
© Copyright IBM Corporation 2014 Trademarks
Build an app to read sensor data and predict failure using
Informix TimeSeries service

Page 1 of 7

Build an app to read sensor data and predict failure
using Informix TimeSeries service
Michael Chris Golledge (https://www.ibm.com/
developerworks/community/profiles/html/
profileView.do?key=f61406d7-1522-4263-b6aa-
f8808c046327&tabid=dwAboutMe)
Advisory Software Engineer
IBM

10 July 2014

Preventing problems costs less than reacting to them. Prevention implies some knowledge
of where things are going, and predicting where things will be in the future requires some
knowledge of where things have been in the past. This is where IBM® Informix® TimeSeries
comes into play. Not only does it provide a means of recording what has happened, it is easy
to use to predict what might happen. In an internet-of-things context, any sensor can record
its information into a time series data set. This demonstration is a simple simulation of a
refrigerator, cloud-based storage and analytics, and monitoring software to alert the user if the
device is approaching unsafe temperature limits.

Sign up for IBM® Bluemix™

This cloud platform is stocked with free services, runtimes, and infrastructure to help you
quickly build and deploy your next mobile or web application.

Preventing problems costs less than reacting to them. But to prevent a problem, you must be able
to predict a future issue based on knowledge of the past. Sensors often pick up signs of impending
failure before it happens. Because sensors record information into a time series data set, you can
use IBM Informix® TimeSeries to help you predict and prevent problems. Informix TimeSeries
records changes over time in a format that is outside of the traditional relational table format. This
format supports more efficient use of storage space and faster query processing.

IBM Bluemix provides an easy-to-use platform for developing a solution involving sensors,
database storage (in the TimeSeriesDatabase), server-side analytics, and a monitoring application
to warn the customer if trouble appears to be imminent. This demonstration is a simple simulation
of a refrigerator, cloud-based storage and analytics, and monitoring software to alert the user if the
device is approaching unsafe temperature limits. Use the tools described here to build a similar
solution to solve a real problem you're facing.

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/
mailto:https://www.ibm.com/developerworks/community/profiles/html/profileView.do?key=f61406d7-1522-4263-b6aa-f8808c046327&tabid=dwAboutMe
mailto:https://www.ibm.com/developerworks/community/profiles/html/profileView.do?key=f61406d7-1522-4263-b6aa-f8808c046327&tabid=dwAboutMe
mailto:https://www.ibm.com/developerworks/community/profiles/html/profileView.do?key=f61406d7-1522-4263-b6aa-f8808c046327&tabid=dwAboutMe
mailto:https://www.ibm.com/developerworks/community/profiles/html/profileView.do?key=f61406d7-1522-4263-b6aa-f8808c046327&tabid=dwAboutMe
https://www.bluemix.net/?cm_mmc=developerWorks-_-dW%20CloudOE%20content-_-cl-bluemix-predictivets-app_-article
http://www-01.ibm.com/software/data/informix/timeseries/
https://www.bluemix.net/?cm_mmc=developerWorks-_-dW%20CloudOE%20content-_-cl-bluemix-predictivets-app_-article
https://www.ng.bluemix.net/docs/Services/TimeSeriesDatabase/TimeSeriesDatabase.html

developerWorks® ibm.com/developerWorks/

Build an app to read sensor data and predict failure using
Informix TimeSeries service

Page 2 of 7

“ This demo provides simple building blocks showing how
to use a smart sensor to detect problems, in time to prevent
them. ”

In this demo, the sensor is a simulation of a thermometer on a fridge. The user moves the
thermometer, the sensor sends its readings to the service in the cloud, and the monitor polls the
recent statistics from the service. If the temperature of the fridge is likely to exceed safe limits in
the near future, the monitor alerts the user. In a real application, the monitoring software would
probably be run by a company servicing many devices, and the monitoring software would be
looking for problems on all those devices.

What you'll need for your application

• General proficiency with Java™ programming, applets, and a Java development environment.
• The JDBC driver for IBM Informix.
• Moderate knowledge of the Informix TimeSeries feature.
• Access to two libraries from Apache:

• Apache Common Lang, math library
• Apache Wink

Run the app
Get the code at JazzHub

The components

The components of this application running outside of the cloud operating environment are Java
applets. It is common for browsers to disable the running of applets by default. If you have trouble
getting the applets to run, try enabling Java in your browser and enabling Java in your control
panel.

The application contains three main modules: server-side classes, the sensor, and the monitor.
The server-side classes run as servlets within the Liberty for Java runtime. The sensor and the
monitor are separate, lightweight, Java applets that run in a web browser. The following tables give
an overview of the classes and what they do.

Server-side class Brief description

TSConnection Handles all the direct database I/O.

InitializeDB Routes request to create database objects to TSConnection. Should
only be needed when modifying the application.

ServiceStatus Only verifies that the service is online and sees what the
VCAP_SERVICES entry is.

SensorID Receives the request to register the sensor on the database and returns
a unique ID to the sensor. An alternate model would be for the sensor to
tell the server what its ID is.

TSRead Routes requests from the monitor for recent sensor statistics to
TSConnection.

http://predictivets.mybluemix.net/?cm_mmc=developerWorks-_-dW%20CloudOE%20content-_-cl-informix-timeSeries-service-app-_-article
https://hub.jazz.net/project/chrisg65/predictiveTS?utm_source=developerWorks&utm_medium=article&utm_content=cl-informix-timeSeries-service-app&utm_campaign=dW%20CloudOE%20content
https://java.com/en/download/help/enable_browser.xml
https://www.java.com/en/download/help/enable_panel.xml
https://www.java.com/en/download/help/enable_panel.xml
https://www.ng.bluemix.net/docs/templates/javahelloworld.jsp

ibm.com/developerWorks/ developerWorks®

Build an app to read sensor data and predict failure using
Informix TimeSeries service

Page 3 of 7

TSWrite Routes sensor readings to TSConnection.

TSStats Encapsulates recent statistics and defines thresholds.

TSType Encapsulates the time series row type.

Sensor class Brief description

Sensor Applet with graphical interface that transmits readings to the server.

TSType Serializable type that encapsulates the data to be transmitted.

Monitor class Brief description

Monitor Applet with graphical interface that reads data analysis and signals
user.

TSStats Serializable type that encapsulates the data to be transmitted.

Let's go over some of the more interesting sections of code.

TSConnection.initializeDB method
Do not expose this function in a production environment. It is accessible in this demo so that you
can see some of the feature content of the TimeSeries database service.

The TSConnection.initializeDB method limits the amount of data stored and defines a more
granular calendar pattern when it is called.

Although you can use the predefined objects common to every instance of the TimeSeries service,
this demo takes readings every second and limits how much data is kept. For that purpose, the
demo requires some TimeSeries object types that do not come with the standard database. The
following listings are for these objects.

Define the calendar pattern
Calendar definitions, as shown in the following code listing, do not matter as much with irregular
series as they do with regular series, but I like to keep the object definitions consistent with their
intended use. If I want to use a regular series at some point in the future, defining it now makes
that easy. The shortest period that comes with the default database ready to use is 15 minutes.

// This statement is a little bit of a trick to create a new pattern
// if one does not already exist, and do nothing if it does. It saves
// having to code multiple statements and logic.
ignoreErr[i] = false;
statements[i++] = "insert into CalendarPatterns "
 + "select "
 +" 'onesec','{1 on}, second' "
 + "from sysmaster:sysdual "
 + "where not exists (select 1 "
 + " from CalendarPatterns where cp_name = 'onesec')";

Establish time zone consistency
The simple row type has just a couple of fields.

developerWorks® ibm.com/developerWorks/

Build an app to read sensor data and predict failure using
Informix TimeSeries service

Page 4 of 7

statements[i++] = "create row type thermometer_reading ("
 + "tstamp_gmt datetime year to fraction(5), "
 + "celsius real "
 + ")";

What is the time zone of the cloud? To eliminate ambiguity about what the values in the database
mean, give your columns names that give meaning to the values stored there. For example, the
_gmt suffix in the previous listing indicates that values are in Greenwich Mean Time. The actual
time zone is enforced by the code that assigns the java.sql.TimeStamp values to the sensor, by
using the cal calendar object. Therefore, in this example, the _gmt in the field name defined in
initializeDB is a clue to the next person who edits the code that a GMT calendar should be used.

The sample code also makes it clear that the numeric values in the temperature field are in
degrees Celsius. The JDBC standard states that, if no calendar is provided, time values are
stored in the time zone of the JVM. Knowing what that is and knowing that it will never change
is problematic in a cloud environment. See the blog post "Achieving consistent meanings for
DATETIME values."

Always specify a calender when writing and reading time stamp values to and from the database,
as shown in the following two code listings, in which the calendar object is created and then the
calendar object is used.

privatestaticfinal Calendar
 cal=Calendar.getInstance(TimeZone.getTimeZone("GMT"));

conn = TSConnection.getConnection();
sql = "insert into thermos_vti values(?,?,?)";
PreparedStatement statement = conn.prepareStatement(sql);
statement.setInt(1, data.id);
statement.setTimestamp(2,
 new java.sql.Timestamp(data.tstmp.getTime()), cal);
statement.setFloat(3, data.celsius);
statement.executeUpdate();

Limit the data size
The demo app does not need readings from Refrigerator 23 from last year. The app does need to
conserve space on the cloud server. To limit the size of the data stored in the time series container
used for this application, define a window of data you care about, for example:

statements[i++] = "execute procedure TSContainerCreate("
 + " 'thermometer_readings', "
 + " 'rootdbs', "
 + " 'thermometer', "
 + " 0, "
 + " 0, "

 + " '2014-01-01 00:00:00'::datetime year to second, "
 + " 'day', " // window interval
 + " 2, " // active window size
 + " 3, " // dormant window size
 + " null, "

 + " 1)"; // window control, As many as necessary existing
 //dormant partitions and older active partitions are destroyed.

https://www.ibm.com/developerworks/community/blogs/idsteam/entry/achieving_consistent_meanings_for_datetime_values_with_jdbc?lang=en_us
https://www.ibm.com/developerworks/community/blogs/idsteam/entry/achieving_consistent_meanings_for_datetime_values_with_jdbc?lang=en_us

ibm.com/developerWorks/ developerWorks®

Build an app to read sensor data and predict failure using
Informix TimeSeries service

Page 5 of 7

Full details of this procedure can be found in the documentation for rolling window containers.

Define a virtual table to access time series data
Some operations are easier if you can access the time series as though it were a relational table.
For those operations, define a virtual table, as shown in the following listing.

statements[i++] = "EXECUTE PROCEDURE TSCreateVirtualTab("
 + " 'thermos_vti', 'thermometers', "
 + "'origin(2014-01-01 00:00:00), "
 + "calendar(onesec),container(thermometer_readings),threshold(0),irregular'"
 + ", 0)";

I use an irregular series in this application because regular time series are populated with null
entries for every missing value between the origin and the most recent entry and with that method,
space is wasted on entries for a few months or years of readings every second.

Learn more about using Informix TimeSeries in the publication IBM Redbooks: Solving Business
Problems with Informix TimeSeries.

Sensor
The Sensor class emulates a sensor containing a thermometer that sends its reading to the server
using standard POST messages. For this class, the send() method accepts any serializable object,
as shown in the following listing.

privatevoid send(Serializable output)
{
 try
 {
 // send data to the servlet
 HttpURLConnection conn = getServletConnection("tswrite");
 conn.setDoInput(true);
 conn.setDoOutput(true);
 conn.setRequestMethod("POST");

 OutputStream outputStream = conn.getOutputStream();
 ObjectOutputStream oos = new ObjectOutputStream(outputStream);
 oos.writeObject(output);
 oos.flush();
 oos.close();

 int response = conn.getResponseCode();
 if (response != 200) // HttpStatus.OK
 {
 String message = conn.getResponseMessage();
 System.err.println(
 "Failure in sending value from sensor to database.\n"
 + message);
 }
 } catch (Exception ex)
 {
 ex.printStackTrace();
 }
}

The sensor readings are encapsulated within a Java object and the serialized object is transmitted
over HTTP. As long as the receiver knows what class of object to expect, this is a general solution

http://www-01.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.tms.doc/ids_tms_222.htm
http://www.redbooks.ibm.com/abstracts/sg248021.html
http://www.redbooks.ibm.com/abstracts/sg248021.html

developerWorks® ibm.com/developerWorks/

Build an app to read sensor data and predict failure using
Informix TimeSeries service

Page 6 of 7

and any number of fields can be sent as a unit. You do not have to change the methods for
sending and receiving the data if the number or types of information being sent change.

The code that handles the passing of the sensor identifier and the statistics about the sensor
readings uses the same methodology. The same code can work in a variety of implementations.

Monitor
The monitor is also a simple class. It is responsible for deciding when and how to alert the user. In
this demo, the alert is simply changing the color of a button. Although it is easy to have the monitor
send a text message, (for example, by connecting it to a messaging service), but that is beyond
the scope of the TimeSeries service itself.

I use the Apache Commons Lang to create statistics on the data for a customer's device. This
process consists of aggregating the most recent values sent by the device, as shown in the
following listing.

SimpleRegression simpr = new SimpleRegression();
Mean mean = new Mean();
sql = "select tstamp_gmt, celsius "
 + "from thermos_vti "
 + "where "
 + "thermometer_id = ? "
 + "and "
 + "tstamp_gmt >= "
 + "(cast (? as datetime year to fraction(3)) "
 + " - interval(4.5) second(2) to fraction(1))::datetime year to fraction(5)";
statement = conn.prepareStatement(sql);
statement.setInt(1, id);
statement.setTimestamp(2, new java.sql.Timestamp(time.getTime()), cal);
rs = statement.executeQuery();
while (rs.next())
{
 long millis = rs.getTimestamp(1).getTime();
 double celsius = rs.getDouble(2);
 simpr.addData(millis, celsius);
 mean.increment(celsius);
}
stats.recentMean = (float) mean.getResult();
stats.recentSlope = (float) simpr.getSlope();

The data analysis is very simple, but it could be made more sophisticated for another application.
Every four seconds, the monitor passes the device identifier to a servlet running on Bluemix. The
servlet creates the statistics and passes the results back to the monitor. The monitor contains a
method that determines whether action should be taken.

It is possible to create a routine in the database to run the analysis. After this step is taken, it is a
matter of programming preference whether to poll the statistics from outside the database or to
created a scheduled task within the database server.

Conclusion
This application gives a simple demonstration of using Informix TimeSeries in an application that
combines using an Internet of Things device with software services provided in Bluemix. Informix

ibm.com/developerWorks/ developerWorks®

Build an app to read sensor data and predict failure using
Informix TimeSeries service

Page 7 of 7

TimeSeries makes it possible to predict when problems are likely to occur, before they actually
happen. This set of steps is tied together with standard HTTP operations for exchanging data over
the Internet.

RELATED TOPICS: Informix TimeSeries Java

© Copyright IBM Corporation 2014
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

http://www.ibm.com/developerworks/topics/timeseries/
http://www.ibm.com/developerworks/topics/java/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	What you'll need for your application
	The components
	TSConnection.initializeDB method
	Define the calendar pattern
	Establish time zone consistency
	Limit the data size
	Define a virtual table to access time series data
	Sensor
	Monitor

	Conclusion
	Trademarks

