
Informix Product Family
Informix
Version 12.10

IBM Informix Data Warehouse Guide

SC27-4510-00

���

Informix Product Family
Informix
Version 12.10

IBM Informix Data Warehouse Guide

SC27-4510-00

���

Note
Before using this information and the product it supports, read the information in “Notices” on page B-1.

Edition

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1996, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Introduction . v
In this introduction . v
About this publication . v

Types of users . v
Software dependencies . v
Assumptions about your locale . v
Demonstration databases . vi

Example code conventions . vi
Additional documentation . vii
Compliance with industry standards . vii

Chapter 1. Dimensional databases . 1-1
Overview of data warehousing . 1-1
Why build a dimensional database? . 1-3
What is dimensional data? . 1-5

Chapter 2. Design a dimensional data model 2-1
Concepts of dimensional data modeling . 2-1

The fact table . 2-2
Dimensions of the data model . 2-3

Building a dimensional data model . 2-5
A business process . 2-5
Summary of a business process . 2-6
Determine the granularity of the fact table . 2-6
Identify the dimensions and hierarchies. 2-8
Establish referential relationships . 2-10
Fragmentation: Storage distribution strategies . 2-17

Handle common dimensional data-modeling problems . 2-27
Minimize the number of attributes in a dimension table 2-27
Dimensions that occasionally change . 2-28
Use the snowflake schema for hierarchical dimension tables 2-29

Chapter 3. Implement a dimensional database 3-1
Implement the sales_demo dimensional database . 3-1

Create the dimensional database . 3-1
The CREATE TABLE statement for the dimension and fact tables 3-1
Mapping data from data sources to the database. 3-3
Load data into the dimensional database . 3-4
Test the dimensional database . 3-5
Change the storage distribution strategy . 3-6

Implementing a dimensional data model and loading data with Informix Warehouse 3-10
Moving data from relational tables into dimensional tables by using external tables 3-10

Chapter 4. Performance tuning dimensional databases 4-1
Query execution plans . 4-1
Data distribution statistics . 4-1

Fragment-level statistics . 4-3
Automatic management of data distribution statistics . 4-4

Chapter 5. Informix SQL Warehouse Tool . 5-1

Appendix. Accessibility . A-1
Accessibility features for IBM Informix products . A-1

Accessibility features . A-1

© Copyright IBM Corp. 1996, 2013 iii

Keyboard navigation . A-1
Related accessibility information . A-1
IBM and accessibility. A-1

Dotted decimal syntax diagrams . A-1

Notices . B-1
Trademarks . B-3

Index . X-1

iv IBM Informix Data Warehouse Guide

Introduction

This introduction provides an overview of the information in this publication and
describes the conventions that this publication uses.

In this introduction
This introduction provides an overview of the information in this publication and
describes the conventions that this publication uses.

About this publication
This publication provides reference material for IBM® Informix®. This publication
contains comprehensive information about designing dimensional databases, using
the Informix Warehouse Feature, and the IBM Informix Warehouse Accelerator,
which is used to quickly process data warehouse queries.

This section discusses the intended audience for this publication.

Types of users
This publication is written for the following users:
v Database administrators
v System administrators
v Performance engineers
v Application developers

This publication is written with the assumption that you have the following
background:
v A working knowledge of your computer, your operating system, and the utilities

that your operating system provides
v Some experience working with relational and dimensional databases or exposure

to database concepts
v Some experience with database server administration, operating-system

administration, network administration, or application development

You can access the Informix information centers, as well as other technical
information such as technotes, white papers, and IBM Redbooks® publications
online at http://www.ibm.com/software/data/sw-library/.

Software dependencies
This publication is written with the assumption that you are using IBM Informix or
IBM Informix Dynamic Server with J/Foundation, Version 12.10, as your database
server.

Assumptions about your locale
IBM Informix products can support many languages, cultures, and code sets. All
the information related to character set, collation, and representation of numeric
data, currency, date, and time is brought together in a single environment, called a
Global Language Support (GLS) locale.

© Copyright IBM Corp. 1996, 2013 v

http://www.ibm.com/software/data/sw-library/

The examples in this publication are written with the assumption that you are
using the default locale, en_us.8859-1. This locale supports U.S. English format
conventions for date, time, and currency. In addition, this locale supports the ISO
8859-1 code set, which includes the ASCII code set plus many 8-bit characters such
as é, è, and ñ.

If you plan to use nondefault characters in your data or your SQL identifiers, or if
you want to conform to the nondefault collation rules of character data, you need
to specify the appropriate nondefault locale.

For instructions on how to specify a nondefault locale, additional syntax, and other
considerations related to GLS locales, see the IBM Informix GLS User's Guide.

Demonstration databases
The DB-Access utility includes one or more demonstration databases that you can
use to learn and test with. After you add, delete, or change the data and scripts
that are in the database, you can re-initialize the database to its original condition.

The demonstration databases are:
v The stores_demo database illustrates a relational schema with information about

a fictitious wholesale sporting-goods distributor. Many examples in IBM
Informix publications are based on the stores_demo database.

v The sales_demo database provides an example of a simple data-warehousing
environment and works in conjunction with the stores_demo database. The
scripts for the sales_demo database create new tables and add extra rows to the
items and orders tables of stores_demo database.

v The superstores_demo database illustrates an object-relational schema. The
superstores_demo database contains examples of extended data types, type and
table inheritance, and user-defined routines.

For information about how to create and populate the demonstration databases,
see the IBM Informix DB-Access User's Guide. For descriptions of the databases and
their contents, see the IBM Informix Guide to SQL: Reference.

The scripts that you use to install the demonstration databases reside in the
$INFORMIXDIR/bin directory on UNIX and in the %INFORMIXDIR%\bin
directory on Windows.

Example code conventions
Examples of SQL code occur throughout this publication. Except as noted, the code
is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by
semicolons. For instance, you might see the code in the following example:
CONNECT TO stores_demo
...

DELETE FROM customer
WHERE customer_num = 121

...

COMMIT WORK
DISCONNECT CURRENT

vi IBM Informix Data Warehouse Guide

To use this SQL code for a specific product, you must apply the syntax rules for
that product. For example, if you are using an SQL API, you must use EXEC SQL
at the start of each statement and a semicolon (or other appropriate delimiter) at
the end of the statement. If you are using DB–Access, you must delimit multiple
statements with semicolons.

Tip: Ellipsis points in a code example indicate that more code would be added in
a full application, but it is not necessary to show it to describe the concept being
discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the documentation for your product.

Additional documentation
Documentation about this release of IBM Informix products is available in various
formats.

You can access Informix technical information such as information centers,
technotes, white papers, and IBM Redbooks publications online at
http://www.ibm.com/software/data/sw-library/.

Compliance with industry standards
IBM Informix products are compliant with various standards.

IBM Informix SQL-based products are fully compliant with SQL-92 Entry Level
(published as ANSI X3.135-1992), which is identical to ISO 9075:1992. In addition,
many features of IBM Informix database servers comply with the SQL-92
Intermediate and Full Level and X/Open SQL Common Applications Environment
(CAE) standards.

The IBM Informix Geodetic DataBlade® Module supports a subset of the data types
from the Spatial Data Transfer Standard (SDTS)—Federal Information Processing
Standard 173, as referenced by the document Content Standard for Geospatial
Metadata, Federal Geographic Data Committee, June 8, 1994 (FGDC Metadata
Standard).

Introduction vii

http://www.ibm.com/software/data/sw-library/

viii IBM Informix Data Warehouse Guide

Chapter 1. Dimensional databases

A dimensional database is a relational database that uses a dimensional data model to
organize data. This model uses fact tables and dimension tables in a star or
snowflake schema.

A dimensional database is the optimal type of database for data warehousing.

The availability and reliability of the Informix database server includes a full
active-active cluster solution for high availability and low cost scalability. You can
use Informix to manage workload distribution across multiple read-only or
full-transaction nodes. You can dynamically add different types of nodes into your
cluster environment to scale out or increase availability in the most demanding
environments.

Warehouse workloads have the flexibility to work on the same database with
operational data, running real-time on a separate node in the cluster. Data can also
be replicated in real-time using Enterprise Replication, or copied to a separate data
warehouse server. With Informix, you have the flexibility to design the system to
meet your needs and to make the most of your existing infrastructure.

Overview of data warehousing
Data warehouse databases provide a decision support system (DSS) environment
in which you can evaluate the performance of an entire enterprise over time.

In the broadest sense, the term data warehouse is used to refer to a database that
contains very large stores of historical data. The data is stored as a series of
snapshots, in which each record represents data at a specific time. By analyzing
these snapshots you can make comparisons between different time periods. You
can then use these comparisons to help make important business decisions.

Data warehouse databases are optimized for data retrieval. The duplication or
grouping of data, referred to as database denormalization, increases query
performance and is a natural outcome of the dimensional design of the data
warehouse. By contrast, traditional online transaction processing (OLTP) databases
automate day-to-day transactional operations. OLTP databases are optimized for
data storage and strive to eliminate data duplication. Databases that achieve this
goal are referred to as normalized databases.

An enterprise data warehouse (EDW) is a data warehouse that services the entire
enterprise. An enterprise data warehousing environment can consist of an EDW, an
operational data store (ODS), and physical and virtual data marts.

A data warehouse can be implemented in several different ways. You can use a
single data management system, such as Informix, for both transaction processing
and business analytics. Or, depending on your system workload requirements, you
can build a data warehousing environment that is separate from your transactional
processing environment.

Informix uses the umbrella terms data warehousing and data warehousing environment
to encompass any of the following forms that you might use to store your data:

© Copyright IBM Corp. 1996, 2013 1-1

Data warehouse
A database that is optimized for data retrieval to facilitate reporting and
analysis. A data warehouse incorporates information about many subject
areas, often the entire enterprise. Typically you use a dimensional data
model to design a data warehouse. The data is organized into dimension
tables and fact tables using star and snowflake schemas. The data is
denormalized to improve query performance. The design of a data
warehouse often starts from an analysis of what data already exists and
how to collected in such a way that the data can later be used. Instead of
loading transactional data directly into a warehouse, the data is often
integrated and transformed before it is loaded into the warehouse.

The primary advantage of a data warehouse is that it provides easy access
to and analysis of vast stores of information on many subject areas.

Data mart
A database that is oriented towards one or more specific subject areas of a
business, such as tracking inventories or transactions, rather than an entire
enterprise. A data mart is used by individual departments or groups. Like
a data warehouse, you typically use a dimensional data model to build a
data mart. For example the data mart might use a single star schema
comprised of one fact table and several dimension tables. The design of a
data mart often starts with an analysis of what data the user needs rather
than focusing on the data that already exists.

DAILY_SALES
fact table

STORE

CUSTOMER

CONTACT

PRODUCT

PERIOD

CITY

REGION

ADDRESS

DEMOGRAPHICS PROMOTION

BRAND

QUARTER

PRODUCT_LINE

MONTH

Figure 1-1. A sample snowflake schema which has the DAILY_SALES table as the fact table.

1-2 IBM Informix Data Warehouse Guide

Operational data store
A subject-oriented system that is optimized for looking up one or two
records at a time for decision making. An operational data store (ODS) is a
hybrid form of data warehouse that contains timely, current, integrated
information. Including the ODS in the data warehousing environment
enables access to more current data more quickly, particularly if the data
warehouse is updated by one or more batch processes rather than updated
continuously. The data typically is of a higher level granularity than the
transaction. You can use an ODS for clerical, day-to-day decision making.
This data can serve as the common source of data for data warehouses.

Why build a dimensional database?
In a data warehousing environment, the relational databases need to be optimized
for data retrieval and tuned to support the analysis of business trends and
projections.

This type of informational processing is known as online analytical processing
(OLAP) or decision support system (DSS) processing. OLAP is also the term that
database designers use to describe a dimensional approach to informational
processing.

A dimensional database needs to be designed to support queries that retrieve a
large number of records and that summarize data in different ways. A dimensional

PERKEY

PRODKEY

STOREKEY

CUSTKEY

PROMOKEY

QUANTITY_SOLD
EXTENDED_PRICE
EXTENDED_COST
SHELF_LOCATION
SHELF_NUMBER
START_SHELF_DATE
SHELF_HEIGHT
SHELF_WIDTH
…

DAILY_SALES
fact table

STORE

STOREKEY

STORE_NUMBER
CITY
STATE
DISTRICT
REGION

CUSTOMER

CUSTKEY

NAME
ADDRESS
C_CITY
C_STATE
ZIP
PHONE
AGE_LEVEL
…

PROMOTION

PROMOKEY

PROMOTYPE
PROMODESC
PROMOVALUE
PROMOVALUE2
PROMO_COST

PRODUCT

PRODKEY

BRANDKEY

PRODLINEKEY

UPC_NUMBER
P_PRICE
P_COST
ITEM_DESC
PACKAGE_TYPE
CATEGORY
SUB_CATEGORY
PACKAGE_SIZE
…

PERIOD

PERKEY

CALENDAR_DATE
WEEK
WEEK_ENDING_DATE
MONTH
PERIOD
YEAR
HOLIDAY_FLAG
…

Figure 1-2. A data mart with the DAILY_SALES fact table

Chapter 1. Dimensional databases 1-3

database tends to be subject oriented and aims to answer questions such as, “What
products are selling well?” “At what time of year do certain products sell best?”
“In what regions are sales weakest?”

In a dimensional data model, the data is represented as either facts or dimensions.
A fact is typically numeric piece of data about a transaction, such as the number of
items ordered. A dimension is the reference information about the numeric facts,
such as the name of the customer. Any new data that you load into the
dimensional database is usually updated in a batch, often from multiple sources.

Relational databases are optimized for online transaction processing (OLTP) are
designed to meet the day-to-day operational needs of the business. OLTP systems
tend to organize data around specific processes, such as order entry. The database
performance is tuned for those operational needs by using a normalized data model
which stores data by using database normalization rules. Consequently, the
database can retrieve a small number of records very quickly.

Some of the advantages of the dimensional data model are that data retrieval tends
to be very quick and the organization of the data warehouse is easier for users to
understand and use.

If you attempt to use a database that is designed for OLTP as your data
warehouse, query performance will be very slow and it will be difficult to perform
analysis on the data.

The following table summarizes the key differences between OLTP and OLAP
databases:

Normalized database (OLTP) Dimensional database (OLAP)

Data is atomized Data is summarized

Data is current Data is historical

Processes one record at a time Processes many records at a time

Process oriented Subject oriented

Designed for highly structured repetitive
processing

Designed for highly unstructured analytical
processing

Many of the problems that businesses attempt to solve are multidimensional in
nature. For example, SQL queries that create summaries of product sales by region,
region sales by product, and so on, might require hours of processing on an OLTP
database. However, a dimensional database could process the same queries in a
fraction of the time.

Besides the characteristic schema design differences between OLTP and OLAP
databases, the query optimizer typically should be tuned differently for these two
types of tasks. For example, in OLTP operations, the OPTCOMPIND setting (as
specified by the environment variable or by the configuration parameter of that
name) should typically be set to zero, to favor nested-loop joins. OLAP operations,
in contrast, tend to be more efficient with an OPTCOMPIND setting of 2 to favor
hash-join query plans. For more information, see the OPTCOMPIND environment
variable and the OPTCOMPIND configuration parameter. See the IBM Informix
Performance Guide for additional information about OPTCOMPIND, join methods,
and the query optimizer.

1-4 IBM Informix Data Warehouse Guide

IBM Informix also supports the SET ENVIRONMENT OPTCOMPIND statement to
change OPTCOMPIND setting dynamically during sessions in which both OLTP
and OLAP operations are required. See the IBM Informix Guide to SQL: Syntax for
more information about the SET ENVIRONMENT statement of SQL.

Informix is designed to help businesses better leverage their existing information
assets as they move into an on-demand business environment. In this type of
environment, mission-critical database management applications typically require
combination systems. The applications need both online transaction processing
(OLTP), and batch and decision support systems (DSS), including online analytical
processing (OLAP).
Related reference:

OPTCOMPIND environment variable (SQL Reference)

OPTCOMPIND configuration parameter (Administrator's Reference)

What is dimensional data?
Traditional relational databases, such as OLTP databases, are organized around a
list of records. Each record contains related information that is organized into
attributes (fields). The customer table of the stores_demo demonstration database,
which includes fields for name, company, address, phone, and so forth, is a typical
example. While this table has several fields of information, each row in the table
pertains to only one customer. If you wanted to create a two-dimensional matrix
with customer name and any other field, for example, phone number), you would
realize that there is only a one-to-one correspondence. The following table is an
example of a database table with fields that have only a one-to-one
correspondence.

A four-column table displaying names and phone numbers.

Table 1-1. A table with a one-to-one correspondences between fields

Customer Phone number --->

Ludwig Pauli 408-789-8075 ---------------- ----------------
Carole Sadler ---------------- 415-822-1289 ----------------
Philip Currie ---------------- ---------------- 414-328-4543

You could put any combination of fields from the preceding customer table in this
matrix, but you would always end up with a one-to-one correspondence, which
shows that this table is not multidimensional and would not be well suited for a
dimensional database.

However, consider a relational table that contains more than a one-to-one
correspondence between the fields of the table. Suppose you create a table that
contains sales data for products sold in each region of the country. For simplicity,
the company has three products that are sold in three regions. The following table
shows how you might store this data in a table, using a normalized data model.
This table lends itself to multidimensional representation because it has more than
one product per region and more than one region per product.

Table 1-2. A simple table with a many-to-many correspondence

Product Region Unit Sales

Football East 2300

Chapter 1. Dimensional databases 1-5

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_287.htm#ids_sqr_287
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0129.htm#ids_adr_0129

Table 1-2. A simple table with a many-to-many correspondence (continued)

Product Region Unit Sales

Football West 4000

Football Central 5600

Tennis racket East 5500

Tennis racket West 8000

Tennis racket Central 2300

Baseball East 10000

Baseball West 22000

Baseball Central 34000

Although this data can be forced into the three-field relational table, the data fits
more naturally into the two-dimensional matrix in the following table. This matrix
better represents the many-to-many relationship of product and region data shown
in the previous table.

Table 1-3. A simple two-dimensional example

Region Central East West

Product Football 5600 2300 4000

Tennis Racket 2300 5500 8000

Baseball 34000 10000 22000

The performance advantages of the dimensional model over the normalized model
can be great. A dimensional approach simplifies access to the data that you want to
summarize or compare. For example, using the dimensional model to query the
number of products sold in the West, the database server finds the West column
and calculates the total for all row values in that column. To perform the same
query on the normalized table, the database server has to search and retrieve each
row where the Region column equals 'West' and then aggregate the data. In
queries of this kind, the dimensional table can total all values of the West column
in a fraction of the time it takes the relational table to find all the 'West' records.
Related concepts:

The stores_demo Database (SQL Reference)

1-6 IBM Informix Data Warehouse Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_313.htm#ids_sqr_313

Chapter 2. Design a dimensional data model

To build a dimensional database, you start by designing a dimensional data model
for your business.

You will learn how a dimensional model differs from a transactional model, what
fact tables and dimension tables are and how to design them effectively. You will
learn how to analyze the business processes in your organization where data is
gathered and use that analysis to design a model for your dimensional data.

IBM Informix includes several demonstration databases that are the basis for many
examples in Informix publications, including examples in the IBM Informix Data
Warehouse Guide. The stores_demo database illustrates a relational schema with
information about a fictitious wholesale sporting-goods distributor. You will use
SQL and the data in the stores_demo database to populate a new dimensional
database. The dimensional database is based on the simple dimensional data
model that you learned about.

To understand the concepts of dimensional data modeling, you should have a basic
understanding of SQL and relational database theory. This section provides only a
summary of data warehousing concepts and describes a simple dimensional data
model.
Related concepts:

The stores_demo Database (SQL Reference)
Chapter 4, “Performance tuning dimensional databases,” on page 4-1
Related reference:
Chapter 3, “Implement a dimensional database,” on page 3-1

Concepts of dimensional data modeling
To build a dimensional database, you start with a dimensional data model. The
dimensional data model provides a method for making databases simple and
understandable. You can conceive of a dimensional database as a database cube of
three or four dimensions where users can access a slice of the database along any
of its dimensions. To create a dimensional database, you need a model that lets
you visualize the data.

Suppose your business sells products in different markets and you want to
evaluate the performance over time. It is easy to conceive of this business process
as a cube of data, which contains dimensions for time, products, and markets. The
following figure shows this dimensional model. The various intersections along the
lines of the cube would contain the measures of the business. The measures
correspond to a particular combination: product, market, and time data.

© Copyright IBM Corp. 1996, 2013 2-1

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_313.htm#ids_sqr_313

Another name for the dimensional model is the star schema. The database designers
use this name because the diagram for this model looks like a star with one central
table around which a set of other tables are displayed. The central table is the only
table in the schema with multiple joins connecting it to all the other tables. This
central table is called the fact table and the other tables are called dimension tables.
The dimension tables all have only a single join that attaches them to the fact table,
regardless of the query. The following figure shows a simple dimensional model of
a business that sells products in different markets and evaluates business
performance over time.

The fact table
The fact table stores the measures of the business and points to the key value at
the lowest level of each dimension table. The measures are quantitative or factual
data about the subject.

The measures are generally numeric and correspond to the "how much" or "how
many" aspects of a question. Examples of measures are price, product sales,
product inventory, revenue, and so forth. A measure can be based on a column in a
table or it can be calculated.

The following table shows a fact table whose measures are sums of the units sold,
the revenue, and the profit for the sales of that product to that account on that day.

Figure 2-1. A dimensional model of a business that has time, product, and market dimensions

Figure 2-2. A typical dimensional model

2-2 IBM Informix Data Warehouse Guide

Table 2-1. A fact table with sample records

Product Code Account code Day code Units sold Revenue Profit

1 5 32104 1 82.12 27.12

3 17 33111 2 171.12 66.00

1 13 32567 1 82.12 27.12

Before you design a fact table, you must determine the granularity of the fact table.
The granularity corresponds to how you define an individual low-level record in
that fact table. The granularity might be the individual transaction, a daily
snapshot, or a monthly snapshot. The fact table shown contains one row for every
product sold to each account each day. Thus, the granularity of the fact table is
expressed as product by account by day.

Dimensions of the data model
A dimension represents a single set of objects or events in the real world. Each
dimension that you identify for the data model gets implemented as a dimension
table. Dimensions are the qualifiers that make the measures of the fact table
meaningful, because they answer the what, when, and where aspects of a question.
For example, consider the following business questions, for which the dimensions
are italicized:
v What accounts produced the highest revenue last year?
v What was our profit by vendor?
v How many units were sold for each product?

In the preceding set of questions, revenue, profit, and units sold are measures (not
dimensions), as each represents quantitative or factual data.

Dimension elements
A dimension can define multiple dimension elements for different levels of
summation.

For example, all the elements that relate to the structure of a sales organization
might comprise one dimension. The following figure shows the dimension
elements that the Accounts dimension defines.

Dimensions are made up of hierarchies of related elements. Because of the
hierarchical aspect of dimensions, users are able to construct queries that access
data at a higher level (roll up) or lower level (drill down) than the previous level of
detail. The figure shows the hierarchical relationships of the dimension elements:
v The account elements roll up to the territory elements

Figure 2-3. Dimension elements in the accounts dimension

Chapter 2. Design a dimensional data model 2-3

v The territory elements roll up to the region elements

Users can query at different levels of the dimension, depending on the data they
want to retrieve. For example, users might perform a query against all regions and
then drill down to the territory or account level for detailed information.

Dimension elements are usually stored in the database as numeric codes or short
character strings to facilitate joins to other tables.

Each dimension element can define multiple dimension attributes, in the same way
dimensions can define multiple dimension elements.

Dimension attributes
A dimension attribute is a column in a dimension table. Each attribute describes a
level of summary within a dimension hierarchy.

The dimension elements define the hierarchical relationships within a dimension
table. The dimension attributes describe the dimension elements in terms that are
familiar to users. The following figure shows the dimension elements and
corresponding attributes of the Account dimension.

Because dimension attributes describe the items in a dimension, they are most
useful when they are text.

Tip: Sometimes during the design process, it is unclear whether a numeric data
field from a production data source is a measured fact or an attribute. Generally, if
the numeric data field is a measurement that changes each time you sample it, the
field is a fact. If field is a discretely valued description of something that is more
or less constant, it is a dimension attribute.

Dimension tables
A dimension table is a table that stores the textual descriptions of the dimensions of
the business. A dimension table contains an element and an attribute, if
appropriate, for each level in the hierarchy.

The lowest level of detail that is required for data analysis determines the lowest
level in the hierarchy. Levels higher than this base level store redundant data. This
denormalized table reduces the number of joins that are required for a query and
makes it easier for users to query at higher levels and then drill down to lower
levels of detail. The term drilling down means to add row headers from the
dimension tables to your query. The following table shows an example of a
dimension table that is based on the Account dimension.

Figure 2-4. Attributes that correspond to the dimension elements

2-4 IBM Informix Data Warehouse Guide

Table 2-2. An example of a dimension table

Acct
code Account name Territory Salesman Region

Region
size

Region
manager

1 Javier's Mfg. 101 B. Gupta Asia-Pacific Over 50 T. Sent

2 TBD Sales 101 B. Gupta Asia-Pacific Over 50 T. Sent

3 Tariq's Wares 101 B. Gupta Asia-Pacific Over 50 T. Sent

4 The Golf Co. 201 S. Chiba Asia-Pacific Over 50 T. Sent

Building a dimensional data model
To build a dimensional data model, you need a methodology that outlines the
decisions you need to make to complete the database design. This methodology
uses a top-down approach because it first identifies the major processes in your
organization where data is collected. An important task of the database designer is
to start with the existing sources of data that your organization uses. After the
processes are identified, one or more fact tables are built from each business
process. The following steps describe the methodology you use to build the data
model.

A dimensional database can be based on multiple business processes and can
contain many fact tables. However, to focus on the concepts, the data model that
this section describes is based on a single business process and has one fact table.

To build a dimensional database:
1. Choose the business processes that you want to use to analyze the subject area

to be modeled.
2. Determine the granularity of the fact tables.
3. Identify dimensions and hierarchies for each fact table.
4. Identify measures for the fact tables.
5. Determine the attributes for each dimension table.
6. Get users to verify the data model.

A business process
A business process is an important operation in your organization that some legacy
system supports. You collect data from this system to use in your dimensional
database.

The business process identifies what end users are doing with their data, where the
data comes from, and how to transform that data to make it meaningful. The
information can come from many sources, including finance, sales analysis, market
analysis, customer profiles. The following list shows different business processes
you might use to determine what data to include in your dimensional database:
v Sales
v Shipments
v Inventory
v Orders
v Invoices

Chapter 2. Design a dimensional data model 2-5

Summary of a business process
Suppose your organization wants to analyze customer buying trends by product
line and region so that you can develop more effective marketing strategies. In this
scenario, the subject area for your data model is sales.

After many interviews and thorough analysis of your sales business process, your
organization collects the following information:
v Customer-base information has changed.

Previously, sales districts were divided by city. Now the customer base
corresponds to two regions: Region 1 for California and Region 2 for all other
states.

v The following reports are most critical to marketing:
– Monthly revenue, cost, net profit by product line from each vendor
– Revenue and units sold by product, by region, and by month
– Monthly customer revenue
– Quarterly revenue from each vendor

v Most sales analysis is based on monthly results, but you can choose to analyze
sales by week or accounting period (at a later date).

v A data-entry system exists in a relational database.
To develop a working data model, you can assume that the relational database
of sales information has the following properties:
– The stores_demo database provides much of the revenue data that the

marketing department uses.
– The product code that analysts use is stored in the catalog table by the

catalog number.
– The product line code is stored in the stock table by the stock number. The

product line name is stored as description.
– The product hierarchies are somewhat complicated. Each product line has

many products, and each manufacturer has many products.
v All the cost data for each product is stored in a flat file named costs.lst on a

different purchasing system.
v Customer data is stored in the stores_demo database.

The region information has not yet been added to the database.

An important characteristic of the dimensional model is that it uses business labels
familiar to end users rather than internal tables or column names. After the
analysis of the business process is completed, you should have all the information
you need to create the measures, dimensions, and relationships for the dimensional
data model. This dimensional data model is used to implement the sales_demo
database that the section Chapter 3, “Implement a dimensional database,” on page
3-1 describes.

The stores_demo demonstration database is the primary data source for the
dimensional data model that this section builds. For detailed information about the
data sources that are used to populate the tables of the sales_demo database, see
“Mapping data from data sources to the database” on page 3-3.

Determine the granularity of the fact table
After you gather all the relevant information about the subject area, the next step
in the design process is to determine the granularity of the fact table.

2-6 IBM Informix Data Warehouse Guide

To do this you must decide what an individual low-level record in the fact table
should contain. The components that make up the granularity of the fact table
correspond directly with the dimensions of the data model. Therefore, when you
define the granularity of the fact table, you identify the dimensions of the data
model.

How granularity affects the size of the database
The granularity of the fact table also determines how much storage space the
database requires.

For example, consider the following possible granularities for a fact table:
v Product by day by region
v Product by month by region

The size of a database that has a granularity of product by day by region would be
much greater than a database with a granularity of product by month by region.
The database contains records for every transaction made each day as opposed to a
monthly summation of the transactions. You must carefully determine the
granularity of your fact table because too fine a granularity could result in an
astronomically large database. Conversely, too coarse a granularity could mean the
data is not detailed enough for users to perform meaningful queries against the
database.

Use the business process to determine the granularity
A careful review of the information gathered from the business process should
provide what you need to determine the granularity of the fact table. To
summarize, your organization wants to analyze customer-buying trends by
product line and region so that you can develop more effective marketing
strategies.

Customer by product level granularity:

The granularity of the fact table should always represent the lowest level for each
corresponding dimension.

When you review the information from the business process, the granularity for
customer and product dimensions of the fact table are apparent. Customer and
product cannot be reasonably reduced any further. These dimensions already
express the lowest level of an individual record for the fact table. In some cases,
product might be further reduced to the level of product component because a
product could be made up of multiple components.

Customer by product by district level granularity:

Because the customer buying trends that your organization wants to analyze
include a geographical component, you still need to decide the lowest level for the
region information.

The business process indicates that in the past, sales districts were divided by city,
but now your organization distinguishes between two regions for the customer
base:
v Region 1 for California
v Region 2 for all other states

Chapter 2. Design a dimensional data model 2-7

Nonetheless, at the lowest level, your organization still includes sales district data.
The district represents the lowest level for geographical information and provides a
third component to further define the granularity of the fact table.

Customer by product by district by day level granularity:

Customer-buying trends always occur over time, so the granularity of the fact table
must include a time component.

Suppose your organization decides to create reports by week, accounting period,
month, quarter, or year. At the lowest level, you probably want to choose a base
granularity of day. This granularity allows your business to compare sales on
Tuesdays with sales on Fridays, compare sales for the first day of each month, and
so forth. The granularity of the fact table is now complete.

The decision to choose a granularity of day means that each record in the time
dimension table represents a day. In terms of the storage requirements, even 10
years of daily data is only about 3,650 records, which is a relatively small
dimension table.

Identify the dimensions and hierarchies
After you determine the granularity of the fact table, it is easy to identify the
primary dimensions for the data model because each component that defines the
granularity corresponds to a dimension.

The following figure shows the relationship between the granularity of the fact
table and the dimensions of the data model.

With the dimensions (customer, product, geography, time) for the data model in
place, the schema diagram begins to take shape.

Tip: At this point, you can add additional dimensions to the primary granularity
of the fact table, where the new dimensions take on only a single value under each
combination of the primary dimensions. If you see that an additional dimension
violates the granularity because it causes additional records to be generated, then
you must revise the granularity of the fact table to accommodate the additional
dimension. For this data model, no additional dimensions need to be added.

You can now map out dimension elements and hierarchies for each dimension. The
following figure shows the relationships among dimensions, dimension elements,
and the inherent hierarchies.

Figure 2-5. The granularity of the fact table corresponds to the dimensions of the data model

2-8 IBM Informix Data Warehouse Guide

In most cases, the dimension elements need to express the lowest possible
granularity for each dimension, not because queries need to access individual
low-level records, but because queries need to cut through the database in precise
ways. In other words, even though the questions that a data warehousing
environment poses are usually broad, these questions still depend on the lowest
level of product detail.

Product dimension

The dimension elements for the product dimension are product, product line, and
vendor:
v Product has a roll-up hierarchical relationship with product line and with

vendor. Product has an attribute of product name.
v Product line has an attribute of product line name.
v Vendor has an attribute of vendor.

AttributesDimension elements

Vendor

Product

Product

Product line

Customer

Region

State

District

Year

Quarter

Month

Day

Vendor

Product name

Product line name

Customer
Name

Company

District name

State name

Order date

Figure 2-6. The relationships between dimensions, dimension elements, and the inherent
hierarchies

Chapter 2. Design a dimensional data model 2-9

Customer dimension

The dimension element for the customer dimension is customer, which has
attributes of customer, name, and company.

Geography dimension

The dimension elements for the geography dimension are district, state, and
region:
v District has a roll-up hierarchical relationship with state, which has a roll-up

hierarchical relationship with region.
v District has an attribute of district name.
v State has an attribute of state name.

Time dimension

The dimensional elements for the time dimension are day, month, quarter, and
year.
v Day has a roll-up hierarchical relationship with month, which has a roll-up

hierarchical relationship with quarter, which has a roll-up hierarchical
relationship with year.

v Day has an attribute of order date.

Establish referential relationships
For the database server to support the dimensional data model, you must define
logical dependencies between the fact tables and their dimension tables.

These logical dependencies should be reflected in the columns and indexes that
you include in the schema of each table, and in the referential constraints that you
define between each fact table and the associated dimension tables. For the large
fragmented tables in typical data warehousing operations, these logical
dependencies can be the basis for:
v Fragment-key expressions
v Join conditions
v Query predicates for fragment elimination

These query components can significantly improve the performance and
throughput of the data warehouse.

A referential constraint enforces a one-to-one relationship between the values in
referencing columns (of the foreign key) and the referenced columns (of the
primary key or unique constraint). The relationship between the referenced table
with the primary key constraint and the referencing table with the foreign key
constraint is sometimes called a parent-child relationship. The corresponding columns
of the parent and child tables can have the same identifiers, but having the same
identifiers is not a requirement. There can also be a many-to-one relationship
between the referencing table (with the foreign key) and the referenced table (with
the primary key, or with the unique constraint).

In the dimensional model, a primary key constraint or a unique constraint in the
fact table corresponds to a foreign key constraint in the dimension table. These
constraints are specified in the CREATE TABLE or ALTER TABLE statements of
SQL that defines the schema of the tables. Because the tables in the primary key

2-10 IBM Informix Data Warehouse Guide

and foreign key constraints must be in the same database, the database schema
must include the dimension tables of each fact table.

The same data values can appear in the constrained columns of both tables. As a
result, the index on which these referential constraints are defined can be used in
queries as join predicates to join the fact table and the dimensional table.

For tables that are fragmented by expression or fragmented by list, you can use the
foreign key as the fragmentation key for the dimension tables. If you use the
foreign key as the fragmentation key, you can use the equality operator or
MATCHES operator with the primary key and foreign key values as the join
predicate in queries and other data manipulation operations. The join predicate
will be TRUE for only a subset of the fact table fragments. As a result, the query
optimizer can use fragment elimination to process only the fact table partitions that
contain qualifying rows.
Related concepts:

Primary keys (Database Design Guide)

Using the FOREIGN KEY Constraint (SQL Syntax)

How indexes affect primary-key, unique, and referential constraints (SQL
Syntax)

Restrictions on Referential Constraints (SQL Syntax)

Referential integrity (SQL Tutorial)

Adding a Primary-Key or Unique Constraint (SQL Syntax)

Restrictions on Referential Constraints (SQL Syntax)

Distribution schemes that eliminate fragments (Performance Guide)
Related reference:

Star-Join Directives (SQL Syntax)

ENVIRONMENT Options (SQL Syntax)

Fragmentation expressions for fragment elimination (Performance Guide)

Query optimizer features based on referential constraints
For fact tables and dimension tables that are linked by referential constraints, the
Informix server provides various syntax features that support efficient queries to
join fact tables with their dimension tables.

MULTI_INDEX optimizer directive
A search path based on an access method that uses more than one index
on the same table is called a multi-index scan. The MULTI_INDEX or
INDEX_ALL directive forces the query optimizer to consider a multi-index
scan to search the specified table for qualifying rows.

FACT optimizer directive
The query optimizer considers a query plan in which one specified table is
a fact table in a star-join execution plan, and only considers the specified
table as a fact table in the star-join execution plan.

STAR_JOIN optimizer directive
The query optimizer favors a star-join query execution plan, if available. A
star-join query execution plan joins all of the dimension tables specified in

Chapter 2. Design a dimensional data model 2-11

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.ddi.doc/ids_ddi_182.htm#ids_ddi_182
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_0532.htm#ids_sqs_0532
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_0404.htm#ids_sqs_0404
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_0404.htm#ids_sqs_0404
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_0302.htm#ids_sqs_0302
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlt.doc/ids_sqt_255.htm#ids_sqt_255
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_0324.htm#ids_sqs_0324
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_0519.htm#ids_sqs_0519
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.perf.doc/ids_prf_466.htm#ids_prf_466
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_2284.htm#ids_sqs_2284
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_2285.htm#ids_sqs_2285
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.perf.doc/ids_prf_467.htm#ids_prf_467

the query to the fact table. The star-join directives require that the parallel
database query feature (PDQ) be enabled, and that table statistics be
available for every table in the query.

SET OPTIMIZATION ENVIRONMENT statement
This SQL statement can define a general optimization environment for all
queries in the current session. For some data warehousing applications,
session environment settings can improve the performance of queries that
join fact tables with dimension tables. The primary key of each dimension
table must correspond to a foreign key of the fact table.

The MULTI_INDEX, FACT, and STAR_JOIN directives favor queries based on the
dimensional model. The query optimizer also recognizes negative directives that
favor non-dimensional query plans such as the AVOID_MULTI_INDEX and
AVOID_STAR_JOIN directives. Similarly, the AVOID_FACT directive instructs the
query optimizer to consider using a specified list of tables only as dimension tables
in the current join query. The NON_DIM option to the SET OPTIMIZATION
ENVIRONMENT statement identifies a list of tables that the query optimizer
should avoid using as dimension tables in joins.

An optimizer directive applies to the current DML operation, which can be a
SELECT, INSERT, DELETE, MERGE, or UPDATE statement. However, if the SQL
statement cache is enabled the database server can access the optimized query
plans from previously queries. These optimized query plans can be based on
optimizer directives from the current session or from other sessions. If the database
server has enabled external directives, the query optimizer can apply directives
from the sysdirectives system catalog table to DML operations on the same set of
tables that the sysdirectives entry references.

The SET OPTIMIZATION ENVIRONMENT statement applies to subsequent DML
operations in the user session. You can issue additional SET OPTIMIZATION
ENVIRONMENT statements that specify different options in the same session. If a
new option conflicts with an existing optimization setting, the new option replaces
the existing setting.

In data warehouse operations on tables that contain millions of rows, the
performance benefits of constraints, fragmentation keys, and join predicates that
support fragment elimination are proportionally greater than in operations on
small tables. Conversely, the costs of inefficient database design, inefficient storage
distribution strategies, and inefficient query execution plans are correspondingly
higher in data warehousing contexts.
Related concepts:

Optimizer directives (Performance Guide)

IMPLICIT_PDQ Environment Option (SQL Syntax)
Related reference:

Access-Method Directives (SQL Syntax)

Star-Join Directives (SQL Syntax)

ENVIRONMENT Options (SQL Syntax)

Choose the measures for the fact table
The measures for the data model include not only the data itself, but also new
values that you calculate from the existing data. When you examine the measures,

2-12 IBM Informix Data Warehouse Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.perf.doc/ids_prf_554.htm#ids_prf_554
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_1144.htm#ids_sqs_1144
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_1694.htm#ids_sqs_1694
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_2284.htm#ids_sqs_2284
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_2285.htm#ids_sqs_2285

you might discover that you need to make adjustments either in the granularity of
the fact table or the number of dimensions.

Another important decision you must make when you design the data model is
whether to store the calculated results in the fact table or to derive these values at
runtime.

The question to answer is “What measures are used to analyze the business?”
Remember that the measures are the quantitative or factual data that tell how much
or how many. The information that you gather from analysis of the sales business
process results in the following list of measures:
v Revenue
v Cost
v Units sold
v Net profit

Use these measures to complete the fact table in the following figure.

The elements of the Sales Fact table are: product code, time code, district code,
customer code, revenue, cost, units sold, and net profit. Some of these elements
join the Sales fact table to the dimension tables.

Product code element
Joins the Sales fact table to the Product dimension table. There are no other
elements in the Product dimension table.

Time code element
Joins the Sales fact table to the Time dimension table. There are no other
elements in the Time dimension table.

District code element
Joins the Sales fact table to the Geography dimension table. There are no
other elements in the Geography dimension table.

Figure 2-7. The Sales fact table references each dimension table

Chapter 2. Design a dimensional data model 2-13

Customer code element
Joins Sales fact table to Customer dimension table. There are no other
elements in the Customer dimension.

In this model, additional space is left in the dimensional tables to add more
elements. You will identify the other elements when you choose the attributes for
each dimension table.
Related reference:
“Choose the attributes for the dimension tables” on page 2-15

Keys to join the fact table with the dimension tables:

Each dimensional table needs to include a primary key that corresponds to a
foreign key in the fact table. The fact table should have a primary (composite) key
that is a combination of the foreign keys.

Assume that the following schema of shows both the logical and physical design
of the database.

The database contains the following five tables:
v Sales fact table
v Product dimension table
v Time dimension table
v Customer dimension table
v Geography dimension table

Each of the dimensional tables includes a primary key (product, time_code,
customer, district_code), and the corresponding columns in the fact table are
foreign keys. The fact table also has a primary (composite) key that is a
combination of these four foreign keys. As a rule, each foreign key of the fact table
must have its counterpart in a dimension table.

Figure 2-8. The Sales fact table references each dimension table

2-14 IBM Informix Data Warehouse Guide

Additionally, any table in a dimensional database that has a composite key must
be a fact table. This means that every table in a dimensional database that
expresses a many-to-many relationship is a fact table. Therefore a dimension table
can also be a fact table for a separate star schema. This type of dimensional
database model is referred to as a snowflake schema.

Tip: The primary key should be a short numeric data type (INT, SMALLINT,
SERIAL) or a short character string (as used for codes). Do not use long character
strings as primary keys.
Related concepts:
“Use the snowflake schema for hierarchical dimension tables” on page 2-29

Resisting normalization
Efforts to normalize a dimensional database can actually prohibit an efficient
dimensional design.

If the four foreign keys of the fact table are tightly administered consecutive
integers, you could reserve as little as 16 bytes for all four keys (4 bytes each for
time, product, customer, and geography) of the fact table. If the four measures in
the fact table were each 4-byte integer columns, you would need to reserve only
another 16 bytes. Thus, each record of the fact table would be only 32 bytes. Even
a billion-row fact table would require only about 32 gigabytes of primary data
space.

With its compact keys and data, such a storage-lean fact table is typical for
dimensional databases. The fact table in a dimensional model is by nature highly
normalized. You cannot further normalize the extremely complex many-to-many
relationships among the four keys in the fact table because no correlation exists
between the four dimension tables. Virtually every product is sold every day to all
customers in every region.

The fact table is the largest table in a dimensional database. Because the dimension
tables are usually much smaller than the fact table, you can ignore the dimension
tables when you calculate the disk space for your database. Efforts to normalize
any of the tables in a dimensional database solely to save disk space are pointless.
Furthermore, normalized dimension tables undermine the ability of users to
explore a single dimension table to set constraints and choose useful row headers.

Choose the attributes for the dimension tables
After you complete the fact table, you can decide the dimension attributes for each
of the dimension tables. To illustrate how to choose the attributes, consider the
time dimension. The data model for the sales business process defines a
granularity of day that corresponds to the time dimension, so that each record in
the time dimension table represents a day. Keep in mind that each field of the
table is defined by the particular day the record represents.

The analysis of the sales business process also indicates that the marketing
department needs monthly, quarterly, and annual reports, so the time dimension
includes the elements: day, month, quarter, and year. Each element is assigned an
attribute that describes the element and a code attribute, to avoid column values
that contain long character strings. The following table shows the attributes for the
time dimension table and sample values for each field of the table.

Chapter 2. Design a dimensional data model 2-15

Table 2-3. Attributes for the time dimension

time code order date
month
code month

quarter
code quarter year

35276 07/31/2010 7 july 3 third q 2010

35277 08/01/2010 8 aug 3 third q 2010

35278 08/02/2010 8 aug 3 third q 2010

The previous table shows that the attribute names you assign should be familiar
business terms that make it easy for end users to form queries on the database.

The following figure shows the completed data model for the sales business
process with all the attributes defined for each dimension table. The elements of
the Sales fact table are: product code, time code, district code, customer code,
revenue, cost, units sold, and net profit. Some of these elements join the Sales fact
table to the dimension tables. Additional elements for each dimension table have
been identified.

Product dimension table
The product code element joins the Sales fact table to the Product
dimension table. The additional elements in the Product dimension table
are: product name, vendor, vendor name, product line, and product line
name.

Time dimension table
The time code element joins the Sales fact table to the Time dimension
table. The additional elements in the Time dimension table are: order date,
month, quarter, and year.

Geography dimension table
The district code element joins the Sales fact table to the Geography
dimension table. The additional elements in the Geography dimension
table are: district, state, state name, and region.

Figure 2-9. The completed dimensional data model for the sales business process

2-16 IBM Informix Data Warehouse Guide

Customer dimension table
The customer code element joins Sales fact table to Customer dimension
table. The additional elements in the Customer dimension table are:
customer name and company.

Related concepts:
“Choose the measures for the fact table” on page 2-12

Fragmentation: Storage distribution strategies
The performance of data warehousing applications can typically benefit from
distributed storage allocation designs for partitioning a database table into two or
more fragments. Each fragment has the same schema as the table, and stores a
subset of the rows in the table (rather than a subset of its columns).

The fragments of a table can be stored in dbspaces on different devices, or in
dbspaces on the same physical storage device. The fragments can also be stored in
named partitions within a single dbspace.

A database can include both fragmented and nonfragmented tables. Index storage
can also be fragmented, either in the same storage spaces as their table (called
attached indexes) or in a different storage distribution scheme (detached indexes).

Potential performance and security advantages of distributed storage include these:
v For frequently-accessed tables, fragmentation can reduce the overhead of I/O

contention for data that resides on a single storage device.
v The GRANT FRAGMENT and REVOKE FRAGMENT statements of SQL can

specify the access privileges that users, roles, or the PUBLIC group hold on
specified fragments of the table. With appropriate fragmentation strategies, these
statements can selectively restrict user access to subsets of the records in a table.

v For databases that enables parallel-database queries (PDQ), multiple scan
threads require less time to scan the fragments than to scan the same rows in a
nonfragmented table.

v Input operations that distribute new rows across multiple fragments run more
quickly (using multiple INSERT threads) that if a single table extent stores the
same rows.

v For fragmentation strategies where the storage allocation of rows is correlated
with data values, query execution plans can ignore fragments that are logically
excluded by predicates in the query. Defining fragments to improve selectivity is
called fragment elimination.

v In cluster environments, fragmentation can reduce the time required for recovery
from hardware failure, because restoring only a subset of the fragments imposes
a smaller data load than restoring the entire table.

v For tables fragmented by interval, the database server create new fragments
automatically, simplifying management of the data.

Note: Do not confuse table fragmentation strategies, which can improve the
efficiency and throughput of database operations, with the various pejorative
meanings of fragmentation in reference to file systems that waste storage space or
increase retrieval time through inefficient storage algorithms, or through
insufficient use of defragmentation tools to store files in contiguous disk partitions.

Chapter 2. Design a dimensional data model 2-17

Informix fragmentation options

Informix supports the following storage fragmentation strategies that can be
applied to database tables:

By Round-robin
A specified number of fragments is defined for the table. Inserted rows are
automatically distributed for storage in these fragments, without regard to
data values in the row, in order to balance the number of rows in each
fragment. Such fragments are called round-robin fragments.

By Expression
Each fragment is defined by a Boolean expression that can be evaluated for
one or more columns of the table. Inserted rows are stored in a fragments
for which the expression that defines the fragment is true for the data in
that row. Rows that match the expression for more than one fragment are
stored in the first matching fragment within the ordered list of fragments
that the system catalog maintains for the table. Such fragments are called
expression fragments.

By List
Each fragment is defined by a list of one or more constant values that
correspond to one or more columns in the table. No two fragments can
share the same value in their lists. These values must be categories on a
nominal scale that has no quantified order within the set of categories.
Inserted rows are stored in the fragment that matches the data value of one
or more columns. Such fragments are called list fragments.

By Interval
At least one fragment must be defined for values less than a numeric,
DATE, or DATETIME column in the table. An interval size, specifying the
range of fragment key values assigned to a single fragment, must also be
defined. You can optionally specify a list of dbspaces to store interval
fragments. The fragments created by the user when the fragmentation
strategy is defined are called range fragments. The database server
automatically creates new fragments of the same interval size to store rows
whose fragment key values are outside the range of the user-defined range
fragments. Fragments created by the database server are called interval
fragments.

Each user-defined permanent or temporary database table can either be
nonfragmented or else can have exactly one fragmentation scheme. You cannot, for
example, define a table in which some fragments use a round-robin strategy, and
other fragments use a list or interval strategy.

You can use the ALTER FRAGMENT statement of SQL, however, to modify the
fragmentation scheme of a table in various ways, including these:
v to change the fragmentation strategy of a fragmented table,
v to define a fragmentation strategy for a nonfragmented table,
v to change a fragmented table to a nonfragmented table,
v to add another fragment to an existing fragmented table,
v to combine two tables that have identical structures into a single fragmented

table,
v to drop one or more dbspaces from the list of dbspaces that store interval

fragments.

2-18 IBM Informix Data Warehouse Guide

v to detach one fragment from a fragmented table and store the rows in a new
nonfragmented table.

For more information about the ALTER FRAGMENT statement and some of the
tasks that it can accomplish in data warehousing operations, see the “Change the
storage distribution strategy” on page 3-6.

Storage fragmentation terms

The following terms are useful for understanding and using the various strategies
available for the distributed storage of table and index fragments.

Fragment key
The column or a set of columns on which the table or index is fragmented.
Depending on the chosen fragmentation strategy, the fragment key can be
a column, or a single column expression, or a multi-column expression. For
a row inserted into a table for which a fragment key is defined, the value
of the column (or the set for values in the fragment key columns)
determines which fragment stores the row. A synonym for fragment key is
partitioning key. Tables partitioned by round-robin have no fragment key.

Fragment list
An ordered list of the fragments that the database server maintains for
every fragmented table or index. By default, the ordinal positions of each
fragment on this list reflects the sequence in which the fragments were
created. The system catalog stores this integer value in the
sysfragments.evalpos column of the row that describes the fragment.
Queries that do not use fragment elimination read the fragments in
ascending order of their evalpos values. The database server automatically
updates evalpos values to reflect changes to the fragment list. Updates to
the list are required, for example, when the database server creates an
interval fragment, or when the ALTER FRAGMENT statement of SQL adds
new fragments, or drops or modifies existing fragments.

Fragment expression
An expression that defines a specific fragment. For example, if the
fragment key is colA of data type SMALLINT, a fragment could be defined
by the expression colA <=8 OR colA IN (9,10,21,22,23) in an expression
based fragmentation strategy.
v Expression-based fragments are defined by a Boolean expression.
v List-based fragments are defined by one or more constant expressions.
v Range fragments (in interval fragmentation) are defined by a range

expression. The only valid operator in the range expression is the
less-than (<) operator. (For example, VALUES < 100).

v System-defined interval fragments (in interval fragmentation) are
defined by a system-generated expression that includes the
greater-than-or-equal >= relational operator, the AND Boolean operator,
and the less-than (<) relational operator. (For example, VALUES >= 100
AND VALUES < 300 specifies an interval that includes fragmentation key
values ranging from 100 to the (non-inclusive) upper limit of 300.)

Tables partitioned by round-robin have no fragment expressions.

NULL fragment
A fragment that stores NULL values (either because its range fragment or
list fragment expression is IS NULL, or because a list-based or
expression-based fragment is defined with NULL as its fragment

Chapter 2. Design a dimensional data model 2-19

expression). For all fragmentation strategies except round-robin, the
database server returns an exception if you insert a row whose fragment
key value is missing, but no NULL fragment is defined (and for list or
expression strategies, no REMAINDER fragment is defined). You do not
need to define a NULL fragment if the fragment key column enforces a
NOT NULL constraint.

REMAINDER fragment
A fragment that stores any row whose fragment key value does not match
the fragment expression of any fragment. If you attempt to insert a row
that does not match any fragment key value for a table or index that is
fragmented by expression or by list, and no REMAINDER fragment is
defined, the database server issues an exception. You cannot define a
REMAINDER fragment for tables fragmented by a round-robin or interval
strategy.

Transition fragment
In an interval fragmentation scheme, the range fragment whose upper limit
in its VALUES clause is larger than the upper limit for any other range
fragment. If no interval fragments have been created for the table, inserting
a row whose fragment-key value exceeds that upper limit requires the
database server to create a new interval fragment. The upper limit of the
transition fragment VALUES clause is called the transition value for the
table.

The MODIFY INTERVAL TRANSITION option to the ALTER FRAGMENT
statement can increase the transition value for a table. This can result in a
different fragment becoming the new transition fragment. This and other
ALTER FRAGMENT operations can cause changes to column values in the
sysfragments system catalog table for the transition fragment, including
these:
v its position relative to other fragments (the evalpos column),
v its fragment expression (the exprtext and exprbin columns),
v and its name (the partition column).

Related concepts:

What is fragmentation? (Database Design Guide)

Fragmentation guidelines (Performance Guide)

Distribution schemes (Performance Guide)

Table fragmentation and data storage (Administrator's Guide)

FRAGMENT BY clause for indexes (SQL Syntax)
Related reference:

FRAGMENT BY Clause for Tables (SQL Syntax)

FRAGMENT BY Clause for Indexes (SQL Syntax)

Fragmentation by ROUND ROBIN
For a table that uses a round-robin distribution scheme, the rows that the database
server stores in an insert or load operation are distributed cyclically among a
user-defined number of fragments, so that the number of rows inserted into each
fragment is approximately the same.

Round-robin distributions are also called even distributions, because the design
goal of this strategy is for an evenly balanced distribution among the fragments.

2-20 IBM Informix Data Warehouse Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.ddi.doc/ids_ddi_084.htm#ids_ddi_084
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.perf.doc/ids_prf_448.htm#ids_prf_448
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.perf.doc/ids_prf_457.htm#ids_prf_457
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.admin.doc/ids_admin_0529.htm#ids_admin_0529
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_0071.htm#ids_sqs_0071
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_0260.htm#ids_sqs_0260
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_0426.htm#ids_sqs_0426

The syntax for defining round-robin interval fragmentation requires that you
specify at least two round-robin fragments in one of two forms. This form defines
round-robin fragments and declare a name for each fragment:

FRAGMENT BY ROUND ROBIN
PARTITION partition IN dbspace,
. . .
PARTITION partition IN dbspace

As in other fragmentation schemes, each PARTITION partition specification
declares the name of a fragment, which must be unique among the names of
fragments of the same table. The dbspace specification can be different for each
fragment, or some fragments (or all of the fragments) can be stored in separate
named partitions of the same dbspace. Each partition is the name of a round-robin
fragment.

This alternative form defines round-robin fragments with no explicit name:
FRAGMENT BY ROUND ROBIN IN dbspace_list

Here the dbspace_list specification is a comma-separated list of at least 2 (but no
more than 2048) dbspaces, each of which stores a single round-robin fragment. No
dbspace can appear more than once in this list. (In the system catalog, the
sysfragments.partition column stores the identifier of the fragment. For fragments
defined without the PARTITION keyword, the partition value is the identifier of
the dbspace where the fragment is stored. For this reason, a repeated dbspace in
dbspace_list violates a uniqueness requirement for names of fragments of the same
table.)

A round-robin distribution scheme must be defined by only one or the other of
these two syntax forms.

A table that is fragmented by round-robin has no fragment key, no fragment
expressions, and no REMAINDER fragment. (An alternative description is that
every round-robin fragment resembles a remainder fragment, because no fragment
expressions are defined to match a fragment key for the inserted rows. But the
REMAINDER keyword is not valid in the SQL syntax to define a round-robin
distribution strategy.)

Because no fragment expressions are evaluated when the database server loads
new rows into round-robin fragments, this strategy provides the best performance
for insert operations.

Only tables, not indexes, can be defined with round-robin fragmentation. For
performance reasons, any indexes that you define on a table that is fragmented by
round-robin should be nonfragmented indexes.

Because a round-robin distribution strategy has no fragment key and no fragment
expressions, you cannot explicitly define a NULL round-robin fragment. When
rows with missing data are loaded into a table by round-robin, the rows with
NULL values are stored wherever the database server happens to insert them as it
approximately equalizes the number of inserted rows for every fragment.

By design, the GRANT FRAGMENT and REVOKE FRAGMENT statements of SQL
cannot reference round-robin fragments. Because each fragment stores a
quasi-random subset of the rows, the DBA cannot predict which rows will be
stored in a given round-robin fragment. If some rows contain unencrypted
sensitive information, table-level (rather than fragment-level) is a more appropriate

Chapter 2. Design a dimensional data model 2-21

granularity for granting or withholding discretionary access privileges in databases
that do not implement label-based (LBAC) security policies.

Because round-robin fragments are uncorrelated with data values, queries of tables
that are fragmented by round-robin cannot benefit from fragment elimination.
Round-robin distribution schemes are useful for balancing the rows in a set of
table fragments across multiple devices, but other storage distribution schemes are
typically used in data warehouse applications that query dimensional tables,
because the performance advantages of round-robin in loading data are more than
offset by slower data retrieval from round-robin fragments.
Related concepts:

Round-robin distribution scheme (Database Design Guide)

Fragmenting by ROUND ROBIN (SQL Syntax)

Fragmentation by EXPRESSION
For a table that uses an expression-based distribution scheme, the rows that the
database server stores in an insert or load operation are distributed among a
user-defined number of fragments, in which each fragment is defined by a Boolean
expression for the fragment key.

The fragment expression must be a column expression. This can be the same
column (or the same set of columns) for all of the fragments, or different fragments
can be defined with different keys. The expression can only reference columns in
the table that is being fragmented. Subqueries or calls to user-defined routines are
not valid.

The syntax for defining an expression fragmentation strategy defines one or more
expression fragments of this form:

FRAGMENT BY EXPRESSION
PARTITION partition expression IN dbspace,
. . .
PARTITION partition expression IN dbspace,
PARTITION partition VALUES (NULL) IN dbspace,
PARTITION partition REMAINDER IN dbspace

As in other fragmentation schemes, each PARTITION partition specification
declares the unique name of a fragment. The expression specification defines the
fragment expression, and the IN dbspace specification defines the storage location
for the fragment. You can optionally define a NULL fragment by specifying NULL as
the expression.

You also can optionally define a REMAINDER fragment for rows that match none
of the specified fragment expressions. For some queries, the REMAINDER
fragment might be difficult to eliminate, and for some tables, the REMAINDER
fragment might become quite large, but the database server issues an exception if
the fragment key value for an inserted row matches no fragment expression, and
no REMAINDER fragment is defined.

You can optionally define a NULL fragment to stores rows in which the fragment
key value is missing.

During an insert into a table that is fragmented by expression, the database server
takes these actions:
1. The fragment key value for the row is evaluated.

2-22 IBM Informix Data Warehouse Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.ddi.doc/ids_ddi_088.htm#ids_ddi_088
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_0545.htm#ids_sqs_0545

2. The fragment expression for each fragment is evaluated and compared to the
fragment key value for the row, beginning with the fragment whose
sysfragments.evalpos value in the system catalog is lowest.

3. If there is no match, the previous step is repeated for the fragment with next
highest sysfragments.evalpos value.

4. This continues until the first match is found between the fragment key value
and a fragment expression, after which the row is stored in the matching
fragment.

5. If no match is found in the entire list of fragments, the row is stored in the
REMAINDER fragment. (In this case of a row with an unmatched fragment
key, if no REMAINDER is defined, an exception is issued.)

For expression-based fragmentation schemes that define overlapping fragment
expressions, the storage location of rows that match the fragment expression of
more than one fragment is dependent on the evalpos value for that fragment. You
can avoid this dependency by only defining non-overlapping fragment expressions.

The evalpos value of a fragment is determined by its position in the initial
fragment list within the FRAGMENT BY EXPRESSION or PARTITION BY
EXPRESSION clause that defined the storage distribution of the table. Any new
fragments added by ALTER FRAGMENT operations are assigned, by default, the
next higher evalpos value (and will therefore be evaluated last during INSERT
operations) unless you explicitly specify a position with the BEFORE or AFTER
keyword. In this case, the evalpos value for the new fragment will be the ordinal
position where was inserted into the fragment list. For tables that are fragmented
by expression into a large number of fragments, you can achieve greater efficiency
in INSERT an LOAD operations when fragments that are more likely to match
fragment key values have relatively low evalpos values within the fragment list.

Fragmentation by expressions that creates nonoverlapping fragments on a single
column can be an effective strategy for supporting fragment elimination in queries.
The database server can eliminate fragments, for example, for queries with range
expressions as well as queries with equality expressions if the query predicates
correspond to fragment expressions. Expressions with relational operators and
logical operators (or with both) can similarly be used for fragment expressions that
match query filters.
Related concepts:

Using the REMAINDER Keyword (SQL Syntax)
Related reference:

Expression Fragment Clause (SQL Syntax)

Fragmentation by LIST
A list fragmentation strategy partitions data into a set of fragments that are each
defined by a list of discrete values of the fragment key. Every expression must be a
quoted string or a literal value. Each value in the list must be unique among the
lists for fragments of the same object.

Fragmenting by list resembles fragmentation by expression (where the fragment
expressions include the IN operator or the logical OR operator) in these respects:
v Every non-REMAINDER fragment stores rows for which the fragment key

values matches the fragment expression.
v You can optionally define a REMAINDER fragment.
v You can optionally define a NULL fragment.

Chapter 2. Design a dimensional data model 2-23

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_0549.htm#ids_sqs_0549
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_2097.htm#ids_sqs_2097

As the name implies, however, fragmentation by list defines each fragment by a
list of fragment expressions, rather than restricting each fragment to a single
expression.

The syntax for defining a list fragmentation strategy requires one or more list
fragments of the following form.

FRAGMENT BY LIST
PARTITION partition VALUES (expression_list) IN dbspace,
. . .
PARTITION partition VALUES (expression_list) IN dbspace,
PARTITION partition VALUES (NULL) IN dbspace,
PARTITION partition REMAINDER IN dbspace

Here the last two partitions (whose expressions define a NULL fragment and a
REMAINDER fragment) are not required.

As with other fragmentation schemes, each PARTITION partition specification
declares the unique name of a fragment. The (expression_list) specification is the
comma-separated list of one or more constant expressions that defines each list
fragment, and the IN dbspace specification identifies the storage location of the
fragment.

You can optionally define a NULL fragment by specifying NULL as the only
expression in the expression_list. You cannot include NULL in an expression list
with other values that define the same fragment.

An alternative syntax notation for defining the NULL fragment is VALUES IS NULL
(with no delimiting parentheses) as the only expression for a fragment. The digit 0
is not equivalent to the NULL or IS NULL keywords.

Just as in expression-based fragmentation, you can optionally define a
REMAINDER fragment for rows that match none of the specified fragment
expressions. If you define a REMAINDER fragment but no NULL fragment, rows
with the fragment key value missing are stored in the REMAINDER fragment. The
database server issues an exception for INSERT operations if the fragment key
value for an inserted row matches no fragment expression, and no REMAINDER
fragment is defined. An exception is similarly issued if data us missing from the
fragment key column, but the fragment list includes no NULL fragment and no
REMAINDER fragment.

When you use the CREATE INDEX statement to define an index on a table that is
fragmented by list, it is not necessary to include the FRAGMENT BY or
PARTITION BY clause to create indexes that use the same list fragmentation
strategy as their table. By default, the database server partitions the index by the
same list fragmentation strategy as its table, and declares for each index fragment
the same name that you specified after the PARTITION keyword for the
corresponding table fragment.

The most important difference between fragmentation by list and fragmentation by
expression is that every value in the list for each fragment must be unique among
all the expression lists that define fragments of the same table or index. The
database server issues an error if the lists of expressions for two list fragments
include the same fragment key value. This uniqueness requirement for fragment
expressions simplifies fragment elimination in queries, if the fragment expressions
correspond to query predicates and filters that support fragment elimination.

2-24 IBM Informix Data Warehouse Guide

A list fragmentation strategy is most effective when the fragment key for a table
has finite set of values, and queries on the table specify equality predicates on the
fragment key. For a table whose fragment key is a numeric or time data type with
a range of possible values that resembles a continuum, an interval fragmentation
scheme is recommended, rather than list fragmentation.
Related reference:

Fragmenting by LIST (SQL Syntax)

List fragment clause (SQL Syntax)

Fragmentation by INTERVAL
An interval fragmentation strategy partitions data into fragments based on an
interval value of the fragment key. The interval value must be a column expression
that references a single column of a numeric, DATE, or DATETIME data type.

This type of distribution scheme is sometimes called a range interval distribution
because:
v The RANGE and INTERVAL keywords are required in the DDL syntax that

defines this strategy.
v The initial user-defined fragments are called range fragmentsto distinguish these

fragments from system-defined fragments. The database server creates
system-defined fragments automatically when a row is inserted whose fragment
key value does not match the expression that defines any existing fragment.

The INTERVAL distribution strategy is useful when all possible fragment key
values in a growing table are not known, and the DBA does not want to allocate
fragments for data rows that are not yet loaded. For example, by using a DATE
column as a fragment key could define a fragment for every month, or a
BIGSERIAL column as a fragment key could define a fragment for every million
customer records. The automatic creation of interval fragments avoids the need for
a REMAINDER fragment (with its associated fragment-elimination difficulties) and
can also reduce the maintenance workload of the DBA.

Defining an interval distribution strategy

The definition of an interval distribution scheme can include several required or
optional parameters:

Fragment key
This must specify a column expression referencing a single numeric, DATE,
or DATETIME column of the table.

Interval value expression
This constant expression defines an interval size within the range of
fragment key values for system-generated interval fragments.

Storage location for interval fragments
This is a list of dbspaces where interval fragments will be stored.

Range fragment list
You must declare the name and define the fragment expression and the
storage location for at least one range fragment.

The syntax for defining these parameters of a range interval distribution has this
general form:

Chapter 2. Design a dimensional data model 2-25

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_2099.htm#ids_sqs_2099
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_2096.htm#ids_sqs_2096

FRAGMENT BY RANGE (column_expr)
INTERVAL (interval_size) STORE IN (dbspace_list)

PARTITION partition VALUES < upper_bound IN dbspace,
. . .

PARTITION partition VALUES < upper_bound IN dbspace,
PARTITION partition VALUES IS NULL IN dbspace

In this template, the syntax tokens that are not keywords specify the following
parameters of the storage distribution scheme:

RANGE(column_expr)
This column expression, referencing a single column and delimited by
parentheses, defines the fragment key. This clause is required.

INTERVAL(interval_size)
This interval value expression, delimited by parentheses, defines the
interval size (within the range of values of the fragment key) for
system-generated interval fragments. This clause is required.

STORE IN(dbspace_list)
This is a list of dbspaces where interval fragments will be stored. If you
specify more than one dbspace, the database server creates successive new
interval fragments in these dbspaces, in round robin fashion. This clause is
optional.

If you omit this clause, the database server stores interval fragments in the
dbspace that stores the range fragment. (If you define two or more range
fragments and store them in different dbspaces, the database server stores
each new interval fragment in one of these dbspaces, assigning successive
interval fragments to these dbspaces in round robin fashion.)

PARTITION partition
This declares the name of a range or NULL fragment. You must define at
least one range fragment. The NULL fragment is optional, but no more
than one NULL fragment can be defined.

If you define more than one fragment, their names must conform to the
rules for SQL identifiers, and must be unique among the fragments of the
same table or index.

VALUES < upper_bound
This defines the fragment expression. Unlike list fragments, which can be
defined in an arbitrary order, if you define more than one range fragment,
their expressions must be defined in ascending order of the upper_bound.
This clause is required.

The last range fragment that you define (which can be the first, if you
define only one), is called the transition fragment, and its upper bound is
called the transition value for the fragmented object. Any inserted rows with
a larger fragment key value must be stored in an interval fragment.

VALUES IS NULL
This is the fragment expression to define the NULL fragment. Whether you
define a NULL fragment is optional. The NULL fragment is not a range
fragment, because NULL indicates the absence of a fragment key value.
The database server issues an exception if a DML operation attempts to
insert a row that has no fragment key value into a fragmented table for
which no NULL fragment is defined.

If you define a NULL fragment, it can be listed in any position within the
PARTITION specifications. The database server, rather than the sequence in
which you declare the fragments, internally determines the order of each

2-26 IBM Informix Data Warehouse Guide

fragment within the fragment list of a table or index that uses an interval
fragmentation scheme. The NULL fragment, if it exists, is always the first
on this list, as indicated by its sysfragments.evalpos value in the system
catalog.

When a row is inserted whose fragment key value is outside the range of any
existing range or interval fragments, the database server will automatically create a
new interval fragment based on the interval_size value and the transition value,
without DBA intervention.

This kind of fragmentation strategy is useful when all possible fragment key values
in a growing table are not known and the DBA does not want to allocate
fragments for data that is not yet loaded.
Related reference:

Fragmenting by RANGE INTERVAL (SQL Syntax)

Interval Fragment clause (SQL Syntax)

Handle common dimensional data-modeling problems
The dimensional model that the previous sections describe illustrates only the most
basic concepts and techniques of dimensional data modeling. The data model you
build to address the business needs of your enterprise typically involves additional
problems and difficulties that you must resolve to achieve the best possible query
performance from your database. This section describes various methods you can
use to resolve some of the most common problems that arise when you build a
dimensional data model.

Minimize the number of attributes in a dimension table
Dimension tables that contain customer or product information might easily have
50 to 100 attributes and many millions of rows. However, dimension tables with
too many attributes can lead to excessively wide rows and poor performance. For
this reason, you might want to separate out certain groups of attributes from a
dimension table and put them in a separate table called a minidimension table. A
minidimension table consists of a small group of attributes that are separated out
from a larger dimension table. You might choose to create a minidimension table
for attributes that have either of the following characteristics:
v The fields are rarely used as constraints in a query.
v The fields are frequently compared together.

The following figure shows a minidimension table for demographic information
that is separated out from a customer table.

Chapter 2. Design a dimensional data model 2-27

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_2100.htm#ids_sqs_2100
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_2095.htm#ids_sqs_2095

In the demographics table, you can store the demographics key as a foreign key in
both the fact table and the customer table, which allows you to join the
demographics table directly to the fact table. You can also use the demographics
key directly with the customer table to browse demographic attributes.

Dimensions that occasionally change
In a dimensional database where updates are infrequent (as opposed to OLTP
systems), most dimensions are relatively constant over time, because changes in
sales districts or regions, or in company names and addresses, occur infrequently.
However, to make historical comparisons, these changes must be handled when
they do occur. The following figure shows an example of a dimension that has
changed.

You can use three ways to handle changes that occur in a dimension:

Change the value stored in the dimension column
In the previous figure, the record for Bill Adams in the customer
dimension table is updated to show the new address Arlington Heights.
All of this customer's previous sales history is now associated with the
district of Arlington Heights instead of Des Plaines.

Create a second dimension record with the new value and a generalized key
This approach effectively partitions history. The customer dimension table
would now contain two records for Bill Adams. The old record with a key
of 101 remains, and records in the fact table are still associated with it. A

Figure 2-10. A Minidimension Table for Demographics Information

Figure 2-11. A dimension that changes

2-28 IBM Informix Data Warehouse Guide

new record is also added to the customer dimension table for Bill Adams,
with a new key that might consist of the old key plus some version digits
(101.01, for example). All subsequent records that are added to the fact
table for Bill Adams are associated with this new key.

Add a new field in the customer dimension table for the affected attribute and
rename the old attribute

This approach is rarely used unless you need to track old history in terms
of the new value and vice-versa. The customer dimension table gets a new
attribute named current address, and the old attribute is renamed original
address. The record that contains information about Bill Adams includes
values for both the original and current address.

Use the snowflake schema for hierarchical dimension tables

A snowflake schema is a variation on the star schema, in which very large dimension
tables are normalized into multiple tables. Dimensions with hierarchies can be
decomposed into a snowflake structure when you want to avoid joins to big
dimension tables when you are using an aggregate of the fact table. For example, if
you have brand information that you want to separate out from a product
dimension table, you can create a brand snowflake that consists of a single row for
each brand and that contains significantly fewer rows than the product dimension
table. The following figure shows a snowflake structure for the brand and product
line elements and the brand_agg aggregate table.

If you create an aggregate table, brand_agg, that consists of the brand code and the
total revenue per brand, you can use the snowflake schema to avoid the join to the
much larger sales table. For example, you can use the following query on the
brand and brand_agg tables:
SELECT brand.brand_name, brand_agg.total_revenue
FROM brand, brand_agg

WHERE brand.brand_code = brand_agg.brand_code
AND brand.brand_name = ’Anza’

Figure 2-12. An example of a snowflake schema

Chapter 2. Design a dimensional data model 2-29

Without a snowflaked dimension table, you use a SELECT UNIQUE or SELECT
DISTINCT statement on the entire product table (potentially, a very large
dimension table that includes all the brand and product-line attributes) to eliminate
duplicate rows.

While snowflake schemas are unnecessary when the dimension tables are relatively
small, a retail or mail-order business that has customer or product dimension
tables that contain millions of rows can use snowflake schemas to significantly
improve performance.

If an aggregate table is not available, any joins to a dimension element that was
normalized with a snowflake schema must now be a three-way join, as the
following query shows. A three-way join reduces some of the performance
advantages of a dimensional database.
SELECT brand.brand_name, SUM(sales.revenue)
FROM product, brand, sales

WHERE product.brand_code = brand.brand_code
AND brand.brand_name = ’Alltemp’

GROUP BY brand_name

Related concepts:
“Keys to join the fact table with the dimension tables” on page 2-14

2-30 IBM Informix Data Warehouse Guide

Chapter 3. Implement a dimensional database

You will learn the SQL statements that you need to implement the dimensional
data model

This section shows you the SQL statements required to implement the dimensional
database that is described in the section Chapter 2, “Design a dimensional data
model,” on page 2-1. Remember that this database serves only as an illustrative
example of a data-warehousing environment. For the sake of the example, it is
translated into SQL statements.

This section describes the sales_demo database.
Related reference:
Chapter 2, “Design a dimensional data model,” on page 2-1

Implement the sales_demo dimensional database
This section shows the SQL statements that you can use to create a dimensional
database from the data model that you learned about in Chapter 2, “Design a
dimensional data model,” on page 2-1. You can use interactive SQL to write the
individual statements that create the database or you can run a script that
automatically executes all the statements that you need to implement the database.
The CREATE DATABASE and CREATE TABLE statements create the data model as
tables in a database. After you create the database, you can use the LOAD and
INSERT statements to populate the tables.

Create the dimensional database
You must create the dimensional database before you can create any of the tables
or other objects that the database must contain.

When you use the IBM Informix database server to create a database, the server
sets up records that show the existence of the database and its mode of logging.
The database server manages disk space directly, so these records are not visible to
operating-system commands.

The following statement shows the syntax that you use to create a database that is
called sales_demo:
CREATE DATABASE sales_demo

The CREATE TABLE statement for the dimension and fact
tables

This section includes the CREATE TABLE statements that you use to create the
tables of the sales_demo dimensional database.

Referential integrity is, of course, an important requirement for dimensional
databases. However, the following schema for the sales_demo database does not
define the primary and foreign key relationships that exist between the fact table
and its dimension tables. The schema does not define these primary and foreign
key relationships because data-loading performance improves dramatically when
the database server does not enforce constraint checking. Given that data
warehousing environments often require that tens or hundreds of gigabytes of data

© Copyright IBM Corp. 1996, 2013 3-1

are loaded within a specified time, data-load performance should be a factor when
you decide how to implement a database in a warehousing environment. Assume
that if the sales_demo database is implemented as a live data mart, some data
extraction tool (rather than the database server) is used to enforce referential
integrity between the fact table and dimension tables.

Tip: After you create and load a table, you can add primary key and foreign key
constraints to the table with the ALTER TABLE statement to enforce referential
integrity. This method is required only for express load mode. If the constraints
and indexes are necessary and costly to drop before a load, then deluxe load mode
is the best option.

The following statements create the time, geography, product, and customer
tables. These tables are the dimensions for the sales fact table. A SERIAL field
serves as the primary key for the district_code column of the geography table.
CREATE TABLE time
(
time_code INT,
order_date DATE,
month_code SMALLINT,
month_name CHAR(10),
quarter_code SMALLINT,
quarter_name CHAR(10),
year INTEGER
);

CREATE TABLE geography
(
district_code SERIAL,
district_name CHAR(15),
state_code CHAR(2),
state_name CHAR(18),
region SMALLINT
);

CREATE TABLE product (
product_code INTEGER,
product_name CHAR(31),
vendor_code CHAR(3),
vendor_name CHAR(15),
product_line_code SMALLINT,
product_line_name CHAR(15)
);

CREATE TABLE customer (
customer_code INTEGER,
customer_name CHAR(31),
company_name CHAR(20)
);

The sales fact table has pointers to each dimension table. For example,
customer_code references the customer table, district_code references the
geography table, and so forth. The sales table also contains the measures for the
units sold, revenue, cost, and net profit.
CREATE TABLE sales
(
customer_code INTEGER,
district_code SMALLINT,
time_code INTEGER,
product_code INTEGER,
units_sold SMALLINT,

3-2 IBM Informix Data Warehouse Guide

revenue MONEY(8,2),
cost MONEY(8,2),
net_profit MONEY(8,2)
);

Tip: The most useful measures (facts) are numeric and additive. Because of the
great size of databases in data-warehousing environments, virtually every query
against the fact table might require thousands or millions of records to construct a
result set. The only useful way to compress these records is to aggregate them. In
the sales table, each column for the measures is defined on a numeric data type, so
you can easily build result sets from the units_sold, revenue, cost, and net_profit
columns.

For your convenience, the file called createdw.sql contains all the preceding
CREATE TABLE statements.

Mapping data from data sources to the database
The stores_demo demonstration database is the primary data source for the
sales_demo database.

The following table shows the relationship between data warehousing business
terms and the data sources. It also shows the data source for each column and
table of the sales_demo database.

Table 3-1. The relationship between data warehousing business terms and data sources

Business Term Data Source Table.Column Name

Sales Fact Table:
product code sales.product_code
customer code sales.customer_code
district code sales.district_code
time code sales.time_code
revenue stores_demo:items.total_price sales.revenue
units sold stores_demo:items.quantity sales.units_sold
cost costs.lst (per unit) sales.cost
net profit calculated: revenue minus cost sales.net_profit

Product Dimension Table:
product stores_demo:catalog.catalog_num product.product_code
product name stores_demo:stock.manu_code and

stores_demo:stock.description
product.product_name

product line stores_demo:orders.stock_num product.product_line_code
product line
name

stores_demo:stock.description product.product_line_name

vendor stores_demo:orders.manu_code product.vendor_code
vendor name stores_demo:manufact.manu_name product.vendor_name

Customer Dimension Table:
customer stores_demo:orders.customer_num customer.customer_code
customer name stores_demo:customer.fname plus

stores_demo:customer.lname
customer.customer_name

company stores_demo:customer.company customer.company_name

Geography Dimension Table:
district code generated geography.district_code
district stores_demo:customer.city geography.district_name
state stores_demo:customer.state geography.state_code

Chapter 3. Implement a dimensional database 3-3

Table 3-1. The relationship between data warehousing business terms and data
sources (continued)

Business Term Data Source Table.Column Name

state name stores_demo.state.sname geography.state_name
region derived: If state = "CA" THEN region =

1, ELSE region = 2
geography.region

Time Dimension Table:
time code generated time.time_code
order date stores_demo:orders.order_date time.order_date
month derived from order date generated time.month_name

time.month.code
quarter derived from order date generated time.quarter_name

time.quarter_code
year derived from order date time.year

Several files with a .unl suffix contain the data that is loaded into the sales_demo
database. The files that contain the SQL statements that create and load the
database have a .sql suffix.

If your database server runs on UNIX, you can access the *.sql and *.unl files
from the directory $INFORMIXDIR/demo/dbaccess.

If your database server runs on Windows, you can access the *.sql and *.unl files
from the directory %INFORMIXDIR%\demo\dbaccess.

Load data into the dimensional database
An important step when you implement a dimensional database is to develop and
document a load strategy. This section shows the LOAD and INSERT statements
that you can use to populate the tables of the sales_demo database.

Tip: In a live data warehousing environment, you typically do not use the LOAD
or INSERT statements to load large amounts of data to and from IBM Informix
databases.

IBM Informix database servers provide different features for high-performance
loading and unloading of data.

For information about high-performance loading, see your IBM Informix
Administrator's Guide or IBM Informix High-Performance Loader User's Guide.

The following statement loads the time table with data first so that you can use it
to determine the time code for each row that is loaded into the sales table:
LOAD FROM ’time.unl’ INSERT INTO time

The following statement loads the geography table. After you load the geography
table, you can use the district code data to load the sales table.
INSERT INTO geography(district_name, state_code, state_name)
SELECT DISTINCT c.city, s.code, s.sname

FROM stores_demo:customer c, stores_demo:state s
WHERE c.state = s.code

The following statements add the region code to the geography table:

3-4 IBM Informix Data Warehouse Guide

UPDATE geography
SET region = 1
WHERE state_code = ’CA’

UPDATE geography
SET region = 2
WHERE state_code <> ’CA’

The following statement loads the customer table:
INSERT INTO customer (customer_code, customer_name, company_name)
SELECT c.customer_num, trim(c.fname) ||’ ’|| c.lname, c.company
FROM stores_demo:customer c

The following statement loads the product table:
INSERT INTO product (product_code, product_name, vendor_code,

vendor_name,product_line_code, product_line_name)
SELECT a.catalog_num,

trim(m.manu_name)||’ ’||s.description,
m.manu_code, m.manu_name,
s.stock_num, s.description

FROM stores_demo:catalog a, stores_demo:manufact m,
stores_demo:stock s
WHERE a.stock_num = s.stock_num

AND a.manu_code = s.manu_code
AND s.manu_code = m.manu_code;

The following statement loads the sales fact table with one row for each product,
per customer, per day, per district. The cost from the cost table is used to calculate
the total cost (cost * quantity).
INSERT INTO sales (customer_code, district_code, time_code,

product_code, units_sold, cost, revenue, net_profit)
SELECT

c.customer_num, g.district_code, t.time_code,
p.product_code, SUM(i.quantity),
SUM(i.quantity * x.cost), SUM(i.total_price),
SUM(i.total_price) - SUM(i.quantity * x.cost)

FROM stores_demo:customer c, geography g, time t,
product p,stores_demo:items i,
stores_demo:orders o, cost x

WHERE c.customer_num = o.customer_num
AND o.order_num = i.order_num
AND p.product_line_code = i.stock_num
AND p.vendor_code = i.manu_code
AND t.order_date = o.order_date
AND p.product_code = x.product_code
AND c.city = g.district_name

GROUP BY 1,2,3,4;

Test the dimensional database
After you create the tables and load the data into the database, you should test the
dimensional database.

You can create SQL queries to retrieve the data necessary for the standard reports
listed in the business-process summary (see the “Summary of a business process”
on page 2-6). Use the following ad hoc queries to test that the dimensional
database was properly implemented.

The following statement returns the monthly revenue, cost, and net profit by
product line for each vendor:

Chapter 3. Implement a dimensional database 3-5

SELECT vendor_name, product_line_name, month_name,
SUM(revenue) total_revenue, SUM(cost) total_cost,
SUM(net_profit) total_profit

FROM product, time, sales
WHERE product.product_code = sales.product_code

AND time.time_code = sales.time_code
GROUP BY vendor_name, product_line_name, month_name
ORDER BY vendor_name, product_line_name;

The following statement returns the revenue and units sold by product, by region,
and by month:
SELECT product_name, region, month_name,

SUM(revenue), SUM(units_sold)
FROM product, geography, time, sales
WHERE product.product_code = sales.product_code

AND geography.district_code = sales.district_code
AND time.time_code = sales.time_code

GROUP BY product_name, region, month_name
ORDER BY product_name, region;

The following statement returns the monthly customer revenue:
SELECT customer_name, company_name, month_name,

SUM(revenue)
FROM customer, time, sales
WHERE customer.customer_code = sales.customer_code

AND time.time_code = sales.time_code
GROUP BY customer_name, company_name, month_name
ORDER BY customer_name;

The following statement returns the quarterly revenue per vendor:
SELECT vendor_name, year, quarter_name, SUM(revenue)
FROM product, time, sales
WHERE product.product_code = sales.product_code

AND time.time_code = sales.time_code
GROUP BY vendor_name, year, quarter_name
ORDER BY vendor_name, year

Change the storage distribution strategy
Use the ALTER FRAGMENT statement to change the storage distribution strategy
of the data rows that are being loaded into an existing database table.

You should adjust the storage distribution strategy when the volume or
distribution of the data is different than what was originally expected when the
storage distribution plan was first implemented. The ALTER FRAGMENT can also
be used as part of the workflow of a data warehouse. If a table is partitioned with
a fragment key that is based on values in a DATE or DATETIME column, the
fragments can be detached from the table. As new fragments are added to the table
older fragments, that store rows from earlier time periods, can be detached from
the table.

The ALTER FRAGMENT statement supports the following six options for table
fragments. Some ALTER FRAGMENT options are valid for nonfragmented tables
or for index fragments.

Note: The following summary ignores tables that are fragmented by ROUND
ROBIN, because other fragmentation strategies are more often used in data
warehousing applications.

ADD Adds a new fragment in the list of fragments that are part of a table that
has been fragmented by any fragmentation scheme.

3-6 IBM Informix Data Warehouse Guide

For LIST or EXPRESSION fragments, you can add a NULL fragment or a
REMAINDER fragment, if none of these types of fragments have already
been defined. You can use the BEFORE or AFTER keyword to specify the
ordinal position of the new fragment in the list of expressions or list of
fragments.

For a table that has been fragmented with the INTERVAL option, you can
use the ADD option can add new storage spaces to the list of dbspaces
where the database server creates new INTERVAL fragments.

ATTACH
Combines two or more tables that have identical structures into a
fragmentation strategy. All of the consumed tables specified in the ALTER
FRAGMENT ATTACH statement must have the same structure as the
surviving table. The number, names, data types, and relative positions of
the columns must be identical. The consumed tables must be
nonfragmented, and must be stored in a different dbspace from the
surviving table. The ATTACH option does not support index fragments.

For LIST or EXPRESSION fragments, you can attach a NULL fragment or a
REMAINDER fragment, if none of these types of fragments have already
been defined. You can use the BEFORE or AFTER keyword to specify the
ordinal position of the new fragment in the list of fragments.

For a table that has been fragmented by INTERVAL, the ATTACH option
can attach new RANGE fragments. However you cannot attach new
INTERVAL fragments, and you cannot use the BEFORE or AFTER
keyword to specify the ordinal position of the new RANGE fragment.

When a new EXPRESSION fragment is attached to table that is fragmented
by LIST or by INTERVAL, the rows from the consumed table and the
affected fragments in the surviving table are scanned and moved into
appropriate partitions. These strategies are not overlapping.

You can also include the ONLINE keyword in ALTER FRAGMENT
ATTACH statements with interval partitioning. Specifying this keyword
can improve concurrency for other sessions that attempt to access the
tables on which the ALTER FRAGMENT ONLINE statement operates.

DETACH
Removes a table fragment from a distribution scheme and places the
contents into a new, nonfragmented table. The DETACH option does not
support index fragments.

The table from which the fragment was detached remains fragmented,
unless it is fragmented by LIST or by EXPRESSION and had only two
fragments before the DETACH operation.

The new table does not inherit any indexes, constraints, or discretionary
access privileges of the table from which it was detached. The new table
has the default access privileges of any new table.

The ALTER FRAGMENT DETACH statement cannot remove a fragment
from a table that is the parent of a referential constraint, or from a table on
which a ROWID column is defined.

You can also include the ONLINE keyword in ALTER FRAGMENT
DETACH statements with interval partitioning.

DROP Drops a fragment from a table or index that is fragmented by LIST or by
EXPRESSION. Using the DROP option requires, however, that any rows
currently stored in the fragment can be moved to another existing

Chapter 3. Implement a dimensional database 3-7

fragment. For LIST fragments, the existing fragment can only be the
REMAINDER fragment, because of the uniqueness requirement for LIST
fragment expressions.

For a table or index that is fragmented by INTERVAL, you can use the
DROP option to drop one or more dbspaces from the list of dbspaces that
store INTERVAL fragments. No new INTERVAL fragments will be created
in the specified dbspaces.

ALTER TABLE DROP operations that result in moving a large number of
rows can fail if insufficient log space or disk space is available. You might
be able to complete the operation by dividing it into a series of smaller
operations. If insufficient log space causes the failure, an alternative is to
temporarily turning off logging. Then retry the ALTER TABLE operation
and turn transaction-logging back on after the operation completes. To
perform ALTER TABLE DROP operations requires a backup of the root
dbspace.

INIT Defines, modifies, or replaces the fragmentation strategy or the storage
location of an existing table or an existing index.

For an index, you can accomplish these tasks:
v Change an existing fragmented index to a nonfragmented index.
v Change the interval value of the interval distribution scheme for a

fragmented index.
v Change the interval fragment key of the interval distribution scheme for

a fragmented index.
v Fragment an existing index that is not fragmented without redefining

the index.
v Change the distribution scheme of an existing fragmented index to

another distribution scheme of the same expression, list, or interval type,
or to a different type of distribution scheme.

For a nonfragmented table, you can accomplish these tasks:
v Move a nonfragmented table from one dbspace to another dbspace.
v Move a nonfragmented table from one dbspace to a named fragment.
v Change a nonfragmented table to a fragmented table.

For a fragmented table, you can accomplish these tasks:
v Convert a fragmented table to a nonfragmented table.
v Replace the current fragmentation scheme with a different fragmentation

scheme of the same type or of a different type
v Change the expression associated with an existing list-based or

expression-based fragment
v Add a new rowid column to a fragmented table. This column stores a

unique integer that cannot be updated. The database server
automatically creates an index on the rowid column. With this column,
the database server can find the physical location of any row.

If the table is not empty when you convert an existing storage
fragmentation strategy to another strategy, the database server discards the
existing fragmentation strategy and moves data rows to fragments that you
define in the new fragmentation strategy. Data movement also occurs when
you convert a nonfragmented index to a fragmented index, and when you
convert a fragmented index to an nonfragmented index. For large tables,
data movement can cause significant logging, or the transaction might

3-8 IBM Informix Data Warehouse Guide

approach the long-transaction high-watermark, and a relatively long
exclusive lock might be held on the affected tables. Use these ALTER
FRAGMENT INIT options when they do not interfere with day-to-day
operations.

MODIFY
Change the current fragmentation list of a table or of an index.

For LIST or EXPRESSION fragments, the MODIFY option can accomplish
these tasks:
v Move an existing fragment from one dbspace to a different dbspace.
v Change the expression associated with an existing list-based or

expression-based fragment.
v Rename one or more existing fragments.

For a table that is fragmented by INTERVAL, the MODIFY option can
accomplish these tasks:
v Modify the expression that defines a range fragment.
v Increase the value of the expression that defines the transition value of

the table.
v Enable or disable the automatic creation of interval fragments.
v Replace the list of dbspaces where system-generated interval fragments

will be created. Existing fragments in the old dbspaces are not moved,
and new rows that match their fragment expressions will be inserted
into those fragments.

v Move a range fragment or an interval fragment to a different dbspace.
v Rename one or more existing fragments.

When you change the expression that defines a range fragment, the
replacement expression cannot cross adjacent fragment boundaries.

You cannot modify the system-generated expression for any INTERVAL
fragment, and you cannot decrease the transition value of a table that is
fragmented by INTERVAL.

You can also include the ONLINE keyword in ALTER FRAGMENT ON
TABLE INTERVAL TRANSITION statements.

Chapter 3. Implement a dimensional database 3-9

Related concepts:

ADD Clause (SQL Syntax)
Related reference:

ALTER FRAGMENT statement (SQL Syntax)

ATTACH Clause (SQL Syntax)

DETACH Clause (SQL Syntax)

DROP Clause (SQL Syntax)

INIT Clause (SQL Syntax)

MODIFY Clause (SQL Syntax)

Implementing a dimensional data model and loading data with Informix
Warehouse

You can use the Design Studio provided with Informix Warehouse to create a
physical data model of your dimensional database based on your relational
database. You can specify how to extract, transform, and load the data from your
relational database to your dimensional database.

For specific instructions on how to install and use Design Studio and other
Informix Warehouse tools, see the Data warehousing and analytics node in the
Informix information center.

To implement a dimensional data model and load data using Design Studio:
1. Start Design Studio and create a new project.
2. Create connections to your existing relational database and the dimensional

database that you will create.
3. Create a physical data model for the dimensional database. For example, you

can:
v Reverse engineer the model based on the relational database schema.
v Manually create a model.

4. Design data flows that represent the movement of data from the source,
through a series of transform operations, and into the target system.

5. Design control flows that define processing rules for the execution of a set of
related data flows.

Moving data from relational tables into dimensional tables by using
external tables

Use SQL statements to unload data from relational tables into external tables,
which are data files that are in table format, and then load the data from the data
files into the dimensional tables.

Before beginning, document a strategy for mapping data in the relational database
to the dimensional database.

To unload data from the relational database into external tables and then load the
data into the dimensional database:

3-10 IBM Informix Data Warehouse Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_0264.htm#ids_sqs_0264
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_0236.htm#ids_sqs_0236
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_0081.htm#ids_sqs_0081
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_0087.htm#ids_sqs_0087
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_0068.htm#ids_sqs_0068
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_0084.htm#ids_sqs_0084
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_0075.htm#ids_sqs_0075

1. Unload the data from a relational database to external tables. Repeat the
following steps to create as many external tables as are required for the data
that you want to move.
a. Use the CREATE EXTERNAL TABLE statement to describe the location of

the external table and the format of the data. The following sample
CREATE EXTERNAL TABLE statement creates an external table called
emp_ext, with data stored in a specified fixed format:
CREATE EXTERNAL TABLE emp_ext
(name CHAR(18) EXTERNAL CHAR(18),
hiredate DATE EXTERNAL CHAR(10),
address VARCHAR(40) EXTERNAL CHAR(40),
empno INTEGER EXTERNAL CHAR(6))
USING (
FORMAT ’FIXED’,
DATAFILES
("DISK:/work2/mydir/employee.unl")
);

b. Use the INSERT...SELECT statement to map the relational database table to
the external table. The following sample INSERT statement loads the
employee database table into the external table called emp_ext:
INSERT INTO emp_ext SELECT * FROM employee

The data from the employee database table is stored in a data file called
employee.unl.

2. If necessary, copy or move the data files to the system where the dimensional
database is located.

3. Load the data from the data files to the dimensional database. Repeat the
following steps to load all the data files that you created in the previous steps.
a. Use the CREATE EXTERNAL TABLE statement to describe the location of

the data file and the format of the data. The following code is a sample
CREATE EXTERNAL TABLE statement:
CREATE EXTERNAL TABLE emp_ext
(name CHAR(18) EXTERNAL CHAR(18),
hiredate DATE EXTERNAL CHAR(10),
address VARCHAR(40) EXTERNAL CHAR(40),
empno INTEGER EXTERNAL CHAR(6))
USING (
FORMAT ’FIXED’,
DATAFILES
("DISK:/work3/mydir/employee.unl")
);

b. Use the INSERT...SELECT statement to map the data from the data file to
the table in the dimensional database. The following sample INSERT
statement loads the employee data file into the employee database table:
INSERT INTO employee SELECT * FROM emp_ext

Chapter 3. Implement a dimensional database 3-11

3-12 IBM Informix Data Warehouse Guide

Chapter 4. Performance tuning dimensional databases

This section describes how to tune the performance of your queries and to
understand data distribution statistics.
Related reference:
Chapter 2, “Design a dimensional data model,” on page 2-1

Query execution plans
When a SELECT statement or other DML operation is submitted to the database
server, the query execution optimizer designs a query execution plan. The query
execution optimizer is often referenced as the query optimizer.

To design a query execution plan, and estimate the costs of candidate query plans,
the query optimizer considers a wide range of information including:
v Specifications that identify the database objects, predicates, filters, joins, and

other operations in the SQL syntax that defines the query operation
v System catalog information about indexes and constraints on the tables, views,

and columns that are referenced or implied in the query
v Data distribution statistics for the tables and indexes, or for their fragments, that

are referenced or implied in the query
v Optimizer directives that are specified inline or as external optimizer directives

that favor or avoid subsets of the potential query plans
v Information in the database server environment or in the session environment

that affects the query execution optimizer
Related concepts:

Queries and the query optimizer (Performance Guide)

Enabling external directives (Performance Guide)
Related reference:

Optimizer Directives (SQL Syntax)

Data distribution statistics
Data distribution statistics are stored in the system catalog for use by the query
optimizer when it designs query execution plans. These statistics, together with
other information, enable the optimizer to estimate the relative costs among the
execution plans that the optimizer is considering for a specific query. Distribution
statistics that the optimizer examines for tables that are referenced in queries can
include column distribution statistics for the table and for its indexes, as well as
fragment-level statistics, if the database server has gathered statistics for individual
table or index fragments.

The following system catalog tables store data distribution information that is
available to the query optimizer:

SYSDISTRIB
Stores data distribution information for tables and indexes.

© Copyright IBM Corp. 1996, 2013 4-1

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.perf.doc/ids_prf_491.htm#ids_prf_491
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.perf.doc/ids_prf_575.htm#ids_prf_575
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_1691.htm#ids_sqs_1691

SYSFRAGDIST
Stores fragment-level data distribution information for fragments of tables
and indexes.

The following system catalog tables store information pertaining to changes to
rows since the most recent update to table, index, or fragment statistics.

SYSDISTRIB
Counts the number of rows changed by DML operations since table
statistics were last updated, the date and time of that update, and the time
required to build column distributions.

SYSFRAGDIST
Counts the number of rows changed by DML operations since
fragment-level statistics were last updated, and the date and time of that
update.

SYSFRAGMENTS
Counts the number of rows changed by DML operations since
fragment-level statistics were last updated.

SYSINDICES
Counts the number of rows changed by DML operations since index
statistics were last updated, the date and time of that update, and time
required to build low level distributions for the lead column of the index.

The following configuration parameters can affect the database server behavior for
the calculation, display, or other operations on data distribution statistics for tables
or for fragments that can be used in query plans:

AUTO_STAT_MODE
Enable or disable the detection (and selective refreshing) of stale statistics
during UPDATE STATISTICS operations. You can override the setting of
this parameter by using the onmode -wm or onmode -wf command-line
utilities, or SQL administration API function calls, or (for the current
session) by the SET ENVIRONMENT AUTO_STAT_MODE statement of
SQL.

EXPLAIN_STAT
Enable or disable the inclusion of a Query Statistics section in the explain
output file. This is enabled by default.

SYSSBSPACENAME
Specifies the name of the sbspace in which the database server stores
data-distribution statistics (as smart large objects) that the UPDATE
STATISTICS statement collects for certain user-defined data types. Because
the data distributions for UDTs can be large, you have the option to store
them in an sbspace instead of in the sysdistrib system catalog table (for
table-level statistics) or in the sysfragdist system catalog table (for
fragment-level statistics), where distribution statistics are stored by default.

STATCHANGE
Specifies a positive integer as a change threshold to identify table or
fragment distribution statistics that need to be updated. This is the default
threshold for refreshing distribution statistics on tables for which no
specific threshold has been specified as a table or session attribute. If no
value is specified, the default is 10. While selective refreshing of data
distribution statistics enabled (by default, or by the AUITO_STAT_MODE
setting, or by the AUTO keyword of the UPDATE STATISTICS statement,
UPDATE STATISTICS operations only refresh stale or missing statistics.

4-2 IBM Informix Data Warehouse Guide

The default value of 10 restricts recalculation to only the tables or
fragments in which DML, load, or TRUNCATE operations have changed
more than 10% of the rows since data distribution statistics were most
recently calculated.

Related concepts:

System catalog tables (SQL Reference)

Updating Statistics for Tables (SQL Syntax)

Data-distribution configuration (Performance Guide)

Update statistics in parallel on very large databases (Performance Guide)

Fragment-level statistics
For tables and indexes that have been partitioned according to fragment key
values, the distribution statistics in the system catalog for some fragments might
closely approximate current data distributions in those fragments, despite
subsequent DELETE, INSERT, UPDATE, or MERGE operations that have caused
the statistics for other fragments to become stale. For large tables that contain
millions of rows, substantial resources of the database server can be conserved by
updating only the subset of fragments with stale statistics, rather than recalculating
distribution statistics for every fragment.

The STATLEVEL table attribute

For tables and indexes that are partitioned into multiple fragments by a distributed
storage scheme, you can specify the granularity of its data distribution statistics,
and you can specify the criteria by which stale statistics are defined. This can be
accomplished by specifying keyword options of the Statistics Options clause in
either of two DDL statements:
v in the CREATE TABLE statement (when defining a new fragmented table)
v in the ALTER TABLE statement (when changing the statistics granularity of an

existing fragmented table).

In both cases, your options for specifying the granularity of the distribution
statistics are the same:

STATLEVEL AUTO
Specifies that the database server apply the following criteria at runtime to
determine if fragment-level distributions should be created:
v The table is fragmented by EXPRESSION, by LIST, or by INTERVAL.
v The table has more than 1,000,000 rows.

Unless both of these criteria are satisfied, table-level distributions are
created. AUTO is the default setting in the CREATE TABLE statement, if
you specify no explicit STATLEVEL setting.

STATLEVEL FRAGMENT
Data distributions will be created and maintained for each fragment. The
FRAGMENT option is not valid for nonfragmented tables, or for tables
that use a round robin storage distribution scheme.

STATLEVEL TABLE
All data distributions for the table will be created at the table level. This
emulates the legacy behavior of Informix servers earlier than version 11.70.

Chapter 4. Performance tuning dimensional databases 4-3

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/ids_sqr_009.htm#ids_sqr_009
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_0038.htm#ids_sqs_0038
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.perf.doc/ids_prf_164.htm#ids_prf_164
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.perf.doc/ids_prf_638.htm#ids_prf_638

To support fragment level data distribution statistics, you must specify the name of
an sbspace as the setting of the SYSSBSPACENAME configuration parameter, and
you must also declare the name and allocate storage for that sbspace by using the
-c -S option of the onspaces utility. For any table whose STATLEVEL attribute is
set to FRAGMENT, the database server returns an error if SYSSBSPACENAME is
not set, or if the sbspace to which is SYSSBSPACENAME is set is not properly
allocated. For each fragment, the most recently calculated data distribution
statistics are stored as a BLOB object in the sysfragdist.encdist column in the
system catalog.

Data distribution statistics gathered at the fragment level can be aggregated to
provide table level statistics from the constituent fragment statistics.

The STATCHANGE threshold for refreshing data distribution
statistics

The same Statistics Options clause of the CREATE TABLE or ALTER TABLE
statement can also specify a change threshold for data distribution statistics. The
database server applies this STATCHANGE attribute of a fragmented table to all of
the fragments of the table. The STATCHANGE table attribute can be set to an
integer value, or you can specify the AUTO keyword:

integer This defines an integer change threshold between 0 and 100 which defines
how much table or fragment data is allowed to change before its statistics
are considered stale in UPDATE STATISTICS operations that selectively
update only stale distribution statistics.

AUTO
The threshold is the value of the STATCHANGE configuration parameter
(or else 10, if no value is set for the STATCHANGE parameter). If the SET
ENVIRONMENT statement has set a different value for the current session,
that value overrides the default or explicit STATCHANGE configuration
parameter setting.

AUTO is the default setting in the CREATE TABLE statement, if you
specify no explicit STATCHANGE setting.

For the table and index fragments for which data distribution statistics are already
stored in the system catalog, the STATCHANGE setting specifies the percentage of
rows in the fragment that have been deleted, inserted, or modified by DML
operations since its distribution statistics were most recently updated. (This is the
same significance that STATCHANGE has for table-level statistics.)
Related reference:

Statistics options of the CREATE TABLE statement (SQL Syntax)

Statistics options of the ALTER TABLE statement (SQL Syntax)

Automatic management of data distribution statistics
The Informix database server supports several mechanisms for automating some of
the tasks that are involved in gathering, dropping, and refreshing data distribution
statistics for tables, indexes, table fragments, and index fragments.

Automatic detection and refreshing of stale statistics during
UPDATE STATISTICS operations

You can set the AUTO_STAT_MODE configuration parameter to enable the
Informix database server to automatically detect which table and index statistics

4-4 IBM Informix Data Warehouse Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_2286.htm#ids_sqs_2286
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_2287.htm#ids_sqs_2287

are stale, and only refresh the stale statistics when the UPDATE STATISTICS
statement is run. The data distribution statistics that are automatically detected and
refreshed are calculated at the table, fragment, or index level, not at the individual
column level. If you set no value for this parameter, the automatic statistics mode
is enabled by default. When automatic mode is enabled, the default threshold that
defines stale statistics is reached when at least 10% of the rows in the table or
fragment are changed by DML, LOAD, or TRUNCATE operations since the most
recent calculation of data distribution statistics.

You can set another configuration parameter, STATCHANGE, to specify a
nondefault change threshold for refreshing distribution statistics when automatic
statistics mode is enabled. For example, if you set the STATCHANGE value to 15,
statistics are refreshed if 15% of the rows in the table or fragment are changed. If
the STATCHANGE parameter is not set, the system default value for
STATCHANGE is 10.

You can override the STATCHANGE or AUTO_STAT_MODE configuration
parameter setting for the current session by using the SET ENVIRONMENT
statement to set session environment variables of the same names. The DBA can
include SET ENVIRONMENT statements in the sysdbopen routine to enable or
disable automatic statistics mode, or to change the stale distribution threshold (or
both) at connection time. These settings are applied to UPDATE STATISTICS
statements that are issued in the current session.

A table can be created with its own STATCHANGE table attribute, whose value
overrides the setting of the STATCHANGE session environment variable or
configuration parameter. For fragmented tables whose distribution statistics are
calculated for each fragment, the value of its STATCHANGE attribute determines
whether statistics are refreshed for individual fragments. The ALTER TABLE
statement of SQL can reset the STATCHANGE attribute of a table.

You can also use (or disable for your current operation) the explicit or default
AUTO_STAT_MODE and STATCHANGE settings during UPDATE STATISTICS
statements that include the AUTO or the FORCE keyword:

AUTO

This keyword puts the UPDATE STATISTICS statement in automatic mode
for detecting tables and fragments whose statistics are stale. Distribution
statistics are not refreshed for tables or fragments whose STATCHANGE
value is below the specified threshold.

FORCE

This keyword refreshes the statistics for all tables and columns within the
specified scope. If automatic mode for detecting stale statistics is enabled,
the FORCE keyword overrides automatic mode, so that values of the
STATCHANGE attributes of tables and fragments are ignored, and
statistics are recalculated for all database objects within the scope of the
FOR TABLE specification.

The scope of AUTO or FORCE is limited to the UPDATE STATISTICS statement in
which the keyword is specified. UPDATE STATISTICS statements that include
neither of these keywords use the current AUTO_STAT_MODE setting of the
database server (or for their session environment, if that is different). If
AUTO_STAT_MODE is enabled, the STATCHANGE value is determined in the
following (descending) order of precedence:

Chapter 4. Performance tuning dimensional databases 4-5

1. The value of the STATCHANGE attribute of the table, if AUTO is not the
specified value.

2. The value that is set by the most recent SET ENVIRONMENT STATCHANGE
statement in the same session.

3. The explicit setting of the STATCHANGE configuration parameter.
4. The system default STATCHANGE value is 10.

Automatic statistics maintenance in DDL operations

The Informix database server automatically creates, updates, or drops data
distribution statistics during certain operations that create, alter, or destroy
database objects.

ALTER FRAGMENT ATTACH operations

If the automatic mode for detecting stale distribution statistics is enabled,
and the table that is being attached to has fragmented distribution
statistics, the database server calculates the distribution statistics of the
new fragment. Stale distribution statistics of existing fragments are also
recalculated. This recalculation of fragment statistics runs in the
background. After the database server calculates the fragment statistics, it
merges them to form table distribution statistics, and stores the results in
the system catalog.

Distribution statistics are not recalculated, however, unless explicit or
default value of the AUTO_STAT_MODE configuration parameter or the
AUTO_STAT_MODE session environment setting enables the automatic
mode for detecting stale data distribution statistics.

ALTER FRAGMENT DETACH operations

Some ALTER FRAGMENT DETACH statements to attach a fragment can
cause the database server to update the index structure. When an index is
rebuilt in those cases, the database server also recalculates the associated
column distributions, and these statistics are available to the query
optimizer when it designs query plans for the table from which the
fragment was detached:
v For an indexed column (or for a set of columns) on which ALTER

FRAGMENT DETACH automatically rebuilds a B-tree index, the
recalculated column distribution statistics are equivalent to distributions
created by the UPDATE STATISTICS statement in HIGH mode.

v If the rebuilt index is not a B-tree index, the automatically recalculated
statistics correspond to distributions created by the UPDATE
STATISTICS statement in LOW mode.

If the automatic mode for detecting stale distribution statistics is enabled,
and the table from which the fragment is being detached has
fragment-level distribution statistics, the database server takes the
following actions:
v Uses the distribution statistics of the detached fragment to form a new

table distribution.
v Merges the distribution statistics of the remaining fragments to calculate

distribution statistics for the surviving table
v Stores the statistics that result from these operations in the system

catalog.

This recalculation of fragment statistics runs in the background.

4-6 IBM Informix Data Warehouse Guide

Distribution statistics are not recalculated, however, unless an explicit or
default value of the AUTO_STAT_MODE configuration parameter or the
AUTO_STAT_MODE environment setting enables the automatic mode for
detecting stale data distribution statistics.

ALTER TABLE ADD CONSTRAINT operations

ALTER TABLE ADD CONSTRAINT statements that use the Single Column
Constraint format to implicitly create an index on a non-opaque column
also automatically calculate the distribution of the specified column.
Similarly, if the Multiple-Column Constraint format specifies a list of
columns as the scope of the new constraint, the database server implicitly
creates an index on the same non-opaque column or set of columns as the
referential constraint, distribution statistics are automatically calculated on
the specified column, or on the lead column of a multiple-column
constraint.

These distribution statistics are available to the query optimizer when it
designs query plans for the table on which the constraint is defined:
v For columns on which the new constraint is implemented as a B-tree

index, the recalculated column distribution statistics are equivalent to
distributions created by the UPDATE STATISTICS statement in HIGH
mode.

v If the new constraint is not implemented as a B-tree index, the
automatically recalculated statistics correspond to distributions created
by the UPDATE STATISTICS statement in LOW mode.

These distribution statistics are available to the query optimizer when it
designs query plans for the table on which the new constraint was created.

The automatic calculation of column distribution statistics in ALTER
TABLE MODIFY operations that define a constraint on a non-opaque
column is not dependent on whether AUTO_STAT_MODE is enabled or
disabled.

ALTER TABLE MODIFY operations

ALTER TABLE MODIFY statements that use the Single Column Constraint
format or Multiple Column Constraint format to define constraints
similarly cause the database server to calculate data distribution statistics
for the indexes that are implicitly created to enforce the constraints. These
distribution statistics have the same attributes as the statistics that are
calculated automatically for an index on a non-opaque column, and that
are also automatically calculated during ALTER TABLE ADD
CONSTRAINT operations. These statistics are available to the query
optimizer when it designs query plans for the table on which the
constraints are defined.

The automatic calculation of column distribution statistics in ALTER
TABLE MODIFY operations that define a constraint on a non-opaque
column is not dependent on whether AUTO_STAT_MODE is enabled or
disabled.

CREATE INDEX operations

The database server automatically calculates index statistics, equivalent to
the statistics gathered by UPDATE STATISTICS in LOW mode, when you
create a B-tree index on a UDT column of an existing table, or if you create
a functional index or a virtual index interface (VII) index on a column of
an existing table. Statistics that are collected automatically by this feature

Chapter 4. Performance tuning dimensional databases 4-7

are stored in the system catalog and are available to the query optimizer,
without the need for running the UPDATE STATISTICS statement
manually. When B-tree indexes are created, column statistics are collected
on the first index column, equivalent to what UPDATE STATISTICS
generates in HIGH mode, with a resolution is 1% for tables of fewer than a
million rows, and 0.5% for larger tables. (Tables with more than 1 million
rows have a better resolution because they have more bins for statistics.)

The automatic calculation of column distribution statistics in CREATE
INDEX operations is not dependent on whether AUTO_STAT_MODE is
enabled or disabled.

Auto Update Statistics (AUS) maintenance system

This uses a combination of Scheduler sensors, tasks, thresholds, and tables to
evaluate and update data distribution statistics. The system provides as built-in
input criteria a set of configuration parameter values. The system administrator
can modify these to reflect current requirements and workloads. The AUS system
combines these criteria with information from the sysmaster database to
automatically identify tables whose distributions are becoming stale, and generates
the text of UPDATE STATISTICS statements to refresh the distribution statistics for
those tables.

On database server instances for which the detection of stale distribution statistics
(based on the STATCHANGE table attribute) is enabled, the setting of
AUS_CHANGE configuration parameter of the AUS maintenance system must be
greater than or equal to the STATCHANGE configuration parameter value.

The list of generated UPDATE STATISTICS statements is run automatically each
week at a designated period of low throughput, to update as many table
distributions as can be recalculated during the designated maintenance period. Any
UPDATE STATISTICS statements that do not complete are retained on the list for
the next maintenance period.

The AUS maintenance system for data distribution statistics is also available in the
IBM OpenAdmin Tool (OAT) for Informix. See the OAT online help for detailed
information about how to configure the AUS maintenance system to provide
current table statistics automatically.
Related concepts:

AUTO_STAT_MODE Environment Option (SQL Syntax)

STATCHANGE Environment Option (SQL Syntax)

Automated Table Statistics Maintenance (SQL Syntax)
Related reference:

AUTO_STAT_MODE configuration parameter (Administrator's Reference)

Using the FORCE and AUTO keywords (SQL Syntax)

STATCHANGE configuration parameter (Administrator's Reference)

4-8 IBM Informix Data Warehouse Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_2094.htm#ids_sqs_2094
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_2103.htm#ids_sqs_2103
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_2011.htm#ids_sqs_2011
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1094.htm#ids_adr_1094
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_2044.htm#ids_sqs_2044
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_1095.htm#ids_adr_1095

Chapter 5. Informix SQL Warehouse Tool

Informix SQL Warehouse Tool is a suite of products that combines the strength of
Informix with a data warehousing infrastructure from IBM.

You can use Informix SQL Warehouse Tool to build a complete data warehousing
solution that includes a highly scalable relational database, data access capabilities,
and front-end analysis tools.

More information about the Informix SQL Warehouse Tool can be found in the
Informix Information Center.
Related information:
Informix SQL Warehouse Tool Overview

© Copyright IBM Corp. 1996, 2013 5-1

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.dwe.welcome.doc/dwev9welcome.html

5-2 IBM Informix Data Warehouse Guide

Appendix. Accessibility

IBM strives to provide products with usable access for everyone, regardless of age
or ability.

Accessibility features for IBM Informix products
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features
The following list includes the major accessibility features in IBM Informix
products. These features support:
v Keyboard-only operation.
v Interfaces that are commonly used by screen readers.
v The attachment of alternative input and output devices.

Keyboard navigation
This product uses standard Microsoft Windows navigation keys.

Related accessibility information
IBM is committed to making our documentation accessible to persons with
disabilities. Our publications are available in HTML format so that they can be
accessed with assistive technology such as screen reader software.

IBM and accessibility
See the IBM Accessibility Center at http://www.ibm.com/able for more information
about the IBM commitment to accessibility.

Dotted decimal syntax diagrams
The syntax diagrams in our publications are available in dotted decimal format,
which is an accessible format that is available only if you are using a screen reader.

In dotted decimal format, each syntax element is written on a separate line. If two
or more syntax elements are always present together (or always absent together),
the elements can appear on the same line, because they can be considered as a
single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read
punctuation. All syntax elements that have the same dotted decimal number (for
example, all syntax elements that have the number 3.1) are mutually exclusive
alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax can
include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

© Copyright IBM Corp. 1996, 2013 A-1

http://www.ibm.com/able

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, the word or symbol is preceded by
the backslash (\) character. The * symbol can be used next to a dotted decimal
number to indicate that the syntax element repeats. For example, syntax element
*FILE with dotted decimal number 3 is read as 3 * FILE. Format 3* FILE
indicates that syntax element FILE repeats. Format 3* * FILE indicates that
syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol that provides information about the syntax elements. For example, the lines
5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, that element is defined elsewhere.
The string following the % symbol is the name of a syntax fragment rather than a
literal. For example, the line 2.1 %OP1 refers to a separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:

? Specifies an optional syntax element. A dotted decimal number followed
by the ? symbol indicates that all the syntax elements with a
corresponding dotted decimal number, and any subordinate syntax
elements, are optional. If there is only one syntax element with a dotted
decimal number, the ? symbol is displayed on the same line as the syntax
element (for example, 5? NOTIFY). If there is more than one syntax element
with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if
you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that syntax
elements NOTIFY and UPDATE are optional; that is, you can choose one or
none of them. The ? symbol is equivalent to a bypass line in a railroad
diagram.

! Specifies a default syntax element. A dotted decimal number followed by
the ! symbol and a syntax element indicates that the syntax element is the
default option for all syntax elements that share the same dotted decimal
number. Only one of the syntax elements that share the same dotted
decimal number can specify a ! symbol. For example, if you hear the lines
2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the
default option for the FILE keyword. In this example, if you include the
FILE keyword but do not specify an option, default option KEEP is applied.
A default option also applies to the next higher dotted decimal number. In
this example, if the FILE keyword is omitted, default FILE(KEEP) is used.
However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP only applies to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword), and
does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* Specifies a syntax element that can be repeated zero or more times. A
dotted decimal number followed by the * symbol indicates that this syntax
element can be used zero or more times; that is, it is optional and can be

A-2 IBM Informix Data Warehouse Guide

repeated. For example, if you hear the line 5.1* data-area, you know that
you can include more than one data area or you can include none. If you
hear the lines 3*, 3 HOST, and 3 STATE, you know that you can include
HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is
only one item with that dotted decimal number, you can repeat that
same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item
from the list, but you cannot use the items more than once each. In the
previous example, you can write HOST STATE, but you cannot write HOST
HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax
diagram.

+ Specifies a syntax element that must be included one or more times. A
dotted decimal number followed by the + symbol indicates that this syntax
element must be included one or more times. For example, if you hear the
line 6.1+ data-area, you must include at least one data area. If you hear
the lines 2+, 2 HOST, and 2 STATE, you know that you must include HOST,
STATE, or both. As for the * symbol, you can repeat a particular item if it is
the only item with that dotted decimal number. The + symbol, like the *
symbol, is equivalent to a loop-back line in a railroad syntax diagram.

Appendix. Accessibility A-3

A-4 IBM Informix Data Warehouse Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

© Copyright IBM Corp. 1996, 2013 B-1

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,

B-2 IBM Informix Data Warehouse Guide

modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, and PostScript are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other
countries.

Intel, Itanium, and Pentium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Java™ and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Notices B-3

http://www.ibm.com/legal/copytrade.shtml

B-4 IBM Informix Data Warehouse Guide

Index

A
Access privileges 2-17
Accessibility A-1

dotted decimal format of syntax diagrams A-1
keyboard A-1
shortcut keys A-1
syntax diagrams, reading in a screen reader A-1

ALTER FRAGMENT ADD CONSTRAINT statement 4-4
ALTER FRAGMENT ATTACH statement 4-4
ALTER FRAGMENT DETACH statement 4-4
ALTER FRAGMENT statement 3-6
ALTER TABLE MODIFY statement 4-4
ALTER TABLE statement 4-3
Attached index 2-17
AUS_CHANGE configuration parameter 4-4
Auto Update Statistics (AUS) maintenance system 4-4
AUTO_STAT_MODE configuration parameter 4-1, 4-4
AVOID_FACT optimizer directive 2-11
AVOID_MULTI_INDEX optimizer directive 2-11
AVOID_STAR_JOIN optimizer directive 2-11

B
business process

defined 2-5

C
compliance with standards vii
CREATE DATABASE statement 3-1

dimensional data model 3-1
CREATE INDEX statement 4-4
CREATE TABLE statement 4-3

dimensional data model 3-1
CREATE TABLE statements 3-1

D
Data mart

description 1-1
data modeling

dimensional 1-1
normalized 1-3

Data models
dimensional 2-1, 2-5

Data warehouse
denormalization 1-1
description 1-1

Databases
demonstration

sales_demo 2-6
demonstration databases

overview vi
sales_demo vi
stores_demo vi
superstores_demo vi

Detached index 2-17
Dimension table

changing dimensions 2-28

Dimension table (continued)
choosing attributes 2-15
description 2-4
primary keys 2-14

Dimension tables
creating 3-1

dimensional data model
creating fact tables 3-1

Dimensional data model
building 2-5
changing dimensions 2-28
creating dimension tables 3-1
denormalization 2-15
designing 2-1
dimension attributes 2-4
dimension elements 2-3
dimension tables 2-4
dimensions 2-3
fact table 2-2
implementing 3-1
measures, definition 2-2
minidimension tables 2-27

Dimensional database 3-1
Informix Warehouse 3-10
loading data 3-4
loading from external tables 3-10
snowflake schema 2-14, 2-29
testing 3-5

dimensional database model 1-1
Dimensional databases

mapping data sources 3-3
Dimensional table

identifying granularity 2-8
loading data 3-4

Disabilities, visual
reading syntax diagrams A-1

Disability A-1
Discretionary access privileges 2-17
Distributed storage designs 2-17
Dotted decimal format of syntax diagrams A-1

E
EXPLAIN_STAT configuration parameter 4-1

F
FACT optimizer directive 2-11
Fact table

composite key 2-14
description 2-1, 2-2
determining granularity 2-7
dimensions 2-8
granularity 2-2
measures 2-13
primary and foreign keys 2-14

Fact tables
creating 3-1

Foreign key 2-10
Fragment elimination 2-17

© Copyright IBM Corp. 1996, 2013 X-1

Fragment expression 2-17
Fragment key 2-17
Fragment list 2-17
Fragmentation key 2-10
Fragmentation strategies

by expression 2-22
by interval 2-25
by list 2-23
by round-robin 2-20

G
granularity

data distribution statistics 4-3
identifying dimensions 2-8

Granularity, fact table 2-2

I
I/O contention 2-17
INDEX_ALL optimizer directive 2-11
industry standards vii
Informix Warehouse

loading from external tables 3-10
overview 3-10

J
Joins

dimension tables 2-14
fact tables 2-14

L
Locales v
Logging table

creation 3-1

M
MULTI_INDEX optimizer directive 2-11

N
Nonlogging tables

creation 3-1
normalized database model 1-3
NULL fragment 2-23

O
Online analytical processing (OLAP) 1-3
Online transaction processing (OLTP) 1-3
Operational data store

description 1-1
Optimizer directives 2-11

P
Parallel database query (PDQ) 2-11
Parallel-database queries (PDQ) 2-17
Primary key 2-10

Q
Query execution optimizer 2-11
query execution plans

considerations 4-1
query optimizer 4-1

R
Range fragments 2-25
Range interval distribution 2-25
Referential constraints

foreign key 2-10
primary key 2-10

REMAINDER fragment 2-23

S
sales_demo

demonstration database vi
sales_demo database

creating 3-1
data model 2-6
data sources for 3-3
loading 3-4

sample databases
See demonstration databases

SBSPACENAME configuration parameter 4-1
Screen reader

reading syntax diagrams A-1
SET ENVIRONMENT AUTO_STAT_MODE statement 4-4
SET ENVIRONMENT STATCHANGE statement 4-3, 4-4
SET OPTIMIZATION ENVIRONMENT statement 2-11
Shortcut keys

keyboard A-1
Snowflake schema

example 2-29
SQL statement cache 2-11
standards vii
Star schema

description 2-1
STAR_JOIN optimizer directive 2-11
STATCHANGE configuration parameter 4-1, 4-3, 4-4
STATCHANGE table attribute 4-4
STATCHANGE table property 4-3
STATLEVEL table property 4-3
stores_demo

demonstration database vi
superstores_demo

demonstration database vi
Syntax diagrams

reading in a screen reader A-1
sysdirectives system catalog table 2-11
SYSDISTRIB system catalog table 4-1
SYSFRAGDIST system catalog table 4-1, 4-3
SYSFRAGMENTS system catalog table 4-1
SYSINDICES system catalog table 4-1
SYSSBSPACENAME configuration parameter 4-3

T
Transition fragment 2-17
Transition value 2-17

X-2 IBM Informix Data Warehouse Guide

U
Unique constraints 2-10
UPDATE STATISTICS statement 4-4
Utility program

dbload 3-1

V
Visual disabilities

reading syntax diagrams A-1

Index X-3

X-4 IBM Informix Data Warehouse Guide

����

Printed in USA

SC27-4510-00

	Contents
	Introduction
	In this introduction
	About this publication
	Types of users
	Software dependencies
	Assumptions about your locale
	Demonstration databases

	Example code conventions
	Additional documentation
	Compliance with industry standards

	Chapter 1. Dimensional databases
	Overview of data warehousing
	Why build a dimensional database?
	What is dimensional data?

	Chapter 2. Design a dimensional data model
	Concepts of dimensional data modeling
	The fact table
	Dimensions of the data model
	Dimension elements
	Dimension attributes
	Dimension tables

	Building a dimensional data model
	A business process
	Summary of a business process
	Determine the granularity of the fact table
	How granularity affects the size of the database
	Use the business process to determine the granularity

	Identify the dimensions and hierarchies
	Establish referential relationships
	Query optimizer features based on referential constraints
	Choose the measures for the fact table
	Resisting normalization
	Choose the attributes for the dimension tables

	Fragmentation: Storage distribution strategies
	Fragmentation by ROUND ROBIN
	Fragmentation by EXPRESSION
	Fragmentation by LIST
	Fragmentation by INTERVAL

	Handle common dimensional data-modeling problems
	Minimize the number of attributes in a dimension table
	Dimensions that occasionally change
	Use the snowflake schema for hierarchical dimension tables

	Chapter 3. Implement a dimensional database
	Implement the sales_demo dimensional database
	Create the dimensional database
	The CREATE TABLE statement for the dimension and fact tables
	Mapping data from data sources to the database
	Load data into the dimensional database
	Test the dimensional database
	Change the storage distribution strategy

	Implementing a dimensional data model and loading data with Informix Warehouse
	Moving data from relational tables into dimensional tables by using external tables

	Chapter 4. Performance tuning dimensional databases
	Query execution plans
	Data distribution statistics
	Fragment-level statistics
	Automatic management of data distribution statistics

	Chapter 5. Informix SQL Warehouse Tool
	Appendix. Accessibility
	Accessibility features for IBM Informix products
	Accessibility features
	Keyboard navigation
	Related accessibility information
	IBM and accessibility

	Dotted decimal syntax diagrams

	Notices
	Trademarks

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V

