
IBM Software
White Paper

October 2011

IBM Informix
Warehouse Accelerator
Performance is everything

Keshava Murthy, Senior Technical Staff Member, IBM Informix Development

2 IBM Informix Warehouse Accelerator

Contents

 2 Introduction

 4 Deploying Informix Warehouse Accelerator

 5 Components of Informix Warehouse Accelerator

 6 Configuring memory for nodes

 7 Designing and deploying datamarts

11 Techniques for enabling peak performance

14 Conclusion

Introduction
Imagine getting reports to business analysts and C-level
executives within seconds instead of hours. Increasing the
speed of analysis and insights. Improving business execution
speed with data points available within seconds. Improving
warehouse query performance without constantly monitoring
and tuning the system.

Imagine doing all this without building cubes, summary tables,
indexes, statistics or partitioning strategies.

Change is constant, as is the need for speed. Data analysis can
help organizations understand patterns, predict trends and
adjust business flow. And performing this analysis quickly and
consistently—at a low total cost of ownership (TCO)—can
give organizations an advantage over the competition.

But traditionally, data warehouse queries are called complex for
a reason. They access millions and billions of rows, produce
large intermediate results and perform best when they are
parallelized. The star join optimization technique is designed
to handle these workloads in a traditional system. It takes an
experienced DBA to understand such workloads and tune the
system parameters and indexes to suit the workloads.

To improve the performance of warehouse queries while
minimizing manual tuning, DBAs can turn to the IBM®
Informix® Warehouse Accelerator. The accelerator boosts the
speed of warehouse queries to the IBM Informix database
server, a scalable and highly available relational database used
to drive mission-critical transactional and analysis applications
(see Figure 1). Informix is a complete warehouse database
server with extract, transform and load (ETL) tools; built-in
support for time-cyclic data management; online operations;
deep compression; and query optimization and processing
techniques designed for complex data warehousing workloads.

IBM Software 3

Informix Warehouse Accelerator is designed to take advantage
of innovations in memory and processor technology. Because
processor-to-memory access is orders of magnitude faster than
processor-to-disk access, traditional database systems optimize
operations to minimize disk I/O, using buffering to keep
recently accessed data in memory. However, while the systems
assume low memory configurations, falling memory prices have
resulted in affordable systems with multiple-terabyte memory
capacity. At the same time, every new generation of processors
adds cores and increases on-chip cache sizes.

Informix Warehouse Accelerator exploits these trends in several
ways to boost query performance. To take advantage of the
increased availability of system memory, it compresses and
caches data in memory, eliminating the overhead of disk I/O. To
take advantage of the larger caches, the accelerator optimizes its
algorithms to parallelize queries and minimize synchronization.
Plus, Informix Warehouse accelerator can be deployed on IBM
BladeCenter® to scale both capacity and performance. It can
also be deployed on virtual and cloud environments, providing
additional choices and cost savings.

These techniques enable Informix Warehouse Accelerator to
provide breakthrough warehouse query performance while
eliminating or minimizing the following tuning tasks required
for traditional data warehouses:

•	 Indexes,	index	advisors	and	index	reorganization.	The
accelerator’s query processing engine is designed to logically
scan billions of rows in seconds or milliseconds without the
use of indexes—enabled by features such as deep columnar
data representation, query processing on compressed data
and innovative algorithms that exploit modern processor
features like Single Instruction Multiple Data (SIMD) and
larger L2 and L3 cache.

•	 Statistics	collection	and	advisors.	Traditional optimizers
rely on regular statistics collection to improve query plans.
In contrast, Informix Warehouse Accelerator automatically
determines join orders and consistently uses star join plans.
Runtime optimization and the lack of indexes mean that statistics
collection and statistics collection advisors are not needed.

•	 Manual	partitioning	schemes. The accelerator
automatically partitions data both vertically and horizontally.
Queries also benefit from the vertical and horizontal
partition pruning (also known as fragment elimination)
because of cell-based deep columnar storage.

•	 Manual	tuning	for	each	query	or	workload. During
installation of the accelerator, administrators provide basic
memory and storage configurations. Afterward, runtime
tuning is avoided through consistent plans, elimination of
disk I/O and fast scans and joins.

•	 Storage	management.	Data is stored in memory, with just a
copy of the in-memory image on disk. Administrators do not
need to plan and create storage spaces for tables and indexes.

•	 Database	changes.	The accelerator exploits the logical
schema in the existing data warehouse.

Business intelligence
applications

Inline analytics

IBM Smart Analytics
Optimizer Studio

Reports

Transactional
data

Line-of-
business data

Master data
management

Partner data

IBM Informix
database server

IBM Informix
Warehouse
Accelerator

Figure 1: Informix Warehouse Accelerator architecture

4 IBM Informix Warehouse Accelerator

•	 Application	changes.	The accelerator plugs into the
Informix database server as a resource. Informix knows
which datamarts are stored in the accelerator and
automatically routes relevant queries to the accelerator.

•	 Summary	tables	and	related	advisors.	Accelerator table scans
and joins are at least an order of magnitude faster than those of
traditional databases without the use of summary tables.

•	 Page-	or	block-size	configuration.	A deep columnar
approach automatically determines and optimizes in-
memory cell size.

•	 Temporary	space	allocation.	The intermediate result set is
compressed and stored in memory, avoiding the need for
allocating temporary disk space.

•	 Query	and	optimizer	hints	for	accelerated	queries.	The
accelerator uses star join plans consistently. The accelerator
query processor adjusts the join orders depending on the
runtime statistics.

Deploying Informix
Warehouse Accelerator
Informix Warehouse Accelerator is designed to run on
commodity hardware—a high-performance Linux operating
system on an Intel processor–based server. It integrates with
the Informix database server, which supports the following
platforms: Linux operating system on Intel processor–based
servers; IBM AIX® operating system on IBM POWER7®
processor–based servers; HP-UX operating system on Intel
Itanium processor–based servers; and Oracle Solaris operating
system on Oracle SPARC servers. When running Informix
database server and Informix Warehouse Accelerator on Linux,
the database server and the accelerator can be installed on the
same or different computers.

“Informix Warehouse Accelerator brings the
capabilities of data warehousing and online
transaction processing (OLTP) on a single
platform. The queries can be run in a matter
of seconds without having to make any
additional tool investments.”

– Thomas Gemesi, ATG IT Consulting GmbH

Informix Warehouse Accelerator is a component of Informix
Ultimate Warehouse Edition, which includes the Informix
Ultimate Edition database server as well as quick start and
administration guides that provide comprehensive
documentation on installing and configuring the Informix
database server and the accelerator. The package also includes
IBM Smart Analytics Optimizer Studio, an Eclipse-based
administration interface for configuring and managing the
accelerator and for defining and deploying datamarts from the
Informix database to the accelerator. The Smart Analytics
Optimizer Studio comes in two versions: one for Linux and
another for the Microsoft Windows operating system.
Administrators can use the Linux version on the same
computer as the Informix database server or on different
computer. To use the Windows version, administrators can
transfer the self-extracting binary to a Windows-based
computer and install it there.

IBM Software 5

Deploying the database server and the accelerator requires five
basic steps (which are detailed in the Informix Warehouse
Accelerator Administration Guide):

1. Install, configure and start the Informix database server.
2. Install, configure and start the accelerator. Key configuration

settings include location of the file system for data backup,
amount of memory and processor resources.

3. Connect the Smart Analytics Optimizer Studio to the
Informix database and add the accelerator.

4. Design, validate and deploy the datamarts.
5. Load data to the accelerator. The accelerator is now ready

for queries.

Components of Informix
Warehouse Accelerator
Informix Warehouse Accelerator is connected to the Informix
database server over a TCP/IP network. If the accelerator and
the database server are on the same computer, they
communicate by using a TCP/IP loopback connection. The
accelerator uses coordinator and worker processes, or nodes (see
Figure 2). Informix communicates with the accelerator through
the coordinator node. Worker nodes communicate only with the
coordinator. Both the coordinator and worker nodes share query
processing responsibility and work together to parallelize
execution of every query and return results quickly.

After a connection between the accelerator and the database
server has been established, Informix adds the accelerator
connection information into its SQLHOSTS file:

sales_acc group -- c=1,a=4b3f3f457d5f552b613b4c587551362d2776496f226
e714d75217e22614742677b424224
sales_acc_1 dwsoctcp 127.0.0.1 21022 g=sales_acc

In this example, the name of the accelerator is sales_acc.
Informix creates a new group with that name. The hexadecimal
value is the authentication code used to ensure that only
the Informix database communicates with the accelerator
sales_acc. The name of the coordinator node is sales_acc_1. The
database protocol dw, which is very similar to the Distributed
Relational Database Architecture (DRDA) protocol, is used for
communication over TCP/IP and is optimized for database
server and accelerator communication. The TPC/IP loopback
address 127.0.0.1 indicates that the accelerator is running on
same computer as the database server. Configurations that
include a large number of worker nodes will have multiple
coordinator nodes for handling failover; each coordinator node
will have its own entry in the SQLHOSTS file.

Operational reportsInline analytics
IBM Smart Analytics

Optimizer StudioBI applications

IBM Informix
database server

IBM Informix
Warehouse Accelerator

Coordinator node

Worker nodeWorker node Worker nodeWorker node

Compressed data
in memory

Compressed data
in memory

Compressed data
in memory

Compressed data
in memory

Memory image
on disk

Memory image
on disk

Memory image
on disk

Memory image
on disk

Figure 2: Sample architecture with one coordinator node and four worker nodes

http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.acc.doc/acc.htm
http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.acc.doc/acc.htm

6 IBM Informix Warehouse Accelerator

The role of the coordinator node
The coordinator node provides the main point of
communication between Informix Warehouse Accelerator and
the Informix database server. The database server connects to
the coordinator node to send data and queries and also to
retrieve result sets.

During the data loading phase, the coordinator node
distributes the data among multiple worker nodes. The
coordinator node then collects the entire compression
dictionary, merges it and redistributes the dictionary so all
nodes are using the same reference dictionary.

“Before using Informix Warehouse Accelerator,
complex inventory and sales analysis queries on
the enterprise warehouse with more than a
billion rows took anywhere from a few minutes
to 45 minutes to run. When we ran those same
queries using Informix Warehouse Accelerator,
they finished in 2 to 4 seconds. That means they
ran from 60 to 1,400 times as quickly, with
an average acceleration factor of more than
450—all without any index or cube building,
query tuning or application changes.”

– Ashutosh Khunte, Manager, Data Management Services, Skechers USA

During the query processing phase, the coordinator node
receives a query from the database server, sends the query to
each worker node, gets the intermediate result set, merges the
groups, decompresses the data and sorts the data if necessary
before sending the final results to the database server.

The role of the worker node
In the data loading phase, each worker node analyzes the
incoming data using frequency partitioning, automatically
partitions the data vertically and horizontally into cells and
compresses the data using deep columnar techniques (see
section “Techniques for enabling peak performance”). Once
the data is compressed, it is written to disk for recovery.

The worker node also performs query processing—100 percent
in memory—on compressed data. Each worker node maintains
a compressed copy of the dimension tables and a portion of the
fact table, and each returns intermediate results to the
coordinator node.

Configuring memory for nodes
During installation of Informix Warehouse Accelerator, the
DBA configures the number and memory configuration of the
nodes. The number of coordinator nodes and worker nodes are
automatically determined; for example, specifying five nodes will
automatically create one coordinator and four worker nodes.

Consider a sample configuration with four worker nodes and
one coordinator node. The DBA deploys a datamart with a
SALES fact table and CUSTOMER, STORE and TIME
dimension tables. The dimension tables are compressed and
kept in private memory of each worker; thus there are four
copies of the dimension tables. The rows of the fact table
SALES are evenly divided among the four worker nodes. As a
result, each worker node maintains the dimension tables and
25 percent of the fact table’s rows in main memory.

IBM Software 7

The data transfer rate typically increases as the number of
worker nodes increases, assuming that there is enough
processor capacity. A large number of worker nodes also helps
increase query processing speed, although less dramatically
than it does the data transfer rate. The effect of the number
of workers on the query depends on the query as well.

Given those considerations, how much memory should be
allocated for each worker node? How much memory is needed
by the system?

Generally, there is a 3:1 compression ratio for the uncompressed
Informix data to the compressed Informix Warehouse Accelerator
data in memory. If the fact table SALES and the dimension
tables CUSTOMER, STORE and TIME total approximately
100 GB in size—with most of that taken by the SALES
table—approximately 33 GB of memory will be needed for the
workers to store the data. DBAs can easily determine table
sizes by using the Open Admin Tool (OAT) or by directly
querying the catalogs.

Each worker node needs sufficient runtime memory to store
intermediate results at runtime. Worker nodes dynamically
allocate and release the memory required for query processing.
Planning memory allocation for nodes is similar to planning
temp space for the Informix database server. How much
sorting of intermediate results is expected from the workload?
How related is the data and how many groups are in each
category? Although those factors are difficult to identify
precisely, having additional memory with another one-fifth to
one-third of the data size is usually sufficient.

The final stage of accelerator query processing is done by the
coordinator node. The coordinator node needs memory for
merging, decompressing and sorting the result set. Again, the

“It offers highly impressive performance with
queries running 30 times faster than
previously. The columnar technology saves
a lot of processing time; it reduced our
workload time from 9.5 hours to 15 minutes,
all without any database tuning or need
to manage the physical storage.”

– Lester Knutsen, Informix Data Champion, Advanced DataTools

memory required here depends on the expected size of the
result set. Keep in mind that when the query is issued with
the FIRST clause—for example, SELECT FIRST 1,000…
ORDER BY sum(sales.amount)—the coordinator node must
sort all the data to get the first 1,000. Of course, once the
coordinator node creates the first 1,000 groups, it can replace
or reject the new groups.

The next section describes how the nodes work with the
dimension and fact tables of a datamart.

Designing and deploying datamarts
After the Informix Warehouse Accelerator has been installed
and configured, the next step is to set up a datamart. A datamart
can be defined as a subset of a data warehouse, usually oriented
to a specific business line or team. An enterprise’s data
warehouse on the Informix database server can contain
information from sales, inventory, customer service, market
data and the like.

8 IBM Informix Warehouse Accelerator

A datamart defines fact and dimension tables and their
relationships. The dimension tables typically contain
significantly fewer rows than fact tables—for example,
product information and customer information. In some
cases the dimension table can be quite large, such as one
that contains data on all California residents.

To create high-value datamarts, enterprises can accelerate them
using Informix Warehouse Accelerator. For example, a sales
manager may want to analyze sales and inventory data to
understand trends and create suitable sales incentives. In this
case, only the datamarts with sales and inventory fact tables
need to be accelerated.

In the context of the accelerator, a datamart contains one or
more snowflake schema, each of which has one fact table and
related dimension tables. In the snowflake schema shown in

Figure 3, the fact table DAILY_SALES is related to dimensions
that describe the business facts.

After identifying the tables to create a datamart, the DBA defines
the relationships between the fact table and the dimension
tables. The datamart validation step helps ensure that all the
relationships between the tables are defined. The DBA should
address any errors in this step before deploying the datamart.

As part of datamart deployment, IBM Smart Analytics
Optimizer Studio sends the datamart definition in XML
format to the accelerator, which sends back the definition in
SQL. This definition is saved as a view within Informix system
catalogs with a special flag and related information. This
special view, known as the accelerated query table (AQT), is
later used to match queries and redirect matching queries to
the accelerator.

DAILY_SALES
fact table

PROMOTION

STORE

CITY

REGION

PERIOD

MONTH

QUARTER

PRODUCT

BRAND

PRODUCT_LINE

CUSTOMER

DEMOGRAPHICS

CONTACT

ADDRESS

Figure 3: A sample snowflake schema with the DAILY_SALES fact table

IBM Software 9

Figure 4: Sample accelerated query table with DAILY_SALES fact table and
its dimension tables PRODUCT, STORE, CUSTOMER and PROMOTION

create view “dwa”.”aqt2dbca0d9-509d-434b-9cc9-4a12c6de6b3d” (“COL16”,”COL17”
,”COL18”,”COL19”,”COL20”,”COL21”,”COL22”,”COL23”,”COL24”,”COL25”,”COL26”,”CO

L27”,”COL28”,”COL29”,”COL30”,”COL31”,”COL32”,”COL33”,”COL34”,”COL35”,”COL3
6”,”COL37”,”COL38”,”COL39”,”COL40”,”COL41”,”COL42”,”COL43”,”COL44”,”COL45”,

”COL46”,”COL47”,”COL07”,”COL08”,”COL09”,”COL10”,”COL11”,”COL12”,”COL13”,”CO
L14”,”COL15”,”COL48”,”COL49”,”COL50”,”COL51”,”COL52”,”COL53”,”COL54”,”COL5
5”,”COL56”,”COL57”,”COL58”,”COL59”,”COL60”,”COL61”,”COL01”,”COL02”,”COL03”,

”COL04”,”COL05”,”COL06”,”COL62”,”COL63”,”COL64”,”COL65”,”COL66”,”COL67”,”CO
L68”,”COL69”,”COL70”,”COL71”,”COL72”,”COL73”,”COL74”,”COL75”,”COL76”,”COL7
7”,”COL78”,”COL79”,”COL80”,”COL81”) as

 select x0.perkey ,x0.storekey ,x0.custkey ,x0.prodkey ,x0.promokey
 ,x0.quantity_sold ,x0.extended_price ,x0.extended_cost ,x0.shelf_location
 ,x0.shelf_number ,x0.start_shelf_date ,x0.shelf_height ,x0.shelf_width
 ,x0.shelf_depth ,x0.shelf_cost ,x0.shelf_cost_pct_of_sale
 ,x0.bin_number ,x0.product_per_bin ,x0.start_bin_date ,x0.bin_height
 ,x0.bin_width ,x0.bin_depth ,x0.bin_cost ,x0.bin_cost_pct_of_sale
 ,x0.trans_number ,x0.handling_charge ,x0.upc ,x0.shipping
 ,x0.tax ,x0.percent_discount ,x0.total_display_cost ,x0.total_discount
 ,x1.perkey ,x1.calendar_date ,x1.day_of_week ,x1.week ,x1.period
 ,x1.”year” ,x1.holiday_flag ,x1.week_ending_date ,x1.”month”
 ,x2.prodkey ,x2.upc_number ,x2.package_type ,x2.flavor
 ,x2.form ,x2.category ,x2.sub_category ,x2.case_pack ,x2.package_size
 ,x2.item_desc ,x2.p_price ,x2.category_desc ,x2.p_cost ,x2.sub_category_desc
 ,x3.storekey ,x3.store_number ,x3.city ,x3.state ,x3.district
 ,x3.region ,x4.custkey ,x4.”name” ,x4.”address” ,x4.c_city
 ,x4.c_state ,x4.zip ,x4.phone ,x4.age_level ,x4.age_level_desc
 ,x4.income_level ,x4.income_level_desc ,x4.marital_status
 ,x4.gender ,x4.discount ,x5.promokey ,x5.promotype ,x5.promodesc
 ,x5.promovalue ,x5.promovalue2 ,x5.promo_cost
from

 (((((“informix”.daily_sales x0 left join “informix”.period x1 on (x0.perkey
 = x1.perkey))left join “informix”.product x2 on (x0.prodkey
 = x2.prodkey))left join “informix”.”store” x3 on (x0.storekey
 = x3.storekey))left join “informix”.customer x4 on (x0.custkey
 = x4.custkey))left join “informix”.promotion x5 on (x0.promokey
 = x5.promokey));

Figure 4 shows an example of an AQT with DAILY_SALES as
the fact table. (Note that DBAs do not use this view; it is
automatically created and is provided here for information.)
SQL from applications or tools works as usual, using tables
defined in the schema.

Automatically creating the datamart from
workload/query analysis
Informix has a built-in tool that analyzes your workload and
creates the most optimal datamart to accelerate your queries.
This tool will generate a datamart definition that includes only
the tables and columns used in the query, automatically discover
the relationships between the tables, and add them to the
definition. It helps you to create a datamart for a specific
workload on a database with many tables—and it’s also an easy
way to get started with datamart creation (Figure 5 demonstrates
the five steps). For more details and examples, check the Informix
documentation.

Figure 5: Informix contains a built-in tool to help you create a datamart in
five steps.

Activate query probe

Run the queries

Create datamart from probe data

Generate datamart XML definition

Import to IBM Smart Analytics Optimizer
Studio or use CLI; deploy datamart

http://publib.boulder.ibm.com/infocenter/idshelp/v117/index.jsp
http://publib.boulder.ibm.com/infocenter/idshelp/v117/index.jsp

10 IBM Informix Warehouse Accelerator

select first 100 i_item_id,
 avg(ws_quantity) avg_quantity,
 avg(ws_list_price) avg_list_price,
 avg(ws_coupon_amt) avg_coupton_amt,
 sum(ws_sales_price) sum_sales_price
 from web_sales, customer_demographics, date_dim, item, promotion
 where ws_sold_date_sk = d_date_sk and
 ws_item_sk = i_item_sk and
 ws_bill_cdemo_sk = cd_demo_sk and
 ws_promo_sk = p_promo_sk and
 cd_gender = ‘F’ and
 cd_marital_status = ‘M’ and
 cd_education_status = ‘College’ and
 (p_channel_email = ‘N’ or p_channel_event = ‘N’) and
 d_year = 2001
 group by i_item_id;
 order by sum(ws_sales_price) desc;

Worker
node

Worker
node

Worker
node

Worker
node

Compressed
data

in memory

Compressed
data

in memory

Compressed
data

in memory

Compressed
data

in memory

Memory
image
on disk

Memory
image
on disk

Memory
image
on disk

Memory
image
on disk

Coordinator node

Applications
BI tools

IBM Informix
database server

Step 1. Submit SQL
(database protocol: SQLI or DRDA)
Network: TCP/IP, SHM

Step 2. Match and
redirect query

Step 3. Offload SQL
(DRDA over TCP/IP)

Step 4. Return results
(DRDA over TCP/IP)

Step 5. Return results
(database protocol: SQLI or DRDA)
Network: TCP/IP, SHM

Local
execution

IBM Informix Warehouse Accelerator

Loading and querying data
After the datamart has been defined, the next step is to load the
data. In this step, a snapshot of data from the database server
tables is sent to the accelerator. In this phase, the accelerator
distributes the data to each of its worker nodes. The worker
node analyzes the data for frequently occurring values and the
relationships between the columns, and then it partitions the
data vertically and horizontally. After partitioning, it compresses
the data using the deep columnar process described in the
“Columnar storage” section of this white paper. Note that in
this phase, the worker node keeps the compressed data in
memory with a copy on disk for persistence; no indexes,
summary tables or cubes are created. The data can be refreshed
periodically (for example, every night) from the Informix
database server.

As soon as loading is complete, the datamart in the accelerator
is ready for use. Informix Warehouse Accelerator includes a
command-line utility to design, validate, deploy and load

Sample query that joins the WEB_SALES fact table with four
dimension tables

datamarts. This utility is very useful for writing scripts to
automate this process.

Querying data typically involves joining the fact table with one
or more dimension tables and then looking for specific patterns
within the data. Figure 6 shows an example of a query where
the WEB_SALES fact table is joined with four dimension
tables. Informix matches the query to a specific datamart
definition view (AQT) and then sends the query to the
accelerator—just like a distributed query from one Informix
database server to another server. The result returns over the
same connection and is sent back to the client application (see
Figure 7). The process is transparent to the client application,
except that the client receives the results much faster than
during a non-accelerated session.

Figure 6:

Figure 7: Query flow between Informix database server and Informix
Warehouse Accelerator

IBM Software 11

The accelerator requires queries to join the fact table
with zero or more dimension tables and to join each table
using the join keys specified when defining the datamart
relationship. It also supports inner joins and left joins with
the fact table on the dominant side. (For more information
about query qualification, see the Informix Warehouse
Accelerator Administration Guide.)

The accelerator runs each query on a first-come, first-serve
basis without interruption. All the data and intermediate results
are stored in memory. Each worker node has a copy of the
dimension table to join with, and each join thread tries to cache
the hash table in the level 2 (L2) cache to optimize memory
access. The worker nodes scan and join independently with little
data exchange and synchronization with other worker nodes.
Typically, each query will finish in a few seconds, compared to
the minutes and hours taken by a traditional system.

Techniques for enabling peak performance
To help improve performance and eliminate tuning and
maintenance tasks, Informix Warehouse Accelerator uses several
techniques developed by IBM research and development. For
example, the deep columnar approach goes beyond traditional
columnar storage. Extreme compression and query processing
on compressed data eliminates disk I/O during query processing
and enables large in-memory warehouses. Exploitation of
multi-core architectures and single-instruction, multiple-data
(SIMD) processing enables incredible speed without indexes or
summary tables. The “Additional reading” section lists papers
that provide further details of underlying theory and techniques.

Frequency partitioning
Each table in the datamart is analyzed for frequently occurring
values in columns and related column groups to determine
the optimal columns that will be combined to form a tuplet,
which is a fraction of a complete row, or tuple. In the example
shown in Figure 8, the two columns Product and Origin are
correlated and hence combined to form a tuplet.

In Figure 8, the top 64 product values are combined with the
most frequently occurring values in origin (USA, China) to
form the smaller cell 1 using Huffman encoding. The benefit
of Huffman encoding is that most frequently occurring values
are encoded with the least number of bits. This technique
increases compression efficiency and can be used to evaluate
both equality and range predicates. Since query processing is
done on compressed data, fewer bits translate to higher speed.

Correlation of product and origin columns during frequency
artitioning

Volume Product Origin
Histogram of Origin

Nu
m

be
r o

f
Oc

cu
re

nc
es

Common
values

Rare
values

Column partitions

Histogram
of Product

Top 64
traded goods
—6-bit code

Rest

Cell 1 Cell 3 Cell 5

Cell 2 Cell 4 Cell 6

Origin

Pr
od

uc
t

China
USA

GER,
FRA,
… Rest

Trade_info
(Volume, Product, Origin)

Table partitioned into cells

Figure 8:
p

http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.acc.doc/acc.htm
http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.acc.doc/acc.htm

12 IBM Informix Warehouse Accelerator

Columnar storage
Traditional row-wise databases store a complete row in a page
followed by another row. The design optimizes row I/O
efficiency, assuming the query is interested in the majority of
the column values. If the data is compressed in storage, the row
is decompressed for every fetch. This process is efficient for
transactional workloads accessing few rows per query.

Analytical queries typically access millions or billions of rows,
but each query analyzes the relationship between subsets of
columns in the fact table. For example, to find out the total
sales of items per location in 2010, the required query needs to
access only three of the columns in the fact table—item, sales
and location—and join them with the dimension tables. In this
case, accessing and decompressing every row is inefficient.

A columnar database stores all column values together. Every
time data is inserted or loaded, each row is unzipped to
separate the column values. Every time a row is accessed, the
column values are fetched separately and then zipped to form
the row. Because the column values are stored together, better
compression can be achieved. The previous example showed
that analytical queries are typically interested in subsets of the
rows. In columnar databases, only pages storing item, sales and
location data need to be fetched. For queries accessing a large
subset of rows and doing sequential scans, columnar storage
helps improves efficiency.

Informix Warehouse Accelerator stores data in columns
groups, which are vertical partitions of the table called banks.
The assignment of columns to banks is cell-specific, because

column lengths vary from cell to cell. The assignment uses a
bin-packing algorithm that does not depend on how the
column is used in a workload. Instead, the encoding is based on
whether the column fits in a bank whose width is some fraction
of a memory word. Also, scans need to access only the banks
that contain columns referenced in any given query, which
avoids scanning banks with no columns referenced in the
query. This projection is similar to the way pure column stores
minimize disk I/Os. The accelerator stores all data in memory;
even though there is no disk I/O, this technique minimizes the
amount of memory needed for scanning and saves considerable
processor cycles.

Single-instruction, multiple-data parallelism
Consider the following query:

SELECT SUM(s.amount) FROM sales AS s WHERE s.prid = 100 GROUP BY s.zip;

If the columns amount (A), prid (P) and zip (Z) are from the
same bank, multiples of these values can be loaded into a
128-bit processor register at the same time. In this case, there
are 12 column values at a time (see Figure 9).

A1 Z1 P1 A2 Z2 P2 A3 Z3 P3 A4 Z4 P4

32 bits 32 bits 32 bits 32 bits

128 bits

Figure 9: Loading column values into processor registers

IBM Software 13

SIMD instructions on Intel Xeon processors operate on
128-bit registers. The compression technique used by the
accelerator typically requires few bits for each column and
hence can load many fields in each 128-bit register. The
technique applies predicates on all columns simultaneously.
During query processing, this overloaded operation occurs on
all the allocated cores, resulting in extreme parallelism for the
query. All 12 values can be operated on simultaneously with a
single processor instruction, resulting in significant
performance gain (see Figure 10).

Query processing
The previous sections gave an overview of how data is encoded
and stored and how processing is done at a micro level. This
section describes query processing at a macro level.

Efficient scanning provides the foundation for query processing.
In scanning, the cell is the unit of processing. The accelerator
dynamically spawns appropriate threads to utilize configured
processor resources and assigns a cell to each core (see Figure 11).
This scan operates on compressed data using SIMD instructions

and exploiting the advantages of Huffman encoding. Predicate
evaluation GROUP BY is done on compressed data, but
aggregation is done on decompressed data.

The encoding technique also works as a very dense hash
function that allows caching of the hash table in the processor’s
L2 cache and a quick look-up. The technique enables very
quick GROUP BY operations on compressed data. Joins
between two densely encoded hash tables can result in a sparse
set of values. The accelerator detects these situations and will
switch over to linear probing dynamically. A combination of
these techniques enables query processing on compressed data.

A1 Z1 P1 A2 Z2 P2 A3 Z3 P3 A4 Z4 P4

Vector operation

Operand Operand Operand Operand

Result Result Result Result

Figure 10: Operating on all values in the registers

Cell
3

Cell
1

Cell
2

Dictionaries Query
executor

Core + $ (HT)

Core + $ (HT)

Core + $ (HT)

Compressed and
partitioned data

Figure 11: Efficient parallel scanning for query processing

14 IBM Informix Warehouse Accelerator

Queries on a datamart will join the fact table with the
dimension tables using the join predicates between the fact
table and dimension tables and then between dimension tables
and other dimension tables. For each query, each worker node
creates a snowflake model for the tables. It then starts at the
outermost edge of the branch and works its way into the fact
table. Each snowflake branch is processed, and its result acts as
dimensional input for next level. First the local predicates are
applied to dimension tables to create a list of qualified keys.
These keys from the dimension table are then joined with fact
table (or the dimension table acting as a fact table at the
snowflake branch) to form the next level of aggregations and
relations. This process is applied recursively until the complet
join is processed at each worker node.

The coordinator node gets the intermediate result set from
each worker node, merges the intermediate results into
appropriate groups, decompresses the data and then executes
ORDER BY and HAVING instructions before sending the
data to the Informix database server over the DRDA protocol.
The Informix database server then routes the data to the
application program.

e

Because there is only one representation of the data—
compressed columnar table data—the accelerator follows the
same code path for each table every time, which enables
accelerator performance to be consistent. All efficiencies of cell
and block elimination for the query come from compression
encoding instead of indexes or summary tables.

Conclusion
The innovative approaches to complex query processing taken
by Informix Warehouse Accelerator can help improve the
productivity of an enterprise by providing quick answers
without increasing the amount of manual work or budget
required. Because the accelerator is tightly integrated with the
Informix database server, DBAs can divide the load between
the database server and the accelerator as necessary.

Fast response time means quick answers, quick insights and an
agile business. Using Informix Warehouse Accelerator,
enterprises can plan to accelerate the high-value aspect of their
warehouses and dynamically evolve their infrastructures to suit
business needs.

IBM Software 15

Further information
To learn more about Informix Warehouse Accelerator and
Informix Ultimate Warehouse Edition, please contact your
IBM representative or IBM Business Partner, or visit the
following websites:

•	 ibm.com/informix
•	 ibm.com/informix/warehouse

Additional reading
Allison L. Holloway, Vijayshankar Raman, Garret Swart,
David J. DeWitt: How to barter bits for chronons:
compression and bandwidth trade offs for database scans.
SIGMOD 2007: 389–400

Ryan Johnson, Vijayshankar Raman, Richard Sidle, Garret
Swart: Row-wise parallel predicate evaluation. PVLDB 1(1):
622–634 (2008)

Lin Qiao, Vijayshankar Raman, Frederick Reiss, Peter J. Haas,
Guy M. Lohman: Main-memory scan sharing for multi-core
CPUs. PVLDB 1(1): 610–621 (2008)

Vijayshankar Raman, Garret Swart: How to wring a table dry:
Entropy compression of relations and querying compressed
relations. PVLDB: 858–869 (2006)

Vijayshankar Raman, Garret Swart, Lin Qiao, Frederick Reiss,
Vijay Dialani, Donald Kossmann, Inderpal Narang, Richard
Sidle: Constant-Time Query Processing. ICDE 2008: 60–69

Knut Stolze, Vijayshankar Raman, Richard Sidle, O. Draese:
Bringing BLINK Closer to the Full Power of SQL. BTW
2009: 157–166

Acknowledgements
Informix Warehouse Accelerator was developed through the
collaboration of IBM Almaden Research, IBM Böblingen lab
and the IBM Informix team. Thanks to the Informix team for
reviewing and improving this paper.

http://ibm.com/informix
http://ibm.com/informix/warehouse

© Copyright IBM Corporation 2011

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
October 2011
All Rights Reserved

IBM, the IBM logo, ibm.com, AIX, Informix and POWER7 are trademarks
or registered trademarks of International Business Machines Corporation
in the United States, other countries or both. If these and other IBM
trademarked terms are marked on their first occurrence in this information
with a trademark symbol (® or ™), these symbols indicate U.S. registered or
common law trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common law
trademarks in other countries. A current list of IBM trademarks is available
on the web at “Copyright and trademark information” at ibm.com/legal/
copytrade.shtml

Linux is a registered trademark of Linus Torvalds in the United States,
other countries or both.

Intel, Itanium and Xeon are registered trademarks of Intel Corporation in
the United States, other countries or both.

Microsoft and Windows are registered trademarks of Microsoft
Corporation in the United States, other countries or both.

Oracle, Solaris and SPARC are trademarks of Oracle in the United States,
other countries or both.

Other company, product or service names may be trademarks or service
marks of others.

References in this publication to IBM products or services do not imply that
IBM intends to make them available in all countries in which IBM operates.
All statements regarding IBM’s future direction and intent are subject to
change or withdrawal without notice, and represent goals and objectives only.

Please Recycle

IMW14587-USEN-00

http://ibm.com/legal/copytrade.shtml
http://ibm.com/legal/copytrade.shtml

