
13-1
13-2
13-2
13-3
13-3
13-6
13-7
13-8

13-10

13-10

13-11

13-12

13-12

13-13

13-13

13-14

13-16

13-17

13-18

13-18

13-19

13-19

13-20

13-21

13-21

13-22

13-23

13-30

13-30

13-31

13-31

13-32

13-32

13-33

13-33

13-33

13-34

13-35

13-36

13-36

13-36

13-39

13-39

13-40

Contents 1X

User-defined statistics for UDTs

Negator functions .
Optimize queries with the SQL statement Cache

When to use the SQL statement cache

Using the SQL statement cache . .

Monitoring memory usage for each session.

Monitoring usage of the SQL statement cache .
Monitor sessions and threads .

Monitor sessions and threads with onstat Commands

Monitor sessions and threads with SMI tables .
Monitor transactions . .

Display information about transactlons .

Display information about transaction locks

Display statistics on user sessions .

Display statistics on sessions executing SQL statements

Chapter 14. The onperf utility on UNIX
Overview of the onperf utility

Basic onperf utility functions .

onperf utility tools . .
Requirements for running the onperf utlhty
Starting the onperf utility and exiting from it
The onperf user interface .

Graph tool .

Query-tree tool .

Status tool .

Activity tools .
Why you might want to use onperf

Routine monitoring with onperf

Diagnosing sudden performance loss .

Diagnosing performance degradation.
onperf utility metrics .

Database server metrics

Disk-chunk metrics .

Disk-spindle metrics

Physical-processor metrics

Virtual-processor metrics .

Session metrics .

Tblspace metrics.

Fragment metrics

Appendix A. Case studies and examples
Case study of a situation in which disks are overloaded .

Appendix B. Accessibility .
Accessibility features for IBM Informix products.
Accessibility features .
Keyboard navigation . .
Related accessibility mformatlon .
IBM and accessibility .
Dotted decimal syntax diagrams .

Notices . .
Privacy policy con51derat10ns .

Trademarks .

Index .

X IBM Informix Performance Guide

13-41
13-41
13-41
13-42
13-42
13-44
13-47
13-48
13-49
13-55
13-56
13-56
13-58
13-58
13-59

14-1
14-1
14-1
14-3
14-3
14-4
14-5
14-5

14-11

14-11

14-12

14-12

14-13

14-13

14-13

14-13

14-13

14-15

14-15

14-15

14-16

14-16

14-17

14-18

A-1
A-1

B-1
B-1
B-1
B-1

B-1
C-1
c3
c3

X-1

Introduction

This introduction provides an overview of the information in this publication and
describes the conventions it uses.

About this publication

This publication provides information about how to configure and operate IBM®
Informix® to improve overall system throughput and to improve the performance
of SQL queries. This publication also includes information about performance
tuning issues and methods, fragmentation guidelines, and a complete description
of the onperf utility.

Information in this publication can help you perform the following tasks:
* Monitor system resources that are critical to performance

* Identify database activities that affect these critical resources

* Identify and monitor queries that are critical to performance

* Use the database server utilities (especially onperf, ISA and onstat) for
performance monitoring and tuning

* Eliminate performance bottlenecks by:
— Balancing the load on system resources

— Adjusting the configuration parameters or environment variables of your
database server

— Adjusting the arrangement of your data
— Allocating resources for decision-support queries

— Creating indexes to speed up retrieval of your data

Performance measurement and tuning encompass a broad area of research and
practice and can involve information beyond the scope of this publication.

Performance issues related to dimensional databases and data warehouse queries
are described in the IBM Informix Data Warehouse Guide.

Related information:

[Performance tuning dimensional databases|

Topics beyond the scope of this publication

Attempts to balance the workload often produce a succession of moderate
performance improvements. Sometimes the improvements are dramatic. However,
in some situations a load-balancing approach is not enough. The following types of
situations might require measures beyond the scope of this publication:

* Application programs that require modification to make better use of database
server or operating-system resources

* Applications that interact in ways that impair performance
* A host computer that might be subject to conflicting uses
* A host computer with capacity that is inadequate for the evolving workload

* Network performance problems that affect client/server or other applications

© Copyright IBM Corp. 1996, 2015 xi

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.whse.doc/ids_whse_221.htm

xii

No amount of database tuning can correct these situations. Nevertheless, they are
easier to identify and resolve when the database server is configured properly.

Important: Although broad performance considerations also include reliability and
data availability as well as improved response time and efficient use of system
resources, this publication discusses only response time and system resource use.
For discussions of improved database server reliability and data availability, see
information about switchover, mirroring, and high availability in your

Administrator's Guide} For information about backup and restore, see the

and Restore Guide]

Types of users

This publication is written for the following users:
* Database administrators

* Database server administrators

* Database-application programmers

* Performance engineers

This publication assumes that you have the following background:

* A working knowledge of your computer, your operating system, and the utilities
that your operating system provides

* Some experience working with relational databases or exposure to database
concepts

* Some experience with computer programming

* Some experience with database server administration, operating-system
administration, or network administration

Software dependencies

This publication assumes that you are using IBM Informix, Version 12.10.

Assumptions about your locale

IBM Informix products can support many languages, cultures, and code sets. All
the information related to character set, collation and representation of numeric
data, currency, date, and time that is used by a language within a given territory
and encoding is brought together in a single environment, called a Global
Language Support (GLS) locale.

The IBM Informix OLE DB Provider follows the ISO string formats for date, time,
and money, as defined by the Microsoft OLE DB standards. You can override that

default by setting an Informix environment variable or registry entry, such as
GL_DATE.

If you use Simple Network Management Protocol (SNMP) in your Informix
environment, note that the protocols (SNMPv1 and SNMPv2) recognize only
English code sets. For more information, see the topic about GLS and SNMP in the
IBM Informix SNMP Subagent Guide.

The examples in this publication are written with the assumption that you are
using one of these locales: en_us.8859-1 (ISO 8859-1) on UNIX platforms or
en_us.1252 (Microsoft 1252) in Windows environments. These locales support U.S.
English format conventions for displaying and entering date, time, number, and
currency values. They also support the ISO 8859-1 code set (on UNIX and Linux)

IBM Informix Performance Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/admin.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.bar.doc/bar.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.bar.doc/bar.htm

or the Microsoft 1252 code set (on Windows), which includes the ASCII code set
plus many 8-bit characters such as é and fi.

You can specify another locale if you plan to use characters from other locales in
your data or your SQL identifiers, or if you want to conform to other collation
rules for character data.

For instructions about how to specify locales, additional syntax, and other
considerations related to GLS locales, see the IBM Informix GLS User’s Guide.

Demonstration databases

The DB-Access utility, which is provided with your IBM Informix database server
products, includes one or more of the following demonstration databases:

¢ The stores_demo database illustrates a relational schema with information about
a fictitious wholesale sporting-goods distributor. Many examples in IBM
Informix publications are based on the stores_demo database.

* The superstores_demo database illustrates an object-relational schema. The
superstores_demo database contains examples of extended data types, type and
table inheritance, and user-defined routines.

For information about how to create and populate the demonstration databases,
see the IBM Informix DB-Access User’s Guide. For descriptions of the databases and
their contents, see the IBM Informix Guide to SQL: Reference.

The scripts that you use to install the demonstration databases are in the
$INFORMIXDIR/bin directory on UNIX platforms and in the SINFORMIXDIR%\bin
directory in Windows environments.

What's new in performance for Informix, version 12.10

This publication includes information about new features and changes in existing
functionality.

The following changes and enhancements are relevant to this publication. For a
complete list of what's new in this release, go to |http://www.ibm.com/support/|
[knowledgecenter /SSGU8G_12.1.0/com.ibm.po.doc/new_features_ce.html

Introduction Xiii

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.po.doc/new_features_ce.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.po.doc/new_features_ce.htm

Table 1. What's new in the IBM Informix Performance Guide for version 12.10.xC6

Overview

Reference

Prioritize databases for automatic update statistics

You can now assign a priority to each of your databases
in the Auto Update Statistics (AUS) maintenance system.
By default all databases have a medium priority. You can
assign specific databases a high or a low priority to
ensure that statistics for your most important databases
are updated first. Statistics for low priority databases are
updated after high and medium priority databases, if
time and resources permit. For example, if you have a
system with a production and a test database, you can
assign the production database a high priority and the
test database a low priority. You can also disable AUS for
a database.

You can set AUS priorities in the IBM OpenAdmin Tool
(OAT) for Informix or by adding rows to the
ph_threshold table in the sysadmin database.

[“Prioritizing databases in AUS” on page 13-10|

Table 2. What's new in the IBM Informix Performance Guide for version 12.10.xC4

Overview

Reference

Easier removal of outstanding in-place alter operations

Removing outstanding in-place alter operations improves
performance and is a prerequisite for reverting to an
earlier version of Informix. You can easily remove
outstanding in-place alter operations for tables or
fragments in IBM OpenAdmin Tool (OAT) for Informix or
with the new table update_ipa or fragment update_ipa
argument of the admin() or task() SQL administration
command. Previously, you ran a dummy UPDATE
statement to remove outstanding in-place alter operations.

You can remove outstanding in-place alter operations
faster by including the parallel option with the table
update_ipa or fragment update_ipa argument of the
admin() or task() SQL administration command.

“Performance of in-place alters for DDL operations” on|

[page 6-40|

Faster storage optimization

You can now compress, uncompress, and repack data or

indexes faster by including the new parallel option with

the table, fragment, or index argument of the admin() or
task() SQL administration command.

“Reduce disk space by compressing tables and|
fragments” on page 6-46]

Xiv IBM Informix Performance Guide

Table 3. What's new in the IBM Informix Performance Guide for version 12.10.xC3

Overview

Reference

Automatic resource tuning for performance

You can configure the database server to adjust resources
to improve performance:

* Increase the size of the buffer pool: Include the
extendable=1 option in the BUFFERPOOL
configuration parameter value to make the buffer pool
extendable. Use the new memory field to specify the
size of the buffer pool in units of memory, such as MB
or GB, instead of units of pages. Buffer pools are now
stored in the buffer pool segment of shared memory.

* Increase the number of logical log files: Set the
AUTO_LLOG configuration parameter to 1, the name
of the dbspace for logical logs, and optionally the
maximum size of all logical log files.

* Increase the number of CPU and AIO virtual
processors: Include the autotune=1 option in the
VPCLASS configuration parameter values for the CPU
and AIO virtual processor settings. Optionally include
a maximum number of CPU VPs.

* Increase the size of the physical log size: Create a
plogspace storage space to store the physical log by
running the onspaces -c -P command. The plogspace is
extendable by default.

“The BUFFERPOOL configuration parameter and|
memory utilization” on page 4-10|

[“AUTO_LLOG and its effect on logging” on page 5-36]

[“Checkpoints and the physical log” on page 5-30)

|“Setting the number of CPU VPs” on page 3-5|

[“Setting the number of AIO VPs” on page 3-8

Temporarily prevent constraint validation

You can significantly increase the speed of loading or
migrating large tables by temporarily preventing the
database server from validating foreign-key referential
constraints. You can disable the validation of constraints
when you create constraints or change the mode of
constraints to ENABLED or FILTERING.

* You include the NOVALIDATE keyword in an ALTER
TABLE ADD CONSTRAINT statement or in a SET
CONSTRAINTS ENABLED or SET CONSTRAINTS
FILTERING statements.

* If you plan to run multiple ALTER TABLE ADD
CONSTRAINT or SET CONSTRAINTS statements, run
the SET ENVIRONMENT NOVALIDATE ON statement
to disable the validation of foreign-key constraints
during the current session.

The NOVALIDATE keyword prevents the database server
from checking every row for referential integrity during
ALTER TABLE ADD CONSTRAINT and SET
CONSTRAINTS operations on foreign-key constraints.
When those statements finish running, the database
server automatically resumes referential-integrity
enforcement of those constraints in subsequent DML
operations.

Use this feature only on tables whose enabled foreign-key
constraints are free of violations, or when the referential
constraints can be validated after the tables are loaded or
migrated to the target database.

“Creating and enabling referential constraints efficiently”|

on page 6-32)

Introduction XV

Table 3. What's new in the IBM Informix Performance Guide for version 12.10.xC3 (continued)

Overview

Reference

Faster creation of foreign-key constraints

When you run the ALTER TABLE ADD CONSTRAINT
statement, some foreign-key constraints can be created
faster if the table has a unique index or a primary-key
constraint that is already defined on the columns in the
foreign-key constraint.

Foreign-key constraints are not created faster, however, if
the constraint key or index key includes columns of
user-defined or opaque data types, including BOOLEAN
and LVARCHAR, or if other restrictions are true for the
foreign-key constraint or for the referenced table.

“Creating and enabling referential constraints efficiently”|

on page 6-32|

Table 4. What's new in the IBM Informix Performance Guide for version 12.10.xC2

Overview

Reference

In-place alter operations on serial data types

The ALTER TABLE statement converts the following
column data types with in-place alter operations:

* SERIAL to SERIALS

* SERIAL to BIGSERIAL
* SERIALS to BIGSERIAL
* BIGSERIAL to SERIALS

Previously such data types were converted with slow
alter operations. In-place alter operations require less
space than slow alter operations and make the table
available to other sessions faster.

|“Conditions for in-place alter operations” on page 6-36|

Dynamic private memory caches for CPU virtual
processors

Private memory caches for CPU virtual processors now
change size automatically as needed. You create private
memory caches by setting the VP_MEMORY_CACHE_KB
configuration parameter to the initial size of the caches.
The size of a private memory cache increases and
decreases automatically, depending on the needs of the
associated CPU virtual processor. Previously, the size of
private memory caches was limited to the value of the
VP_MEMORY_CACHE_KB configuration parameter.

[“Private memory caches” on page 3-22|

Monitor resource contention

You can view the dependencies between blocking and
waiting threads by running the onstat -g bth command.
Run the onstat -g BTH command to display session and
stack information for the blocking threads.

“Monitor blocking threads with the onstat -g bth and|
onstat - BTH commands” on page 13-49

XVl IBM Informix Performance Guide

Table 5. What's new in the IBM Informix Performance Guide for version 12.10.xC1

Overview

Reference

Increased scalability with optimized caching

The sizes of memory caches are now twice the values that
are set by the DS_POOLSIZE, PC_POOLSIZE,
PLCY_POOLSIZE, or USRC_POOLSIZE configuration
parameters. For example, if the DS_POOLSIZE
configuration parameter is set to 127, 254 entries are
allowed in the data distribution cache. If all entries in a
cache are full, the cache size automatically grows by 10%.
You can also dynamically increase cache sizes in memory.

You can view more information about caches and
mutexes with onstat commands. You can view detailed
information about memory caches by running the onstat
-g cac command. The output can help you determine
whether the cache is configured for optimal performance.

[“Configure and monitor memory caches” on page 4-21|

Increased scalability with optimized caching

Cache access and management is optimized to provide
faster performance for large systems that have many
users. You can dynamically increase cache sizes in
memory. You can view more information about caches
and mutexes with onstat commands.

|“Adjust the UDR cache” on page 10-33|

[“Data-distribution configuration” on page 4-24|

“Monitor virtual processors with the onstat-g glo|
command” on page 3-20|

Example code conventions

Examples of SQL code occur throughout this publication. Except as noted, the code
is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by
semicolons. For instance, you might see the code in the following example:

CONNECT TO stores_demo

DELETE FROM customer

WHERE customer_num = 121

COMMIT WORK
DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules for
that product. For example, if you are using an SQL API, you must use EXEC SQL
at the start of each statement and a semicolon (or other appropriate delimiter) at
the end of the statement. If you are using DB-Access, you must delimit multiple

statements with semicolons.

Tip: Ellipsis points in a code example indicate that more code would be added in
a full application, but it is not necessary to show it to describe the concept that is

being discussed.

For detailed directions on using SQL statements for a particular application

development tool or SQL API,

see the documentation for your product.

Introduction XVii

Additional documentation

Documentation about this release of IBM Informix products is available in various
formats.

You can access Informix technical information such as information centers,
technotes, white papers, and IBM Redbooks® publications online at
[http:/ /www.ibm.com /software/data/sw-library /|

Compliance with industry standards

IBM Informix products are compliant with various standards.

IBM Informix SQL-based products are fully compliant with SQL-92 Entry Level
(published as ANSI X3.135-1992), which is identical to ISO 9075:1992. In addition,
many features of IBM Informix database servers comply with the SQL-92
Intermediate and Full Level and X/Open SQL Common Applications Environment
(CAE) standards.

How to provide documentation feedback

xviii

You are encouraged to send your comments about IBM Informix product
documentation.

Add comments about documentation to topics directly in IBM Knowledge Center
and read comments that were added by other users. Share information about the
product documentation, participate in discussions with other users, rate topics, and
more!

Feedback is monitored by the team that maintains the user documentation. The
comments are reserved for reporting errors and omissions in the documentation.
For immediate help with a technical problem, contact IBM Software Support at
[http:/ /www.ibm.com /planetwide /|

We appreciate your suggestions.

IBM Informix Performance Guide

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/planetwide/

Chapter 1. Performance basics

Performance measurement and tuning issues and methods are relevant to daily
database server administration and query execution.

These topics:
* Describe a basic approach for performance measurement and tuning

* Provide guidelines for a quick start to obtain acceptable initial performance on a
small database

* Describe roles in maintaining good performance

Developing a basic approach to performance measurement and tuning

To maintain optimum performance for your database applications, develop a plan
for measuring system performance, making adjustments to maintain good
performance and taking corrective measures when performance degrades. Regular,
specific measurements can help you to anticipate and correct performance
problems.

By recognizing problems early, you can prevent them from affecting users
significantly. Early indications of a performance problem are often vague; users
might report that the system seems sluggish. Users might complain that they
cannot get all their work done, that transactions take too long to complete, that
queries take too long to process, or that the application slows down at certain
times during the day.

To determine the nature of the problem, you must measure the actual use of
system resources and evaluate the results.

Users typically report performance problems in the following situations:

* Response times for transactions or queries take longer than expected.

* Transaction throughput is insufficient to complete the required workload.
* Transaction throughput decreases.

An iterative approach to optimizing database server performance is recommended.
If repeating the steps found in the following list does not produce the desired
improvement, insufficient hardware resources or inefficient code in one or more
client applications might be causing the problem.

To optimize performance:
1. Establish performance objectives.
2. Take regular measurements of resource utilization and database activity.

3. Identify symptoms of performance problems: disproportionate utilization of
CPU, memory, or disks.

4. Tune the operating-system configuration.

o

Tune the database server configuration.

6. Optimize the chunk and dbspace configuration, including placement of logs,
sort space, and space for temporary tables and sort files.

7. Optimize the table placement, extent sizing, and fragmentation.

© Copyright IBM Corp. 1996, 2015 1-1

8. Improve the indexes.

9. Optimize background I/0 activities, including logging, checkpoints, and page
cleaning.

10. Schedule backup and batch operations for off-peak hours.
11. Optimize the implementation of the database application.
12. Repeat steps 2 through 11.

Quick start for acceptable performance on a small database

If you have a small database with each table residing on only one disk and using
only one CPU virtual processor, you can take specific measurements to help you
anticipate and correct performance problems.

To achieve acceptable initial performance on a small database:

1. Generate statistics of your tables and indexes to provide information to the
query optimizer to enable it to choose query plans with the lowest estimated
cost.

These statistics are a minimum starting point to obtain good performance for
individual queries. For guidelines, see|[“Update statistics when they are not]
[zenerated automatically” on page 13-12To see the query plan that the
optimizer chooses for each query, see|“Display the query plan” on page 13-1]

2. If you want a query to run in parallel with other queries, you must turn on the
Parallel Database Query (PDQ) feature.

Without table fragmentation across multiple disks, parallel scans do not occur.
With only one CPU virtual processor, parallel joins or parallel sorts do not
occur. However, PDQ priority can obtain more memory to perform the sort. For
more information, see [Chapter 12, “Parallel database query (PDQ),” on page|
-1
3. If you want to mix online transaction processing (OLTP) and decision-support
system (DSS) query applications, you can control the amount of resources a
long-running query can obtain so that your OLTP transactions are not affected.

For information about how to control PDQ resources, see [“The allocation of]
[resources for parallel database queries” on page 12-7.

4. Monitor sessions and drill down into various details to improve the
performance of individual queries.

For information about the various tools and session details to monitor, see
“Monitoring memory usage for each session” on page 13-44] and [“Monitor|
sessions and threads” on page 13-48 |

Performance goals

When you plan for measuring and tuning performance, you should consider
performance goals and determine which goals are the most important.

Many considerations go into establishing performance goals for the database server
and the applications that it supports. Be clear and consistent about articulating
performance goals and priorities, so that you can provide realistic and consistent
expectations about the performance objectives for your application. Consider the
following questions when you establish performance goals:

* Is your top priority to maximize transaction throughput, minimize response time
for specific queries, or achieve the best overall mix?

1-2 IBM Informix Performance Guide

* What sort of mix between simple transactions, extended decision-support
queries, and other types of requests does the database server typically handle?

* At what point are you willing to trade transaction-processing speed for
availability or the risk of loss for a particular transaction?

* Is this database server instance used in a client/server configuration? If so, what
are the networking characteristics that affect its performance?

* What is the maximum number of users that you expect?

* Is your configuration limited by memory, disk space, or CPU resources?

The answers to these questions can help you set realistic performance goals for
your resources and your mix of applications.

Measurements of performance

You can use throughput, response time, cost per transaction, and resource
utilization measures to evaluate performance.

Throughput, response time, and cost per transaction are described in the topics
that follow.

Resource utilization can have one of two meanings, depending on the context. The
term can refer to the amount of a resource that a particular operation requires or
uses, or it can refer to the current load on a particular system component. The term
is used in the former sense to compare approaches for accomplishing a given task.
For instance, if a given sort operation requires 10 megabytes of disk space, its
resource utilization is greater than another sort operation that requires only 5
megabytes of disk space. The term is used in the latter sense to refer, for instance,
to the number of CPU cycles that are devoted to a particular query during a
specific time interval.

For a discussion about the performance impact of different load levels on various
system components, see [“Resource utilization and performance” on page 1-7]

Throughput

Throughput measures the overall performance of the system. For transaction
processing systems, throughput is typically measured in transactions per second
(TPS) or transactions per minute (TPM).

Throughput depends on the following factors:

* The specifications of the host computer

* The processing overhead in the software

* The layout of data on disk

* The degree of parallelism that both hardware and software support
* The types of transactions being processed

Ways to measure throughput
The best way to measure throughput for an application is to include code in the
application that logs the time stamps of transactions as they commit.

If your application does not provide support for measuring throughput directly,
you can obtain an estimate by tracking the number of COMMIT WORK statements
that the database server logs during a given time interval. You can use the onlog
utility to obtain a listing of logical-log records that are written to log files. You can

Chapter 1. Performance basics 1-3

1-4

use information from this command to track insert, delete, and update operations
as well as committed transactions. However, you cannot obtain information stored
in the logical-log buffer until that information is written to a log file.

If you need more immediate feedback, you can use onstat -p to gather an estimate.
You can use the SET LOG statement to set the logging mode to unbuffered for the
databases that contain tables of interest. You can also use the trusted auditing
facility in the database server to record successful COMMIT WORK events or other
events of interest in an audit log file. Using the auditing facility can increase the
overhead involved in processing any audited event, which can reduce overall
throughput.

Related information:
[Auditing data security]

Standard throughput benchmarks
The Transaction Processing Performance Council (TPC) provides standard
benchmarks that allow reasonable throughput comparisons across hardware

configurations and database servers. IBM is an active member in good standing of
the TPC.

The TPC provides the following standardized benchmarks for measuring

throughput:

+ TPC-A
This benchmark is used for simple online transaction-processing (OLTP)
comparisons. It characterizes the performance of a simple transaction-processing
system, emphasizing update-intensive services. TPC-A simulates a workload that
consists of multiple user sessions connected over a network with significant disk
I/0 activity.

+ TPC-B
This benchmark is used for stress-testing peak database throughput. It uses the
same transaction load as TPC-A but removes any networking and interactive
operations to provide a best-case throughput measurement.

+ TPC-C
This benchmark is used for complex OLTP applications. It is derived from
TPC-A and uses a mix of updates, read-only transactions, batch operations,
transaction rollback requests, resource contentions, and other types of operations
on a complex database to provide a better representation of typical workloads.

s TPC-D
This benchmark measures query-processing power in terms of completion times
for very large queries. TPC-D is a decision-support benchmark built around a set

of typical business questions phrased as SQL queries against large databases (in
the gigabyte or terabyte range).

Because every database application has its own particular workload, you cannot
use TPC benchmarks to predict the throughput for your application. The actual
throughput that you achieve depends largely on your application.

Response time

Response time measures the performance of an individual transaction or query.
Response time is typically treated as the elapsed time from the moment that a user
enters a command or activates a function until the time that the application
indicates that the command or function has completed.

IBM Informix Performance Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sec.doc/ids_sec_019.htm

The response time for a typical Informix application includes the following
sequence of actions. Each action requires a certain amount of time. The response
time does not include the time that it takes for the user to think of and enter a
query or request:

1. The application forwards a query to the database server.

2. The database server performs query optimization and retrieves any
user-defined routines (UDRs). UDRs include both SPL routines and external
routines.

3. The database server retrieves, adds, or updates the appropriate records and
performs disk I/O operations directly related to the query.

4. The database server performs any background I/O operations, such as logging
and page cleaning, that occur during the period in which the query or
transaction is still pending.

5. The database server returns a result to the application.

6. The application displays the information or issues a confirmation and then
issues a new prompt to the user.

contains a diagram that shows how the actions just described in steps 1
through 6 contribute to the overall response time.

»(Database server

v

e

SELECT* custn custname
*in 1234 XYZLTD
Database Background 1235 XSPORTS

User enters Application Database Database Database Database Client application
request (DOt forwards server server server server receives, processes,
includedin requestto optimizes retrieves or performs modifies data and displays results
response database query and adds selected background /O values and from database server.
time). server. retrieves records. (sometimes sends results

user-defined affects to client.

routines. response time).

- —_ = = | | | | FJ

Overall response time

Figure 1-1. Components of the response time for a single transaction

Response time and throughput
Response time and throughput are related. The response time for an average
transaction tends to decrease as you increase overall throughput.

However, you can decrease the response time for a specific query, at the expense of
overall throughput, by allocating a disproportionate amount of resources to that
query. Conversely, you can maintain overall throughput by restricting the resources
that the database allocates to a large query.

The trade-off between throughput and response time becomes evident when you
try to balance the ongoing need for high transaction throughput with an
immediate need to perform a large decision-support query. The more resources
that you apply to the query, the fewer you have available to process transactions,
and the larger the impact your query can have on transaction throughput.
Conversely, the fewer resources you allow the query, the longer the query takes.

Chapter 1. Performance basics 1-5

1-6

Response-time measurement

To measure the response time for a query or application, you can use the timing
commands and performance monitoring and timing functions that your operating
system provides.

Operating-system timing commands:

Your operating system typically has a utility that you can use to time a command.
You can often use this timing utility to measure the response times to SQL
statements that a DB-Access command file issues.

UNIX Only

If you have a command file that performs a standard set of SQL
statements, you can use the time command on many systems to obtain an
accurate timing for those commands.

The following example shows the output of the UNIX time command:
time commands.dba

4.3 real 1.5 user 1.3 sys

The time output lists the amount of elapsed time (real), the user CPU time,
and the system CPU time. If you use the C shell, the first three columns of
output from the C shell time command show the user, system, and elapsed
times, respectively. In general, an application often performs poorly when
the proportion of system CPU time exceeds one-third of the total elapsed
time.

The time command gathers timing information about your application. You
can use this command to invoke an instance of your application, perform a
database operation, and then exit to obtain timing figures, as the following
example illustrates:

time sqlapp
(enter SQL command through sqlapp, then exit)
10.1 real 6.4 user 3.7 sys

You can use a script to run the same test repeatedly, which allows you to
obtain comparable results under different conditions. You can also obtain
estimates of your average response time by dividing the elapsed time for
the script by the number of database operations that the script performs.

Operating-system tools for monitoring performance:

Operating systems usually have a performance monitor that you can use to
measure response time for a query or process.

Windows Only
You can often use the Performance Logs and Alerts that the Windows
operating system supplies to measure the following times:
¢ User time
* Processor time
* Elapsed time

Timing functions within your application:
Most programming languages have a library function for the time of day. If you

have access to the source code, you can insert pairs of calls to this function to
measure the elapsed time between specific actions.

IBM Informix Performance Guide

ESQL/C Only

For example, if the application is written in IBM Informix ESQL/C, you
can use the dtcurrent() function to obtain the current time. To measure
response time, you can call dtcurrent() to report the time at the start of a
transaction and again to report the time when the transaction commits.

Elapsed time, in a multiprogramming system or network environment where
resources are shared among multiple processes, does not always correspond to
execution time. Most operating systems and C libraries contain functions that
return the CPU time of a program.

Cost per transaction

The cost per transaction is a financial measure that is typically used to compare
overall operating costs among applications, database servers, or hardware
platforms. You can measure the cost per transaction.

To measure the cost per transaction:

1. Calculate all the costs associated with operating an application. These costs can
include the installed price of the hardware and software; operating costs,
including salaries; and other expenses. These costs can include the installed
price of the hardware and software; operating costs, including salaries; and
other expenses.

2. Project the total number of transactions and queries for the effective life of an
application.

3. Divide the total cost over the total number of transactions.

Although this measure is useful for planning and evaluation, it is seldom relevant
to the daily issues of achieving optimum performance.

Resource utilization and performance

A typical transaction-processing application undergoes different demands
throughout its various operating cycles. Peak loads during the day, week, month,
and year, as well as the loads imposed by decision-support (DSS) queries or
backup operations, can significantly impact any system that is running near
capacity. You can use direct historical data derived from your particular system to
pinpoint this impact.

You must take regular measurements of the workload and performance of your
system to predict peak loads and compare performance measurements at different
points in your usage cycle. Regular measurements help you to develop an overall
performance profile for your database server applications. This profile is critical in
determining how to improve performance reliably.

For the measurement tools that the database server provides, see [“Database server
[tools” on page 2-3] For the tools that your operating system provides for
measuring performance impacts on system and hardware resources, see
[“Operating-system tools” on page 2-3

Utilization is the percentage of time that a component is actually occupied, as
compared with the total time that the component is available for use. For instance,
if a CPU processes transactions for a total of 40 seconds during a single minute, its
utilization during that interval is 67 percent.

Chapter 1. Performance basics 1-7

1-8

Measure and record utilization of the following system resources regularly:
+ CPU

* Memory

+ Disk

A resource is said to be critical to performance when it becomes overused or when
its utilization is disproportionate to that of other components. For instance, you
might consider a disk to be critical or overused when it has a utilization of 70
percent and all other disks on the system have 30 percent. Although 70 percent
does not indicate that the disk is severely overused, you can improve performance
by rearranging data to balance I/O requests across the entire set of disks.

How you measure resource utilization depends on the tools that your operating
system provides for reporting system activity and resource utilization. After you
identify a resource that seems overused, you can use the performance-monitoring
utilities that the database server provides to gather data and make inferences about
the database activities that might account for the load on that component. You can
adjust your database server configuration or your operating system to reduce those
database activities or spread them among other components. In some cases, you
might need to provide additional hardware resources to resolve a performance
bottleneck.

Resource utilization

Whenever a system resource, such as a CPU or a particular disk, is occupied by a
transaction or query, the resource is unavailable for processing other requests.
Pending requests must wait for the resources to become available before they can
complete.

When a component is too busy to keep up with all its requests, the overused
component becomes a bottleneck in the flow of activity. The higher the percentage
of time that the resource is occupied, the longer each operation must wait for its
turn.

You can use the following formula to estimate the service time for a request based
on the overall utilization of the component that services the request. The expected
service time includes the time that is spent both waiting for and using the resource
in question. Think of service time as that portion of the response time accounted
for by a single component within your computer, as the following formula shows:

S= P/(1-U)

S is the expected service time.

P is the processing time that the operation requires after it obtains the
resource.

u is the utilization for the resource (expressed as a decimal).

As [Figure 1-2 on page 1-9 shows, the service time for a single component increases
dramatically as the utilization increases beyond 70 percent. For instance, if a
transaction requires 1 second of processing by a given component, you can expect
it to take 2 seconds on a component at 50 percent utilization and 5 seconds on a
component at 80 percent utilization. When utilization for the resource reaches 90
percent, you can expect the transaction to take 10 seconds to make its way through
that component.

IBM Informix Performance Guide

Elapsed 12
time (as a 10
multiple of 8 /
processing ~, P
time) in
minutes

o
N\

2 ==
0 !
0 10 20 30 40 50 60 70 80 90 100

Resource utilization (%)

Figure 1-2. Service Time for a Single Component as a Function of Resource Utilization

If the average response time for a typical transaction soars from 2 or 3 seconds to
10 seconds or more, users are certain to notice and complain.

Important: Monitor any system resource that shows a utilization of over 70
percent or any resource that exhibits symptoms of overuse as described in the
following sections.

When you consider resource utilization, also consider whether increasing the page
size of a standard or temporary dbspace is beneficial in your environment. If you
want a longer key length than is available for the default page size of a standard
or temporary dbspace, you can increase the page size.

CPU utilization

Estimates of CPU utilization and response time can help you determine if you
need to eliminate or reschedule some activities.

You can use the resource-utilization formula in the previous topic
[utilization” on page 1-8) to estimate the response time for a heavily loaded CPU.
However, high utilization for the CPU does not always indicate a performance
problem. The CPU performs all calculations that are needed to process
transactions. The more transaction-related calculations that it performs within a
given period, the higher the throughput will be for that period. As long as
transaction throughput is high and seems to remain proportional to CPU
utilization, a high CPU utilization indicates that the computer is being used to the
fullest advantage.

On the other hand, when CPU utilization is high but transaction throughput does
not keep pace, the CPU is either processing transactions inefficiently or it is
engaged in activity not directly related to transaction processing. CPU cycles are
being diverted to internal housekeeping tasks such as memory management.

You can easily eliminate the following activities:
* Large queries that might be better scheduled at an off-peak time

* Unrelated application programs that might be better performed on another
computer

If the response time for transactions increases to such an extent that delays become
unacceptable, the processor might be swamped; the transaction load might be too
high for the computer to manage. Slow response time can also indicate that the
CPU is processing transactions inefficiently or that CPU cycles are being diverted.

Chapter 1. Performance basics 1-9

1-10

When CPU utilization is high, a detailed analysis of the activities that the database
server performs can reveal any sources of inefficiency that might be present due to
improper configuration. For information about analyzing database server activity,
see [“Database server tools” on page 2-3.

Memory utilization

Memory is not managed as a single component, such as a CPU or disk, but as a
collection of small components called pages.

The size of a typical page in memory can range from 1 to 8 kilobytes, depending
on your operating system. A computer with 64 megabytes of memory and a page
size of 2 kilobytes contains approximately 32,000 pages.

When the operating system needs to allocate memory for use by a process, it
scavenges any unused pages within memory that it can find. If no free pages exist,
the memory-management system has to choose pages that other processes are still
using and that seem least likely to be needed in the short run. CPU cycles are
required to select those pages. The process of locating such pages is called a page
scan. CPU utilization increases when a page scan is required.

Memory-management systems typically use a least recently used algorithm to select
pages that can be copied out to disk and then freed for use by other processes.
When the CPU has identified pages that it can appropriate, it pages out the old
page images by copying the old data from those pages to a dedicated disk. The
disk or disk partition that stores the page images is called the swap disk, swap space,
or swap area. This paging activity requires CPU cycles as well as I/O operations.

Eventually, page images that have been copied to the swap disk must be brought
back in for use by the processes that require them. If there are still too few free
pages, more must be paged out to make room. As memory comes under increasing
demand and paging activity increases, this activity can reach a point at which the
CPU is almost fully occupied with paging activity. A system in this condition is
said to be thrashing. When a computer is thrashing, all useful work comes to a halt.

To prevent thrashing, some operating systems use a coarser memory-management
algorithm after paging activity crosses a certain threshold. This algorithm is called
swapping. When the memory-management system resorts to swapping, it
appropriates all pages that constitute an entire process image at once, rather than a
page at a time.

Swapping frees up more memory with each operation. However, as swapping
continues, every process that is swapped out must be read in again, dramatically
increasing disk I/O to the swap device and the time required to switch between
processes. Performance is then limited to the speed at which data can be
transferred from the swap disk back into memory. Swapping is a symptom of a
system that is severely overloaded, and throughput is impaired.

Many systems provide information about paging activity that includes the number
of page scans performed, the number of pages sent out of memory (paged out), and
the number of pages brought in from memory (paged in):

* Paging out is the critical factor because the operating system pages out only
when it cannot find pages that are free already.

* A high rate of page scans provides an early indicator that memory utilization is
becoming a bottleneck.

IBM Informix Performance Guide

* Pages for terminated processes are freed in place and simply reused, so
paging-in activity does not provide an accurate reflection of the load on memory.
A high rate of paging in can result from a high rate of process turnover with no
significant performance impact.

Although the principle for estimating the service time for memory is the same as
that described in [“Resource utilization and performance” on page 1-7,| you use a
different formula to estimate the performance impact of memory utilization than
you do for other system components.

You can use the following formula to calculate the expected paging delay for a
given CPU utilization level and paging rate:

PD= (C/(1-U)) * R * T

PD is the paging delay.

is the CPU service time for a transaction.

is the CPU utilization (expressed as a decimal).

is the paging-out rate.

4 " S 0O

is the service time for the swap device.

As paging increases, CPU utilization also increases, and these increases are
compounded. If a paging rate of 10 per second accounts for 5 percent of CPU
utilization, increasing the paging rate to 20 per second might increase CPU
utilization by an additional 5 percent. Further increases in paging lead to even
sharper increases in CPU utilization, until the expected service time for CPU
requests becomes unacceptable.

Disk utilization

Because transfer rates vary among disks, most operating systems do not report
disk utilization directly. Instead, they report the number of data transfers per
second (in operating-system memory-page-size units.)

Because each disk acts as a single resource, you can use the following basic
formula to estimate the service time, which is described in detail in
[utilization” on page 1-8

S= P/(1-U)

To compare the load on disks with similar access times, simply compare the
average number of transfers per second.

If you know the access time for a given disk, you can use the number of transfers
per second that the operating system reports to calculate utilization for the disk. To
do so, multiply the average number of transfers per second by the access time for
the disk as listed by the disk manufacturer. Depending on how your data is laid
out on the disk, your access times can vary from the rating of the manufacturer. To
account for this variability, you should add 20 percent to the access-time
specification of the manufacturer.

The following example shows how to calculate the utilization for a disk with a
30-millisecond access time and an average of 10 transfer requests per second:
] (A*1.2) =X

(.03 x 1.2) = 10

.36

Chapter 1. Performance basics 1-11

u is the resource utilization (this time of a disk).
A is the access time (in seconds) that the manufacturer lists.

X is the number of transfers per second that your operating system reports.

You can use the utilization to estimate the processing time at the disk for a
transaction that requires a given number of disk transfers. To calculate the
processing time at the disk, multiply the number of disk transfers by the average
access time. Include an extra 20 percent to account for access-time variability:

P=D (A *1.2)

P is the processing time at the disk.
D is the number of disk transfers.
A is the access time (in seconds) that the manufacturer lists.

For example, you can calculate the processing time for a transaction that requires
20 disk transfers from a 30-millisecond disk as follows:

P = 20 (.03 * 1.2)
= 20 * .036
= .72

Use the processing time and utilization values that you calculated to estimate the
expected service time for I/O at the particular disk, as the following example
shows:

S P/(1-U)
72/ (1 - .36)
.72/ .64

1.13

Factors that affect resource utilization

1-12

The performance of your database server application depends many factors,
including hardware and software configuration, your network configuration, and
the design of your database.

You must consider these factors when you attempt to identify performance
problems or make adjustments to your system:

* Hardware resources

As discussed earlier in this chapter, hardware resources include the CPU,
physical memory, and disk I/O subsystems.

* Operating-system configuration

The database server depends on the operating system to provide low-level
access to devices, process scheduling, interprocess communication, and other
vital services.

The configuration of your operating system has a direct impact on how well the
database server performs. The operating-system kernel takes up a significant
amount of physical memory that the database server or other applications
cannot use. However, you must reserve adequate kernel resources for the
database server to use.

* Network configuration and traffic
Applications that depend on a network for communication with the database
server, and systems that rely on data replication to maintain high availability, are

subject to the performance constraints of that network. Data transfers over a
network are typically slower than data transfers from a disk. Network delays

IBM Informix Performance Guide

can have a significant impact on the performance of the database server and
other application programs that run on the host computer.

* Database server configuration

Characteristics of your database server instance, such as the number of CPU
virtual processors (VPs), the size of your resident and virtual shared-memory
portions, and the number of users, play an important role in determining the
capacity and performance of your applications.

* Dbspace, blobspace, and chunk configuration

The following factors can affect the time that it takes the database server to
perform disk I/O and process transactions:

— The placement of the root dbspace, physical logs, logical logs, and
temporary-table dbspaces

— The presence or absence of mirroring
— The use of devices that are buffered or unbuffered by the operation system
* Database and table placement

The placement of tables and fragments within dbspaces, the isolation of high-use
fragments in separate dbspaces, and the spreading of fragments across multiple
dbspaces can affect the speed at which the database server can locate data pages
and transfer them to memory.

* Tblspace organization and extent sizing

Fragmentation strategy and the size and placement of extents can affect the
ability of the database server to scan a table rapidly for data. Avoid interleaved
extents and allocate extents that are sufficient to accommodate growth of a table
to prevent performance problems.

* Query efficiency
Proper query construction and cursor use can decrease the load that any one
application or user imposes. Remind users and application developers that

others require access to the database and that each person's activities affect the
resources that are available to others.

* Scheduling background 1/0 activities

Logging, checkpoints, page cleaning, and other operations, such as making
backups or running large decision-support queries, can impose constant
overhead and large temporary loads on the system. Schedule backup and batch
operations for off-peak times whenever possible.

* Remote client/server operations and distributed join operations

These operations have an important impact on performance, especially on a host
system that coordinates distributed joins.

* Application-code efficiency

Application programs introduce their own load on the operating system, the
network, and the database server. These programs can introduce performance
problems if they make poor use of system resources, generate undue network
traffic, or create unnecessary contention in the database server. Application
developers must make proper use of cursors and locking levels to ensure good
database server performance.

Maintenance of good performance

Performance is affected in some way by all system users: the database server
administrator, the database administrator, the application designers, and the client
application users.

Chapter 1. Performance basics 1-13

1-14

The database server administrator usually coordinates the activities of all users to
ensure that system performance meets overall expectations. For example, the
operating-system administrator might need to reconfigure the operating system to
increase the amount of shared memory. Bringing down the operating system to
install the new configuration requires bringing the database server down. The
database server administrator must schedule this downtime and notify all affected
users when the system will be unavailable.

The database server administrator should:
* Be aware of all performance-related activities that occur.

* Educate users about the importance of performance, how performance-related
activities affect them, and how they can assist in achieving and maintaining
optimal performance.

The database administrator should pay attention to:

* How tables and queries affect the overall performance of the database server
* The placement of tables and fragments

* How the distribution of data across disks affects performance

Application developers should:

* Carefully design applications to use the concurrency and sorting facilities that
the database server provides, rather than attempt to implement similar facilities
in the application.

* Keep the scope and duration of locks to the minimum to avoid contention for
database resources.

* Include routines within applications that, when temporarily enabled at runtime,
allow the database server administrator to monitor response times and
transaction throughput.

Database users should:

* Pay attention to performance and report problems to the database server
administrator promptly.

* Be courteous when they schedule large, decision-support queries and request as
few resources as possible to get the work done.

IBM Informix Performance Guide

Chapter 2. Performance monitoring and the tools you use

You can use performance monitoring tools to create a performance history, to
monitor database resources at scheduled times, or to monitor ongoing transaction
or query performance.

This chapter also contains cross-references to topics that about how to interpret the
results of performance monitoring

The kinds of data that you need to collect depend on the kinds of applications that
you run on your system. The causes of performance problems on OLTP (online
transaction processing) systems are different from the causes of problems on
systems that are used primarily for DSS query applications. Systems with mixed
use provide a greater performance-tuning challenge and require a sophisticated
analysis of performance-problem causes.

Evaluate the current configuration

Before you begin to adjust the configuration of your database server, evaluate the
performance of your current configuration. You can view the contents of your
configuration file with onstat commands or IBM OpenAdmin Tool (OAT) for
Informix.

To alter certain database server characteristics, you must bring down the database
server, which can affect your production system. Some configuration adjustments
can unintentionally decrease performance or cause other negative side effects.

If your database applications satisfy user expectations, avoid frequent adjustments,
even if those adjustments might theoretically improve performance. If your users
are reasonably satisfied, take a measured approach to reconfiguring the database
server. When possible, use a test instance of the database server to evaluate
configuration changes before you reconfigure your production system.

When performance problems relate to backup operations, you might also examine
the number or transfer rates for tape drives. You might need to alter the layout or
fragmentation of your tables to reduce the impact of backup operations. For
information about disk layout and table fragmentation, see |Chapter 6, “Table|
performance considerations,” on page 6-1| and [Chapter 7, “Indexes and index|
performance considerations,” on page 7-1

For client/server configurations, consider network performance and availability.
Evaluating network performance is beyond the scope of this publication. For
information about monitoring network activity and improving network availability,
see your network administrator or see the documentation for your networking
package.

Determine whether you want to set the configuration parameters that help
maintain server performance by automatically adjusting properties of the database
server while it is running, for example:

* AUTO_AIOVPS: Adds AIO virtual processors when 1/0 workload increases.

* AUTO_CKPTS: Increases the frequency of checkpoints to avoid transaction
blocking.

© Copyright IBM Corp. 1996, 2015 2-1

* AUTO_LRU_TUNING: Manages cached data flushing as the server load
changes.

* AUTO_READAHEAD: Changes the automatic read-ahead mode or disables
automatic read-ahead operations for a query.

* AUTO_REPREPARE: Reoptimizes SPL routines and reprepares prepared objects
after a schema change.

* AUTO_STAT_MODE: Enables or disables the mode for selectively updating only
stale or missing data distributions in UPDATE STATISTICS operations.

* AUTO_TUNE: Enables or disables all automatic tuning configuration parameters
that have values that are not present in your configuration file.

* DYNAMIC_LOGS: Allocates additional log files when necessary.
* LOCKS: Allocates additional locks when necessary.

* RTO_SERVER_RESTART: Provides the best performance possible while meeting
the recovery time objective after a problem.

Related information:
fonstat -c command: Print ONCONFIG file contents|
fonstat -g cfe command: Print the current values of configuration parameters|

Create a performance history

2-2

As soon as you set up your database server and begin to run applications on it,
you should begin scheduled monitoring of resource use. As you accumulate data,
you can analyze performance information.

To accumulate data for performance analysis, use the command-line utilities
described in [“Database server tools” on page 2-3| and [‘Operating-system tools” on|
[page 2-3|in operating scripts or batch files.

The importance of a performance history

If you have a history of the performance of your system, you can begin to track
the cause of problems as soon as users report slow response or inadequate
throughput.

If a history is not available, you must start tracking performance after a problem
arises, and you might not be able to tell when and how the problem began. Trying
to identify problems after the fact significantly delays resolution of a performance
problem.

To build a performance history and profile of your system, take regular snapshots
of resource-utilization information.

For example, if you chart the CPU utilization, paging-out rate, and the I/O transfer
rates for the various disks on your system, you can begin to identify peak-use
levels, peak-use intervals, and heavily loaded resources.

If you monitor fragment use, you can determine whether your fragmentation
scheme is correctly configured. Monitor other resource use as appropriate for your
database server configuration and the applications that run on it.

Choose tools from those described in the following sections, and create jobs that
build up a history of disk, memory, I/O, and other database server resource use.
To help you decide which tools to use to create a performance history, this chapter
briefly describes the output of each tool.

IBM Informix Performance Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0502.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_1154.htm

Tools that create a performance history

When you monitor database server performance, you use tools from the host
operating system and command-line utilities that you can run at regular intervals
from scripts or batch files.

You also use performance monitoring tools with a graphical interface to monitor
critical aspects of performance as queries and transactions are performed.

Operating-system tools

The database server relies on the operating system of the host computer to provide
access to system resources such as the CPU, memory, and various unbuffered disk
I/0 interfaces and files. Each operating system has its own set of utilities for
reporting how system resources are used.

Different implementations of some operating systems have monitoring utilities
with the same name but different options and informational displays.

UNIX Only

The following table lists some UNIX utilities that monitor system resources.
UNIX Utility Description

vmstat utility Displays virtual-memory statistics
iostat utility Displays 1/0 utilization statistics

sar utility Displays a variety of resource statistics
ps utility Displays active process information

For details on how to monitor your operating-system resources, consult the
reference manual or your system administration guide.

To capture the status of system resources at regular intervals, use scheduling tools
that are available with your host operating system (for example, cron) as part of
your performance monitoring system.

Windows Only

You can often use the Performance Logs and Alerts that the Windows operating
system supplies to monitor resources such as processor, memory, cache, threads,
and processes. The Performance Logs and Alerts also provide charts, alerts,
reports, and the ability to save information to log files for later analysis.

For more information about how to use the Performance Logs and Alerts, consult
your operating-system manuals.

Database server tools
The database server provides tools and utilities that capture snapshot information
about your configuration and performance.

You can use these utilities regularly to build a historical profile of database activity,
which you can compare with current operating-system resource-utilization data.
These comparisons can help you discover which database server activities have the
greatest impact on system-resource utilization. You can use this information to
identify and manage your high-impact activities or adjust your database server or
operating-system configuration.

Chapter 2. Performance monitoring and the tools you use 2-3

2-4

The database server tools and utilities that you can use for performance
monitoring include:

* IBM OpenAdmin Tool (OAT) for Informix
* The onstat utility

* The onlog utility

* The oncheck utility

* The onperf utility (on UNIX only)

* DB-Access and the system-monitoring interface (SMI), which you can use to
monitor performance from within your application

¢ SQL administration API commands

You can use onstat, onlog, or oncheck commands invoked by the cron scheduling
facility to capture performance-related information at regular intervals and build a
historical performance profile of your database server application. The following
sections describe these utilities.

You can use SQL SELECT statements to query the system-monitoring interface
(SMI) from within your application.

The SMI tables are a collection of tables and pseudo-tables in the sysmaster
database that contain dynamically updated information about the operation of the
database server. The database server constructs these tables in memory but does
not record them on disk. The onstat utility options obtain information from these
SMI tables.

You can use cron and SQL scripts with DB-Access or onstat utility options to
query SMI tables at regular intervals.

Tip: The SMI tables are different from the system catalog tables. System catalog
tables contain permanently stored and updated information about each database
and its tables (sometimes referred to as metadata or a data dictionary).

You can use onperf to display database server activity with the Motif window
manager.

Related concepts:

[Chapter 14, “The onperf utility on UNIX,” on page 14-1|
Related information:

[The onstat utility]

[The onlog utility]

[The oncheck Utility|

[DB-Access User's Guide

[The System-Monitoring Interface Tables|

[System catalog tables|

[SQL administration API portal: Arguments by privilege groups|

Performance information that the onstat utility displays:

The onstat utility displays a wide variety of performance-related and status
information contained within the SMI tables. You can use the onstat utility to
check the current status of the database server and monitor the activities of the
database server.

IBM Informix Performance Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0488.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0402.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0369.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.dba.doc/dba.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0210.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqlr.doc/ids_sqr_009.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_147.htm

For a complete list of all onstat options, use the onstat - - command. For a
complete display of all the information that onstat gathers, use the onstat -a
command.

Tip: Profile information displayed by onstat commands, such as onstat -p,
accumulates from the time the database server was started. To clear performance
profile statistics so that you can create a new profile, run the onstat -z. If you use
onstat -z to reset statistics for a performance history or appraisal, ensure that other
users do not also enter the command at different intervals.

The following table lists some of the onstat commands that display general
performance-related information.

Table 2-1. onstat commands that display performance information

onstat command Description

onstat -p Displays a performance profile that includes
the number of reads and writes, the number
of times that a resource was requested but
was not available, and other miscellaneous

information

onstat -b Displays information about buffers currently
in use

onstat -1 Displays information about the physical and
logical logs

onstat -x Displays information about transactions,

including the thread identifier of the user
who owns the transaction

onstat -u Displays a user activity profile that provides
information about user threads including the
thread owner's session ID and login name

onstat -R Displays information about buffer pools,
including information about buffer pool page
size.

onstat -F Displays page-cleaning statistics that include

the number of writes of each type that
flushes pages to disk

onstat -g Requires an additional argument that
specifies the information to be displayed

For example, onstat -g mem displays
memory statistics.

For more information about options that provide performance-related information,
see [“Monitoring fragmentation with the onstat - ppf command” on page 9-29| and
[“Monitor database server resources” on page 2-6

Related information:

fonstat - monitoring options|

Chapter 2. Performance monitoring and the tools you use 2-5

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0510.htm

Monitor performance with the OpenAdmin Tool (OAT) for Informix

The IBM OpenAdmin Tool (OAT) for Informix provides multiple ways to gather,
view, and analyze performance data.

With OAT, you can:

* Collect performance statistics.

* Find and eliminate database server performance bottlenecks.

* Identify and monitor queries that are critical to performance.

* Improve checkpoint performance and manage LRU queues.

* Manage compression of data in tables and table-fragment rows
* Monitor critical system resources (CPU, memory, disk, virtual processors).
* Monitor and track locking.

* Optimize the disk layout.

* Tune the buffer cache.

* Use query drill-down.

* View the SQL statement cache.

* Use automatic statistics update.

* View historical performance graphs.

* Explore user sessions.

Monitor database server resources

Monitor specific database server resources to identify performance bottlenecks and
potential trouble spots and to improve resource use and response time.

One of the most useful commands for monitoring system resources is onstat -g
and its many options.

Monitor resources that impact CPU utilization

Threads, network communications, and virtual processors impact CPU utilization.
You can use onstat -g arguments to monitor threads, network communications,
and virtual processors.

Use the following onstat -g command options to monitor threads.

onstat -g Option Description
act Displays active threads.
ath Displays all threads.

The sqlexec threads represent portions of
client sessions; the rstcb value corresponds to
the user field of the onstat -u command.

cpu Displays the last time the thread ran, how
much CPU time the thread used, the number
of times the thread ran, and other statistics
about all the threads running in the server.

rea Displays ready threads.

sle Displays all sleeping threads.

2-6 IBM Informix Performance Guide

onstat -g Option

Description

sts Displays maximum and current stack use per
thread.

tpf tid Displays a thread profile for tid.
If tid is 0, this argument displays profiles for
all threads.

wai Displays waiting threads, including all

threads waiting on mutex or condition, or
yielding.

Use the following onstat -g command options to monitor the network.

onstat -g Command Option

Description

ntd Displays network statistics by service.
ntt Displays network user times.

ntu Displays network user statistics.

qst Displays queue statistics.

Use the following onstat -g command options to monitor virtual processors.

onstat -g Command Option

Description

glo

Displays global multithreading information,
including CPU-use information about virtual
processors, the total number of sessions, and
other multithreading global counters.

sch

Displays the number of semaphore
operations, spins, and busy waits for each
VP.

spi

Displays spin locks that are acquired by
virtual processors after they have spun more
than 10,000 times.

To reduce contention, reduce the number of
virtual processors, reduce the load on the
computer, or, on some platforms, use the
no-age or processor affinity options of
virtual processors. If sh_lock mutexes have
highly contended spin locks, create private
memory caches for CPU virtual processors
by setting the VP_MEMORY_CACHE_VP
configuration parameter.

Displays wait statistics.

Monitor memory utilization

You can use some specific onstat -g command options to monitor memory

utilization.

Use the following onstat -g options to monitor memory utilization. For overall
memory information, omit table name, pool name, or session id from the commands

that permit those optional parameters.

Chapter 2. Performance monitoring and the tools you use 2-7

2-8

Table 2-2. onstat -g Options for monitoring memory utilization

Argument

Description

ffr pool name | session id

Displays free fragments for a pool of shared
memory or by session

dic table name

Displays one line of information for each
table cached in the shared-memory
dictionary

If you provide a specific table name as a
parameter, this argument displays internal
SQL information about that table.

dsc

Displays one line of information for each
column of distribution statistics cached in the
data distribution cache.

mem pool name | session id

Displays memory statistics for the pools that
are associated with a session

If you omit pool_name | session id, this
argument displays pool information for all
sessions.

mgm

Displays Memory Grant Manager resource
information, including;:

* The values of the PDQ configuration
parameters

* Memory and scan information

¢ Load information, such as the number of
queries that are waiting for memory, the
number of queries that are waiting for
scans, the number of queries that are
waiting for queries with higher PDQ
priority to run, and the number of queries
that are waiting for a query slot

+ Active queries and the number of queries
at each gate

* Statistics on free resources

* Statistics on queries

* The resource/lock cycle prevention count,
which shows the number of times the
system immediately activated a query to
avoid a potential deadlock

nsc client id

Displays shared-memory status by client ID

If you omit client id, this argument displays
all client status areas.

nsd

Displays network shared-memory data for
poll threads

nss session id

Displays network shared-memory status by
session id

If you omit session id, this argument
displays all session status areas.

IBM Informix Performance Guide

Table 2-2. onstat -g Options for monitoring memory utilization (continued)

Argument

Description

osi

Displays information about your operating
system resources and parameters, including
shared memory and semaphore parameters,
the amount of memory currently configured
on the computer, and the amount of memory
that is unused

Use this option when the server is not online.

prc

Displays one line of information for each
user-defined routine (SPL routine or external
routine written in C or Java' programming
language) cached in the UDR cache

seg

Displays shared-memory-segment statistics

This argument shows the number and size of
all attached segments.

ses session id

Displays memory usage for session id

If you omit session id, this argument
displays memory usage for all sessions.

SSC

Displays one line of information for each
query cached in the SQL statement cache

stm session id

Displays memory usage of each SQL
statement for session id

If you omit session id, this argument
displays memory usage for all sessions.

ufr pool name | session id

Displays allocated pool fragments by user or
session

Related information:

fonstat - monitoring options|

Monitor disk I/0O utilization

You can use some specific onstat -g arguments and the oncheck utility to
determine if your disk I/O operations are efficient for your applications.

Using onstat -g to monitor 1/0 utilization
You can use some specific onstat -g command arguments to monitor disk IO.

Use the following onstat -g command arguments to monitor disk I/O utilization.

onstat -g Argument

Description

iof

Displays asynchronous I/O statistics by
chunk or file

This argument is similar to the onstat -d,
except that information about nonchunk files
also appears. This argument displays
information about temporary dbspaces and
sort files.

iog

Displays asynchronous 1/0 global
information

Chapter 2. Performance monitoring and the tools you use 2-9

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0510.htm

2-10

onstat -g Argument Description

ioq Displays asynchronous I/O queuing statistics

iov Displays asynchronous I/O statistics by
virtual processor

For a detailed case study that uses various onstat outputs, see [Appendix A, “Casel
[studies and examples,” on page A-1|

Using the oncheck utility to monitor I/O utilization
Disk I/O operations are usually the longest component of the response time for a
query. You can use the oncheck Utility to monitor disk I/O operations.

Contiguously allocated disk space improves sequential disk I/O operations,
because the database server can read in larger blocks of data and use the
read-ahead feature to reduce the number of I/O operations.

The oncheck utility displays information about storage structures on a disk,
including chunks, dbspaces, blobspaces, extents, data rows, system catalog tables,
and other options. You can also use oncheck to determine the number of extents
that exist within a table and whether or not a table occupies contiguous space.

The oncheck utility provides the following options and information that apply to
contiguous space and extents.

Option Information

-pB Blobspace simple large object (TEXT or BYTE data)

For information about how to use this option to determine the efficiency of
blobpage size, see |“Determine blobpage fullness with oncheck -pB output”|

|0n page 5-17.|

-pe Chunks and extents

For information about how to use this option to monitor extents, see
“Checking for extent interleaving” on page 6-24] and |[“Eliminating interleaved|
lextents” on page 6-25

-pk Index key values.

For information about how to improve the performance of this option, see
[“Improving performance for index checks” on page 7-20.|

-pK Index keys and row IDs

For information about how to improve the performance of this option, see
[“Improving performance for index checks” on page 7-20.|

-pl Index-leaf key values

For information about how to improve the performance of this option, see
[“Improving performance for index checks” on page 7-20.

-pL Index-leaf key values and row IDs

For information about how to improve the performance of this option, see
[“Improving performance for index checks” on page 7-20.|

-pp Pages by table or fragment

For information about how to use this option to monitor space, see
[“Considering the upper limit on extents” on page 6-24.|

IBM Informix Performance Guide

Option Information

-pP Pages by chunk

For information about how to use this option to monitor extents, see
[“Considering the upper limit on extents” on page 6-24.

-pr Root reserved pages

For information about how to use this option, see |[“Estimating tables with|
[fixed-length rows” on page 6-5

-ps Space used by smart large objects and metadata in sbspace.
-pS Space used by smart large objects and metadata in sbspace and storage
characteristics

For information about how to use this option to monitor space, see
[“Monitoring sbspaces” on page 6-13

-pt Space used by table or fragment

For information about how to use this option to monitor space, see
[“Estimating table size” on page 6-5

-pT Space used by table, including indexes

For information about how to use this option to monitor space, see
[“Performance of in-place alters for DDL operations” on page 6-40.|

For more information about using oncheck to monitor space, see [“Estimating table|
lsize” on page 6-5. For more information about concurrency during oncheck
execution, see [“Improving performance for index checks” on page 7-20.

Related information:
[The oncheck Utility]

Monitor transactions

You can use the onlog and onstat utilities to monitor transactions.

Using the onlog utility to monitor transactions

The onlog utility displays all or selected portions of the logical log. This utility can
help you identify a problematic transaction or gauge transaction activity that
corresponds to a period of high utilization, as indicated by your periodic snapshots
of database activity and system-resource consumption.

This onlog utility can take input from selected log files, the entire logical log, or a
backup tape of previous log files.

Use onlog with caution when you read logical-log files still on disk, because
attempting to read unreleased log files stops other database activity. For greatest
safety, back up the logical-log files first and then read the contents of the backup
files. With proper care, you can use the onlog -n option to restrict onlog only to
logical-log files that have been released.

To check on the status of logical-log files, use onstat -I.
Related information:
[The onlog utility|

Chapter 2. Performance monitoring and the tools you use 2-11

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0369.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0402.htm

Using the onstat utility to monitor transactions

If the throughput of transactions is not very high, you can use some onstat utility
commands to identify a transaction that might be a bottleneck.

Use the following onstat utility commands to monitor transactions.

onstat command Description

onstat -x Displays transaction information such as
number of locks held and isolation level.

onstat -u Displays information about each user thread

onstat -k Displays locks held by each session

onstat -g sql Displays last SQL statement this session
executed

Related information:
[The onstat utility|

Monitor sessions and queries

2-12

Monitoring sessions and threads is important for sessions that perform queries as
well as sessions that perform inserts, updates, and deletes. Some of the information
that you can monitor for sessions and threads allows you to determine if an
application is using a disproportionate amount of the resources.

To monitor database server activity, you can view the number of active sessions
and the amount of resources that they are using.

Monitoring memory usage for each session

You can use some specific onstat -g command arguments to get memory
information for each session.

Use the following command arguments to get memory information for each
session.

onstat -g command argument Description

ses Displays one-line summaries of all active
sessions

ses session id Displays session information by session id

sql session id Displays SQL information by session

If you omit session id, this argument displays
summaries of all sessions.

stm session id Displays amount of memory used by each
prepared SQL statement in a session

If you omit session id, this argument displays
information for all prepared statements.

For examples and discussions of session-monitoring command-line utilities, see

“Monitoring memory usage for each session” on page 13-44] and [“Monitor sessions|

and threads” on page 13-48

IBM Informix Performance Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0488.htm

Using the SET EXPLAIN statement

You can use the SET EXPLAIN statement or the EXPLAIN directive to display the
query plan that the optimizer creates for an individual query.

For more information, see [“Display the query plan” on page 13-1)

Chapter 2. Performance monitoring and the tools you use 2-13

2-14 IBM Informix Performance Guide

Chapter 3. Effect of configuration on CPU utilization

The combination of operating-system and Informix configuration parameters can
affect CPU utilization. You can change the settings of the Informix configuration
parameters that directly affect CPU utilization, and you can adjust the settings for
different types of workloads.

Multiple database server instances that run on the same host computer perform
poorly when compared with a single database server instance that manages
multiple databases. Multiple database server instances cannot balance their loads
as effectively as a single database server. Avoid multiple residency for production
environments in which performance is critical.

UNIX configuration parameters that affect CPU utilization

Your database server distribution includes a machine notes file that contains
recommended values for UNIX configuration parameters. Because the UNIX
parameters affect CPU utilization, you should compare the values in the machine
notes file with your current operating-system configuration.

The following UNIX parameters affect CPU utilization:

* Semaphore parameters

* Parameters that set the maximum number of open file descriptors
* Memory configuration parameters

UNIX semaphore parameters

Semaphores are kernel resources with a typical size of 1 byte each. Semaphores for
the database server are in addition to any that you allocate for other software
packages. You can set some UNIX semaphore parameters.

Each instance of the database server requires the following semaphore sets:

* One set for each group of up to 100 virtual processors (VPs) that are started with
the database server

* One set for each additional VP that you might add dynamically while the
database server is running

* One set for each group of 100 or fewer user sessions connected through the
shared-memory communication interface

Tip: For best performance, allocate enough semaphores for double the number of
ipcshm connections that you expect. Use the NETTYPE configuration parameter to
configure database server poll threads for this doubled number of connections.

Because utilities such as onmode use shared-memory connections, you must
configure a minimum of two semaphore sets for each instance of the database
server: one for the initial set of VPs and one for the shared-memory connections
that database server utilities use. The SEMMNI operating-system configuration
parameter typically specifies the number of semaphore sets to allocate. For
information about how to set semaphore-related parameters, see the configuration
instructions for your operating system.

© Copyright IBM Corp. 1996, 2015 3-1

3-2

The SEMMSL operating-system configuration parameter typically specifies the
maximum number of semaphores per set. Set this parameter to at least 100.

Some operating systems require that you configure a maximum total number of
semaphores across all sets, which the SEMMNS operating-system configuration
parameter typically specifies. Use the following formula to calculate the total
number of semaphores that each instance of the database server requires:

SEMMNS = init_vps + added_vps + (2 * shmem_users) + concurrent_utils

init_vps
is the number of virtual processors (VPs) that are started with the database
server. This number includes CPU, PIO, LIO, AIO, SHM, TLI, SOC, and
ADM VPs. The minimum value is 15.

added_vps
is the number of VPs that you intend to add dynamically.

shmem_users
is the number of shared-memory connections that you allow for this
instance of the database server.

concurrent_utils
is the number of concurrent database server utilities that can connect to
this instance. It is suggested that you allow for a minimum of six utility
connections: two for ON-Bar and four for other utilities such as onstat, and
oncheck.

If you use software packages that require semaphores, the SEMMNI configuration
parameter must include the total number of semaphore sets that the database
server and your other software packages require. You must set the SEMMSL
configuration parameter to the largest number of semaphores per set that any of
your software packages require. For systems that require the SEMMNS
configuration parameter, multiply SEMMNI by the value of SEMMSL to calculate
an acceptable value.

Related concepts:

[“Configuring poll threads” on page 3-13|

UNIX file-descriptor parameters

Some operating systems require you to specify a limit on the number of file
descriptors that a process can have open at any one time. To specify this limit, use
an operating-system configuration parameter, typically NOFILE, NOFILES, NFILE,
or NFILES.

The number of open file descriptors that each instance of the database server needs
depends on the number of chunks in your database, the number of VPs that you
run, and the number of network connections that your database server instance
must support.

Use the following formula to calculate the number of file descriptors that your
instance of the database server requires:

NFILES = (chunks * NUMBER OF AIO VPS) + NUMBER_of CPU_VPS + net connections
chunks is the number of chunks to be configured.

net_connections
is the number of network connections that you specify in either of the
following places:

IBM Informix Performance Guide

* sqlhosts file
* NETTYPE configuration entries

Network connections include all but those specified as the ipcshm
connection type.

Each open file descriptor is about the same length as an integer within the kernel.
Allocating extra file descriptors is an inexpensive way to allow for growth in the
number of chunks or connections on your system.

UNIX memory configuration parameters

The configuration of memory in the operating system can affect other resources,
including CPU and I/0.

Insufficient physical memory for the overall system load can lead to thrashing, as
[“Memory utilization” on page 1-10| describes. Insufficient memory for the database
server can result in excessive buffer-management activity. For more information
about configuring memory, see [“Configuring UNIX shared memory” on page 4-6

Windows configuration parameters that affect CPU utilization

The Informix distribution includes a machine notes file that contains recommended
values for Informix configuration parameters on Windows. Compare the values in
this file with your current ONCONFIG configuration file settings.

Informix runs in the background. For best performance, give the same priority to
foreground and background applications.

On Windows, to change the priorities of foreground and background applications,
go to Start > Settings > Control Panel, open the System icon, and click the
Advanced Tab. Select the Performance Options button and select either the
Applications or Background Services radio button.

The configuration of memory in the operating system can impact other resources,
including CPU and 1/0. Insufficient physical memory for the overall system load
can lead to thrashing, as [“Memory utilization” on page 1-10| describes. Insufficient
memory for Informix can result in excessive buffer-management activity. When you
set the Virtual Memory values in the System icon on the Control Panel, ensure
that you have enough paging space for the total amount of physical memory.

Configuration parameters and environment variables that affect CPU

utilization

Some configuration parameters and environment variables affect CPU utilization.
You might need to adjust the settings of these parameters and variables when you
consider methods of improving performance.

The following configuration parameters in the database server configuration file
have a significant impact on CPU utilization:

* DS_MAX_QUERIES
* DS_MAX_SCANS

* FASTPOLL

* MAX_PDQPRIORITY
* MULTIPROCESSOR

Chapter 3. Effect of configuration on CPU utilization 3-3

3-4

* NETTYPE

* OPTCOMPIND

* SINGLE_CPU_VP

* VPCLASS

* VP_MEMORY_CACHE_KB

The following environment variables affect CPU utilization:
* OPTCOMPIND

* PDQPRIORITY

* PSORT_NPROCS

The OPTCOMPIND environment variable, when set in the environment of a client
application, indicates the preferred way to perform join operations. This variable
overrides the value that the OPTCOMPIND configuration parameter sets. For
details on how to select a preferred join method, see [“Optimizing access methods”]

The PDQPRIORITY environment variable, when set in the environment of a client
application, places a limit on the percentage of CPU VP utilization, shared memory,
and other resources that can be allocated to any query that the client starts.

A client can also use the SET PDQPRIORITY statement in SQL to set a value for
PDQ priority. The actual percentage allocated to any query is subject to the factor
that the MAX_PDQPRIORITY configuration parameter sets. For more information

about how to limit resources that can be allocated to a query, see [“Limiting PDQ

[resources in queries” on page 3-11)

PSORT_NPROCS, when set in the environment of a client application, indicates
the number of parallel sort threads that the application can use. The database

server imposes an upper limit of 10 sort threads per query for any application. For
more information about parallel sorts and PSORT_NPROCS, see

[dbspaces for temporary tables and sort files” on page 5-8)

Related information:

[Database configuration parameters|

[Environment variables|

Specifying virtual processor class information

Use the VPCLASS configuration parameter to specify a class of virtual processors,
the number of virtual processors that the database server should start for a specific
class, and the maximum number allowed.

To execute user-defined routines (UDRs), you can define a new class of virtual
processors to isolate UDR execution from other transactions that execute on the
CPU virtual processors. Typically you write user-defined routines to support
user-defined data types.

If you do not want a user-defined routine to affect the normal processing of user
queries in the CPU class, you can use the CREATE FUNCTION statement to assign
the routine to a user-defined class of virtual processors. The class name that you
specify in the VPCLASS configuration parameter must match the name specified in
the CLASS modifier of the CREATE FUNCTION statement.

IBM Informix Performance Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0007.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqlr.doc/ids_sqr_179.htm

For guidelines, on using the cpu and num options of the VPCLASS configuration
parameter, see [“Setting the number of CPU VPs.”|

Related information:
[VPCLASS configuration parameter|
[CREATE FUNCTION statement]

Setting the number of CPU VPs

You can configure the number of CPU virtual processors (VPs) that the database
server uses. Do not allocate more CPU VPs than there are CPU processors
available to service them.

When the database server starts, the number of CPU VPs is automatically
increased to half the number of CPU processors on the database server computer,
unless the SINGLE_CPU_VP configuration parameter is enabled. However, you
might want to change the number of CPU VPs based on your performance needs.

You can enable the database server to add CPU VPs as needed, up to the number
of CPU processors on the computer. Include the autotune=1 option in the
VPCLASS setting:

VPCLASS cpu,autotune=1

If you do not set the VPCLASS configuration parameter to autotune=1, use the
following guidelines to set the number of CPU VPs.

Uniprocessor computers
For uniprocessor computers, specify one CPU VP:

VPCLASS cpu,num=1

Dual-processor computers
For dual-processor systems, you might improve performance by running
with two CPU VPs. To test if performance improves, set the num field of
the VPCLASS configuration parameter to 1 in the onconfig file and then
add a CPU VP dynamically at run time by running the onmode -p
command.

Multiprocessor computers that are primarily database servers
For multiprocessor systems with four or more CPUs that are primarily
used as database servers, set the num option of the VPCLASS
configuration parameter in the onconfig file to one less than the total
number of processors. For example, if you have four CPUs, use the
following specification:

VPCLASS cpu,num=3

When you use this setting, one processor is available to run the database
server utilities or the client application.

Multiprocessor computers that are not primarily database servers
For multiprocessor systems that you do not use primarily to support
database servers, you can start with somewhat fewer CPU VPs to allow for
other activities on the system and then gradually add more if necessary.

Multi-core or hardware multithreading computers with logical CPUs
For multiprocessor systems that use multi-core processors or hardware
multithreading to support more logical CPUs than physical processors, you
can assign the number of CPU VPs according to the number of logical
CPU VPs available for that purpose. The amount of processing that an

Chapter 3. Effect of configuration on CPU utilization 3-5

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0189.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_0388.htm

3-6

additional logical CPU can provide might be only a fraction of what a
dedicated physical processor can support.

On systems, where multi-core processors are installed, the optimal
configuration in most cases is the same as for systems with a number of
individual processors equal to the total number of cores. Setting the
number of CPU VPs to N-1, where N is number of cores is close to optimal
for CPU-intensive workloads.

On computers where the CPU uses multiple threads per core, operating
systems show more logical processors than actual processing cores. To take
advantage of more CPU threads, the database server must be configured
with the number of CPU VPs in the range between N and M, where N is
number of cores and M is total number of logical CPUs reported by
system. The number of CPU VPs where optimal performance is achieved
depends on the workload.

When increasing the number of CPU VPs to use more threads per core, the
expected gain in performance is only a fraction of what dedicated physical
processor or core can provide.

If you are migrating Informix from multi-CPU/multicore systems to
systems with multiple threads per core, take special care in regard to
processor affinity. When binding Informix CPU VPs to the logical
processors of the operating system, you must be aware of the architecture
for the CPU. If you are not sure, do not use the CPU affinity so that the
operating system schedules CPU VPs to logical processors with available
resources. Using affinity without understanding the relationship between
the logical CPUs and processing cores can result in severe performance
degradation.

For example, to bind each of 8 configured CPU VPs to a separate core on
an 8-core system with two threads per core (16 logical CPUs), use the
following setting:

VPCLASS cpu,num=8,aff=(0-14/2)
Related information:
[VPCLASS configuration parameter|

Disabling process priority aging for CPU VPs

Use the noage option of the VPCLASS configuration parameter to disable process
priority aging for database server CPU VPs on operating systems that support this
feature. Priority aging occurs when the operating system lowers the priority of
long-running processes as they accumulate processing time. You might want to
disable priority aging because it can cause the performance of the database server
processes to decline over time.

Your database server distribution includes a machine notes file that contains
information about whether your version of the database server supports this
feature.

Specify the noage option of VPCLASS if your operating system supports this
feature.

Related information:
[VPCLASS configuration parameter|

IBM Informix Performance Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0189.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0189.htm

Specifying processor affinity

Use the aff option of the VPCLASS parameter to specify the processors to which
you want to bind CPU VPs or AIO VPs. When you assign a CPU VP to a specific
CPU, the VP runs only on that CPU. However, other processes can also run on that
CPU.

The database server supports automatic binding of CPU VPs to processors on
multiprocessor host computers that support processor affinity. Your database server
distribution includes a machine notes file that contains information about whether
your version of the database server supports this feature.

You can use processor affinity for the purposes that the following sections describe.
Related information:
[VPCLASS configuration parameter|

Distributing computation impact:

You can use processor affinity to distribute the computation impact of CPU virtual
processors (VPs) and other processes. On computers that are dedicated to the
database server, assigning CPU VPs to all but one of the CPUs achieves maximum
CPU utilization.

On computers that support both database server and client applications, you can
bind applications to certain CPUs through the operating system. By doing so, you
effectively reserve the remaining CPUs for use by database server CPU VPs, which
you bind to the remaining CPUs with the VPCLASS configuration parameter. Set
the aff option of the VPCLASS configuration parameter to the numbers of the
CPUs on which to bind CPU VPs. For example, the following VPCLASS setting
assigns CPU VPs to processors 4 to 7:

VPCLASS cpu,num=4,aff=(4-7)

When specifying a range of processors, you can also specify an incremental value
with the range that indicates which CPUs in the range should be assigned to the
virtual processors. For example, you can specify that the virtual processors are
assigned to every other CPU in the range 0-6, starting with CPU 0.

VPCLASS CPU,num=4,aff=(0-6/2)
The virtual processors are assigned to CPUs 0, 2, 4, 6.

If you specify VPCLASS CPU,num=4,aff=(1-10/3), the virtual processors are assigned
to every third CPU in the range 1-10, starting with CPU 1. The virtual processors
are assigned to CPUs 1, 4, 7, 10.

When you specify more than one value or range, the values and ranges do not
have to be incremental or in any particular order. For example you can specify
aff=(8,12,7-9,0-6/2).

The database server assigns CPU virtual processors to CPUs in a circular pattern,
starting with the first processor number that you specify in the aff option. If you
specify a larger number of CPU virtual processors than physical CPUs, the
database server continues to assign CPU virtual processors starting with the first
CPU. For example, suppose you specify the following VPCLASS settings:

VPCLASS cpu,num=8,aff=(4-7)
The database server makes the following assignments:

Chapter 3. Effect of configuration on CPU utilization 3-7

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0189.htm

3-8

* CPU virtual processor number 0 to CPU 4
* CPU virtual processor number 1 to CPU 5
* CPU virtual processor number 2 to CPU 6
* CPU virtual processor number 3 to CPU 7
* CPU virtual processor number 4 to CPU 4
* CPU virtual processor number 5 to CPU 5
* CPU virtual processor number 6 to CPU 6
» CPU virtual processor number 7 to CPU 7
Related information:

[VPCLASS configuration parameterf

Isolating AIO VPs from CPU VPs:

On a system that runs database server and client (or other) applications, you can
bind asynchronous I/O (AIO) VPs to the same CPUs to which you bind other
application processes through the operating system. In this way, you isolate client
applications and database I/O operations from the CPU VPs.

This isolation can be especially helpful when client processes are used for data
entry or other operations that require waiting for user input. Because AIO VP
activity usually comes in quick bursts followed by idle periods waiting for the
disk, you can often interweave client and I/O operations without their unduly
impacting each other.

Binding a CPU VP to a processor does not prevent other processes from running
on that processor. Application (or other) processes that you do not bind to a CPU
are free to run on any available processor. On a computer that is dedicated to the
database server, you can leave AIO VPs free to run on any processor, which
reduces delays on database operations that are waiting for I/O. Increasing the
priority of AIO VPs can further improve performance by ensuring that data is
processed quickly once it arrives from disk.

Avoiding a certain CPU:

The database server assigns CPU VPs to CPUs serially, starting with the CPU
number you specify in this parameter. You might want to avoid assigning CPU
VPs to a certain CPU that has a specialized hardware or operating-system function
(such as interrupt handling).

Setting the number of AlIO VPs

Use the aio and num options of the VPCLASS configuration parameter to indicate
the number of AIO virtual processors that the database server starts initially.

If your operating system does not support kernel asynchronous I/0 (KAIO), the
database server uses AlO virtual processors (VPs) to manage all database 1/0
requests.

If the VPCLASS configuration parameter does not specify the number of AIO VPs
to start in the onconfig file, the number of AIO VDPs initially started is equal to the
number of chunks that use AIO, up to a maximum of 128.

You can enable the database server to increase the number of AIO VPs as needed
to improve performance. Include the autotune=1 option in the VPCLASS
configuration parameter setting:

IBM Informix Performance Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0189.htm

VPCLASS aio,autotune=1

The recommended number of AIO virtual processors depends on how many disks
your configuration supports. If KAIO is not implemented on your platform, you
should allocate one AIO virtual processor for each disk that contains database
tables. You can add an additional AIO virtual processor for each chunk that the
database server accesses frequently.

The machine notes file for your version of the database server indicates whether
the operating system supports KAIO. If KAIO is supported, the machine notes
describe how to enable KAIO on your specific operating system.

If your operating system supports KAIO, the CPU VPs make asynchronous 1/0
requests to the operating system instead of AIO virtual processors. In this case,
configure only one AIO virtual processor, plus two additional AIO virtual
processor for every file chunk that does not use KAIO.

If you use cooked files and if you enable direct I/O using the DIRECT_IO
configuration parameter, you can reduce the number of AIO virtual processors. If
the database server implements KAIO and if direct I/O is enabled, the database
server will attempt to use KAIO, so you probably do not need more than one AIO
virtual processor. Temporary dbspaces do not use direct I/O. If you have
temporary dbspaces, you will probably need more than one AIO virtual processors.

Even when direct I/O is enabled with the DIRECT_IO configuration parameter, if
the file system does not support either direct I/O or KAIO, you still must allocate
two additional AIO virtual processors for every active dbspace chunk that is not
using KAIO.

The goal in allocating AIO virtual processors is to allocate enough of them so that
the lengths of the I/O request queues are kept short (that is, the queues have as
few I/0 requests in them as possible). When the I/O request queues remain
consistently short, I/O requests are processed as fast as they occur. Use the onstat
-g ioq command to monitor the length of the I/O queues for the AIO virtual
processors.

Allocate enough AIO VPs to accommodate the peak number of I/O requests.
Generally, allocating a few extra AIO VPs is not detrimental. To start additional
AIO VPs while the database server is in online mode, use the onmode -p
command. You cannot drop AIO VPs in online mode.

Related information:

[AUTO_AIOVPS configuration parameter|

[VPCLASS configuration parameter|

Setting the MULTIPROCESSOR configuration parameter when
using multiple CPU VPs

If you are running multiple CPU VPs, set the MULTIPROCESSOR configuration
parameter to 1. When you set MULTIPROCESSOR to 1, the database server
performs locking in a manner that is appropriate for a multiprocessor. Otherwise,
set this parameter to 0.

The number of CPU VPs is used as a factor in determining the number of scan

threads for a query. Queries perform best when the number of scan threads is a
multiple (or factor) of the number of CPU VPs. Adding or removing a CPU VP can

Chapter 3. Effect of configuration on CPU utilization 3-9

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0023.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0189.htm

3-10

improve performance for a large query because it produces an equal distribution of
scan threads among CPU VPs. For instance, if you have 6 CPU VPs and scan 10
table fragments, you might see a faster response time if you reduce the number of
CPU VPs to 5, which divides evenly into 10. You can use onstat -g ath to monitor
the number of scan threads per CPU VP or use onstat -g ses to focus on a
particular session.

Related information:
[MULTIPROCESSOR configuration parameter|

Setting the SINGLE_CPU_VP configuration parameter when
using one CPU VP

If you are running only one CPU VP, set the SINGLE_CPU_VP configuration
parameter to 1. Otherwise, set this parameter to 0.

Important: If you set the SINGLE_CPU_VP parameter to 1, the value of the num
option of the VPCLASS configuration parameter must also be 1.

Note: The database server treats user-defined virtual-processor classes (that is, VPs
defined with VPCLASS) as if they were CPU VPs. Thus, if you set
SINGLE_CPU_VP to nonzero, you cannot create any user-defined classes.

When you set the SINGLE_CPU_VP parameter to 1, you cannot add CPU VPs
while the database server is in online mode.

Related information:
[SINGLE_CPU_VP configuration parameter|
[VPCLASS configuration parameter|

Optimizing access methods

The OPTCOMPIND configuration parameter helps the query optimizer choose an
appropriate access method for your application. When the optimizer examines join
plans, OPTCOMPIND indicates the preferred method for performing the join
operation for an ordered pair of tables.

If OPTCOMPIND is equal to 0, the optimizer gives preference to an existing index
(nested-loop join) even when a table scan might be faster. If OPTCOMPIND is set
to 1 and the isolation level for a given query is set to Repeatable Read, the
optimizer uses nested-loop joins.

When OPTCOMPIND is equal to 2, the optimizer selects a join method based on
cost alone even though table scans can temporarily lock an entire table. For more
information about OPTCOMPIND and the different join methods, see
[OPTCOMPIND on the query plan” on page 10-22

To set the value for OPTCOMPIND for specific applications or user sessions, set
the OPTCOMPIND environment variable for those sessions. Values for this
environment variable have the same range and semantics as for the configuration
parameter.

Related information:

[OPTCOMPIND configuration parameter]

IBM Informix Performance Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0113.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0161.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0189.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0129.htm

Setting the value of OPTCOMPIND within a session

You can set or change the value of OPTCOMPIND within a session for different
kinds of queries. To do this, use the SET ENVIRONMENT OPTCOMPIND
statement, not the OPTCOMPIND configuration parameter or the OPTCOMPIND
environment variable.

For a DSS query, you should set the value of OPTCOMPIND to 2 or 1, and you
should be sure that the isolation level is not set to Repeatable Read. For an OLTP
query, you could set the value to 0 or 1 with the isolation level not set to
Repeatable Read.

The value that you enter using the SET ENVIRONMENT OPTCOMPIND
command takes precedence over the default setting specified by the
OPTCOMPIND environment variable or by the OPTCOMPIND configuration
parameter in the ONCONFIG file. The default OPTCOMPIND setting is restored
when the routine that issued the SET ENVIRONMENT OPTCOMPIND statement
exits, or until the same routine resets the value of OPTCOMPIND to the system
default by issuing the following statement:

SET ENVIRONMENT OPTCOMPIND DEFAULT;

No other user sessions or routines are affected by SET ENVIRONMENT
OPTCOMPIND statements that you execute, because their scope is local to the
routine in which they are issued, rather than the entire session.

Related information:
[OPTCOMPIND session environment option|

Limiting PDQ resources in queries

The MAX_PDQPRIORITY configuration parameter limits the percentage of parallel
database query (PDQ) resources that a query can use. Use MAX_PDQPRIORITY to
limit the impact of large CPU-intensive queries on transaction throughput.

To limit the impact of large CPU-intensive queries on transaction throughput

Set the value of the MAX_PDQPRIORITY configuration parameter to an integer
that represents a percentage of the following PDQ resources that a query can
request:

* Memory

* CPU VPs

* Disk I/O

* Scan threads

When a query requests a percentage of PDQ resources, the database server
allocates the MAX_PDQPRIORITY percentage of the amount requested, as the
following formula shows:

Resources allocated = PDQPRIORITY/100 * MAX_ PDQPRIORITY/100

For example, if a client uses the SET PDQPRIORITY 80 statement to request 80
percent of PDQ resources, but MAX_PDQPRIORITY is set to 50, the database
server allocates only 40 percent of the resources (50 percent of the request) to the
client.

For decision support and online transaction processing (OLTP), setting
MAX_PDQPRIORITY allows the database server administrator to control the

Chapter 3. Effect of configuration on CPU utilization 3-11

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_1150.htm

3-12

impact that individual decision-support queries have on concurrent OLTP
performance. Reduce the value of MAX_PDQPRIORITY when you want to allocate
more resources to OLTP processing. Increase the value of MAX_PDQPRIORITY
when you want to allocate more resources to decision-support processing.

For more information about how to control the use of PDQ) resources, see
[allocation of resources for parallel database queries” on page 12-7.

Related information:
[MAX_PDQPRIORITY configuration parameter|

Limiting the performance impact of CPU-intensive queries

The DS_MAX_QUERIES configuration parameter specifies a maximum number of
decision-support queries that can run at any one time. Queries with a low PDQ
priority use proportionally fewer resources, so a larger number of those queries
can run simultaneously. You can use the DS_MAX_QUERIES configuration
parameter to limit the performance impact of CPU-intensive queries.

The DS_MAX_QUERIES configuration parameter controls only queries with a PDQ
priority that is nonzero.

The database server uses the value of DS_MAX_QUERIES with
DS_TOTAL_MEMORY to calculate quantum units of memory to allocate to a
query. For more information about how the database server allocates memory to
queries, see ["The DS_TOTAL_MEMORY configuration parameter and memory]|
[utilization” on page 4-12.

Related concepts:
“The DS_TOTAL_MEMORY configuration parameter and memory utilization” on|

page 4—12|

Related information:
[DS_MAX_QUERIES configuration parameter|

Limiting the number of PDQ scan threads that can run
concurrently

The DS_MAX_SCANS configuration parameter limits the number of PDQ scan
threads that can run concurrently. This configuration parameter prevents the
database server from being flooded with scan threads from multiple
decision-support queries.

To calculate the number of scan threads allocated to a query, use the following
formula:

scan_threads = min (nfrags, (DS_MAX_SCANS * pdgpriority / 100
« MAX_PDQPRIORITY / 100))

nfrags is the number of fragments in the table with the largest number of
fragments.

pdgqpriority
is the PDQ priority value set by either the PDQPRIORITY environment
variable or the SQL statement SET PDQPRIORITY.

Reducing the number of scan threads can reduce the time that a large query waits
in the ready queue, particularly when many large queries are submitted
concurrently. However, if the number of scan threads is less than nfrags, the query
takes longer once it is underway.

IBM Informix Performance Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0107.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0062.htm

For example, if a query needs to scan 20 fragments in a table, but the scan_threads
formula lets the query begin when only 10 scan threads are available, each scan
thread scans two fragments serially. Query execution takes approximately twice as
long as if 20 scan threads were used.

Related information:
[DS_MAX_SCANS configuration parameter|

Configuring poll threads

The NETTYPE configuration parameter configures poll threads for each connection
type that your instance of the database server supports. If your database server
instance supports connections over more than one interface or protocol, you must
specify a separate NETTYPE configuration parameter for each connection type.

You typically include a separate NETTYPE parameter for each connection type that
is associated with a dbservername. You list dbservernames in the
DBSERVERNAME and DBSERVERALIASES configuration parameters. You
associate connection types with dbservernames in the sqlhosts information. For

details about connection types and the sqlhosts information, see [Connectivity
in your.IBM Informix Administrator’s Guide.

Related reference:

[“UNIX semaphore parameters” on page 3-1|

Related information:
[NETTYPE configuration parameter|

Specifying the connection protocol

The first NETTYPE entry, which specifies the protocol for a given connection type,
applies to all dbservernames associated with that type. Subsequent NETTYPE
entries for that connection type are ignored.

NETTYPE entries are required for connection types that are used for outgoing
communication only even if those connection types are not listed in the sqlhosts
information.

UNIX Only

The following protocols apply to UNIX platforms:
« IPCSHM
» TLITCP
* IPCSTR
+ SOCTCP
+ TLIIMC
* SOCIMC
* SQLMUX
* SOCSSL
Windows Only
The following protocols apply to Windows platforms:
* SOCTCP
+ IPCNMP
* SQLMUX
* SOCSSL
Related information:

Chapter 3. Effect of configuration on CPU utilization 3-13

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0063.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_0026.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_0026.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0114.htm

3-14

[NETTYPE configuration parameter|

Specifying virtual-processor classes for poll threads

Each poll thread that is configured or added dynamically by a NETTYPE entry
runs in a separate VP. A poll thread can run in one of two types of VP classes:
NET (network) and CPU. Network VP classes include SOC, STR, SHM, and TLIL.
For best performance, use a NETTYPE entry to assign only one poll thread to the
CPU VP class. Assign all additional poll threads to network VP classes by
specifying NET in the NETTYPE configuration parameter values.

Related information:

[NETTYPE configuration parameter|

Specifying the number of connections and poll threads

The optimum number of connections per poll thread is approximately 300 for
uniprocessor computers and up to 350 for multiprocessor computers, although this
can vary depending on the platform and database server workload.

A poll thread can support 1024 or more connections. If the FASTPOLL
configuration parameter is enabled, you might be able to configure fewer poll
threads, but test the performance to determine the optimal configuration for your
environment.

Each NETTYPE entry configures the number of poll threads for a specific
connection type, the number of connections per poll thread, and the type of
virtual-processor class in which those poll threads run. If the number of
connections per thread exceeds 350 and the number of poll threads for the current
connection type is less than the number of CPU VPs, you can improve
performance by specifying the CPU VP class, adding poll threads (do not exceed
the number of CPU VPs), and resetting the number of connections per thread. The
default number of connections per thread is 50.

Important: Each ipcshm connection requires a semaphore. Some operating systems
require that you configure a maximum number of semaphores that can be
requested by all software packages that run on the computer. For best
performance, double the number of actual ipcshm connections when you allocate
semaphores for shared-memory communications. See ["UNIX semaphore|
[parameters” on page 3-1)

If your computer is a uniprocessor and your database server instance is configured
for only one connection type, you can omit the NETTYPE parameter. The database
server uses the information that is provided in the sqlhosts information to establish
client/server connections.

If your computer is a uniprocessor and your database server instance is configured
for more than one connection type, include a separate NETTYPE entry for each
connection type. If the number of connections of any one type significantly exceeds
300, assign two or more poll threads, up to a maximum of the number of CPU
VPs, and specify NET for a network VP class, as the following example shows:

NETTYPE ipcshm,1,50,CPU
NETTYPE tlitcp,2,200,NET # supports 400 connections

For ipcshm, the number of poll threads correspond to the number of memory
segments. For example, if NETTYPE is set to 3,100 and you want one poll thread,
set the poll thread to 1,300.

IBM Informix Performance Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0114.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0114.htm

If your computer is a multiprocessor, your database server instance is configured
for only one connection type, and the number of connections does not exceed 350,
you can use NETTYPE to specify a single poll thread on either the CPU or a
network VP class. If the number of connections exceeds 350, set the VP class type
to NET, increase the number of poll threads, and recalculate conn_per_thread.

Important: Carefully distinguish between poll threads for network connections
and poll threads for shared memory connections, which run one per CPU virtual
processor. Configure TCP connections to run in network virtual processors, and
configure the minimum that is needed to maintain responsiveness. Configure
shared memory connections to run in every CPU virtual processor.

Related concepts:

[“Improve connection performance and scalability”]

Related information:
[NETTYPE configuration parameter|
[VPCLASS configuration parameter|

Improve connection performance and scalability

You can improve connection performance and scalability by specifying information
in the NUMFDSERVERS and NS_CACHE configuration parameters and by using
multiple listen threads.

Informix SQL sessions can migrate across CPU VPs. You can improve the
performance and scalability of network connections on UNIX by using the
NUMEFDSERVERS configuration parameter to specify a number for the poll threads
to use when distributing a TCP/IP connection across VPs. Specifying
NUMFDSERVERS information is useful if the database server has a high rate of
new connect and disconnect requests or if you find a high amount of contention
between network shared file (NSF) locks.

You should also review and, if necessary, change the information in the NETTYPE
configuration parameter, which defines the number of poll threads for a specific
connection type, the number of connections per poll thread, and the
virtual-processor class in which those poll threads run. You specify NETTYPE
configuration parameter information as follows:

NETTYPE connection_type,poll_threads,conn_per_thread,vp_class

On UNIX, if vp_class is NET, pol1_threads can be a value that is greater than or
equal to 1. If vp_class is CPU, the number of pol1_threads can be 1 through the
number of CPU VPs. On Windows, pol1_threads can be value that is greater than
or equal to 1.

For example, suppose you specify 8 poll threads in the NETTYPE configuration
parameter, as follows:

NETTYPE soctcp,8,300,NET

You can also specify 8 in the NUMFDSERVERS configuration parameter to enable
the server to use all 8 poll thread to handle network connections migrating
between VPs.

You can use the NS_CACHE configuration parameter to define the maximum
retention time for an individual entry in the host name/IP address cache, the
service cache, the user cache, and the group cache. The server can get information
from the cache faster than it does when