
IBM Information Management

IBM Informix
®
 12.10.xC2 Enhancements

Introducing NoSQL Capabilities

A Technical White Paper

IBM Informix 12.10.xC2: Introducing NoSQL Capabilities 2

Contents

Executive Summary ... 4

Introduction .. 5

The JSON Wire Listener.. 6

NoSQL Quick Start Guide ... 9

Server ... 9

JSON Listener ... 9

Mongo Client ... 10

Leveraging the NoSQL Listener to Access Relational Tables ... 11

Mongo Operators .. 11

SQL Command Pass Through ... 12

Delete .. 14

Update .. 14

Horizontal Scaling ... 15

Design ... 15

Sharding in Practice ... 17

Sharding Quick Start Guide .. 18

Setup ... 18

Administer sharding from MongoDB shell .. 18

Add shard servers ... 18

List shard servers .. 18

Shard collections ... 19

Scaling out ... 19

Change expression shard rules .. 19

Other Generic Enhancements ... 20

Accelerating queries on partitioned time series data in IWA ... 20

Appendix A: NoSQL Background Information .. 24

Different Philosophies ... 24

Application Development ... 24

Runtime Performance .. 25

Appendix B: NoSQL Additional Reading ... 27

IBM References ... 27

Non-IBM References .. 27

IBM Informix 12.10.xC2: Introducing NoSQL Capabilities 3

Open Standards ... 28

Appendix C: References ... 29

IBM Informix 12.10.xC2: Introducing NoSQL Capabilities 4

Executive Summary

IBM® Informix® 12.10.xC2, in keeping up with the tradition of its prior versions, continues to
evolve and enhance its leading database technology that is powerful, easy to use, and easy to
manage. It continues to provide a high quality, high performing database engine for both OLTP
and mixed OLTP/OLAP environments. Numerous enhancements were done to strengthen the
existing server in the areas of security, administration, embeddability, cloud implementation,
availability, application development, and supportability. Significant usability improvements were
made available for time series data, and the ability to use external tables was added to the
Informix Warehouse Accelerator (IWA) data mart. With the introduction of support for JSON as
a native type and the ability to shard collections of documents, Informix has entered into the
fast-paced, dynamic domain of NoSQL web and mobile application development, where
engaging with customers has moved beyond merely recording transactions.

IBM Informix 12.10.xC2: Introducing NoSQL Capabilities 5

Introduction

IBM has introduced the ability to use the Informix and DB2 relational database management
system (DBMS) to store NoSQL Javascript Object Notation (JSON) documents through the
MongoDB clients. JSON has become the dominant format for information exchange in web and
mobile applications, and MongoDB, which only exchanges information as JSON documents,
has the largest market share of NoSQL document storage systems. Informix is more specifically
an object-relational DBMS and has been since the mid-1990s. The existing ability to create new
types and functions to work with them has made it possible to implement JSON and binary-
JSON (BSON) types as first class citizens.

The domain of NoSQL database management systems is very broad. It encompasses NoSQL
systems which do not manage relationships between sets of information at all and those not
using the SQL language for such relationships (“no SQL” systems), and those with the capability
to use both SQL and relational data, and non-relational functions for accessing structured
information (“not-only SQL” systems). Informix is now one of the “not-only SQL” DBMS.

A large percentage of the NoSQL systems have been developed out of a need to work in the
Web 2.0 environment. The JSON document format is a way to transfer object information in a
way that is language neutral and is similar to XML in that respect. Language-neutral data
transmission is crucial to being able to work in a web application environment, where it is
common for an application to work with data from a variety of sources and pass data to and
from software possibly written in different languages. The reduction in coordination required
between application developers and database administrators enables more rapid development
and deployment cycles.

Informix provides a unique platform where systems for engaging with customers can be easily
integrated with systems for recording transactions.

IBM Informix 12.10.xC2: Introducing NoSQL Capabilities 6

The JSON Wire Listener

The JSON Wire Listener for Informix is the keystone to being able to access data as JSON
documents. It uses the same communication protocol that MongoDB uses. The “wire” part of the
name derives from this attribute; the protocol over the network (the wire) is the same. This
means that applications can use the MongoDB client APIs with the listener in the same way that
they use them with MongoDB. Applications written to use the MongoDB application
programming interface can simply connect to the listener.

At the application layer, all data and all database operations come and go as JSON documents.
The listener converts these JSON documents into SQL statements and server function calls as
necessary. The server has JSON and BSON types defined and functions that operate on them.
The BSON format is used to store the data.

JSON Listener
Protocol Conversion

Informix
BSON Storage

MongoDB Wire
Protocol

JDBC
JSON

Functions,
SQL

MongoDB API
Applications
JSON Operations
JSON Data

PHP JavaScript Java Python
And

Others
…

Figure 1. Architecture of the Informix NoSQL components.

IBM Informix 12.10.xC2: Introducing NoSQL Capabilities 7

The connection settings required by MongoDB are simply host and port number; the connection
properties required by Informix also include server name, user name, and password. There are
additional parameters to modify the behavior of the listener and the database server. You
specify additional settings in a properties file in <attribute>=<value> pairs. The critical property
that must be set is the connection URL. The URL is passed to the JDBC driver for establishing
the connection between the listener and the database server. You can set additional attributes
for the port number monitored by the listener, connection pooling, and miscellaneous settings.

A listener is associated with one server instance. One listener can service many application
connections, and more than one listener can access a server at any time.

Connections are transparently pooled within the listener. Pooling connections simply means that
connections that are closed between the application and the listener are not necessarily closed
between the listener and the server. So, when the application requests a connection with the
same attributes as one that has been used before, the listener can use one already established
without having to go through authentication and resource allocation at the server. Connection
pooling is required for performance reasons because in most NoSQL applications units of work
are small, and each work unit gets its own database connection.

See the product documentation for a complete description of the listener settings available.

The name BSON stands for binary-JSON, but more accurately it is a JSON-like format because
there are a couple of field types which do not map from one to the other. Also, the BSON type
embeds length indicators which make traversal of documents more efficient.

JSON Example:

{ "greeting" : "Hello World" }

BSON Encoding:

\x1F\x00\x00\x00\x02greeting\x00\x0C\x00\x00\x00Hello

World\x00\x00

Length of encoding

Element type

Element name

Element value length

Element value

Encoding terminator

Collections are special types of tables within the server and the server maintains metadata
about which symbol names are document collections and which are relational tables. If
compression is available with your server license, you may compress collections.

IBM Informix 12.10.xC2: Introducing NoSQL Capabilities 8

You should use the MongoDB commands for adding or removing collections in order to ensure
that the metadata stays consistent with the state of the collections. Similarly, MongoDB
commands must be used when creating indexes.

IBM Informix 12.10.xC2: Introducing NoSQL Capabilities 9

NoSQL Quick Start Guide

There are three main components, the Informix server, the JSON wire listener, and a MongoDB
client. Below is a brief description of how to install and configure these components.

Server

Installation Type
Select the Typical installation type. The Typical installation provides default server configuration
options that reduce the complexity of installation and maintenance of the Informix server. This
option installs all of the extensions that are required for using BSON and JSON types and also
allows you to create a server instance. You can also choose the customized server settings for
an instance and use the NoSQL extensions, but that is outside the scope of this document.

Number of Users
Select the range that includes the number of concurrent sessions that you expect to be typical
for the server instance. This range does not change what is installed; it changes the
configuration of the server instance created during the installation process.

Other Settings
The other options are unchanged from previous Informix releases. In most cases you can
accept all default values.

JSON Listener
The wire listener is installed along with the Informix server, and started upon successful
installation. The Java archive file is in the Informix installation directory, bin subdirectory, and
the default configuration file is in the Informix installation directory, etc subdirectory. There is a
user, ifxjson, created during the installation, and this user and password may be suitable for
your use. You may want to change the user and password settings in the connection URL of

the jsonListener.properties file, which is also in the etc directory. This URL is in the same

format used by the Informix JDBC driver. There are also logging options for level of detail to log,
and whether to put the log contents into a file or console output.

If the wire listener is not already running, you can start it by using the Informix Administration
API or a system command. For example:

Command line argument

java -jar $INFORMIXDIR/bin/jsonListener.jar -start -config

$INFORMIXDIR/etc/jsonListener.properties

Informix SQL Admin API command:

IBM Informix 12.10.xC2: Introducing NoSQL Capabilities 10

EXECUTE FUNCTION task("start json listener");

Mongo Client
The installation instructions for the MongoDB server, shell, and client application programming
interfaces (API) are located at the MongoDB open-source web site. To use the MongoDB clients
to access the Informix server, point them to the host and port of the wire listener. Here is an
example of starting the mongo shell:

./mongo --host frodo --port 27018

or
./mongo frodo:27018

http://www.mongodb.org/

IBM Informix 12.10.xC2: Introducing NoSQL Capabilities 11

Leveraging the NoSQL Listener to Access Relational Tables

You can utilize the same components used to access JSON documents to access rows stored
in tables as though they were documents stored in collections. There are two ways to do this,
using the $sql operator and referencing tables as you would collections. JSON is a format which
allows for variable schemata; tables, obviously, have fixed schemata. It is easy to transform
fixed schema data into a variable schema format. Transforming a variable schema JSON
document into a fixed schema table row requires that the fields of the document map to the
columns in the row.

If the Informix server, the JSON Listener, and the MongoDB client are not already installed and
configured, please refer to the Error! Reference source not found..

Mongo Operators
This functionality is intended to be very simple; read and write operations on existing tables are
executed as though the table were a collection. The listener will examine the database and if the
entity being accessed is a table, it will convert basic operations on that table to SQL, and
convert the returned value(s) into a JSON document. The first access to an entity caches the
name and type of that entity; so, the first access results in an additional call to the Informix
server, but subsequent operations do not.

The listener is primarily for use with NoSQL databases and NoSQL databases contain at least
one collection (else MongoDB will not make them permanent); so, the listener will not return a

database from show dbs unless that database contains at least one collection. That does not

prevent the database from being used; you can still connect to it through use

stores_demo, for example.

Find
Using the stores_demo demonstration database, you can read all rows in the customer table
with the following command:

db.customer.find()

Standard MongoDB operators can also be used1. Some examples are below:

1
 Not all operators, for example $regex, are currently supported.

IBM Informix 12.10.xC2: Introducing NoSQL Capabilities 12

db.customer.find({ customer_num: 119}); // return info on customer number 119

db.customer.find({ lname: "Shorter"}); // return customer with last name "Shorter"

db.customer.find({ lname: {$gt: "Shor", $lt: "T"} }); // AND conditions

db.state.find({$or: [{code: "AK"}, {code: "HI"}] }, {sname: true});

// OR conditions and projection list

Update
Update operations are also compatible with MongoDB. The following command changes the
first name of the customer number 119 from ‘Bob’ to ‘Robert’:

db.customer.update({customer_num: 119 }, {$set: { 'fname': 'Robert' } })

Note that the operations are being performed on a relational table with a fixed set of columns;
you cannot use an UPDATE statement to add or remove columns as you can use one to add or
remove fields in a document.

Insert
Insert operations where the named entity is a table will attempt to add a row to the table;
operations where the table does not exist or where the entity is a collection will result in a row
being added to a collection. If the INSERT is to a table, it can fail for all the same reasons an
SQL INSERT would fail, including non-existent columns or integrity constraints.

If the following command is run while connected to a stores_demo database, it will result in a
new customer record being created in the customer table.

db.customer.insert(

{

 "fname" : "H. G.",

 "lname" : "Wells",

 "company" : "Mars, Inc.",

 "address1" : "4th Rock",

 "city" : "Canal 5",

 "state" : "Olympus Mons",

 "zipcode" : "90211",

 "phone" : "602-867-5309"

})

The same command run when there is no customer table results in a document with those
values existing in the customer collection.

Remove
Remove operations work either on existing tables or on collections in the same way that

insert() operations do with the obvious exception that a removal of a document does not

implicitly result in a collection being created. The following command results in the row that was
added above being deleted.

db.customer.remove({state : "Olympus Mons" })

SQL Command Pass Through
SQL is a language designed to operate on sets, and there are set operations and expressions,

like joins, which cannot currently be expressed in single MongoDB operations. The $sql

operator allows for the execution of SQL commands within the Informix database engine. The
find() or findOne() methods can be used to execute data definition language. The result of the
execution is returned as a document containing a single field “n” indicating the number of rows
affected.

IBM Informix 12.10.xC2: Introducing NoSQL Capabilities 13

SQL operations are disabled by default; this is partly to prevent unauthorized access. It is
enabled by setting the security.sql.passthrough property in the jsonListener.properties file to
true.

listener.port=27018

url=jdbc:informix-sqli://frodo:27849/sysmaster:INFORMIXSERVER=nosql1210;

USER=<username>;PASSWORD=<password>

security.sql.passthrough=true

The following examples demonstrate how you can use the $sql operator.
Create Table

mongos> db.getCollection("$sql").find({ "$sql": "create table foo (c1 int)" })

{ "n" : 0 }

Drop Table
mongos> db.getCollection("$sql").find({ $query: { "$sql": "drop table foo" }})

{ "n" : 0 }

Queries
The SQL language does not require that all columns be named, or named uniquely, for
example:

select

 1+1,

 c.customer_num,

 o.customer_num

from

 customer c, orders o

where

 c.customer_num = o.customer_num

This kind of query will cause problems in converting the column names into JSON field names
because every field in a document has to have a unique name. These problems can be avoided
by providing aliases for any unnamed or ambiguously named columns, such as:

select

 1+1 as foo,

 c.customer_num,

 o.customer_num as order_customer

from

 customer c, orders o

where

 c.customer_num = o.customer_num

Join Select
There is currently no way to express join relationships between documents in a single MongoDB
API call. However, you can use the ability to execute arbitrary SQL to generate results of join
operations. For instance, here is a query to count the number of orders a customer has placed;
it uses an outer join to include the customers who have placed no orders.

IBM Informix 12.10.xC2: Introducing NoSQL Capabilities 14

db.getCollection("$sql").find({ "$sql":

"select

 c.customer_num,

 o.customer_num as order_cust,

 count(order_num) as order_count

from

 customer c left outer join orders o

 on

 c.customer_num = o.customer_num

group by 1, 2

order by 2" })

The result of this query looks like:

…

{ "customer_num" : 113, "order_cust" : null, "order_count" : 0 }

{ "customer_num" : 114, "order_cust" : null, "order_count" : 0 }

{ "customer_num" : 101, "order_cust" : 101, "order_count" : 1 }

{ "customer_num" : 104, "order_cust" : 104, "order_count" : 4 }

{ "customer_num" : 106, "order_cust" : 106, "order_count" : 2 }

…

In general, there are a couple of ways to deal with null values. From the NoSQL perspective, if
there is no value for an attribute, it is common to not create a document field created for that
attribute. From the SQL perspective, it might be known that an object has an attribute even if the
value of the attribute is not known; in which case, it is better to include the field in the document.
The latter solution is chosen by the listener because it more closely preserves the meaning
stored in the table. This behavior is also compatible with, for instance, the MongoDB C# driver.

Delete
The following command will delete records of customer calls more than 5 years old.

mongos> db.getCollection("$sql").findOne({ "$sql": "

delete

from cust_calls

where

 (call_dtime + interval(5) year to year) < current" })

Result:
{ "n" : 7 }

The returned document indicates that seven rows were changed (deleted) as a result of the
operation.

Update
The following command increases the price of items manufactured by Hero by 10% and returns
one document that indicates that twelve records were updated.

mongos> db.getCollection("$sql").findOne({ "$sql": "

update stock

set unit_price = unit_price * 1.10

where manu_code = 'HRO'" })

Result:

{ "n" : 12 }

IBM Informix 12.10.xC2: Introducing NoSQL Capabilities 15

Horizontal Scaling

Design
Horizontal scaling and sharding are used in the same context. Horizontal scaling refers to
increasing workload capacity by distributing the workload across additional physical machines,
and sharding means to split your data into distinct subsets, where each subset is a shard.
Sharding data is a way to achieve horizontal scalability. Data can be replicated within a shard
node, but data storage is not shared between nodes. In contrast, vertical scaling refers to
increasing the capacity of the machines storing the data.

Distributing workload within the domain of traditional relational systems can be done with either
the same data replicated, or shared, at different nodes, or different nodes sharing none of the
data, but in either case, when the database server itself does not have this capability some form
of middle-tier application is required to coordinate the requests between the end-user
application and the database servers. Sharding is an example of the shared-nothing scenario. It
effectively pushes the functionality of mapping of work requests out to servers and reduction (or
aggregation) of partial results down into the database server itself. Implementing sharding
effectively is still not a trivial task, but reducing the layers within the application stack can make
it simpler. In addition, the metadata about which shards may contain the information requested
does not have to be maintained outside of the database system.

Fragmented (partitioned) tables are tables which have their rows divided between different
physical storage devices, where each storage device contains a distinct subset of a table’s
rows. The purpose of fragmenting tables is to relieve performance bottlenecks due to the
physical limitations of a single disk or other storage device. Sharding is similar in concept except
that instead of only distributing the storage-layer read and write operations, the workload on the
CPU and memory is also distributed. There is a tradeoff for this architecture in that it requires
network communication between the node receiving the work request and the other nodes
containing some portion of the data needed to produce a result. Communication between
hardware nodes is orders of magnitude slower than processing done within a hardware node.
The rate of requests (operations per second) must be very high and the size of the data to be
processed must be very large in order to compensate for the cost of having to coordinate the
request between different nodes.

IBM Informix 12.10.xC2: Introducing NoSQL Capabilities 16

A shard of data is associated with a server node. A server node can be a single server, or a
replica set. In the Informix sharding solution, every server node knows the distribution of
sharded collections; so, applications can connect to any node to perform operations on sharded
collections. Collections that are not sharded can only be accessed from the node hosting the
collection. In the illustration below, application A can access the Foo and Bar collections (dotted
green line). An application connecting through another listener to node 2 would be able to
access all of the Foo collection, but would not be able to access the Bar collection. If a shard
key is not provided (blue dashed line) for a query, then the receiving node will broadcast the
request to all nodes. All Informix servers participating in a shard cluster are aware of which
nodes contain what portions of a sharded collection. So, if it is possible for the server to
determine that only a subset of nodes might contain the relevant data, operations limited to a
subset of the documents are directed to only those nodes holding the relevant shards. Again in
the illustration below, if a query contains a shard key (red solid line) condition indicating that the
document(s) belong in shard 3, then node 1 would only pass the operation to node 3.

Figure 2. Prototype of Informix shard cluster.

Application A
Listener 1

1

2

3

N

4

Collections
Foo – shard 1
Bar

Foo – shard 2

Foo – shard 3

Foo – shard N

Foo – shard 4

IBM Informix 12.10.xC2: Introducing NoSQL Capabilities 17

Sharding in Practice
Sharding adds complexity to your database landscape and necessarily adds some latency to each
request because of the additional network path. Informix scales very well vertically already; so, the need
to shard is reduced, but the price of hardware is variable over time and not linear with respect to the ratio
of price to performance. Some scenarios will exist where the price of an additional system is less than the
price of a system with faster, or more, CPUs, memory, or disk storage, for the same workload capacity
gain. In general, there have to be a lot of users accessing a lot of data in order for sharding to provide
benefits. If the data set is not very large, the database server can cache a significant portion of it in
memory, and read operations of in-memory data are very fast. If there are a limited set of users, for
instance employees accessing an internal system, then it would be unusual for there to be enough
requests per second to justify sharding. A high volume of write operations can make sharding more
desirable because more write operations closely correspond to disk operations, but read operations can
often be fulfilled by data already in memory.

IBM Informix 12.10.xC2: Introducing NoSQL Capabilities 18

Sharding Quick Start Guide

Setup
You need to specify the trusted hosts for each database server that is to be part of the shard
cluster. You do this with the SQL administration API task() function with the add trustedhost
argument and customized host values.

EXECUTE FUNCTION task("cdr add

trustedhost","myhost1, myhost1@ibm.com, myhost2, myhost2@ibm.com");

Sharding needs to be enabled in the wire listener; set the shard.enable parameter to true in the
jsonListener.properties file. If you change the value of this parameter, you must restart the wire
listener for the change to take effect. If you have shard.enable set to false in the wire listener
properties file, the queries on sharded collections only reflect data stored on the local database
server.

Administer sharding from MongoDB shell
You can run commands related to shard administration using the MongoDB shell. Connect the
MongoDB shell to the wire listener for Informix. If the MongoDB shell is on the same machine as
Informix and the wire listener, and you are using the installed default settings:

% mongo

If the MongoDB shell is on a different machine, or you have changed the listener’s port number:

% mongo ––host <hostmachine> --port <portnum>

Add shard servers
Use the addShard command to add new servers to the shard cluster. The addShard command
adds new servers to the shard cluster and new servers to existing, hash-based sharded
collections. This automatically rebalances your data in the background.

Examples:

sh.addShard(“myhost1:port1”)

db.runCommand({“addShard”:”myhost1:port1”})

db.runCommand({“addShard”:[”myhost1:port1”,“myhost2:port2”, “myhost3:port3”, …]})

List shard servers
Use the listShards command list shard servers.

mongos> db.runCommand({listShards:1})

{"serverUsed" : "myhost1/9.25.152.51:9201",

"shards" : [

{"_id" : "g_ol_informix1210_1", "host" : "myhost1:9201"},

mailto:myhost2@ibm.com

IBM Informix 12.10.xC2: Introducing NoSQL Capabilities 19

{"_id" : "g_ol_informix1210_2", "host" : "myhost2:9202"}],

"ok" : 1

}

Shard collections
You can use the shardCollection command to enable collection sharding and data distribution
across the servers in the cluster. You can shard a collection by hash or by expression. This
example shards the collection named mycollection1 in the mydb database using a hash
algorithm on the _id field in the documents.

sh.shardCollection(“mydb.mycollection1”, {“_id”:”hashed”})

To shard by expression, you provide the expressions that determine which documents are
stored on each shard server. The following example shards the collection named mycollection2
in the mydb database using the state field as the shard key. The data are distributed across
servers as defined in the expressions.

 db.runCommand({

“shardCollection”:“mydb.mycollection2”, “key”:{“state”:1},

“expressions”:{

“g_server_1”:” in (‘KS’,’MO’)”,

“g_server_2”:”in (‘TX’,’OK’)”,

“g_server_3”:”remainder”}

})

Scaling out
As your data and capacity requirements grow, you can scale out by adding more shard servers
using the addShard command. AddShard automatically adds new shard servers to any existing
hashed shard rules. To add new shard servers to expression shard rules, use the
changeShardCollection command. The changeShardCollection command is only supported for
expression-based sharding.

Change expression shard rules
You can use the changeShardCollection command to change the expressions used for
expression-based sharding. This includes adding or removing shard servers from the
sharded collection.

Example:

db.runCommand({“changeShardCollection”:“mydb.mycollection2”, “expressions”:{

“g_server_1”:”in (‘KS’,’MO’)”,

“g_server_2”:”in (‘TX’,’OK’)”,

“g_server_3”:”in (‘WA’,’OR’)”,

“g_server_4”:”in (‘CA’, ‘NM’,‘NV’)”,

“g_server_5”:”remainder”

}})

IBM Informix 12.10.xC2: Introducing NoSQL Capabilities 20

Broadly Applicable and Warehouse Accelerator Enhancements

Informix 12.10.xC2 incorporates enhancements in all aspects of the server including installation,
migration, administration, performance, security, embeddability, application development, cloud,
and availability. Significant performance and usability improvements were implemented for the
sensor data management hosted on Informix Warehouse Accelerator (IWA) data marts.

In the area of performance, some of the many enhancements include: in-place conversion of
data types from SERIAL to SERIAL8 and BIGSERIAL, SERIAL8 to BIGSERIAL and
BIGSERIAL to SERIAL8 using the ALTER TABLE. Earlier, such data type conversions used
slow alter operations. In-place alter operations require less space than copy alter operations
and makes the table available to the other sessions faster. Other enhancements also include
improving query performance for statements that use the LAST COMMITTED option of the
Committed Read isolation level by enabling read ahead and light scans. This improvement aids
warehousing applications by improving the performance of complex analytical queries.

Enhancements to sensor data include enabling replication of time series data to all types of
high-availability cluster nodes hosted in read-only mode including the previously supported
High-Availability Data Replication (HDR), shared-disk secondary, and remote stand-alone
secondary clusters. The usability of TimeSeries data has been improved by allowing the use of
TimeSeries columns in the ORDER BY clause of an SQL statement. Performance
improvements in sensor data handling include use of aggregation of an interval of time series
data, parallelizing queries on virtual tables created using fragment by expression, tunable data
flushing using the time series loader, and accelerating queries on time series data in IWA data
marts.

The following section summarizes the enhancements done in IWA in this release. For additional
information and the complete list and explanation of all the other enhancements, certification
and compliance, refer to the release notes and the corresponding release documentation.

Accelerating queries on partitioned time series data in IWA
Informix TimeSeries data type tables contain time stamped data based on a time series. Time
series data sets are usually very massive. The proprietary Informix TimeSeries data type
provides a superior solution with regards to performance and disk space consumption and
management when working with time series data.

The TimeSeries data type is not directly supported by IWA, but you can create a Virtual Table
Interface (VTI) of the TimeSeries data to project it as a simple relational representation.

A typical warehousing schema of a database containing time series data consists of a fact table
(containing a number of time stamps/series), and dimension tables, forming a star or snowflake

IBM Informix 12.10.xC2: Introducing NoSQL Capabilities 21

schema. When querying such a schema, the TS virtual table (TSVT) gets joined with dimension
tables.

In 12.10.xC1, the IWA already supported creating data marts with fact tables containing time
series data using the VTI. When TimeSeries data is projected to a VTI, the number of rows
expand exponentially, which could make some of the queries on the time series data that have
multiple joins by virtue of star schema inefficient. Also, typically time series data in the previous
versions of IWA was not partitioned. Unpartitioned data could slow the load speed and query
execution time, and to refresh the data you must reload the complete virtual table. The new
12.10.xC2 release alleviates this bottleneck by enabling the partitioning of the time series data
based on time intervals in the VTI in the fact tables. You can now define smaller virtual partitions
(via VTI) that can be used to either quickly refresh the data in part of the IWA data mart or
continuously refresh the data.

The partitioning on the virtual table is enabled through TimeSeries calendar properties. This is
done using the following steps:

 Create the virtual table using the TSCreateVirtualTab() procedure and enable the
TSVTMode parameter by including the TS_VTI_SCAN_DISCREET setting.

 Define virtual partitions by assigning a calendar.

 To virtually partition time series data in an IWA data mart VTI, a time series calendar
must be created and assigned to the time series virtual table using the
ifx_TSDW_setCalendar() routine. The calendar index identifies a virtual partition. The
first partition is numbered 0.

Example:

-- Create a calendar for the partition time range

INSERT INTO calendartable (c_name, c_calendar)

VALUES ('2013monthly',

 'startdate(2013-01-01 00:00:00.00000),

 pattstart(2013-01-01 00:00:00.00000),

pattern({1 on},month)');

-- Partition the data as per the defined calendar

EXECUTE FUNCTION ifx_TSDW_setCalendar('demo_dwa', 'demo_mart',

'informix', 'ts_data_v', '2013monthly');

Where 'demo_dwa' is the accelerator name, 'demo_mart' is the IWA data mart name,
'informix' is the owner of the table, 'ts_data_v' is the virtual table name and
'2013monthly' is the time series calendar.

In the above example the calendar index 0 identifies the virtual partition for January

2013, the calendar index 1 identifies February 2013, and so on.

 Refresh time series virtual partition
After you define virtual partitions and load the data mart, you can refresh the time series
data for a single virtual partition by running the ifx_TSDW_updatePartition() routine.

Example:

ifx_TSDW_updatePartition('demo_dwa', 'datamart_name', 'informix', 'ts_data_v', 2);

IBM Informix 12.10.xC2: Introducing NoSQL Capabilities 22

The example above will refresh data for the month of March 2010 as per the calendar
definition.

This enhancement increases the system availability and makes continuous data refresh of
TimeSeries data to IWA faster. It also saves the overall time by accelerating analytical queries
while making the IWA data mart administration simpler, thus increasing the business value.

Loading data from external tables into IWA data marts
An external table is a data file that is not managed by an Informix database server. This could
be flat files which conform to a well defined record format that the database can translate. The
definition of the external table includes data-formatting type, external data description fields, and
global parameters. To map external data to internal data, the database server views the
external data as an external table. Treating the external data as a table provides a powerful
method for moving data into or out of the database and for specifying transformations of the
data. External tables also let you query and write data as though the data where in Informix
permanent table.

You can define an external table by using the CREATE EXTERNAL TABLE statement.

Example:

CREATE EXTERNAL TABLE MyEmpTab (

Name CHAR(18) EXTERNAL CHAR(18),

Hiredate DATE EXTERNAL CHAR(10),

Address VARCHAR(40) EXTERNAL CHAR(40),

Empno INTEGER EXTERNAL CHAR(6))

USING (

FORMAT 'FIXED',

DATAFILES("DISK:/anr/emp.fix")

);

The above statement defines the external data format and creates the external table definition with

data referenced from the disk file named /anr/emp.fix. The file can also come from a pipe (tape
drive or direct network connection).

Prior to this release, users had to load the external data from the flat files into the Informix
database and then perform the analysis there. With 12.10.xC2, by enabling the external tables
support, users could consider loading the external data directly into an IWA data mart for further
analysis.

Enabling this key feature of loading data from external tables directly to IWA data marts
provides the following benefits:

 Transferring data from any source across platforms in an ASCII-delimited file to
IWA

 Performing parallel standard INSERT operations

 Using named pipes for loading data from storage devices and direct network
connections

 Maintaining a record of load statistics during the run

 Performing high-speed and data-checking data load

 Mixing external and permanent tables in the IWA data mart

 No loading/building of tables/indexes required

IBM Informix 12.10.xC2: Introducing NoSQL Capabilities 23

 Saving data preparation time through minimal setup

 Saving storage space by not having to copy data into regular tables

Users who want to use just the IWA for quick analytics on data that are available externally, in a
flat file or otherwise, can now avoid the overhead of loading the data first to Informix before the
data could be used for any analytics at IWA speed. Complex analytics can also be performed by
doing joins between various tables that can be setup among external flat files.

IBM Informix 12.10.xC2: Introducing NoSQL Capabilities 24

Appendix A: NoSQL Background Information

Different Philosophies
NoSQL systems have become popular for their ability to solve two categories of problems:
reducing development time and lowering query response time under very heavy load conditions.
The most significant difference to working with NoSQL is that in the relational paradigm, the
definitions of objects exist within the database, but in the NoSQL domain, the definitions exist
and are maintained in the application. In a NoSQL paradigm, the application(s) define the
structures, and the database is simply a means to store the data as serialized structures.

Where traditional relational systems provide the infrastructure behind systems of record, NoSQL
systems provide the infrastructure behind systems of engagement. This is perhaps painting with
too broad a brush, but it provides a broader context for how the Informix NoSQL features
enhance your ability to deliver solutions to your customers. The lack of fixed structures at the
database level fits developers’ need to rapidly change software that interacts, or engages, with
customers, and web or mobile systems of engagement tend to be more dynamic than the more
mature systems of record.

Which approach is better, relational or NoSQL, depends on various aspects of the data and the
nature of the applications using it. For example, some collections of data do not require
interactions with other collections of data; so, there is little justification for maintaining relational
data definitions within the database, separate from the application using the data. Splitting data
into shards adds complexity to the infrastructure and adds a network and processing latency to
query response time, but allows capacity to be added with low-cost hardware.

Application Development
JavaScript Object Notation (JSON) is the most common format used for exchanging data
between the database and the application. It is a very simple interchange format for encoding,
or serializing, structured objects as text. It is natively supported in JavaScript and Python, and
there are readily available libraries supporting it in Java, PHP, C++, and others. (JavaScript is
an entirely different language from Java, despite the name similarity.) See DB2 NoSQL JSON
capabilities, Part 1 in the IBM References for more information on the advantages of using
JSON.

The differences in philosophy are reflected in the way the database systems deal with other
functionality related to database management, such as incorporating business logic into the
database. When you have a well-defined schema in the database layer, it is possible to define
such things as constraints between values across entity types at the lowest, most common
layer. Since there are no defined schemas at the database layer within a NoSQL store, it is not
possible to create well-defined relationships at that level, and without those relationships, it is
not practical to create a constraint within the database level that says something to the effect of,
"Do not accept new rows (documents) where the value of state does not exist within the list of
states in the country." So, these kinds of business logic rules have to be implemented in an
application layer above the database.

IBM Informix 12.10.xC2: Introducing NoSQL Capabilities 25

Relational database systems are built to handle multi-statement transactions. Achieving the
same all-or-nothing behavior in a NoSQL system like MongoDB, which does not implement the
concept of transaction states, requires considerably more application code and effort to
guarantee that multiple operations are execute as atomic units.

If you have an application with a short lifetime, it might make sense to spend less time on
development. Application development time is reduced by enabling the application to define the
structure of objects rather than keeping the structure definitions in a separate system, the
database server. If an application developer wants to add, change the type, or remove a field,
they only have to change the application code and do not have to coordinate their work with a
database administrator, who might then have to propagate the change to shards or replicates of
the data at different sites.

The ability of a developer to access information in a database without having to write SQL code,
especially if that information is not inherently relational, is desirable for a large percentage of
web application developers. The SQL language is primarily for expressing relationships
between sets of data. If there are few, or only very simple, relationships between the sets the
application uses, there is less reason for the developer to have to know SQL in order to write
their application code.

When there is a requirement for more than one application to access the same data, it is useful
to have some form of master for the schema. Although you may be able to create one master
application that defines the structure of objects for all applications, it is advantageous to define
the schema where the data are stored. This is also useful in situations where a single
application changes over time, either as a result of an evolution of versions or because it is
replaced by another application. Let’s say that there are N applications which access the
database. If the structure of the data is maintained at the database, there are N relationships
between data definitions and applications that need to be maintained. The graph of relationships
is a simple tree with the database at the root and every application is a branch. If there is no
common definition of the data, the graph becomes more filled in, with potentially N(N+1)/2
relationships that need to be maintained. It is possible to define a master application that sets
the standard for all others, but it would be easier to enforce consistent definitions if they are kept
with the data.

Customer information is an example of information that is shared across multiple applications.
The customer data of a company have a set of common fields that change little over time. This
type of data might be maintained for the entire life of the company. However, the applications
used to access the data are likely to change. It is also likely that the company has a limited
number of employees who require access to such customer information, and so there is less
need for horizontal scale-out. Relational database systems were specifically designed for this
kind of work, maintaining customer transaction records, and they still excel at it.

Runtime Performance
NoSQL systems commonly increase throughput by relaxing the rules for atomicity, consistency,
isolation, and durability (ACID), or sharding data across separate physical devices. For
example, in the MongoDB default usage, the server does not wait for data to be written to disk
before it acknowledges the receipt. It then returns a successful operation message to the
application. Thereby, write performance can be improved at the cost of losing the guarantee that
the changes are made durable. In a NoSQL sharding setup, query response time is reduced by
distributing the work of the query to separate systems, each of which contains a shard, a distinct
subset of a collection.

IBM Informix 12.10.xC2: Introducing NoSQL Capabilities 26

Informix maintains the durability aspect of database ACID requirements and so its behavior is
roughly comparable with the MongoDB write concern level journaled. When write assurance is
required, performance is reduced by waiting for the data to be made persistent before returning
a status message to the client. Applications that can tolerate rare occurrences of data loss can
increase the number of write operations by not waiting for data persistence. Write failures are
rare whether they are the result of some failure of the storage media (disk drive), network
packet loss, or other causes, and not all pieces of information are critical. For example, it may
be that losing 1 out of 100,000 (five ‘9’s reliability) messages in a social media hub is an
acceptable tradeoff for the ability to handle a higher volume of messages.

NoSQL systems achieve schema-less databases by storing the metadata with every instance of
the data. This requires more storage space than storing a single copy of the metadata for many
instances of data. The amount of extra space required by a NoSQL system is greater when
there are more rows, and it is greater when the metadata, like the name of a field, is relatively
large. A two-character name of a 256-character document field requires about one percent more
storage space than a relational column. An eight-character field name on a field that contains an
average of eight characters doubles the storage space requirements. A relational DBMS can
have advantages when storage space and disk I/O are important factors.

Master-detail relationships, which are trivial in a relational system, force a developer to make a
choice in a NoSQL system between embedding and linking. Embedding the details in the same
document as the master enables the master and details to remain atomic and consistent with
each other, but can result in duplicated data. Aside from the inefficient use of storage space,
any time there are duplicates of what should be the same information, extra work has to be
performed to maintain consistency. Embedding details within a single document also increases
the risk that the maximum size of a document will be reached. Embedding can have a
performance advantage because all the information is stored contiguously on disk; so, reads
and writes are efficient. Linking removes the problems of redundancy and possible size
restrictions, but introduces the need to perform multiple database operations to access the
same information.

Summary
You will have to decide on various tradeoffs to make between using a relational model and a
NoSQL model when designing your software solution. Both the areas of application
development and runtime performance present options you will want to consider. IBM Informix
offers you one database system capable of supporting your solution no matter which set of
options work best for you.

IBM Informix 12.10.xC2: Introducing NoSQL Capabilities 27

Appendix B: NoSQL Additional Reading

The following list of links provides useful background information for new NoSQL users. These
provide information about how non-relational database technology is being used and how these
capabilities are introduced into the IBM DB2 and Informix DBMS. The inclusion of 3rd-party
material is not an endorsement of the material by IBM, but is meant to offer the reader a variety
of information and viewpoints.

IBM References

DB2 NoSQL for JSON Capabilities Part IV: Wire Listener
DB2 NoSQL JSON enables developers to write applications using a popular JSON-
oriented query language created by MongoDB to interact with data stored in IBM
DB2 for Linux, UNIX, and Windows.
http://www.ibm.com/developerworks/data/library/techarticle/dm-
1306nosqlforjson4/index.html
This article describes the listener as used to access DB2; however, the Informix
implementation is very similar. There are differences in installation and
configuration of the listener, but the usage and examples provided are useful in
understanding the Informix implementation. There are links to MongoDB resources.

DB2 NoSQL JSON capabilities, Part 1: Introduction to DB2 NoSQL JSON
Rapidly changing application environments require a flexible mechanism to store
and communicate data between different application tiers. JSON (Java™ Script
Object Notation) has proven to be a key technology for mobile, interactive
applications by reducing overhead for schema designs and eliminating the need for
data transformations.
http://www.ibm.com/developerworks/data/library/techarticle/dm-
1306nosqlforjson1/index.html

An introduction to MongoDB
http://www.ibm.com/developerworks/offers/lp/demos/summary/j-jmongodb.html

Explore MongoDB
Learn why this database management system is so popular
http://www.ibm.com/developerworks/library/os-mongodb4/

When NoSQL makes better sense than MySQL (The Tech Trek) – IBM
https://www.ibm.com/developerworks/community/blogs/theTechTrek/entry/when_nosql_m
akes_better_sense_than_mysql8

IOD 2011: Curt Cotner on NoSQL, Hadoop, Capture Replay Technology
http://www.ibm.com/developerworks/podcast/iod2011-curtcotner

Non-IBM References
How NoSQL and Relational Database Storage Can Coexist
Their differences complement one another, with each delivering functionality that the other
cannot. They occupy different but equally important pieces of the database pie.

http://www.ibm.com/developerworks/data/library/techarticle/dm-1306nosqlforjson4/index.html
http://www.ibm.com/developerworks/data/library/techarticle/dm-1306nosqlforjson4/index.html
http://www.ibm.com/developerworks/data/library/techarticle/dm-1306nosqlforjson1/index.html
http://www.ibm.com/developerworks/data/library/techarticle/dm-1306nosqlforjson1/index.html
http://www.ibm.com/developerworks/offers/lp/demos/summary/j-jmongodb.html
http://www.ibm.com/developerworks/library/os-mongodb4/
https://www.ibm.com/developerworks/community/blogs/theTechTrek/entry/when_nosql_makes_better_sense_than_mysql8
https://www.ibm.com/developerworks/community/blogs/theTechTrek/entry/when_nosql_makes_better_sense_than_mysql8
http://www.ibm.com/developerworks/podcast/iod2011-curtcotner

IBM Informix 12.10.xC2: Introducing NoSQL Capabilities 28

http://www.devx.com/dbzone/Article/45636

Transitioning Relational to NoSQL
How to change the way you think about data modeling
http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/Couchbase_Whitepaper_T
ransitioning_Relational_to_NoSQL.pdf

MongoDB
MongoDB (from "humongous") is an open source document-oriented database system
developed and supported by MongoDB, Inc.
http://en.wikipedia.org/wiki/MongoDB

Shard (database architecture)
A database shard is a horizontal partition in a database or search engine. Each individual
partition is referred to as a shard or database shard.
http://en.wikipedia.org/wiki/Shard_(database_architecture)

Nothing is Certain Except Death, Taxes and a Short Mobile App Lifespan
Traditional enterprise applications may extend over 15 years. Enterprise mobile apps on the
other hand are rewritten in a mere 14 months. This means enterprises should plan for the future
of their mobile applications, but develop them for today.
http://thinkmobile.appcelerator.com/blog/bid/249258/Nothing-is-Certain-Except-Death-Taxes-
and-a-Short-Mobile-App-Lifespan

When it’s still best to use a relational DBMS
For short-request processing, both document stores and fully object-oriented DBMS can make
sense.
http://www.dbms2.com/2011/05/29/when-to-use-relational-database-management-system/

Database management system choices – beyond relational
This is the fifth of a five-part series on database management system choices.
http://www.dbms2.com/2008/02/15/non-relational-database-management

Systems of Engagement and the Future of Enterprise IT: A Sea Change in Enterprise IT
http://www.aiim.org/futurehistory

How to Integrate Your Systems of Engagement into Your Systems of Record
ECM & Social Business Community Blog
http://www.aiim.org/community/blogs/expert/How-to-Integrate-Your-Systems-of-Engagement-
into-Your-Systems-of-Record

Open Standards
JSON
JSON (JavaScript Object Notation) is a lightweight data-interchange format.
http://www.json.org/

BSON Specification
BSON - Binary JSON
http://bsonspec.org/#/specification

http://www.devx.com/dbzone/Article/45636
http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/Couchbase_Whitepaper_Transitioning_Relational_to_NoSQL.pdf
http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/Couchbase_Whitepaper_Transitioning_Relational_to_NoSQL.pdf
http://en.wikipedia.org/wiki/MongoDB
http://en.wikipedia.org/wiki/Shard_(database_architecture)
http://thinkmobile.appcelerator.com/blog/bid/249258/Nothing-is-Certain-Except-Death-Taxes-and-a-Short-Mobile-App-Lifespan
http://thinkmobile.appcelerator.com/blog/bid/249258/Nothing-is-Certain-Except-Death-Taxes-and-a-Short-Mobile-App-Lifespan
http://www.dbms2.com/2011/05/29/when-to-use-relational-database-management-system/
http://www.dbms2.com/2008/02/15/non-relational-database-management
http://www.aiim.org/futurehistory
http://www.aiim.org/community/blogs/expert/How-to-Integrate-Your-Systems-of-Engagement-into-Your-Systems-of-Record
http://www.aiim.org/community/blogs/expert/How-to-Integrate-Your-Systems-of-Engagement-into-Your-Systems-of-Record
http://www.json.org/
http://bsonspec.org/%23/specification

IBM Informix 12.10.xC2: Introducing NoSQL Capabilities 29

Appendix C: References

 IBM Informix database server 12.10.xC1: A Technical White Paper

 Release Notes for IBM Informix 12.10.xC2

 IBM Informix 12.10 .NET Provider Reference Guide

 IBM Informix 12.10 Administrator’s Reference

 IBM Informix 12.10 Backup and Restore Guide

 IBM Informix 12.10 Database Extensions User's Guide

 IBM Informix 12.10 Enterprise Replication

 IBM Informix 12.10 GLS User's Guide

 IBM Informix 12.10 Guide to SQL: Reference

 IBM Informix 12.10 Guide to SQL: Syntax

 IBM Informix 12.10 Migrating and upgrading

 IBM Informix 12.10 Performance Guide

 IBM Informix 12.10 Security

 IBM Informix 12.10 TimeSeries Data User’s Guide

 IBM Informix 12.10 Warehouse Accelerator Administration Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.relnotes.doc/relnotes.htm
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.netpr.doc/netpr.htm
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.admin.doc/admin.htm
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.bar.doc/bar.htm
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.dbext.doc/dbext.htm
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.erep.doc/erep.htm
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.glsug.doc/glsug.htm
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqlr.doc/sqlr.htm
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/sqls.htm
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.mignode.doc/mignode.htm
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.perf.doc/perf.htm
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.secnode.doc/secnode.htm
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.tms.doc/tms.htm
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.acc.doc/acc.htm

IBM Informix 12.10.xC2: Introducing NoSQL Capabilities 30

For more information

To learn more about the Informix features, contact your IBM representative or IBM Business
Partner, or visit ibm.com/software/data/informix

IBM Informix
Introducing NoSQL Capabilities
A Technical White Paper

September 2013
Chris Golledge
Anup Nair

© Copyright 2013 IBM Corporation

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

The information contained in this publication is provided
for informational purposes only. While efforts were made
to verify the completeness and accuracy of the
information contained in this publication, it is provided AS
IS without warranty of any kind, express or implied. In
addition, this information is based on IBM’s current
product plans and strategy, which are subject to change
by IBM without notice.

IBM shall not be responsible for any damages arising out
of the use of, or otherwise related to, this publication or
any other materials. Nothing contained in this publication
is intended to, nor shall have the effect of, creating any
warranties or representations from IBM or its suppliers or
licensors, or altering the terms and conditions of the
applicable license agreement governing the use of IBM
software.

References in this publication to IBM products,
programs, or services do not imply that they will be
available in all countries in which IBM operates. Product
release dates and/or capabilities referenced in this
presentation may change at any time at IBM’s sole
discretion based on market opportunities or other factors,
and are not intended to be a commitment to future
product or feature availability in any way. Nothing
contained in these materials is intended to, nor shall
have the effect of, stating or implying that any activities
undertaken by you will result in any specific sales,
revenue growth, savings or other results.

IBM, the IBM logo, ibm.com, and Informix are trademarks
of International Business Machines Corp., registered in
many jurisdictions worldwide.

