Informix Product Family
Informix
Version 12.10

IBM Informix Spatiotemporal Search
for Moving Objects
User's Guide

..ll

Informix Product Family
Informix
Version 12.10

IBM Informix Spatiotemporal Search
for Moving Objects
User's Guide

..ll

Note
FBefore using this information and the product it supports, read the information in|[“Notices” on page B-1)

Edition
This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2015.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Introduction .
About this publication .
Types of users. .
Example code conventions.
Additional documentation .
Compliance with industry standards .
How to read the syntax diagrams .
How to provide documentation feedback

Chapter 1. Getting started with spatiotemporal search for moving objects
Spatiotemporal search solution architecture .
Software requirements for the Spatiotemporal Search extensmn
Preparing for spatiotemporal search . . .
Example for spatiotemporal data: Create, load and search a tlme series .
Time series requirements for spatiotemporal search .
Spatiotemporal search indexing
Spatiotemporal searches . . .
Spatial data types for spatlotemporal searches .
Stopping spatiotemporal search indexing .

Chapter 2. Spatiotemporal search routines .
STS_Cleanup function .
STS_GetCompactTrajectory functlon .
STS_GetFirstTimeByPoint function
STS_GetIntersectSet function
STS_GetLastPosition function .
STS_GetLocWithinSet function .
STS_GetNearestObject function
STS_GetPosition function .
STS_GetTrajectory function

STS_Init function . .
STS_Release function

STS_Set_Trace procedure
STS_TrajectoryCross function .
STS_TrajectoryDistance function .
STS_Trajectorylntersect function .
STS_TrajectoryWithin function

Appendix. Accessibility . .
Accessibility features for IBM Informix products
Accessibility features .
Keyboard navigation . .
Related accessibility 1nformat10n
IBM and accessibility.
Dotted decimal syntax diagrams .

Notices . -
Privacy policy considerations .

Trademarks .

Index .

© Copyright IBM Corp. 2015

.12

.17

. 1-11
. 1-12

.22
.23
.24
. 2-6

. 2-8
. .29
. 2-11
. 2-12
. 2-14
. 2-15
. 2-16
. 2-16
. 2-18
. 2-20
. 2-22

. B-1
. B3
. B3

. X1

iii

iv IBM Informix Spatiotemporal Search for Moving Objects User's Guide

Introduction

About this publication

This publication describes how to use the spatiotemporal search extension to write
an application that tracks moving objects.

Types of users
This publication is for database application programmers.

To write an application for spatiotemporal search, you must have the following
background:

* A working knowledge of your computer, your operating system, and the utilities
that your operating system provides

* Experience working with relational databases or exposure to database concepts

« Experience with computer programming in the C or Java" programming
language

* Experience with writing applications for spatial data

* An understanding of basic time series concepts

Example code conventions

Examples of SQL code occur throughout this publication. Except as noted, the code
is not specific to any single IBM® Informix® application development tool.

If only SQL statements are listed in the example, they are not delimited by
semicolons. For instance, you might see the code in the following example:

CONNECT TO stores_demo

DELETE FROM customer
WHERE customer_num = 121

COMMIT WORK
DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules for
that product. For example, if you are using an SQL API, you must use EXEC SQL
at the start of each statement and a semicolon (or other appropriate delimiter) at
the end of the statement. If you are using DB-Access, you must delimit multiple
statements with semicolons.

Tip: Ellipsis points in a code example indicate that more code would be added in
a full application, but it is not necessary to show it to describe the concept that is

being discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the documentation for your product.

© Copyright IBM Corp. 2015 v

Additional documentation

Documentation about this release of IBM Informix products is available in various
formats.

You can access Informix technical information such as information centers,
technotes, white papers, and IBM Redbooks® publications online at
lhttp: / /www.ibm.com /software/data/sw-library /|

Compliance with industry standards

IBM Informix products are compliant with various standards.

IBM Informix SQL-based products are fully compliant with SQL-92 Entry Level
(published as ANSI X3.135-1992), which is identical to ISO 9075:1992. In addition,
many features of IBM Informix database servers comply with the SQL-92
Intermediate and Full Level and X/Open SQL Common Applications Environment
(CAE) standards.

How to read the syntax diagrams

Syntax diagrams use special components to describe the syntax for SQL statements
and commands.

Read the syntax diagrams from left to right and top to bottom, following the path
of the line.

The double right arrowhead and line symbol »— indicates the beginning of a
syntax diagram.

The line and single right arrowhead symbol — indicates that the syntax is
continued on the next line.

The right arrowhead and line symbol »— indicates that the syntax is continued
from the previous line.

The line, right arrowhead, and left arrowhead symbol —>< symbol indicates the
end of a syntax diagram.

Syntax fragments start with the pipe and line symbol |— and end with the —|
line and pipe symbol.

Required items appear on the horizontal line (the main path).

Y
A

»>—required_item

Optional items appear below the main path.

»>—required_item B . ><
optional_item

If you can choose from two or more items, they appear in a stack.

vi IBM Informix Spatiotemporal Search for Moving Objects User's Guide

http://www.ibm.com/software/data/sw-library/

If you must choose one of the items, one item of the stack appears on the main
path.

A\
A

»>—required i tem—Er'equired_cho icel
required_choi ce2—|

If choosing one of the items is optional, the entire stack appears below the main
path.

A\
A

ptional_choicel:‘

»>—required_item
i:Zptional_choiceZ

If one of the items is the default, it will appear above the main path, and the
remaining choices will be shown below.

default_choice
»>—required_item rizz _l

ptional_choice:l
ptional choice

An arrow returning to the left, above the main line, indicates an item that can be
repeated. In this case, repeated items must be separated by one or more blanks.

v

»>—required_item

repeatable_item ><

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

v

v
A

»>—required_item

repeatable_item

A repeat arrow above a stack indicates that you can make more than one choice
from the stacked items or repeat a single choice.

SQL keywords appear in uppercase (for example, FROM). They must be spelled
exactly as shown. Variables appear in lowercase (for example, column-name). They
represent user-supplied names or values in the syntax.

If punctuation marks, parentheses, arithmetic operators, or other such symbols are
shown, you must enter them as part of the syntax.

Sometimes a single variable represents a syntax segment. For example, in the
following diagram, the variable parameter-block represents the syntax segment
that is labeled parameter-block:

>>—required_item—| parameter-block i ><

Introduction Vil

parameter-block:

parameterl I
par'amet‘er'2—|:par'ame1fer'3:|J
parameter4

How to provide documentation feedback

You are encouraged to send your comments about IBM Informix product
documentation.

Use one of the following methods:

* Send email to|docinf@us.ibm.com|

* Add comments to topics directly in IBM Knowledge Center and read comments
that were added by other users. Share information about the product
documentation, participate in discussions with other users, rate topics, and
more!

Feedback from all methods is monitored by the team that maintains the user
documentation. The feedback methods are reserved for reporting errors and
omissions in the documentation. For immediate help with a technical problem,
contact IBM Technical Support at |http://www.ibm.com/planetwide /}

We appreciate your suggestions.

viii IBM Informix Spatiotemporal Search for Moving Objects User's Guide

mailto://docinf@us.ibm.com
http://www.ibm.com/planetwide/

Chapter 1. Getting started with spatiotemporal search for
moving objects

You use spatiotemporal searches to track moving objects. You create a
spatiotemporal search index on the time-stamped GPS data that is stored in a
historian database as time series.

You can query on either time or on location to determine the relationship of one to
the other. You can query when an object was at a specified location, or where an
object was at a specified time. You can also find the path, or trajectory, of a moving
object over a range of time or the relationship between a region and the trajectories
of moving objects.

You can use spatiotemporal searches to find the following types of information:

* Find the location of a moving object at a specific time. For example, find the
location of bus number 3435 at 2014-03-01 15:30.

* Find the last known time and location of a specific moving object. For example,
find the last known location of taxi number 324.

* Find when, in a time range, a moving object was in a region around a point of
interest. For example, find when a deliver truck was within 100 meters of the
Mom and Pop Diner between February 2-4, 2015.

* Find when a moving object was at a specific location. For example, find when
tax number 324 was at the Four Seasons Hotel.

* Find the trajectories, of a specific moving object for a time range. For example,
find the trajectories of bus number 1543 between 9:00-17:00 yesterday.

* Find the trajectories of moving objects near a point of interest during a time
range. For example, find which taxi driver witnessed an accident by finding
which taxi was nearest to the location of the accident at 9:00, as shown in the
following illustration.

© Copyright IBM Corp. 2015 1-1

T m3 /

9:00

Tm

9:00 ®
point (10,10)

T m2

Figure 1-1. Trajectories near a point at a specific time

Spatiotemporal search solution architecture

The Informix spatiotemporal search solution consists of built-in functions.

The Informix database server includes the following functionality for searching
spatiotemporal data:

* An SQL function to index spatiotemporal data.
* SQL functions to query spatiotemporal data.

* SQL functions to remove spatiotemporal indexes.

The spatiotemporal search solution builds upon the data types and routines from
the TimeSeries solution and the data types, routines, and R-tree indexes from the
spatial solution. The following illustration shows how the spatiotemporal search

solution and related products interact.

1-2 IBM Informix Spatiotemporal Search for Moving Objects User's Guide

Application
l:':'3':':\I
=
Client
Application

Client connectivity and
application development

Informix database
server

Spatiotemporal search functions
TimeSeries data types
TimeSeries routines

Spatial data types

Spatial routines

R-tree index

Figure 1-2. Spatiotemporal search architecture

Spatiotemporal searches return location data as spatial data types from the
Informix spatial extension. You must provide your own visualization software,
such as client programs from ESRI.

Related concepts:

[[Informix spatial solution architecture (Spatial Data Guide)|

[[[nformix TimeSeries solution architecture (TimeSeries Data Guide)|

Software requirements for the Spatiotemporal Search extension

The spatiotemporal search extension requires the TimeSeries and Spatial extensions
and that the Scheduler is running.

Requirements

The Spatiotemporal Search extension is is subject to the hardware and software
requirements of the TimeSeries and the Spatial extensions. For hardware
restrictions, see [https://www.ibm.com /support/docview.wss?rs=630|
euid=swg27020937

Creating a spatiotemporal search index has the following prerequisites:

¢ The Scheduler must be running. The Scheduler automatically registers the
Spatiotemporal Search and Spatial extensions and runs the task to index
spatiotemporal data. The name of the Spatiotemporal Search extension is
sts.bld and it is in the $INFORMIXDIR/extend/sts.version/ directory, where
version is the version number of the extension.

* A time series table must exist and the TimeSeries extension must be registered in
the database.

* If you are using multiple CPU virtual processors, the PRELOAD_DLL_FILE
configuration parameter must specify the path for the spatiotemporal shared
library file in the onconfig file:

Chapter 1. Getting started with spatiotemporal search for moving objects ~ 1-3

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.spatial.doc/ids_spat_010.htm#ids_spat_010
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.tms.doc/ids_tms_015.htm#ids_tms_015
https://www.ibm.com/support/docview.wss?rs=630&uid=swg27020937
https://www.ibm.com/support/docview.wss?rs=630&uid=swg27020937

PRELOAD DLL FILE $INFORMIXDIR/extend/sts.version/sts.bld

version is the version number of the extension. You must restart the database
server after setting the PRELOAD_DLL_FILE configuration parameter.

Limitations

The following limitations apply to spatiotemporal searching;

* The time series table that contains spatiotemporal data cannot have more than
10 000 rows, where each row contains data for a specific moving object.

* Spatiotemporal searches might be inaccurate if moving objects stay in place or
fail to transmit location information.

* If you modify or delete data from the time series table, you must recreate the
spatiotemporal index.

* The distance parameter of spatiotemporal functions currently defines the region
of interest with a Euclidean calculation that is based on the Cartesian system
instead of a spherical calculation that is based on longitude and latitude
coordinates.

* Any data that you insert with timepoints that are earlier than the last time point
that was indexed are not indexed.

Replication

You can replicate spatiotemporal indexes between a high-availability data
replication primary server and a read-only secondary server.

Related concepts:

[“Spatial data types for spatiotemporal searches” on page 1-11|
[[The Scheduler (Administrator's Guide)

Related reference:

[[PRELOAD_DLL_FILE configuration parameter (Administrator's Reference)|
[“Time series requirements for spatiotemporal search” on page 1-7]

Preparing for spatiotemporal search

Before you can run spatiotemporal searches, you must create a time series that
includes spatial data and start indexing that data.

To prepare for spatiotemporal searching:

1. Create and load a time series that conforms to the requirements for
spatiotemporal search.

2. Start the spatiotemporal search indexing process by running the STS_Init
function on the time series table. The STS_Init function starts a Scheduler task
that indexes the data. When the Scheduler task starts indexing, the following
message appears in the database server message log:

INFO (STSMessage) Building trajectories for table name is started.

When the Scheduler task finishes indexing, the following message appears in
the database server message log:

INFO (STSMessage) Building trajectories for table name is stopped.

When the index is complete, you can run spatiotemporal searches.
Related reference:

1-4 1BM Informix Spatiotemporal Search for Moving Objects User's Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_1121.htm#ids_admin_1121
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_1088.htm#ids_adr_1088

[[Create and manage a time series through SQL (TimeSeries Data Guide)]

Example for spatiotemporal data: Create, load, and search a
time series

In this example, you create a time series that contains location points. Readings are
allowed every second. The following table lists the time series properties that are
used in this example.

Table 1-1. Time series properties used in this example

Time series property Definition

Timepoint size 1 second

When timepoints are valid Any second, with no invalid times
Data in the time series + Timestamp

e FLOAT column for longitude readings in
the spatial reference system 4326

* FLOAT column for latitude readings in
the spatial reference system 4326

Time series table * An object ID column of type VARCHAR
* A TimeSeries data type column

Origin 2014-01-01 00:00:00.00000

Regularity Irregular

Metadata No metadata

Where to store the data In a container that you create

How to load the data Through a loader program

To create a time series for moving objects and run spatiotemporal queries:

1. Create a calendar pattern for one second by running the following SQL
statement:

INSERT INTO CalendarPatterns values ('calpat_1ls', '{1 on} second');

2. Create a calendar that is named cal_1s by running the following SQL
statement:
INSERT INTO Calendartable (c_name, c_calendar) values (
'cal 1s',
'startdate(2007-01-01 00:00:00.00000),
pattstart(2007-01-01 00:00:00.00000), pattname(calpat_ls)'
)s
3. Create a TimeSeries subtype that is named rt_track in a database by running
the following SQL statement:
CREATE ROW TYPE rt_track(
tstamp DATETIME YEAR TO FRACTION(5),
longitude FLOAT,
Tatitude FLOAT
)3
The longitude and latitude fields, must have FLOAT data types and be the
second and third fields, respectively.

4. Create a time series table that is named T_Vehicle by running the following
SQL statement:

Chapter 1. Getting started with spatiotemporal search for moving objects ~ 1-5

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.tms.doc/ids_tms_070.htm#ids_tms_070

1-6

CREATE TABLE T_Vehic]e(

modid VARCHAR(60) ,

ts_track TimeSeries(rt_track),
type VARCHAR(60),

color VARCHAR(60) ,

owner VARCHAR(60) ,

PRIMARY KEY (modid) CONSTRAINT pk_modid
)s

Create a container that is named c_track in a dbspace by running the
following SQL statement:

EXECUTE PROCEDURE
TSContainerCreate('c_track', 'tsdbsl', 'rt track', 0, 0);

Substitute the name of your dbspace for tsdbsl.
Create two time series instances by running the following SQL statements:

INSERT INTO T Vehicle VALUES('1l','calendar(cal_ls),
origin(2014-01-01 00:00:00),threshold(0),
container(c_track),irregular', '', '', '');

INSERT INTO T_Vehicle VALUES('2','calendar(cal_ls),
origin(2014-01-01 00:00:00),threshold(0),
container(c_track),irregular', "', "', '');

Create a pipe-delimited file in any directory with the name sts.unl that

contains the following data to load:

2014-02-02 13:34:06(116.40061]39.90605|
2014-02-02 13:39:07|116.40121{39.9139]
2014-02-02 13:40:55|116.40117|39.91159
2014-02-02 13:44:09(116.39245|39.90635
2014-02-02 13:49:10|116.36999|39.90594
2014-02-02 13:54:12|116.34526|39.90589
2014-02-02 15:10:00|116.34526|39.90589
2014-02-02 16:30:00(116.42000|40.10000
2014-02-02 17:10:10|116.40100|39.90700
2014-02-02 17:15:30|116.40100|39.90700
2014-02-02 17:20:00(116.40200{39.90800
2014-02-02 18:40:00|116.40201|39.90801
2014-02-02 13:34:06(116.40061{39.90605
2014-02-02 13:39:07|116.40121{39.9139]
2014-02-02 13:40:55(116.40117|39.91159
2014-02-02 13:44:09|116.39245|39.90635
2014-02-02 13:49:10|116.36999|39.90594
2014-02-02 13:54:12|116.34526|39.90589
2014-02-02 14:10:12|116.34526]39.90589
2014-02-02 14:30:00|116.3452]39.9058|

2014-02-02 16:00:00|116.42000|40.10000
2014-02-02 16:10:10{116.40100{39.90700
2014-02-02 16:20:00{116.40200|39.90800

Initialize a global context and open a database session by running the
TSL_Init and the TSL_Attach functions:

EXECUTE FUNCTION TSL_Init('T_Vehicle','rt_track');

EXECUTE FUNCTION TSL_Attach('T_Vehicle','rt_track');

Load the data by running the TSL_Put function with an SQL statement that
selects the data from the file:

EXECUTE FUNCTION TSL_Put('T_Vehicle|rt_track',
"FILE:path/sts.un1");

RPN NDNDNNNDRFR PR R R R R R

Substitute path with the directory for the sts.unl file.

10. Save the data to disk by running the TSL_FlushAll function:

IBM Informix Spatiotemporal Search for Moving Objects User's Guide

11.

12.

13.

14.

BEGIN;
EXECUTE FUNCTION TSL_FlushA11('T_Vehicle|rt_track');
COMMIT WORK;

Close the session and remove the global context by running the
TSL_SessionClose and TSL_Shutdown functions:

EXECUTE FUNCTION TSL_SessionClose('T Vehicle|rt track');
EXECUTE PROCEDURE TSL_Shutdown('T Vehicle|rt track');

Start spatiotemporal search indexing by running the STS_Init function:
EXECUTE FUNCTION STS_Init(T_Vehicle);

Run any of the queries in the examples of the spatiotemoral search functions.
For example, you can run the following query:

SELECT STS GetFirstTimeByPoint('T _Vehicle', modid, ts_track, null, null,
'4326 point(116.401 39.911)', 100)
FROM T_Vehicle
WHERE modid = '1';

(expression)
2014-02-02 13:37:15.00000

1 row(s) retrieved.

Optional: Stop spatiotemporal indexing and remove the internal tables by
running the STS_CleanUp function:

EXECUTE FUNCTION STS CleanUp('T_Vehicle');

Related reference:

[+ [Create and manage a time series through SQL (TimeSeries Data Guide)|

[+ [TSL_Put function (TimeSeries Data Guide)|

Time series requirements for spatiotemporal search

The time series that you create for spatiotemporal search must conform to certain
requirements.

Database and table requirements

The database cannot be a tenant database.

The time series table must conform to the following requirements and restrictions:

Ti

The first column must be a primary key column that represents an object ID and
has a data type of INTEGER, CHAR, or VARCHAR. A composite primary key is
not allowed.

The second column must be a TimeSeries subtype column.

The table can have more columns, however, any additional TimeSeries columns
are not indexed.

The table name must be unique. The table name is used to identify the
spatiotemporal search. If the table name is longer than 100 bytes, the first 100
bytes of the name must be unique.

The table must have fewer than 10 000 rows.

meSeries subtype requirements

The TimeSeries subtype must have the following structure:

1.

The first field is the time stamp field. This requirement is true of all TimeSeries
subtypes.

Chapter 1. Getting started with spatiotemporal search for moving objects ~ 1-7

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.tms.doc/ids_tms_070.htm#ids_tms_070
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.tms.doc/ids_tms_392.htm#ids_tms_392

2. The second field has a FLOAT data type to hold longitude data that is in the
spatial reference system 4326 (WGS 84).

3. The third field has a FLOAT data type to hold latitude data that is in the
spatial reference system 4326 (WGS 84).

4. Optional additional fields can have any data type that is supported in a
TimeSeries subtype.

Time series definition restrictions

Although a regular time series is supported, an irregular time series is more
appropriate for moving object data.

Hertz and compressed data are not supported. The time series definition cannot
include the hertz or compression parameters.

Related concepts:

[“Software requirements for the Spatiotemporal Search extension” on page 1-3|

(& [TimeSeries data type (TimeSeries Data Guide)
Related reference:

[+ [Create the database table (TimeSeries Data Guide)|

Spatiotemporal search indexing

After you start spatiotemporal search indexing, the process of indexing time series
data for spatiotemporal searches continues automatically.

When you run the STS_Init() function to start spatiotemporal search indexing for a
time series table, the following tasks are performed:

1. An internal subtrack table is created.

2. The data from the time series table is converted into compact trajectories and
stored in the subtrack table.

3. An R-tree index is created on the column in the subtrack table that contains
spatial data.

4. An internal lasttime table is created. The lasttime table stores the last time that
spatiotemporal data was processed for each object ID.

5. A Scheduler task is created with the name of the time series table. The task
runs at a preset frequency. The task adds any new data from the time series
table into the subtrack table and updates the corresponding R-tree index.

The trajectories that are added to the subtrack table are simplified versions of the
actual trajectories. The data is compacted to make queries faster.

Related reference:

[“STS_Init function” on page 2-14

Spatiotemporal searches

1-8

You run spatiotemporal search functions within SQL statements to find information
about moving objects.

Find the relationship between an object, time, and a point

Run the following functions to find an object, a time, or a position in terms of the
other two criteria:

IBM Informix Spatiotemporal Search for Moving Objects User's Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.tms.doc/ids_tms_060.htm#ids_tms_060
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.tms.doc/ids_tms_078.htm#ids_tms_078

 Find the position of an object at a specific time: STS_GetPosition
* Find the most recent position of any object in the time series: STS_LastPosition

* Find the first time within a time range when an object is near a position:
STS_GetFirstTimeByPoint

* Find the nearest object to a point at a specific time: STS_GetNearestObject
Find a trajectory of an object

You can find the exact trajectory or the compressed trajectory of an object:

* Find the exact trajectory for a time range. The exact trajectory includes every
location for every timepoint, from the data in the time series table:
STS_GetTrajectory

* Find the compact trajectory for a time range: STS_GetCompactTrajectory. The
compacted trajectory is an approximation of the trajectory from the internal
subtrack table.

The following illustration shows the difference between the exact trajectory and the
compressed trajectory.

b

Figure 1-3. Exact and compressed trajectories

In this illustration, the STS_GetTrajectory function returns a trajectory with 16
points. The STS_GetCompactTrajectory function returns a trajectory with 5 points.

The STS_GetTrajectory function provides more accurate results, but the
STS_GetCompactTrajectory function runs faster.

Find the objects in a region

You can find which objects were in a region a specific times:

 Find the set of objects whose trajectories intersected a region during the time
range: STS_GetIntersectSet

* Find the set of objects that were within a region at a specific time:
STS_GetLocWithinSet

Chapter 1. Getting started with spatiotemporal search for moving objects ~ 1-9

Find the relationship between trajectories and a region

You can find the shortest distance between a point and the trajectory of an object
during a time range by running the STS_TrajectoryDistance function.

You can find out whether an object was in a region during a range of time:

* Find whether the trajectory remained within the boundary of the region for the
time range: STS_TrajectoryWithin

* Find whether the trajectory crossed the boundary of the region in the time
range: STS_TrajectoryCross

* Find whether the trajectory either crossed the boundary of the region or
remained within the boundary of the region for the time range:
STS_TrajectorylIntersect

The following illustration shows a trajectory that goes through a region.

point (x,y)

Figure 1-4. A trajectory that crosses the region boundary twice

The following functions return the following results for this trajectory and region:

* The STS_TrajectoryWithin function returns FALSE because the trajectory does
not remain within the boundaries of the region.

* The STS_TrajectoryCross function returns TRUE because the trajectory crosses
the boundary of the region.

e The STS_TrajectoryIntersect function returns TRUE because the trajectory
intersects the region.

The following image shows a trajectory that is entirely within a region.

1-10 IBM Informix Spatiotemporal Search for Moving Objects User's Guide

Figure 1-5. A trajectory within a region

The following functions return the following results for this trajectory and region:

* The STS_TrajectoryWithin function returns TRUE because the trajectory remains
within the boundaries of the region.

e The STS_TrajectoryCross function returns FALSE because the trajectory does not
cross the boundary of the region.

¢ The STS_TrajectoryIntersect function returns TRUE because the trajectory stays
within the region.

Related reference:

[[Time series SQL routines (TimeSeries Data Guide)|

[[Spatial functions (Spatial Data Guide)|

Spatial data types for spatiotemporal searches

Spatiotemporal search functions either take a spatial data type as an argument or
return a spatial data type.

Spatiotemporal seach functions use the following spatial data types:

e ST_Point: A location that is specified by longitude (X) and latitude (Y)
coordinate values. For functions that take an ST_Point argument, supply an X,Y
coordinate value. ST_Points are also returned by some functions.

e ST_MultiLineString: A set of one or more linestrings that represent a trajectory.
ST_MultiLineStrings are returned by functions that find trajectories.

¢ ST_Geometry: An abstract noninstantiable superclass. For functions that take an
ST_Geometry, supply an ST_Point, ST_MultiPoint, ST_LineString,
ST_MultiLineString, ST_Polygon, or ST_MultiPolygon value.

Spatial data types require a spatial reference ID (SRID) that identifies the type of
map projection system. For spatiotemporal search data, the SRID must be 4326,
which the SRID that is commonly used by global positioning system (GPS) devices.

Spatiotemporal search functions that take a distance parameter to define a region
of interest also take an optional unit of measure parameter. By default, the unit of
measurement for distance is meters. You can specify a unit of measure that is listed
in the unit_name column of the st_units_of measure table.

Restriction: The distance parameter currently defines the region of interest with a

Euclidean calculation that is based on the Cartesian system instead of a spherical
calculation that is based on longitude and latitude coordinates.

Chapter 1. Getting started with spatiotemporal search for moving objects ~ 1-11

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.tms.doc/ids_tms_135.htm#ids_tms_135
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.spatial.doc/ids_spat_123.htm#ids_spat_123

Related concepts:

[“Software requirements for the Spatiotemporal Search extension” on page 1-3|

Related reference:

[[Spatial data types (Spatial Data Guide)]

[+ [The st_units_of_measure table (Spatial Data Guide)|

(Chapter 2, “Spatiotemporal search routines,” on page 2-1|

Stopping spatiotemporal search indexing

1-12

When you stop spatiotemporal search indexing, you remove the spatiotemporal
search internal tables, Scheduler tasks, and indexes.

To stop spatiotemporal search indexing for a specific time series, run the
STS_Cleanup function and specify the time series table.

To stop spatiotemporal search indexing for a database, run the STS_Cleanup
function without any parameters while connected to the database.

To remove all spatiotemporal search software in the database in one step, run the
following statement:

EXECUTE FUNCTION SYSB1dPrepare('sts*', 'drop');
Related reference:

[“STS_Cleanup function” on page 2-2|

IBM Informix Spatiotemporal Search for Moving Objects User's Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.spatial.doc/ids_spat_035.htm#ids_spat_035
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.spatial.doc/ids_spat_403.htm#ids_spat_403

Chapter 2. Spatiotemporal search routines

Spatiotemporal search routines index spatiotemporal data, query spatiotemporal
data, and perform maintenance tasks.

The following table sorts spatiotemporal search routines by task.

Table 2-1. Spatiotemporal search functions sorted by task

Header Header

Start or stop spatiotemporal search indexing |Start spatiotemporal indexing for a table:
|“STS Init function” on page 2-14|

Stop spatiotemporal search indexing and

drop internal tables: [‘STS_Cleanup function”]

Find the relationship between an object, Find the position of an object at a specific
time, and a point time: [“STS_GetPosition function” on page]
2-11

Find the most recent position of any object
in the time series: [‘STS_GetLastPosition|
[function” on page 2-7]

Find the first time within a time range when
an object is near a position:
“STS_GetFirstTimeByPoint function” on|

[page 2—1_1|

Find the nearest object to a point at a
specific time: |[“STS_GetNearestObject|
[function” on page 2-9

Find a trajectory of an object Find the exact trajectory for a time range:
[“STS_GetTrajectory function” on page 2-12]

Find the compressed trajectory for a time
range: [“STS_GetCompactTrajectory function”|

|0n page 2—§|

Find the objects in a region Find the set of objects whose trajectories
intersected a region during the time range:
|“STS_GetIntersectSet function” on page 2-6|

Find the set of objects that were within a
region at a specific time:
[“STS_GetLocWithinSet function” on page 2-8|

© Copyright IBM Corp. 2015 2-1

Table 2-1. Spatiotemporal search functions sorted by task (continued)

Header Header
Find the relationship between trajectories Find the shortest distance between a point
and a region and the trajectory of an object during a time

range: [’STS_TrajectoryDistance function” on|
|Eage 2-18|

Find whether the trajectory remained within
the boundary of the region for the time
range: |“STS_TrajectoryWithin function” on|

|Eage 2-22|

Find whether the trajectory crossed the
boundary of the region in the time range:
[“STS_TrajectoryCross function” on page 2-16|

Find whether the trajectory either crossed
the boundary of the region or remained
within the boundary of the region for the
time range: [‘STS_TrajectoryIntersect
[function” on page 2-20|

Return release information [“STS_Release function” on page 2-15

Enable tracing |“STS_Set_Trace procedure” on page 2-16|

Related concepts:
[“Spatial data types for spatiotemporal searches” on page 1-11|

STS_Cleanup function

2-2

The STS_Cleanup function stops the indexing of spatiotemporal search data and
drops the internal tables that contain spatiotemporal search data.

Syntax

STS_Cleanup(ts_tabname VARCHAR(128))
returns INTEGER

STS_Cleanup()
returns INTEGER

ts_tabname (Optional)
The name of the time series table.

Usage

Run the STS_Cleanup function with the ts_tabname parameter when you want to
stop spatiotemporal indexing and drop the existing spatiotemporal search tables
for the specified time series table. For example, when the spatiotemporal search
tables become large, you can drop them and then restart spatiotemporal search
indexing with a more recent start time.

Run the STS_Cleanup function without a parameter to stop spatiotemporal
indexing and drop the existing spatiotemporal search tables for the current
database.

IBM Informix Spatiotemporal Search for Moving Objects User's Guide

Returns

An integer that indicates the status of the function:
* 0 = Spatiotemporal search indexing was removed.

* 1 = An error occurred.
Example: Stop indexing and drop index tables for a table

The following statement stops spatiotemporal search indexing and deletes the
internal tables for the time series table that is named T_Vehicle:

EXECUTE FUNCTION STS_Cleanup('T_Vehicle');

Example: Stop indexing and drop index tables for a database

The following statement stops spatiotemporal search indexing and deletes the
internal tables for the current database:

EXECUTE FUNCTION STS_Cleanup();
Related tasks:
[“Stopping spatiotemporal search indexing” on page 1-12|

STS_GetCompactTrajectory function

The STS_GetCompactTrajectory function returns the compressed trajectory of a
specified object for the specified time range.

Syntax
STS_GetCompactTrajectory(ts_tabname LVARCHAR,
obj_id LVARCHAR,
ts TimeSeries,
starttime DATETIME YEAR TO FRACTION(5),
endtime DATETIME YEAR TO FRACTION(5))

returns LVARCHAR

ts_tabname
The name of the time series table.

obj_id The ID of the object. Must be a value from the primary key column of the
time series table. Can be the name of the column that stores the object IDs
if the WHERE clause specifies a specific object ID.

ts The name of the TimeSeries column.

starttime
The start of the time range.

endtime
The end of the time range.

Usage

Run the STS_GetCompactTrajectory function to find where an object went during
a time range, based on the compressed spatiotemporal search data. The trajectory
information is retrieved from the subtack table and returned as one or more
linestrings.

Chapter 2. Spatiotemporal search routines 2-3

Returns

An LVARCHAR string that represents the trajectory of the object. The string
includes the spatial reference ID and an ST_MultiLinestring.

NULL, if nothing found.
Example

The following query returns the trajectory of the vehicle 1 between 2014-02-02
13:00:00 and 2014-02-02 16:30:00:

SELECT STS_GetCompactTrajectory('T Vehicle', modid, 'ts_track',
'2014-02-02 13:00:00', '2014-02-02 16:30:00')
FROM T_Vehicle
WHERE modid='1";

(expression) 4326 multilinestring((116.40061 39.90605, 116.40121 39.9139, 116.
40117 39.91159, 116.39245 39.90635, 116.36999 39.90594, 116.34526
1 39.905891, 116.345261 39.905891))

1 row(s) retrieved.

STS_GetFirstTimeByPoint function

2-4

The STS_GetFirstTimeByPoint function returns the first time within a time range
when an object is near the specified position.

Syntax
STS_GetFirstTimeByPoint(ts_tabname LVARCHAR,
obj_id LVARCHAR,
ts TimeSeries,
starttime DATETIME YEAR TO FRACTION(5),
endtime DATETIME YEAR TO FRACTION(5),

geometry LVARCHAR,
max_distance REAL)
returns DATETIME

STS_GetFirstTimeByPoint(ts_tabname LVARCHAR,

obj_id LVARCHAR,

ts TimeSeries,

starttime DATETIME YEAR TO FRACTION(5),
endtime DATETIME YEAR TO FRACTION(5),

geometry LVARCHAR,

max_distance REAL,

uom LVARCHAR)
returns DATETIME

ts_tabname
The name of the time series table.

obj_id The ID of the object. Must be a value from the primary key column of the
time series table. Can be the name of the column that stores the object IDs
if the WHERE clause specifies a specific object ID.

ts The name of the TimeSeries data type.

starttime
The start of the time range. Can be NULL.

endtime
The end of the time range. Can be NULL.

IBM Informix Spatiotemporal Search for Moving Objects User's Guide

geometry
The geometry at the center of the region of interest. Can be an ST_Point,
ST_MultiPoint, ST_LineString, ST_MultiLineString, ST_Polygon, or
ST_MultiPolygon. Must use the SRID 4326.

max_distance
The distance from the geometry that defines the border of the region of
interest. The unit of measure is specified by the uom parameter.

uom (Optional)
The unit of measure for the max_distance parameter. Default is meters.
Must be the name of a linear unit of measure from the unit_name column
of the st_units_of measure table.

Usage

Run the STS_GetFirstTimeByPoint function to find when an object first passed
within the specified distance of the specified position during the specified time
range. If you do not specify a time range, the function returns the first time that an
object passed close enough to the position. If the object was too far away from the
position during the time range, the STS_GetFirstTimeByPoint function returns
NULL.

The following illustration shows the trajectory of a vehicle and the point at which

the trajectory is first within the specified distance to the point (x,y). The query
returns the time stamp that is associated with the point on the trajectory.

point (x,y)

Figure 2-1. A trajectory near a point

Returns
A time stamp

NULL if the trajectory of the object during the time range was always farther than
the maximum distance from the position.

Example: Find the first time that the vehicle ever passed the
position

The following query returns the first time ever that vehicle 1 passed within 100
meters of the point (116.401 39.911):

SELECT STS_GetFirstTimeByPoint('T Vehicle', modid, ts_track, null, null,
'4326 point(116.401 39.911)', 100)
FROM T_Vehicle
WHERE modid = '1';

(expression)

Chapter 2. Spatiotemporal search routines 2-5

2014-02-02 13:37:15.00000

1 row(s) retrieved.

Example: Find the first time that the vehicle passed the position
in a time range

The following query returns the first time that vehicle 1 passed within 100 meters
of the point (116.401 39.911) between 2014-02-02 13:39:00 and 2014-02-02 16:30:00:

SELECT STS GetFirstTimeByPoint('T Vehicle', modid, ts_track, '2014-02-02 13:39:00',
'2014-02-02 16:30:00', '4326 point(116.40100 39.91100)"', 100)
FROM T_Vehicle
WHERE modid="'1";
(expression)
2014-02-02 13:40:55.00000

1 row(s) retrieved.

STS_GetintersectSet function

The STS_GetIntersectSet function returns the set of objects whose trajectories
intersect the specified region during the specified time range.

Syntax

STS GetIntersectSet(ts_tabname LVARCHAR,
ts_colname LVARCHAR,
starttime DATETIME YEAR TO FRACTION(5),
endtime DATETIME YEAR TO FRACTION(5),
geometry LVARCHAR,
max_distance REAL)

returns Set(LVARCHAR)

STS_GetIntersectSet(ts_tabname LVARCHAR,
ts _colname LVARCHAR,
starttime DATETIME YEAR TO FRACTION(5),
endtime DATETIME YEAR TO FRACTION(5),
geometry LVARCHAR,
max_distance REAL,
uom LVARCHAR)

returns Set (LVARCHAR)

ts_tabname
The name of the time series table.

ts_column
The name of the TimeSeries column.

starttime
The start of the time range.

endtime
The end of the time range.

geometry
The geometry at the center of the region of interest. Can be an ST_Point,
ST_MultiPoint, ST_LineString, ST_MultiLineString, ST_Polygon, or
ST_MultiPolygon. Must use the SRID 4326.

2-6 IBM Informix Spatiotemporal Search for Moving Objects User's Guide

max_distance
The distance from the geometry that defines the border of the region of
interest. The unit of measure is specified by the uom parameter.

uom (Optional)
The unit of measure for the max_distance parameter. The default is meters.
Must be the name of a linear unit of measure from the unit_name column
of the st_units_of measure table.

Usage

Run the STS_GetIntersectSet function to find which objects intersected a region
during a time range.

The following illustration shows a region that is intersected by three trajectories.

T m1
T m3

T m2

Figure 2-2. Trajectories that intersect a region
Returns
A set of object IDs.
NULL, if nothing found.
Example
The following statement returns the vehicles IDs that intersected the region within

1000 meters of the point (116.4, 39.91) during the time between 2014-02-02 13:36:00
and 2014-02-02 13:54:00:

EXECUTE FUNCTION STS_ GetIntersectSet('T Vehicle', 'ts_track', '2014-02-02 13:36:00',
'2014-02-02 13:54:00', '4326 point(116.4 39.91)', 1000);

(expression) SET{'1','2'}

1 row(s) retrieved.

The query returns the IDs 1 and 2.

STS GetLastPosition function

The STS_GetLastPosition function returns the location of the most recent time
series element.

Chapter 2. Spatiotemporal search routines ~ 2=7

Syntax

STS_GetlLastPosition(ts TimeSeries)
returns LVARCHAR

ts The name of the TimeSeries data type.
Usage

Run the STS_GetLastPosition function if you want to know the location of the
object with the latest time stamp.

Returns

An LVARCHAR string that represents the position of the object. The string
includes the spatial reference ID and a point that consists of a longitude value and
a latitude value.

NULL, if nothing found.
Example: Find the last position of a vehicle

The following statement returns the last position of the vehicle 1:

EXECUTE FUNCTION STS GetlLastPosition(ts_track)
FROM T_Vehicle
WHERE modid='1";

(expression) 4326 point(116.402010 39.908010)
Example: Find the last positions of all vehicles

The following statement returns the last position of all vehicles in the table:

SELECT modid, STS GetlLastPosition(ts_track)
FROM T_Vehicle;

modid 1
(expression) 4326 point(116.402010 39.908010)

modid 2
(expression) 4326 point(116.402000 39.908000)

2 row(s) retrieved.

STS GetLocWithinSet function

2-8

The STS_GetLocWithinSet function returns the set of objects whose position is
within the specified region during the specified time range.

Syntax

STS_GetLocWithinSet(ts_tabname LVARCHAR,
ts_colname LVARCHAR,
timestamp DATETIME YEAR TO FRACTION(5),
geometry LVARCHAR,
max_distance REAL)
returns Set (LVARCHAR)

STS_GetLocWithinSet(ts_tabname LVARCHAR,
ts_colname LVARCHAR,
timestamp DATETIME YEAR TO FRACTION(5),

IBM Informix Spatiotemporal Search for Moving Objects User's Guide

geometry LVARCHAR,
max_distance REAL,
uom LVARCHAR)
returns Set (LVARCHAR)
ts_tabname
The name of the time series table.

ts_colname
The name of the TimeSeries column.

timestamp
The time point to query.

geometry
The geometry at the center of the region of interest. Can be an ST_Point,
ST_MultiPoint, ST_LineString, ST_MultiLineString, ST_Polygon, or
ST_MultiPolygon. Must use the SRID 4326.

max_distance
The distance from the geometry that defines the border of the region of
interest. The unit of measure is specified by the uom parameter.

uom (Optional)
The unit of measure for the max_distance parameter. The default is meters.
Must be the name of a linear unit of measure from the unit_name column
of the st_units_of _measure table.

Usage

Run the STS_GetLocWithinSet function to find which objects were in a region at a
specific time.

Returns

A set of object IDs.
NULL, if nothing found.
Example

The following statement returns the IDs of vehicles that were within 1000 meters
of the point (116.4, 39.91) at 2014-02-02 13:36:00:

EXECUTE FUNCTION STS_GetLocWithinSet('T Vehicle', 'ts_track',
'2014-02-02 13:36:00', '4326 point(116.4 39.91)', 1000);

(expression) SET{'1','2'}

The query returns the IDs 1 and 2.

STS_GetNearestObject function

The STS_GetNearestObject function returns the nearest object to the specified
point and within the specified distance at the specified time.

Syntax

STS_GetNearestObject(ts_tabname LVARCHAR,
ts_colname LVARCHAR,
timestamp DATETIME YEAR TO FRACTION(5),
geometry LVARCHAR,

Chapter 2. Spatiotemporal search routines 2-9

2-10

max_distance REAL)
returns LVARCHAR

STS_GetNearestObject (ts_tabname LVARCHAR,
ts_colname LVARCHAR,
timestamp DATETIME YEAR TO FRACTION(5),

geometry LVARCHAR,
max_distance REAL,
uom LVARCHAR)

returns LVARCHAR

ts_tabname
The name of the time series table.

ts_colname
The name of the TimeSeries column.

timestamp
The time point to query.

geometry
The geometry at the center of the region of interest. Can be an ST_Point,
ST_MultiPoint, ST_LineString, ST_MultiLineString, ST_Polygon, or
ST_MultiPolygon. Must use the SRID 4326.

max_distance
The distance from the geometry that defines the border of the region of
interest. The unit of measure is specified by the uom parameter.

uom (Optional)
The unit of measure for the max_distance parameter. The default is meters.
Must be the name of a linear unit of measure from the unit_name column
of the st_units_of measure table.

Usage

Run the STS_GetNearestObject function to find which object was closest to a
location but within a specific distance at a specific time. If you specify that the
distance from the point is 0 meters, the STS_GetNearestObject function returns
the closest object regardless of the distance.

The following illustration shows that of the three trajectories near the point (10,10),
the trajectory of object m2 is the closest.

IBM Informix Spatiotemporal Search for Moving Objects User's Guide

T m3 /

9:00

Tm

9:00 ®
point (10,10)

T m2

Figure 2-3. Trajectories near a point at a specific time

Returns

The object ID.

NULL, if nothing found.
Example

The following statement returns the vehicle ID whose location was the closest to
the point (10,10), but within 1010 meters, at 2014-02-02 13:36:00:

EXECUTE FUNCTION STS_GetNearestObject('T Vehicle', 'ts_track',
'2014-02-02 13:36:00', '4326 point(116.4 39.9)', 1010);

(expression) 1

1 row(s) retrieved.

STS_ GetPosition function

The STS_GetPosition function returns the position of an object at a specified time.

Chapter 2. Spatiotemporal search routines ~ 2-11

Syntax

STS_GetPosition(ts TimeSeries,
tstamp DATETIME YEAR TO FRACTION(5))
returns LVARCHAR

ts The time series.

tstamp The time stamp to query.
Usage

Run the STS_GetPosition function to find where a moving object was at a specific
time.

Identify which object to track in the WHERE clause of the query.

The following illustration shows the trajectory of a vehicle and the position of (10,
10) at 2014-01-08 00:00:00.

2014-01-08 00:00:00

*—

/' ~—_ T

return 4326 point (10,10)

Figure 2-4. The path of a moving vehicle

Returns

An LVARCHAR string that represents the position of the object. The string
includes the spatial reference ID and a point that consists of a longitude value and
a latitude value.

NULL, if nothing found.
Example

The following query returns the position of the vehicle 1 at 2014-02-02 13:34:06:

SELECT STS_GetPosition(ts_track, '2014-02-02 13:34:06"')
FROM T_Vehicle
WHERE modid="'1";

(expression) 4326 point(116.400610 39.906050)

STS_GetTrajectory function

2-12

The STS_GetTrajectory function returns the exact trajectory of a specified object
for the specified time range.

Syntax

STS GetTrajectory(ts TimeSeries,
starttime DATETIME YEAR TO FRACTION(5),
endtime DATETIME YEAR TO FRACTION(5))

returns LVARCHAR

IBM Informix Spatiotemporal Search for Moving Objects User's Guide

ts The time series.

starttime
The start of the time range.

endtime
The end of the time range.

Usage

Run the STS_GetTrajectory function to find where an object went during a time
range, which is based on the data in the time series table. The location for each
time point in the range is extracted from the time series table and converted into
one or more linestrings.

Identify which object to track in the WHERE clause of the query.

The following graphic illustrates a trajectory.

T ~—__

\/\

Figure 2-5. Trajectory of an object for a time range

Returns

An LVARCHAR string that represents the trajectory of the object. The string
includes the spatial reference ID and a multilinestring that consists of multiple sets
of longitude and latitude values.

NULL, if nothing found.
Example: Get the trajectory between specific times

The following query returns the trajectory of the vehicle 1 between 2014-02-02
13:00:00 and 2014-02-02 16:30:00:
SELECT STS_GetTrajectory(ts_track, '2014-02-02 13:00:00', '2014-02-02 16:30:00")

FROM T Vehicle
WHERE modid='1";

(expression) 4326 multilinestring((116.400610 39.906050, 116.401210 39.913900,
116.401170 39.911590, 116.392450 39.906350, 116.369990 39.905940,
116.345260 39.905890))

1 row(s) retrieved.

Example: Get the trajectory from a specific time until the current
time

The following query returns the trajectory of the vehicle 1 between 2014-02-02
13:00:00 and the current time:

SELECT STS GetTrajectory(ts_track, '2014-02-02 13:00:00', current)
FROM T_Vehicle
WHERE modid='1";

Chapter 2. Spatiotemporal search routines 2-13

(expression) 4326 multilinestring((116.400610 39.906050, 116.401210 39.913900,
116.401170 39.911590, 116.392450 39.906350, 116.369990 39.905940
, 116.345260 39.905890),(116.420000 40.100000, 116.401000 39.9070

00, 116.402000 39.908000, 116.402010 39.908010))

1 row(s) retrieved.

STS_Init function

2-14

The STS_Init function creates internal tables and starts a Scheduler task that builds
the initial spatiotemporal index, and then periodically indexes new spatiotemporal
data.

Syntax

STS _Init(ts_tabname VARCHAR(128)

)

returns INTEGER

STS Init(ts_tabname VARCHAR(128)
task_frequency INTERVAL DAY TO SECOND default "0 01:00:00",
task_starttime DATETIME HOUR TO SECOND default NULL,

ts_default_starttime DATETIME YEAR TO SECOND default "1970-01-01 00:00:00",
ts_interval_to_process INTERVAL DAY TO SECOND default "0 01:00:00",
ts_interval_to_avoid INTERVAL DAY TO SECOND default "1 00:00:00"

)
returns INTEGER

ts_tabname
The name of the time series table.

task_frequency (Optional)
How frequently to index new data. Default is every hour.

task_starttime (Optional)
The first time to start the task. Default is NULL, which means to start the
task when the STS_Init function is run.

ts_default_starttime (Optional)
The first time stamp in the time series from which to index. Default is
1970-01-01 00:00:00.

ts_interval_to_process (Optional)
The time interval in the time series to process each time that the task is
run. Default is one hour. Set to a value that takes less time to index than
the value of the task_frequency parameter.

ts_interval_to_avoid (Optional)
The indexing lag time. The time interval in the time series before the
current time to avoid indexing. Default is one day.

Usage

Run the STS_Init function to start the indexing process by creating internal
spatiotemporal search tables and starting a Scheduler task for the specified table.
The Scheduler task, which has a prefix of autosts, starts at the specified time,
indexes the initial set of data, and periodically indexes new data. The task prints
messages in the database server message log when indexing starts and completes.

If spatiotemporal search indexing is already running for the specified table, you
can run the STS_Init function to change the properties of the Scheduler task.

IBM Informix Spatiotemporal Search for Moving Objects User's Guide

The Scheduler task is started at the time that is specified by the task_starttime
parameter. The first run of the task processes the data in the time interval that is
defined by the value of the ts_default_starttime parameter to the time calculated by
subtracting the value of the ts_interval_to_avoid parameter from the current time.
The end time of the processing interval is saved in the internal lasttime table.
Subsequent runs of the task start based on the value of the fask_frequency
parameter and index the data between the last end time that is saved in the
lasttime table and the earlier of the following times:

* The last end time plus the value of the ts_interval_to_process parameter
¢ The current time minus the value of the ts_interval_to_avoid parameter

Any data that you insert with timepoints that are earlier than the last end time that
is saved in the lasttime table are not indexed.

Important: If you run the task the first time on an empty time series, the recorded
last end time is the current time minus the value of the ts_interval_to_avoid
parameter. Any data that you insert with earlier timepoints are not indexed.

Returns

An integer that indicates the status of the function:
* 0 = The Scheduler task for spatiotemporal search indexing is started.
* 1 = An error occurred.

Example

The following statement is run at 2015-02-01 08:00:00 to start spatiotemporal search
indexing on the table that is named T_Vehicle:

EXECUTE FUNCTION STS_ Init('T_Vehicle');

The Scheduler task is created with default values for the T Vehicle table. The task
runs for the first time at 08:00:00 and processes the time series data with
timepoints between 1970-01-01 00:00:00 and 2015-01-31 08:00:00. The last end time
of 2015-01-31 08:00:00 is recorded in the lasttime table. The task takes about 30
minutes to index the data. The task runs again at 09:00:00 and indexes data with
timepoints between 2015-01-31 08:00:00 and 2015-01-31 09:00:00. The last end time
of 2015-01-31 09:00:00 is recorded in the lasttime table. Any data with timepoints
earlier than 2015-01-31 08:00:00 that was inserted after the first task was run is not
indexed.

Related concepts:

[“Spatiotemporal search indexing” on page 1-§

STS Release function

The STS_Release function returns the internal version number and build date for
the spatiotemporal search extension.

Syntax
STS_Release()
Returns LVARCHAR;
Returns

A string with the version number and build date.

Chapter 2. Spatiotemporal search routines 2-15

Example

The following statement returns the version number and build date:
EXECUTE FUNCTION STS_Release;

STS_Set_Trace procedure

The STS_Set_Trace procedure enables tracing and sets the tracing file.

Syntax

STS_Set_Trace(trace_params ~ LVARCHAR,
trace_file LVARCHAR) ;

trace_params
The tracing parameters in the following format: tracing_type tracing_level:

tracing_type
STSQuery: Set tracing on spatiotemporal queries.

STSBuild: Set tracing on spatiotemporal indexing.

tracing_level
0 = Turn off tracing.

An integer greater than 1 = Turn on tracing.
trace_file

The full path and name of the tracing file.
Usage

Run the STS_Set_Trace procedure with the STSQuery value to enable tracing if
you want to view the entry points of spatiotemporal query functions. Run the
STS_Set_Trace procedure with the STSBuild value to enable tracing if you want
to view the entry points of spatiotemporal indexing functions. You must specify
the full path and name of the tracing file.

Example: Set query tracing

The following statement starts tracing on spatiotemporal queries and sets the
tracing file name and path:

EXECUTE PROCEDURE STS_Set_Trace('STSQuery 2', '/tms/sts_query.log');
Example: Stop query tracing

The following statement stops tracing on spatiotemporal queries:
EXECUTE PROCEDURE STS Set Trace('STSQuery 0', '/tms/sts_query.log');

STS_TrajectoryCross function

The STS_TrajectoryCross function indicates whether the trajectory of a specified
object crosses the specified region during the specified time range.

Syntax

STS TrajectoryCross(ts_tabname LVARCHAR,
obj_id LVARCHAR,
ts colname LVARCHAR,
starttime DATETIME YEAR TO FRACTION(5),
endtime DATETIME YEAR TO FRACTION(5),

IBM Informix Spatiotemporal Search for Moving Objects User's Guide

geometry LVARCHAR,
max_distance REAL)
returns Boolean

STS_TrajectoryCross(ts_tabname LVARCHAR,
obj_id LVARCHAR,
ts_colname LVARCHAR,
starttime DATETIME YEAR TO FRACTION(5),
endtime DATETIME YEAR TO FRACTION(5),
geometry LVARCHAR,
max_distance REAL,
uom LVARCHAR)
returns Boolean

ts_tabname
The name of the time series table.

obj_id The ID of the object. Must be a value from the primary key column of the
time series table. Can be the name of the column that stores the object IDs
if the WHERE clause specifies a specific object ID.

ts_colname
The name of the TimeSeries column.

starttime
The start of the time range.

endtime
The end of the time range.

geometry
The geometry at the center of the region of interest. Can be an ST_Point,
ST_MultiPoint, ST_LineString, ST_MultiLineString, ST_Polygon, or
ST_MultiPolygon. Must use the SRID 4326.

max_distance
The distance from the geometry that defines the border of the region of
interest. The unit of measure is specified by the uom parameter.

uom (Optional)
The unit of measure for the max_distance parameter. The default is meters.
Must be the name of a linear unit of measure from the unit_name column
of the st_units_of measure table.

Usage

Run the STS_TrajectoryCross function to know whether an object crossed the
boundary of a specific region during a time range. The STS_TrajectoryCross
function returns t if the object crossed the boundary of the region one or more
times during the time range. The STS_TrajectoryCross function returns f if the
object remained either outside or inside of the region for the time range.
Returns

t if the object crossed the boundary of the region during the time range.

f if the object did not cross the boundary of the region during the time range.

Chapter 2. Spatiotemporal search routines ~ 2-17

Example

The following query returns whether vehicle 1 crossed the boundary of the region,
which is specified by the point (116.4, 39.91) and the distance of 1000 meters,
between 2014-02-02 13:34:00 and 2014-02-02 13:54:00:

SELECT STS_TrajectoryCross('T_Vehicle', modid, 'ts_track', '2014-02-02 13:34:00',
'2014-02-02 13:54:00', '4326 point(116.4 39.91)', 1000)
FROM T Vehicle
WHERE modid = '1';
(expression)
t

1 row(s) retrieved.

The following illustration shows a trajectory that crosses the boundary of the
region.

point (x,y)

Figure 2-6. A trajectory that crosses the region boundary twice

STS_TrajectoryDistance function

The STS_TrajectoryDistance function returns the shortest distance between the
specified point and the trajectory of the specified moving object in the specified
time range.

Syntax

STS_TrajectoryDistance(ts_tabname LVARCHAR,
obj_id LVARCHAR,
ts_colname LVARCHAR,
starttime DATETIME YEAR TO FRACTION(5),
endtime DATETIME YEAR TO FRACTION(5),
geometry LVARCHAR)

returns FLOAT

STS TrajectoryDistance(ts_tabname LVARCHAR,

obj_id LVARCHAR,
ts_colname LVARCHAR,
starttime DATETIME YEAR TO FRACTION(5),
endtime DATETIME YEAR TO FRACTION(5),
geometry LVARCHAR,
uom LVARCHAR)

returns FLOAT

ts_tabname
The name of the time series table.

IBM Informix Spatiotemporal Search for Moving Objects User's Guide

obj_id The ID of the object. Must be a value from the primary key column of the
time series table. Can be the name of the column that stores the object IDs
if the WHERE clause specifies a specific object ID.

ts_colname
The name of the TimeSeries column.

starttime
The start of the time range. Can be NULL.

endtime
The end of the time range. Can be NULL.

geometry
The geometry at the center of the region of interest. Can be an ST_Point,
ST_MultiPoint, ST_LineString, ST_MultiLineString, ST_Polygon, or
ST_MultiPolygon. Must use the SRID 4326.

uom (Optional)
The unit of measure for the return value. The default is meters. Must be
the name of a linear unit of measure from the unit_name column of the
st_units_of_measure table.

Usage

Run the STS_TrajectoryDistance function to find how close and object came to a
specific point during a time range.

The following illustration shows a trajectory near the point (20,20). A line connects
the closest part of the trajectory to the point.

Point (20,20)

T T~ distance
\ /\

Figure 2-7. The shortest distance between a trajectory and a point

Returns

A FLOAT value that represents the distance in the specified unit of measure.
NULL, if nothing found.

Example

The following query returns the shortest distance in meters between the trajectory
of vehicle 1 and the point (116.4. 39.9) between 2014-02-02 13:35:00 and 2014-02-02
13:54:00:
SELECT STS_TrajectoryDistance('T_Vehicle', modid, 'ts_track', '2014-02-02 13:35:00',
'2014-02-02 13:54:00', '4326 point(116.4 39.9)')::decimal(10,2)
FROM T_Vehicle
WHERE modid="1";

(expression)

Chapter 2. Spatiotemporal search routines 2-19

830.36

1 row(s) retrieved.

STS_Trajectoryintersect function

2-20

The STS_TrajectoryIntersect function indicates whether the trajectory of an object
intersected the region during the time range.

Syntax

STS_TrajectoryIntersect(ts_tabname LVARCHAR,
obj_id LVARCHAR,
ts_colname LVARCHAR,
starttime DATETIME YEAR TO FRACTION(5),
endtime DATETIME YEAR TO FRACTION(5),
geometry LVARCHAR,
max_distance REAL)

returns Boolean

STS_ TrajectorylIntersect(ts_tabname LVARCHAR,
obj_id LVARCHAR,
ts_colname LVARCHAR,
starttime DATETIME YEAR TO FRACTION(5),
endtime DATETIME YEAR TO FRACTION(5),
geometry LVARCHAR,
max_distance REAL,
uom LVARCHAR)
returns Boolean

ts_tabname
The name of the time series table.

obj_id The ID of the object. Must be a value from the primary key column of the
time series table. Can be the name of the column that stores the object IDs
if the WHERE clause specifies a specific object ID.

ts_colname
The name of the TimeSeries column.

starttime
The start of the time range.

endtime
The end of the time range.

geometry
The geometry at the center of the region of interest. Can be an ST_Point,
ST_MultiPoint, ST_LineString, ST_MultiLineString, ST_Polygon, or
ST_MultiPolygon. Must use the SRID 4326.

max_distance
The distance from the geometry that defines the border of the region of
interest. The unit of measure is specified by the uom parameter.

uom (Optional)
The unit of measure for the max_distance parameter. The default is meters.
Must be the name of a linear unit of measure from the unit_name column
of the st_units_of measure table.

IBM Informix Spatiotemporal Search for Moving Objects User's Guide

Usage

Run the STS_Trajectorylntersect function to find out whether the specified object
went through the specified region during the specified time range. Intersection
means either crossed the boundary of the region or remained within the boundary
of the region.

The following image shows a trajectory that crosses the boundary of a region.

Figure 2-8. A trajectory that crosses a region

The following image shows a trajectory that is entirely within a region.

Figure 2-9. A trajectory within a region

Returns

t if the trajectory of the object crossed the boundary of the region during the time
range.

t if the trajectory of the object remained within the region during the time range.
f if the trajectory of the object did not intersect the region during the time range.
Example

The following query returns whether vehicle 1 intersected the boundary of the

region, which is described by the point (116.4, 39.91) and the distance of 1000
meters, between 2014-02-02 13:34:00 and 2014-02-02 13:54:00:

Chapter 2. Spatiotemporal search routines ~ 2-21

SELECT STS TrajectoryIntersect('T_Vehicle', modid, 'ts_track',
'2014-02-02 13:34:00', '2014-02-02 13:54:00',
'4326 point(116.4 39.91)', 1000)
FROM T_Vehicle
WHERE modid = '1';

(expression)
t

1 row(s) retrieved.

STS_TrajectoryWithin function

The STS_TrajectoryWithin function indicates whether the trajectory of a specified
object stayed within the specified region during the specified time range.

Syntax

STS_TrajectoryWithin(ts_tabname LVARCHAR,
obj_id LVARCHAR,
ts_colname LVARCHAR,
starttime DATETIME YEAR TO FRACTION(5),
endtime DATETIME YEAR TO FRACTION(5),
geometry LVARCHAR,
max_distance REAL)

returns Boolean

STS_TrajectoryWithin(ts_tabname LVARCHAR,
obj_id LVARCHAR,
ts_colname LVARCHAR,
starttime DATETIME YEAR TO FRACTION(5),
endtime DATETIME YEAR TO FRACTION(5),
geometry LVARCHAR,
max_distance REAL,
uom LVARCHAR)
returns Boolean

ts_tabname
The name of the time series table.

obj_id The ID of the object. Must be a value from the primary key column of the
time series table. Can be the name of the column that stores the object IDs
if the WHERE clause specifies a specific object ID.

ts_colname
The name of the TimeSeries column.

starttime
The start of the time range. Can be NULL.

endtime
The end of the time range. Can be NULL.

geometry
The geometry at the center of the region of interest. Can be an ST_Point,
ST_MultiPoint, ST_LineString, ST_MultiLineString, ST_Polygon, or
ST_MultiPolygon. Must use the SRID 4326.

max_distance
The distance from the geometry that defines the border of the region of
interest. The unit of measure is specified by the uom parameter.

2-22 IBM Informix Spatiotemporal Search for Moving Objects User's Guide

uom (Optional)
The unit of measure for the max_distance parameter. The default is meters.
Must be the name of a linear unit of measure from the unit_name column
of the st_units_of_measure table.

Usage

Run the STS_TrajectoryWithin function to find out whether an object stayed
within a region during the entire time range. The STS_TrajectoryWithin function
returns f if the object was in the region for only part of the time range or if the
object was never in the region during the time range.

Returns
t if the trajectory of the object was within the region during the entire time range.

f if the trajectory of the object was within the region for only part of the time
range.

f if the trajectory of the object was not within the region during the time range.
Example

The following query returns whether vehicle 1 stayed within 1000 meters of the
point (116.4, 39.91) between 2014-02-02 13:34:00 and 2014-02-02 13:54:00:

SELECT STS_TrajectoryWithin('T_Vehicle', modid, 'ts_track', '2014-02-02 13:34:00',
'2014-02-02 13:54:00', '4326 point(116.4 39.91)"', 1000)
FROM T_Vehicle
WHERE modid='1";
(expression)
.f.'

1 row(s) retrieved.

Chapter 2. Spatiotemporal search routines 2-23

2-24 IBM Informix Spatiotemporal Search for Moving Objects User's Guide

Appendix. Accessibility

IBM strives to provide products with usable access for everyone, regardless of age
or ability.

Accessibility features for IBM Informix products

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in IBM Informix
products. These features support:

* Keyboard-only operation.
* Interfaces that are commonly used by screen readers.

¢ The attachment of alternative input and output devices.

Keyboard navigation
This product uses standard Microsoft Windows navigation keys.

Related accessibility information

IBM is committed to making our documentation accessible to persons with
disabilities. Our publications are available in HTML format so that they can be
accessed with assistive technology such as screen reader software.

IBM and accessibility

For more information about the IBM commitment to accessibility, see the IBM
Accessibility Center at http:/ /www.ibm.com/able]

Dotted decimal syntax diagrams

The syntax diagrams in our publications are available in dotted decimal format,
which is an accessible format that is available only if you are using a screen reader.

In dotted decimal format, each syntax element is written on a separate line. If two
or more syntax elements are always present together (or always absent together),
the elements can appear on the same line, because they can be considered as a
single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read
punctuation. All syntax elements that have the same dotted decimal number (for
example, all syntax elements that have the number 3.1) are mutually exclusive
alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax can
include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

© Copyright IBM Corp. 2015 A-1

http://www.ibm.com/able

A-2

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, the word or symbol is preceded by
the backslash (\) character. The * symbol can be used next to a dotted decimal
number to indicate that the syntax element repeats. For example, syntax element
*FILE with dotted decimal number 3 is read as 3 * FILE. Format 3* FILE
indicates that syntax element FILE repeats. Format 3% * FILE indicates that
syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol that provides information about the syntax elements. For example, the lines
5.1%, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, that element is defined elsewhere.
The string that follows the % symbol is the name of a syntax fragment rather than a
literal. For example, the line 2.1 %0P1 refers to a separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:

? Specifies an optional syntax element. A dotted decimal number followed
by the ? symbol indicates that all the syntax elements with a
corresponding dotted decimal number, and any subordinate syntax
elements, are optional. If there is only one syntax element with a dotted
decimal number, the ? symbol is displayed on the same line as the syntax
element (for example, 57 NOTIFY). If there is more than one syntax element
with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if
you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that syntax
elements NOTIFY and UPDATE are optional; that is, you can choose one or
none of them. The ? symbol is equivalent to a bypass line in a railroad
diagram.

! Specifies a default syntax element. A dotted decimal number followed by
the ! symbol and a syntax element indicates that the syntax element is the
default option for all syntax elements that share the same dotted decimal
number. Only one of the syntax elements that share the same dotted
decimal number can specify a ! symbol. For example, if you hear the lines
2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the
default option for the FILE keyword. In this example, if you include the
FILE keyword but do not specify an option, default option KEEP is applied.
A default option also applies to the next higher dotted decimal number. In
this example, if the FILE keyword is omitted, default FILE(KEEP) is used.
However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP only applies to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword), and
does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* Specifies a syntax element that can be repeated zero or more times. A
dotted decimal number followed by the * symbol indicates that this syntax
element can be used zero or more times; that is, it is optional and can be

IBM Informix Spatiotemporal Search for Moving Objects User's Guide

repeated. For example, if you hear the line 5.1% data-area, you know that
you can include more than one data area or you can include none. If you
hear the lines 3%, 3 HOST, and 3 STATE, you know that you can include
HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is
only one item with that dotted decimal number, you can repeat that
same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item
from the list, but you cannot use the items more than once each. In the
previous example, you can write HOST STATE, but you cannot write HOST
HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax
diagram.

Specifies a syntax element that must be included one or more times. A
dotted decimal number followed by the + symbol indicates that this syntax
element must be included one or more times. For example, if you hear the
line 6.1+ data-area, you must include at least one data area. If you hear
the lines 2+, 2 HOST, and 2 STATE, you know that you must include HOST,
STATE, or both. As for the * symbol, you can repeat a particular item if it is
the only item with that dotted decimal number. The + symbol, like the *
symbol, is equivalent to a loop-back line in a railroad syntax diagram.

Appendix. Accessibility A-3

A-4 IBM Informix Spatiotemporal Search for Moving Objects User's Guide

Notices

This information was developed for products and services offered in the U.S.A.
This material may be available from IBM in other languages. However, you may be
required to own a copy of the product or product version in that language in order
to access it.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law
IBM Japan, Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 2015 B-1

B-2

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation

J46A /G4

555 Bailey Avenue

San Jose, CA 95141-1003
US.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

IBM Informix Spatiotemporal Search for Moving Objects User's Guide

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Privacy policy considerations

IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at|http:/ /www.ibm.com/ privacvl and
IBM’s Online Privacy Statement at [http:/ / www.ibm.com /privacy /details|in the
section entitled “Cookies, Web Beacons and Other Technologies”, and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at

lhttp: / /www.ibm.com /software/info/product-privacyl|

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at|http://www.ibm.com/legal/copytrade.shtm]

Notices B-3

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, and PostScript are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other
countries.

Intel, I[tanium, and Pentium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

B-4 1BM Informix Spatiotemporal Search for Moving Objects User's Guide

Index
A

Accessibility A-1
dotted decimal format of syntax diagrams A-1
keyboard A-1
shortcut keys A-1
syntax diagrams, reading in a screen reader A-1

C

compliance with standards vi

D

Disabilities, visual
reading syntax diagrams A-1
Disability A-1
Dotted decimal format of syntax diagrams A-1

F

Functions
STS_Cleanup() 2-2
STS_GetCompactTrajectory() 2-3
STS_GetFirstTimeByPoint() 2-4
STS_GetIntersectSet() 2-6
STS_GetLastPosition() 2-8
STS_GetLocWithinSet() 2-8
STS_GetNearestObject() 2-9
STS_GetPosition() 2-12
STS_GetTrajectory() 2-12
STS Init() 2-14
STS_Release() 2-15
STS_TrajectoryCross() 2-16
STS_TrajectoryDistance() 2-18
STS_TrajectoryIntersect() 2-20
STS_TrajectoryWithin() 2-22

industry standards vi

P

Procedure
STS_Set_Trace() 2-16

R

Requirements
database 1-7
table 1-7
time series definition 1-7
TimeSeries subtype 1-7
Routines for spatiotemporal search 2-1

© Copyright IBM Corp. 2015

S

Screen reader

reading syntax diagrams A-1
Shortcut keys

keyboard A-1
Spatial data types 1-11
Spatial extension 1-3
Spatial solution 1-2
Spatiotemporal search

architecture 1-2

disabling 1-12

example 1-5

indexing 1-8

overview 1-1

preparing 1-4

queries 1-8

registration 1-3

requirements 1-3

restrictions 1-3

Schema requirements 1-7

spatial data types 1-11
Spatiotemporal search routines 2-1
standards vi
STS_Cleanup() function 2-2
STS_GetCompactTrajectory() function 2-3
STS_GetFirstTimeByPoint() function 2-4
STS_GetIntersectSet() function 2-6
STS_GetLastPosition() function 2-8
STS_GetLocWithinSet() function 2-8
STS_GetNearestObject() function 2-9
STS_GetPosition() function 2-12
STS_GetTrajectory() function 2-12
STS_Init() function 2-14
STS_Release() function 2-15
STS_Set_Trace() procedure 2-16
STS_TrajectoryCross() function 2-16
STS_TrajectoryDistance() function 2-18
STS_TrajectoryIntersect() function 2-20
STS_TrajectoryWithin() function 2-22
Syntax diagrams

reading vi

reading in a screen reader A-1

—

TimeSeries extension 1-3
TimeSeries solution 1-2

V

Visual disabilities
reading syntax diagrams A-1

X-1

X-2 IBM Informix Spatiotemporal Search for Moving Objects User's Guide

Printed in USA

SC27-8019-00

	Contents
	Introduction
	About this publication
	Types of users

	Example code conventions
	Additional documentation
	Compliance with industry standards
	How to read the syntax diagrams
	How to provide documentation feedback

	Chapter 1. Getting started with spatiotemporal search for moving objects
	Spatiotemporal search solution architecture
	Software requirements for the Spatiotemporal Search extension
	Preparing for spatiotemporal search
	Example for spatiotemporal data: Create, load, and search a time series
	Time series requirements for spatiotemporal search
	Spatiotemporal search indexing

	Spatiotemporal searches
	Spatial data types for spatiotemporal searches

	Stopping spatiotemporal search indexing

	Chapter 2. Spatiotemporal search routines
	STS_Cleanup function
	STS_GetCompactTrajectory function
	STS_GetFirstTimeByPoint function
	STS_GetIntersectSet function
	STS_GetLastPosition function
	STS_GetLocWithinSet function
	STS_GetNearestObject function
	STS_GetPosition function
	STS_GetTrajectory function
	STS_Init function
	STS_Release function
	STS_Set_Trace procedure
	STS_TrajectoryCross function
	STS_TrajectoryDistance function
	STS_TrajectoryIntersect function
	STS_TrajectoryWithin function

	Appendix. Accessibility
	Accessibility features for IBM Informix products
	Accessibility features
	Keyboard navigation
	Related accessibility information
	IBM and accessibility

	Dotted decimal syntax diagrams

	Notices
	Privacy policy considerations
	Trademarks

	Index
	A
	C
	D
	F
	I
	P
	R
	S
	T
	V

