
Informix Product Family
Informix
Version 12.10

IBM Informix Guide to SQL: Reference

SC27-4522-05

IBM

Informix Product Family
Informix
Version 12.10

IBM Informix Guide to SQL: Reference

SC27-4522-05

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page D-1.

Edition

This edition replaces SC27-4522-04.

This publication contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1996, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Introduction .. ix
About this publication .. ix

Types of users .. ix
Software compatibility .. ix
Assumptions about your locale .. ix
Demonstration databases .. x

What's new in SQL Reference for Informix, Version 12.10 x
Example code conventions .. xii
Additional documentation .. xiii
Compliance with industry standards. .. xiii
How to read the syntax diagrams. .. xiii
How to provide documentation feedback .. xv

Chapter 1. System catalog tables .. 1-1
Objects That the System Catalog Tables Track .. 1-1
Using the system catalog .. 1-1

Accessing the system catalog .. 1-6
Update system catalog data. .. 1-6

Structure of the System Catalog .. 1-7
SYSAGGREGATES. .. 1-9
SYSAMS. .. 1-10
SYSATTRTYPES .. 1-12
SYSAUTOLOCATE .. 1-13
SYSBLOBS .. 1-14
SYSCASTS .. 1-14
SYSCHECKS .. 1-15
SYSCHECKUDRDEP .. 1-15
SYSCOLATTRIBS .. 1-16
SYSCOLAUTH .. 1-16
SYSCOLDEPEND. .. 1-17
SYSCOLUMNS .. 1-17

Storing column length .. 1-20
Storing Maximum and Minimum Values .. 1-21

SYSCONSTRAINTS .. 1-22
SYSDEFAULTS .. 1-22
SYSDEPEND .. 1-23
SYSDIRECTIVES .. 1-24
SYSDISTRIB .. 1-24
SYSDOMAINS. .. 1-26
SYSERRORS .. 1-26
SYSEXTCOLS .. 1-27
SYSEXTDFILES .. 1-27
SYSEXTERNAL .. 1-28
SYSFRAGAUTH .. 1-28
SYSFRAGDIST. .. 1-29
SYSFRAGMENTS. .. 1-31
SYSINDEXES .. 1-33
SYSINDICES .. 1-35
SYSINHERITS .. 1-37
SYSLANGAUTH .. 1-37
SYSLOGMAP .. 1-38
SYSOBJSTATE .. 1-38
SYSOPCLASSES .. 1-39
SYSPROCAUTH .. 1-40
SYSPROCBODY .. 1-40

© Copyright IBM Corp. 1996, 2015 iii

SYSPROCCOLUMNS .. 1-41
SYSPROCEDURES .. 1-41
SYSPROCPLAN .. 1-44
SYSREFERENCES .. 1-44
SYSROLEAUTH .. 1-45
SYSROUTINELANGS .. 1-45
SYSSECLABELAUTH .. 1-46
SYSSECLABELCOMPONENTS .. 1-46
SYSSECLABELCOMPONENTELEMENTS .. 1-46
SYSSECLABELNAMES .. 1-47
SYSSECLABELS .. 1-47
SYSSECPOLICIES. .. 1-47
SYSSECPOLICYCOMPONENTS .. 1-48
SYSSECPOLICYEXEMPTIONS .. 1-48
SYSSEQUENCES .. 1-49
SYSSURROGATEAUTH .. 1-49
SYSSYNONYMS .. 1-50
SYSSYNTABLE .. 1-50
SYSTABAMDATA .. 1-51
SYSTABAUTH. .. 1-51
SYSTABLES. .. 1-52
SYSTRACECLASSES. .. 1-55
SYSTRACEMSGS .. 1-56
SYSTRIGBODY .. 1-56
SYSTRIGGERS. .. 1-57
SYSUSERS .. 1-58
SYSVIEWS .. 1-58
SYSVIOLATIONS. .. 1-59
SYSXADATASOURCES .. 1-59
SYSXASOURCETYPES .. 1-60
SYSXTDDESC .. 1-60
SYSXTDTYPEAUTH .. 1-60
SYSXTDTYPES .. 1-61
Information Schema .. 1-62

Generating the Information Schema Views .. 1-63
Accessing the Information Schema Views .. 1-63
Structure of the Information Schema Views .. 1-63

Chapter 2. Data types .. 2-1
Summary of data types .. 2-1
ANSI to Informix data type mapping .. 2-5
Description of Data Types .. 2-6

BIGINT data type .. 2-6
BIGSERIAL data type .. 2-6
BLOB data type. .. 2-7
BOOLEAN data type .. 2-8
BYTE data type .. 2-8
CHAR(n) data type .. 2-9
CHARACTER(n) data type .. 2-10
CHARACTER VARYING(m,r) data type .. 2-10
CLOB data type .. 2-11
DATE data type .. 2-12
DATETIME data type .. 2-12
DEC data type. .. 2-15
DECIMAL .. 2-15
DISTINCT data types .. 2-17
DOUBLE PRECISION data types .. 2-18
FLOAT(n) .. 2-18
IDSSECURITYLABEL data type .. 2-18
INT data type .. 2-19
INT8 .. 2-19

iv IBM Informix Guide to SQL: Reference

INTEGER data type .. 2-19
INTERVAL data type .. 2-19
LIST(e) data type .. 2-22
LVARCHAR(m) data type .. 2-23
MONEY(p,s) data type .. 2-24
MULTISET(e) data type. .. 2-25
Named ROW .. 2-25
NCHAR(n) data type .. 2-25
NUMERIC(p,s) data type .. 2-26
NVARCHAR(m,r) data type .. 2-26
OPAQUE data types .. 2-26
REAL data type .. 2-27
ROW data type, Named .. 2-27
ROW data type, Unnamed. .. 2-28
SERIAL(n) data type. .. 2-29
SERIAL8(n) data type .. 2-30
SET(e) data type .. 2-31
SMALLFLOAT. .. 2-33
SMALLINT data type .. 2-33
TEXT data type .. 2-33
Unnamed ROW .. 2-35
VARCHAR(m,r) data type .. 2-35

Built-In Data Types .. 2-37
Character Data Types .. 2-37
Large-Object Data Types .. 2-39
Time Data Types .. 2-41

Extended Data Types .. 2-46
Complex data types .. 2-46
Distinct Data Types .. 2-49
Opaque Data Types .. 2-49

Data Type Casting and Conversion .. 2-50
Using Built-in Casts .. 2-50
Using User-Defined Casts .. 2-52
Determining Which Cast to Apply .. 2-53
Casts for distinct types .. 2-53
What Extended Data Types Can Be Cast? .. 2-54

Operator Precedence. .. 2-55

Chapter 3. Environment variables .. 3-1
Types of environment variables .. 3-1
Limitations on environment variables .. 3-1
Using environment variables on UNIX .. 3-2

Setting environment variables in a configuration file 3-2
Setting environment variables at login time .. 3-3
Syntax for setting environment variables .. 3-3
Unsetting environment variables .. 3-4
Modifying an environment-variable setting .. 3-4
Viewing your environment-variable settings .. 3-4
Checking environment variables with the chkenv utility 3-4
Rules of precedence for environment variables .. 3-5

Using environment variables on Windows .. 3-6
Where to set environment variables on Windows .. 3-6
Setting environment variables on Windows .. 3-6
Rules of precedence for Windows environment variables 3-8

Environment variables in Informix products .. 3-8
Environment variable portal .. 3-8
ANSIOWNER environment variable .. 3-16
CPFIRST environment variable .. 3-17
CMCONFIG environment variable .. 3-17
DBACCNOIGN environment variable .. 3-18
DBANSIWARN environment variable .. 3-19

Contents v

DBBLOBBUF environment variable .. 3-20
DBCENTURY environment variable .. 3-20
DBDATE environment variable .. 3-22
DBDELIMITER environment variable .. 3-24
DBEDIT environment variable .. 3-25
DBFLTMASK environment variable. .. 3-25
DBLANG environment variable .. 3-26
DBMONEY environment variable .. 3-27
DBONPLOAD environment variable .. 3-27
DBPATH environment variable .. 3-28
DBPRINT environment variable .. 3-30
DBREMOTECMD environment variable (UNIX) .. 3-30
DBSPACETEMP environment variable .. 3-30
DBTEMP environment variable .. 3-32
DBTIME environment variable .. 3-32
DBUPSPACE environment variable .. 3-35
DEFAULT_ATTACH environment variable .. 3-36
DELIMIDENT environment variable .. 3-37
ENVIGNORE environment variable (UNIX) .. 3-38
FET_BUF_SIZE environment variable .. 3-39
IFMXMONGOAUTH environment variable .. 3-39
IFX_DEF_TABLE_LOCKMODE environment variable. 3-40
IFX_DIRECTIVES environment variable .. 3-40
IFX_EXTDIRECTIVES environment variable .. 3-41
IFX_LARGE_PAGES environment variable .. 3-42
IFX_LOB_XFERSIZE environment variable .. 3-43
IFX_LONGID environment variable .. 3-43
IFX_NETBUF_PVTPOOL_SIZE environment variable (UNIX) 3-44
IFX_NETBUF_SIZE environment variable .. 3-44
IFX_NO_SECURITY_CHECK environment variable (UNIX). 3-45
IFX_NO_TIMELIMIT_WARNING environment variable 3-45
IFX_NODBPROC environment variable .. 3-45
IFX_NOT_STRICT_THOUS_SEP environment variable 3-46
IFX_ONTAPE_FILE_PREFIX environment variable. 3-46
IFX_PAD_VARCHAR environment variable .. 3-46
IFX_UNLOAD_EILSEQ_MODE environment variable 3-47
IFX_UPDDESC environment variable .. 3-47
IFX_XASTDCOMPLIANCE_XAEND environment variable 3-48
IFX_XFER_SHMBASE environment variable .. 3-48
IMCADMIN environment variable .. 3-48
IMCCONFIG environment variable .. 3-49
IMCSERVER environment variable .. 3-49
INFORMIXC environment variable (UNIX) .. 3-50
INFORMIXCMNAME environment variable .. 3-50
INFORMIXCMCONUNITNAME environment variable 3-50
INFORMIXCONCSMCFG environment variable .. 3-51
INFORMIXCONRETRY environment variable .. 3-51
INFORMIXCONTIME environment variable .. 3-52
INFORMIXCPPMAP environment variable .. 3-54
INFORMIXDIR environment variable .. 3-54
INFORMIXSERVER environment variable .. 3-54
INFORMIXSHMBASE environment variable (UNIX) 3-55
INFORMIXSQLHOSTS environment variable .. 3-55
INFORMIXSTACKSIZE environment variable .. 3-56
INFORMIXTERM environment variable (UNIX) .. 3-56
INF_ROLE_SEP environment variable .. 3-57
INTERACTIVE_DESKTOP_OFF environment variable (Windows) 3-57
JAR_TEMP_PATH environment variable .. 3-58
JAVA_COMPILER environment variable .. 3-58
JVM_MAX_HEAP_SIZE environment variable .. 3-58
LD_LIBRARY_PATH environment variable (UNIX) 3-59

vi IBM Informix Guide to SQL: Reference

LIBPATH environment variable (UNIX) .. 3-59
NODEFDAC environment variable .. 3-59
ONCONFIG environment variable .. 3-60
ONINIT_STDOUT environment variable (Windows) 3-60
OPTCOMPIND environment variable .. 3-61
OPTMSG environment variable .. 3-62
OPTOFC environment variable .. 3-62
OPT_GOAL environment variable (UNIX) .. 3-63
PATH environment variable .. 3-63
PDQPRIORITY environment variable .. 3-64
PLCONFIG environment variable .. 3-64
PLOAD_LO_PATH environment variable .. 3-65
PLOAD_SHMBASE environment variable .. 3-65
PSM_ACT_LOG environment variable .. 3-66
PSM_CATALOG_PATH environment variable .. 3-66
PSM_DBS_POOL environment variable .. 3-66
PSM_DEBUG environment variable. .. 3-67
PSM_DEBUG_LOG environment variable. .. 3-67
PSM_LOG_POOL environment variable .. 3-67
PSORT_DBTEMP environment variable .. 3-68
PSORT_NPROCS environment variable .. 3-68
RTREE_COST_ADJUST_VALUE environment variable 3-69
SHLIB_PATH environment variable (UNIX) .. 3-70
SRV_FET_BUF_SIZE environment variable .. 3-70
STMT_CACHE environment variable .. 3-71
TERM environment variable (UNIX) .. 3-71
TERMCAP environment variable (UNIX) .. 3-72
TERMINFO environment variable (UNIX) .. 3-72
THREADLIB environment variable (UNIX) .. 3-72
TZ environment variable .. 3-73
USETABLENAME environment variable .. 3-73

Appendix A. The stores_demo Database. A-1
The stores_demo Database Map .. A-1

Appendix B. The superstores_demo database B-1
Structure of the superstores_demo Tables .. B-1
User-defined routines and extended data types .. B-1
Table Hierarchies .. B-3

Appendix C. Accessibility .. C-1
Accessibility features for IBM Informix products .. C-1

Accessibility features .. C-1
Keyboard navigation .. C-1
Related accessibility information .. C-1
IBM and accessibility .. C-1

Dotted decimal syntax diagrams .. C-1

Notices .. D-1
Privacy policy considerations .. D-3
Trademarks .. D-3

Index .. X-1

Contents vii

viii IBM Informix Guide to SQL: Reference

Introduction

This introduction provides an overview of the information in this publication and
describes the conventions it uses.

About this publication

This publication includes information about the system catalog tables, data types,
and environment variables that IBM® Informix® products use.

This publication is one of a series of publications that contains information about
the IBM Informix implementation of SQL. The IBM Informix Guide to SQL: Syntax
contains all the syntax descriptions for SQL and stored procedure language (SPL).
The IBM Informix Guide to SQL: Tutorial shows how to use basic and advanced SQL
and SPL routines to access and manipulate the data in your databases. The IBM
Informix Database Design and Implementation Guide shows how to use SQL to
implement and manage your databases.

See the documentation notes files for a list of the publications in the
documentation set of IBM Informix.

Types of users
This publication is written for the following users:
v Database users
v Database administrators
v Database server administrators
v Database-application programmers
v Performance engineers

This publication assumes that you have the following background:
v A working knowledge of your computer, your operating system, and the utilities

that your operating system provides
v Some experience working with relational databases or exposure to database

concepts
v Some experience with computer programming
v Some experience with database server administration, operating-system

administration, or network administration

Software compatibility
For information about software compatibility, see the IBM Informix release notes.

Assumptions about your locale
IBM Informix products can support many languages, cultures, and code sets. All
the information related to character set, collation and representation of numeric
data, currency, date, and time that is used by a language within a given territory
and encoding is brought together in a single environment, called a Global
Language Support (GLS) locale.

© Copyright IBM Corp. 1996, 2015 ix

The IBM Informix OLE DB Provider follows the ISO string formats for date, time,
and money, as defined by the Microsoft OLE DB standards. You can override that
default by setting an Informix environment variable or registry entry, such as
GL_DATE.

If you use Simple Network Management Protocol (SNMP) in your Informix
environment, note that the protocols (SNMPv1 and SNMPv2) recognize only
English code sets. For more information, see the topic about GLS and SNMP in the
IBM Informix SNMP Subagent Guide.

The examples in this publication are written with the assumption that you are
using one of these locales: en_us.8859-1 (ISO 8859-1) on UNIX platforms or
en_us.1252 (Microsoft 1252) in Windows environments. These locales support U.S.
English format conventions for displaying and entering date, time, number, and
currency values. They also support the ISO 8859-1 code set (on UNIX and Linux)
or the Microsoft 1252 code set (on Windows), which includes the ASCII code set
plus many 8-bit characters such as é and ñ.

You can specify another locale if you plan to use characters from other locales in
your data or your SQL identifiers, or if you want to conform to other collation
rules for character data.

For instructions about how to specify locales, additional syntax, and other
considerations related to GLS locales, see the IBM Informix GLS User's Guide.

Demonstration databases
The DB-Access utility, which is provided with your IBM Informix database server
products, includes one or more of the following demonstration databases:
v The stores_demo database illustrates a relational schema with information about

a fictitious wholesale sporting-goods distributor. Many examples in IBM
Informix publications are based on the stores_demo database.

v The superstores_demo database illustrates an object-relational schema. The
superstores_demo database contains examples of extended data types, type and
table inheritance, and user-defined routines.

For information about how to create and populate the demonstration databases,
see the IBM Informix DB-Access User's Guide. For descriptions of the databases and
their contents, see the IBM Informix Guide to SQL: Reference.

The scripts that you use to install the demonstration databases are in the
$INFORMIXDIR/bin directory on UNIX platforms and in the %INFORMIXDIR%\bin
directory in Windows environments.

What's new in SQL Reference for Informix, Version 12.10
This publication includes information about new features and changes in existing
functionality.

The following changes and enhancements are relevant to this publication. For a
complete list of what's new in this release, go to http://www.ibm.com/support/
knowledgecenter/SSGU8G_12.1.0/com.ibm.po.doc/new_features_ce.htm.

x IBM Informix Guide to SQL: Reference

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.po.doc/new_features_ce.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.po.doc/new_features_ce.htm

Table 1. What's new in IBM Informix Guide to SQL: Reference for Version 12.10.xC4

Overview Reference

Information on indexes on JSON and BSON columns

The new indexattr and jparams columns in the
SYSINDICES system catalog table contain information
about indexes on JSON and BSON columns.

“SYSINDICES” on page 1-35

Customize the display widths of Unicode private-use
characters

Starting in Informix GLS 6.00.xC4, you can specify the
display widths that DB-Access and other character-based
Informix applications use for characters in the Unicode
Private Use Area (PUA) ranges. Before you try to display
the characters that are in PUA ranges, set the new
IFX_PUA_DISPLAY_MAPPING environment variable,
and create a mapping file: $INFORMIXDIR/gls/etc/
pua.map. In the file, list each character followed by the
character representation display width. Valid display
widths are 1 (halfwidth character representation) or 2
(fullwidth character representation). If you do not specify
a display width for a character in the file, the default is
halfwidth.

“Environment variable portal” on page 3-8

Table 2. What's new in IBM Informix Guide to SQL: Reference for Version 12.10.xC3

Overview Reference

Automatic location and fragmentation

In previous releases, the default location for new
databases was the root dbspace. The default location for
new tables and indexes was in the dbspace of the
corresponding database. By default new tables were not
fragmented. As of 12.10.xC3, you can enable the database
server to automatically choose the location for new
databases, tables, and indexes. The location selection is
based on an algorithm that gives higher priority to
non-critical dbspaces and dbspaces with an optimal page
size. New tables are automatically fragmented in
round-robin order in the available dbspaces.

The list of available dbspaces is stored in the
SYSAUTOLOCATE system catalog table.

“SYSAUTOLOCATE” on page 1-13

Introduction xi

Table 3. What's new in IBM Informix Guide to SQL: Reference for Version 12.10.xC2

Overview Reference

Defining separators for fractional seconds in date-time
values

Now you can control which separator to use in the
character-string representation of fractional seconds. To
define a separator between seconds and fractional
seconds, you must include a literal character between the
%S and %F directives when you set the GL_DATETIME or
DBTIME environment variable, or when you call the
TO_CHAR function. By default, a separator is not used
between seconds and fractional seconds. Previously, the
ASCII 46 character, a period (.), was inserted before the
fractional seconds, regardless of whether the formatting
string included an explicit separator for the two fields.

“DBTIME environment variable” on page 3-32

Table 4. What's new in IBM Informix Guide to SQL: Reference for Version 12.10.xC1

Overview Reference

New CREATE TABLE and ALTER FRAGMENT syntax
for rolling window tables

The ROLLING FRAGMENTS and LIMIT TO options of
the Interval Fragment clause can define an upper limit on
the allocated storage size of any rolling window table, or
on the number of fragments in a rolling window
fragmentation strategy. Fragments that reach the limit can
be detached from the table, and either be archived or
destroyed. These specifications define a purging policy
for the rolling window table.

Rolling window tables require a RANGE INTERVAL
storage distribution strategy and a purging policy. When
a new rolling fragment is created and registered in the
sysfragments system catalog table, a record in that table
describes the rolling fragment and its purging policy,
using new encodings that the SYSFRAGMENTS topic
identifies.

“SYSFRAGMENTS” on page 1-31

Enhanced built-in storage management for backup and
restore

IBM Informix Primary Storage Manager, which replaces
IBM Informix Storage Manager (ISM), is easier to set up
and use, even in embedded environments. You use the
Informix Primary Storage Manager onpsm utility to
manage storage for ON-Bar backup and restore
operations, including parallel backups, that use file
devices (disks).

You can use new configuration parameters and
environment variables with the Informix Primary Storage
Manager.

“PSM_ACT_LOG environment variable” on page 3-66

“PSM_CATALOG_PATH environment variable” on page
3-66

“PSM_DBS_POOL environment variable” on page 3-66

“PSM_DEBUG environment variable” on page 3-67

“PSM_DEBUG_LOG environment variable” on page 3-67

“PSM_LOG_POOL environment variable” on page 3-67

Example code conventions
Examples of SQL code occur throughout this publication. Except as noted, the code
is not specific to any single IBM Informix application development tool.

xii IBM Informix Guide to SQL: Reference

If only SQL statements are listed in the example, they are not delimited by
semicolons. For instance, you might see the code in the following example:
CONNECT TO stores_demo
...

DELETE FROM customer
WHERE customer_num = 121

...

COMMIT WORK
DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules for
that product. For example, if you are using an SQL API, you must use EXEC SQL
at the start of each statement and a semicolon (or other appropriate delimiter) at
the end of the statement. If you are using DB–Access, you must delimit multiple
statements with semicolons.

Tip: Ellipsis points in a code example indicate that more code would be added in
a full application, but it is not necessary to show it to describe the concept that is
being discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the documentation for your product.

Additional documentation
Documentation about this release of IBM Informix products is available in various
formats.

You can access Informix technical information such as information centers,
technotes, white papers, and IBM Redbooks® publications online at
http://www.ibm.com/software/data/sw-library/.

Compliance with industry standards
IBM Informix products are compliant with various standards.

IBM Informix SQL-based products are fully compliant with SQL-92 Entry Level
(published as ANSI X3.135-1992), which is identical to ISO 9075:1992. In addition,
many features of IBM Informix database servers comply with the SQL-92
Intermediate and Full Level and X/Open SQL Common Applications Environment
(CAE) standards.

How to read the syntax diagrams
Syntax diagrams use special components to describe the syntax for SQL statements
and commands.

Read the syntax diagrams from left to right and top to bottom, following the path
of the line.

The double right arrowhead and line symbol ►►── indicates the beginning of a
syntax diagram.

The line and single right arrowhead symbol ──► indicates that the syntax is
continued on the next line.

Introduction xiii

http://www.ibm.com/software/data/sw-library/

The right arrowhead and line symbol ►── indicates that the syntax is continued
from the previous line.

The line, right arrowhead, and left arrowhead symbol ──►◄ symbol indicates the
end of a syntax diagram.

Syntax fragments start with the pipe and line symbol |── and end with the ──|
line and pipe symbol.

Required items appear on the horizontal line (the main path).

►► required_item ►◄

Optional items appear below the main path.

►► required_item
optional_item

►◄

If you can choose from two or more items, they appear in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

►► required_item required_choice1
required_choice2

►◄

If choosing one of the items is optional, the entire stack appears below the main
path.

►► required_item
optional_choice1
optional_choice2

►◄

If one of the items is the default, it will appear above the main path, and the
remaining choices will be shown below.

►► required_item
default_choice

optional_choice
optional_choice

►◄

An arrow returning to the left, above the main line, indicates an item that can be
repeated. In this case, repeated items must be separated by one or more blanks.

►► required_item ▼ repeatable_item ►◄

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

xiv IBM Informix Guide to SQL: Reference

►► required_item ▼

,

repeatable_item ►◄

A repeat arrow above a stack indicates that you can make more than one choice
from the stacked items or repeat a single choice.

SQL keywords appear in uppercase (for example, FROM). They must be spelled
exactly as shown. Variables appear in lowercase (for example, column-name). They
represent user-supplied names or values in the syntax.

If punctuation marks, parentheses, arithmetic operators, or other such symbols are
shown, you must enter them as part of the syntax.

Sometimes a single variable represents a syntax segment. For example, in the
following diagram, the variable parameter-block represents the syntax segment
that is labeled parameter-block:

►► required_item parameter-block ►◄

parameter-block:

parameter1
parameter2 parameter3

parameter4

How to provide documentation feedback
You are encouraged to send your comments about IBM Informix product
documentation.

Add comments about documentation to topics directly in IBM Knowledge Center
and read comments that were added by other users. Share information about the
product documentation, participate in discussions with other users, rate topics, and
more!

Feedback is monitored by the team that maintains the user documentation. The
comments are reserved for reporting errors and omissions in the documentation.
For immediate help with a technical problem, contact IBM Software Support at
http://www.ibm.com/planetwide/.

We appreciate your suggestions.

Introduction xv

http://www.ibm.com/planetwide/

xvi IBM Informix Guide to SQL: Reference

Chapter 1. System catalog tables

The system catalog consists of tables and views that describe the structure of the
database. Sometimes called the data dictionary, these table objects contain
everything that the database knows about itself. Each system catalog table contains
information about specific elements in the database. Each database has its own
system catalog.

These topics provide information about the structure, content, and use of the
system catalog tables. It also contains information about the Information Schema,
which provides information about the tables, views, and columns in all the
databases of the IBM Informix instance to which your user session is currently
connected.

Objects That the System Catalog Tables Track
The system catalog tables maintain information about the database, including the
following categories of database objects:
v Tables, views, synonyms, and table fragments
v Columns, constraints, indexes, and index fragments
v Distribution statistics for tables, indexes, and fragments
v Triggers on tables, and INSTEAD OF triggers on views
v Procedures, functions, routines, and associated messages
v Authorized users, roles, and privileges to access database objects
v LBAC security policies, components, labels, and exemptions
v Data types and casts
v User-defined aggregate functions
v Access methods and operator classes
v Sequence objects
v Storage spaces for BLOB and CLOB objects
v External optimizer directives
v Inheritance relationships
v XA data sources and XA data source types
v Trusted user and surrogate user information

Using the system catalog
IBM Informix automatically generate the system catalog tables when you create a
database. You can query the system catalog tables as you would query any other
table in the database. The system catalog tables for a newly created database are
located in a common area of the disk called a dbspace. Every database has its own
system catalog tables. All tables and views in the system catalog have the prefix
sys (for example, the systables system catalog table).

Not all tables with the prefix sys are true system catalog tables. For example, the
syscdr database supports the Enterprise Replication feature. Non-catalog tables,
however, have a tabid >= 100. System catalog tables all have a tabid < 100. See

© Copyright IBM Corp. 1996, 2015 1-1

later in this section and “SYSTABLES” on page 1-52 for more information about
tabid numbers that the database server assigns to tables, views, synonyms, and (in
IBM Informix) sequence objects.

Tip: Do not confuse the system catalog tables of a database with the tables in the
sysmaster, sysutils, syscdr, or (for IBM Informix) the sysadmin and sysuser
databases. The names of tables in those databases also have the sys prefix, but they
contain information about an entire database server, which might manage multiple
databases. Information in the sysadmin, sysmaster, sysutils, syscdr, and sysuser
tables is primarily useful for database server administrators (DBSAs). See also the
IBM Informix Administrator's Guide and IBM Informix Administrator's Reference.

The database server accesses the system catalog constantly. Each time an SQL
statement is processed, the database server accesses the system catalog to
determine system privileges, add or verify table or column names, and so on.

For example, the following CREATE SCHEMA block adds the customer table, with
its indexes and privileges, to the stores_demo database. This block also adds a
view, california, which restricts the data of the customer table to only the first and
last names of the customer, the company name, and the telephone number for all
customers who reside in California.
CREATE SCHEMA AUTHORIZATION maryl
CREATE TABLE customer (customer_num SERIAL(101), fname CHAR(15),

lname CHAR(15), company CHAR(20), address1 CHAR(20), address2 CHAR(20),
city CHAR(15), state CHAR(2), zipcode CHAR(5), phone CHAR(18))

GRANT ALTER, ALL ON customer TO cathl WITH GRANT OPTION AS maryl
GRANT SELECT ON customer TO public
GRANT UPDATE (fname, lname, phone) ON customer TO nhowe
CREATE VIEW california AS

SELECT fname, lname, company, phone FROM customer WHERE state = ’CA’
CREATE UNIQUE INDEX c_num_ix ON customer (customer_num)
CREATE INDEX state_ix ON customer (state)

To process this CREATE SCHEMA block, the database server first accesses the
system catalog to verify the following information:
v The new table and view names do not already exist in the database. (If the

database is ANSI-compliant, the database server verifies that the new names do
not already exist for the specified owners.)

v The user has permission to create tables and grant user privileges.
v The column names in the CREATE VIEW and CREATE INDEX statements exist

in the customer table.

In addition to verifying this information and creating two new tables, the database
server adds new rows to the following system catalog tables:
v systables

v syscolumns

v sysviews

v systabauth

v syscolauth

v sysindexes

v sysindices

1-2 IBM Informix Guide to SQL: Reference

Rows added to the systables system catalog table

The following two new rows of information are added to the systables system
catalog table after the CREATE SCHEMA block is run.

Column name First row Second row

tabname customer california

owner maryl maryl

partnum 16778361 0

tabid 101 102

rowsize 134 134

ncols 10 4

nindexes 2 0

nrows 0 0

created 01/26/2007 01/26/2007

version 1 0

tabtype T V

locklevel P B

npused 0 0

fextsize 16 0

nextsize 16 0

flags 0 0

site

dbname

Each table recorded in the systables system catalog table is assigned a tabid, a
system-assigned sequential number that uniquely identifies each table in the
database. The system catalog tables receive 2-digit tabid numbers, and the
user-created tables receive sequential tabid numbers that begin with 100.

Rows added to the syscolumns system catalog table

The CREATE SCHEMA block adds 14 rows to the syscolumns system catalog
table. These rows correspond to the columns in the table customer and the view
california, as the following example shows.

colname tabid colno coltype collength colmin colmax

customer_num 101 1 262 4

fname 101 2 0 15

lname 101 3 0 15

company 101 4 0 20

address1 101 5 0 20

address2 101 6 0 20

city 101 7 0 15

state 101 8 0 2

zipcode 101 9 0 5

phone 101 10 0 18

Chapter 1. System catalog tables 1-3

colname tabid colno coltype collength colmin colmax

fname 102 1 0 15

lname 102 2 0 15

company 102 3 0 20

phone 102 4 0 18

In the syscolumns table, each column within a table is assigned a sequential
column number, colno, that uniquely identifies the column within its table. In the
colno column, the fname column of the customer table is assigned the value 2 and
the fname column of the view california is assigned the value 1.

The colmin and colmax columns are empty. These columns contain values when a
column is the first key (or the only key) in an index, has no NULL or duplicate
values, and the UPDATE STATISTICS statement has been run.

Rows added to the sysviews system catalog table

The database server also adds rows to the sysviews system catalog table, whose
viewtext column contains each line of the CREATE VIEW statement that defines
the view. In that column, the x0 that precedes the column names in the statement
(for example, x0.fname) operates as an alias that distinguishes among the same
columns that are used in a self-join.

Rows added to the systabauth system catalog table

The CREATE SCHEMA block also adds rows to the systabauth system catalog
table. These rows correspond to the user privileges granted on customer and
california tables, as the following example shows.

grantor grantee tabid tabauth

maryl public 101 su-idx--

maryl cathl 101 SU-IDXAR

maryl nhowe 101 --*-----

maryl 102 SU-ID---

The tabauth column specifies the table-level privileges granted to users on the
customer and california tables. This column uses an 8-byte pattern, such as s
(Select), u (Update), * (column-level privilege), i (Insert), d (Delete), x (Index), a
(Alter), and r (References), to identify the type of privilege. In this example, the
user nhowe has column-level privileges on the customer table. A hyphen (-)
means the user has not been granted the privilege whose position the hyphen
occupies within the tabauth value.

If the tabauth privilege code is in uppercase (for example, S for Select), the user
has this privilege and can also grant it to others; but if the privilege code is
lowercase (for example, s for Select), the user cannot grant it to others.

1-4 IBM Informix Guide to SQL: Reference

Rows added to the syscolauth system catalog table

In addition, three rows are added to the syscolauth system catalog table. These
rows correspond to the user privileges that are granted on specific columns in the
customer, table as the following example shows.

grantor grantee tabid colno colauth

maryl nhowe 101 2 -u-

maryl nhowe 101 3 -u-

maryl nhowe 101 10 -u-

The colauth column specifies the column-level privileges that are granted on the
customer table. This column uses a 3-byte, pattern such as s (Select), u (Update),
and r (References), to identify the type of privilege. For example, the user nhowe
has Update privileges on the second column (because the colno value is 2) of the
customer table (indicated by tabid value of 101).

Rows added to the sysindexes or the sysindices table

The CREATE SCHEMA block adds two rows to the sysindexes system catalog
table (the sysindices table for IBM Informix). These rows correspond to the indexes
created on the customer table, as the following example shows.

idxname c_num_ix state_ix

owner maryl maryl

tabid 101 101

idxtype U D

clustered

part1 1 8

part2 0 0

part3 0 0

part4 0 0

part5 0 0

part6 0 0

part7 0 0

part8 0 0

part9 0 0

part10 0 0

part11 0 0

part12 0 0

part13 0 0

part14 0 0

part15 0 0

part16 0 0

levels

leaves

Chapter 1. System catalog tables 1-5

idxname c_num_ix state_ix

nunique

clust

idxflags

In this table, the idxtype column identifies whether the created index requires
unique values (U) or accepts duplicate values (D). For example, the c_num_ix index
on the customer.customer_num column is unique.

Accessing the system catalog
Normal user access to the system catalog is read-only. Users with Connect or
Resource privileges cannot alter the catalog, but they can access data in the system
catalog tables on a read-only basis using standard SELECT statements.

For example, the following SELECT statement displays all the table names and
corresponding tabid codes of user-created tables in the database:
SELECT tabname, tabid FROM systables WHERE tabid > 99

When you use DB-Access, only the tables that you created are displayed. To
display the system catalog tables, enter the following statement:
SELECT tabname, tabid FROM systables WHERE tabid < 100

You can use the SUBSTR or the SUBSTRING function to select only part of a
source string. To display the list of tables in columns, enter the following
statement:
SELECT SUBSTR(tabname, 1, 18), tabid FROM systables

Although user informix can modify most system catalog tables, you should not
update, delete, or insert any rows in them. Modifying the content of system catalog
tables can affect the integrity of the database. However, you can safely use the
ALTER TABLE statement to modify the size of the next extent of system catalog
tables. Changing the next extent size does not affect extents that already exist.

For certain catalog tables of IBM Informix, however, it is valid to add entries to the
system catalog tables. For instance, in the case of the syserrors system catalog table
and the systracemsgs system catalog table, a DataBlade® module developer can
directly insert entries that are in these system catalog tables.

Update system catalog data
If you use the UPDATE STATISTICS statement to update the system catalog before
executing a query or other data manipulation language (DML) statement, you can
ensure that the information available to the query execution optimizer is current.

In IBM Informix, the optimizer determines the most efficient strategy for executing
SQL queries and other DML operations. The optimizer allows you to query the
database without requiring you to consider fully which tables to search first in a
join or which indexes to use. The optimizer uses information from the system
catalog to determine the best query strategy.

When you delete or modify a table, the database server does not automatically
update the related statistical data in the system catalog. For example, if you delete

1-6 IBM Informix Guide to SQL: Reference

one or more rows in a table with the DELETE statement, the nrows column in the
systables system catalog table, which holds the number of rows for that table, is
not updated automatically.

The UPDATE STATISTICS statement causes the database server to recalculate data
in the systables, sysdistrib, syscolumns, and sysindices system catalog tables, and
in the sysindexes view. (For operations on fragmented tables where the
STATLEVEL attribute is set to FRAGMENT, it also updates the sysfragdist and
sysfragments system catalog tables.) After you run UPDATE STATISTICS, the
systables system catalog table holds the correct value in the nrows column. If you
specify MEDIUM or HIGH mode when you run UPDATE STATISTICS, the
sysdistrib and (for fragment-level statistics) the sysfragdist system catalog tables
hold the updated column-distribution data.

Whenever you modify a data table extensively, use the UPDATE STATISTICS
statement to update data in the system catalog. For more information about the
UPDATE STATISTICS statement, see the IBM Informix Guide to SQL: Syntax.

Structure of the System Catalog
The following system catalog tables describe the database objects in a database.

System Catalog Tables

“SYSAGGREGATES” on page 1-9

“SYSAMS” on page 1-10

“SYSATTRTYPES” on page 1-12

“SYSAUTOLOCATE” on page 1-13

“SYSBLOBS” on page 1-14

“SYSCASTS” on page 1-14

“SYSCHECKS” on page 1-15

“SYSCHECKUDRDEP” on page 1-15

“SYSCOLATTRIBS” on page 1-16

“SYSCOLAUTH” on page 1-16

“SYSCOLDEPEND” on page 1-17

“SYSCOLUMNS” on page 1-17

“SYSCONSTRAINTS” on page 1-22

“SYSDEFAULTS” on page 1-22

“SYSDEPEND” on page 1-23

“SYSDIRECTIVES” on page 1-24

“SYSDISTRIB” on page 1-24

“SYSDOMAINS” on page 1-26

“SYSERRORS” on page 1-26

“SYSEXTCOLS” on page 1-27

“SYSEXTDFILES” on page 1-27

“SYSEXTERNAL” on page 1-28

“SYSFRAGAUTH” on page 1-28

“SYSFRAGDIST” on page 1-29

Chapter 1. System catalog tables 1-7

System Catalog Tables

“SYSFRAGMENTS” on page 1-31

“SYSINDEXES” on page 1-33

“SYSINDICES” on page 1-35

“SYSINHERITS” on page 1-37

“SYSLANGAUTH” on page 1-37

“SYSLOGMAP” on page 1-38

“SYSOBJSTATE” on page 1-38

“SYSOPCLASSES” on page 1-39

“SYSPROCAUTH” on page 1-40

“SYSPROCBODY” on page 1-40

“SYSPROCCOLUMNS” on page 1-41

“SYSPROCEDURES” on page 1-41

“SYSPROCPLAN” on page 1-44

“SYSREFERENCES” on page 1-44

“SYSROLEAUTH” on page 1-45

“SYSROUTINELANGS” on page 1-45

“SYSSECLABELAUTH” on page 1-46

“SYSSECLABELCOMPONENTS” on page 1-46

“SYSSECLABELCOMPONENTELEMENTS” on page 1-46

“SYSSECLABELNAMES” on page 1-47

“SYSSECLABELS” on page 1-47

“SYSSECPOLICIES” on page 1-47

“SYSSECPOLICYCOMPONENTS” on page 1-48

“SYSSECPOLICYEXEMPTIONS” on page 1-48

“SYSSEQUENCES” on page 1-49

“SYSSURROGATEAUTH” on page 1-49

“SYSSYNONYMS” on page 1-50

“SYSSYNTABLE” on page 1-50

“SYSTABAMDATA” on page 1-51

“SYSTABAUTH” on page 1-51

“SYSTABLES” on page 1-52

“SYSTRACECLASSES” on page 1-55

“SYSTRACEMSGS” on page 1-56

“SYSTRIGBODY” on page 1-56

“SYSTRIGGERS” on page 1-57

“SYSUSERS” on page 1-58

“SYSVIEWS” on page 1-58

“SYSVIOLATIONS” on page 1-59

“SYSXADATASOURCES” on page 1-59

“SYSXASOURCETYPES” on page 1-60

“SYSXTDDESC” on page 1-60

1-8 IBM Informix Guide to SQL: Reference

System Catalog Tables

“SYSXTDTYPEAUTH” on page 1-60

“SYSXTDTYPES” on page 1-61

In case-sensitive databases that use the default database locale (U. S. English, ISO
8859-1 code set), character columns in these tables are CHAR and VARCHAR data
types. For all other locales, character columns are the NLS data types, NCHAR and
NVARCHAR. For information about differences in the collation order of character
data types, see the IBM Informix GLS User's Guide. See also theChapter 2, “Data
types,” on page 2-1 chapter of this publication.

Character columns in databases that are not case-sensitive

In databases that are created with the NLSCASE INSENSITIVE keywords and that
use the default database locale (U. S. English, ISO 8859-1 code set), character
columns in system catalog tables are CHAR and VARCHAR data types, which
support case-sensitive queries. For all other database locales, character column data
types in the system catalog tables are the NLS data types, NCHAR and
NVARCHAR, but with the following specific exceptions:

Table_name.Column_name Data type

sysams.am_sptype CHAR(3)

syscolauth.colauth CHAR(3)

sysdefaults.class CHAR(1)

sysfragauth.fragauth CHAR(6)

sysinherits.class CHAR(1)

syslangauth.langauth CHAR(1)

sysprocauth.procauth CHAR(1)

sysprocedures.mode CHAR(1)

systabauth.tabauth CHAR(9)

systriggers.event CHAR(1)

sysxtdtypeauth.auth CHAR(2)

In each of these columns, case-sensitive encoding can record information that
utilities of the database server require in queries on those system catalog tables. In
a database that is case-insensitive, queries might return incorrect results from data
stored in NCHAR or NVARCHAR columns, if different attributes of database
objects are encoded as different cases of the same letter. To avoid the loss of
information, CHAR data types are used for the system catalog columns listed
above.

SYSAGGREGATES
The sysaggregates system catalog table records user-defined aggregates (UDAs).
The sysaggregates table has the following columns.

Table 1-1. SYSAGGREGATES table column descriptions

Column Type Explanation

name VARCHAR(128) Name of the aggregate

Chapter 1. System catalog tables 1-9

Table 1-1. SYSAGGREGATES table column descriptions (continued)

Column Type Explanation

owner CHAR(32) Name of the owner of the
aggregate

aggid SERIAL Unique code identifying the
aggregate

init_func VARCHAR(128) Name of initialization UDR

iter_func VARCHAR(128) Name of iterator UDR

combine_func VARCHAR(128) Name of combine UDR

final_func VARCHAR(128) Name of finalization UDR

handlesnulls BOOLEAN NULL-handling indicator:

v t = handles NULLs

v f = does not handle
NULLs

Each user-defined aggregate has one entry in sysaggregates that is uniquely
identified by its identifying code (the aggid value). Only user-defined aggregates
(aggregates that are not built in) have entries in sysaggregates.

Both a simple index on the aggid column and a composite index on the name and
owner columns require unique values.

SYSAMS
The sysams system catalog table contains information that is required for using
built-in access methods and those created by the CREATE ACCESS_METHOD
statement of SQL.

The sysams table has the following columns.

Table 1-2. SYSAMS table column descriptions

Column Type Explanation

am_name VARCHAR(128, 0) Name of the access method

am_owner CHAR(32) Name of the owner of the access method

am_id INTEGER Unique identifying code for an access method

This corresponds to the am_id columns in the systables,
sysindices, and sysopclasses tables.

am_type CHAR(1) Type of access method: P = Primary; S = Secondary

am_sptype CHAR(3) Types of spaces where the access method can exist:

v A means the access method supports extspaces and sbspaces. If
the access method is built in, such as a B-tree, it also supports
dbspaces.

v D or d means the access method supports dbspaces only.

v DS means the access method supports dbspaces and sbspaces.

v S or s means the access method supports sbspaces only.

v X or x means the access method supports extspaces only.

v sx means the access method supports sbspaces and extspaces.

1-10 IBM Informix Guide to SQL: Reference

Table 1-2. SYSAMS table column descriptions (continued)

Column Type Explanation

am_defopclass INTEGER Unique identifying code for default-operator class

Value is the opclassid from the entry for this operator class in
the sysopclasses table.

am_keyscan INTEGER Whether a secondary access method supports a key scan

(An access method supports a key scan if it can return a key and
a rowid from a call to the am_getnext function.) (0 = FALSE;
Non-zero = TRUE)

am_unique INTEGER Whether a secondary access method can support unique keys (0
= FALSE; Non-zero = TRUE)

am_cluster INTEGER Whether a primary access method supports clustering (0 =
FALSE; Non-zero = TRUE)

am_rowids INTEGER Whether a primary access method supports rowids (0 = FALSE;
Non-zero = TRUE)

am_readwrite INTEGER Whether a primary access method can both read and write (0 =
access method is read-only; Non-zero = access method is
read/write)

am_parallel INTEGER Whether an access method supports parallel execution (0 =
FALSE; Non-zero = TRUE)

am_costfactor SMALLFLOAT The value to be multiplied by the cost of a scan to normalize it
to costing done for built-in access methods

The scan cost is the output of the am_scancost function.

am_create INTEGER The routine specified for the AM_CREATE purpose for this
access method

Value = procid for the routine in the sysprocedures table.

am_drop INTEGER The routine specified for the AM_DROP purpose function for
this access method

am_open INTEGER The routine specified for the AM_OPEN purpose function for
this access method

am_close INTEGER The routine specified for the AM_CLOSE purpose function for
this access method

am_insert INTEGER The routine specified for the AM_INSERT purpose function for
this access method

am_delete INTEGER The routine specified for the AM_DELETE purpose function for
this access method

am_update INTEGER The routine specified for the AM_UPDATE purpose function for
this access method

am_stats INTEGER The routine specified for the AM_STATS purpose function for
this access method

am_scancost INTEGER The routine specified for the AM_SCANCOST purpose function
for this access method

am_check INTEGER The routine specified for the AM_CHECK purpose function for
this access method

am_beginscan INTEGER The routine specified for the AM_BEGINSCAN purpose function
for this access method

am_endscan INTEGER The routine specified for the AM_ENDSCAN purpose function
for this access method

Chapter 1. System catalog tables 1-11

Table 1-2. SYSAMS table column descriptions (continued)

Column Type Explanation

am_rescan INTEGER The routine specified for the AM_RESCAN purpose function for
this access method

am_getnext INTEGER The routine specified for the AM_GETNEXT purpose function
for this access method

am_getbyid INTEGER The routine specified for the AM_GETBYID purpose function for
this access method

am_build INTEGER The routine specified for the AM_BUILD purpose function for
this access method

am_init INTEGER The routine specified for the AM_INIT purpose function for this
access method

am_truncate INTEGER The routine specified for the AM_TRUNCATE purpose function
for this access method

am_expr_pushdown INTEGER Whether parameter descriptors are supported (0 = FALSE;
Non-zero = TRUE)

For each of the columns that contain a routine for a purpose function, the value is
the sysprocedures.procid value for the corresponding routine.

A composite index on the am_name and am_owner columns in this table allows
only unique values. The am_id column has a unique index.

For information about access method functions, see the documentation of your
access method.

SYSATTRTYPES
The sysattrtypes system catalog table contains information about members of a
complex data type. Each row of sysattrtypes contains information about elements
of a collection data type or fields of a row data type.

The sysattrtypes table has the following columns.

Table 1-3. SYSATTRTYPES table column descriptions

Column Type Explanation

extended_id INTEGER Identifying code of an extended data type

Value is the same as in the sysxtdtypes table
(“SYSXTDTYPES” on page 1-61).

seqno SMALLINT Identifying code of an entry having extended_id type

levelno SMALLINT Position of member in collection hierarchy

parent_no SMALLINT Value in the seqno column of the complex data type
that contains this member

fieldname VARCHAR(128) Name of the field in a row type

Null for other complex data types

fieldno SMALLINT Field number sequentially assigned by system (from
left to right within each row type)

1-12 IBM Informix Guide to SQL: Reference

Table 1-3. SYSATTRTYPES table column descriptions (continued)

Column Type Explanation

type SMALLINT Code for the data type

See the description of syscolumns.coltype (page
“SYSCOLUMNS” on page 1-17).

length SMALLINT Length (in bytes) of the member

xtd_type_id INTEGER Code identifying this data type

See the description of sysxtdtypes.extended_id
(“SYSXTDTYPES” on page 1-61).

Two indexes on the extended_id column and the xtd_type_id column allow
duplicate values. A composite index on the extended_id and seqno columns
allows only unique values.

SYSAUTOLOCATE
The sysautolocate system catalog table indicates which dbspaces are available for
automatic table fragmentation.

Table 1-4. SYSAUTOLOCATE table column descriptions

Column Type Explanation

dbsnum INTEGER The ID number of the
dbspace. 0 indicates multiple
dbspaces.

dbsname VARCHAR(128,0) The name of the dbspace. An
asterisk (*) indicates multiple
dbspaces.

pagesize SMALLINT The page size of the dbspace.
0 indicates multiple page
sizes.

flags INTEGER v 1 = On. The dbspace is
available for automatic
table fragmentation.

v 2 = Off. The dbspace is not
available for automatic
table fragmentation.

You add or remove dbspace from the list of available dbspace by running the
task() or admin() SQL administration API function with one of the autolocate
database arguments.

The sysautolocate system catalog table does not necessarily list every dbspace. For
example, if all dbspaces are available for automatic table fragmentation, the table
contains one row:
dbsnum dbsname pagesize flags
0 * 0 1

If all but one dbspace is available, the table contains two rows, for example:
dbsnum dbsname pagesize flags
0 * 0 1
12 dbs12 8 2

Chapter 1. System catalog tables 1-13

If all but two dbspaces are unavailable, the table contains three rows, for example:
dbsnum dbsname pagesize flags
0 * 0 2
12 dbs12 8 1
13 dbs13 4 1

Related information:
autolocate database argument: Specify dbspaces for automatic location and
fragmentation (SQL administration API)

SYSBLOBS
The sysblobs system catalog table specifies the storage location of BYTE and TEXT
column values. Its name is based on a legacy term for BYTE and TEXT columns,
blobs (also known as simple large objects), and does not refer to the BLOB data type
of IBM Informix. The sysblobs table contains one row for each BYTE or TEXT
column, and has the following columns.

Table 1-5. SYSBLOBS table column descriptions

Column Type Explanation

spacename VARCHAR(128) Name of partition, dbspace, or family

type CHAR(1) Code identifying the type of storage media: M =
Magnetic

tabid INTEGER Code identifying the table

colno SMALLINT Column number within its table

A composite index on tabid and colno allows only unique values.

For information about the location and size of chunks of blobspaces, dbspaces, and
sbspaces for TEXT, BYTE, BLOB, and CLOB columns, see the IBM Informix
Administrator's Guide and the IBM Informix Administrator's Reference.

SYSCASTS
The syscasts system catalog table describes the casts in the database. It contains
one row for each built-in cast, each implicit cast, and each explicit cast that a user
defines. The syscasts table has the following columns.

Table 1-6. SYSCASTS table column descriptions

Column Type Explanation

owner CHAR(32) Owner of cast (user informix for built-in casts
and user name for implicit and explicit casts)

argument_type SMALLINT Source data type on which the cast operates

argument_xid INTEGER Code for the source data type specified in the
argument_type column

result_type SMALLINT Code for the data type returned by the cast

result_xid INTEGER Data type code of the data type named in the
result_type column

routine_name VARCHAR(128) Function or procedure implementing the cast

routine_owner CHAR(32) Name of owner of the function or procedure
specified in the routine_name column

1-14 IBM Informix Guide to SQL: Reference

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_122.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_122.htm

Table 1-6. SYSCASTS table column descriptions (continued)

Column Type Explanation

class CHAR(1) Type of cast: E = Explicit cast I = Implicit cast S =
Built-in cast

If routine_name and routine_owner have NULL values, this indicates that the cast
is defined without a routine. This can occur if both of the data types specified in
the argument_type and result_type columns have the same length and alignment,
and are passed by reference, or passed by value.

A composite index on columns argument_type, argument_xid, result_type, and
result_xid allows only unique values. A composite index on columns result_type
and result_xid allows duplicate values.

SYSCHECKS
The syschecks system catalog table describes each check constraint defined in the
database. Because the syschecks table stores both the ASCII text and a binary
encoded form of the check constraint, it contains multiple rows for each check
constraint. The syschecks table has the following columns.

Table 1-7. SYSCHECKS table column descriptions

Column Type Explanation

constrid INTEGER Unique code identifying the constraint

type CHAR(1) Form in which the check constraint is stored: B =
Binary encoded s = Select T = Text

seqno SMALLINT Line number of the check constraint

checktext CHAR(32) Text of the check constraint

The text in the checktext column associated with B type in the type column is in
computer-readable format. To view the text associated with a particular check
constraint, use the following query with the appropriate constrid code:
SELECT * FROM syschecks WHERE constrid=10 AND type=’T’

Each check constraint described in the syschecks table also has its own row in the
sysconstraints table.

A composite index on the constrid, type, and seqno columns allows only unique
values.

SYSCHECKUDRDEP
The syscheckudrdep system catalog table describes each check constraint that is
referenced by a user-defined routine (UDR) in the database. The syscheckudrdep
table has the following columns.

Table 1-8. SYSCHECKUDRDEP table column descriptions

Column Type Explanation

udr_id INTEGER Unique code identifying the UDR

constraint_id INTEGER Unique code identifying the check constraint

Chapter 1. System catalog tables 1-15

Each check constraint described in the syscheckudrdep table also has its own row
in the sysconstraints system catalog table, where the constrid column has the same
value as the constraint_id column of syscheckudrdep.

A composite index on the udr_id and constraint_id columns requires that
combinations of these values be unique.

SYSCOLATTRIBS
The syscolattribs system catalog table describes the characteristics of smart large
objects, namely CLOB and BLOB data types.

It contains one row for each sbspace referenced in the PUT clause of the CREATE
TABLE statement or of the ALTER TABLE statement.

Table 1-9. SYSCOLATTRIBS table column descriptions

Column Type Explanation

tabid INTEGER Code uniquely identifying the table

colno SMALLINT Number of the column that contains the smart large object

extentsize INTEGER Pages in smart-large-object extent, expressed in KB

flags INTEGER Integer representation of the combination (by addition) of hexadecimal
values of the following parameters:

v LO_NOLOG (0x00000001 = 1) = The smart large object is not logged.

v LO_LOG (0x00000010 = 2) = Logging of smart large objects conforms to
current log mode of the database.

v LO_KEEP_LASTACCESS_TIME (0x00000100 = 4) = Keeps a record of
when this column was most recently accessed by a user.

v LO_NOKEEP_LASTACCESS_TIME (0x00001000 = 8) = No record is kept
of when this column was most recently accessed by a user.

v HI_INTEG (0x00010000= 16) = Sbspace data pages have headers and
footers to detect incomplete writes and data corruption.

v MODERATE_INTEG (0x00100000= 32) = Data pages have headers but
no footers.

flags1 INTEGER Reserved for future use

sbspace VARCHAR(128) Name of the sbspace

A composite index on the tabid, colno, and sbspace columns allows only unique
combinations of these values.

SYSCOLAUTH
The syscolauth system catalog table describes each set of discretionary access
privileges granted on a column. It contains one row for each set of column-level
privileges that are currently granted to a user, to a role, or to the PUBLIC group on
a column in the database. The syscolauth table has the following columns.

Column Type Explanation

grantor VARCHAR(32) Authorization identifier of the grantor

grantee VARCHAR(32) Authorization identifier of the grantee

tabid INTEGER Code uniquely identifying the table

colno SMALLINT Column number within the table

1-16 IBM Informix Guide to SQL: Reference

Column Type Explanation

colauth CHAR(3) 3-byte pattern specifying column privileges: s or S =
Select, u or U = Update, r or R = References

If the colauth privilege code is uppercase (for example, S for Select), a user who
has this privilege can also grant it to others. If the colauth privilege code is
lowercase (for example, s for Select), the user who has this privilege cannot grant
it to others. A hyphen (-) indicates the absence of the privilege corresponding to
that position within the colauth pattern.

A composite index on the tabid, grantor, grantee, and colno columns allows only
unique values. A composite index on the tabid and grantee columns allows
duplicate values.

SYSCOLDEPEND
The syscoldepend system catalog table tracks the table columns specified in check
constraints and in NOT NULL constraints. Because a check constraint can involve
more than one column in a table, the syscoldepend table can contain multiple
rows for each check constraint; one row is created for each column involved in the
constraint. The syscoldepend table has the following columns.

Column Type Explanation

constrid INTEGER Code uniquely identifying the constraint

tabid INTEGER Code uniquely identifying the table

colno SMALLINT Column number within the table

A composite index on the constrid, tabid, and colno columns allows only unique
values. A composite index on the tabid and colno columns allows duplicate
values.

See also the syscheckudrdep system catalog table in “SYSCHECKUDRDEP” on
page 1-15, which lists every check constraint that is referenced by a user-defined
routine.

See also the sysreferences table in “SYSREFERENCES” on page 1-44, which
describes dependencies of referential constraints.

SYSCOLUMNS
The syscolumns system catalog table describes each column in the database.

One row exists for each column that is defined in a table or view.

Table 1-10. The SYSCOLUMNS table

Column Type Explanation

colname VARCHAR(128) Column name

tabid INTEGER Identifying code of table containing the column

colno SMALLINT Column number

The system sequentially assigns this (from left to right
within each table).

Chapter 1. System catalog tables 1-17

Table 1-10. The SYSCOLUMNS table (continued)

Column Type Explanation

coltype SMALLINT Code indicating the data type of the column:

0 = CHAR

1 = SMALLINT

2 = INTEGER

3 = FLOAT

4 = SMALLFLOAT

5 = DECIMAL

6 = SERIAL 1

7 = DATE

8 = MONEY

9 = NULL

10 = DATETIME

11 = BYTE

12 = TEXT

13 = VARCHAR

14 = INTERVAL

15 = NCHAR

16 = NVARCHAR

17 = INT8

18 = SERIAL8 1

19 = SET

20 = MULTISET

21 = LIST

22 = ROW (unnamed)

23 = COLLECTION

40 = LVARCHAR fixed-length opaque types 2

41 = BLOB, BOOLEAN, CLOB variable-length opaque
types 2

43 = LVARCHAR (client-side only)

45 = BOOLEAN

52 = BIGINT

53 = BIGSERIAL 1

2061 = IDSSECURITYLABEL 2, 3

4118 = ROW (named)

collength Any of the following data types:

v Integer-based

v Varying-length character

v Time

v Fixed-point

v Simple-large-object

v IDSSECURITYLABEL

The value depends on the data type of the column. For
some data types, the value is the column length (in
bytes). See Storing Column Length for more information.

colmin INTEGER Minimum column length (in bytes)

colmax INTEGER Maximum column length (in bytes)

extended_id INTEGER Data type code, from the sysxtdtypes table, of the data
type specified in the coltype column

1-18 IBM Informix Guide to SQL: Reference

Table 1-10. The SYSCOLUMNS table (continued)

Column Type Explanation

seclabelid INTEGER The label ID of the security label associated with the
column if it is a protected column. NULL otherwise.

colattr SMALLINT
HIDDEN

1 - Hidden column

ROWVER
2 - Row version column

ROW_CHKSUM
4 - Row key column

ER_CHECKVER
8 - ER row version column

UPGRD1_COL
16 - ER auto primary key column

UPGRD2_COL
32 - ER auto primary key column

UPGRD3_COL
64 - ER auto primary key column

PK_NOTNULL
128 - NOT NULL by PRIMARY KEY

Note:
1 In DB-Access, an offset value of 256 is always added to these coltype codes
because DB-Access sets SERIAL, SERIAL8, and BIGSERIAL columns to NOT
NULL.
2 The built-in opaque data types do not have a unique coltype value. They are
distinguished by the extended_id column in the “SYSXTDTYPES” on page 1-61
system catalog table.
3 DISTINCT OF VARCHAR(128).

A composite index on tabid and colno allows only unique values.

The coltype codes can be incremented by bitmaps showing the following features
of the column.

Bit Value Significance When Bit Is Set

0x0100 NULL values are not allowed

0x0200 Value is from a host variable

0x0400 Float-to-decimal for networked database
server

0x0800 DISTINCT data type

0x1000 Named ROW type

0x2000 DISTINCT type from LVARCHAR base type

0x4000 DISTINCT type from BOOLEAN base type

0x8000 Collection is processed on client system

Chapter 1. System catalog tables 1-19

For example, the coltype value 4118 for named row types is the decimal
representation of the hexadecimal value 0x1016, which is the same as the
hexadecimal coltype value for an unnamed row type (0x016), with the
named-row-type bit set. The file $INFORMIXDIR/incl/esql/sqltypes.h contains
additional information about syscolumns.coltype codes.

The following table lists the coltype values for the built-in opaque data types:

NOT NULL constraints

Similarly, the coltype value is incremented by 256 if the column does not allow
NULL values. To determine the data type for such columns, subtract 256 from the
value and evaluate the remainder, based on the possible coltype values. For
example, if the coltype value is 262, subtracting 256 leaves a remainder of 6,
indicating that the column has a SERIAL data type.

Storing the column data type

The database server stores the coltype value as bitmap, as listed in
“SYSCOLUMNS” on page 1-17.

Storing column length
The collength column value depends on the data type of the column.

Integer-based data types

A collength value for a BIGINT, BIGSERIAL, DATE, INTEGER, INT8, SERIAL,
SERIAL8, or SMALLINT column is machine-independent. The database server uses
the following lengths for these integer-based data types of the SQL language.

Integer-based data types Length (in bytes)

SMALLINT 2

DATE, INTEGER, and SERIAL 4

INT8 and SERIAL8 10

BIGINT and BIGSERIAL 8

Varying-length character data types

For IBM Informix columns of the LVARCHAR type, collength has the value of max
from the data type declaration, or 2048 if no maximum was specified.

For VARCHAR or NVARCHAR columns, the max_size and min_space values are
encoded in the collength column using one of these formulas:
v If the collength value is positive:

collength = (min_space * 256) + max_size

v If the collength value is negative:
collength + 65536 = (min_space * 256) + max_size

Time data types

As noted previously, DATE columns have a value of 4 in the collength column.

1-20 IBM Informix Guide to SQL: Reference

For columns of type DATETIME or INTERVAL, collength is determined using the
following formula:
(length * 256) + (first_qualifier * 16) + last_qualifier

The length is the physical length of the DATETIME or INTERVAL field, and
first_qualifier and last_qualifier have values that the following table shows.

Field qualifier Value Field qualifier Value

YEAR 0 FRACTION(1) 11

MONTH 2 FRACTION(2) 12

DAY 4 FRACTION(3) 13

HOUR 6 FRACTION(4) 14

MINUTE 8 FRACTION(5) 15

SECOND 10

For example, if a DATETIME YEAR TO MINUTE column has a length of 12 (such
as YYYY:DD:MO:HH:MI), a first_qualifier value of 0 (for YEAR), and a last_qualifier
value of 8 (for MINUTE), then the collength value is 3080 (from (256 * 12) + (0
* 16) + 8).

Fixed-point data types

The collength value for a MONEY or DECIMAL (p, s) column can be calculated
using the following formula:
(precision * 256) + scale

Simple-large-object data types

If the data type of the column is BYTE or TEXT, collength holds the length of the
descriptor.

Storing Maximum and Minimum Values
The colmin and colmax values hold the second-smallest and second-largest data
values in the column, respectively. For example, if the values in an indexed column
are 1, 2, 3, 4, and 5, the colmin value is 2 and the colmax value is 4. Storing the
second-smallest and second-largest data values lets the query optimizer make
assumptions about the range of values in the column and, in turn, further refine
search strategies.

The colmin and colmax columns contain values only if the column is indexed and
the UPDATE STATISTICS statement has explicitly or implicitly calculated the
column distribution. If you store BYTE or TEXT data in the tblspace, the colmin
value is encoded as -1.

The colmin and colmax columns are valid only for data types that fit into four
bytes: SMALLFLOAT, SMALLINT, INTEGER, and the first four bytes of CHAR.
The values for all other noninteger column types are the initial four bytes of the
maximum or minimum value, which are treated as integers.

It is better to use UPDATE STATISTICS MEDIUM than to depend on colmin and
colmax values. UPDATE STATISTICS MEDIUM gives better information and is
valid for all data types.

Chapter 1. System catalog tables 1-21

IBM Informix does not calculate colmin and colmax values for user-defined data
types. These columns, however, have values for user-defined data types if a
user-defined secondary access method supplies them.

SYSCONSTRAINTS
The sysconstraints system catalog table lists the constraints placed on the columns
in each database table. An entry is also placed in the sysindexes system catalog
table (or sysindices view for IBM Informix) for each unique, primary key, or
referential constraint that does not already have a corresponding entry in
sysindexes or sysindices. Because indexes can be shared, more than one constraint
can be associated with an index. The sysconstraints table has the following
columns.

Table 1-11. SYSCONSTRAINTS table column descriptions

Column Type Explanation

constrid SERIAL Code uniquely identifying
the constraint

constrname VARCHAR(128) Name of the constraint

owner VARCHAR(32) Name of the owner of the
constraint

tabid INTEGER Code uniquely identifying
the table

constrtype CHAR(1) Code identifying the
constraint type:

v C = Check constraint

v N = Not NULL

v P = Primary key

v R = Referential

v T = Table

v U = Unique

idxname VARCHAR(128) Name of index
corresponding to constraint

collation CHAR(32) Collating order at the time
when the constraint was
created.

A composite index on the constrname and owner columns allows only unique
values. An index on the tabid column allows duplicate values, and an index on the
constrid column allows only unique values.

For check constraints (where constrtype = C), the idxname is always NULL.
Additional information about each check constraint is contained in the syschecks
and syscoldepend system catalog tables.

SYSDEFAULTS
The sysdefaults system catalog table lists the user-defined defaults that are placed
on each column in the database. One row exists for each user-defined default
value.

The sysdefaults table has the following columns:

1-22 IBM Informix Guide to SQL: Reference

Table 1-12. SYSDEFAULTS table column descriptions

Column Type Explanation

tabid INTEGER Code uniquely identifying a table. When the class
column contains the code P, then the tabid column
references a procedure ID not a table ID.

colno SMALLINT Code uniquely identifying a column.

type CHAR(1) Code identifying the type of default value:

C = Current®

L = Literal value

N = NULL

S = Dbservername or Sitename

T = Today

U = User

default CHAR(256) If sysdefaults.type = L, a literal default value.

class CHAR(1) Code identifying what kind of column:

T = table

t = ROW type

P = procedure

If no default is specified explicitly in the CREATE TABLE or the ALTER TABLE
statement, then no entry exists for that column in the sysdefaults table.

If you specify a literal for the default value, it is stored in the default column as
ASCII text. If the literal value is not of one of the data types listed in the next
paragraph, the default column consists of two parts. The first part is the 6-bit
representation of the binary value of the default value structure. The second part is
the default value in ASCII text. A blank space separates the two parts.

If the data type of the column is not CHAR, NCHAR, NVARCHAR, or VARCHAR,
or (for IBM Informix) BOOLEAN or LVARCHAR, a binary representation of the
default value is encoded in the default column.

A composite index on the tabid, colno, and class columns allows only unique
values.

SYSDEPEND
The sysdepend system catalog table describes how each view or table depends on
other views or tables. One row exists in this table for each dependency, so a view
based on three tables has three rows. The sysdepend table has the following
columns.

Table 1-13. SYSDEPEND table column descriptions

Column Type Explanation

btabid INTEGER Code uniquely identifying the base table or view

btype CHAR(1) Base object type: T = Table V = View

dtabid INTEGER Code uniquely identifying a dependent table or view

dtype CHAR(1) Code for the type of dependent object; currently, only view
(V = View) is implemented

Chapter 1. System catalog tables 1-23

The btabid and dtabid columns are indexed and allow duplicate values.

SYSDIRECTIVES
The sysdirectives table stores external optimizer directives that can be applied to
queries. Whether queries in client applications can use these optimizer directives
depends on the setting of the IFX_EXTDIRECTIVES environment variable on the
client system, as described in Chapter 3, and on the EXT_DIRECTIVES setting in
the configuration file of the database server.

The sysdirectives table has the following columns:

Table 1-14. SYSDIRECTIVES table column descriptions

Column Type Explanation

id SERIAL Unique code identifying the optimizer directive

query TEXT Text of the query as it exists in the application

directives TEXT Text of the optimizer directive, without comments

directive_code BYTE Encoded directive

active SMALLINT Integer code that identifies whether this entry is active (
= 1) or test only (= 2)

hash_code SMALLINT For internal use only

NULL values are not valid in the query column. There is a unique index on the id
column.

SYSDISTRIB
The sysdistrib system catalog table stores data-distribution information for the
query optimizer to use. Data distributions provide detailed table and column
information to the optimizer to improve the choice of execution paths of SELECT
statements.

The sysdistrib table has the following columns.

Table 1-15. SYSDISTRIB table column descriptions

Column Type Explanation

tabid INTEGER Code identifying the table from which
data values were gathered

colno SMALLINT Column number in the source table

seqno INTEGER Ordinal number for multiple entries

constructed DATETIME YEAR TO
FRACTION(5)

Date when the data distribution was
created

mode CHAR(1) Optimization level: M = Medium H =
High

resolution SMALLFLOAT Specified in the UPDATE STATISTICS
statement

confidence SMALLFLOAT Specified in the UPDATE STATISTICS
statement

encdat STAT Statistics information

1-24 IBM Informix Guide to SQL: Reference

Table 1-15. SYSDISTRIB table column descriptions (continued)

Column Type Explanation

type CHAR(1) Type of statistics: A = encdat has
ASCII-encoded histogram in fixed-length
character field S = encdat has
user-defined statistics

smplsize SMALLFLOAT A value greater than zero up to 1.0
indicating a proportion of the total rows
in the table that UPDATE STATISTICS
samples. Values greater than 1.0 indicate
the actual number of rows used that
UPDATE STATISTICS samples. A value
of zero indicates that no sample size is
specified. UPDATE STATISTICS HIGH
always updates statistics for all rows.

rowssmpld FLOAT Number of rows in the sample

constr_time DATETIME YEAR TO
FRACTION(5)

Time when the distribution was recorded

ustnrows FLOAT Rows in fragment when distribution was
calculated.

ustbuildduration INTERVAL HOUR TO
FRACTION(5)

Time spent calculating the distribution
statistics for this column

nupdates FLOAT Number of updates to the table

ndeletes FLOAT Number of deletes to the table

ninserts FLOAT Number of inserts to the table

Information is stored in the sysdistrib table when an UPDATE STATISTICS
statement with mode MEDIUM or HIGH is executed for a table. (UPDATE
STATISTICS LOW does not insert a value into the mode column.)

Only user informix can select the encdat column.

Each row in the sysdistrib system catalog table is keyed by the tabid and colno for
which the statistics are collected.

For built-in data type columns, the type field is set to A. The encdat column stores
an ASCII-encoded histogram that is broken down into multiple rows, each of
which contains 256 bytes.

In IBM Informix, for columns of user-defined data types, the type field is set to S.
The encdat column stores the statistics collected by the statcollect user-defined
routine in multirepresentational form. Only one row is stored for each tabid and
colno pair. A composite index on the tabid, colno, and seqno columns requires
unique combinations of values.

The following three DML counter columns record counts of how many DML
operations modifying data rows were performed on the table at the time of
generation of column distribution statistics:
v UPDATE operations in nupdates

v DELETE operations in ndeletes

v and INSERT operations in ninserts

Chapter 1. System catalog tables 1-25

These counts can also include rows modified by MERGE statements.

These DML counter columns store the values of the counters from the server
partition that exists when distribution statistics are generated. If the
AUTO_STAT_MODE configuration parameter, or the AUTO_STAT_MODE session
environment setting, or the AUTO keyword of the UPDATE STATISTICS statement
has enabled selective updating of data distribution statistics, the ninserts, ndeletes,
and ninserts values can affect whether UPDATE STATISTICS operations refresh
existing data distribution statistics. When the UPDATE STATISTICS statement runs
in MEDIUM or HIGH mode against the table, the database server compares the
stored values in these columns with the current values in the partition. Column
distribution statistics for the table are not updated if the sum of the stored values
differs from the sum of these current sysdistrib DML counter values from the
partition page by less than the threshold specified by the setting of the
STATCHANGE table attribute or of the STATCHANGE configuration parameter.

SYSDOMAINS
The sysdomains view is not used. It displays columns of other system catalog
tables. It has the following columns.

Table 1-16. SYSDOMAINS table column descriptions

Column Type Explanation

id SERIAL Unique code identifying the
domain

owner CHAR(32) Name of the owner of the
domain

name VARCHAR(128) Name of the domain

type SMALLINT Code identifying the type of
domain

There is no index on this view.

SYSERRORS
The syserrors system catalog table stores information about error, warning, and
informational messages returned by DataBlade modules and user-defined routines
using the mi_db_error_raise() DataBlade API function.

For a description of an error message, use the finderr utility or go to
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/
com.ibm.em.doc/errors.html.

The syserrors table has the following columns.

Column Type Explanation

sqlstate CHAR(5) SQLSTATE value associated with the error.

locale CHAR(36) The locale with which this version of the message is
associated (for example, en_us.8859-1)

level SMALLINT Reserved for future use

seqno SMALLINT Reserved for future use

message VARCHAR(255) Message text

1-26 IBM Informix Guide to SQL: Reference

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.em.doc/errors.html
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.em.doc/errors.html

To create a new message, insert a row directly into the syserrors table. By default,
all users can view this table, but only users with the DBA privilege can modify it.

A composite index on the sqlstate, locale, level, and seqno columns allows only
unique values.
Related information:
Using the SQLSTATE Error Status Code

SYSEXTCOLS
The sysextcols system catalog table contains a row that describes each of the
internal columns in external table tabid of format type (fmttype) FIXED.

The sysextcols table has the following columns.

Column Type Explanation

tabid INTEGER Unique identifying code of a table

colno SMALLINT Code identifying the column

exttype SMALLINT Code identifying an external column type

extstart SMALLINT Starting position of column in the external data file

extlength SMALLINT External column length (in bytes)

nullstr CHAR(256) Represents NULL in external data

decprec SMALLINT Precision for external decimals

extstype VARCHAR(128,0) External type name

No entries are stored in sysextcols for DELIMITED or IBM Informix format
external files.

You can use the DBSCHEMA utility to write out the description of the external
tables. To query these system catalog tables about an external table, use the tabid
as stored in systables with tabtype = ‘E'.

An index on the tabid column allows duplicate values.

SYSEXTDFILES
The sysextdfiles system catalog table contains identifying codes and the paths of
external tables.

For each external table, at least one row exists in the sysextdfiles system catalog
table, which has the following columns.

Column Type Explanation

tabid INTEGER Unique identifying code of an external table

dfentry CHAR(469) Absolute source or target file path

blobdir CHAR(344) Absolute or relative directory name

clobdir CHAR(344) Absolute or relative directory name

Chapter 1. System catalog tables 1-27

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_0806.htm

You can use DBSCHEMA to write out the description of the external tables. To
query these system catalog tables about an external table, use the tabid as stored in
systables with tabtype = ‘E'.

An index on the tabid column allows duplicate values.

SYSEXTERNAL
For each external table, a single row exists in the sysexternal system catalog table.

The tabid column associates the external table record in this system catalog table
with an entry in systables.

Column Type Explanation

tabid INTEGER Unique identifying code of an external table

fmttype CHAR(1) Type of format: D = (delimited) F = (fixed) I = (IBM
Informix)

codeset VARCHAR(128) Reserved for future use

recdelim VARCHAR(128) The record delimiter

flddelim CHAR(4) The field delimiter

datefmt CHAR(8) Reserved for future use

moneyfmt CHAR(20) Reserved for future use

maxerrors INTEGER Number of errors to allow

rejectfile CHAR(464) Name of the reject file

flags INTEGER Optional load flags

ndfiles INTEGER Number of data files in sysextdfiles

You can use the dbschema utility to write out the description of the external tables.
To query these system catalog tables about an external table, use the tabid as
stored in systables with tabtype = ‘E'.

An index on the tabid column allows only unique values.

SYSFRAGAUTH
The sysfragauth system catalog table stores information about the privileges that
are granted on table fragments. This table has the following columns.

Table 1-17. SYSFRAGAUTH table column descriptions

Column Type Explanation

grantor CHAR(32) Name of the grantor of
privilege

grantee CHAR(32) Name of the grantee of
privilege

tabid INTEGER Identifying code of the
fragmented table

fragment VARCHAR(128) Name of dbspace where
fragment is stored

1-28 IBM Informix Guide to SQL: Reference

Table 1-17. SYSFRAGAUTH table column descriptions (continued)

Column Type Explanation

fragauth CHAR(6) A 6-byte pattern specifying
fragment privileges
(including 3 bytes reserved
for future use):

v u or U = Update

v i or I = Insert

v d or D = Delete

In the fragauth column, an uppercase code (such as U for Update) means that the
grantee can grant the privilege to other users; a lowercase (for example, u for
Update) means the user cannot grant the privilege to others. Hyphen (-) indicates
the absence of the privilege for that position within the pattern.

A composite index on the tabid, grantor, grantee, and fragment columns allows
only unique values. A composite index on the tabid and grantee columns allows
duplicate values.

The following example displays the fragment-level privileges for one base table, as
they exist in the sysfragauth table. In this example, the grantee rajesh can grant
the Update, Delete, and Insert privileges to other users.

grantor grantee tabid fragment fragauth

dba omar 101 dbsp1 -ui---

dba jane 101 dbsp3 --i---

dba maria 101 dbsp4 --id--

dba rajesh 101 dbsp2 -UID--

SYSFRAGDIST
The sysfragdist system catalog table stores fragment-level column statistics for
fragmented tables and indexes. One row exists for each table fragment or index
fragment.

Only columns in fragmented tables are described here. (For table-level column
statistics, see the sysdistrib system catalog table.)

The sysfragdist table has the following columns.

Column Type Explanation

tabid INTEGER Unique identifying code of table (=
systables.tabid)

fragid INTEGER Unique identifying code of fragment (=
sysfragments.partnum)

colno SMALLINT Unique identifying code of column (=
syscolumns.colno)

seqno SMALLINT Sequence number (for distributions that span
multiple rows)

mode CHAR(1) UPDATE STATISTICS mode (H = high, or M =
medium)

Chapter 1. System catalog tables 1-29

Column Type Explanation

resolution SMALLFLOAT Average percentage of the sample in each bin

confidence SMALLFLOAT Estimated likelihood that a MEDIUM mode
sample value is equivalent to an exact HIGH
mode result

rowssampled FLOAT Number of rows in the sample

ustbuildduration INTERVAL HOUR
TO FRACTION(5)

Time spent to calculate the distribution for this
column

constr_time DATETIME YEAR TO
FRACTION(5)

Time when the distribution was recorded

ustnrows FLOAT Rows in fragment when distribution was
calculated.

minibinsize FLOAT For internal use only

nupdates FLOAT Number of updates to the table

ndeletes FLOAT Number of deletes to the table

ninserts FLOAT Number of inserts to the table

version INTEGER Reserved for future use

dbsnum INTEGER Unique identifying code of sbspace where encdist
is stored

encdist STAT Encrypted fragment distribution

The set of rows with a given combination of tabid, fragid, and colno values
identifies the column statistics for that fragment of a table. These statistics can span
multiple rows by using the seqno column for sequence numbering.

The mode, resolution and confidence values that are specified in the UPDATE
STATISTICS MEDIUM or HIGH statement that calculate the column statistics for
the fragment are recorded in the sysfragdist columns of the same names. To use
existing fragment statistics to build table statistics, these three parameters should
not change between UPDATE STATISTICS statements that reference the fragments
of the same table. The only exception to this is that “H” mode fragmented statistics
can be used to build “M” mode table statistics.

Column distribution statistics for the fragment are stored in the column encdist.
The dbsnum column stores the identifying code of the smart blob space where the
encdist object describing this fragment is stored. By default, the SBSPACENAME
configuration parameter setting is the identifier of the sbspace whose identifying
code is in the dbsnum column.

The following three columns record counts of how many DML operations
modifying data rows were performed on the fragment at the time of generation of
column distribution statistics:
v UPDATE operations in nupdates

v DELETE operations in ndeletes

v and INSERT operations in ninserts

These counts can also include rows modified by MERGE statements.

These DML counter columns store the values of the counters from the server
partition that existed when distribution statistics were generated. When UPDATE

1-30 IBM Informix Guide to SQL: Reference

STATISTICS runs in MEDIUM or HIGH mode against the fragmented table with
fragment level statistics, the database server compares the stored values in these
columns with the current values in the partition.

When the AUTO_STAT_MODE configuration parameter, or the
AUTO_STAT_MODE session environment setting, or the AUTO keyword of the
UPDATE STATISTICS statement has enabled selective updating of data distribution
statistics, the ninserts, ndeletes, and ninserts values can affect whether UPDATE
STATISTICS operations refresh existing data distribution statistics for the fragment.
Column statistics for the fragment corresponding to the row in the sysfragdist
table are not updated if the sum of the stored values differs from the sum of these
current DML counter values for the partition page by less than the threshold
specified by the setting of the STATCHANGE table attribute or of the
STATCHANGE configuration parameter.

SYSFRAGMENTS
The sysfragments system catalog table stores fragmentation information and LOW
mode statistical distributions for individual fragments of tables and indexes. One
row exists for each table fragment or index fragment.

The sysfragments table has the following columns.

Column Type Explanation

fragtype CHAR(1) Code indicating the type of fragmented object:

v I = Original index fragment

v T = Original table fragment

tabid INTEGER Unique identifying code of table

indexname VARCHAR(128) Name of index

colno INTEGER Identifying code of TEXT or BYTE column, or the
upper limit on the number of rolling window
fragments

partn INTEGER Identifying code of physical storage location

strategy CHAR(1) Code for type of fragment distribution strategy:

v R = Round-robin distribution strategy

v E = Expression-based distribution strategy

v I = IN DBSPACE clause specifies a storage location
as part of distribution strategy

v N = raNge-iNterval (or rolliNg wiNdow)
distribution strategy

v L = List distribution strategy

v T = Table-based distribution strategy

v H = table is a subtable within a table Hierarchy

location CHAR(1) Reserved for future use; shows L for local

servername VARCHAR(128) Reserved for future use

Chapter 1. System catalog tables 1-31

Column Type Explanation

evalpos INTEGER Position of fragment in the fragmentation list.

For fragmentation by INTERVAL, one of the following
values that indicates the type of information in the
exprtext field:

v -1 = List of dbspaces for interval fragments

v -2 = Interval value

v -3 = Fragmentation key

v -4 = Rolling window fragment

Fragmentation by LIST also uses the -3 value.

exprtext TEXT Expression for fragmentation strategy

For fragmentation by INTERVAL, LIST, or rolling
window, provides the information corresponding to
the value of the evalpos field.

exprbin BYTE Binary version of expression

exprarr BYTE Range-partitioning data to optimize expression in
range-expression fragmentation strategy

flags INTEGER Used internally

dbspace VARCHAR(128) Name of dbspace storing this fragment

levels SMALLINT Number of B-tree index levels

npused FLOAT For table-fragmentation strategies: the number of data
pages

For index-fragmentation strategies: the number of leaf
pages

For rolling window tables: the units for the storage
size limit in nrows

nrows FLOAT For tables: the number of rows in the fragment.

For indexes: the number of unique keys.

For rolling window tables: the upper limit on storage
size in the purge policy.

clust FLOAT Degree of index clustering; smaller numbers
correspond to greater clustering.

partition VARCHAR(128) Fragment name.This can match the name of the
dbspace that stores the fragment, or can be an
arbitrary name.

version SMALLINT Number that increments when fragment statistics is
updated

nupdates FLOAT Number of updates to the fragment

ndeletes FLOAT Number of deletes to the fragment

ninserts FLOAT Number of inserts to the fragment

Every fragment has a row in this table. The evalpos and evaltext fields contain
information about individual fragments.

Tables and indexes created with fragmentation by INTERVAL or LIST have
additional rows containing information about the fragmentation strategy.

1-32 IBM Informix Guide to SQL: Reference

The strategy type T is used for attached indexes. (This is a fragmented index
whose fragmentation strategy is the same as for the table fragmentation.)

For information about the nupdates, ndeletes, and ninserts columns, which in
sysfragments tabulate DML operations on a table since the most recent
recalculation of its distribution statistics, see the description of the three columns
that have the same names in the “SYSDISTRIB” on page 1-24 system catalog table.

In Informix, a composite index on the fragtype, tabid, indexname, and evalpos
columns allows duplicate values.

SYSINDEXES
The sysindexes table is a view on the sysindices table. It contains one row for each
index in the database.

The sysindexes table has the following columns.

Table 1-18. SYSINDEXES table column descriptions

Column Type Explanation

idxname VARCHAR(128) Index name

owner VARCHAR(32) Owner of index (user
informix for system catalog
tables and username for
database tables)

tabid INTEGER Unique identifying code of
table

idxtype CHAR(1) Index type:

U = Unique

D = Duplicates allowed

G = Nonbitmap
generalized-key index

g = Bitmap
generalized-key index

u = unique, bitmap

d = nonunique, bitmap

clustered CHAR(1) Clustered or nonclustered
index (C = Clustered)

part1 SMALLINT Column number (colno) of a
single index or the 1st
component of a composite
index

part2 SMALLINT 2nd component of a
composite index

part3 SMALLINT 3rd component of a
composite index

part4 SMALLINT 4th component of a
composite index

part5 SMALLINT 5th component of a
composite index

part6 SMALLINT 6th component of a
composite index

Chapter 1. System catalog tables 1-33

Table 1-18. SYSINDEXES table column descriptions (continued)

Column Type Explanation

part7 SMALLINT 7th component of a
composite index

part8 SMALLINT 8th component of a
composite index

part9 SMALLINT 9th component of a
composite index

part10 SMALLINT 10th component of a
composite index

part11 SMALLINT 11th component of a
composite index

part12 SMALLINT 12th component of a
composite index

part13 SMALLINT 13th component of a
composite index

part14 SMALLINT 14th component of a
composite index

part15 SMALLINT 15th component of a
composite index

part16 SMALLINT 16th component of a
composite index

levels SMALLINT Number of B-tree levels

leaves INTEGER Number of leaves

nunique INTEGER Number of unique keys in
the first column

clust INTEGER Degree of clustering; smaller
numbers correspond to
greater clustering

idxflags INTEGER Bitmap storing the current
locking mode of the index

As with most system catalog tables, changes that affect existing indexes are
reflected in this table only after you run the UPDATE STATISTICS statement.

Each part1 through part16 column in this table holds the column number (colno)
of one of the 16 possible parts of a composite index. If the component is ordered in
descending order, the colno is entered as a negative value. The columns are filled
in for B-tree indexes that do not use user-defined data types or functional indexes.
For generic B-trees and all other access methods, the part1 through part16 columns
all contain zeros.

The clust column is blank until the UPDATE STATISTICS statement is run on the
table. The maximum value is the number of rows in the table, and the minimum
value is the number of data pages in the table.

1-34 IBM Informix Guide to SQL: Reference

SYSINDICES
The sysindices system catalog table describes the indexes in the database. It stores
LOW mode statistics for all indexes, and contains one row for each index that is
defined in the database.

Table 1-19. sysindices system catalog table columns

Column Type Explanation

idxname VARCHAR(128) Name of index

owner VARCHAR(32) Name of owner of index
(user informix for system
catalog tables and username
for database tables)

tabid INTEGER Unique identifying code of
table

idxtype CHAR(1) Uniqueness status

U = Unique values
required

D = Duplicates allowed

clustered CHAR(1) Clustered or nonclustered
status (C = Clustered)

levels SMALLINT Number of tree levels

leaves FLOAT Number of leaves

nunique FLOAT Number of unique keys in
the first column

clust FLOAT Degree of clustering; smaller
numbers correspond to
greater clustering. The
maximum value is the
number of rows in the table,
and the minimum value is
the number of data pages in
the table. This column is
blank until UPDATE
STATISTICS is run on the
table.

nrows FLOAT Estimated number of rows in
the table (zero until UPDATE
STATISTICS is run on the
table)

indexkeys INDEXKEYARRAY Internal representation of the
index keys. Column can have
up to three fields, in the
format: procid, (col1,col2, . . .
, coln), opclassid where 1 < n
< 341

amid INTEGER Unique identifying code of
the access method that
implements this index.
(Value = am_id for that
access method in the sysams
table.)

Chapter 1. System catalog tables 1-35

Table 1-19. sysindices system catalog table columns (continued)

Column Type Explanation

amparam LVARCHAR(2048) List of parameters used to
customize the amid access
method behavior

collation CHAR(32) Database locale whose
collating order was in effect
at the time of index creation

pagesize INTEGER Size of the page, in bytes,
where this index is stored

nhashcols SMALLINT Number of hashed columns
in a FOT index

nbuckets SMALLINT Number of subtrees (buckets)
in a forest of trees (FOT)
index

ustlowts DATETIME YEAR TO
FRACTION

Date and time when index
statistics were last recorded

ustbuildduration INTERVAL HOUR TO
FRACTION(5)

Time required to calculate
index statistics

nupdates FLOAT Number of updates to the
table

ndeletes FLOAT Number of deletes to the
table

ninserts FLOAT Number of inserts to the
table

fextsize INT Size (in KB) of the first
extent of the index

nextsize INT Size (in KB) of the next
extent of the index

indexattr INT v 0x00000001 = The index
has a partial column key

v 0x00000002 = The index is
compressed

v 0x00000004 = The index is
on a BSON column

jparam LVARCHAR(2048) BSON index information

Tip: This system catalog table is changed from Version 7.2 of IBM Informix. The
earlier schema of this system catalog table is still available as a view that can be
accessed under its original name: sysindexes. See “SYSINDEXES” on page 1-33.

Changes that affect existing indexes are reflected in this system catalog table only
after you run the UPDATE STATISTICS statement.

The fields within the indexkeys columns have the following significance:
v The procid (as in sysprocedures) exists only for a functional index on return

values of a function defined on columns of the table.
v The list of columns (col1, col2, ... , coln) in the second field identifies the columns

on which the index is defined. The maximum is language-dependent: up to 341
for an SPL or Java™ UDR; up to 102 for a C UDR.

1-36 IBM Informix Guide to SQL: Reference

v The opclassid identifies the secondary access method that the database server
used to build and to search the index. This is the same as the
sysopclasses.opclassid value for the access method.

For information about the nupdates, ndeletes, and ninserts columns, which in
sysindices tabulate DML operations on an index since the most recent recalculation
of its distribution statistics, see the description of the three columns that have the
same names in the “SYSDISTRIB” on page 1-24 system catalog table.

The fextsize column shows the user-defined first extent size (in kilobytes) that the
optional EXTENT SIZE clause specified in the CREATE INDEX statement that
defined the index. Similarly, the nextsize column shows the user-defined next
extent size (in kilobytes) that the optional NEXT SIZE clause specified in the
CREATE INDEX statement. Each of these columns displays a value of zero (0) if
the corresponding EXTENT SIZE or NEXT SIZE clause was omitted when the
index was created.

If the CREATE INDEX statement that defines a new index includes no explicit
extent size specifications, the database server automatically calculates the first and
next extent sizes, but the fextsize and nextsize column values are set to 0. When
the database server is converted from a release earlier than Version 11.70, the
fextsize and nextsize values for every migrated index are 0.

The tabid column is indexed and allows duplicate values. A composite index on
the idxname, owner, and tabid columns allows only unique values.

SYSINHERITS
The sysinherits system catalog table stores information about table hierarchies and
named ROW type inheritance. Every supertype, subtype, supertable, and subtable
in the database has a corresponding row in the sysinherits table.

Column Type Explanation

child INTEGER Identifying code of the subtable or subtype

parent INTEGER Identifying code of the supertable or supertype

class CHAR(1) Inheritance class: t = named ROW type T = table

The child and parent values are from sysxtdtypes.extended_id for named ROW
types, or from systables.tabid for tables. Simple indexes on the child and parent
columns allow duplicate values.

SYSLANGAUTH
The syslangauth system catalog table contains the authorization information about
computer languages that are used to write user-defined routines (UDRs).

Table 1-20. SYSLANGAUTH table column descriptions

Column Type Explanation

grantor VARCHAR(32) Name of the grantor of the
language authorization

grantee VARCHAR(32) Name of the grantee of the
language authorization

Chapter 1. System catalog tables 1-37

Table 1-20. SYSLANGAUTH table column descriptions (continued)

Column Type Explanation

langid INTEGER Identifying code of language
in sysroutinelangs table

langauth CHAR(1) The language authorization:

u = Usage privilege
granted

U = Usage privilege
granted WITH GRANT
OPTION

A composite index on the langid, grantor, and grantee columns allows only
unique values. A composite index on the langid and grantee columns allows
duplicate values.

SYSLOGMAP
The syslogmap system catalog table contains fragmentation information.

Table 1-21. SYSLOGMAP table column descriptions

Column Type Explanation

tabloc INTEGER Code for the location of a
table in another database

tabid INTEGER Unique identifying code of
the table

fragid INTEGER Identifying code of the
fragment

flags INTEGER Bitmap of modifiers from
declaration of fragment

A simple index on the tabloc column and a composite index on the tabid and
fragid columns do not allow duplicate values.

SYSOBJSTATE
The sysobjstate system catalog table stores information about the state (object
mode) of database objects. The types of database objects that are listed in this table
are indexes, triggers, and constraints.

Every index, trigger, and constraint in the database has a corresponding row in the
sysobjstate table if a user creates the object. Indexes that the database server
creates on the system catalog tables are not listed in the sysobjstate table because
their object mode cannot be changed.

The sysobjstate table has the following columns.

1-38 IBM Informix Guide to SQL: Reference

Table 1-22. SYSOBJSTATE table column descriptions

Column Type Explanation

objtype CHAR(1) Code for the type of
database object:

v C = Constraint

v I = Index

v T = Trigger

owner VARCHAR(32) Authorization identifier of
the owner of the database
object

name VARCHAR(128) Name of the database object

tabid INTEGER Identifying code of table on
which the object is defined

state CHAR(1) The current state (object
mode) of the database object.
This value can be one of the
following codes:

v D = Disabled

v E = Enabled

v F = Filtering with no
integrity-violation errors

v G = Filtering with
integrity-violation error

A composite index on the objtype, name, owner, and tabid columns allows only
unique combinations of values. A simple index on the tabid column allows
duplicate values.

SYSOPCLASSES
The sysopclasses system catalog table contains information about operator classes
associated with secondary access methods. It contains one row for each operator
class that has been defined in the database. The sysopclasses table has the
following columns.

Column Type Explanation

opclassname VARCHAR(128) Name of the operator class

owner VARCHAR(32) Name of the owner of the operator class

amid INTEGER Identifying code of the secondary access method
associated with this operator class

opclassid SERIAL Identifying code of the operator class

ops LVARCHAR(2048) List of names of the operators that belong to this
operator class

support LVARCHAR(2048) List of names of support functions defined for this
operator class

The opclassid value corresponds to the sysams.am_defopclass value that specifies
the default operator class for the secondary access method that the amid column
specifies.

Chapter 1. System catalog tables 1-39

The sysopclasses table has a composite index on the opclassname and owner
columns and an index on opclassid column. Both indexes allow only unique
values.

SYSPROCAUTH
The sysprocauth system catalog table describes the privileges granted on a
procedure or function. It contains one row for each set of privileges that is granted.
The sysprocauth table has the following columns.

Table 1-23. SYSPROCAUTH table column descriptions

Column Type Explanation

grantor VARCHAR(32) Name of grantor of
privileges to access the
routine

grantee VARCHAR(32) Name of grantee of
privileges to access the
routine

procid INTEGER Unique identifying code of
the routine

procauth CHAR(1) Type of privilege granted on
the routine:

e = Execute privilege on
routine

E = Execute privilege
WITH GRANT OPTION

A composite index on the procid, grantor, and grantee columns allows only
unique values. A composite index on the procid and grantee columns allows
duplicate values.

SYSPROCBODY
The sysprocbody system catalog table describes the compiled version of each
procedure or function in the database. Because the sysprocbody table stores the
text of the routine, each routine can have multiple rows. The sysprocbody table
has the following columns.

Table 1-24. SYSPROCBODY table column descriptions

Column Type Explanation

procid INTEGER Unique identifying code for the routine

datakey CHAR(1) Type of information in the data column:

A = Routine alter SQL (will not change this value
after update statistics)

D = Routine user documentation text

E = Time of creation information

L = Literal value (that is, literal number or quoted
string)

P = Interpreter instruction code (p-code)

R = Routine return value type list

S = Routine symbol table

T = Routine text creation SQL

1-40 IBM Informix Guide to SQL: Reference

Table 1-24. SYSPROCBODY table column descriptions (continued)

Column Type Explanation

seqno INTEGER Line number within the routine

data CHAR(256) Actual text of the routine

The A flag indicates the procedure modifiers are altered. ALTER ROUTINE
statement updates only modifiers and not the routine body. UPDATE STATISTICS
updates the query plan and not the routine modifiers, and the value of datakey
will not be changed from A. The A flag marks all the procedures and functions
that have altered modifiers, including overloaded procedures and functions. The T
flag is used for routine creation text.

The data column contains actual data, which can be in one of these formats:
v Encoded return values list
v Encoded symbol table
v Literal data
v P-code for the routine
v Compiled code for the routine
v Text of the routine and its documentation

A composite index on the procid, datakey, and seqno columns allows only unique
values.

SYSPROCCOLUMNS
The sysproccolumns system catalog table stores information about return types
and parameter names of all UDRs in SYSPROCEDURES.

A composite index on the procid and paramid columns in this table allows only
unique values.

Table 1-25. SYSPROCCOLUMNS table column descriptions

Column Type Explanation

procid INTEGER Unique identifying code of the routine

paramid INTEGER Unique identifying code of the parameter

paramname VARCHAR
(IDENTSIZE)

Name of the parameter

paramtype SMALLINT Identifies the type of parameter

paramlen SMALLINT Specifies the length of the parameter

paramxid INTEGER Specifies the extended type ID for the parameter

paramattr INTEGER 0 = Parameter is of unknown type 1 = Parameter is
INPUT mode 2 = Parameter is INOUT mode 3 =
Parameter is multiple return value 4 = Parameter is
OUT mode 5 = Parameter is a return value

SYSPROCEDURES
The sysprocedures system catalog table lists the characteristics for each function
and procedure that is registered in the database. It contains one row for each
routine.

Chapter 1. System catalog tables 1-41

Each function in sysprocedures has a unique value, procid, called a routine
identifier. Throughout the system catalog, a function is identified by its routine
identifier, not by its name.

The sysprocedures table has the following columns.

Table 1-26. SYSPROCEDURES table column descriptions

Column Type Explanation

procname VARCHAR(128) Name of routine

owner VARCHAR(32) Name of owner

procid SERIAL Unique identifying code for the routine

mode CHAR(1) Mode type:

D or d = DBA

O or o = Owner

P or p = Protected

R or r = Restricted

T or t = Trigger

retsize INTEGER Compiled size (in bytes) of returned values

symsize INTEGER Compiled size (in bytes) of symbol table

datasize INTEGER Compiled size (in bytes) of constant data

codesize INTEGER Compiled size (in bytes) of routine code

numargs INTEGER Number of arguments to routine

isproc CHAR(1) Specifies if the routine is a procedure or a
function:

t = procedure

f = function

specificname VARCHAR(128) Specific name for the routine

externalname VARCHAR(255) Location of the external routine. This item is
language-specific in content and format.

paramstyle CHAR(1) Parameter style: I = IBM Informix

langid INTEGER Language code (in sysroutinelangs table)

paramtypes RTNPARAMTYPES Information describing the parameters of the
routine

variant BOOLEAN Whether the routine is VARIANT or not:

t = is VARIANT

f = is not VARIANT

client BOOLEAN Reserved for future use

handlesnulls BOOLEAN NULL handling indicator:

t = handles NULLs

f = does not handle NULLs

percallcost INTEGER Amount of CPU per call

Integer cost to execute UDR: cost/call - 0
-(2^31-1)

commutator VARCHAR(128) Name of commutator function

negator VARCHAR(128) Name of the negator function

1-42 IBM Informix Guide to SQL: Reference

Table 1-26. SYSPROCEDURES table column descriptions (continued)

Column Type Explanation

selfunc VARCHAR(128) Name of function to estimate selectivity of the
UDR

internal BOOLEAN Specifies if the routine can be called from SQL:

t = routine is internal, not callable from SQL

f = routine is external, callable from SQL

class CHAR(18) CPU class by which the routine should be
executed

stack INTEGER Stack size in bytes required per invocation

parallelizable BOOLEAN Parallelization indicator for UDR:

t = parallelizable

f = not parallelizable

costfunc VARCHAR(128) Name of the cost function for the UDR

selconst SMALLFLOAT Selectivity constant for UDR

procflags INTEGER For internal use only

collation CHAR(32) Collating order at the time when the routine was
created

In the mode column, the R mode is a special case of the O mode. A routine is in
restricted (R) mode if it was created with a specified owner who is different from
the routine creator. If routine statements involving a remote database are executed,
the database server uses the access privileges of the user who executes the routine
instead of the privileges of the routine owner. In all other scenarios, R-mode
routines behave the same as O-mode routines.

The database server can create protected routines for internal use. The
sysprocedures table identifies these protected routines with the letter P or p in the
mode column, where p indicates an SPL routine. Protected routines have the
following restrictions:
v You cannot use the ALTER FUNCTION, ALTER PROCEDURE, or ALTER

ROUTINE statements to modify protected routines.
v You cannot use the DROP FUNCTION, DROP PROCEDURE, or DROP

ROUTINE statements to unregister protected routines.
v You cannot use the dbschema utility to display protected routines.

In earlier versions, protected SPL routines were indicated by a lowercase p. Starting
with version 9.0, protected SPL routines are treated as DBA routines and cannot be
Owner routines. Thus D and O indicate DBA routines and Owner routines, while d
and o indicate protected DBA routines and protected Owner routines.

The trigger mode designates user-defined SPL routines that can be invoked only
from the FOR EACH ROW section of a triggered action.

Important: After you issue the SET SESSION AUTHORIZATION statement, the
database server assigns a restricted mode to all Owner routines that you created
while using the new identity.

A unique index is defined on the procid column. A composite index on the
procname, isproc, numargs, and owner columns allows duplicate values, as does a
composite index on the specificname and owner columns.

Chapter 1. System catalog tables 1-43

SYSPROCPLAN
The sysprocplan system catalog table describes the query-execution plans and
dependency lists for data-manipulation statements within each routine. Because
different parts of a routine plan can be created on different dates, this table can
contain multiple rows for each routine.

Table 1-27. SYSPROCPLAN table column descriptions

Column Type Explanation

procid INTEGER Identifying code for the routine

planid INTEGER Identifying code for the plan

datakey CHAR(1) Type of information stored in data column:

D = Dependency list

I = Information record

Q = Execution plan

seqno INTEGER Line number within the plan

created DATE Date when plan was created

datasize INTEGER Size (in bytes) of the list or plan

data CHAR(256) Encoded (compiled) list or plan

Before a routine is run, its dependency list in the data column is examined. If the
major version number of a table accessed by the plan has changed, or if any object
that the routine uses has been modified since the plan was optimized (for example,
if an index has been dropped), then the plan is optimized again. When datakey is
I, the data column stores information about UPDATE STATISTICS and
PDQPRIORITY.

It is possible to delete all the plans for a given routine by using the DELETE
statement on sysprocplan. When the routine is subsequently executed, new plans
are automatically generated and recorded in sysprocplan. The UPDATE
STATISTICS FOR PROCEDURE statement also updates this table.

A composite index on the procid, planid, datakey, and seqno columns allows only
unique values.

SYSREFERENCES
The sysreferences system catalog table lists all referential constraints on columns.
It contains a row for each referential constraint in the database.

Table 1-28. SYSREFERENCES table column descriptions

Column Type Explanation

constrid INTEGER Code uniquely identifying
the constraint

primary INTEGER Identifying code of the
corresponding primary key

ptabid INTEGER Identifying code of the table
that is the primary key

updrule CHAR(1) Reserved for future use;
displays an R

1-44 IBM Informix Guide to SQL: Reference

Table 1-28. SYSREFERENCES table column descriptions (continued)

Column Type Explanation

delrule CHAR(1) Whether constraint uses
cascading delete or restrict
rule:

C = Cascading delete

R = Restrict (default)

matchtype CHAR(1) Reserved for future use;
displays an N

pendant CHAR(1) Reserved for future use;
displays an N

The constrid column is indexed and allows only unique values. The primary
column is indexed and allows duplicate values.

SYSROLEAUTH
The sysroleauth system catalog table describes the roles that are granted to users.
It contains one row for each role that is granted to a user in the database. The
sysroleauth table has the following columns.

Table 1-29. SYSROLEAUTH table column descriptions

Column Type Explanation

rolename VARCHAR(32) Name of the role

grantee VARCHAR(32) Name of the grantee of the
role

is_grantable CHAR(1) Specifies whether the role is
grantable:

Y = Grantable

N = Not grantable

The is_grantable column indicates whether the role was granted with the WITH
GRANT OPTION of the GRANT statement.

A composite index on the rolename and grantee columns allows only unique
values.

SYSROUTINELANGS
The sysroutinelangs system catalog table lists the supported programming
languages for user-defined routines (UDRs). It has these columns.

Column Type Explanation

langid SERIAL Code uniquely identifying a supported language

langname CHAR(30) Name of the language, such as C or SPL

langinitfunc VARCHAR(128) Name of initialization function for the language

langpath CHAR(255) Directory path for the UDR language

langclass CHAR(18) Name of the class of the UDR language

Chapter 1. System catalog tables 1-45

An index on the langname column allows duplicate values.

SYSSECLABELAUTH
The sysseclabelauth system catalog table records the LBAC labels that have been
granted to users. It has these columns.

Column Type Explanation

GRANTEE CHAR(32) The name of the label grantee

secpolicyid INTEGER The ID of the security policy to which
the security label belongs.

readseclabelid INTEGER The security label ID of the security
label granted for read access

writeseclabelid INTEGER The security label ID of the security
label granted for write access

SYSSECLABELCOMPONENTS
The sysseclabelcomponents system catalog table records security label
components. It has these columns.

Column Type Explanation

compname VARCHAR(128) Component name

compid SERIAL Component ID

comptype CHAR(1) The component type:

A = array

S = set

T = tree

numelements INTEGER Number of elements in the component

coveringinfo VARCHAR(128) Internal encoding information

numalters SMALLINT Numbers of alter operations that have
been performed on the component

SYSSECLABELCOMPONENTELEMENTS
The sysseclabelcomponentelements system catalog table records the values of
component elements of security labels. It has these columns.

Column Type Explanation

compid INTEGER Component ID

element VARCHAR(32) Element name

elementencoding CHAR(8) Encoded form of the element

parentelement VARCHAR(32) The name of the parent elements for
tree components. The value is NULL
for the following items:

Set components Array components
Root nodes of a tree component

1-46 IBM Informix Guide to SQL: Reference

Column Type Explanation

alterversion SMALLINT The number of the alter operation
when the element is added. This value
is used by the dbexport and dbimport
commands.

SYSSECLABELNAMES
The sysseclabelnames system catalog table records the security label names. It has
these columns.

Column Type Explanation

secpolicyid INTEGER The ID of the security policy to which
the security label belongs.

seclabelname VARCHAR(128) The name of the security label

seclabelid INTEGER The ID of the security label

SYSSECLABELS
The sysseclabels system catalog table records the security label encoding. It has
these columns.

Column Type Explanation

secpolicyid INTEGER ID of the security policy to which the
security label belongs

seclabelid INTEGER Security label ID

sysseclabelnames VARCHAR(128) Security label encoding

SYSSECPOLICIES
The syssecpolicies system catalog table records security policies It has these
columns.

Column Type Explanation

secpolicyname VARCHAR(128) Security policy name

secpolicyid SERIAL Security policy ID

numcomps SMALLINT Number of security label components
in the security policy

comptypelist CHAR(16) An ordered list of the type of each
component in the policy.

A = array

S = set

T = tree

– = Beyond NUMCOMPS

Chapter 1. System catalog tables 1-47

Column Type Explanation

overrideseclabel CHAR(1) Indicates the behavior when a user's
security label and exemption
credentials do not allow them to insert
or update a data row with the security
that is label provided on the INSERT or
UPDATE SQL statement.

v Y: The security label provided is
ignored and replaced by the user's
security label for write access.

v N: Return an error when not
authorized to write a security label.

SYSSECPOLICYCOMPONENTS
The syssecpolicycomponents system catalog table records the components for each
security policies. It has these columns.

Column Type Explanation

secpolicyid INTEGER Security policy ID

compid INTEGER ID of a component of the label security
policy

compno SMALLINT Position of the security label
component as it exists in the security
policy, starting with position 1.

SYSSECPOLICYEXEMPTIONS
The syssecpolicyexemptions system catalog table records the exemptions that have
been given to users. It has these columns.

Column Type Explanation

grantee CHAR(32) The user who has this exemption

secpolicyid INTEGER ID of the policy on which the
exemption is granted

1-48 IBM Informix Guide to SQL: Reference

Column Type Explanation

exemption CHAR(6) The exemption given to the user who is
identified in the GRANTEE column.
The six characters have the following
meanings:

1 = Read array

2 = Read set

3 = Read tree

4 = Write array

5 = Write set

6 = Write tree

Each character has one of the following
values:

E = Exempt

D = Write down exemption

U = Write up exemption

– = No exemption

SYSSEQUENCES

The syssequences system catalog table lists the sequence objects that exist in the
database. The syssequences table has the following columns.

Column Type Explanation

seqid SERIAL Code uniquely identifying the sequence object

tabid INTEGER Identifying code of the sequence as a table object

start_val INT8 Starting value of the sequence

inc_val INT8 Value of the increment between successive values

max_val INT8 Largest possible value of the sequence

min_val INT8 Smallest possible value of the sequence

cycle CHAR(1) Zero means NOCYCLE, 1 means CYCLE

restart_val INT8 Starting value of the sequence after ALTER SEQUENCE
RESTART was run

cache INTEGER Number of preallocated values in sequence cache

order CHAR(1) Zero means NOORDER, 1 means ORDER

SYSSURROGATEAUTH
The syssurrogateauth system catalog table stores trusted user and surrogate user
information.

The syssurrogateauth system catalog table is populated when the GRANT
SETSESSIONAUTH statement is run. Users or roles specified in the TO clause are
added to trusteduser column. Users specified in the ON clause are added to
surrogateuser column.

For example, consider the following statement:
GRANT SETSESSIONAUTH ON bill, john TO mary, peter;

Chapter 1. System catalog tables 1-49

Entries in the syssurrogateauth table are created as follows:
trusteduser surrogateuser

mary bill
mary john
peter bill
peter john

The syssurrogateauth table has the following columns.

Table 1-30. SYSSURROGATEAUTH table column descriptions

Column Type Explanation

trusteduser CHAR(32) Trusted user name or role.

surrogateuser CHAR(32) Surrogate user name.

SYSSYNONYMS
The syssynonyms system catalog table is unused. The syssyntable table describes
synonyms. The syssynonyms system catalog table has the following columns.

Table 1-31. SYSSYNONYMS table column descriptions

Column Type Explanation

owner VARCHAR(32) Name of the owner of the
synonym

synname VARCHAR(128) Name of the synonym

created DATE Date when the synonym was
created

tabid INTEGER Identifying code of a table,
sequence, or view

A composite index on the owner and synonym columns allows only unique
values. The tabid column is indexed and allows duplicate values.

SYSSYNTABLE
The syssyntable system catalog table outlines the mapping between each public or
private synonym and the database object (table, sequence, or view) that it
represents. It contains one row for each entry in the systables table that has a
tabtype value of Por S. The syssyntable table has the following columns.

Column Type Explanation

tabid INTEGER Identifying code of the public synonym

servername VARCHAR(128) Name of an external database server

dbname VARCHAR(128) Name of an external database

owner VARCHAR(32) Name of the owner of an external object

tabname VARCHAR(128) Name of an external table or view

btabid INTEGER Identifying code of a base table, sequence, or view

ANSI-compliant databases do not support public synonyms; their syssyntable
tables can describe only synonyms whose syssyntable.tabtype value is P.

1-50 IBM Informix Guide to SQL: Reference

If you define a synonym for an object that is in your current database, only the
tabid and btabid columns are used. If you define a synonym for a table that is
external to your current database, the btabid column is not used, but the tabid,
servername, dbname, owner, and tabname columns are used.

The tabid column maps to systables.tabid. With the tabid information, you can
determine additional facts about the synonym from systables.

An index on the tabid column allows only unique values. The btabid column is
indexed to allow duplicate values.

SYSTABAMDATA
The systabamdata system catalog table stores the table-specific hashing parameters
of tables that were created with a primary access method.

The systabamdata table has the following columns.

Table 1-32. SYSTABAMDATA table column descriptions

Column Type Explanation

tabid INTEGER Identifying code of the table

am_param LVARCHAR(8192) Access method parameter
choices

am_space VARCHAR(128) Name of the storage space
holding the data values

The am_param column stores configuration parameters that determine how a
primary access method accesses a given table. Each configuration parameter in the
am_param list has the format keyword=value or keyword.

The am_space column specifies the location of the table. It might be located in a
cooked file, a different database, or an sbspace within the database server.

The tabid column is the primary key to the systables table. This column is indexed
and must contain unique values.

SYSTABAUTH
The systabauth system catalog table describes each set of privileges that are
granted on a table, view, sequence, or synonym. It contains one row for each set of
table privileges that are granted in the database; the REVOKE statement can
modify a row. The systabauth table has the following columns.

Table 1-33. SYSTABAUTH table column descriptions

Column Type Explanation

grantor VARCHAR(32) Name of the grantor of privilege

grantee VARCHAR(32) Name of the grantee of privilege

tabid INTEGER Value from systables.tabid for database object

Chapter 1. System catalog tables 1-51

Table 1-33. SYSTABAUTH table column descriptions (continued)

Column Type Explanation

tabauth CHAR(9)
CHAR(8)

Pattern that specifies privileges on the table, view,
synonym, or sequence:

s or S = Select

u or U = Update

* = Column-level privilege

i or I = Insert

d or D = Delete

x or X = Index

a or A = Alter

r or R = References

n or N = Under privilege

If the tabauth column shows a privilege code in uppercase (for example, S for
Select), this indicates that the user also has the option to grant that privilege to
others. Privilege codes listed in lowercase (for example, s for select) indicate that
the user has the specified privilege, but cannot grant it to others.

A hyphen (-) indicates the absence of the privilege corresponding to that position
within the tabauth pattern.

A tabauth value with an asterisk (*) means column-level privileges exist; see also
syscolauth (page “SYSINDEXES” on page 1-33). (In DB-Access, the Privileges
option of the Info command for a specified table can display the column-level
privileges on that table.)

A composite index on tabid, grantor, and grantee allows only unique values. A
composite index on tabid and grantee allows duplicate values.

SYSTABLES
The systables system catalog table contains a row for each table object (a table,
view, synonym, or in IBM Informix, a sequence) that has been defined in the
database, including the tables and views of the system catalog.

Table 1-34. SYSTABLES table column descriptions

Column Type Explanation

tabname VARCHAR(128) Name of table, view, synonym, or
sequence

owner CHAR(32) Owner of table (user informix for system
catalog tables and username for database
tables)

partnum INTEGER Physical storage location code

tabid SERIAL System-assigned sequential identifying
number

rowsize SMALLINT Maximum row size in bytes (< 32,768)

ncols SMALLINT Number of columns in the table

nindexes SMALLINT Number of indexes on the table

nrows FLOAT Number of rows in the table

1-52 IBM Informix Guide to SQL: Reference

Table 1-34. SYSTABLES table column descriptions (continued)

Column Type Explanation

created DATE Date when table was created or last
modified

version INTEGER Number that changes when table is
altered

tabtype CHAR(1) Code indicating the type of table object:

v T = Table

v E = External Table

v V = View

v Q = Sequence

v P = Private synonym

v S = Public synonym

(Type S is unavailable in an
ANSI-compliant database.)

locklevel CHAR(1) Lock mode for the table:

v B = Page and row level

v P = Page level

v R = Row level

npused FLOAT Number of data pages that have ever
been initialized in the tablespace by the
database server

fextsize INTEGER Size of initial extent (in KB)

nextsize INTEGER Size of all subsequent extents (in KB)

flags SMALLINT Codes for classifying permanent tables:

ROWID
1 - Has rowid column defined

UNDER
2 - Table created under a
supertable

VIEWREMOTE
4 - View is based on a remote
table

CDR 8 - Has CDRCOLS defined

RAW 16 - (Informix) RAW table

EXTERNAL
32- External table

AUDIT
64 - Audit table attribute - FGA

AQT 128 - View is an AQT for DWA
offloading

VIRTAQT
256 - View is a virtual AQT

site VARCHAR(128) Reserved for future use

dbname VARCHAR(128) Reserved for future use

type_xid INTEGER Code from sysxtdtypes.extended_id for
typed tables, or 0 for untyped tables

Chapter 1. System catalog tables 1-53

Table 1-34. SYSTABLES table column descriptions (continued)

Column Type Explanation

am_id INTEGER Access method code (key to sysams
table)

NULL or 0 indicates built-in storage
manager

pagesize INTEGER The pagesize, in bytes, of the dbspace (or
dbspaces, if the table is fragmented)
where the table data resides.

ustlowts DATETIME YEAR
TO FRACTION (5)

When table, row, and page-count
statistics were last recorded

secpolicyid INTEGER ID of the SECURITY policy attached to
the table. NULL for non-protected tables

protgranularity CHAR(1) LBAC granularity level:

v R: Row level granularity

v C: Column level granularity

v B: Both column and row granularity

v Blank for non-protected tables

statlevel CHAR(1) Statistics level

v T = table

v F = fragment

v A = automatic

statchange SMALLINT For internal use only

Each table, view, sequence, and synonym recorded in the systables table is
assigned a tabid, which is a system-assigned SERIAL value that uniquely identifies
the object. The first 99 tabid values are reserved for the system catalog. The tabid
of the first user-defined table object in a database is always 100.

The tabid column is indexed and contains only unique values. A composite index
on the tabname and owner columns also requires unique values.

The version column contains an encoded number that is stored in systables when
a new table is created. Portions of this value are incremented when data-definition
statements, such as ALTER INDEX, ALTER TABLE, DROP INDEX, and CREATE
INDEX, are performed on the table.

In the flags column, ST_RAW represents a nonlogging permanent table in a
database that supports transaction logging.

The setting of the SQL_LOGICAL_CHAR parameter is encoded into the
systables.flags column value in the row that describes the ' VERSION' table. Note
the leading blank space in the identifier of this system-generated table.

To determine whether the database enables the SQL_LOGICAL_CHAR
configuration parameter, which can apply logical character semantics to the
declarations of character columns, you can execute the following query:
SELECT flags INTO $value FROM ’informix’.systables WHERE tabname = ’ VERSION’;

1-54 IBM Informix Guide to SQL: Reference

Because the SQL_LOGICAL_CHAR setting is encoded in the two least significant
bits of the " VERSION.flags" value, you can calculate its setting from the returned
flags value by the following formula:
SQL_LOGICAL_CHAR = (value & 0x03) + 1

Here & is the bitwise AND operator. Any SQL_LOGICAL_CHAR setting greater than
1 indicates that SQL_LOGICAL_CHAR was enabled when the database was
created, and that explicit or default maximum size specifications of character
columns are multiplied by that setting.

When a prepared statement that references a database table is executed, the version
value is checked to make sure that nothing has changed since the statement was
prepared. If the version value has been changed by DDL operations that modified
the table schema while automatic recompilation was disabled by the
IFX_AUTO_REPREPARE setting of the SET ENVIRONMENT statement, the
prepared statement is not executed, and you must prepare the statement again.

The npused column does not reflect the number of pages used for BYTE or TEXT
data, nor the number of pages that are freed in DELETE or TRUNCATE
operations.

The nrows column and the npused columns might not accurately reflect the
number of rows and the number of data pages used by an external table unless the
NUMROWS clause was specified when the external table was created. See the IBM
Informix Administrator's Guide for more information.

The systables table has two rows that store information about the database locale:
GL_COLLATE with a tabid of 90 and GL_CTYPE with a tabid of 91. To view these
rows, enter the following SELECT statement:
SELECT * FROM systables WHERE tabid=90 OR tabid=91;

SYSTRACECLASSES
The systraceclasses system catalog table contains the names and identifiers of trace
classes. The systraceclasses table has the following columns.

Table 1-35. SYSTRACECLASSES table column descriptions

Column Type Explanation

name CHAR(18) Name of the class of trace messages

classid SERIAL Identifying code of the trace class

A trace class is a category of trace messages that you can use in the development
and testing of new DataBlade modules and user-defined routines. Developers use
the tracing facility by calling the appropriate DataBlade API routines within their
code.

To create a new trace class, insert a row directly into the systraceclasses table. By
default, all users can view this table, but only users with the DBA privilege can
modify it.

The database cannot support tracing unless the MITRACE_OFF configuration
parameter is undefined.

Chapter 1. System catalog tables 1-55

A unique index on the name column requires each trace class to have a unique
name. The database server assigns to each class a unique sequential code. The
index on this classid column also allows only unique values.

SYSTRACEMSGS
The systracemsgs system catalog table stores internationalized trace messages that
you can use in debugging user-defined routines.

The systracemsgs table has the following columns.

Table 1-36. SYSTRACEMSGS table column descriptions

Column Type Explanation

name VARCHAR(128) Name of the message

msgid SERIAL Identifying code of the message template

locale CHAR(36) Locale with which this version of the message is
associated (for example, en_us.8859-1)

seqno SMALLINT Reserved for future use

message VARCHAR(255) The message text

DataBlade module developers create a trace message by inserting a row directly
into the systracemsgs table. After a message is created, the development team can
specify it either by name or by msgid code, using trace statements that the
DataBlade API provides.

To create a trace message, you must specify its name, locale, and text. By default,
all users can view the systracemsgs table, but only users with the DBA privilege
can modify it.

The database cannot support tracing unless the MITRACE_OFF configuration
parameter is undefined.

A unique composite index is defined on the name and locale columns. Another
unique index is defined on the msgid column.

SYSTRIGBODY
The systrigbody system catalog table contains the ASCII text of the trigger
definition and the linearized code for the trigger. Linearized code is binary data and
code that is represented in ASCII format.

Important: The database server uses the linearized code that is stored in
systrigbody. You must not alter the content of rows that contain linearized code.

The systrigbody table has the following columns.

Table 1-37. SYSTRIGBODY table column descriptions

Column Type Explanation

trigid INTEGER Identifying code of the trigger

1-56 IBM Informix Guide to SQL: Reference

Table 1-37. SYSTRIGBODY table column descriptions (continued)

Column Type Explanation

datakey CHAR(1) Code specifying the type of data:

A = ASCII text for the body, triggered actions

B = Linearized code for the body

D = English text for the header, trigger definition

H = Linearized code for the header

S = Linearized code for the symbol table

seqno INTEGER Page number of this data segment

data CHAR(256) English text or linearized code

A composite index on the trigid, datakey, and seqno columns allows only unique
values.

SYSTRIGGERS
The systriggers system catalog table contains information about the SQL triggers in
the database. This information includes the triggering event and the correlated
reference specification for the trigger. The systriggers table has the following
columns.

Table 1-38. SYSTRIGGERS table column descriptions

Column Type Explanation

trigid SERIAL Identifying code of the trigger

trigname VARCHAR(128) Name of the trigger

owner VARCHAR(32) Name of the owner of the trigger

tabid INTEGER Identifying code of the triggering table

event CHAR(1) Code for the type of triggering event:

D = Delete trigger

I = Insert trigger

U = Update trigger

S = Select trigger

d = INSTEAD OF Delete trigger

i = INSTEAD OF Insert trigger

u = INSTEAD OF Update trigger

old VARCHAR(128) Name of value before update

new VARCHAR(128) Name of value after update

mode CHAR(1) Reserved for future use

collation CHAR(32) Collating order at the time when the routine was
created

A composite index on the trigname and owner columns allows only unique
values. An index on the trigid column also requires unique values. An index on
the tabid column allows duplicate values.

Chapter 1. System catalog tables 1-57

SYSUSERS
The sysusers system catalog table lists the authorization identifier of every
individual user, or public for the PUBLIC group, who holds database-level access
privileges. This table also lists the name of every role that holds access privileges
on any object in the database.

This system catalog table has the following columns:

Table 1-39. SYSUSERS table column descriptions

Column Type Explanation

username VARCHAR(32) Name of the database user or
role.

An index on username
allows only unique values.
The username value can be
the login name of a user or
the name of a role.

usertype CHAR(1) Code specifying the highest
database-level privilege held
by username, where
username is an individual
user or the PUBLIC group,
or a role name. The valid
codes are:

D = DBA (all privileges)

R = Resource (create
UDRs, UDTs, permanent
tables, and indexes)

C = Connect (work with
existing tables)

G = Role

U = Default role. When a
user is assigned a default
role, an implicit
connection to the
database is granted to the
user. This is the role the
user has before being
granted a C, D, or R role.

priority SMALLINT Reserved for future use.

password CHAR(16) Reserved for future use.

defrole VARCHAR(32) Name of the default role.

SYSVIEWS
The sysviews system catalog table describes each view in the database. Because it
stores the SELECT statement that created the view, sysviews can contain multiple
rows for each view. It has the following columns.

Column Type Explanation

tabid INTEGER Identifying code of the view

seqno SMALLINT Line number of the SELECT statement

1-58 IBM Informix Guide to SQL: Reference

Column Type Explanation

viewtext CHAR(256) Actual SELECT statement used to create the view

A composite index on tabid and seqno allows only unique values.

SYSVIOLATIONS
The sysviolations system catalog table stores information about constraint
violations for base tables.

This table is updated when the DELETE, INSERT, MERGE, or UPDATE statement
detects a violation of an enabled constraint or unique index in a database table for
which the START VIOLATIONS TABLE statement of SQL has created an associated
violations table (and for Informix, a diagnostics table). For each base table that has
an active violations table, the sysviolations table has a corresponding row, with the
following columns.

Column Type Explanation

targettid INTEGER Identifying code of the target table (the base table on which the
violations table and the diagnostic table are defined)

viotid INTEGER Identifying code of the violations table

diatid INTEGER Identifying code of the diagnostics table

maxrows INTEGER Maximum number of rows that can be inserted into the
diagnostics table by a single insert, update, or delete operation
on a target table that has a filtering mode object defined on it.

The maxrows column also signifies the maximum number of rows that can be
inserted in the diagnostics table during a single operation that enables a disabled
object or that sets a disabled object to filtering mode (provided that a diagnostics
table exists for the target table). If no maximum is specified for the diagnostics or
violations table, then maxrows contains a NULL value.

The primary key of this table is the targettid column. An additional unique index
is also defined on the viotid column.

IBM Informix also has a unique index on the diatid column.

SYSXADATASOURCES
The sysxadatasources system catalog table stores XA data sources.

The sysxadatasources table has the following columns.

Column Type Explanation

xa_datasrc_owner CHAR(32) The user ID of the XA data source owner

xa_datasrc_name VARCHAR(128) The name of the XA data source

xa_datasrc_rmid SERIAL Unique RMID of the XA data source

xa_source_typeid INTEGER XA data source type ID

Chapter 1. System catalog tables 1-59

SYSXASOURCETYPES
The sysxasourcetypes system catalog table stores XA data source types.

The sysxasourcetypes table has the following columns.

Column Type Explanation

xa_source_typeid SERIAL A unique identifier for the source type

xa_source_owner CHAR(32) The user ID of the owner

xa_source_name VARCHAR(128) The name of the source type

xa_flags INTEGER

xa_version INTEGER

xa_open INTEGER UDR ID of xa_open_entry

xa_close INTEGER UDR ID of xa_close_entry

xa_start INTEGER UDR ID of xa_start entry

xa_end INTEGER UDR ID of xa_end_entry

xa_rollback INTEGER UDR ID of xa_rollback_entry

xa_prepare INTEGER UDR ID of xa_prepare_entry

xa_commit INTEGER UDR ID of xa_commit_entry

xa_recover INTEGER UDR ID of xa_recover_entry

xa_forget INTEGER UDR ID of xa_forget_entry

xa_complete INTEGER UDR ID of xa_complete_entry

SYSXTDDESC
The sysxtddesc system catalog table provides a text description of each
user-defined data type (UDT) defined in the database. The sysxtddesc table has the
following columns.

Column Type Explanation

extended_id INTEGER Code uniquely identifying the extended data types

seqno SMALLINT Value to order and identify one line of the description
of the UDT

A new line is created only if the remaining text string is
larger than 255 bytes.

description CHAR(256) Textual description of the extended data type

A composite index on extended_id and seqno allows duplicate values.

SYSXTDTYPEAUTH
The sysxtdtypeauth system catalog table identifies the privileges on each UDT
(user-defined data type).

The sysxtdtypeauth table contains one row for each set of privileges granted and
has the following columns:

1-60 IBM Informix Guide to SQL: Reference

Column Type Explanation

grantor VARCHAR(32) Name of grantor of privilege

grantee VARCHAR(32) Name of grantee of privilege

type INTEGER Code identifying the UDT

auth CHAR(2) Code identifying privileges on the UDT:

n or N = Under privilege

u or U = Usage privilege

If the privilege code in the auth column is upper case (for example, 'U' for usage), a
user who has this privilege can also grant it to others. If the code is in lower case,
a user who has the privilege cannot grant it to others.

A composite index on type, grantor, and grantee allows only unique values. A
composite index on the type and grantee columns allows duplicate values.

SYSXTDTYPES
The sysxtdtypes system catalog table has an entry for each UDT (user-defined data
type), including opaque and distinct data types and complex data types (named
ROW types, unnamed ROW types, and COLLECTION types), that is defined in the
database.

The sysxtdtypes table has the following columns.

Table 1-40. SYSXTDTYPES table column descriptions

Column Type Explanation

extended_id SERIAL Unique identifying code for
extended data type

domain CHAR(1) Code for the domain of the
UDT

mode CHAR(1) Code classifying the UDT:

v B = Base (opaque) type

v C = Collection type or
unnamed ROW type

v D = Distinct type

v R = Named ROW type

v S = Reserved for internal
use

v T = Reserved for internal
use

v ' ' (blank) = Built-in type

owner VARCHAR(32) Name of the owner of the
UDT

name VARCHAR(128) Name of the UDT

type SMALLINT Code classifying the UDT

Chapter 1. System catalog tables 1-61

Table 1-40. SYSXTDTYPES table column descriptions (continued)

Column Type Explanation

source INTEGER The sysxtdtypes reference
(for distinct types only)

Zero (0) indicates that a
distinct UDT was created
from a built-in data type.

maxlen INTEGER The maximum length for
variable-length data types

Zero indicates a fixed-length
UDT.

length INTEGER The length in bytes for
fixed-length data types

Zero indicates a
variable-length UDT.

byvalue CHAR(1) 'T' = UDT is passed by value

'F' = UDT is not passed by
value

cannothash CHAR(1) 'T' = UDT is hashable by
default hash function

'F' = UDT is not hashable by
default function

align SMALLINT Alignment (= 1, 2, 4, or 8)
for this UDT

locator INTEGER Locator key for unnamed
ROW type

Each extended data type is characterized by a unique identifier, called an extended
identifier (extended_id), a data type identifier (type), and the length and
description of the data type.

For distinct types created from built-in data types, the type column codes
correspond to the value of the syscolumns.coltype column (indicating the source
type) as listed on page “SYSCOLUMNS” on page 1-17, but incremented by the
hexadecimal value 0x0000800. The file $INFORMIXDIR/incl/esql/sqltypes.h
contains information about sysxtdtypes.type and syscolumns.coltype codes.

An index on the extended_id column allows only unique values. An index on the
locator column allows duplicate values, as does a composite index on the name
and owner columns. A composite index on the type and source columns also
allows duplicate values.

Information Schema
The Information Schema consists of read-only views that provide information
about all the tables, views, and columns in the current database server to which
you have access. These views also provide information about SQL dialects (such as
IBM Informix, Oracle, or Sybase) and SQL standards. Note that unlike a system
catalog, whose tables describes an individual database, these views describe the
IBM Informix instance, rather than a single database.

1-62 IBM Informix Guide to SQL: Reference

This version of the Information Schema views is an X/Open CAE standard. These
standards are provided so that applications developed on other database systems
can obtain IBM Informix system catalog information without accessing the IBM
Informix system catalog tables directly.

Important: Because the X/Open CAE standard for Information Schema views
differs from ANSI-compliant Information Schema views, it is recommended that
you do not install the X/Open CAE Information Schema views on ANSI-compliant
databases.

The following Information Schema views are available:
v tables

v columns

v sql_languages

v server_info

Sections that follow contain information about how to generate and access
Information Schema views and information about their structure.

Generating the Information Schema Views
The Information Schema views are generated automatically when you, as DBA,
run the following DB-Access command:
dbaccess database-name $INFORMIXDIR/etc/xpg4_is.sql

The views display data from the system catalog tables. If tables, views, or routines
exist with any of the same names as the Information Schema views, you must
either rename those database objects or rename the views in the script before you
can install the views. You can drop the views with the DROP VIEW statement on
each view. To re-create the views, rerun the script.

Important: In addition to the columns specified for each Information Schema view,
individual vendors might include additional columns or change the order of the
columns. It is recommended that applications not use the forms SELECT * or
SELECT table-name* to access an Information Schema view.

Accessing the Information Schema Views
All Information Schema views have the Select privilege granted to PUBLIC WITH
GRANT OPTION so that all users can query the views. Because no other privileges
are granted on the Information Schema views, they cannot be updated.

You can query the Information Schema views as you would query any other table
or view in the database.

Structure of the Information Schema Views
The following Information Schema views are described in this section:
v tables

v columns

v sql_languages

v server_info

In order to accept long identifier names, most of the columns in the views are
defined as VARCHAR data types with large maximum sizes.

Chapter 1. System catalog tables 1-63

The tables Information Schema View
The tables Information Schema view contains one row for each table to which you
have access. It contains the following columns.

Column Data Type Explanation

table_schema VARCHAR(32) Name of owner of table

table_name VARCHAR(128) Name of table or view

table_type VARCHAR(128) BASE TABLE for table or VIEW for view

remarks VARCHAR(255) Reserved for future use

The visible rows in the tables view depend on your privileges. For example, if you
have one or more privileges on a table (such as Insert, Delete, Select, References,
Alter, Index, or Update on one or more columns), or if privileges are granted to
PUBLIC, you see the row that describes that table.

The columns Information Schema View
The columns Information Schema view contains one row for each accessible
column. It contains the following columns.

Table 1-41. Description of the columns Information Schema View

Column Data Type Explanation

table_schema VARCHAR(128) Name of owner of table

table_name VARCHAR(128) Name of table or view

column_name VARCHAR(128) Name of the column in the table or view

ordinal_position INTEGER Position of the column within its table

The ordinal_position value is a sequential
number that starts at 1 for the first column.
This is the IBM Informix extension to XPG4.

data_type VARCHAR(254) Name of the data type of the column, such
as CHARACTER or DECIMAL

char_max_length INTEGER Maximum length (in bytes) for character
data types; NULL otherwise

numeric_precision INTEGER Uses one of the following values:

v Total number of digits for exact numeric
data types (DECIMAL, INTEGER,
MONEY, SMALLINT)

v Number of digits of mantissa precision
(machine-dependent) for approximate
data types (FLOAT, SMALLFLOAT)

v NULL for all other data types.

numeric_prec_radix INTEGER Uses one of the following values:

v 2 = Approximate data types (FLOAT and
SMALLFLOAT)

v 10 = Exact numeric data types
(DECIMAL, INTEGER, MONEY, and
SMALLINT)

v NULL for all other data types

1-64 IBM Informix Guide to SQL: Reference

Table 1-41. Description of the columns Information Schema View (continued)

Column Data Type Explanation

numeric_scale INTEGER Number of significant digits to the right of
the decimal point for DECIMAL and
MONEY data types

0 for INTEGER and SMALLINT types
NULL for all other data types

datetime_precision INTEGER Number of digits in the fractional part of the
seconds for DATE and DATETIME columns;
NULL otherwise

This column is the IBM Informix extension
to XPG4.

is_nullable VARCHAR(3) Indicates whether a column allows NULL
values; either YES or NO

remarks VARCHAR(254) Reserved for future use

The sql_languages Information Schema View
The sql_languages Information Schema view contains a row for each instance of
conformance to standards that the current database server supports. The
sql_languages view contains the following columns.

Column Data Type Explanation

source VARCHAR(254) Organization defining this SQL version

source_year VARCHAR(254) Year the source document was approved

conformance VARCHAR(254) Standard to which the server conforms

integrity VARCHAR(254) Indication of whether this is an integrity
enhancement feature; either YES or NO

implementation VARCHAR(254) Identification of the SQL product of the
vendor

binding_style VARCHAR(254) Direct, module, or other binding style

programming_lang VARCHAR(254) Host language for which binding style is
adapted

The sql_languages view is completely visible to all users.

The server_info Information Schema View
The server_info Information Schema view describes the database server to which
the application is currently connected. It contains two columns.

Column Data Type Explanation

server_attribute VARCHAR(254) An attribute of the database server

attribute_value VARCHAR(254) Value of the server_attribute as it applies to the
current database server

Each row in this view provides information about one attribute. X/Open-compliant
databases must provide applications with certain required information about the
database server.

The server_info view includes the following server_attribute information.

Chapter 1. System catalog tables 1-65

server_attribute Explanation

identifier_length Maximum number of bytes for a user-defined identifier

row_length Maximum number of bytes in a row

userid_length Maximum number of bytes in a user name

txn_isolation Initial transaction isolation level for the database server:

Read Uncommitted (= Default isolation level for databases with no
transaction logging; also called Dirty Read)

Read Committed (= Default isolation level for databases that are not
ANSI-compliant, but that support explicit transaction logging)

Serializable (= Default isolation level for ANSI-compliant
databases; also called Repeatable Read)

collation_seq Assumed ordering of the character set for the database server The
following values are possible: ISO 8859-1 EBCDIC

The default IBM Informix representation shows ISO 8859-1.

The server_info view is completely visible to all users.

1-66 IBM Informix Guide to SQL: Reference

Chapter 2. Data types

Every column in a table in a database is assigned a data type. The data type
precisely defines the kinds of values that you can store in that column.

These topics describe built-in and extended data types, casting between two data
types, and operator precedence.

Summary of data types
IBM Informix supports the most common set of built-in data types. Additionally,
an extended set of data types are supported on the database server.

You can use both built-in data types (which are system-defined) and extended data
types (which you can define) in the following ways:
v Use them to create columns within database tables.
v Declare them as arguments and as returned types of routines.
v Use them as base types from which to create DISTINCT data types.
v Cast them to other data types.
v Declare and access host variables of these types in SPL and ESQL/C.

You assign data types to columns with the CREATE TABLE statement and change
them with the ALTER TABLE statement. When you change an existing column
data type, all data is converted to the new data type, if possible.

For information about the ALTER TABLE and CREATE TABLE statements, on SQL
statements that create specific data types, that create and drop casts, and on other
data type topics, see the IBM Informix Guide to SQL: Syntax.

For information about how to create and use complex data types supported by
IBM Informix, see the IBM Informix Database Design and Implementation Guide. For
information about how to create user-defined data types, see IBM Informix
User-Defined Routines and Data Types Developer's Guide.

Some data types can be used in distributed SQL operations, while others can be
used only in SQL operations within the same database.

Built-in data types supported in local and distributed SQL
operations

The following table lists all of the built-in SQL data types that Informix supports.
These built-in SQL data types are valid in all Informix SQL transactions, including
data-manipulation language (DML) operations of these types:
v Operations on objects in the local database
v Cross-database operations on objects in databases of the local server instance
v Cross-server operations on objects in databases of two or more database server

instances

© Copyright IBM Corp. 1996, 2015 2-1

Table 2-1. Data types supported in all operations

Data type Explanation

“BIGINT data type” on
page 2-6

Stores 8-byte integer values from -(263 -1) to 263 -1

“BIGSERIAL data type” on
page 2-6

Stores sequential, 8-byte integers from 1 to 263 -1

BSON and JSON built-in
opaque data types

The BSON data type is the binary representation of a JSON
data type format for serializing JSON documents. The JSON
data type is a plain text format for entering and displaying
structured data.

“BYTE data type” on page
2-8

Stores any kind of binary data, up to 231 bytes in length

“CHAR(n) data type” on
page 2-9

Stores character strings; collation is in code-set order

“CHARACTER(n) data
type” on page 2-10

Is a synonym for CHAR

“CHARACTER
VARYING(m,r) data type”
on page 2-10

Stores character strings of varying length (ANSI-compliant);
collation is in code-set order

“DATE data type” on page
2-12

Stores calendar dates

“DATETIME data type” on
page 2-12

Stores calendar date combined with time of day

“DEC data type” on page
2-15

Is a synonym for DECIMAL

“DECIMAL” on page 2-15 Stores floating-point numbers with definable precision; if
database is ANSI-compliant, the scale is zero

“DECIMAL (p,s) Fixed
Point” on page 2-16

Stores fixed-point numbers of defined scale and precision

“DOUBLE PRECISION
data types” on page 2-18

Synonym for FLOAT

“FLOAT(n)” on page 2-18 Stores double-precision floating-point numbers corresponding
to the double data type in C

“INT data type” on page
2-19

Is a synonym for INTEGER

“INT8” on page 2-19 Stores 8-byte integer values from -(263 -1) to 263 -1

“INTEGER data type” on
page 2-19

Stores whole numbers from -2,147,483,647 to +2,147,483,647

“INTERVAL data type” on
page 2-19

Stores a span of time (or level of effort) in units of years and
months.

“INTERVAL data type” on
page 2-19

Stores a span of time in a contiguous set of units of days, hours,
minutes, seconds, and fractions of a second

“MONEY(p,s) data type”
on page 2-24

Stores currency amounts

“NCHAR(n) data type” on
page 2-25

Same as CHAR, but can support localized collation

“NUMERIC(p,s) data type”
on page 2-26

Synonym for DECIMAL(p,s)

“NVARCHAR(m,r) data
type” on page 2-26

Same as VARCHAR, but can support localized collation

2-2 IBM Informix Guide to SQL: Reference

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_1770.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_1770.htm

Table 2-1. Data types supported in all operations (continued)

Data type Explanation

“REAL data type” on page
2-27

Is a synonym for SMALLFLOAT

“SERIAL(n) data type” on
page 2-29

Stores sequential integers (> 0) in positive range of INT

“SERIAL8(n) data type” on
page 2-30

Stores sequential integers (> 0) in positive range of INT8

“SMALLFLOAT” on page
2-33

Stores single-precision floating-point numbers corresponding to
the float data type of the C language

“SMALLINT data type” on
page 2-33

Stores whole numbers from -32,767 to +32,767

“TEXT data type” on page
2-33

Stores any kind of text data, up to 231 bytes in length

“VARCHAR(m,r) data
type” on page 2-35

Stores character strings of varying length (up to 255 bytes);
collation is in code-set order

In cross-server MERGE operations, the source table (but not the target table) can be
in a database of a remote Informix server.

For the character data types (CHAR, CHAR VARYING, LVARCHAR, NCHAR,
NVARCHAR, and VARCHAR), a data string can include letters, digits,
punctuation, whitespace, diacritical marks, ligatures, and other printable symbols
from the code set of the database locale. For UTF-8 and for code sets of some East
Asian locales, multibyte characters are supported within data strings.

Built-in data types supported only in local database SQL
operations

The following table lists the data types that Informix supports only for use in SQL
operations in a local database.

Table 2-2. Data types supported in a local database

Data type Explanation

“BLOB data type” on
page 2-7

Stores binary data in random-access chunks

The binary18 data type Stores 18 byte binary-encoded strings

The binaryvar data
type

Stores binary-encoded strings with a maximum length of 255 bytes

“BOOLEAN data type”
on page 2-8

Stores Boolean values true and false

“CLOB data type” on
page 2-11

Stores text data in random-access chunks

“DISTINCT data types”
on page 2-17

Stores data in a user-defined type that has the same format as a
source type on which it is based, but its casts and functions can
differ from those on the source type

Calendar data type Stores a calendar for a TimeSeries data type

CalendarPattern data
type

Stores the structure of the calendar pattern for a Calendar data
type

Chapter 2. Data types 2-3

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.dbext.doc/ids_dbxt_386.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.dbext.doc/ids_dbxt_385.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.dbext.doc/ids_dbxt_385.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.tms.doc/ids_tms_059.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.tms.doc/ids_tms_058.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.tms.doc/ids_tms_058.htm

Table 2-2. Data types supported in a local database (continued)

Data type Explanation

“IDSSECURITYLABEL
data type” on page
2-18

Stores LBAC security label objects.

“LIST(e) data type” on
page 2-22

Stores a sequentially ordered collection of elements, all of the same
data type, e; allows duplicate values

The lld_locator data
type

Stores a large object identifier

The lld_lob data type Stores the location of a smart large object and specifies whether the
object contains binary or character data

“LVARCHAR(m) data
type” on page 2-23

Stores variable-length strings of up to 32,739 bytes

“MULTISET(e) data
type” on page 2-25

Stores a non-ordered collection of values, with elements all of the
same data type, e; allows duplicate values.

The node data type for
querying hierarchical
data

Stores a combination of integers and decimal points that represents
hierarchical relationships, of variable length up to 256 characters

“OPAQUE data types”
on page 2-26

Stores a user-defined data type whose internal structure is
inaccessible to the database server

“ROW data type,
Named” on page 2-27

Stores a named ROW type

“ROW data type,
Unnamed” on page
2-28

Stores an unnamed ROW type

“SET(e) data type” on
page 2-31

Stores a non-ordered collection of elements, all of the same data
type, e; does not allow duplicate values

ST_LineString data
type

Stores a one-dimensional object as a sequence of points defining a
linear interpolated path

ST_MultiLineString
data type

Stores a collection of ST_LineString data types

ST_MultiPoint data
type

Stores a collection of ST_Point data types

ST_MultiPolygon data
type

Stores a collection of ST_Polygon data types

ST_Point data type Stores a zero-dimensional geometry that occupies a single location
in coordinate space

ST_Polygon data type Stores a two-dimensional surface stored as a sequence of points
defining its exterior bounding ring and 0 or more interior rings

TimeSeries data type Stores a collection of row subtypes

These extended data types of Informix are individually described in other topics.
These data types are valid in local operations on databases where the data types
are defined.

Extended data types in cross-database distributed SQL
transactions

Distributed operations on other databases of the same Informix instance can access
BOOLEAN, BLOB, CLOB, and LVARCHAR data types, which are implemented as

2-4 IBM Informix Guide to SQL: Reference

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.dbext.doc/ids_dbxt_476.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.dbext.doc/ids_dbxt_476.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.dbext.doc/ids_dbxt_478.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.dbext.doc/ids_dbxt_442.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.dbext.doc/ids_dbxt_442.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.dbext.doc/ids_dbxt_442.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.spatial.doc/ids_spat_050.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.spatial.doc/ids_spat_050.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.spatial.doc/ids_spat_057.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.spatial.doc/ids_spat_057.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.spatial.doc/ids_spat_056.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.spatial.doc/ids_spat_056.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.spatial.doc/ids_spat_060.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.spatial.doc/ids_spat_060.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.spatial.doc/ids_spat_047.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.spatial.doc/ids_spat_053.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.tms.doc/ids_tms_060.htm

built-in opaque types. Such operations can also access DISTINCT types whose base
types are built-in types, and user-defined types (UDTs), if the UDTs and DISTINCT
types are explicitly cast to built-in types, and if all of the UDTs, casts, and
DISTINCT types are defined in all the participating databases.

You cannot, however, reference the following extended data types in cross-database
transactions that access multiple databases of the local Informix instance:
v UDTs that are not cast to built-in data types
v DISTINCT types that are not cast to built-in data types
v Collection data types
v Named or unnamed ROW data types

Extended data types in cross-server distributed SQL
transactions

Distributed SQL transactions and function calls that access databases of other
Informix instances cannot return values of complex or smart large object data
types, nor of most distinct or built-in opaque data types. Among the extended data
types, only the following can be accessed in cross-server SQL operations:
v Any non-opaque built-in data type
v BOOLEAN
v DISTINCT of non-opaque built-in types
v DISTINCT of BOOLEAN
v DISTINCT of LVARCHAR
v DISTINCT of any of the DISTINCT types listed above
v IDSSECURITYLABEL
v LVARCHAR

A cross-server distributed SQL transaction can support DISTINCT data types only
if they are cast explicitly to built-in types, and all of the DISTINCT types, their
data type hierarchies, and their casts are defined exactly the same way in each
database that participates in the distributed operation. For queries or other DML
operations in cross-server UDRs that use the data types in the preceding list as
parameters or as returned data types, the UDR must also have the same definition
in every participating database.

The built-in DISTINCT data type IDSSECURITYLABEL, which stores security label
objects, can be accessed in cross-server and cross-database operations on protected
data by users who hold sufficient security credentials. Like local operations on
protected data, distributed queries that access remote tables protected by a security
policy can return only the qualifying rows that IDSLBACRULES allow, after the
database server has compared the security label that secures the data with the
security credentials of the user who issues the query.
Related concepts:
“Extended Data Types” on page 2-46
Related reference:
“Built-In Data Types” on page 2-37

ANSI to Informix data type mapping
IBM Informix has equivalent data types to most ANSI data types.

Chapter 2. Data types 2-5

The following table shows ANSI data types and the equivalent IBM Informix data
types.

Table 2-3. Mapping of ANSI to Informix data types

ANSI data type Informix data type

CHARACTER(n) or CHAR(n) CHARACTER(n) or CHAR(n)

CHARACTER VARYING(n) or
VARCHAR(n)

CHARACTER VARYING(n),
VARCHAR(m,r), or LVARCHAR(n)

NATIONAL CHARACTER(n) or NCHAR(n) NCHAR(n)

NATIONAL CHARACTER VARYING(n) or
NVARCHAR(n)

NVARCHAR(m,r)

INTEGER INTEGER or INT

SMALLINT SMALLINT

FLOAT FLOAT(n)

REAL REAL or SMALLFLOAT

DOUBLE PRECISION DOUBLE PRECISION or FLOAT(n)

NUMERIC(p,s) or DECIMAL(p,s) NUMERIC(p,s) or DECIMAL(p,s)

DATE DATE

TIMESTAMP DATETIME YEAR TO FRACTION(n)

Description of Data Types
This section describes the data types that IBM Informix supports.

BIGINT data type
The BIGINT data type stores integers from -(263 -1) to 263 -1, which is
–9,223,372,036,854,775,807 to 9,223,372,036,854,775,807, in eight bytes.

This data type has storage advantages over INT8 and advantages for some
arithmetic operations and sort comparisons over INT8 and DECIMAL data types.

BIGSERIAL data type
The BIGSERIAL data type stores a sequential integer, of the BIGINT data type, that
is assigned automatically by the database server when a new row is inserted. The
behavior of the BIGSERIAL data type is similar to the SERIAL data type, but with
a larger range.

The default BIGSERIAL starting number is 1, but you can assign an initial value, n,
when you create or alter the table. The value of n must be a positive integer in the
range of 1 to 9,223,372,036,854,775,807. If you insert the value zero (0) in a
BIGSERIAL column, the value that is used is the maximum positive value that
already exists in the BIGSERIAL column + 1. If you insert any value that is not
zero, that value will be inserted as it is.

A table can have no more than one SERIAL column, but it can have a SERIAL
column and either a SERIAL8 column or a BIGSERIAL column.

For information about:
v The SERIAL data type, see “SERIAL(n) data type” on page 2-29

2-6 IBM Informix Guide to SQL: Reference

v Using the SERIAL8 data type with the INT8 or BIGINT data type, see “Using
SERIAL8 and BIGSERIAL with INT8 or BIGINT”

Using SERIAL8 and BIGSERIAL with INT8 or BIGINT
All the arithmetic operators that are valid for INT8 and BIGINT (such as +, -, *,
and /) and all the SQL functions that are valid for INT8 and BIGINT (such as ABS,
MOD, POW, and so on) are also valid for SERIAL8 and BIGSERIAL values.

Data conversion rules that apply to INT8 and BIGINT also apply to SERIAL8 and
BIGSERIAL, but with a NOT NULL constraint on SERIAL8 or BIGSERIAL.

The value of a SERIAL8 or BIGSERIAL column of one table can be stored in INT8
or BIGINT columns of another table. In the second table, however, the INT8 or
BIGINT values are not subject to the constraints on the original SERIAL8 or
BIGSERIAL column.

BLOB data type
The BLOB data type stores any kind of binary data in random-access chunks,
called sbspaces. Binary data typically consists of saved spreadsheets, program-load
modules, digitized voice patterns, and so on. The database server performs no
interpretation of the contents of a BLOB column.

A BLOB column can be up to 4 terabytes (4*240 bytes) in length, though your
system resources might impose a lower practical limit. The minimum amount of
disk space allocated for smart large object data types is 512 bytes.

The term smart large object refers to BLOB and CLOB data types. Use CLOB data
types (see page “CLOB data type” on page 2-11) for random access to text data.
For general information about BLOB and CLOB data types, see “Smart large
objects” on page 2-40.

You can use these SQL functions to perform operations on a BLOB column:
v FILETOBLOB copies a file into a BLOB column.
v LOTOFILE copies a BLOB (or CLOB) value into an operating-system file.
v LOCOPY copies an existing smart large object to a new smart large object.

For more information about these SQL functions, see the IBM Informix Guide to
SQL: Syntax.

Within SQL, you are limited to the equality (=) comparison operation and the
encryption and decryption functions for BLOB data. (The encryption and
decryption functions are described in the IBM Informix Guide to SQL: Syntax.) To
perform additional operations, you must use one of the application programming
interfaces (APIs) from within your client application.

You can insert data into BLOB columns in the following ways:
v With the dbload or onload utilities
v With the LOAD statement (DB-Access)
v With the FILETOBLOB function
v From BLOB (ifx_lo_t) host variables (IBM Informix ESQL/C)

If you select a BLOB column using DB-Access, only the string <SBlob value> is
returned; no actual value is displayed.
Related information:

Chapter 2. Data types 2-7

FILETOBLOB and FILETOCLOB Functions
LOTOFILE Function
LOCOPY Function

BOOLEAN data type
The BOOLEAN data type stores TRUE or FALSE data values as a single byte.

The following table shows internal and literal representations of the BOOLEAN
data type.

Logical Value Internal Representation Literal Representation

TRUE \0 't'

FALSE \1 'f'

NULL Internal Use Only NULL

You can compare two BOOLEAN values to test for equality or inequality. You can
also compare a BOOLEAN value to the Boolean literals 't' and 'f'. BOOLEAN
values are not case-sensitive; 't' is equivalent to 'T' and 'f' to 'F'.

You can use a BOOLEAN column to store what a Boolean expression returns. In
the following example, the value of boolean_column is 't' if column1 is less than
column2, 'f' if column1 is greater than or equal to column2, and NULL if the
value of either column1 or column2 is unknown:
UPDATE my_table SET boolean_column = lessthan(column1, column2)

BYTE data type
The BYTE data type stores any kind of binary data in an undifferentiated byte
stream. Binary data typically consists of digitized information, such as
spreadsheets, program load modules, digitized voice patterns, and so on.

The term simple large object refers to an instance of a TEXT or BYTE data type. No
more than 195 columns of the same table can be declared as BYTE and TEXT data
types.

The BYTE data type has no maximum size. A BYTE column has a theoretical limit
of 231 bytes and a practical limit that your disk capacity determines.

You cannot use the MEDIUM or HIGH options of the UPDATE STATISTICS
statement to calculate distribution statistics on BYTE columns.

BYTE objects in DML operations

You can store, retrieve, update, or delete the contents of a BYTE column. You
cannot, however, use BYTE operands in arithmetic or string operations, nor assign
literals to BYTE columns with the SET clause of the UPDATE statement. You also
cannot use BYTE objects in any of the following contexts in a SELECT statement:
v With aggregate functions
v With the IN clause
v With the MATCHES or LIKE clauses
v With the GROUP BY clause
v With the ORDER BY clause

2-8 IBM Informix Guide to SQL: Reference

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_1526.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_1528.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_1529.htm

BYTE operands are valid in Boolean expressions only when you are testing for
NULL values with the IS NULL or IS NOT NULL operators.

You can use the following methods, which can load rows or update fields, to insert
BYTE data:
v With the dbload or onload utilities
v With the LOAD statement (DB-Access)
v From BYTE host variables (IBM Informix ESQL/C)

You cannot use a quoted text string, number, or any other actual value to insert or
update BYTE columns.

When you select a BYTE column, you can receive all or part of it. To retrieve it all,
use the regular syntax for selecting a column. You can also select any part of a
BYTE column by using subscripts, as the next example, which reads the first 75
bytes of the cat_picture column associated with the catalog number 10001:
SELECT cat_picture [1,75] FROM catalog WHERE catalog_num = 10001

A built-in cast converts BYTE values to BLOB values. For more information, see
the IBM Informix Database Design and Implementation Guide.

If you select a BYTE column using the DB-Access Interactive Schema Editor, only
the string ''<BYTE value>'' is returned; no data value is displayed.

Important: If you try to return a BYTE column from a subquery, an error results,
even if the column is not used in a Boolean expression nor with an aggregate.

CHAR(n) data type
The CHAR data type stores any string of letters, numbers, and symbols. It can
store single-byte and multibyte characters, based on the database locale.

A CHAR(n) column has a length of n bytes, where 1 ≤ n ≤ 32,767. If you do not
specify n, CHAR(1) is the default length. Character columns typically store
alphanumeric strings, such as names, addresses, phone numbers, and so on. When
a value is retrieved or stored as CHAR(n), exactly n bytes of data are transferred. If
the string is shorter than n bytes, the string is extended with blank spaces up to
the declared length. If the data value is longer than n bytes, a data string of length
n that has been truncated from the right is inserted or retrieved, without the
database server raising an exception.

This does not create partial characters in multibyte locales. In right-to-left locales,
such as Arabic, Hebrew, or Farsi, the truncation is from the left.

Size specifications in CHAR data type declarations can be affected by the
SQL_LOGICAL_CHAR feature that is described in the section “Logical Character
Semantics in Character Type Declarations” on page 2-37.

For more information about East Asian locales that support multibyte code sets,
see “Multibyte Characters with VARCHAR ” on page 2-36.

Treating CHAR Values as Numeric Values
If you plan to perform calculations on numbers stored in a column, you should
assign a number data type to that column. Although you can store numbers in
CHAR columns, you might not be able to use them in some arithmetic operations.
For example, if you insert a sum into a CHAR column, you might experience

Chapter 2. Data types 2-9

overflow problems if the CHAR column is too small to hold the value. In this case,
the insert fails. Numbers that have leading zeros (such as some zip codes) have the
zeros stripped if they are stored as number types INTEGER or SMALLINT.
Instead, store these numbers in CHAR columns.

Sorting and Relational Comparisons
In general, the collating order for sorting CHAR values is the order of characters in
the code set. (An exception is the MATCHES operator with ranges; see “Collating
VARCHAR Values” on page 2-36.) For more information about collation order, see
the IBM Informix GLS User's Guide.

For multibyte locales, the database supports any multibyte characters in the code
set. When storing multibyte characters in a CHAR data type, make sure to
calculate the number of bytes needed. For more information about multibyte
characters and locales, see the IBM Informix GLS User's Guide.

CHAR values are compared to other CHAR values by padding the shorter value
on the right with blank spaces until the values have equal length, and then
comparing the two values, using the code-set order for collation.

Nonprintable Characters with CHAR
A CHAR value can include tab, newline, whitespace, and nonprintable characters.
You must, however, use an application to insert nonprintable characters into host
variables and the host variables into your database. After passing nonprintable
characters to the database server, you can store or retrieve them. After you select
nonprintable characters, fetch them into host variables and display them with your
own display mechanism.

An important exception is the first value in the ASCII code set is used as the
end-of-data terminator symbol in columns of the CHAR data type. For this reason,
any subsequent characters in the same string cannot be retrieved from a CHAR
column, because the database server reads only the characters (if any) that precede
this null terminator. For example, you cannot use the following 7-byte string as a
CHAR data type value with a length of 7 bytes:
abc\0def

If you try to display nonprintable characters with DB-Access your screen returns
inconsistent results. (Which characters are nonprintable is locale-dependent. For
more information see the discussion of code-set conversion between the client and
the database server in the IBM Informix GLS User's Guide.)

CHARACTER(n) data type
The CHARACTER data type is a synonym for CHAR.

CHARACTER VARYING(m,r) data type
The CHARACTER VARYING data type stores a string of letters, digits, and
symbols of varying length, where m is the maximum size of the column (in bytes)
and r is the minimum number of bytes reserved for that column.

The CHARACTER VARYING data type complies with ANSI/ISO standard for
SQL; the non-ANSI VARCHAR data type supports the same functionality. For
more information, see the description of the VARCHAR type in “VARCHAR(m,r)
data type” on page 2-35.

2-10 IBM Informix Guide to SQL: Reference

CLOB data type
The CLOB data type stores any kind of text data in random-access chunks, called
sbspaces. Text data can include text-formatting information, if this information is
also textual, such as PostScript, Hypertext Markup Language (HTML), Standard
Graphic Markup Language (SGML), or Extensible Markup Language (XML) data.

The term smart large object refers to CLOB and BLOB data types. The CLOB data
type supports special operations for character strings that are inappropriate for
BLOB values. A CLOB value can be up to 4 terabytes (4*240 bytes) in length. The
minimum amount of disk space allocated for smart large object data types is 512
bytes.

Use the BLOB data type (see “BLOB data type” on page 2-7) for random access to
binary data. For general information about the CLOB and BLOB data types, see
“Smart large objects” on page 2-40.

The following SQL functions can perform operations on a CLOB column:
v FILETOCLOB copies a file into a CLOB column.
v LOTOFILE copies a CLOB (or BLOB) value into a file.
v LOCOPY copies a CLOB (or BLOB) value to a new smart large object.
v ENCRYPT_DES or ENCRYPT_TDES creates an encrypted BLOB value from a

plain-text CLOB argument.
v DECRYPT_BINAR or DECRYPT_CHAR returns an unencrypted BLOB value

from an encrypted BLOB argument (that ENCRYPT_DES or ENCRYPT_TDES
created from a plain-text CLOB value).

For more information about these SQL functions, see the IBM Informix Guide to
SQL: Syntax.

No casts exist for CLOB data. Therefore, the database server cannot convert data of
the CLOB type to any other data type, except by using these encryption and
decryption functions to return a BLOB. Within SQL, you are limited to the equality
(=) comparison operation for CLOB data. To perform additional operations, you
must use one of the application programming interfaces from within your client
application.

Multibyte characters with CLOB
You can insert data into CLOB columns in the following ways:
v With the dbload or onload utilities
v With the LOAD statement (DB-Access)
v From CLOB (ifx_lo_t) host variables (ESQL/C)

For examples of CLOB types, see the IBM Informix Guide to SQL: Tutorial and the
IBM Informix Database Design and Implementation Guide.

With GLS, the following rules apply:
v Multibyte CLOB characters must be defined in the database locale.
v The CLOB data type is collated in code-set order.
v The database server handles code-set conversions for CLOB data.

For more information about database locales, collation order, and code-set
conversion, see the IBM Informix GLS User's Guide.

Chapter 2. Data types 2-11

DATE data type
The DATE data type stores the calendar date. DATE data types require four bytes.
A calendar date is stored internally as an integer value equal to the number of
days since December 31, 1899.

Because DATE values are stored as integers, you can use them in arithmetic
expressions. For example, you can subtract a DATE value from another DATE
value. The result, a positive or negative INTEGER value, indicates the number of
days that elapsed between the two dates. (You can use a UNITS DAY expression to
convert the result to an INTERVAL DAY TO DAY data type.)

The following example shows the default display format of a DATE column:
mm/dd/yyyy

In this example, mm is the month (1-12), dd is the day of the month (1-31), and
yyyy is the year (0001-9999). You can specify a different order of time units and a
different time-unit separator than / (or no separator) by setting the DBDATE
environment variable. For more information, see “DBDATE environment variable”
on page 3-22.

In non-default locales, you can display dates in culture-specific formats. The locale
and the GL_DATE and DBDATE environment variables (as described in the next
chapter) affect the display formatting of DATE values. They do not, however, affect
the internal storage format for DATE columns in the database. For more
information, see the IBM Informix GLS User's Guide.

DATETIME data type
The DATETIME data type stores an instant in time expressed as a calendar date
and time of day.

You select how precisely a DATETIME value is stored; its precision can range from
a year to a fraction of a second.

DATETIME stores a data value as a contiguous series of fields that represents each
time unit (year, month, day, and so forth) in the data type declaration.

Field qualifiers to specify a DATETIME data type have this format:
DATETIME largest_qualifier TO smallest_qualifier

This resembles an INTERVAL field qualifier, but DATETIME represents a point in
time, rather than (like INTERVAL) a span of time. These differences exist between
DATETIME and INTERVAL qualifiers:
v The DATETIME keyword replaces the INTERVAL keyword.
v DATETIME field qualifiers cannot specify a nondefault precision for the

largest_qualifier time unit.
v Field qualifiers of a DATETIME data type can include YEAR, MONTH, and

smaller time units, but an INTERVAL data type that includes the DAY field
qualifier (or smaller time units) cannot also include the YEAR or MONTH field
qualifiers.

The largest_qualifier and smallest_qualifier of a DATETIME data type can be any of
the fields that the following table lists, provided that smallest_qualifier does not
specify a larger time unit than largest_qualifier. (The largest and smallest time units
can be the same; for example, DATETIME YEAR TO YEAR.)

2-12 IBM Informix Guide to SQL: Reference

Table 2-4. DATETIME field qualifiers

Qualifier field Valid entries

YEAR A year numbered from 1 to 9,999 (A.D.)

MONTH A month numbered from 1 to 12

DAY A day numbered from 1 to 31, as appropriate to the month

HOUR An hour numbered from 0 (midnight) to 23

MINUTE A minute numbered from 0 to 59

SECOND A second numbered from 0 - 59

FRACTION A decimal fraction-of-a-second with up to 5 digits of scale. The
default scale is 3 digits (a thousandth of a second). For
smallest_qualifier to specify another scale, write FRACTION(n), where
n is the number of digits from 1 - 5.

The declaration of a DATETIME column need not include the full YEAR to
FRACTION range of time units. It can include any contiguous subset of these time
units, or even only a single time unit.

For example, you can enter a MONTH TO HOUR value in a column declared as
YEAR TO MINUTE, if each entered value contains information for a contiguous
series of time units. You cannot, however, enter a value for only the MONTH and
HOUR; the entry must also include a value for DAY.

If you use the DB-Access TABLE menu, and you do not specify the DATETIME
qualifiers, a default DATETIME qualifier, YEAR TO YEAR, is assigned.

A valid DATETIME literal must include the DATETIME keyword, the values to be
entered, and the field qualifiers. You must include these qualifiers because, as
noted earlier, the value that you enter can contain fewer fields than were declared
for that column. Acceptable qualifiers for the first and last fields are identical to
the list of valid DATETIME fields that are listed in the table Table 2-4.

Write values for the field qualifiers as integers and separate them with delimiters.
The following table lists the delimiters that are used with DATETIME values in the
default US English locale. (These are a superset of the delimiters that are used in
INTERVAL values.)

Table 2-5. Delimiters used with DATETIME

Delimiter Placement in DATETIME Literal

Hyphen (-) Between the YEAR, MONTH, and DAY time-unit values

Blank space () Between the DAY and HOUR time-unit values

Colon (:) Between the HOUR, MINUTE, and SECOND time-unit values

Decimal point (.) Between the SECOND and FRACTION time-unit values

The following illustration shows a DATETIME YEAR TO FRACTION(3) value with
delimiters.

Chapter 2. Data types 2-13

When you enter a value with fewer time-unit fields than in the column, the value
that you enter is expanded automatically to fill all the declared time-unit fields. If
you leave out any more significant fields, that is, time units larger than any that
you include, those fields are filled automatically with the current values for those
time units from the system clock calendar. If you leave out any less-significant
fields, those fields are filled with zeros (or with 1 for MONTH and DAY) in your
entry.

You can also enter DATETIME values as character strings. The character string
must include information for each field defined in the DATETIME column. The
INSERT statement in the following example shows a DATETIME value entered as
a character string:
INSERT INTO cust_calls (customer_num, call_dtime, user_id,

call_code, call_descr)
VALUES (101, ’2001-01-14 08:45’, ’maryj’, ’D’,

’Order late - placed 6/1/00’);

If call_dtime is declared as DATETIME YEAR TO MINUTE, the character string
must include values for the year, month, day, hour, and minute fields.

If the character string does not contain information for all the declared fields (or if
it adds additional fields), then the database server returns an error.

All fields of a DATETIME column are two-digit numbers except for the year and
fraction fields. The year field is stored as four digits. When you enter a two-digit
value in the year field, how the abbreviated year is expanded to four digits
depends on the setting of the DBCENTURY environment variable.

For example, if you enter 02 as the year value, whether the year is interpreted as
1902, 2002, or 2102 depends on the setting of DBCENTURY and on the value of the
system clock calendar at execution time. If you do not set DBCENTURY, the leading
digits of the current year are appended by default.

The fraction field requires n digits where 1 ≤ n ≤ 5, rounded up to an even number.
You can use the following formula (rounded up to a whole number of bytes) to
calculate the number of bytes that a DATETIME value requires:
(total number of digits for all fields) /2 + 1

For example, a YEAR TO DAY qualifier requires a total of eight digits (four for
year, two for month, and two for day). According to the formula, this data value
requires 5, or (8/2) + 1, bytes of storage.

The USEOSTIME configuration parameter can affect the subsecond granularity
when the database server obtains the current time from the operating system in
SQL statements. For details, see the IBM Informix Administrator's Reference.

Fraction

SecondHour

Minute

Month

Dayyear

2003-09-23 12:42:06.001

Figure 2-1. Example DATETIME Value with Delimiters

2-14 IBM Informix Guide to SQL: Reference

With an ESQL API, the DBTIME environment variable affects DATETIME formatting.
Nondefault locales and settings of the GL_DATE and DBDATE environment variables
also affect the display of datetime data. They do not, however, affect the internal
storage format of a DATETIME column.

If you specify a locale other than U.S. English, the locale defines the
culture-specific display formats for DATETIME values. To change the default
display format, change the setting of the GL_DATETIME environment variable. When
a database with a nondefault locale uses a nondefault GL_DATETIME setting, the
USE_DTENV environment variable must be set to 1 before the database server can
correctly process localized DATETIME values in the following operations:
v using the LOAD or UNLOAD feature of DB-Access
v using the dbexport or dbimport migration utilities
v using DML statements of SQL on database tables or on objects that the CREATE

EXTERNAL TABLE statement defined.

For more information about locales and GLS environment variables that can
specify end-user DATETIME formats, see the IBM Informix GLS User's Guide.
Related concepts:
“Manipulating DATE with DATETIME and INTERVAL Values” on page 2-43
“Manipulating DATETIME Values” on page 2-42
Related reference:
“INTERVAL data type” on page 2-19
“DBCENTURY environment variable” on page 3-20
“DBTIME environment variable” on page 3-32
Related information:
The mi_datetime_compare() function

DEC data type
The DEC data type is a synonym for DECIMAL.

DECIMAL
The DECIMAL data type can take two forms: DECIMAL(p) floating point and
DECIMAL(p,s) fixed point.

In an ANSI-compliant database all DECIMAL numbers are fixed point.

By default, literal numbers that include a decimal (.) point are interpreted by the
database server as DECIMAL values.

DECIMAL(p) Floating Point
The DECIMAL data type stores decimal floating-point numbers up to a maximum
of 32 significant digits, where p is the total number of significant digits (the
precision).

Specifying precision is optional. If you specify no precision (p), DECIMAL is
treated as DECIMAL(16), a floating-point decimal with a precision of 16 places.
DECIMAL(p) has an absolute exponent range between 10-130 and 10124.

If you declare a DECIMAL(p) column in an ANSI-compliant database, the scale
defaults to DECIMAL(p, 0), meaning that only integer values can be stored in this
data type.

Chapter 2. Data types 2-15

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.dapif.doc/ids_dapif_553.htm

In a database that is not ANSI-compliant, a DECIMAL(p) is a floating-point data
type of a scale large enough to store the exponential notation for a value.

For example, the following calculation shows how many bytes of storage a
DECIMAL(5) column requires in the default locale (where the decimal point
occupies a single byte):

1 byte for the sign of the data value
1 byte for the 1st digit
1 byte for the decimal point
4 bytes for the rest of the digits (precision of 5 - 1)
1 byte for the e symbol
1 byte for the sign of the exponent
3 bytes for the exponent

12 bytes total

Thus, "12345" in a DECIMAL(5) column is displayed as "12345.00000" (that is, with
a scale of 6) in a database that is not ANSI-compliant.

DECIMAL (p,s) Fixed Point
In fixed-point numbers, DECIMAL(p,s), the decimal point is fixed at a specific
place, regardless of the value of the number. When you specify a column of this
type, you declare its precision (p) as the total number of digits that it can store,
from 1 to 32. You declare its scale (s) as the total number of digits in the fractional
part (that is, to the right of the decimal point).

All numbers with an absolute value less than 0.5 * 10-s have the value zero. The
largest absolute value of a DECIMAL(p,s) data type that you can store without an
overflow error is 10p-s -10-s. A DECIMAL column typically stores numbers with
fractional parts that must be stored and displayed exactly (for example, rates or
percentages). In an ANSI-compliant database, all DECIMAL numbers must have
absolute values in the range 10-32 to 10+31.

DECIMAL Storage
The database server uses one byte of disk storage to store two digits of a decimal
number, plus an additional byte to store the exponent and sign, with the first byte
representing a sign bit and a 7-bit exponent in excess-65 format. The rest of the
bytes express the mantissa as base-100 digits. The significant digits to the left of
the decimal and the significant digits to the right of the decimal are stored in
separate groups of bytes. At the maximum precision specification, DECIMAL(32,s)
data types can store s-1 decimal digits to the right of the decimal point, if s is an
odd number.

How the database server stores decimal numbers is illustrated in the following
example. If you specify DECIMAL(6,3), the data type consists of three significant
digits in the integral part and three significant digits in the fractional part (for
instance, 123.456). The three digits to the left of the decimal are stored on 2 bytes
(where one of the bytes only holds a single digit) and the three digits to the right
of the decimal are stored on another 2 bytes, as Figure 2-2 on page 2-17 illustrates.

(The exponent byte is not shown.) With the additional byte required for the
exponent and sign, DECIMAL(6,3) requires a total of 5 bytes of storage.

2-16 IBM Informix Guide to SQL: Reference

You can use the following formulas (rounded down to a whole number of bytes) to
calculate the byte storage (N) for a DECIMAL(p,s) data type (where N includes the
byte that is required to store the exponent and the sign):
If the scale is odd: N = (precision + 4) / 2
If the scale is even: N = (precision + 3) / 2

For example, the data type DECIMAL(5,3) requires 4 bytes of storage (9/2 rounded
down equals 4).

There is one caveat to these formulas. The maximum number of bytes the database
server uses to store a decimal value is 17. One byte is used to store the exponent
and sign, leaving 16 bytes to store up to 32 digits of precision. If you specify a
precision of 32 and an odd scale, however, you lose 1 digit of precision. Consider,
for example, the data type DECIMAL(32,31). This decimal is defined as 1 digit to
the left of the decimal and 31 digits to the right. The 1 digit to the left of the
decimal requires 1 byte of storage. This leaves only 15 bytes of storage for the
digits to the right of the decimal. The 15 bytes can accommodate only 30 digits, so
1 digit of precision is lost.

DISTINCT data types
A DISTINCT type is a data type that is derived from a source type (called the base
type).

A source type can be:
v A built-in type
v An existing DISTINCT type
v An existing named ROW type
v An existing opaque type

A DISTINCT type inherits from its source type the length and alignment on the
disk. A DISTINCT type thus makes efficient use of the preexisting functionality of
the database server.

When you create a DISTINCT data type, the database server automatically creates
two explicit casts: one cast from the DISTINCT type to its source type and one cast
from the source type to the DISTINCT type. A DISTINCT type based on a built-in
source type does not inherit the built-in casts that are provided for the built-in
type. A DISTINCT type does inherit, however, any user-defined casts that have
been defined on the source type.

A DISTINCT type cannot be compared directly to its source type. To compare the
two types, you must first explicitly cast one type to the other.

You must define a DISTINCT type in the database. Definitions of DISTINCT types
are stored in the sysxtdtypes system catalog table. The following SQL statements
maintain the definitions of DISTINCT types in the database:

-1 23 45 6-

Byte 1 Byte 2 Byte 3 Byte 4

Significant digits to the
left of decimal

Significant digits to the
right of decimal

Figure 2-2. Schematic that illustrates the storage of digits in a decimal (p,s) value

Chapter 2. Data types 2-17

v The CREATE DISTINCT TYPE statement adds a DISTINCT type to the database.
v The DROP TYPE statement removes a previously defined DISTINCT type from

the database.

For more information about the SQL statements mentioned above, see the IBM
Informix Guide to SQL: Syntax. For information about casting DISTINCT data types,
see “Casts for distinct types” on page 2-53. For examples that show how to create
and register cast functions for a DISTINCT type, see the IBM Informix Database
Design and Implementation Guide.

Size specifications in declarations of DISTINCT types whose base types are built-in
character types can be affected by the SQL_LOGICAL_CHAR feature that is
described in the section “Logical Character Semantics in Character Type
Declarations” on page 2-37.

DOUBLE PRECISION data types
The DOUBLE PRECISION keywords are a synonym for the FLOAT keyword.
Related reference:
“FLOAT(n)”

FLOAT(n)
The FLOAT data type stores double-precision floating-point numbers with up to 17
significant digits. FLOAT corresponds to IEEE 4-byte floating-point, and to the
double data type in C. The range of values for the FLOAT data type is the same as
the range of the C double data type on your computer.

You can use n to specify the precision of a FLOAT data type, but SQL ignores the
precision. The value n must be a whole number between 1 and 14.

A column with the FLOAT data type typically stores scientific numbers that can be
calculated only approximately. Because floating-point numbers retain only their
most significant digits, the number that you enter in this type of column and the
number the database server displays can differ slightly.

The difference between the two values depends on how your computer stores
floating-point numbers internally. For example, you might enter a value of
1.1000001 into a FLOAT field and, after processing the SQL statement, the database
server might display this value as 1.1. This situation occurs when a value has more
digits than the floating-point number can store. In this case, the value is stored in
its approximate form with the least significant digits treated as zeros.

FLOAT data types usually require 8 bytes of storage per value. Conversion of a
FLOAT value to a DECIMAL value results in 17 digits of precision.
Related reference:
“DOUBLE PRECISION data types”

IDSSECURITYLABEL data type
The IDSSECURITYLABEL type stores a security label in a table that is protected by
a label-based access control (LBAC) security policy.

Only a user who holds the DBSECADM role can create, alter, or drop a column of
this data type. IDSSECURITYLABEL is a built-in DISTINCT OF VARCHAR(128)
data type, but because its use is restricted to databases that implement label-based

2-18 IBM Informix Guide to SQL: Reference

access control, it is not classified as a character data type. A table that is protected
by a security policy can have only one IDSSECURITYLABEL column. A table that
is not associated with any label-based security policy cannot include an
IDSSECURITYLABEL column. You cannot encrypt the security label in a column of
type IDSSECURITYLABEL.

For a discussion of security policies, security components, security labels, and
other concepts of label-based access control (LBAC), see the IBM Informix Security
Guide.

INT data type
The INT data type is a synonym for INTEGER.

INT8
The INT8 data type stores whole numbers that can range in value from
–9,223,372,036,854,775,807 to 9,223,372,036,854,775,807 [or -(263-1) to 263-1], for 18 or
19 digits of precision.

The number –9,223,372,036,854,775,808 is a reserved value that cannot be used. The
INT8 data type is typically used to store large counts, quantities, and so on.

IBM Informix stores INT8 data in internal format that can require up to 10 bytes of
storage.

Arithmetic operations and sort comparisons are performed more efficiently on
integer data than on floating-point or fixed-point decimal data, but INT8 cannot
store data with absolute values beyond | 263-1 |. If a value exceeds the numeric
range of INT8, the database server does not store the value.

INTEGER data type
The INTEGER data type stores whole numbers that range from -2,147,483,647 to
2,147,483,647 for 9 or 10 digits of precision.

The number 2,147,483,648 is a reserved value and cannot be used. The INTEGER
value is stored as a signed binary integer and is typically used to store counts,
quantities, and so on.

Arithmetic operations and sort comparisons are performed more efficiently on
integer data than on float or decimal data. INTEGER columns, however, cannot
store absolute values beyond (231-1). If a data value lies outside the numeric range
of INTEGER, the database server does not store the value.

INTEGER data types require 4 bytes of storage per value.

INTERVAL data type
The INTERVAL data type stores a value that represents a span of time. INTERVAL
types are divided into two classes: year-month intervals and day-time intervals.

A year-month interval can represent a span of years and months, and a day-time
interval can represent a span of days, hours, minutes, seconds, and fractions of a
second.

An INTERVAL value is always composed of one value or a series of values that
represents time units. Within a data-definition statement such as CREATE TABLE

Chapter 2. Data types 2-19

or ALTER TABLE that defines the precision of an INTERVAL data type, the
qualifiers must have the following format:
INTERVAL largest_qualifier(n) TO smallest_qualifier

Here the largest_qualifier and smallest_qualifier keywords are taken from one of the
two INTERVAL classes, as shown in the table Table 2-6.

If SECOND (or a larger time unit) is the largest_qualifier, the declaration of an
INTERVAL data type can optionally specify n, the precision of the largest time unit
(for n ranging from 1 to 9); this is not a feature of DATETIME data types.

If smallest_qualifier is FRACTION, you can also specify a scale in the range from 1
to 5. For FRACTION TO FRACTION qualifiers, the upper limit of n is 5, rather
than 9. There are two incommensurable classes of INTERVAL data types:
v Those with a smallest_qualifier larger than DAY
v Those with a largest_qualifier smaller than MONTH

Table 2-6. Interval Classes

Interval Class Time Units Valid Entry

YEAR-MONTH
INTERVAL

YEAR A number of years

YEAR-MONTH
INTERVAL

MONTH A number of months

DAY-TIME
INTERVAL

DAY A number of days

DAY-TIME
INTERVAL

HOUR A number of hours

DAY-TIME
INTERVAL

MINUTE A number of minutes

DAY-TIME
INTERVAL

SECOND A number of seconds

DAY-TIME
INTERVAL

FRACTION A decimal fraction of a second, with up to 5 digits. The
default scale is 3 digits (thousandth of a second). To
specify a non-default scale, write FRACTION(n), where
1 ≤ n ≤ 5.

As with DATETIME data types, you can define an INTERVAL to include only the
subset of time units that you need. But because the construct of “month” (as used
in calendar dates) is not a time unit that has a fixed number of days, a single
INTERVAL value cannot combine months and days; arithmetic that involves
operands of the two different INTERVAL classes is not supported.

A value entered into an INTERVAL column need not include the full range of time
units that were specified in the data-type declaration of the column. For example,
you can enter a value of HOUR TO SECOND precision into a column defined as
DAY TO SECOND. A value must always consist, however, of contiguous time
units. In the previous example, you cannot enter only the HOUR and SECOND
values; you must also include MINUTE values.

A valid INTERVAL literal contains the INTERVAL keyword, the values to be
entered, and the field qualifiers. (See the discussion of literal intervals in the IBM
Informix Guide to SQL: Syntax.) When a value contains only one field, the largest
and smallest fields are the same.

2-20 IBM Informix Guide to SQL: Reference

When you enter a value in an INTERVAL column, you must specify the largest
and smallest fields in the value, just as you do for DATETIME values. In addition,
you can optionally specify the precision of the first field (and the scale of the last
field if it is a FRACTION). If the largest and smallest field qualifiers are both
FRACTION, you can specify only the scale in the last field.

Acceptable qualifiers for the largest and smallest fields are identical to the list of
INTERVAL fields that the tab;e Table 2-6 on page 2-20 displays.

If you use the DB-Access TABLE menu, but you specify no INTERVAL field
qualifiers, then a default INTERVAL qualifier, YEAR TO YEAR, is assigned.

The largest_qualifier in an INTERVAL value can be up to nine digits (except for
FRACTION, which cannot be more than five digits), but if the value that you want
to enter is greater than the default number of digits allowed for that field, you
must explicitly identify the number of significant digits in the value that you enter.
For example, to define an INTERVAL of DAY TO HOUR that can store up to 999
days, you can specify it the following way:
INTERVAL DAY(3) TO HOUR

INTERVAL literals use the same delimiters as DATETIME literals (except that
MONTH and DAY time units are not valid within the same INTERVAL value). the
following table shows the INTERVAL delimiters.

Table 2-7. INTERVAL Delimiters

Delimiter Placement in an INTERVAL Literal

Hyphen Between the YEAR and MONTH portions of the value

Blank space Between the DAY and HOUR portions of the value

Colon Between the HOUR, MINUTE, and SECOND portions of the value

Decimal point Between the SECOND and FRACTION portions of the value

You can also enter INTERVAL values as character strings. The character string
must include information for the same time units that were specified in the
data-type declaration for the column. The INSERT statement in the following
example shows an INTERVAL value entered as a character string:
INSERT INTO manufact (manu_code, manu_name, lead_time)

VALUES (’BRO’, ’Ball-Racquet Originals’, ’160’)

Because the lead_time column is defined as INTERVAL DAY(3) TO DAY, this
INTERVAL value requires only one field, the span of days required for lead time. If
the character string does not contain information for all fields (or adds additional
fields), the database server returns an error. For additional information about
entering INTERVAL values as character strings, see the IBM Informix Guide to SQL:
Syntax.

By default, all fields of an INTERVAL column are two-digit numbers, except for
the year and fraction fields. The year field is stored as four digits. The fraction
field requires n digits where 1 ≤ n ≤ 5, rounded up to an even number. You can use
the following formula (rounded up to a whole number of bytes) to calculate the
number of bytes required for an INTERVAL value:
(total number of digits for all fields)/2 + 1

Chapter 2. Data types 2-21

For example, INTERVAL YEAR TO MONTH requires six digits (four for year and
two for month), and requires 4, or (6/2) + 1, bytes of storage.

For information about using INTERVAL as a constant expression, see the
description of the INTERVAL Field Qualifier in the IBM Informix Guide to SQL:
Syntax.
Related concepts:
“Manipulating DATE with DATETIME and INTERVAL Values” on page 2-43
“Manipulating INTERVAL Values” on page 2-45
Related reference:
“DATETIME data type” on page 2-12
Related information:
The mi_interval_compare() function

LIST(e) data type
The LIST data type is a collection type that can store ordered non-NULL elements
of the same SQL data type.

The LIST data type supports, but does not require, duplicate element values. The
elements of a LIST data type have ordinal positions. The LIST object must have a
first element, which can be followed by a second element, and so on.

For unordered collection data types that do not support ordinal positions, see
“MULTISET(e) data type” on page 2-25 and “SET(e) data type” on page 2-31. For
complex data types that can store a set of values that includes different SQL data
types, see “ROW Data Types” on page 2-48.

No more than 97 columns of the same table can be declared as LIST data types.
(The same restriction applies to SET and MULTISET collection types.)

By default, the database server inserts new elements into a LIST object at the end
of the set of elements. To support the ordinal position of a LIST, the INSERT
statement provides the AT clause. This clause allows you to specify the position at
which you want to insert a LIST element value. For more information, see the
INSERT statement in the IBM Informix Guide to SQL: Syntax.

All elements in a LIST object have the same element type. To specify the element
type, use the following syntax:
LIST(element_type NOT NULL)

The element_type of a LIST can be any of the following data types:
v A built-in type, except SERIAL, SERIAL8, BIGSERIAL, BYTE, and TEXT
v A DISTINCT type
v An unnamed or named ROW type
v Another collection type
v An opaque type

You must specify the NOT NULL constraint for LIST elements. No other
constraints are valid for LIST columns. For more information about the syntax of
the LIST data type, see the IBM Informix Guide to SQL: Syntax.

2-22 IBM Informix Guide to SQL: Reference

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.dapif.doc/ids_dapif_554.htm

You can use LIST in most contexts where any other data type is valid. For
example:
v After the IN predicate in the WHERE clause of a SELECT statement to search for

matching LIST values
v As an argument to the CARDINALITY or mi_collection_card() function to

determine the number of elements in a LIST column

You cannot use LIST values as arguments to an aggregate function such as AVG,
MAX, MIN, or SUM.

Just as with the other collection data types, you must use parentheses (()) in
data type declarations to delimit the set of elements of a LIST data type:
CREATE FUNCTION update_nums(list1 LIST (ROW (a VARCHAR(10),

b VARCHAR(10),
c INT) NOT NULL));

In SQL expressions that include literal LIST values, however, you must use braces (
{ }) to delimit the set of elements of a LIST object, as in the examples that follow.

Two LIST values are equal if they have the same elements in the same order. The
following are both examples of LIST objects, but their values are not equal. :
LIST{"blue", "green", "yellow"}

LIST{"yellow", "blue", "green"}

The above expressions are not equal because the values are not in the same order.
To be equal, the second statement must be:
LIST{"blue", "green", "yellow"}

LVARCHAR(m) data type
Use the LVARCHAR data type to create a column for storing variable-length
character strings whose upper limit (m) can be up to 32,739 bytes.

This limit is much greater than the VARCHAR data type, which is used for
character strings that are no longer than 255 bytes.

The LVARCHAR data type is implemented as a built-in opaque data type. You can
access LVARCHAR columns in remote tables by using distributed queries across
databases of the same or different IBM Informix instances.

By default, the database server interprets quoted strings as LVARCHAR types. It
also uses LVARCHAR for input and output casts for opaque data types.

The LVARCHAR data type stores opaque data types in the string (external) format.
Each opaque type has an input support function and cast, which convert it from
LVARCHAR to a form that database servers can manipulate. Each opaque type
also has an output support function and cast, which convert it from its internal
representation to LVARCHAR.

Important: When LVARCHAR is declared (with no size specification) as the data
type of a column in a database table, the default maximum size is 2 KB (2048
bytes), but you can specify an explicit maximum length of up to 32,739 bytes.
When LVARCHAR is used in I/O operations on an opaque data type, however, the
maximum size is limited only by the operating system.

Chapter 2. Data types 2-23

You cannot use the MEDIUM or HIGH options of the UPDATE STATISTICS
statement to calculate distribution statistics on LVARCHAR columns.

Size specifications in LVARCHAR data type declarations can be affected by the
SQL_LOGICAL_CHAR feature that is described in the section “Logical Character
Semantics in Character Type Declarations” on page 2-37.

For more information about LVARCHAR, see the IBM Informix User-Defined
Routines and Data Types Developer's Guide.

MONEY(p,s) data type
The MONEY data type stores currency amounts.

TLike the DECIMAL(p,s) data type, MONEY can store fixed-point numbers up to a
maximum of 32 significant digits, where p is the total number of significant digits
(the precision) and s is the number of digits to the right of the decimal point (the
scale).

Unlike the DECIMAL data type, the MONEY data type is always treated as a
fixed-point decimal number. The database server defines the data type MONEY(p)
as DECIMAL(p,2). If the precision and scale are not specified, the database server
defines a MONEY column as DECIMAL(16,2).

You can use the following formula (rounded down to a whole number of bytes) to
calculate the byte storage for a MONEY data type:
If the scale is odd: N = (precision + 4) / 2
If the scale is even: N = (precision + 3) / 2

For example, a MONEY data type with a precision of 16 and a scale of 2
(MONEY(16,2)) requires 10 or (16 + 3)/2, bytes of storage.

In the default locale, client applications format values from MONEY columns with
the following currency notation:
v A currency symbol: a dollar sign ($) at the front of the value
v A thousands separator: a comma (,) that separates every three digits in the

integer part of the value
v A decimal point: a period (.) between the integer and fractional parts of the

value

To change the format for MONEY values, change the DBMONEY environment
variable. For valid DBMONEY settings, see “DBMONEY environment variable” on
page 3-27.

The default value that the database server uses for scale is locale-dependent. The
default locale specifies a default scale of two. For non-default locales, if the scale is
omitted from the declaration, the database server creates MONEY values with a
locale-specific scale.

The currency notation that client applications use is locale-dependent. If you
specify a nondefault locale, the client uses a culture-specific format for MONEY
values that might differ from the default U.S. English format in the leading (or
trailing) currency symbol, thousands separator, and decimal separator, depending
on what the locale files specify. For more information about locale dependency, see
the IBM Informix GLS User's Guide.

2-24 IBM Informix Guide to SQL: Reference

MULTISET(e) data type
The MULTISET data type is a collection type that stores a non-ordered set that can
include duplicate element values.

The elements in a MULTISET have no ordinal position. That is, there is no concept
of a first, second, or third element in a MULTISET. (For a collection type with
ordinal positions for elements, see “LIST(e) data type” on page 2-22.)

All elements in a MULTISET have the same element type. To specify the element
type, use the following syntax:
MULTISET(element_type NOT NULL)

The element_type of a collection can be any of the following types:
v Any built-in type, except SERIAL, SERIAL8, BIGSERIAL, BYTE, and TEXT
v An unnamed or a named ROW type
v Another collection type or opaque type

You can use MULTISET anywhere that you use any other data type, unless
otherwise indicated. For example:
v After the IN predicate in the WHERE clause of a SELECT statement to search for

matching MULTISET values
v As an argument to the CARDINALITY or mi_collection_card() function to

determine the number of elements in a MULTISET column

You cannot use MULTISET values as arguments to an aggregate function such as
AVG, MAX, MIN, or SUM.

You must specify the NOT NULL constraint for MULTISET elements. No other
constraints are valid for MULTISET columns. For more information about the
MULTISET collection type, see the IBM Informix Guide to SQL: Syntax.

Two multiset data values are equal if they have the same elements, even if the
elements are in different positions within the set. The following examples are both
multiset values but are not equal:
MULTISET {"blue", "green", "yellow"}
MULTISET {"blue", "green", "yellow", "blue"}

The following multiset values are equal:
MULTISET {"blue", "green", "blue", "yellow"}
MULTISET {"blue", "green", "yellow", "blue"}

No more than 97 columns of the same table can be declared as MULTISET data
types. (The same restriction applies to SET and LIST collection types.)

Named ROW
See “ROW data type, Named” on page 2-27.

NCHAR(n) data type
The NCHAR data type stores fixed-length character data. The data can be a string
of single-byte or multibyte letters, digits, and other symbols that are supported by
the code set of the database locale.

The main difference between CHAR and NCHAR data types is the collating order.

Chapter 2. Data types 2-25

The collation order of the CHAR data type follows the code-set order, but the
collating order of the NCHAR data type can be a localized order, if DB_LOCALE (or
SET COLLATION) specifies a locale that defines a localized order for collation.

Size specifications ib NCHAR data type declarations can be affected by the
SQL_LOGICAL_CHAR configuration parameter that is described in the section
“Logical Character Semantics in Character Type Declarations” on page 2-37.

In databases that are created with the NLSCASE INSENSITIVE property,
operations on NCHAR strings ignore letter case, ordering data values without
respect to or preference for letter case. For example, the NCHAR string "IDS"
might precede or follow "IdS" or "iDs" in the collated list that a query returns,
depending on the order in which these data strings are retrieved, because all of the
following NCHAR strings are treated as duplicate values:
"ids" "IDS" "idS" "IDs" "IdS" "iDs" "iDS" "Ids"

NUMERIC(p,s) data type
The NUMERIC data type is a synonym for fixed-point DECIMAL.

NVARCHAR(m,r) data type
The NVARCHAR data type stores strings of varying lengths. The string can
include digits, symbols, and both single-byte and (in some locales) multibyte
characters.

The main difference between VARCHAR and NVARCHAR data types is the
collation order. Collation of VARCHAR data follows code-set order, but
NVARCHAR collation can be locale specific, if DB_LOCALE (or SET
COLLATION) has specified a locale that defines a localized order for collation.
(The section “Collating VARCHAR Values” on page 2-36 describes an exception.)

A column declared as NVARCHAR, without parentheses or parameters, has a
maximum size of one byte, and a reserved size of zero.

The first parameter in NVARCHAR data type declarations can be affected by the
SQL_LOGICAL_CHAR configuration parameter that is described in the section
“Logical Character Semantics in Character Type Declarations” on page 2-37.

No more than 195 columns of the same table can be NVARCHAR data types.

In databases that are created with the NLSCASE INSENSITIVE property,
operations on NVARCHAR strings ignore letter case, ordering data values without
respect to or preference for letter case. For example, the NVARCHAR string "IBM"
might precede or follow "IbM" or "iBm" in the collated list that a query returns,
depending on the order in which these data strings are retrieved, because all of the
following NVARCHAR strings are treated as duplicate values:
"ibm" "IBM" "ibM" "IBm" "IbM" "iBm" "iBM" "Ibm"

OPAQUE data types
An OPAQUE type is a data type for which you must provide information to the
database server.

You must provide this information:
v A data structure for how the data values are stored on disk

2-26 IBM Informix Guide to SQL: Reference

v Support functions to determine how to convert between the disk storage format
and the user format for data entry and display

v Secondary access methods that determine how the index on this data type is
built, used, and manipulated

v User functions that use the data type
v A system catalog entry to register the OPAQUE type in the database

The internal structure of an OPAQUE type is not visible to the database server and
can only be accessed through user-defined routines. Definitions for OPAQUE types
are stored in the sysxtdtypes system catalog table. These SQL statements maintain
the definitions of OPAQUE types in the database:
v The CREATE OPAQUE TYPE statement registers a new OPAQUE type in the

database.
v The DROP TYPE statement removes a previously defined OPAQUE type from

the database.

For more information about the above-mentioned SQL statements, see the IBM
Informix Guide to SQL: Syntax. For information about how to create OPAQUE types
and an example of an OPAQUE type, see IBM Informix User-Defined Routines and
Data Types Developer's Guide.

REAL data type
The REAL data type is a synonym for SMALLFLOAT.

ROW data type, Named
A named ROW data type must be declared with a name. This SQL identifier must
be unique among data type names within the same database.

(An unnamed ROW type is a ROW type that contains fields but has no
user-defined name.) Only named ROW types support data type inheritance. For
more information, see “ROW Data Types” on page 2-48.

Defining named ROW types

You must declare and register in the database a new named ROW type by using
the CREATE ROW TYPE statement of SQL. Definitions for named ROW types are
stored in the sysxtdtypes system catalog table.

The fields of a ROW data type can be any built-in data type or UDT, but TEXT or
BYTE fields of a ROW type are valid in typed tables only. If you want to assign a
ROW type to a column in the CREATE TABLE or ALTER TABLE statements, its
elements cannot be TEXT or BYTE data types.

In general, the data type of a field of a ROW type can be any of these types:
v A built-in type (except for the TEXT or BYTE data types)
v A collection type (LIST, MULTISET, or SET)
v A distinct type
v Another named or unnamed ROW type
v An opaque type

These SQL statements maintain the definitions of named ROW data types:
v The CREATE ROW TYPE statement adds a named ROW type to the database.

Chapter 2. Data types 2-27

v The DROP ROW TYPE statement removes a previously defined named ROW
type from the database.

No more than 195 columns of the same table can be named ROW types.

For details about these SQL syntax statements, see the IBM Informix Guide to SQL:
Syntax. For examples of how to create and use named ROW types, see the IBM
Informix Database Design and Implementation Guide.

Equivalence and named ROW types

No two named ROW types can be equal, even if they have identical structures,
because they have different names. For example, the following named ROW types
have the same structure (the same number of fields and the same order of data
types of fields within the row) but they are not equal:
name_t (lname CHAR(15), initial CHAR(1), fname CHAR(15))
emp_t (lname CHAR(15), initial CHAR(1), fname CHAR(15))

A Boolean equality condition like name_t = emp_t always evaluates to FALSE if
both of the operands are different named ROW types.

Named ROW types and inheritance

Named ROW types can be part of a type-inheritance hierarchy. One named ROW
type can be the parent (or supertype) of another named ROW type. A subtype in a
hierarchy inherits all the properties of its supertype. Type inheritance is explained
in the CREATE ROW TYPE statement in the IBM Informix Guide to SQL: Syntax and
in the IBM Informix Database Design and Implementation Guide.

Typed tables

Tables that are part of an inheritance hierarchy must be typed tables. Typed tables
are tables that have been assigned a named ROW type. For the syntax you use to
create typed tables, see the CREATE TABLE statement in the IBM Informix Guide to
SQL: Syntax. Table inheritance and its relation to type inheritance is also explained
in that section. For information about how to create and use typed tables, see the
IBM Informix Database Design and Implementation Guide.

ROW data type, Unnamed
An unnamed ROW type contains fields but has no user-declared name. An
unnamed ROW type is defined by its structure.

Two unnamed ROW types are equal if they have the same structure (meaning the
ordered list of the data types of the fields). If two unnamed ROW types have the
same number of fields, and if the order of the data type of each field in one ROW
type matches the order of data types of the corresponding fields in the other ROW
data type, then the two unnamed ROW data types are equal.

For example, the following unnamed ROW types are equal:
ROW (lname char(15), initial char(1) fname char(15))
ROW (dept char(15), rating char(1) name char(15))

The following ROW types have the same number of fields and the same data
types, but are not equal, because their fields are not in the same order:

2-28 IBM Informix Guide to SQL: Reference

ROW (x integer, y varchar(20), z real)
ROW (x integer, z real, y varchar(20))

A field of an unnamed ROW type can be any of the following data types:
v A built-in type
v A collection type
v A distinct type
v Another ROW type
v An opaque type

Unnamed ROW types cannot be used in typed tables or in type inheritance
hierarchies. For more information about unnamed ROW types, see the IBM
Informix Guide to SQL: Syntax and the IBM Informix Database Design and
Implementation Guide.

Creating unnamed ROW types
You can create an unnamed ROW type in several ways:
v You can declare an unnamed ROW type using the ROW keyword. Each field in

a ROW can have a different field type. To specify the field type, use the
following syntax:
ROW(field_name field_type, ...)

The field_name must conform to the rules for SQL identifiers. (See the Identifier
section in the IBM Informix Guide to SQL: Syntax.)

v To generate an unnamed ROW type, use the ROW keyword as a constructor
with a series of values. A corresponding unnamed ROW type is created, using
the default data types of the specified values.
For example, the following declaration:
ROW(1, ’abc’, 5.30)

defines this unnamed ROW data type:
ROW (x INTEGER, y VARCHAR, z DECIMAL)

v You can create an unnamed ROW type by an implicit or explicit cast from a
named ROW type or from another unnamed ROW type.

v The rows of any table (except a table defined on a named ROW type) are
unnamed ROW types.

No more than 195 columns of the same table can be unnamed ROW types.

Inserting Values into Unnamed ROW Type Columns
When you specify field values for an unnamed ROW type, list the field values
after the constructor and between parentheses. For example, suppose you have an
unnamed ROW-type column. The following INSERT statement adds one group of
field values to this ROW column:
INSERT INTO table1 VALUES (ROW(4, ’abc’))

You can specify a ROW column in the IN predicate in the WHERE clause of a
SELECT statement to search for matching ROW values. For more information, see
the Condition section in the IBM Informix Guide to SQL: Syntax.

SERIAL(n) data type
The SERIAL data type stores a sequential integer, of the INT data type, that is
automatically assigned by the database server when a new row is inserted.

Chapter 2. Data types 2-29

The default serial starting number is 1, but you can assign an initial value, n, when
you create or alter the table.
v You must specify a positive number for the starting number.
v If you specify zero (0) for the starting number, the value that is used is the

maximum positive value that already exists in the SERIAL column + 1.

The maximum value for SERIAL is 2,147,483,647. If you assign a number greater
than 2,147,483,647, you receive a syntax error. Use the SERIAL8 or BIGSERIAL data
type, rather than SERIAL, if you need a larger range.

A table can have no more than one SERIAL column, but it can have a SERIAL
column and either a SERIAL8 column or a BIGSERIAL column.

SERIAL values in a column are not automatically unique. You must apply a unique
index or primary key constraint to this column to prevent duplicate serial
numbers. If you use the interactive schema editor in DB-Access to define the table,
a unique index is applied automatically to a SERIAL column.

SERIAL numbers might not be consecutive, because of concurrent users, rollbacks,
and other factors.

The DEFINE variable LIKE column syntax of SPL for indirect typing declares a
variable of the INTEGER data type if column is a SERIAL data type.

After a number is assigned, it cannot be changed. You can insert a value into a
SERIAL column (using the INSERT statement) or reset a serial column (using the
ALTER TABLE statement), if the new value does not duplicate any existing value
in the column. To insert into a SERIAL column, your database server increments by
one the previous value (or the reset value, if that is larger) and assigns the result as
the entered value. If ALTER TABLE has reset the next value of a SERIAL column to
a value smaller than values already in that column, however, the next value
follows this formula:
(maximum existing value in SERIAL column) + 1

For example, if you reset the serial value of customer.customer_num to 50, when
the largest existing value is 128, the next assigned number will be 129. For more
details on SERIAL data entry, see the IBM Informix Guide to SQL: Syntax.

A SERIAL column can store unique codes such as order, invoice, or customer
numbers. SERIAL data values require four bytes of storage, and have the same
precision as the INTEGER data type. For details of another way to assign unique
whole numbers to each row of a database table, see the CREATE SEQUENCE
statement in IBM Informix Guide to SQL: Syntax.

SERIAL8(n) data type
The SERIAL8 data type stores a sequential integer, of the INT8 data type, that is
assigned automatically by the database server when a new row is inserted.

The SERIAL8 data type behaves like the SERIAL data type, but with a larger
range. For more information about how to insert values into SERIAL8 columns, see
the IBM Informix Guide to SQL: Syntax.

A SERIAL8 data column is commonly used to store large, unique numeric codes
such as order, invoice, or customer numbers. SERIAL8 data values have the same
precision and storage requirements as INT8 values (page “INT8” on page 2-19).

2-30 IBM Informix Guide to SQL: Reference

The default serial starting number is 1, but you can assign an initial value, n, when
you create or alter the table.
v You must specify a positive number for the starting number.
v If you specify zero (0) for the starting number, the value that is used is the

maximum positive value that already exists in the SERIAL8 column + 1.

A table can have no more than one SERIAL column, but it can have a SERIAL
column and either a SERIAL8 column or a BIGSERIAL column.

SERIAL8 values in a column are not automatically unique. You must apply a
unique index or primary key constraint to this column to prevent duplicate serial
numbers. If you use the interactive schema editor in DB-Access to define the table,
a unique index is applied automatically to a SERIAL8 column.

SERIAL8 numbers might not be consecutive, because of concurrent users, rollbacks,
and other factors.

The DEFINE variable LIKE column syntax of SPL for indirect typing declares a
variable of the INTEGER data type if column is a SERIAL8 data type.

For more information, see “Assigning a Starting Value for SERIAL8.” For
information about using the SERIAL8 data type with the INT8 or BIGINT data
type, see “Using SERIAL8 and BIGSERIAL with INT8 or BIGINT” on page 2-7

Assigning a Starting Value for SERIAL8
The default serial starting number is 1, but you can assign an initial value, n, when
you create or alter the table. To start the values at 1 in a SERIAL8 column of a
table, give the value 0 for the SERIAL8 column when you insert rows into that
table. The database server will assign the value 1 to the SERIAL8 column of the
first row of the table. The largest SERIAL8 value that you can assign is 263-1
(9,223,372,036,854,775,807). If you assign a value greater than this, you receive a
syntax error. When the database server generates a SERIAL8 value of this
maximum number, it wraps around and starts generating values beginning at 1.

After a nonzero SERIAL8 number is assigned, it cannot be changed. You can,
however, insert a value into a SERIAL8 column (using the INSERT statement) or
reset the SERIAL8 value n (using the ALTER TABLE statement), if that value does
not duplicate any existing values in the column.

When you insert a number into a SERIAL8 column or reset the next value of a
SERIAL8 column, your database server assigns the next number in sequence to the
number entered. If you reset the next value of a SERIAL8 column to a value that is
less than the values already in that column, however, the next value is computed
using the following formula:
maximum existing value in SERIAL8 column + 1

For example, if you reset the SERIAL8 value of the customer_num column in the
customer table to 50, when the highest-assigned customer number is 128, the next
customer number assigned is 129.

For information about using the SERIAL8 data type with the INT8 or BIGINT data
type, see “Using SERIAL8 and BIGSERIAL with INT8 or BIGINT” on page 2-7

SET(e) data type
The SET data type is an unordered collection type that stores unique elements

Chapter 2. Data types 2-31

Duplicate element values are not valid as explained in IBM Informix Guide to SQL:
Syntax. (For a collection type that supports duplicate values, see the description of
MULTISET in “MULTISET(e) data type” on page 2-25.)

No more than 97 columns of the same table can be declared as SET data types.
(The same restriction also applies to MULTISET and LIST collection types.)

The elements in a SET have no ordinal position. That is, no construct of a first,
second, or third element in a SET exists. (For a collection type with ordinal
positions for elements, see “LIST(e) data type” on page 2-22.) All elements in a SET
have the same element type. To specify the element type, use this syntax:
SET(element_type NOT NULL)

The element_type of a collection can be any of the following types:
v A built-in type, except SERIAL, SERIAL8, BIGSERIAL, BYTE, and TEXT
v A named or unnamed ROW type
v Another collection type
v An opaque type

You must specify the NOT NULL constraint for SET elements. No other constraints
are valid for SET columns. For more information about the syntax of the SET
collection type, see the IBM Informix Guide to SQL: Syntax.

You can use SET anywhere that you use any other data type, unless otherwise
indicated. For example:
v After the IN predicate in the WHERE clause of a SELECT statement to search for

matching SET values
v As an argument to the CARDINALITY or mi_collection_card() function to

determine the number of elements in a SET column

SET values are not valid as arguments to an aggregate function such as AVG,
MAX, MIN, or SUM. For more information, see the Condition and Expression
sections in the IBM Informix Guide to SQL: Syntax.

The following examples declare two sets. The first statement declares a set of
integers and the second declares a set of character elements.
SET(INTEGER NOT NULL)
SET(CHAR(20) NOT NULL)

The following examples construct the same sets from value lists:
SET{1, 5, 13}
SET{"Oakland", "Menlo Park", "Portland", "Lenexa"}

In the following example, a SET constructor function is part of a CREATE TABLE
statement:
CREATE TABLE tab
(

c CHAR(5),
s SET(INTEGER NOT NULL)

);

The following set values are equal:
SET{"blue", "green", "yellow"}
SET{"yellow", "blue", "green"}

2-32 IBM Informix Guide to SQL: Reference

SMALLFLOAT
The SMALLFLOAT data type stores single-precision floating-point numbers with
approximately nine significant digits.

SMALLFLOAT corresponds to the float data type in C. The range of values for a
SMALLFLOAT data type is the same as the range of values for the C float data
type on your computer.

A SMALLFLOAT data type column typically stores scientific numbers that can be
calculated only approximately. Because floating-point numbers retain only their
most significant digits, the number that you enter in this type of column and the
number the database displays might differ slightly depending on how your
computer stores floating-point numbers internally.

For example, you might enter a value of 1.1000001 in a SMALLFLOAT field and,
after processing the SQL statement, the application might display this value as 1.1.
This difference occurs when a value has more digits than the floating-point
number can store. In this case, the value is stored in its approximate form with the
least significant digits treated as zeros.

SMALLFLOAT data types usually require four bytes of storage. Conversion of a
SMALLFLOAT value to a DECIMAL value results in nine digits of precision.

SMALLINT data type
The SMALLINT data type stores small whole numbers that range from –32,767 to
32,767. The maximum negative number, –32,768, is a reserved value and cannot be
used.

The SMALLINT value is stored as a signed binary integer.

Integer columns typically store counts, quantities, and so on. Because the
SMALLINT data type requires only two bytes per value, arithmetic operations are
performed efficiently. SMALLINT, however, stores only a limited range of values,
compared to other built-in numeric data types. If a number is outside the range of
the minimum and maximum SMALLINT values, the database server does not store
the data value, but instead issues an error message.

TEXT data type
The TEXT data type stores any kind of text data. It can contain both single-byte
and multibyte characters that the locale supports. The term simple large object refers
to an instance of a TEXT or BYTE data type.

A TEXT column has a theoretical limit of 231 bytes (two gigabytes) and a practical
limit that your available disk storage determines. No more than 195 columns of the
same table can be declared as TEXT data types. The same restriction also applies to
BYTE data types.

You can store, retrieve, update, or delete the value in a TEXT column.

You can use TEXT operands in Boolean expressions only when you are testing for
NULL values with the IS NULL or IS NOT NULL operators.

You can use the following methods, which can load rows or update fields, to insert
TEXT data:

Chapter 2. Data types 2-33

v With the dbload or onload utilities
v With the LOAD statement (DB-Access)
v From TEXT host variables (ESQL)

A built-in cast exists to convert TEXT objects to CLOB objects. For more
information, see the IBM Informix Database Design and Implementation Guide.

Strings of the TEXT data type are collated in code-set order. For more information
about collating orders, see the IBM Informix GLS User's Guide.

Selecting data in a TEXT column

When you select a TEXT column, you can receive all or part of it. To retrieve it all,
use the regular syntax for selecting a column. You can also select any part of a
TEXT column by using subscripts, as this example shows:
SELECT cat_descr [1,75] FROM catalog WHERE catalog_num = 10001

The SELECT statement reads the first 75 bytes of the cat_descr column associated
with the catalog_num value 10001.

Loading data into a TEXT column

You can use the LOAD statement to insert data into a table. For example, the
inp.txt file contains the following information:
1|aaaaa|
2|bbbbb|
3|cccccc|

To load this data into the blobtab table use the following statement:
LOAD FROM inp.txt INSERT INTO blobtab;

Limitations

You cannot use TEXT operands in arithmetic or string expressions, nor can you
assign literals to TEXT columns in the SET clause of the UPDATE statement.

You also cannot use TEXT values in any of the following ways:
v With aggregate functions
v With the IN clause
v With the MATCHES or LIKE clauses
v With the GROUP BY clause
v With the ORDER BY clause

You cannot use a quoted text string, number, or any other actual value to insert or
update TEXT columns.

You cannot use the MEDIUM or HIGH options of the UPDATE STATISTICS
statement to calculate distribution statistics on TEXT columns.

Important: An error results if you try to return a TEXT column from a subquery,
even if no TEXT column is used in a comparison condition or with the IN
predicate.

2-34 IBM Informix Guide to SQL: Reference

Nonprintable Characters in TEXT Values
TEXT columns typically store documents, program source files, and so on. In the
default U.S. English locale, data objects of type TEXT can contain a combination of
printable ASCII characters and the following control characters:
v Tab (CTRL-I)
v New line (CTRL-J)
v New page (CTRL-L)

Both printable and nonprintable characters can be inserted in text columns. IBM
Informix products do not do any checking of data values that are inserted in a
column of the TEXT data type. (Applications might have difficulty, however, in
displaying TEXT values that include non-printable characters.) For detailed
information about entering and displaying nonprintable characters, see
“Nonprintable Characters with CHAR” on page 2-10.

Unnamed ROW
See “ROW data type, Unnamed” on page 2-28.

VARCHAR(m,r) data type
The VARCHAR data type stores character strings of varying length that contain
single-byte and (if the locale supports them) multibyte characters, where m is the
maximum size (in bytes) of the column and r is the minimum number of bytes
reserved for that column.

A column declared as VARCHAR without parentheses or parameters has a
maximum size of one byte, and a reserved size of zero.

The VARCHAR data type is the IBM Informix implementation of a character
varying data type. The ANSI standard data type for varying-length character
strings is CHARACTER VARYING.

The size of the maximum size (m) parameter of a VARCHAR column can range
from 1 to 255 bytes. If you are placing an index on a VARCHAR column, the
maximum size is 254 bytes. You can store character strings that are shorter, but not
longer, than the m value that you specify.

Specifying the minimum reserved space (r) parameter is optional. This value can
range from 0 to 255 bytes but must be less than the maximum size (m) of the
VARCHAR column. If you do not specify any minimum value, it defaults to 0. You
should specify this parameter when you initially intend to insert rows with short
or NULL character strings in the column but later expect the data to be updated
with longer values.

For variable-length strings longer than 255 bytes, you can use the LVARCHAR data
type, whose upper limit is 32,739 bytes, instead of VARCHAR.

In an index based on a VARCHAR column (or on a NVARCHAR column), each
index key has a length that is based on the data values that are actually entered,
rather than on the declared maximum size of the column. (See, however,
“IFX_PAD_VARCHAR environment variable” on page 3-46 for information about
how you can configure the effective size of VARCHAR and NVARCHAR data
strings that IBM Informix sends or receives.)

Chapter 2. Data types 2-35

When you store a string in a VARCHAR column, only the actual data characters
are stored. The database server does not strip a VARCHAR string of any
user-entered trailing blanks, nor pad a VARCHAR value to the declared length of
the column. If you specify a reserved space (r), but some data strings are shorter
than r bytes, some space reserved for rows goes unused.

VARCHAR values are compared to other VARCHAR values (and to other
character-string data types) in the same way that CHAR values are compared. The
shorter value is padded on the right with blank spaces until the values have equal
lengths; then they are compared for the full length.

No more than 195 columns of the same table can be VARCHAR data types.

Nonprintable Characters with VARCHAR

Nonprintable VARCHAR characters are entered, displayed, and treated in the same
way that nonprintable characters in CHAR values are treated. For details, see
“Nonprintable Characters with CHAR” on page 2-10.

Storing Numeric Values in a VARCHAR Column

When you insert a numeric value in a VARCHAR column, the stored value does
not get padded with trailing blanks to the maximum length of the column. The
number of digits in a numeric VARCHAR value is the number of characters that
are required to store that value. For example, in the next example, the value stored
in table mytab is 1.
create table mytab (col1 varchar(10));
insert into mytab values (1);

Tip: VARCHAR treats C null (binary 0) and string terminators as termination
characters for nonprintable characters.

In some East Asian locales, VARCHAR data types can store multibyte characters if
the database locale supports a multibyte code set. If you store multibyte characters,
make sure to calculate the number of bytes needed. For more information, see the
IBM Informix GLS User's Guide.

Multibyte Characters with VARCHAR

The first parameter in VARCHAR data type declarations can be affected by the
SQL_LOGICAL_CHAR feature that is described in the section “Logical Character
Semantics in Character Type Declarations” on page 2-37.

Collating VARCHAR Values

The main difference between the NVARCHAR and the VARCHAR data types (like
the difference between CHAR and NCHAR) is the difference in collating order. In
general, collation of VARCHAR (like CHAR and LVARCHAR) values is in the
order of the characters as they exist in the code set.

An exception is the MATCHES operator, which applies a localized collation to
NVARCHAR and VARCHAR values (and to CHAR, LVARCHAR, and NCHAR
values) if you use bracket ([]) symbols to define ranges when DB_LOCALE (or
SET COLLATION) has specified a localized collating order. For more information,
see the IBM Informix GLS User's Guide.

2-36 IBM Informix Guide to SQL: Reference

Built-In Data Types
IBM Informix supports the following built-in data types.

Category Data Types

Character CHAR, CHARACTER VARYING, LVARCHAR,
NCHAR, NVARCHAR, VARCHAR,
IDSSECURITYLABEL

Large-object Simple-large-object types: BYTE, TEXT
Smart-large-object types: BLOB, CLOB

Logical BOOLEAN

Multirepresentational BSON and JSON built-in opaque data types

Numeric BIGINT, BIGSERIAL, DECIMAL, FLOAT, INT8,
INTEGER, MONEY, SERIAL, SERIAL8, SMALLFLOAT,
SMALLINT

Time DATE, DATETIME, INTERVAL

Related reference:
“Summary of data types” on page 2-1
Related information:
BSON and JSON built-in opaque data types

Character Data Types
The character data types store string values.

Built-in Character Types

Table 2-8. Attributes of built-in character data types

Size (in bytes) Default Reserved Collation Length

CHAR(n) 1 to 32,767 1 byte None Code set Fixed

NCHAR(n) 1 to 32,767 1 byte None Localized Fixed

VARCHAR(m, r) 1 to 255 0 for r 0 to 255 bytes Code set Variable

NVARCHAR(m, r) 1 to 255 0 for r 0 to 255 bytes Localized Variable

LVARCHAR(m) 1 to 32,739 2048 bytes None Code set Variable

The database server also uses LVARCHAR to represent the external format of
opaque data types. In I/O operations of the database server, LVARCHAR data
values have no upper limit on their size, apart from file size restrictions or limits of
your operating system or hardware resources.

Logical Character Semantics in Character Type Declarations

IBM Informix supports a configuration parameter, SQL_LOGICAL_CHAR, whose
setting can instruct the SQL parser to interpret the maximum size of character
columns in data type declarations of the CREATE TABLE or ALTER TABLE
statements as logical characters, rather than in units of bytes.

When a database is created, the current SQL_LOGICAL_CHAR setting for the
database server is recorded in the systables table of the system catalog. The feature
has no effect on tables that are subsequently created or altered in the database if
the setting is OFF or 1.

Chapter 2. Data types 2-37

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_1770.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_1770.htm

In a database where the SQL_LOGICAL_CHAR setting is ON or is a digit between
2, 3, or 4, however, the SQL parser interprets explicit and implicit size declarations
as logical characters in declarations of SPL variables and declarations of columns in
database tables for the following character types:
v CHAR and CHARACTER
v CHARACTER VARYING and VARCHAR
v LVARCHAR
v NCHAR
v NVARCHAR
v DISTINCT types of the data types listed above
v DISTINCT types of those DISTINCT types
v ROW data type fields of the types listed above .
v LIST, MULTISET, and SET elements of the types listed above.

This feature has no effect on the maximum storage size limits for the character
types listed in the previous table. For databases that use a multibyte locale,
however, it can reduce the risk of data truncation when a string is inserted into a
character column or assigned to a character variable.

For example, if 4 is the SQL_LOGICAL_CHAR setting for the database, then a
VARCHAR(10, 5) specification is interpreted as requesting a maximum of 40 bytes
of storage, with 5 of these bytes reserved, creating a VARCHAR(40, 5) data type in
standard SQL notation, rather than what was specified in the declaration.

The reserve size parameters of VARCHAR and NVARCHAR data types are not
affected by the SQL_LOGICAL_CHAR setting, because the minimum size of a
multibyte character is 1 byte. In this example, the minimum size of 5 multibyte
characters is 5 bytes, a size that remains unchanged.

See the description of the SQL_LOGICAL_CHAR configuration parameter in the
IBM Informix Administrator's Reference for more information about the effect of the
SQL_LOGICAL_CHAR setting in databases whose DB_LOCALE specifies a
multibyte locale. For additional information about multibyte locales and logical
characters, see the IBM Informix GLS User's Guide.

IDSSECURITYLABEL

IBM Informix also supports the IDSSECURITYLABEL data type for systems that
implement label-based access control (LBAC). This built-in data type can be
formally classified as a character type, because it is defined as a DISTINCT OF
VARCHAR(128) data type, but only users who hold the DBSECADM role can
declare this data type in DDL operations. It supports the LBAC security feature,
rather than functioning as a general-purpose character type.

Data Type Promotion

For some string-manipulation operations of IBM Informix, the five built-in
character data types listed above support data type promotion, in order to reduce
the risk of string operations failing because a returned string is too large to be
stored in an NVARCHAR or VARCHAR column or program variable. See the topic
"Return Types from CONCAT and String Manipulation Functions" in IBM Informix
Guide to SQL: Syntax for details of data type promotion among IBM Informix
character types.

2-38 IBM Informix Guide to SQL: Reference

National Language Support

The NCHAR and NVARCHAR types are sometimes called National Language
Support data types because of their support for localized collation. Because
columns of type VARCHAR or NVARCHAR have no default size, you must
specify a size (no greater than 255) in their declaration. For VARCHAR or
NVARCHAR columns on which an index is defined, the maximum size is 254
bytes.

NLSCASE lNSENSITIVE Databases

In databases created with the NLSCASE INSENSITIVE keyword option, operations on
data strings of the NCHAR or NVARCHAR types makes no distinction between
uppercase and lowercase variants of the same letter. Rows are stored in NCHAR or
NVARCHAR columns in the letter case in which characters were loaded, but data
strings that consist of the same letters in the same sequence are evaluated as
duplicates, even if the case of some letters is not identical. For example, the three
NCHAR strings "ABC" and "AbC" and "abC" are treated as duplicates. Other built-in
character types, including CHAR, LVARCHAR, and VARCHAR, follow the default
case-sensitive rules, so that the same three strings in a CHAR column evaluate to
distinct values.

Databases with the NLSCASE INSENSITIVE property also ignore the letter case of
DISTINCT data types whose base types are NCHAR or NVARCHAR, as well as
NCHAR or NVARCHAR fields in named or unnamed ROW types, and NCHAR or
NVARCHAR elements of COLLECTION data types, including LIST, SET, or
MULTISET.

In a database that is insensitive to the letter case of NCHAR or NVARCHAR
values, string manipulation operations might produce unexpected results, if they
implicitly cast CHAR, LVARCHAR, or VARCHAR operands or arguments to
NCHAR or NVARCHAR data types. In some contexts, the operation can return a
duplicate string, despite letter case variations that the database server would not
have treated as duplicates for the original data types.

Large-Object Data Types
A large object is a data object that is logically stored in a table column but
physically stored independent of the column. Large objects are stored separate
from the table because they typically store a large amount of data. Separation of
this data from the table can increase performance.

Figure 2-3 shows the large-object data types.

Only IBM Informix supports BLOB and CLOB data types.

For the relative advantages and disadvantages of simple and smart large objects,
see the IBM Informix Database Design and Implementation Guide.

Large objects

Simple large objects

BYTE TEXT BLOB CLOB

Smart large objects

Figure 2-3. Large-Object Data Types

Chapter 2. Data types 2-39

Simple Large Objects
Simple large objects are a category of large objects that have a theoretical size limit
of 231 bytes and a practical limit that your disk capacity determines. IBM Informix
supports these simple-large-object data types:

BYTE Stores binary data. For more detailed information about this data type, see
the description on page “BYTE data type” on page 2-8.

TEXT Stores text data. For more detailed information about this data type, see
the description on page “TEXT data type” on page 2-33.

No more than 195 columns of the same table can be declared as BYTE or TEXT
data types. Unlike smart large objects, simple large objects do not support random
access to the data. When you transfer a simple large object between a client
application and the database server, you must transfer the entire BYTE or TEXT
value. If the data cannot fit into memory, you must store the data value in an
operating-system file and then retrieve it from that file.

The database server stores simple large objects in blobspaces. A blobspace is a logical
storage area that contains one or more chunks that only store BYTE and TEXT
data. For information about how to define blobspaces, see your IBM Informix
Administrator's Guide.

Smart large objects
Smart large objects are a category of large objects that support random access to
the data, and that are generally recoverable.

The random access feature allows you to seek and read through the smart large
object as if it were an operating-system file.

Smart large objects are also useful for opaque data types with large storage
requirements. (See the description of opaque data types in “Opaque Data Types”
on page 2-49.) They have a theoretical size limit of 242 bytes and a practical limit
that your disk capacity determines.

IBM Informix supports the following smart-large-object data types:

BLOB Stores binary data. For more information about this data type, see the
description on page “BLOB data type” on page 2-7.

CLOB Stores text data. For more information about this data type, see “CLOB
data type” on page 2-11.

IBM Informix stores smart large objects in sbspaces. An sbspace is a logical storage
area that contains one or more chunks that store only BLOB and CLOB data. For
information about how to define sbspaces, see your IBM Informix Performance
Guide.

When you define a BLOB or CLOB column, you can determine the following
large-object characteristics:
v LOG and NOLOG: whether the database server should log the smart large object

in accordance with the current database logging mode.
v KEEP ACCESS TIME and NO KEEP ACCESS TIME: whether the database server

should keep track of the last time the smart large object was accessed.
v HIGH INTEG and MODERATE INTEG: whether the database server should use

sbspace page headers and page footers to detect data corruption (HIGH INTEG),
or only use page headers (MODERATE INTEG).

2-40 IBM Informix Guide to SQL: Reference

Use of these characteristics can affect performance. For information, see your IBM
Informix Performance Guide.

When an SQL statement accesses a smart-large-object, the database server does not
send the actual BLOB or CLOB data. Instead, it establishes a pointer to the data
and returns this pointer. The client application can then use this pointer in open,
read, or write operations on the smart large object.

To access a BLOB or CLOB column from within a client application, use one of the
following application programming interfaces (APIs):
v From within IBM Informix ESQL/C programs, use the smart-large-object API.

(For more information, see the IBM Informix ESQL/C Programmer's Manual.)
v From within a DataBlade module, use the Client and Server API. (For more

information, see the IBM Informix DataBlade API Programmer's Guide.)

For information about smart large objects, see the IBM Informix Guide to SQL:
Syntax and IBM Informix Database Design and Implementation Guide.

Time Data Types
DATE and DATETIME data values represent zero-dimensional points in time;
INTERVAL data values represent 1-dimensional spans of time, with positive or
negative values. DATE precision is always an integer count of days, but various
field qualifiers can define the DATETIME and INTERVAL precision. You can use
DATE, DATETIME, and INTERVAL data in arithmetic and relational expressions.
You can manipulate a DATETIME value with another DATETIME value, an
INTERVAL value, the current time (specified by the keyword CURRENT), or some
unit of time (using the keyword UNITS).

You can use a DATE value in most contexts where a DATETIME value is valid,
and vice versa. You also can use an INTERVAL operand in arithmetic operations
where a DATETIME value is valid. In addition, you can add two INTERVAL
values and multiply or divide an INTERVAL value by a number.

An INTERVAL column can hold a value that represents the difference between two
DATETIME values or the difference between (or sum of) two INTERVAL values. In
either case, the result is a span of time, which is an INTERVAL value. Conversely,
if you add or subtract an INTERVAL from a DATETIME value, another DATETIME
value is produced, because the result is a specific time.

Table 2-9 lists the binary arithmetic operations that you can perform on DATE,
DATETIME, and INTERVAL operands, and the data type that is returned by the
arithmetic expression.

Table 2-9. Arithmetic Operations on DATE, DATETIME, and INTERVAL Values

Operand 1 Operator Operand 2 Result

DATE - DATETIME INTERVAL

DATETIME - DATE INTERVAL

DATE + or - INTERVAL DATETIME

DATETIME - DATETIME INTERVAL

DATETIME + or - INTERVAL DATETIME

INTERVAL + DATETIME DATETIME

INTERVAL + or - INTERVAL INTERVAL

Chapter 2. Data types 2-41

Table 2-9. Arithmetic Operations on DATE, DATETIME, and INTERVAL Values (continued)

Operand 1 Operator Operand 2 Result

DATETIME - CURRENT INTERVAL

CURRENT - DATETIME INTERVAL

INTERVAL + CURRENT DATETIME

CURRENT + or - INTERVAL DATETIME

DATETIME + or - UNITS DATETIME

INTERVAL + or - UNITS INTERVAL

INTERVAL * or / NUMBER INTERVAL

No other combinations are allowed. You cannot add two DATETIME values
because this operation does not produce either a specific time or a span of time.
For example, you cannot add December 25 and January 1, but you can subtract
one from the other to find the time span between them.

Manipulating DATETIME Values
You can subtract most DATETIME values from each other.

Dates can be in any order and the result is either a positive or a negative
INTERVAL value. The first DATETIME value determines the precision of the result,
which includes the same time units as the first operand.

If the second DATETIME value has fewer fields than the first, the precision of the
second operand is increased automatically to match the first.

In the following example, subtracting the DATETIME YEAR TO HOUR value from
the DATETIME YEAR TO MINUTE value results in a positive interval value of 60
days, 1 hour, and 30 minutes. Because minutes were not included in the second
operand, the database server sets the minutes value for the second operand to 0
before performing the subtraction.
DATETIME (2003-9-30 12:30) YEAR TO MINUTE

- DATETIME (2003-8-1 11) YEAR TO HOUR

Result: INTERVAL (60 01:30) DAY TO MINUTE

If the second DATETIME operand has more fields than the first (regardless of
whether the precision of the extra fields is larger or smaller than those in the first
operand), the additional time unit fields in the second value are ignored in the
calculation.

In the next expression (and its result), the year is not included for the second
operand. Therefore, the year is set automatically to the current year (from the
system clock-calendar), in this example 2005, and the resulting INTERVAL is
negative, which indicates that the second date is later than the first.
DATETIME (2005-9-30) YEAR TO DAY

- DATETIME (10-1) MONTH TO DAY

Result: INTERVAL (-1) DAY TO DAY [assuming that the current
year is 2005]

You can compare two DATETIME values by using the mi_datetime_compare()
function.
Related reference:

2-42 IBM Informix Guide to SQL: Reference

“DATETIME data type” on page 2-12
Related information:
The mi_datetime_compare() function

Manipulating DATETIME with INTERVAL Values
INTERVAL values can be added to or subtracted from DATETIME values. In either
case, the result is a DATETIME value. If you are adding an INTERVAL value to a
DATETIME value, the order of values is unimportant; however, if you are
subtracting, the DATETIME value must come first. Adding or subtracting a
positive INTERVAL value moves the DATETIME result forward or backward in
time. The expression shown in the following example moves the date ahead by
three years and five months:
DATETIME (2000-8-1) YEAR TO DAY

+ INTERVAL (3-5) YEAR TO MONTH

Result: DATETIME (2004-01-01) YEAR TO DAY

Important: Evaluate the logic of your addition or subtraction. Remember that
months can have 28, 29, 30, or 31 days and that years can have 365 or 366 days.

In most situations, the database server automatically adjusts the calculation when
the operands do not have the same precision. In certain contexts, however, you
must explicitly adjust the precision of one value to perform the calculation. If the
INTERVAL value you are adding or subtracting has fields that are not included in
the DATETIME value, you must use the EXTEND function to increase the precision
of the DATETIME value. (For more information about the EXTEND function, see
the Expression segment in the IBM Informix Guide to SQL: Syntax.)

For example, you cannot subtract an INTERVAL MINUTE TO MINUTE value from
the DATETIME value in the previous example that has a YEAR TO DAY field
qualifier. You can, however, use the EXTEND function to perform this calculation,
as the following example shows:
EXTEND (DATETIME (2008-8-1) YEAR TO DAY, YEAR TO MINUTE)

- INTERVAL (720) MINUTE(3) TO MINUTE

Result: DATETIME (2008-07-31 12:00) YEAR TO MINUTE

The EXTEND function allows you to explicitly increase the DATETIME precision
from YEAR TO DAY to YEAR TO MINUTE. This allows the database server to
perform the calculation, with the resulting extended precision of YEAR TO
MINUTE.

Manipulating DATE with DATETIME and INTERVAL Values
You can use DATE operands in some arithmetic expressions with DATETIME or
INTERVAL operands by writing expressions to do the manipulating, as Table 2-10
shows.

Table 2-10. Results of Expressions That Manipulate DATE with DATETIME or INTERVAL
Values

Expression Result

DATE – DATETIME INTERVAL

DATETIME – DATE INTERVAL

DATE + or – INTERVAL DATETIME

Chapter 2. Data types 2-43

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.dapif.doc/ids_dapif_553.htm

In the cases that Table 2-10 on page 2-43 shows, DATE values are first converted to
their corresponding DATETIME equivalents, and then the expression is evaluated
by the rules of arithmetic.

Although you can interchange DATE and DATETIME values in many situations,
you must indicate whether a value is a DATE or a DATETIME data type. A DATE
value can come from the following sources:
v A column or program variable of type DATE
v The TODAY keyword
v The DATE() function
v The MDY function
v A DATE literal

A DATETIME value can come from the following sources:
v A column or program variable of type DATETIME
v The CURRENT keyword
v The EXTEND function
v A DATETIME literal

The database locale defines the default DATE and DATETIME formats. For the
default locale, U.S. English, these formats are 'mm/dd/yy' for DATE values and
'yyyy-mm-dd hh:MM:ss' for DATETIME values.

To represent DATE and DATETIME values as character strings, the fields in the
strings must be in the required order. In other words, when a DATE value is
expected, the string must be in DATE format and when a DATETIME value is
expected, the string must be in DATETIME format. For example, you can use the
string 10/30/2008 as a DATE string but not as a DATETIME string. Instead, you
must use 2008-10-30 or 08-10-30 as the DATETIME string.

In a nondefault locale, literal DATE and DATETIME strings must match the
formats that the locale defines. For more information, see the IBM Informix GLS
User's Guide.

You can customize the DATE format that the database server expects with the
DBDATE and GL_DATE environment variables. You can customize the
DATETIME format that the database server expects with the DBTIME and
GL_DATETIME environment variables. For more information, see “DBDATE
environment variable” on page 3-22 and “DBTIME environment variable” on page
3-32. For more information about all these environment variables, see the IBM
Informix GLS User's Guide.

You can also subtract one DATE value from another DATE value, but the result is
a positive or negative INTEGER count of days, rather than an INTERVAL value. If
an INTERVAL value is required, you can either use the UNITS DAY operator to
convert the INTEGER value into an INTERVAL DAY TO DAY value, or else use
EXTEND to convert one of the DATE values into a DATETIME value before
subtracting.

For example, the following expression uses the DATE() function to convert
character string constants to DATE values, calculates their difference, and then uses
the UNITS DAY keywords to convert the INTEGER result into an INTERVAL
value:

2-44 IBM Informix Guide to SQL: Reference

(DATE (’5/2/2007’) - DATE (’4/6/1968’)) UNITS DAY

Result: INTERVAL (12810) DAY(5) TO DAY

Important: Because of the high precedence of UNITS relative to other SQL
operators, you should generally enclose any arithmetic expression that is the
operand of UNITS within parentheses, as in the preceding example.

If you need YEAR TO MONTH precision, you can use the EXTEND function on
the first DATE operand, as the following example shows:
EXTEND (DATE (’5/2/2007’), YEAR TO MONTH) - DATE (’4/6/1969’)

Result: INTERVAL (39-01) YEAR TO MONTH

The resulting INTERVAL precision is YEAR TO MONTH, because the DATETIME
value came first. If the DATE value had come first, the resulting INTERVAL
precision would have been DAY(5) TO DAY.
Related reference:
“DATETIME data type” on page 2-12
“INTERVAL data type” on page 2-19

Manipulating INTERVAL Values
You can add or subtract INTERVAL values only if both values are from the same
class; that is, if both are year-month or both are day-time.

In the following example, a SECOND TO FRACTION value is subtracted from a
MINUTE TO FRACTION value:
INTERVAL (100:30.0005) MINUTE(3) TO FRACTION(4)

- INTERVAL (120.01) SECOND(3) TO FRACTION

Result: INTERVAL (98:29.9905) MINUTE TO FRACTION(4)

The use of numeric qualifiers alerts the database server that the MINUTE and
FRACTION in the first value and the SECOND in the second value exceed the
default number of digits.

When you add or subtract INTERVAL values, the second value cannot have a field
with greater precision than the first. The second INTERVAL, however, can have a
field of smaller precision than the first. For example, the second INTERVAL can be
HOUR TO SECOND when the first is DAY TO HOUR. The additional fields (in
this case MINUTE and SECOND) in the second INTERVAL value are ignored in
the calculation.

You can compare two INTERVAL values by using the mi_interval_compare()
function.
Related reference:
“INTERVAL data type” on page 2-19
Related information:
The mi_interval_compare() function

Multiplying or Dividing INTERVAL Values
You can multiply or divide INTERVAL values by numbers. Any remainder from
the calculation is ignored, however, and the result is truncated to the precision of
the INTERVAL. The following expression multiplies an INTERVAL value by a
literal number that has a fractional part:

Chapter 2. Data types 2-45

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.dapif.doc/ids_dapif_554.htm

INTERVAL (15:30.0002) MINUTE TO FRACTION(4) * 2.5

Result: INTERVAL (38:45.0005) MINUTE TO FRACTION(4)

In this example, 15 * 2.5 = 37.5 minutes, 30 * 2.5 = 75 seconds, and 2 * 2.5 = 5
FRACTION (4). The 0.5 minute is converted into 30 seconds and 60 seconds are
converted into 1 minute, which produces the final result of 38 minutes, 45 seconds,
and 0.0005 of a second. The result of any calculation has the same precision as the
original INTERVAL operand.

Extended Data Types
IBM Informix enables you to create extended data types to characterize data that
cannot easily be represented with the built-in data types. (You cannot, however,
use extended data types in distributed transactions that query external tables.) You
can create these categories of extended data types:
v Complex data types
v Distinct data types
v Opaque data types

Sections that follow provide an overview of each of these data types.

For more information about extended data types, see the IBM Informix Database
Design and Implementation Guide and IBM Informix User-Defined Routines and Data
Types Developer's Guide.
Related reference:
“Summary of data types” on page 2-1

Complex data types
A complex data type can store one or more values of other built-in or extended data
types.

Figure 2-4 shows the complex types that IBM Informix supports.

The following table summarizes the structure of the complex data types.

Table 2-11. Collection types are complex data types that are made up of elements, each of
which is of the same data type.

Collection types Description

LIST A group of ordered elements, each of which need not be unique within
the group.

MULTISET A group of elements, each of which need not be unique. The order of the
elements is ignored.

LIST SETMULTISET Named ROW type Unnamed ROW type

Complex data types

Collection data types ROW data types

Figure 2-4. Complex Data Types of IBM Informix

2-46 IBM Informix Guide to SQL: Reference

Table 2-11. Collection types are complex data types that are made up of elements, each of
which is of the same data type. (continued)

Collection types Description

SET A group of elements, each of which is unique. The order of the elements
is ignored.

Table 2-12. ROW types are complex data types that are made up of fields.

ROW types Description

Named ROW
type

Row types that are identified by their name.

Unnamed ROW
type

Row types that are identified by their structure.

Complex data types can be nested. For example, you can construct a ROW type
whose fields include one or more sets, multisets, ROW types, and lists. Likewise, a
collection type can have elements whose data type is a ROW type or a collection
type.

Complex types that include opaque types inherit the following support functions.
v input

v output

v send

v recv

v import

v export

v import_binary

v export_binary

v assign

v destroy

v LO_handles

v hash

v lessthan

v equal

v lessthan (for ROW types only)

The topics that follow summarize the complex data types. For more information,
see the IBM Informix Database Design and Implementation Guide.

Collection Data Types
A collection data type is a complex type that is made up of one or more elements,
all of the same data type. A collection element can be of any data type (including
other complex types) except BYTE, TEXT, SERIAL, SERIAL8, or BIGSERIAL.

Important: An element cannot have a NULL value. You must specify the NOT
NULL constraint for collection elements. No other constraints are valid for
collections.

IBM Informix supports three kinds of built-in collection types: LIST, SET, and
MULTISET. The keywords used to declare these collections are the names of the

Chapter 2. Data types 2-47

type constructors or just constructors. For the syntax of collection types, see the IBM
Informix Guide to SQL: Syntax. No more than 97 columns of the same table can be
declared as collection data types.

When you specify element values for a collection, list the element values after the
constructor and between braces ({ }). For example, suppose you have a collection
column with the following MULTISET data type:
CREATE TABLE table1
(

mset_col MULTISET(INTEGER NOT NULL)
)

The next INSERT statement adds one group of element values to this column. (The
word MULTISET in these two examples is the MULTISET constructor.)
INSERT INTO table1 VALUES (MULTISET{5, 9, 7, 5})

You can leave the braces empty to indicate an empty set:
INSERT INTO table1 VALUE (MULTISET{})

An empty collection is not equivalent to a NULL value for the column.

Accessing collection data:
To access the elements of a collection column, you must fetch the collection into a
collection variable and modify the contents of the collection variable. Collection
variables can be either of the following types:
v Variables in an SPL routine

For more information, see the IBM Informix Guide to SQL: Tutorial.
v Host variables in IBM Informix ESQL/C programs

For more information, see the IBM Informix ESQL/C Programmer's Manual.

You can also use nested dot notation to access collection data. For more about
accessing elements of a collection, see the IBM Informix Guide to SQL: Tutorial.

Important: Collection data types are not valid as arguments to functions that are
used for functional indexes.

ROW Data Types
A ROW data type is an ordered collection of one or more elements, called fields.
Each field has a name and a data type. The fields of a ROW are comparable to the
columns of a table, but with important differences:
v A field has no default clause.
v You cannot define constraints on a field.
v You can only use fields with row types, not with tables.

Two kinds of ROW data types exist:
v Named ROW data types are identified by their names.
v Unnamed ROW data types are identified by their structure.

The structure of an unnamed ROW data type is the number (and the order of data
types) of its fields.

No more than 195 columns of the same table can be declared as ROW data types.
For more information about ROW data types, see “ROW data type, Named” on
page 2-27 and “ROW data type, Unnamed” on page 2-28.

2-48 IBM Informix Guide to SQL: Reference

You can cast between named and unnamed ROW data types; this is described in
the IBM Informix Database Design and Implementation Guide.

Distinct Data Types
A distinct data type has the same internal structure as some other source data type
in the database. The source type can be a built-in or extended data type. What
distinguishes a distinct type from its source type are support functions that are
defined on the distinct type.

No more than approximately 97 columns of the same table can be DISTINCT of
collection data types (SET, LIST, and MULTISET). No more than approximately 195
columns of the same table can be DISTINCT types that are based on BYTE, TEXT,
ROW, LVARCHAR, NVARCHAR, or VARCHAR source types. (Here 195 columns
is an approximate lower limit that applies to platforms with a 2 Kb base page size.
For platforms with a base page size of 4 Kb, such as Windows and AIX® systems,
the upper limit is approximately 450 columns of these data types.) For more
information, see the section “DISTINCT data types” on page 2-17. See also IBM
Informix User-Defined Routines and Data Types Developer's Guide.

Opaque Data Types
An opaque data type is a user-defined or built-in data type that is fully
encapsulated. The internal structure of an opaque data type is unknown to the
database server.

Except for user-defined types (UDTs) that are DISTINCT of built-in non-opaque
types, UDTs whose source types are built-in types are opaque data types. Similarly,
UDTs that are DISTINCT of built-in opaque types are opaque types.

Built-in opaque data types

The built-in data types BLOB, BOOLEAN, CLOB, BSON, JSON, and LVARCHAR
are implemented as opaque data types. You can access all of these in other
databases of the same Informix instance, but you cannot access the BLOB or CLOB
built-in opaque data types in cross-server distributed operations.

UDTs that are DISTINCT of built-in opaque types and that are cast to built-in
types are valid in cross-server queries and other DML operations, but all the casts
and all the DISTINCT OF definitions for the UDTs must be identical in every
participating database.

Several system catalog tables, whose schema are shown in “Structure of the System
Catalog” on page 1-7, have columns of built-in opaque data types. For information
on how the system catalog emcodes columns of built-in opaque data types, see
“SYSCOLUMNS” on page 1-17.

User-defined opaque data types

You must provide the following information to the database server for an opaque
data type:
v A data structure for how the data values are stored on disk
v Support functions to determine how to convert between the disk storage format

and the user format for data entry and display
v Secondary access methods that determine how the index on this data type is

built, used, and manipulated

Chapter 2. Data types 2-49

v User functions that use the data type
v A system catalog entry to register the opaque type in the database

The internal structure of an opaque type is not visible to the database server and
can only be accessed through user-defined routines. Definitions for opaque types
are stored in the sysxtdtypes system catalog table. These SQL statements maintain
the definitions of opaque types in the database:
v The CREATE OPAQUE TYPE statement registers a new opaque type in the

database.
v The DROP TYPE statement removes a previously defined opaque type from the

database.

For more information, see the section “OPAQUE data types” on page 2-26. See also
IBM Informix User-Defined Routines and Data Types Developer's Guide.

Data Type Casting and Conversion
Occasionally, the data type that was assigned to a column with the CREATE
TABLE statement is inappropriate. You can change the data type of a column when
you are required to store larger values than the current data type can
accommodate. The database server allows you to change the data type of the
column or to cast its values to a different data type with either of the following
methods:
v Use the ALTER TABLE statement to modify the data type of a column.

For example, if you create a SMALLINT column and later find that you must
store integers larger than 32,767, you must change the data type of that column
to store the larger value. You can use ALTER TABLE to change the data type to
INTEGER. The conversion changes the data type of all values that currently exist
in the column and any new values that might be added.

v Use the CAST AS keywords or the double colon (::) cast operator to cast a value
to a different data type.
Casting does not permanently alter the data type of a value; it expresses the
value in a more convenient form. Casting user-defined data types into built-in
types allows client programs to manipulate data types without knowledge of
their internal structure.

If you change data types, the new data type must be able to store all of the old
value.

Both data-type conversion and casting depend on casts registered in the syscasts
system catalog table. For information about syscasts, see “SYSCASTS” on page
1-14.

A cast is either built-in or user defined. Guidelines exist for casting distinct and
extended data types. For more information about casting opaque data types, see
IBM Informix User-Defined Routines and Data Types Developer's Guide. For
information about casting other extended data types see, the IBM Informix Database
Design and Implementation Guide.

Using Built-in Casts
User informix owns built-in casts. They govern conversions from one built-in data
type to another. Built-in casts allow the database server to attempt the following
data-type conversions:

2-50 IBM Informix Guide to SQL: Reference

v A character type to any other character type
v A character type to or from another built-in type
v A numeric type to any other numeric type

The database server automatically invokes appropriate built-in casts when
required. For time data types, conversion between DATE and DATETIME data
types requires explicit casts with the EXTEND function, and explicit casts with the
UNITS operator are required for number-to-INTERVAL conversion. Built-in casts
are unavailable for converting large (BYTE, BLOB, CLOB, and TEXT) built-in types
to other built-in data types.

When you convert a column from one built-in data type to another, the database
server applies the appropriate built-in casts to each value already in the column. If
the new data type cannot store any of the resulting values, the ALTER TABLE
statement fails.

For example, if you try to convert a column from the INTEGER data type to the
SMALLINT data type and the following values exist in the INTEGER column, the
database server does not change the data type, because SMALLINT columns
cannot accommodate numbers greater than 32,767:
100 400 700 50000 700

The same situation might occur if you attempt to transfer data from FLOAT or
SMALLFLOAT columns to INTEGER, SMALLINT, or DECIMAL columns. Errors
of overflow, underflow, or truncation can occur during data type conversion.

Sections that follow describe database server behavior during certain types of casts
and conversions.

Converting from number to number
When you convert data from one number data type to another, you occasionally
find rounding errors.

The following table indicates which numeric data type conversions are acceptable
and what kinds of errors you can encounter when you convert between certain
numeric data types. In the table, the following codes are used:

OK No error

P An error can occur, depending on the precision of the decimal

E An error can occur, depending on the data value

D No error, but less significant digits might be lost

Table 2-13. Acceptable conversions and possible errors

Target Type
SMALL
INT INTEGER INT8

SMALL
FLOAT FLOAT DECIMAL

SMALLINT OK OK OK OK OK OK

INTEGER E OK OK E OK P

INT8 E E OK D E P

SMALLFLOAT E E E OK OK P

FLOAT E E E D OK P

DECIMAL E E E D D P

Chapter 2. Data types 2-51

For example, if you convert a FLOAT value to DECIMAL(4,2), your database
server rounds off the floating-point number before storing it as DECIMAL.

This conversion can result in an error depending on the precision assigned to the
DECIMAL column.

Converting Between Number and Character
You can convert a character column (of a data type such as CHAR, NCHAR,
NVARCHAR, or VARCHAR) to a numeric column. If a data string, however,
contains any characters that are not valid in a number column (for example, the
letter l instead of the number 1), the database server returns an error.

You can also convert a numeric column to a character column. If the character
column is not large enough to receive the number, however, the database server
generates an error. If the database server generates an error, it cannot complete the
ALTER TABLE statement or cast, and leaves the column values as characters. You
receive an error message and the statement is rolled back automatically (regardless
of whether you are in a transaction).

Converting Between INTEGER and DATE
You can convert an integer column (SMALLINT, INTEGER, or INT8) to a DATE
value. The database server interprets the integer as a value in the internal format
of the DATE column. You can also convert a DATE column to an integer column.
The database server stores the internal format of the DATE column as an integer
representing a Julian date.

Converting Between DATE and DATETIME
You can convert DATE columns to DATETIME columns. If the DATETIME column
contains more fields than the DATE column, however, the database server either
ignores the fields or fills them with zeros. The illustrations in the following list
show how these two data types are converted (assuming that the default date
format is mm/dd/yyyy):
v If you convert DATE to DATETIME YEAR TO DAY, the database server converts

the existing DATE values to DATETIME values. For example, the value
08/15/2002 becomes 2002-08-15.

v If you convert DATETIME YEAR TO DAY to the DATE format, the value
2002-08-15 becomes 08/15/2002.

v If you convert DATE to DATETIME YEAR TO SECOND, the database server
converts existing DATE values to DATETIME values and fills in the additional
DATETIME fields with zeros. For example, 08/15/2002 becomes 2002-08-15
00:00:00.

v If you convert DATETIME YEAR TO SECOND to DATE, the database server
converts existing DATETIME to DATE values but drops fields for time units
smaller than DAY. For example, 2002-08-15 12:15:37 becomes 08/15/2002.

Using User-Defined Casts
Implicit and explicit casts are owned by the users who create them. They govern
casts and conversions between user-defined data types and other data types.
Developers of user-defined data types must create certain implicit and explicit
casts and the functions that are used to implement them. The casts allow
user-defined types to be expressed in a form that clients can manipulate.

For information about how to register and use implicit and explicit casts, see the
CREATE CAST statement in the IBM Informix Guide to SQL: Syntax and the IBM
Informix Database Design and Implementation Guide.

2-52 IBM Informix Guide to SQL: Reference

Implicit Casts
Implicit casts allow you to convert a user-defined data type to a built-in type or
vice versa. The database server automatically invokes a single implicit cast when it
must evaluate and compare expressions or pass arguments. Operations that require
more than one implicit cast fail.

Users can explicitly invoke an implicit cast using the CAST AS keywords or the
double colon (::) cast operator.

Explicit Casts
Explicit casts, unlike implicit casts or built-in casts, are never invoked automatically
by the database server. Users must invoke them explicitly with the CAST AS
keywords or with the double colon (::) cast operator.

Determining Which Cast to Apply
The database server uses the following rules to determine which cast to apply in a
particular situation:
v To compare two built-in types, the database server automatically invokes the

appropriate built-in casts.
v The database server applies only one implicit cast per operand. If two or more

casts are required to convert the operand to the specified type, the user must
explicitly invoke the additional casts.
In the following example, the literal value 5.55 is implicitly cast to DECIMAL,
and is then explicitly cast to MONEY, and finally to yen:
CREATE DISTINCT TYPE yen AS MONEY
. . .
INSERT INTO currency_tab

VALUES (5.55::MONEY::yen)

v To compare a distinct type to its source type, the user must explicitly cast one
type to the other.

v To compare a distinct type to a type other than its source, the database server
looks for an implicit cast between the source type and the specified type.
If neither cast is registered, the user must invoke an explicit cast between the
distinct type and the specified type. If this cast is not registered, the database
server automatically invokes a cast from the source type to the specified type.
If none of these casts is defined, the comparison fails.

v To compare an opaque type to a built-in type, the user must explicitly cast the
opaque type to a data type that the database server understands (such as
LVARCHAR, SENDRECV, IMPEXP, or IMPEXPBIN). The database server then
invokes built-in casts to convert the results to the specified built-in type.

v To compare two opaque types, the user must explicitly cast one opaque type to a
form that the database server understands (such as LVARCHAR, SENDRECV,
IMPEXP, or IMPEXPBIN) and then explicitly cast this type to the second opaque
type.

For information about casting and the BOOLEAN, BSON, JSON, IMPEXP,
IMPEXPBIN, LVARCHAR, and SENDRECV built-in opaque data types, see IBM
Informix User-Defined Routines and Data Types Developer's Guide.

Casts for distinct types
You define a distinct type based on a built-in type or an existing opaque type or
ROW type. Although data of the distinct type has the same length and alignment

Chapter 2. Data types 2-53

and is passed in the same way as data of the source type, the two cannot be
compared directly. To compare a distinct type and its source type, you must
explicitly cast one type to the other.

When you create a new distinct type, the database server automatically registers
two explicit casts:
v A cast from the distinct type to its source type
v A cast from the source type to the distinct type

You can create an implicit cast between a distinct type and its source type. To
create an implicit cast, however, you must first drop the default explicit cast
between the distinct type and its source type.

You also can use all casts that have been registered for the source type without
modification on the distinct type. You can also create and register new casts and
support functions that apply only to the distinct type.

For examples that show how to create a cast function for a distinct type and
register the function as cast, see the IBM Informix Database Design and
Implementation Guide.

Important: For releases of IBM Informix earlier than Version 9.21, distinct data
types inherited the built-in casts that are provided for the source type. The built-in
casts of the source type are not inherited by distinct data types in this release.

What Extended Data Types Can Be Cast?
The next table shows the extended data type combinations that you can cast.

Table 2-14. Extended data type combinations

Target Type
Opaque
Type

Distinct
Type

Named
ROW Type

Unnamed
ROW Type

Collection
Type

Built-in
Type

Opaque
Type

Explicit or
implicit

Explicit Explicit Not Valid Not Valid Explicit or
implicit3

Distinct
Type

Explicit3 Explicit Explicit Not Valid Not Valid Explicit or
implicit

Named
ROW Type

Explicit3 Explicit Explicit3 Explicit1 Not Valid Not Valid

Unnamed
ROW Type

Not Valid Not Valid Explicit1 Implicit1 Not Valid Not Valid

Collection
Type

Not Valid Not Valid Not Valid Not Valid Explicit2 Not Valid

Built-in
Type

Explicit or
implicit3

Explicit or
implicit

Not Valid Not Valid Not Valid System
defined
(implicit)

1 Applies when two ROW types are structurally equivalent or casts exist to handle
data conversions where corresponding field types are not the same.

2 Applies when a cast exists to convert between the element types of the respective
collection types.

3 Applies when a user-defined cast exists to convert between the two data types.

2-54 IBM Informix Guide to SQL: Reference

The table shows only whether a cast between a source type and a target type are
possible. In some cases, you must first create a user-defined cast before you can
perform a conversion between two data types. In other cases, the database server
provides either an implicit cast or a built-in cast that you must explicitly invoke.

Operator Precedence
An operator is a symbol or keyword that can be in an SQL expression. Most SQL
operators are restricted in the data types of their operands and returned values.
Some operators only support operands of built-in data types; others can support
built-in and extended data types as operands.

The following table shows the precedence of the operators thatIBM Informix
supports, in descending (highest to lowest) order of precedence. Operators with
the same precedence are listed in the same row.

Operator Precedence Example in Expression

. (membership) [] (substring) customer.phone [1, 3]

UNITS x UNITS DAY

+ - (unary) - y

:: (cast) NULL::TEXT

* / x / y

+ - (binary) x -y

|| (concatenation) customer.fname || customer.lname

ANY ALL SOME orders.ship_date > SOME (SELECT paid_date
FROM orders)

NOT NOT y

< <= = > >= != <> x >= y

IN BETWEEN ... AND LIKE MATCHES customer.fname MATCHES y

AND x AND y

OR x OR y

See the IBM Informix Guide to SQL: Syntax for the syntax and semantics of these
SQL operators.

Chapter 2. Data types 2-55

2-56 IBM Informix Guide to SQL: Reference

Chapter 3. Environment variables

Various environment variables affect the functionality of your IBM Informix
products. You can set environment variables that identify your terminal, specify
the location of your software and define other parameters.

Some environment variables are required; others are optional. You must either set
or accept the default setting for required environment variables.

These topics describe how to use the environment variables that apply to one or
more IBM Informix products and shows how to set them.

Types of environment variables
Two types of environment variables are explained in this chapter:
v Environment variables that are specific to IBM Informix

Set IBM Informix environment variables when you want to work with IBM
Informix products. Each IBM Informix product publication specifies the
environment variables that you must set to use that product.

v Environment variables that are used with a specific operating system
IBM Informix products rely on the correct setting of certain standard operating
system environment variables. For example, you must always set the PATH
environment variable.

In a UNIX environment, you might also be required to set the TERMCAP or
TERMINFO environment variable to use some products effectively.

The GLS environment variables that support nondefault locales are described in
the IBM Informix GLS User's Guide. The GLS variables are included in the list of
environment variables in Table 3-1 on page 3-9.

The database server uses the environment variables that were in effect at the time
when the database server was initialized.

The onstat - g env command lists the active environment settings.

Tip: Additional environment variables that are specific to your client application
or SQL API might be explained in the publication for that product.

Important: Do not set any environment variable in the home directory of user
informix (or in the file .informix in that directory) while initializing the database
and creating the sysmaster database.

Limitations on environment variables

Size of a block of environment variables

At the start of a session, the client groups all the environment variables that the
server will use and sends the environment variables to the server as single block.
The maximum size of this block is 32K. If the block of environment variables is

© Copyright IBM Corp. 1996, 2015 3-1

greater than 32K, the error -1832 is returned to the application. The text of this
error is "Environment block is greater than 32K."

To resolve this error, you can either unset one or more environment variables or
reduce the size of some of the environment variables.

Using environment variables on UNIX
You can set, unset, modify, and view environment variables. If you already use any
IBM Informix products, some or all of the appropriate environment variables might
be set.

You can set environment variables on UNIX in the following places:
v At the system prompt on the command line

When you set an environment variable at the system prompt, you must reassign
it the next time you log in to the system.

v In an environment-configuration file
An environment-configuration file is a common or private file where you can set
all the environment variables that IBM Informix products use. The use of such
files reduces the number of environment variables that you must set at the
command line or in a shell file.

v In a login file
Values of environment variables set in your .login, .cshrc, or .profile file are
assigned automatically every time you log in to the system.

v In the SET ENVIRONMENT statement of SQL
Values of some environment variables can reset by the SET ENVIRONMENT
statement. The scope of the new settings is generally the routine that executed
the SET ENVIRONMENT statement, but it is the current session for the
OPTCOMPIND environment variable of Informix, as described in the section
“OPTCOMPIND environment variable” on page 3-61. For more information
about these routines and on the SET ENVIRONMENT statement, see the IBM
Informix Guide to SQL: Syntax.

In IBM Informix ESQL/C, you can set supported environment variables within an
application with the putenv() system call and retrieve values with the getenv()
system call, if your UNIX system supports these functions. For more information
about putenv() and getenv(), see the IBM Informix ESQL/C Programmer's Manual
and your C documentation.

Setting environment variables in a configuration file
The common (shared) environment-configuration file that is provided with IBM
Informix products is located in $INFORMIXDIR/etc/informix.rc. Permissions for
this shared file must be set to 644.

A user can override the system or shared environment variables by setting
variables in a private environment-configuration file. This file must have all of the
following characteristics:
v Stored in the user's home directory
v Named .informix

v Permissions set to readable by the user

3-2 IBM Informix Guide to SQL: Reference

An environment-configuration file can contain comment lines (preceded by the #
comment indicator) and variable definition lines that set values (separated by
blank spaces or tabs), as the following example shows:
This is an example of an environment-configuration file
#
DBDATE DMY4-
#
These are ESQL/C environment variable settings
#
INFORMIXC gcc
CPFIRST TRUE

You can use the ENVIGNORE environment variable, described in “ENVIGNORE
environment variable (UNIX)” on page 3-38, to override one or more entries in an
environment-configuration file. Use the IBM Informix chkenv utility, described in
“Checking environment variables with the chkenv utility” on page 3-4, to perform
a sanity check on the contents of an environment-configuration file. The chkenv
utility returns an error message if the file contains a bad environment variable or if
the file is too large.

The first time you set an environment variable in a shell file or
environment-configuration file, you must tell the shell process to read your entry
before you work with your IBM Informix product. If you use a C shell, source the
file; if you use a Bourne or Korn shell, use a period (.) to execute the file.

Setting environment variables at login time
Add commands that set your environment variables to the appropriate login file:

For C shell
.login or .cshrc

For Bourne shell or Korn shell
.profile

Syntax for setting environment variables
Use standard UNIX commands to set environment variables. The examples in the
following table show how to set the ABCD environment variable to value for the C
shell, Bourne shell, and Korn shell. The Korn shell also supports a shortcut, as the
last row indicates. Environment variables are case-sensitive.

Shell Command

C setenv ABCD value

Bourne ABCD=value
export ABCD

Korn ABCD=value
export ABCD

Korn export ABCD=value

The following diagram shows how the syntax for setting an environment variable
is represented throughout this chapter. These diagrams indicate the setting for the
C shell; for the Bourne or Korn shells, use the syntax illustrated in the preceding
table.

►► setenv ABCD value ►◄

Chapter 3. Environment variables 3-3

Unsetting environment variables
To unset an environment variable, enter the following command.

Shell Command

C unsetenv ABCD

Bourne or Korn unset ABCD

Modifying an environment-variable setting
Sometimes you must add information to an environment variable that is already
set. For example, the PATH environment variable is always set on UNIX. When
you use IBM Informix productd, you must add to the PATH setting the name of
the directory where the executable files for the IBM Informix products are stored.

In the following example, the INFORMIXDIR is /usr/informix. (That is, during
installation, the IBM Informix products were installed in the /usr /informix
directory.) The executable files are in the bin subdirectory, /usr/informix/bin. To
add this directory to the front of the C shell PATH environment variable, use the
following command:
setenv PATH /usr/informix/bin:$PATH

Rather than entering an explicit pathname, you can use the value of the
INFORMIXDIR environment variable (represented as $INFORMIXDIR), as the
following example shows:
setenv INFORMIXDIR /usr/informix
setenv PATH $INFORMIXDIR/bin:$PATH

You might prefer to use this version to ensure that your PATH entry does not
conflict with the search path that was set in INFORMIXDIR, and so that you are
not required to reset PATH whenever you change INFORMIXDIR. If you set the
PATH environment variable on the C shell command line, you might be required
to include braces ({}) with the existing INFORMIXDIR and PATH, as the
following command shows:
setenv PATH ${INFORMIXDIR}/bin:${PATH}

For more information about how to set and modify environment variables, see the
publications for your operating system.

Viewing your environment-variable settings
After you install one or more IBM Informix products, enter the following
command at the system prompt to view your current environment settings.

UNIX version Command

BSD UNIX env

UNIX System V printenv

Checking environment variables with the chkenv utility
The chkenv utility checks the validity of shared or private environment-
configuration files. It validates the names of the environment variables in the file,
but not their values. Use chkenv to provide debugging information when you
define, in an environment-configuration file, all the environment variables that
your IBM Informix products use.

3-4 IBM Informix Guide to SQL: Reference

►► chkenv filename
pathname

►◄

filename
is the name of the environment-configuration file to be debugged.

pathname
is the full directory path in which the environment variable file is located.

File $INFORMIXDIR/etc/informix.rc is the shared environment-configuration file.
A private environment-configuration file is stored as .informix in the home
directory of the user. If you specify no pathname for chkenv, the utility checks both
the shared and private environment configuration files. If you provide a pathname,
chkenv checks only the specified file.

Issue the following command to check the contents of the shared
environment-configuration file:
chkenv informix.rc

The chkenv utility returns an error message if it finds a bad environment-variable
name in the file or if the file is too large. You can modify the file and rerun the
utility to check the modified environment-variable names.

IBM Informix products ignore all lines in the environment-configuration file,
starting at the point of the error, if the chkenv utility returns the following
message:
-33523 filename: Bad environment variable on line number.

If you want the product to ignore specified environment-variables in the file, you
can also set the ENVIGNORE environment variable. For a discussion of the use
and format of environment-configuration files and the ENVIGNORE environment
variable, see page “ENVIGNORE environment variable (UNIX)” on page 3-38.

Rules of precedence for environment variables
When IBM Informix products accesses an environment variable, normally the
following rules of precedence apply:
1. Of highest precedence is the value that is defined in the environment (shell) by

explicitly setting the value at the shell prompt.
2. The second highest precedence goes to the value that is defined in the private

environment-configuration file in the home directory of the user (~/.informix).
3. The next highest precedence goes to the value that is defined in the common

environment-configuration file ($INFORMIXDIR/etc/informix.rc).
4. The lowest precedence goes to the default value, if one exists.

For precedence information about GLS environment variables, see the IBM Informix
GLS User's Guide.

Important: If you set one or more environment variables before you start the
database server, and you do not explicitly set the same environment variables for
your client products, the clients will adopt the original settings.

Chapter 3. Environment variables 3-5

Using environment variables on Windows
The following sections discuss setting, viewing, unsetting, and modifying
environment variables for Windows applications.

Where to set environment variables on Windows
You can set environment variables in several places on Windows, depending on
which IBM Informix application you use.

Environment variables can be set in several ways, as described in “Setting
environment variables on Windows.”

The SET ENVIRONMENT statement of SQL can set certain routine-specific
environment options. For more information, see the description of SET
ENVIRONMENT in the IBM Informix Guide to SQL: Syntax.

To use client applications such as IBM Informix ESQL/C or the Schema Tools on
Windows environment, use the Setnet32 utility to set environment variables. For
information about the Setnet32 utility, see the IBM Informix Client Products
Installation Guide for your operating system.

In Informix ESQL/C, you can set supported environment variables within an
application with the ifx_putenv() function and retrieve values with the
ifx_getenv() function, if your Windows system supports them. For more
information about ifx_putenv() and ifx_getenv(), see the IBM Informix ESQL/C
Programmer's Manual.

Setting environment variables on Windows
You can set environment variables for command-prompt utilities in the following
ways:
v With the System applet in the Control Panel
v In a command-line session

Using the system applet to change environment variables
The System applet provides a graphical interface to create, modify, and delete
system-wide and user-specific variables. Environment variables that are set with
the System applet are visible to all command-prompt sessions.

To change environment variables with the System applet in the control panel

1. Double-click the System applet icon from the Control Panel window.
2. Click the Environment tab near the top of the window.

Two list boxes display System Environment Variables and User Environment
Variables. System Environment Variables apply to an entire system, and User
Environment Variables apply only to the sessions of the individual user.

3. To change the value of an existing variable, select that variable. The name of
the variable and its current value are in the boxes at the bottom of the window.

4. To add a new variable, highlight an existing variable and type the new variable
name in the box at the bottom of the window.

5. Next, enter the value for the new variable at the bottom of the window and
click Set .

6. To delete a variable, select the variable and click Delete.

3-6 IBM Informix Guide to SQL: Reference

Important: In order to use the System applet to change System environment
variables, you must belong to the Administrators group. For information about
assigning users to groups, see your operating-system documentation.

Using the command prompt to change environment variables
You can change the setting of an environment variable at a command prompt.

The following diagram shows the syntax for setting an environment variable at a
command prompt in Windows.

►► set ABCD = value ►◄

If no value is specified, the environment variable is unset, as if it did not exist.

To view your current settings after one or more IBM Informix products are
installed, enter the following command at the command prompt.

►► set ►◄

Sometimes you must add information to an environment variable that is already
set. For example, the PATH environment variable is always set in Windows
environments. When you use IBM Informix products, you must add the name of
the directory where the executable files for the IBM Informix products are stored to
the PATH.

In the following example, INFORMIXDIR is d:\informix (that is, during installation,
IBM Informix products were installed in the d: \informix directory). The
executable files are in the bin subdirectory, d:\informix\bin. To add this directory
at the beginning of the PATH environment-variable value, use the following
command:
set PATH=d:\informix\bin;%PATH%

Rather than entering an explicit pathname, you can use the value of the
INFORMIXDIR environment variable (represented as %INFORMIXDIR%), as the
following example shows:
set INFORMIXDIR=d:\informix
set PATH=%PATH%

You might prefer to use this version to ensure that your PATH entry does not
contradict the search path that was set in INFORMIXDIR and to avoid the
requirement to reset PATH whenever you change INFORMIXDIR.

For more information about setting and modifying environment variables, see your
operating-system publications.

Using dbservername.cmd to initialize a command-prompt
environment
Each time that you open a Windows command prompt, it acts as an independent
environment. Therefore, environment variables that you set within it are valid only
for that particular command-prompt instance.

Chapter 3. Environment variables 3-7

For example, if you open one command window and set the variable, INFORMIXDIR,
and then open another command window and type set to check your
environment, you will find that INFORMIXDIR is not set in the new
command-prompt session.

The database server installation program creates a batch file that you can use to
configure command-prompt utilities, ensuring that your command-prompt
environment is initialized correctly each time that you run a command-prompt
session. The batch file, dbservername.cmd, is located in %INFORMIXDIR%, and is a
plain text file that you can modify with any text editor. If you have more than one
database server installed in %INFORMIXDIR%, there will be more than one batch file
with the .cmd extension, each bearing the name of the database server with which
it is associated.

To run dbservername.cmd from a command prompt, type dbservername or configure
a command prompt so that it runs dbservername.cmd automatically at start.

Rules of precedence for Windows environment variables
When IBM Informix products access an environment variable, normally the
following rules of precedence apply:
1. The setting in Setnet32 with the Use my settings box selected.
2. The setting in Setnet32 with the Use my settings box cleared.
3. The setting on the command line before running the application.
4. The setting in Windows as a user variable.
5. The setting in Windows as a system variable.
6. The lowest precedence goes to the default value.

An application examines the first five values as it starts. Unless otherwise stated,
changing an environment variable after the application is running does not have
any effect.

Environment variables in Informix products
The topics that follow discuss (in alphabetic order) environment variables that IBM
Informix database server products and their utilities use.

Important: The descriptions of the following environment variables include the
syntax for setting the environment variable on UNIX. For a general description of
how to set these environment variables on Windows, see “Setting environment
variables on Windows” on page 3-6.
Related information:
Informix environment variables with the IBM Informix JDBC Driver
GLS-related environment variables
Enterprise Replication configuration parameter and environment variable reference

AC_CONFIG file environment variable

Environment variable portal
This portal is an index of usage categories for IBM Informix and UNIX
environment variables. The portal contains links to the topics that describe the
environment variables.

3-8 IBM Informix Guide to SQL: Reference

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.jdbc_pg.doc/ids_jdbc_040.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.glsug.doc/ids_gug_063.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.erep.doc/ids_erp_367.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.bar.doc/ids_bar_286.htm

Because the following table contains a comprehensive list of categories with links
to applicable topics. Some environment variables are applicable for more than one
category.

Table 3-1. Uses for environment variables

Functional category Environment variable

Abbreviated year values Specify how to expand literal DATE and DATETIME values: “DBCENTURY
environment variable” on page 3-20

ANSI/ISO SQL compliance Set the case of owner names: “ANSIOWNER environment variable” on page 3-16

Specify if you want to check for IBM Informix extensions to ANSI-standard SQL
syntax: “DBANSIWARN environment variable” on page 3-19

No default table or routine access privileges for PUBLIC in databases not created
WITH LOG MODE ANSI: “NODEFDAC environment variable” on page 3-59

archecker utility Specify the full path name for the archecker configuration file: AC_CONFIG file
environment variable

Buffers Manage the fetch buffer size: “FET_BUF_SIZE environment variable” on page 3-39

Manage the network size: “IFX_NETBUF_SIZE environment variable” on page
3-44

Manage the network pool size: “IFX_NETBUF_PVTPOOL_SIZE environment
variable (UNIX)” on page 3-44

Manage the BYTE or TEXT data buffer: “DBBLOBBUF environment variable” on
page 3-20

Cache Control the use of the shared-statement cache on a session: “STMT_CACHE
environment variable” on page 3-71

Client/server Specify the default database server: “INFORMIXSERVER environment variable” on
page 3-54

Specify where shared-memory segments are attached to the client process:
“INFORMIXSHMBASE environment variable (UNIX)” on page 3-55

Specify the stack size for a client process: “INFORMIXSTACKSIZE environment
variable” on page 3-56

Specify locale information, including for the client and server: GLS-related
environment variables

Code-set conversion Specify locale and multibyte information: GLS-related environment variables

Specify the location of the concsm.cfg file: “INFORMIXCONCSMCFG environment
variable” on page 3-51

Specify the filename or pathname of the C compiler: “INFORMIXC environment
variable (UNIX)” on page 3-50

Specify the pathname of the map file for C++ programs: “INFORMIXCPPMAP
environment variable” on page 3-54

Specify information for compiling multithreaded IBM Informix ESQL/C
applications: “THREADLIB environment variable (UNIX)” on page 3-72

Chapter 3. Environment variables 3-9

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.bar.doc/ids_bar_286.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.bar.doc/ids_bar_286.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.glsug.doc/ids_gug_063.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.glsug.doc/ids_gug_063.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.glsug.doc/ids_gug_063.htm

Table 3-1. Uses for environment variables (continued)

Functional category Environment variable

Configuration Specify the name of the active that holds configuration parameters: “ONCONFIG
environment variable” on page 3-60

Ignore specified environment variable settings: “ENVIGNORE environment
variable (UNIX)” on page 3-38

Specify the default database server: “INFORMIXSERVER environment variable” on
page 3-54

Specify the dbspaces in which temporary tables are built: “DBSPACETEMP
environment variable” on page 3-30

Manage query optimizer directives: “IFX_DIRECTIVES environment variable” on
page 3-40 and “IFX_EXTDIRECTIVES environment variable” on page 3-41

Modify the value of the OPTCOMPIND configuration parameter: “OPTCOMPIND
environment variable” on page 3-61

Specify the query performance goal for the optimizer: “OPT_GOAL environment
variable (UNIX)” on page 3-63

Specify the degree of parallelism that the database server uses: “PDQPRIORITY
environment variable” on page 3-64

Specify the stack size that is applied to all client processes:
“INFORMIXSTACKSIZE environment variable” on page 3-56

Connecting Set the maximum number of additional connection attempts:
“INFORMIXCONRETRY environment variable” on page 3-51

Set connect time information: “INFORMIXCONTIME environment variable” on
page 3-52

Specify the default database server to for connections: “INFORMIXSERVER
environment variable” on page 3-54

Specify the location of connection information: “INFORMIXSQLHOSTS
environment variable” on page 3-55

Connection Manager Specify the location of the Connection Manager configuration file:“CMCONFIG
environment variable” on page 3-17

Data distributions Manage the amount of system disk space that the UPDATE STATISTICS statement
can use: “DBUPSPACE environment variable” on page 3-35

Database locale Manage locale information: GLS-related environment variables

3-10 IBM Informix Guide to SQL: Reference

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.glsug.doc/ids_gug_063.htm

Table 3-1. Uses for environment variables (continued)

Functional category Environment variable

Database server Specify servers for connections: “INFORMIXSERVER environment variable” on
page 3-54

Set the locale for file I/O: GLS-related environment variables

Specify the name of the active file that holds configuration parameters:
“ONCONFIG environment variable” on page 3-60

Manage parallel sorting: “PSORT_DBTEMP environment variable” on page 3-68
and “PSORT_NPROCS environment variable” on page 3-68

Manage parallelism: “PDQPRIORITY environment variable” on page 3-64

Manage role separation: “INF_ROLE_SEP environment variable” on page 3-57

Manage shared memory: “INFORMIXSHMBASE environment variable (UNIX)” on
page 3-55

Manage stack size: “INFORMIXSTACKSIZE environment variable” on page 3-56

Manage temporary tables: “DBSPACETEMP environment variable” on page 3-30,
“DBTEMP environment variable” on page 3-32, and “PSORT_DBTEMP
environment variable” on page 3-68

Manage variable-length packets: “IFX_PAD_VARCHAR environment variable” on
page 3-46

Date and time values, formats Manage date and time information: “DBCENTURY environment variable” on page
3-20, “DBDATE environment variable” on page 3-22, “DBTIME environment
variable” on page 3-32, GLS-related environment variables (GL_DATE and
GL_DATETIME), The USE_DTENV environment variable, and “TZ environment
variable” on page 3-73

DB-Access utility Manage the database server and DB-Access: “DBANSIWARN environment
variable” on page 3-19, “DBDELIMITER environment variable” on page 3-24,
“DBEDIT environment variable” on page 3-25. “DBFLTMASK environment
variable” on page 3-25, “DBPATH environment variable” on page 3-28,
“FET_BUF_SIZE environment variable” on page 3-39, “INFORMIXSERVER
environment variable” on page 3-54, “INFORMIXTERM environment variable
(UNIX)” on page 3-56, “TERM environment variable (UNIX)” on page 3-71,
“TERMCAP environment variable (UNIX)” on page 3-72, and “TERMINFO
environment variable (UNIX)” on page 3-72

dbexport utility Set the field delimiter: “DBDELIMITER environment variable” on page 3-24

Delimited identifiers Set the field delimiter used with the dbexport utility and with the LOAD and
UNLOAD statements: “DBDELIMITER environment variable” on page 3-24

Disk space Manage the amount of system disk space and memory that the UPDATE
STATISTICS MEDIUM or HIGH statement can use: “DBUPSPACE environment
variable” on page 3-35

Editor Specify the text editor to use with SQL statements and command files in
DB-Access: “DBEDIT environment variable” on page 3-25

Enterprise Replication Specify information for Enterprise Replication: Enterprise Replication configuration
parameter and environment variable reference

Chapter 3. Environment variables 3-11

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.glsug.doc/ids_gug_063.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.glsug.doc/ids_gug_063.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.esqlc.doc/ids_esqlc_0194.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.erep.doc/ids_erp_367.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.erep.doc/ids_erp_367.htm

Table 3-1. Uses for environment variables (continued)

Functional category Environment variable

ESQL/C Specify ANSI compliance: “DBANSIWARN environment variable” on page 3-19

Specify the filename or pathname of the C compiler to use with ESQL/C:
“INFORMIXC environment variable (UNIX)” on page 3-50

Set delimited identifiers: “DELIMIDENT environment variable” on page 3-37

Specify multibyte characters and locale information GLS-related environment
variables (CLIENT_LOCALE, ESQLMF, and GL_USER)

Specify information for multithreaded applications: “THREADLIB environment
variable (UNIX)” on page 3-72

Specify the default compilation order: “CPFIRST environment variable” on page
3-17

Executable programs Specify the directories to search for executable programs: “PATH environment
variable” on page 3-63

Fetch buffer size Set buffer size information: “FET_BUF_SIZE environment variable” on page 3-39

Filenames: multibyte GLS-related environment variables (GLS8BITFSYS)

Files: field delimiter Set the field delimiter: “DBDELIMITER environment variable” on page 3-24

Files: installation Specify the directory that contains the subdirectories in which your product files
are installed: “INFORMIXDIR environment variable” on page 3-54

Files: locale Specify locale information: GLS-related environment variables (CLIENT_LOCALE,
DB_LOCALE, and SERVER_LOCALE)

Files: map for C++ Specify the pathname of the map file for C++ programs: “INFORMIXCPPMAP
environment variable” on page 3-54

Files: message Specify the subdirectory of $INFORMIXDIR or the pathname of the directory that
contains the compiled message files that the database server uses: “DBLANG
environment variable” on page 3-26

Files: temporary “DBSPACETEMP environment variable” on page 3-30

Files: temporary Specify a directory for temporary files: “DBTEMP environment variable” on page
3-32

Files: temporary sorting Specify the location of temporary files used for sorting: “PSORT_DBTEMP
environment variable” on page 3-68

Files: termcap, terminfo Specify terminal information: “INFORMIXTERM environment variable (UNIX)” on
page 3-56, “TERM environment variable (UNIX)” on page 3-71, “TERMCAP
environment variable (UNIX)” on page 3-72, and “TERMINFO environment
variable (UNIX)” on page 3-72

Format: date and time Define the format for date and time information: “DBCENTURY environment
variable” on page 3-20, “DBDATE environment variable” on page 3-22, “DBTIME
environment variable” on page 3-32, GLS-related environment variables (GL_DATE
and GL_DATETIME), The USE_DTENV environment variable, and “TZ environment
variable” on page 3-73

Format: private-use characters Set the display width for characters in Unicode Private-Use Area (PUA) ranges:
GLS-related environment variables (IFX_PUA_DISPLAY_MAPPING)

Format: money Define the format for money information: “DBMONEY environment variable” on
page 3-27and GLS-related environment variables

Gateways Set information for Gateways: “DBTEMP environment variable” on page 3-32

High-Performance Loader Specify information for the High-Performance Loader: “DBONPLOAD
environment variable” on page 3-27, , “PLOAD_LO_PATH environment variable”
on page 3-65. and “PLOAD_SHMBASE environment variable” on page 3-65

3-12 IBM Informix Guide to SQL: Reference

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.glsug.doc/ids_gug_063.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.glsug.doc/ids_gug_063.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.glsug.doc/ids_gug_063.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.glsug.doc/ids_gug_063.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.glsug.doc/ids_gug_063.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.esqlc.doc/ids_esqlc_0194.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.glsug.doc/ids_gug_063.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.glsug.doc/ids_gug_063.htm

Table 3-1. Uses for environment variables (continued)

Functional category Environment variable

Identifiers Specify field delimiters: “DELIMIDENT environment variable” on page 3-37

Specify information for identifiers longer than 18 bytes: “IFX_LONGID
environment variable” on page 3-43

Specify information for multibyte characters: GLS-related environment variables
(CLIENT_LOCALE and ESQLMF)

Installation Specify the directory that contains the subdirectories in which your product files
are installed: “INFORMIXDIR environment variable” on page 3-54

Specify which directories to search for executable programs: “PATH environment
variable” on page 3-63

JDBC Manage environment variables used with JDBC: Informix environment variables
with the IBM Informix JDBC Driver

Language environment Specify language and locale information: “DBLANG environment variable” on
page 3-26 and GLS-related environment variables

Libraries Specify paths for libraries: “LD_LIBRARY_PATH environment variable (UNIX)” on
page 3-59, “LIBPATH environment variable (UNIX)” on page 3-59, and
“SHLIB_PATH environment variable (UNIX)” on page 3-70

Locale Define client, server, and database locale information: GLS-related environment
variables (CLIENT_LOCALE, DB_LOCALE, and SERVER_LOCALE)

Lock mode Set the default lock mode for database tables that are created without specifying
the LOCKMODE PAGE or LOCKMODE ROW keywords:
“IFX_DEF_TABLE_LOCKMODE environment variable” on page 3-40

Long Identifiers Specify information for identifiers longer than 18 bytes: “IFX_LONGID
environment variable” on page 3-43

Map file for C++ Specify the pathname of the map file for C++ programs: “INFORMIXCPPMAP
environment variable” on page 3-54

Message chaining Enable or disable optimized message transfers (message chaining) for IBM
Informix ESQL/C: “OPTMSG environment variable” on page 3-62

Message files Specify the directory that contains compiled message files: “DBLANG environment
variable” on page 3-26

Money format Define the format for money information: “DBMONEY environment variable” on
page 3-27and GLS-related environment variables

Multibyte characters Specify information for multibyte characters: GLS-related environment variables
(CLIENT_LOCALE, DB_LOCALE, SERVER_LOCALE, and GL_USEGLU)

Multibyte filter Specify Informix ESQL/C multibyte filter information: GLS-related environment
variables (ESQLMF)

Multithreaded applications Specify information for compiling multithreaded IBM Informix ESQL/C
applications: “THREADLIB environment variable (UNIX)” on page 3-72

Network Specify network information: “DBPATH environment variable” on page 3-28

Nondefault locale Define client, server, and database locale information: GLS-related environment
variables (CLIENT_LOCALE, DB_LOCALE, and SERVER_LOCALE)

ON-Bar utility Optimize the deduplication capabilities for storage managers:
IFX_BAR_USE_DEDUP environment variable

Disable the ability to replicate, import, or export backup objects among TSM
servers: IFX_TSM_OBJINFO_OFF environment variable

ONCONFIG parameters Specify the name of the file that holds configuration parameters: “ONCONFIG
environment variable” on page 3-60

Chapter 3. Environment variables 3-13

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.glsug.doc/ids_gug_063.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.jdbc_pg.doc/ids_jdbc_040.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.jdbc_pg.doc/ids_jdbc_040.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.glsug.doc/ids_gug_063.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.glsug.doc/ids_gug_063.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.glsug.doc/ids_gug_063.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.glsug.doc/ids_gug_063.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.glsug.doc/ids_gug_063.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.glsug.doc/ids_gug_063.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.glsug.doc/ids_gug_063.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.glsug.doc/ids_gug_063.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.glsug.doc/ids_gug_063.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.bar.doc/ids_bar_561.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.bar.doc/ids_bar_563.htm

Table 3-1. Uses for environment variables (continued)

Functional category Environment variable

oninit output (Windows only) Specify a path and file for oninit output: “ONINIT_STDOUT environment variable
(Windows)” on page 3-60

Optimization: directives Manage query optimizer directives: “IFX_DIRECTIVES environment variable” on
page 3-40 and “IFX_EXTDIRECTIVES environment variable” on page 3-41

Optimization: message transfers Enable or disable optimized message transfers (message chaining) for IBM
Informix ESQL/C: “OPTMSG environment variable” on page 3-62

Optimization: join method Modify the value of the OPTCOMPIND configuration parameter: “OPTCOMPIND
environment variable” on page 3-61

Optimization: performance goal Specify the query performance goal for the optimizer: “OPT_GOAL environment
variable (UNIX)” on page 3-63

OPTOFC feature Enable optimize-OPEN-FETCH-CLOSE functionality: “OPTOFC environment
variable” on page 3-62

PAM authentication for
MongoDB clients

Enable PAM authentication for MongoDB clients: “IFMXMONGOAUTH
environment variable” on page 3-39

Path name: archecker
configuration file

Specify the full path name for the archecker configuration file: AC_CONFIG file
environment variable

Path name: C compiler Specify the filename or pathname of the C compiler: “INFORMIXC environment
variable (UNIX)” on page 3-50

Path name: database files Specify database server file and path information: “DBPATH environment
variable” on page 3-28

Path name: executable programs Specify directories to search for executable programs: “PATH environment
variable” on page 3-63

Path name: HPL
smart-large-object handles

Specify the pathname for smart-large-object handles: “PLOAD_LO_PATH
environment variable” on page 3-65

Path name: installation Specify the directory that contains the subdirectories in which your product files
are installed: “INFORMIXDIR environment variable” on page 3-54

Path name: libraries Specify paths for libraries: “LD_LIBRARY_PATH environment variable (UNIX)” on
page 3-59, “LIBPATH environment variable (UNIX)” on page 3-59, and
“SHLIB_PATH environment variable (UNIX)” on page 3-70

Path name: message files Specify the directory that contains compiled message files: “DBLANG environment
variable” on page 3-26 and GLS-related environment variables

Path name: parallel sorting Specify the location of temporary files for sorts: “PSORT_DBTEMP environment
variable” on page 3-68

IBM Informix Primary Storage
Manager

Manage the storage manager: “PSM_ACT_LOG environment variable” on page
3-66. “PSM_CATALOG_PATH environment variable” on page 3-66,
“PSM_DBS_POOL environment variable” on page 3-66, “PSM_DEBUG
environment variable” on page 3-67, “PSM_DEBUG_LOG environment variable”
on page 3-67, and “PSM_LOG_POOL environment variable” on page 3-67

Preserve owner name case Set the case of owner names: “ANSIOWNER environment variable” on page 3-16

Printing Specify the default printing program: “DBPRINT environment variable” on page
3-30

Privileges Configure role separation: “INF_ROLE_SEP environment variable” on page 3-57

3-14 IBM Informix Guide to SQL: Reference

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.bar.doc/ids_bar_286.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.bar.doc/ids_bar_286.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.glsug.doc/ids_gug_063.htm

Table 3-1. Uses for environment variables (continued)

Functional category Environment variable

Query: optimization Manage query optimizer directives: “IFX_DIRECTIVES environment variable” on
page 3-40 and “IFX_EXTDIRECTIVES environment variable” on page 3-41

Modify the value of the OPTCOMPIND configuration parameter: “OPTCOMPIND
environment variable” on page 3-61

Specify the query performance goal for the optimizer: “OPT_GOAL environment
variable (UNIX)” on page 3-63

Specify user-defined data types can use to estimate the cost of an R-tree index for
queries on UDT columns“RTREE_COST_ADJUST_VALUE environment variable”
on page 3-69

Query: prioritization Specify the degree of parallelism that the database server uses: “PDQPRIORITY
environment variable” on page 3-64

Remote shell Specify information that overrides the default remote shell for performing remote
tape operations: “DBREMOTECMD environment variable (UNIX)” on page 3-30

Role separation Configure role separation: “INF_ROLE_SEP environment variable” on page 3-57

Rolled-back transactions Manage what the DB-Access utility does when an error occurs: “DBACCNOIGN
environment variable” on page 3-18

Specify whether an internal rollback of a global transaction frees the transaction:
“IFX_XASTDCOMPLIANCE_XAEND environment variable” on page 3-48

Server locale Define the locale of your database server: GLS-related environment variables
SERVER_LOCALE

Shared memory Specify where shared-memory segments are attached to the client process:
“INFORMIXSHMBASE environment variable (UNIX)” on page 3-55

Specify the shared-memory address for High Performance Loader (HPL)
processes:“PLOAD_SHMBASE environment variable” on page 3-65

Shell: remote Specify information that overrides the default remote shell for performing remote
tape operations: “DBREMOTECMD environment variable (UNIX)” on page 3-30

Shell: search path Specify which directories to search for executable programs: “PATH environment
variable” on page 3-63

Sorting Specify the location of temporary files for sorts: “PSORT_DBTEMP environment
variable” on page 3-68

Allocate more threads for sorting: “PSORT_NPROCS environment variable” on
page 3-68

Chapter 3. Environment variables 3-15

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.glsug.doc/ids_gug_063.htm

Table 3-1. Uses for environment variables (continued)

Functional category Environment variable

SQL statements Specify information for caching: “STMT_CACHE environment variable” on page
3-71

Specify connection information: “INFORMIXCONRETRY environment variable” on
page 3-51, “INFORMIXCONTIME environment variable” on page 3-52, and
“INFORMIXSERVER environment variable” on page 3-54

Specify information for CREATE TEMP TABLE operations: “DBSPACETEMP
environment variable” on page 3-30

Specify information for DESCRIBE FOR UPDATE operations: “IFX_UPDDESC
environment variable” on page 3-47

Specify information for LOAD and UNLOAD operations: “DBDELIMITER
environment variable” on page 3-24 and “DBBLOBBUF environment variable” on
page 3-20

Specify information for SELECT INTO TEMP operations: “DBSPACETEMP
environment variable” on page 3-30

Specify information for SET PDQPRIORITY operations: “PDQPRIORITY
environment variable” on page 3-64

Specify information for SET STMT_CACHE operations

Specify information for UPDATE STATISTICS operations: “DBUPSPACE
environment variable” on page 3-35

Stack size Define the stack size that is applied to client processes: “INFORMIXSTACKSIZE
environment variable” on page 3-56

Temporary tables Define information for temporary tables: “DBSPACETEMP environment variable”
on page 3-30, “DBTEMP environment variable” on page 3-32, and
“PSORT_DBTEMP environment variable” on page 3-68

Terminal handling Specify terminal information: “INFORMIXTERM environment variable (UNIX)” on
page 3-56, “TERM environment variable (UNIX)” on page 3-71, “TERMCAP
environment variable (UNIX)” on page 3-72, and “TERMINFO environment
variable (UNIX)” on page 3-72

Time-limited software license Set information for trial or evaluation software warning messages:
“IFX_NO_TIMELIMIT_WARNING environment variable” on page 3-45

Variables: overriding Deactivate some specified environment variable settings: “ENVIGNORE
environment variable (UNIX)” on page 3-38

Virtual memory segments on
large pages

Specify whether the database server can use large pages on platforms where the
hardware and the operating system support large pages of shared memory:
“IFX_LARGE_PAGES environment variable” on page 3-42

Year values (abbreviated) Specify how to expand DATE and DATETIME values that are entered as
abbreviated year values: “DBCENTURY environment variable” on page 3-20

ANSIOWNER environment variable
In an ANSI-compliant database, you can prevent the default behavior of upshifting
lowercase letters in owner names that are not delimited by quotation marks by
setting the ANSIOWNER environment variable to 1.

►► setenv ANSIOWNER 1 ►◄

3-16 IBM Informix Guide to SQL: Reference

To prevent upshifting of lowercase letters in owner names in an ANSI-compliant
database, you must set ANSIOWNER before you initialize IBM Informix.

The following table shows how an ANSI-compliant database of IBM Informix
stores or reads the specified name of a database object called oblong if you were
the owner of oblong and your userid (in all lowercase letters) were owen:

Table 3-2. Lettercase of implicit, unquoted, and quoted owner names, with and without
ANSIOWNER

Owner Format Specification ANSIOWNER = 1 ANSIOWNER Not Set

Implicit: oblong owen.oblong OWEN.oblong

Unquoted: owen.oblong owen.oblong OWEN.oblong

Quoted: 'owen'.oblong owen.oblong owen.oblong

Because they do not match the lettercase of your userid, any SQL statements that
specified the formats that are stored as OWEN.oblong would fail with errors.

CPFIRST environment variable
Use the CPFIRST environment variable to specify the default compilation order for
all IBM Informix ESQL/C source files in your programming environment.

►► setenv CPFIRST TRUE
FALSE

►◄

When you compile Informix ESQL/C programs with CPFIRST not set, the Informix
ESQL/C preprocessor runs first, by default, on the program source file and then
passes the resulting file to the C language preprocessor and compiler. You can,
however, compile the Informix ESQL/C program source file in the following order:
1. Run the C preprocessor
2. Run the Informix ESQL/C preprocessor
3. Run the C compiler and linker

To use a nondefault compilation order for a specific program, you can either give
the program source file a .ecp extension, run the -cp option with the esql
command on a program source file with a .ec extension, or set CPFIRST.

Set CPFIRST to TRUE (uppercase only) to run the C preprocessor before the Informix
ESQL/C preprocessor on all Informix ESQL/C source files in your environment,
irrespective of whether the -cp option is passed to the esql command or the source
files have the .ec or the .ecp extension.

To restore the default order on a system where the CPFIRST environment variable
has been set to TRUE, you can set CPFIRST to FALSE. On UNIX systems that support
the C shell, the following command has the same effect:
unsetenv CPFIRST

CMCONFIG environment variable
Set the CMCONFIG environment variable to specify the location of the Connection
Manager configuration file. You use the configuration file to specify service level
agreements and other Connection Manager configuration options.

Chapter 3. Environment variables 3-17

►► setenv CMCONFIG path/file_name ►◄

path/file_name
is the full path and file name of a Connection Manager configuration file.

If the CMCONFIG environment variable is not set and the configuration file name
is not specified on the oncmsm utility command line, the Connection Manager
attempts to load the file from the following path and file name:
$INFORMIXDIR/etc/cmsm.cfg

Examples

Suppose the CMCONFIG environment variable points to a valid path and file
name of a Connection Manager configuration file. To reload a Connection Manager
instance using the configuration file specified in the shell environment enter the
following command:
./oncmsm -r

To shut down a Connection Manager instance using the configuration file specified
in the shell environment:
./oncmsm -k

Related information:
The oncmsm utility
Example of configuring connection management for a high-availability cluster

DBACCNOIGN environment variable
Use the DBACCNOIGN environment variable to specify the behavior of the
DB-Access utility when specified errors occurs.

The DBACCNOIGN environment variable affects the behavior of the DB-Access
utility if an error occurs under one of the following circumstances:
v You run DB-Access in non-menu mode.
v In IBM Informix only, you execute the LOAD command with DB-Access in

menu mode.

Set the DBACCNOIGN environment variable to 1 to roll back an incomplete transaction
if an error occurs while you run the DB-Access utility under either of the
preceding conditions.

►► setenv DBACCNOIGN 1 ►◄

For example, assume DB-Access runs the following SQL commands:
DATABASE mystore
BEGIN WORK

INSERT INTO receipts VALUES (cust1, 10)
INSERT INTO receipt VALUES (cust1, 20)
INSERT INTO receipts VALUES (cust1, 30)

UPDATE customer
SET balance =

3-18 IBM Informix Guide to SQL: Reference

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_1128.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_1173.htm

(SELECT (balance-60)
FROM customer WHERE custid = ’cust1’)

WHERE custid = ’cust1
COMMIT WORK

Here, one statement has a misspelled table name: the receipt table does not exist. If
DBACCNOIGN is not set in your environment, DB-Access inserts two records into the
receipts table and updates the customer table. Now, the decrease in the customer
balance exceeds the sum of the inserted receipts.

But if DBACCNOIGN is set to 1, messages open that indicate that DB-Access rolled
back all the INSERT and UPDATE statements. The messages also identify the cause
of the error so that you can resolve the problem.

LOAD statement example when DBACCNOIGN is set
You can set the DBACCNOIGN environment variable to protect data integrity during a
LOAD statement, even if DB-Access runs the LOAD statement in menu mode.

Assume you execute the LOAD statement from the DB-Access SQL menu.
Forty-nine rows of data load correctly, but the 50th row contains an invalid value
that causes an error. If you set DBACCNOIGN to 1, the database server does not insert
the forty-nine previous rows into the database. If DBACCNOIGN is not set, the
database server inserts the first 49 rows.

DBANSIWARN environment variable
Use the DBANSIWARN environment variable to indicate that you want to check for
IBM Informix extensions to ANSI-standard SQL syntax.

Unlike most environment variables, you are not required to set
DBANSIWARN

to a value. You can set it to any value or to no value.

►► setenv DBANSIWARN ►◄

Running DB-Access with DBANSIWARN set is functionally equivalent to including the
-ansi flag when you invoke DB-Access (or any IBM Informix product that
recognizes the -ansi flag) from the command line. If you set DBANSIWARN before you
run DB-Access, any syntax-extension warnings are displayed on the screen within
the SQL menu.

At runtime, the DBANSIWARN environment variable causes the sixth character of the
sqlwarn array in the SQL Communication Area (SQLCA) to be set to W when a
statement is executed that is recognized as including any IBM Informix extension
to the ANSI/ISO standard for SQL syntax.

For details on SQLCA, see the IBM Informix ESQL/C Programmer's Manual.

After you set DBANSIWARN, IBM Informix extension checking is automatic until you
log out or unset DBANSIWARN. To turn off IBM Informix extension checking, you can
disable DBANSIWARN with this command:
unsetenv DBANSIWARN

Chapter 3. Environment variables 3-19

DBBLOBBUF environment variable
Use the DBBLOBBUF environment variable to control whether TEXT or BYTE
values are stored temporarily in memory or in a file while being processed by the
UNLOAD statement. DBBLOBBUF affects only the UNLOAD statement.

►► setenv DBBLOBBUF size ►◄

size represents the maximum size of TEXT or BYTE data in KB.

If the TEXT or BYTE data size is smaller than the default of 10 KB (or the setting
of DBBLOBBUF), the TEXT or BYTE value is temporarily stored in memory. If the
data size is larger than the default or the DBBLOBBUF setting, the data value is
written to a temporary file. For instance, to set a buffer size of 15 KB, set
DBBLOBBUF as in the following example:
setenv DBBLOBBUF 15

Here any TEXT or BYTE value smaller than 15 KB is stored temporarily in
memory. Values larger than 15 KB are stored temporarily in a file.

DBCENTURY environment variable
Use the DBCENTURY environment variable to specify how to expand literal
DATE and DATETIME values that are entered with abbreviated year values. To
avoid problems in expanding abbreviated years, applications should require entry
of 4-digit years, and should always display years as four digits.

►►
R

setenv DBCENTURY F
C
P

►◄

When DBCENTURY is not set (or is set to R), the first two digits of the current
year are used to expand 2-digit year values. For example, if today's date is
09/30/2003, then the abbreviated date 12/31/99 expands to 12/31/2099, and the
abbreviated date 12/31/00 expands to 12/31/2000.

The R, P, F, and C settings determine algorithms for expanding two-digit years.

Setting Algorithm

R = Current Use the first two digits of the current year to expand the year value.

P = Past Expanded dates are created by prefixing the abbreviated year value with 19
and 20. Both dates are compared to the current date, and the most recent
date that is earlier than the current date is used.

F = Future Expanded dates are created by prefixing the abbreviated year value with 20
and 21. Both dates are compared to the current date, and the earliest date
that is later than the current date is used.

C = Closest Expanded dates are created by prefixing the abbreviated year value with
19, 20, and 21. These three dates are compared to the current date, and the
date that is closest to the current date is used.

Settings are case sensitive, and no error is issued for invalid settings. If you enter f
(for example), then the default (R) setting takes effect. The P and F settings cannot
return the current date, which is not in the past or future.

3-20 IBM Informix Guide to SQL: Reference

Years entered as a single digit are prefixed with 0 and then expanded. Three-digit
years are not expanded. Pad years earlier than 100 with leading zeros.
Related reference:
“DATETIME data type” on page 2-12

Examples of expanding year values
The examples in this topic illustrate how various settings of DBCENTURY cause
abbreviated years to be expanded in DATE and DATETIME values.

DBCENTURY = P
Example data type: DATE
Current date: 4/6/2003
User enters: 1/1/1
Prefix with "19" expansion : 1/1/1901
Prefix with "20" expansion: 1/1/2001
Analysis: Both are prior to current date, but 1/1/2001 is closer to
current date.

Important: The effect of DBCENTURY depends on the current date from the
system clock-calendar. Thus, 1/1/1, the abbreviated date in this example, would
instead be expanded to 1/1/1901 if the current date were 1/1/2001 and
DBCENTURY = P.

DBCENTURY = F
Example data type: DATETIME year to month
Current date: 5/7/2005
User enters: 1-1
Prefix with "20" expansion: 2001-1
Prefix with "21" expansion: 2101-1
Analysis: Only date 2101-1 is after the current date, so it is chosen.

DBCENTURY = C
Example data type: DATE
Current date: 4/6/2000
User enters: 1/1/1
Prefix with "19" expansion : 1/1/1901
Prefix with "20" expansion: 1/1/2001
Prefix with "21" expansion: 1/1/2101
Analysis: Here 1/1/2001 is closest to the current date, so it is chosen.

DBCENTURY = R or DBCENTURY Not Set
Example data type: DATETIME year to month
Current date: 4/6/2000
User enters: 1-1
Prefix with "20" expansion: 2001-1

Example data type: DATE
Current date: 4/6/2003
User enters: 0/1/1
Prefix with "20" expansion: 2000/1
Analysis: In both examples, the Prefix with "20" algorithm is used.

Setting DBCENTURY does not affect IBM Informix products when the locale
specifies a non-Gregorian calendar, such as Hebrew or Islamic calendars. The
leading digits of the current year are used for alternative calendar systems when
the year is abbreviated.

Chapter 3. Environment variables 3-21

Abbreviated years and expressions in database objects
When an expression in a database object (including a check constraint,
fragmentation expression, SPL routine, trigger, or UDR) contains a literal date or
DATETIME value in which the year has one or two digits, the database server
evaluates the expression using the setting that DBCENTURY (and other relevant
environment variables) had when the database object was created (or was last
modified).

If DBCENTURY has been reset to a new value, the new value is ignored when the
abbreviated year is expanded.

For example, suppose a user creates a table and defines the following check
constraint on a column named birthdate:
birthdate < ’09/25/50’

The expression is interpreted according to the value of DBCENTURY when the
constraint was defined. If the table that contains the birthdate column is created on
09/23/2000 and DBCENTURY =C, the check constraint expression is consistently
interpreted as birthdate < ’09/25/1950’ when inserts or updates are performed
on the birthdate column. Even if different values of DBCENTURY are set when users
perform inserts or updates on the birthdate column, the constraint expression is
interpreted according to the setting at the time when the check constraint was
defined (or was last modified).

Database objects created on some earlier versions of IBM Informix do not support
the priority of creation-time settings.

For legacy objects to acquire this feature
1. Drop the objects.
2. Recreate them (or for fragmentation expressions, detach them and then reattach

them).

After the objects are redefined, date literals within expressions of the objects will
be interpreted according to the environment at the time when the object was
created or was last modified. Otherwise, their behavior will depend on the runtime
environment and might become inconsistent if this changes.

Administration of a database that includes a mix of legacy objects and new objects
might become difficult because of differences between the new and the old
behavior for evaluating date expressions. To avoid this, it is recommended that you
redefine any legacy objects.

The value of DBCENTURY and the current date are not the only factors that determine
how the database server interprets date and DATETIME values. The DBDATE,
DBTIME, GL_DATE, and GL_DATETIME environment variables can also influence how
dates are interpreted. For information about GL_DATE and GL_DATETIME, see the IBM
Informix GLS User's Guide.

Important: The behavior of DBCENTURY for IBM Informix is not compatible with
earlier versions.

DBDATE environment variable
Use the DBDATE environment variable to specify the end-user formats of DATE
values.

3-22 IBM Informix Guide to SQL: Reference

On UNIX systems that use the C shell, set DBDATE with this syntax.

►►
MD Y4 /

setenv DBDATE DM Y2 -
Y4 MD .
Y2 DM .

0

►◄

The following formatting symbols are valid in the DBDATE setting:

- . / are characters that can exist as separators in a date format.

0 indicates that no separator is displayed between time units.

D, M are characters that represent the day and the month.

Y2, Y4 are characters that represent the year and the precision of the year.

Some East Asian locales support additional syntax for era-based dates.

DBDATE can specify the following attributes of the display format:
v The order of time units (the month, day, and year) in a date
v Whether the year is shown as two digits (Y2) or four digits (Y4)
v The separator between the month, day, and year time units

For the U.S. English locale, the default for DBDATE is MDY4/, where M represents
the month, D represents the day, Y4 represents a four-digit year, and slash (/) is
the time-units separator (for example, 01/08/2011). Other valid characters for the
separator are a hyphen (-), a period (.), or a zero (0). To indicate no separator,
use the zero. The slash (/) is used by default if you attempt to specify a character
other than a hyphen, period, or zero as a separator, or if you do not include any
separator in the DBDATE specification.

If DBDATE is not set on the client, any DBDATE setting on the database server
overrides the MDY4/ default on the client. If DBDATE is set on the client, that
value (rather than the setting on the database server) is used by the client.

The following table shows some examples of valid DBDATE settings and their
corresponding displays for the date 8 January, 2011:

DBDATE
Setting

Representation of
January 8, 2011:

DBDATE
Setting

Representation of
January 8, 2011:

MDY4/ 01/08/2011 Y2DM. 11.08.01

DMY2- 08-01-11 MDY20 010811

MDY4 01/08/2011 Y4MD* 2011/01/08

Formats Y4MD* (because asterisk is not a valid separator) and MDY4 (with no
separator defined) both display the default symbol (slash) as the separator.

Important: If you use the Y2 format, the setting of the DBCENTURY environment
variable can also affect how literal DATE values are evaluated in data entry.

Also, certain routines that IBM Informix ESQL/C calls can use the DBTIME
variable, rather than DBDATE, to set DATETIME formats to international
specifications. For more information, see the discussion of the DBTIME

Chapter 3. Environment variables 3-23

environment variable in “DBTIME environment variable” on page 3-32 and in the
IBM Informix ESQL/C Programmer's Manual.

The setting of the DBDATE variable takes precedence over that of the GL_DATE
environment variable, and over any default DATE format that CLIENT_LOCALE
specifies. For information about GL_DATE and CLIENT_LOCALE, see the IBM
Informix GLS User's Guide.

End-user formats affect the following contexts:
v When you display DATE values, IBM Informix products use the DBDATE

environment variable to format the output.
v During data entry of DATE values, IBM Informix products use the DBDATE

environment variable to interpret the input.

For example, if you specify a literal DATE value in an INSERT statement, the
database server expects this literal value to be compatible with the format that
DBDATE specifies. Similarly, the database server interprets the date that you
specify as the argument to the DATE() function to be in DBDATE format.

DATE expressions in database objects
When an expression in a database object (including a check constraint,
fragmentation expression, SPL routine, trigger, or UDR) contains a literal date
value, the database server evaluates the expression using the setting that DBDATE
(or other relevant environment variables) had when the database object was
created (or was last modified). If DBDATE has been reset to a new value, the new
value is ignored when the literal DATE is evaluated.

For example, suppose DBDATE is set to MDY2/ and a user creates a table with the
following check constraint on the column orderdate:
orderdate < ’06/25/98’

The date of the preceding expression is formatted according to the value of
DBDATE when the constraint is defined. The check constraint expression is
interpreted as orderdate < ’06/25/98’ regardless of the value of DBDATE during
inserts or updates on the orderdate column. Suppose DBDATE is reset to DMY2/
when a user inserts the value ’30/01/98’ into the orderdate column. The date
value inserted uses the date format DMY2/, whereas the check constraint expression
uses the date format MDY2/.

See “Abbreviated years and expressions in database objects” on page 3-22 for a
discussion of legacy objects from earlier versions of IBM Informix that are always
evaluated according to the runtime environment. That section describes how to
redefine objects so that dates are interpreted according to environment variable
settings that were in effect when the object was defined (or when the object was
last modified).

Important: The behavior of DBDATE for IBM Informix is not compatible with
earlier versions.

DBDELIMITER environment variable
Set the DBDELIMITER environment variable to specify the field delimiter used
with the dbexport utility and with the LOAD and UNLOAD statements.

3-24 IBM Informix Guide to SQL: Reference

►► setenv DBDELIMITER 'delimiter' ►◄

delimiter
is the field delimiter for unloaded data files.

The delimiter can be any single character, except those in the following list:
v Hexadecimal digits (0 through 9,a through f, A through F)
v Newline or CTRL-J
v The backslash (\) symbol

The vertical bar (| = ASCII 124) is the default. To change the field delimiter to a
plus (+) symbol, for example, you can set DBDELIMITER as follows:
setenv DBDELIMITER ’+’

DBEDIT environment variable
Use the DBEDIT environment variable to specify the text editor to use with SQL
statements and command files in DB-Access.

If DBEDIT is set, the specified text editor is invoked automatically. If DBEDIT is not,
set you are prompted to specify a text editor as the default for the rest of the
session.

►► setenv DBEDIT editor ►◄

editor is the name of the text editor you want to use.

For most UNIX systems, the default text editor is vi. If you use another text editor,
be sure that it creates flat ASCII files. Some word processors in document mode
introduce printer control characters that can interfere with the operation of your
IBM Informix product.

To specify the EMACS text editor, set DBEDIT with the following command:
setenv DBEDIT emacs

DBFLTMASK environment variable
The DB-Access utility displays the floating-point values of data types FLOAT,
SMALLFLOAT, and DECIMAL(p) within a 14-character buffer. By default,
DB-Access displays as many digits to the right of the decimal point as will fit into
this character buffer. Therefore, the actual number of decimal digits that DB-Access
displays depends on the size of the floating-point value.

To reduce the number of digits displayed to the right of the decimal point in
floating-point values, set DBFLTMASK to the specified number of digits.

►► setenv DBFLTMASK scale ►◄

scale is the number of decimal digits that you want the IBM Informix client
application to display in the floating-point values. Here scale must be
smaller than 16, the default number of digits displayed.

If the floating-point value contains more digits to the right of the decimal than
DBFLTMASK specifies, DB-Access rounds the value to the specified number of

Chapter 3. Environment variables 3-25

digits. If the floating-point value contains fewer digits to the right of the decimal,
DB-Access pads the value with zeros. If you set DBFLTMASK to a value greater
than can fit into the 14-character buffer, however, DB-Access rounds the value to
the number of digits that can fit.

DBLANG environment variable
Use the DBLANG environment variable to specify the subdirectory of
$INFORMIXDIR or the full pathname of the directory that contains the compiled
message files that IBM Informix products use.

►► setenv DBLANG relative_path
full_path

►◄

relative_path
is a subdirectory of $INFORMIXDIR.

full_path
is the pathname to the compiled message files.

By default, IBM Informix products put compiled messages in a locale-specific
subdirectory of the $INFORMIXDIR/msg directory. These compiled message files
have the file extension .iem. If you want to use a message directory other than
$INFORMIXDIR/msg, where, for example, you can store message files that you
create, you must perform the following steps:

To use a message directory other than $INFORMIXDIR/msg
1. Use the mkdir command to create the appropriate directory for the message

files.
You can make this directory under the directory $INFORMIXDIR or
$INFORMIXDIR/msg, or you can make it under any other directory.

2. Set the owner and group of the new directory to informix and the access
permission for this directory to 755.

3. Set the DBLANG environment variable to the new directory. If this is a
subdirectory of $INFORMIXDIR or $INFORMIXDIR/msg, then you need only
list the relative path to the new directory. Otherwise, you must specify the full
pathname of the directory.

4. Copy the .iem files or the message files that you created to the new message
directory that $DBLANG specifies.
All the files in the message directory should have the owner and group
informix and access permission 644.

IBM Informix products that use the default U.S. English locale search for message
files in the following order:
1. In $DBLANG, if DBLANG is set to a full pathname
2. In $INFORMIXDIR/msg/$DBLANG, if DBLANG is set to a relative pathname
3. In $INFORMIXDIR/$DBLANG, if DBLANG is set to a relative pathname
4. In $INFORMIXDIR/msg/en_us/0333

5. In $INFORMIXDIR/msg/en_us.8859-1

6. In $INFORMIXDIR/msg

7. In $INFORMIXDIR/msg/english

3-26 IBM Informix Guide to SQL: Reference

For more information about search paths for messages, see the description of
DBLANG in the IBM Informix GLS User's Guide.

DBMONEY environment variable
Use the DBMONEY environment variable to specify the display format of values
in columns of smallfloat, FLOAT, DECIMAL, or MONEY data types, and of
complex data types derived from any of these data types.

►►
'$' .

setenv DBMONEY front ,
'front ' back

‘back'

►◄

$ is a currency symbol that precedes MONEY values in the default locale if
no other front symbol is specified, or if DBMONEY is not set.

, or . is a comma or period (the default) that separates the integral part from the
fractional part of the FLOAT, DECIMAL, or MONEY value. Whichever
symbol you do not specify becomes the thousands separator.

back is a currency symbol that follows the MONEY value.

front is a currency symbol that precedes the MONEY value.

The back symbol can be up to seven characters and can contain any character that
the locale supports, except a digit, a comma (,), or a period (.) symbol. The front
symbol can be up to seven characters and can contain any character that the locale
supports except a digit, a comma (,), or a period (.) symbol. If you specify any
character that is not a letter of the alphabet for front or back, you must enclose the
front or back setting between single quotation (') marks.

When you display MONEY values, IBM Informix products use the DBMONEY
setting to format the output. DBMONEY has no effect, however, on the internal
format of data values that are stored in columns of the database.

If you do not set DBMONEY, then MONEY values for the default locale, U.S.
English, are formatted with a dollar sign ($) that precedes the MONEY value, a
period (.) that separates the integral from the fractional part of the MONEY
value, and no back symbol. For example, 100.50 is formatted as $100.50.

Suppose you want to represent MONEY values as DM (deutsche mark) units,
using the currency symbol DM and comma (,) as the decimal separator. Enter the
following command to set the DBMONEY environment variable:
setenv DBMONEY DM,

Here DM is the front currency symbol that precedes the MONEY value, and a
comma separates the integral from the fractional part of the MONEY value. As a
result, the value 100.50 is displayed as DM100,50.

For more information about how DBMONEY formats MONEY values in
nondefault locales, see the IBM Informix GLS User's Guide.

DBONPLOAD environment variable
Use the DBONPLOAD environment variable to specify the name of the database that
the onpload utility of the High Performance Loader (HPL) uses.

Chapter 3. Environment variables 3-27

If DBONPLOAD is set, onpload uses the specified name as the name of the database;
otherwise, the default name of the database is onpload.

►► setenv DBONPLOAD dbname ►◄

dbname
specifies the name of the database that the onpload utility uses.

For example, to specify the name load_db as the name of the database, enter the
following command:
setenv DBONPLOAD load_db

For more information, see the IBM Informix High-Performance Loader User's Guide.

DBPATH environment variable
Use the DBPATH environment variable to identify the database servers that
contain databases. DBPATH can also specify a list of directories (in addition to the
current directory) in which DB-Access looks for command scripts (.sql files).

The CONNECT DATABASE, START DATABASE, and DROP DATABASE
statements use DBPATH to locate the database under two conditions:
v If the location of a database is not explicitly stated
v If the database cannot be located in the default server

The CREATE DATABASE statement does not use DBPATH.

To add a new DBPATH entry to existing entries, see “Modifying an
environment-variable setting” on page 3-4.

►► ▼

: [16]

setenv DBPATH pathname
/ / servername / full_pathname
/ / servername

►◄

full_pathname
is the full path, from root, of a directory where .sql files are stored.

pathname
is the valid relative path of a directory where .sql files are stored.

servername
is the name of a database server where databases are stored. You cannot
reference database files with a servername.

DBPATH can contain up to 16 entries. Each entry must be less than 128 characters.
In addition, the maximum length of DBPATH depends on the hardware platform
on which you set DBPATH.

When you access a database with the CONNECT, DATABASE, START DATABASE,
or DROP DATABASE statement, the search for the database is done first in the
directory or database server specified in the statement. If no database server is
specified, the default database server that was specified by the
INFORMIXSERVER environment variable is used.

3-28 IBM Informix Guide to SQL: Reference

If the database is not located during the initial search, and if DBPATH is set, the
database servers and directories in DBPATH are searched for in the specified
database. These entries are searched in the same order in which they are listed in
the DBPATH setting.

Using DBPATH with DB-Access
If you use DB-Access and select the Choose option from the SQL menu without
having already selected a database, you see a list of all the .sql files in the
directories listed in your DBPATH. After you select a database, the DBPATH is not
used to find the .sql files. Only the .sql files in the current working directory are
displayed.

Searching local directories
Use a pathname without a database server name to search for .sql scripts on your
local computer. In the following example, the DBPATH setting causes DB-Access
to search for the database files in your current directory and then in the Joachim
and Sonja directories on the local computer:
setenv DBPATH /usr/joachim:/usr/sonja

As the previous example shows, if the pathname specifies a directory name but not
a database server name, the directory is sought on the computer that runs the
default database server that the INFORMIXSERVER specifies; see
“INFORMIXSERVER environment variable” on page 3-54. For instance, with the
previous example, if INFORMIXSERVER is set to quality, the DBPATH value is
interpreted, as the following example shows, where the double slash precedes the
database server name:
setenv DBPATH //quality/usr/joachim://quality/usr/sonja

Searching networked computers for databases
If you use more than one database server, you can set DBPATH explicitly to
contain the database server and directory names that you want to search for
databases. For example, if INFORMIXSERVER is set to quality, but you also want
to search the marketing database server for /usr/joachim, set DBPATH as the
following example shows:
setenv DBPATH //marketing/usr/joachim:/usr/sonja

Specifying a servername
You can set DBPATH to contain only database server names. This feature allows
you to locate only databases; you cannot use it to locate command files.

The database administrator must include each database server mentioned by
DBPATH in the $INFORMIXDIR/etc/sqlhosts file. For information about
communication-configuration files and dbservernames, see your IBM Informix
Administrator's Guide and the IBM Informix Administrator's Reference.

For example, if INFORMIXSERVER is set to quality, you can search for a
database first on the quality database server and then on the marketing database
server by setting DBPATH, as the following example shows:
setenv DBPATH //marketing

If you use DB-Access in this example, the names of all the databases on the quality
and marketing database servers are displayed with the Select option of the
DATABASE menu.

Chapter 3. Environment variables 3-29

DBPRINT environment variable
Use the DBPRINT environment variable to specify the default printing program.

►► setenv DBPRINT program ►◄

program
Any command, shell script, or UNIX utility that produces standard ASCII
output.

If you do not set DBPRINT, the default program is found in one of two places:
v For most BSD UNIX systems, the default program is lpr.
v For UNIX System V, the default program is usually lp.

Enter the following command to set the DBPRINT environment variable to specify
myprint as the print program:
setenv DBPRINT myprint

DBREMOTECMD environment variable (UNIX)
Use the DBREMOTECMD environment variable to override the default remote shell to
perform remote tape operations with the database server.

You can set DBREMOTECMD to a simple command or to a full path name.

►► setenv DBREMOTECMD command
pathname

►◄

command
A command to override the default remote shell.

pathname
A path name to override the default remote shell.

If you do not specify the full path name, the database server searches your PATH
for the specified command. You should use the full path name syntax on interactive
UNIX platforms to avoid problems with similarly named programs in other
directories and possible confusion with the restricted shell (/usr/bin/rsh).

The following command sets DBREMOTECMD for a simple command name:
setenv DBREMOTECMD rcmd

The next command to set DBREMOTECMD specifies a full path name:
setenv DBREMOTECMD /usr/bin/remsh

For more information about using remote tape devices for backups, see Specify a
remote device.

DBSPACETEMP environment variable
The DBSPACETEMP environment variable specifies the dbspaces in which
temporary tables are built. The list can include standard dbspaces, temporary
dbspaces, or both.

3-30 IBM Informix Guide to SQL: Reference

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.bar.doc/ids_bar_450.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.bar.doc/ids_bar_450.htm

►► ▼

,

setenv DBSPACETEMP dbspace ►◄

dbspace
is the name of an existing standard or temporary dbspace.

You can list dbspaces, separated by colon (:) or comma (,) symbols, to designate
space for temporary tables across physical storage devices. For example, the
following command to set the DBSPACETEMP environment variable specifies
three dbspaces for temporary tables:
setenv DBSPACETEMP sorttmp1:sorttmp2:sorttmp3

DBSPACETEMP overrides any default dbspaces that the DBSPACETEMP
parameter specifies in the configuration file of the database server. For UPDATE
STATISTICS operations, DBSPACETEMP is used only when you specify the HIGH
keyword option.

On UNIX platforms, you might have better performance if the list of dbspaces in
DBSPACETEMP is composed of chunks that are allocated as raw devices.

The number of dbspaces is limited by the maximum size of the environment
variable, as defined by your operating system. Your database server does not create
a dbspace specified by the environment variable if the dbspace does not exist.

The two classes of temporary tables are explicit temporary tables that the user
creates and implicit temporary tables that the database server creates. Use
DBSPACETEMP to specify the dbspaces for both types of temporary tables.

If you create an explicit temporary table with the CREATE TEMP TABLE statement
and do not specify a dbspace for the table either in the IN dbspace clause or in the
FRAGMENT BY clause, the database server uses the settings in DBSPACETEMP
to determine where to create the table.

If you create an explicit temporary table with the SELECT INTO TEMP statement,
the database server uses the settings in DBSPACETEMP to determine where to
create the table.

If DBSPACETEMP is set, and the dbspaces that it lists include both logging and
non-logging dbspaces, the database server stores temporary tables that implicitly
or explicitly support transaction logging in a logged dbspace, and non-logging
temporary tables in a non-logging dbspace.

The database server creates implicit temporary tables for its own use while
executing join operations, SELECT statements with the GROUP BY clause, SELECT
statements with the ORDER BY clause, and index builds.

When it creates explicit or implicit temporary tables, the database server uses disk
space for writing the temporary data. If there are conflicts among settings or
statement specifications for the location of a temporary table, these conflicts are
resolved in this descending (highest to lowest) order of precedence:
1. On UNIX platforms, the operating-system directory or directories that the

environment variable PSORT_DBTEMP specifies, if this is set
2. The dbspace or dbspaces that the environment variable DBSPACETEMP

specifies, if this is set

Chapter 3. Environment variables 3-31

3. The dbspace or dbspaces that the ONCONFIG parameter DBSPACETEMP
specifies.

4. The operating-system file space specified by the DUMPDIR configuration
parameter

5. The directory $INFORMIXDIR/tmp (UNIX) or $INFORMIXDIR\tmp
(Windows).

Important: If the DBSPACETEMP environment variable is set to an invalid value,
the database server defaults to the root dbspace for explicit temporary tables and
to /tmp for implicit temporary tables, rather than to the setting of the
DBSPACETEMP configuration parameter. In this situation, the database server
might fill /tmp to the limit and eventually bring down the database server or kill
the file system.

DBTEMP environment variable
The DBTEMP environment variable is used by DB-Accessand IBM Informix
Enterprise Gateway products and by IBM Informix and by earlier database servers.
DBTEMP resembles DBSPACETEMP, specifying the directory in which to place
temporary files and temporary tables.

►► setenv DBTEMP pathname ►◄

pathname
The full path name of the directory for temporary files and tables.

For DB-Access to work correctly on Windows platforms, DBTEMP should be set to
$INFORMIXDIR/infxtmp.

The following example sets DBTEMP to the path name usr/magda/mytemp for UNIX
systems that use the C shell:
setenv DBTEMP usr/magda/mytemp

Important: DBTEMP can point to an NFS-mounted directory only if the vendor of
that NFS device is certified by IBM.

If DBTEMP is not set, the database server creates temporary files in the /tmp
directory and temporary tables in the DBSPACETEMP directory. See “DBSPACETEMP
environment variable” on page 3-30 for the default if DBSPACETEMP is not set.
Similarly, if you do not set DBTEMP on the client system, temporary files (such as
those created for scroll cursors) are created in the /tmp directory.

You might experience unexpected behavior or failure in operations on values of
large or complex data types, such as BYTE or ROW, if DBTEMP is not set.

DBTIME environment variable
The DBTIME environment variable specifies a formatting mask for the display and
data-entry format of DATETIME values.

TheDBTIME environment variable is useful in contexts where the DATETIME data
values to be formatted by DBTIME have the same precision as the specified DBTIME
setting. You might encounter unexpected or invalid display formats for DATETIME
values that are declared with a different DATETIME qualifier.

3-32 IBM Informix Guide to SQL: Reference

►► ▼setenv DBTIME ' literal '
% special

- min . precision
0

►◄

literal is a literal white space or any printable character.

min is a literal integer, setting the minimum number of characters in the
substring for the value that special specifies.

precision
is the number of digits for the value of any time unit, or the maximum
number of characters in the name of a month.

special is one of the placeholder characters that are listed following.

These terms and symbols are described in the pages that follow.

This quoted string can include literal characters and placeholders for the values of
individual time units and other elements of a DATETIME value. DBTIME takes effect
only when you call certain IBM Informix ESQL/C DATETIME routines. (For
details, see the IBM Informix ESQL/C Programmer's Manual.) If DBTIME is not set, the
behavior of these routines is undefined, and "YYYY-MM-DD hh:mm:ss.fffff" is the
default display and input format for DATETIME YEAR TO FRACTION(5) literal
values in the default locale.

The percentage (%) symbol gives special significance to the special placeholder
symbol that follows. Without a preceding % symbol, any character within the
formatting mask is interpreted as a literal character, even if it is the same character
as one of the placeholder characters in the following list. Note also that the special
placeholder symbols are case sensitive.

The following characters within a DBTIME format string are placeholders for time
units (or for other features) within a DATETIME value.

%b is replaced by the abbreviated month name.

%B is replaced by the full month name.

%d is replaced by the day of the month as a decimal number [01,31].

%Fn is replaced by a fraction of a second with a scale that the integer n
specifies. The default value of n is 2; the range of n is 0 ≤ n ≤ 5.

%H is replaced by the hour (24-hour clock).

%I is replaced by the hour (12-hour clock).

%M is replaced by the minute as a decimal number [00,59].

%m is replaced by the month as a decimal number [01,12].

%p is replaced by A.M. or P.M. (or the equivalent in the locale file).

%S is replaced by the second as a decimal number [00,59].

%y is replaced by the year as a four-digit decimal number.

%Y is replaced by the year as a four-digit decimal number. User must enter a
four-digit value.

%% is replaced by % (to allow a literal % character in the format string).

Chapter 3. Environment variables 3-33

For example, consider this display format for DATETIME YEAR TO SECOND:
Mar 21, 2013 at 16 h 30 m 28 s

If the user enters a two-digit year value, this value is expanded to 4 digits
according to the DBCENTURY environment variable setting. If DBCENTURY is not set,
then the string 19 is used by default for the first two digits.

Set DBTIME as the following command line (for the C shell) shows:
setenv DBTIME ’%b %d, %Y at %H h %M m %S s’

The default DBTIME produces the following ANSI SQL string format:
2001-03-21 16:30:28

You can set the default DBTIME as the following example shows:
setenv DBTIME ’%Y-%m-%d %H:%M:%S’

An optional field width and precision specification (w.p) can immediately follow
the percent (%) character. It is interpreted as follows:

w Specifies the minimum field width. The value is right-justified with blank
spaces on the left.

-w Specifies the minimum field width. The value is left-justified with blank
spaces on the right.

0w Specifies the minimum field width. The value is right-justified and padded
with zeros on the left.

p Specifies the precision of d, H, I, m, M, S, y, and Y time unit values, or the
maximum number of characters in b and B month names.

The following limitations apply to field-width and precision specifications:
v If the data value supplies fewer digits than precision specifies, the value is

padded with leading zeros.
v If a data value supplies more characters than precision specifies, excess characters

are truncated from the right.
v If no field width or precision is specified for d, H, I, m, M, S, or y placeholders,

0.2 is the default, or 0.4 for the Y placeholder.
v A precision specification is significant only when converting a DATETIME value

to an ASCII string, but not vice versa.

The F placeholder does not support this field-width and precision syntax.

Important: Any separator character between the %S and %F directives for
DATETIME user formats must be explicitly defined. Specifying %S%F concatenates
the digits that represent the integer and fractional parts of the seconds value.

Like DBDATE, GL_DATE, or GL_DATETIME, or USE_DTENV, the DBTIME setting controls
only the character-string representation of data values. It cannot change the
internal storage format of the DATETIME column. (For additional information
about formatting DATE values, see the discussion of DBDATE in the topic “DBDATE
environment variable” on page 3-22.)

3-34 IBM Informix Guide to SQL: Reference

DBTIME formats in nondefault locales

If you specify a locale other than U.S. English, the locale defines the
culture-specific display formats for DATETIME values. To change the default
display format, change the setting of DBTIME, or of the GL_DATETIME and USE_DTENV
environment variables.

In East Asian locales that support era-based dates, DBTIME can also specify Japanese
or Taiwanese eras. See IBM Informix GLS User's Guide for details of additional
placeholder symbols for setting DBTIME to display era-based DATETIME values,
and for descriptions of the GL_DATETIME, GL_DATE, and USE_DTENV environment
variables.
Related reference:
“DATETIME data type” on page 2-12

DBUPSPACE environment variable
Use the DBUPSPACE environment variable to specify the amount of system disk
space and the amount of memory that the UPDATE STATISTICS MEDIUM and
UPDATE STATISTICS HIGH statement can use when it reads and sorts column
values to construct column distributions. The DBUPSPACE setting can also request
SET EXPLAIN output to describe the execution path for calculating the statistical
distributions.

►►
1024 : 15

setenv DBUPSPACE
disk : memory : directive

►◄

disk is an unsigned integer, specifying the disk space (in KiB) to allocate for
sorting in UPDATE STATISTICS MEDIUM and HIGH operations.

memory
is an unsigned integer, specifying the maximum amount of sorting
memory (in MiB, in the range from 4 to 50 megabytes) to allocate without
using PDQ.

directive
is an unsigned integer, encoding one of the following directives for the
UPDATE STATISTICS execution plan:
v 1: Do not use any indexes for sorting. Print the entire plan for update

statistics in the sqexplain.out file.
v 2: Do not use any indexes for sorting. Do not print the plan for update

statistics.
v 3 or greater: Use available indexes for sorting. Print the entire plan for

update statistics in explain output file.

For example, to set DBUPSPACE to 2,500 KiB of disk space and 1 megabyte of
memory, enter this command:
setenv DBUPSPACE 2500:1

After you set this value, the database server will attempt to use no more than 2,500
KiB of disk space during the execution of an UPDATE STATISTICS MEDIUM or
HIGH statement. If a table requires 5 megabytes of disk space for sorting, then
UPDATE STATISTICS accomplishes the task in two passes; the distributions for

Chapter 3. Environment variables 3-35

one half of the columns are constructed with each pass. For a table of a given
storage size, this parameter determines the number of passes, but no pass can
write less than a full column.

If you do not set DBUPSPACE, the default setting is 1 megabyte (1,024 KiB) for
disk, and 15 megabytes for memory. If you attempt to set the first DBUPSPACE
parameter to any value less than 1,024 KiB, it is automatically set to 1,024 KiB, but
no error message is returned. If this disk value is not large enough to allow more
than one distribution to be constructed at a time, at least one distribution is done,
even if the amount of disk space required to do this is more than what
DBUPSPACE specifies. That is, regardless of the disk parameter setting for
DBUPSPACE, the largest individual column storage requirement of a table
determines the actual upper limit on disk space for a single pass in any UPDATE
STATISTICS HIGH or MEDIUM operation.
Related information:
Default name and location of the explain output file on UNIX
Default name and location of the output file on Windows

DEFAULT_ATTACH environment variable
The DEFAULT_ATTACH environment variable supports the legacy behavior of
Version 7.x of IBM Informix, in which the pages of nonfragmented B-tree indexes
on nonfragmented tables were stored, by default, in the same dbspace partition as
the data pages. (The name "DEFAULT_ATTACH" derives from an obsolete
definition of an attached index, a term that now refers to an index whose
fragmentation strategy is the same as the fragmentation strategy of its table. Do
not confuse the obsolete Version 7.x definition with this current definition.)

►► setenv DEFAULT_ATTACH 1 ►◄

If the DEFAULT_ATTACH environment variable is set to 1, then by default, the
pages of nonfragmented B-tree indexes on nonfragmented tables are stored in the
same partition (and in the same dbspace) that stores data pages of the table. The
IN TABLE keywords of the CREATE INDEX statement are not required (but do not
return an error).

Setting DEFAULT_ATTACH to 1 has no effect, however, on any other types of
indexes, whose pages are always stored in separate partitions from the data pages
of the indexed table. These index types whose storage distribution is always
different from that of their table include
v R-tree indexes,
v functional indexes,
v forest of trees indexes,
v fragmented indexes,
v and indexes on fragmented tables.

Index storage in the same partition as the data pages is supported only for
nonfragmented B-tree indexes on nonfragmented tables.

If DEFAULT_ATTACH is not set, then by default, any CREATE INDEX statement
that does not specify IN TABLE as its Storage Options clause creates an index

3-36 IBM Informix Guide to SQL: Reference

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_1156.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_1157.htm

whose pages are stored in partitions separate from the data pages. This release of
IBM Informix can support existing indexes that were created by Version 7.x of IBM
Informix.

Important: Future releases of IBM Informix might not continue to support
DEFAULT_ATTACH. Developing new applications that depend on this deprecated
feature is not recommended.

DELIMIDENT environment variable
The DELIMIDENT environment variable specifies that strings enclosed between
double quotation (") marks are delimited database identifiers.

The DELIMIDENT environment variable is also supported on client systems, where it
can be set to y, to n, or to no setting.
v y specifies that client applications must use single quotation (') symbols to

delimit character strings, and must use double quotation (") symbols only
around delimited SQL identifiers, which can support a larger character set than
is valid in undelimited identifiers. Letters within delimited strings or delimited
identifiers are case-sensitive. This is the default value for OLE DB and .NET.

v n specifies that client applications can use double quotation (") or single
quotation (') symbols to delimit character strings, but not to delimit SQL
identifiers. If the database server encounters a string delimited by double or
single quotation symbols in a context where an SQL identifier is required, it
issues an error. An owner name that qualifies an SQL identifier can be delimited
by single quotation (') symbols. You must use a pair of the same quotation
symbols to delimit a character string.
This is the default value for ESQL/C, JDBC, and ODBC. APIs that have ESQL/C
as an underlying layer, such as IBM Informix 4GL, the DataBlade API (LIBDMI),
and the C++ API, behave as ESQL/C, and use 'n' as the default if no value for
DELIMIDENT is specified on the client system.

v Specifying the DELIMIDENT environment variable with no value on the client
system requires client applications to use the DELIMIDENT setting that is the
default for their application programming interface (API).

►► setenv DELIMIDENT ►◄

No value is required; DELIMIDENT takes effect if it exists, and it remains in effect
while it is on the list of environment variables. Removing DELIMIDENT when it is
set at the server level requires restarting the server.

Delimited identifiers can include white space (such as the phrase "Vitamin E") or
can be identical to SQL keywords, (such as "TABLE" or "USAGE"). You can also
use them to declare database identifiers that contain characters outside the default
character set for SQL identifiers (such as "Column #6"). In the default locale, this
set consists of letters, digits, and the underscore (_) symbol.

Even if DELIMIDENT is set, you can use single quotation (') symbols to delimit
authorization identifiers as the owner name component of a database object name,
as in the following example:
RENAME COLUMN ’Owner’.table2.collum3 TO column3;

Chapter 3. Environment variables 3-37

This example is an exception to the general rule that when DELIMIDENT is set, the
SQL parser interprets character strings delimited by single quotation symbols as
string literals, and interprets character strings delimited by double quotation
symbols (") as SQL identifiers.

Database identifiers (also called SQL identifiers) are names for database objects, such
as tables and columns. Storage identifiers are names for storage objects, such as
dbspaces, blobspaces, and sbspaces. You cannot use DELIMIDENT to declare storage
identifiers that contain characters outside the default SQL character set.

Delimited identifiers are case sensitive. To use delimited identifiers, applications in
Informix ESQL/C must set DELIMIDENT at compile time and at run time.

Important: If DELIMIDENT is not already set, you should be aware that setting it can
cause the failure of existing .sql scripts or client applications that use double (")
quotation marks in contexts other than delimiting SQL identifiers, such as
delimiters of string literals. You must use single (') rather than double quotation
marks for delimited constructs that are not SQL identifiers if DELIMIDENT is set.

On UNIX systems that use the C shell and on which DELIMIDENT has been set, you
can disable this feature (which causes anything between double quotation symbols
to be interpreted as an SQL identifier) by the command:
unsetenv DELIMIDENT

ENVIGNORE environment variable (UNIX)
The ENVIGNORE environment variable can deactivate specified environment variable
settings in the common (shared) configuration file, informix.rc, and private
environment-configuration file, .informix.

►► ▼

:

setenv ENVIGNORE variable ►◄

variable
The name of an environment variable to be deactivated.

Use colon (:) symbols between consecutive variable names. For example, to ignore
the DBPATH and DBMONEY entries in the environment-configuration files, enter the
following command:
setenv ENVIGNORE DBPATH:DBMONEY

The common environment-configuration file is stored in $INFORMIXDIR/etc/
informix.rc.

The private environment-configuration file is stored in the home directory of the
user as .informix.

For information about creating or modifying an environment-configuration file, see
“Setting environment variables in a configuration file” on page 3-2.

ENVIGNORE itself cannot be set in an environment-configuration file.

3-38 IBM Informix Guide to SQL: Reference

FET_BUF_SIZE environment variable
The FET_BUF_SIZE environment variable can override the default setting for the size
of the fetch buffer for all data types except BYTE and TEXT values. For ANSI
databases, you must set transactions to READ ONLY for the
FET_BUF_SIZEenvironment variable to improve performance, otherwise rows are
returned one by one.

►► setenv FET_BUF_SIZE size ►◄

size is a positive integer that is larger than the default buffer size, but no
greater than 2147483648 (2GB), specifying the size (in bytes) of the fetch
buffer that holds data retrieved by a query.

For example, to set a buffer size to 5,000 bytes on a UNIX system that uses the C
shell, set FET_BUF_SIZE by entering the following command:
setenv FET_BUF_SIZE 5000

When FET_BUF_SIZE is set to a valid value, the new value overrides the default
value (or any previously set value of FET_BUF_SIZE). The default setting for the
fetch buffer is dependent on row size.

The processing of BYTE and TEXT values is not affected by FET_BUF_SIZE.

No error is raised if FET_BUF_SIZE is set to a value that is less than the default size
or is larger than 2147483648 (2GB). In these cases, however, the invalid fetch buffer
size is ignored, and the default size is in effect.

A valid FET_BUF_SIZE setting is in effect for the local database server and for any
remote database server from which you retrieve rows through a distributed query
in which the local server is the coordinator and the remote database is subordinate.
The greater the size of the buffer, the more rows can be returned, and the less
frequently the client application must wait while the database server returns rows.
A large buffer can improve performance by reducing the overhead of filling the
client-side buffer.

IFMXMONGOAUTH environment variable
Set the IFMXMONGOAUTH environment variable to enable PAM authentication for
MongoDB clients through the wire listener.

You can set the IFMXMONGOAUTH environment variable to any value or to no value.

►► setenv IFMXMONGOAUTH 1 ►◄

Setting the IFMXMONGOAUTH environment variable is a prerequisite to configuring
PAM authentication for MongoDB clients.

You can disable the IFMXMONGOAUTH environment variable with this command:
unsetenv IFMXMONGOAUTH

Related information:
Configuring PAM authentication

Chapter 3. Environment variables 3-39

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_073.htm

IFX_DEF_TABLE_LOCKMODE environment variable
The IFX_DEF_TABLE_LOCKMODE environment variable can specify the default
lock mode for database tables that are subsequently created without explicitly
specifying the LOCKMODE PAGE or LOCKMODE ROW keywords. This feature is
convenient if you must create several tables of the same lock mode. UNIX systems
that use the C shell support the following syntax:

►► setenv IFX_DEF_TABLE_LOCKMODE PAGE
ROW

►◄

PAGE The default lock mode is page-level granularity. This value disables the
LAST COMMITTED feature of COMMITTED READ.

ROW The default lock mode is row-level granularity.

Similar functionality is available by setting the DEF_TABLE_LOCKMODE
parameter of the ONCONFIG file to PAGE or ROW. When a table is created or
modified, any conflicting lock mode specifications are resolved according to the
following descending (highest to lowest) order of precedence:
1. Explicit LOCKMODE specification of CREATE TABLE or ALTER TABLE
2. IFX_DEF_TABLE_LOCKMODE environment variable setting
3. DEF_TABLE_LOCKMODE parameter setting in the ONCONFIG file
4. The system default lock mode (= page mode)

To make the DEF_TABLE_LOCKMODE setting the default mode (or to restore the
system default if DEF_TABLE_LOCKMODE is not set) use the command:
unsetenv IFX_DEF_TABLE_LOCKMODE

If IFX_DEF_TABLE_LOCKMODE is set in the environment of the database server
before running oninit, then its scope is all sessions of the database server (just as if
DEF_TABLE_LOCKMODE were set in the ONCONFIG file). If
IFX_DEF_TABLE_LOCKMODE is set in the shell, or in the $HOME/.informix or
$INFORMIXDIR/etc/informix.rc files, then the scope is restricted to the current
session (if you set it in the shell) or to the individual user.

Important: This has no effect on existing tables. If you specify ROW as the lock
mode, the database will use this to restore, recover, or copy data. For tables that
were created in PAGE mode, this might cause lock-table overflow or performance
degradation.

IFX_DIRECTIVES environment variable
The IFX_DIRECTIVES environment variable setting determines whether the
optimizer allows query optimization directives from within a query. The
IFX_DIRECTIVES environment variable is set on the client.

You can specify either ON and OFF or 1 and 0 to set the environment variable.

►► setenv IFX_DIRECTIVES 1
0

►◄

1 Optimizer directives accepted

0 Optimizer directives not accepted

3-40 IBM Informix Guide to SQL: Reference

The setting of the IFX_DIRECTIVES environment variable overrides the value of
the DIRECTIVES configuration parameter that is set for the database server. If the
IFX_DIRECTIVES environment variable is not set, however, then all client sessions
will inherit the database server configuration for directives that the ONCONFIG
parameter DIRECTIVES determines. The default setting for the IFX_DIRECTIVES
environment variable is ON.

For more information about the DIRECTIVES parameter, see the IBM Informix
Administrator's Reference. For more information about the performance impact of
directives, see your IBM Informix Performance Guide.

IFX_EXTDIRECTIVES environment variable
The IFX_EXTDIRECTIVES environment variable specifies whether the query
optimizer allows external query optimization directives from the sysdirectives
system catalog table to be applied to queries in existing applications.

You have two options for setting the IFX_EXTDIRECTIVES environment variable:
v Global, for all users:

On the server, set IFX_EXTDIRECTIVES in the environment as user informix and
then run the oninit command.

v Client specific:
On the client, set IFX_EXTDIRECTIVES in the environment. When
IFX_EXTDIRECTIVES is set in the client environment, the client setting are used
regardless of the server (global) setting.

You can determine the server setting using the onstat -g env command.

You can specify either ON and OFF or 1 and 0 to set the environment variable.

►► setenv IFX_DIRECTIVES 1
0

►◄

1 External optimizer directives accepted

0 External optimizer directives not accepted

Queries within a given client application can use external directives if both the
EXT_DIRECTIVES parameter in the configuration file of the database server and
the IFX_EXTDIRECTIVES environment variable setting on the client system are
both set to 1 or ON. If IFX_EXTDIRECTIVES is not set, external directives are
supported only if the ONCONFIG parameter EXT_DIRECTIVES is set to 2. The
following table summarizes the effect of valid IFX_EXTDIRECTIVES and
EXT_DIRECTIVES settings on support for external optimizer directives.

Table 3-3. Effect of IFX_EXTDIRECTIVES and EXT_DIRECTIVES settings on external
directives

EXT_DIRECTIVES
= 0

EXT_DIRECTIVES
= 1

EXT_DIRECTIVES
= 2

IFX_EXTDIRECTIVES
No setting

OFF OFF ON

IFX_EXTDIRECTIVES0
= OFF

OFF OFF OFF

Chapter 3. Environment variables 3-41

Table 3-3. Effect of IFX_EXTDIRECTIVES and EXT_DIRECTIVES settings on external
directives (continued)

EXT_DIRECTIVES
= 0

EXT_DIRECTIVES
= 1

EXT_DIRECTIVES
= 2

IFX_EXTDIRECTIVES1
= ON

OFF ON ON

The database server interprets any EXT_DIRECTIVES setting besides 1 or 2 (or no
setting) as equivalent to OFF, disabling support for external directives. Any value
of IFX_EXTDIRECTIVES other than 1 has the same effect for the client.

For information about how to define external optimizer directives, see the
description of the SAVE EXTERNAL DIRECTIVES statement of SQL in the IBM
Informix Guide to SQL: Syntax. For more information about the EXT_DIRECTIVES
configuration parameter, see the IBM Informix Administrator's Reference. For more
information about the performance impact of directives, see your IBM Informix
Performance Guide.

IFX_LARGE_PAGES environment variable
The IFX_LARGE_PAGES environment variable specifies whether the database server
can use large pages on platforms where the hardware and the operating system
support large pages of shared memory. If this is enabled in the server environment,
IBM Informix can use the large pages for non-message shared memory segments
that are located in physical memory.

The IFX_LARGE_PAGES environment variable is supported only on AIX, Solaris, and
Linux operating systems. The setting of IFX_LARGE_PAGES has no effect on Informix
if the operating system does not support large pages, or if large pages are not
configured on the system.

You can specify either 1 or 0 to set this environment variable.

►► setenv IFX_LARGE_PAGES 1
0

►◄

0 The use of large pages is disabled. This is the default on AIX systems.

1 The use of large pages is enabled. This is the default on Solaris and Linux
systems.

The DBSA must use operating system commands to configure the large pages. See
the operating system documentation for the configuration procedures.

Informix can use large pages for non-message shared memory segments that are
locked in physical memory, if sufficient large pages are configured and available.
The RESIDENT configuration parameter controls whether a shared memory
segment is locked in physical memory, so that the segment cannot be swapped. If
there are insufficient large pages to hold a segment, the segment might contain a
mixture of large pages and regular pages.

On AIX the large pages used by Informix are 16 MB in size.

On Linux x86_64 the large pages used by Informix are defined by the
Hugepagesize entry in the /proc/meminfo file.

3-42 IBM Informix Guide to SQL: Reference

Informix aligns the segment address and rounds up to the segment size
automatically. In addition to messages regarding rounding, the server prints an
informational message to the server log file whenever it attempts to use large
pages to store a segment.

When IFX_LARGE_PAGES is enabled, the use of large pages can offer significant
performance benefits in large memory configurations.
Related information:
RESIDENT configuration parameter

IFX_LOB_XFERSIZE environment variable
Use the IFX_LOB_XFERSIZE environment variable to specify the number of bytes
in a CLOB or BLOB data type to transfer from a client application to the database
server before checking whether an error has occurred.

The error check occurs each time the specified number of bytes is transferred. If an
error occurs, the remaining data is not sent and an error is reported. If no error
occurs, the file transfer will continue until it finishes.

For example, if the value of IFX_LOB_XFERSIZE is set to 10485760 (10 MB), then
error checking will occur after every 10485760 bytes of the CLOB or BLOB data is
sent. If IFX_LOB_XFERSIZE is not set, the error check occurs after the entire BLOB
or CLOB data is transferred.

The valid range for IFX_LOB_XFERSIZE is from 1 to 9223372036854775808 bytes.
The IFX_LOB_XFERSIZE environment variable is set on the client.

►► setenv IFX_LOB_XFERSIZE value ►◄

value the number of bytes in a CLOB or BLOB to transfer from a client
application to the database server before checking whether an error has
occurred

You should adjust the value of IFX_LOB_XFERSIZE to suit your environment. Set
IFX_LOB_XFERSIZE low enough so that transmission errors of large BLOB or
CLOB data types are detected early, but not so low that excessive network
resources are used.

IFX_LONGID environment variable
The IFX_LONGID environment variable setting and the version number of the client
application determine whether a given client application is capable of handling
long identifiers. (Older versions of IBM Informix restricted SQL identifiers to 18 or
fewer bytes; long identifiers can have up to 128 bytes when IFX_LONGID is set.) Valid
IFX_LONGID values are 1 and 0.

►► setenv IFX_LONGID 1
0

►◄

1 Client supports long identifiers.

0 Client cannot support long identifiers.

When IFX_LONGID is set to zero, applications display only the first 18 bytes of long
identifiers, without indicating (by +) that truncation has occurred.

Chapter 3. Environment variables 3-43

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0140.htm

If IFX_LONGID is unset or is set to a value other than 1 or 0, the determination is
based on the internal version of the client application. If the (server-based) version
is not less than 9.0304, or is in the (CSDK-based) range 2.90 ≤ version < 4.0, the
client is considered capable of handling long identifiers. Otherwise, the client
application is considered incapable.

The IFX_LONGID setting overrides the internal version of the client application. If
the client cannot handle long identifiers despite a newer version number, set
IFX_LONGID to 0. If the client version can handle long identifiers despite an older
version number, set IFX_LONGID to 1.

If you set IFX_LONGID on the client, the setting affects only that client. If you start
the database server with IFX_LONGID set, all client applications use that setting by
default. If IFX_LONGID is set to different values on the client and on the database
server, however, the client setting takes precedence.

Important: ESQL executables that have been built with the -static option using
the libos.a library version that does not support long identifiers cannot use the
IFX_LONGID environment variable. You must recompile such applications with the
new libos.a library that includes support for long identifiers. Executables that use
shared libraries (no -static option) can use IFX_LONGID without recompilation
provided that they use the new libifos.so that provides support for long
identifiers. For details, see your ESQL product publication.

IFX_NETBUF_PVTPOOL_SIZE environment variable (UNIX)
Use the IFX_NETBUF_PVTPOOL_SIZE environment variable to specify the maximum
size of the free (unused) private network buffer pool for each database server
session.

►► setenv IFX_NETBUF_PVTPOOL_SIZE count ►◄

count an integer specifying the number of units (buffers) in the pool.

The default size is 1 buffer. If IFX_NETBUF_PVTPOOL_SIZE is set to 0, then each
session obtains buffers from the free global network buffer pool. You must specify
the value in decimal form.

IFX_NETBUF_SIZE environment variable
Use the IFX_NETBUF_SIZE environment variable to configure the network buffers to
the optimum size. This environment variable specifies the size of all network
buffers in the free (unused) global pool and the private network buffer pool for
each database server session.

►► setenv IFX_NETBUF_SIZE size ►◄

size is the integer size (in bytes) for one network buffer.

The default size is 4 KB (4,096 bytes). The maximum size is 64 KB (65,536 bytes)
and the minimum size is 512 bytes. You can specify the value in hexadecimal or
decimal form.

Tip: You cannot set a different size for each session.

3-44 IBM Informix Guide to SQL: Reference

IFX_NO_SECURITY_CHECK environment variable (UNIX)
The IFX_NO_SECURITY_CHECK environment variable allows user informix or root to
complete operations with a database server instance even when the IBM Informix
utilities detect that the $INFORMIXDIR path is not secure. Do not use this
environment variable unless your system setup makes it absolutely necessary to do
so.

The purpose of IFX_NO_SECURITY_CHECK is for environments where the database
server started but while running it detects that the runtime path is not secure
anymore. In this case, a superuser might be required to stop the database server in
order to remedy the security flaw. With this environment variable, either user
informix or root can use the onmode utility to shut down a nonsecure Informix
instance, which would otherwise not be possible because key programs do not run
when the $INFORMIXDIR path is not secure.

There is some risk in using this environment variable, but in some circumstances it
might be necessary to remedy a bigger security problem. The requirement that
only user informix or root can invoke IFX_NO_SECURITY_CHECK makes it unlikely
that an illegitimate user would be able to run it.

To use this environment variable, set it to any non-empty string.

►► setenv IFX_NO_SECURITY CHECK 1 ►◄

1 Any value entered here when running this environment variable disables
the onsecurity utility.

Important: Turn off this environment variable after you have finished
troubleshooting the security problem.

IFX_NO_TIMELIMIT_WARNING environment variable
Trial or evaluation versions of IBM Informix software products, which cease to
function when some time limit has elapsed since the software was installed, by
default issue warning messages that tell users when the license will expire. If you
set the IFX_NO_TIMELIMIT_WARNING environment variable, however, the
time-limited software does not issue these warning messages.

►► setenv IFX_NO_TIMELIMIT_WARNING ►◄

For users who dislike viewing warning messages, this feature is an alternative to
redirecting the error output. Setting IFX_NO_TIMELIMIT_WARNING has no
effect, however, on when a time-limited license expires; the software ceases to
function at the same point in time when it would if this environment variable had
not been set. If you do set IFX_NO_TIMELIMIT_WARNING, users will not see
potentially annoying warnings about the impending license expiration, but some
users might be annoyed at you when the database server (or whatever software
has a time-limited license) ceases to function without any warning.

IFX_NODBPROC environment variable
The IFX_NODBPROC environment variable lets you prevent the database server
from running the sysdbopen() or sysdbclose() procedure. These procedures
cannot be run if this environment variable is set to any value.

Chapter 3. Environment variables 3-45

►► setenv IFX_NODBPROC string ►◄

string Any value prevents the database server from running sysdbopen() or
sysdblcose().

IFX_NOT_STRICT_THOUS_SEP environment variable
IBM Informix requires the thousands separator to have 3 digits following it. For
example, 1,000 is considered correct, and 1,00 is considered wrong. In previous
releases, both formats were considered correct.

►► setenv IFX_NOT_STRICT_THOUS_SEP n ►◄

n Set n to 1 for the behavior in previous releases, which is that the thousands
separator can have fewer than three digits following it.

IFX_ONTAPE_FILE_PREFIX environment variable
When TAPEDEV and LTAPEDEV specify directories, use the
IFX_ONTAPE_FILE_PREFIX environment variable to specify a prefix for backup
file names that replaces the hostname_servernum format. If no value is set, file
names are hostname_servernum_Ln for levels and
hostname_servernum_Lognnnnnnnnnn for log files.

If you set the value of IFX_ONTAPE_FILE_PREFIX to My_Backup, the backup file
names have the following names:
v My_Backup_L0
v My_Backup_L1
v My_Backup_L2
v My_Backup_Log0000000001
v My_Backup_Log0000000002

►► setenv IFX_ONTAPE_FILE_PREFIX string ►◄

string The prefix to use for the names of backup files.

IFX_PAD_VARCHAR environment variable
The IFX_PAD_VARCHAR environment variable setting controls how the database
server sends and receives VARCHAR and NVARCHAR data values. Valid
IFX_PAD_VARCHAR values are 1 and 0.

►► setenv IFX_PAD_VARCHAR 1
0

►◄

1 Transmit the entire structure, up to the declared max size.

0 Transmit only the portion of the structure containing data.

For example, to send the string "ABC" from a column declared as
NVARCHAR(255) when IFX_PAD_VARCHAR is set to 0 would send 3 bytes.

If the setting were 1 in the previous example, however, the number of bytes sent
would be 255 bytes.

3-46 IBM Informix Guide to SQL: Reference

The effect IFX_PAD_VARCHAR is context-sensitive. In a low-bandwidth network,
a setting of 0 might improve performance by reducing the total volume of
transmitted data. But in a high-bandwidth network, a setting of 1 might improve
performance, if the CPU time required to process variable-length packets were
greater than the time required to send the entire character stream. In cross-server
distributed operations, this setting has no effect, and padding characters are
dropped from VARCHAR or NVARCHAR values that are passed between database
servers.

IFX_UNLOAD_EILSEQ_MODE environment variable
Use the IFX_UNLOAD_EILSEQ_MODE environment variable to help migrate
databases from Informix Version 10 to Version 11.50 or 11.70, where character data
might be encoded with a codeset that is different than the codeset used to create
the Version 10 database.

In earlier versions of Informix, it was possible to load character data into a
database that did not match the locale and codeset of the database. For example
you could load Chinese data into a database created with the
DB_LOCALE=en_US.8859-1 codeset. In newer versions of Informix, to insert
Chinese data you would need a database created with the Chinese
(DB_LOCALE=zh_tw.big5 locale and codeset.

Important: For databases created with Version 10 and Client SDK 2.4, when you
attempt to unload the invalid character data an error occurs unless you have set
this environment variable. The IFX_UNLOAD_EILSEQ_MODE environment
variable enables DB-Access, dbexport, and High Performance Loader (HPL) to
unload character and bypass the GLS validation that normally occurs when you
unload data by using the Version 11.50 and 11.70 tools.

To use this environment variable, set it to any non-empty string.

►► setenv IFX_UNLOAD_EILSEQ_MODE value ►◄

value Any alpha or numeric value. For example: yes, true, or 1.

This environment variable takes effect when character data is being fetched or
retrieved from the database.
setenv IFX_UNLOAD_EILSEQ_MODE 1
setenv IFX_UNLOAD_EILSEQ_MODE yes
setenv IFX_UNLOAD_EILSEQ_MODE on

This environment variable is similar to setting the EILSEQ_COMPAT_MODE
configuration parameter in the ONCONFIG file. The configuration parameter
affects character data that is inserted into the database, whereas the
IFX_UNLOAD_EILSEQ_MODE environment variable affects character data that is
unloaded from the database.

IFX_UPDDESC environment variable
You must set the IFX_UPDDESC environment variable at execution time before
you can do a DESCRIBE of an UPDATE statement.

►► setenv IFX_UPDDESC value ►◄

value is any non-NULL value.

Chapter 3. Environment variables 3-47

A NULL value (here meaning that IFX_UPDDESC is not set) disables the
describe-for-update feature. Any non-NULL value enables the feature.

IFX_XASTDCOMPLIANCE_XAEND environment variable
In earlier releases of IBM Informix, an internal rollback of a global transaction
freed the transaction. In releases later than Version 9.40, however, the default
behavior after an internal rollback is not to free the global transaction until an
explicit rollback, as required by the X/Open XA standard. By setting the
DISABLE_B162428_XA_FIX configuration parameter to 1, you can restore the
legacy behavior as the default for all sessions.

The IFX_XASTDCOMPLIANCE_XAEND environment variable can override the
configuration parameter for the current session, using the following syntax. Valid
IFX_XASTDCOMPLIANCE_XAEND values are 1 and 0.

►► setenv IFX_XASTDCOMPLIANCE_XAEND 1
0

►◄

0 Frees global transactions only after an explicit rollback

1 Frees global transactions after any rollback

This environment variable can be particularly useful when the server instance is
disabled for new behavior by the DISABLE_B162428_XA_FIX configuration
parameter, but one client requires the new behavior. Setting this environment
variable to zero supports the new behavior in the current session.

IFX_XFER_SHMBASE environment variable
An alternative base address for a utility to attach the server shared memory
segments.

►► setenv IFX_XFER_SHMBASE address ►◄

address
Valid address in hexadecimal

After the database server allocates shared memory, the database server might
allocate multiple contiguous OS shared memory segments. The client utility that
connects to shared memory must attach all those OS segments contiguously also.
The utility might have some other shared objects (for example, the xbsa library in
onbar) loaded at the address where the server has shared memory segment
attached. To workaround this situation, you can specify a different base address in
the environment variable IFX_XFER_SHMBASE for the utility to attach the shared
memory segments. The onstat, onmode, and oncheck utilities must attach to exact
same shared memory base as oninit. Setting IFX_XFER_SHMBASE is not an option
for these utilities.

IMCADMIN environment variable
The IMCADMIN environment variable supports the imcadmin administrative tool
by specifying the name of a database server through which imcadmin can connect
to MaxConnect. For imcadmin to operate correctly, you must set IMCADMIN
before you use any IBM Informix products.

3-48 IBM Informix Guide to SQL: Reference

►► setenv IMCADMIN dbservername ►◄

dbservername
is the name of a database server.

Here dbservername must be listed in the sqlhosts file on the computer where the
MaxConnect runs. MaxConnect uses this setting to obtain the following
connectivity information from the sqlhosts file:
v Where the administrative listener port must be established
v The network protocol that the specified database server uses
v The host name of the system where the specified database server is located

You cannot use the imcadmin tool unless IMCADMIN is set to a valid database
server name.

For more information about using IMCADMIN, see IBM Informix MaxConnect
User's Guide.

IMCCONFIG environment variable
The IMCCONFIG environment variable specifies a nondefault filename, and
optionally a pathname, for the MaxConnect configuration file. On UNIX systems
that support the C shell, this variable can be set by the following command.

►► setenv IMCCONFIG pathname ►◄

pathname
is a full pathname or a simple filename.

When the setting is a filename that is not qualified by a full pathname,
MaxConnect searches for the specified file in the $INFORMIXDIR/etc/ directory.
Thus, if you set IMCCONFIG to IMCconfig.imc2, MaxConnect searches for
$INFORMIXDIR/etc/IMCconfig.imc2 as its configuration file.

If the IMCCONFIG environment variable is not set, MaxConnect searches by
default for $INFORMIXDIR/etc/IMCconfig as its configuration file.

IMCSERVER environment variable
The IMCSERVER environment variable specifies the name of a database server
entry in the sqlhosts file that contains information about connectivity.

The database server can be either local or remote. On UNIX systems that support
the C shell, the IMCSERVER environment variable can be set by the command.

►► setenv IMCSERVER dbservername ►◄

dbservername
is the valid name of a database server.

Here dbservername must be the name of a database server in the sqlhosts file. For
more information about sqlhosts settings with MaxConnect, see your IBM Informix
Administrator's Guide. You cannot use MaxConnect unless IMCSERVER is set to a
valid database server name.

Chapter 3. Environment variables 3-49

INFORMIXC environment variable (UNIX)
The INFORMIXC environment variable specifies the filename or pathname of the C
compiler to be used to compile files that IBM Informix ESQL/C generates. The
setting takes effect only during the C compilation stage.

If INFORMIXC is not set, the default compiler on most systems is cc.

Tip: On Windows, you pass either -mcc or -bcc options to the esql preprocessor to
use either the Microsoft or Borland C compilers.

►► setenv INFORMIXC compiler
pathname

►◄

compiler
The file name of the C compiler.

pathname
The full path name of the C compiler.

For example, to specify the GNU C compiler, enter the following command:
setenv INFORMIXC gcc

Important: If you use gcc, be aware that the database server assumes that strings
are writable, so you must compile by using the -fwritable-strings option. Failure
to do so can produce unpredictable results, possibly including core dumps.

INFORMIXCMNAME environment variable
If the Connection Manager raises an event alarm, the INFORMIXCMNAME
environment variable is used to store the name of the Connection Manager
instance that raised the alarm. The environment variable is set automatically by the
Connection Manager.

The INFORMIXCMNAME environment variable corresponds to the NAME
parameter in the Connection Manager configuration file. The environment variable
is used by the CMALARMPROGRAM program to determine the Connection
Manager instance responsible for the event alarm. You can also use the
environment variable in your own Connection Manager event alarm handler.

The environment variable is set automatically by the Connection Manager and
should not be modified.
Related reference:
“INFORMIXCMCONUNITNAME environment variable”
Related information:
The oncmsm utility
Connection Manager event alarm IDs

INFORMIXCMCONUNITNAME environment variable
If the Connection Manager raises an event alarm, the
INFORMIXCMCONUNITNAME environment variable is used to store the name
of the Connection Manager connection unit that raised the alarm. The environment
variable is set automatically by the Connection Manager.

3-50 IBM Informix Guide to SQL: Reference

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_1128.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_1148.htm

The INFORMIXCMCONUNITNAME environment variable corresponds to the
connection unit name parameter in the Connection Manager configuration file. The
environment variable is used by the CMALARMPROGRAM program to
determine the Connection Manager instance responsible for the event alarm. You
can also use the environment variable in your own Connection Manager event
alarm handler.

The environment variable is set automatically by the Connection Manager and
should not be modified.
Related reference:
“INFORMIXCMNAME environment variable” on page 3-50
Related information:
The oncmsm utility
Connection Manager event alarm IDs

INFORMIXCONCSMCFG environment variable
Use the INFORMIXCONCSMCFG environment variable to specify the location of
the concsm.cfg file that describes communications support modules.

►► setenv INFORMIXCONCSMCFG pathname ►◄

pathname
specifies the full pathname of the concsm.cfg file.

The following command specifies that the concsm.cfg file is in /usr/myfiles:
setenv INFORMIXCONCSMCFG /usr/myfiles

You can also specify a different name for the file. The following example specifies a
filename of csmconfig in the same directory:
setenv INFORMIXCONCSMCFG /usr/myfiles/csmconfig

The default location of the concsm.cfg file is in $INFORMIXDIR/etc. For more
information about communications support modules and the contents of the
concsm.cfg file, see the IBM Informix Administrator's Reference.

INFORMIXCONRETRY environment variable
The INFORMIXCONRETRY environment variable sets a limit on the maximum number
of connection attempts that can be made to each database server by the client after
the initial connection attempt fails. These attempts are made within the time limit
that the INFORMIXCONTIME setting specifies.

►► setenv INFORMIXCONRETRY count ►◄

count The number of additional attempts to connect to each database server after
the initial connection attempt fails.

For example, the following command sets INFORMIXCONRETRY to specify three
connection attempts after the initial attempt:
setenv INFORMIXCONRETRY 3

The default value for INFORMIXCONRETRY is one attempt after the initial connection
attempt.

Chapter 3. Environment variables 3-51

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_1128.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_1148.htm

Order of precedence among INFORMIXCONRETRY settings

When you specify a setting for the INFORMIXCONRETRY client environment variable,
it overrides any INFORMIXCONRETRY configuration parameter setting in the onconfig
file.

If the SET ENVIRONMENT statement specifies a setting for the
INFORMIXCONRETRY session environment option, however, the SQL statement
setting overrides the INFORMIXCONRETRY client environment variable setting for
subsequent connection attempts during the current session. The SET
ENVIRONMENT INFORMIXCONRETRY setting has no effect on other sessions.

In summary, this is the ascending order (lowest to highest) of the methods for
setting a limit on attempts for a connection to a database server:
v INFORMIXCONRETRY configuration parameter
v INFORMIXCONRETRY client environment variable
v SET ENVIRONMENT INFORMIXCONRETRY statement of SQL

The INFORMIXCONTIME setting takes precedence over the INFORMIXCONRETRY setting.
Connection attempts can end after the INFORMIXCONTIME value is exceeded, but
before the INFORMIXCONRETRY value is reached. For more information about
restricting the time available to establish a connection to a database server, see
“INFORMIXCONTIME environment variable”
Related reference:
INFORMIXCONRETRY configuration parameter
Related information:
INFORMIXCONRETRY session environment option

INFORMIXCONTIME environment variable
The INFORMIXCONTIME environment variable specifies the number of seconds the
CONNECT statement attempts to establish a connection to a database server before
returning an error. If you set no value, the default of 60 seconds can typically
support a few hundred concurrent client connections. However, some systems
might encounter few connection errors with a value as low as 15. The total
distance between nodes, hardware speed, the volume of traffic, and the
concurrency level of the network can all affect what value you should set to
optimize INFORMIXCONTIME.

The INFORMIXCONTIME and INFORMIXCONRETRY environment variables let you
configure your client-side connection capability to retry the connection instead of
returning a -908 error.

►► setenv INFORMIXCONTIME seconds ►◄

seconds
Represents the minimum number of seconds spent in attempts to establish
a connection to a database server.

For example, enter this command to set INFORMIXCONTIME to 60 seconds:
setenv INFORMIXCONTIME 60

If INFORMIXCONTIME is set to 60 and INFORMIXCONRETRY is set to 3, attempts to
connect to the database server (after the initial attempt at 0 seconds) are made at

3-52 IBM Informix Guide to SQL: Reference

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_1184.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2604.htm

20, 40, and 60 seconds, if necessary, before aborting. This 20-second interval is the
result of INFORMIXCONTIME divided by INFORMIXCONRETRY. If you set the
INFORMIXCONTIME value to zero, the database server automatically uses the default
value of 60 seconds.

If the CONNECT statement must search DBPATH, the INFORMIXCONRETRY setting
specifies the number of additional connection attempts that can be made for each
database server entry in DBPATH.
v All appropriate servers in the DBPATH setting are accessed at least once, even if

the INFORMIXCONTIME value is exceeded. Thus, the CONNECT statement might
take longer than the INFORMIXCONTIME time limit to return an error that indicates
connection failure or that the database was not found.

v The INFORMIXCONTIME value is divided among the number of database server
entries that are specified in DBPATH. Thus, if DBPATH contains numerous servers,
increase the INFORMIXCONTIME value accordingly. For example, if DBPATH contains
three entries, to spend at least 30 seconds attempting each connection, set
INFORMIXCONTIME to 90.

The INFORMIXCONTIME and INFORMIXCONRETRY environment variables can be
modified with the onutil SET command, as in the following example:
% onutil
1> SET INFORMIXCONTIME 120;
Dynamic Configuration completed successfully
2> SET INFORMIXCONRETRY 10;
Dynamic Configuration completed successfully

Order of precedence among INFORMIXCONTIME settings

When you specify a setting for the INFORMIXCONTIME client environment variable, it
overrides the INFORMIXCONTIME configuration parameter settings in the onconfig file
for the current session.

If the SET ENVIRONMENT statement specifies a setting for the
INFORMIXCONRETRY session environment option, however, the SQL statement
setting overrides the INFORMIXCONRETRY client environment variable setting for
subsequent connection attempts during the current session. The SET
ENVIRONMENT INFORMIXCONRETRY setting has no effect on other sessions.

In summary, this is the ascending order (lowest to highest) of the methods for
setting an upper limit on the amount of time that a CONNECT statement can
spend attempting to connect to a database server:
v INFORMIXCONTIME configuration parameter
v INFORMIXCONTIME client environment variable
v SET ENVIRONMENT INFORMIXCONTIME statement of SQL.

INFORMIXCONTIME takes precedence over the INFORMIXCONRETRY setting. Connection
attempts can end after the INFORMIXCONTIME value is exceeded, but before the
INFORMIXCONRETRY value is reached.
Related information:
INFORMIXCONTIME session environment option
INFORMIXCONTIME configuration parameter

Chapter 3. Environment variables 3-53

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2605.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_1185.htm

INFORMIXCPPMAP environment variable
Set the INFORMIXCPPMAP environment variable to specify the fully qualified
pathname of the map file for C++ programs. Information in the map file includes
the database server type, the name of the shared library that supports the database
object or value object type, the library entry point for the object, and the C++
library for which an object was built.

►► setenv INFORMIXCPPMAP pathname ►◄

pathname
The directory path where the C++ map file is stored.

The map file is a text file that can have any filename. You can specify several map
files, separated by colons (:) on UNIX or semicolons (;) on Windows.

On UNIX, the default map file is $INFORMIXDIR/etc/c++map. On Windows, the
default map file is %INFORMIXDIR%\etc\c++map.

INFORMIXDIR environment variable
The INFORMIXDIR environment variable specifies the directory that contains the
subdirectories in which your product files are installed. You must always set
INFORMIXDIR. Verify that INFORMIXDIR is set to the full pathname of the
directory in which you installed your database server. If you have multiple
versions of a database server, set INFORMIXDIR to the appropriate directory
name for the version that you want to access. For information about when to set
INFORMIXDIR, see your IBM Informix Installation Guide.

►► setenv INFORMIXDIR\ pathname ►◄

pathname
is the directory path where the product files are installed.

To set INFORMIXDIR to usr/informix/, for example, as the installation directory,
enter the following command:
setenv INFORMIXDIR /usr/informix

INFORMIXSERVER environment variable
The INFORMIXSERVER environment variable specifies the default database
server to which an explicit or implicit connection is made by an SQL API client,
the DB-Access utility, or other IBM Informix products.

This environment variable must be set before you can use IBM Informix client
products. It has the following syntax.

►► setenv INFORMIXSERVER dbservername ►◄

dbservername
is the name of the default database server.

The value of INFORMIXSERVER can be a local or remote server, but must
correspond to a valid dbservername entry in the $INFORMIXDIR/etc/sqlhosts file
on the computer running the application. The dbservername must begin with a
lower-case letter and cannot exceed 128 bytes. It can include any printable

3-54 IBM Informix Guide to SQL: Reference

characters except uppercase characters, field delimiters (blank space or tab), the
newline character, and the hyphen (or minus) symbol.

For example, this command specifies the coral database server as the default:
setenv INFORMIXSERVER coral

INFORMIXSERVER specifies the database server to which an application connects
if the CONNECT DEFAULT statement is executed. It also defines the database
server to which an initial implicit connection is established if the first statement in
an application is not a CONNECT statement.

Important: You must set INFORMIXSERVER even if the application or DB-Access
does not use implicit or explicit default connections.

INFORMIXSHMBASE environment variable (UNIX)
The INFORMIXSHMBASE environment variable affects only client applications
connected to IBM Informix databases that use the interprocess communications
(IPC) shared-memory (ipcshm) protocol.

Important: Resetting INFORMIXSHMBASE requires a thorough understanding of how
the application uses memory. Normally you do not reset INFORMIXSHMBASE.

INFORMIXSHMBASE specifies where shared-memory communication segments are
attached to the client process so that client applications can avoid collisions with
other memory segments that it uses. If you do not set INFORMIXSHMBASE, the
memory address of the communication segments defaults to an
implementation-specific value such as 0x800000.

►► setenv INFORMIXSHMBASE value ►◄

value is an integer (in KB) used to calculate the memory address.

The database server calculates the memory address where segments are attached
by multiplying the value of INFORMIXSHMBASE by 1,024. For example, on a system
that uses the C shell, you can set the memory address to the value 0x800000 by
entering the following command:
setenv INFORMIXSHMBASE 8192

For more information, see your IBM Informix Administrator's Guide and the IBM
Informix Administrator's Reference.

INFORMIXSQLHOSTS environment variable
The INFORMIXSQLHOSTS environment variable specifies where the SQL client or the
database server can find connectivity information.

►► setenv INFORMIXSQLHOSTS pathname ►◄

pathname
The full path name of the connectivity information file.

UNIX: Default =$INFORMIXDIR/etc/sqlhosts

Chapter 3. Environment variables 3-55

Windows server: Default = %INFORMIXDIR%\etc\sqlhosts.
%INFORMIXSERVER%

For example, the following command overrides the default location and specifies
that the mysqlhosts file is in the /work/envt directory:
setenv INFORMIXSQLHOSTS /work/envt/mysqlhosts

Windows client: The INFORMIXSQLHOSTS environment variable points to the
computer whose registry contains the SQLHOSTS subkey. For example, the
following command instructs the Windows client to look for connectivity
information in the registry of a computer named arizona:
set INFORMIXSQLHOSTS = \\arizona

INFORMIXSTACKSIZE environment variable
The INFORMIXSTACKSIZE environment variable specifies the stack size (in KB)
that is applied to all client processes. Any value that you set for
INFORMIXSTACKSIZE in the client environment is ignored by the database server.

►► setenv INFORMIXSTACKSIZE size ►◄

size is an integer, setting the stack size (in KB) for SQL client threads.

For example, to decrease the INFORMIXSTACKSIZE to 20 KB, enter the following
command:
setenv INFORMIXSTACKSIZE 20

If INFORMIXSTACKSIZE is not set, the stack size is taken from the database
server configuration parameter STACKSIZE or else defaults to a platform-specific
value. The default stack size value for the primary thread of an SQL client is 32 KB
for nonrecursive database activity.

Warning: For instructions on setting this value, see the IBM Informix
Administrator's Reference. If you incorrectly set the value of
INFORMIXSTACKSIZE, it can cause the database server to fail.

INFORMIXTERM environment variable (UNIX)
The INFORMIXTERM environment variable specifies whether DB-Access should use
the information in the terminfo directory or the termcap file.

On character-based systems, the terminfo directory and termcap file determine
terminal-dependent keyboard and screen capabilities, such as the operation of
function keys, color and intensity attributes in screen displays, and the definition
of window borders and graphic characters.

►► setenv INFORMIXTERM terminfo
termcap

►◄

If INFORMIXTERM is not set, the default setting is terminfo.

The terminfo directory contains a file for each terminal name that has been
defined. The terminfo setting for INFORMIXTERM is supported only on computers
that provide full support for the UNIX System V terminfo library. For details, see
the machine notes file for your product.

3-56 IBM Informix Guide to SQL: Reference

When DB-Access is installed on your system, a termcap file is placed in the etc
subdirectory of $INFORMIXDIR. This file is a superset of an operating-system
termcap file. You can use the termcap file that the database server supplies, the
system termcap file, or a termcap file that you create. You must set the TERMCAP
environment variable if you do not use the default termcap file. For information
about setting the TERMCAP environment variable, see “TERMCAP environment
variable (UNIX)” on page 3-72.

INF_ROLE_SEP environment variable
The INF_ROLE_SEP environment variable configures the security feature of role
separation when the database server is installed or reinstalled on UNIX systems.
Role separation enforces separating administrative tasks by people who run and
audit the database server. After the installation is complete, INF_ROLE_SEP has no
effect. If INF_ROLE_SEP is not set, then user informix (the default) can perform all
administrative tasks.

►► setenv INF_ROLE_SEP n ►◄

n is any positive integer.

On Windows, the install process asks whether you want to enable role separation
regardless of the setting of INF_ROLE_SEP. To enable role separation for database
servers on Windows, select the role-separation option during installation.

If INF_ROLE_SEP is set when IBM Informix is installed on a UNIX platform, role
separation is implemented and a separate group is specified to serve each of the
following responsibilities:
v The Database Server Administrator (DBSA)
v The Audit Analysis Officer (AAO)
v The standard user

On UNIX, you can establish role separation by changing the group that owns the
aaodir, dbsadir, or etc directories at any time after the installation is complete.
You can disable role separation by resetting the group that owns these directories
to informix. You can have role separation enabled, for example, for the Audit
Analysis Officer (AAO) without having role separation enabled for the Database
Server Administrator (DBSA).

For more information about the security feature of role separation, see the IBM
Informix Security Guide. To learn how to configure role separation when you install
your database server, see your IBM Informix Installation Guide.

INTERACTIVE_DESKTOP_OFF environment variable
(Windows)

This environment variable lets you prevent interaction with the Windows desktop
when an SPL routine executes a SYSTEM command.

►► setenv INTERACTIVE_DESKTOP_OFF 1
0

►◄

Chapter 3. Environment variables 3-57

If INTERACTIVE_DESKTOP_OFF is 1 and an SPL routine attempts to interact
with the desktop (for example, with the notepad.exe or cmd.exe program), the
routine fails unless the user is a member of the Administrators group.

The valid settings (1 or 0) have the following effects:

1 Prevents the database server from acquiring desktop resources for the user
executing the stored procedure

0 SYSTEM commands in a stored procedure can interact with the desktop.
This is the default value.

Setting INTERACTIVE_DESKTOP_OFF to 1 allows an SPL routine that does not
interact with the desktop to execute more quickly. This setting also allows the
database server to simultaneously call a greater number of SYSTEM commands
because the command no longer depends on a limited operating- system resource
(Desktop and WindowStation handles).

JAR_TEMP_PATH environment variable
Set the JAR_TEMP_PATH variable to specify a non-default local file system
location where jar management procedures such as install_jar() and replace_jar()
can store temporary .jar files of the Java virtual machine.

►► setenv JAR_TEMP_PATH pathname ►◄

pathname
specifies a local directory for temporary .jar files.

This directory must have read and write permissions for the user who starts the
database server. If the JAR_TEMP_PATH environment variable is not set,
temporary copies of .jar files are stored in the /tmp directory of the local file
system for the database server.

JAVA_COMPILER environment variable
You can set the JAVA_COMPILER environment variable in the Java virtual machine
environment to disable JIT compilation.

►► setenv JAVA_COMPILER none
NONE

►◄

The NONE and none settings are equivalent. On UNIX systems that support the C
shell and on which JAVA_COMPILER has been set to NONE or none, you can enable the
JIT compiler for the JVM environment by the following command:
unset JAVA_COMPILER

JVM_MAX_HEAP_SIZE environment variable
The JVM_MAX_HEAP_SIZE environment variable can set a non-default upper
limit on the size of the heap for the Java virtual machine.

►► setenv JVM_MAX_HEAP_SIZE size ►◄

size is a positive integer that specifies the maximum size (in megabytes).

3-58 IBM Informix Guide to SQL: Reference

For example, the following command sets the maximum heap size at 12 MB:
set JVM_MAX_HEAP_SIZE 12

If you do not set JVM_MAX_HEAP_SIZE, 16 MB is the default maximum size.

LD_LIBRARY_PATH environment variable (UNIX)
The LD_LIBRARY_PATH environment variable tells the shell on Solaris systems which
directories to search for client or shared IBM Informix general libraries. You must
specify the directory that contains your client libraries before you can use the
product.

►► ▼

:

setenv LD_LIBRARY_PATH $PATH: pathname ►◄

pathname
Specifies the search path for the library.

For INTERSOLV DataDirect ODBC Driver on AIX, set LIBPATH. For INTERSOLV
DataDirect ODBC Driver on HP-UX, set SHLIB_PATH.

The following example sets the LD_LIBRARY_PATH environment variable to the
directory:
setenv LD_LIBRARY_PATH
${INFORMIXDIR}/lib:${INFORMIXDIR}/lib/esql:$LD_LIBRARY_PATH

LIBPATH environment variable (UNIX)
The LIBPATH environment variable tells the shell on AIX systems which directories
to search for dynamic-link libraries for the INTERSOLV DataDirect ODBC Driver.
You must specify the full path name for the directory where you installed the
product.

►► ▼

:

setenv LIBPATH pathname ►◄

pathname
Specifies the search path for the libraries.

On Solaris, set LD_LIBRARY_PATH. On HP-UX, set SHLIB_PATH.

NODEFDAC environment variable
Enabling NODEFDAC applies the ANSI-compliant restrictions on default access
privileges for the PUBLIC group when tables or Owner-mode user-defined
routines are created in databases that are not ANSI-compliant.

In a database that is not ANSI-compliant, when the NODEFDAC environment
variable enabled by setting it to yes,
v the database server withholds default table access privileges from PUBLIC when

a new table is created,
v and also withholds the default Execute privilege from PUBLIC when an

owner-privileged UDR is created.

Chapter 3. Environment variables 3-59

►► setenv NODEFDAC yes ►◄

yes prevents default table privileges (Select, Insert, Update, and Delete) from
being granted to PUBLIC on new tables in a database that is not
ANSI-compliant. This setting also prevents the Execute privilege from
being granted to PUBLIC by default when a new user-defined routine is
created in Owner mode.

The yes setting is case sensitive, and is also sensitive to leading and trailing blank
spaces. Including uppercase letters or blank spaces in the setting is equivalent to
leaving NODEFDAC unset. When NODEFDAC is not set, or if it is set to any
value besides yes, default privileges on tables and Owner-mode UDRs are granted
to PUBLIC by default when the table or UDR is created in a database that is not
ANSI-compliant. The setting YES, for example, disables NODEFDAC.

Enabling NODEFDAC has no effect in an ANSI-compliant databases.

Important: Enabling NODEFDAC withholds default table or routine privileges
from PUBLIC when the object is created, but the NODEFDAC setting cannot
prevent the PUBLIC group from being granted the same privileges by a user who
holds the necessary access privileges on the new table or on the new UDR.

ONCONFIG environment variable
The ONCONFIG environment variable specifies the name of the active file, called the
onconfig file, which holds the configuration parameters for the database server.

This file is read as input during the initialization procedure. After you prepare
your onconfig configuration file, set the ONCONFIG environment variable to the
name of this file.

►► setenv ONCONFIG filename ►◄

filename
is the name of your onconfig file in the %INFORMIXDIR%\etc\%ONCONFIG% or
$INFORMIXDIR/etc/$ONCONFIG directory

This file contains the configuration parameters for your database.

To prepare the onconfig file, make a copy of the onconfig.std file and modify the
copy. Name the onconfig file so that it can easily be related to a specific database
server. If you have multiple instances of a database server, each instance must have
its own uniquely named onconfig file.

If the ONCONFIG environment variable is not set, the database server reads the
configuration values from the onconfig file during initialization.

ONINIT_STDOUT environment variable (Windows)
The ONINIT_STDOUT environment variable specifies a path and file name in which
output from the oninit command is stored.

While it is not generally necessary to view output from the oninit command, it
might be necessary in certain situations, such as when using the -v (verbose)
option or when you want to see output from an unhandled exception in a process

3-60 IBM Informix Guide to SQL: Reference

launched within a virtual processor. When the value of ONINIT_STDOUT is set to the
name of a file, output from the oninit command is written to the file.

►► set ONINIT_STDOUT\ path\filename ►◄

You can set the ONINIT_STDOUT environment variable as a system variable in
Control Panel > System > Advanced > Environment Variables. If the IBM
Informix service is configured to log on as user informix, start the service using
the starts command after setting the environment variable. Note, however, that
because environment variables are read from the system when the service is
started, if the service is set to log on as the local system user, you must restart
your computer for the environment variable to take effect. Because the local system
user is effectively logged on at all times, environment variables are refreshed only
when the operating system is restarted.

For example, if the environment variable set to C:\temp\oninit_out.txt, you can
start the server with the verbose option with the following command:
starts %INFORMIXSERVER% -v

The oninit messages are saved to the C:\temp\oninit_out.txt file.

Important: Only a single instance of the database can run on a Windows machine
if the ONINIT_STDOUT environment variable is set.

OPTCOMPIND environment variable
You can set the OPTCOMPIND environment variable so that the optimizer can
select the appropriate join method.

►►
2

setenv OPTCOMPIND 1
0

►◄

0 A nested-loop join is preferred, where possible, over a sort-merge join or a
hash join.

1 When the isolation level is not Repeatable Read, the optimizer behaves as
in setting 2; otherwise, the optimizer behaves as in setting 0.

2 Nested-loop joins are not necessarily preferred. The optimizer bases its
decision purely on costs, regardless of transaction isolation mode.

When OPTCOMPIND is not set, the database server uses the OPTCOMPIND
value from the ONCONFIG configuration file. When neither the environment
variable nor the configuration parameter is set, the default value is 2.

On IBM Informix, the SET ENVIRONMENT OPTCOMPIND statement can set or
reset OPTCOMPIND dynamically at runtime. This overrides the current
OPTCOMPIND value (or the ONCONFIG configuration parameter
OPTCOMPIND) for the current user session only. For more information about the
SET ENVIRONMENT OPCOMPIND statement of SQL see the IBM Informix Guide
to SQL: Syntax.

Chapter 3. Environment variables 3-61

For more information about the ONCONFIG configuration parameter
OPTCOMPIND, see the IBM Informix Administrator's Reference. For more
information about the different join methods that the optimizer uses, see your IBM
Informix Performance Guide.

OPTMSG environment variable
Set the OPTMSG environment variable at runtime before you start the IBM Informix
ESQL/C application to enable (or disable) optimized message transfers (message
chaining) for all SQL statements in the application.

►►
0

setenv OPTMSG 1 ►◄

0 disables optimized message transfers.

1 enables optimized message transfers and implements the feature for any
subsequent connection.

The default value is 0 (zero), which explicitly disables message chaining. You
might want, for example, to disable optimized message transfers for statements
that require immediate replies, for debugging, or to ensure that the database server
processes all messages before the application terminates.

When you set OPTMSG within an application, you can activate or deactivate
optimized message transfers for each connection or within each thread. To enable
optimized message transfers, you must set OPTMSG before you establish a
connection.

For more information about setting OPTMSG and defining related global variables,
see the IBM Informix ESQL/C Programmer's Manual.

OPTOFC environment variable
Use the OPTOFC environment variable to enable optimize-OPEN-FETCH-CLOSE
functionality in IBM Informix ESQL/C applications or other APIs (such as JDBC,
ODBC, OLE DB, LIBDMI, and Lib C++) that use DECLARE and OPEN statements
to establish a cursor.

►►
0

setenv OPTOFC 1 ►◄

0 disables OPTOFC for all threads of the application.

1 enables OPTOFC for every cursor in every thread of the application.

The default value is 0 (zero).

You can set the OPTOFC environment variable on the client or server. If this
environment variable is set on the server, then any application that does not
explicitly set this environment variable uses the value that is set on the server.

The OPTOFC environment variable reduces the number of message requests
between the application and the database server.

3-62 IBM Informix Guide to SQL: Reference

If you set OPTOFC from the shell, you must set it before you start the Informix
ESQL/C application. For more information about enabling OPTOFC and related
features, see the IBM Informix ESQL/C Programmer's Manual.

OPT_GOAL environment variable (UNIX)
Set the OPT_GOAL environment variable in the user environment, before you start an
application, to specify the query performance goal for the optimizer.

►►
-1

setenv OPT_GOAL 0 ►◄

0 Specifies user-response-time optimization.

-1 Specifies total-query-time optimization.

The default behavior is for the optimizer to use query plans that optimize the total
query time.

You can also specify the optimization goal for individual queries with optimizer
directives or for a session with the SET OPTIMIZATION statement.

Both methods take precedence over the OPT_GOAL environment variable setting. You
can also set the OPT_GOAL configuration parameter for the IBM Informix system;
this method has the lowest level of precedence.

For more information about optimizing queries for your database server, see your
IBM Informix Performance Guide. For information about the SET OPTIMIZATION
statement, see the IBM Informix Guide to SQL: Syntax.

PATH environment variable
The UNIX PATH environment variable tells the shell which directories to search for
executable programs. You must add the directory containing your IBM Informix
product to your PATH setting before you can use the product.

►► ▼

:

setenv PATH $PATH: pathname ►◄

pathname
Specifies the search path for the executable files.

Include a colon (:) separator between the path names on UNIX systems. (Use the
semicolon (;) separator between path names on Windows systems.)

You can specify the search path in various ways. The PATH environment variable
tells the operating system where to search for executable programs. You must
include the directory that contains your IBM Informix product in your path setting
before you can use the product. This directory should be located before
$INFORMIXDIR/bin, which you must also include.

For additional information about how to modify your path, see “Modifying an
environment-variable setting” on page 3-4.

Chapter 3. Environment variables 3-63

PDQPRIORITY environment variable
The PDQPRIORITY environment variable determines the degree of parallelism
that the database server uses and affects how the database server allocates
resources, including memory, processors, and disk reads.

►► setenv PDQPRIORITY HIGH
LOW
OFF
resources

►◄

resources
Is an integer in the range 0 to 100. The value 1 is the same as LOW, and
100 is the same as HIGH. Values lower than 0 are set to 0 (OFF), and
values greater than 100 are set to 100 (HIGH).

Value 0 is the same as OFF (for IBM Informix only).

Here the HIGH, LOW, and OFF keywords have the following effects:

HIGH When the database server allocates resources among all users, it gives as
many resources as possible to the query.

LOW Data values are fetched from fragmented tables in parallel.

OFF PDQ processing is turned off (for IBM Informix only).

Usually, the more resources a database server uses, the better its performance for a
given query. If the server uses too many resources, however, contention for the
resources can take resources away from other queries, resulting in degraded
performance. For more information about performance considerations for
PDQPRIORITY, see the IBM Informix Performance Guide.

An application can override the setting of this environment variable when it issues
the SQL statement SET PDQPRIORITY, as the IBM Informix Guide to SQL: Syntax
describes.

Using PDQPRIORITY with Informix
The resources value specifies the query priority level and the amount of resources
that the database server uses to process the query.

When PDQPRIORITY is not set, the default value is OFF.

When PDQPRIORITY is set to HIGH, IBM Informix determines an appropriate value
to use for PDQPRIORITY based on several criteria. These include the number of
available processors, the fragmentation of tables queried, the complexity of the
query, and additional factors.

PLCONFIG environment variable
The PLCONFIG environment variable specifies the name of the configuration file that
the High Performance Loader (HPL) uses. This file must be located in the
$INFORMIXDIR/etc directory. If the PLCONFIG environment variable is not set, then
$INFORMIXDIR/etc/plconfig is the default configuration file.

►► setenv PLCONFIG filename ►◄

3-64 IBM Informix Guide to SQL: Reference

filename
Specifies the simple file name of the configuration file that the
High-Performance Loader uses.

For example, to specify the $INFORMIXDIR/etc/custom.cfg file as the configuration
file for the High-Performance Loader, enter the following command:
setenv PLCONFIG custom.cfg

For more information, see the IBM Informix High-Performance Loader User's Guide.

PLOAD_LO_PATH environment variable
The PLOAD_LO_PATH environment variable lets you specify the pathname for
smart-large-object handles (which identify the location of smart large objects such
as BLOB and CLOB data types).

►► setenv PLOAD_LO_PATH pathname ►◄

pathname
specifies the directory for the smart-large-object handles.

If PLOAD_LO_PATH is not set, the default directory is /tmp.

For more information, see the IBM Informix High-Performance Loader User's Guide.

PLOAD_SHMBASE environment variable
The PLOAD_SHMBASE environment variable lets you specify the shared-memory
address at which the High Performance Loader (HPL) onpload processes will
attach. If PLOAD_SHMBASE is not set, the HPL determines which shared-memory
address to use.

►► setenv PLOAD_SHMBASE value ►◄

value Used to calculate the shared-memory address.

If the onpload utility cannot attach, an error is issued, and you must specify a new
value.

The onpload utility tries to determine at which address to attach, as follows in the
following (descending) order:
1. Attach at the same address (SHMBASE) as the database server.
2. Attach beyond the database server segments.
3. Attach at the address specified in PLOAD_SHMBASE.

Tip: It is recommended that you let the HPL decide where to attach and that you
set PLOAD_SHMBASE only if necessary to avoid shared-memory collisions between
onpload and the database server.

For more information, see the IBM Informix High-Performance Loader User's Guide.

Chapter 3. Environment variables 3-65

PSM_ACT_LOG environment variable
Use the PSM_ACT_LOG environment variable to specify the location of the IBM
Informix Primary Storage Manager activity log for your environment, for example,
for a single session.

►► setenv PSM_ACT_LOG pathname ►◄

pathname
The full path name for the location of the $INFORMIXDIR/psm_act.log. If
you specify a file name only, the storage manager creates the activity log in
the working directory in which you started the storage manager.

The PSM_ACT_LOG environment variable overrides the value of the PSM_ACT_LOG
configuration parameter.
Related information:
PSM_ACT_LOG configuration parameter

PSM_CATALOG_PATH environment variable
Use the PSM_CATALOG_PATH environment variable to specify the location of the IBM
Informix Primary Storage Manager catalog tables for your environment, for
example, for a single session.

►► setenv PSM_CATALOG_PATH pathname ►◄

pathname
The full path name for the location of the catalog table, which contain
information about the pools, devices, and objects managed by the storage
manager.

The PSM_CATALOG_PATH environment variable overrides the value of the
PSM_CATALOG_PATH configuration parameter.
Related information:
PSM_CATALOG_PATH configuration parameter

PSM_DBS_POOL environment variable
Use the PSM_DBS_POOL environment variable to change the name of the pool in
which the IBM Informix Primary Storage Manager places backup and restore
dbspace data for your environment, for example, for a single session.

►► setenv PSM_DBS_POOL pool_name ►◄

pool_name
The name of the storage manager pool.

The PSM_DBS_POOL environment variable overrides the value of the
PSM_DBS_POOL configuration parameter.
Related information:
PSM_DBS_POOL configuration parameter

3-66 IBM Informix Guide to SQL: Reference

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.bar.doc/ids_bar_541.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.bar.doc/ids_bar_542.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.bar.doc/ids_bar_547.htm

PSM_DEBUG environment variable
Use the PSM_DEBUG environment variable to specify the amount of debugging
information that prints in the Informix Primary Storage Manager debug log for
your environment, for example, for a single session.

►► setenv PSM_DEBUG value ►◄

value 0 = No debugging messages.

1 = Prints only internal errors.

2 = Prints information about the entry and exit of functions and prints
internal errors.

3 = Prints the information specified by 1-2 with additional details.

4 = Prints information about parallel operations and the information
specified by 1-3.

5 = Prints information about internal states in the Informix Primary
Storage Manager.

6 = Prints the information specified by 1-5 with additional details.

7 = Prints information specified by 1-6 with additional details.

8 = Prints information specified by 1-7 with additional details.

9 = Prints all debugging information.

The PSM_DEBUG environment variable overrides the value of the PSM_DEBUG
configuration parameter.
Related information:
PSM_DEBUG configuration parameter

PSM_DEBUG_LOG environment variable
Use the PSM_DEBUG_LOG environment variable to specify the location of the IBM
Informix Primary Storage Manager debug log for your environment, for example,
for a single session.

►► setenv PSM_DEBUG_LOG pathname ►◄

pathname
The full path name for the location of the $INFORMIXDIR/psm_debug.log. If
you specify a file name only, the storage manager creates the debug log in
the working directory in which you started the storage manager.

The PSM_DEBUG_LOG environment variable overrides the value of the
PSM_DEBUG_LOG configuration parameter.
Related information:
PSM_DEBUG_LOG configuration parameter

PSM_LOG_POOL environment variable
Use the PSM_LOG_POOL environment variable to change the name of the pool in
which the IBM Informix Primary Storage Manager places backup and restore log
data for your environment, for example, for a single session.

Chapter 3. Environment variables 3-67

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.bar.doc/ids_bar_543.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.bar.doc/ids_bar_544.htm

►► setenv PSM_LOG_POOL pool_name ►◄

pool_name
The name of the storage manager log pool.

The PSM_LOG_POOL environment variable overrides the value of the
PSM_LOG_POOL configuration parameter.
Related information:
PSM_LOG_POOL configuration parameter

PSORT_DBTEMP environment variable
The PSORT_DBTEMP environment variable specifies the location where the database
server writes the temporary files that the PSORT_NPROCS environment variable uses
to perform a sort.

►► ▼

:

setenv PSORT_DBTEMP pathname ►◄

pathname
The name of the UNIX directory used for intermediate writes during a
sort.

To set the PSORT_DBTEMP environment variable to specify the directory (for example,
/usr/leif/tempsort), enter the following command:
setenv PSORT_DBTEMP /usr/leif/tempsort

For maximum performance, specify directories that are located in file systems on
different disks.

You might also want to consider setting the environment variable DBSPACETEMP to
place temporary files used in sorting in dbspaces rather than operating-system
files. See the discussion of the DBSPACETEMP environment variable in
“DBSPACETEMP environment variable” on page 3-30.

The database server uses the directory that PSORT_DBTEMP specifies, even if the
environment variable PSORT_NPROCS is not set. For additional information about the
PSORT_DBTEMP environment variable, see your IBM Informix Administrator's Guide
and your IBM Informix Performance Guide.

PSORT_NPROCS environment variable
The PSORT_NPROCS environment variable enables the database server to
improve the performance of the parallel-process sorting package by allocating
more threads for sorting.

Before the sorting package performs a parallel sort, make sure that the database
server has enough memory for the sort.

►► setenv PSORT_NPROCS threads ►◄

threads is an integer, specifying the maximum number of threads to be used to sort
a query. This value cannot be greater than 10.

3-68 IBM Informix Guide to SQL: Reference

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.bar.doc/ids_bar_548.htm

The following command sets PSORT_NPROCS to 4:
setenv PSORT_NPROCS 4

To disable parallel sorting, enter the following command:
unsetenv PSORT_NPROCS

It is recommended that you initially set PSORT_NPROCS to 2 when your
computer has multiple CPUs. If subsequent CPU activity is lower than I/O
activity, you can increase the value of PSORT_NPROCS.

Tip: If the PDQPRIORITY environment variable is not set, the database server
allocates the minimum amount of memory to sorting. This minimum memory is
insufficient to start even two sort threads. If you have not set PDQPRIORITY,
check the available memory before you perform a large-scale sort (such as an index
build) to make sure that you have enough memory.

Default PSORT_NPROCS values for detached indexes
If the PSORT_NPROCS environment variable is set, the database server uses the
specified number of sort threads as an upper limit for ordinary sorts. If
PSORT_NPROCS is not set, parallel sorting does not take place. If you have a
single-CPU virtual processor, the database server uses one thread for the sort. If
PSORT_NPROCS is set to 0, the database server uses three threads for the sort.

Default PSORT_NPROCS values for attached indexes
The default number of threads is different for attached indexes.

If the PSORT_NPROCS environment variable is set, you get the specified number
of sort threads for each fragment of the index that is being built.

If PSORT_NPROCS is not set, or if it is set to 0, you get two sort threads for each
fragment of the index unless you have a single-CPU virtual processor. If you have
a single-CPU virtual processor, you get one sort thread for each fragment of the
index.

For additional information about the PSORT_NPROCS environment variable, see
your IBM Informix Administrator's Guide and your IBM Informix Performance Guide.

RTREE_COST_ADJUST_VALUE environment variable
The RTREE_COST_ADJUST_VALUE environment variable specifies a coefficient
that support functions of user-defined data types can use to estimate the cost of an
R-tree index for queries on UDT columns.

►► setenv RTREE_COST_ADJUST_VALUE value ►◄

value is a floating-point number, where 1 ≤ value ≤ 1000, specifying a multiplier
for estimating the cost of using an index on a UDT column.

For spatial queries, the I/O overhead tends to exceed by far the CPU cost, so by
multiplying the uncorrected estimated cost by an appropriate value from this
setting, the database server can make better cost-based decisions on how to
implement queries on UDT columns for which an R-tree index exists.

Chapter 3. Environment variables 3-69

SHLIB_PATH environment variable (UNIX)

The SHLIB_PATH environment variable tells the shell on HP-UX systems which
directories to search for dynamic-link libraries. This is used, for example, with the
INTERSOLV DataDirect ODBC Driver. You must specify the full pathname for the
directory where you installed the product.

►► ▼

:

setenv SHLIB_PATH $PATH: pathname ►◄

pathname
Specifies the search path for the libraries.

On Solaris systems, set LD_LIBRARY_PATH. On AIX systems, set LIBPATH.

SRV_FET_BUF_SIZE environment variable
Use the SRV_FET_BUF_SIZE environment variable to specify the size of the fetch
buffer that the local database server uses in distributed DML transactions across
database servers.

►► setenv SRV_FET_BUF_SIZE size ►◄

size is a positive integer that is no greater than 1048576 (1 MiB), specifying the
size (in bytes) of the fetch buffer that holds data retrieved by a cross-server
distributed query.

For example, to set a buffer size to 5,000 bytes on a UNIX system that uses the C
shell, set SRV_FET_BUF_SIZE by entering the following command:
setenv SRV_FET_BUF_SIZE 5000

When SRV_FET_BUF_SIZE is set to a valid value, the new value overrides the default
value (or any previously set value) of SRV_FET_BUF_SIZE. The setting takes effect
only when it is set in the starting environment of the database server.

When SRV_FET_BUF_SIZE is not set, the default setting for the fetch buffer is
dependent on row size.

No error is raised if SRV_FET_BUF_SIZE is set to a value that is less than the default
size, or that is greater than 1048576 (1MiB). If you specify a size for
SRV_FET_BUF_SIZE that is greater than 1048576, the value is set to 1048576. In older
11.70 releases, up to and including 11.70.xC4, the upper limit is 32767.

A valid SRV_FET_BUF_SIZE setting is in effect only in cross-server DML transactions
in which the local database server participates as the coordinator or as a
subordinate database server.
v It has no effect, however, on queries that access only databases of the local

server instance, and it does not affect the size of the fetch buffer in
client-to-local-server communication.

v The processing of BYTE and TEXT objects is not affected by the
SRV_FET_BUF_SIZE setting.

3-70 IBM Informix Guide to SQL: Reference

v Setting SRV_FET_BUF_SIZE for the environment of the local database server does
not reset the fetch buffer size of remote server instances that coordinate or
participate in cross-server DML transactions with the local server instance.

The greater the size of the buffer, the more rows can be returned, and the less
frequently the local server must wait while the database server returns rows. A
large buffer can improve performance when transferring a large amount of data
between servers.

STMT_CACHE environment variable
Use the STMT_CACHE environment variable to control the use of the shared-statement
cache on a session.

This feature can reduce memory consumption and can speed query processing
among different user sessions. Valid STMT_CACHE values are 1 and 0.

►► setenv STMT_CACHE 1
0

►◄

1 enables the SQL statement cache.

0 disables the SQL statement cache.

Set the STMT_CACHE environment variable for applications that do not use the SET
STMT_CACHE statement to control the use of the SQL statement cache. By default,
a statement cache is disabled, but can be enabled through the STMT_CACHE
parameter of the onconfig.std file or by the SET STMT_CACHE statement.

This environment variable has no effect if the SQL statement cache is disabled
through the configuration file setting. Values set by the SET STMT_CACHE
statement in the application override the STMT_CACHE setting.

TERM environment variable (UNIX)
The TERM environment variable is used for terminal handling. It lets DB-Access
(and other character-based applications) recognize and communicate with the
terminal that you are using.

►► setenv TERM type ►◄

type Specifies the terminal type.

The terminal type specified in the TERM setting must correspond to an entry in the
termcap file or terminfo directory.

Before you can set the TERM environment variable, you must obtain the code for
your terminal from the database administrator.

For example, to specify the vt100 terminal, set the TERM environment variable by
entering the following command:
setenv TERM vt100

Chapter 3. Environment variables 3-71

TERMCAP environment variable (UNIX)
The TERMCAP environment variable is used for terminal handling. It tells DB-Access
(and other character-based applications) to communicate with the termcap file
instead of the terminfo directory.

►► setenv TERMCAP pathname ►◄

pathname
Specifies the location of the termcap file.

The termcap file contains a list of various types of terminals and their
characteristics. For example, to provide DB-Access terminal-handling information,
which is specified in the /usr/informix/etc/termcap file, enter the following
command:
setenv TERMCAP /usr/informix/etc/termcap

You can use set TERMCAP in any of the following ways. If several termcap files exist,
they have the following (descending) order of precedence:
1. The termcap file that you create
2. The termcap file that the database server supplies (that is, $INFORMIXDIR/etc/

termcap)
3. The operating-system termcap file (that is, /etc/termcap)

If you set the TERMCAP environment variable, be sure that the INFORMIXTERM
environment variable is set to termcap.

If you do not set the TERMCAP environment variable, the terminfo directory is used
by default.

TERMINFO environment variable (UNIX)
The TERMINFO environment variable is used for terminal handling.

The environment variable is supported only on platforms that provide full support
for the terminfo libraries that System V and Solaris UNIX systems provide.

►► setenv TERMINFO /usr/lib/terminfo ►◄

TERMINFO tells DB-Access to communicate with the terminfo directory instead of
the termcap file. The terminfo directory has subdirectories that contain files that
pertain to terminals and their characteristics.

To set TERMINFO, enter the following command:
setenv TERMINFO /usr/lib/terminfo

THREADLIB environment variable (UNIX)
Use the THREADLIB environment variable to compile multithreaded IBM Informix
ESQL/C applications. A multithreaded Informix ESQL/C application lets you
establish as many connections to one or more databases as there are threads. These
connections can remain active while the application program executes.

3-72 IBM Informix Guide to SQL: Reference

The THREADLIB environment variable indicates which thread package to use when
you compile an application. Currently only the Distributed Computing
Environment (DCE) is supported.

►► setenv THREADLIB DCE ►◄

The THREADLIB environment variable is checked when the -thread option is passed
to the Informix ESQL/C script when you compile a multithreaded Informix
ESQL/C application. When you use the -thread option while compiling, the
Informix ESQL/C script generates an error if THREADLIB is not set, or if THREADLIB
is set to an unsupported thread package.

TZ environment variable
The TZ environment variable is used for setting the time zone. It is used by
various time functions to compute times relative to Coordinated Universal Time
(UTC), formerly known as Greenwich Mean Time (GMT). The format is specified
by the operating system.

►► setenv TZ tzn
+
-

hh
: mm

: ss
dzn

►◄

tzn Three-letter time zone name, such as PST. You must specify the correct
offset from local time to UTC (Universal Time Coordinated).

hh A one- or two-digit difference in hours between UTC and local time.
Optionally signed.

mm Two-digit difference in minutes between UTC and local time.

ss Two-digit difference in seconds between UTC and local time.

dzn Three-letter daylight-saving-time zone, such as PDT. If daylight saving
time is never in effect in the locality, set TZ without a value for dzn.

For example, if you use Pacific Standard Time with Pacific daylight savings time,
set the TZ environment variable to PST8PDT. For more information on setting the
TZ environment variable, see your operating system documentation.

USETABLENAME environment variable
The USETABLENAME environment variable can prevent users from using a
synonym to specify the table in ALTER TABLE or DROP TABLE statements. Unlike
most environment variables, USETABLENAME is not required to be set to a value.
It takes effect if you set it to any value, or to no value.

►► setenv USETABLENAME ►◄

By default, ALTER TABLE or DROP TABLE statements accept a valid synonym for
the name of the table to be altered or dropped. (In contrast, RENAME TABLE
issues an error if you specify a synonym, as do the ALTER SEQUENCE, DROP
SEQUENCE, and RENAME SEQUENCE statements, if you attempt to substitute a
synonym for the sequence name in those statements.)

Chapter 3. Environment variables 3-73

If you set USETABLENAME, an error results if a synonym is in ALTER TABLE or
DROP TABLE statements. Setting USETABLENAME has no effect on the DROP
VIEW statement, which accepts a valid synonym for the view.

3-74 IBM Informix Guide to SQL: Reference

Appendix A. The stores_demo Database

The stores_demo database contains a set of tables that describe an imaginary
business and many of the examples in the IBM Informix documentation are based
on this database.

The stores_demo database uses the default (U.S. English) locale and is not
ANSI-compliant.

For information about how to create and populate the stores_demo database, see
the IBM Informix DB-Access User's Guide. For information about how to design and
implement a relational database, see the IBM Informix Database Design and
Implementation Guide.

You can see the structure of the tables and their data in the Schema browser in the
OpenAdmin Tool (OAT) for Informix.

The stores_demo Database Map
Some of the tables in the stores_demo database have relationships between them.

The following illustration displays the joins in the stores_demo database between
customers, catalog orders, and customer calls. The shading that connects a column
in one table to a column with the same name in another table indicates the
relationships, or joins, between tables.

The following illustration displays the joins in the stores_demo database between
customers, electricity meter data, and location. The Customer_ts_data, ts_data, and
ts_data_location tables contain time series data. You can prevent the creation of

manu_code

manu_name

lead_time

catalog_num

stock_num

manu_code

cat_descr

cat_picture

cat_advert

stock_num

manu_code

description

unit_price

unit

unit_descr

item_num

order_num

stock_num

manu_code

quantity

total_price

customer_num

order_num

order_date

ship_instruct

backlog

paid_date

po_num

ship_date

ship_weight

ship_charge

lname

customer_num

fname

company

address1

phone

address2

city

state

zipcode

user_id

customer_num

call_dtime

call_code

call_descr

sname

res_dtime

res_descr

code

call_code

code_descr

call_type

state

cust_calls customer

orders

items

stock

catalog

manufact

Figure A-1. Joins between customers and catalog orders

© Copyright IBM Corp. 1996, 2015 A-1

these time series tables when you create the demonstration database.

customer

customer_num

fname

lname

company

address1

address2

city

state

zipcode

phone

Customer_ts_data

loc_esi_id

measure_unit

direction

customer_num

meter_type

ts_data

loc_esi_id

measure_unit

direction

multiplier

raw_reads

ts_data_location

loc_esi_id

longlat

Figure A-2. Joins between customers, electricity usage data, and location

A-2 IBM Informix Guide to SQL: Reference

Appendix B. The superstores_demo database

The superstores_demo database illustrates an object-relational schema.

SQL files and user-defined routines (UDRs) that are provided with DB-Access let
you derive the superstores_demo object-relational database.

The superstores_demo database uses the default locale and is not ANSI-compliant.

For information about how to create and populate the demonstration databases,
including relevant SQL files, see the IBM Informix DB-Access User's Guide. For
conceptual information about demonstration databases, see the IBM Informix
Database Design and Implementation Guide.

Structure of the superstores_demo Tables
Although many of the tables in the superstores_demo database have the same
name as stores_demo tables, they are different.

The superstores_demo database includes the following tables. The tables are listed
alphabetically, not in the order in which they are created.
v call_type

v catalog

v cust_calls

v customer

– retail_customer

– whlsale_customer

v items

v location

– location_non_us

– location_us

v manufact

v orders

v region

v sales_rep

v state

v stock

v stock_discount

v units

You can see the structure of the tables and their data in the Schema browser in the
OpenAdmin Tool (OAT) for Informix.

User-defined routines and extended data types
The superstores_demo database uses user-defined routines (UDRs) and extended
data types.

© Copyright IBM Corp. 1996, 2015 B-1

A UDR is a routine that you define that can be invoked within an SQL statement
or another UDR. A UDR can either return values or not.

The data type system of IBM Informix is an extensible and flexible system that
supports the creation of following kinds of data types:
v Extensions of existing data types by, redefining some of the behavior for data

types that the database server provides
v Definitions of customized data types by a user

For information about creating and using UDRs and extended data types, see IBM
Informix User-Defined Routines and Data Types Developer's Guide.

The superstores_demo database creates the distinct data type, percent, in a UDR, as
follows:
CREATE DISTINCT TYPE percent AS DECIMAL(5,5);
DROP CAST (DECIMAL(5,5) AS percent);
CREATE IMPLICIT CAST (DECIMAL(5,5) AS percent);
The superstores_demo database creates the following named row types:

v location hierarchy:
– location_t

– loc_us_t

– loc_non_us_t

v customer hierarchy:
– name_t

– customer_t

– retail_t

– whlsale_t

v orders table
– ship_t

location_t definition
location_id SERIAL
loc_type CHAR(2)
company VARCHAR(20)
street_addr LIST(VARCHAR(25) NOT NULL)
city VARCHAR(25)
country VARCHAR(25)

loc_us_t definition
state_code CHAR(2)
zip ROW(code INTEGER, suffix SMALLINT)
phone CHAR(18)

loc_non_us_t definition
province_code CHAR(2)
zipcode CHAR(9)
phone CHAR(15)

name_t definition
first VARCHAR(15)
last VARCHAR(15)

B-2 IBM Informix Guide to SQL: Reference

customer_t definition
customer_num SERIAL
customer_type CHAR(1)
customer_name name_t
customer_loc INTEGER
contact_dates LIST(DATETIME YEAR TO DAY NOT NULL)
cust_discount percent
credit_status CHAR(1)

retail_t definition
credit_num CHAR(19)
expiration DATE

whlsale_t definition
resale_license CHAR(15)
terms_net SMALLINT

ship_t definition
date DATE
weight DECIMAL(8,2)
charge MONEY(6,2)
instruct VARCHAR(40)

Table Hierarchies

The following illustration shows how the hierarchical tables of the
superstores_demo database are related. The foreign key and primary relationships
between the two tables are indicated by shaded arrows that point from the
customer.custnum and customer.loc columns to the location.location_id columns.

customer

customer_num

customer_type

customer_name

customer_loc

contact_dates

cust_discount

credit_status

retail_customer

credit_num

expiration

whlsale_customer

resale_license

terms_net

location

location_id

loc_type

company

street_addr

city

country

location_us

state_code

zip

phone

location_non_us

province_code

zipcode

phone

Figure B-1. Hierarchies of superstores_demo Tables

Appendix B. The superstores_demo database B-3

B-4 IBM Informix Guide to SQL: Reference

Appendix C. Accessibility

IBM strives to provide products with usable access for everyone, regardless of age
or ability.

Accessibility features for IBM Informix products
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features
The following list includes the major accessibility features in IBM Informix
products. These features support:
v Keyboard-only operation.
v Interfaces that are commonly used by screen readers.
v The attachment of alternative input and output devices.

Keyboard navigation
This product uses standard Microsoft Windows navigation keys.

Related accessibility information
IBM is committed to making our documentation accessible to persons with
disabilities. Our publications are available in HTML format so that they can be
accessed with assistive technology such as screen reader software.

IBM and accessibility
For more information about the IBM commitment to accessibility, see the IBM
Accessibility Center at http://www.ibm.com/able.

Dotted decimal syntax diagrams
The syntax diagrams in our publications are available in dotted decimal format,
which is an accessible format that is available only if you are using a screen reader.

In dotted decimal format, each syntax element is written on a separate line. If two
or more syntax elements are always present together (or always absent together),
the elements can appear on the same line, because they can be considered as a
single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read
punctuation. All syntax elements that have the same dotted decimal number (for
example, all syntax elements that have the number 3.1) are mutually exclusive
alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax can
include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

© Copyright IBM Corp. 1996, 2015 C-1

http://www.ibm.com/able

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, the word or symbol is preceded by
the backslash (\) character. The * symbol can be used next to a dotted decimal
number to indicate that the syntax element repeats. For example, syntax element
*FILE with dotted decimal number 3 is read as 3 * FILE. Format 3* FILE
indicates that syntax element FILE repeats. Format 3* * FILE indicates that
syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol that provides information about the syntax elements. For example, the lines
5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, that element is defined elsewhere.
The string that follows the % symbol is the name of a syntax fragment rather than a
literal. For example, the line 2.1 %OP1 refers to a separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:

? Specifies an optional syntax element. A dotted decimal number followed
by the ? symbol indicates that all the syntax elements with a
corresponding dotted decimal number, and any subordinate syntax
elements, are optional. If there is only one syntax element with a dotted
decimal number, the ? symbol is displayed on the same line as the syntax
element (for example, 5? NOTIFY). If there is more than one syntax element
with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if
you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that syntax
elements NOTIFY and UPDATE are optional; that is, you can choose one or
none of them. The ? symbol is equivalent to a bypass line in a railroad
diagram.

! Specifies a default syntax element. A dotted decimal number followed by
the ! symbol and a syntax element indicates that the syntax element is the
default option for all syntax elements that share the same dotted decimal
number. Only one of the syntax elements that share the same dotted
decimal number can specify a ! symbol. For example, if you hear the lines
2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the
default option for the FILE keyword. In this example, if you include the
FILE keyword but do not specify an option, default option KEEP is applied.
A default option also applies to the next higher dotted decimal number. In
this example, if the FILE keyword is omitted, default FILE(KEEP) is used.
However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP only applies to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword), and
does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* Specifies a syntax element that can be repeated zero or more times. A
dotted decimal number followed by the * symbol indicates that this syntax
element can be used zero or more times; that is, it is optional and can be

C-2 IBM Informix Guide to SQL: Reference

repeated. For example, if you hear the line 5.1* data-area, you know that
you can include more than one data area or you can include none. If you
hear the lines 3*, 3 HOST, and 3 STATE, you know that you can include
HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is
only one item with that dotted decimal number, you can repeat that
same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item
from the list, but you cannot use the items more than once each. In the
previous example, you can write HOST STATE, but you cannot write HOST
HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax
diagram.

+ Specifies a syntax element that must be included one or more times. A
dotted decimal number followed by the + symbol indicates that this syntax
element must be included one or more times. For example, if you hear the
line 6.1+ data-area, you must include at least one data area. If you hear
the lines 2+, 2 HOST, and 2 STATE, you know that you must include HOST,
STATE, or both. As for the * symbol, you can repeat a particular item if it is
the only item with that dotted decimal number. The + symbol, like the *
symbol, is equivalent to a loop-back line in a railroad syntax diagram.

Appendix C. Accessibility C-3

C-4 IBM Informix Guide to SQL: Reference

Notices

This information was developed for products and services offered in the U.S.A.
This material may be available from IBM in other languages. However, you may be
required to own a copy of the product or product version in that language in order
to access it.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 1996, 2015 D-1

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

D-2 IBM Informix Guide to SQL: Reference

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details in the
section entitled “Cookies, Web Beacons and Other Technologies”, and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at http://www.ibm.com/legal/copytrade.shtml.

Notices D-3

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, and PostScript are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other
countries.

Intel, Itanium, and Pentium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

D-4 IBM Informix Guide to SQL: Reference

Index

Special characters
(_), underscore

in SQL identifiers 3-37
(;), semicolon

list separator 3-54, 3-63
(:), colon

cast (::) operator 2-53, 2-55
DATETIME delimiter 2-12
INTERVAL delimiter 2-19
list separator 3-30, 3-38, 3-54, 3-59, 3-63

(!=), not equal to
relational operator 2-55

(/), slash
DATE separator 2-12, 2-44, 3-23
division operator 2-41, 2-55
pathname delimiter 3-5, 3-28, 3-59

(()), parentheses
delimiters in expressions 2-45

($), dollar sign
currency symbol 2-24, 3-27
pathname indicator 3-63

(\), backslash
invalid as delimiter 3-24
pathname delimiter 3-7, 3-55

([]), brackets
substring operator 2-8, 2-55

(%), percentage
DBTIME escape symbol 3-32
pathname indicator 3-30

(>), greater than
angle (< >) brackets 2-8
relational operator 1-6, 2-55

(<), less than
angle (< >) brackets 2-8
relational operator 2-55, 3-24

(|), vertical bar
absolute value delimiter 2-19
concatenation (||) operator 2-55
field delimiter 3-24

(#), sharp
comment indicator 3-2

('), single quotation
string delimiter 3-27

('), single quotation symbols
string delimiter 3-37

("), double quotation marks
string delimiter 2-22

("), double quotation symbols
delimited SQL identifiers 3-37
string delimiter 2-1, 2-25, 2-32

({ }), braces
collection delimiters 2-22, 2-25
pathname delimiters 3-4

(-), hyphen
DATE separator 3-23
DATETIME delimiter 2-12
INTERVAL delimiter 2-19
subtraction operator 2-41, 2-55
symbol in syscolauth 1-1, 1-16
symbol in sysfragauth 1-28
symbol in systabauth 1-51

(-), hyphen (continued)
unary operator 2-42, 2-55

(,), comma
decimal point 3-27
list separator 2-25, 2-28, 3-30
thousands separator 2-24

(.), period
DATE separator 3-23
DATETIME delimiter 2-12
decimal point 2-16, 2-24, 3-27
execution symbol 3-2
INTERVAL delimiter 2-19
membership operator 2-55
nested dot notation 2-48

(), blank space
DATETIME delimiter 2-12
INTERVAL delimiter 2-19
padding CHAR values 2-10
padding VARCHAR values 2-35

(*), asterisk
multiplication operator 2-7, 2-41, 2-45, 2-55
systabauth value 1-1, 1-51
wildcard symbol 1-15, 1-63

(+), plus sign
addition operator 2-41, 2-55
truncation indicator 3-43
unary operator 2-55

(=), equality
assignment operator 3-7
relational operator 1-15, 2-7, 2-11, 2-55

(~), tilde
pathname indicator 3-5

' VERSION' table 1-52

A
Abbreviated year values 2-12, 3-20, 3-22, 3-23, 3-32
ACCESS keyword 2-40
Access method

B-tree 1-10, 1-33, 3-36
built-in 1-10
primary 1-10, 1-51
R-Tree 3-36
secondary 1-10, 1-21, 1-35, 2-26
sysams data 1-10
sysindices data 1-35
sysopclasses data 1-39
systabamdata data 1-51

ACCESS_METHOD keyword 1-10
Accessibility C-1

dotted decimal format of syntax diagrams C-1
keyboard C-1
shortcut keys C-1
syntax diagrams, reading in a screen reader C-1

Addition (+) operator 2-41, 2-55
Administrative listener port 3-48
Aggregate functions 2-33

built-in 2-22, 2-25, 2-32
no BYTE argument 2-8
no collection arguments 2-22, 2-25, 2-32
sysaggregates data 1-9

© Copyright IBM Corp. 1996, 2015 X-1

Aggregate functions (continued)
user-defined 1-9

AIX operating system 3-42, 3-59
Alias of a table 1-1
Alignment of data type 1-61
Alignment of data types 1-14
ALL operator 2-55
Alter privilege 1-1, 1-51, 1-64
ALTER SEQUENCE statement 3-73
ALTER TABLE statement

casting effects 2-50
changing data types 2-1
lock mode 3-40
next extent size 1-6
SERIAL columns 2-30
SERIAL8 columns 2-31
synonyms 3-73

am_beginscan() function 1-10
am_close() function 1-10
am_getnext() function 1-10
am_insert() function 1-10
am_open() function 1-10
AND operator 1-15, 2-55
ANSI compliance

-ansi flag 3-19
DATETIME literals 3-32
DBANSIWARN environment variable 3-19
DECIMAL range 2-16
DECIMAL(p) data type 2-15
Information Schema views 1-62
isolation level 1-65
public synonyms 1-50, 1-52

ANSI data types 2-6
ANSIOWNER environment variable 3-16
ANY operator 2-55
Arabic locales 2-9
Archiving

setting DBREMOTECMD 3-30
Arithmetic

DATE operands 2-12, 2-43
DATETIME operands 2-42
integer operands 2-7, 2-19, 2-33
INTERVAL operands 2-19, 2-43
operators 2-55
string operands 2-9
time operands 2-41

AS keyword 2-53
assign() support function 2-46
AT keyword 2-22
Attached index 3-36
Attached indexes 1-31, 3-22, 3-69
Audit Analysis officer 3-57
Authorization identifier 1-58, 1-65
AUTO_STAT_MODE configuration parameter 1-24, 1-29
AUTO_STAT_MODE session environment setting 1-24, 1-29

B
B-tree access method 1-10, 1-33, 3-36
B-tree index 1-31
Backslash (\) symbol 3-24
Backup

file prefix 3-46
Bandwidth 3-46
BETWEEN operator 2-55
BIGINT data type 2-6

coltype code 1-17

BIGINT data type (continued)
length (syscolumns) 1-20

BIGSERIAL data type 2-6
coltype code 1-17
length (syscolumns) 1-20

bin subdirectory 3-4
Binding style 1-65
BLOB data type

casting unavailable 2-7
defined 2-7
inserting data 2-7
syscolattribs data 1-16

Blobspaces
defined 2-40
names 3-37
sysblobs data 1-14

BOOLEAN data type
defined 2-8

Boolean expression
with BOOLEAN data type 2-8
with BYTE data type 2-8

Boolean expression with TEXT data type 2-33
Borland C compiler 3-50
Bourne shell 3-2, 3-3
Bracket ([]) symbols 2-33
brackets substring 2-33
Buffers

BYTE or TEXT storage (DBBLOBBUF) 3-20
fetch buffer (FET_BUFFER_SIZE) 3-39
fetch buffer (SRV_FET_BUFFER_SIZE) 3-70
floating-point display (DBFLTMASK) 3-25
network buffer (IFX_NETBUF_SIZE) 3-44
private network buffer pool 3-44

Built-in access method 1-10
Built-in aggregates 1-9, 2-22, 2-25, 2-32
Built-in casts 1-14, 2-50
Built-in data types

casts 2-50, 2-54
listed 2-37
syscolumns.coltype code 1-17
sysdistrib.type code 1-24
sysxtdtypes data 1-61

Built-in opaque data types 2-53
BY clause 2-33
BY keyword 2-8, 2-33
BY ORDER 2-33
BYTE data type

casting to BLOB 2-8
coltype code 1-17
defined 2-8
increasing buffer size 3-20
inserting values 2-8
restrictions

in Boolean expression 2-8
systables.npused 1-52
with GROUP BY 2-8
with LIKE or MATCHES 2-8
with ORDER BY 2-8

selecting from BYTE columns 2-8
setting buffer size 3-20
sysblobs data 1-14
syscolumns data 1-20
sysfragments data 1-31

X-2 IBM Informix Guide to SQL: Reference

C
C compiler

default name 3-50
INFORMIXC setting 3-50
thread package 3-72

C shell 3-2
.cshrc file 3-3
.login file 3-3

C++ map file 3-54
CARDINALITY() function 2-22, 2-25, 2-32
Cascading deletes 1-44
Case-insensitive databases 1-7, 2-25, 2-26
Cast (::) operator 2-53, 2-55
CAST AS keywords 2-53
casting to CLOB 2-33
Casts 2-50, 2-54

built-in 1-14, 2-50, 2-53
distinct data type 2-53
explicit 1-14, 2-53
from BYTE to BLOB 2-8
implicit 1-14, 2-53
rules of precedence 2-53
syscasts data 1-14
user-defined (UDCs) 1-14

Casts from TEXT 2-33
CHAR data type

built-in casts 2-52
collation 2-9, 2-10
defined 2-9
nonprintable characters 2-10
storing numeric values 2-9

CHARACTER data type 2-10
Character data types

Boolean comparisons 2-35
casting between 2-50
data strings 2-1
listed 2-37

Character string
CHAR data type 2-9
CHARACTER VARYING data type 2-10
CLOB data type 2-11
DATETIME literals 2-12, 2-44, 3-32
INTERVAL literals 2-19
LVARCHAR data type 2-23
NCHAR data type 2-25
NVARCHAR data type 2-26
VARCHAR data type 2-35
with DELIMIDENT set 3-37

CHARACTER VARYING data type
defined 2-10

Character-based applications 3-56, 3-71
Check constraints

creation-time value 3-22, 3-24
syschecks data 1-15
syscheckudrdep data 1-15
syscoldepend data 1-17
sysconstraints data 1-22

chkenv utility 3-2
error message 3-4
syntax 3-4

Chunks 2-40
CLIENT_LOCALE environment variable 3-23
Client/server

DataBlade API 2-40
default database 3-54
INFORMIXSQLHOSTS environment variable 3-55
shared memory communication segments 3-55

Client/server (continued)
stacksize for client session 3-56

CLOB data type
casting unavailable 2-11
code-set conversion 2-11
collation 2-11
defined 2-11
inserting data 2-11
multibyte characters 2-11
syscolattribs data 1-16

CLOB TEXT 2-33
CLOSE statement 3-62
Clustering 1-10, 1-31, 1-35
CMCONFIG environment variable 3-17
Code sets

conversion 3-9
East Asian 2-10, 3-32
EBCDIC 1-65
ISO 8859-1 1-26

Collation 2-33
CHAR data type 2-9, 2-10
CLOB data type 2-11
GL_COLLATE table 1-52
NCHAR data type 2-25
NVARCHAR data type 2-26
server_attribute data 1-65

Collection data type
casting matrix 2-54
defined 2-47
empty 2-47
LIST 2-22
MULTISET 2-25
SET 2-32
sysattrtypes data 1-12
sysxtddesc data 1-60
sysxtdtypes data 1-60, 1-61

COLLECTION data type
coltype code 1-17

collection delimiters 2-32, 2-47
Colon

cast (::) operator 2-53
DATETIME delimiter 2-12
INTERVAL delimiter 2-19

Color and intensity screen attributes 3-56
Column-level privileges

systabauth data 1-1
systabauth table 1-51

Columns
changing data type 2-1, 2-50
constraints (sysconstraints) 1-22
default values (sysdefaults) 1-22
hashed 1-31
in superstores_demo database B-1
inserting BLOB data 2-7
range of values 1-21
syscolumns data 1-17

columns Information Schema view 1-62
Combine function 1-9
Comment indicator 3-2
Comment lines 3-2
Committed read 1-65
Communications support module 3-51
Commutator function 1-42
Compiling

ESQL/C programs 3-17
INFORMIXC setting 3-50
JAVA_COMPILER setting 3-58

Index X-3

Compiling (continued)
multithreaded ESQL/C applications 3-72

Complex data type 2-46, 2-49
collection types 2-47
ROW types 2-48
sysattrtypes data 1-12

Compliance
ANSI/ISO standard for SQL 1-62, 3-19
sql_languages.conformance 1-65
X/Open CAE standards 1-62
XPG4 standard 1-64

compliance with standards xiii
Composite index 1-33
Concatenation (||) operator 2-55
concsm.cfg file 3-51
Confidence level 1-29
Configuration file

.cshrc file 3-3

.informix 3-2, 3-4, 3-38, 3-40

.login file 3-3

.profile file 3-3
for communications support module 3-51
for connectivity 3-49, 3-54, 3-55
for database servers 3-38, 3-60
for High-Performance Loader 3-64
for MaxConnect 3-49
for terminal I/O 3-56

Configuration parameters
DBSPACETEMP 3-30
DEF_TABLE_LOCKMODE 3-40
DIRECTIVES 3-40
DISABLE_B162428_XA_FIX 3-48
EXT_DIRECTIVES 1-24, 3-41
MITRACE_OFF 1-55, 1-56
OPT_GOAL 3-63
OPTCOMPIND 3-61
RESIDENT 3-42
shared memory base 3-48
SQL_LOGICAL_CHAR 1-52
STACKSIZE 3-56
STMT_CACHE 3-71
USEOSTIME 2-12

CONNECT DEFAULT statement 3-54
Connect privilege 1-6, 1-58
CONNECT statement 3-28, 3-52, 3-54
Connections

INFORMIXCONRETRY environment variable 3-51
INFORMIXCONTIME environment variable 3-52
INFORMIXSERVER environment variable 3-54

Connectivity information 3-48, 3-55
Constraints

check
creation-time value 3-24
syschecks data 1-15
syscheckudrdep data 1-15
syscoldepend data 1-17

column
sysconstraints data 1-22

not null
collection data types 2-25, 2-32, 2-47

NOT NULL
collection data types 2-22
syscoldepend data 1-17
syscolumns data 1-17
sysconstraints data 1-22

object mode 1-38

Constraints (continued)
primary key

sysconstraints data 1-22
sysreferences data 1-44
unique SERIAL values 2-30
unique SERIAL8 values 2-30

referential
sysconstraints data 1-22
sysreferences data 1-44

table
sysconstraints data 1-22

unique
sysconstraints data 1-22
sysviolations data 1-59

violations 1-59
Constructors 2-32, 2-47
Converting data types

DATE and DATETIME 2-52
INTEGER and DATE 2-52
number and string 2-52
number to number 2-51
retyping a column 2-50

CPFIRST environment variable 3-17
CPU cost 3-69
CREATE ACCESS_METHOD statement 1-10
CREATE CAST statement 1-14, 2-52
CREATE DATABASE statement 3-28
CREATE DISTINCT TYPE statement 1-61, 2-17, B-2
CREATE EXTERNAL TABLE statement 1-27, 1-28
CREATE FUNCTION statement 1-45
CREATE IMPLICIT CAST statement B-2
CREATE INDEX statement 1-33, 1-35, 1-52, 3-36

storage options 3-36
CREATE OPAQUE TYPE statement 2-26
CREATE OPERATOR CLASS statement 1-39
CREATE PROCEDURE statement 1-45, 3-59
CREATE ROLE statement 1-45
CREATE ROUTINE FROM statement 1-45, 3-59
CREATE ROW TYPE statement 1-17, 2-27
CREATE SCHEMA statement 1-1
CREATE SEQUENCE statement 1-49
CREATE SYNONYM statement 1-50
CREATE TABLE statement

assigning data types 2-1
default lock mode 3-40
default privileges 3-59
SET constructor 2-32
typed tables 2-27

CREATE TEMP TABLE statement 3-30
CREATE TRIGGER statement 1-57
CREATE VIEW statement 1-1, 1-58
CREATE XADATASOURCE statement 1-59
CREATE XADATASOURCETYPE statement 1-60
Currency symbol 2-24, 3-27
Current date 1-22, 3-20
CURRENT keyword 2-41

D
Data corruption 1-6, 1-16
Data dependencies

syscheckudrdep data 1-15
syscoldepend data 1-17
sysdepend data 1-23

Data dictionary 1-1
Data distributions 1-6, 1-24, 3-35
Data integrity 1-65

X-4 IBM Informix Guide to SQL: Reference

Data pages 1-16, 1-33, 1-52
data type collation 2-33
data type restrictions 2-33
data type restrictions in Boolean expression 2-33
data type UPDATE statements 2-33
Data types

ANSI 2-6
approximate 1-64
BIGINT 2-6
BIGSERIAL 2-6
BLOB 2-7
BOOLEAN 2-8
BYTE 2-8
casting 2-50, 2-54
CHAR 2-9
CHARACTER 2-10
CHARACTER VARYING 2-10
classified by category 2-1
CLOB 2-11
collection 2-47
complex 2-46
conversion 2-50
DATE 2-12
DATETIME 2-12
DEC 2-15
DECIMAL 2-15
distinct 2-49
DISTINCT 2-17
DOUBLE PRECISION 2-18
exact numeric 1-64
extended 2-46
fixed point 2-16
FLOAT 2-18
floating-point 2-15, 2-18, 2-33
IDSSECURITYLABEL 2-18, 2-37
inheritance 2-27
INT 2-19
INT8 2-19
INTEGER 2-19
internal 2-1
INTERVAL 2-19
length (syscolumns) 1-20
LIST 2-22
LVARCHAR 2-23
MONEY 2-24
MULTISET 2-25
named ROW 2-27
NCHAR 2-25
NUMERIC 2-26
NVARCHAR 2-26
opaque 2-49
OPAQUE 2-26
Opaque data types

smart large objects 2-40
REAL 2-27
ROW 2-27, 2-28
sequential integer 2-30
SERIAL 2-30
SERIAL8 2-30
SET 2-32
simple large object 2-40
SMALLFLOAT 2-33
SMALLINT 2-33
smart large object 2-40
summary list 2-1
unique numeric value 2-30
unnamed ROW 2-28

Data types (continued)
VARCHAR 2-35

Data-type promotion 2-37
Database identifiers 3-37
Database server administrator (DBSA) 1-1
Database Server Administrator (DBSA) 3-57
Database servers

attributes in Information Schema view 1-65
code set 1-65
default connection 3-54
default isolation level 1-65
optimizing queries 3-63
pathname for 3-28
remote 3-39
role separation 3-57
server name 1-22, 3-28

DATABASE statement 3-28
Databases

data types 2-1
Databases

superstores_demo B-1
demonstration databases

superstores_demo B-1
identifiers 3-37
joins in stores_demo A-1
object-relational B-1
objects, sysobjstate data 1-38
privileges 1-58
stores_demo A-1
superstores_demo

demonstration database B-1
syscrd 1-1
sysmaster 1-1
sysutils 1-1
sysuuid 1-1

DataBlade modules
Client and Server API 2-40
data types (sysbuiltintypes) 1-1
trace messages (systracemsgs) 1-55, 1-56
user messages (syserrors) 1-26

DATE data type
abbreviated year values 3-20
casting to integer 2-52
coltype code 1-17
converting to DATETIME 2-52
defined 2-12
display format 3-23
in expressions 2-41, 2-43
international date formats 2-12
source data 2-43

DATE() function 2-44, 3-23
DATETIME data type

abbreviated year values 3-20
coltype code 1-17
converting to DATE 2-52
defined 2-12
display format 3-32
EXTEND function 2-43
extending precision 2-42
field qualifiers 2-12
in expressions 2-41, 2-45
international formats 2-12, 2-19
length (syscolumns) 1-20
literal values 2-12
localized values 2-12
precision and size 2-12
source data 2-44

Index X-5

DATETIME data type (continued)
two-digit year values and DBDATE variable 2-12
year to fraction example 2-12

DAY keyword
DATETIME qualifier 2-12
INTERVAL qualifier 2-19
UNITS operator 2-12, 2-44

DB-Access utility 1-6, 1-63, 3-6, 3-25, 3-28, 3-32, 3-54
DBA privilege 1-26, 1-55, 1-56, 1-58
DBA routines 1-42
DBACCNOIGN environment variable 3-18, 3-19
DBANSIWARN environment variable 3-19
DBBLOBBUF environment variable 3-20
DBCENTURY environment variable

defined 3-20
effect on functionality of DBDATE 3-23
expanding abbreviated years 2-12, 3-21

DBDATE environment variable 2-12, 3-23
DBDELIMITER environment variable 3-24
DBEDIT environment variable 3-25
dbexport utility 3-24
DBFLTMASK environment variable 3-25
DBLANG environment variable 3-26
dbload utility 2-7, 2-8, 2-33, 3-24
DBMONEY environment variable 2-24, 3-27
DBONPLOAD environment variable 3-28
DBPATH environment variable 3-28
DBPRINT environment variable 3-30
DBREMOTECMD environment variable 3-30
dbschema utility 1-42
DBSECADM role 2-18, 2-37
dbservername.cmd batch file 3-8
dbspace

for BYTE or TEXT values 1-14
for system catalog 1-1
for table fragments 1-28
for temporary tables 3-30
name 3-37

DBSPACETEMP configuration parameter 3-30
DBSPACETEMP environment variable 3-30
DBTEMP environment variable 3-32
DBTIME environment variable 2-12, 3-32
DBUPSPACE environment variable 3-35
DEC data type 2-15
DECIMAL data type

built-in casts 2-51, 2-52
coltype code 1-17
defined 2-15
disk storage 2-16
display format 3-25, 3-27
fixed point 2-16
floating point 2-15
length (syscolumns) 1-20

Decimal digits, display of 3-25
Decimal point

DBFLTMASK setting 3-25
DBMONEY setting 3-27
DECIMAL radix 2-16

Decimal separator 3-27
DECLARE statement 3-62
DECRYPT_BINARY function 2-11
DECRYPT_CHAR function 2-11
DEF_TABLE_LOCKMODE configuration parameter 3-40
Default database locale 1-7
DEFAULT_ATTACH environment variable 3-36
Defaults

C compiler 3-50

Defaults (continued)
century 3-20, 3-32
CHAR length 2-9
character set for SQL identifiers 3-37
compilation order 3-17
configuration file 3-60
connection 3-54
data type 2-29
database server 3-28, 3-54
DATE display format 2-12
DATE separator 3-23
DATETIME display format 2-12
DECIMAL precision 2-15
disk space for sorting 3-35
fetch buffer size 3-39
heap size 3-58
index storage location 3-36
isolation level 1-65
join method 3-61
level of parallelism 3-64
lock mode 3-40
message directory 3-26
MONEY scale 2-24
operator class 1-10, 1-39
printing program 3-30
query optimizer goal 3-63
sysdefaults.default 1-22
table privileges 3-59
temporary dbspace 3-30
terminfo direcotry 3-72
text editor 3-25

DEFINE statement of SPL 2-30
defined Data types 2-33
Delete privilege 1-28, 1-51, 3-59
DELETE statement 1-59
DELETE statements 1-6
Delete trigger 1-57
DELIMIDENT environment variable 3-37
Delimited identifiers 3-37
Delimiter

for DATETIME values 2-12
for fields 3-24
for identifiers 3-37
for INTERVAL values 2-19

demonstration databases
stores_demo A-1

Demonstration databases
tables B-1

Descending index 1-33
DESCRIBE statement 3-47
Describe-for-updates 3-47
destroy() support function 2-46
Detached index 3-36
Deutsche mark (DM) currency symbol 3-27
Diagnostics table 1-59
DIRECTIVES configuration parameter 3-40
Directives for query optimization 3-40, 3-61, 3-63
Disabilities, visual

reading syntax diagrams C-1
Disability C-1
Disabled database objects 1-59
Disk space

for data distributions 3-35
for temporary data 3-30

Distinct data types
casts 2-53
sysxtdtypes data 1-61

X-6 IBM Informix Guide to SQL: Reference

DISTINCT data types
defined 2-17
sysxtddesc data 1-60
sysxtdtypes data 1-61, 2-17

Distributed Computing Environment (DCE) 3-72
Distributed queries 2-46, 3-39
Dollar ($) sign 2-24, 3-27
Dotted decimal format of syntax diagrams C-1
double (C) data type 2-18
Double-precision floating-point number 2-18
DROP CAST statement B-2
DROP DATABASE statement 3-28
DROP FUNCTION statement 1-42
DROP INDEX statement 1-52
DROP PROCEDURE statement 1-42
DROP ROUTINE statement 1-42
DROP ROW TYPE statement 2-27
DROP SEQUENCE statement 3-73
DROP TABLE statement 3-73
DROP TYPE statement 2-17, 2-26
DROP VIEW statement 1-63, 3-73

E
EBCDIC collation 1-65
Editor, DBEDIT setting 3-25
EMACS text editor 3-25
Empty set 2-47
ENCRYPT_DES function 2-11
ENCRYPT_TDES function 2-11
Enterprise Replication 1-1
env utility 3-4
ENVIGNORE environment variable

defined 3-2, 3-38
relation to chkenv utility 3-4

Environment configuration file
debugging with chkenv 3-4
setting environment variables in UNIX 3-2

Environment variables
ANSIOWNER 3-16
CLIENT_LOCALE 3-23
CMCONFIG 3-17
Colon

pathname separator 3-59
command-line utilities 3-6
CPFIRST 3-17
DBACCNOIGN 3-18, 3-19
DBANSIWARN 3-19
DBBLOBBUF 3-20
DBCENTURY 3-20
DBDATE 2-12, 3-23
DBDELIMITER 3-24
DBEDIT 3-25
DBFLTMASK 3-25
DBLANG 3-26
DBMONEY 2-24, 3-27
DBONPLOAD 3-28
DBPATH 3-28
DBPRINT 3-30
DBREMOTECMD 3-30
DBSPACETEMP 3-30
DBTEMP 3-32
DBTIME 2-12, 3-32
DBUPSPACE 3-35
DEFAULT_ATTACH 3-36
DELIMIDENT 3-37
displaying current settings 3-4, 3-7

Environment variables (continued)
ENVIGNORE 3-38
FET_BUF_SIZE 3-39
GL_DATE 2-12, 3-22
GL_DATETIME 2-12, 3-22
how to set

in Bourne shell 3-3
in C shell 3-3
in Korn shell 3-3

how to set in Bourne shell 3-3
how to set in Korn shell 3-3
IFMXMONGOAUTH 3-39
IFX_DEF_TABLE_LOCKMODE 3-40
IFX_DIRECTIVES 3-40
IFX_EXTDIRECTIVES 1-24, 3-41
IFX_LARGE_PAGES 3-42
IFX_LOB_XFERSIZE 3-43
IFX_LONGID 3-43
IFX_NETBUF_PVTPOOL_SIZE 3-44
IFX_NETBUF_SIZE 3-44
IFX_NO_SECURITY_CHECK 3-45
IFX_NO_TIMELIMIT_WARNING 3-45
IFX_NODBPROC 3-45
IFX_NOT_STRICT_THOUS_SEP 3-46
IFX_ONTAPE_FILE_PREFIX 3-46
IFX_PAD_VARCHAR 3-46
IFX_UNLOAD_EILSEQ_MODE 3-47
IFX_UPDDESC 3-47
IFX_XASTDCOMPLIANCE_XAEND 3-48
IFX_XFER_SHMBASE 3-48
IMCADMIN 3-48
IMCCONFIG 3-49
IMCSERVER 3-49
INF_ROLE_SEP 3-57
INFORMIXC 3-50
INFORMIXCMCONUNITNAME 3-51
INFORMIXCMNAME 3-50
INFORMIXCONCSMCFG 3-51
INFORMIXCONRETRY 3-51
INFORMIXCONTIME 3-52
INFORMIXCPPMAP 3-54
INFORMIXDIR 3-54
INFORMIXSERVER 3-54
INFORMIXSHMBASE 3-55
INFORMIXSQLHOSTS 3-55
INFORMIXSTACKSIZE 3-56
INFORMIXTERM 3-56
INTERACTIVE_DESKTOP_OFF 3-57
JAR_TEMP_PATH 3-58
JAVA_COMPILER 3-58
JVM_MAX_HEAP_SIZE 3-58
LD_LIBRARY_PATH 3-59
LIBPATH 3-59
limitations 3-1
listed by topic 3-9
manipulating in Windows environments 3-6
modifying settings 3-4
NODEFDAC 3-59
ONCONFIG 3-60
ONINIT_STDOUT 3-60
OPT_GOAL 3-63
OPTCOMPIND 3-61
OPTMSG 3-62
OPTOFC 3-62
overriding a setting 3-2, 3-38
PATH 3-63

Index X-7

Environment variables (continued)
Pathname

for client or shared libraries 3-59
PDQPRIORITY 3-64
PLCONFIG 3-64
PLOAD_LO_PATH 3-65
PLOAD_SHMBASE 3-65
PSM_ACT_LOG 3-66
PSM_DBS_POOL 3-66
PSM_DEBUG 3-67
PSM_DEBUG_LOG 3-67
PSM_LOG_POOL 3-68
PSORT_DBTEMP 3-68
PSORT_NPROCS 3-68
RTREE_COST_ADJUST_VALUE 3-69
rules of precedence in UNIX 3-5
rules of precedence in Windows 3-8
scope of reference 3-6
setting 3-6

at the command line 3-2
in a configuration file 3-2
in a login file 3-2
in a shell file 3-3
in Windows environments 3-6
with the System applet 3-6

setting in autoexec.bat 3-7
SHLIB_PATH 3-70
SRV_FET_BUF_SIZE 3-70
standard UNIX system 3-1
STMT_CACHE 3-71
TERM 3-71
TERMCAP 3-72
TERMINFO 3-72
THREADLIB 3-72
types of 3-1
unsetting 3-4, 3-7, 3-37
USE_DTENV 2-12
USETABLENAME 3-73
view current setting 3-4
where to set 3-3

equal() support function 2-46
Equality (=) operator 2-11
Era-based dates 3-32
Error message files 3-26
esql command 3-17, 3-50
ESQL/C

DATETIME routines 3-32
esqlc command 3-17
long identifiers 3-43
message chaining 3-62
multithreaded applications 3-72
program compilation order 3-17

Exact numeric data types 1-64
Executable programs 3-63
Execute privilege 1-40, 3-59
explain output file 3-35
Explicit cast 1-14, 2-53
Explicit pathnames 3-7, 3-29
Explicit temporary tables 3-30
Exponent 2-16
Exponential notation 2-15
export utility 3-3
export_binary() support function 2-46
export() support function 2-46
Expression-based fragmentation 1-29, 1-31, 3-22, 3-24
EXT_DIRECTIVES configuration parameter 1-24, 3-41
EXTEND function 2-43

Extended data types 1-61, 2-46, B-2
Extensible Markup Language (XML) 2-11
Extension checking (DBANSIWARN) 3-19
Extents, changing size 1-6
External database 1-50
External directives for query optimization 3-41
External routines 1-42
External tables

sysextcols data 1-27
sysextdfiles data 1-27
sysexternal data 1-28
systables data 1-52

External view 1-50
extspace 1-10

F
FALSE setting

BOOLEAN value 2-8
Farsi locales 2-9
FET_BUF_SIZE environment variable 3-39
Fetch buffer 3-39
Fetch buffer size 3-39
FETCH statement 3-62
Field delimiter

DBDELIMITER 3-24
Statements of SQL

LOAD 3-24
UNLOAD 3-24

Utilities
dbexport 3-24

Field of a ROW data type 2-48
Field qualifier

DATETIME values 2-12
EXTEND function 2-43
INTERVAL values 2-19

Fields of a ROW data type 2-48
File extensions

.a 3-43

.cfg 3-51

.cmd 3-8

.ec 3-17

.ecp 3-17

.iem 3-26

.jar 3-58

.rc 3-2, 3-5, 3-38, 3-40

.so 3-43

.sql 1-63, 3-28, 3-37

.std 3-60, 3-71
Files

environment configuration files 3-4
installation directory 3-54
permission settings 3-2
shell 3-3
temporary 3-30, 3-32, 3-68
temporary for SE 3-32
termcap, terminfo 3-56, 3-72

FILETOBLOB function 2-7
FILETOCLOB function 2-11
Filtering mode 1-38, 1-59
Finalization function 1-9
Fixed point decimal 2-16, 2-24, 3-27
Fixed-length opaque data types 1-17
Fixed-length UDT 1-61
FLOAT data type

built-in casts 2-51, 2-52
coltype code 1-17

X-8 IBM Informix Guide to SQL: Reference

FLOAT data type (continued)
defined 2-18
display format 3-25, 3-27

Floating-point decimal 2-15, 2-18, 2-33, 3-25
Formatting

DATE values with DBDATE 3-23
DATE values with GL_DATE 3-32
DATETIME values with DBTIME 3-32
DATETIME values with GL_DATETIME 3-32
DATETIME values with USE_DTENV 3-32
DECIMAL(p) values with DBFLTMASK 3-25
FLOAT values with DBFLTMASK 3-25
MONEY values with DBMONEY 3-27
SMALLFLOAT values with DBFLTMASK 3-25

Formatting mask
with DBDATE 3-23
with DBFLTMASK 3-25
with DBMONEY 3-27
with DBTIME 3-32
with GL_DATE 3-32
with GL_DATETIME 3-32
with USE_DTENV 3-32

FRACTION keyword
DATETIME qualifier 2-12

FRAGMENT BY clause 3-30
Fragment-level statistics 1-29
Fragmentation

distribution strategy 1-31
encrypted distribution 1-29
expression 1-29, 1-31, 3-22, 3-24
fragment statistics 1-29
list 1-31
PDQPRIORITY environment variable 3-64
PSORT_NPROCS environment variable 3-69
round robin 1-29, 1-31
setting priority levels for PDQ 3-64
sysfragauth data 1-28
sysfragdist data 1-29
sysfragments data 1-31

FROM keyword 1-6, 1-15
Function keys 3-56
Functional index 1-33, 2-48, 3-36
Functions

for BLOB columns 2-7
for CLOB columns 2-11
for MULTISET columns 2-25
support for complex types 2-46

fwritable gcc option 3-50

G
gcc compiler 3-50
Generic B-trees 1-33
GET DIAGNOSTICS statement 1-26
getenv utility 3-2
GL_COLLATE table 1-52
GL_CTYPE table 1-52
GL_DATE environment variable 2-12, 3-22, 3-23
GL_DATETIME environment variable 2-12, 3-22
Global network buffer pool 3-44
GLS environment variables 3-5
GNU C compiler 3-50
GRANT statement 1-45, 1-51
Graphic characters 3-56
GROUP BY clause 2-8, 2-33, 3-30
GROUP BY TEXT 2-33
Group informix 3-26

H
Hash-join 3-61
hash() support function 2-46
Hashed columns 1-31
Hashing parameters 1-51
Heap size 3-58
Hebrew locales 2-9
Hexadecimal digits 3-24
HIGH INTEG keywords

ALTER TABLE statement 2-40
CREATE TABLE statement 2-40

HIGH keyword
in UPDATE STATISTICS statement 1-29
PDQPRIORITY 3-64
UPDATE STATISTICS 1-6, 1-24

High-Performance Loader 3-28, 3-64
Histogram 1-24
Host language 1-65
Host variable 2-7, 2-8, 2-33, 2-48
HOUR keyword

DATETIME qualifier 2-12
INTERVAL qualifier 2-19

HP-UX operating system 3-70
HTML (Hypertext Markup Language) 2-11
Hyphen

DATETIME delimiter 2-12
INTERVAL delimiter 2-19

I
I/O overhead 3-69
IBM Informix ESQL/C 3-17, 3-23, 3-32, 3-43, 3-62
IDSSECURITYLABEL data type

definition 2-18
IFMXMONGOAUTH environment variable 3-39
IFX_DEF_TABLE_LOCKMODE environment variable 3-40
IFX_DIRECTIVES environment variable 3-40
IFX_EXTDIRECTIVES environment variable 1-24, 3-41
IFX_LARGE_PAGES environment variable 3-42
IFX_LOB_XFERSIZE environment variable 3-43
IFX_LONGID environment variable 3-43
IFX_NETBUF_PVTPOOL_SIZE environment variable 3-44
IFX_NETBUF_SIZE environment variable 3-44
IFX_NO_SECURITY_CHECK environment variable 3-45
IFX_NO_TIMELIMIT_WARNING environment variable 3-45
IFX_NODBPROC environment variable 3-45
IFX_NOT_STRICT_THOUS_SEP environment variable 3-46
IFX_ONTAPE_FILE_PREFIX environment variable 3-46
IFX_PAD_VARCHAR environment variable 3-46
IFX_UNLOAD_EILSEQ_MODE environment variable 3-47
IFX_UPDDESC environment variable 3-47
IFX_XASTDCOMPLIANCE_XAEND environment

variable 3-48
IFX_XFER_SHMBASE environment variable 3-48
imcadmin administrative tool 3-48
IMCADMIN environment variable 3-48
IMCCONFIG environment variable 3-49
IMCSERVER environment variable 3-49
IMPEXP data type 2-53
IMPEXPBIN data type 2-53
Implicit cast 1-14, 2-53
Implicit connection 3-54
Implicit temporary tables 3-30
import_binary() support function 2-46
import() support function 2-46
IN clause 3-30

Index X-9

IN keyword 2-8, 2-25, 2-29, 2-32, 2-55
IN TABLE storage option 3-36
Index

attached 1-31, 3-22, 3-36, 3-69
B-tree 1-33, 3-36
clustered 1-33, 1-35
composite 1-33
default values for attached 3-69
descending 1-33
detached 3-36
distribution scheme 3-36
forest of trees 3-36
fragmented 1-29, 1-31
functional 1-33, 2-48, 3-36
nonfragmented 3-36
of data types 2-1
of environment variables 3-9
of system catalog tables 1-7
R-Tree 3-36
sysindexes data 1-33
sysindices data 1-35
sysobjstate data 1-38
threads for sorting 3-69
unique 1-22, 1-33, 2-30

Index key structure 1-35
Index privilege 1-51
Indirect typing 2-30
industry standards xiii
Industry standards, compliance with 1-65
INF_ROLE_SEP environment variable 3-57
Information Schema views

accessing 1-63
columns 1-64
defined 1-62
generating 1-63
server_info 1-65
sql_languages 1-65
tables 1-64

Informational messages 1-26
Informix extension checking (DBANSIWARN) 3-19
informix owner name 1-6, 1-14, 1-24, 1-33, 1-35, 1-52, 3-26,

3-57
informix.rc file 3-2, 3-5, 3-40
INFORMIXC environment variable 3-50
INFORMIXCMCONUNITNAME environment variable 3-51
INFORMIXCMNAME environment variable 3-50
INFORMIXCONCSMCFG environment variable 3-51
INFORMIXCONRETRY environment variable 3-51
INFORMIXCONTIME environment variable 3-52
INFORMIXCPPMAP environment variable 3-54
INFORMIXDIR environment variable 3-54
INFORMIXSERVER environment variable 3-54
INFORMIXSHMBASE environment variable 3-55
INFORMIXSTACKSIZE environment variable 3-56
INFORMIXTERM environment variable 3-56
Inheritance hierarchy 1-37, 2-28
Initialization function 1-9, 1-45
Input support function 2-23
input() support function 2-46
Insert privilege 1-28, 1-51, 3-59
INSERT statements 1-55, 1-59, 2-12, 2-47, 3-18, 3-23
Insert trigger 1-57
Installation directory 3-54
INSTEAD OF trigger 1-57
INT data type 2-19
INT8 data type

built-in casts 2-51, 2-52

INT8 data type (continued)
coltype code 1-17
defined 2-19
using with SERIAL8 2-7

INTEG keyword 2-40
INTEGER data type

built-in casts 2-51, 2-52
coltype code 1-17
defined 2-19
length (syscolumns) 1-20

Intensity attributes 3-56
INTERACTIVE_DESKTOP_OFF environment variable 3-57
Internationalized trace messages 1-56
Interprocess communications (IPC) 3-55
INTERVAL data type

coltype code 1-17
defined 2-19
field delimiters 2-19
in expressions 2-41, 2-45, 2-46
length (syscolumns) 1-20

ipcshm protocol 3-55
IS NULL operator 2-8
ISO 8859-1 code set 1-65
Isolation level 1-65, 3-61
Iterator functions 1-9

J
Japanese eras 3-32
Jar management procedures 3-58
JAR_TEMP_PATH environment variable 3-58
Java virtual machine (JVM) 3-16, 3-58
JAVA_COMPILER environment variable 3-58
JIT compiler 3-58
Join methods 3-61
Join operations 1-6, 3-30
JVM_MAX_HEAP_SIZE environment variable 3-58

K
KEEP ACCESS TIME keywords

ALTER TABLE statement 2-40
CREATE TABLE statement 2-40

Key
primary 1-22, 1-44, 1-59, B-1

Key scan 1-10
Keyboard I/O

INFORMIXTERM setting 3-56
TERM setting 3-71
TERMCAP setting 3-72
TERMINFO setting 3-72

keyword MATCHES 2-33
Korn shell 3-2, 3-3

L
Label-based access control (LBAC) 2-18, 2-37
Language

C 1-45, 3-17, 3-50
C++ 3-54
CLIENT_LOCALE setting 3-23
DBLANG setting 3-26
Extensible Markup Language (XML) 2-11
Hypertext Markup Language (HTML) 2-11
Informix ESQL/C 2-40, 2-48, 3-72
Java 3-16, 3-58

X-10 IBM Informix Guide to SQL: Reference

Language (continued)
sql_languages information schema view 1-65
Stored Procedure Language (SPL) 2-48, 3-22, 3-24
syslangauth data 1-37
sysroutinelangs data 1-45

Large pages for virtual memory segments 3-42
Large-object data type

defined 2-39
listed 2-37

LD_LIBRARY_PATH environment variable 3-59
Leaf pages 1-31
libos.a library 3-43
LIBPATH environment variable 3-59
LIKE 2-33
LIKE keyword of SPL 2-30
LIKE operator 2-8, 2-55
Linearized code 1-56
List

of data types 2-1
of environment variables, by topic 3-9
of system catalog tables 1-7

LIST data type
coltype code 1-17

LIST data type, defined 2-22
LO_handles() support function 2-46
LOAD statement 2-7, 2-8, 2-33, 3-24
Locales

collation order 1-52
multibyte 2-10
of trace messages 1-56
right-to-left 2-9
specifying 3-9

Localized collation 2-37
Lock-table overflow 3-40
LOCKMODE keyword 3-40
LOCOPY function 2-7, 2-11
LOG keyword

ALTER TABLE statement 2-40
CREATE TABLE statement 2-40

Logging mode 1-16
Logical characters 2-37
Long identifiers

client version 3-43
IFX_LONGID setting 3-43
Information Schema views 1-63

LOTOFILE function 2-7, 2-11
LOW keyword

PDQPRIORITY 3-64
UPDATE STATISTICS 1-24

Lowercase mode codes 1-42
Lowercase privilege codes 1-1, 1-16, 1-51
LVARCHAR data type

casting opaque types 2-53
coltype code (for client) 1-17
defined 2-23

M
Machine notes 3-56
Machine-independent integer types 1-20
Magnetic storage media 1-14
Mantissa precision 1-64, 2-16
Map file for C++ programs 3-54
Mapping of data types

ANSI to Informix 2-6
MATCHES 2-33
MATCHES operator 2-8, 2-55

MaxConnect 3-48, 3-49
MEDIUM keyword 1-6, 1-21, 1-24
MEDIUM keyword, in UPDATE STATISTICS statement 1-29
Membership operator 2-55
MERGE statement 1-59
Message file

specifying subdirectory with DBLANG 3-26
Messages

chaining 3-62
error in syserrors 1-26
optimized transfers 3-62
reducing requests 3-62
trace message template 1-56
warning in syserrors 1-26

mi_collection_card() function 2-22, 2-25, 2-32
mi_db_error_raise() function 1-26
Microsoft C compiler 3-50
MINUTE keyword

DATETIME qualifier 2-12
INTERVAL qualifier 2-19

MITRACE_OFF configuration parameter 1-55, 1-56
mkdir utility 3-26
MODERATE INTEG keywords

ALTER TABLE statement 2-40
CREATE TABLE statement 2-40

Modifiers
CLASS 1-42
COSTFUNC 1-42
HANDLESNULLS 1-42
INTERNAL 1-42
NEGATOR 1-42
NOT VARIANT 1-42
PARALLELIZABLE 1-42
SELCONST 1-42
STACK 1-42
VARIANT 1-42

MODIFY NEXT SIZE keywords 1-6
MONEY data type

built-in casts 2-52
coltype code 1-17
defined 2-24
display format 3-27
international money formats 2-24
length (syscolumns) 1-20

MONTH keyword
DATETIME qualifier 2-12
INTERVAL qualifier 2-19

Multibyte characters
CLOB data type 2-11

MULTISET data type
coltype code 1-17
constructor 2-47
defined 2-25

N
N setting

sysroleauth.is_grantable 1-45
Named ROW data type

casting permitted 2-54
defined 2-27
defining 2-27
equivalence 2-27
inheritance 1-37, 2-27
typed tables 2-27

Namer ROW data type
coltype code 1-17

Index X-11

National Language Support (NLS) 2-37
NCHAR data type

collation order 2-25
coltype code 1-17
defined 2-25
multibyte characters 2-25

Negator functions 1-42
Nested dot notation 2-48
Nested-loop join 3-61
Network buffers 3-44
Network environment variable, DBPATH 3-28
NFS directory 3-32
NLS data types

in system catalog tables 1-7
NO KEEP ACCESS TIME keywords

ALTER TABLE statement 2-40
CREATE TABLE statement 2-40

no setting of NODEFDAC 3-59
NODEFDAC environment variable 3-59
NOLOG keyword

ALTER TABLE statement 2-40
CREATE TABLE statement 2-40

Non-default database locales 1-7
NONE setting

JAVA_COMPILER 3-58
Nonfragmented index 3-36
Nonprintable characters

CHAR data type 2-10
TEXT data type 2-35
VARCHAR data type 2-35

NOT NULL 2-33
NOT NULL constraint

collection elements 2-22, 2-25, 2-32, 2-47
syscoldepend data 1-17
sysconstraints data 1-22

NOT NULL keywords 2-8, 2-22
NOT operator 2-55
NOT VARIANT routine 1-42
NULL data type

coltype code 1-17
NULL value

allowed or not allowed 1-9, 1-17
BOOLEAN literal 2-8
BYTE data type 2-8

Numeric data types
casting between 2-51
casting to character types 2-52
listed 2-37

NVARCHAR data type
collation order 2-26
coltype code 1-17
defined 2-26
multibyte characters 2-26

O
Object mode of database objects 1-38
Object-relational schema B-1
ODBC driver 3-59, 3-70
OFF setting

IFX_DIRECTIVES 3-40, 3-41
PDQPRIORITY 3-64

ON setting
IFX_DIRECTIVES 3-40, 3-41

ONCONFIG environment variable 3-60
onconfig.std file 3-71
oninit command 3-40

ONINIT_STDOUT environment variable 3-60
Online transaction processing (OLTP) 1-31
onload utility 2-7, 2-8, 2-33
onpload utility 3-28, 3-65
onsecurity utility 3-45
onstat utility 3-1
Opaque data types

cast matrix 2-54
comparing 2-53
storage 2-23
sysxtddesc data 1-60
sysxtdtypes data 1-61

OPAQUE data types
defined 2-26

OPEN statement 3-62
Operator class

sysams data 1-10
sysindices data 1-35
sysopclasses data 1-39

operator LIKE 2-33
Operator precedence 2-55
operator TEXT 2-33
OPT_GOAL configuration parameter 3-63
OPT_GOAL environment variable 3-63
OPTCOMPIND configuration parameter 3-61
OPTCOMPIND environment variable 3-61
Optimizer

setting IFX_DIRECTIVES 3-40
setting IFX_EXTDIRECTIVES 3-41
setting OPT_GOAL 3-63
setting OPTCOMPIND 3-61
setting OPTOFC 3-62

Optimizer directives
sysdirectives data 1-24

OPTMSG environment variable 3-62
OPTOFC environment variable 3-62
OR operator 2-55
ORDER 2-33
ORDER BY clause 2-8, 3-30
Ordinal positions 2-22
Output support function 2-23
output() support function 2-46
Overflow error 2-16
Owner routines 1-42, 3-59

P
Page footers in sbspaces 2-40
Page headers in sbspaces 2-40
PAGE lock mode 1-52, 3-40
Parallel distributed queries, setting with PDQPRIORITY 3-64
Parallel sorting, setting with PSORT_NPROCS 3-68
Partial characters 2-9
Partial-column index 1-35
PATH environment variable 3-63
Pathname

Configuration file
for terminal I/O 3-72

for C compiler 3-50
for C++ map file 3-54
for concsm.cfg file 3-51
for connectivity information 3-55
for database server 3-28
for dynamic-link libraries 3-59, 3-70
for environment-configuration file 3-4
for executable programs 3-63
for installation 3-54

X-12 IBM Informix Guide to SQL: Reference

Pathname (continued)
for message files 3-26
for parallel sorting 3-68
for remote shell 3-30
for smart-large-object handles 3-65
for temporary .jar files 3-58
for termcap file 3-72
for terminfo directory 3-72
separator symbols 3-63

PDQ
OPTCOMPIND environment variable 3-61
PDQPRIORITY environment variable 3-64

Percentage (%) symbol 3-32
Period

DATE delimiter 3-23
DATETIME delimiter 2-12
INTERVAL delimiter 2-19

Permissions 3-2, 3-26
PLCONFIG environment variable 3-64
plconfig file 3-64
PLOAD_LO_PATH environment variable 3-65
PLOAD_SHMBASE environment variable 3-65
PostScript 2-11
Precedence rules

for casts 2-53
for lock mode 3-40
for SQL operators 2-55
for UNIX environment variables 3-5
for Windows environment variables 3-8

Precision
of currency values 2-24
of numbers 1-64, 2-15, 2-18, 2-19, 2-33
of time values 2-12, 2-19, 2-42, 2-45

PREPARE statement 1-52
Prepared statement 1-52
Primary access method 1-10, 1-51
Primary key 1-22, 1-44, 1-59, 2-30, B-1
Primary thread 3-56
printenv utility 3-4
Printing with DBPRINT 3-30
Private environment-configuration file 3-4, 3-38
Private network buffer pool 3-44
Private synonym 1-52
Privilege

default table privileges 3-59
on columns (syscolauth table) 1-16
on procedures and functions (sysprocauth table) 1-40
on table fragments (sysfragauth table) 1-28
on tables (systabauth table) 1-51
on the database (sysusers table) 1-58
on UDTs and named row types (sysxtdtypeauth) 1-60

Protected routines 1-42
Protected rows 2-18, 2-37
Pseudo-machine code (p-code) 1-40
PSM_ACT_LOG environment variable 3-66
PSM_CATALOG_PATH environment variable 3-66
PSM_DBS_POOL environment variable 3-66
PSM_DEBUG environment variable 3-67
PSM_DEBUG_LOG environment variable 3-67
PSM_LOG_POOL environment variable 3-68
PSORT_DBTEMP environment variable 3-68
PSORT_NPROCS environment variable 3-68
Public synonym 1-50, 1-52
public user name 1-63
Purpose functions 1-10
putenv utility 3-2

Q
Qualifier field

DATETIME 2-12
EXTEND 2-45
INTERVAL 2-19
UNITS 2-44

Query optimizer
directives 3-40, 3-41
sysdistrib data 1-24
sysprocplan data 1-44
updating distribution data 1-6

Quoted string
DATE and DATETIME literals 2-44
DELIMIDENT setting 3-37
INTERVAL literals 2-19
invalid with BYTE 2-8
LVARCHAR data type 2-23

Quoted string invalid with TEXT 2-33

R
R-tree index 3-36, 3-69
Read committed 1-65
Read uncommitted 1-65
recv() support function 2-46
References privilege 1-16, 1-51
Referential constraint 1-22, 1-44, 1-59
Relational operators 2-10, 2-55
Remote database server 1-50, 3-39
Remote shell 3-30
Remote tape devices 3-30
RENAME SEQUENCE statement 3-73
Repeatable read 3-61
Replica identifier 1-31
RESIDENT configuration parameter 3-42
Resource contention 3-64
Resource Grant Manager (RGM) 1-31
Resource privilege 1-6

Role
sysusers data 1-58

System catalog
authorization identifiers 1-58

REVOKE statement 1-51
Right-to-left locales 2-9
Role

default role 1-58
INF_ROLE_SEP setting 3-57
sysroleauth data 1-45

Role separation 3-57
Rolling-window fragmentation 1-31
Round-robin fragmentation 1-29, 1-31
Routines

DataBlade API routine 1-55
DATETIME formatting 3-32
identifier 1-42
owner 1-42
privileges 1-40
protected 1-42
restricted 1-42
Stored Procedure Language (SPL) 2-48
syserrors data 1-26
syslangauth data 1-37
sysprocauth data 1-40
sysprocbody data 1-40
sysprocedures data 1-42
sysprocplan data 1-44

Index X-13

Routines (continued)
sysroutinelangs data 1-45
systraceclasses data 1-55
systracemsgs data 1-56
trigger 1-42

ROW data types 2-48
casting permitted 2-54
equivalence 2-27
fields 1-12, 2-48
inheritance 1-37, 2-27
inserting values 2-29
named 2-27, 2-48
sysattrtypes data 1-12
sysxtddesc data 1-60
sysxtdtypes data 1-60, 1-61
unnamed 2-28, 2-48

ROW lock mode 1-52, 3-40
ROWIDS 1-10
RTNPARAMTYPES data type 1-42
RTREE_COST_ADJUST_VALUE environment variable 3-69
Runtime

warnings (DBANSIWARN) 3-19

S
Sample size 1-24
Sampling data 1-29
SAVE EXTERNAL DIRECTIVES statement 3-41
SBSPACENAME configuration parameter 1-24, 1-29
sbspaces

defined 2-11, 2-40
name 3-37
sysams data 1-10
syscolattribs data 1-16
systabamdata data 1-51

Scale of numbers 1-64, 2-16, 3-25
Scan cost 1-10
Schema Tools 3-6
Screen reader

reading syntax diagrams C-1
SECOND keyword

DATETIME qualifier 2-12
FRACTION keyword

INTERVAL qualifier 2-19
INTERVAL qualifier 2-19

Secondary-access methods 1-10, 1-21, 1-35, 1-39, 2-26
Security policy 2-18
SELECT INTO TEMP statement 3-30
Select privilege 1-16, 1-51, 1-63, 3-59
SELECT statements 1-6, 1-24
SELECT triggers 1-57
Selectivity constant 1-42
Self-join 1-1
send() support function 2-46
SENDRECV data type 2-53
Sequence

syssequences data 1-49
syssynonyms data 1-50
syssyntable data 1-50
systabauth data 1-51
systables data 1-52

Sequential integers
am_id code 1-10
classid code 1-55
constrid code 1-22
extended_id code 1-61
langid code 1-45

Sequential integers (continued)
msgid code 1-56
opclassid code 1-39
planid code 1-44
procid code 1-42
seqid code 1-49
SERIAL data type 2-30
SERIAL8 data type 2-30
tabid code 1-1, 1-49, 1-52

SERIAL data type
coltype code 1-17
defined 2-30
inserting values 2-30
length (syscolumns) 1-20
resetting values 2-30

SERIAL8 data type
assigning a starting value 2-31
coltype code 1-17
defined 2-30
inserting values 2-31
length (syscolumns) 1-20
resetting values 2-31
using with INT8 2-7

Serializable transactions 1-65
server_info Information Schema view 1-62
SET data type

coltype code 1-17
SET data type, defined 2-32
SET ENVIRONMENT IFX_AUTO_REPREPARE

statement 1-52
SET ENVIRONMENT statement 3-2, 3-6, 3-61
SET OPTIMIZATION statement 3-63
SET PDQPRIORITY statement 3-64
SET SESSION AUTHORIZATION statement 1-42
SET STMT_CACHE statement 3-71
set utility 3-7
setenv utility 3-4
Setnet32 3-8
Setnet32 utility 3-6
Setting environment variables

in UNIX 3-2
in Windows 3-6

SGML (Standard Graphic Markup Language) 2-11
Shared environment-configuration file 3-4
Shared libraries 3-43
Shared memory

INFORMIXSHMBASE 3-55
PLOAD_SHMBASE 3-65

Shell
remote 3-30
search path 3-63
setting environment variables in a file 3-3
specifying with DBREMOTECMD 3-30

SHLIB_PATH environment variable 3-70
Shortcut keys

keyboard C-1
simple large object

defined 2-8
Simple large objects

defined 2-40
location (sysblobs) 1-14

Single-precision floating-point number 2-27, 2-33
SMALLFLOAT data type

built-in casts 2-51, 2-52
coltype code 1-17
defined 2-33
display format 3-25, 3-27

X-14 IBM Informix Guide to SQL: Reference

SMALLINT data type
built-in casts 2-51, 2-52
coltype code 1-17
defined 2-33
length (syscolumns) 1-20

Smart large objects
defined 2-40
syscolattribs data 1-16

Smart-large-object handles 3-65
Solaris operating system 3-42
SOME operator 2-55
Sort-merge join 3-61
Sorting

DBSPACETEMP environment variable 3-30
PSORT_DBTEMP environment variable 3-68
PSORT_NPROCS environment variable 3-68

Space
DATETIME delimiter 2-12
INTERVAL delimiter 2-19

Spatial queries 3-69
SPL routines 1-42, 2-48, 3-22, 3-24
SPL variables 2-48
SQL (Structured Query Language) 3-19
SQL character set 3-37
SQL Communications Area 3-19
sql_languages Information Schema view 1-62
SQL_LOGICAL_CHAR configuration parameter 1-52, 2-37
sqlhosts file 3-48, 3-54, 3-55
SQLHOSTS subkey 3-55
SQLSTATE values 1-26
sqltypes.h file 1-17
SQLWARN array 3-19
SRV_FET_BUF_SIZE environment variable 3-70
Stack size 1-42, 3-56
STACKSIZE configuration parameter 3-56
Standard Graphic Markup Language (SGML) 2-11
standards xiii
START DATABASE statement 3-28
START VIOLATIONS TABLE statement 1-59
STAT data type 1-24
STATCHANGE configuration parameter 1-24, 1-29
STATCHANGE table attribute 1-24, 1-29
Statement cache 3-71
Statements of SQL

ALTER INDEX 1-35
ALTER SEQUENCE 1-49, 3-73
ALTER TABLE 1-6, 1-44, 1-52, 3-73
CLOSE 3-62
CONNECT 3-28, 3-52, 3-54
CREATE ACCESS_METHOD 1-10
CREATE AGGREGATE 1-9
CREATE CAST 1-14, 2-52
CREATE DATABASE 3-28
CREATE DISTINCT TYPE 1-61, 2-17, B-2
CREATE EXTERNAL TABLE 1-27, 1-28
CREATE FUNCTION 1-45, 3-59
CREATE IMPLICIT CAST B-2
CREATE INDEX 1-1, 1-33, 1-35, 1-52, 3-36
CREATE OPAQUE TYPE 1-61, 2-26
CREATE OPERATOR CLASS 1-39
CREATE PROCEDURE 1-40, 1-45
CREATE ROLE 1-45, 1-58
CREATE ROUTINE FROM 1-45
CREATE ROW TYPE 1-61, 2-27
CREATE SCHEMA AUTHORIZATION 1-1
CREATE SEQUENCE 1-49
CREATE SYNONYM 1-50

Statements of SQL (continued)
CREATE TABLE 1-22, 1-44, 1-51
CREATE TRIGGER 1-57
CREATE VIEW 1-58
CREATE XADATASOURCE 1-59
CREATE XADATASOURCETYPE 1-60
DATABASE 3-28
DECLARE 3-62
DELETE 1-6, 1-44, 1-59
DESCRIBE 3-47
DROP CAST B-2
DROP DATABASE 3-28
DROP FUNCTION 1-42
DROP INDEX 1-52
DROP PROCEDURE 1-42
DROP ROUTINE 1-42
DROP ROW TYPE 2-27
DROP SEQUENCE 3-73
DROP TABLE 3-73
DROP TYPE 2-17, 2-26
DROP VIEW 1-63, 3-73
FETCH 3-62
GET DIAGNOSTICS 1-26
GRANT 1-28, 1-45, 1-51, 1-63
INSERT 1-59, 2-47, 3-18, 3-23
LOAD 2-8, 3-19
MERGE 1-59
OPEN 3-62
PREPARE 1-52
RENAME SEQUENCE 3-73
RENAME TABLE 3-73
REVOKE 1-51, 1-58
SELECT 1-6, 1-24, 1-44, 3-30
SET ENVIRONMENT 3-61
SET OPTIMIZATION 3-63
SET PDQPRIORITY 3-64
SET SESSION AUTHORIZATION 1-42
SET STMT_CACHE 3-71
START DATABASE 3-28
START VIOLATIONS TABLE 1-59
UNLOAD 3-20
UPDATE 3-18
UPDATE STATISTICS 1-6, 1-35, 3-35
UPDATE STATISTICS FOR PROCEDURE 1-44
UPDATE STATISTICS FOR TABLE 1-21

Statements of SQL LOAD 2-33
Statements of SQL UPDATE 2-33
static option of ESQL/C 3-43
STATLEVEL table attribute 1-29
STMT_CACHE configuration parameter 3-71
STMT_CACHE environment variable 3-71
STMT_CACHE keyword 3-71
Storage identifiers 3-37
Stored procedure language (SPL) 1-42, 2-48, 3-22
stores_demo database A-1

join columns A-1
strings option of gcc 3-50
Structured Query Language (SQL) 3-19
Subscripts 2-8
Subscripts ([]), 2-33
SUBSTRING function 1-6
Subtable 1-29, 1-31, 1-37, B-3
Subtype 1-37, 2-27
Summary

of data types 2-1
of environment variables, by topic 3-9
of system catalog tables 1-7

Index X-15

superstores_demo database
structure of tables B-1

Supertable 1-37, B-3
Supertype 1-37, 2-27
Support functions

DISTINCT data types 2-49
OPAQUE data types 2-26, 2-46
routine identifier 1-42

Symbol table 1-42
Synonym

syssynonyms data 1-50
syssyntable data 1-50
systables data 1-52
USETABLENAME setting 3-73

Syntax diagrams
reading xiii
reading in a screen reader C-1

sysaggregates system catalog table 1-9
sysams system catalog table 1-10
sysattrtypes system catalog table 1-12
sysautolocate system catalog table 1-13
sysblobs system catalog table 1-14
sysbuiltintypes table 1-1
syscasts system catalog table 1-14, 2-50
syschecks system catalog table 1-15
syscheckudrdep system catalog table 1-15
syscolattribs system catalog table 1-16
syscolauth system catalog table 1-16
syscoldepend system catalog table 1-17
syscolumns system catalog table 1-17
sysconstraints system catalog table 1-22
syscrd database 1-1
sysdbclose

disabling with IFX_NODBPROC 3-45
sysdbopen

disabling with IFX_NODBPROC 3-45
sysdefaults system catalog table 1-22
sysdepend system catalog table 1-23
sysdirectives system catalog table 1-24
sysdistrib system catalog table 1-24
sysdomains system catalog view 1-26
syserrors system catalog table 1-26
sysextcols system catalog table 1-27
sysextdfiles system catalog table 1-27
sysexternal system catalog table 1-28
sysfragauth system catalog table 1-28
sysfragdist system catalog table 1-29
sysfragments system catalog table 1-31
sysindexes system catalog table 1-33
sysindexes system catalog tables 1-35
sysinherits system catalog table 1-37
syslangauth system catalog table 1-37
syslogmap system catalog table 1-38
sysmaster database 1-1

contrasted with system catalog tables 1-1
initialization 3-1

sysobjstate system catalog table 1-38
sysopclasses system catalog table 1-39
sysprocauth system catalog table 1-40
sysprocbody system catalog table 1-40
sysproccolumns system catalog table 1-41
sysprocedures system catalog table 1-42
sysprocplan system catalog table 1-44
sysreferences system catalog table 1-44
sysroleauth system catalog table 1-45
sysroutinelangs system catalog table 1-45
sysseclabelauth system catalog table 1-46

sysseclabelcomponentelements system catalog table 1-46
sysseclabelcomponents system catalog table 1-46
sysseclabelnames system catalog table 1-47
sysseclabels system catalog table 1-47
syssecpolicies system catalog table 1-47
syssecpolicycomponents system catalog table 1-48
syssecpolicyexemptions system catalog table 1-48
syssequences system catalog table 1-49
syssurrogateauth system catalog table 1-49
syssynonyms system catalog table 1-50
syssyntable system catalog table 1-50
systabamdata system catalog table 1-51
systabauth system catalog table 1-51
systables system catalog table 1-52
System administrator (DBA) 1-1
System applet 3-6
System catalog

access methods 1-10, 1-51
access privileges 1-16, 1-28
accessing 1-6
altering contents 1-6
casts 1-14
columns 1-17
complex data types 1-12, 1-61
constraint violations 1-59
constraints 1-15, 1-17, 1-22
data distributions 1-24
database tables 1-52
default values 1-22
defined 1-1
dependencies 1-23
discretionary access privileges 1-51
drvurity policies 1-47
example 1-1
external directives 1-24
external tables 1-27, 1-28
fragment distributions 1-29
fragment privileges 1-28
fragments 1-31
indexes 1-33, 1-35
inheritance 1-37
list of tables 1-7
messages 1-26
operator classes 1-39
privileges 1-58, 1-60
programming languages 1-37, 1-45
referential constraints 1-22, 1-44, 1-59
roles 1-45
routine parameters 1-41
routines 1-40, 1-42, 1-44
security label components 1-46
sequence objects 1-49
simple large objects 1-14
smart large objects 1-16
synonyms 1-50
text of routines 1-40
trace classes 1-55
trace messages 1-56
triggers 1-56, 1-57
updating 1-6
use by database server 1-1
user-defined aggregates 1-9
user-defined data types 1-60, 1-61
views 1-52, 1-58
XA data source types 1-60
XA data sources 1-59

X-16 IBM Informix Guide to SQL: Reference

System catalog tables
synonyms 1-50
sysaggregates 1-9
sysams 1-10
sysattrtypes 1-12
sysautolocate 1-13
sysblobs 1-14
syscasts 1-14
syschecks 1-15
syscheckudrdep 1-15
syscolattribs 1-16
syscolauth 1-16
syscoldepend 1-17
syscolumns 1-17
sysconstraints 1-22
sysdefaults 1-22
sysdepend 1-23
sysdirectives 1-24
sysdistrib 1-24
sysdomains 1-26
syserrors 1-26
sysextcols 1-27
sysextdfiles 1-27
sysexternal 1-28
sysfragauth 1-28
sysfragdist 1-29
sysfragments 1-31
sysindexes 1-33
sysindices 1-35
sysinherits 1-37
syslangauth 1-37
syslogmap 1-38
sysobjstate 1-38
sysopclasses 1-39
sysprocauth 1-40
sysprocbody 1-40
sysproccolumns 1-41
sysprocedures 1-42
sysprocplan 1-44
sysreferences 1-44
sysroleauth 1-45
sysroutinelangs 1-45
sysseclabelauth 1-46
sysseclabelcomponentelements 1-46
sysseclabelcomponents 1-46
sysseclabelnames 1-47
sysseclabels 1-47
syssecpolicies 1-47
syssecpolicycomponents 1-48
syssecpolicyexemptions 1-48
syssequences 1-49
syssurrogateauth 1-49
syssynonyms 1-50
syssyntable 1-50
systabamdata 1-51
systabauth 1-51
systables 1-52
systraceclasses 1-55
systracemsgs 1-56
systrigbody 1-56
systriggers 1-57
sysusers 1-58
sysviews 1-58
sysviolations 1-59
sysxadatasources 1-59
sysxasourcetypes 1-60
sysxtddesc 1-60

System catalog tables (continued)
sysxtdtypeauth 1-60
sysxtdtypes 1-61

SYSTEM() command, on NT 3-57
systraceclasses system catalog table 1-55
systracemsgs system catalog table 1-56
systrigbody system catalog table 1-56
systriggers system catalog table 1-57
sysusers system catalog table 1-58
sysutils database 1-1
sysuuid database 1-1
sysviews system catalog table 1-58
sysviolations system catalog table 1-59
sysxadatasources system catalog table 1-59
sysxasourcetypes system catalog table 1-60
sysxtddesc system catalog table 1-60
sysxtdtypeauth system catalog table 1-60
sysxtdtypes system catalog table 1-61, 2-26, 2-27

T
tabid 1-1, 1-52
Table

changing a column data type 2-50
dependencies, in sysdepend 1-23
diagnostic 1-59
extent size 1-52
fragmented 1-29, 1-31
hashing parameters 1-51
hierarchy 1-29, 1-31, 1-37, 2-27, B-3
inheritance, sysinherits data 1-37
lock mode 1-52, 3-40
nonfragmented 3-36
separate from large object storage 2-39
structure in superstores_demo database B-1
synonyms in syssyntable 1-50
systables data 1-52
system catalog tables 1-9
temporary 3-30, 3-32
temporary in SE 3-32
untyped, and unnamed ROW 2-29
version value 1-52
violations 1-59

Table-based fragmentation 1-31
Table-level privileges

PUBLIC 1-63
sysfragauth data 1-28
systabauth data 1-1, 1-51

tables Information Schema view 1-62
Tape management

setting DBREMOTECMD 3-30
Temporary dbspace 3-30
Temporary files 3-32

in SE, specifying directory with DBTEMP 3-32
setting DBSPACETEMP 3-30
setting PSORT_DBTEMP 3-68

Temporary tables 3-30
in SE, specifying directory with DBTEMP 3-32
specifying dbspace with DBSPACETEMP 3-30

TERM environment variable 3-71
TERMCAP environment variable 3-72
termcap file

setting INFORMIXTERM 3-56
setting TERMCAP 3-72

Terminal handling
setting INFORMIXTERM 3-56
setting TERM 3-71

Index X-17

Terminal handling (continued)
setting TERMCAP 3-72
setting TERMINFO 3-72

terminfo directory 3-56, 3-72
TERMINFO environment variable 3-72
TEXT 2-33
TEXT argument 2-33
TEXT Character string TEXT 2-33
TEXT data type 2-33

coltype code 1-17
increasing buffer size 3-20
length (syscolumns) 1-20
nonprintable characters 2-35
setting buffer size 3-20
sysblobs data 1-14
sysfragments data 1-31
with control characters 2-35

TEXT data type IS NULL 2-33
TEXT data type restrictions 2-33
Text editor 3-25
thousands separator 3-46
Thousands separator 2-24
thread flag of ESQL/C 3-72
THREADLIB environment variable 3-72
Time data types

arithmetic 2-41
length (syscolumns) 1-20
listed 2-37

Time values
DBCENTURY setting 3-20
DBDATE setting 3-23
DBTIME setting 3-32
GL_DATETIME settings 3-32
USEOSTIME configuration parameter 2-12

Time-limited licenses (IFX_NO_TIMELIMIT_WARNING) 3-45
Timezone

setting TZ 3-73
TO keyword

DATETIME qualifier 2-12
EXTEND function 2-43
INTERVAL qualifier 2-19

TODAY operator 1-22
Trace class 1-55
Trace messages 1-56
Trace statements 1-56
Transaction isolation level 1-65, 3-61
Transaction logging 1-16, 1-65
Trigger routines 1-42
Triggers

creation-time value 3-22, 3-24
sysobjstate data 1-38
systrigbody data 1-56
systriggers data 1-57

TRUE setting
BOOLEAN values 2-8
sysams table 1-10

Truncation 2-9
TYPE keyword 2-28
TZ environment variable 3-73

U
UDT indexes 3-69
Unary arithmetic operators 2-55
Uncommitted read 1-65
Under privilege 1-51
Unique constraint 1-59, 2-30

Unique index 1-33, 2-30
Unique keys 1-10
Unique numeric values

SERIAL data type 2-30
SERIAL8 data type 2-30

UNITS operator 2-12, 2-41, 2-44, 2-55
UNIX

BSD, default print utility 3-30
environment variables 3-1
PATH environment variable 3-63
System V

default print utility 3-30
terminfo libraries 3-56, 3-72

temporary files 3-68
TERM environment variable 3-71
TERMCAP environment variable 3-72
TERMINFO environment variable 3-72

UNLOAD statement 3-20, 3-24
Unnamed ROW data type

coltype code 1-17
declaring 2-29
defined 2-28
inserting values 2-29

unset utility 3-4
unsetenv utility 3-4
Unsetting an environment variable 3-4
Untyped table 1-52
Update privilege 1-16, 1-28, 1-51, 3-59
UPDATE statement 1-59
UPDATE statements 3-47
UPDATE STATISTICS FOR PROCEDURE statement 1-44
UPDATE STATISTICS statement 1-35, 3-35

and DBUPSPACE environment variable 3-35
effect on sysdistrib table 1-24
sysindices data 1-35
updating system catalog tables 1-6

Update trigger 1-57
Uppercase mode codes 1-42
Uppercase privilege codes 1-1, 1-16, 1-51
USE_DTENV environment variable 2-12
USEOSTIME configuration parameter 2-12
User environment variable 3-8
User informix 1-6, 1-14, 2-50
User name 1-65
User privileges

syscolauth data 1-16
sysfragauth data 1-28
syslangauth data 1-37
sysprocauth data 1-40
systabauth data 1-51
sysusers data 1-58
sysxtdtypeauth data 1-60

User-defined aggregates 1-9
User-defined casts 2-52
User-defined casts (UDCs) 1-14
User-defined data types

casting 2-52
casting into built-in type 2-50
opaque 2-49
sysxtddesc data 1-60
sysxtdtypes data 1-60, 1-61

User-defined routines
casts (syscasts) 1-14
check constraints (syscheckudrdep) 1-15
error messages (syserrors) 1-26
for OPAQUE data types 2-26
functional index 3-36

X-18 IBM Informix Guide to SQL: Reference

User-defined routines (continued)
language authorization (syslangauth) 1-37
privileges 1-40, 3-59
protected 1-42
secondary access method 1-21
sysprocedures data 1-42

USETABLENAME environment variable 3-73
Utilities

chkenv 3-2, 3-4
DB-Access 1-6, 1-63, 3-6, 3-19, 3-25, 3-54
dbload 2-7, 2-8
dbschema 1-42
env 3-4
export 3-3
gcc 3-50
getenv 3-2
ifx_getenv 3-6
ifx_putenv 3-6
imcadmin 3-48
lp 3-30
lpr 3-30
MaxConnect 3-49
oninit 3-40
onload 2-7, 2-8
onpload 3-28, 3-65
onsecurity 3-45
printenv 3-4
putenv 3-2
set 3-7
setenv 3-4
Setnet32 3-6
source 3-2
unset 3-4
unsetenv 3-4, 3-37
vi 3-25

Utilities dbload 2-33

V
VARCHAR data type

([]), brackets
MATCHES range delimiters 2-35

CHAR data type
collation 2-35

Code sets
collation order 2-35
East Asian 2-35

Collation
VARCHAR data type 2-35

coltype code 1-17
defined 2-35
Locales

collation order 2-35
MATCHES operator 2-35
Multibyte characters

VARCHAR data type 2-35
nonprintable characters 2-35
SQL_LOGICAL_CHAR configuration parameter 2-35
storing numeric values 2-35
VARCHAR data type

collation 2-35
multibyte characters 2-35

Zero (0)
C null as terminator 2-35

Variable-length opaque data types 1-17
Variable-length packets 3-46
Variable-length UDT 1-61

VARIANT routine 1-42
Version of a table 1-52
vi text editor 3-25
View

columns view 1-64
Information Schema 1-62
server_info view 1-65
sql_languages view 1-65
sysdepend data 1-23
sysindexes view 1-35
syssynonyms data 1-50
syssyntable data 1-50
systabauth data 1-51
systables data 1-52
sysviews data 1-58
tables view 1-64

Violations
sysobjstate data 1-38
sysviolations data 1-59

Virtual machine 3-16, 3-58
Virtual processors 3-69
Visual disabilities

reading syntax diagrams C-1

W
Warning message 1-26, 3-19
WHERE 2-33
WHERE keyword 1-6, 1-15
Whitespace in identifiers 3-37
Window borders 3-56
Windows environments

manipulating environment variables 3-6
setting environment variables 3-6

X
X setting

sysams.am_sptype 1-10
systabauth.tabauth 1-51

X/Open
compliance 1-65
server_info view 1-65

X/Open CAE standards 1-62
XA data source types 1-60
XA data sources 1-59
XML (Extensible Markup Language) 2-11
XPG4 standard 1-64

Y
Y setting

DBDATE 3-23
DBTIME 3-32
sysroleauth.is_grantable 1-45

Year 2000 3-20
YEAR keyword

DATETIME qualifier 2-12
EXTEND function 2-43
INTERVAL qualifier 2-19

Year values, two and four digit 2-12, 3-20, 3-23, 3-32
yes setting

NODEFDAC 3-59
YES setting

columns.is_nullable 1-64
sql_languages.integrity 1-65

Index X-19

Z
Zero

extent size encoding 1-35
Zero (0)

DBDATE separator 3-23
DECIMAL scale 2-15
hexadecimal digit 3-24
IFX_DIRECTIVES setting 3-40, 3-41
IFX_LARGE_PAGES setting 3-42
IFX_LONGID setting 3-43
IFX_NETBUF_PVTPOOL_SIZE setting 3-44
integer scale 1-64, 2-15
OPTCOMPIND setting 3-61
OPTMSG setting 3-62
padding of 1-digit years 3-20
padding with DBFLTMASK 3-25
padding with DBTIME 3-32
PDQPRIORITY setting 3-64
PSORT_NPROCS setting 3-69
STMT_CACHE setting 3-71
sysams values 1-10
sysfragments.hybdpos 1-31
sysindices.nrows 1-35
systables.type_xid 1-52
sysxdtypes values 1-61

X-20 IBM Informix Guide to SQL: Reference

IBM®

Printed in USA

SC27-4522-05

Sp
in

e
in

fo
rm
at
io
n:

In
fo

rm
ix

 P
ro

du
ct

 F
am

ily
 In

fo
rm

ix

Ve
rs

io
n

12
.1

0
IB

M
 In

fo
rm

ix
 G

ui
de

 to
 S

QL
: R

ef
er

en
ce

I
B

M

	Contents
	Introduction
	About this publication
	Types of users
	Software compatibility
	Assumptions about your locale
	Demonstration databases

	What's new in SQL Reference for Informix, Version 12.10
	Example code conventions
	Additional documentation
	Compliance with industry standards
	How to read the syntax diagrams
	How to provide documentation feedback

	Chapter 1. System catalog tables
	Objects That the System Catalog Tables Track
	Using the system catalog
	Accessing the system catalog
	Update system catalog data

	Structure of the System Catalog
	SYSAGGREGATES
	SYSAMS
	SYSATTRTYPES
	SYSAUTOLOCATE
	SYSBLOBS
	SYSCASTS
	SYSCHECKS
	SYSCHECKUDRDEP
	SYSCOLATTRIBS
	SYSCOLAUTH
	SYSCOLDEPEND
	SYSCOLUMNS
	Storing column length
	Storing Maximum and Minimum Values

	SYSCONSTRAINTS
	SYSDEFAULTS
	SYSDEPEND
	SYSDIRECTIVES
	SYSDISTRIB
	SYSDOMAINS
	SYSERRORS
	SYSEXTCOLS
	SYSEXTDFILES
	SYSEXTERNAL
	SYSFRAGAUTH
	SYSFRAGDIST
	SYSFRAGMENTS
	SYSINDEXES
	SYSINDICES
	SYSINHERITS
	SYSLANGAUTH
	SYSLOGMAP
	SYSOBJSTATE
	SYSOPCLASSES
	SYSPROCAUTH
	SYSPROCBODY
	SYSPROCCOLUMNS
	SYSPROCEDURES
	SYSPROCPLAN
	SYSREFERENCES
	SYSROLEAUTH
	SYSROUTINELANGS
	SYSSECLABELAUTH
	SYSSECLABELCOMPONENTS
	SYSSECLABELCOMPONENTELEMENTS
	SYSSECLABELNAMES
	SYSSECLABELS
	SYSSECPOLICIES
	SYSSECPOLICYCOMPONENTS
	SYSSECPOLICYEXEMPTIONS
	SYSSEQUENCES
	SYSSURROGATEAUTH
	SYSSYNONYMS
	SYSSYNTABLE
	SYSTABAMDATA
	SYSTABAUTH
	SYSTABLES
	SYSTRACECLASSES
	SYSTRACEMSGS
	SYSTRIGBODY
	SYSTRIGGERS
	SYSUSERS
	SYSVIEWS
	SYSVIOLATIONS
	SYSXADATASOURCES
	SYSXASOURCETYPES
	SYSXTDDESC
	SYSXTDTYPEAUTH
	SYSXTDTYPES
	Information Schema
	Generating the Information Schema Views
	Accessing the Information Schema Views
	Structure of the Information Schema Views
	The tables Information Schema View
	The columns Information Schema View
	The sql_languages Information Schema View
	The server_info Information Schema View

	Chapter 2. Data types
	Summary of data types
	ANSI to Informix data type mapping
	Description of Data Types
	BIGINT data type
	BIGSERIAL data type
	Using SERIAL8 and BIGSERIAL with INT8 or BIGINT

	BLOB data type
	BOOLEAN data type
	BYTE data type
	CHAR(n) data type
	Treating CHAR Values as Numeric Values
	Sorting and Relational Comparisons
	Nonprintable Characters with CHAR

	CHARACTER(n) data type
	CHARACTER VARYING(m,r) data type
	CLOB data type
	Multibyte characters with CLOB

	DATE data type
	DATETIME data type
	DEC data type
	DECIMAL
	DECIMAL(p) Floating Point
	DECIMAL (p,s) Fixed Point
	DECIMAL Storage

	DISTINCT data types
	DOUBLE PRECISION data types
	FLOAT(n)
	IDSSECURITYLABEL data type
	INT data type
	INT8
	INTEGER data type
	INTERVAL data type
	LIST(e) data type
	LVARCHAR(m) data type
	MONEY(p,s) data type
	MULTISET(e) data type
	Named ROW
	NCHAR(n) data type
	NUMERIC(p,s) data type
	NVARCHAR(m,r) data type
	OPAQUE data types
	REAL data type
	ROW data type, Named
	ROW data type, Unnamed
	Creating unnamed ROW types
	Inserting Values into Unnamed ROW Type Columns

	SERIAL(n) data type
	SERIAL8(n) data type
	Assigning a Starting Value for SERIAL8

	SET(e) data type
	SMALLFLOAT
	SMALLINT data type
	TEXT data type
	Nonprintable Characters in TEXT Values

	Unnamed ROW
	VARCHAR(m,r) data type

	Built-In Data Types
	Character Data Types
	Large-Object Data Types
	Simple Large Objects
	Smart large objects

	Time Data Types
	Manipulating DATETIME Values
	Manipulating DATETIME with INTERVAL Values
	Manipulating DATE with DATETIME and INTERVAL Values
	Manipulating INTERVAL Values
	Multiplying or Dividing INTERVAL Values

	Extended Data Types
	Complex data types
	Collection Data Types
	ROW Data Types

	Distinct Data Types
	Opaque Data Types

	Data Type Casting and Conversion
	Using Built-in Casts
	Converting from number to number
	Converting Between Number and Character
	Converting Between INTEGER and DATE
	Converting Between DATE and DATETIME

	Using User-Defined Casts
	Implicit Casts
	Explicit Casts

	Determining Which Cast to Apply
	Casts for distinct types
	What Extended Data Types Can Be Cast?

	Operator Precedence

	Chapter 3. Environment variables
	Types of environment variables
	Limitations on environment variables
	Using environment variables on UNIX
	Setting environment variables in a configuration file
	Setting environment variables at login time
	Syntax for setting environment variables
	Unsetting environment variables
	Modifying an environment-variable setting
	Viewing your environment-variable settings
	Checking environment variables with the chkenv utility
	Rules of precedence for environment variables

	Using environment variables on Windows
	Where to set environment variables on Windows
	Setting environment variables on Windows
	Using the system applet to change environment variables
	Using the command prompt to change environment variables
	Using dbservername.cmd to initialize a command-prompt environment

	Rules of precedence for Windows environment variables

	Environment variables in Informix products
	Environment variable portal
	ANSIOWNER environment variable
	CPFIRST environment variable
	CMCONFIG environment variable
	DBACCNOIGN environment variable
	LOAD statement example when DBACCNOIGN is set

	DBANSIWARN environment variable
	DBBLOBBUF environment variable
	DBCENTURY environment variable
	Examples of expanding year values
	Abbreviated years and expressions in database objects

	DBDATE environment variable
	DATE expressions in database objects

	DBDELIMITER environment variable
	DBEDIT environment variable
	DBFLTMASK environment variable
	DBLANG environment variable
	DBMONEY environment variable
	DBONPLOAD environment variable
	DBPATH environment variable
	Using DBPATH with DB-Access
	Searching local directories
	Searching networked computers for databases
	Specifying a servername

	DBPRINT environment variable
	DBREMOTECMD environment variable (UNIX)
	DBSPACETEMP environment variable
	DBTEMP environment variable
	DBTIME environment variable
	DBUPSPACE environment variable
	DEFAULT_ATTACH environment variable
	DELIMIDENT environment variable
	ENVIGNORE environment variable (UNIX)
	FET_BUF_SIZE environment variable
	IFMXMONGOAUTH environment variable
	IFX_DEF_TABLE_LOCKMODE environment variable
	IFX_DIRECTIVES environment variable
	IFX_EXTDIRECTIVES environment variable
	IFX_LARGE_PAGES environment variable
	IFX_LOB_XFERSIZE environment variable
	IFX_LONGID environment variable
	IFX_NETBUF_PVTPOOL_SIZE environment variable (UNIX)
	IFX_NETBUF_SIZE environment variable
	IFX_NO_SECURITY_CHECK environment variable (UNIX)
	IFX_NO_TIMELIMIT_WARNING environment variable
	IFX_NODBPROC environment variable
	IFX_NOT_STRICT_THOUS_SEP environment variable
	IFX_ONTAPE_FILE_PREFIX environment variable
	IFX_PAD_VARCHAR environment variable
	IFX_UNLOAD_EILSEQ_MODE environment variable
	IFX_UPDDESC environment variable
	IFX_XASTDCOMPLIANCE_XAEND environment variable
	IFX_XFER_SHMBASE environment variable
	IMCADMIN environment variable
	IMCCONFIG environment variable
	IMCSERVER environment variable
	INFORMIXC environment variable (UNIX)
	INFORMIXCMNAME environment variable
	INFORMIXCMCONUNITNAME environment variable
	INFORMIXCONCSMCFG environment variable
	INFORMIXCONRETRY environment variable
	INFORMIXCONTIME environment variable
	INFORMIXCPPMAP environment variable
	INFORMIXDIR environment variable
	INFORMIXSERVER environment variable
	INFORMIXSHMBASE environment variable (UNIX)
	INFORMIXSQLHOSTS environment variable
	INFORMIXSTACKSIZE environment variable
	INFORMIXTERM environment variable (UNIX)
	INF_ROLE_SEP environment variable
	INTERACTIVE_DESKTOP_OFF environment variable (Windows)
	JAR_TEMP_PATH environment variable
	JAVA_COMPILER environment variable
	JVM_MAX_HEAP_SIZE environment variable
	LD_LIBRARY_PATH environment variable (UNIX)
	LIBPATH environment variable (UNIX)
	NODEFDAC environment variable
	ONCONFIG environment variable
	ONINIT_STDOUT environment variable (Windows)
	OPTCOMPIND environment variable
	OPTMSG environment variable
	OPTOFC environment variable
	OPT_GOAL environment variable (UNIX)
	PATH environment variable
	PDQPRIORITY environment variable
	Using PDQPRIORITY with Informix

	PLCONFIG environment variable
	PLOAD_LO_PATH environment variable
	PLOAD_SHMBASE environment variable
	PSM_ACT_LOG environment variable
	PSM_CATALOG_PATH environment variable
	PSM_DBS_POOL environment variable
	PSM_DEBUG environment variable
	PSM_DEBUG_LOG environment variable
	PSM_LOG_POOL environment variable
	PSORT_DBTEMP environment variable
	PSORT_NPROCS environment variable
	Default PSORT_NPROCS values for detached indexes
	Default PSORT_NPROCS values for attached indexes

	RTREE_COST_ADJUST_VALUE environment variable
	SHLIB_PATH environment variable (UNIX)
	SRV_FET_BUF_SIZE environment variable
	STMT_CACHE environment variable
	TERM environment variable (UNIX)
	TERMCAP environment variable (UNIX)
	TERMINFO environment variable (UNIX)
	THREADLIB environment variable (UNIX)
	TZ environment variable
	USETABLENAME environment variable

	Appendix A. The stores_demo Database
	The stores_demo Database Map

	Appendix B. The superstores_demo database
	Structure of the superstores_demo Tables
	User-defined routines and extended data types
	Table Hierarchies

	Appendix C. Accessibility
	Accessibility features for IBM Informix products
	Accessibility features
	Keyboard navigation
	Related accessibility information
	IBM and accessibility

	Dotted decimal syntax diagrams

	Notices
	Privacy policy considerations
	Trademarks

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

