
© 2013 IBM Corporation
1

Informix NoSQL

IBM Informix Version 12.10

© 2013 IBM Corporation

Informix 12.1

Apples and Oranges

Informix – Relational Database MongoDB - Document Store

Scales within node and by adding nodes Scales by adding nodes

Suite of data protection capabilities Minimal security

Transactional No multi-statement transactions

Guaranteed writes Write concern levels

Consistency of data Eventual consistency

DB schema defines app structures App structures define DB data

2

Relational systems and non-relational systems solve different
problems and have different philosophies on server
responsibility.

© 2013 IBM Corporation3

Description Informix
Consistent Low Latency, even under high load

• Ability to handle thousands of users
• Typically millisecond response time

Yes

Schema Flexibility & Development Agility
• Application not constrained by fixed pre-defined schema

• Application drives the schema
• Ability to develop a minimal application rapidly, and iterate quickly in response to

customer feedback
• Ability to quickly add, change or delete “fields” or data-elements

• Ability to handle a mix of structured and unstructured data
• Easier, faster programming -> Faster time to market, quick to adapt

Yes

Continuous Availability
• 24x7x365 availability

• (Today) Requires data distribution and replication
• Online Maintenance Operations
• Ability to upgrade hardware or software without any down time

Yes

Dynamic Elasticity
• Rapid horizontal scalability
• Ability to add or delete nodes dynamically
• Application transparent elasticity (e.g. automatic (redistribution of data, if needed)
• Cloud compatibility

Yes

Low cost infrastructure
• Commonly available hardware (Windows & Linux,…)

• Lower cost software (open source or pay-per-use in cloud)

Yes

Low/No Admin
Reduced need for database administration, and maintenance

Yes

Full ACID (Atomicity, Consistency, Isolation, Durability) NOT a requirement

NoSQL Requirements driven by Use Cases

High Level Solution – Why is it Important?

� Modern Interface providing JSON and BSON
native support

– Flexible Schema support allows rapid delivery of
applications

– Compatible with all MongoDB programming interfaces
– Connect the same application developed for MongoDB

to Informix with minimal/no application changes

� Simplify the “up and running” experience and
automatically tune the data store with only 3
questions:

– Where to place the Product?
– Where to place the Data?
– How many users do you anticipate?

� Super scale out
– Simplify the ability to scale out to multiple nodes,

multiple versions, multiple copies
– Provided diskless and disk based scale out at the

individual node with automatic failover
– Provided Sharded Insert, Update, Delete and Query

operations
– Cloud and Virtualized environment supportability

4

NoSQL
Cluster

JSON: JavaScript Object Notation

� What is JSON?
– JSON is lightweight text-data interchange format
– JSON is language independent
– JSON is "self-describing" and easy to understand

� JSON is syntax for storing and exchanging text info rmation much like XML.
However, JSON is smaller than XML, and faster and e asier to parse.

5 © 2013 IBM Corporation

{
"name":"John Miller",
"age":21,
"count":27,
"employees": [

{ "firstName":"John" , "lastName":"Doe" },
{ "firstName":"Anna" , Middle”:”Marie”,"lastName":"Smith" },
{ "firstName":"Peter" , "lastName":"Jones" }

]
}

BSON is a binary form of JSON.

© 2013 IBM Corporation

Informix 12.1

Major Capability Differences

� What can MongoDB and Informix both do?

– Handle structured data in JSON format

– Distribute(shard) query execution between server nodes

� What can Informix do that MongoDB can not?

– Relationships between entities

– Transactions

– Access Control

– …a great many things

6

JSON

Data Sharding

Data Relations

Transactions
Access Control

Compression

Single-node scaling

Writeable Secondaries

Time Series

Online Backup

Informix

MongoDB

© 2013 IBM Corporation

Informix 12.1

Hybrid Solution – Best of Both Worlds

� Relational and non-relational data in one system
– JSON (BSON) as first-class citizen data type

� Distributed Queries

� Multi-statement Transactions

� Enterprise Proven Reliability

� Enterprise Ready Security

� Enterprise Level Performance

Informix provides the ability to leverage

the abilities of both relational DBMS and document store systems.

MongoDB does not. It is a document store system lack ing key abilities like transaction
durability.

7

Scalability

� Better performance on multi-core, multi-session scena rios
– Architecture has finer grain locking – not just entire database as with MongoDB
– Better concurrency because less resources locked

� Document Compression
– 60% to 90% observed

� Bigger documents – 2GB maximum size
– MongoDB caps at 16MB

� Informix has decades of optimization on single node solution

� Better utilization of enterprise system resources mean s less need to
shard

� MongoDB has higher space requirements for same data

8 © 2013 IBM Corporation

Security

� Encryption
– Protects data from access in transit and on disk

� Auditing
– Records who has accessed data

� Discretionary Access Control
– Verifies that a user is authorized to do what they are trying to do – roles, etc

� Decades of solving customer security requirements

� With MongoDB
– Security mostly responsibility of the application
– Every application has to code for security
– Consistent implementation of policies?

9 © 2013 IBM Corporation

Support and Maintenance

� IBM Informix Support
– Consistently highly rated (#1 at VendorRate 2009)
– Simple offering
– Severity and level of response determined by impact to customer

� Informix reliability second to none
– Greater than five 9s uptime
– Possible to manage 1000s of seats per DBA

� MongoDB Support
– Various support offerings
– Level of response determined by subscription

10 © 2013 IBM Corporation

High Level Architecture

11 © 2013 IBM Corporation

Informix NoSQL
Cluster Solution

Automatic
Routing, Failover

Coordination

Client
Applications

Client Applications
� New Wire Protocol Listener supports existing MongoDB d rivers
� Connect to MongoDB or Informix with same application!

12 © 2013 IBM Corporation

JDBC
Driver

IBM
NoSQL

Wire
Protocol
Listener

Informix
NoSQL
Cluster

IBM Wire Protocol Listener logic shared with DB2 an d Extreme Scale

MongoDB

MongoDB
native Client
application

MongoDB
Wire

Protocol

Informix
NoSQL
Cluster

MongoDB
driver

MongoDB shell

MongoDB web
browser

application

Client Applications - Details

� NoSQL Wire Protocol Listener works with existing drivers using
standard MongoDB client-server protocol
– Java, PHP, Python, Javascript, etc.
– MongoDB supported or community supported drivers

� Uses new Informix NoSQL API functions
� Connectivity to Informix via JDBC

13 © 2013 IBM Corporation

Informix
NoSQL
Cluster

Informix JDBC
driver

JDBC
Driver

IBM
NoSQL

Wire
Protocol
Listener

Informix
NoSQL API

MongoDB
Wire

Protocol

MongoDB
drivers &

client
libraries

C
C++
C#
Java
Javascript
Node.js
Perl
PHP
Python
Ruby
+ more ….

MongoDB
application

Shard Key
state= “CA”

Informix NoSQL Cluster Architecture Overview

14 © 2013 IBM Corporation

Shard Key
state= “OR”

Shard Key
state= “WA”

two independent copies of
the data and two servers
to share the workload.
Read/Write activity
supported on all servers

three independent copies of
the data, but four servers
to share the workload (two
servers share the same
disk). Read/Write activity
supported on all servers

two independent copies of the
data, but three servers to
share the workload (two
servers share the same
disks). Read/Write activity
supported on all servers

Scaling Out - Sharded Query

15 © 2013 IBM Corporation

Shard Key
state= “OR”

Shard Key
state= “WA”

Shard Key
state= “CA”

1. Request data from local shard

Find Total sold for
all states

2. Automatically sends request to
other shards requesting data

3. Returns results to client

1. Insert a row on your local shard

Scaling Out - Sharded Insert

16 © 2013 IBM Corporation

Shard Key
state= “OR”

Shard Key
state= “WA”

Shard Key
state= “CA”

Row
state = “OR”

2. Automatically replicate the data to
the proper shard

3. Automatically remove the row
from the local shard

Row
state = “OR”

Automatic Routing and Failover Coordination

17 © 2013 IBM Corporation

MongoDB
JDBC

MongoDB
PHP

MongoDB
Python

Informix NoSQL
Cluster

MongoDB
PHP

© 2013 IBM Corporation

Reference and Details

NoSQL/JSON Overview

18

Informix Core Themes to a NoSQL Solution

� Invisible and Easy to Install and Administer

� Dynamic Elasticity
– Simple to Scale Up
– Easy to Scale-out
– Adding and removing nodes is simple

� Informix Value Add Propositions
– Hybrid functionality (combined NoSQL and Relational)

• Relational tables and NoSQL collections co-existing in the same database
• Join between NoSQL and Relational tables
• Joins utilize indexes on both Relational and NoSQL

– Enterprise level functionality

21 © 2013 IBM Corporation

New Functionality

22 © 2013 IBM Corporation

Description

Auto tuning of CPU VPS

Auto Table Placement

Auto Buffer pool tuning

Auto Physical Log extension

Auto Logical Log Add

Asynchronous Sharded Deletes

Asynchronous Sharded Updates

Asynchronous Sharded Inserts

Easy Install

Informix Answers to Mobile Requirements

� Consistent low latency, even under high load
� Informix has a history of handling thousands of users

� Recent customer driven feature increased the user limit from 32,000
users to 128,000 users on a single node

� Provide latency-consistency tradeoff knobs available
� Ability to insert data while buffering the database transaction logging

� Provides transactional semantics, but does not require storage persistence
� Session/User can change the knob to/from buffered transaction logging

� Read the data without acquiring lock
� Early tests on old hardware shows millisecond response time

� Schema Flexibility and Development Agility
– Provides JSON & BSON functionality by default
– Adopted core MongoDB API functionality
– Leverages Informix’s history of “keeping it simple” for JSON and

BSON support
– Provides the ability to integrate relational and NoSQL data

• Allow indexed joins between relational and NoSQL data

© 2013 IBM Corporation

Informix Answers to Mobile Requirements

� Continuous availability
� Informix Grid Replication

� Supports servers running of different
� Database server version
� Operating system version
� Machine architecture

� Automatic resynchronization for troubled nodes
� All functionality exists commodity hardware and software

� Connection Manager provides
• Connections based on policy or workload
• Automatic re-direction for down servers

� Dynamic Elasticity
� Provides a one setup for new nodes
� When the MACH component is integrated within a Grid’s node

� Provides ondemand diskless horizontal scaling
� Failover redundancy

� Low cost infrastructure
– History of many customer running thousands of systems which

exceedingly high up time and little to no DBAs

© 2013 IBM Corporation

NoSQL Database Philosophy Differences

� No ACID
– No ACID (Atomicity, Consistency, Isolation, Durability)
– An eventual consistence model

� No Joins
– Generally single row/document lookups

� Flexible Schema
– Rigid format

25 © 2013 IBM Corporation

High Level Architecture

� New Wire Protocol Listener supports existing
MongoDB drivers

– Simple port change allows applications written for
MongoDB to be intercepted by wire listener

– Compatible with all MongoDB programming interfaces
• Java, PHP, Python, Javascript, etc.

� The wire listener combines MongoDB messages and
BSON documents to perform actions against a
distributed data store

26 © 2013 IBM Corporation

IBM
NoSQL

Wire
Protocol
Listener

MongoDB

Informix
NoSQL
Cluster

MongoDB
native Client

MongoDB
web browser

Mobile

JSON

JSON

Applications

New Functionality

� Add three new built-in data-types
– Longlvarchar
– JSON
– BSON

� New data types are native to all databases
– Automatically convert JSON to BSON document
– Automatically converts BSON to JSON

� Add new Built-in BSON Functions

� Complete the Sharded Operations
– Query in 12.10.UC1
– Insert, Delete, Update

� Add Simplification
– Installation
– Resource Allocation

27 © 2013 IBM Corporation

New Built-in BSON Expressions

bson_value_double(lvarchar doc, lvarchar key) returns float
bson_value_lvarchar(lvarchar doc, lvarchar key) returns lvarchar as string
bson_value_document(lvarchar doc, lvarchar key) returns lvarchar as BSON object
bson_value_array(lvarchar doc, lvarchar key) returns lvarchar as BSON array
bson_value_binary(lvarchar doc, lvarchar key) returns lvarchar as BSON binary
bson_value_objectid(lvarchar doc, lvarchar key) returns lvarchar as string
bson_value_boolean(lvarchar doc, lvarchar key) returns boolean
bson_value_date(lvarchar doc, lvarchar key) returns datetime
bson_value_code(lvarchar doc, lvarchar key) returns lvarchar as string
bson_value_int(lvarchar doc, lvarchar key) returns bigint
bson_value_bigint(lvarchar doc, lvarchar key) returns bigint
bson_value_timestamp(lvarchar doc, lvarchar key) returns datetime
bson_key_exists(lvarchar doc, lvarchar key) returns boolean

28

JSON: JavaScript Object Notation

� What is JSON?
– JSON is lightweight text-data interchange format
– JSON is language independent
– JSON is "self-describing" and easy to understand

� JSON is syntax for storing and exchanging text info rmation much like XML.
However, JSON is smaller than XML, and faster and e asier to parse.

29 © 2013 IBM Corporation

{
"name":"John Miller",
"age":21,
"count":27,
"employees": [

{ "firstName":"John" , "lastName":"Doe" },
{ "firstName":"Anna" , Middle”:”Marie”,"lastName":"Smith" },
{ "firstName":"Peter" , "lastName":"Jones" }

]
}

BSON is a binary form of JSON.

Understanding Informix BSON Indexes

� Indexes are created on BSON data and support
– Arrays
– Composite Indexes
– Unique Indexes (enforced at a single node level)
– Primmary Key (enforced across all nodes)

30 © 2013 IBM Corporation

{
"fname":"Sadler",
"lname":"Sadler",
"company":"Friends LLC",
"age":21,
"count":27,
“phone": [“408-789-1234”, “408-111-4779”],
}

create index fnameix1 on customer(bson_value(bson,"fname")) using bson;

create index lnameix2 on customer(bson_value(bson,"lname")) using bson;

create index phoneix3 on customer(bson_value(bson,"phone")) using bson;

Understanding Informix BSON Indexes

31 © 2013 IBM Corporation

create index fnameix1 on customer(bson_value(bson,"fname")) using bson;

create index lnameix2 on customer(bson_value(bson,"lname")) using bson;

create index phoneix3 on customer(bson_value(bson,"phone")) using bson;

select * from customer where bson_value(bson,"fname") = "Ludwig";

-- use fnameix1

select * from customer where bson_value(bson,"lname") = "Sadler";

-- use lnameix2

select * from customer where bson_value(bson,"phone") = "408-789-8091";

-- use phoneix3

select * from customer where bson_value(bson,"phone") = "415-822-1289" OR

bson_value(bson,"phone") = "408-789-8091";

-- use phoneix3

select * from customer where bson_value(bson,"company") = "Los Altos Sports";

-- no index use sequential scan

� Not Only SQL or NOt allowing SQL

� A non-relational database management systems
– Does not require a fixed schema
– Avoids join operations
– Scales horizontally
– No ACID (eventually consistent)

� Good with distributing data and prototype project

� Big with web developers

Provides a mechanism for storage and retrieval of
data while providing horizontal scaling.

What is a NoSQL Database?

Basic NoSQL Terms

Term Description

NoSQL A class of database management systems that use some API other than
SQL as the primary language. Two common features in such databases
are a flexible schema, and automatic sharding and query routing across
distributed nodes.

JSON Acronym for JavaScript Object Notation – It is a text-based standard for
data representation and interchange. The JSON format is often used for
serializing and transmitting structured data over a network connection. It is
used primarily to transmit data between a server and web application,
serving as an alternative to XML.

BSON A standardized binary representation format (see bsonspec.org) for
serializing JSON documents. It allows for faster traversal of the document
than when using the textual representation.

33 © 2013 IBM Corporation

Basic Terms Translation

Mongo/NoSQL Term Informix Term

Database Database

Collection Table

Document or BSON document Row

Field Column

Embedded documents and
links

Table joins

Aggregation framework Group by with aggregation
functions

34 © 2013 IBM Corporation

Basic Data Distribution/Replication Terms

Term Description Informix Term

Shard A single node or a group of nodes holding the same data
(replica set)

Instance

Replica Set A collection of nodes contain the same data MACH Cluster

Shard Keys The field that dictates the distribution of the documents.
Must always exist in a document.

???

Sharded
Cluster

A group shards were each shard contains a portion of the
data.

Grid/ER

Slave A server which contains a second copy of the data for read
only processing.

Secondary Server
Remote Secondary

35 © 2013 IBM Corporation

Basic MongoDB Operations Conceptual Operations

Mongo Action Informix Action

db.customer.insert({ name: “John", age:
21 })

INSERT INTO customer (name, age) VALUES
(“John”,21)

db.customer.find() SELECT * FROM customer

db.customer.find({age: { $gt:21 } }) SELECT * FROM customer WHERE age > 21

db.customer.drop() DROP TABLE customer

db.customer.ensureIndex({ name : 1,
age : -1 })

CREATE INDEX idx_1 on customer(name ,
age DESC)

db.customer.remove({age: { $gt:21 } }) DELETE FROM customer where age > 21

db.customer.update({ age: { $gt: 20 } }, {
$set: { status: “Drink" } }, { multi: true })

UPDATE customer SET status = “Drink"
WHERE age > 20

36 © 2013 IBM Corporation

� JSON Syntax Rules
– JSON syntax is a subset of the JavaScript object notation syntax:
– Data is in name/value pairs
– Data is separated by commas
– Curly braces hold objects
– Square brackets hold arrays

� JSON Name/Value Pairs
– JSON data is written as name/value pairs.
– A name/value pair consists of a field name (in double quotes), followed by a colon,

followed by a value:

� JSON Values can be
– A number (integer or floating point)
– A string (in double quotes)
– A Boolean (true or false)
– An array (in square brackets)
– An object (in curly brackets)
– Null

JSON Details

37 © 2013 IBM Corporation

"name":"John Miller"

Some Typical NoSQL Use Cases
Mostly Interactive Web/Mobile
� Online/Mobile Gaming

– Leaderboard (high score table) management
– Dynamic placement of visual elements
– Game object management
– Persisting game/user state information
– Persisting user generated data (e.g.

drawings)

� Display Advertising on Web Sites
– Ad Serving: match content with profile and

present
– Real-time bidding: match cookie profile with

ad inventory, obtain bids, and present ad

� Dynamic Content Management and
Publishing (News & Media)

– Store content from distributed authors, with
fast retrieval and placement

– Manage changing layouts and user
generated content

38 © 2013 IBM Corporation

� E-commerce/Social Commerce
– Storing frequently changing product

catalogs
� Social Networking/Online

Communities
� Communications

– Device provisioning
� Logging/message passing

– Drop Copy service in Financial
Services (streaming copies of trade
execution messages into (for
example) a risk or back office
system)

IBM Use Case Characteristics

� Consistent low latency, even under high loads
– Ability to handle thousands of users
– Typically millisecond response time

� Schema flexibility and development agility
– Application not constrained by fixed pre-defined schema
– Ability to handle a mix of structured and unstructured data

� Continuous availability
– 24x7x365 availability
– Online maintenance operations
– Ability to upgrade hardware or software without down time

� Dynamic Elasticity
– Rapid horizontal scalability
– Ability to add or delete nodes dynamically in the grid
– Application transparent elasticity

� Low cost infrastructure
– Commonly available hardware (Windows & Linux,…)

� Reduced need for database administration and maintena nce

Why Most Commercial Relational Databases cannot
meet these Requirements
� Consistent Low Latency, even under high load

– ACID requirements inherently introduce write latency
– There is no latency-consistency tradeoff knobs available
– Requirement can be met, but at a much higher cost (hardware, software or complexity)

� Schema Flexibility & Development Agility
– Relational schemas are inherently rigid
– Database design needs to be done upfront
– Different rows cannot have a different structuree
– Database design needs to be done before application is developed
– Data modeling based on domain objects, which may not be well understood upfront

� High Availability
– Requirement can be met, but at a significant cost
– Typically hardware and software upgrades require some downtime
– Typically rolling version upgrades are complex in clustered RDBMS

� Dynamic Elasticity
– Not a natural fit for RDBMS, due to requirement for strong consistency
– Scale-out requires partition tolerance, that increases latency

� Low Cost
– Distributed RDBMS typically require specialized hardware to achieve performance
– Popular relational databases typically require several DBAs for maintenance and tuning

© 2013 IBM Corporation

